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Foreword

ETAPS 2010 was the 13th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised the usual five sister conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 19 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, CMCS,
COCV, DCC, DICE, FBTC, FESCA, FOSS-AMA, GaLoP, GT-VMT, LDTA,
MBT, PLACES, QAPL, SafeCert, WGT, and WRLA) and seven invited lec-
tures (excluding those that were specific to the satellite events). The five main
conferences this year received 497 submissions (including 31 tool demonstration
papers), 130 of which were accepted (10 tool demos), giving an overall accep-
tance rate of 26%, with most of the conferences at around 24%. Congratulations
therefore to all the authors who made it to the final programme! I hope that most
of the other authors will still have found a way of participating in this exciting
event, and that you will all continue submitting to ETAPS and contributing to
make of it the best conference on software science and engineering.
The events that comprise ETAPS address various aspects of the system de-

velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination toward theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.
ETAPS is a confederation in which each event retains its own identity, with

a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.
ETAPS 2010 was organised by the University of Cyprus in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the Cyprus Tourism Organisation.



VI Foreword

The organising team comprised:

General Chairs: Tiziana Margaria and Anna Philippou
Local Chair: George Papadopoulos
Secretariat: Maria Kittira
Administration: Petros Stratis
Satellite Events: Anna Philippou
Website: Konstantinos Kakousis.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Luca
de Alfaro (Santa Cruz), Gilles Barthe (IMDEA-Software), Giuseppe Castagna
(CNRS Paris), Marsha Chechik (Toronto), Sophia Drossopoulou (Imperial
College London), Javier Esparza (TU Munich), Dimitra Giannakopoulou
(CMU/NASA Ames), Andrew D. Gordon (MSR Cambridge), Rajiv Gupta
(UC Riverside), Chris Hankin (Imperial College London), Holger Hermanns
(Saarbrücken), Mike Hinchey (Lero, the Irish Software Engineering Research
Centre), Martin Hofmann (LM Munich), Joost-Pieter Katoen (Aachen), Paul
Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald Luettgen
(Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Potsdam),
Ugo Montanari (Pisa), Oege de Moor (Oxford), Luke Ong (Oxford), Fer-
nando Orejas (Barcelona) Catuscia Palamidessi (INRIA Paris), George Pa-
padopoulos (Cyprus), David Rosenblum (UCL), Don Sannella (Edinburgh), João
Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), and Martin Wirsing (LM Munich).
I would like to express my sincere gratitude to all of these people and or-

ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.
Finally, I would like to thank the organising Chair of ETAPS 2010, George

Papadopoulos, for arranging for us to have ETAPS in the most beautiful sur-
roundings of Paphos.

January 2010 Vladimiro Sassone



Preface

This volume contains the proceedings of the 16th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2010). TACAS 2010 took place in Paphos, Cyprus, March 22–25, 2010, as part
of the 13th European Joint Conferences on Theory and Practice of Software
(ETAPS 2010), whose aims, organization, and history are presented in the
foreword of this volume by the ETAPS Steering Committee Chair, Vladimiro
Sassone.
TACAS is a forum for researchers, developers, and users interested in rigor-

ously based tools and algorithms for the construction and analysis of systems.
The conference serves to bridge the gaps between different communities that
share common interests in tool development and its algorithmic foundations.
The research areas covered by such communities include, but are not limited to,
formal methods, software and hardware verification, static analysis, program-
ming languages, software engineering, real-time systems, and communications
protocols. The TACAS forum provides a venue for such communities at which
common problems, heuristics, algorithms, data structures, and methodologies
can be discussed and explored. TACAS aims to support researchers in their
quest to improve the usability, utility, flexibility, and efficiency of tools and algo-
rithms for building systems. Tool descriptions and case studies with a conceptual
message, as well as theoretical papers with clear relevance for tool construction,
are all encouraged. The specific topics covered by the conference include, but are
not limited to, the following: specification and verification techniques for finite
and infinite-state systems, software and hardware verification, theorem-proving
and model-checking, system construction and transformation techniques, static
and run-time analysis, abstraction techniques for modeling and validation, com-
positional and refinement-based methodologies, testing and test-case generation,
analytical techniques for safety, security, or dependability, analytical techniques
for real-time, hybrid, or stochastic systems, integration of formal methods and
static analysis in high-level hardware design or software environments, tool en-
vironments and tool architectures, SAT and SMT solvers, and applications and
case studies.
TACAS traditionally considers two types of papers: research papers and tool

demonstration papers. Research papers are full-length papers that contain novel
research on topics within the scope of the TACAS conference and have a clear rel-
evance for tool construction. Tool demonstration papers are shorter papers that
give an overview of a particular tool and its applications or evaluation. TACAS
2010 received a total of 134 submissions including 24 tool demonstration papers
and accepted 35 papers of which 9 papers were tool demonstration papers. Each
submission was evaluated by at least three reviewers. After a six-week reviewing
process, the program selection was carried out in a two-week electronic Program



VIII Preface

Committee meeting. We believe that the committee deliberations resulted in a
strong technical program.
Joseph Sifakis from Verimag, France, gave the unifying ETAPS 2010 invited

talk on “Embedded Systems Design — Scientific Challenges and Work Direc-
tions.” The abstract of his talk is included in this volume. Jean-François Raskin
from the Université Libre de Bruxelles, Belgium gave the TACAS 2010 invited
talk on “Antichain Algorithms for Finite Automata.”
As TACAS 2010 Program Committee Co-chairs we would like to thank the

authors of all submitted papers, the Program Committee members, and all the
referees for their invaluable contribution in guaranteeing such a strong technical
program. We also thank the EasyChair system for hosting the conference sub-
mission and program selection process and automating much of the proceedings
generation process. We would like to express our appreciation to the ETAPS
Steering Committee and especially its Chair, Vladimiro Sassone, as well as the
Organizing Committee for their efforts in making ETAPS 2010 such a successful
event.
Finally, we remember with sadness the sudden passing of Amir Pnueli in

2009. His intellectual leadership and his patronage will be missed by the entire
ETAPS community.

January 2010 Javier Esparza
Rupak Majumdar
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Bernd Finkbeiner Jean-Vivien Millo Mark Timmer
Dana Fisman Todd Millstein Sinha Umeno
Blaise Genest Alan Mishchenko Frits Vaandrager
Hugo Gimbert Swarup Mohalik Peter van Rossum
Patrice Godefroid Laurent Mounier Shobha Vasudevan
Valentin Goranko Anders Møller Berthold Vöcking
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Christoph M. Wintersteiger

Fairness for Dynamic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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Embedded Systems Design – Scientific
Challenges and Work Directions

Joseph Sifakis

Verimag

The development of a satisfactory Embedded Systems Design Science provides
a timely challenge and opportunity for reinvigorating Computer Science.

Embedded systems are components integrating software and hardware jointly
and specifically designed to provide given functionalities, which are often critical.
They are used in many applications areas including transport, consumer elec-
tronics and electrical appliances, energy distribution, manufacturing systems,
etc.

Embedded systems design requires techniques taking into account extra-
functional requirements regarding optimal use of resources such as time, memory
and energy while ensuring autonomy, reactivity and robustness.

Jointly taking into account these requirements raises a grand scientific and
technical challenge: extending Computer Science with paradigms and methods
from Control Theory and Electrical Engineering. Computer Science is based
on discrete computation models not encompassing physical time and resources
which are by their nature very different from analytic models used by other
engineering disciplines.

We summarize some current trends in embedded systems design and point out
some of their characteristics, such as the chasm between analytical and compu-
tational models, and the gap between safety critical and best-effort engineering
practices. We call for a coherent scientific foundation for embedded systems de-
sign, and we discuss a few key demands on such a foundation: the need for
encompassing several manifestations of heterogeneity, and the need for design
paradigms ensuring constructivity and adaptivity.

We discuss main aspects of this challenge and associated research directions
for different areas such as modelling, programming, compilers, operating systems
and networks.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Antichain Algorithms for Finite Automata�

Laurent Doyen1 and Jean-François Raskin2

1 LSV, ENS Cachan & CNRS, France
2 U.L.B., Université Libre de Bruxelles, Belgium

Abstract. We present a general theory that exploits simulation rela-
tions on transition systems to obtain antichain algorithms for solving
the reachability and repeated reachability problems. Antichains are more
succinct than the sets of states manipulated by the traditional fixpoint
algorithms. The theory justifies the correctness of the antichain algo-
rithms, and applications such as the universality problem for finite au-
tomata illustrate efficiency improvements. Finally, we show that new and
provably better antichain algorithms can be obtained for the emptiness
problem of alternating automata over finite and infinite words.

1 Introduction

Finite state-transition systems are useful for the design and verification of pro-
gram models. One of the essential model-checking questions is the reachability
problem which asks, given an initial state s and a final state s′, if there exists a
(finite) path from s to s′. For reactive (non-terminating) programs, the repeated
reachability problem asks, given an initial state s and a final state s′, if there
exists an infinite path from s that visits s′ infinitely often.

The (repeated) reachability problem underlies important verification ques-
tions. For example, in the automata-based approach to model-checking [26,27],
the correctness of a program A with respect to a specification B (where A and B
are finite automata) is defined by the language inclusion L(A) ⊆ L(B), that is all
traces of the program (executions) should be traces of the specification. The lan-
guage inclusion problem is equivalent to the emptiness problem “is L(A)∩Lc(B)
empty ?” where Lc(B) is the complement of L(B). If G is a transition system
(or an automaton) defined as the product of A with an automaton Bc obtained
by complementation of B, then the emptiness problem can be viewed as a reach-
ability question on G for automata on finite words, and as a repeated reachabil-
ity question for Büchi automata on infinite words. Note that complementation
procedures resort to exponential subset constructions [18,21,17,22]. Therefore,
� This research was supported by the projects: (i) Quasimodo: “Quanti-

tative System Properties in Model-Driven-Design of Embedded Systems”,
http://www.quasimodo.aau.dk, (ii) Gasics: “Games for Analysis and Synthesis
of Interactive Computational Systems”, http://www.ulb.ac.be/di/gasics/, and
(iii) Moves: “Fundamental Issues in Modelling, Verification and Evolution of Soft-
ware”, http://moves.ulb.ac.be, a PAI program funded by the Federal Belgian
Government.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 2–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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while the (repeated) reachability problem, which is NLogSpace-complete, can be
solved in linear time in the size of G, the language inclusion problem, which is
PSpace-complete, requires exponential time (in the size of B). In practice, im-
plementations for finite words give reasonably good results (see e.g. [24]), while
the complementation constructions for infinite words are difficult to implement
and automata with more than around ten states are intractable [15,25].

Recently, dramatic performance improvements have been obtained by so-
called antichain algorithms for the reachability and repeated reachability prob-
lems on the subset construction and its variants for infinite words [8,5,11]. The
idea is always to exploit the special structure of the subset constructions. As an
example, consider the classical subset construction for the complementation of
automata on finite words. States of the complement automaton are sets of states
of the original automaton, that we call cells and denote by si. Set inclusion
between cells is a partial order that turns out to be a simulation relation for
the complement automaton: if s2 ⊆ s1 and there is a transition from s1 to s3,
then there exists a transition from s2 to some s4 ⊆ s3. This structural property
carries over to the sets of cells manipulated by reachability algorithms: if s2 ⊆ s1
and a final cell can be reached from s1, then a final cell can be reached from s2.
Therefore, in a breadth-first search algorithm with backward state traversal, if
s1 is visited by the algorithm, then s2 is visited simultaneously; the algorithm
manipulates ⊆-downward closed sets of cells that can be canonically and com-
pactly represented by the antichain of their ⊆-maximal elements. Antichains
serve as a symbolic data-structure on which efficient symbolic operations can
be defined. Antichain algorithms have been implemented for automata on finite
words [8], on finite trees [5], on infinite words [11,14], and for other applications
where exponential constructions are involved such as model-checking of linear-
time logic [10], games of imperfect information [7,4], and synthesis of linear-time
specifications [12]. They outperform explicit and BDD-based algorithms by or-
ders of magnitude [9,3,12].

In Section 3, we present an abstract theory to justify the correctness of an-
tichain algorithms. For backward state traversal algorithms, we first show that
forward simulation relations (such as set inclusion in the above example) are
required to maintain closed sets in the algorithms. This corresponds to view
antichains as a suitable symbolic data-structure to represent closed sets. Then,
we develop a new approach in which antichains are sets of promising states in
the (repeated) reachability analysis. This view is justified by mean of backward
simulation relations. In our example, it turns out that set inclusion is also a
backward simulation which implies that if s2 ⊆ s1 and s2 is reachable, then s1
is reachable. Therefore, an algorithm which traverses the state space in a back-
ward fashion need not to explore the predecessors of s2 if s1 has been visited
previously by the algorithm. We say that s1 is more promising1 than s2. As a
consequence, the algorithms can safely drop non-⊆-maximal cells, hence keeping

1 Note that this is not a heuristic: if s1 is more promising that s2, then the exploration
of the predecessors of s2 can be omitted without spoiling the correctness of the
analysis.
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⊆-maximal cells only. While the two views coincide when set inclusion is used
for finite automata, we argue that the promising state view provides better al-
gorithms in general. This is illustrated on finite automata where algorithms in
the symbolic view remain unchanged when coarser (hence improved) simulation
relations are used, while in the promising state view, we obtain new antichain
algorithms that are provably better: fixed points can be reached in fewer iter-
ations, and the antichains that are manipulated are smaller. Dual results are
obtained for forward state traversal algorithms.

In Section 4, we revisit classical problems of automata theory: the universality
problem for nondeterministic automata, the emptiness problem for alternating
automata on finite and infinite words, and the emptiness of a product of au-
tomata. In such applications, the transition systems are of exponential size and
thus they are not constructed prior to the reachability analysis, but explored
on-the-fly. And consequently, simulation relations needed by the antichain algo-
rithms should be given without any computation on the transition system itself
(which is the case of set inclusion for the subset construction). However, we show
that by computing a simulation relation on the original automaton, coarser sim-
ulation relations can be induced on the exponential constructions. On the way,
we introduce a new notion of backward simulation for alternating automata.

2 Preliminaries

Relations. A pre-order over a finite set V is a binary relation �⊆ V × V
which is reflexive and transitive. If v1 � v2, we say that v1 is smaller than v2
(or v2 is greater than v1). A pre-order �′ is coarser than � if for all v1, v2 ∈ V ,
if v1 � v2, then v1 �′ v2. The �-upward closure of a set S ⊆ V is the set
Up(�, S) = {v1 ∈ V | ∃v2 ∈ S : v2 � v1} of elements that are greater than some
element in S. A set S is �-upward-closed if it is equal to its �-upward closure,
and Min(�, S) = {v1 ∈ S | ∀v2 ∈ S : v2 � v1 → v1 � v2} denotes the minimal
elements of S. Note that Min(�, S) ⊆ S ⊆ Up(�, S). Analogously, define the
�-downward closure Down(�, S) = {v1 ∈ V | ∃v2 ∈ S : v1 � v2} of a set S, say
that S is �-downward-closed if S = Down(�, S), and let Max(�, S) = {v1 ∈ S |
∀v2 ∈ S : v1 � v2 → v2 � v1} be the set of maximal elements2 of S.

A set S ⊆ V is a quasi-antichain if for all v1, v2 ∈ S, either v1 and v2 are
�-incomparable, or v1 � v2 and v2 � v1. The sets Min(�, S) and Max(�, S)
are quasi-antichains. A partial order is a pre-order which is antisymmetric. For
partial orders, the sets Min(�, S) and Max(�, S) are antichains, i.e., sets of
pairwise �-incomparable elements. By abuse of language, we call antichains the
sets of minimal (or maximal) elements even if the pre-order is not a partial order,
and denote by A the set of antichains over 2V .

Antichains can be used as a symbolic data-structure to represent �-upward-
closed sets. Note that the union and intersection of �-upward-closed sets is �-
upward-closed. The symbolic representation of an �-upward-closed set S is the
2 We also denote this set by Max(�, S) , and we equally say that a set is �-downward-

closed or �-downward-closed, etc.
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antichain S̃ = Min(�, S). Operations on antichains are defined as follows. The
membership question “given v and S, is v ∈ S ?” becomes “given v and S̃, is there
ṽ ∈ S̃ such that ṽ � v ?”; the emptiness question is unchanged as S = ∅ if and
only if S̃ = ∅; the relation of set inclusion S1 ⊆ S2 becomes S̃1 	 S̃2 defined by
∀v1 ∈ S̃1·∃v2 ∈ S̃2 : v2 � v1. If 〈V,�〉 is a semi-lattice with least upper bound lub,
then 〈A,	〉 is a complete lattice (the lattice of antichains) where the intersection
S1 ∩ S2 is represented by S̃1 � S̃2 = Min(�, {lub(v1, v2) | v1 ∈ S̃1 ∧ v2 ∈ S̃2}),
and the union S1 ∪ S2 by S̃1 � S̃2 = Min(�, S̃1 ∪ S̃2). Analogous definitions
exist for antichains of �-downward-closed sets if 〈V,�〉 is a semi-lattice with
greatest lower bound. Other operations mixing �-upward-closed sets and �-
downward-closed sets can be defined over antichains (such as mixed set inclusion,
or emptiness of mixed intersection).

Simulation relations. Let G = (V, E, Init, Final) be a transition system with
finite set of states V , transition relation E ⊆ V × V , initial states Init ⊆ V , and
final states Final ⊆ V . We define two notions of simulation [19]:

– a pre-order �f over V is a forward simulation for G (“v2 �f v1” reads v2
forward simulates v1) if for all v1, v2, v3 ∈ V , if v2 �f v1 and E(v1, v3), then
there exists v4 ∈ V such that v4 �f v3 and E(v2, v4);

– a pre-order �b over V is a backward simulation for G, (“v2 �b v1” reads v2
backward simulates v1), if for all v1, v2, v3 ∈ V , if v2 �b v1 and E(v3, v1),
then there exists v4 ∈ V such that v4 �b v3 and E(v4, v2).

The notations �f and �b are inspired by the fact that in the subset construction
for finite automata,⊆ is a forward simulation and⊇ is a backward simulation (see
also Section 4.1). Note that a forward simulation for G is a backward simulation
for the transition system with transition relation E−1 = {(v1, v2) | (v2, v1) ∈ E}.

We say that a simulation over V is compatible with a set S ⊆ V if for all
v1, v2 ∈ V , if v1 ∈ S and v2 (forward or backward) simulates v1, then v2 ∈ S.
Note that a forward simulation �f is compatible with S if and only if S is �f-
downward-closed, and a backward simulation �b is compatible with S if and
only if S is �b-upward-closed. In the sequel, we will be interested in simulation
relations that are compatible with Init, or Final, or with both.

Fixpoint algorithms. Let G = (V, E, Init, Final) be a transition system and
let S, S′ ⊆ V be sets of states. The sets of predecessors and successors of S in
one step are denoted pre(S) = {v1 | ∃v2 ∈ S : E(v1, v2)} and post(S) = {v1 |
∃v2 ∈ S : E(v2, v1)} respectively. We denote by pre∗(S) the set

⋃
i≥0 prei(S)

where pre0(S) = S and prei(S) = pre(prei−1(S)) for all i ≥ 1, and by pre+(S)
the set

⋃
i≥1 prei(S). The operators post∗ and post+ are defined analogously. A

finite path in G is a sequence v0v1 . . . vn of states such that E(vi, vi+1) for all
0 ≤ i < n. Infinite paths are defined analogously. We say that S′ is reachable
from S if there exists a finite path v0v1 . . . vn with v0 ∈ S and vn ∈ S′.

The reachability problem for G asks if Final is reachable from Init, and the
repeated reachability problem for G asks if there exists an infinite path starting
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from Init and passing through Final infinitely many times. To solve these prob-
lems, we can use the following classical fixpoint algorithms:

1. The backward reachability algorithm computes the sequence of sets:

B(0) = Final and B(i) = B(i− 1) ∪ pre(B(i− 1)) for all i ≥ 1.

2. The backward repeated reachability algorithm computes the sequence of sets:

BB(0) = Final and BB(i) = pre+(BB(i− 1)) ∩ Final for all i ≥ 1.

3. The forward reachability algorithm computes the sequence of sets:

F(0) = Init and F(i) = F(i− 1) ∪ post(F(i− 1)) for all i ≥ 1.

4. The forward repeated reachability algorithm computes the sequence of sets:

FF(0) = Final∩ post∗(Init) and FF(i) = post+(FF(i− 1))∩Final for all i ≥ 1.

The above sequences converge to a fixpoint because the operations involved are
monotone. We denote by B∗, BB∗, F∗, and FF∗ the respective fixpoints. Note
that B∗ = pre∗(Final) and F∗ = post∗(Init). Call recurrent the states that have
a cycle through them. The set BB∗ contains the final states that can reach a
recurrent final state, and FF∗ contains the final states that are reachable from a
reachable recurrent final state.

Theorem 1. Let G = (V, E, Init, Final) be a transition system. Then,

(a) the answer to the reachability problem for G is Yes if and only if B∗ ∩ Init
is nonempty if and only if F∗ ∩ Final is nonempty;

(b) the answer to the repeated reachability problem for G is Yes if and only if
BB∗ is reachable from Init if and only if FF∗ is nonempty.

3 Antichain Fixpoint Algorithms

In this section, we show that the sets in the sequences B, BB, F, and FF can be
replaced by antichains for well chosen pre-orders. Two views can be developed:
when backward algorithms are combined with forward simulation pre-orders (or
forward algorithms with backward simulations), antichains are symbolic repre-
sentations of closed sets; when backward algorithms are combined with back-
ward simulation pre-orders (or forward algorithms with forward simulations),
antichains are sets of promising states. It may be surprising to consider algo-
rithms for the reachability problem (which can be solved in linear time), based
on simulation relations (which can be computed in quadratic time). However,
such algorithms are useful for applications where the transition systems have
a special structure for which simulation relations need not to be computed. For
example, the relation of set inclusion is always a forward simulation in the subset
construction for finite automata (see Section 4 for details and other applications).
We develop these two views below.
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3.1 Antichains as a Symbolic Representation

Backward reachability. First, we show that the sets computed by the back-
ward algorithm B are �f-downward-closed for all forward simulations �f of the
transition system G compatible with Final.

Lemma 2. Let G = (V, E, Init, Final) be a transition system. A pre-order �f

over V is a forward simulation in G if and only if pre(S) is �f-downward-closed
for all �f-downward-closed sets S ⊆ V .

Proof. First, assume that �f is a forward simulation in G, and let S ⊆ V be a
�f-downward-closed set. We show that pre(S) is �f-downward-closed, i.e. that
if v1 ∈ pre(S) and v2 �f v1, then v2 ∈ pre(S). As v1 ∈ pre(S), there exists v3 ∈ S
such that E(v1, v3). By definition of forward simulation, there exists v4 such that
E(v2, v4) and v4 �f v3. Since S is �f-downward-closed and v3 ∈ S, we conclude
that v4 ∈ S, and thus v2 ∈ pre(S).

Second, assume that pre(S) is �f-downward-closed when S is �f-downward-
closed. We show that �f is a forward simulation in G. Let v1, v2, v3 ∈ V such that
v2 �f v1 and E(v1, v3). Let S = Down(�f , {v3}) so that pre(S) is �f-downward-
closed. Since v1 ∈ pre(S) and v2 �f v1, we have v2 ∈ pre(S) and thus there
exists v4 ∈ S (i.e., v4 �f v3) such that E(v2, v4). This shows that �f is a forward
simulation in G. ��

Assume that we have a forward simulation �f in G compatible with Final, and
call this hypothesis H1.

Lemma 3. Under H1, the sets B(i) and BB(i) are �f-downward-closed for all
i ≥ 0.

Proof. By induction, using Lemma 2 and the fact that B(0) = BB(0) = Final is
�f-downward-closed since �f is compatible with Final. ��
Since the sets in the backward algorithms B and BB are �f-downward-closed, we
can use the antichain of their maximal elements as a symbolic representation,
and adapt the fixpoint algorithms accordingly. Given a forward simulation �f

in G compatible with Final, the antichain algorithm for backward reachability is
as follows:

– B̃(0) = Max(�f , Final);
– B̃(i) = Max(�f , B̃(i− 1) ∪ pre(Down(�f , B̃(i− 1)))), for all i ≥ 1.

Lemma 4. Under H1, B̃(i) = Max(�f , B(i)) and B(i) = Down(�f , B̃(i)) for all
i ≥ 0.

Corollary 5. Under H1, for all i ≥ 0, B(i + 1) = B(i) if and only if B̃(i + 1) =
B̃(i).

Theorem 6. Under H1, B∗ ∩ Init �= ∅ if and only if Down(�f , B̃∗) ∩ Init �= ∅.
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So the antichain algorithm for backward reachability computes exactly the same
information as the classical algorithm and the two algorithms reach their fixpoint
after exactly the same number of iterations. However, the antichain algorithm
can be more efficient in practice if the symbolic representation by antichains
is significantly more succinct and if the computations on the antichains can be
done efficiently. In particular, the predecessors of Down(�f , B̃(i− 1)) needed to
obtain B̃(i) should be computed in a way that avoids constructing Down(�f

, B̃(i− 1)). For applications of the antichain algorithm in automata theory (see
also Section 4), it can be shown that this operation can be computed efficiently
(see e.g. [8,11]).

Remark 1. Antichains as a data-structure have been used previously for repre-
senting the sets of backward reachable states in well-structured transition sys-
tems [1,13]. So, the sequence B̃ converges also when the underlying state space
is infinite and �f is a well-quasi order.

Backward repeated reachability. Let �f be a forward simulation for G com-
patible with Final (H1). The antichain algorithm for repeated backward reach-
ability is defined as follows:

– B̃B(0) = Max(�f , Final);
– B̃B(i) = Max(�f , pre+(Down(�f , B̃B(i− 1))) ∩ Final), for all i ≥ 1.

Note that a symbolic representation of pre+(Down(�f , B̃B(i − 1)) is computed
by the antichain algorithm B̃ with B̃(0) = Max(�f , pre(Down(�f , B̃B(i − 1)))).
Using Lemma 3, we get the following result and corollary.

Lemma 7. Under H1, B̃B(i) = Max(�f , BB(i)) and BB(i) = Down(�f , B̃B(i))
for all i ≥ 0.

Corollary 8. Under H1, for all i ≥ 0, BB(i + 1) = BB(i) if and only if B̃B(i +
1) = B̃B(i).

Theorem 9. Under H1, BB∗ is reachable from Init if and only if Down(�f , B̃B
∗
)

is reachable from Init.

Forward algorithms. We state the dual of Lemma 2 and Lemma 3 for the
forward algorithms F and FF, and obtain antichain algorithms F̃ and F̃F using
backward simulations. The proofs and details are omitted as they are analogous
to the backward algorithms.

Lemma 10. Let G = (V, E, Init, Final) be a transition system. A pre-order �b

over V is a backward simulation in G if and only if post(S) is �b-upward-closed
for all �b-upward-closed sets S ⊆ V .

Lemma 11. Let G = (V, E, Init, Final) be a transition system and let �b be a
backward simulation in G. If �b is compatible with Init, then F(i) is �b-upward-
closed for all i ≥ 0. If �b is compatible with Init and Final, then FF(i) is �b-
upward-closed for all i ≥ 0.
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3.2 Antichains of Promising States

Traditionally, the antichain approaches have been presented as symbolic algo-
rithms using forward simulations to justify backward algorithms, and vice versa
(see above and e.g., [8,10,11]). In this section, we develop an original theory
called antichains of promising states that uses backward simulations to justify
backward algorithms, and forward simulations to justify forward algorithms. We
obtain new antichain algorithms that do not compute the same information as
the classical algorithms. In particular, we show that convergence is reached at
least as soon as in the original algorithms, but it may be reached sooner. On this
basis, we define in Section 4 new antichain algorithms that are provably better
than the antichain algorithms of [8,11].

Backward reachability. Let �b be a backward simulation relation compatible
with Init (H2). The sequence of antichains of backward promising states is defined
as follows:

– B̂(0) = Max(�b, Final);
– B̂(i) = Max(�b, B̂(i− 1) ∪ pre(B̂(i− 1))), for all i ≥ 1.

Note that while in the sequence B̃ we took the �f-downward-closure of B̃(i− 1)
before computing pre, this is not necessary here. And note that the original
sets B(i) are �f-downward-closed (and represented symbolically by B̃(i)), while
they are not necessarily �b-downward-closed (here, B̂(i) ⊆ B(i) is a set of most
promising states in B(i)). The correctness of this algorithm is justified by mono-
tonicity properties. Define the pre-order 	b⊆ 2V × 2V as follows: S1 	b S2 if
∀v1 ∈ S1 · ∃v2 ∈ S2 : v2 �b v1. We write S1 ≈b S2 if S1 	b S2 and S2 	b S1.

Lemma 12. Under H2, the operators pre, Max(�b, ·), and ∪ (and their com-
positions) are 	b-monotone.

Proof. First, assume that S1 	b S2 and show that pre(S1) 	b pre(S2). For all
v3 ∈ pre(S1), there exists v1 ∈ S1 such that E(v3, v1) (by definition of pre). Since
S1 	b S2 and v1 ∈ S1, there exists v2 ∈ S2 with v2 �b v1. By definition of �b,
there exists v4 �b v3 with E(v4, v2) hence v4 ∈ pre(S2).

Second, assume that S1 	b S2 and show that Max(�b, S1) 	b Max(�b, S2).
For all v1 ∈ Max(�b, S1), we have v1 ∈ S1 and thus there exists v2 ∈ S2 such
that v2 �b v1. Hence there exists v′2 ∈ Max(�b, S2) such that v′2 �b v2 �b v1.

Third, assume that S1 	b S2 and S3 	b S4, and show that S1∪S3 	b S2∪S4.
For all v13 ∈ S1 ∪ S3, either v13 ∈ S1 and then there exists v24 ∈ S2 such that
v24 �b v13, or v13 ∈ S3 and then there exists v24 ∈ S4 such that v24 �b v13. In
all cases, v24 ∈ S2 ∪ S4. ��
Lemma 13. Under H2, B̂(i) ≈b B(i) for all i ≥ 0.

Proof. By induction, using the fact that B(0) = Final ≈b Max(�b, Final) = B̂(0)
(which holds trivially since S ≈b Max(�b, S) for all sets S) and Lemma 12. ��
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B(0) = {1} B̂(0) = {1} = B̂�

B(1) = {1, 2} B̂(1) = {1, 2}

B(2) = {1, 2, 3} B̂(2) = {1, 2}
. . . . . .123n

0

�b

�b

�b�b�b

. . .

Fig. 1. Backward reachability with Final = {1}

Corollary 14 (Early convergence). Under H2, for all i ≥ 0, (a) if B(i+1) =
B(i), then B̂(i+1) ≈b B̂(i), and (b) B(i)∩ Init �= ∅ if and only if B̂(i)∩ Init �= ∅.

Denote by B̂� the value B̂(i) for the smallest i ≥ 0 such that B̂(i) ≈b B̂(i + 1).
Corollary 14 ensures that convergence (modulo ≈b) on the sequence B̂ occurs at
the latest when B converges. Also, as �b is compatible with Init, if B(i) intersects
Init then we know that B̂(i) also intersects Init. So, for both positive and negative
instances of the reachability problem, we never need to compute more iterations
in the sequence B̂ than in the sequence B. We establish the correctness of the
sequence B̂ to decide the reachability problem.

Theorem 15 (Correctness). Under H2, B∗ ∩ Init �= ∅ if and only if B̂� ∩
Init �= ∅.

Proof. Assume that v ∈ B∗ = B(i) and v ∈ Init. Since B̂(i) ≈b B(i) by Lemma 13,
there exists v′ ∈ B̂(i) ∩ Init by Corollary 14(b). By Corollary 14(a), we have
B̂� ≈b B̂(j) for some j ≤ i, and by Lemma 12 all sets B̂(k) for k ≥ j are ≈b-
equivalent. In particular (for k = i), B(i) ≈b B̂(i) ≈b B̂�, and thus there exists
v′′ ∈ B̂� such that v′′ �b v′, yielding v′′ ∈ Init since �b is compatible with Init.
Hence B̂� ∩ Init �= ∅. For the other direction, we use the fact that B̂(i) ⊆ B(i)
for all i ≥ 0. ��

Example 1. Consider the transition system in Fig. 1 where Final = {1} and
Init = {0}. The classical backward reachability algorithm computes the sequence
B(0) = {1}, B(1) = {1, 2}, . . . , B(i) = {1, 2, . . . , i+1} and converges to {1, . . . , n}
after O(n) iterations. Consider the backward simulation�b as depicted on Fig. 1.
States 1 and 2 are mutually simulated by each other, and i �b i + 1 for all
1 ≤ i < n. The antichain algorithm for backward reachability based on �b

computes the sequence B̂(0) = {1}, B̂(1) = {1, 2} and the algorithm halts since
B̂(0) ≈b B̂(1), i.e. B̂� = B̂(0). We get early convergence because state 1 is more
promising than all other states, yet is not reachable from Init.

Backward repeated reachability. Let �b be a backward simulation relation
compatible with both Final and Init (H3). Using such a relation, we define the
sequence of antichains of backward repeated promising states as follows:

– B̂B(0) = Max(�b, Final);
– B̂B(i) = Max(�b, pre+(B̂B(i− 1)) ∩ Final), for all i ≥ 1.
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Note that the computation of Si = pre+(B̂B(i−1)) can be replaced by algorithm
B̂ with B̂(0) = Max(�b, pre(B̂B(i− 1))). This yields B̂� ≈b Si which is sufficient
to ensure correctness of the algorithm. We have required that �b is compatible
with Final to have the following property.

Lemma 16. Under H3, the operator λS · S ∩ Final is 	b-monotone.

Proof. Assume that S1 	b S2 and show that S1 ∩ Final 	b S2 ∩ Final. For all
v1 ∈ S1, there exists v2 ∈ S2 such that v2 �b v1. In particular, for v1 ∈ S1∩Final
there exists v2 ∈ S2 such that v2 �b v1, and v2 ∈ Final since �b is compatible
with Final, hence v2 ∈ S2 ∩ Final. ��

Lemma 17. Under H3, for all i ≥ 0, B̂B(i) ≈b BB(i).

Proof. By induction, using Lemma 16, Lemma 12 (since H3 implies H2), and
the fact that BB(0) = Final ≈b Max(�b, Final) = B̂B(0). ��

Corollary 18 (Early convergence). Under H3, for all i ≥ 0, if BB(i + 1) =
BB(i) then B̂B(i + 1) ≈b B̂B(i).

Denote by B̂B
�

the value B̂B(i) for the smallest i ≥ 0 such that B̂B(i) ≈b

B̂B(i + 1).

Theorem 19 (Correctness). Under H3, BB∗ is reachable from Init if and only

if B̂B
�

is reachable from Init.

Proof. We know that BB∗ ≈b B̂B
�
. This is a consequence of Lemma 17 and

the fact that pre+, λS · S ∩ Final, and Max(�b, ·) are 	b-monotone operators
(by Lemma 12 and Lemma 16). Assume that BB∗ is reachable from Init and let
v0v1 . . . vn be a path in G such that v0 ∈ Init, vn ∈ BB∗. We show by induction
that there exists a path v′0v

′
1 . . . v′n in G such that v′i �b vi for all i, 0 ≤ i ≤ n.

Base case: i = n. By lemma 17, as vn ∈ BB∗, there exists v′n ∈ B̂B
�

such that
v′n �b vn. Inductive case 0 ≤ i < n. By induction hypothesis, we know that there
exists a path v′i+1 . . . v′n in G such that v′j �b vj for all j such that i+1 ≤ j ≤ n.
As v′i+1 �b vi+1, by properties of �b, we know that there exists v′ such that
v′ �b vi and E(v′, v′i+1), so we take v′i = v′. As �b is compatible with Init, we
conclude that as v0 ∈ Init, we have v′0 ∈ Init as well, and we are done. For the
other direction, we use the fact that B̂B(i) ⊆ BB(i) for all i ≥ 0. ��

Forward reachability algorithm. Let �f be a forward simulation relation
compatible with Final (H4). Using such a relation, we define the sequence of
antichains of forward reachable promising states as follows:

– F̂(0) = Min(�f , Init);
– F̂(i) = Min(�f , F̂(i− 1) ∪ post(F̂(i− 1))), for all i ≥ 1.
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The following results are proved in an analogous way as the ones for the
backward algorithms in the previous paragraphs. Let S1, S2 ⊆ V , we define the
pre-order 	f⊆ 2V × 2V as follows: S1 	f S2 if ∀v1 ∈ S1 · ∃v2 ∈ S2 : v2 �f v1. We
write S1 ≈f S2 if S1 	f S2 and S2 	f S1.

Lemma 20. Under H4, the operators post, Min(�f , ·), λS · S ∩ Final, and ∪
(and their compositions) are 	f-monotone.

Lemma 21. Under H4, F̂(i) ≈f F(i) for all i ≥ 0.

Corollary 22 (Early convergence). Under H4, for all i ≥ 0, (a) if F(i+1) =
F(i), then F̂(i+1) ≈f F̂(i), and (b) F(i)∩Final �= ∅ if and only if F̂(i)∩Final �= ∅.

Denote by F̂� the set F̂(i) for the smallest i ≥ 0 such that F̂(i) ≈b F̂(i + 1).

Theorem 23 (Correctness). Under H4, F∗ ∩ Final �= ∅ if and only if F̂� ∩
Final �= ∅.

Forward repeated reachability algorithm. Let �f be a forward simula-
tion relation which is compatible with Final. The forward repeated reachability
sequence of promising states is defined as follows:

– F̂F(0) = Final ∩ F̂�;
– F̂F(i) = Min(�f , post+(F̂F(i− 1)) ∩ Final), for all i ≥ 1.

Lemma 24. Under H4, F̂F(i) ≈f FF(i) for all i ≥ 0,

Proof. By induction, using the fact that FF(0) = Final∩F∗ ≈f Final∩F� = F̂F(0)
because F∗ ≈f F� (using Lemma 21 and monotonicity of λS · S ∩ Final) and
Lemma 20. ��

We denote by F̂F
�
the set F̂F(i) for the smallest i ≥ 0 such that F̂F(i) ≈f F̂F(i+1).

Corollary 25 (Early convergence). Under H4, for all i ≥ 0, if FF(i + 1) =
FF(i) then F̂F(i + 1) ≈f F̂F(i).

Theorem 26 (Correctness). Under H4, FF∗ is nonempty if and only if F̂F
�

is nonempty.

Remark 2. Note that here the relation �f needs only to be compatible with Final
(and not with Init). This is in contrast with the relation �b that needs to be both
compatible with Init and Final to ensure correctness of the sequence of backward
repeated promising states.

Remark 3. In antichain algorithms of promising states, if �1 is coarser than �2,
then the induced relation ≈1 on sets of states is coarser than ≈2 which entails
that convergence modulo ≈1 occurs at the latest when convergence modulo ≈2

occurs, and possibly earlier. This is illustrated in the next section.
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4 Applications

In this section, we present applications of the antichain algorithms to solve clas-
sical (and computationally hard) problems in automata theory. We consider
automata running on finite and infinite words.

An alternating automaton [6] is a tuple A = (Q, qι, Σ, δ, α) where:

– Q is a finite set of states;
– qι ∈ Q is the initial state;
– Σ is a finite alphabet;
– δ : Q×Σ → 22Q

is the transition relation that maps each state q and letter σ
to a set {C1, . . . , Cn} where each Ci ⊆ Q is a choice;

– α ⊆ Q is the set of accepting states.

In an alternating automaton, the (finite or infinite) input word w = σ0σ1 . . . over
Σ is processed by two players in a turn-based game played in rounds. Each round
starts in a state of the automaton, and the first round starts in qι. In round i,
the first player makes a choice C ∈ δ(qi, σi) where qi is the state in round i and
σi is the ith letter of the input word. Then, the second player chooses a state
qi+1 ∈ C, and the next round starts in qi+1. A finite input word is accepted
by A if the first player has a strategy to force an accepting state of A in the last
round; an infinite input word is accepted by A if the first player has a strategy
to force infinitely many rounds to be in an accepting state of A. A run of an
alternating automaton corresponds to a fixed strategy of the first player.

Formally, a run of A over a (finite or infinite) word w = σ0σ1 . . . is a tree
〈Tw, r〉 where Tw ⊆ N∗ is a prefix-closed subset of N, and r : Tw → Q is a labelling
function such that r(ε) = qι and for all x ∈ Tw, there exists C = {q1, . . . , qc} ∈
δ(r(x), σ|x|) such that x · i ∈ Tw and r(x · i) = qi for each i = 1, . . . , k.

A run 〈Tw, r〉 of A on an a finite word w is accepting if r(x) ∈ α for all nodes
x ∈ Tw of length |w| reachable from ε; and a run 〈Tw, r〉 of A on an infinite word
w is accepting if all paths from ε visit nodes labeled by accepting states infinitely
often (i.e., all paths satisfy a Büchi condition). A (finite or infinite) word w is
accepted by A if there exists an accepting run on w. Alternating automata on
finite words are called AFA, and alternating automata on infinite words are
called ABW. The language of an AFA (resp., ABW) A is the set L(A) of finite
(resp., infinite) words accepted by A.

The emptiness problem for alternating automata is to decide if the language of
a given alternating automaton (AFA or ABW) is empty. This problem is PSpace-
complete for both AFA and ABW [18,23]. For finite words, we also consider the
universality problem which is to decide if the language of a given AFA with
alphabet Σ is equal to Σ∗, which is PSpace-complete even for the special case
of nondeterministic automata. A nondeterministic automaton (NFA) is an AFA
such that δ(q, σ) is a set of singletons for all states q and letters σ.

We use antichain algorithms to solve the emptiness problem of AFA and
ABW, as well as the universality problem for NFA, and the emptiness problem
for NFA specified by a product of automata. In the case of NFA, it is more
convenient to represent the transition relation as a function δ : Q × Σ → 2Q

where δ(q, σ) = {q1, . . . , qn} represents the set of singletons {{q1}, . . . , {qn}}.
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4.1 Universality Problem for NFA

Let A = (Q, qι, Σ, δ, α) be an NFA, and define the subset construction G(A) =
(V, E, Init, Final) as follows: V = 2Q, Init = {v ∈ V | qι ∈ v}, Final = {v ∈ V |
v ⊆ Q \ α}, and E(v1, v2) if there exists σ ∈ Σ such that δ(q, σ) ⊆ v2 for all
q ∈ v1. A classical result shows that L(A) �= Σ∗ if and only if Final is reachable
from Init in G(A), and thus we can solve the universality problem for A using
antichain algorithms for the reachability problem on G(A).

Antichains as symbolic representation. Consider the relation �F on the
states of G(A) defined by v2 �F v1 if and only if v2 ⊆ v1. Note that �F is a
partial order.

Lemma 27. �F is a forward simulation in G(A) compatible with Final.

Proof. First, if v1 ∈ Final and v2 �F v1, then v2 ⊆ v1 ⊆ Q \ α i.e., v2 ∈ Final.
Second, if v2 �F v1 and E(v1, v3), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v3 for
all q ∈ v1, and thus also for all q ∈ v2 i.e., E(v2, v4) for v4 = v3, and trivially
v4 �F v3. ��
The antichain algorithm for backward reachability is instantiated as follows:

– B̃(0) = Max(⊆, Final) = {Q \ α};
– B̃(i) = Max(⊆, B̃(i− 1) ∪ pre(Down(⊆, B̃(i− 1)))), for all i ≥ 1.

Details about efficient computation of this sequence as well as experimental
comparison with the classical algorithm based on determinization can be found
in [8].

Antichains of promising states. Consider the relation �B such that v2 �B v1
if v2 ⊇ v1. Note that v2 �B v1 if and only if v1 �F v2.

Lemma 28. �B is a backward simulation in G(A) compatible with Init.

Proof. First, if v1 ∈ Init and v2 �B v1, then qι ∈ v1 ⊆ v2 i.e., v2 ∈ Init. Second,
if v2 �B v1 and E(v3, v1), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v1 ⊆ v2 for all
q ∈ v3, and thus E(v4, v2) for v4 = v3, and trivially v4 �B v3. ��
The corresponding antichain algorithm for backward reachability is instantiated
as follows:

– B̂(0) = Max(⊇, Final) = {Q \ α};
– B̂(i) = Max(⊇, B̂(i− 1) ∪ pre(B̂(i− 1))), for all i ≥ 1.

It should be noted that B̃(i) = B̂(i), for all i ≥ 0. In this particular case, the
two views coincide due to the special structure of the transition system G(A)
(namely ⊆ is a forward simulation and its inverse ⊇ is a backward simulation).

In the rest of the paper, we establish the existence of simulation relations for
various constructions in automata theory, and we omit the instantiation of the
corresponding antichain algorithms in the promising state view.
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Coarser simulations. We show that the algorithms based on antichains of
promising states can be improved using coarser simulations (obtained by ex-
ploiting the structure of the NFA before subset construction). We illustrate this
below for backward algorithms and coarser backward simulations. Then we show
that coarser forward simulations do not improve the backward antichain algo-
rithms (in the symbolic view).

We construct a backward simulation coarser than �B, using a pre-order�b⊆
Q × Q on the state space of A such that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if
q2 �b q1, then

(i) if q1 = qι, then q2 = qι, and
(ii) if q1 ∈ δ(q3, σ), then there exists q4 ∈ Q such that q2 ∈ δ(q4, σ) and q4 �b q3.

Such a relation �b is usually called a backward simulation relation for the NFA
A, and a maximal backward simulation relation (which is unique) can be com-
puted in polynomial time (see e.g. [16]). Given �b, define the relation �B+

on G(A) as follows: v2 �B+ v1 if ∀q2 �∈ v2 · ∃q1 �∈ v1 : q1 �b q2.

Lemma 29. �B+ is a backward simulation for G(A) compatible with Init.

Proof. Let v2 �B+ v1. First, if v2 �∈ Init, then qι �∈ v2 and by definition of �B+ ,
there exists q �∈ v1 such that q �b qι, thus q = qι. Therefore qι �∈ v1 and thus
v1 �∈ Init. Second, if E(v3, v1), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v1 for all
q ∈ v3. Let v4 = {q ∈ Q | δ(q, σ) ⊆ v2}. We have E(v4, v2) and we show that
v4 �B+ v3 i.e., for all q4 �∈ v4, there exists q3 �∈ v3 such that q3 �b q4. If q4 �∈ v4,
then there exists q2 ∈ δ(q4, σ) with q2 �∈ v2. Since v2 �B+ v1, there exists q1 �∈ v1
such that q1 �b q2. Then, by definition of �b there exists q3 ∈ Q such that
q1 ∈ δ(q3, σ) and q3 �b q4. Since q1 �∈ v1, we have q3 �∈ v3. ��

Note that �B+ is coarser than �B because v2 ⊇ v1 is equivalent to say that for
all q2 �∈ v2, there exists q1 �∈ v1 such that q1 = q2 (which implies that q1 �b q2
since �b is a pre-order). Therefore, the antichains in the antichain algorithm
based on �B+ are subsets of those based on �B. By Corollary 14, the number of
iterations of the algorithms based on �B+ and �B is the same when L(A) �= Σ∗,
and Example 2 below shows that the algorithm based on �B+ may converge
faster when L(A) = Σ∗.

Example 2. Consider the nondeterministic finite automaton A with alphabet
Σ = {a, b} in Fig. 2. Note that every word is accepted by A i.e., L(A) = Σ∗ (it
suffices to always go to state 3 from state 4). The backward antichain algorithm
applied to the subset construction G(A) (using �B) converges after 3 iterations,
and the intersection of B̂� = {{1, 2}} with the initial states of G(A) is empty.
Now, let�b be the maximal backward simulation relation for A. We have 3 �b 2,
3 �b 1, and q �b q for all q ∈ {1, 2, 3, 4}. The induced relation �B+ is such
that {1} �B+ {1, 2} and {1, 2} �B+ {1}. Therefore, using the relation �B+ , we
get B̂(0) ≈b B̂(1) and the backward antichain algorithm based on �B+ converges
faster, namely after 2 iterations.
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using �B using �B+

B̂(0) =
{{1}} {{1}}

B̂(1) =
{{1, 2}} {{1}, {1, 2}}

B̂(2) =
{{1, 2}} end

end

4

3

2 1

b

a a, b

a, b

a

b b

Fig. 2. Improved antichain algorithm for the universality problem of NFA (Example 2)

Now, we consider coarser forward simulations (induced by pre-orders on the
original NFA as above) and we show that they do not improve the algorithm
based on antichains as symbolic data-structure. We prove this surprising result
as follows. A forward simulation relation �f⊆ Q ×Q for A is a pre-order such
that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 �f q1, then

(i) if q1 ∈ α, then q2 ∈ α, and
(ii) if q3 ∈ δ(q1, σ), then there exists q4 ∈ δ(q2, σ) such that q4 �f q3.

Given a forward simulation relation �f for A, define the relation �F+ on G(A)
as follows: v2 �F+ v1 if ∀q2 ∈ v2 · ∃q1 ∈ v1 : q1 �f q2.

Lemma 30. �F+ is a forward simulation for G(A) compatible with Final.

Proof. Let v2 �F+ v1. First, if v2 �∈ Final, then v2 ∩ α �= ∅ and let q2 ∈ v2 ∩ α.
By definition of �F+ , there exists q1 ∈ v1 such that q1 �f q2, thus q1 ∈ α.
Therefore v1 ∩ α �= ∅ and v1 �∈ Final. Second, if E(v1, v3), then for some σ ∈ Σ,
we have δ(q, σ) ⊆ v3 for all q ∈ v1. Let v4 =

⋃
q∈v2

δ(q, σ). We have E(v2, v4)
and we show that v4 �F+ v3 i.e., for all q4 ∈ v4, there exists q3 ∈ v3 such that
q3 �f q4. If q4 ∈ v4, then there exists q2 ∈ δ(q4, σ) with q2 ∈ v2. Since v2 �F+ v1,
there exists q1 ∈ v1 such that q1 �f q2. Then, by definition of �f there exists
q3 ∈ δ(q1, σ) (such that q3 �f q4). Since q1 ∈ v1, we have q3 ∈ v3. ��
Lemma 31. For all i ≥ 0, all sets v ∈ B̃(i) are �f -upward-closed (where B̃ is
computed using �F+).

Proof. First, for B̃(0) = {Q \ α} we show that Q \ α is �f-upward-closed. Let
q1 ∈ Q \ α and q1 �f q2. Then q2 �∈ α (as if q2 ∈ α, then we would have q1 ∈ α)
and thus q2 ∈ Q \α. Second, by induction assume that all sets v ∈ B̃(i) are �f-
upward-closed, and let v ∈ B̃(i + 1). Either v ∈ B̃(i) and then v is �f -upward-
closed, or v ∈ pre(Down(⊆, B̃(i))) and for some σ ∈ Σ and v′ ∈ Down(⊆, B̃(i)),
we have δ(q, σ) ⊆ v′ for all q ∈ v. Without loss of generality, we can assume
that v′ ∈ B̃(i) and thus v′ is �f-upward-closed (by induction hypothesis). In
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this case, assume towards contradiction that v is not �f -upward-closed i.e.,
there exist q2 ∈ v and q1 �∈ v such that q2 �f q1. We consider two cases: (i) if
δ(q1, σ) ⊆ v′, then v ∪ {q1} ∈ pre(Down(⊆, B̃(i− 1))) and v is a strict subset of
v ∪ {q1} showing that v is not ⊆-maximal in B̃(i), a contradiction; (ii) if there
exists q3 ∈ δ(q1, σ) with q3 �∈ v′, then since q2 �f q1 there exists q4 ∈ δ(q2, σ)
such that q4 �f q3. Since q2 ∈ v, we have δ(q2, σ) ⊆ v′ and q4 ∈ v′. Hence q4 ∈ v′,
q3 �∈ v′ and q4 �f q3 i.e., v′ is not �f-upward-closed, a contradiction. ��
Lemma 32. For all �f -upward-closed sets v1, v2, we have v2 �F+ v1 if and only
if v2 �F v1.

Proof. Let v1, v2 be �f-upward-closed sets. First, if v2 �F v1, then v2 ⊆ v1 and
for all q2 ∈ v2 there exists q1 ∈ v1 such that q2 = q1, and thus q1 �f q2. Hence
v2 �F+ v1. Second, if v2 �F+ v1, then for all q2 ∈ v2 there exists q1 ∈ v1 such
that q1 �f q2. Since v1 is �f -upward-closed, q1 ∈ v1 implies q2 ∈ v1. Hence, for
all q2 ∈ v2 we have q2 ∈ v1 i.e., v2 ⊆ v1 and v2 �F v1. ��
Corollary 33. The antichain algorithms for backward reachability B̃ based on
�F+ and �F compute exactly the same sequences of sets.

4.2 Emptiness Problem for AFA

In this section, we use a new definition of backward simulation for alternating
automata on finite words to construct an induced backward simulation on the
subset construction for AFA.

Let A = (Q, qι, Σ, δ, α) be an AFA. Define the subset construction G(A) =
(V, E, Init, Final) where V = 2Q, E = {(v1, v2) ∈ V × V | ∃σ ∈ Σ · ∀q ∈ v1 · ∃C ∈
δ(q, σ) : C ⊆ v2}, Init = {v ∈ V | qι ∈ v}, and Final = {v ∈ V | q ⊆ α}.

As before, it is easy to see that L(A) �= ∅ if and only if Final is reachable from
Init in G(A), and the emptiness problem for A can be solved using antichain
algorithms for the reachability problem in G(A) e.g., using the relation �B such
that v2 �B v1 if v2 ⊇ v1 which is a backward simulation in G(A) compatible
with Init.

As in the case of the universality problem for NFA, the relation �B can be
improved using an appropriate notion of backward simulation relation defined on
the AFA A. We introduce such a new notion as follows. An backward alternating
simulation relation for an alternating automaton A = (Q, qι, Σ, δ, α) is a pre-
order �b which is the reflexive closure of a relation >b such that for all σ ∈ Σ,
for all q1, q2, q3 ∈ Q, if q2 >b q1, then

(i) if q1 = qι, then q2 = qι, and
(ii) if there exists C ∈ δ(q3, σ) such that q1 ∈ C, then there exists q4 ∈ Q such

that (a) q2 ∈ C′ for all C′ ∈ δ(q4, σ), and (b) q4 >b q3.

It can be shown that a unique maximal backward simulation relation exists
for AFA (because the union of two backward simulation relations is again a
backward simulation relation), and it can be computed in polynomial time using
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analogous fixpoint algorithms for computing standard simulation relations [16],
e.g. the fixpoint iterations defined by R0 = {(q1, q2) ∈ Q×Q | q1 = qι → q2 = qι}
and Ri = {(q1, q2) ∈ Ri−1 | ∀q3 ∈ Q : (∃C ∈ δ(q3, σ) : q1 ∈ C) → ∃q4 ∈ Q :
(∀C′ ∈ δ(q4, σ) : q2 ∈ C′) ∧ (q3, q4) ∈ Ri−1} for all i ≥ 1. Note that for so-called
universal finite automata (UFA) which are AFA where δ(q, σ) is a singleton for
all q ∈ Q and σ ∈ Σ, our definition of backward alternating simulation coincides
with ordinary backward simulation for the dual of the UFA (which is an NFA
with transition relation δ′(q, σ) =

{
q ∈ C | δ(q, σ) = {C}}).

As before, given a backward alternating simulation relation �b for A, we
define the relation �B+ on G(A) as follows: v2 �B+ v1 if ∀q2 �∈ v2 · ∃q1 �∈ v1 :
q1 �b q2.

Lemma 34. �B+ is a backward simulation in G(A) compatible with Init.

Proof. Let v1 �B+ v2. First, if v2 �∈ Init, then qι �∈ v2 and there exists q1 �∈ v1
such that q1 �b qι, hence either q1 = qι, or q1 >b qι implying q1 = qι. In
both cases qι = q1 �∈ v1 i.e., v1 �∈ Init. Second, assume E(v3, v1) and σ ∈ Σ
is such that for all q ∈ v3, there exists C ∈ δ(q, σ) such that C ⊆ v1. Let
v4 = {q | ∃C′ ∈ δ(q, σ) : C′ ⊆ v2}. By definition of G(A), we have E(v4, v2). We
show that v4 �B+ v3. To do this, pick an arbitrary q4 �∈ v4 and show that there
exists q3 �∈ v3 such that q3 �b q4. Note that if q4 �∈ v3, then we take q3 = q4 and
we are done. So, we can assume that q4 ∈ v3. Hence there exists C ∈ δ(q4, σ) such
that C ⊆ v1. And since q4 �∈ v4, there exist q2 ∈ C and q2 �∈ v2. As v2 �B+ v1, we
know that there exists q1 �∈ v1 such that q1 �b q2. Since q2 ∈ C and C ⊆ v1, we
have q2 ∈ v1 and therefore we cannot have q2 = q1, thus we have q1 >b q2. Since
q2 ∈ C ∈ δ(q4, σ), and by definition of >b, there exists q3 such that q3 >b q4
(and thus q3 �b q4) and q1 ∈ C′ for all C′ ∈ δ(q3, σ). Since q1 �∈ v1, this implies
that q3 �∈ v3. ��

4.3 Emptiness Problem for ABW

The emptiness problem for ABW can be solved using a subset construction due
to Miyano and Hayashi [20,10,11].

Given an ABW A = (Q, qι, Σ, δ, α), define the Miyano-Hayashi transition
system MH(A) = (V, E, Init, Final) where V = 2Q × 2Q, and

– Init = {〈s, ∅〉 | qι ∈ s ⊆ V },
– Final = 2Q × {∅}, and
– for all v1 = 〈s1, o1〉, and v2 = 〈s2, o2〉, we have E(v1, v2) if there exists

σ ∈ Σ such that ∀q ∈ s1 · ∃C ∈ δ(q, σ) : C ⊆ s2, and either (i) o1 �= ∅ and
∀q ∈ o1 · ∃C ∈ δ(q, σ) : C ⊆ o2 ∪ (s2 ∩ α), or (ii) o1 = ∅ and o2 = s2 \ α.

A classical result shows that L(A) �= ∅ if and only if there exists an infinite path
from Init in MH(A) that visits Final infinitely many times. Therefore, the empti-
ness problem for ABW can be reduced to the repeated reachability problem,
and we can use an antichain algorithm (e.g., based on forward simulation) for
repeated reachability to solve it. We construct a forward simulation for MH(A)
using a classical notion of alternating simulation.
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A pre-order �f⊆ Q×Q is an alternating forward simulation relation [2] for
an alternating automaton A if for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 �f q1,
then

(i) if q1 ∈ α, then q2 ∈ α, and
(ii) for all C1 ∈ δ(q1, σ), there exists C2 ∈ δ(q2, σ) such that for all q4 ∈ C2,

there exists q3 ∈ C1 such that q4 �f q3.

Given a forward alternating simulation relation �f for A, define the relation
�F+ on MH(A) such that 〈s2, o2〉 �F+ 〈s1, o1〉 if the following conditions hold:
(a) ∀q2 ∈ s2 · ∃q1 ∈ s1 : q2 �f q1, (b) ∀q2 ∈ o2 · ∃q1 ∈ o1 : q2 �f q1, and (c)
o1 = ∅ if and only if o2 = ∅.

Lemma 35. �F+ is a forward simulation in MH(A) compatible with Final.

Proof. Let 〈s2, o2〉 �F+ 〈s1, o1〉. First, if 〈s1, o1〉 ∈ Final, then o1 = ∅ and
thus o2 = ∅ by definition of �F+ . Hence 〈s2, o2〉 ∈ Final. Second, assume
E(〈s1, o1〉, 〈s3, o3〉) and σ ∈ Σ is such that for all q ∈ s1, there exists C ∈ δ(q, σ)
such that C ⊆ s3, and either (i) o1 �= ∅ and ∀q ∈ o1 · ∃C ∈ δ(q, σ) : C ⊆
o3 ∪ (s3 ∩ α), or (ii) o1 = ∅ and o3 = s3 \ α.

In the first case (i), we construct 〈s4, o4〉 such that E(〈s2, o2〉, 〈s4, o4〉) and
〈s4, o4〉 �F+ 〈s3, o3〉, using the following intermediate constructions.

(1) For each q2 ∈ s2, we construct a set succ(q2) as follows. By definition of �F+ ,
for q2 ∈ s2, there exists q1 ∈ s1 such that q2 �f q1. Since q1 ∈ s1, there exists
C1 ∈ δ(q1, σ) with C1 ⊆ s3, and since q2 �f q1, there exists C2 ∈ δ(q2, σ)
such that for all q4 ∈ C2, there exists q3 ∈ C1 such that q4 �f q1. We take
succ(q2) = C2.

(2) For each q2 ∈ o2, we construct two sets succα(q2) and succ¬α(q2) as follows.
By definition of �F+ , for q2 ∈ o2, there exists q1 ∈ o1 such that q2 �f q1.
Since q1 ∈ o1, there exists C1 ∈ δ(q1, σ) with C1 ⊆ o3 ∪ (s3 ∩ α), and since
q2 �f q1, there exists C2 ∈ δ(q2, σ) such that for all q4 ∈ C2, there exists
q3 ∈ C1 such that q4 �f q3. We take succα(q2) = {q ∈ C2 ∩ α | ∃q′ ∈ s3 :
q �f q′} and succ¬α(q2) = C2 \ succα(q2).

Let s4 =
⋃

q2∈s2
succ(q2) ∪

⋃
q2∈o2

succα(q2), and o4 = o3 ∪
⋃

q2∈o2
succ¬α(q2).

To prove that E(〈s2, o2〉, 〈s4, o4〉), we can check that for all q2 ∈ s2 there exists
C2 ∈ δ(q2, σ) such that C2 = succ(q2) ⊆ s4, and that o2 �= ∅ (because o1 �= ∅

and 〈s2, o2〉 �F+ 〈s1, o1〉) and for all q2 ∈ o2 there exists C2 ∈ δ(q2, σ) such that
C2 ⊆ o4 ∪ (s4 ∩ α) (because succ¬α(q2) ⊆ o4 and succα(q2) ⊆ s4 ∩ α). To prove
that 〈s4, o4〉 �F+ 〈s3, o3〉, we can check that

(a) for all q4 ∈ s4, there exists q3 ∈ s3 such that q4 �f q3. This holds since
either q4 ∈ succ(q2) for some q2 ∈ s2 and by part (1) of the construction,
there exists q3 ∈ s3 such that q4 �f q3, or q4 ∈ succα(q2) for some q2 ∈ o2
and by definition of succα there exists q′ ∈ s3 such that q4 �f q′;

(b) for all q4 ∈ o4, there exists q3 ∈ o3 such that q4 �f q3. This holds since
either q4 ∈ o3 and we can take q3 = q4, or q4 ∈ succ¬α(q2) for some q2 ∈ o2



20 L. Doyen and J.-F. Raskin

and by part (2) of the construction, there exists q3 ∈ o3 ∪ (s3 ∩α) such that
q4 �f q3. Now, either q4 ∈ α and then q3 �∈ s3 by definition of succ¬α, thus
q3 ∈ o3; or q4 �∈ α and then q3 �∈ α by definition of �f , thus again q3 ∈ o3;

(c) if o3 �= ∅, then o4 �= ∅ since o3 ⊆ o4. And by (ii), if o4 �= ∅, then o3 �= ∅.
Hence o3 = ∅ if and only if o4 = ∅.

In the second case (ii), we construct the sets succ(q2) for each q2 ∈ s2 as in
part (1) of the construction above, and define s4 = s3 ∪

⋃
q2∈s2

succ(q2) and
o4 = s4 \ α. We can check that E(〈s2, o2〉, 〈s4, o4〉) since for all q2 ∈ s2 there
exists C2 ∈ δ(q2, σ) such that C2 = succ(q2) ⊆ s4, and that o2 = ∅ (since o1 = ∅

and 〈s2, o2〉 �F+ 〈s1, o1〉) and o4 = s4 \ α. We prove that 〈s4, o4〉 �F+ 〈s3, o3〉
as follows: first, as in (i) above, we have for all q4 ∈ s4, there exists q3 ∈ s3
such that q4 �f q3; second, by definition of �f if q4 �∈ α, then q3 �∈ α thus for
all q4 ∈ o4, there exists q3 ∈ o3 such that q4 �f q3; third, this implies that if
o4 �= ∅, then o3 �= ∅. And since o3 ⊆ o4, if o3 �= ∅, then o4 �= ∅. Hence o3 = ∅

if and only if o4 = ∅. ��

4.4 Emptiness Problem for a Product of NFA

Consider NFAs Ai = (Qi, q
i
ι, Σ ∪ {τi}, δi, αi) for 1 ≤ i ≤ n where τ1, . . . , τn are

internal actions, and Σ is a shared alphabet. The synchronized product A1 ⊗
A2 ⊗ · · · ⊗An is the transition system (V, E, Init, Final) where

– V = Q1 ×Q2 × · · · ×Qn;
– E(v1, v2) if v1 = (q1

1 , q
2
1 , . . . , qn

1 ), v2 = (q1
2 , q

2
2 , . . . , q

n
2 ) and either qi

2∈δi(qi
1, τi)

for all 1 ≤ i ≤ n, or there exists σ ∈ Σ such that qi
2 ∈ δi(qi

1, σ) for all
1 ≤ i ≤ n;

– Init = {(q1
ι , q2

ι , . . . , qn
ι )};

– Final = α1 × α2 × · · · × αn.

For each i = 1 . . .n, let �i
f ⊆ Qi × Qi be a forward simulation relation for Ai.

Define the relation �F+ such that (q1
2 , q

2
2 , . . . , q

n
2 ) �F+ (q1

1 , q2
1 , . . . , q

n
1 ) if qi

2 �i
f qi

1
for all 1 ≤ i ≤ n.

Lemma 36. �F+ is a forward simulation in A1⊗· · ·⊗An compatible with Final.
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Abstract. We present a compositional verification technique for sys-
tems that exhibit both probabilistic and nondeterministic behaviour. We
adopt an assume-guarantee approach to verification, where both the as-
sumptions made about system components and the guarantees that they
provide are regular safety properties, represented by finite automata.
Unlike previous proposals for assume-guarantee reasoning about proba-
bilistic systems, our approach does not require that components interact
in a fully synchronous fashion. In addition, the compositional verifica-
tion method is efficient and fully automated, based on a reduction to
the problem of multi-objective probabilistic model checking. We present
asymmetric and circular assume-guarantee rules, and show how they can
be adapted to form quantitative queries, yielding lower and upper bounds
on the actual probabilities that a property is satisfied. Our techniques
have been implemented and applied to several large case studies, includ-
ing instances where conventional probabilistic verification is infeasible.

1 Introduction

Many computerised systems exhibit probabilistic behaviour, for example due to
the use of randomisation (e.g. in distributed communication or security proto-
cols), or the presence of failures (e.g. in faulty devices or unreliable communica-
tion media). The prevalence of such systems in today’s society makes techniques
for their formal verification a necessity. This requires models and formalisms
that incorporate both probability and nondeterminism. Although efficient algo-
rithms for verifying such models are known [3,8] and mature tool support [11,7]
exists, applying these techniques to large, real-life systems remains challenging,
and hence techniques to improve scalability are essential.

In this paper, we focus on compositional verification techniques for prob-
abilistic and nondeterministic systems, in which a system comprising multiple
interacting components can be verified by analysing each component in isolation,
rather than verifying the much larger model of the whole system. In the case of
non-probabilistic models, a successful approach is the use of assume-guarantee
reasoning. This is based on checking queries of the form 〈A〉M 〈G〉, with the
meaning “whenever component M is part of a system satisfying the assumption
A, then the system is guaranteed to satisfy property G”. Proof rules can then
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be established that show, for example, that if 〈true〉M1 〈A〉 (process M1 satis-
fies assumption A in any environment) and 〈A〉M2 〈G〉 hold, then the combined
system M1‖M2 satisfies G. For probabilistic systems, compositional approaches
have also been studied, but a distinct lack of practical progress has been made.
In this paper, we address this limitation, presenting the first fully-automated
technique for compositional verification of systems exhibiting both probabilistic
and nondeterministic behaviour, and illustrating its applicability and efficiency
on several large case studies.

We use probabilistic automata [20,21], a well-studied formalism that is natu-
rally suited to modelling multi-component probabilistic systems. Indeed, elegant
proof techniques have been developed and used to manually prove correctness
of large, complex randomised algorithms [18]. Several branching-time preorders
(simulation and bisimulation) have been proposed for probabilistic automata and
have been shown to be compositional (i.e. preserved under parallel composition)
[21], but such branching-time equivalences are often too fine to give significant
practical advantages for compositional verification.

A coarser linear-time preorder can be obtained through trace distribution
(probability distributions over sequences of observable actions) inclusion [20];
however, it is well known that this relation is not preserved under parallel compo-
sition [19]. Various attempts have been made to characterise refinement relations
that are preserved, e.g. [20,15]. An alternative direction is to restrict the forms of
parallel composition that are allowed. One example is the formalism of switched
probabilistic I/O automata [6], which places restrictions on the scheduling be-
tween parallel components. Another is [1] which uses a probabilistic extension
of Reactive Modules, restricted to synchronous parallel composition. A limita-
tion of all these approaches is that the relations used, such as trace distribution
inclusion and weak probabilistic simulation, are not efficiently computable.

We propose an assume-guarantee verification technique for probabilistic au-
tomata, that has no restrictions on the parallel composition permitted between
components, allowing greater flexibility to model complex systems. To achieve
this, we represent both the assumptions made about system components and the
guarantees that they provide as safety properties. In the context of probabilistic
systems, safety properties capture a wide range of useful properties, e.g. “the
maximum probability of an error occurring is at most 0.01” or “the minimum
probability of terminating within k time-units is at least 0.75”.

We represent safety properties using finite automata and show that verifying
assume-guarantee queries reduces to the problem of multi-objective model check-
ing for probabilistic automata [10], which can be implemented efficiently using
linear programming. Another key benefit of using finite automata in this way is
illustrated by the (non-probabilistic) assume-guarantee verification framework
of [16]. There, not only is the verification of queries fully automated, but the
assumptions themselves (represented as finite automata) are generated auto-
matically using learning techniques. This opens the way for applying learning
techniques to compositional verification in the probabilistic case.
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We use our definitions of probabilistic assume guarantee reasoning to for-
mulate and prove several assume-guarantee proof rules, representing commonly
occurring patterns of processes. We also discuss how to employ quantitative rea-
soning, in particular obtaining lower and upper bounds on the actual probability
that a system satisfies a safety property. The techniques have been implemented
in a prototype tool and applied to several large case studies. We demonstrate sig-
nificant speed-ups over traditional, non-compositional verification, and success-
fully verify models that cannot be analysed without compositional techniques.

A full version of this paper, including additional proofs, is available as [12].

Related work. In addition to the compositional techniques for probabilistic
systems surveyed above [6,1,15,18,19,20,21], we mention several other related
pieces of work. In particular, our approach was inspired by the large body of
work by Giannakopoulou, Pasareanu et al. (see e.g. [16]) on non-probabilistic
assume guarantee techniques. We also build upon ideas put forward in [10],
which suggests using multi-objective verification to check probabilistic assume-
guarantee queries. Also relevant are: [9], which presents an assume/guarantee
framework using probabilistic contracts for non-probabilistic models; [4], which
presents a theoretical framework for compositional verification of quantitative
(but not probabilistic) properties; and [17], which uses probabilistic automata
to model the environment of non-probabilistic components.

2 Background

We begin by briefly reviewing probabilistic automata and techniques for their
verification. We also introduce safety properties, in the context of probabilistic
systems, and discuss multi-objective model checking.

In the following, we use Dist(S) to denote the set of all discrete probability
distributions over a set S, ηs for the point distribution on s ∈ S, and μ1×μ2 ∈
Dist(S1×S2) for the product distribution of μ1 ∈ Dist(S1) and μ2 ∈ Dist(S2).

2.1 Probabilistic Automata

Probabilistic automata [20,21] are a modelling formalism for systems that exhibit
both probabilistic and nondeterministic behaviour.

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, s, αM , δM , L)
where S is a set of states, s ∈ S is an initial state, αM is an alphabet, δM ⊆
S×(αM ∪{τ})×Dist(S) is a probabilistic transition relation and L : S → 2AP is
a labelling function, assigning atomic propositions from a set AP to each state.

In any state s of a PA M , a transition, denoted s
a−→ μ, where a is an action

label and μ is a discrete probability distribution over states, is available1 if
(s, a, μ) ∈ δM . In an execution of the model, the choice between the available

1 Markov decision processes, another commonly used model, are PAs with the restric-
tion that action labels are unique amongst the available transitions for each state.
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transitions in each state is nondeterministic; the choice of successor state is then
made randomly according to the distribution μ. A path through M is a (finite or
infinite) sequence s0

a0,μ0−−−→s1
a1,μ1−−−→· · · where s0 = s and, for each i � 0, si

ai−→ μi

is a transition and μi(si+1) > 0. The sequence of actions a0, a1, . . . , after removal
of any “internal actions” τ , from a path π is called a trace and is denoted tr(π).

To reason about PAs, we use the notion of adversaries (also called sched-
ulers or strategies), which resolve the nondeterministic choices in a model, based
on its execution history. Formally an adversary σ maps any finite path to a
sub-distribution over the available transitions in the last state of the path. Ad-
versaries are defined in terms of sub-distributions because they can opt to (with
some probability) take none of the available choices and remain in the current
state. For this reason, they are are sometimes called partial adversaries. Occa-
sionally, we will distinguish between these and complete adversaries, in which all
the distributions are total.

We denote by Pathσ
M the set of all paths through M when controlled by

adversary σ, and by AdvM the set of all possible adversaries for M . Under an
adversary σ, we define a probability space Prσ

M over the set of paths Pathσ
M ,

which captures the (purely probabilistic) behaviour of M under σ.
To reason about probabilistic systems comprising multiple components, we

will need the notions of parallel composition and alphabet extension:

Definition 2 (Parallel composition of PAs). If M1 = (S1, s1, αM1 , δM1 , L1)
and M2 = (S2, s2, αM2 , δM2 , L2) are PAs, then their parallel composition, denoted
M1‖M2, is given by the PA (S1×S2, (s1, s2), αM1∪αM2 , δM1‖M2 , L) where δM1‖M2

is defined such that (s1, s2)
a−→ μ1×μ2 if and only if one of the following holds:

– s1
a−→ μ1, s2

a−→ μ2 and a ∈ αM1 ∩ αM2

– s1
a−→ μ1, μ2 = ηs2 and a ∈ (αM1\αM2) ∪ {τ}

– s2
a−→ μ2, μ1 = ηs1 and a ∈ (αM2\αM1) ∪ {τ}

and L(s1, s2) = L1(s1) ∪ L2(s2).

Definition 3 (Alphabet extension). For any PA M = (S, s, αM , δM , L) and
set of actions Σ, we extend the alphabet of M to Σ, denoted M [Σ], as follows:
M [Σ] = (S, s, αM∪Σ, δM [Σ], L) where δM [Σ] = δM∪{(s, a, ηs) | s∈S∧a∈Σ\αM}.
We also require the notion of projections. First, for any state s = (s1, s2) of
M1‖M2, the projection of s onto Mi, denoted by s�Mi , is si. We extend this
notation to distributions over the state space S1×S2 of M1‖M2 in the standard
manner. Next, for any path π of M1‖M2, the projection of π onto Mi, denoted
π�Mi , is the path obtained from π by projecting each state of π onto Mi and
removing all the actions not in αMi together with the subsequent states.

Definition 4 (Projections of adversaries). Let M1 and M2 be PAs and σ
an adversary of M1‖M2. The projection of σ onto Mi, denoted σ�Mi , is the
adversary on Mi where, for any finite path π of Mi:

σ�Mi(π)(a, μ)=
∑{|Pr(π′)·σ(π′)(a, μ′) | π′∈Pathσ

M1‖M2
∧ π′�Mi=π ∧ μ′�Mi=μ|} .
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Compositional reasoning about PAs, and in particular adversary projections,
necessitates the use of partial, rather than complete, adversaries. In particular,
even if an adversary σ of M1‖M2 is complete, the projection σ�Mi onto one
component may be partial.

2.2 Model Checking for PAs

The verification of PAs against properties specified either in temporal logic or as
automata has been well studied. In this paper, both the states and transitions
of PAs are labelled (with sets of atomic propositions and actions, respectively)
and we formulate properties that refer to both types of labels. For the former,
we will express properties in linear temporal logic (LTL), and for the latter, we
will use safety properties represented by deterministic finite automata.

LTL Verification. For an LTL formula ψ, PA M and adversary σ ∈ AdvM :

Prσ
M (ψ) def= Prσ

M{π ∈ Pathσ
M | π |= ψ}

where π |= ψ denotes satisfaction according to the standard semantics of LTL.
Verifying an LTL specification ψ against M typically involves checking that the
probability of satisfying ψ meets a probability bound for all adversaries. This
reduces to computing the minimum or maximum probability of satisfying ψ:

Prmin
M (ψ) def= infσ∈AdvM Prσ

M (ψ) and Prmax
M (ψ) def= supσ∈AdvM

Prσ
M (ψ) .

The complexity of this computation is polynomial in the size of M and doubly
exponential in the size of ψ [8]. In practice, the LTL formula ψ is small and, for
simple, commonly used cases such as ♦ap (“eventually ap”) or �ap (“globally
ap”), model checking is polynomial [3]. Furthermore, efficient implementations
of LTL verification exist in tools such as PRISM [11] and LiQuor [7].

Safety Properties. A regular safety property A represents a set of infinite
words, denoted L(A), that is characterised by a regular language of bad prefixes,
finite words of which any extension is not in L(A). More precisely, we will define a
regular safety property A by a (complete) deterministic finite automaton (DFA)
Aerr = (Q, q, αA, δA, F ), comprising states Q, initial state q ∈ Q, alphabet αA,
transition function δA : Q×αA → Q and accepting states F ⊆ Q. The DFA Aerr

defines, in standard fashion, a regular language L(Aerr ) ⊆ (αA)∗. The language
L(A) is then defined as L(A) = {w ∈ (αA)ω | no prefix of w is in L(Aerr )}.

Given a PA M , adversary σ ∈ AdvM and regular safety property A with
αA ⊆ αM , we define the probability of M under σ satisfying A as:

Prσ
M (A) def= Prσ

M{π ∈ Pathσ
M | tr(π)�αA ∈ L(A)}

where w�α is the projection of word w onto a subset α of its alphabet. We then
define Prmin

M (A) and Prmax
M (A) as for LTL above.
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Fig. 1. Two probabilistic automata M1, M2 and the DFA for a safety property G

Definition 5 (Probabilistic safety properties). A probabilistic safety prop-
erty 〈A〉�p comprises a regular safety property A and a rational probability bound
p. We say that a PA M satisfies the property, denoted M |= 〈A〉�p, if the prob-
ability of satisfying A is at least p for any adversary:

M |= 〈A〉�p ⇔ ∀σ∈AdvM . Prσ
M (A) � p ⇔ Prmin

M (A) � p .

Safety properties can be used to represent a wide range of useful properties of
probabilistic automata. Examples include:

– “the probability of an error occurring is at most 0.01”
– “event A always occurs before event B with probability at least 0.98”
– “the probability of terminating within k time-units is at least 0.75”

The last of these represents a very useful class of properties for timed proba-
bilistic systems, perhaps not typically considered as safety properties. Using the
digital clocks approach of [13], verifying real-time probabilistic systems can often
be reduced to analysis of a PA with time steps encoded as a special action type.
Such requirements are then naturally encoded as safety properties.

Example 1. Figure 1 shows two PAs M1 and M2. Component M1 represents
a controller that powers down devices. Upon receipt of the detect signal, it first
issues the warn signal followed by shutdown; however, with probability 0.2 it will
fail to issue the warn signal. M2 represents a device which, given the shutdown
signal, powers down correctly if it first receives the warn signal and otherwise
will only power down correctly 90% of the time. We consider a simple safety
property G “action fail never occurs”, represented by the DFA Gerr also shown
in Figure 1. Composing the two PAs in parallel and applying model checking,
we have that Prmin

M1‖M2
(G) = 0.98. Thus, M1‖M2 |= 〈G〉�0.98.

Safety Verification. Using standard automata-based techniques for model
checking PAs [8], verifying correctness of probabilistic safety properties reduces
to model checking the product of a PA and a DFA:

Definition 6 (PA-DFA product). The product of a PA M=(S, s, αM , δM , L)
and DFA Aerr=(Q, q, αA, δA, F ) with αA ⊆ αM is given by the PA M⊗Aerr =
(S×Q, (s, q), αM , δ′, L′) where:

– (s, q) a−→ μ×ηq′ if s
a−→ μ and q′ = δA(q, a) if a ∈ αA and q′ = q otherwise;

– L′(s, q) = L(s) ∪ {errA} if q ∈ F and L′(s, q) = L(s) otherwise.
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Proposition 1. For PA M and regular safety property A, we have:

Prmin
M (A) = 1− Prmax

M⊗Aerr (♦errA) .

Thus, using [3], satisfaction of the probabilistic safety property 〈A〉�p can be
checked in time polynomial in the size of M⊗Aerr . Note that maximum reach-
ability probabilities, and therefore satisfaction of probabilistic safety properties,
are independent of whether complete or partial adversaries are considered.

Multi-objective Model Checking. In addition to traditional probabilistic
model checking techniques, the approach presented in this paper requires the
use of multi-objective model checking [10]. The conventional approach described
above allows us to check whether, for all adversaries (or, dually, for at least
one adversary), the probability of some property is above (or below) a given
bound. Multi-objective queries allow us to check the existence of an adversary
satisfying multiple properties of this form. In particular, consider k predicates
of the form Prσ

M (ψi) ∼i pi where ψi is an LTL formula, pi ∈ [0, 1] is a rational
probability bound and ∼i∈ {�, >}. Using the techniques in [10], we can verify
whether:

∃σ∈AdvM . ∧k
i=1 (Prσ

M (ψi) ∼i pi)

by a reduction to a linear programming (LP) problem. Like for (single-objective)
LTL verification, this can be done in time polynomial in the size of M (and dou-
bly exponential in the sizes of ψi). In fact, [10] also shows that this technique
generalises to checking existential or universal queries over a Boolean combina-
tion of predicates for which ∼i∈ {�, >, �, <}. In all cases, if an adversary which
satisfies the predicates exists, then it can also easily be obtained.

Finally, through a trivial extension of this approach (and without increasing
the complexity), we can formulate quantitative multi-objective queries. For ex-
ample, given a conjunction of the above predicates Ψ = ∧k

i=1Prσ
M (ψi) ∼i pi, and

an additional LTL formula ψ0, we can compute the maximum probability of ψ0
that is achievable whilst also satisfying Ψ :

Prmax
M (ψ0 |Ψ) def= sup{Prσ

M (ψ0) |σ ∈ AdvM ∧ Ψ)} .

3 Compositional Verification for PAs

We now describe our approach for compositional verification of probabilistic
automata. We first define the basic underlying ideas and then present several
different proof rules. For clarity, we present the simplest of these rules in some
detail and then discuss some generalisations and extensions.

We extend the notion of assume-guarantee reasoning to PAs using proba-
bilistic assume-guarantee triples of the form 〈A〉�pA M 〈G〉�pG , where 〈A〉�pA

and 〈G〉�pG are probabilistic safety properties and M is a PA. Informally, the
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meaning of this is “whenever M is part of a system satisfying A with probability
at least pA, then the system will satisfy G with probability at least pG”. Formally:

Definition 7 (Assume-guarantee semantics). If 〈A〉�pA and 〈G〉�pG are
probabilistic safety properties, M is a PA and αG ⊆ αA ∪ αM , then

〈A〉�pA M 〈G〉�pG ⇔ ∀σ∈AdvM [αA] .
(
Prσ

M [αA](A)�pA → Prσ
M [αA](G)�pG

)
.

The use of M [αA], i.e. M extended to the alphabet of A, in this definition is
required for the case where the property G includes actions that are not in M .

We write 〈true〉M 〈G〉�pG to denote the absence of any assumption, i.e. the
query 〈true〉M 〈G〉�pG is equivalent to M |= 〈G〉�pG which, as described above,
is standard model checking [3]. In the general case, we check the satisfaction of a
probabilistic assume-guarantee triple using multi-objective PA model checking:

Proposition 2 (Assume-guarantee model checking). Let M be a PA,
〈A〉�pA , 〈G〉�pG be probabilistic safety properties and M ′ = M [αA]⊗Aerr⊗Gerr .
The probabilistic assume-guarantee triple 〈A〉�pA M 〈G〉�pG holds if and only if:

¬∃σ′∈AdvM ′ .
(
Prσ′

M ′(�¬errA)�pA ∧ Prσ′
M ′(♦errG)>1−pG

)
which can be checked in time polynomial in |M ′| by solving an LP problem [10].

We now present, using the definitions above, several assume-guarantee proof
rules to allow compositional verification.

An asymmetric proof rule. The first rule we consider is asymmetric, in the
sense that we require only a single assumption about one component. Experience
in the non-probabilistic setting [16] indicates that, despite its simplicity, rules of
this form are widely applicable.

Theorem 1. If M1, M2 are probabilistic automata and 〈A〉�pA , 〈G〉�pG proba-
bilistic safety properties such that αA ⊆ αM1 and αG ⊆ αM2 ∪ αA, then the
following proof rule holds:

〈true〉M1 〈A〉�pA

〈A〉�pA M2 〈G〉�pG

〈true〉M1 ‖M2 〈G〉�pG

(ASym)

Theorem 1 means that, given an appropriate assumption 〈A〉�pA , we can check
the correctness of a probabilistic safety property 〈G〉�pG on M1‖M2, without
constructing and model checking the full model. Instead, we perform one instance
of (standard) model checking on M1 (to check the first condition of rule (ASym))
and one instance of multi-objective model checking on M2[αA]⊗Aerr (to check
the second). If Aerr is much smaller than M1, we can expect significant gains in
terms of the verification performance.

Example 2. We illustrate the rule (ASym) on the PAs M1, M2 and property
〈G〉�0.98 from Example 1. Figure 2 (left) shows a DFA Aerr representing the
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Fig. 2. DFA for safety property A and the product PA M2⊗Aerr⊗Gerr (see Figure 1)

safety property A “warn occurs before shutdown”. We will use the probabilistic
safety property 〈A〉�0.8 as the assumption about M1 in (ASym).

Checking the first condition of (ASym) amounts to verifying M1 |= 〈A〉�0.8,
which can be done with standard probabilistic model checking. To complete the
verification, we need to check the second condition 〈A〉�0.8 M2 〈G〉�0.98, which,
from Proposition 2, is achieved though multi-objective model checking on the
product2 M2⊗Aerr⊗Gerr . More precisely, we check there is no adversary under
which the probability of remaining within states not satisfying errA is at least
0.8 and the probability of reaching an errG state is above 1−0.98 = 0.02. The
product is shown in Figure 2 (right), where we indicate states satisfying errA

and errG by highlighting the accepting states a2 and q1 of DFAs Aerr and
Gerr .

By inspection, we see that no such adversary exists, so we can conclude that
M1‖M2 |= 〈G〉�0.98. Consider, however, the adversary σ which, in the initial
state, chooses warn with probability 0.8 and shutdown with probability 0.2. This
satisfies �¬errA with probability 0.8 and ♦errG with probability 0.02. Hence,
〈A〉�0.8 M2 〈G〉�pG does not hold for any value of pG > 1−0.02 = 0.98.

Proof of Theorem 1. We give below the proof of Theorem 1. This requires the
following lemma, which is a simple extension of [20, Lemma 7.2.6, page 141].

Lemma 1. Let M1, M2 be PAs, σ ∈ AdvM1‖M2 , Σ ⊆ αM1‖M2 and i = 1, 2. If A
and B are regular safety properties such that αA ⊆ αMi and αB ⊆ αMi[Σ], then

(a) Prσ
M1‖M2

(A) = Pr
σ�Mi

Mi
(A) and (b) Prσ

M1‖M2
(B) = Pr

σ�Mi[Σ]

Mi[Σ] (B) .

Note that the projections onto Mi[Σ] in the above are well defined since the
condition Σ ⊆ αM1‖M2 implies that M1‖M2 = M1[Σ]‖M2 = M1‖M2[Σ].

Proof (of Theorem 1). The proof is by contradiction. Assume that there ex-
ist PAs M1 and M2 and probabilistic safety properties 〈A〉�pA and 〈G〉�pG such
that 〈true〉M1 〈A〉�pA and 〈A〉�pA M2 〈G〉�pG hold, while 〈true〉M1‖M2 〈G〉�pG

does not. From the latter, it follows that there exists an adversary σ ∈ AdvM1‖M2

2 In this example, αA = {warn , shutdown} ⊆ αM2 so M2[αA] = M2.
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such that Prσ
M1‖M2

(G) < pG. Now, since 〈true〉M1 〈A〉�pA and σ�M1 ∈ AdvM1 ,
it follows that:

Prσ�M1
M1

(A) � pA ⇒ Prσ
M1‖M2

(A) � pA by Lemma 1(a) since αA ⊆ αM1

⇒ Pr
σ�M2[αA]

M2[αA] (A) � pA by Lemma 1(b) since αA ⊆ αM2[αA]

⇒ Pr
σ�M2[αA]

M2[αA] (G) � pG since 〈A〉�pA M2 〈G〉�pG

⇒ Prσ
M1‖M2

(G) � pG by Lemma 1(b) since αG ⊆ αM2[αA]

which contradicts the assumption that Prσ
M1‖M2

(G) < pG. ��

Generalising the proof rule. Next, we state two useful generalisations of the
above proof rule. First, using 〈A1, . . . , Ak〉�p1,...,pk

to denote the conjunction of
probabilistic safety properties 〈Ai〉�pi for i = 1, . . . , k, we have:

〈true〉M1 〈A1, . . . , Ak〉�p1,...,pk

〈A1, . . . , Ak〉�p1,...,pk
M2 〈G〉�pG

〈true〉M1 ‖M2 〈G〉�pG

(ASym-Mult)

Definition 7 extends naturally to k assumptions, replacing αA with ∪k
i=1αAi

and the single probabilistic safety property on the left-hand side of the implica-
tion with the conjunction. In similar fashion, by adapting Proposition 2, model
checking of the query 〈A1, . . . , Ak〉�p1,...,pk

M 〈G〉�pG reduces to multi-objective
model checking on the product M [∪k

i=1αAi ]⊗Aerr
1 ⊗ · · ·⊗Aerr

k ⊗Gerr .
Secondly, we observe that, through repeated application of (ASym), we obtain

a rule of the following form for n components:

〈true〉M1 〈A1〉�p1

〈A1〉�p1 M2 〈A2〉�p2

· · ·
〈An−1〉�pn−1 Mn 〈G〉�pG

〈true〉M1 ‖ · · · ‖Mn 〈G〉�pG

(ASym-N)

A circular proof rule. One potential limitation of the rule (Asym) is that
we may not be able to show that the assumption A1 about M1 holds without
making additional assumptions about M2. This can be overcome by using the
following circular proof rule:

Theorem 2. If M1, M2 are PAs and 〈A1〉�p1 , 〈A2〉�p2 and 〈G〉�pG probabilistic
safety properties such that αA2 ⊆ αM2 , αA1 ⊆ αM1 ∪ αA2 and αG ⊆ αM2 ∪ αA1 ,
then the following circular assume-guarantee proof rule holds:

〈true〉M2 〈A2〉�p2

〈A2〉�p2 M1 〈A1〉�p1

〈A1〉�p1 M2 〈G〉�pG

〈true〉M1 ‖M2 〈G〉�pG

(Circ)
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An asynchronous proof rule. This rule is motivated by the fact that, often,
part of a system comprises several asynchronous components, that is, compo-
nents with disjoint alphabets. In such cases, it can be difficult to establish useful
probability bounds on the combined system if the fact that the components act
independently is ignored. For example, consider the case of n independent coin
flips; in isolation, we have that the probability of any coin not returning a tail
is 1/2. Now, ignoring the independence of the coins, all we can say is that the
probability of any of them not returning a tail is at least 1/2. However, using
their independence, we have that this probability is at least 1−1/2n.

Theorem 3. For any PAs M1, M2 and probabilistic safety properties 〈A1〉�pA2
,

〈A2〉�pA1
, 〈G1〉�pG1

and 〈G2〉�pG2
such that αM1 ∩ αM2 = ∅, αG1 ⊆ αM1 ∪ αA1

and αG2 ⊆ αM2 ∪ αA2 , we have the following asynchronous assume-guarantee
proof rule:

〈A1〉�pA1
M1 〈G1〉�pG1

〈A2〉�pA2
M2 〈G2〉�pG2

〈A1, A2〉�pA1 ,pA2
M1‖M2 〈G1 ∨G2〉�pG1+pG2−pG1 ·pG2

(ASync)

where the disjunction of safety properties G1 and G2 is obtained by taking the
intersection of the DFAs Gerr

1 and Gerr
2 .

4 Quantitative Assume-Guarantee Queries

Practical experience with probabilistic verification suggests that it is often more
useful to adopt a quantitative approach. For example, rather than checking the
correctness of a probabilistic safety property 〈G〉�pG , it may be preferable to
just compute the actual worst-case (minimum) probability Prmin

M (G) that G is
satisfied. In this section we consider how to formulate such quantitative queries
in the context of assume-guarantee reasoning. For simplicity, we restrict our
attention here to the rule (ASym) for fixed PAs M1 and M2, and property G.
Similar reasoning applies to the other rules presented above.

Maximal lower bounds. Rule (ASym) allows us to establish lower bounds for
the probability Prmin

M1‖M2
(G), i.e. it can be used to prove, for certain values of

pG, that Prmin
M1‖M2

(G) � pG. We consider now how to obtain the highest such
lower bound, say p�

G. First, we note that, from Definition 7, it is clear that the
highest value of pG for which 〈A〉�pA M2 〈G〉�pG holds will be obtained by using
the maximum possible value of pA. For rule (ASym) to be applicable, this is
equal to Prmin

M1
(A), since for any higher value of pA the first condition will fail to

hold. Now, by Proposition 2, and letting M ′ = M2[αA]⊗Aerr ⊗Gerr , the value
p�

G can be obtained through multi-objective model checking as follows:

p�
G = 1−Prmax

M ′ (♦errG |Ψ) where Ψ = Prσ
M ′(�¬errA) � pA.
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Parameterised queries. Let us assume that component M1 is parameterised
by a variable x in such a way that varying x changes the probability of M1 satis-
fying the assumption A. For example, increasing the value of x might increase the
probability PrM1(A), but simultaneously worsen some other performance mea-
sure or cost associated with M1. In this situation, it is desirable to establish a
trade-off between the probability of M1‖M2 satisfying G and the secondary ‘cost’
of M1. Our use of multi-objective model checking for compositional verification
offers two choices here. Firstly, we can pick a suitable threshold for PrM1‖M2(G)
and then compute the lowest value of PrM1(A) which guarantees this, allow-
ing an appropriate value of x to be chosen. Alternatively, we can consider the
so-called Pareto curve: the set of achievable combinations of PrM1‖M2(G) and
PrM1(A), which will present a clear view of the trade-off. For the latter, we can
use the techniques of [10] for approximate exploration of the Pareto curve.

Upper bounds. Since application of (ASym) gives lower bounds on Prmin
M1‖M2

(G), it is desirable to also generate upper bounds on this probability. This can
be done as follows. When checking condition 2 of (ASym), using multi-objective
model checking, we also obtain an adversary σ ∈ AdvM2[αA]⊗Aerr that satisfies
〈A〉�pA and gives the minimum (i.e. worst-case) probability of satisfying G. This
can then be projected onto M2, giving an adversary σ2 which achieves the worst-
case behaviour of the single component M2 with respect to G satisfying 〈A〉�pA .
Furthermore, from σ2, we can easily construct a PA Mσ2

2 that represents the
behaviour of M2 under σ2.

Finally, we compute the probability of satisfying G on M1‖Mσ2
2 . Because Mσ2

2
is likely to be much smaller than M2, there is scope for this to be efficient, even
if model checking M1‖M2 in full is not feasible. Since M1‖Mσ2

2 represents only
a subset of the behaviour of M1‖M2, the probability computed is guaranteed to
give an upper bound on Prmin

M1‖M2
(G). We use σ2 (which achieves the worst-case

behaviour with respect to G), rather than an arbitrary adversary of M2, in order
to obtain a tighter upper bound.

5 Implementation and Case Studies

We have implemented our compositional verification approach in a prototype
tool. Recall that, using the rules given in Section 3, verification requires both
standard (automata-based) model checking and multi-objective model checking.
Our tool is based on the probabilistic model checker PRISM [11], which already
supports LTL model checking of probabilistic automata. Model checking of prob-
abilistic safety properties, represented by DFAs, can be achieved with existing
versions of PRISM, since DFAs can easily be encoded in PRISM’s modelling
language. For multi-objective model checking, we have extended PRISM with
an implementation of the techniques in [10]. This requires the solution of Linear
Programming (LP) problems, for which we use the ECLiPSe Constraint Logic
Programming system with the COIN-OR CBC solver, implementing a branch-
and-cut algorithm. All experiments were run on a 2GHz PC with 2GB RAM.
Any run exceeding a time-limit of 24 hours was disregarded.
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We demonstrate the application of our tool to two large case studies. The
first is the randomised consensus algorithm of Aspnes & Herlihy [2]. The al-
gorithm allows N processes in a distributed network to reach a consensus and
employs, in each round, a shared coin protocol parameterised by K. The PA
model is based on [14] and consists of an automaton for each process and for
the shared coin protocol of each round. We analyse the minimum probability
that the processes decide by round R. The compositional verification employs
R−2 uses of the Async rule to return a probabilistic safety property satisfied by
the (asynchronous) composition of the shared coin protocols for the first R−2
rounds. This is then used as the assumption of an Asym rule for the subsystem
representing the processes.

The second case study is the Zeroconf network configuration protocol [5]. We
use the PA model from [13] consisting of two components, one representing a new
host joining the network (parameterised by K, the number of probes it sends
before using an IP address), and the second representing the environment, i.e.
the existing network. We consider two properties: the minimum probability that
a host employs a fresh IP address and that a host is configured by time T . In
each case the compositional verification uses one application of the Circ rule.

Table 1 shows experimental results for these case studies. We present the total
time required for both compositional verification, as described in this paper, and

Table 1. Experimental results, comparing with non-compositional verification

Case study Non-compositional Compositional
[parameters] States Time (s) Result† LP size Time (s) Result†

consensus
(2 processes)

[R K]

3 2 5,158 1.6 0.108333 1,064 0.9 0.108333
3 20 40,294 108.1 0.012500 1,064 7.4 0.012500
4 2 20,886 3.6 0.011736 2,372 1.2 0.011736
4 20 166,614 343.1 0.000156 2,372 7.8 0.000156
5 2 83,798 7.7 0.001271 4,988 2.2 0.001271
5 20 671,894 1,347 0.000002 4,988 8.8 0.000002

consensus
(3 processes)

[R K]

3 2 1,418,545 18,971 0.229092 40,542 29.6 0.229092
3 12 16,674,145* time-out - 40,542 49.7 0.041643
3 20 39,827,233* time-out - 40,542 125.3 0.024960
4 2 150,487,585 78,955 0.052483 141,168 376.1 0.052483
4 12 1,053,762,385* mem-out - 141,168 396.3 0.001734
4 20 2,028,200,209* mem-out - 141,168 471.9 0.000623

zeroconf
[K]

2 91,041 39.0 2.0e-5 6,910 9.3 3.1e-4
4 313,541 103.9 7.3e-7 20,927 21.9 3.1e-4
6 811,290 275.2 2.6e-8 40,258 54.8 2.5e-4
8 1,892,952 592.2 9.5e-10 66,436 107.6 9.0e-6

zeroconf
(time

bounded)
[K T ]

2 10 665,567 46.3 5.9e-5 62,188 89.0 2.1e-4
2 14 106,177 63.1 2.0e-8 101,313 170.8 8.1e-8
4 10 976,247 88.2 3.3e+0 74,484 170.8 3.3e+0
4 14 2,288,771 128.3 7.0e-5 166,203 430.6 3.1e-4

* These models can be constructed, but not model checked, in PRISM.
† Results are maximum probabilities of error so actual values are these subtracted from 1.
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non-compositional verification using PRISM (with the fastest available engine).
Note that, in each case, we use the quantitative approach described in Section 4
and give actual (bounds on) probabilities computed. To give an indication of
the size of the models considered, we give the number of states for the full (non-
compositional) models and the number of variables in the LP problems used for
multi-objective model checking in the compositional case.

In summary, we see that the compositional approach is faster in the major-
ity of cases. Furthermore, it allows verification of several models for which it is
infeasible with conventional techniques. For the cases where compositional ver-
ification is slower, this is due to the cost of solving a large LP problem, which
is known to be more expensive than the highly optimised techniques used in
PRISM. Furthermore, LP solution represents the limiting factor with respect
to the scalability of the compositional approach. We expect that improvements
to our technique can be made that will reduce LP problem sizes and improve
performance. Finally, we note that the numerical values produced using compo-
sitional verification are generally good; in fact, for the consensus case study, the
bounds obtained are precise.

6 Conclusions

We have presented a compositional verification technique, based on assume-
guarantee rules, for probabilistic automata. Properties of these models are
represented as probabilistic safety properties, and we show how verifying the
resulting assume-guarantee queries reduces to the problem of multi-objective
model checking. We also show how this can be leveraged to provide a quan-
titative approach to compositional verification. In contrast to existing work in
this area, our techniques can be implemented efficiently and we demonstrate
successful results on several large case studies.

There are several interesting directions for future work. In particular, we plan
to experiment with the use of learning techniques to automatically produce the
assumptions required for compositional reasoning. We also intend to further
develop our compositional proof rules and investigate to what extent they are
complete. Finally, we plan to expand the range of properties that can be verified,
including for example reward-based specifications.
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Abstract. In 2003, Derisavi, Hermanns, and Sanders presented a com-
plicated O(m log n) time algorithm for the Markov chain lumping prob-
lem, where n is the number of states and m the number of transitions
in the Markov chain. They speculated on the possibility of a simple al-
gorithm and wrote that it would probably need a new way of sorting
weights. In this article we present an algorithm of that kind. In it, the
weights are sorted with a combination of the so-called possible majority
candidate algorithm with any O(k log k) sorting algorithm. This works
because, as we prove in the article, the weights consist of two groups,
one of which is sufficiently small and all weights in the other group have
the same value. We also point out an essential problem in the description
of the earlier algorithm, prove the correctness of our algorithm in detail,
and report some running time measurements.

1 Introduction

Markov chains are widely used to analyze the behaviour of dynamic systems and
to evaluate their performance or dependability indices. One of the problems that
limit the applicability of Markov chains to realistic systems is state space explo-
sion. Among the methods that can be used to keep this problem under control,
lumping consists of aggregating states of the Markov chain into “macrostates”,
hence obtaining a smaller Markov chain while preserving the ability to check
desired properties on it.

We refer to [4,8] for different lumpability concepts and their use in the analysis
of systems. For the purpose of this article it suffices that in the heart of their use
is the problem of constructing the coarsest lumping quotient of a Markov chain.
We define this problem formally in Section 2, and call it “the lumping problem”
for brevity.

Let n denote the number of states and m the number of transitions in the
Markov chain. An O(n + m log n) time algorithm for the lumping problem was
given in [6,5]. It is (loosely) based on the Paige–Tarjan relational coarsest par-
tition algorithm [10] of similar complexity. Unless the input is pathological with
many isolated states, we have n = O(m) implying O(n + m log n) = O(m log n).
Therefore, it is common practice to call these algorithms O(m log n).

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 38–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The Paige–Tarjan algorithm starts with an initial partition of the set of states
and refines it until a certain condition is met. Sets of the partition are tradition-
ally called blocks. A basic operation in the Paige–Tarjan algorithm is the splitting
of a block to at most three subblocks. We call one of the subblocks the middle
group, and another one the left block. Their precise definitions will be presented
in Section 6.

When applying the Paige–Tarjan algorithm to the lumping problem, the block
splitting operation has to be modified. The middle group may have to be split
further to one or more middle blocks. On the other hand, the rather complicated
mechanism used by the Paige–Tarjan algorithm for separating the left block from
the middle group is not needed any more, because the refined splitting operation
can do that, too.

The authors of [6] first discussed a general balanced binary tree approach
to implementing the refined splitting operation. They proved that it yields
O(m log2 n) time complexity to the algorithm as a whole. Then they proved
O(m log n) time complexity for the special case where the trees are splay trees.

The authors of [6] speculated whether O(m log n) time complexity could be
obtained with a simpler solution than splay trees. In this article we show that
this is the case. Instead of always processing the left block and middle group
together with a binary search tree, our algorithm processes them separately when
necessary. Separation is obtained with the so-called possible majority candidate
algorithm. The left block need not be split further. The splitting of the middle
group is based on sorting it with just any O(k log k) time algorithm, where
k is the number of items to be sorted. To show that this yields the desired
complexity, we take advantage of a special property of middle blocks that sets
an upper bound to the number of times each state can be in a middle block. The
left block lacks this property. Our algorithm sometimes separates some middle
block instead of the left block, but when this happens, the left block is so small
that it does not matter.

The articles [6,5] do not show a correctness proof of their algorithm. Indeed,
the description and pseudocode in them ignore an essential issue. This makes
direct implementations produce wrong results every now and then, as we show
in Section 4 with an example. The splitting operation uses one block, called
splitter, as input. If block B has been used as a splitter and is then itself split
to B1, B2, . . . , Bk, then it suffices that all but one of them are used as splitters
later on. The good performance arises from not using a biggest one among the
Bi in the future. However, if B has not been used as a splitter, then every Bi

must be used in the future. The articles [6,5] fail to say that. Because of this, we
felt it appropriate to discuss the correctness issue in great detail in this article.

In Section 2 we describe the lumping problem rigorously. Section 3 introduces
the less well known old algorithms and data structures that our new algorithm
uses. Our new algorithm is presented in Section 4 and proven correct in Section 5.
That it runs in O(n + m log n) (or O(m log n)) time is shown in Section 6.
Section 7 presents some measurements made with a test implementation, and
Section 8 presents our conclusions.
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2 The Lumping Problem

The input of the lumping problem consists of a weighted directed graph (S, Δ, W )
together with an initial partition I. In the definition, Δ ⊆ S × S, and W is a
function from Δ to real numbers. The elements of S, Δ, and W are called states,
transitions, and weights, respectively. We let n denote the number of states and
m the number of transitions. For convenience, we extend W to S × S by letting
W (s, s′) = 0 whenever (s, s′) /∈ Δ. We also extend W to the situation where the
second argument is a subset of S by W (s, B) =

∑
s′∈B W (s, s′). By s → s′ we

mean that (s, s′) ∈ Δ. If B ⊆ S, then s → B denotes that there is some s′ ∈ B
such that s → s′.

In many applications, the values W (s, s′) are non-negative. We do not make
that assumption, however, because there are also applications where W (s, s)
is deliberately chosen as −W (s, S \ {s}), making it usually negative. It is also
common that W (s, S) is the same for every s ∈ S, but we do not make that
assumption either.

A partition of a set A is a collection {A1, A2, . . . , Ak} of pairwise disjoint
nonempty sets such that their union is A. The initial partition I is a partition
of S. The elements of a partition of S are traditionally called blocks. A partition
B′ is a refinement of a partition B if and only if each element of B′ is a subset
of some element in B.

A partition B of S is compatible with W if and only if for every B ∈ B,
B′ ∈ B, s1 ∈ B, and s2 ∈ B we have W (s1, B

′) = W (s2, B
′). Let croip be an

abbreviation for “compatible refinement of initial partition”, that is, a partition
of S that is a refinement of I and compatible with W . The objective of the
lumping problem is to find the coarsest possible croip, that is, the croip whose
blocks are as big as possible. Our new algorithm solves it.

Sometimes a variant problem is of interest where compatibility is defined
in a different way. In it, compatibility holds if and only if for every B ∈ B,
B′ ∈ B \ {B}, s1 ∈ B, and s2 ∈ B we have W (s1, B

′) = W (s2, B
′). The variant

problem can be solved by, for each state s, replacing W (s, s) by −W (s, S \ {s}),
and then using the algorithm for the lumping problem [5]. This is an instance of
a more general fact, given by the next proposition.

Proposition 1. For every I ∈ I, let wI be an arbitrary real number and UI =
I ∪⋃ II , where II is an arbitrary subset of I. Let W ′ be defined by

W ′(s, s′) := W (s, s′) when s′ �= s, and
W ′(s, s) := wI −W (s, UI \ {s}), where I is the I ∈ I that contains s.

Then the coarsest lumping-croip with W ′ is the coarsest variant-croip with W .

Proof. The value of W (s, B) has no role in the definition of variant-compatibility
whenever s ∈ B. This implies that the value of W (s, s) has never any role. So
W and W ′ yield the same variant-croips. The claim follows, if we now show that
with W ′, every lumping-croip is a variant-croip and vice versa.

It is immediate from the definitions that every lumping-croip is a variant-
croip. To prove the opposite direction with W ′, let B be a variant-croip, B ∈ B,
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s1 ∈ B, and s2 ∈ B. We have to prove that W ′(s1, B
′) = W ′(s2, B

′) for every
B′ ∈ B. This is immediate when B′ �= B by the definition of variant-croips. We
prove next that W ′(s1, B) = W ′(s2, B), completing the proof.

Let I be the initial block that contains s1, and let B1, B2, . . . , Bk be the
blocks to which the blocks in {I} ∪ II have been split in B. Clearly s2 ∈ I, B

is one of the Bi, B1 ∪ · · · ∪ Bk = UI , and
∑k

i=1 W ′(s, Bi) = W ′(s, UI) = wI

when s ∈ I. Without loss of generality we may index the Bi so that B = B1.
Then W ′(s1, B) = wI −

∑k
i=2 W ′(s1, Bi) = wI −

∑k
i=2 W ′(s2, Bi) = W ′(s2, B),

because W ′(s1, B
′) = W ′(s2, B

′) when B′ �= B. ��

3 Background Data Structures and Algorithms

In this section we introduce those algorithms and data structures that are needed
in the rest of the article, not new, but not presented in typical algorithm text-
books either.

Refinable Partition. Our lumping algorithm needs a data structure for main-
taining the blocks. We present two suitable data structures that provide the
following services.

They make it possible in constant time to find the size of a block, find the
block that a given state belongs to, mark a state for subsequent splitting of
a block, and tell whether a block contains marked states. They also facilitate
scanning the states of a block in constant time per scanned element, assuming
that states are not marked while scanning. Finally, there is a block splitting
operation that runs in time proportional to the number of marked states in the
block. It makes one subblock of the marked states and another of the remaining
states, provided that both subblocks will be nonempty. If either subblock will be
empty, it does not split the block. In both cases, it unmarks the marked states
of the block. It is important to the efficiency of the lumping algorithm that the
running time of splitting is only proportional to the number of marked, and not
all, states in the block.

A traditional refinable partition data structure represents each block with
two doubly linked lists: one for the marked states and another for the remaining
states [1, Sect. 4.13]. The record for the block contains links to the lists, together
with an integer that stores the size of the block. It is needed, because the size
must be found fast. The record for a state contains a link to the block that the
state belongs to, and forward and backward links.

Marking of an unmarked state consists of unlinking it from its current list
and adding it to the list of the marked states of its block. In the splitting, the
new block is made of the marked states, and unmarked states stay in the old
block. This is because all states of the new block must be scanned, to update the
link to the block that the state belongs to. The promised running time does not
necessarily suffice for scanning the unmarked states. (For simplicity, we ignore
the other alternative where the smaller subblock is made the new block.)

A more recent refinable partition data structure was inspired by [9] and pre-
sented in [12]. In it, states and blocks are represented by numbers. All states
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count := 0
for i := 1 to k do

if count = 0 then
pmc := A[i] ; count := 1

else if A[i] = pmc then
count := count + 1

else
count := count − 1

Fig. 1. Finding a possible majority candidate

(that is, their numbers) are in an array elems so that states that belong to the
same block are next to each other. The segment for a block is further divided
to a first part that contains the marked states and second part that contains
the rest. There is another array that, given the number of a state, returns its
location in elems . A third array denotes the block that each state belongs to.

Three arrays are indexed by block numbers. They tell where the segment for
the block in elems starts and ends, and where is the borderline between the
marked and other states. An unmarked state is marked by swapping it with the
first unmarked state of the same block, and moving the borderline one step.

Possible Majority Candidate. A possible majority candidate pmc of an array
A[1 . . .k] is any value that has the following properties. If some value occupies
more than half of the positions of A, then pmc is that value. Otherwise pmc is
just any value that occurs in A.

The algorithm in Figure 1 finds a possible majority candidate in linear time [3,
Sect. 4.3.3]. To see that it works, let f(x) = count when pmc = x and f(x) =
−count when pmc �= x. When A[i] = x, then f(x) increases by one independently
of the value of pmc, and when A[i] �= x, then f(x) increases or decreases by one.
If x occurs in more than half of the positions, then f(x) increases more times than
decreases, implying that at the end of the algorithm f(x) > 0. This guarantees
that pmc = x, because otherwise count would have to be negative, and the tests
in the code prevent it from becoming negative.

4 The Lumping Algorithm

Our new lumping algorithm is shown in Figure 2. The grey commands on lines 1
and 3 are not part of it. They are added because of the needs of the proofs
of the correctness and performance of the algorithm. They will be discussed in
Sections 5 and 6. We will prove that their presence or absence does not affect
the output of the algorithm.

The input to the algorithm consists of S, Δ, W , and I. We assume that Δ is
available as the possibility to scan the input transitions of each state in constant
time per scanned transition, and define •s′ = {s | s → s′}.

The algorithm maintains a refinable partition of states. The initial value of
the partition is I. Each block has an identity (number or address) with which it
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1 UB := I ; BT := ∅ ; w[s] := unused for every s ∈ S ; C := {S ∪ {s⊥}}
2 while UB 	= ∅ do
3 let B′ be any block in UB ; UB := UB \{B′} ; C := C \{CB′}∪{B′, CB′ \B′}
4 ST := ∅
5 for s′ ∈ B′ do for s ∈ •s′ do
6 if w[s] = unused then ST := ST ∪ {s} ; w[s] := W (s, s′)
7 else w[s] := w[s] + W (s, s′)
8 for s ∈ ST do if w[s] 	= 0 then
9 B := the block that contains s

10 if B contains no marked states then BT := BT ∪ {B}
11 mark s in B
12 while BT 	= ∅ do
13 let B be any block in BT ; BT := BT \ {B}
14 B1 := marked states in B ; B := remaining states in B
15 if B = ∅ then give the identity of B to B1 else make B1 a new block
16 pmc := possible majority candidate of the w[s] for s ∈ B1

17 B2 := {s ∈ B1 | w[s] 	= pmc} ; B1 := B1 \ B2

18 if B2 = ∅ then � := 1 else
19 sort and partition B2 according to w[s], yielding B2, . . . , B�

20 make each of B2, . . . , B� a new block
21 if B ∈ UB then add B1, . . . , B� except B to UB

22 else add [B,]? B1, . . . , B� except a largest to UB

23 for s ∈ ST do w[s] := unused

Fig. 2. The coarsest lumping algorithm

can be found via an index or pointer. We saw in Section 3 that when a block is
split, the splitting operation decides which subblock inherits the identity of the
original block.

The array w has one slot for each s ∈ S. It stores numbers. One value that
could not otherwise occur is reserved for a special purpose and denoted with
“unused” in the pseudocode. In our implementation, unused = DBL MAX, that is,
the maximal double precision floating point value of the computer.

The algorithm maintains a set UB of “unprocessed” blocks, that is, blocks that
have to be used later for splitting. Similarly, ST maintains a set of “touched” states
and BT a set of “touched” blocks that will be processed later. The algorithm has
been designed so that only very simple operations are needed on them. In partic-
ular, when something is being added, it is certain that it is not already there. It is
thus easy to implement these sets efficiently as stacks or other data structures. The
sets contain indices of or pointers to blocks and states, not copies of the block and
state data structures. Therefore, when a block that is in UB is split, the subblock
that inherits its identity also inherits the presence in UB.

Initially UB contains all blocks. The body of the main loop of the algorithm
(lines 3 to 23) takes and removes an arbitrary block B′ from UB and splits
all blocks using it. The splitting operation may add new blocks to UB. This is
repeated until UB becomes empty. A block that is used in the role of B′ is called
a splitter.
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Let •B′ denote the set of states which have transitions to B′, that is, •B′ =
{s | ∃s′ ∈ B′ : s → s′}. Lines 4 to 7 find those states, collect them into ST,
and compute W (s, B′) for them. Each W (s, B′) is stored in w[s]. The if test
ensures that each state is added to ST only once. The used w[s] are reset back
to “unused” on line 23. This is a tiny bit more efficient than resetting the w[s]
before use via •s′, as was done in [6].

Lines 8 to 11 mark those states in •B′ that have W (s, B′) �= 0, and collect into
BT the blocks that contain such states. We saw in Section 3 that the marking
operation moves the state to a new place in the refinable partition data structure
(to another linked list or to another part of an array). As a consequence, the
marking operation interferes with the scanning of states. It would confuse the
scanning of B′ on line 5, if it were done in that loop. This is the main reason for
the seemingly clumsy operation of collecting •B′ into ST and scanning it anew
from there. Another reason is that it makes it easy to get rid of states that have
W (s, B′) = 0.

Lines 12 to 22 scan each block that has at least one s such that W (s, B′) �= 0,
and split it so that the resulting subblocks are compatible with B′. Lines 14
and 15 are the same as the splitting operation in Section 3. They split B to
those states that have and those that do not have W (s, B′) �= 0. The former
are stored in B1 and the latter remain in B. The latter include those that do
not have transitions to B′. If B would become empty, then B1 will not be a
new block but inherits the identity (number or address) of B. It must be kept
in mind in the sequel that B1 may be different from B or the same block as B.

Line 16 finds a possible majority candidate among the w[s] of the states in
B1. Lines 17 to 20 split B1 to B1, B2, . . . , B	 so that s1 and s2 are in the same
Bi if and only if W (s1, B

′) = W (s2, B
′). After the sorting on line 19, the s with

the same W (s, B′) are next to each other and can easily be converted to a new
block. The sorting operation is new compared to Section 3. However, it is well
known how a doubly linked list or an array segment can be sorted in O(k log k)
time, where k is the number of elements to be sorted.

The subblock whose W (s, B′) is the possible majority candidate is processed
separately because of efficiency reasons. As was mentioned above, the sorting
operation costs O(k log k). As was pointed out in [6], paying O(k log k) where
k = |B1 ∪ · · · ∪B	| would invalidate the proof of the O(n+m log n) performance
of the algorithm as a whole. The solution of [6] to this problem was to split B1
to B1, . . . , B	 with the aid of splay trees. However, we will prove in Section 6
that O(k log k) is not too costly, if those states whose W (s, B′) is the possible
majority candidate are not present in the sorting.

The set of blocks that will have to be used as splitters in the future is updated
on lines 21 and 22. There are two cases. If B is in UB, then all subblocks of the
original B must be in UB after the operation. Because B is already there, it
suffices to put the Bi into UB. However, B1 may have inherited the identity of
B on line 15 and must not be put into UB for a second time.

If B /∈ UB, then it suffices that all but one of the subblocks is put into UB. The
good performance of the algorithm relies on putting only such subblocks into UB
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Fig. 3. A counter-example to never putting all subblocks into UB

whose sizes are at most half of the size of the original B. This is implemented by
finding the largest, or one of the largest if there are many of maximal size, and
not putting that subblock into UB. This works, because there can be at most
one subblock whose size is more than half of the original size. The notation [B,]?

reminds that if B and B1 refer to the same block, then only one of them should
be considered.

Testing whether B ∈ UB can be made fast, if each block has a bit that is set
when the block is put into UB and reset when the block is removed from UB.

The articles [6,5] do not discuss the distinction represented by lines 21 and 22.
They seem to always work according to line 22, even if B ∈ UB. The example in
Figure 3 demonstrates that this is incorrect. The initial partition is {B1, B2, B3∪
B4 ∪B5, B6}. If B1 is used as the first splitter, it splits B3 ∪B4 ∪B5 to B3 and
B4 ∪B5. Assume that B3 is not and B4 ∪B5 is put into UB. If B2 is used as the
next splitter, it splits B4 ∪B5 to B4 and B5. It may be that then B5 is put into
UB and B4 is not. At this stage, B3 and B4 are not in UB, and none of the other
blocks induces any splitting. Thus B6 is never split, although it should be. This
problem makes implementations based directly on [6,5] yield wrong results.

5 Correctness

In this section we prove the correctness of the algorithm presented in the previous
section. In the proof, we will keep track of some information on blocks that have
been used as splitters and then have been split themselves. For this purpose we
introduce compound blocks. A compound block is always a union of ordinary
blocks. The idea is that always on line 2, the splitting that any compound block
C1 would cause has already been done, either by having used C1 as a splitter,
or by having used C, C2, . . ., Ck as splitters, where C = C1 ∪ · · · ∪ Ck and the
Ci are pairwise disjoint. This will be made precise later.

The grey statements in Figure 2 maintain the compound blocks. The com-
pound blocks constitute a partition C of S ∪ {s⊥}, where s⊥ will be explained
soon. Initially C consists of one compound block that contains all states, includ-
ing s⊥. On line 3, the compound block CB′ that covers the ordinary block B′ is
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split to two compound blocks B′ and CB′ \B′. (The invariant after the proof of
Lemma 2 will imply that CB′ \B′ �= ∅.)

The purpose of s⊥ is to make it easier to formulate two invariants that will be
used in the last part of the correctness proof. Without s⊥, the last part would
be very difficult to follow. The easy formulation needs initially such a compound
block Ci that S ⊆ Ci and W (s, Ci) is the same for every s ∈ Ci. Unfortunately,
W (s, S) is not necessarily the same for every s ∈ S. Fortunately, we can fix
this without affecting the operation of the algorithm by adding a new imaginary
state s⊥. Its adjacent transitions are chosen such that W (s, s⊥) = −W (s, S)
when s ∈ S, and s⊥ has no output transitions. Thus W (s, S ∪ {s⊥}) = 0 for
every s ∈ S ∪ {s⊥}, and we can let Ci = S ∪ {s⊥}. The grey statement on line 1
makes Ci the only compound block.

We now show that the addition of s⊥ changes the correct answer only by
adding {s⊥} as an extra block to it. Clearly B is a refinement of I if and only
if B ∪ {{s⊥}} is a refinement of I ∪ {{s⊥}}. Furthermore, W (s1, B) = W (s2, B)
holds trivially when {s1, s2} ⊆ {s⊥}. If W (s1, B) = W (s2, B) for every B ∈ B,
then W (s1, {s⊥}) = −∑B∈B W (s1, B) = −∑B∈B W (s2, B) = W (s2, {s⊥}).
From these it can be seen that B is compatible with the original W if and only
if B ∪ {{s⊥}} is compatible with W extended with the transitions adjacent to
s⊥. So the two systems have the same croips, except for the addition of {s⊥}.

The next important fact is that not implementing s⊥ and the grey statements
changes the output of the algorithm only by removing {s⊥} from it. The state-
ment UB := I does not put {s⊥} into UB. (This is similar to line 22, where all
except one subblocks of B are put into UB.) Therefore, s⊥ never occurs as the
s′ on line 5. Because s⊥ has no output transitions, it cannot occur as the s on
line 5 either. Its only effect on the execution of the algorithm is thus that {s⊥}
is an extra block that is never accessed. The set C of compound blocks has no
effect on the output, because its content is not used for anything except for the
computation of new values of C on line 3.

We have shown the following.

Lemma 1. Without the grey statements the algorithm in Figure 2 computes
the correct result for S, Δ, W , and I if and only if with the grey statements it
computes the correct result when s⊥ and its adjacent transitions have been added.

We now prove that the algorithm computes the correct result in the presence of
s⊥ and the grey statements. The next lemma states that it does not split blocks
unnecessarily.

Lemma 2. Let s1 ∈ S ∪ {s⊥} and s2 ∈ S ∪ {s⊥}. If the algorithm ever puts s1
and s2 into different blocks, then there is no croip where s1 and s2 are in the
same block.

Proof. We show that it is an invariant property of the main loop of the algorithm
(that is, always valid on line 2) that if two states are in different blocks of the
algorithm, then they are in different blocks in every croip.

If s1 and s2 are in different blocks initially, then they are in different blocks
in I ∪ {{s⊥}} and thus in every croip.
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The case remains where lines 14 to 20 separate s1 and s2 to different blocks.
This happens only if W (s1, B

′) �= W (s2, B
′). Let B ∪ {{s⊥}} be an arbitrary

croip. It follows from the invariant that each block of B∪{{s⊥}} is either disjoint
with B′ or a subset of B′, because otherwise the algorithm would have separated
two states that belong to the same block of a croip. Therefore, there are blocks
B′

1, . . . , B′
k in B ∪ {{s⊥}} such that B′

1 ∪ · · · ∪B′
k = B′. The fact W (s1, B

′) �=
W (s2, B

′) implies that there is 1 ≤ i ≤ k such that W (s1, B
′
i) �= W (s2, B

′
i). So

s1 and s2 belong to different blocks in B ∪ {{s⊥}}. ��

Proving that the algorithm does all the splittings that it should is more difficult.
We first show that the following is an invariant of the main loop.

For each C in C, UB contains all but one blocks B that are subsets of C.

This is initially true because UB contains all blocks except {s⊥}, and C = {Ci}
where Ci = S ∪ {s⊥}. On line 3, B′ is removed from UB but also subtracted
from CB′ , so the invariant becomes valid for CB′ \ B′. It becomes valid for the
new compound block B′, because it consists of one block that is not any more in
UB. Lines 21 and 22 update UB so that either B was in UB before the splitting
operation and all of its subblocks are in UB after the operation, or B was not in
UB beforehand and precisely one of its subblocks is not in UB afterwards. Thus
they do not change the number of blocks that are subsets of C and not in UB.

The invariant implies that each compound block contains at least one ordinary
block, namely the one that is not in UB.

At this point it is easy to prove that the algorithm terminates. Termination
of all loops other than the main loop is obvious. Each iteration of the main loop
splits one compound block to two non-empty parts. There can be at most |S|
splittings, because after them each compound block would consist of a single
state, and thus of precisely one block. By the previous invariant, that block is
not in UB, and hence UB is empty.

Another important invariant property of the main loop is

For every block B, s1 ∈ B, s2 ∈ B, and C ∈ C we have W (s1, C) =
W (s2, C).

This is initially true because initially C = {S ∪ {s⊥}}, and W (s, S ∪ {s⊥}) = 0
for every s ∈ S ∪ {s⊥}. Assume that the invariant holds for C = CB′ . The
splitting of CB′ to B′ and CB′ \B′ on line 3 violates the invariant, but the rest
of the main loop re-establishes it for C = B′. Regarding C = CB′ \ B′, if s1
and s2 are in the same block, then W (s1, CB′ \B′) = W (s1, CB′)−W (s1, B

′) =
W (s2, CB′)−W (s2, B

′) = W (s2, CB′ \B′). So the invariant remains valid.
Lines 1 and 3 imply that each ordinary block is a subset of a compound

block. When the algorithm terminates, UB = ∅. Then, by the first invariant,
each compound block consists of a single ordinary block. Therefore, ordinary
and compound blocks are then the same thing. In this situation, the second
invariant reduces to the claim that the partition is compatible. We have proven
the following lemma.
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Lemma 3. The algorithm terminates, and when it does that, the partition is
compatible.

So the algorithm terminates with a croip. By Lemma 2, all other croips are
refinements of the one produced by the algorithm. This means that the output
is the coarsest croip. Now Lemma 1 yields Theorem 1.

Theorem 1. The algorithm in Figure 2 (without s⊥ and the grey statements)
finds the coarsest refinement of I that is compatible with W .

We did not assume in the correctness proof of the algorithm that the coarsest
croip exists. Therefore, our proof also proves that it exists.

It can be reasoned from the proof that if for every initial block B and every
s1 ∈ B and s2 ∈ B we have W (s1, S) = W (s2, S), then it is correct to put
initially all but one of the initial blocks into UB.

6 Performance

In this section we show that the algorithm in Figure 2 runs in O(n + m log n)
time, where n is the number of states and m is the number of transitions.

Line 1 runs clearly in O(n) time.
Let us now consider one iteration of the main loop. Lines 3 to 7 run in O(|B′|)+

O(
∑

s′∈B′ |•s′|) time. They find |•B′| ≤∑s′∈B′ |•s′| states and store them into
ST. Lines 8 to 11 and 23 scan the same states and thus run in O(|•B′|) time.
Lines 12 to 22 scan a subset of the blocks that contain these states. By Section 3,
the running time of lines 14 and 15 is only proportional to the number of these
states. Therefore, excluding the sorting operation on line 19, lines 12 to 22 run in
O(|•B′|) time. To summarize, excluding the sorting operation, lines 3 to 23 run
in O(|B′|) + O(

∑
s′∈B′ |•s′|) time. The O(|B′|) term can be charged in advance,

when B′ is put into UB. This leaves O(|•s′|) time for each s′ ∈ B′.
Assume that B′ is used as a splitter and later on some B′′ ⊆ B′ is used as

a splitter. There has been a sequence B′
0, . . . , B

′
k of blocks such that k ≥ 1,

B′ = B′
0, B′

k = B′′, and B′
i has been created by splitting B′

i−1 when 1 ≤ i ≤ k.
When B′

1 was created, B′
0 was not in UB because it had been used as a splitter.

When B′
k was created, it was put into UB or inherited a position in UB, because

it was later used as a splitter. There is thus at least one i between 1 and k such
that B′

i−1 was not in UB and B′
i was put into UB when B′

i was created. We see
that B′

i was put into UB by line 22. As a consequence, |B′
i| ≤ 1

2 |B′
i−1|. Clearly

|B′
0| ≥ |B′

1| ≥ . . . ≥ |B′
k|. So |B′′| ≤ 1

2 |B′|.
This implies that each time when a state s′ is used for splitting, it belongs to

a splitter whose size is at most half of the size in the previous time. Therefore,
the state can occur in a splitter at most log2 n + 1 times. The contribution of
s′ to the execution time of the algorithm as a whole is thus O((log n)|•s′|) plus
the share of s′ of the time needed for sorting. When this is summed over every
s′ ∈ S and added to the O(n) from line 1, it yields O(n+m log n), because then
•s′ goes through all transitions.

We have proven the following lemma.
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Lemma 4. Excluding the sorting operations on line 19, the algorithm in Fig-
ure 2 runs in O(n + m log n) time.

We still have to analyse the time consumption of the sorting operations. For that
purpose, consider the B′ and CB′ \ B′ of line 3. We say that a subblock Bi of
block B on lines 13 to 22 is

– the left block, if W (s, B′) �= 0 and W (s, CB′ \B′) = 0 for every s ∈ Bi,
– a middle block, if W (s, B′) �= 0 and W (s, CB′ \B′) �= 0 for every s ∈ Bi, and
– the right block, if W (s, B′) = 0 for every s ∈ Bi.

This definition covers all subblocks of B, because W (s, CB′) is the same for every
s ∈ B by the second invariant of Section 5. In particular, every state in the left
block has the same W (s, B′), because it is W (s, CB′). The union of the middle
blocks of B is called the middle group. The following lemma says an important
fact about the middle groups.

Lemma 5. If the middle groups are sorted with an O(k log k) sorting algorithm
(such as heapsort or mergesort), then the total amount of time spent in sorting
is O(m log n). This remains true even if each sorting operation processes also at
most as many additional states as is the size of the middle group.

Proof. Let #c(s) denote the number of compound blocks C such that s → C. Let
s• = {s′ | s → s′}. Clearly #c(s) ≤ |s•| and

∑
s∈S #c(s) ≤

∑
s∈S |s•| = m. Each

time when s is in a middle block, we have both s → B′ and s → CB′\B′, so #c(s)
increases by one. As a consequence, if #m(s) denotes the number of times that
s has been in a middle block, then #m(s) ≤ #c(s). Therefore,

∑
s∈S #m(s) ≤∑

s∈S #c(s) ≤ m.
Let K denote the total number of middle groups processed during the execu-

tion of the algorithm, and let ki be the size of the ith middle group. Thus ki ≤ n
and
∑K

i=1 ki =
∑

s∈S #m(s) ≤ m. We have
∑K

i=1 2ki log(2ki)≤ 2
∑K

i=1 ki log(2n)
= 2
(∑K

i=1 ki

)
log(2n) ≤ 2m log(2n) = 2m logn + 2m log 2. Therefore, the total

amount of time spent in sorting the middle groups and at most an equal number
of additional states with any O(k log k) sorting algorithm is

∑K
i=1 O(2ki log(2ki))

= O(m log n). ��
The B1 on line 16 is the union of the left block and the middle group. Every
state in the left block has the same W (s, B′). If the left block contains more
states than the middle group, then line 16 assigns its W (s, B′) to pmc, line 17
separates it from the middle group, and line 19 only sorts the middle group. In
the opposite case, B1, and thus its subset B2, contains at most twice as many
states as the middle group. Both cases satisfy the assumptions of Lemma 5. This
implies that the sorting operations take altogether O(m log n) time.

The memory consumption of every data structure is clearly O(m) or O(n),
and the data structures for the blocks and •s′ are Ω(n) and Ω(m). Heapsort and
mergesort use O(n) additional memory. We have proven the following theorem.

Theorem 2. If the details are implemented as described above, then the algo-
rithm in Figure 2 runs in O(n + m log n) time and Θ(n + m) memory.
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Fig. 4. An example where sorting the union of the middle and left blocks with a
Θ(k log k) algorithm costs too much. Each transition has weight 1.

Processing the possible majority candidate’s block separately from B2 is not
necessary for correctness. We show now that it is necessary for guaranteeing the
performance. Assume that a Θ(k log k) sorting algorithm is applied to the union
of the middle and left blocks. Consider the family of systems in Figure 4. In the
figure, the initial partition is shown by dashed lines.

Assume that the initial block in the center is used as the first splitter. It splits
itself into two halves along the rightmost dotted line. The leftmost half is used
for further splitting, because it has 2h−1−1 states, while the other half has 2h−1

states. When it is used as a splitter, it splits itself to two halves of sizes 2h−2

and 2h−2−1 states. Again, the leftmost half is smaller. This repeats h−1 times,
plus one time which does not cause any splitting. Each time the leftmost initial
block is processed as a left block. We have h sorting operations on at least 2h

elements each, taking altogether Ω(h(2h log 2h)) = Ω(n log2 n) = Ω(m log2 n)
time, because m = n = 2h+1. This is not O(m log n).

7 Testing and Measurements

Our lumping algorithm was implemented in C++ and tested in two different
ways.

The first series of tests used as inputs more than 250 randomly generated
graphs of various sizes, densities, numbers of initial blocks, and numbers of dif-
ferent transition weights. Unfortunately, there is no straightforward way of fully
checking the correctness of the output. Therefore, each graph was given to the
program in four different versions, and it was checked that the four outputs
had the same number of states and the same number of transitions. Two of the
versions were obtained by randomly permuting the numbering of states in the
original version, and the first output was used as the fourth input. This is sim-
ilar to the testing described in [11]. Indeed, the programs written for [11] were
used as a starting point when implementing both the lumping program and the
testing environment.
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Table 1. Some timing measurements. The times are in seconds.

input output reading lumping
source states transitions states transitions input algorithm
random 30 000 1 000 000 29 982 995 044 7.3 0.7
random 30 000 1 000 000 29 973 952 395 6.9 1.0
random 30 000 1 000 000 1 0 6.3 0.3
random 30 000 10 000 000 29 974 9 950 439 71.4 7.5
random 30 000 10 000 000 29 931 9 522 725 68.9 7.6
random 30 000 10 000 000 1 0 63.9 3.6
GreatSPN 184 756 2 032 316 139 707 5.2 2.0
GreatSPN 646 646 7 700 966 139 707 21.2 32.8
GreatSPN 1 352 078 16 871 582 195 1 041 49.5 126.6
GreatSPN 2 704 156 35 154 028 272 1 508 111.3 825.4

The ability of the testing environment to reveal errors was tested by modifying
the lumping program so that it initially puts one too few blocks into UB. The
testing environment detected the error quickly.

The upper part of Table 1 shows some running times on a laptop with 2 GiB
of RAM and 1.6 GHz clock rate. The bottleneck in the tests was the capacity of
the testing environment and the time spent in input and output, not the time
spent by the lumping algorithm.

The Markov chains used in the second set of experiments were made with
the GreatSPN tool [2,7] from a family of stochastic Petri net models. The nets
exhibit symmetries, making it possible for GreatSPN to also compute the lumped
Markov chains directly. The sizes of the results obtained by running our program
on unlumped Markov chains produced by GreatSPN were compared to the sizes
of lumped Markov chains produced directly by GreatSPN, and found identical.
Correctness was also checked by computing some performance indices.

These experiments were made on a laptop with 2 GiB of RAM and 2.2 GHz
clock rate. Their results are reported in the lower part of Table 1. They suggest
that our program has good performance even with more than 106 states and 107

transitions.

8 Conclusions

We presented an O(m log n) time algorithm for the lumping problem, where n
is the number of states and m is the number of transitions. It is not the first
algorithm for this problem with this complexity. However, it is much simpler than
its predecessor [6], because the use of splay trees was replaced by an application
of just any O(k log k) sorting algorithm together with a simple possible majority
algorithm. We also believe that our presentation is the first that is sufficiently
detailed and non-misleading from the point of view of programmers. Thus we
hope that this article is of value to solving the lumping problem in practice.

Our simplification is based on the observation that the sum of the sizes of the
so-called middle blocks during the execution of the Paige–Tarjan algorithm is
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at most m. Therefore, the extra time taken by sorting them is so small that it
does not add to the overall time complexity of O(m log n) of the Paige–Tarjan
algorithm. We demonstrated with an example that this does not extend to so-
called left blocks. As a consequence, the left blocks must often be processed
separately. Fortunately, this was easy to do with the possible majority candidate
algorithm.

Our algorithm does not implement the compound blocks of [10]. However, we
used compound blocks extensively in the proofs. They are a handy way of keeping
track of splitting that has already been done. Without referring to them it would
be impossible to define the middle blocks and justify the correctness of the
technique that underlies the good performance, that is, sometimes not putting
some block into UB. Compound blocks are thus essential for understanding the
algorithm, although they are not explicitly present in it.

Acknowledgments. We thank the reviewers of this article for exceptionally
many good comments.
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1 Oxford University Computing Laboratory, UK
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

3 Formal Methods and Tools Group, University of Twente, The Netherlands

Abstract. Hermanns has introduced interactive Markov chains (IMCs) which
arise as an orthogonal extension of labelled transition systems and continuous-
time Markov chains (CTMCs). IMCs enjoy nice compositional aggregation prop-
erties which help to minimize the state space incrementally. However, the model
checking problem for IMCs remains unsolved apart from those instances, where
the IMC can be converted into a CTMC. This paper tackles this problem: We in-
terpret the continuous stochastic logic (CSL) over IMCs and define the semantics
of probabilistic CSL formulas with respect to the class of fully time and history
dependent schedulers. Our main contribution is an efficient model checking algo-
rithm for verifying CSL formulas on IMCs. Moreover, we show the applicability
of our approach and provide some experimental results.

1 Introduction

The success of Markovian models for quantitative performance and dependability eval-
uation is based on the availability of efficient and quantifiably precise solution methods
for continuous-time Markov chains (CTMCs) [3]. On the specification side, the contin-
uous stochastic logic (CSL) [2,3] allows to specify a wide variety of performance and
dependability measures of interest. A CTMC can be conceived as a labelled transition
system (LTS) whose transitions are delayed according to an exponential distribution.
Opposed to classical concurrency theory, CTMCs neither support compositional mod-
elling [19] nor do they allow nondeterminism in the model. Several efforts have been
undertaken to overcome this limitation, including formalism like the stochastic Petri
box calculus [22], statecharts [7] and process algebras [20,17].

Interactive Markov chains (IMCs) [18] conservatively extend process algebras with
exponentially distributed delays and comprise most of the other approaches’ benefits
[10]: As they strictly separate interactive from Markovian transitions, IMCs extend
LTSs with exponential delays in a fully orthogonal way. This enables compositional
modelling with intermittent weak bisimulation minimization [17] and allows to aug-
ment existing untimed process algebra specifications with random timing [7]. Moreover,
the IMC formalism is not restricted to exponential delays but allows to encode arbitrary
phase-type distributions such as hyper- and hypoexponentials [26].

Since IMCs smoothly extend classical LTSs, the model has received attention in
academic as well as in industrial settings [8,14,15]. In practice however, the theoretical
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benefits have partly been foiled by the fact that the analysis of IMCs is restricted to
those instances, where the composed IMC could be transformed into a CTMC. However,
IMCs support nondeterminism which arises both implicitly from parallel composition
and explicitly by the deliberate use of underspecification in the model [18]. Therefore
IMCs are strictly more expressive than CTMCs. As a result, model checking IMCs is
an unexplored topic thus far.

In this paper, we overcome this limitation and propose an efficient model checking
algorithm to verify CSL formulas on arbitrary IMCs. In our analysis, we use fully time
and history dependent schedulers to resolve all of the IMC’s nondeterministic choices.

The crucial point in model checking CSL is to compute the maximum (and mini-
mum) probability to visit a set of goal states in some time interval I . We characterize
this probability as the least fixed point of a higher-order operator which involves inte-
gration over the time domain. Then we use interactive probabilistic chains (IPCs) [15]
to define a discretization which reduces the time interval bounded reachability problem
in IMCs to the problem of computing step-interval bounded reachability probabilities
in IPCs. More precisely, we approximate the quantitative behaviour of the IMC up to
an a priori specified error bound ε > 0 by its induced IPC and prove that its maxi-
mum step-interval bounded reachability coincides (up to ε) with the achievable time-
interval bounded reachability probability in the underlying IMC. The resulting IPC is
then subject to a modified value iteration algorithm [5], which maximizes the step-
interval bounded reachability probability. The time complexity of our approach is in
O(|Φ| · (n2.376 +

(
m + n2

) · (λb)2/ε
))

, where |Φ| is the size of the formula, and n, m
are the number of states and transitions of the IMC, respectively. Further, b = sup I is
the upper time interval bound and λ is the maximal exit rate in the IMC.

Although we present all results only for maximum time-bounded reachability prob-
abilities, all proofs can easily be adapted to the dual problem of determining the mini-
mum time-bounded reachability probability.

Most of the technical details have been omitted from the paper. However, all proofs
and the technicalities that are necessary to establish the error bounds that are stated
within the paper can be found in [23, Chapter 6].

Organisation of the paper. The paper proceeds by first giving necessary definitions and
background in Section 2. Section 3 presents algorithms for computing the time-interval
bounded reachability for IMCs. Section 4 focuses on model checking algorithms for
CSL, followed by experimental results in Sec. 5. Section 6 discusses related work and
concludes the paper.

2 Preliminaries

Let X be a finite set. Probability distributions over X are functions μ : X → [0, 1] with∑
x∈X μ(x) = 1. If μ(x) = 1 for some x ∈ X , μ is degenerate, denoted μ = {x �→ 1};

in this case, we identify μ and x. The set of all probability distributions over X is
denoted Distr(X ). Accordingly, μ(X) =

∑
x∈X μ(x) for all X ⊆ X .
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2.1 Interactive Markov Chains

We recall the definition of interactive Markov chains (IMCs) given in [17]:

Definition 1 (Interactive Markov chain). An interactive Markov chain is a tupleM =
(S,Act , IT ,MT , ν) where S and Act are nonempty sets of states and actions, IT ⊆
S × Act × S is a set of interactive transitions and MT ⊆ S × R>0 × S is a set of
Markovian transitions. Further, ν ∈ Distr(S) is the initial distribution.

We distinguish external actions in Acte from internal actions in Act i and set Act =
Acte ∪ Act i. Several IMCs may be composed via synchronisation over the set Acte

of external actions, yielding again an IMC. For details, we refer to [17]. In this paper,
we consider closed IMCs [21], that is, we focus on the IMC M that is obtained after
composition. Accordingly, M is not subject to any further synchronisation and all re-
maining external actions can safely be hidden. Therefore, we assume that Acte = ∅ and
identify the sets Act and Act i.

s0

s1

s2

s3

s4

0.6

0.3 0.4 0.4

0.2

0.1

β

α

α

Fig. 1. Example IMC

For Markovian transitions, λ, μ ∈ R>0 denote rates of
exponential distributions. IT (s) = {(s, α, s′) ∈ IT} is the
set of interactive transitions that leave state s; similarly, for
Markovian transitions we set MT (s) = {(s, λ, s′) ∈ MT}.
A state s ∈ S is Markovian iff MT (s) �= ∅ and IT (s) = ∅;
it is interactive iff MT (s) = ∅ and IT (s) �= ∅. Further, s is
a hybrid state iff MT (s) �= ∅ and IT (s) �= ∅; finally, s is a
deadlock state iff MT (s) = IT (s) = ∅. MS ⊆ S and IS ⊆
S denote the sets of Markovian and interactive states in M. We define postM (s) =
{s ∈ S | R(s, s′) > 0}.
Example 1. LetM be the IMC depicted in Fig. 1. Then s0 is a Markovian state with a
transition (s0, 0.3, s2) ∈ MT (s) (depicted by a solid line) to state s2 with rate λ = 0.3.
The transition’s delay is exponentially distributed with rate λ; hence, it executes in the
next z ∈ R≥0 time units with probability

∫ z

0 λe−λtdt =
(
1− e−0.3z

)
. As state s0

has two Markovian transitions, they compete for execution and the IMC moves along
the transition whose delay expires first. Clearly, in such a race, the sojourn time in s0
is determined by the first transition that executes. As the minimum of exponential dis-
tributions is exponentially distributed with the sum of their rates, the sojourn time in
a state s is determined by the exit rate E(s) =

∑
s′∈S R(s, s′) of state s, where

R(s, s′) =
∑ {λ | (s, λ, s′) ∈ MT (s)}. In general, the probability to move from a

state s ∈ MS to a successor state s′ ∈ S equals the probability that (one of) the Marko-
vian transitions that lead from s to s′ wins the race. Therefore, the discrete branching
probability to move to s′ is given by P(s, s′) = R(s,s′)

E(s) . Accordingly, for state s0 of our

example, we have R(s0, s2) = 0.3, E(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1
3 .

For interactive transitions, we adopt the maximal progress assumption [17, p. 71] which
states that internal transitions (i.e. interactive transitions labelled with internal actions)
trigger instantaneously. This implies that they take precedence over all Markovian tran-
sitions whose probability to execute immediately is 0. Therefore all Markovian transi-
tions that emanate a hybrid state can be removed without altering the IMC’s semantics.
We do so and assume that MT (s) ∩ IT (s) = ∅ for all s ∈ S.
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To ease the development of the theory, we assume w.l.o.g. that each internal action
α ∈ Act i has a unique successor state, denoted succ(α); note that this is no restriction,
for if (s, α, u) , (s, α, v) ∈ IT (s) are internal transitions with u �= v, we may replace
them by new transitions (s, αu, u) and (s, αv, v) with fresh internal actions αu and αv .

We assume that entering a deadlock state results in a time lock. Therefore, we equip
deadlock states s ∈ S with internal self-loop (s, α, s). However, our approach also al-
lows for a different deadlock state semantics, where time continues; in this case, we
would add a Markovian instead of an internal self-loop. The internal successor relation
�i ⊆ S × S is given by s �i s′ iff (s, α, s′) ∈ IT ; further, the internal reachabil-
ity relation �∗

i is the reflexive and transitive closure of �i. Accordingly, we define
post i(s) = {s′ ∈ S | s �i s′} and Reachi(s) = {s′ ∈ S | s �∗

i s′}.
2.2 Paths and Events in IMCs
We use a special action ⊥ /∈ Act and let σ range over Act⊥ = Act ∪ {⊥}. A finite

path is a sequence π = s0
t0,σ0−−−→ s1

t1,σ1−−−→ · · · tn−1,σn−1−−−−−−−→ sn where si ∈ S, ti ∈ R≥0
and σi ∈ Act⊥ for i ≤ n; n is the length of π, denoted |π|. We use π[k] = sk

and δ(π, k) = tk to refer to the (k+1)-th state on π and its associated sojourn time.
Accordingly, Δ(π, i) =

∑i
k=0 tk is the total time spent on π until (including) state π[i].

If π is finite with |π| = n, then Δ(π) = Δ(π, n − 1) is the total time spent on π;
similarly, π↓ = sn is the last state on π.

Internal transitions occur immediately. Thus an IMC can traverse several states at
one point in time. We use π@t ∈ (S∗ ∪ Sω) for the sequence of states traversed on π at
time t ∈ R≥0: Formally, let i be the smallest index s.t. t ≤ Δ(π, i); if no such i exists,
we set π@t = 〈〉. Otherwise, if t < Δ(π, i) we define π@t = 〈si〉; if t = Δ(π, i),
let j be the largest index (or +∞, if no such finite index exists) such that t = Δ(π, j).
Then π@t = 〈si . . . sj〉. We write s ∈ 〈si . . . sj〉 if s ∈ {si, . . . , sj}; further, if s ∈
〈si . . . sj〉 we define Pref (〈si . . . sj〉, s) = 〈si, . . . sk〉, where s = sk and k minimal. If
s /∈ 〈si . . . sj〉, we set Pref (〈si . . . sj〉, s) = 〈〉. The definitions for time-abstract paths
are similar.

A path π (time-abstract path π′) is a concatenation of a state and a sequence of
combined transitions (time-abstract combined transitions) from the set Ω = R≥0 ×
Act⊥ × S (Ωabs = Act⊥ × S); hence, π = s0 ◦m0 ◦m1 ◦ . . . ◦ mn−1 with mi =
(ti, σi, si+1) ∈ Ω (mi = (σi, si+1) ∈ Ωabs ). Thus Pathsn(M) = S × Ωn is the set
of paths of length n in M; further, Paths�(M), Pathsω(M) and Paths(M) are the
sets of finite, infinite and all paths in M. To refer to time-abstract paths, we add the
subscript abs ; further the reference toM is omitted wherever possible.

The measure-theoretic concepts are mentioned only briefly; we refer to [21] for an
in-depth discussion. Events in M are measurable sets of paths; as paths are Cartesian
products of combined transitions, we define the σ-field F=σ (B(R≥0)×FAct⊥×FS)
on subsets of Ω where FS=2S and FAct⊥=2Act⊥ . Then we derive the product σ-field
FPathsn=σ ({S0×M0× · · · ×Mn−1 | S0 ∈ FS , Mi ∈ F}) of measurable subsets of
Pathsn. The cylinder-set construction [1] extends this to infinite paths in the usual way.

2.3 Resolving Nondeterminism by Schedulers
An IMCM is nondeterministic iff there exists (s, α, u) , (s, β, v) ∈ IT (s) with u �= v: If
both internal transitions (to states s1 and s4) in state s2 of Fig. 1 execute instantaneously,
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the successor state is not uniquely determined. To resolve this nondeterminism, we use
schedulers: If M reaches state s2 along a history π ∈ Paths�, a scheduler yields a
probability distribution over the set Act i(π↓) = {α, β} of enabled actions in s2.

Definition 2 (Generic measurable scheduler). A generic scheduler on an IMC M =
(S,Act , IT ,MT , ν) is a partial mapping D : Paths� × FActi

→ [0, 1] with D(π, ·) ∈
Distr

(
Act i(π↓)

)
for all π ∈ Paths� with π↓ ∈ IS . A generic scheduler D is measur-

able (GM scheduler) iff for all A ∈ FAct , D−1(A) : Paths� → [0, 1] is measurable.

Measurability states that {π | D(π, A) ∈ B} ∈ FPaths� holds for all A ∈ FAct and
B ∈ B([0, 1]); intuitively, it excludes schedulers which resolve the nondeterminism
in a way that induces non-measurable sets. Recall that no nondeterminism occurs if
π↓ ∈ MS . However, we slightly abuse notation and assume that D(π, ·) = {⊥ �→ 1} if
π↓ ∈ MS so that D yields a distribution over Act⊥. A GM scheduler D is deterministic
iff D(π, ·) is degenerate for all π ∈ Paths�. We use GM (and GMD) to denote the
class of generic measurable (deterministic) schedulers. Further, a GM scheduler Dabs

is time-abstract (GM abs) iff abs(π) = abs(π′) implies Dabs(π, ·) = Dabs(π′, ·).
Example 2. If state s2 in Fig. 1 is reached along path π = s0

0.4,⊥−−−→ s2, then D(π)

might yield the distribution
{
α �→ 1

2 , β �→ 1
2

}
, whereas for history π′ = s0

1.5,⊥−−−→ s2,
it might return a different distribution, say D(π) = {α �→ 1}.

2.4 Probability Measures for IMCs
In this section, we define the probability measure [21] induced by D on the measurable
space (Pathsω, FPathsω ). We first derive the probability of measurable sets of com-
bined transitions, i.e. of subsets of Ω:
Definition 3. Let M = (S,Act , IT ,MT , ν) be an IMC and D ∈ GM . For all π ∈
Paths�, we define the probability measure μD(π, ·) : F → [0, 1] by:

μD(π, M) =

{∑
α∈Acti(π↓) 1M (α, 0, succ(α)) ·D (π, {α}) if s ∈ IS∫

R≥0
E(s)e−E(s)t ·∑s′∈S 1M

(⊥, t, s′
) ·P(s, s′) dt if s ∈ MS .

(1)
Here, 1M denotes an indicator, i.e. 1M (σ, t, s′) = 1 if (σ, t, s′) ∈ M and 0, otherwise.
Intuitively, μD(π, M) is the probability to continue along one of the combined tran-
sition in the set M . For an interactive state s ∈ IS , it is the probability of choosing
α ∈ Act i(π↓) such that (α, 0, succ(α)) is a transition in M ; if s ∈ MS , μD(π, M) is
given by the density for the Markovian transition to trigger at time t and the probability
that a successor state is chosen respecting M . As paths are inductively defined using
combined transitions, we can lift the probability measure μD(π, ·) to FPathsn :

Definition 4 (Probability measure). Let M = (S,Act , IT ,MT , ν) be an IMC and
D ∈ GM . For n ≥ 0, we define the probability measures Prn

ν,D inductively on the
measurable space (Pathsn, FPathsn):

Pr0
ν,D : FPaths0 → [0, 1] : Π �→

∑
s∈Π

ν (s) and for n > 0

Prn
ν,D : FPathsn → [0, 1] : Π �→

∫
Pathsn−1

Prn−1
ν,D (dπ)

∫
Ω

1Π(π ◦m) μD(π, dm).
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Observe that Prn
ν,D measures a set of paths Π of length n by multiplying the probabil-

ities Prn−1
ν,D (dπ) of path prefixes π (of length n−1) with the probability μD(π, dm) of

a combined transition m ∈ M which extends π to a path in Π . Together, the measures
Prn

ν,D extend to a unique measure on FPathsω : if B ∈ FPathsn is a measurable base
and C = Cyl(B), we define Prω

ν,D(C) = Prn
ν,D(B). Due to the inductive definition

of Prn
ν,D, the Ionescu–Tulcea extension theorem [1] applies, which yields a unique ex-

tension of Prω
ν,D to arbitrary sets in FPathsω .

2.5 Interactive Probabilistic Chains

Interactive probabilistic chains (IPCs) [15] are the discrete-time analogon of IMCs:

Definition 5 (Interactive probabilistic chain). An interactive probabilistic chain
(IPC) is a tuple P = (S,Act , IT ,PT , ν), where S,Act , IT and ν are as in Def. 1 and
PT : S×S → [0, 1] is a transition probability function s.t. ∀s ∈ S. PT (s,S) ∈ {0, 1}.
A state s in an IPC P is probabilistic iff

∑
s′∈S PT (s, s′) = 1 and IT (s) = ∅; PS

denotes the set of all probabilistic states. The sets of interactive, hybrid and deadlock
states are defined as for IMCs, with the same assumption imposed on deadlock states.
Further, we assume any IPC to be closed, that is (s, α, s′) ∈ IT implies α ∈ Act i.
As for IMCs, we adopt the maximal progress assumption [17, p. 71]; hence, internal
transitions take precedence over probabilistic transitions.

Definition 6 (IPC scheduler). Let P = (S,Act , IT ,PT , ν) be an IPC. A function
D : Paths�

abs → Distr(Act i) with D(π) ∈ Distr(Act i(π↓)) is a time abstract history
dependent randomized (GM abs ) scheduler.

Note that in the discrete-time setting, measurability issues do not arise. To define a
probability measure on sets of paths inP , we define the probability of a single transition:

Definition 7 (Combined transitions in IPCs). Let P = (S,Act , IT ,PT , ν) be an
IPC, s ∈ S, σ ∈ Act⊥, π ∈ Paths�

abs and (σ, s) ∈ Ωabs a time abstract combined
transition. For scheduler D ∈ GM abs , we define

μabs
D

(
π, {(σ, s)}) =

⎧⎪⎨⎪⎩
P(π↓, s) if π↓ ∈ PS ∧ σ = ⊥
D(π, {σ}) if π↓ ∈ IS ∧ succ(σ) = s

0 otherwise.

is the probability of the combined transition (σ, s). For a set of combined transitions
M ⊆ Ωabs , we set μabs

D

(
π, M
)

=
∑

(σ,s)∈M μabs
D

(
s, {(σ, s)}).

The measures μabs
D extend to a unique measure on sets of paths in P in the same way as

it was shown for the IMC case in Sec. 2.4.

3 Interval Bounded Reachability Probability

We discuss how to compute the maximum probability to visit a given set of goal states
during a given time interval. Therefore, let I be the set of nonempty intervals over the
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nonnegative reals and let Q be the set of nonempty intervals with nonnegative rational
bounds. For t ∈ R≥0 and I ∈ I, we define I $ t = {x− t | x ∈ I ∧ x ≥ t} and
I ⊕ t = {x + t | x ∈ I}. Obviously, if I ∈ Q and t ∈ Q≥0, this implies I $ t ∈ Q and
I ⊕ t ∈ Q.

3.1 A Fixed Point Characterization for IMCs

LetM be an IMC. For a time interval I ∈ I and a set of goal states G ⊆ S, we define
the event �IG = {π ∈ Pathsω | ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G} as the set of all paths that
are in a state in G during time interval I . The maximum probability induced by �IG
in M is denoted pMmax (s, I). Formally, it is obtained by the supremum under all GM
schedulers:

pMmax (s, I) = sup
D∈GM

Prω
νs,D

(
�IG
)
.

Theorem 1 (Fixed point characterization for IMCs). Let M be an IMC as before,
G ⊆ S a set of goal states and I ∈ I such that inf I = a and sup I = b. The
function pMmax : S × I → [0, 1] is the least fixed point of the higher-order operator
Ω : (S × I → [0, 1])→ (S × I → [0, 1]) which is defined as follows:

1. For Markovian states s ∈ MS : Ω(F )(s, I) equals{∫ b

0 E(s)e−E(s)t ·∑s′∈S P(s, s′) · F (s′, I $ t) dt if s /∈ G

e−E(s)a +
∫ a

0 E(s)e−E(s)t ·∑s′∈S P(s, s′) · F (s′, I $ t) dt if s ∈ G.

2. For interactive states s ∈ IS : Ω(F )(s, I) equals 1 if s ∈ G and 0 ∈ I , and
otherwise, Ω(F )(s, I) = max

{
F (s′, I) | s′ ∈ post(s)

}
.

Example 3. The fixed point characterization suggests to compute pMmax (s, I) analyti-
cally: Consider the IMCM depicted in Fig. 1 and assume that G = {s3}. For I = [0, b],
b > 0 we have pMmax (s3, I) = 1, pMmax (s4, I) = 1 − e−0.1b and pMmax (s1, I) =∫ b

0 e−t
( 2

5 · pMmax (s2, I $ t) + 1
5 · pMmax (s3, I $ t) + 2

5 · pMmax (s4, I $ t)
)
dt. For inter-

active state s2, we derive pMmax (s2, I) = max
{
pMmax (s4, I), pMmax (s1, I)

}
, which yields

pMmax (s0, I) =
∫ b

0 0.9e−0.9t ·( 23 · pMmax (s1, I $ t) + 1
3 · pMmax (s2, I $ t)

)
dt. Hence, an

IMC generally induces an integral equation system over the maximum over functions,
which is not tractable. Moreover, the iterated integration is numerically unstable [3].

Therefore, we resort to a discretization approach: Informally, we divide the time hori-
zon into small time slices. Then we consider a discrete-time model whose steps corre-
spond to the IMC’s behaviour during a single time slice. First, we develop a fixed-point
characterization for step bounded reachability on interactive probabilistic chains (IPCs);
then we reduce the maximum time interval bounded reachability problem in IMCs to
the step interval bounded reachability problem in the discretized IPC. Finally, we show
how to solve the latter by a modified value iteration algorithm.
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3.2 A Fixed Point Characterization for IPCs

Similar to the timed paths in IMCs, we define π@n ∈ S∗ ∪ Sω for the time abstract
paths in IPCs: Let #PS (π, k) =

∣∣{i ∈ N | 0 ≤ i ≤ k ∧ π[i] ∈ MS}∣∣; then #PS (π, k)
is the number of probabilistic transitions that occur up to the (k+1)-th state on π. For
fixed n ∈ N, let i be the smallest index such that n = #PS (π, i). If no such i exists,
we set π@n = 〈〉; otherwise i is the index of the n-th probabilistic state that is hit on
path π. Similarly, let j ∈ N be the largest index (or +∞ if no such finite index exists)
such that n = #PS (π, j). Then j denotes the position on π directly before its (n+1)-th
probabilistic state. With these preliminaries, we define π@n = 〈si, si+1, . . . , sj−1, sj〉
to denote the state sequence between the n-th and the (n+1)-th probabilistic state of π.
To define step-interval bounded reachability for IPCs, let k, k′ ∈ N and k ≤ k′: Then

�[k,k′]G = {π ∈ Pathsω
abs | ∃n ∈ {k, k + 1, . . . , k′} . ∃s′ ∈ π@n. s′ ∈ G}

is the set of paths that visit G between discrete time-step k and k′ in an IPC P .

Accordingly, we define the maximum probability for the event �[k,k′]G:

pPmax (s, [k, k′]) = sup
D∈GMabs

Prω
νs,D

(
�[k,k′]G

)
.

Theorem 2 (Fixed point characterisation for IPCs). Let P = (S,Act , IT ,PT , ν)
be an IPC, G ⊆ S a set of goal states and I = [k, k′] a step interval. The function
pPmax is the least fixed point of the higher-order operator Ω : (S ×N×N → [0, 1]) →
(S × N× N → [0, 1]) where

1. for probabilistic states s ∈ PS :

Ω(F )
(
s, [k, k′]

)
=

⎧⎪⎨⎪⎩
1 if s ∈ G ∧ k = 0
0 if s /∈ G ∧ k = k′ = 0∑

s′∈S PT (s, s′) · F (s′, [k, k′]$ 1) otherwise;

2. for interactive states s ∈ IS : Ω(F )
(
s, [k, k′]

)
= 1 if s ∈ G and k = 0. Otherwise,

Ω(F )
(
s, [k, k′]

)
= max s′∈post(s)F (s′, [k, k′]).

Observe that for IMCs, the recursive expression of the probabilistic reachability does
not decrease the time interval I for interactive states, whereas for IPCs, the recursive
expression does not decrease the corresponding step interval [k, k′].

3.3 A Discretization That Reduces IMCs to IPCs

For an IMCM and a step duration τ > 0, we define the discretized IPCMτ ofM:

Definition 8 (Discretization). An IMC M = (S,Act , IT ,MT , ν) and a step dura-
tion τ > 0 induce the discretized IPCMτ = (S,Act , IT ,PT , ν), where

PT (s, s′) =

{(
1− e−E(s)τ

) ·P(s, s′) if s �= s′(
1− e−E(s)τ

) ·P(s, s′) + e−E(s)τ if s = s′.
(2)
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s0 s1 s2 s3
λ a b

c

(a) The example IMC M.

s0 s1 s2 s3
1− e−λτ a b

e−λτ

c

(b) The induced discretized IPC Mτ .

Fig. 2. Interval bounded reachability in IMCs with lower interval bounds

In Mτ , each probabilistic transition PT (s, s′) > 0 corresponds to one time step of
length τ in the underlying IMC M: More precisely, PT (s, s′) is the probability that a
transition to state s′ occurs within τ time units. In case that s′ = s, the first summand
in PT (s, s′) is the probability to take a self-loop back to s, i.e. a transition that leads
from s back to s executes; the second summand denotes the probability that no transi-
tion occurs within the next τ time units and thus, the systems stays in state s = s′.

Now we state the correctness of the discretization: To compute the probability
pMmax

(
s, [a, b]

)
, we analyze step-interval bounded reachability in the discretized IPC

Mτ , where each step approximately corresponds to τ time units. First we show that
pMτ
max

(
s,
[
0, & b

τ '
])

converges from below to pMmax

(
s, [0, b]

)
if τ → 0:

Theorem 3. Let M = (S,Act , IT ,MT , ν) be an IMC, G ⊆ S a set of goal states,
I = [0, b] ∈ Q a time interval with b > 0 and λ = max s∈MSE(s). Further, let τ > 0
be such that b = kbτ for some kb ∈ N>0. For all s ∈ S it holds:

pMτ
max

(
s, [0, kb]

) ≤ pMmax (s, I) ≤ pMτ
max

(
s, [0, kb]

)
+ kb · (λτ)2

2
.

Example 4. Consider the IMCM and its discretized IPCMτ in Fig. 2(a) and Fig. 2(b),
resp. Assume that G = {s2} and fix some τ > 0, k ∈ N>0. Further, let I = [0, kτ ]. In
the IMCM, it holds that pMmax (s0, I) =

∫ kτ

0 λe−λt ·pMmax (s1, I$ t)dt = 1−e−λkτ . In

Mτ , we obtain pMmax (s0, [0, k]) =
∑k

i=1(e
−λτ )i−1

(
1− e−λτ

)
= 1− e−λkτ , which is

the geometric distribution function for parameter p = 1− e−λτ .

So far, we only considered intervals of the form I = [0, b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, this is slightly involved:

If s ∈ MS is a Markovian state and b > 0, then pMmax

(
s, (0, b]

)
= pMmax

(
s, [0, b]

)
.

However this is not true for interactive states: If s1 (instead of s0) is made the only
initial state in M and Mτ of Fig. 2, the probability to reach s2 within interval [0, b]
is 1 whereas it is 0 for the right-semiclosed interval (0, b]. Further, the discretization is
imprecise for point intervals: To see this, note that if I = [τ, τ ], then pMmax (s0, I) = 0,
whereas pMτ

max (s0, [1, 1]) = 1− e−λτ .
Now, let I = [kaτ, kbτ ] be a closed interval with ka, kb ∈ N and 0 < ka < kb. In

the IMCM in Fig. 2(a), we obtain pMmax (s0, I) =
∫ kbτ

kaτ
λe−λt · pMmax (s1, I $ t) dt =

e−λkaτ − e−λkbτ , whereas for its discretized IPCMτ (see Fig. 2(b)), we derive

pMτ
max (s0, [ka, kb]) =

kb∑
i=ka

(
e−λτ
)i−1 · (1− e−λτ

)
= e−λ(ka−1)τ − e−λkbτ .
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Fig. 3. Discretization steps

Clearly, the two probabilities differ in the first term
by a factor of eλτ . To see the reason, let ka = 2
and kb = 3: We have pMmax (s, [2τ, 3τ ]) = e−2λτ −
e−3λτ ; however, in Mτ it holds pMτ

max (s, [2, 3]) =
e−λτ ·(1− e−λτ

)
+e−2λτ ·(1− e−λτ

)
= e−λτ −

e−3λτ . As each step in Mτ corresponds to a
time interval of length τ (cf. Fig. 3), the inter-
val bounds 2τ and 3τ fall in different discretiza-
tion steps. Hence in the discretization, we add two
steps which leads to an error. If instead we com-
pute pMmax (s, (2τ, 3τ ]), we obtain pMτ

max (s, (2, 3]) =
pMτ
max (s, [3, 3]) = e−2λτ − e−3λτ , as desired.

Based on these observations, we extend Thm. 3 to intervals with positive lower
bounds. To avoid some technicalities, we first restrict to right-semiclosed intervals:

Theorem 4. Let M = (S,Act , IT ,MT , ν) be an IMC, G ⊆ S a set of goal states,
I = (a, b] ∈ Q a time interval with a < b and λ = max s∈MSE(s). If τ > 0 is such
that a = kaτ and b = kbτ for some ka, kb ∈ N, then it holds for all s ∈ S:

pMτ
max

(
s, (ka, kb]

)− ka · (λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(
s, (ka, kb]

)
+ kb · (λτ)2

2
+ λτ.

The error bounds for the case of lower interval bounds that are stated in Thm. 4 are
derived using double induction over ka and kb, respectively.

Theorem 5. IfM, G and τ are as in Thm. 4 and I ∈ Q is a time interval with inf I = a
and sup I = b such that a < b and a = kaτ , b = kbτ for ka, kb ∈ N and 0 /∈ I , then

pMτ
max

(
s, (ka, kb]

)− ka · (λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(
s, (ka, kb]

)
+ kb · (λτ)2

2
+ λτ.

For the remaining cases, note that for all states s ∈ S and intervals I = ∅ or I = [a, a]
with a > 0 it holds that pMmax (s, I) = 0. Finally, for the case that I = [0, 0], an
interactive reachability analysis suffices to compute pMmax (s, I), which is either 1 or 0.

3.4 Solving the Problem on the Reduced IPC

Let P = (S,Act , IT ,PT , ν) be an IPC, G ⊆ S a set of goal states and [ka, kb] a step
interval. In this section, we discuss how to compute pPmax

(
s, [ka, kb]

)
via a modifica-

tion of the well known value iteration algorithm [5]. The adaptation is non-trivial, as
we consider step intervals that correspond to the number of probabilistic steps that are
taken. This is reflected in our algorithm which only decreases the step counter for prob-
abilistic, but not for internal transitions. We discuss step bounded reachability first:

Step Bounded Reachability: We aim at computing pPmax

(
s, [0, k]

)
for 0 ≤ k. This

works as follows: In each step i = 0, 1, . . . , k of the iteration, we use two vectors
�vi ∈ [0, 1]S and �ui ∈ [0, 1]S , where �vi is the probability vector obtained from �ui−1 by
one step in the classical value iteration algorithm and �ui is obtained by computing the
backwards closure along interactive transitions w.r.t. �vi−1.
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Each of the k value iteration steps consists of two phases: First, �vi is computed: If
s ∈ PS ∩ G, then �vi(s) = 1. If s ∈ PS \ G, then �vi(s) is the weighted sum of the
probabilistic successor states s′ of s, multiplied by the result �ui−1(s′) of the previous
step. In the second phase, �ui is obtained by the backward closure of �vi along internal
transitions. Initially, we set �v0(s) = 1 if s ∈ G, and �v0(s) = 0, otherwise. Then:
∀i ∈ {0, . . . , k} . �ui(s) = max {�vi(s′) | s �∗

i s′} and for �vi:

∀i ∈ {1, . . . , k} . �vi(s) =

⎧⎪⎨⎪⎩
∑

s′∈S PT (s, s′) · �ui−1(s′) if s ∈ PS \G

1 if s ∈ PS ∩G

�ui−1(s) if s ∈ IS .

For efficiency reasons the set {s′ ∈ S | s �∗
i s′} can be precomputed by a backwards

search in the interactive reachability graph of P .
After k value iteration steps pPmax (s, [0, k]) is obtained as the probability in �uk(s).

Step-Interval Bounded Reachability: In this part, we compute pPmax

(
s, [ka, kb]

)
, for

interval bounds 0 < ka < kb. Again, we compute a sequence �v0, �u0, . . . , �vkb
, �ukb

. As
ka > 0, we split the value iteration in two parts: In the first kb−ka value iteration steps,
we proceed as before and compute the probability vectors �v0, �u0, . . . , �vkb−ka , �ukb−ka .
Thus, we compute the probabilities pPmax (s, [0, kb−ka]) for all s ∈ S.

The vector �vkb−ka provides the initial probabilities of the second part: In the remain-
ing i ∈ {kb−ka+1, . . . , kb} value iteration steps, we set �vi(s) = 0 if s ∈ IS and
�vi(s) =

∑
s′∈S PT (s, s′) · �ui−1(s′) if s ∈ PS . The vectors �ui are as before. To see

why, note that the value iteration algorithm proceeds in a backward manner, starting
from the goal states. We do not set �vi(s) = 1 if s ∈ G in the last ka iteration steps, as in
the first ka transitions, reaching a goal state does not satisfy our reachability objective.
To avoid that the probabilities of interactive states s ∈ IS erroneously propagate in the
vectors �ui(s) from the first to the second part, in the second part we define �vi(s) = 0
for all s ∈ IS (instead of �vi(s) = �ui−1(s) as in the first part). Let us illustrate this:

Example 5. We compute pPmax (s, [1, 2]) in the IPC P in Fig. 4 for initial state s0
and goal state s3: In the first part, apply the value iteration to compute �u1: �v0(s) =
1 if s = s3 and 0, otherwise. By the backwards closure, �u0 = (1, 0, 0, 1). Thus
pPmax (s0, [0, 0]) = 1, as s0 can reach G by the interactive α-transition. For �v1, we
have �v1(s0) = �u0(s0) = 1 and �v1(s1) = 1

2�u0(s3) + 1
2�u0(s2) = 1

2 . In this way,
we obtain �v1 =

(
1, 1

2 , 1
4 , 1
)

and �u1 =
(
1, 1

2 , 1
4 , 1
)
. With the probabilities �u1, the

first part ends after kb − ka = 1 value iteration steps. As ka = 1, one iteration for
the lower step bound follows. Here �v2(s0) = �v2(s3) = 0 as s0, s3 ∈ IS ; further
�v2(s1) = 1

2�u1(s3) + 1
2�u1(s2) = 5

8 and �v2(s2) = 1
2�u1(s2) + 1

4�u1(s3) + 1
4�u1(s1) = 1

2 .
Finally, �u2 =

( 5
8 , 5

8 , 1
2 , 1

2

)
. Therefore, we obtain that pPmax (s0, [1, 2]) = �u2(s0) = 5

8 .

3.5 Algorithm and Complexity

LetM, G, ε and I as before, with b = sup I . For ε > 0, choose kb such that kb · (λτ)2

2 +
λτ ≤ ε. With τ = b

kb
, the smallest such kb is kb = &λ2b2+2λb

2ε '. Then the step duration τ

induces the discretized IPCMτ . By Thm. 5, pMmax (s0, I) can be approximated (up to ε)
by pMτ

max (s0, (ka, kb]). Let n = |S| and m = |IT |+ |MT | be the number of states and
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Fig. 4. Example IPC

transitions of M, respectively. In the worst case, Mτ has n
states, and m + n transitions. In each value iteration step, the
update of the vector �vi takes at most time m + n; for �ui, the
sets Reachi(s) are precomputed. In the general case, the best
theoretical complexity for computing the reflexive transitive
closure is in O (n2.376

)
, as given by [13]. As m∗ ⊆ S × S,

the number of transitions in the closure m∗ is bounded by n2.
Hence, with an appropriate precomputation of m∗, updat-
ing �ui takes time O(n2). Therefore, with kb value iteration steps, the worst case time
complexity of our approach is in n2.376 + (m + n + n2) · (λb) · (λb + 2) /(2ε) ∈
O(n2.376 + (m + n2) · (λb)2 /ε

)
.

4 Model Checking the Continuous Stochastic Logic

For model checking, we consider a finite set AP = {a, b, c, . . .} of atomic propositions
and state labelled IMCs: A state labelling function L : S → 2AP assigns to each state
the set of atomic propositions that hold in that state. To specify quantitative properties,
we extend the continuous stochastic logic (CSL) [3,12], which reasons about qualitative
and quantitative properties of CTMCs to the nondeterministic setting:

Definition 9 (CSL syntax). For a ∈ AP , p ∈ [0, 1], I ⊆ Q an interval and � ∈
{<,≤,≥, >}, CSL state and CSL path formulas are defined by

Φ ::= a | ¬Φ | Φ ∧ Φ | P�p(ϕ) and ϕ ::= X IΦ | Φ UI Φ.

Intuitively, a path π ∈ Pathsω satisfies the formula X IΦ (π |= X IΦ) if the first transi-
tion on π occurs in time-interval I and leads to a successor state in Sat(Φ). Similarly,
π satisfies the until formula Φ UI Ψ if a state in Sat(Ψ) is reached at some time point
t ∈ I and before that, all states satisfy state formula Φ.

Definition 10 (CSL semantics). Let M = (S,Act , IT ,MT ,AP ,L, ν) be a state la-
belled IMC, s ∈ S, a ∈ AP , I ∈ Q, � ∈ {<,≤,≥, >} and π ∈ Pathsω. For
state formulas, we define s |= a iff a ∈ L(s), s |= ¬Φ iff s �|= Φ and s |= Φ ∧ Ψ
iff s |= Φ and s |= Ψ . Further, s |= P�p(ϕ) iff for all D ∈ GM it holds that
Prω

νs,D {π ∈ Pathsω | π |= ϕ} � p. For path formulas, we define

π |= X IΦ ⇐⇒ π[1] |= Φ ∧ δ(π, 0) ∈ I

π |= Φ UI Ψ ⇐⇒ ∃t ∈ I. ∃s ∈ π@t. s |= Ψ ∧ ∀s′ ∈ Pref (π@t, s). s′ |= Φ

∧ ∀t′ ∈ [0, t) . ∀s′′ ∈ π@t′. s′′ |= Φ.

To model check an IMC w.r.t. a CSL state formula Φ, we successively consider the
state subformulas Ψ of Φ and calculate the sets Sat(Ψ) = {s ∈ S | s |= Ψ}. For atomic
propositions, conjunction and negation, this is easy as Sat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ) = S \ Sat(Ψ) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2). Therefore we
only discuss the probabilistic operator P�p(ϕ) for next and bounded until formulas.
To decide Sat (P�p(ϕ)), it suffices to maximize (or minimize, which can be done
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similarly) Prω
νs,D ({π ∈ Pathsω | π |= ϕ}) w.r.t. all schedulers D ∈ GM . We define

pMmax (s, ϕ) = supD∈GM Prω
νs,D ({π ∈ Pathsω | π |= ϕ}) and consider both types of

path formulas:

The Next Formula. Computing pMmax (s,X IΦ) is easy: We proceed inductively on the
structure of the formula and assume that Sat(Φ) is already computed. Let a = inf I , b =
sup I and s ∈ MS . Then pMmax

(
s,X IΦ

)
=
∫ b

a E(s)e−E(s)t ·∑s′∈Sat(Φ) P(s, s′) dt =
P (s,Sat(Φ)) · (e−E(s)a − e−E(s)b

)
, where P (s,Sat(Φ)) =

∑
s′∈Sat(Φ) P(s, s′) is

the probability to move to a successor state s′ ∈ Sat(Φ). If s ∈ IS , 0 ∈ I and post(s)∩
Sat(Φ) �= ∅, then pMmax

(
s,X IΦ

)
= 1; otherwise pMmax

(
s,X IΦ

)
= 0.

The Until Formula. Let ϕ = Φ UI Ψ with I ∈ Q and assume that Sat(Φ) and Sat(Ψ)
are already computed. We reduce the problem to compute pMmax (s, ϕ) to the maximum
interval-bounded reachability problem: Therefore, define Sϕ

=0 = {s ∈ S | s |= ¬Φ}. In
the next step, we turn all states s ∈ Sϕ

=0 into absorbing states by replacing all its out-
going transitions by a single interactive self loop. This is similar to the approach taken
in [3,6] for model checking CTMCs and MDPs. Formally, a state s ∈ IS is absorbing
iff post i(s) = {s}. Hence, as soon as a path enters an absorbing state, it cannot reach a
different state anymore. Moreover, due to the maximal progress assumption, time does
not progress any further in absorbing states. Intuitively, making Sϕ

=0-states absorbing is
justified as follows. If a path π enters a state s ∈ Sϕ

=0, it can be decided immediately
whether π |= Φ UI Ψ , or not: If s |= Ψ holds and if state s is entered at some time in
the interval I , then π |= Φ UI Ψ . Otherwise π �|= Φ UI Ψ holds.

Theorem 6 (Time-bounded until). Let M = (S,Act , IT ,MT ,AP ,L, ν) be a state
labelled IMC, ϕ = Φ UI Ψ a CSL path formula with I ∈ Q and G = Sat(Ψ) the set of
goal states. Further, assume that all states s ∈ Sϕ

=0 are made absorbing. Then

pMmax

(
s, Φ UI Ψ

)
= pMmax (s, I) for all s ∈ S.

Theorem 6 reduces the problem to compute pMmax (s, ΦUI Ψ) of the until formula to the
problem of computing the interval bounded reachability probability pMmax (s, I) with

0
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pMmax (s0, [0, b])
only α
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(a) Time-bounded reachability in M

problem states ε λ b prob. time
Erl(30, 10) 35 10−3 10 4 0.672 50s
Erl(30, 10) 35 10−3 10 7 0.983 70s
Erl(30, 10) 35 10−4 10 4 0.6718 268s
ws-cl, N=4 820 10−6 2 101 3.3 ·10−5 2d
ws-cl, N=4 820 10−4 2 102 4 ·10−4 15h
ws-cl, N=4 820 10−3 2 103 5 ·10−3 6d
(b) Computation time for different parameters

Fig. 5. Experimental results for Erl(30, 10) and the workstation cluster from [16]
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respect to the set of goal states G = Sat(Ψ). The latter can be computed efficiently by
the discretization approach introduced in Sec. 3.3.

For CSL state-formula Φ, let |Φ| be the number of state subformulas of Φ. In the worst
case, the interval bounded reachability probability is computed |Φ| times. Hence the
model checking problem has time complexityO(|Φ| · (n2.376 +

(
m + n2

) · (λb)2/ε
))

.

5 Experimental Results

We consider the IMC in Fig. 6, where Erl(30 , 10 ) denotes a transition with an Erlang
(k, λ) distributed delay: This corresponds to k = 30 consecutive Markovian transitions
each of which has rate λ. The mean time to move from s2 to the goal s4 is k

λ = 3
with a variance of k

λ2 = 3
10 . Hence, with very high probability we move from s2 to s4

s0 s1 s2

s4

1 β

Erl(30, 10)

s3

s5

α

0.5 0.5

11

Fig. 6. The Erl(30, 10) model M

after approximately 3 time units. The decision
that maximizes the probability to reach s4 in
time interval [0, b] in state s1 depends on the so-
journ in state s0. Fig. 5(a) depicts the computed
maxima for time dependent schedulers and the
upper part of Tab. 5(b) lists some performance
measurements.

If AP = {g} and s4 is the only state la-
belled with g, we can verify the CSL formula
Φ = P≥0.5

(
�[3,4]g

)
by computing pMmax (s0, [3, 4]) with the modified value itera-

tion. The result pMmax (s0, [3, 4]) = 0.6057 meets the bound ≥ 0.5 in Φ, implying that
s0 |= Φ.

Finally, the lower part of Tab. 5(b) lists the performance of our approach for a large
scale example [16], where we conduct a dependability analysis of a cluster of 2N work-
stations to estimate its failure probability over a finite time horizon. This rather stiff
model has a high computational complexity in our prototypical implementation, as the
failure events are very rare which leads to a large time horizon.

All measurements were carried out on a 2.2GHz Xeon CPU with 16GB RAM.

6 Related Work and Conclusions

In the setting of stochastic games, the time-bounded reachability problem has been
studied extensively in [11], with extensions to timed automata in [9]. Closely related to
ours is the work in [7], where globally uniform IMCs — which require the sojourn times
in all Markovian states to be equally distributed — are transformed into continuous-time
Markov decision processes (CTMDPs). Subsequently, the algorithm in [4] is used to
compute the maximum time-bounded reachability probability in the resulting globally
uniform CTMDP. However, the applicability of this approach is severely restricted, as
global uniformity is hard (and often impossible) to achieve.

Further, the above approaches rely on time-abstract schedulers which are proved to
be strictly less powerful than the time-dependent ones that we consider here [4,24].

In [25], we relax the restriction to global uniformity and consider locally uniform
CTMDPs for which we propose a discretization that computes maximum time-bounded
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reachability probabilities under late schedulers: In locally uniform CTMDPs, late sched-
ulers outperform early schedulers [24], which are the largest class of history and time
dependent schedulers definable on general CTMDPs [21].

The discretization approach in this paper resembles that of [25]. However, the results
are complementary: In general, transforming IMCs to CTMDPs as done in [21] does
not yield locally uniform CTMDPs. Hence, the approach in [25] is inapplicable for the
analysis of IMCs. However, we expect to solve the problem of computing time-interval
bounded reachability in CTMDPs by analysing the CTMDP’s induced IMC.

By providing an efficient and quantifiably precise approximation algorithm to com-
pute interval bounded reachability probabilities, this paper solves a long standing open
problem in the area of performance and dependability evaluation. Moreover, we solve
the CSL model checking problem on arbitrary IMCs.

Acknowledgement. We thank Holger Hermanns and Joost-Pieter Katoen for their com-
ments and for many fruitful discussions about earlier versions of this work.
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Abstract. We propose a general methodology for approximating the Pareto front
of multi-criteria optimization problems. Our search-based methodology consists
of submitting queries to a constraint solver. Hence, in addition to a set of so-
lutions, we can guarantee bounds on the distance to the actual Pareto front and
use this distance to guide the search. Our implementation, which computes and
updates the distance efficiently, has been tested on numerous examples.

1 Introduction

Many problems in the design of complex systems are formulated as optimization prob-
lems, where design choices are encoded as valuations of decision variables and the
relative merits of each choice are expressed via a utility/cost function over the decision
variables. In most real-life optimization situations, however, the cost function is multi-
dimensional. For example, a cellular phone that we want to develop or purchase can be
evaluated according to its cost, size, power autonomy and performance, and a configu-
ration s which is better than s′ according to one criterium, can be worse according to
another. Consequently, there is no unique optimal solution but rather a set of efficient
solutions, also known as Pareto1 solutions, characterized by the fact that their cost can-
not be improved in one dimension without being worsened in another. The set of all
Pareto solutions, the Pareto front, represents the problem trade-offs, and being able to
sample this set in a representative manner is a very useful aid in decision making.

Multiple-criteria or multi-objective optimization problems have been studied since
the dawn of modern optimization using diverse techniques, depending on the nature
of the underlying optimization problems (linear, nonlinear, combinatorial) [10,4,5,3].
One approach consists of defining an aggregate one-dimensional cost/utility function
by taking a weighted sum of the various costs. Each choice of a set of coefficients for
this sum will lead to an optimal solution for the one-dimensional problem which is
also a Pareto solution for the original problem. Another popular class of techniques is

� This work was partially supported by the French MINALOGIC project ATHOLE.
1 In honor of V. Pareto who introduced them in the context of economic theory [9] to express

the fact that different members of society may have different goals and hence social choices
cannot be optimal in the one-dimensional sense, a fact consistently ignored in most public
debates.
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based on heuristic search, most notably genetic/evolutionary algorithms [1,11], which
are used to solve problems related to design-space exploration of embedded systems,
the same problems that motivate our work. A major issue in these heuristic techniques
is finding meaningful measures of quality for the sets of solutions they provide [12].

In this paper we explore an alternative approach to solve the problem based on sat-
isfiability/constraint solvers that can answer whether there is an assignment of values
to the decision variables which satisfies a set of constraints. It is well known, in the
single-criterium case, that such solvers can be used for optimization by searching the
space of feasible costs and asking queries of the form: is there a solution which satis-
fies the problem constraints and its cost is not larger than some constant? Asking such
questions with different constants we obtain both positive (sat) and negative (unsat) an-
swers. Taking the minimal cost x among the sat points and the maximal cost y among
the unsat points we obtain both an approximate solution x and an upper bound x − y
on its distance from the optimum, that is, on the quality of the approximation.

In this work we extend the idea to multi-criteria optimization problems. Our goal
is to use the sat points as an approximation of the Pareto front of the problem, use
the unsat points to guarantee computable bounds on the distance between these points
and the actual Pareto front and to direct the search toward parts of the cost space so as
to reduce this distance. To this end we define an appropriate metric on the cost space
as well as efficient ways to recompute it incrementally as more sat and unsat points
accumulate. A prototype implementation of our algorithm demonstrates the quality and
efficiency of our approach on numerous Pareto fronts.

The rest of the paper is organized as follows. Section 2 defines the problem set-
ting including the notions of distance between the sat and unsat points which guides
our search algorithm. In Section 3 we describe some fundamental properties of spe-
cial points on the boundary of the unsat set (knee points) which play a special role in
computing the distance to the sat points, and show how they admit a natural tree struc-
ture. In Section 4 we describe our exploration algorithm and the way it updates the
distance after each query. Section 5 reports our implementation and experimental re-
sults on some purely-synthetic benchmarks of varying dimension and accuracy as well
as some scheduling problems where we show the trade-offs between execution time and
power consumption. Conclusions and suggestions for future work close the paper.

2 Preliminary Definition

Constrained optimization (we use minimization henceforth) problems are often speci-
fied as

min c(x) s.t. ϕ(x)

where x is a vector of decision variables, ϕ is a set of constraints on the variables
that define which solution is considered feasible and c is a cost function defined over
the decision variables. We prefer to reformulate the problem by moving costs to the
constraint side, that is, letting ϕ(x, c) denote the fact that x is a feasible solution whose
cost is c. Hence the optimum is

min{c : ∃x ϕ(x, c)}.
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Moving to multi-criteria optimization, c becomes a d-dimensional vector (c1, . . . cd)
that we assume, without loss of generality,2 to range over the bounded hypercube C =
[0, 1]d, that we call the cost space. We use notation r for (r, . . . , r).

We assume that the maximal cost 1 is feasible and that any cost with some ci = 0
is infeasible. This is expressed as an initial set of unsat points {0i}i=1..d where 0i is a
point with ci = 0 and cj = 1 for every j �= i. The set C is a lattice with a partial-order
relation defined as:

s ≤ s′ ≡ ∀i si ≤ s′i (1)

Pairs of points such that s �≤ s′ and s′ �≤ s are said to be incomparable, denoted by
s||s′. The strict version of ≤ is

s < s′ ≡ s ≤ s′ ∧ ∃j sj < s′j (2)

meaning that s strictly improves upon s′ in at least one dimension without being worse
on the others. In this case we say that s dominates s′. We will make an assumption that
if cost s is feasible so is any cost s′ > s (one can add a slack variable to the cost). The
meet and join on C are defined as

s � s′ = (min{s1, s
′
1}, . . . , min{sd, s

′
d})

s � s′ = (max{s1, s
′
1}, . . . , max{sd, s

′
d})

We say that a point in the cost space s′ is an i-extension of a point s if s′i > si and
s′j = sj for every i �= j.

A point s in a subset S ⊆ C is minimal if it is not dominated by any other point in
S, and is maximal if it does not dominate any point in S. We denote the sets of minimal
and maximal elements of S by S and S, respectively. We say that a set S of points is
domination-free if all pairs of elements s, s′ ∈ S are incomparable, which is true by
definition for S and S. The domination relation associates with a point s two rectan-
gular cones B+(s) and B−(s) consisting of points dominated by (resp. dominating)
s:

B−(s) = {s′ ∈ C, s′ < s} and B+(s) = {s′ ∈ C, s < s′}.
These notions are illustrated in Figure 1. Note that both B−(s)∪ {s} and B+(s)∪ {s}
are closed sets. If cost s is feasible it is of no use to look for solutions with costs in
B+(s) because they are not Pareto solutions. Likewise, if s is infeasible, we will not
find solutions in B−(s).3 We let B−(S) and B+(S) denote the union of the respective
cones of the elements of S and observe that B+(S) = B+(S) and B−(S) = B−(S).

Suppose that we have performed several queries and the solver has provided us with
the sets S0, and S1 of unsat and sat points, respectively. Our state of knowledge is
summarized by the two sets K1 = B+(S1) and K0 = B−(S0). We know that K1
contains no Pareto points and K0 contains no solutions. The domain for which S0 and
S1 give us no information is K̃ = (C−K0)∩(C−K1). We use bd(K0) and bd(K1) to

2 One can normalize the cost functions accordingly.
3 Note that the query is formulated as c ≤ s and if the problem is discrete and there is no solution

whose cost is exactly s, the solver would provide a solution with c = s′ < s if such a solution
exists.
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B+(s)
s

s′ < s

s < s′s||s′

s||s′
B−(s)

Fig. 1. A point s and its backward and forward cones

S0

S1

(a) (b)

K1 = B+(S1)

K̃

K0 = B−(S0)

Fig. 2. (a) Sets S0 and S1 represented by their extremal points S0 and S1; (b) The gaps in our
knowledge at this point as captured by K0, K1 and K̃. The actual Pareto front is contained in the
closure of K̃ .

(b)(a)

K1 = B+(S1)

K̃

K0 = B−(S0)

Fig. 3. (a) Knee points, denoted by circles; (b) Knee points viewed as the minimal points of
C − K0

denote the boundaries between K̃ and K0 and K1, respectively. It is the “size” of K̃ or
the distance between the boundaries bd(K0) and bd(K1) which determines the quality
of our current approximation, see Figure 2. Put another way, if S1 is our approximation
of the Pareto surface, the boundary of K0 defines the limits of potential improvement of
the approximation, because no solutions can be found beyond it. This can be formalized
as an appropriate (directed) distance between S1 and K0. Note that no point in S1 can
dominate a point in K0.
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Definition 1 (Directed Distance between Points and Sets). The directed distance
ρ(s, s′) between two points is defined as

ρ(s, s′) = max{s′i .−si : i = 1..d},

where x
.− y = x− y when x > y and 0 otherwise. The distance between a point s and

a set S′ is the distance between s to the closest point in S′:

ρ(s, S′) = min{ρ(s, s′) : s′ ∈ S′}.
The Hausdorff directed distance between two sets S and S′

ρ(S, S′) = max{ρ(s, S′) : s ∈ S}.
In all these definitions we assume s′ �< s for any s ∈ S and s′ ∈ S′.

In other words

ρ(S, S′) = max
s∈S

min
s′∈S′

max
i=1..d

s′i
.−si.

Definition 2 (ε-Approximation). A set of points S is an ε-approximation4 of a Pareto
front P if ρ(P, S) ≤ ε.

Since the Pareto surface is bounded from below by bd(K0) we have:

Observation 1. Consider an optimization problem such that S0 is included in the set
of infeasible solutions, with K0 = B−(S0). Then any set S1 of solutions which satisfies
ρ(bd(K0), S1) ≤ ε is an ε-approximation of the Pareto set P .

Our goal is to obtain an ε-approximation of P by submitting as few queries as possible
to the solver. To this end we will study the structure of the involved sets and their
distances. We are not going to prove new complexity results because the upper and
lower bounds on the number of required queries are almost tight:

Observation 2 (Bounds)

1. One can find an ε-approximation of any Pareto front P ⊆ C using (1/ε)d queries;
2. Some Pareto fronts cannot be approximated by less than (1/ε)d−1 points.

Proof. For (1), similarly to [8], define an ε-grid over C, ask queries for each grid point
and put them in S0 and S1 according to the answer. Then take S1 as the approxima-
tion whose distance from bd(S0) is at most 1/ε by construction. For (2), consider a
“diagonal” surface

P = {(s1, . . . , sd) :
d∑

i=1

si = 1}

which has dimension d− 1.
4 This definition is similar to that of [8] except for the fact that their definition requires that for

every p ∈ P there exists s ∈ S such that s ≤ p + εp and ours requires that s ≤ p + ε.
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Remark: The lower bound holds for continuous Pareto surfaces. In discrete problems
where the solutions are sparse in the cost space one may hope to approximate P with
less than (1/ε)d points, maybe with a measure related to the actual number of Pareto
solutions. However since we do not work directly with P but rather with S0, it is not
clear whether this fact can be exploited. Of course, even for continuous surfaces the
lower bound is rarely obtained: as the orientation of the surface deviates from the di-
agonal, the number of needed points decreases. A surface which is almost axes-parallel
can be approximated by few points.

Updating the distance ρ(bd(K0), S1) as more sat and unsat points accumulate is
the major activity of our algorithm hence we pay a special attention to its efficient
implementation. It turns out that it is sufficient to compute the distance ρ(G, S1) where
G is a finite set of special points associated with any set of the from B−(S).

3 Knee Points

Definition 3 (Knee Points). A point s in bd(K0) is called a knee point if by subtracting
a positive number from any of its coordinates we obtain a point in the interior of K0.
The set of all such points is denoted by G.

In other words the knee points, illustrated in Figure 3-(a), represent the most unexplored
corners of the cost space where the maximal potential improvement resides. This is
perhaps best viewed if we consider an alternative definition of G as the minimal set
such that C − K0 = B+(G), see Figure 3-(b). Since ρ(s, s′) can only increase as s
moves down along the boundary we have:

Observation 3 (Distance and Knee Points). ρ(bd(K0), S1)) = ρ(G, S1).

Our algorithm keeps track of the evolution of the knee points as additional unsat points
accumulate. Before giving formal definitions, let us illustrate their evolution using an
example in dimension 2. Figure 4-(a) shows a knee point g generated by two unsat
points s1 and s2. The effect of a new unsat point s on g depends, of course, on the rela-
tive position of s. Figure 4-(b) shows the case where s �> g: here knee g is not affected
at all and the new knees generated are extensions of other knees. Figure 4-(c) shows two
unsat points dominated by g: point s5 induces two extensions of g and point s6 which
does not. The general rule is illustrated in Figure 4-(d): s will create an extension of g
in direction i iff si < hi where hi is the extent to which the hyperplane perpendicular
to i can be translated forward without eliminating the knee, that is, without taking the
intersection of the d hyperplanes outside K0.

Let S be a set of incomparable points and let {s1, . . . , sd} ⊆ S be a set of d points
such that for every i and every j �= i si

i ≤ sj
i . The ordered meet of s1, . . . , sd is

[s1, . . . , sd] = (s1
1, s

2
2, . . . , s

d
d). (3)

Note that this definition coincides with the usual meet operation on partially-ordered
sets, but our notation is ordered, insisting that si attains the minimum in dimension i.
The knee points of S are maximal elements of the set of points thus obtained. With every
knee g ∈ G we associate a vector h defined as h = 〈s1, s2, . . . , sd〉 = (h1, . . . , hd)
with hi = min

j =i
sj

i for every i, characterizing the extendability of s in direction i.
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Fig. 4. (a) A knee g generated by s1 and s2. It is the intersection of the two hyperplanes f1 and
f2 (dashed lines); (b) new unsat points s3 and s4 which are not dominated by g and have no
influence on it; (c) new unsat points s5 and s6 which are dominated by g and hence eliminate
it as a knee point. Point s5 generates new knees as “extensions” of g while the knees generated
by s6 are not related to g; (d) point s7 generates an extension of g in direction 2 and point s8

generates an extension in direction 1. These are the directions i where the coordinates of the unsat
points are strictly smaller than hi (dotted lines).

Proposition 1 (Knee Generation). Let S be a set of unsat points with a set of knees
G, let s be a new unsat point and let G′ be the new set of knees associated with S ∪
{s}. Then the following holds for every g ∈ G such that g = [s1, . . . , sd] and h =
〈s1, s2, . . . , sd〉
1. Knee g is kept in G′ iff g �< s
2. If g ∈ G − G′, then for every i such that si < hi, G′ contains a new knee g′, the

i-descendant of g, defined as g′ = [s1, . . . , s, . . . , sd], extending g in direction i.

Before describing the tree data structure we use to represent the knee points let us
make another observation concerning the potential contribution of a new sat point in
improving the minimal distance to a knee or a set of knees.

Observation 4 (Distance Relevance). Let g, g1 and g2 be knee points with ρ(g, S) =
r, ρ(g1, S) = r1 and ρ(g2, S) = r2 and let s be a new sat point. Then
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(g1 + r1) � (g2 + r2)
g1 + r1

g2 + r2

s2

s1

g1

g2

Fig. 5. Two knees g1 and g2 and their respective nearest points s1 and s2. Points outside the
upper dashed square will not improve the distance to g1 and those outside the lower square will
not improve the distance to g2. Points outside the enclosing dotted rectangle can improve neither
of the distances.

1. The distance ρ(g, s) ≤ r iff s ∈ B−(g + r);
2. Point s cannot improve the distance to any of {g1, g2} if it is outside the cone

B−((g1 + r1) � (g2 + r2)).

Note that for the second condition, being in that cone is necessary but not sufficient.
The sufficient condition for improving the distance of at least one of the knees is s ∈
B−((g1 + r1) ∪ (g2 + r2)) as illustrated in Figure 5.

We represent G as a tree whose nodes are either leaf nodes that stand for current
knee points, or other nodes which represent points which were knees in the past and
currently have descendant knees that extend them. A node is a tuple

N = (g, [s1, . . . , sk], h, (μ1, . . . , μk), r, b)

where g is the point, [s1, . . . , sk] are its unsat generators and h is the vector of its
extension bounds. For each dimension i, μi points to the i-descendant of N (if such
exists) and the set of all direct descendants of N is denoted by μ. For leaf nodes N.r =
ρ(N.g, S1) is just the distance from the knee to S1 while for a non-leaf node N.r =
maxN ′∈N.μ N ′.r, the maximal distance to S1 over all its descendants. Likewise N.b
for a leaf node is the maximal point such that any sat point in the interior of its back
cone improves the distance to N.g. For a non leaf node N.b =

⊔
N ′∈N.μ N ′.b, the join

of the bounds associated with its descendants.

4 The Algorithm

The following iterative algorithm submits queries to the solver in order to decrease the
distance between S1 and G.
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Algorithm 1 (Approximate Pareto Surface)
initialize
repeat

select(s)
query(s) % ask whether there is a solution with cost ≤ s

if sat
update-sat(s)

else
update-unsat(s)

until ρ(G, S1) < ε

The initialization procedure lets S0 = {01, . . . ,0d}, S1 = {(1, . . . , 1)} and hence
initially G = {g0} with g0 = [01, . . . ,0d] = (0, . . . , 0) and h = 〈01, . . . ,0d〉 =
(1, . . . , 1). The initial distance is ρ(G, S1) = 1. The update-sat and update-unsat pro-
cedures recompute distances according to the newly observed point by propagating s
through the knee tree. In the case of a sat point, the goal is to track the knee points
g such that ρ(g, s) < ρ(g, S1), namely points whose distance has decreased due to s.
When s is an unsat point, we have to update G (removing dominated knees, adding
new ones), compute the distance from the new knees to S1 as well as the new maximal
distance. The algorithm stops when the distance is reduced beyond ε. Note that since
ρ(G, S1) is maintained throughout the algorithm, even an impatient user who aborts
the program before termination will have an approximation guarantee for the obtained
solution.

The propagation of a new sat point s is done via a call to the recursive procedure
prop-sat(N0, s) where N0 is the root of the tree.

Algorithm 2 (Prop-Sat)
proc prop-sat(N, s)

if s < N.b % s may reduce the distance to N.g or its descendants
r := 0 % temporary distance over all descendants
b := 0 % temporary bound on relevant sat points
if N.μ �= ∅ % a non-leaf node

for every i s.t. N ′ = N.μi �= ∅ do % for every descendant
prop-sat(N ′, s)
r := max{r, N ′.r}
b := b �N ′.b

else % leaf node
r := min{N.r, ρ(N.g, s)} % improve if s is closer
b := N.g + r

N.r := r
N.b := b

The propagation of a new unsat point s, which is more involved, is done by invoking
the recursive procedure prop-unsat(N0, s). The procedure returns a bit ex indicating
whether the node still exists after the update (is a knee or has descendants).
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Algorithm 3 (Prop-Unsat)
proc prop-unsat(N, s)

ex := 1
if N.g < s % knee is influenced

ex := 0 % temporary existence bit
r := 0 % temporary distance over all descendants
b := 0 % temporary relevance bound
if N.μ �= ∅ % a non-leaf node

for every i s.t. N ′ = N.μi �= ∅ do % for every descendant
ex′ :=prop-unsat(N ′, s)
if ex′ = 0

N.μi := ∅ % node N ′ is removed
else

ex := 1
r := max{r, N ′.r}
b := b �N ′.b

else % leaf node
for i = 1..d do

if si < N.hi % knee can extend in direction i
ex := 1
create a new node N ′ = N.μi with

N ′.g = [N.s1, . . . , s, . . . , N.sk]
N ′.h = 〈N.s1, . . . , s, . . . , N.sk〉
N ′.r = ρ(N ′.g, S1)
N ′.b = N ′.g + N ′.r
N ′.μi = ∅ for every i

r := max{r, N ′.r}
b := b �N ′.b

N.r := r
N.b := b

return(ex)

The prop-unsat procedure has to routinely solve the following sub problem: given a
knee point g and a set of non-dominating sat points S, find a point s ∈ S nearest to g
and hence compute ρ(g, S). The distance has to be non negative so there is at least one
dimension i such that gi ≤ si. Hence a lower bound on the distance is

ρ(g, S) ≥ min{si − gi : (i = 1..d) ∧ (s ∈ S) ∧ (si ≥ gi)},
and an upper bound is:

ρ(g, S) ≤ max{si − gi : (i = 1..d) ∧ (s ∈ S)}.
We now present an algorithm and a supporting data structure for computing this dis-
tance. Let (Li, <i) be the linearly-ordered set obtained by projecting S ∪ {g} on di-
mension i. For every v ∈ Li let Θi(v) denote all the points in S whose ith coordinate
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is v. Let σi(s) be the successor of si according to <i, that is, the smallest s′i such
that si < s′i. Our goal is to find the minimal value v in some Li such that for every
s ∈ Θi(v), si defines the maximal distance to g, that is, si − gi > sj − gj for every
j �= i.

The algorithm keeps a frontier F = {f1, . . . , fd} of candidates for this role. Initially,
for every i, fi = σi(gi), the value next to gi and the candidate distances are kept in
Δ = {δ1, . . . , δd} with δi = fi − gi. The algorithm is simple: each time we pick the
minimal δi ∈ Δ. If for some s ∈ Θi(fi) and for every j �= i we have sj − gj < si − gi

then we are done and found a nearest point s with distance δi. Otherwise, if every
s ∈ Θ(fi) admits some j such that sj − gj > si − gi we conclude that the distance
should be greater than δi. We then let fi = σi(fi), update δi accordingly, take the next
minimal element of Δ and so on. This procedure is illustrated in Figure 6. The projected
order relations are realized using an auxiliary structure consisting of d linked lists.

v1

g2

g3

g1

v3v2

L2

L1

L3

Fig. 6. Finding the nearest neighbor of g: the first candidate for the minimal distance is v1, the
nearest projection which is on dimension 2, but the point associated with it has a larger distance
on dimension 3; The next candidate is v2, the closest in dimension 3 but the corresponding point
also has larger coordinates. Finally, the point associated with v3, the next value on L3, has all its
distances in other dimensions smaller and hence it is the closest point which defines the distance
(dashed line)

Selecting the next query to ask is an important ingredient in any heuristic search
algorithm, including ours. We currently employ the following simple rule. Let g and s
be a knee and a sat point whose distance ρ(g, s) is maximal and equal to r = si − gi

for some i. The next point for which we ask a query is s′ = s + r/2. If s′ turns out
to be a sat point, then the distance from g to S1 is reduced by half. If s′ is an unsat
point then g is eliminated and is replaced by zero or more new knees, each of which is
r-closer to S1 in one dimension. For the moment we do not know to compute an upper
bound on the worst-case number of queries needed to reach distance ε except for some
hand-waving arguments based on a discretized version of the algorithm where queries
are restricted to the ε-grid. Empirically, as reported below, the number of queries was
significantly smaller than the upper bound.
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5 Experimentation

We have implemented Algorithm 1 and tested it on numerous Pareto fronts produced as
follows. We generated artificial Pareto surfaces by properly intersecting several convex
and concave halfspaces generated randomly. Then we sampled 10, 000 points in this
surface, defined the Pareto front as the boundary of the forward cone of these points
and run our algorithm for different values of ε. Figure 7 shows how the approximate
solutions and the set of queries vary with ε on a 2-dimensional example. One can see
that indeed, our algorithm concentrates its efforts on the neighborhood of the front.
Table 1 shows some preliminary results obtained as follows. For every dimension d we
generate several fronts, run the algorithm with several values of ε, compute the average
number of queries and compare it with the upper bound (1/ε)d. As one can see the
number of queries is only a small fraction of the upper bound. Note that in this class
of experiments we do not use a constraint solver, only an oracle for the feasibility of
points in the cost space based on the generated surface.

We also have some preliminary results on the following problem which triggered
this research: given an application expressed as a task-data graph (a partially-ordered
set of tasks with task duration and inter-task communication volume) and a heteroge-
nous multi-processor architecture (a set of processors with varying speeds and energy
consumptions, and a communication topology), find a mapping of tasks to processors
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Fig. 7. The results of our algorithm for the same front for ε = 0.05, 0.125, 0.001, 0.0005
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Table 1. The average number of queries for surfaces of various dimensions and values of ε

d no tests ε (1/ε)d min no queries avg no queries max no queries
2 40 0.050 400 5 11 27

0.025 1600 6 36 111
0.001 1000000 21 788 2494

3 40 0.050 8000 5 124 607
0.025 64000 6 813 3811

20 0.002 125000000 9 30554 208078
4 40 0.050 160000 5 1091 5970

0.025 2560000 10 11560 46906

Fig. 8. Scheduling a task-data graph of 20 tasks on an architecture with 8 processors with 3
different levels of speed/consumption: (a) the queries asked; (b) the final front approximation
(makespan is horizontal and energy cost is vertical)

and a schedule so as to optimize some performance criteria. In [6] we have used the
SMT solver Yices [2] to solve the single-criterium problem of finding the cheapest (in
terms of energy) configuration on which such a task graph can be scheduled while meet-
ing a given deadline. We applied our algorithm to solve a multi-criteria version of the
problem, namely to show trade offs between energy cost and execution time. We were
able to find 0.05-approximations of the Pareto front for problem with up to 30 tasks on
an architecture with 8 processors of 3 different speeds and costs. The behavior of our al-
gorithm is illustrated in Figure 8 where both execution time and energy are normalized
to [0, 1]. For reasons discussed in the sequel, it is premature to report the computational
cost of the algorithm on these examples.

6 Conclusions

We have presented a novel approach for approximating the Pareto front. The difficulty
of the problem decomposes into two parts which can, at least to some extent, be de-
coupled. The first is related to the hardness of the underlying constraint satisfaction
problem, which can be as easy as linear programming or as hard as combinatorial or
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nonlinear optimization. The second part is less domain specific: approximate the bound-
ary between two mutually-exclusive subsets of the cost space which are not known a
priori, based on adaptive sampling of these sets, using the constraint solver as an ora-
cle. We have proposed an algorithm, based on a careful study of the geometry of the
cost space, which unlike some other approaches, provides objective guarantees for the
quality of the solutions in terms of a bound on the approximation error. Our algorithm
has been shown to behave well on numerous examples.

The knee tree data structure represents effectively the state of the algorithm and
reduces significantly the number of distance calculations per query. We speculate that
this structure and further geometrical insights can be useful as well to other approaches
for solving this problem. We have investigated additional efficiency enhancing tricks,
most notably, lazy updates of the knee tree: if it can be deduced that a knee g does not
maximize the distance ρ(S0, S1), then its distance to it ρ(g, S1) need not be updated in
every step. Many other such improvement are on our agenda.

In the future we intend to investigate specializations and adaptations of our general
methodology to different classes of problems. For example, in convex linear problems
the Pareto front resides on the surface of the feasible set and its approximation may
benefit from convexity and admit some symbolic representation via inequalities. More
urgently, for hard combinatorial and mixed problems, such as mapping and scheduling,
where computation time grows drastically as one approaches the Pareto front, we have
to cope with computations that practically do not terminate. We are developing a variant
of our algorithm with a limited time budget per query where in addition to sat and
unsat, the solver may respond with a time-out. Such an algorithm will produce an ε-
approximation of the best approximation obtainable with that time budget per query.
Adding this feature will increase the size of mapping and scheduling problems that
can be robustly handled by our algorithm. To conclude, we believe that the enormous
progress made during the last decade in SAT and SMT solvers will have a strong impact
on the optimization domain [7] and we hope that this work can be seen as an important
step in this direction.
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Abstract. The theory BV of bit-vectors, i.e. fixed-size arrays of bits equipped
with standard low-level machine instructions, is becoming very popular in formal
verification. Standard solvers for this theory are based on a bit-level encoding
into propositional logic and SAT-based resolution techniques. In this paper, we
investigate an alternative approach based on a word-level encoding into bounded
arithmetic and Constraint Logic Programming (CLP) resolution techniques. We
define an original CLP framework (domains and propagators) dedicated to bit-
vector constraints. This framework is implemented in a prototype and thorough
experimental studies have been conducted. The new approach is shown to per-
form much better than standard CLP-based approaches, and to considerably re-
duce the gap with the best SAT-based BV solvers.

1 Introduction

The first order theory of bit-vectors allows reasoning about variables interpreted over
fixed-size arrays of bits equipped with standard low-level machine instructions such
as machine arithmetic, bitwise logical instructions, shifts or extraction. An overview
of this theory can be found in Chapter 6 of [17]. The bit-vector theory, and especially
its quantifier-free fragment (denoted QFBV, or simply BV), is becoming increasingly
popular in automatic verification of both hardware [3,5] and software [6,8,9]. Most
successful BV solvers (e.g. [2,15,26]) rely on encoding the BV formula into an equi-
satisfiable propositional logic formula, which is then submitted to a SAT solver. The
encoding relies on bit-blasting: each bit of a bit-vector is represented as a proposi-
tional variable and BV operators are modelled as logical circuits. The main advantage
of the method is to ultimately rely on the great efficiency of modern DPLL-based SAT
solvers [21]. However, this approach has a few shortcomings. First, bit-blasting may re-
sult in very large SAT formulas, difficult to solve for the best current SAT solvers. This
phenomenon happens especially on “arithmetic-oriented” formulas. Second, the SAT-
solving process cannot rely on any information about the word-level structure of the
problem, typically missing simplifications such as arithmetic identities. State-of-the-art
approaches complement optimised bit-blasting [22] with word-level preprocessing [15]
and dedicated SAT-solving heuristics [26].
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Constraint Logic Programming. Constraint Logic Programming (CLP) over finite do-
mains can be seen as a natural extension of the basic DPLL procedure to the case of fi-
nite but non boolean domains, with an interleaving of propagation and search steps [11].
Intuitively, the search procedure explores exhaustively the tree of all partial valuations
of variables to find a solution. Before each labelling step, a propagation mechanism
narrows each variable domain by removing some inconsistent values. In the following,
constraints over bounded arithmetic are denoted by N≤M . Given a theory T , CLP(T )
denotes CLP techniques designed to deal with constraints over T .

Alternative word-level (CLP-based) approach for BV. In order to keep advantage of
the high-level structure of the problem, a BV constraint can be encoded into a N≤M

constraint using the standard (one-to-one) encoding between bit-vectors of size k and
unsigned integers less than or equal to 2k−1. A full encoding of BV requires non-linear
operators and case-splits [12,25,27]. At first sight, CLP(N≤M ) offers an interesting
framework for word-level solving of BV constraints, since non-linear operations and
case-splits are supported. However, there are two major drawbacks leading to poor per-
formance. Firstly, bitwise BV operators cannot be encoded directly and require a form
of bit-blasting. Secondly the encoding introduces too many case-splits and non-linear
constraints. Recent experiments show that the naive word-level approach is largely
outperformed by SAT-based approaches [23]. In the following, we denote by N

≤M
BV

bounded integer constraints coming from an encoding of BV constraints.

The problem. Our longstanding goal is to design an efficient word-level CLP-based
solver for BV constraints. In our opinion, such a solver could outperform SAT-based
approaches on arithmetic-oriented BV problems typically arising in software verifica-
tion. This paper presents a first step toward this goal. We design new efficient domains
and propagators in order to develop a true CLP(N≤M

BV ) solver, while related works rely
on standard CLP(N≤M ) techniques [12,25,27]. We also deliberately restrict our atten-
tion to the conjunctive fragment of BV in order to focus only on BV propagation issues,
without having to consider the orthogonal issue of handling formulas with arbitrary
boolean skeletons. Note that the conjunctive fragment does have practical interests of
its own, for example in symbolic execution [6,8].

Contribution. We rely on the CLP(N≤M ) framework developed in COLIBRI, the solver
integrated in the model-based testing tool GaTeL [20].

The main results of this paper are twofold. First, we set up the basic ingredients of
a dedicated CLP(N≤M

BV ) framework, avoiding both bit-blasting and non-linear encoding
into N≤M . The paper introduces two main features: (1) N

≤M
BV -propagators for exist-

ing domains (union of intervals with congruence [18], denoted Is/C), and (2) a new
domain bit-list BL designed to work in combination with Is/C and BL-propagators.
While Is/C comes with efficient propagators on linear arithmetic constraints, BL is
equipped with efficient propagators on “linear” bitwise constraints, i.e. bitwise opera-
tions with one constant operand. Second, these ideas have been implemented in a pro-
totype on top of COLIBRI and thorough empirical evaluations have been performed.
Experimental results prove that dedicated Is/C-propagators and BL allow a signifi-
cant increase of performance compared to a direct CLP(N≤M ) approach, as well as
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considerably lowering the gap with state-of-the-art SAT-based approaches. Moreover,
the CLP(N≤M

BV )-based approach scales better than the SAT-based approach with the size
of bit-vector variables, and is superior on non-linear arithmetic problems.

Outline. The rest of the paper is structured as follows. Section 2 describes the rele-
vant background on BV and CLP, Sections 4 and 5 presents dedicated propagators and
domains, Section 6 presents experimental results and benchmarks. Section 7 discusses
related work and Section 8 provides a conclusion.

2 Background

2.1 Bit-Vector Theory

Variables in BV are interpreted over bit-vectors, i.e. fixed-size arrays of bits. Given a
bit-vector a, its size is denoted by Sa and its i-th bit is denoted by ai, a1 being the
least significant bit of a. A bit-vector a represents (and is represented by) a unique non-
negative integer between 0 and 2Sa−1 (power-two encoding) and also a unique integer
between−2Sa−1 and 2Sa−1−1 (two’s complement encoding). The unsigned encoding
of a is denoted by �a�u. Common operators consist of: bitwise operators “and” (&),
“or” (|), “xor” (xor) and “not” (∼); bit-array manipulations such as left shift (�), un-
signed right shift (�u), signed right shift (�s), concatenation (::), extraction (a[i..j]),
unsigned and signed extensions (extu(a, i) and exts(a, i)); arithmetic operators (⊕,
$, ⊗, *u, modulo %u, <u, ≤u, ≥u, >u) with additional constructs for signed arith-
metic (*s, %s, <s, ≤s, ≥s, >s); and a case-split operator ite(cond, term1, term2).
The exact semantics of all operators can be found in [17]. The following provides only
a brief overview. Most operators have their intuitive meaning. Signed extension and
signed shift propagate the sign-bit of the operand to the result. Arithmetic operations
are performed modulo 2N , with N the size of both operands. Unsigned (resp. signed)
operations consider the unsigned (resp. signed) integer encoding.

Conjunctive fragment. This paper focuses on the conjunctive fragment of BV, i.e. no
other logical connector than ∧ is allowed.

2.2 Constraint Logic Programming

Let U be a set of values. A constraint satisfaction problem (CSP) over U is a triplet
R = 〈X ,D, C〉where the domainD ⊆ U is a finite cartesian productD = d1×. . .×dn,
X is a finite set of variables x1, . . . , xn such that each variable xi ranges over di and
C is a finite set of constraints c1, . . . , cm such that each constraint ci is associated with
a set of solutions Lci ⊆ U . In the following, we consider only the case of finite do-
mains, i.e. U is finite. The set LR of solutions of R is equal to D ∩ ⋂i Lci . A value
of xi participating in a solution of R is called a legal value, otherwise it is said to
be spurious. In other words, the set LR(xi) of legal values of xi in R is defined as
the i-th projection of LR. Let us also define Lc(xi) as the i-th projection of Lc, and
Lc,D(xi) = Lc(xi) ∩ di. The CLP approach follows a search-propagate scheme. Intu-
itively, propagation narrows the CSP domains, keeping all legal values of each variable



An Alternative to SAT-Based Approaches for Bit-Vectors 87

but removing some of the spurious values. Formally, a propagator P refines a CSP
R = 〈X ,D, C〉 into another CSP R′ = 〈X ,D′, C〉 with D′ ⊆ D. Only the current
domain D is actually refined, hence we write P (D) for D′. A propagator P is correct
(or ensures correct propagation) if LR(x1)× . . .× LR(xn) ⊆ P (D) ⊆ D. The use of
correct propagators ensures that no legal value is lost during propagation, which in turn
ensures that no solution is lost, i.e. LR′ = LR. Usually, propagators are defined locally
to each constraint c. Such a propagator Pc is said to be locally correct over domain D
if Lc,D(x1) × . . . × Lc,D(xn) ⊆ Pc(D) ⊆ D. Local correctness implies correctness.
A constraint c over domain D is locally arc-consistent if for all i, Lc,D(xi) = Di. This
means that from the point of view of constraint c only, there is no spurious value in any
di. A CSPR is globally arc-consistent if all its constraints are locally arc-consistent. A
propagator is said to ensure local (global) arc-consistency if the resulting CSP is locally
(globally) arc-consistent. Such propagators are considered as an interesting trade-off
between large pruning and fast propagation.

2.3 Efficient CLP over Bounded Arithmetic

An interesting class of finite CSPs is the class of CSPs defined over bounded integers
(N≤M ). N≤M problems coming from verification issues have the particularity to exhibit
finite but huge domains. Specific CLP(N≤M ) techniques have recently been developed
for such problems.

Abstract domains. Domains are not represented concretely by enumeration, they are
rather compactly encoded by a symbolic representation allowing efficient (but usu-
ally approximated) basic manipulations such as intersection and union of domains or
emptiness testing. Even though primarily designed for static analysis, abstract inter-
pretation [7] provides a convenient framework for abstract domains in CLP. An ab-
stract domain d#

x belonging to some complete lattice (A,�,�,	,⊥,+) is attached
to each variable x. This abstract domain defines a set of integers

�
d#

x

�
that must

over-approximate the set of legal values of x, i.e. LR(x) ⊆ �
d#

x

�
. The concretisation

function �·� must satisfy: a 	 b =⇒ �a� ⊆ �b� and �⊥� = ∅. Given an arbitrary set of
integers d, the minimal A-abstraction of d, denoted 〈d〉, is defined as the least element
d# ∈ A such that d ⊆ �

d#
�

. The existence of such an element follows from the lattice
completeness property. Several abstract domains can be combined with (finite) carte-
sian product, providing that the concretisation of the cartesian product is defined as the
intersection of concretisations of each abstract domain, and that abstract operations are
performed in component-wise fashion. Intervals I are a standard abstract domain for
N≤M . The congruence domain C has been recently proposed [18].

In the context of CLP over abstract domains, it is interesting to consider new kinds
of consistency. Given a certain class of abstract domains A and a CSP R over abstract
domains d#

1, . . . , d
#

n ∈ A, a constraint c ∈ R over domain D is locally A-arc-
consistent if for all i,

�
d#

i

�
= Lc,D(xi). Intuitively, a propagator ensuring local A-

arc-consistency ensures local arc-consistency only for domains representable inA. The
constraint c is locally abstract A-arc-consistent if for all i,

�
d#

i

�
= �〈Lc,D(xi)〉�.

Intuitively, no more local propagation can be performed for c because of the limited
expressiveness of A.
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Other features for solving large CLP(N≤M ) problems. Other techniques for solv-
ing large N≤M problems include global constraints to quickly detect unsatisfiability
(e.g. global difference constraint [14]) and restricted forms of rewriting rules (simpli-
fication rules) to dynamically perform syntactic simplifications of the CSP [13]. Note
that in that case, the formal framework for propagation presented so far must be modi-
fied to allow propagators to add and delete constraints.

3 Encoding BV into Non-linear Arithmetic

This section describes how to encode BV constraints into non-linear arithmetic prob-
lems. First, each bit-vector variable a is encoded as �a�u. Then BV constraints over
bit-vectors a, b, etc. are encoded as N≤M constraints over integer variables �a�u, �b�u,
etc. Unsigned relational operators correspond exactly to those of integer arithmetic,
e.g. a ≤u b is equivalent to �a�u ≤ �b�u. Unsigned arithmetic operators can be en-
coded into non-linear arithmetic using the corresponding integer operator and a modulo
operation. For example, �a⊕ b�u = (�a�u + �b�u) mod 2N , with N = Sa = Sb. Con-
catenation of a and b is encoded as �a�u × 2Sb + �b�u. Extraction can be viewed as a
concatenation of three variables. Unsigned extension just becomes an equality between
(integer) variables. Unsigned left and right shifts with a constant shift argument b are
handled respectively like multiplications and divisions by 2�b�u . Signed operators can
be encoded into unsigned operators, using case-splits (ite) based on operand signs (re-
call that a ≥s 0 iff a <u 2Sa−1). For example, the signed extension r = exts(a, k)
is encoded as ite(�a�u < 2Sa−1, �a�u , �a�u + 2k − 2Sa). Except for the bitwise “not”
operation∼ which is efficiently encoded as �∼ x�u = 2Sx − 1− �x�u, encoding other
bitwise operations requires a bit-blasting like method. For each BV variable a, this en-
coding introduces a new boolean variable per bit of a (denoted ai for bit i), a N-ary
consistency constraint relating the ai to �a�u:

∑N
i=1 ai × 2i−1 = �a�u and 3N ternary

constraints over bits of operands and results modelling the bit operation. For example,
the “and” operator on a single bit can be encoded with a × or a min operator.

This direct encoding suffers from at least two drawbacks. First, the size of the encod-
ing of bitwise constraints depends on the number of bits, adding both a linear number of
new variables, a linear number of ternary constraints and three N-ary constraints. Sec-
ond, the encoding introduces many constructs which are not well handled by current
CLP(N≤M ) solvers, such as case-splits and non-linear operations. Actually, only a very
small fragment of BV is encoded in an efficient manner for CLP(N≤M ): concatenation,
extraction, bitwise not, unsigned shifts and unsigned relational operators. Current state-
of-the-art CLP domains and propagators for N≤M do not perform well for problems
typically coming from BV. For example, considering the constraint a ⊕ 3 = b with
a and b on 8 bits, domains da = [251..255] and db = [0..255], a perfect propagation
would reduce db to d′b = [0..2] ∪ [254..255], thus a perfect interval propagation cannot
do better than d′′b = [0..255], i.e. no spurious value is removed, keeping 250 spurious
values out of 256 possible values. The same problem occurs with signed operations. It
is thus not surprising that common CLP(N≤M ) solvers perform very badly on N

≤M
BV

problems, as experimentally shown in [23] and confirmed in Section 6.
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Our approach. Considering these different issues, we propose the following direc-
tions to design an efficient CLP(N≤M

BV ) framework. First, it seems mandatory to rely on
unions of intervals plus congruence (Is/C) rather than single intervals (plus congru-
ence). This is an original point of view in CLP, since COLIBRI [20] is the only CLP
solver based on unions of intervals. Second, we propose the two following improve-
ments: (1) the use of original Is/C-propagators designed for BV-constraints instead of
relying on combination of existing N≤M propagators; and (2) a new domain BL to ef-
ficiently propagate information of bitwise operations without relying on bit-blasting in
order to complement Is/C, which is well suited for linear arithmetic. This CLP(N≤M

BV )
framework works as follows: each variable x has a numerical domain Is/C and a BL
domain, legal values for x being restricted to the intersection of the concretisations of
the two domains; each constraint has two associated finite sets of propagators: one for
Is/C and one for BL; domains can be synchronised together, i.e. specific propagators
are designed to propagate information from one domain to another.

4 Dedicated N
≤M
BV -Propagators for Is/C Domains

This section describes dedicated propagators for a CLP(N≤M
BV ) framework over Is/C

domains. The goal is to completely avoid bit-blasting and the introduction of additional
case-splits and non-linear constraints at the CLP level.

4.1 Propagators for Union of Intervals

Propagators for unsigned BV constraints are based on performing modular arithmetic
or integer arithmetic operations directly on single intervals, with forward and backward
propagation steps. These operations are extended to unions of intervals by distribution
over all pairs of intervals. Then, local propagators are defined by interleaving these
propagation steps until a local fixpoint is reached. For example, for constraint A⊕B =
R over N bits, the forward propagation step over single interval, denoted⊕I , is defined
by (� denotes union of intervals with normalisation, without any approximation):

[m1..M1] ⊕I [m2..M2] = [m1 + m2..M1 + M2] if M1 + M2 < 2N

[m1 + m2 − 2N ..M1 + M2 − 2N ] if m1 + m2 ≥ 2N

[m1 + m2..2N − 1]  [0..M1 + M2 − 2N ] otherwise

This definition is extended to unions of intervals ⊕Is by distribution and $Is is de-
fined similarly. Forward and backward propagation steps are defined as follows:

ρr : (d#
A, d#

B, d#
R) �→ (d#

A, d#
B, d#

A ⊕Is d#
B)

ρa : (d#
A, d#

B, d#
R) �→ (d#

R $Is d#
B, d#

B, d#
R)

ρb : (d#
A, d#

B, d#
R) �→ (d#

A, d#
R $Is d#

A, d#
R)

The propagator for⊕ is then defined as a greatest fixpoint of all propagation steps:
νX.(ρa(X) � ρb(X) � ρr(X) � X)(X0). Existence follows from the Knaster-Tarski
theorem, effective computability comes from Kleene fixed-point theorem and domain
finiteness. It can be computed using the procedure presented in Figure 1.

Such propagators and domains are very well-suited to ⊕, $, unsigned comparisons,
unsigned extension and bitwise negation: they ensure local Is-arc consistency for these
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procedure propagate-add-is(IsA, IsB, IsR)

1: (d#
A, d#

B, d#
R) := (IsA, IsB, IsR)

2: d#
R := (d#

A ⊕Is d#
B) � d#

R;
3: d#

A := (d#
R �Is d#

B) � d#
A;

4: d#
B := (d#

R �Is d#
A) � d#

B ;
5: if (d#

A, d#
B , d#

R) �= (IsA, IsB, IsR) then
6: propagate-add-is(d#

A, d#
B , d#

R)
7: else return (d#

A, d#
B, d#

R)

Fig. 1. Is-propagator for constraint A ⊕ B = R

constraints. For signed operations, the main idea is to perform inside each propagation
step a case-split based on sign, compute interval propagation for each case and then join
all the results. Note that all these computations are performed locally to the propagators,
such that no extra variables nor constraints are added at the CLP level. Propagation steps
for signed extension are depicted in Figure 2.

procedure Propagator for exts(A,N’) = R
A: bit-vector of size N , R: bit-vector of size N ′ > N

Propagation steps
ρr : (d#

A, d#
R) �→ ((d#

A�[0..2N−1−1])�(d#
A�[2N−1 ..2N −1])+Is

(2N
′

−2N ), d#
R)

ρa : (d#
A, d#

R) �→ (d#
A, (d#

R � [0..2N−1 − 1]) �
(d#

R � [2N−1 + 2N
′

− 2N ..2N
′

− 1]) −Is
(2N

′

− 2N ))
propagator: νX.(ρa(X) � ρr(X) � X)(IsA, IsR).

Fig. 2. Is-propagator for constraint exts(A,N’) = R

Non-linear arithmetic, concatenation, extraction and shifts can be dealt with in the
same way. However only correct propagation is ensured. Propagators for &, | and xor
are tricky to implement without bit-blasting. Since BL-propagators (see Section 5) are
very efficient for linear bitwise constraints, only coarse but cheap Is-propagators are
considered here and the exact computation is delayed until both operands are instanti-
ated. Approximated propagation for & relies on the fact that r = a & b implies both
�r�u ≤ �a�u and �r�u ≤ �b�u. The same holds for | by replacing≥ with ≤. No approx-
imate Is-propagator for xor is defined, relying only on BL, simplification rules (see
Section 4.2) and delayed exact computation.

Property 1. Is-propagators ensure local Is-arc-consistency for ⊕, $, comparisons,
extensions and bitwise not. Moreover, correct propagation is ensured for non-linear BV
arithmetic operators, shifts, concatenation and extraction.

Efficiency. While unions of intervals are more precise than single intervals, they can in
principle induce efficiency issues since the number of intervals could grow up to half
of the domain sizes. Note that it is always possible to bound the number of intervals in
a domain, adding an approximation step inside the propagators. Moreover, we did not
observe any interval blow-up during our experiments (see Section 6).
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4.2 Other Issues

Simplification rules. These rules perform syntactic simplifications of the CSP [13]. It is
different from preprocessing in that the rules can be fired at any propagation step. Rules
can be local to a constraint (e.g. rewriting A⊗ 1 = C into A = C) or global (syntactic
equivalence of constraints, functional consistency, etc.). Moreover, simplification rules
may rewrite signed constraints into unsigned ones (when signs are known) and N

≤M
BV -

constraints into N≤M -constraints (when presence or absence of overflow is known).
The goal of this last transformation is to benefit both from the integer global difference
constraint and better congruence propagation on integer constraints.

Congruence domain. Since the new BL domain can already propagate certain forms
of congruence via the consistency propagators (see Section 5), only very restricted C-
propagators are considered for BV-constraints, based on parity propagation. However,
efficient C-propagation is performed when a BV-constraint is rewritten into a standard
integer constraint via simplification. Consistency between congruence domains and in-
terval domains (i.e. all bounds of intervals respect the congruence) is enforced in a
standard way with an additional consistency propagator [18].

5 New Domain: BitList BL

This section introduces the BitList domain BL, a new abstract domain designed to
work in synergy with intervals and congruences. Indeed, Is/C models well linear in-
teger arithmetic while BL is well-suited to linear bitwise operations (except for xor),
i.e. bitwise operations with one constant operand.

A BL is a fixed-size array of values ranging over {⊥, 0, 1, �}: these values are de-
noted �-bit in the following. Intuitively, given a BL bl = (bl1, . . . , blN ), bli = 0 forces
bit i to be equal to 0, bli = 1 forces bit i to be equal to 1, bli = � does not impose
anything on bit i and bli = ⊥ denotes an unsatisfiable constraint. The set {⊥, 0, 1, �}
is equipped with a partial order 	 defined by ⊥ 	 0 	 � and ⊥ 	 1 	 �. This order
is extended to BL in a bitwise manner. A non-negative integer k is in accordance with
bl (of size N ), denoted k 	 bl, if its unsigned encoding on N bits, denoted �k�

N
BV

satisfies �k�
N
BV 	 bl. The concretisation of bl, denoted �bl�, is defined as the set of all

(non-negative) integers k such that k 	 bl. As such, the concretisation of a BL contain-
ing ⊥ is the empty set. Join (resp. meet) operator � (resp. �) are defined on �-bits as
min and max operations over the complete lattice (⊥, 0, 1, �,	), and are extended in a
component-wise fashion to BL.

BL-propagators. Precise and cheap propagators can be obtained for all constraints
involving only local (bitwise) reasoning, i.e. bitwise operations, unsigned shifts, con-
catenation, extraction and unsigned extension. They can be solved with N independent
fixpoint computation on �-bit variables. BL-propagator for constraint A & B = R is
presented in Figure 3, where ∧� extends naturally ∧ over �-bits.

Signed shift and signed extension involve mostly local reasoning, however, non-local
propagation steps must be added to ensure that all �-bits of the result representing the
sign take the same value, and that signs of operands and results are consistent. As BL
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procedure Propagator for A & B = R
A, B, R bit-vectors of size N

At the �-bit level (ai, bi, ri being �-bit values)
ρr : (ai, bi, ri) �→ (ai, bi, ai ∧� bi)
ρa : (ai, bi, ri) �→ (ite(ri = 1, 1, ite(bi = 1, ri, ai)), bi, ri)
ρb : similar to ρa

propagator ρ� for �-bit: νX.(ρa(X) � ρb(X) � ρr(X) � X)(X0).
propagator for the constraint: perform ρ� in a component-wise manner

Fig. 3. BL-propagator for constraint A & B = R

cannot model equality constraints between unknown �-bit values, these propagators
ensure only local abstract BL-arc-consistency. The same idea holds for comparisons.
Propagators are simple and cheap: for A ≤u B, propagate the longest consecutive se-
quence of 1s (resp. 0s) starting from the most significant �-bit from A to B (resp. B to
A). Again, these propagators ensure only local abstract BL-arc-consistency.

Arithmetic constraints involve many non-local reasoning and intermediate results.
Moreover backward propagation steps are difficult to define. Thus, this work focuses
only on obtaining cheap and correct propagation. Propagators for non-linear arithmetic
use a simple forward propagation step (no fixpoint) based on a circuit encoding of the
operations interpreted on �-bit values. Propagators for ⊕ and $ are more precise since
they use a complete forward propagation and some limited backward propagation. The
BL-propagator for ⊕ is depicted in Figure 4. An auxiliary BL representing the carry
is introduced locally to the propagator and the approach relies on the standard circuit
encoding for ⊕: N local equations ri = ai xor bi xor ci to compute the result, and
N non-local equations for carries ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci). Note that
the local equations are easy to invert thanks to properties of xor. Information in the
BL is propagated from least significant bit to most significant bit (via the carry). A
maximal propagation would require also a propagation in the opposite way. However,
experiments show that this alternative is expensive without any clear positive impact.
All these operations may appear to be a form of bit-blasting, but the encoding is used
only locally to the propagator and no new variables are added.

Property 2. BL-propagators ensure local BL-arc-consistency for bitwise constraints,
unsigned shifts, unsigned extension, concatenation and restriction. BL-propagators en-
sure local abstract BL-arc-consistency for signed shift, signed extension and all com-
parisons. Finally, BL-propagators are correct for all arithmetic constraints.

Ensuring consistency between Is/C and BL. Specific propagators are dedicated to
enforce consistency between the numerical domain Is/C and the BL domain. Let us
consider a variable x with domains bl, Is = ∪j [mj ..Mj ] and congruence (c, M) in-
dicating that x ≡ c mod M . Information can be propagated from BL to Is/C in two
ways, one for intervals and one for congruence. First, it is easy to compute an inter-
val Ib = [mb..Mb] such that �bl�u ⊆ Ib, mb 	 bl and Mb 	 bl: to compute m
(resp. M ), just replace all � values in bl with a 0 (resp. 1). The domain Is can then
be refined to Is � Ib. Second, if seq is the longest sequence of well-defined (i.e. 0
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A, B, R: bitlist
let N be the size of A, B and B

1: (A′, B′, R′) := (A, B, R)
2: C := � � � . . . � 0 /* bit-vector of size N+1 */
3: for i = 1 to N do
4: R′

i := (A′

i xor� B′

i xor� C′

i) � R′

i

5: A′

i := (R′

i xor� B′

i xor� C′

i) � A′

i

6: B′

i := (A′

i xor� R′

i xor� C′

i) � B′

i

7: C′

i := (A′

i xor� B′

i xor� R′

i) � C′

i

8: C′

i+1 := ((A′

i ∧� B′

i) ∨� (A′

i ∧� C′

i) ∨� (B′

i ∧� C′

i)) � C′

i+1.
9: end for

10: return (A′, B′, R′)

B
Fig. 4. BL-propagator for constraint A ⊕ B = R

or 1) least significant �-bits of bl, one can infer a congruence constraint on x such that
x ≡ �seq�u mod 2size(seq) . For example, if bl = �1�101 (on 6 bits), then x ≡ 5 mod 8,
and x ∈ [21..61]. Information can also be propagated from intervals and congruences
to BL: if (c, M) is such that M is equal to some 2k then the k least bits of bl can be
replaced by the encoding of c on k bits. Moreover, let k′ be the smallest integer such
that the maximal bound IM of I satisfies IM ≤ 2k′

. Then the most significant bits of
rank greater than k′ of bl must be replaced by 0s. These consistency propagators do not
impose that all interval bounds in Is satisfy the BL constraint. This situation can be
detected and it is always possible to increment/decrement the min/max-bound values
until a value suiting both Is/C and BL is reached. However, experiments (not reported
in this paper) suggest that it is too expensive to be worthwhile.

6 Experiments

This section presents an empirical evaluation of the techniques developed so far. These
experiments have two goals. The first goal (Goal 1) is to assess the practical benefit
of the new CLP(N≤M

BV ) framework, if any, compared to off-the-shelf CLP solvers and
straightforward non-linear encoding. To this end, a comparison is performed between
non-linear integer encoding for some well-known CLP solvers and a prototype imple-
menting our results. All tools are compared on a common set of search heuristics to
evaluate the stability of the results w.r.t. the search heuristic. The second goal (Goal 2)
is to compare the current best SAT-based approaches and the best CLP-based approach
identified above. We focus on quantifying the gap between the two approaches, com-
paring the benefits of each approach on different classes of constraints and evaluating
scalability issues w.r.t. domain sizes (i.e. bit-width).

CLP(N≤M
BV ) implementation. COLIBRI is a CLP(N≤M ) solver integrated in the

model-based testing tool GaTeL [20]. It provides abstract numerical domains (unions of
intervals, congruence), propagators and simplification rules for all common arithmetic
constraints and advanced optimisations like global difference constraint [14]. COLIBRI
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is written in Eclipse [1], however it does not rely on the CLP(N≤M ) library Eclipse/IC.
Our own prototype is written on top of COLIBRI (version v2007), adding the BL do-
main and all BL- and Is/C-propagators described in sections 4 and 5. The following
implementation choices have been made: (1) for Is domains the number of intervals
is limited to 500; (2) the consistency propagator between Is/C and BL is approxi-
mated: only inconsistent singleton are removed from Is. Four different searches have
been implemented (min, rand, split, smart). The three first searches are basic dfs
with value selection based on the minimal value of the domain (min), a random value
(rand) or splitting the domain in half (split). The smart search is an enhancement
of min: the search selects at each step the most constrained variable for labelling ; after
one unsuccessful labelling, the variable is put in quarantine: its domain is split and it
cannot be labelled anymore until all non labelled variables are in quarantine.

Experimental setting. All problems are conjunctive QFBV formulas (including ite op-
erators). There are two different test benches. The first one (T1) is a set of 164 problems
coming from the standard SMT benchmark repository [24] or automatically generated
by the test generation tool OSMOSE [6]. (T1) is intended to compare tool performance
on a large set of medium-sized examples. Problems involve mostly 8-bit and 32-bit
width bit-vectors and range from small puzzles of a few dozen operators to real-life
problems with 20,000 operators and 1,700 variables. (T1) is partitioned into a roughly
equal number of bitwise problems, linear arithmetic problems and non-linear arithmetic
problems. There are also roughly as many SAT instances as UNSAT instances. The sec-
ond test bench (T2) is a set of 87 linear and non-linear problems taken from (T1) and
automatically extended to bit-width of 64, 128, 256 and 512 (difficulty of the prob-
lem may be altered). (T2) is intended to compare scalability on arithmetic constraints
w.r.t. the domain size.

Competing tools are described hereafter. Our own prototype comes in 3 versions,
depending on domains and propagators used: COL (COLIBRI version v2007 with
non-linear encoding), COL-D (COLIBRI v2007 with dedicated Is/C-propagators) and
COL-D-BL (COL-D with BL). A new version of COLIBRI (v2009) with better support
for non-linear arithmetic is also considered (COL-2009). The other CLP solvers are the
standard tools GNU Prolog [10], Eclipse/IC [1], Choco [16] and Abscon [19]. GNU
Prolog and Eclipse/IC use single interval domains while Choco and Abscon represent
domains by enumeration. GNU Prolog and Eclipse/IC are used with built-in dfs-min,
dfs-random and dfs-split heuristics. Choco and Abscon are used with settings of the
CLP competition. Selected SAT-based solvers are STP [15] (winner of the 2006 SMT-
BV competition [24]), Boolector [2] (winner 2008) and MathSat [4] (winner 2009). We
take the last version of each tool.

All experiments were performed on a PC Intel 2Ghz equipped with 2GBytes of
RAM. Time out is set up to 20s for (T1) and 50s for (T2).

Results. A problem with all the CLP solvers we have tried except COLIBRI is that
they may report overflow exception when domain values are too large: integer values
are limited to 224 in GNU Prolog, between 224 and 232 in Choco and Abscon and 253

in Eclipse/IC. In particular, GNU Prolog and ABSCON report many bugs due to over-
flows in internal computations. Moreover, Choco and Abscon are clearly not designed
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for large domains and perform very poorly on our examples, confirming previous exper-
imental results [23]. Thus, we report in the following only results of Eclipse/IC. Results
are presented in Table 1 (a) (T1) and (c) (T2). A detailed comparison of COLIBRI-D-
BL-smart, STP, Boolector and MathSat can be found in Table 1 (b).

A few remarks about the results. First, Eclipse/IC performs surprisingly better than
the standard version of COLIBRI. Actually, the non-linear encoding of BV problems
prevents most of the optimisations of COLIBRI to succeed, since they target linear in-
teger arithmetic. However, COLIBRI v2009 with optimised propagators for non-linear
arithmetic performs much better than Eclipse/IC. Second, MathSat appears to be less
efficient than Boolector and STP, which is rather surprising since it won the 2009 SMT
competition. Recall that we consider only conjunctive problems and that our test bench
exhibits a large proportion of (non-linear) arithmetic problems.

A few remarks about our implementation. (1) We did not observe any interval blow-
up during computation, even when setting up a larger limit (2000 intervals per domain).
(2) We have implemented a full consistency propagation between domains Is/C and
BL as described in Section 5: it appears to be less efficient than the restricted consis-
tency propagation described earlier in this section.

Comments. Goal 1. It is clear from Table 1 that the CLP(N≤M
BV ) framework devel-

oped so far allows a significant improvement compared to the standard CLP(N≤M )
approach with non-linear encoding. Actually, our complete CLP(N≤M

BV ) solver with
smart search is able to solve 1.7x more examples in 2.4x less time than Eclipse/IC,
and 3x more examples in 3.5x less time than standard COLIBRI. Additional interesting
facts must be highlighted:

– Each new feature allows an additional improvement: COL-D-BL performs better
than COL-D which performs better than COL. Moreover, this improvement is ob-
served for each of the four heuristics considered here.

– The smart search permits an additional gain only when dedicated propagators are
used. It does not add anything to the standard version of COLIBRI.

– Every enhanced version of COLIBRI (v2007) performs better than Eclipse/IC and
COLIBRI v2009.

Goal 2. According to (T1), global performance of our prototype lies within those of
MathSat and STP in both number of successes and computation time, Boolector being
a step ahead of the other three tools. Surprisingly, our prototype performs better than
the BV-winner 2009, but worse than the BV-winner 2006. We can then conclude that, at
least for medium-sized conjunctive problems, CLP can compete with current SAT-based
approaches. Considering results by category (Table 1 (b)), our prototype is the best on
non-linear UNSAT problems and very efficient on non-linear SAT problems (Boolector
solves one more example, but takes 1.5x more time). Finally, considering results from
T2 and Table 1 (c), CLP(N≤M

BV ) scales much better than SAT-based approaches on arith-
metic problems: the number of time outs and computation time is almost stable between
64-bit and 512-bit. STP reports very poor scalability. Here, MathSat both performs and
scales much better than the other SAT-based tools. Note that due to the automatic scal-
ing of examples, many LA SAT problems are turned into LA UNSAT problems where
MathSat is much better.
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Table 1. Experimental results

Tool Category Time # success

Eclipse/IC-min N
≤M 1760 78/164

Eclipse/IC-rand N
≤M 2040 72/164

Eclipse/IC-split N
≤M 1750 79/164

COL-min N
≤M 2436 43/164

COL-rand N
≤M 2560 36/164

COL-split N
≤M 2550 40 /164

COL-smart N
≤M 2475 40/164

COL-2009-min N
≤M 1520 89/164

COL-2009-rand N
≤M 1513 89/164

COL-2009-split N
≤M 1682 85/164

COL-2009-smart N
≤M 1410 95/164

COL-D-min N
≤M

BV
1453 94/164

COL-D-rand N
≤M

BV
1392 96/164

COL-D-split N
≤M

BV
1593 89/164

COL-D-smart N
≤M

BV
893 125 /164

COL-D-BL-min N
≤M

BV
1174 108/164

COL-D-BL-rand N
≤M

BV
1116 111/164

COL-D-BL-split N
≤M

BV
1349 103/164

COL-D-BL-smart N
≤M

BV
712 138/164

MathSat SAT 794 128/164

STP SAT 618 144/164

Boolector SAT 291 157/164

(a) T1: Time and #successes
Time out = 20s

category COL-D-BL STP Boolect MathSat
smart

BW SAT 30 (30/30) 2 (30/30) 0 (30/30) 2 (30/30)
BW UNSAT 3 (30/30) 12 (30/30) 0 (30/30) 4 (30/30)
LA SAT 164 (28/30) 88 (30/30) 9 (30/30) 303 (15/30)
LA UNSAT 360 (7/25) 68 (25/25) 42 (23/25) 223 (16/25)
NLA SAT 148 (23/29) 357 (13/29) 220 (24/29) 221 (18/29)
NLA UNSAT 7 (20/20) 82 (16/20) 20 (20/20) 41 (19/20)
Total 712 (138/164) 589 (145/164) 291 (157/164) 794 (128/164)

(b) T1: Time and # successes for Time out=20s
(BW: bitwise LA: linear arith. NLA: non-linear arith.)

bit-width 64 128 256 512
COL-D-BL-smart 8 TO, 443s 10 TO, 500s 10 TO, 503s 10 TO, 510s
STP 10 TO, 1093s 17 TO, 2054s 27 TO, 3500s 35 TO, 3686s
Boolector 2 TO, 213s 6 TO, 385s 8 TO, 656s 16 TO, 1056s
MathSat 2 TO, 180s 2 TO, 308s 2 TO, 379s 2 TO, 545s

(c) T2: #TO and time, Time out = 50s
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7 Related Work

Word-level BV solving has already been investigated through translations into non-
linear arithmetic [12,25,27]. On the one hand, none of these works consider specific
resolution techniques: they all rely on standard approaches for integer arithmetic. On
the other hand, these encodings require bit-blasting at least for bitwise operations which
leads to large formulas. Experiments are performed only with very low bit-width (4 or
8) and no experimental comparison with SAT-based solvers is conducted. The work
reported in [5] presents many similarities with this paper. In particular, the authors de-
scribe a dedicated domain similar to BL and they advocate the use of dedicated propa-
gators for domain I (single interval). There are several significant differences with our
own work. First, our experiments demonstrate that more elaborated domains are nec-
essary to gain performance. Second, their dedicated domains and propagators are not
described, they do not seem to handle signed operations and it is not clear whether or
not they rely on bit-blasting for bitwise operations. Moreover, issues such as consis-
tency or efficiency are not discussed. Third, there is no empiric evaluation against other
approaches. Finally, experimental results reported in [23] confirm our own experiments
concerning SAT-based approaches and traditional CLP(N≤M )-based approaches.

8 Conclusion

Ideas presented in this paper allow a very significant improvement of word-level CLP-
based BV solving, considerably lowering the gap with SAT-based approaches and even
competing with them on some particular aspects (non-linear BV arithmetic, scalabil-
ity). There is still room for improvement on both the search aspect and the propaga-
tion aspect. And there remain many challenging issues: the best SAT-based approaches
are still ahead on arbitrary conjunctive QFBV formulas, and formulas with arbitrary
boolean skeletons and array operations should be investigated as well.

Acknowledgements. We are very grateful to Bruno Marre and Benjamin Blanc for
developing COLIBRI, as well as for many insightful comments and advices.
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Abstract. We extend the setting of Satisfiability Modulo Theories (SMT) by in-
troducing a theory of costs C, where it is possible to model and reason about
resource consumption and multiple cost functions, e.g., battery, time, and space.
We define a decision procedure that has all the features required for the integra-
tion withint the lazy SMT schema: incrementality, backtrackability, construction
of conflict sets, and deduction. This naturally results in an SMT solver for the
disjoint union of C and any other theory T .

This framework has two important applications. First, we tackle the problem
of Optimization Modulo Theories: rather than checking the existence of a satis-
fying assignment, as in SMT, we require a satisfying assignment that minimizes
a given cost function. We build on the decision problem for SMT with costs, i.e.,
finding a satisfying assigniment with cost within an admissibility range, and pro-
pose two algorithms for optimization. Second, we use multiple cost functions to
deal with PseudoBoolean constraints. Within the SMT(C) framework, the effec-
tively PseudoBoolean constraints are dealt with by the cost solver, while the other
constraints are reduced to pure boolean reasoning.

We implemented the proposed approach within the MathSAT SMT solver, and
we experimentally evaluated it on a large set of benchmarks, also from industrial
applications. The results clearly demonstrate the potential of the approach.

1 Motivations and Goals

Important verification problems are naturally encoded as Satisfiability Modulo The-
ory (SMT) problems, i.e. as satisfiability problems for decidable fragments of first or-
der logic. Efficient SMT solvers have been developed, that combine the power of SAT
solvers with dedicated decision procedures for several theories of practical interest.

In many practical domains, problems require modeling and reasoning about resource
consumption and multiple cost functions, e.g., battery, time, and space. In this paper,
we extend SMT by introducing a theory of costs C. The language of the theory of costs
is very expressive: it allows for multiple cost functions and, for each of these, arbitrary
Boolean conditions may be stated to result in a given cost increase; costs may be be
both lower- and upper-bounded, also depending on Boolean conditions. In the current
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paper, we concentrate on the case of Boolean cost functions, where costs are bound by
and function of Boolean atoms (including relations over individual variables). For the
theory of costs, it is possible to define a decision procedure that has all the features
required for the integration within the lazy SMT schema: incrementality, backtracka-
bility, construction of conflict sets, and deduction. This naturally results in a solver for
SMT(C), and, given the assumption of Boolean cost functions, also in a solver for the
disjoint union of C and any other theory T .

Based on the theory of costs, we propose two additional contributions. First, we
extend SMT by tackling the problem of Optimization Modulo Theories: rather than
checking the existence of a satisfying assignment, as in SMT, we require a satisfying
assignment that minimizes a given cost function. We build on the decision problem for
SMT with costs, i.e. finding a satisfying assignment with cost within an admissibility
range. The optimization problem is then tackled as a sequence of decision problems,
where the admissibility range is adapted from one problem to the next. We propose
two algorithms: one is based on branch-and-bound, where the admissibility range is
increasingly tightened, based on the best valued solution so far. The other one, based
on binary search, proceeds by bisecting the admissible interval, and leveraging under-
approximations as well as over-approximations.

Second, we show how to exploit the feature of multiple cost functions to deal with
the well known problem of PseudoBoolean (PB) constraints. The approach can be seen
as dealing with PB problems as in an SMT paradigm. The PB constraints are dealt with
by the cost solver (as if it were a solver for the theory of PB constraints), while the
other constraints are reduced to pure Boolean reasoning. The approach is enabled by
the ability of the cost theory to deal with multiple cost functions. The resulting solution
is very elegant and extremely simple to implement.

We implemented the proposed approach within the MathSAT SMT solver. We ex-
perimentally evaluate it on a wide set of benchmarks, including artificial benchmarks
(obtained by adding cost functions to the problems in SMT-LIB), real-world (from two
different industrial domains) benchmarks, and benchmarks from the PB solver compe-
tition. The results show that the approach, despite its simplicity, is very effective: it is
able to solve complex case studies in SMT(T ∪ C) and, despite its simplicity, it shows
surprising efficiency in some Boolean and PB optimization problems, outperforming
the winners of the most recent comptetition.

This paper is structured as follows. In §2 we present some background. The theory
of costs and the decision procedure are presented in §3. In §4 we show how to tackle
optimization problems. In §5 we show how to encode PseudoBoolean constraints as
SMT(C). In §6 we experimentally evaluate our approach. In §7 we discuss some related
approaches. In §8 we draw some conclusions and outline directions for future research.
The proofs and some possibly-useful material are reported in [8].

2 Background on SMT and SMT Solving

Satisfiability Modulo (the) Theory T , SMT(T ), is the problem of deciding the satisfia-
bility of (typically) ground formulas under a background theory T . (Notice that T can
also be a combination of simpler theories: T def=

⋃
i Ti.) We call an SMT(T ) solver any
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tool able to decide SMT(T ). We call a theory solver for T , T -solver, any tool able to
decide the satisfiability in T of sets/conjunctions of ground atomic formulas and their
negations (T -literals). If the input set of T -literals μ is T -unsatisfiable, then T -solver
returns unsat and the subset η of T -literals in μ which was found T -unsatisfiable; (η
is hereafter called a T -conflict set, and ¬η a T -conflict clause.) if μ is T -satisfiable,
then T -solver returns sat; it may also be able to return some unassigned T -literal
l s.t. {l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ μ. We call this process T -deduction
and (
∨n

i=1 ¬li ∨ l) a T -deduction clause. Notice that both T - and C-conflict and T -
deduction clauses are valid in T . We call them T -lemmas.

We adopt the following terminology and notation. The bijective function T 2B (“T -
to-Boolean”), called Boolean abstraction, maps propositional variables into themselves,
ground T -atoms into fresh propositional variables, and is homomorphic w.r.t. Boolean
operators and set inclusion. The symbols ϕ, ψ, φ denote T -formulas, and μ, η denote
sets of T -literals. If T 2B(μ) |= T 2B(ϕ), then we say that μ propositionally satisfies ϕ
written μ |=p ϕ. With a little abuse of terminology, we will often omit specifying “the
Boolean abstraction of” when referring to propositional reasoning steps, as if these steps
were referred to the ground T -formula/assignment/clause rather than to their Boolean
abstraction. (E.g., we say “ϕ is given in input to DPLL” rather “T 2B(ϕ) is...” or “μ
is a truth assignment for ϕ” rather than “T 2B(μ) is a truth assignment for T 2B(ϕ)”.)
This is done w.l.o.g. since T 2B is bijective.

In a lazy SMT(T ) solver the truth assignments for ϕ are enumerated and checked
for T -satisfiability, returning either sat if one T -satisfiable truth assignment is found,
unsat otherwise. In practical implementations, ϕ is given as input to a modified version
of DPLL, and when an assignment μ is found s.t. μ |=p ϕ μ is fed to the T -solver; if
μ is T -consistent, then ϕ is T -consistent; otherwise, T -solver returns the conflict set η
causing the inconsistency. Then the T -conflict clause ¬η is fed to the backjumping and
learning mechanism of DPLL (T -backjumping and T -learning).

Important optimizations are early pruning and T -propagation: the T -solver is in-
voked also on an intermediate assignment μ: if it is T -unsatisfiable, then the procedure
can backtrack; if not, and if the T -solver performs a T -deduction {l1, ..., ln} |=T l,
then l can be unit-propagated, and the T -deduction clause (

∨n
i=1 ¬li ∨ l) can be used in

backjumping and learning. The above schema is a coarse abstraction of the procedures
underlying all the state-of-the-art lazy SMT tools. The interested reader is pointed to,
e.g., [6], for details and further references.

3 Satisfiability Modulo the Theory of Costs

3.1 Modeling Cost Functions

We extend the SMT framework by adding cost functions. Let T be a first-order theory.
We consider a pair 〈ϕ, costs〉, s.t. costs

def= {costi}M
i=1 is an array of M integer cost

functions over T and ϕ is a Boolean combination on ground T -atoms and atoms in the
form (costi ≤ c) s.t. c is some integer value.1 We focus on problems in which each
costi is a Boolean cost function in the form

1 Notice that every atom in the form (costi �� c) s.t. �� ∈ {=, �=, <,≤, >,≥} can be expressed
as a Boolean combination of constraints in the form (costi ≤ c).
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costi =
∑Ni

j=1 ite(ψi
j , c

i
j1, c

i
j2), (1)

s.t., for every i, ψi
j is a formula in T and ci

j1,ci
j2 are integer constants values and ite

(term if-then-else) is a function s.t. ite (Ai
j ,ci

j1,ci
j2) returns ci

j1 if Ai
j holds, ci

j2 other-
wise. We notice that the problem is very general, and it can express a wide amount of
different interesting problems, as it will be made clear in the next sections.

Hereafter w.l.o.g. we can restrict our attention to problems 〈ϕ, costs〉 in which:

costi =
∑Ni

j=1 ite(Ai
j , c

i
j, 0), (2)

for every i, s.t. for every j, Ai
j is a Boolean literal and 0 < ci

j ≤ ci
j+1. (Passing from (1)

to (2) is straighforward [8].) We denote by boundi
max the value

∑Ni

j=1 ci
j , for every i.

We notice that we can easily encode (2) into subformulas in the theory of linear
arithmetic over the integers (LA(Z)) and hence the whole problem 〈ϕ, costs〉 into a
ground T ∪LA(Z)-formula, where T and LA(Z) are completely-disjoint theories, and
have it solved by an SMT solver. Unfortunately this technique is inefficient in practice.
(An explanation of this fact is reported in [8].) Instead, we cope with this problem by
defining an ad-hoc theory of costs.

3.2 A Theory of Costs C

We address the problem by introducing a “theory of costs” C consisting in:

– a collection of M fresh variables c1, . . . , cM , denoting the output of the functions
cost1,. . . ,costM ;

– a fresh binary predicate BC (“bound cost”), s.t. BC(ci, c) mean “(ci ≤ c)”, ci and
c are one of the cost variables and an integer value respectively;

– a fresh ternary predicate IC (“incur cost”), s.t. IC(ci, j, ci
j) means “ci

j is added to
ci as jth element in the sum (2)”, ci, j, and ci

j being one of the cost variables,
an integer value denoting the index in the sum (2), and the corresponding integer
value respectively.2 We introduce exactly

∑M
i=1 Ni distinct atoms IC(ci, j, ci

j), one
for each ci

j in (2).

We call C-atoms all atoms in the form BC(ci, c), IC(ci, j, ci
j), and C-literals all C-atoms

and their negations. We call a T ∪ C-formula any Boolean combination of ground T -
and C-atoms (simply C-formula if T is pure Boolean logic).

Intuitively, the theory of costs allows for modeling domains with multiple costs ci

by means of C- or T ∪ C-formulas. For instance, in the domain of planning for an
autonomous rover, different costs may be battery consumption, and elapsed time. In
the theory of costs, IC statements can be used to state the cost associated to specific
partial configurations. For instance, a specific drilling action may require 5 seconds and
20mAh of battery energy, Drill → (IC(battery, 1, 5)∧ IC(time, 1, 20)), while moving
can have different impact on the available resources: Move → (IC(battery, 2, 20) ∧

2 Notice that the index j in IC(ci, j, ci
j) is necessary to avoid using the same predicate for two

constants ci
j and ci

j′ with the same value but different indexes j, j′.
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IC(time, 2, 10)). The BC predicates can be used to state for instance that the achieve-
ment of a certain goal G1 should not require more than a certain amount of energy,
while another goal should always be completed within a certain time bound and with
a certain energy consumption: G1 → BC(battery, 20) and G2 → BC(battery, 20) ∧
BC(time, 10). Notice that it is also possible to state lower bounds, e.g. the overall plan
should never take less than a certain amount of time.

We consider a generic set μ
def= μB ∪ μT ∪ μC s.t. μB is a set of Boolean literals, μT

is a set of T -literals, and μC
def=
⋃M

i=1 μi
C is a set of C-literals s.t., for every i, μi

C is:

μi
C

def= {BC(ci, ubi
(k)) | k ∈ [1, ...Ki]} ∪ {¬BC(ci, lbi

(m) − 1) | m ∈ [1, ..., Mi]} (3)

∪ {IC(ci, j, ci
j) | j ∈ J i+} ∪ {¬IC(ci, j, ci

j) | j ∈ J i−}, (4)

where ubi
(1), . . . , ubi

(Ki), lb
i
(1), . . . , lb

i
(Mi) are positive integer values, J i+ and J i− are

two sets of indices s.t. J i+ ∩ J i− = ∅ and J i+ ∪ J i− ⊆ {1, . . . , Ni}, and no literal oc-
curs both positively and negatively in μ. We say μi

C is total if J i+ ∪J i− = {1, . . . , Ni},
partial otherwise. Notice that every truth assignment μ for a SMT(T ∪ C) formula ϕ is
in the form μB ∪ μT ∪ μC described above, s.t. μB, μT and μC are the restriction of μ
to its Boolean, T - and C-literals respectively.

Let lbi
max

def= max({lbi
(1), . . . , lb

i
(Mi)}) and ubi

min
def= min({ubi

(1), . . . , lb
i
(Ki)}).

Definition 1. If μi
C is total, we say that μi

C is C-consistent if and only if

lbi
max ≤∑j∈Ji+ ci

j ≤ ubi
min. (5)

If μi
C is partial, we say that μi

C is C-consistent if and only if there exists a total C-
consistent superset of μi

C , that is, a C-consistent set μi
C
∗ in the form

μi
C ∪ {IC(ci, j, ci

j) | j ∈ Ki+} ∪ {¬IC(ci, j, ci
j) | j ∈ Ki−} (6)

s.t. (J i+ ∪ Ki+) ∩ (J i− ∪ Ki−) = ∅ and (J i+ ∪ Ki+ ∪ J i− ∪ Ki−) = {1, . . . , Ni}.

Proposition 1. If lbi
max > ubi

min, then μi
C is C-inconsistent.

Proposition 2. A partial set μi
C (3)-(4) is C-consistent if and only if the following two

conditions hold: ∑
j∈Ji+ ci

j ≤ ubi
min (7)

(boundi
max −∑j∈Ji− ci

j)
def=
∑

j∈{1,...,Ni}\Ji− ci
j ≥ lbi

max. (8)

Intuitively, if μi
C violates (8), it cannot be expanded into a C-consistent set by adding

positive or negative C-literals. Notice that if μi
C is total, then {1, . . . , Ni} \ J i− is J i+,

so that (7) and (8) collapse into the right and left part of (5) respectively. Hereafter we
call
∑

j∈Ji+ ci
j the i-th cost of μ, denoted as CostOfi(μ) or CostOfi(μi

C), and we call

(boundi
max−∑j∈Ji− ci

j) the maximum possible i-th cost of μ, denoted as MCostOfi(μ)
or MCostOfi(μi

C).
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The notion of C-consistency is extended to the general assignment μ above as fol-
lows. We say that μC

def=
⋃M

i=1 μi
C is C-consistent if and only if μi

C is C-consistent for ev-

ery i. We say that μ
def= μB∪μT ∪μC is T ∪C-consistent if and only if μT is T -consistent

and μC is C-consistent. (Notice that μB is consistent by definition.) A T ∪ C-formula is
T ∪ C-satisfiable if and only if there exists a T ∪ C-satisfiable assignment μ defined as
above which propositionally satisfies it.

3.3 A Decision Procedure for the Theory of Costs: C-Solver

We add to the SMT(T ) solver one theory solver for the theory of costs C (C-solver
hereafter). C-solver takes as input a truth assignment μ

def= μB ∪ μT ∪ μC selecting only
the C-relevant part μC

def=
⋃M

i=1 μi
C , and for every i, it checks whether μi

C is C-satisfiable
according to Propositions 1 and 2. This works as follows:

1. if lbi
max > ubi

min, then C-solver returns unsat and the C-conflict clause

BC(ci, lbi
max − 1) ∨ ¬BC(ci, ubi

min); (9)

2. if CostOfi(μi
C) > ubi

min, then C-solver returns unsat and the C-conflict clause

¬BC(ci, ubi
min) ∨∨j∈Ki+ ¬IC(ci, j, ci

j) (10)

where Ki+ is a minimal subset of J i+ s.t.
∑

j∈Ki+ ci
j > ubi

min;

3. if MCostOfi(μi
C) < lbi

max, then C-solver returns unsat and the C-conflict clause

BC(ci, lbi
max − 1) ∨∨j∈Ki− IC(ci, j, ci

j) (11)

where Ki− is a minimal subset of J i− s.t.
∑

j∈Ki− ci
j < lbi

max;

If neither condition above is verified for every i, then C-solver returns sat, and the
current values of ci (i.e., CostOfi(μ)) for every i. In the latter case, theory propagation
for C (C-propagation hereafter) can be performed as follows:

4. every unassigned literal BC(ci, ubi
(r)) s.t. ubi

(r) ≥ ubi
min and every unassigned

literal ¬BC(ci, lbi
(s) − 1) s.t. ubi

(s) ≤ lbi
max can be returned (“C-deduced”). It

is possible to build the corresponding C-deduction clause by applying step 1. to
μi
C ∪ {BC(ci, ubi

(r))} and μi
C ∪ {¬BC(ci, lbi

(s) − 1)} respectively;

5. if CostOfi(μi
C) ≤ ubi

min but CostOfi(μi
C ∪ {IC(ci, j, ci

j)}) > ubi
min for some

j �∈ (J i+ ∪ J i−), then ¬IC(ci, j, ci
j) is C-deduced. It is possible to build the corre-

sponding C-deduction clause by applying step 2. to μi
C ∪ {IC(ci, j, ci

j)};

6. if MCostOfi(μi
C) ≥ lbi

max but MCostOfi(μi
C ∪ {¬IC(ci, j, ci

j)}) < lbi
max for some

j �∈ (J i+ ∪ J i−), then IC(ci, j, ci
j) is C-deduced. It is possible to build the corre-

sponding C-deduction clause by applying step 3. to μi
C ∪ {¬IC(ci, j, ci

j)}.

C-solver can be easily implemented in order to meet all the standard requirements
for integration within the lazy SMT schema. In particular, it can work incrementally,
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by updating CostOfi(μ) and MCostOfi(μ) each time a literal in the form IC(ci, j, ci
j) or

¬IC(ci, j, ci
j) is added to μ. Detecting the C-inconsistency inside C-solver is computa-

tionally very cheap, since it consists in performing only one sum and one comparison
each time a C-literals is incrementally added to μC . (Thus, is O(1) for every incremental
call.) The cost of performing C-propagation is linear in the number of literals propa-
gated (in fact, it suffices to scan the IC(ci, j, ci

j) literals in decreasing order, until none
is C-propagated anymore).

3.4 A SMT(T ∪ C)-Solver

A SMT(T ∪ C)-solver can be implemented according to the standard lazy SMT archi-
tecture. Since the theories T and C have no logic symbol in common (C does not have
equality) so that they do not interfere to each other, T -solver and C-solver can be run
independently. In its basic version, a SMT(T ∪ C) solver works as follows: an inter-
nal DPLL solver enumerates truth assignments propositionally satisfying ϕC and both
C-solver and T -solver are invoked on on each of them. If both return sat, then the prob-
lem is satisfiable. If one of the two solvers returns unsat and a conflict clause C, then
C is used as a theory conflict clause by the rest of the SMT(T ∪ C) solver for theory-
driven backjumping and learning. The correctness an completeness of this process is a
direct consequence of that of the standard lazy SMT paradigm, of Proposition 3 and of
the definitions of C- and T ∪ C-consistency. As with plain SMT(T ), the SMT(T ∪ C)
solver can be enhanced by means of early-pruning calls to C-solver and C-propagation.

4 Optimization Modulo Theories via SMT(T ∪ C)

In what follows, we consider the problem of finding a satisfying assignment to an
SMT(T ) formula which is subject to some bound constraints to some Boolean cost
functions and such that one Boolean cost function is minimized. We refer to this prob-
lem as Boolean Optimization Modulo Theory (BOMT). We first address the decision
problem (§4.1) and then the minimization problem (§4.2).

4.1 Addressing the SMT(T ) Cost Decision Problem

An SMT(T ) cost decision problem is a triple 〈ϕ, costs, bounds〉 s.t. ϕ is a T -formula,
costs are in the form (2), and bounds def= {〈lbi, ubi〉}M

i=1, where lbi, ubi are integer
values s.t. 0 ≤ lbi ≤ ubi ≤ boundi

max. We call lbi, ubi and [lbi, ..., ubi] the lower
bound, the upper bound and the range of costi respectively. (If some of the lbi’s and
ubi’s are not given, we set w.l.o.g. lbi = 0 and ubi = boundi

max.)
We encode the decision problem 〈ϕ, costs, bounds〉 into the SMT(T ∪ C)-

satisfiability problem of the following formula:

ϕC
def= ϕ ∧∧M

i=1

(
BC(ci, ubi) ∧ ¬BC(ci, lbi − 1) ∧∧Ni

j=1(A
i
j ↔ IC(ci, j, ci

j))
)

.(12)

Proposition 3. A decision problem 〈ϕ, costs, bounds〉 has a solution if and only if ϕC
is T ∪C-satisfiable. In such a solution, for every i, the value of ci is CostOfi(μ), μ being
the T ∪ C-satisfiable truth assignment satisfying ϕC .
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1. int IncLinearBOMT(ϕC,c1)
2. mincost = +∞; bound = ub1;
3. do
4. 〈status, cost〉 = IncrementalSMTT ∪C(ϕC , BC(c1, bound));
5. if (status==sat)
6. then {
7. ϕC = ϕC ∧ BC(c1, bound); //activates learned C-lemmas
8. mincost = cost;
9. bound = cost-1; }

10. while (status==sat);
11. return mincost;

Fig. 1. A BOMT(T ) algorithm based on linear search and incremental SMT(T ∪ C)

4.2 Addressing the SMT(T ) Cost Minimization Problem

A SMT(T ) cost minimization problem is a triple 〈ϕ, costs, bounds〉 s.t. ϕ, costs and
bounds are as in §4.1; the problem consists in finding one of the T -models for ϕ whose
value of cost1 is minimum. We call cost1 the goal cost function. (That is, we adopt the
convention of considering the goal function the first function.) Using SMT(T ∪ C), we
addressing BOMT(T ) with two approaches, one based on linear-search/branch&bound,
and the other based on binary-search.

A Linear search/branch&bound approach. Consider the T ∪ C-formula ϕC in (12).
In linear search, if ϕC is found T ∪ C-satisfiable with a certain cost cost for the cost
variable c1, we know that the minimum value of c1 is at most cost. We can then con-
junct BC(c1, cost − 1) to ϕC and try again. We repeat this step until the formula is
unsatisfiable, and then the last solution found is optimal.

The pseudo-code of the algorithm can be seen in Fig. 1. The procedure receives as
input the formula ϕC as in (12) and the cost variable c1 to minimize. Initially, bound is
set to the value ub1 in (12). Each call IncrementalSMTT ∪C(ϕC , BC(c1, bound)) is a call
to an incremental SMT(T ∪ C)-solver, which asserts BC(c1, bound) before starting the
search, returning unsat if ϕC ∧ BC(c1, bound) is T ∪ C-inconsistent, sat plus the value
cost

def= CostOf1(μ), μ being the T ∪ C-consistent satisfying assignment, otherwise.
The fact of having an incremental SMT(T ∪ C) solver is crucial for efficiency, since it
can reuse the Boolean, T - and C-lemmas learned in the previous iterations to prune the
search. To this extent, the fact of explicitly conjoining BC(c1, bound) to ϕC (7.) is not
necessary for correctness, but it allows for reusing the C-lemmas (10) from one call to
the other to prune the search.

Termination is straightforward, since mincost is a suitable ranking function. The
correctness and completeness of the algorithm is also straightforward: in the last itera-
tion we prove that there exist no solution better than the current value of mincost, so
mincost is optimal. (If no solution exists, then the procedure returns +∞.)

A binary-search approach. A possibly faster way of converging on the optimal solu-
tion is binary search over the possible solutions. Instead of tightening the upper bound
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1. int IncBinaryBOMT(ϕC,c1)
2. lower = lb1; upper = ub1;
3. mincost = +∞; guess = ub1;
4. do
5. 〈status, cost〉 = IncrementalSMTT ∪C(ϕC , BC(c1, guess));
6. if (status==sat)
7. then {
8. ϕC = ϕC ∧ BC(c1, guess); // activates learned C-lemmas
9. mincost = cost;

10. upper = cost-1; } // more efficient than guess-1
11. else {
12. ϕC = ϕC ∧ ¬BC(c1, guess); // activates learned C-lemmas
13. lower = guess +1; }
14. guess = �(lower + upper)/2�;
15. while (lower ≤ upper);
16. return mincost;

Fig. 2. A BOMT(T ) algorithm based on binary search and incremental SMT(T ∪ C)

with the last solution found, we keep track of the interval of all possible solutions
[lower, upper], and we proceed bisecting such interval, each time picking a guess as
�(lower + upper)/2�.

The pseudo-code of this algorithm can be seen in Fig. 2. As before, the proce-
dure receives as input ϕC and c1. [lower, upper] is initialized to [lb1, ub1], mincost
to +∞ and guess to ub1; each call IncrementalSMTT ∪C(ϕC , BC(c1, bound)) either
returns sat plus the value cost

def= CostOf1(μ), or it returns unsat. In the first case,
the range is restricted to [lower, cost − 1] (10.), in the latter to [guess + 1, upper]
(13.). (Notice that, unlike with standard binary search, restricting to [lower, cost − 1]
rather than to [lower, guess − 1] allows for exploiting the cost information to further
restrict the search.) Moreover, in the first case BC(c1, bound) is conjoined to ϕC (8.),
¬BC(c1, bound) in the latter (12.), which allows for reusing the previously-learned
C-lemmas (10) end (11) respectively to prune the search.

Termination is straightforward, since upper − lower is a suitable a ranking func-
tion. Correctness and completeness are similarly obvious, since the interval of possible
solutions will always contain the optimal solution.

5 PseudoBoolean and MAX-SAT/SMT as SMT(C)/SMT(T ∪ C)

The PseudoBoolean (PB) problem can be defined as the problem:

minimize
N1∑
j=1

c1
jA

1
j under the constraints {

Ni∑
j=1

ci
jA

i
j ≥ lbi | i ∈ [2, ..., M ]}(13)

where A1
j are Boolean atoms, Ai

j Boolean literals, and cj, ci
j , lb

i positive integer values.
This is an extension of the SAT problem which can efficiently express many problems
of practical interest.
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The SMT (C) problem is closely related to the PB problem, in fact they are equally
expressive. First, we notice that

∑
j ci

jA
i
j can be rewritten as

∑
j ite(Ai

j , c
i
j, 0), s.t.

we immediately see that the PB problem (13) is a subcase of the BOMT(T ) problem of
§4.2 where T is plain Boolean logic, and as such it can be solved using the SMT(T ∪ C)
encoding in (12) and the SMT(T ∪ C)-based procedures in §4.2.

For solving PB problems by translation into SMT (C) in practice, the above trans-
lation can be improved. As an example, PB constraints of the form

∑
j Ai

j ≥ 1 can
be translated into the single propositional clause

∨
j Ai

j . In general, it may be advanta-
geous to translate PB constraints into propositional clauses when the number of result-
ing clauses is low. See for instance [10] for some possibilities.

Proposition 4. For every SMT (C) instance, there exists a polynomial-time translation
into an equivalent instance of the PB problem

In the Weighted Partial Max-SMT(T ) problem, in a CNF T -formula φ
def= φh ∧ φs

each clause Cj in φs is tagged with a positive cost value cj , and the problem consists
in finding a T -consistent assignment μ which propositionally satisfies φh and maxi-
mizes the sum

∑
j s.t.μ|=pCj

cj (that is, minimizes
∑

j s.t.μ|=pCj
cj). The problem is

not “Weighted” iff ci
j = 1 for every j, and it is not “Partial” iff φh is the empty set

of clauses; the [Weighted] [Partial] Max-SAT problem is the [Weighted] [Partial] Max-
SMT(T ) problem where T is plain Boolean logic.

A Weighted Partial Max-SMT(T ) problem (and hence all its subcases described
above) can be encoded into a SMT(T ) cost minimization problem 〈ϕ, costs, bounds〉
s.t. ϕ

def= φh ∧ ∧j(Cj ∨ Ai
j), costs

def= {cost1} = {∑j ite(Ai
j , c

i
j, 0)} and bounds def=

{〈0,
∑

j ci
j〉}, which can be addressed as described in §4.2.

Vice versa, a SMT(T ) cost minimization problem 〈ϕ, costs, bounds〉 s.t. costs
def=

{cost1} = {∑j ite(A1
j , c

i
j , 0)} and bounds def= {}, can be encoded into a Weighted

Partial Max-SMT(T ) problem φ
def= φh ∧ φs where φh

def= ϕ and φs
def=
∧

j(¬A1
j ) s.t.

each unit-clause (¬A1
j ) is tagged with the cost ci

j .

6 Empirical Evaluation

The algorithms described in the previous sections have been implemented within the
MATHSAT SMT solver. In order to demonstrate the versatility and the efficiency of our
approach, we have tested MATHSAT in several different scenarios: BOMT(T ), Max-
SMT, Max-SAT, and PseudoBoolean optimization.

6.1 Results on Max-SMT

In the first part of our experiments, we evaluate the behaviour of MATHSAT on prob-
lems requiring the use of a combination of C and another theory T . For this evaluation,
we have collected two kinds of benchmarks. First, we have randomly-generated some
Max-SMT problems,3 starting from standard SMT problems taken from the SMT-LIB.

3 As observed in §5 BOMT(T ) with a single cost function is equivalent to weighted partial
Max-SMT, and therefore we only refer to Max-SMT here.
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The second group of benchmarks comes from two real-world industrial case studies.
These are the case studies that actually prompted us towards this research, because
a plain encoding in SMT without costs resulted in unacceptable performance. Inter-
estingly, although the application domains are very different, all the problems can be
thought of as trying to find optimal displacement for some components in space. Un-
fortunately, we can not disclose any further details.

As regards the comparison with other systems, to the best of our knowledge there
are two other SMT solvers that support Max-SMT, namely YICES [9] and BARCEL-
OGIC [13], which were therefore the natural candidates for comparison. Unfortunately
however, it was not possible to obtain from the authors a version of BARCELOGIC with
support for optimization, so we had to exclude it from our analysis.

We have performed experiments on weigthed Max-SMT and partial weighted Max-
SMT problems. For weighted Max-SMT, we have generated benchmarks by combining
n independent unsatisfiable CNF formulas in the SMT-LIB (for n = 2 and n = 3) and
assigning random weights to each clause. In order to obtain partial weighted Max-SMT
instances, instead, we have first generated random BOMT(T ) problems by assigning
random costs to a subset of the atoms (both Boolean and T -atoms) of some satisfi-
able formulas in the SMT-LIB, and then encoded the BOMT(T ) problems into partial
weighted Max-SMT ones, as descrbed in §5. The same encoding into partial weighted
Max-SMT was used also to convert the BOMT(T ) instances coming from the industrial
case studies.

We ran MATHSAT using both binary and linear search for optimization, and com-
pared it with YICES. All the experiments have been performed on 2.66Ghz Intel Xeon
machines with 6Mb of cache, running Linux. The time limit was set to 300 seconds,
and the memory limit to 2Gb.

The results for problems generated from SMT-LIB instances are reported in Table 1.
For each solver, the table lists the number of instances for which the optimal solution
was found (the total number of instances was 200), the number of instances for which
the given solver was the only one to find the optimal solution, and the total and average
execution times on the solved instances. From the results, we can see that binary search
outperforms linear search for this kind of problems. This is true in particular on the first
group of benchmarks, where binary search can find the optimum for more than twice as
many instances as linear search. In both cases, moreover, MATHSAT outperforms also
YICES, both in number of optimal solutions found and in execution time.

We also measured the overhead of performing optimization on these instances com-
pared to solving the decision problem given the known optimal bound. For partial Max-
SMT and binary search the mean was 9.5, the median 4.1 and the maximal ratio 49.6,
meaning that solving the optimization problem took on average 9.5 times as long as de-
termining that the optimal solution is indeed a solution. Similarly, for partial Max-SMT
and linear search the mean of the ratio was 45.8, the median 24.3 and the maximal 222.3
showing that the overhead in linear search can be considerable. In the weighted partial
Max-SMT problem the overhead was slightly lower. Using binary search the mean was
2.6, the median 3.4 and the maximal 22.1. Using linear search we get a mean of 4.4, a
median of 5.9 and a maximal of 54.
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Table 1. Performance on Max-SMT and BOMT(T ) problems. For each category, the solvers
are sorted from “best” to “worst”. Optimum is the number of instances where the optimum was
found, and Unique is the number of optimal solutions found by a the given solver only. Time
is the total execution time in seconds for all instances where an optimum was found. Mean and
median is the mean and median of those times.

Category Solver Optimum Unique Time Mean Median

Weighted MATHSAT-binary 56 6 4886.59 87.26 68.38
Max-SMT YICES 47 3 5260.67 111.92 86.21

MATHSAT-linear 23 0 4777.45 207.71 251.00

Weighted partial MATHSAT-binary 206 1 1462.98 7.10 2.45
Max-SMT MATHSAT-linear 206 1 2228.39 10.81 4.02
(BOMT(T )) YICES 195 0 3559.53 18.25 3.19

Finally, we compared MATHSAT-linear, MATHSAT-binary and YICES on the two
industrial case studies we had. In the first one, all three solvers could find the optimum
on all the 7 instances of the set. YICES turned out to be the fastest, with a median run
time of 0.5 seconds. The median time for MATHSAT-binary was of 1.54 seconds, and
that of MATHSAT-linear of 64.84 seconds. In the second case study, composed of two
instances, however, the outcome was the opposite: MATHSAT-linear and MATHSAT-
binary could compute the optimum for both instances in approximately the same time,
with the former being slightly faster (about 35 seconds for the easiest problem for both
solvers, about 370 and 405 seconds respectively for the hardest). Yices, instead, could
not compute the optimum for the hardest problem even with a timeout of 30 minutes
(taking about 11 seconds on the easiest instead).

6.2 Results on Max-SAT

We have also performed comparisons with several Max-SAT solvers from the 2009
Max-SAT Evaluation [1]. For each of the three industrial categories containing pure
Max-SAT, partial Max-SAT and partial weighted Max-SAT respectively we have cho-
sen 100 instances randomly (in the case of partial weigted Max-SAT, we chose all 80
instances). We chose 3 solvers (MsUncore [11], SAT4J [4], and Clone [14]) participat-
ing in the 2009 competition that were readily available together with the YICES SMT
solver [9], and ran each of them on all instances supported by that particular solver. We
run MATHSAT using both binary and linear search. All solvers were run with a timeout
of 300 seconds, and a memory limit of 2 GB. The results are summarized in table 2. We
count both the number of optimal solutions found and the number of non-optimal solu-
tions found. We report also the total execution time taken to find all optimal solutions
and unsatisfiable answers as well as the mean and median of these times.

We can see that for pure Max-SAT, MATHSAT is not competitive in finding optimal
solutions, although it can find many solutions. This can be attributed to the encod-
ing; All clauses are marked with one IC predicate, and any cost theory conflict is very
likely to be extremely large, and not helping prune search effectively. For partial Max-
SAT most of the clauses are hard constraints, so the number of IC predicates is more
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Table 2. Performance on Max-SAT problems. For each category, the solvers are sorted from
“best” to “worst”. Optimum is the number of instances where the optimum was found, and Sat is
the number of instances where some non-optimal solution was found. Time is the total execution
time in seconds for all instances where either an optimum or unsat was found. Mean and median
is the mean and median of those times.

Category Solver Optimum Sat Time Mean Median

Max-SAT MsUncore 83 0 2191.17 26.40 6.94
Yices 56 0 1919.79 34.28 8.16
SAT4J 30 50 1039.07 34.64 12.54
MATHSAT-binary 16 71 1017.87 63.62 20.41
Clone 15 0 2561.06 170.74 129.06
MATHSAT-linear 5 82 466.91 93.38 72.05

Partial Max-SAT Yices 71 0 1643.60 23.15 0.23
SAT4J 67 31 1943.81 29.01 1.48
MATHSAT-binary 55 43 248.00 4.51 0.07
MATHSAT-linear 53 45 611.52 11.54 0.10
MsUncore 46 0 353.84 7.69 0.20
Clone 44 29 1743.54 39.63 6.59

Weighted partial MATHSAT-binary 80 0 110.49 1.38 1.23
Max-SAT SAT4J 80 0 271.86 3.40 3.26

MsUncore 80 0 579.20 7.24 7.09
MATHSAT-linear 79 1 1104.10 13.97 8.95
Clone 0 0 0.00 N/A N/A

moderate, and performance is noticeably better. This is also true for weighted partial
Max-SAT, where MATHSAT using binary search outperforms the winner of the 2009
Max-SAT Evaluation, SAT4J.

Overall, we can notice that binary search seems to outperform linear search in the
number of optimal solutions found, although both binary and linear search can find
some solution for the same number of instances as expected given that the first iteration
in both algorithms are identical.

6.3 Results on PseudoBoolean Solving

Finally, we tested the performance of MATHSAT on PseudoBoolean (PB) optimization
problems. We compared MATHSAT, using both linear and binary search, with several
PB solvers from the 2009 PB Evaluation [3], namely SCIP [7] (the winner in the OPT-
SMALLINT category), BSOLO [12], PBCLASP [2] and SAT4J [4] (the winner in the
OPT-BIGINT category). We selected a subset of the instances used in the 2009 PB
Evaluation in the categories OPT-SMALLINT (optimization with small coefficients)
and OPT-BIGINT (optimization with large coefficients, requiring multi-precision arith-
metic), and ran all the solvers in the categories they supported.

The results are summarized in table 3. They show that, although MATHSAT is
not competitive with the two best PB solvers currently available in the SMALLINT
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Table 3. Performance on PB problems. For each category, the solvers are sorted from “best” to
“worst”. Optimum is the number of instances where the optimum was found, Sat is the number
of instances where some non-optimal solution was found and Unsat is the number of instances
that were found unsatisfiable. Time is the total execution time in seconds for all instances where
either an optimum or unsat was found. Mean and median is the mean and median of those times.

Category Solver Optimum Unsat Sat Time Mean Median

SMALLINT SCIP 98 8 62 3078.88 29.04 3.49
BSOLO 88 7 110 1754.31 18.46 0.43
PBCLASP 67 7 127 869.66 11.75 0.05
MATHSAT-linear 63 7 132 1699.69 24.28 0.21
MATHSAT-binary 63 7 132 2119.07 30.27 0.22
SAT4J 59 6 127 1149.96 17.69 1.34

BIGINT MATHSAT-binary 52 13 45 2373.35 36.51 15.54
MATHSAT-linear 48 13 49 1610.04 26.39 13.40
SAT4J 19 18 51 759.15 20.51 3.55

category, its performace is comparable to that of PBCLASP, which got the third place
in the 2009 PB Evaluation. Moreover, MATHSAT (with both binary and linear search)
outperforms the winner of the BIGINT category, solving more than twice as many prob-
lems as SAT4J within the timeout. It is worth observing that these results were obtained
without using any specific heuristic for improving performance of MATHSAT.

Finally, we observe that also in this case binary search seems to be better than linear
search. For PB problems it has been reported [5] that linear search is more effective than
binary search. In our case, the opposite appears to be the case. A possible explanation
is that, since our solver is still very basic, it does not find a very good initial solution.
For linear search we often need a large number of iterations to locate the optimum, and
this search appears to be short-circuited by the binary search algorithm. This happens
not only on PB problems, but also on Max-SAT and Max-SMT problems.

7 Related Work

The closest work to ours is the work presented in [13], where the idea of optimization
in SMT was introduced, in particular wrt the Max-SMT problem, in the setting of SMT
with increasingly- strong theories. There are however several differences wrt [13]. The
first one is that our approach is more general, since we allow for multiple cost functions.
Consequently, we can handle more expressive problems (e.g. the rover domain) with
multiple cost functions, and PB constraints. The second one is that there is no need to
change the framework to deal with increments in the theory. In fact, this has also the
advantage that the extension of a theory is not “permanent”. Thus, differently from the
approach in [13], our framework can also deal with binary search, while theirs can not
(once inconsistency is reached, the framewrok does not support changes in the theory).

Optimization problems are also supported by Yices, but we could obtain no informa-
tion about the algorithm being used.
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8 Conclusions and Future Work

In this paper we have addressed the problem of Satisfiability Modulo the Theory of
Costs. We have shown that dealing with costs in a dedicated manner allows to tackle
significant SMT problems. Furthermore, the SMT(C) solver provides a very effective
framework to deal with optimization problems. Our solver shows decent performance
even in Boolean and PseudoBoolean optimization problems, providing an answer (al-
beit suboptimal) more often than other solvers. In a couple of categories, our MathSAT
outperforms the highly tuned solvers winners of the most recent competitions.

In the future, we expect to experiment in several application domains that require
reasoning about resources (e.g. planning, scheduling, WCET). We also plan to investi-
gate applications to minimization in bounded model checking, for instance to provide
more user-friendly counter-examples, and in error localization and debugging. From
the technological point of view, we will investigate whether it is possible to borrow ef-
fective techniques from PseudoBoolean solvers, given the similarities with the theory
of costs. Finally, we will address the problem of minimization in the case costs are a
function of individual (rather than Boolean) variables.
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Abstract. Deciding whether a modal formula is satisfiable with respect
to a given set of (global) assumptions is a question of fundamental impor-
tance in applications of logic in computer science. Tableau methods have
proved extremely versatile for solving this problem for many different
individual logics but they typically do not meet the known complex-
ity bounds for the logics in question. Recently, it has been shown that
optimality can be obtained for some logics while retaining practicality
by using a technique called “global caching”. Here, we show that global
caching is applicable to all logics that can be equipped with coalgebraic
semantics, for example, classical modal logic, graded modal logic, prob-
abilistic modal logic and coalition logic. In particular, the coalgebraic
approach also covers logics that combine these various features. We thus
show that global caching is a widely applicable technique and also pro-
vide foundations for optimal tableau algorithms that uniformly apply to
a large class of modal logics.

1 Introduction

Modal logics have many applications in computer science, and e.g. provide a rig-
orous foundation for reasoning about programs [15] and knowledge [7]. Typically,
we are given a set formulas Δ that represents our assumptions (e.g. knowledge
about a particular domain) and are faced with the task of deciding whether a
formula A (that we may think of as a hypothesis) is logically consistent with
Δ. From a model theoretic perspective, this means that there exists at least one
model that validates Δ everywhere, but also makes A true in at least one point.
The elements of Δ are usually referred to as global assumptions in modal logic,
or as a TBox in description logic. Various automated theorem proving techniques
have been developed to handle this task but it is fair to say that tableau methods
have proved particularly versatile for solving this problem [1,9,26].

Tableau algorithms, however, often do not meet the known complexity bounds
for the logics in question. For example, the traditional tableau algorithm for the
modal logic K requires double exponential time in the worst case, even though the
global satisfiability problem for this logic is known to be Exptime-complete [1].
The success of suboptimal tableau algorithms in practice, implemented in rea-
soners like Racer [14] and Fact++[27], lies in the vast array of optimisations that
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have been developed for the underlying tableau methods [17]. In contrast, the (op-
timal) algorithms that underly typical complexity proofs either perform rather
wholesale fixpoint computations or employ semantical means, which is infeasible
in practice. Clearly the ideal situation is to have optimal tableau algorithms that
remain amenable to proven optimisation techniques.

The main reason for the suboptimal behaviour of tableau algorithms is that
they proceed by searching one branch at a time, using backtracking, and the
same node can appear on multiple branches. The second occurrence of the node
in a different branch will repeat the computations already performed by its
previous incarnation, since the previous branch will have been reclaimed via
backtracking. Although optimal tableau algorithms that avoid this behaviour
are known [6], they are rarely used by practitioners because they are difficult
to implement [1]. Recently, it has been shown that both optimality and ease
of implementation can be reconciled while keeping the feasibility of tableau-
based algorithms for the description logics ALC and ALCI [10,13] by employing
so-called “global caching”. The resulting tableau algorithms explore a graph of
nodes, rather than a tree with distinct branches, since subsequent incarnations of
a node lead to a “cache hit” to the first incarnation on a previous branch. It has
been experimentally demonstrated that global caching compares very favourably
with other caching techniques known in the literature [12].

Here, we show that global caching can be applied not only to logics with an un-
derlying relational semantics, but also to a large class of logics that is amenable
to coalgebraic semantics. This class contains many different logics such as classi-
cal modal logic, graded modal logic, probabilistic modal logic and coalition logic,
as well as their various combinations. We first construct a complete tableau cal-
culus for coalgebraic logics with global assumptions where all closed tableaux
are finite trees, and then show that global caching is applicable to this type
of calculus. Both results are self-contained, and completeness of global caching
readily applies to any tableau calculus that can be encoded as reachability game.
In summary, we derive a concrete algorithm to decide satisfiability of modal for-
mulas in presence of global assumptions that uniformly applies to a large class of
logics. We illustrate the technical development by instantiating the coalgebraic
framework to three different logics: probabilistic modal logic, coalition logic, and
coalition logic with probabilistic outcomes that arises as a combination of both.
In summary, we not only extend the applicability of global caching by a large
margin, but also obtain new and optimal tableau algorithms for a large class
of logics, including e.g. probabilistic modal logic, for which no tableau-based
decision procedure is so far known to exist.

Related Work. Global caching has so far been used for logics with relational
semantics in [10,11]. The extension of global caching, given in this paper, to
logics that do not have an underlying relational semantics is new. The com-
plexity of coalgebraic logics has been studied previously in [24] without global
assumptions, and [25] establishes an Exptime complexity bound in the presence
of global assumptions. The tableau calculus given here is new, and unlike the
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algorithm in op.cit. which is based on Hintikka sets, the resulting algorithm is
easily implementable.

2 Preliminaries and Notation

To keep our treatment parametric in the underlying modal logic, we fix a modal
simlarity type Λ consisting of modal operators with arities, and a denumerable
set V of propositional variables. In the sequel, we will only consider formulas in
negation normal form and abbreviate V = {p | p ∈ V} and similary Λ = {♥ |
♥ ∈ Λ} where we consider ♥ as a modal operator with the same arity as ♥. The
set F(Λ) of Λ-formulas is given by the grammar below

F(Λ) � A1, . . . , An ::= p | p | A1 ∧ A2 | A1 ∨ A2 | ♥(A1, . . . , An) | ♥(A1, . . . , An)

where ♥ ∈ Λ is an n-ary operator. The rank of a formula A ∈ F(Λ) is the
maximal nesting depth of modal operators in A and is denoted by rank(A), and
subf(A) denotes the set of subformulas of A. The closure cl(A) of A contains all
subformulas of A and their negations, i.e. cl(A) = subf(A) ∪ subf(A). We write

(Λ ∪ Λ)(F ) = {♥(A1, . . . , An) | ♥ ∈ Λ ∪ Λ n-ary, A1, . . . , An ∈ F}
for the set of all formulas that can be constructed by applying a (possibly
negated) modal operator to elements of a set F of formulas.

A Λ-tableau-sequent, short Λ-sequent or just sequent, is a finite set of Λ-
formulas that we read conjunctively, and we write S(Λ) for the set of Λ-sequents.
The rank of a sequent Γ is the maximum of the ranks of the elements of Γ and we
put rank(∅) = 0. The closure of a sequent is given by cl(Γ ) =

⋃{cl(A) | A ∈ Γ}.
As usual, we identify a formula A ∈ F(Λ) with the singleton sequent {A} ∈ S(Λ)
and write Γ, Δ for the union of Γ and Δ. We write State(Λ) for the set of Λ-
sequents that neither contain a top-level propositional connective nor a pair
p, p of complementary propositional variables. As we only deal with formulas in
negation normal form, negation becomes a derived operation, and we write A for
the negation of a formula A ∈ F(Λ) given by p = p, (A ∧ B) = A ∨ B, A ∨ B =
A ∧ B, ♥(A1, . . . An) = ♥(A1, . . . , An) and ♥(A1, . . . , An) = ♥(A1, . . . , An).
This notation extends to sequents so that Γ = {A | A ∈ Γ}. A substitution is
a mapping σ : V → F(Λ), and the result of replacing every occurrence of p ∈ V
in a formula A ∈ F(Λ) is denoted by Aσ. Again, this extends to sequents, and
Γσ = {Aσ | A ∈ Γ} if Γ ∈ S(Λ).

On the semantical side, parametricity is achieved by adopting coalgebraic
semantics [19]: formulas are interpreted over T -coalgebras, where T is an end-
ofunctor on sets, and we recover the semantics of a large number of logics by
specific choices for T (Example 1). To interpret the modal operators ♥ ∈ Λ, we
require that T extends to a Λ-structure, i.e. T comes equipped with a pred-
icate lifting (natural transformation) of type �♥� : 2n → 2 ◦ T op for every
n-ary modality ♥ ∈ Λ, where 2 : Set → Setop is the contravariant powerset
functor. In elementary terms, this amounts to assigning a set-indexed family
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of functions (�♥�X : P(X)n → P(TX))X∈Set to every n-ary modal operator
♥ ∈ Λ such that (Tf)−1 ◦ �♥�X(A1, . . . , An) = �♥�Y (f−1(A1), . . . , f−1(An))
for all sets X, Y and all functions f : Y → X . If ♥ ∈ Λ is n-ary, we put
�♥�X(A1, . . . , An) = (TX)\ �♥�X(X \A1, . . . , X \An). We often leave the pred-
icate liftings implicit and refer to a Λ-structure just in terms of the underlying
endofunctor T .

In the coalgebraic approach, the role of frames is played by T -coalgebras,
i.e. pairs (C, γ) where C is a (state) set and γ : C → TC is a (transition)
function. A T -model is a triple (C, γ, π) where (C, γ) is a T -coalgebra and π :
V → P(C) is a valuation of the propositional variables. For a Λ-structure T and
a T -model M = (C, γ, π), the truth set �A�M of a formula A ∈ F(Λ) w.r.t. M
is given inductively by the following, where ♥ ∈ Λ ∪ Λ is n-ary: �p�M = π(p),
�p�M = C \ π(p) and

�♥(A1, . . . , An)�M = γ−1 ◦ �♥�C(�A1�M , . . . , �An�M ).

We write M, c |= A if c ∈ �A�M and M |= A if M, c |= A for all c ∈ C. Again, this
extends to sequents under a conjunctive reading, and we put �Γ �M =

⋂{�A�M |
A ∈ Γ} and write M |= Γ if M |= A for all A ∈ Γ . We denote the model class
of a sequent Δ ∈ S(Λ) by Mod(Δ), which comprises the class of all T -models
M with M |= Δ, that is, M globally validates Δ. If Γ, Δ ∈ S(Λ) are sequents,
we say that Γ is satisfiable in Mod(Δ) if there exists M ∈ Mod(Δ) such that
�Γ �M �= ∅.

Our main interest in this paper is the global satisfiability problem, that is, to
determine whether a sequent Γ is satisfiable in Mod(Δ), for a set Δ of global
assumptions. The generality of the coalgebraic approach allows us to treat this
problem uniformly for a large class of structurally different modal logics that is
moreover closed under composition, as the following example demonstrates.

Example 1. The generic approach of coalgebraic semantics specialises to a large
class of different logics by instantiating the signature functor T appropriately.
The class of these logics comprises classical and monotone modal logic in the
sense of [2], the modal logic K, graded modal logic [8], probabilistic modal logic
[16], coalition logic [21] and conditional logic [2]. We refer to [20,24] for details on
their coalgebraic treatment. Here, we concentrate on probabilistic modal logic,
coalition logic and a combination of both.

1. Coalition logic over a finite set N of agents has similarity type ΛG = {[C] |
C ⊆ N}, and is interpreted over game frames, i.e. coalgebras for the functor

G(X) = {(f, (Si)i∈N ) | ∅ �= Si ⊆ N finite for all i ∈ N, f :
∏
i∈N

Si → X}.

The Si are the strategies of agent i and f is an outcome function. We read [C]A
as “coalition C can achieve A in the next round of the game”, captured by

�[C]�X(A) = {(f, (Si)i∈N ) ∈ G(X) |
∃(si)i∈C ∈ (Si)i∈C . ∀(si)i∈N\C ∈ (Si)i∈N\C . f((si)i∈N ) ∈ A}
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that induces – up to the move to finite sets of strategies – the standard semantics
of coalition logic [21].

2. The syntax of probabilistic modal logic is induced by the similarity type
ΛD = {〈p〉 | p ∈ [0, 1] ∩ Q} and we put [p] = 〈p〉. The formula 〈p〉A reads as
“A holds with probability at least p in the next state”. The semantics of the
probabilistic modal logic is given by the structure

D(X) = {μ : X →f [0, 1] | μ(X) = 1} �〈p〉�X(A) = {μ∈D(X) | μ(A) ≥ p}
where X →f [0, 1] is the set of all functions f : X → [0, 1] with finite support,
i.e. f(x) �= 0 for only finitely many x ∈ X , and μ(A) =

∑
x∈A μ(x). Coalgebras

for D are precisely image-finite Markov chains.
3. A combination of probabilistic modal logic and coalition logic over a set

N of agents arises by considering the (combined) similarity type

ΛD◦G = {〈p〉[C] | p ∈ [0, 1] ∩ Q, C ⊆ N}
and we read the formula 〈p〉[C]A as “with probability p coalition C has a col-
laborative strategy to achieve A in the next round of the game”. Formulas are
interpreted over coalgebras for the (combined) endofunctor D ◦ G by the (com-
bined) predicate lifting

�〈p〉[C]�X = �〈p〉�GX ◦ �[C]�X : P(X) → P(D ◦ G(X))

where the interpretation of the individual modalities �〈p〉� and �[C]� is as above.
In a D◦G-coalgebra (C, γ), the transition function γ delivers a probability distri-
bution over possible outcomes of a strategic game. The predicate lifting �〈p〉[C]�
singles out all those distributions that assign probability ≥ p to the set of those
outcomes for which coalition C can achieve A.

Note that this is just one possible combination that naturally finds its place in
the coalgebraic framework and refer the reader to [3,5,23] for details.

3 Tableaux and Games for Global Consequence

The first goal of this paper is to set up a sound and complete tableau system for
global satisfiability in coalgebraic modal logics. Completeness is established via
winning strategies in the associated reachability games. We begin by introducing
a generic version of both that we later specialise to coalgebraic logics.

Definition 2. A tableau system is a pair (S, R) where S is a set (of sequents)
and R is a set of rules of the form Γ/Ψ where Γ ∈ S and Ψ ⊆ S is finite.

A sequent Γ ∈ S has a closed tableau in the system (S, R) if Γ is an element of
the least set closed under the rules in R, that is, an element of the least fixpoint
of the (evidently monotone) operator

M : P(S) → P(S), M(X) = {Γ ∈ S | ∃Ψ ⊆ X.(Γ, Ψ) ∈ R}.

We say that (S, R) is finite, if both S and R are finite.
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We understand axioms as rules Γ/∅ with no conclusions so that the least fixpoint
of M will contain all sequents Γ for which we can construct a closed tableau,
i.e. a tree with root Γ constructed according to the rules in R whose leaves are
all axioms. Tableau systems can be described in terms of reachability games:

Definition 3. A reachability game played by the two players ∃ (Éloise) and ∀
(Abelard) is a tuple G = (B∃, B∀, E) with B∃ ∩ B∀ = ∅, where

– B∃ and B∀ are the positions owned by the players ∃ and ∀, respectively
– E ⊆ (B∃ ∪ B∀)2 is a binary relation that indicates the allowed moves.

The board B of a reachability game (B∃, B∀, E) is the disjoint union of positions,
i.e. B = B∃∪B∀. A play in G is a finite or infinite sequence of positions (b0, b1, . . . )
with the property that (bi, bi+1) ∈ E for all i, i.e. all moves are legal, and b0 is
the initial position of the play. A full play is either infinite, or a finite play ending
in a position bn where E[bn] = {b ∈ B | (bn, b) ∈ E} = ∅, i.e. no more moves are
possible. A finite play is lost by the player who cannot move, and infinite plays
are lost by ∀. A history-free strategy for a player P ∈ {∃, ∀} is a partial function
f : BP → B such that f(b) is defined whenever E[b] �= ∅ and (b, f(b)) ∈ E in
this case. A play (b0, b1, . . . ) is played according to f if bi+1 = f(bi) for all i with
bi ∈ BP , and f is a history-free winning strategy from position b ∈ B if P wins
all plays with initial position b that are played according to f . A position b′ ∈ B
is called f -reachable from b ∈ B if there is a play (b0, b1, . . . , bk) that is played
according to f and such that b0 = b and bk = b′.

Reachability games are history-free determined, i.e. from every position b of the
game board, one of the players has a history-free winning strategy (this holds
for the more general class of parity games [18]). To every tableau system we
associate the following reachability game.

Definition 4. The tableau game induced by a tableau system (S, R) is reacha-
bility game (B∃, B∀, E) where

– B∃ = {Ψ ⊆ S | Ψ finite} and B∀ = S
– E = {(Ψ, Γ ) ∈ B∃ × B∀ | Γ ∈ Ψ} ∪ {(Γ, Ψ) ∈ B∀ × B∃ | Γ/Ψ ∈ R}.

In other words, ∀ plays a tableau rule, and ∃ selects one of its conclusions. Note
that ∃ wins all infinite plays, which correspond to infinite paths in a tableau. As
a consequence, ∀ has a winning strategy from position Γ in a tableau game, if
he can select a tableau rule applicable to Γ so that every conclusion that ∃ can
possibly choose eventually leads to a tableau axiom, at which point ∀ wins.

Proposition 5. Suppose (S, R) is a tableau system. Then Γ ∈ S has a closed
tableau if and only if ∀ has a winning strategy in the associated tableau game
starting from position Γ .

We will come back to this general formulation of tableaux in Section 5 and now
introduce tableau systems for coalgebraic logics with global assumptions. These
are most conveniently formulated in terms of one-step rules.
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Definition 6. A one-step tableau rule over Λ is a tuple (Γ0, Γ1, . . . , Γn), written
as Γ0/Γ1 . . . Γn, where Γ0 ⊆ (Λ∪Λ)(V∪V) and Γi ⊆ V∪V so that every variable
that occurs in the conclusion Γ1 . . . Γn also occurs in the premise Γ0, and every
propositional variable occurs at most once in the premise Γ0.

We can think of one-step rules as a syntactic representation of the inverse image
γ−1 : P(TC) → P(C) of a generic coalgebra map γ : C → TC in that the premise
describes a property of successors, whereas the conclusion describes states. The
requirement that propositional variables do not occur twice in the premise is
for technical convenience, as it later allows us to speak of injective substitutions,
rather than substitutions that do not identify elements of the premise. While this
rigid format of one-step rules suffices to completely axiomatise all coalgebraic
logics [22], they do not accommodate frame conditions like transitivity (�p →��p) which require separate consideration.

Example 7. One-step rules that axiomatise the logics in Example 1 can be
found (in the form of proof rules) in [20,24]. Continuing Example 1, we single
out coalition logic, probabilistic modal logic and their combination.

1. A tableau system for coalition logic is induced by the set RG that comprises

(C1)
[C1]p1, . . . , [Cn]pn

p1, . . . , pn
(C2)

[C1]p1, . . . , [Cn]pn, [D]q, [N ]r1, . . . , [N ]rm

p1, . . . , pn, q, r1, . . . , rm

for n, m ≥ 0 provided that the Ci ⊆ N are pairwise disjoint sets of coalitions,
and additionally Ci ⊆ D in (C2) for all i = 1, . . . , n.

2. The rules RD for probabilistic modal logic contain

(P )
〈a1〉p1, . . . , 〈an〉pn, [b1]q1, . . . , [bm]qm∑m

j=1 sjqj −∑n
i=1 ripi < k

where n, m ∈ N and ri, sj ∈ N \ {0} satisfy the side condition
∑n

i=1 riai −∑m
j=1 sjbj ≤ k if n > 0 and −∑m

j=1 sjbj < k if n = 0. The conclusion of (P )
contains all clauses in the disjunctive normal form of the associated {0, 1}-valued
predicate.

3. Games with quantitative uncertainty are described by the rule set RD◦G

Γ0σ

Σ1
1σ1 . . . Σ1

k1
σ1 . . . Σn

1 σn . . . Σn
kn

σn

that can be constructed from rules Γ0/Γ1 . . . Γn ∈ RD and Σi
0/Σi

1 . . . Σi
ki

∈ RG

(1 ≤ i ≤ n) by injective substitutions σ : V → (ΛG ∪ ΛG)(V ∪ V) and σ1, . . . , σn :
V → V satisfying Γiσ = Σi

0σi. That is, rules for the combined logic first de-
construct the top-level probabilistic modal operators by means of a probabilistic
rule in RD, and then apply a rule of coalition logic (RG) to each conclusion.

Given a sequent Δ that represents the global assumptions, every set of one-step
rules induces a tableau system that arises by adding Δ to each of the conclusions
of modal rules. To reduce the bureaucracy of dealing with propositional rules,
we use skeletal tableaux where they are subsumed into a single rule schema.
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Definition 8. Suppose Δ ∈ S(Λ) is a set of global assumptions and R is a
set of one-step tableau rules over Λ. The skeletal system over R with global
assumptions Δ is the tableau system (S(Λ), S(R)) where S(R) contains Γ/sat(Γ )
for all Γ ∈ S(Λ) and all rules Γ0σ, Γ ′/Γ1σ, Δ . . . Γnσ, Δ where Γ0/Γ1 . . . Γn ∈
R, σ : V → F(Λ) is an injective substitution and Γ ′ ∈ S(Λ) is arbitrary. The
operation sat : S(Γ ) → S(Γ ) is called saturation and is inductively given by

sat(Δ′) = {Δ′} sat(A ∨ B, Γ ) = sat(A, Γ ) ∪ sat(B, Γ )
sat(p, p, Γ ) = ∅ sat(A ∧ B, Γ ) = sat(A, B, Γ )

where A, B ∈ F(Λ) are formulas, Γ ∈ S(Λ) is a sequent, p ∈ V is a proposi-
tional variable and Δ′ ∈ State(Λ) is a state, i.e. contains neither complementary
propositional variables nor top-level propositional connectives.

We often leave the underlying set of one-step rules implicit and say that Γ has
a closed skeletal tableau with global assumptions Δ, and refer to the induced
tableau game as the skeletal game with global assumptions Δ. An easy conflu-
ence argument shows that sat is well-defined, i.e. the sequence of steps when
computing sat(Γ ) is immaterial. Given Γ ∈ S(Λ), the restriction to injective
substitutions avoids a possible source of infinity when computing rules that can
be applied to Γ . Conclusions are always contained in the closure of its premise
and the global assumptions:

Lemma 9. Suppose Γ, Δ ∈ S(Λ) and Σ ⊆ cl(Γ, Δ). Then Σi ⊆ cl(Γ, Δ) for all
i = 1, . . . , n if Σ/Σ1 . . . Σn ∈ S(R). Moreover, cl(Γ, Δ) is finite.

4 Soundness and Completeness

It is evidently impossible to prove even as much as soundness of skeletal tableaux
unless the underlying set of one-step rules is suitably linked to the intended
(coalgebraic) semantics. This is achieved by imposing coherence conditions that
relate premise and conclusions of one-step rules to the underlying (coalgebraic)
semantics that can be checked locally, i.e. without reference to models.

Definition 10. Suppose that T is a Λ-structure, X is a set and τ : V → P(X)
is a valuation. The interpretation of a propositional sequent Γ ⊆ V ∪V over X, τ
is given by �Γ �X,τ =

⋂{τ(p) | p ∈ Γ} ∩⋂{X \ τ(p) | p ∈ Γ} ⊆ X . Modalised
sequents Γ ⊆ (Λ ∪ Λ)(V ∪ V) are interpreted as subsets of TX by

�Γ �TX,τ =
⋂

{�♥�X(�p1�X,τ , . . . , �pn�X,τ ) | ♥(p1, . . . , pn) ∈ Γ}

where p1, . . . , pn ∈ V ∪ V and ♥ ∈ Λ ∪ Λ.

The announced coherence conditions now take the following form:

Definition 11. Suppose that T is a Λ-structure and R is a set of one-step
tableau rules. We say that R is one-step tableau sound (resp. one-step tableau
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complete) with respect to T if, for all Γ ∈ S((Λ ∪ Λ)(V ∪ V )), all sets X and
valuations τ : V → P(X):

�Γ �TX,τ �= ∅ only if (if) for all rules Γ0/Γ1 . . . Γn ∈ R and all renamings
σ : V → V with Γ0σ ⊆ Γ , we have that �Γiσ�X,τ �= ∅ for some 1 ≤ i ≤ n.

This means that a rule set is both sound and complete if a modalised sequent
is satisfiable iff every one-step rule applicable to it has at least one satisfiable
conclusion. Soundness follows immediately from one-step soundness.

Proposition 12 (Soundness). Suppose Γ, Δ ∈ S(Λ) and Γ, Δ has a closed
tableau in the skeletal system given by R with global assumptions Δ. Then Γ is
unsatisfiable in Mod(Δ).

For completeness, we show that the existence of a winning strategy for ∃ from
Γ, Δ implies that Γ is satisfiable in Mod(Δ) via suitable truth and existence
lemmas that account for possibly non-monotone modal operators.

Definition 13. If A ∈ F(Λ) then spec(A) = {Σ ∈ State(Λ) | ∃Σ′ ∈ sat(A).Σ′ ⊆
Σ} are the specified states of A.

If we think of of sat(A) as the disjunctive normal form of A, a state Σ ∈ State(Λ)
satisfies A if Σ contains all formulas of an element of sat(A). Thus spec(A) is
the collection of states where A is required to hold, and non-monotonicity forces
us to sandwich the interpretation of A between spec(A) and the complement of
spec(A) in a syntactic model based on Λ-states. This will be a consequence of
coherence, introduced next.

Definition 14 (Coherence). Suppose W ⊆ State(Λ). A coalgebra structure
w : W → TW is coherent, if

w(Γ ) ∈ �♥�W (X1, . . . , Xn)

whenever ♥(A1, . . . , An) ∈ Γ and W ∩ spec(Ai) ⊆ Xi ⊆ W \ spec(Ai) for all
i = 1, . . . , n. A valuation π : V → P(W ) is coherent if spec(p) ∩ W ⊆ π(p) ⊆
W \spec(p) for all p ∈ V. Finally, a T -model (W, w, π) is coherent, if both (W, w)
and π are coherent.

Given that ∃ has a winning strategy in the skeletal system, the next lemma
asserts the existence of a coherent structure, that we will use later to prove
satisfiability, given that the underlying set of one-step rules admits contraction:

Definition 15. A set R of one-step rules admits contraction if, for all rules
Γ0/Γ1, . . . , Γn ∈ R and all renamings σ : V → V we can find a rule Σ0/Σ1 . . . Σk

∈ R and an injective renaming ρ : V → V such that Σ0ρ ⊆ Γ0σ and, for all
j = 1, . . . , k there exists 1 ≤ i ≤ n such that Σjρ ⊇ Γiσ.

That is to say, an application of contraction to the premise of a modal rule (via
a substitution that identifies propositional variables) can always be replaced by
a different rule for which this is not the case, and moreover the conclusions of
this rule are even harder to satisfy. The existence lemma now takes the following
form:
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Lemma 16 (Existence Lemma). Suppose that R is one-step tableau complete
and admits contraction. If ∃ has a winning strategy f in the game induced by the
skeletal tableau system with global assumptions Δ, then there exists a coherent
coalgebra structure w : W → TW on the set of states that are f -reachable from
Γ, Δ.

Given coherence, we can now prove:

Lemma 17 (Truth Lemma). Suppose that M = (W, w, π) is coherent. Then
spec(A) ∩ W ⊆ �A�M ⊆ W \ spec(A) for all A ∈ F(Λ).

Completeness is now an immediate consequence of the Truth Lemma and the
Existence Lemma.

Proposition 18. If ∃ has a winning strategy from Γ, Δ ∈ State(Λ) in the skele-
tal game with global assumptions Δ, then Γ is satisfiable in Mod(Δ).

In summary, we have the following result that lays the semantical foundation of
the algorithms in the following section.

Theorem 19. Suppose that R is one-step sound and complete with respect to a
Λ-structure T . The following are equivalent for Γ, Δ ∈ S(Λ):

1. Γ is satisfiable in Mod(Δ)
2. Γ does not have a closed skeletal tableau with global assumptions Δ
3. ∃ has a winning strategy in the skeletal tableau game with global assumptions

Δ from position Γ, Δ.

As a by-product of this theorem, we obtain admissibility of cut (via semantical
completeness) and the small model property, which is implicit in the proof of
Proposition 18. We remark that the rules given in Example 7 are both one-step
sound and complete [24].

5 Global Caching

In this section, we show that global caching [10] is applicable to coalgebraic logics,
and give a feasible algorithm to decide satisfiability of a sequent Γ over a set Δ of
global assumptions. The idea behind global caching is very simple: every sequent
is expanded at most once, and sequents are not expanded unnecessarily. We begin
our discussion of global caching in the context of a generic tableau system that
we then subsequently specialise to coalgebraic logics to prove optimality.

Definition 20. Suppose that (S, R) is a tableau system. A caching graph for
(S, R) is a quintuple G = (A, U, E, X, L) where A, U, E, X ⊆ S and L ⊆ S ×
P(S) ∪ P(S) × S. The set supp(G) = A ∪ U ∪ E is called the support of G. A
caching graph G = (A, U, E, X, L) is expanded if

L =
⋃

Γ∈supp(G)

{(Γ, Ψ) | Γ/Ψ ∈ R} ∪ {(Ψ, Σ) | Γ/Ψ ∈ R, Σ ∈ Ψ}

and Ψ ⊆ supp(G) ∪ X for all Γ/Ψ ∈ R with Γ ∈ supp(G).
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In other words, a caching graph is a concrete data structure that not only stores
sequents, but also links every sequent in its support to each conclusion of a rule
applicable to it, and every conclusion to each of its elements. We think of A as
the set of winning positions of ∀ in the associated tableau game, and similarly
E represents ∃’s winning positions. The set L (of links) represents the collection
of all rules that can be applied to a sequent in the support of a caching graph.
The status of sequents in U is undecided, but they are expanded, in the sense
that L contains all rules that are applicable to elements in U . The conclusions
of such rules that are not already contained in the support of a caching graph
are collected in the set X , the set of sequents that are still unexpanded.

Definition 21. We define two transition relations →E (“expand”) and →P

(“propagate”) on caching graphs. We put (A, U, E, X, L) →E (A′, U ′, E′, X ′, L′)
if A′ = A, E′ = E and there exists Γ ∈ X such that

U ′ = U ∪ {Γ} X ′ = X ∪
(⋃

{Ψ | Γ/Ψ ∈ R}
)

\ (A′ ∪ E′ ∪ U ′)

L′ = L ∪ {(Ψ, Σ) | Σ ∈ Ψ, Γ/Ψ ∈ R} ∪ {(Γ, Ψ) | Γ/Ψ ∈ R}.

Moreover, (A, U, E, X, L) →P (A′, U ′, E′, X ′, L′) in case X ′ = X , L = L′ and

A′ = A ∪ μML E′ = E ∪ νWL U ′ = U \ (A′ ∪ E′)

where μML and νWL are, respectively, the least and greatest fixpoints of the
operators WL : P(U) → P(U) and ML : P(U) → P(U) given by

WL(X) = {Γ ∈ U | ∀(Γ, Ψ) ∈ L. ∃(Ψ, Σ) ∈ L. Σ ∈ X ∪ E}
ML(X) = {Γ ∈ U | ∃(Γ, Ψ) ∈ L. ∀(Ψ, Σ) ∈ L. Σ ∈ X ∪ A}

for X ⊆ U . We write →PE for the union of →P and →E and →∗
PE for its

reflexive-transitive closure.

In an expansion step, an unexpanded sequent Γ ∈ X is chosen, all rules that are
applicable to Γ are recorded in L and Γ is moved to U . To ensure that the ensuing
caching graph is expanded, new conclusions that arise from expanding Γ that are
not yet contained in the support are added to X , the set of unexpanded sequents.
The (deterministic) propagation steps update the set of winning positions of ∀
and ∃ in the tableau game. For ∀, this amounts to recursively adding a sequent
to A if we can apply a tableau rule whose conclusions are contained in A – this is
achieved by the least fixpoint construction above. The winning positions of ∃ are
computed by means of a greatest fixpoint, and we extend E by the largest set Ψ
of sequents so that for every tableau rule applied to Ψ , at least one conclusion
is contained in Ψ ∪ E, in other words, the construction of a closed tableau for
elements of Ψ ∪ E is impossible, provided that E already enjoys this property.

If we interleave expansion and propagation steps until all sequents are ex-
panded (X = ∅), we update the winning positions in a final propagation step,
and all elements not known to be either satisfiable or unsatisfiable (the elements
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of U) are declared to be satisfiable, since any tableau rule applied to a sequent
in U necessarily has at least one conclusion in E ∪ U , since this sequent would
otherwise have been moved to A by propagation.

Lemma 22. Suppose that (S, R) is a tableau system and (A, U, E, X, L) is an
expanded caching graph for (S, R) for which all Γ ∈ A but none of the Γ ∈ E,
have a closed tableau. If (A, U, E, X, L) →∗

PE (A′, U ′, E′, ∅, L) →P (Â, Û , Ê, ∅, L̂)
then all Γ ∈ Â, but none of the Γ ∈ Û ∪ Ê have a closed tableau.

Correctness of global caching induces the following (nondeterministic) algorithm.

Algorithm 23. Decide whether Γ ∈ S has a closed tableau.

1. initialise: Put G = (A, U, E, X, L) where
– A = E = ∅, U = {Γ} and X =

⋃{Ψ | Γ/Ψ ∈ R}
– L = {(Γ, Ψ) | Γ/Ψ ∈ R} ∪ {(Ψ, Σ) | Σ ∈ Ψ, Γ/Ψ ∈ R}

2. while (X �= ∅) do
(a) choose G′ with G →E G′ and put G := G′

(b) (optional)
– find G′ with G →P G′ and put G := G′

– return “yes” if Γ ∈ A and “no” if Γ ∈ E
3. find G′ with G →P G′ and put G := G′

4. return “yes” if Γ ∈ E and “no” otherwise.

Correctness of this algorithm follows from Lemma 22, and termination is clear
as every expand-transition adds one sequent to the support of a caching graph,
as long as (S, R) is finite. Since transitions between caching graphs preserve the
property that all elements in A, but none of the elements in E, have a closed
tableau, we may in fact terminate earlier if we find the initial sequent in E ∪ A.

Theorem 24. Suppose that (S, R) is a finite tableau system and Γ ∈ S. Then
every execution terminates in at most 3 · |S| + 1 steps and returns “yes” if and
only if Γ has a closed tableau.

We remark that – although Algorithm 23 is non-deterministic – we just need to
check one particular execution, i.e. there is no inherent non-determinism, but
room for heuristics. We now specialise Algorithm 23 to the case of coalgebraic
logics and establish an (optimal) Exptime bound. In the general (coalgebraic)
setting, we can not expect that satisfiability of a sequent Γ under global as-
sumptions Δ is even decidable unless we make additional assumptions about the
underlying set of one-step rules (which may in general be non-recursive). How-
ever, all rule sets that we are aware of, in particular the rule sets that completely
axiomatise the logics introduced in Example 1 satisfy an additional assumption:
the set of conclusions of a rule can be polynomially encoded in terms of the size
of the premise. This was used in [24] and applied to fixpoint logics in [4].

To be precise, we assume that the underlying similarity type Λ is equipped
with a size measure s : Λ → N and measure the size of a formula A in terms
of the number of subformulas of A adding s(♥) for every occurrence of a modal
operator ♥ or ♥ in A. For the logics in our running example, we code numbers
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in binary, that is 〈p/q〉 = [p/q] = �log2 p� + �log2 q� for probabilistic modal logic
and s([C]) = 1 for operators of coalition logic, as the overall set of agents is
fixed. The definition of size is extended to sequents by size(Γ ) =

∑
A∈Γ size(A)

for Γ ∈ S(Λ). In particular, the size of the closure of a sequent is polynomially
bounded.

Lemma 25. Suppose Γ ∈ S(Λ). Then size(Σ) ≤ 2size(Γ )2 for all Σ ⊆ cl(Γ ).

The notion of size allows us to formulate polynomial encodings.

Definition 26. A set R of tableau rules is exponentially tractable, if there exists
an alphabet Σ and two functions f : S(Λ) → P(Σ∗) and g : Σ∗ → P(S(Λ))
together with a polynomial p such that |x| ≤ p(size(Γ )) for all x ∈ f(Γ ),
size(Δ) ≤ p(|y|) for all Δ ∈ g(y), so that, for Γ ∈ S(Λ),

{g(x) | x ∈ f(Γ0)} = {{Γ1, . . . , Γn} | Γ0/Γ1, . . . , Γn ∈ R}
and both relations x ∈ f(Γ ) and Γ ∈ g(x) are decidable in Exptime.

Tractability of the set S(R) of tableau rules follows from tractability of the sub-
stitution instances of rules in R, as both propositional rules and saturation can
be encoded easily. At this point, we use the fact that the modal rules in the
skeletal system are defined in terms of injective substitutions as otherwise a rule
can be generated through infinitely many substitution instances.

Lemma 27. Suppose R is a set of one-step rules. Then S(R) is exponentially
tractable iff the set {Γ0σ/Γ1σ, . . . , Γnσ | Γ0/Γ1, . . . , Γn ∈ R, σ : V → F(Λ)
injective} of substituted one-step rules is exponentially tractable.

Tractability ensures that we can encode the data on which Algorithm 23 operates
as strings of at most polynomial length in terms of the initial sequent and the
global assumptions.

Lemma 28. Suppose that R is exponentially tractable and Γ, Δ ∈ S(Λ). Then
every Ψ ⊆ cl(Γ, Δ) that appears as the conclusion of a rule Σ/Ψ ∈ S(R) for which
Σ ∈ cl(Γ, Δ) can can be encoded as a string of polynomial length (in size(Γ, Δ)).
Under this coding, the relations {(Σ0, {Σ1, . . . , Σn}) | Σ0/Σ1 . . . Σn ∈ S(R),
Σ0 ⊆ cl(Γ, Δ) and {({Σ1, . . . , Σn}, Σi) | 1 ≤ i ≤ n, ∃Σ0 ⊆ cl(Γ/Δ).
Σ0/Σ1 . . . Σn ∈ R} are decidable in exponential time.

Tractability of rule sets guarantees that Algorithm 23 runs in Exptime.

Theorem 29. Suppose that Λ is a modal similarity type and T is a Λ-structure.
If R is a one-step tableau sound and complete set of one-step rules that admits
contraction, then Algorithm 23 decides satisfiability of Γ in Mod(Δ) in at most
exponential time (w.r.t. size(Γ, Δ)), if R is exponentially tractable.

In our examples, the situation is as follows:

Example 30. All logics mentioned in Example 1 can be captured by a one-
step sound and complete rule set that is exponentially tractable [20,24], and we
briefly discuss the case for those logics that we have singled out in Example 1
and Example 7.
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1. For coalition logic, no coding is needed at all, as the size of sequents de-
creases when we move from the premise to the conclusion of a rule, and Exptime

decidability of the rule set is clear.
2. For the conclusions of the rule schema that axiomatises probabilistic modal

logic, we take the linear inequality
∑m

j=1 sjqj −∑n
i=1 ripi < k itself as a code for

the associated set of conclusions. Tractability was shown in [24] using the fact
that the (binary) size of the coefficients ri can be polynomially bounded.

3. For rule sets that arise as combinations, tractability follows from tractabil-
ity of the individual components, which is most conveniently made explicit in a
multi-sorted setting [23].

As the modal logic K can be encoded into all logics mentioned in Example 1
with the exception of classical and monotone modal logic, global satisfiability
for these logics is Exptime hard, and hence optimality of Algorithm 23.

6 Conclusions

We have given a sound and complete tableau calculus for coalgebraic modal
logics in the presence of global assumptions. Based on the completeness of the
tableau calculus, we have then described a concrete tableau algorithm to de-
cide satisfiability in presence of global assumptions, based on global caching.
In particular, this algorithm meets the (in nearly all cases optimal) Exptime

bound, while avoiding the unnecessary overhead of computing least fixpoints
naively. This showcases not only the wide applicability of global caching, but
also demonstrates that automated reasoning with coalgebraic logics in the pres-
ence of global assumptions is also in practice not (much) harder than for modal
logics with an underlying relational semantics. We have demonstrated by means
of examples, that the general (coalgebraic) framework specialises to a large class
of modal logics, and have thus not only described the first tableau algorithm for
deciding e.g. probabilistic modal logic, but an algorithm that is also worst-case
optimal that we plan to implement and evaluate experimentally in the future.
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14. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
16. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic

Behavior 35, 31–53 (2001)
17. Horrocks, I., Patel-Schneider, P.: Optimising description logic subsumption. J.

Logic Comput. 9, 267–293 (1999)
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Abstract. Boolean satisfiability (SAT) and its extensions are becoming a core
technology for the analysis of systems. The SAT-based approach divides into
three steps: encoding, preprocessing, and search. It is often argued that by en-
coding arbitrary Boolean formulas in conjunctive normal form (CNF), structural
properties of the original problem are not reflected in the CNF. This should result
in the fact that CNF-level preprocessing and SAT solver techniques have an inher-
ent disadvantagecompared to related techniques applicable on the level of more
structural SAT instance representations such as Boolean circuits. In this work
we study the effect of a CNF-level simplification technique called blocked clause
elimination (BCE). We show that BCE is surprisingly effective both in theory and
in practice on CNFs resulting from a standard CNF encoding for circuits: without
explicit knowledge of the underlying circuit structure, it achieves the same level
of simplification as a combination of circuit-level simplifications and previously
suggested polarity-based CNF encodings. Experimentally, we show that by ap-
plying BCE in preprocessing, further formula reduction and faster solving can be
achieved, giving promise for applying BCE to speed up solvers.

1 Introduction

Boolean satisfiability (SAT) solvers and their extensions, especially satisfiability mod-
ulo theories (SMT) solvers, are becoming a core technology for the analysis of systems,
ranging from hardware to software. SAT solvers are in the heart of SMT solvers, and
in some cases such as the theory of bit-vectors, state-of-the-art SMT solvers are based
on bit-blasting and use pure SAT solvers for actual solving. This gives motivation for
developing even more efficient SAT techniques.

SAT-based approaches typically consist of three steps: encoding, preprocessing, and
search. These steps, however, are tightly intertwined. For example, efficient propagation
techniques applied in search (unit propagation as a simple example) are also applica-
ble in preprocessing for simplifying the input formula. Furthermore, preprocessing and
simplifications can be applied both on the conjunctive normal form (CNF) level—which
still is the most typical input form for state-of-the-art SAT solvers–and on higher-level,
more structural formula representations, such as Boolean circuits. Indeed, SAT encod-
ings often go though a circuit-level formula representation, which is then translated into
CNF. This highlights the importance of good CNF representations of Boolean circuits.

It is often argued that by encoding arbitrary Boolean formulas in CNF, structural
properties of the original problem are not reflected in the resulting CNF. This should
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result in the fact that CNF-level preprocessing and SAT solver techniques have an in-
herent disadvantage compared to related techniques that can be applied on the level of
more structural SAT instance representations such as Boolean circuits. Motivated by
this, various simplification techniques and intricate CNF encoders for circuit-level SAT
instance descriptions have been proposed [1,2,3,4,5]. On the other hand, based on the
highly efficient CNF-level clause learning SAT solvers and CNF simplification tech-
niques such as [6,7,8,9,10,11], there is also strong support for the claim that CNF is
sufficient as an input format for SAT solvers.

In this work we study the effect of a CNF-level simplification technique called
blocked clause elimination (BCE), based on the concept of blocked clauses [12]. We
show that BCE is surprisingly effective both in theory and in practice on CNFs resulting
from the standard “Tseitin” CNF encoding [13] for circuits: without explicit knowledge
of the underlying circuit structure, BCE achieves the same level of simplification as
a combination of circuit-level simplifications, such as cone of influence, non-shared
input elimination, and monotone input reduction, and previously suggested polarity-
based CNF encodings, especially the Plaisted-Greenbaum encoding [14]. This implies
that, without losing simplification achieved by such specialized circuit-level techniques,
one can resort to applying BCE after the straightforward Tseitin CNF encoding, and
hence implementing these circuit-level techniques is somewhat redundant. Moreover,
since other related circuit level optimizations for sequential problems—in particular,
the bounded cone of influence reduction [15] and using functional instead of relational
representations of circuits [16]—can be mapped to cone of influence, these can also be
achieved by BCE purely on the CNF-level. Additionally, as regards CNF-level simpli-
fication techniques, BCE achieves the simplification resulting from, e.g., pure literal
elimination. In addition to the more theoretical analysis in this paper, we present an
experimental evaluation of the effectiveness of BCE combined with SatElite-style vari-
able eliminating CNF preprocessing [10], comparing our implementation with the stan-
dard Tseitin and Plaisted-Greenbaum encodings and the more recent NiceDAG [4,5]
and Minicirc [3] CNF encoders.

The rest of this paper is organized as follows. After background on Boolean circuits
and CNF encodings of circuits (Sect. 2) and on resolution-based CNF preprocessing
(Sect. 3), we introduce blocked clause elimination (Sect. 4). Then the effectiveness of
BCE is analyzed w.r.t. known circuit-level simplification techniques and CNF encod-
ings (Sect. 5) and resolution-based preprocessing (Sect. 6). Finally, our implementation
of BCE is briefly described (Sect. 7) and experimental results are reported on the prac-
tical effectiveness of BCE (Sect. 8).

2 Boolean Circuits and CNF SAT

This section reviews the needed background related to Boolean circuits and CNF-level
satisfiability, and well-known CNF encodings of circuits.

Given a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x̄, the negation of x. As usual, we identify ¯̄x with x.
A clause is a disjunction (∨, or) of distinct literals and a CNF formula is a conjunction
(∧, and) of clauses. When convenient, we view a clause as a finite set of literals and a
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CNF formula as a finite set of clauses; e.g. the formula (a ∨ b̄) ∧ (c̄) can be written as{{a, b̄}, {c̄}}. A clause is a tautology if it contains both x and x̄ for some variable x.

2.1 Boolean Circuits

A Boolean circuit over a finite set G of gates is a set C of equations of form g :=
f(g1, . . . , gn), where g, g1, . . . , gn ∈ G and f : {t, f}n → {t, f} is a Boolean function,
with the additional requirements that (i) each g ∈ G appears at most once as the left
hand side in the equations in C, and (ii) the underlying directed graph

〈G, E(C) = {〈g′, g〉 ∈ G × G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If 〈g′, g〉 ∈ E(C), then g′ is a child of g and g is a parent of g′. If g :=
f(g1, . . . , gn) is in C, then g is an f -gate (or of type f ), otherwise it is an input gate. A
gate with no parents is an output gate. The fanout (fanin, resp.) of a gate is the number
of parents (children, resp.) the gate has.

A (partial) assignment for C is a (partial) function τ : G → {t, f}. An assignment τ
is consistent with C if τ(g) = f(τ(g1), . . . , τ(gn)) for each g := f(g1, . . . , gn) in C.

A constrained Boolean circuit Cτ is a pair 〈C, τ〉, where C is a Boolean circuit and τ
is a partial assignment for C. With respect to a Cτ , each 〈g, v〉 ∈ τ is a constraint, and
g is constrained to v if 〈g, v〉 ∈ τ .

An assignment τ ′ satisfies Cτ if (i) it is consistent with C, and (ii) it respects the
constraints in τ , meaning that for each gate g ∈ G, if τ(g) is defined, then τ ′(g) = τ(g).
If some assignment satisfies Cτ , then Cτ is satisfiable and otherwise unsatisfiable.

The following Boolean functions are some which often occur as gate types.

– NOT(v) is t if and only if v is f.
– OR(v1, . . . , vn) is t if and only if at least one of v1, . . . , vn is t.
– AND(v1, . . . , vn) is t if and only if all v1, . . . , vn are t.
– XOR(v1, . . . , vn) is t if and only if an odd number of vi’s are t.
– ITE(v1, v2, v3) is t if and only if (i) v1 and v2 are t, or (ii) v1 is f and v3 is t.

As typical, we inline gate definitions of type g := NOT(g′). In other words, each occur-
rence of g as ĝ := f(. . . , g, . . .) is expected to be rewritten as ĝ := f(. . . , NOT(g′), . . .).

2.2 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encoding [13] of a constrained Boolean
circuit Cτ into a CNF formula TST(Cτ ) works by introducing a Boolean variable for
each gate in Cτ , and representing for each gate g := f(g1, . . . gn) in Cτ the equivalence
g ⇔ f(g1, . . . gn) with clauses. Additionally, the constraints in τ are represented as
unit clauses: if τ(g) = t (τ(g) = f, resp.), introduce the clause (g) ((ḡ), resp.). A
well-known fact is that unit propagation1 on TST(Cτ ) behaves equivalently to standard
Boolean constraint propagation on the original circuit Cτ (see, e.g., [17] for details).

1 Given a CNF formula F , while there is a unit clause {l} in F , unit propagation removes from
F (i) all clauses in F in which l occurs, and (ii) the literal l̄ from each clause in F .
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A well-known variant of the Tseitin encoding is the Plaisted-Greenbaum encod-
ing [14] which is based on gate polarities. Given a constrained Boolean circuit Cτ ,
a polarity function polτC : G → 2{t,f} assigns polarities to each gate in the circuit. Here
t and f stand for the positive and negative polarities, respectively. Any polarity function
must satisfy the following requirements.

– If 〈g, v〉 ∈ τ , then v ∈ polτC(g).
– If g := f(g1, . . . , gn), then:

• If f = NOT, then v ∈ polτC(g) implies v̄ ∈ polτC(g1).
• If f ∈ {AND, OR}, then v ∈ polτC(g) implies v ∈ polτC(gi) for each i.
• If f = XOR, then polτC(g) �= ∅ implies polτC(gi) = {t, f}.
• If f = ITE, then v ∈ polτC(g) implies

polτC(g1) = {t, f} and v ∈ polτC(gi) for i = 2, 3.

The Plaisted-Greenbaum encoding [14] uses the polarity function minpolτC that as-

signs for each gate the subset-minimal polarities from 2{t,f} respecting the requirements
above. In other words, for each gate g,

minpolτC(g) := {v | τ(g) = v or v ∈ minpolτC(g′) for some parent g′ of g}.

The Tseitin encoding, on the other hand, can be seen as using the subset-maximal polar-
ity assigning polarity function maxpolτC(g) := {t, f} for each gate g. For the gate types
considered in this paper, the clauses introduced based on gates polarities are listed in
Table 1.

Table 1. CNF encoding for constrained Boolean circuits based on gate polarities. In the table, gi

is ḡ′
i if gi := NOT(g′

i), and gi otherwise.

gate g t ∈ polτC(g) f ∈ polτC(g)
g := OR(g1, . . . , gn) (ḡ ∨ g1 ∨ · · · ∨ gn) (g ∨ ḡ1),. . . ,(g ∨ ḡn)
g := AND(g1, . . . , gn) (ḡ ∨ g1),. . . ,(ḡ ∨ gn) (g ∨ ḡ1 ∨ · · · ∨ ḡn)
g := XOR(g1, g2) (ḡ ∨ ḡ1 ∨ ḡ2), (ḡ ∨ g1 ∨ g2) (g ∨ ḡ1 ∨ g2), (g ∨ g1 ∨ ḡ2)
g := ITE(g1, g2, g3) (ḡ ∨ ḡ1 ∨ g2), (ḡ ∨ g1 ∨ g3) (g ∨ ḡ1 ∨ ḡ2), (g ∨ g1 ∨ ḡ3)
〈g, t〉 ∈ τ (g)
〈g, f〉 ∈ τ (ḡ)

Given a constrained Boolean circuit Cτ , we denote the CNF resulting from the
Plaisted-Greenbaum encoding of Cτ by PG(Cτ ).

Relevant concepts additional concepts related to polarities are

– monotone gates: gate g is monotone if |minpolτC(g)| = 1; and
– redundant gates: gate g is redundant if minpolτC(g) = ∅.

3 Resolution and CNF-Level Simplification

The resolution rule states that, given two clauses C1 = {x, a1, . . . , an} and C2 =
{x̄, b2, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called the resolvent
of C1 and C2, can be inferred by resolving on the variable x. We write C = C1 ⊗ C2.
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This notion can be lifted to sets of clauses: For two sets Sx and Sx̄ of clauses which all
contain x and x̄, respectively, we define

Sx ⊗ Sx̄ = {C1 ⊗ C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗ C2 is not a tautology}.

Following the Davis-Putnam procedure [18] (DP), a basic simplification technique,
referred to as variable elimination by clause distribution in [10], can be defined. The
elimination of a variable x in the whole CNF can be computed by pair-wise resolving
each clause in Sx with every clause in Sx̄. Replacing the original clauses in Sx∪Sx̄ with
the set of non-tautological resolvents S = Sx ⊗ Sx̄ gives the CNF (F \ (Sx ∪ Sx̄)) ∪ S
which is satisfiability-equivalent to F .

Notice that DP is a complete proof procedure for CNFs, with exponential worst-case
space complexity. Hence for practical applications of variable elimination by clause
distribution as a simplification technique for CNFs, variable elimination needs to be
bounded. Closely following the heuristics applied in the SatElite preprocessor [10] for
applying variable elimination, in this paper we study as a simplification technique the
bounded variant of variable elimination by clause distribution, VE, under which a vari-
able x can be eliminated only if |S| ≤ |Sx ∪ Sx̄|, i.e., when the resulting CNF formula
(F \ (Sx ∪ Sx̄)) ∪ S will not contain more clauses as the original formula F .2

It should be noted that the result of VE can vary significantly depending on the order
in which variables are eliminated. In more detail, VE doesn’t have a unique fixpoint
for all CNF formulas, and the fixpoint reached in practice is dependent on variable
elimination ordering heuristics. Hence VE is not confluent.

Proposition 1. VE is not confluent.

4 Blocked Clause Elimination

The main simplification technique studied in this paper is what we call blocked clause
elimination (BCE), which removes so called blocked clauses [12] from CNF formulas.

Definition 1 (Blocking literal). A literal l in a clause C of a CNF F blocks C (w.r.t.
F ) if for every clause C′ ∈ F with l̄ ∈ C′, the resolvent (C \ {l}) ∪ (C′ \ {l̄}) obtained
from resolving C and C′ on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition 2 (Blocked clause). A clause is blocked if it has a literal that blocks it.

Example 1. Consider the formula Fblocked = (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c). Only
the first clause of Fblocked is not blocked. Both of the literals a and c̄ block the second
clause. The literal c blocks the last clause. Notice that after removing either (a ∨ b̄ ∨ c̄)
or (ā∨c), the clause (a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivially satisfiable formula. �

2 More precisely, the SatElite preprocessor [10] applies a variant of VE called variable elimi-
nation by substitution. The analysis on VE in this paper applies to this variant as well.
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As a side-remark, notice that a literal l cannot block any clause in a CNF formula F
if F contains the unit clause {l̄}, and hence in this case no clause containing l can be
blocked w.r.t. F .

An important fact is that BCE preserves satisfiability.

Proposition 2 ([12]). Removal of an arbitrary blocked clause preserves satisfiability.

Additionally, we have the following.

Proposition 3. Given a CNF formula F , let clause C ∈ F be blocked w.r.t. F . Any
clause C′ ∈ F , where C′ �= C, that is blocked w.r.t. F is also blocked w.r.t. F \ {C}.

Therefore the result of blocked clause elimination is independent of the order in which
blocked clauses are removed, and hence blocked clause elimination has a unique fix-
point for any CNF formula, i.e., BCE is confluent.

Proposition 4. BCE is confluent.

It should be noted that, from a proof complexity theoretic point of view, there are CNF
formulas which can be made easier to prove unsatisfiable with resolution (and hence also
with clause learning SAT solvers) by adding blocked clauses [12]. In more detail, there
are CNF formulas for which minimal resolution proofs are guaranteed to be of exponen-
tial length originally, but by adding instance-specific blocked clauses to the formulas, the
resulting formulas yield short resolution proofs. The effect of adding (instance-specific)
blocked clauses has also been studied in different contexts [19,20,21]. However, in a
more general practical sense, we will show that removal of blocked clauses by BCE
yields simplified CNF formulas which are both smaller in size and easier to solve.

As a final remark before proceeding to the main contributions of this paper, we
note that this is not the first time removing blocked clauses is proposed for simplifying
CNFs [6]. However, in contrast to this paper, the work of [6] does not make the connec-
tion between blocked clauses and circuit-level simplifications and CNF encodings and,
most importantly, [6] concentrates on extracting underlying circuit gate definitions for
applying this knowledge in CNF simplification; blocked clause removal in [6] is actu-
ally not applied in the case any underlying gate definitions can be extracted, but rather
as an auxiliary simplification over those clauses which cannot be associated with gate
definitions.

5 Effectiveness of Blocked Clause Elimination

The main results of this section show the surprising effectiveness of blocked clause
elimination when applied until fixpoint. We will apply the following definition of the
relative effectiveness of CNF encodings and both circuit and CNF-level simplification
techniques.

Definition 3. Assume two methods T1 and T2 that take as input an arbitrary con-
strained Boolean circuit Cτ and output CNF formulas T1(Cτ ) and T2(Cτ ), respectively,
that are satisfiability-equivalent to Cτ . We say that T1 is at least as effective as T2 if, for
any Cτ , T1(Cτ ) contains at most as many clauses and variables as T2(Cτ ) does. If T1
is at least as effective as T2 and vice versa, then T1 and T2 are equally effective.
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Notice that, considering BCE, a stricter variant of this definition, based on clause elim-
ination, could be applied: T1 is at least as effective as T2 , if for every circuit Cτ we have
T1(Cτ ) ⊆ T2(Cτ ). However, for VE this stricter definition cannot be naturally applied,
since in general VE produces non-tautological resolvents which are not subsumed by
the original clauses. Because of this inherent property of VE, we will for simplicity in
the following use the “weaker” version, as in Definition 3. All the results presented not
concerning VE also hold under the stricter version of the definition. Also notice that the
“at least as effective” relation is analogously defined for two CNF-level simplification
methods which, instead of Boolean circuits, take CNF formulas as input.

When considering the effectiveness of VE in this paper, we apply a non-deterministic
interpretation which allows for any variable elimination order, i.e., we say that VE can
achieve the effectiveness of another simplification technique, if there is some elimi-
nation order for which VE achieves the same effectiveness. Finally, note that in the
following we always assume that Boolean circuits (CNF formulas, resp.) are closed
under standard circuit-level Boolean constraint propagation (unit propagation, resp.).

An overview of the main results of this section is presented in Fig. 1. An edge from
X to Y implies that X is as least as effective as Y ; for further details, see the caption.
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Fig. 1. Relative effectiveness of combinations of CNF encodings with both circuit and CNF-level
simplification techniques. An edge from X to Y implies that X is as least as effective as Y . No-
tice that transitive edges are omitted. On the left side, XPG means the combination of first apply-
ing the Plaisted-Greenbaum and then the CNF-level simplification technique X on the resulting
CNF. Analogously, PGX means the combination of first applying the circuit-level simplification
X and then the Plaisted-Greenbaum encoding. On the right side the standard Tseitin encoding is
always applied. The pointed circles around COI, MIR, and NSI on the left and right represent
applying the combination of these three simplifications and then the Plaisted-Greenbaum (left) or
Tseitin encoding (right). Additionally, BCE+VE refers to all possible ways of alternating BCE
and VE until fixpoint.
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Notice that transitive edges are omitted: for example, BCE is at least as effective as the
combination of PG, COI, NSI, and MIR.

5.1 Pure Literal Elimination by BCE

Before turning to the main results, relating BCE with circuit-level simplification tech-
niques, we begin by first arguing that both BCE and VE actually achieve the same
simplifications as the well-known pure literal elimination. Given a CNF formula F , a
literal l occurring in F is pure if l̄ does not occur in F .

Pure Literal Elimination (PL): While there is a pure literal l in F , remove all clauses
containing l from F .

Notice that the following two lemmas apply for all CNF formulas, and is not restricted
to CNFs produced by the TST or PG encodings.

Lemma 1. BCE is at least as effective as PL.

Proof sketch. A pure literal blocks all clauses which contain it by definition, and hence
clauses containing a pure literal are blocked. �

Lemma 2. VE is at least as effective as PL.

Proof sketch. Let l be a pure literal. By definition, Sl̄ (the set of clauses containing l̄) is
empty. Hence Sl ⊗ Sl̄ = ∅, and therefore VE removes the clauses in Sl. �

5.2 Effectiveness of BCE on Circuit-Based CNFs

In this section we will consider several circuit-level simplification techniques—non-
shared input elimination, monotone input elimination, and cone of influence reduc-
tion [17]—and additionally the Plaisted-Greenbaum CNF encoding.

For the following, we consider an arbitrary constrained Boolean circuit Cτ .

Non-shared input elimination (NSI): While there is a (non-constant) gate g with the
definition g := f(g1, . . . , gn) such that each gi is an input gate with fanout one
(non-shared) in Cτ , remove the gate definition g := f(g1, . . . , gn) from Cτ .

Monotone input reduction (MIR): While there is a monotone input gate g in Cτ , as-
sign g to minpolτC(g).

Cone of influence reduction (COI): While there is a redundant gate g in Cτ , remove
the gate definition g := f(g1, . . . , gn) from Cτ .

First, we observe that the Plaisted-Greenbaum encoding actually achieves the effective-
ness of COI.

Lemma 3. PG(Cτ ) is at least as effective as PG(COI(Cτ )).

Proof sketch. For any redundant gate g, minpolτC(g) = ∅ by definition. Hence the
Plaisted-Greenbaum encoding does not introduce any clauses for such a gate. �
On the other hand, blocked clause elimination can achieve the Plaisted-Greenbaum en-
coding starting with the result of the Tseitin encoding.
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Lemma 4. BCE(TST(Cτ )) is at least as effective as PG(Cτ ).

Proof sketch. We claim that BCE removes all clauses in TST(Cτ ) \ PG(Cτ ) from
TST(Cτ ). There are two cases to consider: redundant and monotone gates. For both
cases, BCE works implicitly in a top-down manner, starting from the output gates (al-
though BCE has no explicit knowledge of the circuit Cτ underlying TST(Cτ ).

Consider an arbitrary redundant output gate definition g := f(g1, . . . , gn). Since g
is not constrained under τ , all clauses in TST(Cτ ) in which g occurs are related to this
definition. Now it is easy to see that the literals associated with g (recall Table 1) block
each of these clauses, and hence the clauses are blocked. On the circuit level, this is
equivalent to removing the definition g := f(g1, . . . , gn).

Now consider an arbitrary monotone output gate definition g := f(g1, . . . , gn) with
minpolτC(g) = {v}, where v ∈ {t, f}. Then g must be constrained: τ(g) = v. Hence unit
propagation on g removes all clauses produced by TST for the case “if v̄ ∈ polτC(g)”
in Table 1 and removes the occurrences of g from the clauses produced for the case “if
v ∈ polτC(g)”. To see how BCE removes in a top-down manner those clauses related
to monotone gate definitions which are not produced by PG, consider the gate defi-
nition gi := f ′(g′1, . . . , g

′
n′). Assume that unit propagation on g has no effect on the

clauses produced by TST for this definition, that minpolτC(gi) = {v}, and that BCE
has removed all clauses related to the parents of gi in TST(Cτ )\PG(Cτ ). Now one can
check that the literals associated with gi block each of the clauses produced by TST
for the case “if v̄ ∈ polτC(gi)”. This is because all the clauses produced by TST for
the definitions of gi’s parents and in which gi occurs have been already removed by
BCE (or by unit propagation). Hence all the clauses produced by TST for the case “if
v̄ ∈ polτC(gi)” in Table 1 are blocked. �
Combining Lemmas 3 and 4, we have

Lemma 5. BCE(TST(Cτ )) is at least as effective as PG(COI(Cτ )).

Next, we consider non-shared input elimination.

Lemma 6. BCE(TST(Cτ )) is at least as effective as PG(NSI(Cτ )).

Proof sketch. Assume a gate definition g := f(g1, . . . , gn) such that each gi is a non-
shared input gate. It is easy to check from Table 1 that for each gi, each clause produced
by TST for g := f(g1, . . . , gn) is blocked by gi. The result now follows from Lemma 4
and Proposition 3 (notice that PG(Cτ ) is always a subset of TST(Cτ )). �
On the other hand, PL cannot achieve the effectiveness of NSI when applying PG: since
PG produces the same set of clauses as TST for any gate g with minpolτC(g) = {t, f},
no literal occurring in these clauses can be pure.

We now turn to the monotone input reduction. Notice that MIR is a proper gen-
eralization of PL: given a CNF formula F , any pure literal in F is monotone in the
straight-forward circuit representation of F where each clause C ∈ F is represented
as an output OR-gate the children of which are the literals in C. On the other hand, a
monotone input gate in a circuit Cτ is not necessarily a pure literal in TST(Cτ ): TST
introduces clauses which together contain both positive and negative occurrences of all
gates, including monotone ones. However, it actually turns out that, when applying the
Plaisted-Greenbaum encoding, PL and MIR are equally effective.
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Lemma 7. PL(PG(Cτ )) and PG(MIR(Cτ )) are equally effective.

Proof sketch. Assume a gate definition g := f(g1, . . . , gn), where some gi is a mono-
tone input gate. To see that PL(PG(Cτ )) is at least as effective as PG(MIR(Cτ )), first
notice that since gi is monotone, g is monotone. Now, it is easy to check (recall Table 1)
that gi occurs only either negatively or positively in the clauses introduced by PG for
g := f(g1, . . . , gn), and hence gi is pure.

To see that PG(MIR(Cτ )) is at least as effective as PL(PG(Cτ )), notice that in order
to be a pure literal in PG(Cτ ), a gate has to be both monotone and an input. �
Using this lemma, we arrive at the fact that BCE on TST can achieve the combined
effectiveness of MIR and PG.

Lemma 8. BCE(TST(Cτ )) is at least as effective as PG(MIR(Cτ )).

Proof sketch. Since BCE can remove all clauses in TST(Cτ ) \ PG(Cτ ) by Lemma 4,
after this BCE can remove all clauses containing some monotone input gate gi since
BCE is at least as effective as PL (Lemma 1). The result then follows by Lemma 7. �
Combining Lemmas 4, 5, 6, and 8, we finally arrive at

Theorem 1. BCE(TST(Cτ )) is at least as effective as first applying the combination
of COI, MIR, and NSI on Cτ until fixpoint, and then applying PG on the resulting
circuit.

As an interesting side-remark, we have

Proposition 5. The combination of NSI, MIR, and COI is confluent.

Moreover, BCE is more effective than applying the combination of COI, MIR, and NSI
on Cτ until fixpoint, and then applying PG on the resulting circuit. To see this, consider
for example a gate definition g := OR(g1, . . . , gn), where g has minpolτC(g) = {t, f}
and only a single gi is an input gate with fanout one (non-shared), i.e. it occurs only in
the definition of g. In this case the clauses in TST(Cτ ) in which gi occurs are blocked.

6 Benefits of Combining BCE and VE

We will now consider aspects of applying BCE in combination with VE. As imple-
mented in the SatElite CNF preprocessor, VE has proven to be an extremely effective
preprocessing technique in practice [10].

First, we show that VE, using an optimal elimination ordering, can also achieve the
effectiveness of many of the considered circuit-level simplifications.

Theorem 2. The following claims hold.

1. VE(TST(Cτ )) is at least as effective as (i) TST(COI(Cτ )); (ii) TST(NSI(Cτ )).
2. VE(PG(Cτ )) is at least as effective as VE(TST(Cτ )).
3. VE(PG(Cτ )) is at least as effective as

(i) PG(COI(Cτ )); (ii) PG(NSI(Cτ )); and (iii) PG(MIR(Cτ )).
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Proof sketch.

1. (i) Assume a redundant output gate definition g := f(g1, . . . , gn). Now Sg⊗Sḡ = ∅
since all resolvents are tautologies when resolving on g (recall Table 1).
(ii) Assume a gate definition g := f(g1, . . . , gn) such that each gi is an non-shared
input gate. For OR (similarly for AND), Sg1 ⊗Sḡ1 = ∅. After resolving on g1 we are
left with the clauses ∪k

i=2{g ∨ ḡi}, where each ḡi is then a pure literal. For XOR,
simply notice that Sg1 ⊗ Sḡ1 = ∅. For ITE, notice that Sg1 ⊗ Sḡ1 = {ḡ ∨ g2 ∨ g3},
and then g2 and g3 are both pure literals.

2. Follows from PG(Cτ ) ⊆ TST(Cτ )
3. (i) Follows directly from Lemma 3.

(ii) By a similar argument as in Item 1 (ii).
(iii) Follows directly from Lemmas 2 and 7. �

However, there are cases in which VE is not as effective as BCE. Namely, VE cannot
achieve the effectiveness of MIR when applying TST, in contrast to BCE. To see this,
notice that an input gate can have arbitrarily large finite fanout and still be monotone.
On the other hand, VE cannot be applied on gates which have arbitrarily large fanout
and fanin, since the elimination bound of VE can then be exceeded (number of clauses
produced would be greater than the number of clauses removed). In general, a main
point to notice is that for VE, in order to achieve the effectiveness of BCE (on the
standard Tseitin encoding), one has to apply the Plaisted-Greenbaum encoding before
applying VE. In addition, since VE is not confluent in contrast to BCE, in practice
the variable elimination ordering heuristics for VE has to be good enough so that it
forces the “right” elimination order. In addition, there are cases in which BCE is more
effective than VEPG. For some intuition on this, consider a clause C with blocking
literal l. Notice that the result of performing VE on l is not dependent on whether C is
removed. However, for any non-blocking literal l′ ∈ C the number of non-tautological
clauses after applying VE on l′ would be smaller if BCE would first remove C.

On the other hand, there are also cases in which the combination of BCE and VE
can be more effective than applying BCE only. For instance, by applying VE on a
CNF, new blocked clauses may arise. For more concreteness, consider a circuit with
an XOR-gate g := XOR(g1, g2) where g1 and g2 are input gates with fanout one (non-
shared). Assume that g := XOR(g1, g2) is rewritten as an AND-OR circuit structure
g := AND(a, b), a := OR(g1, g2), b := OR(NOT(g1), NOT(g2)), where a and b are
newly introduced gates with fanout one. Notice that g1 and g2 now have fanout two.
In the Tseitin encoding of this structure, BCE cannot see the non-sharedness of g1
and g2 in the underlying XOR. However, by first eliminating the OR-gates a and b with
VE, BCE can then remove the clauses containing the variables g1 and g2 (the gates
become implicitly “non-shared” again). In other words, there are cases in which variable
elimination results in additional clauses to be blocked.

7 Implementation

In short, BCE can be implemented in a similar way as VE in the SatElite preproces-
sor [10]: first “touch” all literals. Then, as long as there is a touched literal l: find clauses
that are blocked by l, mark l as not touched any more, remove these blocked clauses,
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and touch the negation of all literals in these clauses. The priority list of touched literals
can be ordered by the number of occurrences. Literals with few occurrences of their
negations are to be tried first. This algorithm is implemented in PrecoSAT version 465
(http://fmv.jku.at/precosat) and can be used to run BCE until completion.

In principle, the result is unique. However, as in our implementation of VE [10] in
PrecoSAT, we have a heuristic cut-off limit in terms of the number of occurrences of
a literal. If the number of occurrences of a literal is too large, then we omit trying to
find blocked clauses for its negation. This may prevent the actual implementation from
removing some blocked clauses. In general, however, as also witnessed by the results of
using BCE on the CNFs generated with the Tseitin and Plaisted-Greenbaum encodings,
this cut-off heuristic does not have any measurable effect.

8 Experiments

We evaluated how much reduction can be achieved using BCE in combination with
VE and various circuit encoding techniques. Reduction is measured in the size of the
CNF before and after preprocessing, and on the other hand, as gain in the number of
instances solved.

We used all formulas of SMT-Lib (http://smtlib.org) over the theory of bit-vectors
(QF BV) made available on July 2, 2009, as a practice benchmark set for the SMT
competition 2009. From these we removed the large number of mostly trivial SAGE
examples. The remaining 3672 SMT problems were bit-blasted to And-Inverter Graphs
(AIGs) in the AIGER format (http://fmv.jku.at/aiger) using our SMT solver Boolec-
tor [22]. Furthermore, we used the AIG instances used in [5], consisting of two types
of instances: (i) AIGs representing BMC problems (with step bound k = 45) obtained
from all the 645 sequential HWMCC’08 (http://fmv.jku.at/hwmcc08) model checking
problems, and (ii) 62 AIGs from the structural SAT track of the SAT competition. We
have made the SMT-Lib instances publicly available at http://fmv.jku.at/aiger/smtqfbv-
aigs.7z (260MB); the others cannot be distributed due to license restrictions. However,
the HWMCC’08 instances can easily be regenerated using publicly available tools 3 and
the model checking benchmarks available at http://fmv.jku.at/hwmcc08. We encoded
these 4379 structural SAT instances with four algorithms: the standard Tseitin encod-
ing [13], the Plaisted-Greenbaum polarity-based encoding [14], the Minicirc encoder
based on technology mapping [3] and VE, and the most recent NiceDAG encoder [4,5].
The NiceDAG implementation was obtained from the authors. For Minicirc, we used
an improved implementation of Niklas Eén.

In order to additionally experiment with application benchmarks already in CNF, we
also included 292 CNFs of the application track of the SAT competition 2009 to our
benchmark set. All resulting CNFs were preprocessed with VE alone (further abbrevi-
ated e), and separately first with BCE (b), followed by VE (e), and both repeated again,
which altogether gives 6 versions of each CNF (no BCE or VE, e, b, be, beb, bebe).
We call such an application of one preprocessing algorithm, either BCE or VE, which
is run to completion, a preprocessing phase.

3 Notice that COI is performed already in the generation process by these tools. However, we
did not implement the non-trivial NSI or MIR for the experiments.
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Table 2. Effectiveness of BCE in combination with VE using various encoders

encoding b be beb bebe e
t V C t V C t V C t V C t V C t V C

S U 0 46 256 2303 29 178 1042 11 145 1188 11 145 569 11 144 2064 11 153
A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9
A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6
AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8
A N 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6
H T 147 121 347 1648 117 277 2641 18 118 567 18 118 594 18 116 3240 23 140
H P 130 121 286 1398 117 277 2630 18 118 567 18 118 595 18 116 2835 19 119
HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90
H N 134 34 124 573 34 122 1185 17 102 504 17 101 525 17 100 1246 17 103
B T 577 442 1253 5799 420 1119 7023 57 321 1410 56 310 1505 52 294 8076 64 363
B P 542 442 1153 5461 420 1119 7041 57 321 1413 56 310 1506 52 294 7642 57 322
BM 10024 59 311 1252 58 303 1351 53 287 1135 53 286 1211 52 280 1435 55 303
B N 13148 196 643 2902 193 635 4845 108 508 2444 107 504 2250 105 500 5076 114 518

The results are presented in Table 2. The first column lists the benchmark fam-
ily: S = SAT’09 competition, A = structural SAT track, H = HWMCC’08, B = bit-
blasted bit-vector problems from SMT-Lib. These are all AIGs except for the CNF
instances in S. The next column gives the encoding algorithm used: T = Tseitin, P =
Plaisted-Greenbaum, M = Minicirc, N = NiceDAG, and U = unknown for the S family
already in CNF. The t columns give the sum of the time in seconds spent in one encod-
ing/preprocessing phase. The columns V and C list in millions the sum of numbers of
variables and clauses over all produced CNFs in each phase.

The results show that the combination “be” of BCE and VE always gives better
results than VE (e) alone, with comparable speed. Using a second phase (beb) of BCE
gives further improvements, even more if VE is also applied a second time (bebe).
The CNF sizes after applying BCE (b) for the P encoder and the T encoder are equal,
as expected. Further preprocessing, however, diverges: since clauses and literals are
permuted, VE is not confluent, and thus VE phases can produce different results.

We applied a time limit of 900 seconds and a memory limit of 4096 MB for each
encoder and each preprocessing phase. Thus 139 out of 106848 = 6 · (4 · 4379 + 292)
CNFs were not generated: HM encoding ran out of memory on 5 very large BMC
instances, one large CNF in S could not be preprocessed at all, and there was a problem
with the parser in NiceDAG, which could not parse 14 actually rather small AIGs in
BN. Furthermore, there were 10 timeouts for various preprocessing phases in the A
family: 2 in AT/beb, 2 in AN/be, 2 in AN/e, 2 in AP/be, and 2 in AP/e. However, except
for the one large CNF, where also VE run out of memory, there is not a single case
where BCE did not run until completion within the given time and memory limits.

Reducing the size of a CNF by preprocessing does not necessarily lead to faster run-
ning times. Since it was impossible to run all structural instances with an appropriate
time limit, we only performed preliminary experiments with a very small time limit of
90 seconds. We used PrecoSAT v236, the winner of the application track of the SAT
competition 2009, and PicoSAT v918, a fast clause learning solver which does not use
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sophisticated preprocessing algorithms, in contrast to PrecoSAT. In both cases the re-
sults were inconclusive. Running preprocessing until completion takes a considerable
portion of the 90 seconds time limit, even if restricted to VE. In addition, the success of
PrecoSAT shows that not running preprocessing until completion is a much better strat-
egy, particularly if the preprocessor is run repeatedly again, with enough time spent on
search in-between. However, this strategy is hard to evaluate when many preprocessing
techniques are combined.4 Therefore we decided to stick with the run-to-completion
approach, which also gives some clear indication of how much CNF size reduction can
be achieved through BCE.

For the 292 SAT competition instances we were able to run PrecoSAT with a more
reasonable timeout of 900 seconds. The cluster machines used for the experiments, with
Intel Core 2 Duo Quad Q9550 2.8 GHz processor, 8 GB main memory, running Ubuntu
Linux version 9.04, are around two times as fast as the ones used in the first phase of the
2009 SAT competition. In the first phase of the competition, with a similar time limit,
PrecoSAT solved many more instances than competitors. Nevertheless, using BCE we
can improve the number of solved instances considerable: PrecoSAT solves 176 original
instances, 177 preprocessed by BCE and VE alone (b and e), 179 be instances, 180 beb
instances, and 183 bebe instances. If we accumulate the time for all the preprocessing
phases and add it to the actual running time, then 181 instances can be solved in the last
case. For the other cases the number of solved instances does not change.

It would be interesting to compare our results to pure circuit-level solvers. To our
understanding, however, such solvers have not proven to be more efficient than running
CNF solvers in combination with specialized circuit to CNF encodings.

9 Conclusions

We study a CNF-level simplification technique we call BCE (blocked clause elimina-
tion). We show that BCE, although a simple concept, is surprisingly effective: without
any explicit knowledge of the underlying circuit structure, BCE achieves the same sim-
plifications as combinations of circuit-level simplifications and the well-known polarity-
based Plaisted-Greenbaum CNF encoding. This implies that the effect of such special-
ized circuit-level techniques can actually be accomplished directly on the CNF-level.
To our best knowledge, these connections have not been known before. Furthermore,
in contrast to specialized circuit-level techniques, BCE can be naturally applied on any
CNF formula, regardless of its origin. Experimental results with an implementation of
a CNF-level preprocessor combining BCE and SatElite-style variable elimination are
presented, showing the effectiveness and possible benefits of applying BCE.
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4 In PrecoSAT v465, we have failed literal preprocessing, various forms of equivalence reason-
sing, explicit pure literal pruning, BCE, VE, combined with on-the-fly subsumption.
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6. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural
knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
pp. 185–199. Springer, Heidelberg (2002)

7. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)

8. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In: AAAI
2002, pp. 613–619. AAAI Press, Menlo Park (2002)

9. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg
(2005)

11. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formu-
las. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer,
Heidelberg (2005)

12. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-
97, 149–176 (1999)

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.,
Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic
1967–1970, pp. 466–483. Springer, Heidelberg (1983)

14. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2(3), 293–304 (1986)

15. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power PC mi-
croprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)

16. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoret-
ical Computer Science 174(3), 45–56 (2007)
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Abstract. We present Boom, a comprehensive analysis tool for Bool-
ean programs. We focus in this paper on model-checking non-recursive
concurrent programs. Boom implements a recent variant of counter ab-
straction, where thread counters are used in a program-context aware
way. While designed for bounded counters, this method also integrates
well with the Karp-Miller tree construction for vector addition systems,
resulting in a reachability engine for programs with unbounded thread cre-
ation. The concurrent version of Boom is implemented using BDDs and
includes partial order reduction methods. Boom is intended for model
checking system-level code via predicate abstraction. We present exper-
imental results for the verification of Boolean device driver models.

1 Introduction

Over the past decade, predicate abstraction has evolved into a viable strategy for
model checking software, witnessed by the success of device driver verification
in Microsoft’s Slam project. The input program is converted into a finite-state
Boolean program, whose paths overapproximate the original behavior.

Recently, concurrent software has gained tremendous stimulus due to the
advent of multi-core computing architectures. The software is executed by asyn-
chronous parallel threads, communicating, in the most general case, through
fully shared variables. Bugs in such programming environments are known to
be subtle and hard to detect by means of testing, strongly motivating formal
analysis techniques for concurrent programs.

In this paper, we present Boom, a model checker for Boolean programs. While
Boom has many features that make it useful for sequential programs [4], we focus
here on analyzing the set of reachable states of a replicated non-recursive Boolean
program. Replication often induces symmetry, which can and must be exploited
for the analysis to scale. We present our implementation of a context-aware form
of bounded counter abstraction [3], and compare its performance to alternative
reduction techniques also implemented in Boom, and to other tools.

Replication materializes in practice as dynamic thread creation. Even without
a bound on the number of running threads, the reachability problem for non-
recursive concurrent Boolean programs is decidable. We have extended Boom by
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a variant of the Karp-Miller tree, which operates directly on Boolean programs.
We demonstrate that our implementation performs much better in practice than
the worst-case complexity of the construction seems to suggest. The result is a
practically useful and exact reachability analysis for realistic concurrent Boolean
programs with arbitrarily many threads.

2 Concurrent Boolean Program Analysis with BOOM

Boom is capable of analyzing the reachable state space of replicated programs,
where threads may dynamically create other threads during the execution. The
Boolean variables are declared either local or shared. Each thread has its own
private copy of the local variables. The shared variables, in contrast, are fully
accessible to every thread. Shared-variable concurrency is very powerful and able
to simulate many other communication primitives, such as locks.

Concurrent Boolean programs with replicated threads are naturally symmet-
ric: the set of transitions of a derived Kripke model is invariant under permu-
tations of the threads. Boom exploits this property using a form of counter
abstraction: global states are represented as vectors of counters, one per local
state. Each counter tracks the number of threads in the corresponding local
state. A transition by a thread translates into an update of the counters for the
source and target local state.

The suggested rewriting of program transitions into counter updates can in
principle be performed at the program text level. In practice, this is usually in-
feasible due to the local state explosion problem: the number of statically deter-
mined local states is exponential in the program text size. We recently proposed
context-awareness as a solution [3]: at exploration time, the context in which
a statement is executed is known and exposes the local-state counters that need
to be updated. As a natural optimization, a global state in Boom only keeps
counters for occupied local states, where at least one thread resides in. Their
number is obviously bounded by the number of running threads, which tends to
be a tiny fraction of all local states.

Extending BOOM to Unbounded Thread Creation

If there is no limit to how many threads may be running, the thread counters
become unbounded non-negative integers. The induced transition system is an
instance of a vector addition system with [control] states (VASS); the control
state represents the values of the shared program variables. The reachability
of a thread state (s, l) (combination of shared and local state) in a concurrent
Boolean program is reducible to a VASS coverability problem. The latter problem
is decidable, using a tree construction proposed by Karp and Miller [8].

Boom uses the Karp-Miller construction as the starting point for an algorithm
to decide thread-state reachability. The local state explosion problem material-
izes here as the dimensionality problem for VASSes. Fortunately, our earlier solu-
tion of a context-aware, on-the-fly translation is instrumental in the unbounded
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case as well. Our version of the Karp-Miller procedure operates directly on Bool-
ean programs. Bypassing the VASS allows us to avoid the blowup that a static
translation into any type of addition system invariably entails. To ameliorate
the exponential-space complexity of the Karp-Miller construction, we exploit
the special form of vector-addition systems derived from Boolean programs. For
example, our implementation keeps a copy of those tree nodes that are maximal
with respect to the covering relation as partial order. Newly discovered nodes
are compared against these maximal nodes only.

3 Results

Boom and our benchmarks are available at http://www.cprover.org/boom; we
refer the reader to this website for more details on the tool and the benchmarks.

The left chart below compares a plain symbolic exploration of the concur-
rent Boolean program against Boom’s implementation of bounded counter
abstraction. Each data point specifies the numbers of threads running. The mes-
sage of this chart is obvious. The right chart compares plain exploration against
Boom’s implementations of partial-order reduction. Comparing left and right,
we see that counter abstraction performs somewhat better. In other experiments
(not shown), we observed that combining the two gives yet better performance.
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The chart on page 148 (left) compares the bounded version of Boom with
counter abstraction against the lazy version of GetaFix [9] (which performs bet-
ter than eager). GetaFix targets recursive Boolean programs with a bounded
number of context-switches. To compare with Boom, we chose a non-recursive
example from the GetaFix website. The time for GetaFix to convert the ex-
ample into a sequential program is tiny and omitted. The table illustrates the
time to explore the sequentialized program using Moped-1, for different context-
switch bounds. Note that Boom explores all interleavings.

The graph on page 148 (right) shows our preliminary thread-state analysis
of Boolean programs with unbounded thread creation. We see that for many
examples, the running times are very small. On the other hand, 301 of 570 cases
did not terminate within 60min. We observed no more than 43 non-zero counters
in any global state, despite millions of conceivable local states.
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n
Boom GetaFix/cont. bd. [sec]
[sec] 1 2 3 4 5 6

2 < 0.1 0.1 0.4 2.0 8.7 41 139
3 0.1 0.1 1.0 0.6 4.8 30 187
4 1.2 0.1 1.9 1.2 12.2 146 1318
5 12.1 0.14 2.8 2.3 30.6 426 —
6 88.8 0.2 3.9 3.1 51.7 901 —

Benchmarks on Intel 3GHz, with
timeout 60mins, memory-out 4 GB. 0.01
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4 Related Work and Conclusion

There are a few tools for the analysis of sequential Boolean programs [2,6]. When
extended to multiple threads, the problem becomes undecidable. To allow a com-
plete solution, Boom disallows recursion. There are many tools available for the
analysis of VASS. Closest to our work are the applications of these tools to
Java [5,7] and to Boolean programs [1]. These tools compile their input into an
explicit-state transition system, which will result in a high-dimensional VASS.
Our experiments with explicit-state encodings (not shown) indicate that en-
coding Boolean programs symbolically is mandatory. We believe Boom to be
the first exact tool able to analyze non-recursive concurrent Boolean programs
with bounded replication efficiently, and to extend the underlying technique to
the unbounded case with encouraging performance.
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Abstract. This paper describes OpenSMT, an incremental, efficient,
and open-source SMT-Solver. OpenSMT has been specifically designed
to be easily extended with new theory-solvers, in order to be accessible for
non-experts for the development of customized algorithms. We sketch the
solver’s architecture and interface. We discuss its distinguishing features
w.r.t. other state-of-the-art solvers.

1 Introduction

Satisfiability Modulo Theories [2] (SMT) is commonly understood as the problem
of checking the satisfiability of a quantifier-free formula, usually defined in a
decidable fragment of first order logic (e.g., linear arithmetic, bit-vectors, arrays).

In the context of formal verification, SMT-Solvers are every day gaining more
importance as robust proof engines. They allow a more expressive language than
propositional logic by supporting a set of decision procedures for arithmetic, bit-
vectors, arrays, and they are faster then generic first-order theorem provers on
quantifier-free formulæ.

Most verification frameworks are integrating SMT-Solvers as the main deci-
sion engine. With most off-the-shelf SMT-Solvers, the integration can be per-
formed either via file or with a set of APIs, supported on the SMT-Solver’s side,
in such a way that it can be used as a black box by the calling environment.

OpenSMT is an attempt of providing an incremental, open-source SMT-
Solver1 that is easy to extend and, at the same time, efficient in performance.
Our philosophy is to provide an open and comprehensive framework for the
community, in the hope that it will facilitate the use and understanding of SMT-
Solvers, in the same way as it was done for SAT-solvers and theorem provers.

OpenSMT participated in the last two SMTCOMP [1], the annual compe-
tition for SMT-Solvers, and it was the fastest open-source solver for the cat-
egories QF UF (2008 and 2009), QF IDL, QF RDL, QF LRA (2009). It also
supports QF BV, QF UFIDL, and QF UFLRA logics (the reader may refer to
www.smtlib.org for more details about SMT logics and theories).

1
OpenSMT is written in C++ and released under the GNU GPL license. It is avail-
able at http://verify.inf.usi.ch/opensmt
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2 Tool Architecture

2.1 Overview

The architecture ofOpenSMT implements the well-consolidated lazy or DPLL(T)
approach [2],where aSAT-Solver is usedas aBoolean enumerator,while aT -solver,
a decision procedure for the background theory T , is used to check the consistency
of the conjunction of the enumerated atoms. The architecture of OpenSMT is de-
picted in Figure 1, and it can be divided into three main blocks.

DL BVLRA

EUF
Preprocessor

SMT-Level

SAT-Solver T -solvers

Enumerator

Boolean

ϕ

Simplifications

Parser

Preprocessor

sat (model) / unsat (proof)

Fig. 1. OpenSMT functional architecture. EUF , DL, LRA, and BV are the solvers
for equality with uninterpreted functions, difference logic, linear real arithmetic, and
bit-vectors respectively.

Preprocessor. The formula is parsed2 and stored inside the Egraph [6], a DAG-
like data structure whose vertexes, the Enodes, represent (sub)terms. Some static
rewriting steps are then applied, in order to simplify and prepare the formula
for solving. A commonly used and effective technique is, for instance, the elim-
ination of variables by exploiting equalities appearing as top-level conjuncts of
the formula.

SAT-Solver. The simplified formula is converted into CNF by means of the
Tseitin encoding, and then given to the SAT-Solver. OpenSMT is built on top
of the MiniSAT2 incremental solver [7]. SATelite preprocessing is applied to
Boolean atoms only. We adapted the solver to include some recent optimizations,
such as frequent restarts and phase caching.

T -solvers. The organization of the theory solvers is the same proposed by the
Simplify prover [6] (see Figure 1). The EUF -solver acts as a layer and dispatcher
for the T -solvers for the other theories. T -solvers communicates conflicts, deduc-
tions, and hints for guiding the search back to the SAT-solver.
2

OpenSMT supports both SMT-LIB and Yices input formats.
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2.2 The T -solver Interface class TSolver
{

void inform ( Enode * );
bool assertLit ( Enode * );
bool check ( bool );
void pushBktPoint ( );
void popBktPoint ( );
bool belongsToT ( Enode * );
void computeModel ( );

vector< Enode * > & explanation;
vector< Enode * > & deductions;
vector< Enode * > & suggestions;

}

Fig. 2. The T -solver interface

Figure 2 shows the minimalistic
interface API that a T -solver is
required to implement. inform is
used to communicate the existence
of a new T -atom to the T -solver.
assertLit asserts a (previously in-
formed) T -atom in the T -solver
with the right polarity; it may also
perform some cheap form of consis-
tency check. check determines the
T -satisfiability of the current set
of asserted T -atoms. pushBktPoint
and popBktPoint are used respec-
tively to save and to restore the
state of the T -solver, in order to
cope with backtracking within the
SAT-Solver. belongsToT is used to determine if a given T -atom belongs to the
theory solved by the T -solver. Finally computeModel forces T -solver to save the
model (if any) inside Enode’s field.

Three vectors, explanation, deductions, suggestions, are shared among the
T -solvers, and they are used to simplify the communication of conflicts, T -atoms
to be deduced and “suggested” T -atoms. Suggestions are atoms consistent with
the current state of the T -solver, but that they cannot be directly deduced.
Suggestions are used to perform decisions in the SAT-Solver.

Explanations for deductions are computed on demand. When an explanation
for a deduction l is required, the literal ¬l is pushed in the T -solver3, and the
explanation is computed by calling check. This process is completely transparent
for the T -solver thus avoiding any burden for generating and tracking explana-
tions for deductions on the T -solver side.

2.3 Customizing T -solvers

SMT-Solvers are commonly used as black-box tools, either by passing a formula
in a file, or by means of calls to an interface API. In some cases, however,
the domain knowledge on the particular problem under consideration can be
exploited to derive a more efficient procedure by customizing an existing one, or
by deriving a new one from scratch.

This is for instance the case for the recent approach of [8], where properties
of the execution of concurrent threads in a program are encoded as Boolean
combinations of precedence relations of the form x < y. The problem can be
encoded as QF IDL formulæ, (i.e., by means of T -atoms of the form x−y <= c,
c being an integer constant), since x < y and ¬(x < y) can be encoded as
x − y <= −1 and y − x <= 0 respectively. A graph-based encoding, such as the

3 After having restored an appropriate T -solver context.
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one described in [5], allows to solve the problem in O(nlog(n) + m), n being the
number of vertices and m being the number of edges of the graph.

However, it is possible to devise a specialized procedure that deals directly
with “precedence” atoms: instead of looking for an arbitrary negative cycle as
in [5], it is enough to look for a cycle that contains at least an edge with constant
−1. The complexity of the T -solver decreases to O(n + m)4.

OpenSMT provides an easy infrastructure for the addition of T -solvers by
means of an automatic script.

3 Other Features

Word-Level decision procedure for BV. OpenSMT implements a word-level
decision procedure for bit-vector extraction and concatenation and equalities [4].
The procedure is embedded in a congruence closure algorithm by means of an
incremental and backtrackable data structure (CBE) that represents bit-vector
slices modulo equivalence classes.

SMT-based preprocessor for linear arithmetic. Preprocessing is a crucial
preliminary step to improve the solver performance. Traditional approaches tend
to consider only top-level atoms to trigger simplifications. OpenSMT supports
a preprocessing technique for linear arithmetic at the clause level, by means of
a mixed Boolean-theory resolution rule [3].

Incremental solving support. OpenSMT, as well as other state-of-the-art
solvers, supports a rich C API, which allows the incremental addition and re-
moval of constraints in a stack-based manner.

Models and proofs. OpenSMT is able to generate a model if the formula is
satisfiable and to construct a proof of unsatisfiability otherwise.
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Abstract. STRANGER is an automata-based string analysis tool for finding and
eliminating string-related security vulnerabilities in PHP applications. STRANGER

uses symbolic forward and backward reachability analyses to compute the possible
values that the string expressions can take during program execution.
STRANGER can automatically (1) prove that an application is free from speci-
fied attacks or (2) generate vulnerability signatures that characterize all malicious
inputs that can be used to generate attacks.

1 Introduction

Web applications provide critical services over the Internet and frequently handle sen-
sitive data. Unfortunately, Web application development is error prone and results in
applications that are vulnerable to attacks by malicious users. The global accessibility
of critical Web applications make this an extremely serious problem. According to the
Open Web Application Security Project (OWASP)’s top ten list that identifies the most
serious web application vulnerabilities [6], the top three vulnerabilities are: 1) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL Injection) and 3) Malicious File
Execution (MFE). A XSS vulnerability results from the application inserting part of
the user’s input in the next HTML page that it renders. Once the attacker convinces
a victim to click on a URL that contains malicious HTML/JavaScript code, the user’s
browser will then display HTML and execute JavaScript that can result in stealing of
browser cookies and other sensitive data. An SQL Injection vulnerability results from
the application’s use of user input in constructing database statements. The attacker can
invoke the application with a malicious input that is part of an SQL command that the
application executes. This permits the attacker to damage or get unauthorized access to
data stored in a database. MFE vulnerabilities occur if developers directly use or con-
catenate potentially hostile input with file or stream functions, or improperly trust input
files. All these vulnerabilities involve string manipulation operations and they occur due
to inadequate sanitization and inappropriate use of input strings provided by users.

We present a new tool called STRANGER (STRing AutomatoN GEneratoR) that can
be used to check the correctness of string manipulation operations in web applications.
STRANGER implements an automata-based approach [9, 8] for automatic verification of
string manipulating programs based on symbolic string analysis. String analysis is a

� This work is supported by NSF grants CCF-0916112 and CCF-0716095.
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static analysis technique that determines the values that a string expression can take
during program execution at a given program point.

STRANGER encodes the set of string values that string variables can take as deter-
ministic finite automata (DFAs). STRANGER implements both the pre- and post-image
computations of common string functions on DFAs, including a novel algorithm for
language-based replacement [9]. This replacement function takes three DFAs as argu-
ments and outputs a DFA and can be used to model PHP replacement commands, e.g.,
preg replace() and str replace(), as well as many PHP sanitization routines,
e.g., addslashes(), htmlspecialchars() and mysql real escape string().
STRANGER implements all string manipulation functions using a symbolic automata rep-
resentation (MBDD representation from the MONA automata package [2]) and lever-
ages efficient manipulations on MBDDs such as determinization and minimization.
This symbolic encoding also enables STRANGER to deal with large alphabets.

STRANGER combines forward and backward reachability analyses [8] and is capable
of (1) checking the correctness of sanitization routines and proving that programs are
free from specified attacks, and (2) identifying vulnerable programs, as well as generat-
ing non-trivial vulnerability signatures. Using forward reachability analysis, STRANGER

computes an over-approximation of all possible values that string variables can take
at each program point. If this conservative approximation does not include any attack
pattern, STRANGER concludes that the program does not contain any vulnerabilities.
Otherwise, intersecting these with attack patterns yields the potential attack strings.
Using backward analysis STRANGER automatically generates string-based vulnerability
signatures, i.e., a characterization that includes all malicious inputs that can be used
to generate attack strings. In addition to identifying existing vulnerabilities and their
causes, these vulnerability signatures can be used to filter out malicious inputs.

2 Tool Description

STRANGER uses Pixy [4] as a front end and MONA [2] automata package for automata
manipulation. STRANGER takes a PHP program as input and automatically analyzes it
and outputs the possible XSS, SQL Injection, or MFE vulnerabilities in the program.
For each input that leads to a vulnerability, it also outputs the vulnerability signature,
i.e., an automaton (in a dot format) that characterizes all possible string values for this
input which may exploit the vulnerability. The architecture of STRANGER is shown in
Figure 1. The tool consists of the following parts.

Fig. 1. The Architecture of STRANGER
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PHP Parser and Taint Analyzer. The first step in our analysis is to parse the PHP
program and construct the control flow graph (CFG). This is done by Pixy. PHP pro-
grams do not have a single entry point as in some other languages such as C and Java,
so we process each script by itself along with all files included by that script. The CFG
is passed to the taint analyzer in which alias and dependency analyses are performed
to generate dependency graphs. A dependency graph specifies how the inputs flow to
a sensitive sink with respect to string operations. The number of its nodes is linear to
the number of the string operations in the program under a static single assignment en-
vironment. Loop structures contribute cyclic dependency relations. If no tainted data
flow to the sink, taint analysis reports the dependency graph to be secure; otherwise, the
dependency graph is tainted and passed to the string analyzer for more inspection.

String Analyzer. The string analyzer implements our vulnerability (forward and back-
ward) analysis [8] on the tainted dependency graphs found by taint analysis. The de-
pendency graphs are pre-processed to optimize the reachability analyses. First, a new
acyclic dependency graph is built where all the nodes in a cycle (identifying cyclic
dependency relations) are replaced by a single strongly connected component (SCC)
node. The vulnerability analysis is conducted on the acyclic graph so that the nodes that
are not in a cycle are processed only once. In the forward analysis, we propagate the
post images to nodes in the topological order, initializing input nodes to DFAs accepting
arbitrary strings. Upon termination, we intersect the language of the DFA of the sink
node with the attack pattern. If the intersection is empty, we conclude that the sink is not
vulnerable with respect to the attack pattern. Otherwise, we perform the backward anal-
ysis and propagate the pre images to nodes in the reverse topological order, initializing
the sink node to a DFA that accepts the intersection of the result of the forward analy-
sis and the attack pattern. Upon termination, the vulnerability signatures are the results
of the backward analysis for each input node. For both analyses, when we hit an SCC
node, we switch to a work queue fixpoint computation [8] on nodes that are part of the
SCC represented by the SCC node. During the fixpoint computation we apply automata
widening [1] on reachable states to accelerate the convergence of the fixpoint computa-
tion. We added the ability to choose when to apply the widening operator. This option
enables computation of the precise fixpoint in cases where the fixpoint computations
converges after a certain number of iterations without widening. We also incorporate a
coarse widening operator [1] that guarantees the convergence to avoid potential infinite
iterations of the fixpoint computation.

String Manipulation Library. String manipulation library (SML) handles all core
string and automata operations such as replacement, concatenation, prefix, suffix, inter-
section, union, and widen. During the vulnerability analysis, all string and automata
manipulation operations that are needed to decorate a node in a dependency graph
are sent to SML along with the string and/or automata parameters. SML, then, exe-
cutes the operation and returns back the result as an automaton. A Java class called
StrangerAutomaton has been used as the type of the parameters and results. The
class follows a well defined interface so that other automata packages can be plugged
in and used with the string analyzer instead of SML. SML is also decoupled from the
vulnerability analysis component so that it can be used with other string analysis tools.
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StrangerAutomaton encapsulates libstranger.so shared library that has the actual
string manipulation code implemented in C to get a faster computation and a tight con-
trol on memory. We used JNA (Java Native Access) to bridge the two languages.

3 Experiments and Conclusions

We have experimented with STRANGER on several benchmarks extracted from known
vulnerable web applications [9]. For each vulnerable benchmark, we also generated a
modified version where string manipulation errors are fixed. STRANGER took less than
few seconds to analyze each benchmark. It successfully reported all known vulnera-
bilities, generated the vulnerability signatures, and verified that the modified version is
secure and free from the previously reported vulnerabilities. We have also conducted a
case study on SimpGB-1.49.0 - a PHP guestbook web application. SimpGB con-
sists of 153 php files containing 44000+ lines of code. Using a machine with Intel Core
2 Due 2.5 GHz with 4GB of memory running Linux Ubuntu 8.04, STRANGER took 231
minutes to check XSS vulnerabilities for all entries of executable PHP scripts and con-
cluded 304 possible vulnerabilities out of 15115 sinks. STRANGER took 175 minutes to
reveal 172 possible SQL Injection vulnerabilities from 1082 sinks, and 151 minutes to
reveal 26 possible MFE vulnerabilities from 236 sinks.

In sum, we presented a string analysis tool for verification of web applications, fo-
cusing on SQLI, XSS and MFE attacks. In addition to identifying vulnerabilities and
generating vulnerability signatures of vulnerable applications, STRANGER can also ver-
ify the absence of vulnerabilities in applications that use proper sanitization. Compared
to grammar-based string analysis tools [3, 5, 7], STRANGER features specific automata-
based techniques including automata widening [1], language-based replacement [9] and
symbolic automata encoding and manipulation [2]. STRANGER and several benchmarks
are available at http://www.cs.ucsb.edu/∼vlab/stranger.
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Abstract. We describe a new and more efficient algorithm for checking univer-
sality and language inclusion on nondeterministic finite word automata (NFA)
and tree automata (TA). To the best of our knowledge, the antichain-based ap-
proach proposed by De Wulf et al. was the most efficient one so far. Our idea is
to exploit a simulation relation on the states of finite automata to accelerate the
antichain-based algorithms. Normally, a simulation relation can be obtained fairly
efficiently, and it can help the antichain-based approach to prune out a large por-
tion of unnecessary search paths. We evaluate the performance of our new method
on NFA/TA obtained from random regular expressions and from the intermediate
steps of regular model checking. The results show that our approach significantly
outperforms the previous antichain-based approach in most of the experiments.

1 Introduction

The language inclusion problem for regular languages is important in many applica-
tion domains, e.g., formal verification. Many verification problems can be formulated
as a language inclusion problem. For example, one may describe the actual behaviors of
an implementation in an automaton A and all of the behaviors permitted by the specifi-
cation in another automaton B . Then, the problem of whether the implementation meets
the specification is equivalent to the problem L(A) ⊆ L(B).

Methods for proving language inclusion can be categorized into two types: those
based on simulation (e.g., [7]) and those based on the subset construction (e.g.,
[6,10,11,12]). Simulation-based approaches first compute a simulation relation on the
states of two automata A and B and then check if all initial states of A can be simu-
lated by some initial state of B . Since simulation can be computed in polynomial time,
simulation-based methods are usually very efficient. Their main drawback is that they
are incomplete. Simulation preorder implies language inclusion, but not vice-versa.

On the other hand, methods based on the subset construction are complete but in-
efficient because in many cases they will cause an exponential blow up in the number

� This work was supported in part by the Royal Society grant JP080268, the Czech Science
Foundation (projects P103/10/0306, 102/09/H042), the Czech COST project OC10009 associ-
ated with the ESF COST action IC0901, the Czech Ministry of Education by the project MSM
0021630528, the UPMARC project, the CONNECT project, and the ESF project Games for
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of states. Recently, De Wulf et al. [13] proposed the antichain-based approach. To the
best of our knowledge, it was the most efficient one among all of the methods based
on the subset construction. Although the antichain-based method significantly outper-
forms the classical subset construction, in many cases, it still sometimes suffers from
the exponential blow up problem.

In this paper, we describe a new approach that nicely combines the simulation-based
and the antichain-based approaches. The computed simulation relation is used for prun-
ing out unnecessary search paths of the antichain-based method.

To simplify the presentation, we first consider the problem of checking universality
for a word automaton A . In a similar manner to the classical subset construction, we
start from the set of initial states and search for sets of states (here referred to as macro-
states) which are not accepting (i.e., we search for a counterexample of universality).
The key idea is to define an “easy-to-check” ordering � on the states of A which implies
language inclusion (i.e., p � q implies that the language of the state p is included in
the language of the state q). From �, we derive an ordering on macro-states which
we use in two ways to optimize the subset construction: (1) searching from a macro-
state needs not continue in case a smaller macro-state has already been analyzed; and
(2) a given macro-state is represented by (the subset of) its maximal elements. In this
paper, we take the ordering � to be the well-known maximal simulation relation on the
automaton A . In fact, the anti-chain algorithm of [13] coincides with the special case
where the ordering � is the identity relation.

Subsequently, we describe how to generalize the above approach to the case of
checking language inclusion between two automata A and B , by extending the ordering
to pairs each consisting of a state of A and a macro-state of B .

In the second part of the paper, we extend our algorithms to the case of tree automata.
First, we define the notion of open trees which we use to characterize the languages
defined by tuples of states of the tree automaton. We identify here a new application of
the so called upward simulation relation from [1]. We show that it implies (open tree)
language inclusion, and we describe how we can use it to optimize existing algorithms
for checking the universality and language inclusion properties.

We have implemented our algorithms and carried out an extensive experimentation
using NFA obtained from several different sources. These include NFA from random
regular expressions and also 1069 pairs of NFA generated from the intermediate steps
of abstract regular model checking [5] while verifying the correctness of the bakery
algorithm, a producer-consumer system, the bubble sort algorithm, an algorithm that
reverses a circular list, and a Petri net model of the readers/writers protocol. We have
also considered tree-automata derived from intermediate steps of abstract regular tree
model checking. The experiments show that our approach significantly outperforms the
previous antichain-based approach in almost all of the considered cases. (Furthermore,
in those cases where simulation is sufficient to prove language inclusion, our algorithm
has polynomial running time.)

The remainder of the paper is organized as follows. Section 2 contains some basic
definitions. In Section 3, we begin the discussion by applying our idea to solve the uni-
versality problem for NFA. The problem is simpler than the language inclusion problem
and thus we believe that presenting our universality checking algorithm first makes it
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easier for the reader to grasp the idea. The correctness proof of our universality check-
ing algorithm is given in Section 4. In Section 5 we discuss our language inclusion
checking algorithm for NFA. Section 6 defines basic notations for tree automata and
in Section 7, we present the algorithms for checking universality and language inclu-
sion for tree automata. The experimental results are described in Section 8. Finally, in
Section 9, we conclude the paper and discuss further research directions.

2 Preliminaries

A Nondeterministic Finite Automaton (NFA) A is a tuple (Σ,Q, I,F,δ) where: Σ is an
alphabet, Q is a finite set of states, I ⊆ Q is a non-empty set of initial states, F ⊆ Q is
a set of final states, and δ ⊆ Q × Σ × Q is the transition relation. For convenience, we
use p

a−→ q to denote the transition from the state p to the state q with the label a.
A word u = u1 . . .un is accepted by A from the state q0 if there exists a sequence

q0u1q1u2 . . .unqn such that qn ∈ F and q j−1
u j−→ q j for all 0 < j ≤ n. Define L(A)(q) :=

{u | u is accepted by A from the state q} (the language of the state q in A). Define the
language L(A) of A as

⋃
q∈I L(A)(q). We say that A is universal if L(A) = Σ∗. Let

A = (Σ,QA , IA ,FA ,δA) and B = (Σ,QB , IB ,FB ,δB) be two NFAs. Define their union
automaton A ∪B := (Σ,QA ∪QB , IA ∪ IB ,FA ∪FB ,δA ∪δB). We define the post-image
of a state Post(p) := {p′ | ∃a ∈ Σ : (p,a, p′) ∈ δ}.

A simulation on A = (Σ,Q, I,F,δ) is a relation � ⊆ Q × Q such that p � r only if (i)
p ∈ F =⇒ r ∈ F and (ii) for every transition p

a−→ p′, there exists a transition r
a−→ r′

such that p′ � r′. It can be shown that for each automaton A = (Σ,Q, I,F,δ), there exists
a unique maximal simulation which can be computed in O(|Σ||δ|) [8].

Lemma 1. Given a simulation � on an NFA A , p � r =⇒ L(A)(p) ⊆ L(A)(r).

For convenience, we call a set of states in A a macro-state, i.e., a macro-state is a subset
of Q. A macro-state is accepting if it contains at least one accepting state, otherwise it is
rejecting. For a macro-state P, define L(A)(P) :=

⋃
p∈P L(A)(p). We say that a macro-

state P is universal if L(A)(P) = Σ∗. For two macro-states P and R, we write P �∀∃ R
as a shorthand for ∀p ∈ P.∃r ∈ R : p � r. We define the post-image of a macro-state
Post(P) := {P′ | ∃a ∈ Σ : P′ = {p′ | ∃p ∈ P : (p,a, p′) ∈ δ}}. We use A⊆ to denote the
set of relations over the states of A that imply language inclusion, i.e., if �∈ A⊆, then
we have p � r =⇒ L(A)(p) ⊆ L(A)(r).

3 Universality of NFAs

The universality problem for an NFA A = (Σ,Q, I,F,δ) is to decide whether L(A) =
Σ∗. The problem is PSPACE-complete. The classical algorithm for the problem first
determinizes A with the subset construction and then checks if every reachable macro-
state is accepting. The algorithm is inefficient since in many cases the determinization
will cause a very fast growth in the number of states. Note that for universality checking,
we can stop the subset construction immediately and conclude that A is not universal
whenever a rejecting macro-state is encountered. An example of a run of this algorithm
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Fig. 1. Universality Checking Algorithms

is given in Fig. 1. The automaton A used in Fig. 1 is universal because all reachable
macro-states are accepting.

In this section, we propose a more efficient approach to universality checking. In
a similar manner to the classical algorithm, we run the subset construction procedure
and check if any rejecting macro-state is reachable. However, our algorithm augments
the subset construction with two optimizations, henceforth referred to as Optimization 1
and Optimization 2, respectively.

Optimization 1 is based on the fact that if the algorithm encounters a macro-state
R whose language is a superset of the language of a visited macro-state P, then there
is no need to continue the search from R. The intuition behind this is that if a word is
not accepted from R, then it is also not accepted from P. For instance, in Fig. 1(b), the
search needs not continue from the macro-state {s2,s3} since its language is a superset
of the language of the initial macro-state {s1,s2}. However, in general it is difficult to
check if L(A)(P) ⊆ L(A)(R) before the resulting DFA is completely built. Therefore,
we suggest to use an easy-to-compute alternative based on the following lemma.

Lemma 2. Let P, R be two macro-states, A be an NFA, and � be a relation in A⊆.
Then, P �∀∃ R implies L(A)(P) ⊆ L(A)(R).

Note that in Lemma 2, � can be any relation on the states of A that implies language
inclusion. This includes any simulation relation (Lemma 1). When � is the maximal
simulation or the identity relation, it can be efficiently obtained from A before the subset
construction algorithm is triggered and used to prune out unnecessary search paths.

An example of how the described optimization can help is given in Fig. 1(b). If �
is the identity, the universality checking algorithm will not continue the search from
the macro-state {s1,s2,s4} because it is a superset of the initial macro-state. In fact,
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Algorithm 1. Universality Checking

Input: An NFA A = (Σ,Q, I,F,δ) and a relation �∈ A⊆.
Output: TRUE if A is universal. Otherwise, FALSE.
if I is rejecting then return FALSE;1

Processed:= /0;2

Next:={Minimize(I)};3

while Next �= /0 do4

Pick and remove a macro-state R from Next and move it to Processed;5

foreach P ∈ {Minimize(R′) | R′ ∈ Post(R)} do6

if P is rejecting then return FALSE;7

else if � ∃S ∈ Processed ∪ Next s.t. S �∀∃ P then8

Remove all S from Processed ∪ Next s.t. P �∀∃ S;9

Add P to Next;10

return TRUE11

the antichain-based approach [13] can be viewed as a special case of our approach
when � is the identity. Notice that, in this case, only 7 macro-states are generated (the
classical algorithm generates 13 macro-states). When � is the maximal simulation, we
do not need to continue from the macro-state {s2,s3} either because s1 � s3 and hence
{s1,s2} �∀∃ {s2,s3}. In this case, only 3 macro-states are generated. As we can see
from the example, a better reduction of the number of generated states can be achieved
when a weaker relation (e.g., the maximal simulation) is used.

Optimization 2 is based on the observation that L(A)(P) = L(A)(P \ {p1}) if there
is some p2 ∈ P with p1 � p2. This fact is a simple consequence of Lemma 2 (note that
P �∀∃ P \ {p1}). Since the two macro-states P and P \ {p1} have the same language,
if a word is not accepted from P, it is not accepted from P \ {p1} either. On the other
hand, if all words in Σ∗ can be accepted from P, then they can also be accepted from
P \ {p1}. Therefore, it is safe to replace the macro-state P with P \ {p1}.

Consider the example in Fig. 1. If � is the maximal simulation relation, we can re-
move the state s2 from the initial macro-state {s1,s2} without changing its language,
because s2 � s1. This change will propagate to all the searching paths. With this opti-
mization, our approach will only generates 3 macro-states, all of which are singletons.
The result after apply the two optimizations are applied is shown in Fig. 1(c).

Algorithm 1 describes our approach in pseudocode. In this algorithm, the function
Minimize(R) implements Optimization 2. The function does the following: it chooses
a new state r1 from R, removes r1 from R if there exists a state r2 in R such that r1 � r2,
and then repeats the procedure until all of the states in R are processed. Lines 8–10 of
the algorithm implement Optimization 1. Overall, the algorithm works as follows. Till
the set Next of macro-states waiting to be processed is non-empty (or a rejecting macro-
state is found), the algorithm chooses one macro-state from Next, and moves it to the
Processed set. Moreover, it generates all successors of the chosen macro-state, mini-
mizes them, and adds them to Next unless there is already some �∀∃-smaller macro-
state in Next or in Processed. If a new macro-state is added to Next, the algorithm at the
same time removes all �∀∃-bigger macro-states from both Next and Processed. Note
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that the pruning of the Next and Processed sets together with checking whether a new
macro-state should be added into Next can be done within a single iteration through
Next and Processed. We discuss correctness of the algorithm in the next section.

4 Correctness of the Optimized Universality Checking

In this section, we prove correctness of Algorithm 1. Due to the space limitation,
we only present an overview. A more detailed proof can be found in [2]. Let A =
(Σ,Q, I,F,δ) be the input automaton. We first introduce some definitions and nota-
tions that will be used in the proof. For a macro-state P, define Dist(P) ∈ N ∪ {∞}
as the length of the shortest word in Σ∗ that is not in L(A)(P) (if L(A)(P) = Σ∗,
Dist(P) = ∞). For a set of macro-states MStates, the function Dist(MStates) ∈ N ∪
{∞} returns the length of the shortest word in Σ∗ that is not in the language of some
macro-state in MStates. More precisely, if MStates = /0, Dist(MStates) = ∞, otherwise,
Dist(MStates) = minP∈MStatesDist(P). The predicate Univ(MStates) is true if and only
if all the macro-states in MStates are universal, i.e., ∀P ∈ MStates : L(A)(P) = Σ∗.

Lemma 3 describes the invariants used to prove the partial correctness of Alg. 1.

Lemma 3. The below two loop invariants hold in Algorithm 1:

1. ¬Univ(Processed ∪ Next) =⇒ ¬Univ({I}).
2. ¬Univ({I}) =⇒ Dist(Processed) > Dist(Next).

Due to the finite number of macro-states, we can show that Algorithm 1 eventually ter-
minates. Algorithm 1 returns FALSE only if either the set of initial states is rejecting, or
the minimized version of some successor R′ of a macro-state R chosen from Next on line
5 is found to be rejecting. In the latter case, due to Lemma 2, R′ is also rejecting. Then,
R is non-universal, and hence Univ(Processed ∪ Next) is false. By Lemma 3 (Invariant
1), we have A is not universal. The algorithm returns TRUE only when Next becomes
empty. When Next is empty, Dist(Processed) > Dist(Next) is not true. Therefore, by
Lemma 3 (Invariant 2), A is universal. This gives the following theorem.

Theorem 1. Algorithm 1 always terminates, and returns TRUE iff the input automaton
A is universal.

5 The Language Inclusion Problem

The technique described in Section 3 can be generalized to solve the language-inclusion
problem. Let A and B be two NFAs. The language inclusion problem for A and B is to
decide whether L(A) ⊆ L(B). This problem is also PSPACE-complete. The classical
algorithm for solving this problem builds on-the-fly the product automaton A × B of
A and the complement of B and searches for an accepting state. A state in the product
automaton A ×B is a pair (p,P) where p is a state in A and P is a macro-state in B . For
convenience, we call such a pair (p,P) a product-state. A product-state is accepting iff p
is an accepting state in A and P is a rejecting macro-state in B . We use L(A ,B)(p,P) to
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Fig. 2. Language Inclusion Checking Algorithms

denote the language of the product-state (p,P) in A ×B . The language of A is not con-
tained in the language of B iff there exists some accepting product-state (p,P) reachable
from some initial product-state. Indeed, L(A ,B)(p,P) = L(A)(p)\ L(B)(P), and the
language of A × B consists of words which can be used as witnesses of the fact that
L(A) ⊆ L(B) does not hold. In a similar manner to universality checking, the algo-
rithm can stop the search immediately and conclude that the language inclusion does
not hold whenever an accepting product-state is encountered. An example of a run of
the classical algorithm is given in Fig. 2. We find that L(A) ⊆ L(B) is true and the
algorithm generates 13 product-states (Fig. 2(c), the area labeled “Classical”).

Optimization 1 that we use for universality checking can be generalized for language
inclusion checking as follows. Let A = (Σ,QA , IA ,FA ,δA) and B = (Σ,QB , IB ,FB , δB)
be two NFAs such that QA ∩ QB = /0. We denote by A ∪ B the NFA (Σ,QA ∪ QB , IA ∪
IB ,FA ∪FB ,δA ∪δB). Let � be a relation in (A ∪B)⊆. During the process of construct-
ing the product automaton and searching for an accepting product-state, we can stop
the search from a product-state (p,P) if (a) there exists some visited product-state (r,R)
such that p � r and R �∀∃ P, or (b) ∃p′ ∈ P : p � p′. Optimization 1(a) is justified by
Lemma 4, which is very similar to Lemma 2 for universality checking.

Lemma 4. Let A , B be two NFAs, (p,P), (r,R) be two product-states, where p, r are
states in A and P, R are macro-states in B , and � be a relation in (A ∪ B)⊆. Then,
p � r and R �∀∃ P implies L(A ,B)(p,P) ⊆ L(A ,B)(r,R).

By the above lemma, if a word takes the product-state (p,P) to an accepting product-
state, it will also take (r,R) to an accepting product-state. Therefore, we do not need to
continue the search from (p,P).

Let us use Fig. 2(c) to illustrate Optimization 1(a). As we mentioned, the antichain-
based approach can be viewed as a special case of our approach when � is the iden-
tity. When � is the identity, we do not need to continue the search from the product-
state (p2,{q1,q2}) because {q2} ⊆ {q1,q2}. In this case, the algorithm generates 8
product-states (Fig. 2(c), the area labeled “Antichain”). In the case that � is the maxi-
mal simulation, we do not need to continue the search from product-states (p1,{q2}),
(p1,{q1,q2}), and (p2,{q1,q2}) because q1 � q2 and the algorithm already visited
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the product-states (p1,{q1}) and (p2,{q2}). Hence, the algorithm generates only 6
product-states (Fig. 2(c), the area labeled “Optimization 1(a)”).

If the condition of Optimization 1(b) holds, we have that the language of p (w.r.t.
A) is a subset of the language of P (w.r.t. B). In this case, for any word that takes p
to an accepting state in A , it also takes P to an accepting macro-state in B . Hence,
we do not need to continue the search from the product-state (p,P) because all of its
successor states are rejecting product-states. Consider again the example in Fig. 2(c).
With Optimization 1(b), if � is the maximal simulation on the states of A ∪ B , we do
not need to continue the search from the first product-state (p1,{q1}) because p1 � q1.
In this case, the algorithm can conclude that the language inclusion holds immediately
after the first product-state is generated (Fig. 2(c), the area labeled “Optimization 1(b)”).

Observe that from Lemma 4, it holds that for any product-state (p,P) such that p1 �
p2 for some p1, p2 ∈ P, L(A ,B)(p,P) = L(A ,B)(p,P \ {p1}) (as P �∀∃ P \ {p1}).
Optimization 2 that we used for universality checking can therefore be generalized for
language inclusion checking too.

We give the pseudocode of our optimized inclusion checking in Algorithm 2, which
is a straightforward extension of Algorithm 1. In the algorithm, the definition of the
Minimize(R) function is the same as what we have defined in Section 3. The function
Initialize(PStates) applies Optimization 1 on the set of product-states PStates to avoid
unnecessary searching. More precisely, it returns a maximal subset of PStates such that
(1) for any two elements (p,P), (q,Q) in the subset, p �� q ∨ Q ��∀∃ P and (2) for any
element (p,P) in the subset, ∀p′ ∈ P : p �� p′. We define the post-image of a product-
state Post((p,P)) := {(p′,P′) | ∃a ∈ Σ : (p,a, p′) ∈ δ,P′ = {p′′ | ∃p ∈ P : (p,a, p′′) ∈ δ}}.

Algorithm 2. Language Inclusion Checking

Input: NFA A = (Σ,QA , IA ,FA ,δA), B = (Σ,QB , IB ,FB ,δB ). A relation � ∈ (A ∪ B)⊆.
Output: TRUE if L(A) ⊆ L(B). Otherwise, FALSE.
if there is an accepting product-state in {(i, IB ) | i ∈ IA} then return FALSE;1

Processed:= /0;2

Next:= Initialize({(i,Minimize(IB )) | i ∈ IA });3

while Next �= /0 do4

Pick and remove a product-state (r,R) from Next and move it to Processed;5

foreach (p,P) ∈ {(r′,Minimize(R′)) | (r′,R′) ∈ Post((r,R))} do6

if (p,P) is an accepting product-state then return FALSE;7

else if � ∃p′ ∈ P s.t. p � p′ then8

if � ∃(s,S) ∈ Processed ∪ Next s.t. p � s ∧ S �∀∃ P then9

Remove all (s,S) from Processed ∪ Next s.t. s � p∧ P �∀∃ S;10

Add (p,P) to Next;11

return TRUE12

Correctness: Define Dist(P) ∈ N ∪ {∞} as the length of the shortest word in the lan-
guage of the product-state P or ∞ if the language of P is empty. The value
Dist(PStates) ∈ N ∪ {∞} is the length of the shortest word in the language of some
product-state in PStates or ∞ if PStates is empty. The predicate Incl(PStates) is true iff
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for all product-states (p,P) in PStates, L(A)(p) ⊆ L(B)(P). The correctness of Algo-
rithm 2 can now be proved in a very similar way to Algorithm 1, using the invariants
below:

1. ¬Incl(Processed ∪ Next) =⇒ ¬Incl({(i, IB) | i ∈ IA}).
2. ¬Incl({(i, IB) | i ∈ IA}) =⇒ Dist(Processed) > Dist(Next).

6 Tree Automata Preliminaries

To be able to present a generalization of the above methods for the domain of tree
automata, we now introduce some needed preliminaries on tree automata.

A ranked alphabet Σ is a set of symbols together with a ranking function # : Σ → N.
For a ∈ Σ, the value #(a) is called the rank of a. For any n ≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t
over a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions: (1) dom(t) is a finite, prefix-closed subset of N∗ and (2) for each v ∈ dom(t),
if #(t(v)) = n ≥ 0, then {i | vi ∈ dom(t)} = {1, . . . ,n}. Each sequence v ∈ dom(t) is
called a node of t. For a node v, we define the ith child of v to be the node vi, and the ith

subtree of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈ N∗. A leaf of t is a node
v which does not have any children, i.e., there is no i ∈ N with vi ∈ dom(t). We denote
by T (Σ) the set of all trees over the alphabet Σ.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in the
sequel) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is a set of
final states, Σ is a ranked alphabet, and Δ is a set of transition rules. Each transition rule
is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q, a ∈ Σ, and #(a) = n.
We use (q1, . . . ,qn)

a−→ q to denote that ((q1, . . . ,qn),a,q) ∈ Δ. In the special case where
n = 0, we speak about the so-called leaf rules, which we sometimes abbreviate as

a−→ q.
Let A = (Q,Σ,Δ,F) be a TA. A run of A over a tree t ∈ T (Σ) is a mapping π :

dom(t) → Q such that, for each node v ∈ dom(t) of arity #(t(v)) = n where q = π(v), if

qi = π(vi) for 1 ≤ i ≤ n, then Δ has a rule (q1, . . . ,qn)
t(v)−−→ q. We write t

π=⇒ q to denote
that π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t

π=⇒ q for
some run π. The language accepted by a state q is defined by L(A)(q) = {t | t =⇒ q},
while the language of A is defined by L(A) =

⋃
q∈F L(A)(q).

7 Universality and Language Inclusion of Tree Automata

To optimize universality and inclusion checking on word automata, we used relations
that imply language inclusion. For the case of universality and inclusion checking on
tree automata, we now propose to use relations that imply inclusion of languages of
the so called “open” trees (i.e., “leafless” trees or equivalently trees whose leaves are
replaced by a special symbol denoting a “hole”) that are accepted from tuples of tree
automata states. We formally define the notion below. Notice that in contrast to the
notion of a language accepted from a state of a word automaton, which refers to possible
“futures” of the state, the notion of a language accepted at a state of a TA refers to
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possible “pasts” of the state. Our notion of languages of open trees accepted from tuples
of tree automata states speaks again about the future of states, which turns out useful
when trying to optimize the (antichain-based) subset construction for TA.

Consider a special symbol � �∈ Σ with rank 0, called a hole. An open tree over Σ
is a tree over Σ ∪ � such that all its leaves are labeled1 by �. We use T �(Σ) to de-
note the set of all open trees over Σ. Given states q1, . . . ,qn ∈ Q and an open tree
t with leaves v1, . . . ,vn, a run π of A on t from (q1, . . . ,qn) is defined in a similar
way as the run on a tree except that for each leaf vi, 1 ≤ i ≤ n, we have π(vi) =
qi. We use t(q1, . . . ,qn)

π=⇒ q to denote that π is a run of A on t from (q1, . . . ,qn)
such that π(ε) = q. The notation t(q1, . . . ,qn) =⇒ q is explained in a similar man-
ner to runs on trees. Then, the language of A accepted from a tuple (q1, . . . ,qn) of
states is L�(A)(q1, . . . ,qn) = {t ∈ T � | t(q1, . . . ,qn) =⇒ q for some q ∈ F}. Finally,
we define the language accepted from a tuple of macro-states (P1, . . . ,Pn) ⊆ Qn as
the set L�(A)(P1, . . . ,Pn) =

⋃{L�(A)(q1, . . . ,qn) | (q1, . . . ,qn) ∈ P1 × . . . × Pn}. We
define Posta(q1, . . . ,qn) := {q | (q1, . . . ,qn)

a−→ q}. For a tuple of macro-states, we let
Posta(P1, . . . ,Pn) :=

⋃{Posta(q1, . . . ,qn) | (q1, . . . ,qn) ∈ P1 × ·· ·× Pn}.
Let us use t� to denote the open tree that arises from a tree t ∈ T (Σ) by replacing all

the leaf symbols of t by � and let for every leaf symbol a ∈ Σ, Ia = {q | a−→ q} is the so
called a-initial macro-state. Languages accepted at final states of A correspond to the
languages accepted from tuples of initial macro-states of A as stated in Lemma 5.

Lemma 5. Let t be a tree over Σ with leaves labeled by a1, . . . ,an. Then t ∈ L(A) if
and only if t� ∈ L�(A)(Ia1 , . . . , Ian).

7.1 Upward Simulation

We now work towards defining suitable relations on states of TA allowing us to optimize
the universality and inclusion checking. We extend relations � ∈ Q × Q on states to tu-
ples of states such that (q1, . . . ,qn) � (r1, . . . ,rn) iff qi � ri for each 1 ≤ i ≤ n. We define
the set A⊆ of relations that imply inclusion of languages of tuples of states such that
� ∈ A⊆ iff (q1, . . . ,qn) � (r1, . . . ,rn) implies L�(A)(q1, . . . ,qn) ⊆ L�(A)(r1, . . . ,rn).

We define an extension of simulation relations on states of word automata that satis-
fies the above property as follows. An upward simulation on A is a relation � ⊆ Q × Q
such that if q � r, then (1) q ∈ F =⇒ r ∈ F and (2) if (q1, . . . ,qn)

a−→ q′ where q = qi,
then (q1, . . . ,qi−1,r,qi+1, . . . ,qn)

a−→ r′ where q′ � r′. Upward simulations were dis-
cussed in [1], together with an efficient algorithm for computing them.2

Lemma 6. For the maximal upward simulation � on A , we have � ∈ A⊆.

The proof of this lemma can be obtained as follows. We first show that the maximal
upward simulation � has the following property: If (q1, . . . ,qn)

a−→ q′ in A , then for

1 Note that no internal nodes of an open tree can be labeled by � as #(�) = 0.
2 In [1], upward simulations are parameterized by some downward simulation. However, upward

simulations parameterized by a downward simulation greater than the identity cannot be used
in our framework since they do not generally imply inclusion of languages of tuples of states.
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every (r1, . . . ,rn) with (q1, . . . ,qn) � (r1, . . . ,rn), there is r′ ∈ Q such that q′ � r′ and
(r1, . . . ,rn)

a−→ r′. From (q1, . . . ,qn)
a−→ q′ and q1 � r1, we have that there is some rule

(r1,q2, . . . ,qn)
a−→ s1 such that q′ � s1. From the existence of (r1,q2, . . . ,qn)

a−→ s1 and
from q2 � r2, we then get that there is some rule (r1,r2,q3, . . . ,qn)

a−→ s2 such that s1 �
s2, etc. Since the maximal upward simulation is transitive [1], we obtain the property
mentioned above. This in turn implies Lemma 6.

7.2 Tree Automata Universality Checking

We now show how upward simulations can be used for optimized universality checking
on tree automata. Let A = (Σ,Q,F,Δ) be a tree automaton. We define T �

n (Σ) as the
set of all open trees over Σ with n leaves. We say that an n-tuple (q1, . . . ,qn) of states
of A is universal if L�(A)(q1, . . . ,qn) = T �

n (Σ), this is, all open trees with n leaves
constructible over Σ can be accepted from (q1, . . . ,qn). A set of macro-states MStates is
universal if all tuples in MStates∗ are universal. From Lemma 5, we can deduce that A
is universal (i.e., L(A) = T (Σ)) if and only if {Ia | a ∈ Σ0} is universal.

The following Lemma allows us to design a new TA universality checking algorithm
in a similar manner to Algorithm 1 using Optimizations 1 and 2 from Section 3.

Lemma 7. For any � ∈ A⊆ and two tuples of macro-states of A , we have
(R1, . . . ,Rn) �∀∃ (P1, . . . ,Pn) implies L�(A)(R1, . . . ,Rn) ⊆ L�(A)(P1, . . . ,Pn).

Algorithm 3 describes our approach to checking universality of tree automata in pseu-
docode. It resembles closely Algorithm 1. There are two main differences: (1) The
initial value of the Next set is the result of applying the function Initialize to the set
{Minimize(Ia) | a ∈ Σ0}. Initialize returns the set of all macro-states in {Minimize(Ia) |
a ∈ Σ0}, which are minimal w.r.t. �∀∃ (i.e., those macro states with the best chance
of finding a counterexample to universality). (2) The computation of the Post-image
of a set of macro-states is a bit more complicated. More precisely, for each symbol
a ∈ Σn,n ∈ N, we have to compute the post image of each n-tuple of macro-states

Algorithm 3. Tree Automata Universality Checking

Input: A tree automaton A = (Σ,Q,F,Δ) and a relation � ∈ A⊆.
Output: TRUE if A is universal. Otherwise, FALSE.
if ∃a ∈ Σ0 such that Ia is rejecting then return FALSE;1

Processed:= /0;2

Next:= Initialize{Minimize(Ia) | a ∈ Σ0};3

while Next �= /0 do4

Pick and remove a macro-state R from Next and move it to Processed;5

foreach P ∈ {Minimize(R′) | R′ ∈ Post(Processed)(R)} do6

if P is a rejecting macro-state then return FALSE;7

else if � ∃Q ∈ Processed ∪ Next s.t. Q �∀∃ P then8

Remove all Q from Processed ∪ Next s.t. P �∀∃ Q;9

Add P to Next;10

return TRUE11
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from the set. We design the algorithm such that we avoid computing the Post-image
of a tuple more than once. We define the Post-image Post(MStates)(R) of a set of
macro-states MStates w.r.t. a macro-states R ∈ MStates. It is the set of all macro-states
P = Posta(P1, . . . ,Pn) where a ∈ Σn,n ∈ N and R occurs at least once in the tuple
(P1, . . . ,Pn) ∈ MStates∗. Formally, Post(MStates)(R) =

⋃
a∈Σ{Posta(P1, . . . ,Pn) | n =

#(a),P1, . . . ,Pn ∈ MStates,R ∈ {P1, . . . ,Pn}}.
The following theorem states correctness of Algorithm 3, which can be proved using

similar invariants as in the case of Algorithm 1 when the notion of distance from an
accepting state is suitably defined (see [2] for more details).

Theorem 2. Algorithm 3 always terminates, and returns TRUE if and only if the input
tree automaton A is universal.

7.3 Tree Automata Language Inclusion Checking

We are interested in testing language inclusion of two tree automata A = (Σ,QA ,FA ,ΔA )
and B = (Σ,QB ,FB ,ΔB). From Lemma 5, we have that L(A) ⊆ L(B) iff for every tu-
ple a1, . . . ,an of symbols from Σ0, L�(A)(IA

a1
, . . . , IA

an
) ⊆ L�(B)(IB

a1
, . . . , IB

an
). In other

words, for any a1, . . . ,an ∈ Σ0, every open tree that can be accepted from a tuple of
states from IA

a1
× . . .× IA

an
can also be accepted from a tuple of states from IB

a1
× . . .× IB

an
.

This justifies a similar use of the notion of product-states as in Section 5. We de-
fine the language of a tuple of product-states as L�(A ,B)((q1,P1), . . . ,(qn,Pn)) :=
L�(A)(q1, . . . ,qn)\ L�(B)(P1, . . . ,Pn). Observe that we obtain that L(A) ⊆ L(B) iff
the language of every n-tuple (for any n ∈ N) of product-states from the set {(i, IB

a ) |
a ∈ Σ0, i ∈ IA

a } is empty.
Our algorithm for testing language inclusion of tree automata will check whether it

is possible to reach a product-state of the form (q,P) with q ∈ FA and P ∩ FB = /0 (that
we call accepting) from a tuple of product-states from {(i, IB

a ) | a ∈ Σ0, i ∈ IA
a }. The

following lemma allows us to use Optimization 1(a) and Optimization 2 from Section 5.

Lemma 8. Let � ∈ (A ∪ B)⊆. For any two tuples of states and two tuples of product-
states such that (p1, . . . , pn) � (r1, . . . ,rn) and (R1, . . . ,Rn) �∀∃ (P1, . . . ,Pn), we have
L�(A ,B)((p1,P1), . . . ,(pn,Pn)) ⊆ L�(A ,B)((r1,R1), . . . ,(rn,Rn)).

It is also possible to use Optimization 1(b) where we stop searching from product-states
of the form (q,P) such that q � r for some r ∈ P. However, note that this optimization
is of limited use for tree automata. Under the assumption that the automata A and B do
not contain useless states, the reason is that for any q ∈ QA and r ∈ QB , if q appears
at a left-hand side of some rule of arity more than 1, then no reflexive relation from
� ∈ (A ∪ B)⊆ allows q � r.3

Algorithm 4 describes our method for checking language inclusion of TA in pseu-
docode. It closely follows Algorithm 2. It differs in two main points. First, the ini-
tial value of the Next set is the result of applying the function Initialize on the set

3 To see this, assume that an open tree t is accepted from (q1, . . . ,qn) ∈ Qn
A ,q = qi,1 ≤ i ≤ n. If

q � r, then by the definition of �, t ∈ L�(A ∪ B)(q1, . . . ,qi−1,r,qi+1, . . . ,qn). However, that
cannot happen, as A ∪ B does not contain any rules with left hand sides containing both states
from A and states from B .



170 P.A. Abdulla et al.

Algorithm 4. Tree Automata Language Inclusion Checking

Input: TAs A and B over an alphabet Σ. A relation � ∈ (A ∪ B)⊆.
Output: TRUE if L(A) ⊆ L(B). Otherwise, FALSE.
if there exists an accepting product-state in

⋃
a∈Σ0

{(i, IB
a ) | i ∈ IA

a } then return FALSE;1

Processed:= /0;2

Next:=Initialize(
⋃

a∈Σ0
{(i,Minimize(IB

a )) | i ∈ IA
a });3

while Next �= /0 do4

Pick and remove a product-state (r,R) from Next and move it to Processed;5

foreach (p,P) ∈ {(r′,Minimize(R′)) | (r′,R′) ∈ Post(Processed)(r,R)} do6

if (p,P) is an accepting product-state then return FALSE;7

else if � ∃p′ ∈ P s.t. p � p′ then8

if � ∃(q,Q) ∈ Processed ∪ Next s.t. p � q∧ Q �∀∃ P then9

Remove all (q,Q) from Processed ∪ Next s.t. q � p∧ P �∀∃ Q;10

Add (p,P) to Next;11

return TRUE12

{(i,Minimize(IB
a )) | a ∈ Σ0, i ∈ IA

a }, where Initialize is the same function as in Algo-
rithm 2. Second, the computation of the Post image of a set of product-states means
that for each symbol a ∈ Σn,n ∈ N, we construct the Posta-image of each n-tuple of
product-states from the set. Like in Algorithm 3, we design the algorithm such that we
avoid computing the Posta-image of a tuple more than once. We define the post im-
age Post(PStates)(r,R) of a set of product-states PStates w.r.t. a product-state (r,R) ∈
PStates. It is the set of all product-states (q,P) such that there is some a ∈ Σ,#(a) = n
and some n-tuple ((q1,P1), . . . ,(qn,Pn)) of product-states from PStates that contains at
least one occurrence of (r,R), where q ∈ Posta(q1, . . . ,qn) and P = Posta(P1, . . . ,Pn).

Theorem 3. Algorithm 4 always terminates, and returns TRUE iff L(A) ⊆ L(B).

8 Experimental Results

In this section, we describe our experimental results. We concentrated on experiments
with inclusion checking, since it is more common than universality checking in various
symbolic verification procedures, decision procedures, etc. We compared our approach,
parameterized by maximal simulation (or, for tree automata, maximal upward simu-
lation), with the previous pure antichain-based approach of [13], and with classical
subset-construction-based approach. We implemented all the above in OCaml. We used
the algorithm in [9] for computing maximal simulations. In order to make the figures
easier to read, we often do not show the results of the classical algorithm, since in all of
the experiments that we have done, the classical algorithm performed much worse than
the other two approaches.

8.1 The Results on NFA

For language inclusion checking of NFA, we tested our approach on examples generated
from the intermediate steps of a tool for abstract regular model checking [5]. In total,
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(a) Detailed results

Size Antichain Simulation
0 - 1000 0.059 0.099
1000 - 2000 1.0 0.7
2000 - 3000 3.6 1.69
3000 - 4000 11.2 3.2
4000 - 5000 20.1 4.79
5000 - 33.7 6.3

(b) Average execution time for different NFA
pair sizes (in seconds)

Fig. 3. Language inclusion checking on NFAs generated from a regular model checker

we have 1069 pairs of NFA generated from different verification tasks, which included
verifying a version of the bakery algorithm, a system with a parameterized number of
producers and consumers communicating through a double-ended queue, the bubble
sort algorithm, an algorithm that reverses a circular list, and a Petri net model of the
readers/writers protocol (cf. [5,4] for a detailed description of the verification prob-
lems). In Fig. 3 (a), the horizontal axis is the sum of the sizes of the pairs of automata4

whose language inclusion we check, and the vertical axis is the execution time (the time
for computing the maximal simulation is included). Each point denotes a result from in-
clusion testing for a pair of NFA. Fig. 3 (b) shows the average results for different NFA
sizes. From the figure, one can see that our approach has a much better performance than
the antichain-based one. Also, the difference between our approach and the antichain-
based approach becomes larger when the size of the NFA pairs increases. If we compare
the average results on the smallest 1000 NFA pairs, our approach is 60% slower than
the the antichain-based approach. For the largest NFA pairs (those with size larger than
5000), our approach is 5.32 times faster than the the antichain-based approach.

We also tested our approach using NFA generated from random regular expressions.
We have two different tests: (1) language inclusion does not always hold and (2) lan-
guage inclusion always holds5. The result of the first test is in Fig. 4(a). In the figure,
the horizontal axis is the sum of the sizes of the pairs of automata whose language in-
clusion we check, and the vertical axis is the execution time (the time for computing
the maximal simulation is included). From Fig. 4(a), we can see that the performance
of our approach is much more stable. It seldom produces extreme results. In all of the
cases we tested, it always terminates within 10 seconds. In contrast, the antichain-based
approach needs more than 100 seconds in the worst case. The result of the second test
is in Fig. 4(b) where the horizontal axis is the length of the regular expression and the
vertical axis is the average execution time of 30 cases in milliseconds. From Fig. 4(b),
we observe that our approach has a much better performance than the antichain-based
approach if the language inclusion holds. When the length of the regular expression is
900, our approach is almost 20 times faster than the antichain-based approach.

4 We measure the size of the automata as the number of their states.
5 To get a sufficient number of tests for the second case, we generate two NFA A and B from

random regular expressions, build their union automaton C = A ∪ B , and test L(A) ⊆ L(C ).
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Fig. 4. Language inclusion checking on NFA generated from regular expressions

When the maximal simulation relation � is given, a natural way to accelerate the
language inclusion checking is to use � to minimize the size of the two input au-
tomata by merging �-equivalent states. In this case, the simulation relation becomes
sparser. A question arises whether our approach has still a better performance than the
antichain-based approach in this case. Therefore, we also evaluated our approach under
this setting. Here again, we used the NFA pairs generated from abstract regular model
checking [5]. The results show that although the antichain-based approach gains some
speed-up when combined with minimization, it is still slower than our approach. The
main reason is that in many cases, simulation holds only in one direction, but not in the
other. Our approach can also utilize this type of relation. In contrast, the minimization
algorithm merges only simulation equivalent states.

We have also evaluated the performance of our approach using backward language
inclusion checking combined with maximal backward simulation. As De Wulf et al.
[13] have shown in their paper, backward language inclusion checking of two automata
is in fact equivalent to the forward version on the reversed automata. This can be easily
generalized to our case. The result is very consistent to what we have obtained; our
algorithm is still significantly better than the antichain-based approach.

8.2 The Results on TA

For language inclusion checking on TA, we tested our approach on 86 tree automata
pairs generated from the intermediate steps of a regular tree model checker [3] while

Table 1. Language inclusion checking on TA

Size
Antichain Simulation

Diff. # of Pairs(sec.) (sec.)
0 - 200 1.05 0.75 140% 29

200 - 400 11.7 4.7 246% 15
400 - 600 65.2 19.9 328% 14
600 - 800 3019.3 568.7 531% 13
800 - 1000 4481.9 840.4 533% 5

1000 - 1200 11761.7 1720.9 683% 10

verifying the algorithm of re-
balancing red-black trees after
insertion or deletion of a leaf
node. The results are given in
Table 1. Our approach has a
much better performance when
the size of a TA pair is large.
For TA pairs of size smaller
than 200, our approach is on
average 1.39 times faster than
the antichain-based approach.
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However, for those of size above 1000, our approach is on average 6.8 times faster
than the antichain-based approach.

9 Conclusion

We have introduced several original ways to combine simulation relations with an-
tichains in order to optimize algorithms for checking universality and inclusion on NFA.
We have also shown how the proposed techniques can be extended to the domain of tree
automata. This was achieved by introducing the notion of languages of open trees ac-
cepted from tuples of tree automata states and using the maximal upward simulations
parameterized by the identity proposed in our earlier work [1]. We have implemented
the proposed techniques and performed a number of experiments showing that our tech-
niques can provide a very significant improvement over currently known approaches.
In the future, we would like to perform even more experiments, including, e.g., experi-
ments where our techniques will be incorporated into the entire framework of abstract
regular (tree) model checking or into some automata-based decision procedures. Apart
from that, it is also interesting to develop the described techniques for other classes of
automata (notably Büchi automata) and use them in a setting where the transitions of
the automata are represented not explicitly but symbolically, e.g., using BDDs.
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Abstract. Building on the theory of modal I/O automata (MIOs) by
Larsen et al. we introduce a new compatibility notion called weak modal
compatibility. As an important property of behavioral interface theories
we prove that weak modal compatibility is preserved under weak modal
refinement. Furthermore, we organize and compare different notions of
refinement and compatibility to give an easily-accessible overview. Fi-
nally, we describe the MIO Workbench, an Eclipse-based editor and ver-
ification tool for modal I/O automata, which implements various refine-
ment, compatibility and composition notions and is able to depict the
results of verification directly on the graphical representation of MIOs –
relations or state pairs in the positive and erroneous paths in the negative
case.

1 Introduction

Interface design has been a long-standing and important issue in the design of
software systems. Various methods of interface specifications, both static and
behavioral, have been suggested for software components [3,4]. We believe that
behavioral specifications for components are of particular importance, and focus
on such specifications in this paper.

Among the most widely accepted methods for specifying behavioral properties
of interfaces are I/O automata [15,16], which have been introduced to specify the
temporal ordering of events involving a component, explicitly taking communi-
cation aspects such as sending or receiving messages into consideration. Many
variations of these automata have been introduced over the years; for example
interface automata [5], timed interface automata [6], or resource automata [2].
At the same time, another aspect of interface behavior has been studied: Modal
automata [13] explicitly address the difference between required and optional
actions by using must and may transitions, which allow protocols and imple-
mentations to differ with regard to non-compulsory actions. Recently, both the
input/output and the may/must aspects of behavioral specifications have been
integrated [11], giving rise to modal I/O automata (MIOs).

Building on the basic formalisms for behavioral specifications such as MIOs,
we can use notions of interface compatibility and correct interface implementa-
tion (refinement) to verify component behavior; for a survey on compatibility
notions see [3]. Interface theories [4] are commonly used to precisely define these
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requirements. Interface theories are tuples (A,≤,∼,⊗) of a semantic domain A,
a refinement relation≤ ⊆ A×A, a (symmetric) compatibility relation∼ ⊆ A×A,
and a (possibly partial) composition function ⊗ : A×A → A satisfying the fol-
lowing three properties: Let S, T, T ′, T ′′ ∈ A.

(1) Preservation of compatibility: If S ∼ T and T ′ ≤ T then S ∼ T ′.
(2) Compositional refinement: If T ′ ≤ T then S ⊗ T ′ ≤ S ⊗ T .
(3) Transitivity of refinement: If T ′′ ≤ T ′ and T ′ ≤ T then T ′′ ≤ T .

These three properties imply independent implementability, which is the basis
for top-down component-based design.

Independent implementability states that in order to refine a given composed
interface S ⊗ T towards an implementation, it suffices to independently refine
S and T , say, to S′ and T ′, respectively; then the refinements S′ and T ′ are
compatible and their composition refines the interface S ⊗T . More formally, let
(A,≤,∼,⊗) be an interface theory. Independent implementability means that if
S ∼ T , S′ ≤ S and T ′ ≤ T hold, both S′ ∼ T ′ and S′ ⊗ T ′ ≤ S ⊗ T follow.

In this paper, we elaborate on the challenges of component behavior specifi-
cation. We introduce new interface theories in the same line as in de Alfaro and
Henzinger [4] for modal I/O automata with appropriate refinement and com-
patibility notions. We introduce the notion of weak modal compatibility which
allows for loose coupling between interfaces and prove its preservation under
weak modal refinement.

Another result of this paper is the organization and comparison of different
existing and new notions of refinement and compatibility. We give an easily-
accessible overview of these notions and their relationships.

Although I/O automata and modal automata have a long history, there is
little tool support. Therefore, another major contribution of this paper is a
verification tool and editor for MIOs – the MIO Workbench – which includes
implementations of various refinement and compatibility notions, including but
not limited to the ones which are part of our interface theories. We believe that
the ability to automatically verify these properties is useful for both discussing
the theory of MIOs as well as a foundation for practical applications.

This paper is structured as follows. We discuss modal I/O transition systems
in Sect. 2. In Sect. 3, we introduce our notion of weak modal compatibility,
followed by an overview of the different notions of refinement and compatibility
in Sect. 4. Tool support for MIOs is discussed in Sect. 5. We conclude in Sect. 6.

2 Modal (I/O) Transition Systems

This first section is devoted to a short introduction to modal transition systems,
and in particular modal input/output transition systems. A modal transition
system is characterized by the fact that it has two transition relations, indicat-
ing allowed (may) and required (must) behavior. In this paper, we consider an
extended version of the original modal transition systems [13] by including a
signature which distinguishes between internal and external actions.
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Definition 1 (Modal Transition System). A modal transition system
(MTS) S = (statesS , startS , (extS , intS), ��	S ,−→S ) consists of a set of states
statesS, an initial state startS ∈ statesS, disjoint sets extS and intS of external
and internal actions where actS = extS ∪ intS denotes the set of (all) actions, a
may-transition relation ��	S ⊆ statesS × actS × statesS, and a must-transition
relation −→S ⊆ statesS × actS × statesS. The pair (extS , intS) is called the
signature of S.

An MTS S is called syntactically consistent if every required transition is also
allowed, i.e. it holds that −→S ⊆ ��	S . From now on we only consider syntac-
tically consistent MTSs. Moreover, we call an MTS S an implementation if the
two transition relations coincide, i.e. −→S = ��	S .

Modal I/O transition systems [11] further differentiate between two kinds of
external actions, namely input and output actions.

Definition 2 (Modal I/O Transition System). A modal I/O transition sys-
tem (MIO) S is an MTS with the set of external actions extS partitioned into
two disjoint sets inS, outS of input and output actions, respectively. The triple
(inS , outS, intS) is called the signature of S.

The notions of syntactic consistency and implementation also apply for MIOs.

Example 1. Our running example in this paper is the specification (and imple-
mentation) of a flight booking service. In Fig. 1, the MIO T0 specifying the
service provider is depicted. For improving readability, output actions are suf-
fixed with an exclamation mark (!) whereas input actions are suffixed with a
question mark (?). Internal actions do not have any suffix.

In the initial state (indicated by a filled circle) the session is initiated by
receiving bookTicket?, followed by the reception of the data of requested tickets
in ticketData?. Then, a service implementation may ask the client for choosing
a seat number (seat!) which it must be able to receive afterwards (seatNo?).
The reservation of the tickets may be cancelled by the service provider (fail!) if
the requested flight is fully booked, or the request is confirmed by sending ok!,
which is followed by receiving the account data (accountData?) of the client. 


ok!accountData?

fail!

seatNo?

seat!

bookTicket? ticketData?

Fig. 1. Specification T0 of a flight booking service

In the following, we recall the standard definition of refinement for modal tran-
sition systems, cf. [13]. The notion of refinement aims at capturing the relation
between an abstract specification of an interface and a more detailed one, possi-
bly an implementation of that interface. Thus, it allows for a stepwise refinement
of an abstract specification towards an implementation.
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The basic idea of modal refinement is that any required (must) transition
in the abstract specification must also occur in the concrete specification. Con-
versely, any allowed (may) transition in the concrete specification must be al-
lowed by the abstract specification. Moreover, in both cases the target states
must conform to each other. Modal refinement has the following consequences:
A concrete specification may leave out allowed transitions, but is required to
keep all must transitions, and moreover, it is not allowed to perform more tran-
sitions than the abstract specification admits. The following definition of modal
refinement is called strong since every transition that is taken into account must
be simulated “immediately”, i.e. without performing internal actions before.

Definition 3 (Strong Modal Refinement [13]). Let S and T be MTSs
(MIOs, resp.) with the same signature. A relation R ⊆ statesS × statesT is
called strong modal refinement for S and T iff for all (s, t) ∈ R and for all
a ∈ actS it holds that

1. if t
a−→T t′ then there exists s′ ∈ statesS such that s

a−→S s′ and (s′, t′) ∈ R,
2. if s

a��	S s′ then there exists t′ ∈ statesT such that t
a��	T t′ and (s′, t′) ∈ R.

We say that S strongly modally refines T , written S ≤m T , iff there exists a
strong modal refinement for S and T containing (startS , startT ).

If both S and T are implementations, i.e. the must-transition relation coincides
with the may-transition relation, then strong modal refinement coincides with
(strong) bisimulation; if −→T = ∅ then it corresponds to simulation [17].

Example 2. In Fig. 2, a (possible) implementation T1 of the flight booking service
specified by the MIO T0 in Fig. 1 is shown. In this particular implementation
of the specification T0, the optional output for asking the client for a particular
seat number is never taken. However, all must-transitions of T0 are retained in
the implementation T1, hence we have T1 ≤m T0. 


ok!accountData?

fail!

bookTicket? ticketData?

Fig. 2. Implementation T1 of T0

Next, we introduce a binary (synchronous) composition operator on MIOs. When
two protocols (implementations), each one describing a particular component,
can communicate by synchronous message passing, we are interested in comput-
ing the resulting protocol (implementation) of the composed system. Although
composition can obviously be defined for MTSs, we directly give a definition for
MIOs as this is our main interest.

It is convenient to restrict the composition operator to composable MIOs by
requiring that overlapping of actions only happens on complementary types.
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Definition 4 (Composability [11]). Two MIOs S and T are called compos-
able if (inS ∪ intS) ∩ (inT ∪ intT ) = ∅ and (outS ∪ intS) ∩ (outT ∪ intT ) = ∅.
We now define composition of MIOs in a straightforward way by a binary partial
function ⊗ synchronizing on matching (shared) actions.

Definition 5 (Composition [11]). Two composable MIOs S1 and S2 can be
composed to a MIO S1 ⊗ S2 defined by statesS1⊗S2 = statesS1 × statesS2 , the
initial state is given by startS1⊗S2 = (startS1 , startS2), inS1⊗S2 = (inS1\outS2)∪
(inS2 \ outS1), outS1⊗S2 = (outS1 \ inS2) ∪ (outS2 \ inS1), intS1⊗S2 = intS1 ∪
intS2 ∪ (inS1 ∩ outS2) ∪ (inS2 ∩ outS1). The transition relations ��	S1⊗S2

and
−→S1⊗S2

are given by, for each � ∈ {��	,−→},

– for all i, j ∈ {1, 2}, i �= j, for all a ∈ (actS1 ∩actS2), if si
a�Si

s′i and sj
a�Sj

s′j

then (s1, s2)
a�S1⊗S2

(s′1, s′2),
– for all a ∈ actS1 , if s1

a�S1
s′1 and a /∈ actS2 then (s1, s2)

a�S1⊗S2
(s′1, s2),

– for all a ∈ actS2 , if s2
a�S2

s′2 and a /∈ actS1 then (s1, s2)
a�S1⊗S2

(s1, s
′
2).

Composition of MIOs only synchronizes transitions with matching shared ac-
tions and same type of transition, i.e. a must-transition labeled with a shared
action only occurs in the composition if there exist corresponding matching
must-transitions in the original MIOs.

A well-known problem occurs when composing arbitrary MIOs S and T : If
for a reachable state (s, t) in S ⊗ T , S in state s is able to send out a message a
shared with T , and T in state t is not able to receive a then this is considered
as a compatibility problem since S may get stuck in this situation. We want to
rule out this erroneous behavior by requiring that S and T must be compatible.

The following definition of strong compatibility is strongly influenced by [5]
and [11]. Intuitively, two MIOs S and T are compatible if for every reachable
state in the product S ⊗ T , if S is able to provide an output which is shared
with T , i.e. is in the input alphabet of T , then T must “immediately” be able to
receive this message (and vice versa).

Definition 6 (Strong Modal Compatibility). Let S and T be composable
MIOs. S and T are called strongly modally compatible, denoted by S ∼sc T , iff
for all reachable states (s, t) in S ⊗ T ,

1. for all a ∈ (outS ∩ inT ), if s
a��	S s′ then there exists t′ ∈ statesT such that

t
a−→T t′,

2. for all a ∈ (outT ∩ inS), if t
a��	T t′ then there exists s′ ∈ statesS such that

s
a−→S s′.

Example 3. In Fig. 3, a specification S of a client of the flight booking service is
shown. It is easily provable that indeed S and T0 and also S and T1 are strongly
modally compatible, i.e. S ∼sc T0 and S ∼sc T1. 


For MIOs equipped with ∼sc and ≤m, we obtain a valid interface theory.
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bookTicket! ticketData!

seat?

seatNo!ok?

fail?

accountData!

Fig. 3. Protocol S

Theorem 1. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼sc T and T ′ ≤m T then S ∼sc T ′.
2. (Compositionality) If T ′ ≤m T then S ⊗ T ′ ≤m S ⊗ T .
3. (Transitivity) If T ′′ ≤m T ′ and T ′ ≤m T then T ′′ ≤m T .

The proof of statement 1 is given in [1]; statement 2 is a consequence of a result
in [13] (where it has been proved that every static construct – for which ⊗ is
a special case – is compositional for ≤m) and statement 3 follows directly from
the definition of ≤m.

Remark 1. The compatibility notions used in this paper follow a pessimistic
approach: two MIOs S and T are only compatible if no communication error
between S and T can occur in any environment of S ⊗ T . A different approach
to compatibility is the optimistic one, cf. [11,5]: two MIOs S and T are compat-
ible if they are compatible for any “helpful” environment in the sense that the
environment never provides outputs that would cause the product S ⊗ T to run
in a state (s, t) with incompatible states s and t.

3 Weak Modal Compatibility

The refinement presented in the last section is strong in the sense that every
must-transition in the protocol must be immediately simulated in the imple-
mentation and conversely, every may-transition in the implementation must be
immediately simulated in the protocol. This definition can be weakened by in-
cluding the notion of weak transitions.

For denoting weak transitions, given a MIO S and an action a ∈ extS , we
write s

a−→∗
S s′ iff there exist states s1, s2 ∈ statesS such that

s( τ−→S )∗s1
a−→S s2(

τ−→S )∗s′

where t( τ−→T )∗t′ stands for finitely many transitions with internal actions lead-
ing from t to t′; including no transition and in this case t = t′. The label τ always
denotes an arbitrary internal action. Moreover, we write

s
â−→∗

S s′ iff either s
a−→∗

S s′ and a ∈ extS , or s( τ−→S )∗s′ and a /∈ extS .

Both notations are analogously used for may-transitions.
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Similar to the generalization of bisimulation to weak bisimulation [17], one
can introduce a notion of modal refinement in a weak form: Every (non-weak)
must-transition in the protocol must be simulated in the implementation by a
weak must-transition, and conversely, every (non-weak) may-transition in the
implementation must be simulated by a weak may-transition in the protocol.
This form of weak modal refinement was originally introduced in [10].

Definition 7 (Weak Modal Refinement [10]). Let S and T be MTSs (MIOs,
resp.) with the same signature.1 A relation R ⊆ statesS×statesT is called a weak
modal refinement for S and T iff for all (s, t) ∈ R, for all a ∈ actS it holds that

1. if t
a−→T t′ then there exists s′ ∈ statesS such that s

â−→∗
S s′ and (s′, t′) ∈ R,

2. if s
a��	S s′ then there exists t′ ∈ statesT such that t

â��	∗T t′ and (s′, t′) ∈ R.

We say that S weakly modally refines T , denoted by S ≤∗
m T , iff there exists a

weak modal refinement for S and T containing (startS , startT ).

Example 4. In Fig. 4, another implementation T2 of T0 is presented which, af-
ter receiving bookTicket?, performs an internal action log with the meaning of
executing an internal logging operation. T0 does not specify any internal ac-
tions, so we have T2 �≤m T0, but weak modal refinement allows to postpone the
further execution of ticketData? (according to protocol T0) until some internal
(must)-transitions are passed through. It follows that T2 ≤∗

m T0. 


log
bookTicket?

fail!

ticketData?

ok!accountData?

Fig. 4. Implementation T2 of T0

Let us recall our goal. We want to find appropriate notions of refinement and
compatibility for component behavior specifications. In order to obtain a valid
interface theory involving weak modal refinement we have to make sure that,
given a suitable compatibility notion, compatibility is preserved under refine-
ment. The following example shows that strong compatibility is not preserved
by weak modal refinement.

Example 5. S and T0 are strongly compatible and T2 ≤∗
m T0. But S and T2 are

not strongly compatible, since S is able to send out the message ticketData to
T2, but T2, being in the state before performing log, is not able to receive the
message immediately. 

1 More generally, in the weak case, one could also allow that S and T have arbitrary

(non related) internal actions.
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Obviously, internal actions are not adequately considered in the definition of
compatibility. Dealing with this problem requires a new definition of compati-
bility, which we call weak modal compatibility. The intuition behind weak modal
compatibility follows from the previous example: If a MIO may send out a certain
message to its partner, we consider this transaction as compatible if the other
MIO must be able to receive it, possibly performing some internal must steps
in between. Note that the must modality is essential here: If internal may tran-
sitions would be allowed then this path could be omitted in further refinements
and therefore compatibility of implementations would not be ensured anymore.

In the following, given a MIO S and an action a ∈ extS , we write s
a−→�

S s′ iff
there exists a state s′′ ∈ statesS such that

s( τ−→S )∗s′′ a−→S s′.

Moreover, s
â−→�

S s′ denotes s
a−→�

S s′ if a ∈ extS , otherwise s( τ−→S )∗s′. Both no-
tations are analogously used for may-transitions.

Definition 8 (Weak Modal Compatibility). Let S and T be composable
MIOs. S and T are called weakly modally compatible, denoted by S ∼wc T , iff
for all reachable states (s, t) in S ⊗ T ,

1. for all a ∈ (outS ∩ inT ), if s
a��	S s′ then there exists t′ ∈ statesT such that

t
a−→�

T t′,

2. for all a ∈ (outT ∩ inS), if t
a��	T t′ then there exists s′ ∈ statesS such that

s
a−→�

S s′.

Obviously, it holds that S ∼sc T implies S ∼wc T .

Example 6. Looking back to our examples, it can be easily verified that S is
weakly modally compatible with both T0 and T2 since the reception of ticketData
in T2 must take place after the internal must transition labeled with log. 


Based on the MIO formalism, weak modal compatibility ∼wc and weak modal
refinement ≤∗

m satisfy the desired properties of an interface theory.

Theorem 2. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼wc T and T ′ ≤∗
m T then S ∼wc T ′.

2. (Compositionality) If T ′ ≤∗
m T then S ⊗ T ′ ≤∗

m S ⊗ T .
3. (Transitivity) If T ′′ ≤∗

m T ′ and T ′ ≤∗
m T then T ′′ ≤∗

m T .

The proof of statement 1 is given in [1]; statement 2 is a consequence of a result
in [10] (where it has been proved that ⊗ is a binary, τ -insensitive operator on
MTSs with input/output labels and therefore ⊗ is compositional for ≤∗

m) and
statement 3 follows directly from the definition of ≤∗

m.
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4 Overview of Refinement and Compatibility Notions

In order to complete the picture of existing notions of modal refinements for
modal transition systems and their relationships to the notions of compatibility
defined here, we also consider may-weak modal refinement, which has been de-
fined in [12] (and, under the name of observational modal refinement, in [11])
to generalize alternating simulation [5]. May-weak modal refinement keeps the
strong requirement for required (must-)transitions (as in strong modal refine-
ment, but restricted to external actions), but has a weak condition for allowed
(may-)transitions: every allowed transition in the more concrete MTS must be
simulated by an allowed transition in the abstract MTS, possibly preceded by
finitely many internal transitions.

Definition 9 (May-Weak Modal Refinement [12]). Let S and T be MTSs
(MIOs, resp.) with the same signature. A relation R ⊆ statesS×statesT is called
may-weak modal refinement for S and T iff for all (s, t) ∈ R it holds that

1. for all a ∈ extT , if t
a−→T t′ then there exists s′ ∈ statesS such that s

a−→S s′

and (s′, t′) ∈ R,

2. for all a ∈ actS, if s
a��	S s′ then there exists t′ ∈ statesT such that t

â��	�
T t′

and (s′, t′) ∈ R.

We say that S may-weakly modally refines T , denoted by S ≤�
m T , iff there exists

a may-weak modal refinement for S and T containing (startS , startT ).

Given MIOs as the underlying formalism, may-weak modal refinement together
with strong modal compatibility forms a valid interface theory.

Theorem 3. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼sc T and T ′ ≤�
m T then S ∼sc T ′.

2. (Compositionality) If T ′ ≤�
m T then S ⊗ T ′ ≤�

m S ⊗ T .
3. (Transitivity) If T ′′ ≤�

m T ′ and T ′ ≤�
m T then T ′′ ≤�

m T .

The proof of Thm. 3 is given in [1].
So far, we have considered three modal refinement notions. Obviously, for any

two modal transition systems (or MIOs) S and T we have

Fact 1. if S ≤m T then S ≤∗
m T ;

Fact 2. if S ≤m T then S ≤�
m T .

The converses of the above implications do obviously not hold; moreover, it is also
obvious that weak modal refinement does not imply may-weak modal refinement.
However, also may-weak modal refinement does not imply weak modal refine-
ment since condition 1 in Def. 9 only considers external actions; for instance, for
T and T ′ in Fig. 5, T ′ ≤�

m T but T ′ �≤∗
m T since the internal must transition of

T is not respected by T ′ which would be required for weak modal refinement.
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Table 1. Overview of preservation of compatibility under refinement

Strong Compatibility ∼sc Weak Compatibility ∼wc

Strong Refinement ≤m �(Thm. 1) �(Fact 1 & Thm. 2)

Weak Refinement ≤∗
m �(Ex. 5) �(Thm. 2)

May-Weak Refinement ≤�
m �(Thm. 3) �(Ex. 7)

We have shown that all modal refinements are compositional w.r.t. ⊗, but
they substantially differ when preservation of strong/weak compatibility is con-
sidered. Table 1 summarizes the relationships between modal refinement and
compatibility notions; a checkmark indicates that compatibility is preserved un-
der refinement.

Example 7. Weak compatibility is not preserved under may-weak modal refine-
ment, as shown in Fig. 5. 


a!

a! a?τ

S �∼wc T ′

S ∼wc T

T ′ ≤�
m T

Fig. 5. Counterexample

5 The MIO Workbench

In the previous sections, we have illustrated the sometimes subtle distinctions
between different definitions of refinement and compatibility. During our work,
we have come to appreciate the help of implementations of our formal notions,
which were an unflinching partner in finding inconsistencies and confirming coun-
terexamples. To aid ourselves and others, we have implemented a complete set of
verification notions and surrounding functionality for working with modal I/O
automata – the MIO Workbench, an Eclipse-based editor and verification tool
for modal I/O automata, which we present here for the first time.

Workbench Features. The most direct and intuitive way to work with MIOs
is using a graphical editing facility based on a graph of nodes (states) and edges
(transitions) as well as accompanying labels. The first feature provided by the
workbench is thus a

(1) Graphical Editor, allowing to create new or change existing MIOs.

The implementation of the different notions of refinement and compatibility
are the next features of the MIO Workbench:



On Weak Modal Compatibility, Refinement, and the MIO Workbench 185

(2) Refinement Verification. These include strong, may-weak, and weak modal
refinement.

(3) Compatibility Verification. We support the notions of strong (with and with-
out “helpful” environment, cf. [5]), and weak modal compatibility.

Furthermore, it is interesting to see an actual composition of composable MIOs:

(4) Composition Operation on MIOs.

The output of a composition operation is either the composed MIO or a list
of problematic actions which caused the composition to fail.

Considering refinement and compatibility verification, we can get two very
important, but very different results. First, if refinement or compatibility is pos-
sible, we get refinement relation(s) and matching states for compatibility, re-
spectively. However – and this is even more important – if the verification fails,
we get the error states and the error transitions in the two automata, i.e. the
exact position(s) which led to the erroneous outcome.

Visualizing these results in a graphical way is very important. Therefore, the
workbench also includes:

(5) Refinement relation and state match view. If a refinement or compatibility
verification was successful, the workbench graphically displays the relation
or the matching states side-by-side between the two input MIOs.

(6) Problem view including error states and unmatched actions. If a refinement
or compatibility verification was not successful, the workbench graphically
displays, side-by-side, the path which led to an erroneous state, and the
transition possible in one automaton, but not in the other.

On the technical side, the MIO Workbench is based on the Eclipse platform.
We use an Eclipse Modeling Framework (EMF)-based metamodel for MIOs,
which enables persistence and simple access to concrete automata. The work-
bench integrates into Eclipse by adding MIO-specific file handling and the new
MIO editor as well as the verification view. The MIO Workbench is extensible
with regard to new notions of refinement, compatibility, and composition, by
means of standard Eclipse extension points.

User Interface. Fig. 6 shows the MIO editor inside the Eclipse workbench. On
the left-hand side, the project explorer shows MIOs stored on the file system as
.mio files; on the right-hand side, the editor for one of these MIOs is displayed.
A MIO is displayed in the classical way by using nodes as states and edges as
transitions. Each transition has a type (must or may), which is indicated by a
square or diamond, respectively. Furthermore, each transition also stands for an
internal, input, or output action. An input action is colored green and is suffixed
with a question mark (?). An output action is colored red and is suffixed with
an exclamation mark (!). Finally, an internal action is gray and does not have a
suffix. The MIO editor offers all the usual operations such as adding new nodes,
moving them around, changing labels, types, and re-layouting.
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Fig. 6. MIO Workbench editor

The verification view of the MIO Workbench is the central access point
to the verification functionality. It features a side-by-side view of two modal
I/O automata, which can then be analyzed for refinement or compatibility, or
composed.

Fig. 7 shows verification of the protocol T0 (left) and implementation T2 (right)
from Ex. 4 using weak modal refinement, such that T2 ≤∗

m T0, which is indicated
by the green top and the green arrows between related states.

As said above, the most interesting results are negative cases, i.e. if a re-
finement does not exist or compatibility does not hold. In this case, the MIO

Fig. 7. MIO Workbench refinement view
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Fig. 8. MIO Workbench showing refinement problem

Workbench displays the possible error paths, each indicating a state pair in
violation and the corresponding erroneous action.

Fig. 8 shows the visualization of Ex. 4 again, but this time using strong modal
refinement. Thus, we can take the bookTicket? action on both sides, marked in
dark red, arriving at the state pair (1,5). Here, the protocol T0 can take the
ticketData? action, also marked in dark red, which the implementation T2 is
unable to follow. Since it is a must, there is no relation in this case, which is
indicated by the red top and the dark red actions.

The MIO Workbench contains additional helpful features such as automat-
ically laying out MIOs, adjusting an alphabet of a MIO by hiding non-shared
labels for a compatibility or refinement check, and more.

The Workbench in Context. To our knowledge, the MIO Workbench is
the first tool for modal I/O automata which includes a full set of refinement,
compatibility, and composition notions as well as a (graphical) MIO editor.

Perhaps the closest related tool is MTSA [7], which includes a (text-based)
editor and implementations of refinement as well as composition of modal au-
tomata. As the MIO Workbench is based on modal input/output automata as
first class citizens, it differs by including compatibility verification based on I/O
information; furthermore, it includes a graphical editor and a side-by-side graph-
ical result view. There are also tools for I/O automata (i.e. without modality), for
example the command-line based IOA toolset [9] for plain I/O automata or the
Eclipse-based Tempo Toolkit [14] which deals with timed I/O automata; how-
ever, none of those considers both modality and communication aspects available
in MIOs.

6 Conclusion

In this paper, we have presented an overview of modal I/O automata and various
notions of modal refinement and compatibility. We have motivated the need for
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a new compatibility notion called weak modal compatibility, which allows the
passing of internal actions. We have shown this compatibility notion to hold
under weak modal refinement, and we have given an overview of the relationships
between modal refinements and compatibility notions introduced in this paper.

On the practical side, we have presented a verification tool and graphical
editor for modal I/O automata called the MIO Workbench, which implements
various refinement and compatibility notions based on MIOs. We believe that
tool support is of great help for discussing modal I/O automata and may serve
in research, teaching, and as a prototype for industrial applications. The MIO
Workbench can be freely downloaded from www.miowb.net.

As future work, we plan to extend our notions of compatibility to new use
cases identified from practical service specifications and from distributed sys-
tems with asynchronous communication. It also looks interesting to investigate
compatibility in the context of a new semantics for MTSs introduced recently
in [8].
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Abstract. Synthesis is the automated construction of a system from its specifi-
cation. The system has to satisfy its specification in all possible environments.
Modern systems often interact with other systems, or agents. Many times these
agents have objectives of their own, other than to fail the system. Thus, it makes
sense to model system environments not as hostile, but as composed of rational
agents; i.e., agents that act to achieve their own objectives.

We introduce the problem of synthesis in the context of rational agents (ratio-
nal synthesis, for short). The input consists of a temporal-logic formula specify-
ing the system, temporal-logic formulas specifying the objectives of the agents,
and a solution concept definition. The output is an implementation T of the sys-
tem and a profile of strategies, suggesting a behavior for each of the agents. The
output should satisfy two conditions. First, the composition of T with the strategy
profile should satisfy the specification. Second, the strategy profile should be an
equilibrium in the sense that, in view of their objectives, agents have no incentive
to deviate from the strategies assigned to them, where “no incentive to deviate”
is interpreted as dictated by the given solution concept. We provide a method for
solving the rational-synthesis problem, and show that for the classical definitions
of equilibria studied in game theory, rational synthesis is not harder than tradi-
tional synthesis. We also consider the multi-valued case in which the objectives
of the system and the agents are still temporal logic formulas, but involve payoffs
from a finite lattice.

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [8]; the modern approach to synthesis was initiated by
Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis [24]. The LTL
synthesis problem receives as input a specification given in LTL and outputs a reactive
system modeled by a finite-state transducer satisfying the given specification — if such
exists. It is important to distinguish between system outputs, controlled by the system,
and system inputs, controlled by the environment. A system should be able to cope with
all values of the input signals, while setting the output signals to desired values [24].
Therefore, the quantification structure on input and output signals is different. Input
signals are universally quantified while output signals are existentially quantified.

Modern systems often interact with other systems. For example, the clients inter-
acting with a server are by themselves distinct entities (which we call agents) and are
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many times implemented by systems. In the traditional approach to synthesis, the way
in which the environment is composed of its underlying agents is abstracted. In partic-
ular, the agents can be seen as if their only objective is to conspire to fail the system.
Hence the term “hostile environment” that is traditionally used in the context of syn-
thesis. In real life, however, many times agents have goals of their own, other than to
fail the system. The approach taken in the field of algorithmic game theory [21] is to
assume that agents interacting with a computational system are rational, i.e., agents act
to achieve their own goals. Assuming agents rationality is a restriction on the agents
behavior and is therefore equivalent to restricting the universal quantification on the
environment. Thus, the following question arises: can system synthesizers capitalize on
the rationality and goals of agents interacting with the system?

Consider for example a peer-to-peer network with only two agents. Each agent is
interested in downloading infinitely often, but has no incentive to upload. In order, how-
ever, for one agent to download, the other agent must upload. More formally, for each
i ∈ {0, 1}, Agent i controls the bits ui (“Agent i tries to upload”) and di (“Agent i tries
to download”). The objective of Agent i is always eventually (di ∧ u1−i). Assume
that we are asked to synthesize the protocol for Agent 0. It is not hard to see that the
objective of Agent 0 depends on his input signal, implying he cannot ensure his objec-
tive in the traditional synthesis sense. On the other hand, suppose that Agent 0, who
is aware of the objective of Agent 1, declares and follows the following TIT FOR TAT

strategy: I will upload at the first time step, and from that point onward I will recipro-
cate the actions of Agent 1. Formally, this amounts to initially setting u0 to True and
for every time k > 0, setting u0 at time k to equal u1 at time k − 1. It is not hard
to see that, against this strategy, Agent 1 can only ensure his objective by satisfying
Agent 0 objective as well. Thus, assuming Agent 1 acts rationally, Agent 0 can ensure
his objective.

The example above demonstrates that a synthesizer can capitalize on the rationality
of the agents that constitute its environment. When synthesizing a protocol for rational
agents, we still have no control on their actions. We would like, however, to generate
a strategy for each agent (a strategy profile) such that once the strategy profile is given
to the agents, then a rational agent would have no incentive to deviate from the strat-
egy suggested to him and would follow it. Such a strategy profile is called in game
theory a solution to the game. Accordingly, the rational synthesis problem gets as in-
put temporal-logic formulas specifying the objective ϕ0 of the system, the objectives
ϕ1, . . . , ϕn of the agents that constitute the environment, and a solution concept defi-
nition. The desired output is a system and a strategy profile for the agents such that the
following hold. First, if all agents adhere to their strategies, then the result of the inter-
action of the system and the agents satisfies ϕ0. Second, once the system is in place,
and the agent are playing a game among themselves, the strategy profile is a solution to
this game according to the given solution concept.1

A well known solution concept is Nash equilibrium [19]. A strategy profile is in Nash
equilibrium if no agent has an incentive to deviate from his assigned strategy, provided
that the other agents adhere to the strategies assigned to them. For example, if the TIT

FOR TAT strategy for Agent 0 is suggested to both agents in the peer-to-peer example,

1 For a formal definition of rational synthesis, see Definition 1.
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then the pair of strategies is a Nash equilibrium. Indeed, for all i ∈ {0, 1}, if Agent i
assumes that Agent 1− i adheres to his strategy, then by following the strategy, Agent
i knows that his objective would be satisfied, and he has no incentive to deviate from
it. The stability of a Nash equilibrium depends on the players assumption that the other
players adhere to the strategy. In some cases this is a reasonable assumption. Consider,
for example, a standard protocol published by some known authority such as IEEE.
When a programmer writes a program implementing the standard, he tends to assume
that his program is going to interact with other programs that implement the same stan-
dard. If the published standard is a Nash equilibrium, then there is no incentive to write
a program that deviates from the standard. Game theory suggests several solution con-
cepts, all capturing the idea that the participating agents have no incentive to deviate
from the protocol (or strategy) assigned to them. We devise a method to solve rational
synthesis for the suggested solution concepts. In fact, our method works for all solution
concept that can be defined in Extended Strategy Logic (see Section 4). We show that
for the well-studied solution concepts [21] of dominant-strategies solution, Nash equi-
librium, and subgame-perfect Nash equilibrium, rational synthesis is not harder than
traditional synthesis (both are 2EXPTIME-complete).

An important facet in the task of a rational synthesizer is to synthesize a system such
that once it is in place, the game played by the agents has a solution with a favorable
outcome. Mechanism design, studied in game theory and economy [20,21], is the study
of designing a game whose outcome (assuming players rationality) achieves some goal.
Rational synthesis can be viewed as a variant of mechanism design in which the game
is induced by the objective of the system, and the objectives of both the system and the
agents refer to their on-going interaction and are specified by temporal-logic formulas.

Having defined rational synthesis, we turn to solve it. In [5], the authors introduced
strategy logic – an extension of temporal logic with first order quantification over strate-
gies. The rich structure of strategy logic enables it to specify properties like the exis-
tence of a Nash-equilibrium. While [5] does not consider the synthesis problem, the
technique suggested there can be used in order to solve the rational-synthesis prob-
lem for Nash equilibrium and dominant strategies. Strategy logic, however, is not suffi-
ciently expressive in order to specify subgame-perfect-Nash equilibrium [26] which, as
advocated in [28] (see also Section 3), is the most suited for infinite multiplayer games
— those induced by rational synthesis. The weakness of strategy logic is its inability to
quantify over game histories. We extend strategy logic with history variables, and show
that the extended logic is sufficiently expressive to express rational synthesis for the tra-
ditional solution concepts. Technically, adding history variables to strategy logic results
in a memoryful logic [16], in which temporal logic formulas have to be evaluated not
along paths that start at the present, but along paths that start at the root and go through
the present.

Classical applications of game theory consider games with real-valued payoffs. For
example, agents may bid on goods or grade candidates. In the peer-to-peer network ex-
ample, one may want to refer to the amount of data uploaded by each agent, or one may
want to add the possibility of pricing downloads. The full quantitative setting is undecid-
able already in the context of model checking [1]. Yet, several special cases for which
the problem is decidable have been studied [2]. We can distinguish between cases in
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which decidability is achieved by restricting the type of systems [1], and cases in which
it is achieved by restricting the domain of values [11]. We solve the quantitative rational
synthesis problem for the case the domain of values is a finite distributive De Morgan
lattice. The lattice setting is a good starting point to the quantitative setting. First, lat-
tices have been successfully handled for easier problems, and in particular, multi-valued
synthesis [12,13]. In addition, lattices are sufficiently rich to express interesting quanti-
tative properties. This is sometime immediate (for example, in the peer-to-peer network,
one can refer to the different attributions of the communication channels, giving rise to
the lattice of the subsets of the attributions), and sometimes thanks to the fact that real
values can often be abstracted to finite linear orders. From a technical point of view, our
contribution here is a solution of a latticed game in which the value of the game cannot
be obtained by joining values obtained by different strategies, which is unacceptable in
synthesis.

Related Work. Already early work on synthesis has realized that working with a hos-
tile environment is often too restrictive. The way to address this point, however, has
been by adding assumptions on the environment, which can be part of the specification
(c.f., [3]). The first to consider the game-theoretic approach to dealing with rationality
of the environment in the context of LTL synthesis were Chatteerjee and Henzinger [6].
The setting in [6], however, is quite restricted; it considers exactly three players, where
the third player is a fair scheduler, and the notion of secure equilibria [4]. Secure equi-
librium, introduced in [4], is a Nash equilibria in which each of the two players prefers
outcomes in which only his objective is achieved over outcomes in which both objec-
tives are achieved, which he still prefers over outcomes in which his objective is not
achieved. It is not clear how this notion can be extended to multiplayer games, and
to the distinction we make here between controllable agents that induce the game (the
system) and rational agents (the environment). Also, the set of solution concepts we
consider is richer.

Ummels [28] was the first to consider subgame perfect equilibria in the context of in-
finite multiplayer games. The setting there is of turn-based games and the solution goes
via a reduction to 2-player games. Here, we consider concurrent games and therefore
cannot use such a reduction. Another difference is that [28] considers parity winning
conditions whereas we use LTL objectives. In addition, the fact that the input to the
rational synthesis problem does not include a game makes the memoryful nature of
subgame perfect equilibria more challenging, as we cannot easily reduce the LTL for-
mulas to memoryless parity games.

To the best of our knowledge, we are the first to handle the multi-valued setting. As
we show, while the lattice case is decidable, its handling required a nontrivial extension
of both the Boolean setting and the algorithms known for solving latticed games [13].

2 Preliminaries

We consider infinite concurrent multiplayer games (in short, games) defined as follows.
A game arena is a tuple G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, where V is a set of nodes,
v0 is an initial node, I is a set of players, and for i ∈ I , the set Σi is the set of actions
of Player i and Γi : V → 2Σi specifies the actions that Player i can take at each node.
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Let I = {1, . . . , n}. Then, the transition relation δ : V × Σ1 × · · · × Σn → V is a
deterministic function mapping the current node and the current choices of the agents
to the successor node. The transition function may be restricted to its relevant domain.
Thus, δ(v, σ1, . . . , σn) is defined for v ∈ V and 〈σ1, . . . , σn〉 ∈ Γ1(v) × · · · × Γn(v).

A position in the game is a tuple 〈v, σ1, σ2, . . . , σn〉 with v ∈ V and σi ∈ Γi(v) for
every i ∈ I . Thus, a position describes a state along with possible choices of actions
for the players in this state. Consider a sequence p = p0 · p1 · p2 · · · of positions. For
k ≥ 0, we use node(pk) to denote the state component of pk, and use pk[i], for i ∈ I ,
to denote the action of Player i in pk. The notations extend to p in the straightforward
way. Thus, node(p) is the projection of p on the first component. We say that p is a play
if the transitions between positions is consistent with δ. Formally, p is a play starting at
node v if node(p0) = v and for all k ≥ 0, we have node(pk+1) = δ(pk). We use PG
(or simply P when G is clear from the context) to denote all possible plays of G.

Note that at every node v ∈ V , each player i chooses an action σi ∈ Γi(v) simultane-
ously and independently of the other players. The game then proceeds to the successor
node δ(v, σ1, . . . , σn). A strategy for Player i is a function πi : V + �→ Σi that maps his-
tories of the game to an action suggested to Player i. The suggestion has to be consistent
with Γi. Thus, for every v0v1 · · · vk ∈ V +, we have πi(v0v1 · · · vk) ∈ Γi(vk). Let Πi

denote the set of possible strategies for Player i. For a set of players I = {1, . . . , n}, a
strategy profile is a tuple of strategies 〈π1, π2, . . . , πn〉 ∈ Π1 ×Π2 × · · · ×Πn. We
denote the strategy profile by (πi)i∈I (or simply π, when I is clear from the con-
text). We say that p is an outcome of the profile π if for all k ≥ 0 and i ∈ I , we
have pk[i] = πi(node(p0) · node(p1) · · · node(pk)). Thus, p is an outcome of π if all
the players adhere to their strategies in π. Note that since δ is deterministic, π fixes a
single play from each state of the game. Given a profile π we denote by outcome(π)G
(or simply outcome(π)) the one play in G that is the outcome of π when starting in
v0. Given a strategy profile π and a nonempty sequence of nodes h = v0v1 . . . vk, we
define the shift of π by h as the strategy profile (πh

i )i∈I in which for all i ∈ I and
all histories w ∈ V ∗, we have πh

i (w) = πi(h · w). We denote by outcome(π)Gh (or
simply outcome(π)h) the concatenation of v0v1 . . . vk−1 with the one play in G that is
the outcome of πh when starting in vk. Thus, outcome(π)h describes the outcome of
a game that has somehow found itself with history h, and from that point, the play-
ers behave if the history had been h. Given a profile (πi)i∈I , an index j ∈ I , and a
strategy π′

j for Player j, we use (π−j , π
′
j) to refer to the profile of strategies in which

the strategy for all players but j is as in π, and the strategy for Player j is π′
j . Thus,

(π−j , π
′
j) = 〈π1, π2, . . . , πj−1, π

′
j , πj+1, . . . , πn〉.

3 Rational Synthesis

In this section we define the problem of rational synthesis. We work with the following
model: the world consists of the system and a set of n agents Agent 1, . . . , Agent n.
For uniformity we refer to the system as Agent 0. We assume that Agent i controls a
set Xi of variables, and the different sets are pairwise disjoint. At each point in time,
each agent sets his variables to certain values. Thus, an action of Agent i amounts to
assigning values to his variables. Accordingly, the set of actions of Agent i is given by
2Xi . We use X to denote

⋃
0≤i≤n Xi. We use X−i to denote X \ Xi for 0 ≤ i ≤ n.
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Each of the agents (including the system) has an objective. The objective of an agent is
formulated via a linear temporal logic formula (LTL [23]) over the set of variables of
all agents.2 We use ϕi to denote the objective of Agent i.

This setting induces the game arena G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉 defined as
follows. The set of players I = {0, 1, . . . , n} consists of the system and the agents. The
moves of agent i are all the possible assignments to its variables. Thus, Σi = 2Xi . We
use Σ, Σi, and Σ−i to denote the sets 2X , 2Xi , and 2X−i , respectively. An agent can set
his variables as he wishes throughout the game. Thus Γi(v) = Σi for every v ∈ V . The
game records in its vertices all the actions taken by the agents so far. Hence, V = Σ∗

and for all v ∈ Σ∗ and 〈σ0, . . . , σn〉 ∈ Σ, we have δ(v, σ0, . . . , σn) = v · 〈σ0, . . . , σn〉.
At each moment in time, the system gets as input an assignment in Σ−0 and it gen-

erates as output an assignment in Σ0. For every possible history h ∈ (Σ−0 ∪ Σ0)∗ the
system should decide what σ0 ∈ Σ0 it outputs next. Thus, a strategy for the system is
a function π0 : Σ∗ → Σ0 (recall that Σ = Σ−0 ∪Σ0 and note that indeed V + = Σ∗).
In the standard synthesis problem, we say that π0 realizes ϕ0 if all the computations
that π0 generates satisfy ϕ0. In rational synthesis, on the other hand, we also generate
strategies for the other agents, and the single computation that is the outcome of all
the strategies should satisfy ϕ0. That is, we require outcome(π)G |= ϕ0 where G is as
defined above. In addition, we should generate the strategies for the other agents in a
way that would guarantee that they indeed adhere to their strategies.

Recall that while we control the system, we have no control on the behaviors of
Agent 1, . . . , Agent n. Let π0 : Σ∗ → Σ0 be a strategy for the system in G. Then, π0
induces the game Gπ0 = 〈Σ∗, ε, I, (Σi)i∈I , (Γ ′

i )i∈I , δ〉, where for i ∈ I \ {0}, we have
Γ ′

i = Γi, and Γ ′
0(w) = {π0(w−0)}, where w−0 is obtained from w by projecting

its letters on Σ−0. Recall that δ is restricted to the relevant domain. Thus, as Γ ′
0 is

deterministic, we can regard Gπ0 as an n-player (rather than n + 1-player) game. Note
that Gπ0 contains all the possible behaviors of Agent 1, . . . , Agent n, when the system
adheres to π0.

Definition 1 (Rational Synthesis). Consider a solution concept γ. The problem of ra-
tional synthesis (with solution conceptγ) is to return, given LTL formulasϕ0, ϕ1, . . . , ϕn,
specifying the objectives of the system and the agents constituting its environment, a
strategy profile π = 〈π0, π1, . . . , πn〉 ∈ Π0 × Π1 × · · · × Πn such that both (a)
outcome(π)G |= ϕ0 and (b) the strategy profile 〈π1, . . . , πn〉 is a solution in the game
Gπ0 with respect to the solution concept γ.

The rational-synthesis problem gets a solution concept as a parameter. As discussed
in Section 1, the fact 〈π1, . . . , πn〉 is a solution with respect to the concept guarantees
that it is not worthwhile for the agents constituting the environment to deviate from
the strategies assigned to them. Several solution concepts are studied and motivated in
game theory. We focus on three leading concepts, and we first recall their definitions and
motivations in game theory. The common setting in game theory is that the objective
for each player is to maximize his payoff – a real number that is a function of the play.
We use payoffi : P → R to denote the payoff function of player i. That is, payoffi

2 We could have worked with any other ω-regular formalism for specifying the objectives. We
chose LTL for simplicity of the presentation.
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assigns to each possible play p a real number payoffi(p) expressing the payoff of i on p.
For a strategy profile π we use (with a slight abuse of notation) payoffi(π) to abbreviate
payoffi(outcome(π)).

The simplest and most appealing solution concept is dominant-strategies solution. A
dominant strategy is a strategy that a player can never lose by adhering to, regardless
of the strategies of the other players. Therefore, if there is a profile of strategies π in
which all strategies πi are dominant, then no player has an incentive to deviate from
the strategy assigned to him in π. Formally, π is a dominant strategy profile if for every
1 ≤ i ≤ n and for every (other) profile π′, we have that payoffi(π

′) ≤ payoffi(π
′
−i, πi).

Consider, for example, a game played by three players: Alice, Bob and Charlie whose
actions are {a1, a2}, {b1, b2} and {c1, c2}, respectively. The game is played on the
game arena depicted in the left of Figure above. The labels on the edges are marked
by the possible action moves. Each player wants to visit infinitely often a node marked
by his initial letter. In this game, Bob’s strategy of choosing b1 from Node 2 is a dom-
inant strategy. All of the strategies of Charlie are dominating. Alice, though, has no
dominating strategy. Unfortunately, in many games some agents do not have dominant
strategies, thus no dominant-strategy solution exists. Naturally, if no dominant strategy
solution exists, one would still like to consider other solution concepts.

Another well known solution concept is Nash equilibrium [19]. A strategy profile is
Nash equilibrium if no player has an incentive to deviate from his strategy in π provided
he assumes the other players adhere to the strategies assigned to them in π. Formally,
π is a Nash equilibrium profile if for every 1 ≤ i ≤ n and for every (other) strategy
π′

i for player i, we have that payoffi(π−i, π
′
i) ≤ payoffi(π). For example, the strategy

profile depicted in the middle of Figure above by dotted edges is a Nash equilibrium of
the game to its left. Knowing the strategy of the other players, each player cannot gain
by deviating from his strategy.

An important advantage of Nash equilibrium is that a Nash equilibrium exists in
almost every game [22].3 A weakness of Nash equilibrium is that it is not nearly as
stable as a dominant-strategy solution: if one of the other players deviates from his
assigned strategy, nothing is guaranteed.

Nash equilibrium is suited to a type of games in which the players make all their
decisions without knowledge of other players choices. The type of games considered
in rational synthesis, however, are different, as players do have knowledge about the
choices of the other players in earlier rounds of the game. To see the problem that this
setting poses for Nash equilibrium, let us consider the ULTIMATUM game. In ULTI-
MATUM, Player 1 chooses a value x ∈ [0, 1], and then Player 2 chooses whether to
accept the choice, in which case the payoff of Player 1 is x and the payoff of Player 2
is 1− x, or to reject the choice, in which case the payoff of both players is 0. One Nash

3 In particular, all n-player turn-based games with ω-regular objectives have Nash equilib-
rium [7].
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equilibrium in ULTIMATUM is π = 〈π1, π2〉 in which π1 advises Player 1 to always
choose x = 1 and π2 advises Player 2 to always reject. It is not hard to see that π is
indeed a Nash equilibrium. In particular, if Player 2 assumes that Player 1 follows π1,
he has no incentive to deviate from π2. Still, the equilibrium is unstable. The reason is
that π2 is inherently not credible. If Player 1 chooses x smaller than 1, it is irrational for
Player 2 to reject, and Player 1 has no reason to assume that Player 2 adheres to π2. This
instability of a Nash equilibrium is especially true in a setting in which the players have
information about the choices made by the other players. In particular, in ULTIMATUM,
Player 1 knows that Player 2 would make his choice after knowing what x is.

To see this problem in the setting of infinite games, consider the strategy profile
depicted in the right of Figure above by dashed edges. This profile is also a Nash equi-
librium of the game in the left of the figure. It is, however, not very rational. The reason
is that if Alice deviates from her strategy by choosing a2 rather than a1 then it is ir-
rational for Bob to stick to his strategy. Indeed, if he sticks to his strategy he does not
meet his objective, yet if he deviates and chooses b1 he does meet his objective.

This instability of Nash equilibrium has been addressed in the definition of subgame-
perfect equilibrium [26]. A strategy profile π is in subgame-perfect equilibrium (SPE)
if for every possible history of the game, no player has an incentive to deviate from his
strategy in π provided he assumes the other players adhere to the strategies assigned to
them in π. Formally, π is an SPE profile if for every possible history h of the game,
player 1 ≤ i ≤ n, and strategy π′

i for player i, we have that payoffi(π−i, π
′
i)h ≤

payoffi(π)h. The dotted strategy depicted in the middle of Figure above is a subgame-
perfect equilibrium. Indeed, it is a Nash equilibrium from every possible node of the
arena, including non-reachable ones.

In the context of on-going behaviors, real-valued payoffs are a big challenge and
most works on reactive systems use Boolean temporal-logic as a specification language.
Below we adjust the definition of the three solution concepts to the case the objectives
are LTL formulas.4 Essentially, the adjustment is done by assuming the following sim-
ple payoffs: If the objective ϕi of Agent i holds, then his payoff is 1; otherwise his
payoff is 0. The induced solution concepts are then as followed. Consider a strategy
profile π = 〈π1, . . . , πn〉.

– We say that π is a dominant strategy profile if for every 1 ≤ i ≤ n and profile π′, if
outcome(π′) |= ϕi, then outcome(π′

−i, πi) |= ϕi.
– We say that π is a Nash equilibrium profile if for every 1 ≤ i ≤ n and strategy π′

i,
if outcome(π−i, π

′
i) |= ϕi, then outcome(π) |= ϕi.

– We say that π is a subgame-perfect equilibrium profile if for every history h ∈ Σ∗,
1 ≤ i ≤ n, and strategy π′

i, if outcome(π−i, π
′
i)h |= ϕi, then outcome(π)h |= ϕi.

4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problem. Let I = {0, 1, . . . , n} denote
the set of agents. Recall that Σi = 2Xi and Σ = 2X , where X = ∪i∈IXi, and that
the partition of the variables among the agents induces a game arena with states in

4 In Section 5, we make a step towards generalizing the framework to the multi-valued setting
and consider the case the payoffs are taken from a finite distributive lattice.
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Σ∗. Expressing rational synthesis involves properties of strategies and histories. Strat-
egy Logic [5] is a logic that treats strategies in games as explicit first-order objects.
Given an LTL formula ψ and strategy variables z0, . . . , zn ranging over strategies of
the agents, the strategy logic formula ψ(z0, . . . , zn) states that ψ holds in the outcome
of the game in which Agent i adheres to the strategy zi. The use of existential and uni-
versal quantifiers on strategy variables enables strategy logic to state that a given profile
consists of dominant strategies or is a Nash equilibrium. However, strategy logic is not
strong enough to state the existence of a subgame perfect equilibrium. The reason is
that a formula ϕ(z0, . . . , zn) in strategy logic assumes that the strategies z0, . . . , zn

are computed from the initial vertex of the game, and it cannot refer to histories that
diverge from the strategies. We therefore extend strategy logic with first order variables
that range over arbitrary histories of the game.

Extended Strategy Logic. Formulas of Extended Strategy Logic (ESL) are defined
with respect to a game G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, a set H of history variables,
and sets Zi of strategy variables for i ∈ I . Let I = {0, . . . , n}, Σ = Σ0 × · · · ×
Σn, and let ψ be an LTL formula over Σ. Let h be a history variable in H, and let
z0, ..., zn be strategy variables in Z0, . . . , Zn, respectively. We use z as an abbreviation
for (z0, ..., zn). The set of ESL formulas is defined inductively as follows.5

Ψ ::= ψ(z) | ψ(z; h) | Ψ ∨ Ψ | ¬Ψ | ∃zi.Ψ | ∃h.Ψ

We use the usual abbreviations ∧,→, and ∀. We denote by free(Ψ) the set of strategy
and history variables that are free (not in a scope of a quantifier) in Ψ . A formula Ψ
is closed if free(Ψ) = ∅. The alternation depth of a variable of a closed formula is
the number of quantifier switches (∃∀ or ∀∃, in case the formula is in positive normal
form) that bind the variable. The alternation depth of closed formula Ψ is the maximum
alternation depth of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL formula of the form ψ(z; h)
is interpreted over the game whose prefix matches the history h and the suffix start-
ing where h ends is the outcome of the game that starts at the last vertex of h and
along which each agent i ∈ I adheres to his strategy in z. Let X ⊆ H ∪ ⋃i∈I Zi be
a set of variables. An assignment AX assigns to every history variable h ∈ X ∩ H,
a history AX(h) ∈ V + and assigns to every strategy variable zi ∈ X ∩ Zi, a strat-
egy AX(zi) ∈ Πi. Given an assignment AX and a strategy πi ∈ Πi, we denote by
AX[zi ← πi] the assignment A′

X∪{zi} in which A′
X∪{zi}(zi) = πi and for a variable

x �= zi we have A′
X∪{zi}(x) = AX(x). For histories of the game w ∈ V + we define

AX[h←w] similarly.
We now describe when a given game G and a given assignment AX satisfy an ESL

formula Ψ , where X is such that free(Ψ) ⊆ X. For LTL, the semantics is as usual [17].

5 We note that strategy logic as defined in [5] allows the application of LTL path operators (©
and U ) on strategy logic closed formulas. Since we could not come up with a meaningful
specification that uses such applications, we chose to ease the presentation and do not allow
them in ESL. Technically, it is easy to extend ESL and allow such applications.
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(G,AX) |= ψ(z) iff outcome(AX(z))G |= ψ (G,AX) |= Ψ1 ∨ Ψ2 iff (G,AX) |= Ψ1 or (G,AX) |= Ψ2

(G,AX) |= ψ(z; h) iff outcome(AX(z))GAX(h) |= ψ (G,AX) |= ∃zi.Ψ iff ∃πi∈Πi.(G,AX[zi←πi]) |= Ψ

(G,AX) |= ¬Ψ iff (G,AX) |=/ Ψ (G,AX) |= ∃h.Ψ iff ∃w∈V +.(G,AX[h←w]) |= Ψ

Let Ψ be an ESL formula. We use [[Ψ ]] to denote its set of satisfying assignments;
that is, [[Ψ ]] = {(G,AX) | X = free(Ψ) and (G,AX) |= Ψ}. Given a game graph G, we
denote by [[Ψ ]]G the assignmentAX to the free variables in Ψ such that (G,AX) ∈ [[Ψ ]].

Expressing Rational Synthesis. We now show that the rational synthesis problem
for the three traditional solution concepts can be stated in ESL. We first state that a
given strategy profile y = (yi)i∈I is a solution concept on the game Gy0 , that is, the
game induced by G when Agent 0 adheres to his strategy in y. We use I−0 to denote
the set {1, . . . , n}, that is, the set of all agents except for the system, which is Agent
0. Given a strategy profile z = (zi)i∈I , we use (z−{i,0}, yi, y0) to denote the strat-
egy profile where all agents but i and 0 follow z and agents i and 0 follow yi and
y0, respectively. For i ∈ I , let ϕi be the objective of Agent i. For a solution concept
γ ∈ {DS, NASH, SPE} and a strategy profile y = (yi)i∈I , the formula Ψγ(y), expressing
that the profile (yi)i∈I−0 is a solution with respect to γ in Gy0 , is defined as follows.

• Ψ DS(y) :=
∧

i∈I−0
∀z. (ϕi(z−0, y0)→ ϕi(z−{i,0}, yi, y0)).

• Ψ NASH(y) :=
∧

i∈I−0
∀zi. (ϕi(y−i, zi)→ϕi(y)).

• Ψ SPE(y) := ∀h.
∧

i∈I−0
∀zi. ((ϕi(y−i, zi, h)→(ϕi(y, h)).

We can now state the existence of a solution to the rational-synthesis problem with
input ϕ0, . . . , ϕn by the closed formula Φγ := ∃(yi)i∈I .(ϕ0((yi)i∈I) ∧ Ψγ((yi)i∈I)).
Indeed, the formula specifies the existence of a strategy profile whose outcome satisfies
ϕ0 and for which the strategies for the agents in I−0 constitute a solution with respect
to γ in the game induced by y0.

ESL Decidability. In order to solve the rational-synthesis problem we are going to
use automata on infinite trees. Given a set D of directions, a D-tree is the set D∗. The
elements in D∗ are the nodes of the tree. The node ε is the root of the tree. For a node
u ∈ D∗ and a direction d ∈ D, the node u · d is the successor of u with direction d.
Given D and an alphabet Σ, a Σ-labeled D-tree is a pair 〈D∗, τ〉 such that τ : D∗ → Σ
maps each node of D∗ to a letter in Σ.

An alternating parity tree automaton (APT) is a tupleA = 〈Σ, D, Q, δ0, δ, χ〉, where
Σ is the input alphabet, D is the directions set, Q is a finite set of states, δ0 is the
initial condition, δ is the transition relation and χ : Q �→ {1, . . . , k} is the parity
condition. The initial condition δ0 is a positive boolean formula over Q specifying the
initial condition. For example, (q1 ∨ q2) ∧ q3 specifies that the APT accepts the input
tree if it accepts it from state q3 as well as from q1 or q2. The transition function δ maps
each state and letter to a boolean formula over D × Q. Thus, as with δ0, the idea is
to allow the automaton to send copies of itself in different states. In δ, the copies are
sent to the successors of the current node, thus each state is paired with the direction to
which the copy should proceed. Due to lack of space, we refer the reader to [9] for the
definition of runs and acceptance.
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Base ESL formulas, of the form ψ(z, h), refer to exactly one strategy variable for each
agent, and one history variable. The assignment for these variables can be described by a
(Σ×{⊥,�})-labeled Σ-tree, where the Σ-component of the labels is used in order to de-
scribe the strategy profile π assigned to the strategy variable, and the {⊥,�}-component
of the labels is used in order to label the tree by a unique finite path corresponding to the
history variable. We refer to a (Σ × {⊥,�})-labeled Σ-tree as a strategy-history tree.
The labeling function τ of a strategy-history tree 〈Σ∗, τ〉 can be regarded as two labeling
functions τs and τh mapping nodes of the tree to action tuples in Σ and history informa-
tion in {�,⊥}, respectively. A node u = d0d1 . . . dk in a strategy-history tree 〈Σ∗, τ〉
corresponds to a history of the play in which at time 0 ≤ j ≤ k, the agents played as
recorded in dj . A label τs(u) = (σ0, . . . , σn) of node u describes for each agent i, an
action σi that the strategy πi advises Agent i to take when the history of the game so far
is u. A label τh(u) describes whether the node u is along the path corresponding to the
history (where� signifies that it does and⊥ that it does not). Among the |Σ| successors
of u in the strategy-history tree, only the successor u · τs(u) corresponds to a scenario in
which all the agents adhere to their strategies in the strategy profile described in 〈Σ∗, τ 〉.
We say that a path ρ in a strategy-history tree 〈Σ∗, (τs, τh)〉 is obedient if for all nodes
u ·d ∈ ρ, for u ∈ Σ∗ and d ∈ Σ, we have d = τs(u). Note that there is a single obedient
path in every strategy-history tree. This path corresponds to the single play in which all
agents adhere to their strategies. The {�,⊥} labeling is legal if there is a unique finite
prefix of a path starting at the root, all of whose node are marked with�. Note that there
is a single path in the tree whose prefix is marked by �’s and whose suffix is obedient.

An ESL formula Ψ may contain several base formulas. Therefore, Ψ may contain, for
each i ∈ I , several strategy variables in Zi and several history variables in H. For i ∈ I ,
let {z1

i , . . . , zmi

i } be the set of strategy variables in Ψ ∩ Zi. Recall that each strategy
variable zj

i ∈ Zi corresponds to a strategy πj
i : Σ∗ → Σi. Let {h1, . . . , hm} be the

set of history variables in Ψ . Recall that each history variable h corresponds to a word
in Σ∗, which can be seen as a function wh : Σ∗ → {�,⊥} labeling only that word
with �’s. Thus, we can describe an assignment to all the variables in Ψ by a Υ -labeled
Σ-tree, with Υ = Σm0

0 ×Σm1
1 × · · · ×Σmn

n × {⊥,�}m.
We solve the rational synthesis problem using tree automata that run on Υ -labeled Σ-

trees. Note that the specification of rational synthesis involves an external quantification
of a strategy profile. We construct an automaton U that accepts all trees that describe
a strategy profile that meets the desired solution. A witness to the nonemptiness of the
automaton then induces the desired strategies.

We define U as an APT. Consider an ESL formula ψ(z, h). Consider a strategy-
history tree 〈Σ∗, (τs, τh)〉. Recall that ψ should hold along the path that starts at the root
of the tree, goes through h, and then continues to outcome(z)h. Thus, adding history
variables to strategy logic results in a memoryful logic [16], in which LTL formulas
have to be evaluated not along a path that starts at the present, but along a path that
starts at the root and goes through the present. The memoryful semantics imposes a real
challenge on the decidability problem, as one has to follow all the possible runs of a
nondeterministic automaton for ψ, which involves a satellite implementing the subset
construction of this automaton [16]. Here, we use instead the τh labeling of the node
with {�,⊥} elements.
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The definition of the APTAΨ for [[Ψ ]]G works by induction on the structure of Ψ . At
the base level, we have formulas of the form ψ(z, h), where ψ is an LTL formula, z is
a strategy profile, and h is a history variable. The constructed automaton then has three
tasks. The first task is to check that the {⊥,�} labeling is legal; i.e. there is a unique
path in the tree marked by �’s. The second task is to detect the single path that goes
through h and continues from h according to the strategy profile z. The third task is to
check that this path satisfies ψ. The inductive steps then built on APT complementation,
intersection, union and projection [18]. In particular, as in strategy logic, quantification
over a strategy variable for agent i is done by “projecting out” the corresponding Σi

label from the tree. That is, given an automaton A for Ψ , the automaton for ∃zi.Ψ
ignores the Σi component that refers to zi and checksA on a tree where this component
is guessed. The quantification over history variables is similar. Given an automaton A
for Ψ the automaton for ∃h.Ψ ignores the {⊥,�} part of the label that corresponds to
h and checksA on a tree where the {⊥,�} part of the label is guessed.

Theorem 1. Let Ψ be an ESL formula over G. Let d be the alternation depth of Ψ . We
can construct an APTAΨ such thatAΨ accepts [[Ψ ]]G and its emptiness can be checked
in time (d + 1)-EXPTIME in the size of Ψ .

Solving Rational Synthesis We can now reduce rational-synthesis to APT emptiness.
The following theorem states that the complexity of solving rational synthesis for the
three common solution concepts is not more expensive than traditional synthesis.

Theorem 2. LTL rational-synthesis is 2EXPTIME-complete for the solution concepts
of dominant strategy, Nash equilibrium, and subgame-perfect equilibrium.

5 Solution in the Multi-valued Setting

As discussed in Section 1, classical applications of game theory consider games with
quantitative payoffs. The extension of the synthesis problem to the rational setting calls
also for an extension to the quantitative setting. Unfortunately, the full quantitative set-
ting is undecidable already in the context of model checking [1]. In this section we
study a decidable fragment of the quantitative rational synthesis problem: the payoffs
are taken from finite De-Morgan lattices. A lattice 〈A,≤〉 is a partially ordered set in
which every two elements a, b ∈ A have a least upper bound (a join b, denoted a ∨ b)
and a greatest lower bound (a meet b, denoted a∧b). A lattice is distributive if for every
a, b, c ∈ A, we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). De-Morgan lattices are distribu-
tive lattices in which every element a has a unique complement element ¬a such that
¬¬a = a, De-Morgan rules hold, and a ≤ b implies ¬b ≤ ¬a. Many useful payoffs
are taken from finite De-Morgan lattices: all payoffs that are linearly ordered, payoffs
corresponding to subsets of some set, payoffs corresponding to multiple view-points,
and more [12,13].

We specify quantitative specifications using the temporal logic latticed LTL (LLTL,
for short), where the truth value of a specification is an element in a lattice. For a strategy
profile π and an LLTL objective ϕi of Agent i, the payoff of Agent i in π is the truth value
of ϕi in outcome(π). A synthesizer would like to find a profile π in which payoff0(π)
is as high as possible. Accordingly, we define the latticed rational synthesis as follows.
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Definition 2 (Latticed Rational Synthesis). Consider a solution concept γ. The prob-
lem of latticed rational synthesis (with solution concept γ) is to return, given LLTL for-
mulas ϕ0, . . . , ϕn and a lattice value v ∈ L, a strategy profile π = 〈π0, π1, . . . , πn〉 ∈
Π0×Π1×· · ·×Πn such that (a) payoff0(π) ≥ v and (b) the strategy profile 〈π1, . . . , πn〉
is a solution in the game Gπ0 with respect to the solution concept γ.

In the Boolean setting, we reduced the rational-synthesis problem to decidability of
ESL. The decision procedure for ESL is based on the automata-theoretic approach,
and specifically on APT’s. In the lattice setting, automata-theoretic machinery is not as
developed as in the Boolean case. Consequently, we restrict attention to LLTL specifi-
cations that can be translated to deterministic latticed Büchi word automata (LDBW),
and to the solution concept of Nash equilibrium.6

An LDBW can be expanded into a deterministic latticed Büchi tree automata (LDBT),
which is the key behind the analysis of strategy trees. It is not hard to lift to the latticed
setting almost all the other operations on tree automata that are needed in order to solve
rational synthesis. An exception is the problem of emptiness. In the Boolean case, tree-
automata emptiness is reduced to deciding a two-player game [10]. Such games are
played between an ∨-player, who has a winning strategy iff the automaton is not empty
(essentially, the ∨-player chooses the transitions with which the automaton accepts a
witness tree), and a ∧-player, who has a winning strategy otherwise (essentially, the
∧-player chooses a path in the tree that does not satisfy the acceptance condition). A
winning strategy for the ∨-player induces a labeled tree accepted by the tree automaton.

In latticed games, deciding a game amounts to finding a lattice value l such that the∨-
player can force the game to computations in which his payoff is at least l. The value of
the game need not be achieved by a single strategy and algorithms for analyzing latticed
games consider values that emerge as the join of values obtained by following different
strategies [13,27]. A labeled tree, however, relates to a single strategy. Therefore, the
emptiness problem for latticed tree automata, to which the latticed rational synthesis is
reduced, cannot be reduced to solving latticed games. Instead, one has to consider the
single-strategy variant of latticed games, namely the problem of finding values that the
∨-player can ensure by a single strategy. We address this problem below.

Theorem 3. Consider a latticed Büchi game G. Given a lattice element l, we can con-
struct a Boolean generalized-Büchi game Gl such that the ∨-player can achieve value
greater or equal l in G using a single strategy iff the ∨-player wins in Gl. The size of
Gl is bounded by |G| · |L|2 and Gl has at most |L| acceptance sets.

Using Theorem 3, we can solve the latticed rational synthesis problem in a fashion sim-
ilar to the one we used in the Boolean case. We represent strategy profiles by Σ-labeled
Σ-trees, and sets of profiles by tree automata. We construct two Boolean generalized-
Büchi tree automata. The first, denoted A0, for the language of all profiles π in which
payoff0(π) ≥ v, and the second, denoted AN , for the language of all Nash equilibria.
The intersection of A0 and AN then contains all the solutions to the latticed rational

6 A Büchi acceptance conditions specifies a subset F of the states, and an infinite sequence
of states satisfies the condition if it visits F infinitely often. A generalized Büchi condition
specifies several such sets, all of which should be visited infinitely often.
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synthesis problem. Thus, solving the problem amounts to returning a witness to the
nonemptiness of the intersection, and we have the following.

Theorem 4. Latticed rational-synthesis for objectives in LDBW and the solution con-
cept of Nash equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Boolean setting (Theorem 2) is
only apparent, as the objectives are given in LDBWs, which are less succinct than LLTL
formulas [12,15].

6 Discussion

While various solution concepts have been studied in the context of formal verifica-
tion and infinite concurrent games [3,4,5,6,7,28], this is the first paper to introduce the
natural problem of rational synthesis. Rational Synthesis asks whether and how one
can synthesize a system that functions in a rational (self-interest) environment. As in
traditional synthesis, one cannot control the agents that constitute the environment. Un-
like traditional synthesis, the agents have objectives and will follow strategies that best
guarantee their objectives are met.

Both the question and solution separate the game-theoretic considerations from the
synthesis technique, and can be generalized to other/new solution concepts. We showed
that for the common solution concepts of dominant strategies equilibrium, Nash equi-
librium, and subgame perfect equilibrium, rational synthesis has the same complexity
as traditional synthesis. We also took a first step in addressing the question in the quan-
titative setting.

Acknowledgement. We thank Roderick Bloem for helpful comments on an earlier
draft of this paper.
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Abstract. The complementation of Büchi automata, required for checking au-
tomata universality, remains one of the outstanding automata-theoretic challenges
in formal verification. Early constructions using a Ramsey-based argument have
been supplanted by rank-based constructions with exponentially better bounds.
The best rank-based algorithm for Büchi universality, by Doyen and Raskin, em-
ploys a subsumption technique to minimize the size of the working set. Sep-
arately, in the context of program termination, Lee et al. have specialized the
Ramsey-based approach to size-change termination (SCT) problems. In this con-
text, Ramsey-based algorithms have proven to be surprisingly competitive. The
strongest tool, from Ben-Amram and Lee, also uses a subsumption technique,
although only for the special case of SCT problems.

We extend the subsumption technique of Ben-Amram and Lee to the general
case of Büchi universality problems, and experimentally demonstrate the neces-
sity of subsumption for the scalability of the Ramsey-based approach. We then
empirically compare the Ramsey-based tool to the rank-based tool of Doyen and
Raskin over a terrain of random Büchi universality problems. We discover that the
two algorithms exhibit distinct behavior over this problem terrain. As expected,
on many of the most difficult areas the rank-based approach provides the superior
tool. Surprisingly, there also exist several areas, including the area most difficult
for rank-based tools, on which the Ramsey-based solver scales better than the
rank-based solver. This result demonstrates the pitfalls of using worst-case com-
plexity to evaluate algorithms. We suggest that a portfolio approach may be the
best approach to checking the universality of Büchi automata.

1 Introduction

The complementation problem for nondeterministic automata over infinite words is
a vital step in the automata-theoretic approach to formal verification. The automata-
theoretic approach reduces questions about program adherence to a specification to
questions about language containment [19]. Representing liveness, fairness, or termi-
nation properties requires finite automata that operate on infinite words. One automa-
ton, A, encodes the behavior of the program, while another automaton, B, encodes
the formal specification. To ensure adherence, verify that the intersection of A with
the complement of B is empty. The most difficult step is constructing the complemen-
tary automaton B. When addressing this problem, the formal verifications community
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has focused on universality testing [6,18,20]. This is the simplest case of containment
checking: checking if the universal language is contained in the language of the au-
tomaton. Finite automata on infinite words are classified by their acceptance condition
and transition structure. We consider here nondeterministic Büchi automata, in which a
run is accepting when it visits at least one accepting state infinitely often [2].

The first complementation constructions for nondeterministic Büchi automata em-
ployed a Ramsey-based combinatorial argument to partition infinite words into a finite
set of regular languages. Proposed by Büchi in 1962 [2], this construction was shown in
1987 by Sistla, Vardi, and Wolper to be implementable with a blow-up of 2O(n2) [17].
This brought the complementation problem into singly-exponential blow-up, but left a
gap with the 2Ω(n log n) lower bound proved by Michel [13].

The gap was tightened one year later in 1988, when Safra described a 2O(n log n)

construction [15]. Because of this, the Ramsey-based approach has never been imple-
mented. Work since then has focused on improving the practicality of 2O(n log n) con-
structions, either by providing simpler constructions, further tightening the bound [16],
or improving the derived algorithms. In 2001, Kupferman and Vardi employed a rank-
based analysis of Büchi automata to simplify complementation [12]. Recently, Doyen
and Raskin have demonstrated the necessity of using a subsumption technique in the
rank-based approach, providing a direct universality checker that scales to automata
several orders of magnitude larger than previous tools [6].

Separately, in the context of of program termination analysis, Lee, Jones, and Ben-
Amram presented the size-change termination (SCT) principle in 2001 [5]. Lee et al.
describe a method of size-change termination analysis and reduce this problem to the
containment of two Büchi automata. Stating the lack of efficient Büchi containment
solvers, they also propose a direct Ramsey-based combinatorial solution. The Lee,
Jones, and Ben-Amram (LJB) algorithm was provided as a practical alternative to re-
ducing the SCT problems to Büchi containment, but bears a striking resemblance to
the 1987 Ramsey-based complementation construction. In a previous paper, we showed
that the LJB algorithm for deciding SCT is a specialized realization of the Ramsey-
based construction [9]. When examined empirically, Ramsey-based tools proved to be
surprisingly competitive to their rank-based counterparts. The best Ramsey-based tool
employs a subsumption technique for the specific case of SCT problems [1].

This paper extends the subsumption technique of Ben-Amram and Lee to the gen-
eral case of Büchi universality. By doing so we provide a direct algorithm, derived
from the Ramsey-based complementation construction, for checking the universality
of Büchi automata. We note that subsumption is a heuristic technique and, even with
this improvement, there is still an exponential gap between the 2O(n2) Ramsey-based
approach and the 2O(n log n) rank-based approach. Motivated by the Ramsey-based ap-
proach’s strong performance on the domain of SCT problems, we investigate the em-
pirical performance of these two algorithms. Due to a paucity of real-world universality
problems, we compare the algorithms over a terrain of random universality problems
[6,18] characterized by transition density, acceptance density, and size.

Our empirical results first demonstrate that, as with rank-based algorithms, subsump-
tion is necessary for scalability in Ramsey-based tools. Further, we observe that the two
algorithms exhibit significantly different behavior. The terrain points that pose difficulty
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for each algorithm, while overlapping, are distinct. In terms of scalability, we show
that in many areas the rank-based universality tool performs exponentially better than
the Ramsey-based universality tool. However, there also exist several areas where the
Ramsey-based tool is more scalable than the rank-based tool, despite the massive differ-
ence between 2O(n log n) and 2O(n2). Finally, we discover that the Ramsey-based tool is
better at demonstrating non-universality by finding a counterexample, while the rank-
based tool is superior when proving universality. This final difference can be attributed
to the manner in which each approaches explores the state space of the complemented
automaton, but does not explain the other behaviors of the two approaches. We are thus
forced to conclude that worst-case complexity is a poor predictor of an algorithms per-
formance, and no substitute for empirical analysis. We suggest that a portfolio approach
[10,14] may be employed when checking the universality of Büchi automata. Failing
that, run both algorithms in parallel, and see which terminates first.

2 Preliminaries

In this section we review the relevant details of Büchi automata, introducing along the
way the notation used throughout this paper. An nondeterministic Büchi automaton on
infinite words is a tuple B = 〈Σ, Q, Qin, ρ, F 〉, where Σ is a finite nonempty alphabet,
Q a finite nonempty set of states, Qin ⊆ Q a set of initial states, F ⊆ Q a set of
accepting states, and ρ : Q ×Σ → 2Q a nondeterministic transition function. We lift
the ρ function to sets of states and words of arbitrary length in the usual fashion.

A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence of states
q0q1... ∈ Qω such that q0 ∈ Qin and, for every i ≥ 0, we have qi+1 ∈ ρ(qi, wi). A run
is accepting iff qi ∈ F for infinitely many i ∈ IN . A word w ∈ Σω is accepted by B if
there is an accepting run of B on w. The words accepted by B form the language of B,
denoted by L(B). A path in B from q to r is a finite subsequence of a run beginning in
q and ending in r. A path is accepting if some state in the path is in F .

A Büchi automatonA is contained in a Büchi automaton B iff L(A) ⊆ L(B), which
can be checked by verifying that the intersection of A with the complement B of B
is empty: L(A) ∩ L(B) = ∅. We know that the language of an automaton is non-
empty iff there are states q ∈ Qin, r ∈ F such that there is a path from q to r and
a path from r to itself. The initial path is called the prefix, and the combination of the
prefix and cycle is called a lasso [19]. Further, the intersection of two automata can
be constructed, having a number of states proportional to the product of the number
states of the original automata [3]. Thus the most computationally demanding step is
constructing the complement of B. In the formal verification field, existing empirical
work has focused on the simplest form of containment testing, universality testing,
whereA is the universal automaton [6,18].

For algorithms that compute sets of states, a subsumption technique can sometimes
be employed to limit the size of working sets. This technique ignores certain states
when their behavior is subsumed by other states. A subsumption relation is a partial
order over the state space of an automaton, such that if a state q subsumes a state r, then
r can be removed from any set containing q.
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2.1 Ramsey-Based Universality

When Büchi introduced these automata in 1962, he described a complementation con-
struction involving a Ramsey-based combinatorial argument. We describe a universality
testing algorithm based on an improved implementation presented in 1987. To construct
the complement ofB, where Q = {q0, ..., qn−1}, we construct a set Q̃B whose elements
capture the essential behavior of B. Each element corresponds to an answer to the fol-
lowing question. Given a finite nonempty word w, for every two states q, r ∈ Q: is there
a path in B from q to r over w, and is some such path accepting?

Define Q′ = Q × {0, 1} × Q, and Q̃B to be the subset of 2Q′
whose elements do

not contain both 〈q, 0, r〉 and 〈q, 1, r〉 for any q and r. Each element of Q̃B is a {0, 1}-
arc-labeled graph on Q. An arc represents a path in B, and the label is 1 if the path is
accepting. Note that there are 3n2

such graphs. With each graph g̃ ∈ Q̃B we associate a
language L(g̃), the set of words for which the answer to the posed question is the graph
encoded by g̃.

Definition 1. [2,17] Let g̃ ∈ Q̃B and w ∈ Σ+. Say w ∈ L(g̃) iff for all q, r ∈ Q:
(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w

The languages L(g̃) for the graphs g̃ ∈ Q̃B, form a partition of Σ+. With this partition
of Σ+ we can devise a finite family of ω-languages that cover Σω. For every g̃, h̃ ∈ Q̃B,
let Ygh be the ω-language L(g̃) · L(h̃)ω. We say that a language Ygh is proper if Ygh

is non-empty, L(g̃) · L(h̃) ⊆ L(g̃), and L(h̃) · L(h̃) ⊆ L(h̃). There are a finite, if
exponential, number of such languages. A Ramsey-based argument shows that every
infinite string belongs to a language of this form, and that L(B) can be expressed as the
union of languages of this form.

Lemma 1. [2,17]
(1) Σω =

⋃{Ygh | Ygh is proper}
(2) For g̃, h̃ ∈ Q̃B, either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B)
(3) L(B) =

⋃{Ygh | Ygh is proper and Ygh ∩ L(B) = ∅}
To obtain the complementary Büchi automaton B, Sistla et al. construct, for each g̃ ∈
Q̃B, a deterministic automata on finite words, Bg, that accepts exactly L(g̃) [17]. Using
the automata Bg, one could construct the complementary automaton B and use a lasso-
finding algorithm to prove the emptiness of B, and thus the universality of B. However,
we can avoid an explicit lasso search by employing the rich structure of the graphs in
Q̃B. For every two graphs g̃, h̃ ∈ Q̃B, determine if Ygh is proper. If Ygh is proper, test
if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a cycle in h̃. In
order to test if a proper language Ygh is contained in L(B), search for a q ∈ Qin, r ∈
Q, a ∈ {0, 1} such that the arc 〈q, a, r〉 ∈ g̃ and the arc 〈r, 1, r〉 ∈ h̃. We call this test
of a pair of graphs the two-arc test.

Lemma 2. [17] A Büchi automaton B is universal iff every proper pair 〈g̃, h̃〉 of graphs
from Q̃B passes the two-arc test.
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Lemma 2 yields a PSPACE algorithm to determine universality [17]. Simply check each
g̃, h̃ ∈ Q̃B. If Ygh is both proper and not contained in L(B), then the pair 〈g̃, h̃〉 provide
a counterexample to the universality of B. If no such pair exists, the automaton must
be universal. This algorithm faces difficulty on two fronts. First, the number of graphs
is 3n2

. Second, checking language nonemptiness is an exponentially difficult problem.
To address these problems we construct only graphs with non-empty languages. We
borrow the notion of composition from [5], allowing us to use exponential space to
compute exactly the needed graphs. Given a graph g̃ whose language contains the word
w1 and a graph h̃ whose language contains the word w2, their composition g̃; h̃ can be
defined such that w1w2 ∈ L(g̃; h̃).

Definition 2. [5] Given two graphs g̃, h̃ ∈ Q̃B, define their composition g̃; h̃ to be:

{〈q, 1, r〉 | q, r, s ∈ Q, 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, b = 1 or c = 1}
∪{〈q, 0, r〉 | q, r, s ∈ Q, 〈q, 0, s〉 ∈ g̃, 〈s, 0, r〉 ∈ h̃, and

∀t ∈ Q, b, c ∈ {0, 1} . 〈q, a, t〉 ∈ g̃ ∧ 〈t, b, r〉 ∈ h̃ implies a = b = 0}

Using composition, we can define a concrete algorithm that explores the space of graphs
on-the-fly, searching for a counterexample. Given a Büchi automaton B, for every
σ ∈ Σ, define g̃σ to be {〈q, 0, r〉 | q ∈ Q \ F, r ∈ ρ(q, σ) \ F} ∪ {〈q, 1, r〉 | q ∈
Q, r ∈ ρ(q, σ), q or r ∈ F}. Let Q̃1

B be the set {g̃σ | σ ∈ Σ}. To generate the non-
empty graphs, compose graphs from Q̃1

B until we reach closure. The resulting subset of
Q̃B, written Q̃f

B, contains exactly the graphs with non-empty languages. In addition to
non-emptiness, properness requires testing language containment. Recall that a pair of
graphs 〈g̃, h̃〉 with non-empty languages is proper when both L(g̃) · L(h̃) ⊆ L(g̃), and
L(h̃) · L(h̃) ⊆ L(h̃). We employ composition to provide a novel polynomial time test
for the containment of graph languages.

Lemma 3. For any g̃, h̃, k̃ ∈ Q̃f
B, it holds that L(g̃) · L(h̃) ⊆ L(k̃) iff g̃; h̃ = k̃

Algorithm 1 employs composition to search for proper pairs of graphs and check the
universality of a Büchi automaton B. On non-universal automaton, this algorithm can
terminate as soon as it finds a counterexample, and thus sometimes avoid computing
the entire set of graphs.

Algorithm 1. RamseyUniversality(B)
Initialize Q̃f

B ⇐ Q̃1
B

repeat
Take two graphs g̃, h̃ ∈ Q̃f

B
Include g̃; h̃ in Q̃f

B
if g̃; h̃ = g̃ and h̃; h̃ = h̃ then

if 〈g̃, h̃〉 fails the two-arc test then return Not Universal

until Q̃f
B reaches fixpoint

return Universal
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2.2 Rank-Based Complementation

If a Büchi automaton B does not accept a word w, then every run of B on w must
eventually cease visiting accepting states. The rank-based construction uses a notion of
ranks to track the progress of each possible run towards this fair termination. The rank-
based construction accepts w precisely if all runs cease visiting accepting states, and so
defines a automaton for the complement of L(B). For a definition of this construction,
see [12].

An algorithm seeking to refute the universality of B can look for a lasso in the
state-space of the rank-based complement of B. A classical approach is Emerson-Lei
backward-traversal nested fixpoint νY.μX.(X ∪ (Y ∩ F )) [8]. This nested fixpoint
employs the observation that a state in a lasso can reach an arbitrary number of accept-
ing states. The outer fixpoint iteratively computes sets Y0, Y1, ... such that Yi contains
all states with a path visiting i accepting states. Universality is checked by testing if
Y∞, the set of all states with a path visiting arbitrarily many accepting states, intersects
Qin. In contrast to the Ramsey-based approach, this rank-based approach can termi-
nate early on some universal automaton, when some Yi is already disjoint from Qin.
If no initial state has a path to i accepting states, then no initial state can lead to a
lasso. In this case we already know the complemented automaton is empty, and the
original automaton is universal. In consequence, extracting a counter-example from the
Emerson-Lei algorithm is non-trivial, and requires that the algorithm fully terminates.
Doyen and Raskin implemented this algorithm using a subsumption relation, provid-
ing a universality checker that scales to automata an orders of magnitude larger than
previous approaches [6].

3 Subsumption in the Ramsey-Based Algorithm

Subsumption has proven to be very effective in the rank-based approach [6] and in
the Ramsey-based approach specialized to SCT problems [1]. To use subsumption in
the special case of SCT problems, Ben-Amram and Lee replaced a test for an arc in
idempotent graphs with a test for strongly-connected components in all graphs. To use
subsumption in the general Ramsey-based approach, we need to replace the two-arc test
over proper pairs of graphs. We simplify Algorithm 1 by removing the requirement that
pairs of graphs should be proper. Instead of examining only pairs 〈g̃, h̃〉 where g̃; h̃ = g̃

and h̃; h̃ = h̃, we examine every pair 〈g̃, h̃〉 of non-empty graphs. When examining a
proper pair of graphs, we used the two-arc test: search for a q ∈ Qin, r ∈ Q, a ∈ {0, 1}
such that 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃. When examining a pair of graphs that may not
be proper, we cannot limit our search to single arcs. We must test for a path from q to
r, and a path from r to itself. We test for this path by computing the strongly connected
components of h̃, and testing if some strongly connected component of h̃ both contains
a 1-labeled arc and is reachable from a start state in g̃.

A strongly connected component (SCC) of a graph g̃ is a maximal set S of nodes, so
that for every q, r ∈ S there is a path from q to r, and a path from r to q. Computing
the strongly connected components of a graph can be done in linear time with a depth-
first search [4]. An SCC S in a graph g̃ is 1-labeled when there are q, r ∈ S with an
arc 〈q, 1, r〉 ∈ g̃. We say there is a path from a state q to an SCC S when there is a
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path from q to an element of S. Once we partition the nodes into strongly connected
components, we can simply search for a reachable 1-labeled SCC.

Definition 3. A pair 〈g̃, h̃〉 of graphs passes the lasso-finding test when there exists:
q ∈ Qin, r ∈ Q, a ∈ {0, 1} and S ⊆ Q such that, 〈q, a, r〉 ∈ g̃, there is a path from r

to S in h̃, and S is a 1-labeled SCC of h̃.

Lemma 4. Q̃f
B contains a pair 〈g̃, h̃〉 that fails the lasso-finding test iff Q̃f

B contains a
pair of graphs 〈g̃′, h̃′〉 that fails the two-arc test.

In [9], we demonstrated that the Lee, Jones, and Ben-Amram algorithm for size-change
termination is a specialized realization of the Ramsey-based containment test. In [1],
Ben-Amram and Lee optimize this specialized algorithm, removing certain graphs
when computing the closure under composition. Using the lasso-finding test, we now
show how to employ Ben-Amram and Lee’s subsumption relation for the general case
of Büchi universality. Doing so allows us to ignore graphs when they are approximated
by other graphs.

Intuitively, a graph g̃ approximates another graph h̃ when the arcs of g̃ are a subset of,
or less strict than, the arcs of h̃. In this case, finding an arc or SCC in g̃ is strictly harder
than finding one in than h̃. When the right arc can be found in g̃, then it also occurs in
h̃. When g̃ does not have a satisfying arc, then we already have a counterexample. Thus
we need not consider h̃.

Formally, given two graphs g̃, h̃ ∈ Q̃B, we say that g̃ approximates h̃, written g̃ � h̃,
when for every arc 〈q, a, r〉 ∈ g̃ there is an arc 〈q, a′, r〉 ∈ h̃, a ≤ a′. Note that
approximation is a transitive relation. Using the notion of approximation, we present
an algorithm that computes a subset of Q̃f

B, called Q̃�
B . A set of graphs Q̃ is �-closed

under composition when for every g̃, h̃ ∈ Q̃, there exists k̃ ∈ Q̃ such that k̃ � g̃; h̃.
Given a set Q̃1

B of graphs, Algorithm 2 computes a set Q̃�
B by keeping only the minimal

elements under the � relation. Q̃�
B will be �-closed under composition, but not closed

under composition in the normal sense.
Note that the lasso-finding test is required to safely limit our search to graphs in

Q̃�
B . Since we are now removing elements from Q̃�

B , it is possibly that the proper
pair of graphs in Q̃f

B that fails the two-arc test may never be computed: a graph in
the pair may be approximated by another graph, one that does not satisfy the condi-
tions of properness. When using the lasso-finding test, on the other hand, we exam-
ine all pairs of graphs. As an example, consider the set containing the single graph
g̃ = {〈q, 0, q〉, 〈q, 0, r〉, 〈r, 0, q〉}. We leave it to the reader to verify that this set is �-
closed under composition, and that 〈g̃, g̃〉 fails the lasso-finding test, but that 〈g̃, g̃〉 is
not proper. Similarly, if we consider the graph g̃ = {〈q, 1, r〉, 〈r, 1, q〉}, we find that
〈g̃, g̃〉 fails the two-arc test, but passes the lasso-finding test.

Theorem 1. Given an initial set Q̃1
B of graphs, the set Q̃f

B contains a proper pair 〈g̃, h̃〉
of graphs that fails the two-arc test if and only if the set Q̃�

B computed in Algorithm 2

contains a pair 〈g̃′, h̃′〉 of graphs that fails the lasso-finding test.
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Algorithm 2. RamseyUniversality(B)
Construct the set Q̃1

B of all single-character graphs
Initialize the worklist W̃ ⇐ Q̃1

B
Initialize the set Q̃�

B ⇐ ∅
while W̃ �= ∅ do

Remove an element g̃ from W̃
for h̃ ∈ Q̃�

B do
if h̃ � g̃ then

Discard g̃ and exit for

else if g̃ � h̃ then
Remove h̃ from Q̃�

B
else if 〈g̃, h̃〉 or 〈h̃, g̃〉 fails the lasso-finding test then

return Not Universal

if g̃ has not been discarded then
Add g̃ to Q̃�

B
for h̃ ∈ Q̃1

B do Add g̃; h̃ to W̃

return Universal

Based on the algorithm used by Ben-Amram and Lee, Algorithm 2 extends Algo-
rithm 1 to exploit subsumption and avoid computing the entirety of Q̃f

B
1. To make the

algorithm more concrete, a worklist is used to keep track of which graphs have yet
to be considered. Further, instead of composing arbitrary pairs of graphs, we compose
each graph only with graphs from Q̃1

B. Since any composition can be phrased as a se-
quence of compositions of graphs from Q̃1

B, this is sufficient to generate the entirety
of Q̃�

B while reducing the size of the worklist considerably. To achieve reasonable per-
formance, our implementation memoizes the strongly connected components of graphs
and implements the lasso-finding test as an intersection test over two sets of states.

4 Empirical Analysis

The subsumption technique employed in Algorithm 2 is purely a heuristic improve-
ment: the worst-case complexity of the algorithm does not change. Thus the Ramsey-
based algorithm has a worst-case running time exponentially slower than that of the
rank-based algorithm. Motivated by the strong performance of Ramsey-based algo-
rithms on SCT problems [9], we compare Ramsey and rank based solvers on a terrain
of random automata.

To evaluate the performance of various tools on Büchi universality problems, we
employ the random model proposed by Tabakov and Vardi and later used by Doyen
and Raskin [6,18]. This model fixes the input alphabet as Σ = {0, 1} and considers the
containment of Σω in, and thus the universality of, the language of a random automata.

1 This algorithm does not prune Q̃1
B for subsumed graphs. As our alphabet consists of two

characters, and Q̃1
B contains two elements, this is acceptable for our use. For larger alphabets,

Q̃1
B could be checked for subsumed graphs.
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Each automaton B = 〈Σ, Q, Qin, ρ, F 〉 is constructed with a given size n, transition
density r, and acceptance density f . Q is simply the set {0...n−1}, and Qin = {0}. For
each letter σ ∈ Σ, we choose �n ∗ r� pairs of states (s, s′) ∈ Q2 uniformly at random
and the transitions 〈s, σ, s′〉 are included in ρ. We impose one exception to avoid trivial
cases of non-universality: the initial node must have at least one outgoing transition
for each letter of the alphabet. The set F of accepting states comprises �n ∗ f� states,
likewise chosen uniformly at random.

Data points are derived from 100 or more2 random automata with the given n, r,
and f . Each tool is given one hour to solve each problem. When possible, we compute
the median running time [6,18]. This allows us to plot the data on a logarithmic scale
and easily judge exponential behavior. However, in many cases interesting behavior
emerges after a significant percentage of the runs time out. In these cases we measure
the timeout percentage instead of median running time.

Our rank-based tool, simply called RANK, is a slightly modified version of the Mh
tool developed by Doyen and Raskin [6]. Our Ramsey-based tool, called RAMSEY, is
based on the sct/scp program– an optimized C implementation of the SCT algorithm
from Ben-Amram and Lee [1]. We have modified the RAMSEY tool to solve arbitrary
Büchi universality problems by implementing Algorithm 2. Both tools can be config-
ured to not employ their subsumption techniques. In this case, we append (ns) to the
program name.

All experiments were performed on the Shared University Grid at Rice (SUG@R)3, a
cluster of Sunfire x4150 nodes, each with two 2.83GHz Intel Xeon quad-core processors
and 16GB of RAM. Each run is given a dedicated node.

4.1 Subsumption

We know that subsumption is vital to the performance of rank-based solvers [6]. Fur-
ther, we have observed subsumption’s utility on the domain of SCT problems [9]. This
motivates us to extend the subsumption technique of [1] to the case of general Büchi
universality, resulting in Algorithm 2. Employing observations from Section 4.2 be-
low, we check the practical utility of subsumption on the most difficult terrain point for
RAMSEY, where transition density r = 1.5 and acceptance density f = 0.5. Figure
1 displays RAMSEY’s performance as size increases, on a logarithmic scale. If more
than 50% of the problems timed out, the median is displayed at 3600 seconds, which
flattens the RAMSEY (ns) line at the last data point. We observe that the RAMSEY (ns)
line has a higher slope than the RAMSEY line. As this graph uses a logarithmic scale,
this difference in the slope indicates an exponential improvement in scalability when
subsumption is used. Similar results held for every terrain point we measured, demon-
strating that although a heuristic technique, subsumption is required for the scalability
of our Ramsey-based approach. We also note that the curves appear to be linear on
the logarithmic scale, suggesting that the median running time for this terrain point is
2O(n), rather than the 2O(n2) of the worst-case complexity bound.

2 When the results from 100 automata appear anomalous, additional automata are generated and
tested to improve the fidelity of the results. No data are ever excluded.

3 http://rcsg.rice.edu/sugar/

http://rcsg.rice.edu/sugar/
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Fig. 1. Subsumption exponentially improves RAMSEY median running times (r = 1.5, f = 0.5)

4.2 Behavior over the Terrain

As stated above, randomly generated automata of a given size can vary in two parame-
ters. By changing the transitions and acceptance density, we can observe the behavior of
each tool over a variety of terrain points. Automata with a high transition density tend to
be universal, while automata with low transition density tend to be non-universal. Ac-
ceptance density has a smaller, but still noticeable, affect on universality [6,18]. To map
out the behavior of the two tools over this terrain, we hold size constant at n = 100,
and examined a variety of terrain points. We generate data points for each combi-
nation of transition density r ∈ {0.02, 0.26, 0.50, 0.74, 0.98} and acceptance density
f ∈ {0.5, 1.5, 2.0, 2.5, 3.0}.

Figure 2(a) displays the percentage of cases in which the RANK tool timed out in
each terrain point. As observed in [6], there is a sharp spike in timeouts at transitions
density r = 1.5, acceptance density of 0.26. This spike trails off quickly as transition
density changes, and only slightly more gradually as acceptance density changes. There
is a subtler high point at r = 2.0, f = 0.02, where the timeouts rise to 50%. This is

(a) RANK (b) RAMSEY

Fig. 2. Differences in behavior between RANK and RAMSEY over problem terrain, measured as
percentage of problems that timeout when size n = 100
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consistent with other rank-based tools, even those using different algorithms [18]. Fig-
ure 2(b) displays the percentage of cases in which the RAMSEY tool timed out in each
terrain point. Like RANK, r = 1.5, f = 0.26 is a difficult terrain point for RAMSEY.
However, RAMSEY continues to time out frequently along all terrain points with tran-
sition density r = 1.5, and has no significant timeouts at any other terrain points.

Simply glancing at the terrain graphs, it appears that RANK may perform better than
RAMSEY in most terrain points. On the other hand, RAMSEY does not exhibit a second
high point at r = 2.0, f = 0.02, and at least for this size of automata RAMSEY beats
RANK at the hardest point for RANK. What these graphs clearly show is that those
attributes that make a problem hard for RANK to handle are not necessarily the same as
those attributes of a problem that cause difficulty for RAMSEY.

4.3 Scalability

We explore some interesting terrain points by measuring the scalability of each algo-
rithm: we hold the transition and acceptance densities constant, and increase size. We
choose to investigate three terrain points: a point r = 1.5, f = 0.5, where RANK seems
to perform better than RAMSEY; the main spike r = 1.5, f = 0.26, where both tools
exhibited difficulty solving problems; and a final point r = 2.0, f = 0.05 near RANK’s
second high point, where RAMSEY seems to perform better.

Figure 3 displays the median running time for problems with the transition density at
r = 1.5 and the acceptance density at f = 0.5, on a logarithmic scale. If more than 50%
of the problems timed out, the median is displayed at 3600 seconds, cutting off RAM-
SEY’s line. As the scale is logarithmic, the difference in the slope between RANK’s line
and RAMSEY’s indicates that, on this terrain point, RANK clearly scales exponentially
better than RAMSEY. The third line, labeled “Parallel”, displays the behavior of run-
ning both tools in parallel on separate machines, and terminating as soon as either tool
gives an answer. Is is notable that this line, while having the same slope as RANK’s, is
lower; indicating there are a number of cases even at this terrain point where RAMSEY

terminates before RANK.
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Fig. 3. RANK scales exponentially better than RAMSEY when r = 1.5 and f = 0.5 (log scale)
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Fig. 4. RAMSEY scales better than RANK at the most difficult terrain point (r = 1.5, f = 0.26)

The most difficult terrain points for both tools lie near r = 1.5, f = 0.26. Up to
n = 50, median running times (see addendum) indicate that RAMSEY performs better
than RANK only by a constant factor. Past this this size, the percentage of timeouts is
too high for median measurements to be meaningful. However, a gap in the timeout
percentage appears as the automata grow larger than 50 states. Figure 4 displays the
percentage of runs that timed out for each size n at this terrain point. It does appear
that, past n = 50, RAMSEY begins to scale significantly better than RANK. We again
display the behavior of running both tools in parallel on separate machines using the
third line, labeled “Parallel.” We again find that even at a terrain point that favors one
tool, RAMSEY, we benefit from running both tools simultaneously.

At size n = 100, RANK exhibited difficulty when the transition density was 2.0 and
the acceptance density was low. We measured the scalability of RAMSEY and RANK

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Ti
m

eo
ut

 P
er

ce
nt

ag
e

Automaton Size (states)

Rank

Ramsey

Fig. 5. RAMSEY scales much better than RANK when r = 2 and f = 0.05
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on problems with r = 2.0 and f = 0.05. At this terrain point the median running
times do not increase exponentially for either RANK or RAMSEY. As a large number
of problems still did not complete, Figure 5 displays the timeout percentages as size
grows. At this terrain point, RAMSEY does appear to scale better than RANK. However
the gap is not the exponential improvement we observed when RANK performed better
than RAMSEY. At this configuration, running the tools in parallel was only a slight
improvement over running RAMSEY alone.

4.4 Universal vs. Non-universal Automata

Section 2 reviews the algorithms used by RANK and RAMSEY to explore the state
space of the complemented automaton. Of note is that in certain cases each tools can
terminate before computing the entirety of their fixpoints: RANK on universal automata,
and RAMSEY on non-universal automata. This suggests that RANK may perform better
on universal automata, and RAMSEY may perform better on non-universal automata.

To confirm this hypothesis, we compare RANK and RAMSEY on a corpus of univer-
sal and non-universal automata. Our corpus is derived from 1000 automata with size
n = 50, transition density r = 1.8, and acceptance density f = 0.2. This point was
chosen because of the relatively equal proportion of universal and non-universal au-
tomata. Table 1 summarizes the results. RANK does indeed perform better on universal
automata. Universal automata were solved in a median time of 108.3 seconds, while on
non-universal automata, the median running time was 177.8 seconds. We observe the
inverse behavior in RAMSEY: on non-universal automata RAMSEY had a median run-
ning time of only 33.1 seconds, while on universal automata the median running time
was 253.4 seconds. The universality or non-universality of a problem does affect the
performance of each approach.

Table 1. RANK performs better on universal problems, RAMSEY on non-universal problems,
measured by median running time (n = 50, r = 1.8, f = 0.2)

Count RANK RAMSEY

Universal 460 108.3 253.4
Non-Universal 527 177.8 33.1
Unknown 13

The question naturally arises: does the difference in performance on universal vs.
non-universal automata fully explain the different behaviors of RAMSEY and RANK.
This is not the case. As previously noted in Figure 3, RANK performs exponentially
better than RAMSEY on automata with a transition density of 1.5 and an acceptance
density of 0.5. More than 80% of the solved automata at this terrain point are non-
universal: a distribution that should favor RAMSEY. Further, Figure 5 shows a terrain
point where RAMSEY scales significantly better than RANK. At this terrain point, more
than two-thirds of solved automata with n > 50 were universal, and should have favored
RANK. Therefore we cannot conclude that the difference in behavior between RANK

and RAMSEY is truly attributed to the gap in performance between universal and non-
universal automata.
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5 Conclusion

This paper tells two stories. The first story is about subsumption. In general, subsump-
tion is a trade off: there is a benefit to reducing the working sets of the algorithms, but
checking for subsumed states can be computationally expensive. In the domain of CNF
satisfiability solvers, subsumption is generally regarded as an ineffective technique: the
overhead of checking for subsumed clauses outweighs any benefit gained from remov-
ing them. For checking Büchi automata universality, it has previously been shown that
subsumption is not only useful, but vital for the scalability of the rank-based approach
[6]. In this paper, we demonstrate that this also holds for the Ramsey-based approach,
which use not only a different construction but also a different algorithm to explore
the state space of this construction. These results suggest the use of subsumption rela-
tions in other constructions, such as the slice-based construction of Kähler and Wilke
[11].

The second story is that neither the rank-based approach nor the Ramsey-based ap-
proach to Büchi universality testing is clearly superior. This is true despite the massive
gap in worst-case complexity between the two approaches. Each approach exhibits dis-
tinct behavior on the terrain of random universality problems. Due to these differences,
we do not believe a winner takes all approach is best for universality checking. The
current best approach is to run both tools in parallel, and see which terminates first.
Doing so improves performance by a constant factor, relative to the best tool for any
given terrain point.

Preferable to running the algorithms in parallel would be to employ a portfolio ap-
proach. A portfolio approach attempts to predict which algorithm would perform better
on a given problem [10]. To do this, we would have to examine the space of univer-
sality problems and discover significant attributes of problems. Transition and accep-
tance density are not the only observable attributes of an automaton, or even necessarily
the most important ones. While they are significant for randomly generated problems,
there is no reason to expect that transition and acceptance density are good indicators
of difficulty for real-world problems. In the case of SAT solvers, over ninety pertinent
attributes were found [7]. Machine-learning techniques were used to identify which
features suggest which approach to SAT solving. The challenge that now faces us is
discovering a similar body of features with which to characterize Büchi automata, and
to create a corpus of automata to characterize. In addition to transition and acceptance
density, attributes could include the density of initial states, the number of strongly con-
nected components in the automata, and the density of strongly connecting components
containing an accepting state4. One point that is well demonstrated in our investigation
is that theoretical worst-case analysis often yields little information on actual algorith-
mic performance; an algorithm running in 2O(n2) can perform better in practice than an
algorithm running in 2O(n log n). We do note RAMSEY, the program running in 2O(n2)

time and space, sometimes consumed on the order of 20 GB of memory, where RANK

rarely consumed more than 300 megabytes.
Finally, in this paper we focus on universality as a special case of Büchi contain-

ment that encapsulates its algorithmically difficult aspects. To actually verify that an

4 We thank the reviewers for suggestions on possible criteria.
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implementation A adheres to a specification B, we need to lift our universality testing
algorithms to the general case of containment testing. Computing the intersection of
two automata uses the product of the state spaces. For the rank-based approach, this re-
sults in pairing a stateAwith a state in in KV(B). The theory of rank-based containment
testing with subsumption is described in [6] and implemented in RANK. Ramsey-based
universality, however, avoids directly exploring the state space of the automata. A the-
ory of Ramsey-based containment was developed for [9], but without subsumption. To
add containment testing to RAMSEY requires the extension of the theory developed in
this paper for universality testing.
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Abstract. Many algorithms on data structures such as terms (finitely
branching trees) are naturally implemented by second-order recursion:
A first-order procedure f passes itself as an argument to a second-order
procedure like map, every , foldl , foldr , etc. to recursively apply f to the
direct subterms of a term. We present a method for automated termina-
tion analysis of such procedures. It extends the approach of argument-
bounded functions (i) by inspecting type components and (ii) by adding
a facility to take care of second-order recursion. Our method has been
implemented and automatically solves the examples considered in the lit-
erature. This improves the state of the art of inductive theorem provers,
which (without our approach) require user interaction even for termina-
tion proofs of simple second-order recursive procedures.

1 Introduction

Functional programs frequently use higher-order procedures such as map and
every that expect functions as parameters [7,12]. For instance, map applies a
function to each element of a list and returns the list of the result values. Sim-
ilarly, every(p, k) yields true iff p(x) evaluates to true for all elements x of a
list k. If a procedure f calls a higher-order procedure g using f as an argument
for g, e. g., g(f, . . .), we say that f is defined by higher-order recursion [8,14].

In this paper, we consider the automated termination analysis of functional
programs that may use second-order recursion.1 Typical examples arise in algo-
rithms on finitely branching trees such as terms; e. g., applying a substitution
to a term or collecting variables in a term. Termination analysis for such pro-
grams is non-trivial: In the higher-order theorem provers Isabelle [8,10,14] and
PVS [11], the user needs to assist the system to prove termination in these cases.
In contrast, the method we propose solves typical termination problems auto-
matically. Furthermore, our method supplies information that allows a theorem
prover to generate useful induction axioms for proofs about such programs.

Figure 1 shows an example program. In Fig. 1(a), data types bool , N, and
list [@A] are defined by enumerating the respective data constructors true, false ,
0, succ, ø, and “::”. Each argument position of a data constructor is assigned a
1 As in [3], we define the order o(τ ) of base types τ like N or list [N] as 0; the order of

a functional type τ1 × . . . × τn → τ is 1 + maxi o(τi) for a base type τ .

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 221–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) structure bool <= true , false

structure N <= 0, succ(pred : N)
structure list [@A] <= ø, ::(hd : @A, tl : list [@A])
procedure last(k : list [@A]) : @A <=
assume k =/ ø; if tl(k) = ø then hd(k) else last(tl(k)) end

(b) structure variable.symbol <= variable(varID : N)
structure function.symbol <= func(funcID : N)
structure term <=

var(vsym : variable.symbol ),
apply(fsym : function.symbol , args : list [term ])

procedure every(p : @A → bool , k : list [@A]) : bool <=
if k = ø then true else if p(hd(k)) then every(p, tl(k)) else false end end

procedure groundterm(t : term) : bool <=
if ?var(t) then false else every(groundterm , args(t)) end

Fig. 1. A functional program with (a) the first-order procedure last and (b) the second-
order procedure every and second-order recursion in procedure groundterm

selector function; e. g., selector pred denotes the predecessor function. Expres-
sions of the form ?cons(t) check if t denotes a value of the form cons(. . .). In
Fig. 1(b), procedure every is a second-order procedure that gets a first-order
function p as argument. Procedure groundterm uses second-order recursion to
check if a term t (modeled by data type term) does not contain any variables.

Our approach extends the method of argument-bounded functions [15,18] that
is used, for instance, in the semi-automated verifier �eriFun [17] for termination
analysis and the synthesis of suitable induction axioms. Using this approach,
termination of every can be easily proved: Selector tl is argument-bounded, which
intuitively means #(k) ≥ #(tl(k)) for all lists k =/ ø, where #(k) counts the
occurrences of list -constructors ø and :: in k (and thus corresponds to the length
of list k plus 1). A system-generated difference procedure [15,18] Δtl : list [@A]→
bool decides if this inequality is strict for a given list k, which is the case if k =/ ø.
To prove that the second argument of procedure every gets strictly smaller in the
recursive call every(p, tl(k)), it suffices to show the trivial termination hypothesis
∀k : list [@A]. k =/ ø ∧ p(hd(k))→ Δtl (k).

Proving termination of groundterm, however, is challenging and hence is the
main problem we tackle in this paper. The key observation is that every applies p
only to members x of list k. While in Isabelle the user needs to state and prove
this knowledge explicitly as a congruence theorem, our approach automatically
extracts such information from the definition of every . More specifically, our
approach detects that for any instantiation of type variable @A with a type τ ,
the number of τ -constructors in each value x : τ that p is applied to by every is
bounded by the number of τ -constructors in the elements e of list k:

∑
e∈k #(e) ≥

#(x). We say that every is call-bounded wrt. p. For the second-order recursion
in groundterm and args(t) = t1 :: . . . :: tn :: ø this means #(t1) + . . . + #(tn) ≥
#(x). Since t = apply(fsym(t), args(t)) contains one term-constructor more than
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args(t), we have #(t) > #(t1)+ . . .+#(tn) ≥ #(x), so groundterm is only called
recursively with arguments x that are smaller than t, which ensures termination.

Formally, we parameterize the size measure # by a type position so that for
args(t) : list [term] we can separately count the list- and term-constructors. This
allows us to consider args : term → list [term] as argument-bounded wrt. type
component term (i. e., args(t) contains no more term-constructors than t).

The contributions of this paper are:

(1) An extended notion of argument-boundedness that also considers components
of types (Sect. 2), along with a corresponding extension of the estimation
calculus to automate size estimation proofs (Sect. 3). These extensions allow
our approach to prove termination of several purely first-order procedures
that cannot be handled by the original approach in [15,18].

(2) The novel notion of call-boundedness to automatically prove termination of
procedures with second-order recursion (Sect. 4). This extension maintains
the advantage that “optimized” induction axioms can be synthesized.

We discuss related work and experimental results in Sect. 5. Proofs of the theo-
rems in this paper are given in [1] and [2] along with further details and examples.

2 Size Estimation for Polymorphic Data Types

In this section we define the basic ingredients for size estimation proofs. We
begin with a brief account of the programming language L (which is the input
language of �eriFun [17] and roughly corresponds to the second-order fragment
of Haskell with strict evaluation); see [1,2,16] for formal details on L.

2.1 Programming Language

The input language L of �eriFun consists of definition principles for freely gener-
ated polymorphic data types, for first-order and second-order procedures (based
on non-mutual recursion,2 case analyses via if -expressions, and functional com-
position) that operate on these data types, and for statements about the data
types and procedures. Each function symbol can be associated with a so-called
context requirement, which is stipulated explicitly for procedures (as for last in
Fig. 1) and implicitly for all selectors. �eriFun enforces via proof obligations
that the context requirement be satisfied for each function call [13]; e. g., last ,
hd , and tl may only be called on non-empty lists.

A base type is a type variable @A or an expression of the form str [τ1, . . . , τk],
where τ1, . . . , τk are base types and str is a k-ary type constructor (k ≥ 0). A
type is a base type or an expression of the form τ1 × . . . × τk → τ for types
τ1, . . . , τk, τ . Type constructors are defined by expressions of the following form:

structure str [@A1, . . . , @Ak] <= . . . , cons(sel1 : τ1, . . . , seln : τn), . . . (1)

2 Our approach can be extended to handle mutual recursion without much difficulty.
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The τj are base types, and str may only occur as str [@A1, . . . , @Ak] in the τj .
Each cons is called a data constructor and the sel j are called selectors.

We will address type symbols (i. e., type constructors and type variables) in
a base type by their position π ∈ �∗: @A|ε := @A, str [τ1, . . . , τk]|ε := str , and
str [τ1, . . . , τk]|hπ′ := τh|π′ for h ∈ {1, . . . , k}. Pos(τ) ⊆ �∗ denotes the set of all
valid positions in type τ . For a data constructor cons(sel1 : τ1, . . . , seln : τn) and
a type symbol S , the set

PosS (cons) := {(j, π) ∈ {1, . . . , n} ×�∗ | π ∈ Pos(τj), τj |π = S} (2)

contains the positions of all occurrences of S in the selector types of cons , given
by a selector number j and a position π in τj . Data constructor cons is called
reflexive if Posstr (cons) �= ∅, and irreflexive otherwise.

Subsequently, we let Σ(P ) denote the signature of all function symbols defined
by an L-program P . As usual, T (Σ(P ),V) denotes the set of all terms over Σ(P )
and a set V of variables. We write T (Σ(P )) instead of T (Σ(P ), ∅) for the set of
all ground terms over Σ(P ). Σ(P )c ⊂ Σ(P ) contains all data constructors of P .
CL(Σ(P ),V) is the set of clauses over Σ(P ), i. e., sets of literals. A literal is an
if -free Boolean term or the negation if (b, false, true) of such a term.

For a ground type3 τ , V(P )τ denotes the “values” of type τ : If τ is a ground
base type, V(P )τ := T (Σ(P )c)τ , and for each ground type τ = τ1 × . . .× τk →
τk+1, V(P )τ contains all closed (i. e., no free variables) λ-expressions of type τ ;
e. g., λt : term. groundterm(t) ∈ V(P )term→bool .

The call-by-value interpreter evalP : T (Σ(P )) �→ V(P ) is a partial function
that defines the operational semantics of L [2]. The evaluation of a ground term t
either (i) succeeds and yields a value evalP (t) ∈ V(P ) or (ii) diverges, because
a procedure called in t does not terminate.

A procedure procedure f(x1 : τ1, . . . , xn : τn) : τ <= assume cf ; Bf of a pro-
gram P terminates iff the interpreter evalP returns a value for each procedure
call f(q1, . . . , qn). The qi are either constructor ground terms or λ-expressions
that contain only calls of arbitrary, but terminating functions. Program P ter-
minates iff all procedures f defined in P terminate.

A universally quantified formula of the form ∀x1 : τ1, . . . , xn : τn. b, where
b ∈ T (Σ(P ),V)bool , is true iff P terminates and evalP ′(b[�q]) = true for each
terminating program P ′ ⊇ P and all q1, . . . , qn ∈ V(P ′).4

2.2 A Size Measure for Values of Base Types

Our size measure #(t, π) for terms t is parameterized with a type position π
so that we can precisely specify which data constructors are to be counted.
Figure 2 sketches an implementation of Mergesort: Procedure split splits list k
into two lists that are recursively sorted and then merged together by some proce-
dure merge. To prove termination of msort , we need to show that split is strictly
argument-bounded: #(k, ε) > #(split(k),1) and #(k, ε) > #(split(k),2). The
type position distinguishes between the list-constructors of the pair of lists.
3 A ground (base) type is a (base) type without type variables; e. g., list [N].
4 Program P ′ may define additional data types and procedures.
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structure pair [@A, @B ] <= mkpair(fst : @A, snd : @B)

procedure split(k : list [@A]) : pair [list [@A], list [@A]] <= . . .

procedure msort(k : list [N]) : list [N] <=
if k = ø then ø else if tl(k) = ø then k

else merge(msort(fst(split(k))),msort(snd(split(k)))) end end

procedure filter(k : list [@A], p : @A → bool) : list [@A] <=
if k = ø then ø else if p(hd(k)) then hd(k) :: filter(tl(k), p)

else filter(tl(k), p) end end

procedure qsort(k : list [N]) : list [N] <=
if k = ø then ø else qsort(filter(tl(k), λn : N. n≤ hd(k))) <> hd(k) ::

qsort(filter(tl(k), λn : N. n > hd(k))) end

Fig. 2. Implementation of Mergesort (sketch) and Quicksort

Definition 1. For each ground base type τ = str [τ ′
1, . . . , τ

′
k] as in (1) the size

measure #τ : T (Σ(P )c)τ ×Pos(τ)→ � is defined by #τ (cons(t1, . . . , tn), π) :=⎧⎪⎨⎪⎩
1 if π = ε and cons is irreflexive,
2 +
∑

(j,π′)∈Posstr (cons) #θ(τj)(tj , π
′) if π = ε and cons is reflexive,∑

(j,π′)∈Pos@Ah
(cons) #θ(τj)(tj , π

′π′′) if π = hπ′′,

where θ := {@A1/τ ′
1, . . . , @Ak/τ ′

k} instantiates the type variables of str. If type τ
is obvious from the context, we will usually omit the type index in #τ .

Intuitively, the size #(t, π) of a term t ∈ T (Σ(P )c)τ is computed as follows: We
replicate the type (and data) constructor definitions so that each type construc-
tor occurs at most once in type τ . Then #(t, π) counts the τ |π-constructors in t.
For example, list [list [N]] is transformed into listA[listB [N]], so #(t, ε) counts the
listA-constructors in t and #(t,1) counts the listB -constructors in t.

The formal definition of the size measure above directly uses the type position
without needing to replicate any type constructors. Irreflexive data constructors
get weight 1. A reflexive data constructor cons(sel1 : τ1, . . . , seln : τn) in a term
cons(t1, . . . , tn) is counted with weight5 2 and we recurse into those tj : θ(τj)
that by definition of cons may also contain str-constructors (τj |π′ = str). For
instance, for τ := list [list [N]] and π := ε we recursively add the size #(t2, ε) of
the tl-component of t1 :: t2, whereas we do not recurse into the hd -component t1.
Finally, for π = hπ′′ we recursively add up the sizes of those tj that contain τ ′

h|π′′ -
constructors, so we recurse into the occurrences of the h-th type parameter @Ah

in τj . For example, for τ := list [list [N]], term t1 :: t2, and π := 1, #list [N](t1, ε) +
#list [list [N]](t2,1) counts the list-constructors of the inner lists.

Example 1. For type τ := list [N], #list [N](t, ε) = 2R + I for the numbers R
and I = 1 of occurrences of :: and ø in t, respectively, whereas #list [N](t,1) is the

5 This simplifies some size estimation proofs; e. g., one can prove that apply(f, l) is
greater than var(v) without having to check if the argument list l is non-empty.
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sum of the sizes of the elements in list t. Note that #list [N](ø,1) = 0, whereas
#list [N](0 :: ø,1) = #N(0, ε) = 1 �= 0. Thus #list [N](t,1) = 0 iff t = ø. This a
useful property, cf. the end of Sect. 2.4. ♦
Example 2. For terms t ∈ T (Σ(P )c)term , #term(t, ε) counts the occurrences of
term-constructors var (with weight 1) and apply (with weight 2) in t. ♦

2.3 Argument-Bounded Functions

A function f is called argument-bounded iff the result f(. . . , t, . . .) of a function
call is bounded by argument t of the call wrt. the size measure (provided that
the function may be applied to t); e. g., #(tl(k), ε) ≤ #(k, ε) for each k =/ ø. Such
facts are used to show that some parameter x of a procedure p decreases in
recursive calls if f is used in the argument of a recursive call; e. g., p(f(x)). For
the sake of readability we consider only unary functions here, which can be easily
generalized to arbitrary arity [1].

Definition 2. A function f : τ → τ ′ with context requirement cf is (π, �)-
argument-bounded for π ∈ Pos(τ) and � ∈ Pos(τ ′) iff (i) τ is a base type
with τ |π = τ ′|� and (ii) #(q, π) ≥ #(evalP (f(q)), �) for all q ∈ V(P ) with
evalP (cf [q]) = true.6

Example 3. Procedure last (Fig. 1) is (1, ε)-argument-bounded: The size of the
last element of list k is bounded by the sum of the sizes of k’s elements.

Procedure filter (Fig. 2) is (ε, ε)-argument-bounded wrt. k, because the list of
all elements x in k that satisfy p(x) is not longer than k. ♦
Selectors are argument-bounded, as they return a component of their input:

Theorem 1. Let sel j : τ → τj be a selector as in (1), τ = str [@A1, . . . , @Ak],
π ∈ Pos(τ), and � ∈ Pos(τj). If τ |π = τj |�, then sel j is (π, �)-argument-bounded.

Example 4. pred(. . .) : N → N is (ε, ε)-argument-bounded. hd : list [@A] → @A
is (1, ε)-argument-bounded: The size of the first element of a non-empty list k is
bounded by the sum of the sizes of all elements in k. tl : list [@A] → list [@A] is
(ε, ε)-argument-bounded, as tl(k) contains fewer list-constructors “::” than k. tl
is also (1,1)-argument-bounded, because tl(k) contains a subset of the elements
in k. Finally, selector args : term → list [term] is (ε,1)-argument-bounded. ♦

2.4 Difference Procedures

Using argument-bounded functions, we can establish inequalities like #(k, ε) ≥
#(tl(k), ε) to ensure that the second argument of procedure every does not in-
crease in the recursive call (cf. Fig. 1). However, this inequality needs to be
strict to guarantee termination of every . Strictness of such inequalities is ex-
pressed by so-called difference procedures ; e. g., Δε,ε

tl : list [@A] → bool returns
true iff #(k, ε) > #(tl(k), ε).
6 “q ∈ V(P )” implicitly means that τ is instantiated to a ground base type.
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(a) procedure Δε,ε
pred(...)(x : N) : bool <= assume ?succ(x); true

procedure Δε,ε
tl (k : list [@A]) : bool <= assume ?::(k); true

procedure Δε,1
args(t : term) : bool <= assume ?apply(t); true

(b) procedure Δ1,ε
hd (k : list [@A]) : bool <= assume ?::(k); ?::(tl(k))

procedure Δ1,1
tl (k : list [@A]) : bool <= assume ?::(k); true

Fig. 3. Some automatically synthesized difference procedures for selectors

Definition 3. For a (π, �)-argument-bounded function f : τ → τ ′ with context
requirement cf , Δπ,�

f : τ → bool is a (π, �)-difference function for f iff (i) Δπ,�
f

also has context requirement cf and (ii) for all q ∈ V(P ) with evalP (cf [q]) = true

evalP
(
Δπ,�

f (q)
)

= true ⇐⇒ #(q, π) > #(evalP (f(q)), �) .

(ε, �)-argument-bounded selectors have quite simple difference procedures, be-
cause the selector cancels the leading data constructor, cf. Fig. 3(a):

Theorem 2. Let sel j : τ → τj be an (ε, �)-argument-bounded selector for some �.
Then a (ε, �)-difference procedure for selj is given by

procedure Δε,�
selj

(x : τ) : bool <= assume ?cons(x); true.

The synthesis of (π, �)-difference procedures for selectors with π �= ε is a bit
more involved and described in [1,2]. Figure 3(b) illustrates the idea by examples.
Δ1,ε

hd returns true iff list k contains at least two elements: Since the size of each
element in k is ≥ 1, the size of the first element hd(k) is smaller than the sum of
the sizes of all elements in k. The uniform synthesis of such procedures uses the
fact that #(hd(k) :: tl(k),1) > #(hd(k), ε) iff #(tl(k),1) > 0, i. e., iff ?::(tl(k)).

3 Estimation Proofs

So-called estimation proofs can be used to verify that a procedure computes an
argument-bounded function. We obtain estimation proofs from the estimation
calculus, which is also used to synthesize difference procedures for argument-
bounded procedures and to generate termination hypotheses for recursively de-
fined procedures.

3.1 The Estimation Calculus

The estimation calculus is used to prove inequalities #(t1, π1) ≥ #(t2, π2). The
inequalities to be shown are given by some set E. When proving an inequality, a
clause Δ (called a difference equivalent of E) is synthesized such that the proved
inequality is strict iff one of the literals in Δ holds.

Definition 4. For a terminating program P , let Γπ,� be a family of (π, �)-
argument-bounded function symbols in P . Given a call context C∈CL(Σ(P ),V),
the estimation calculus is defined by:
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Language: Estimation tuples of the form 〈Δ, E〉, where Δ ∈ CL(Σ(P ),V) and
E ⊂fin E(Σ(P ),V) := {(t1, π1)  (t2, π2) | ti ∈ T (Σ(P ),V)τi for some
base types τ1, τ2, πi ∈ Pos(τi) for i = 1, 2 and τ1|π1 = τ2|π2}.

Inference Rules: The following estimation rules are given for each type con-
structor str and data constructors cons, rcons, ircons, ircons1, and ircons2
of str, where rcons is reflexive and all irconsi are irreflexive: 7

Identity

(1)
〈Δ, E � {(t, π)  (t, π)}〉

〈Δ, E〉
Equivalence

(2)
〈Δ, E � {(t1, ε)  (t2, ε)}〉

〈Δ, E〉 if C � ?ircons1(t1) and C � ?ircons2(t2)

Strong Estimation

(3)
〈Δ, E � {(t1, ε)  (t2, ε)}〉

〈Δ ∪ {true}, E〉 if C � ?rcons(t1) and C � ?ircons(t2)

Strong Embedding

(4)
〈Δ, E � {(t1, ε)  (t2, π2)}〉

〈Δ ∪ {true}, E ∪ {(SELj(t1), π1)  (t2, π2)}〉
if C � ?rcons(t1) and

(j, π1) ∈ Posstr (rcons)

Argument Estimation

(5)
〈Δ, E � {(t′, π′)  (f(t, t1, . . . , tn), �)}〉

〈Δ ∪ {Δπ,�
f (t, t1, . . . , tn)}, E ∪ {(t′, π′)  (t, π)}〉 if f ∈ Γπ,�

Weak Embedding

(6)
〈Δ, E � {(t1, ε)  (t2, ε)}〉

〈Δ, E ∪ { (SELj(t1), π)  (SELj(t2), π) | (j, π) ∈ Posstr (rcons)}〉
if C � ?rcons(t1) and C � ?rcons(t2)

Constructor Wrapping

(7)
〈Δ, E � {(t, �)  (cons(t1, . . . , tn), hπ′)}〉

〈Δ, E ∪ {(t, �)  (tj , ππ′)}〉 if Pos@Ah(cons) = {(j, π)}

Minimum

(8)
〈Δ, E � {(t1, ε)  (t2, ε)}〉

〈Δ ∪ {?rcons(t1) | rcons ∈ R} , E〉
if C � ?ircons(t2) and R is the set of all reflexive constructors of str

Deduction: We write 〈Δ0, E0〉�Γ,C 〈Δ1, E1〉 iff 〈Δ1, E1〉 results from 〈Δ0, E0〉
by applying some estimation rule. �∗

Γ,C denotes the reflexive and transi-
tive closure of �Γ,C . 〈Δ0, E0〉 �∗

Γ,C 〈Δn, En〉 is called a deduction of
〈Δn, En〉 from 〈Δ0, E0〉. We use the notation !Γ,C 〈Δ, (t1, π1)  (t2, π2)〉
iff 〈∅, {(t1, π1)  (t2, π2)}〉 �∗

Γ,C 〈Δ, ∅〉. (t1, π1) �Γ,C (t2, π2) denotes the
existence of a difference equivalent Δ with !Γ,C 〈Δ, (t1, π1)  (t2, π2)〉.

7 The rules are applied from top to bottom. We write C � ?cons(t) iff (i) t = cons(. . .)
or (ii) ?cons(t) ∈ C or (iii) ¬ ?cons ′(t) ∈ C for all str -constructors cons ′ �= cons .
SELj(t) stands for tj if t = cons(. . . , tj , . . .), and abbreviates sel j(t) otherwise.
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Definition 4 extends the calculus from [15,18] by type positions π and rule (7)
for data constructors such as mkpair (Fig. 2) that just wrap the item of interest;
e. g., to show #(t, �) ≥ #(mkpair (t1, t2),1) it suffices to show #(t, �) ≥ #(t1, ε).

Example 5. We get the following estimation proof for call context C := {k =/ ø}:
〈∅, {(k, ε)  (filter(tl(k), g), ε)}〉

�Γ,C 〈{Δε,ε
filter (tl(k), g)}, {(k, ε)  (tl(k), ε)}〉 by (5)

�Γ,C 〈{true, Δε,ε
filter (tl(k), g)}, {(tl(k), ε)  (tl(k), ε)}〉 by (4)

�Γ,C 〈{true, Δε,ε
filter (tl(k), g)}, ∅〉 by (1) ♦

In the following, we use expressions of the form (i) (t1, π1) �# (t2, π2) and
(ii) (t1, π1) ># (t2, π2) for terms ti ∈ T (Σ(P ),V)τi and positions πi ∈ Pos(τi),
i = 1, 2, with τ1|π1 = τ2|π2 . Such expressions are true iff (i) #(evalP (t1), π1) ≥
#(evalP (t2), π2) or (ii) #(evalP (t1), π1) > #(evalP (t2), π2), respectively.

Theorem 3. The estimation calculus is sound: If !Γ,C 〈Δ, (t1, π1)  (t2, π2)〉,
then the following formulas are true (where x1, . . . , xn are all variables in C, t1,
and t2 such that xi ∈ Vτi for all i ∈ {1, . . . , n}):
(1) ∀x1 : τ1, . . . , xn : τn.

∧
C → (t1, π1) �# (t2, π2)

(2) ∀x1 : τ1, . . . , xn : τn.
∧

C → [∨Δ↔ (t1, π1) ># (t2, π2)
]

Theorem 4. The set {(t1, π1)  (t2, π2) ∈ E(Σ(P ),V) | (t1, π1) �Γ,C (t2, π2)}
of provable size estimation problems is decidable.

Thus whenever a proof procedure for the estimation calculus finds a proof of
(t1, π1) �Γ,C (t2, π2), we know that t1 is at least as big as t2 by Theorem 3. If
no estimation proof exists, the inequality might still hold, because the estima-
tion calculus is incomplete. However, it is powerful enough to solve termination
problems that are relevant in practice, see Sect. 5.

3.2 Proving Argument-Boundedness of Procedures

Using the estimation calculus, we can prove argument-boundedness of a pro-
cedure f by analyzing the result terms t1, . . . , tn of f (these are maximal if -
free terms outside an if -condition in the body Bf ). The call context Ci ∈
CL(Σ(P ),V) of a result term ti consists of the conditions in Bf that lead to ti.

Theorem 5. Let procedure f(x : τ) : τ ′ <= assume cf ; Bf be a terminating
procedure, π ∈ Pos(τ), and � ∈ Pos(τ ′) such that (i) τ is a base type with
τ |π = τ ′|� and (ii) !f

Γ,Ci
〈Δi, (x, π)  (ti, �)〉 for each result term ti of f under

call context Ci and some Δi, where !f
Γ,Ci

differs from !Γ,Ci in that the Argument
Estimation rule (5) may also be used for each recursive call f(t′) in ti.

Then f is (π, �)-argument-bounded and procedure Δπ,�
f (x : τ) : bool <= BΔf

is a (π, �)-difference procedure for f , where BΔf
is derived from Bf by replacing

each result term ti with the disjunction
∨

Δi (represented by if-conditionals).
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procedure Δ1,ε
last (k : list [@A]) : bool <=

assume k =/ ø; if tl(k) = ø then false else true end

procedure Δε,ε
filter (k : list [@A], p : @A → bool) : bool <=

if k = ø then false else if p(hd(k)) then Δε,ε
filter (tl(k), p) else true end end

Fig. 4. Difference procedures for argument-bounded procedures

Example 6. Procedure last shown in Fig. 1(a) is (1, ε)-argument-bounded, be-
cause !lastΓ,C1

〈Δ1, (k,1)  (hd(k), ε)〉 for C1 := {k =/ ø, tl(k) = ø}, Δ1 :=
{
Δ1,ε

hd (k)
}
,

and !lastΓ,C2
〈Δ2, (k,1)  (last(tl(k)), ε)〉 for C2 := {k =/ ø, tl(k) =/ ø}, Δ2 :={

Δ1,1
tl (k), Δ1,ε

last (tl(k))
}
.
∨

Δ1 simplifies to false and
∨

Δ2 simplifies to true
using the definition of the difference procedures (Fig. 3) and call contexts C1
and C2. Difference procedure Δ1,ε

last is shown in Fig. 4: The last element of list k
is smaller than the sum of the sizes of all list elements if the length of k is ≥ 2.♦
Example 7. For procedure filter (Fig. 2), the difference procedure Δε,ε

filter wrt.
parameter k (Fig. 4) reflects the intuition that the returned sublist of k is shorter
than k iff at least one element x of k does not satisfy p(x). ♦

4 Automated Termination Proofs

We implicitly assume procedure bodies to be in η-long form to clearly exhibit in-
direct function calls; e. g., every(p, tl(k)) abbreviates every(λx : @A. p(x), tl(k))
in Fig. 1, because p =η λx : @A. p(x). Subterm p(x) is an indirect function call,
whereas p(hd(k)) and every(λx : @A. p(x), tl(k)) are direct function calls:

Definition 5. A direct call of a function f in a term t is a subterm f(t1, . . . , tn)
of t that occurs outside a λ-expression. A subterm f(t1, . . . , tn) of t inside a λ-
expression is an indirect call of f .

Definition 6. For a procedure or λ-expression f with body Bf and parameters
x1, . . . , xn, a procedure or λ-expression g, and q1, . . . , qn, q′1, . . . , q

′
m ∈ V(P ),

we write f(q1, . . . , qn) � g(q′1, . . . , q
′
m) iff Bf contains a subterm h(t′1, . . . , t

′
m)

under some call context C such that for σ := {x1/q1, . . . , xn/qn}, σ(h) =η g,
evalP (σ(c)) = true for all c ∈ C, and q′i = evalP (σ(t′i)) for all i = 1, . . . , m.

Intuitively, relation � means “requires evaluation of”. For instance, we have
every(groundterm, var (q) :: ø) � groundterm(var (q)).

Now we are ready to state a termination criterion for procedures without
second-order recursion. The formulas (ii) of Theorem 6 are so-called termination
hypotheses ; if these formulas are true, the procedure terminates.

Theorem 6. A procedure procedure f(x : τ) : τ ′ <= assume cf ; Bf terminates
if all procedures g �= f occurring in Bf and cf terminate and if there is some
π ∈ Pos(τ) such that each recursive call f(t) in Bf under some call context C ∈
CL(Σ(P ),V) is a direct procedure call such that (i) !Γ,C 〈Δ, (x, π)  (t, π)〉 for
some Δ, and (ii) ∀x : τ.

∧
C → ∨Δ is true.
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Example 8. Procedure qsort (Fig. 2) terminates. For π := ε, C := {k =/ ø}, and
any g, (k, ε) �Γ,C (filter(tl(k), g), ε) with

∨
Δ = true, cf. Example 5. ♦

Example 9. Procedure termlist .size terminates according to Theorem 6:

procedure termlist .size(k : list [term]) : N <=
if k = ø then 0

else if ?var (hd(k))
then 1 + termlist .size(tl(k))
else 1 + termlist .size(tl(k)) + termlist .size(args(hd(k)))

end end

For position π := 1 it is easy to show (k,1) �Γ,C1 (tl(k),1) and (k,1) �Γ,C2

(args(hd(k)),1) for the respective call contexts C1 and C2. The resulting termi-
nation hypotheses ∀k : list [term]. k =/ ø∧ . . .→ Δ1,1

tl (k) and ∀k : list [term]. k =/ ø∧
¬ ?var (hd(k))→ (Δ1,ε

hd (k) ∨Δε,1
args(hd(k))

)
are obviously true, cf. Fig. 3. ♦

Example 9 cannot be solved by the original method in [15,18], because there a
list is always measured by its length (the special case π = ε of our theorem).

4.1 Call-Bounded Procedures

Call-bounded procedures f are well-behaved in the sense that they call their
functional parameter only with arguments of a bounded size: For each sequence
f(g, q) �∗ g(q′) of procedure calls, the size of q is a bound of the size of q′.
We consider only procedures with two parameters in the following definition for
readability reasons; the straightforward generalization is given in [1].

Definition 7. A procedure procedure f(F : τ ′ → τ ′′, x : τ) : τ ′′′ <= assume cf ;
Bf is (π, �)-call-bounded for π ∈ Pos(τ) and � ∈ Pos(τ ′) iff τ is a base type with
τ |π = τ ′|� such that #(q, π) ≥ #(q′, �) for all g ∈ V(P )τ ′→τ ′′ and q ∈ V(P )τ

with f(g, q) � h1(. . .) � . . . � hn(. . .) � g(q′), where hi �= g for all i = 1, . . . , n.

Example 10. every is (1, ε)-call-bounded, because parameter p will only be called
with an argument x with #(k,1) ≥ #(x, ε). More formally, #(q,1) ≥ #(q′, ε)
whenever every(g, q) � every(g, q1) � . . . � every(g, qn) � g(q′) for some n ≥ 0.
For the same reason, filter is also (1, ε)-call-bounded. ♦
The next theorem allows us to easily identify many call-bounded procedures.

Theorem 7. A procedure procedure f(F : τ ′ → τ ′′, x : τ) : τ ′′′ <= assume cf ;
Bf is (π, �)-call-bounded for π ∈ Pos(τ) and � ∈ Pos(τ ′) if τ is a base type with
τ |π = τ ′|� and F occurs in Bf only

(1) in direct function calls F (t) under some call context C such that
!Γ,C 〈Δ, (x, π)  (t, �)〉 for some Δ, or

(2) in direct recursive calls f(F, t′) under some call context C′ such that
!Γ,C′ 〈Δ′, (x, π)  (t′, π)〉 for some Δ′.

Example 11. Procedure every (Fig. 1) is easily proved (1, ε)-call-bounded:

(1) !Γ,C 〈{Δ1,ε
hd (k)}, (k,1)  (hd(k), ε)〉, where C = {k =/ ø}

(2) !Γ,C′ 〈{Δ1,1
tl (k)}, (k,1)  (tl(k),1)〉, where C′ = {k =/ ø, p(hd(k))} ♦
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Generalized Detection of Call-Bounded Procedures. Theorem 7 handles
the frequently occurring special case of Definition 7 where h1 = . . . = hn = f ,
i. e., the functional parameter F is either called directly or passed to the recursive
call f(F, t′) without modification. The theorem can be generalized (i) to allow f
to pass F to another call-bounded procedure hi �= f , (ii) to allow modification
of F in recursive calls by encapsulating it in a λ-expression λx′. . . . F (t′′) . . .,
and (iii) to allow F to occur in indirect recursive calls as well, see [1].

4.2 Proving Termination of Procedures

The concept of call-bounded procedures allows us to prove termination of pro-
cedures that pass themselves to a call-bounded second-order procedure: In the
following theorem, the arguments t of direct recursive calls need to decrease,
cf. requirements (1) and (2). Indirect recursive calls need to occur via a call-
bounded procedure g, cf. (3). This procedure g must be called with a bounding
argument t′ that is strictly smaller than the argument x of f , cf. (4) and (5).

Theorem 8. A procedure f(x : τ) : τ ′ <= assume cf ; Bf terminates if all pro-
cedures g �= f occurring in Bf and cf terminate and if there is some π ∈ Pos(τ)
such that for each direct recursive call f(t) in Bf under some call context C

(1) !Γ,C 〈Δ, (x, π)  (t, π)〉 for some Δ and
(2) ∀x : τ.

∧
C → ∨Δ is true

and for each indirect recursive call g(f, t′) in Bf under some call context C′

(3) procedure g is (π′, π)-call-bounded for some π′,
(4) !Γ,C′ 〈Δ′, (x, π)  (t′, π′)〉 for some Δ′, and
(5) ∀x : τ.

∧
C′ → ∨Δ′ is true.

Example 12. Procedure groundterm of Fig. 1 terminates by Theorem 8:

(3) every is (1, ε)-call-bounded, see Example 11 (i. e., π := ε)
(4) !Γ,C′ 〈{Δε,1

args(t)}, (t, ε)  (args(t),1)〉, where C′ := {¬?var (t)}
(5) ∀t : term. ¬?var (t)→ Δε,1

args(t) is trivially true, see Fig. 3 ♦
Similarly to [15,18], Theorem 8 can be generalized in a straightforward way from
a single parameter and type position to a set of parameter indices and positions
(e. g., for a lexicographic combination of size orders to prove termination of
procedures like the Ackermann function). Furthermore, indirect recursive calls
f(t′′) may be (deeply) nested within λ-expressions; e. g., in g(λy. . . . f(t′′) . . . , t′),
see [1] for details and examples.

Induction Axioms. From a terminating procedure one can uniformly syn-
thesize a sound induction axiom. Our method maintains the advantage of the
original approach [15,18] that the induction axiom(s) can be optimized by ana-
lyzing the termination proof: Some variables can be universally quantified in the
induction hypotheses (as in [9]) and irrelevant premises are removed [2].
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5 Related Work and Experimental Results

Our method is intended to be used in inductive theorem provers: In this setting
it is important that many procedures can be proved terminating without user
interaction so that the user can quickly move on to the actual verification task.

In Isabelle 2009 [8,10,14] a termination proof of a procedure with second-order
recursion requires the user to state and prove a congruence theorem about the
second-order procedure involved. For instance, Isabelle can only prove termi-
nation of groundterm when the user has proved and explicitly tagged k = k′ ∧(∀x : @A. x ∈ k → p(x) = p′(x)

)→ every(p, k) = every(p′, k′) as a congruence rule
about procedure every . Our approach with call-bounded procedures can be con-
sidered as automatically discovering and proving congruence theorems such as
k = k′ ∧ (∀x : @A. #(x, ε) < #(k,1)→ p(x) = p′(x)

)→ every(p, k) = every(p′, k′).
In PVS [11] the user needs to supply a measure function that computes the

size of a data object, so there is no automation as in our approach.
Since Coq does not offer automated termination analysis either, Barthe et

al. [4] suggest an approach that ensures termination by typing. Their system
uses sized types, i. e., types that contain information about the size of values.
For instance, argument-boundedness of procedure split (cf. Fig. 2) is expressed
by assigning type list 	[@A]→ pair [list 	[@A], list	[@A]] to split , where list	[@A]
represents lists of length ≤ �. This analysis is less detailed than ours, because
it does not detect the cases when the resulting lists are strictly smaller than
the input list. Thus the termination proof of Mergesort fails in this approach,
whereas our method succeeds using difference procedures that identify these
cases [1]. In the terminology of sized types, call-boundedness of every could be
expressed by assigning type (@A	 → bool ) × list [@A	] → bool to every , thus
constraining the items of the list to be of size ≤ �. The approach by Barthe et
al. has not been integrated into Coq.

ACL2 [5,9] offers heuristics for automated termination proofs, but procedures
cannot be defined by second-order recursion.

There are also several stand-alone approaches for termination analysis, which
are useful if only termination of a procedure is to be proved (i. e., if there is no
need to synthesize induction axioms for subsequent proofs about the procedure).
As an example, we mention the Haskell termination analyzer by Giesl et al. [6].

Experimental Results. Our approach has been integrated into the verifier
�eriFun, which allows us to compare its performancewith Isabelle.8 Table 1 shows
the results of our experiments: We evaluated our approach on 16 representative
procedures with second-order recursion, including all examples from [8,10,11,14].
These procedures are based on 8 common second-order procedures without
second-order recursion (e. g., map, foldl , and every). The set of first-order exam-
ples comprises auxiliary procedures for the examples of second-order recursion as

8 See http://www.informatik.tu-darmstadt.de/pm/~aderhold for an experimental
version of �eriFun and a list of the example procedures.

http://www.informatik.tu-darmstadt.de/pm/~aderhold
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Table 1. Termination proving capabilities of inductive provers

number and category of examples Isabelle �eriFun
16 procedures with second-order recursion 0 15
8 second-order procedures without second-order recursion 8 8

40 first-order procedures without second-order recursion 24 38
64 procedures in total 32 61

well as the examples from [15,18], which we included to make sure that our ap-
proach properly subsumes the original approach. Indeed, our approach only fails
on procedures that the original approach already fails on (e. g., because a param-
eter is increased in recursive calls).

Isabelle fails on the examples of second-order recursion, because we only sup-
plied the raw definition of the procedures. When the user states and proves the
required congruence theorems, 15 procedures can be shown terminating as well.
The remaining procedure is an artificial example (computing the constant zero
function) by Krauss [8] that our approach also fails on, because we would need
information about the procedure’s semantics before proving its termination.

We did not base our method on the sized types approach [4] (although this
would be feasible in principle), because the latter cannot solve many naturally
occurring examples; e. g., it succeeds on only 21 of 40 first-order procedures in
the example set and fails on several common sorting algorithms from [15].

In summary, the experimental results show that the extended estimation cal-
culus (though incomplete) is powerful enough to prove termination of the every-
day examples of second-order recursion that frequently occur in practice.

6 Conclusion

We extended the concept of argument-bounded functions [15,18] in two respects:
Firstly, we parameterized the size measure to also consider components of types.
This facilitates automated termination proofs (e. g., for the Mergesort imple-
mentation in Fig. 2) that were impossible with the original method. Secondly,
we identified the new notion of call-boundedness to automate termination proofs
for procedures with second-order recursion, which the original method could not
cope with at all.

Our method has been integrated into �eriFun [17]. It automatically solves the
typical examples of second-order recursion considered in the literature [8,10,11,14]
and in this paper within few seconds, whereas other state-of-the-art theorem
provers require guidance by the user.

Information gathered from termination analysis is among the most impor-
tant keys for guiding highly automated verifiers such as ACL2 and �eriFun
when selecting useful induction axioms. In all examples of second-order recur-
sion, �eriFun synthesizes optimal induction axioms using the results of our
method for termination analysis. Although the examples are not overly difficult,
such procedures using second-order recursion via map, every , filter , foldl , foldr ,
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and similar procedures on other data types (e. g., trees) are widely used in func-
tional programming. Hence our method significantly improves the state of the
art in automated theorem proving by reducing the need for user interaction.

Acknowledgment. I am grateful to Jürgen Giesl, Alexander Krauss, Simon
Siegler, and Christoph Walther for helpful discussions, to Nathan Wasser for
implementing the approach, and to the anonymous referees for valuable feedback.
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Abstract. Ranking function synthesis is a key aspect to the success of
modern termination provers for imperative programs. While it is well-
known how to generate linear ranking functions for relations over (math-
ematical) integers or rationals, efficient synthesis of ranking functions for
machine-level integers (bit-vectors) is an open problem. This is partic-
ularly relevant for the verification of low-level code. We propose several
novel algorithms to generate ranking functions for relations over ma-
chine integers: a complete method based on a reduction to Presburger
arithmetic, and a template-matching approach for predefined classes of
ranking functions based on reduction to SAT- and QBF-solving. The util-
ity of our algorithms is demonstrated on examples drawn from Windows
device drivers.

1 Introduction

Modern termination provers for imperative programs compose termination ar-
guments by repeatedly invoking ranking function synthesis tools. Such synthe-
sis tools are available for numerous domains, including linear and non-linear
systems, and data structures. Thus, complex termination arguments can be con-
structed that reason simultaneously about the heap as well as linear and non-
linear arithmetic.

Efficient synthesis of ranking functions for machine-level bit-vectors, however,
has remained an open problem. Today, the most common approach to create
ranking functions over machine integers is to use tools actually designed for ra-
tional arithmetic. Because such tools do not faithfully model all properties of
machine integers, it can happen that invalid ranking functions are generated
(both for terminating and for non-terminating programs), or that existing rank-
ing functions are not found. Both phenomena can lead to incompleteness of
termination provers: verification of actually terminating programs might fail.
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This paper considers the termination problem as well as the synthesis of rank-
ing functions for programs written in languages like ANSI-C, C++, or Java. Such
languages typically provide bit-vector arithmetic over 16, 32, or 64 bit words,
and usually support both unsigned and signed datatypes (represented using the
2’s complement). We present two new algorithms to generate ranking functions
for bit-vectors: (i) a complete method based on a reduction to Presburger arith-
metic, and (ii) a template-matching approach for predefined classes of ranking
functions, including an extremely efficient SAT-based method. We quantify the
performance of these new algorithms using examples drawn from Windows device
drivers. Our algorithms are compared to the linear ranking function synthesis
engine Rankfinder, which uses rational arithmetic.

Programs using only machine integers can also be proved terminating without
ranking functions. Therefore, we also compare the performance of our methods
with one approach not based on ranking functions, the rewriting of termination
properties to safety properties according to Biere et al. [5].

Our results indicate that, on practical examples, the presented new methods
clearly surpass the known methods in terms of precision and performance.

This paper is organised as follows: in Sect. 2, we provide motivating exam-
ples, briefly explain the architecture of termination provers and define the set of
considered programs. In Sect. 3, a known, linear programming based approach
for ranking function synthesis is analysed. Subsequently, a new extension to
this method is presented that handles bit-vector programs soundly. Sect. 3.3
presents two approaches based on template-matching for predefined classes of
ranking functions. In Sect. 4, the results of an experimental evaluation of all new
methods are given and compared to results obtained through known approaches.

2 Termination of Bit-Vector Programs

We start by discussing two examples extracted from Windows device drivers that
illustrate the difficulty of termination checking for low-level code. Both examples
will be used in later sections to illustrate our methods.

The first example (Fig. 1) iterates for as many times as there are bits set in
i. Termination of the loop can be proven by finding a ranking function, which
is a function into a well-founded domain that monotonically decreases in each
loop iteration. To find a ranking function for this example, it is necessary to take
the semantics of the bit-wise AND operator & into account, which is not easily
possible in arithmetic-based ranking function synthesis tools (see Sect. 3.1). A
possible ranking function is the linear function m(i) = i, because the result of
i & (i-1) is always in the range [0, i− 1]: the value of m(i) decreases with
every iteration, but it can not decrease indefinitely as it is bounded from below.

The second program (Fig. 2) is potentially non-terminating, because the vari-
able nLoop might be initialised with a value that is not a multiple of 4, so
that the loop condition is never falsified. For a correct analysis, it is necessary
to know that integer underflows do not change the remainder modulo 4. Ig-
noring overflows, but given the information that the variable nLoop is in the
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unsigned char i;

while (i!=0)

i = i & (i-1);

Fig. 1. Code fragment of Windows driver kernel/agplib/init.c (#40 in our benchmarks)

unsigned long ulByteCount ;

for (int nLoop = ulByteCount ;

nLoop; nLoop -= 4) { [...] }

Fig. 2. Code fragment of Windows device driver audio/gfxswap.xp/filter.cpp (#14 in
our benchmarks)

range [−231, 231 − 1] and is decremented in every iteration, a ranking function
synthesis tool might incorrectly produce the ranking function nLoop.

2.1 Syntax and Semantics of Bit-Vector Programs

In order to simplify presentation, we abstract from the concrete language and
datatypes and introduce a simpler category of bit-vector programs. Real-world
programs can naturally be reduced to our language, which is in practice done
by the Model Checker (possibly also taking care of data abstractions, etc).

We assume that bit-vector programs consist of only a single loop (endlessly
repeating its body), possibly preceded by a sequence of statements (the stem).1

Apart from this, our program syntax permits guards (assume (t)), sequential
composition (β; γ), choice (β � γ), and assignments (x := t). Programs operate
on global variables x ∈ X , each of which ranges over a set �α(x) of bit-vectors of
width α(x) > 0. The syntactic categories of programs, statements, and expres-
sions are defined by the following grammar:

〈Prog〉 ::= 〈Stmt〉 repeat { 〈Stmt〉 }
〈Stmt〉 ::= skip || assume (〈Expr〉) || 〈Stmt〉; 〈Stmt〉 || 〈Stmt〉 � 〈Stmt〉 || x := 〈Expr〉
〈Expr〉 ::= 0n || 1n || · · · || ∗n || x || castn(〈Expr〉) || ¬〈Expr〉 || 〈Expr〉 ◦ 〈Expr〉

Because the width of variables is fixed and does not change during program
execution, it is not necessary to introduce syntax for variable declarations.
Expressions 0n, 1n, . . . are bit-vector literals of width n, the expression ∗n non-
deterministically returns an arbitrary bit-vector of width n, and the opera-
tor castn changes the width of a bit-vector (cutting off the highest-valued bits,
or filling up with zeros as highest-valued bits). The semantics of bitwise nega-
tion ¬, and of the binary operators ◦ ∈ {+,×,÷, =, <s, <u, & , | ,$,%} is as

1 This is not a restriction, as will become clear in the next section.
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usual.2 When evaluating the arithmetic operators +,×,÷,$,%, both operands
are interpreted as unsigned integers. In the case of the strict ordering relation <s

(resp., <u) the operands are interpreted as signed integers in 2’s complement
format (resp., as unsigned integers).

We write t : n to denote that the expression t is correctly typed and denotes a
bit-vector of width n. In the rest of the paper, we always assume that programs
are type-correct.

The state space of programs defined over a (finite) set X of bit-vector variables
with widths α is denoted by S, and consists of all mappings from X to bit-
vectors of the correct width: S = {f ∈ X → �+ | f(x) ∈ �α(x) for all x ∈ X}.
The transition relation defined by a statement β is denoted by Rβ ⊆ S × S.
In particular, we define the transition relation for sequences as Rβ1;β2(s, s′) ≡
∃s′′ . Rβ1(s, s′′) ∧Rβ2(s′′, s′).

Example. We consider the program given in Fig. 2. Using unsigned arithmetic
(and −4 ≡ 232 − 4 mod 232), the bit-vector program for a single loop iteration is

assume (nLoop �= 0); nLoop := nLoop + (232 − 4) (1)

Complexity. We say that a bit-vector program β repeat { γ } terminates if there is
no infinite sequence of states a0, a1, a2, . . . ∈ S with Rβ(a0, a1) and Rγ(ai, ai+1)
for all i > 0. The termination problem for bit-vector programs is decidable:

Lemma 1. Deciding termination of bit-vector programs is PSPACE-complete
in the program length3 plus

∑
x∈X α(x), i.e., the size of the program’s available

memory.

Practically, the most successful termination provers are based on incomplete
methods that try to avoid this high complexity, by such means as the generation
of specific kinds of ranking functions (like functions that are linear in program
variables). The general strategy of such provers is described in the next section.

2.2 Binary Reachability Analysis and Ranking Functions

Definition 1 (Ranking function). Suppose (D,≺) is a well-founded, strictly
partially ordered set, and R ⊆ U × U is a relation over a non-empty set U . A
ranking function for R is a function m : U → D such that:

for all a, b ∈ U : R(a, b) implies m(b) ≺ m(a).

Of particular interest in the context of this paper is the well-founded domain of
natural numbers (�, <). In general, we can directly conclude:

Lemma 2. If a (global) ranking function exists for the transition relation R of
a program β, then β terminates.
2 Adding further operations, e.g., bit-vector concatenation, is straightforward.
3 The number of characters in the program text. We assume that a unary representa-

tion is used for the index n of the operators 0n, 1n, . . . , ∗n, and castn.
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The problem of deciding termination of a program may thus be stated as a
problem of ranking function synthesis. By the disjunctive well-foundedness the-
orem [15], this is simplified to the problem of finding a ranking function for every
path through the program. The ranking functions found for all n paths are used to
construct a global, disjunctive ranking relation M(a, b) =

∨n
i=1 mi(b) ≺ mi(a).

A technique that puts this theorem to use is Binary Reachability Analy-
sis [8,9]. In this approach, termination of a program is first expressed as a safety
property [5], initially assuming that the program does not terminate. Conse-
quently, a (software) Model Checker is applied to obtain a counterexample to
termination, i.e., an example of non-termination. This counterexample contains
a stem that describes how to reach a loop in the program, and a cycle that
follows a path π through the loop, finally returning to the entry location of the
loop. What follows is an analysis solely concerned with the stem and π, which
is why we may safely restrict ourselves to single-loop programs here.

The next step in the procedure is to synthesise a ranking function for π, which
can be seen as a new, smaller, and loop-free program that does not contain
choice operators. Semantically, π is interpreted as a relation Rπ(x, x′) between
program states x, x′. If a ranking function mπ is found for this relation, the
original safety property is weakened to exclude all paths of the program that
satisfy the ranking relation mπ(x′) ≺ mπ(x), and the process starts over. If no
further non-terminating paths are found, termination of the program is proven.

3 Ranking Functions for Bit-Vector Programs

We introduce new methods based on integer linear programming, SAT-solving,
and QBF-solving to synthesise ranking functions for paths in a bit-vector pro-
gram. Before that, we give a short overview of the derivation of ranking functions
using linear programming, which is the starting point for our methods.

3.1 Synthesis of Ranking Functions by Linear Programming

The approach to generate ranking functions that is used in binary reachabil-
ity engines like Terminator [9] and ARMC [16] was developed by Podelski et
al. [14]. In this setting, ranking functions are generated for transition rela-
tions R ⊆ �n ×�n that are described by systems of linear inequalities:

R(x, x′) ≡ Ax + A′x′ ≤ b (A, A′ ∈ �k×n, b ∈ �k)

where x, x′ ∈ �n range over vectors of rationals. Bit-vector relations have to
be encoded into such systems, which usually involves an over-approximation
of program behaviour. The derived ranking functions are linear and have the
codomain D = {z ∈ � | z ≥ 0}, which is ordered by y ≺ z ≡ y + δ ≤ z for some
rational δ > 0. Ranking functions m : �n → D are represented as m(x) = rx + c,
with r ∈ �n a row vector and c ∈ �. Such a function m is a ranking function
with the domain (D,≺) if and only if the following condition holds:

for all x, x′ ∈ �n : R(x, x′) implies rx + c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx (2)
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Coefficients r for which this implication is satisfied can be constructed using
Farkas’ lemma, of which the ‘affine’ form given in [19] is appropriate. Using this
lemma, a necessary and sufficient criterion for the existence of linear ranking
functions can be formulated:

Theorem 1 (Existence of linear ranking functions [14]). Suppose that
R(x, x′) ≡ Ax + A′x′ ≤ b is a satisfiable transition relation. R has a linear rank-
ing function m(x) = rx + c iff there are non-negative vectors λ1, λ2 ∈ �k s.t.:

λ1A
′ = 0, (λ1 − λ2)A = 0, λ2(A + A′) = 0, λ2b < 0.

In this case, m can be chosen as λ2A
′x + (λ1 − λ2)b.

This criterion for the existence of linear ranking functions is necessary and suffi-
cient for linear inequalities on the rationals, but only sufficient over the integers
or bit-vectors: there are relations R(x, x′) ≡ Ax + A′x′ ≤ b for which linear rank-
ing functions exist, but the criterion fails, e.g.:

R(x, x′) ≡ x ∈ [0, 4] ∧ x′ ≥ 0.2x + 0.9 ∧ x′ ≤ 0.2x + 1.1 .

Restricting x and x′ to the integers, this is equivalent to x = 0 ∧ x′ = 1 and can
be ranked by m(x) = −x + 1. Over the rationals, the program defined by the
inequalities does not terminate, which implies that no ranking function exists
and the criterion of Theorem 1 fails.

3.2 Synthesis of Ranking Functions by Integer Linear Programming

To extend the approach from Sect. 3.1 and fully support bit-vector programs,
we first generalise Theorem 1 to disjunctions of systems of inequalities over the
integers. We then define an algorithm to synthesise linear ranking functions for
programs defined in Presburger arithmetic, which subsumes bit-vector programs.

Linear ranking functions over the integers. In order to faithfully encode
bit-vector operations like addition with overflow (describing non-convex transi-
tion relations), it is necessary to consider also disjunctive transition relations R:

R(x, x′) ≡
l∨

i=1

Aix + A′
ix

′ ≤ bi (3)

where l ∈ �, Ai, A
′
i ∈ �k×n, bi ∈ �k, and x, x′ ∈ �n range over integer vectors.

Linear ranking functions for such relations can be constructed by solving an
implication like (2) for each disjunct of the relation, as shown below. There is
one further complication, however: Farkas’ lemma, which is the main ingredient
for Theorem 1, is in general not complete for inequalities over the integers.

Farkas’ lemma is complete for integral systems, however: Ax + A′x′ ≤ b is
called integral if the polyhedron {(x

x′
) ∈ �2n | Ax + A′x′ ≤ b} coincides with its

integral hull (the convex hull of the integer points contained in it). Every system
of inequalities can be transformed into an integral system with the same integer
solutions, although this might increase the size of the system exponentially [19].
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Lemma 3. Suppose R(x, x′) ≡ ∨l
i=1 Aix + A′

ix
′ ≤ bi is a transition relation in

which each disjunct is satisfiable and integral. R has a linear ranking func-
tion m(x) = rx + c if and only if there are non-negative vectors λi

1, λ
i
2 ∈ �k for

i ∈ {1, . . . , l} such that:

λi
1A

′
i = 0, λi

2(Ai + A′
i) = 0, λi

2bi < 0, (λi
1 − λi

2)Ai = 0, λi
2A

′
i = r. (4)

Ranking functions for Presburger arithmetic. Presburger arithmetic (PA)
is the first-order theory of integer arithmetic without multiplication [17]. We de-
scribe a complete procedure to generate linear ranking functions for PA-defined
transition relations by reduction to Lem. 3.4

Suppose a transition relation R(x, x′) is defined by a Presburger formula. Be-
cause PA allows quantifier elimination [17], it can be assumed that R(x, x′) is
a quantifier-free Boolean combination of equations, inequalities, and divisibil-
ity constraints ε | (cx + dx′ + e). Divisibility constraints are introduced during
quantifier elimination and state that the value of the term cx + dx′ + e (with
c, d ∈ �n, e ∈ �) is a multiple of the positive natural number ε ∈ �+.

In order to apply Lem. 3, we eliminate divisibility constraints from R(x, x′)
as explained in detail below. This is possible by introducing auxiliary program
variables y, y′: we will transform R(x, x′) to a formula R′(x, y, x′, y′) without
divisibility constraints, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′). The transfor-
mation increases the size of the PA formula only polynomially.

By rewriting to disjunctive normalform, replacing equations s = t with in-
equalities s ≤ t ∧ t ≤ s, the relation R′(x, y, x′, y′) can be stated as in (3):

R′(x, y, x′, y′) ≡
l∨

i=1

Ai

(
x

y

)
+ A′

i

(
x′

y′

)
≤ bi

We can then apply Lem. 3 to R′ to derive a linear ranking function m′(x, y).
To ensure that no auxiliary variables y occur in m′(x, y) (i.e., m′(x, y) = m(x)),
equations are added to (4) that constrain the corresponding entries of r to zero.

Replacing divisibility constraints by disjunctions of equations. The following
equivalences are used in the transformation from R(x, x′) to R′(x, y, x′, y′):

ε | (cx + dx′ + e) ≡ ε
∣∣∣ (cx− ε

⌊cx
ε

⌋
+ dx′ − ε

⌊dx′

ε

⌋
+ e
)

(5)

≡
∨
i∈�

0≤i·ε−e<2ε

i · ε− e = cx− ε
⌊cx

ε

⌋
+ dx′ − ε

⌊dx′

ε

⌋
(6)

≡ ∃yc, y
′
d.

(
0 ≤ cx− εyc < ε ∧ 0 ≤ dx′ − εy′

d < ε
∧ (
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′
d)

)
(7)

4 The procedure can also derive ranking functions that contain integer division ex-
pressions � t

ε
� for some ε ∈ �, but it is not complete for such functions. Assuming

that a polynomial method is used to solve (4), the complexity of our procedure is
singly exponential.
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Equivalence (5) holds because divisibility is not affected by subtracting multi-
ples of ε on the right-hand side, while (6) expresses that the value of the term
cx− ε( cx

ε )+ dx′ − ε(dx′
ε ) lies in the right-open interval [0, 2ε). Therefore, the

divisibility constraints of (5) are equivalent to a disjunction of exactly two equa-
tions. Finally, the integer division expressions ( cx

ε ) can equivalently be expressed
using existential quantifiers in (7).

To avoid the introduction of new quantifiers, the quantified variables yc, y
′
d

are treated as program variables. Whenever a constraint ε | (cx + dx′ + e) oc-
curs in R(x, x′), we introduce new pre-state variables yc, yd and post-state vari-
ables y′

c, y
′
d that are defined by adding conjuncts to R(x, x′):

R′(x, yc, yd, x
′, y′

c, y
′
d) ≡ R(x, x′)∧ 0 ≤ cx− εyc < ε ∧ 0 ≤ dx− εyd < ε

∧ 0 ≤ cx′ − εy′
c < ε ∧ 0 ≤ dx′ − εy′

d < ε

In R′(x, yc, yd, x
′, y′

c, y
′
d), the constraint ε | (cx + dx′ + e) can then be replaced

with a disjunction
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′
d as in (7). Iterating

this procedure eventually leads to a transition relation R′(x, y, x′, y′) without
divisibility judgements, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′).

Representation of bit-vector operations in PA. Presburger arithmetic is
expressive enough to capture the semantics of all bit-vector operations defined
in Sect. 2, so that ranking functions for bit-vector programs can be generated
using the method from the previous section. For instance, the semantics of a
bit-vector addition s + t can be defined in weakest-precondition style as:

wp(x := s + t, φ) = wp
(

y1 := s; y2 := t,
∃x.(0 ≤ x < 2n ∧ 2n | (x− y1 − y2) ∧ φ)

)
where s : n, t : n denote bit-vectors of length n, and y1, y2 are fresh variables. The
existentially quantified formula assigns to x the remainder of y1 + y2 modulo 2n.

A precise translation of non-linear operations like × and & can be done by
case analysis over the values of their operands, which in general leads to formulae
of exponential size, but is well-behaved in many cases that are practically relevant
(e.g., if one of the operands is a literal). Such an encoding is only possible because
the variables of bit-vector programs range over finite domains of fixed size.

Example. We encode the bit-vector program (1) corresponding to Fig. 2 in PA:

nLoop �= 0 ∧ 232 | (nLoop′ − nLoop − 232 + 4)

∧ 0 ≤ nloop < 232 ∧ 0 ≤ nloop′ < 232

From the side conditions, we can read off that the term nLoop′ − nLoop − 232 + 4
has the range [5− 233, 3], so that the divisibility constraint can directly be split
into two equations (auxiliary variables as in (7) are unnecessary in this particular
example). With further simplifications, we can express the transition relation as:(

nLoop′ = nLoop − 4 ∧ 0 ≤ nloop′ ∧ nloop < 232)
∨ (nLoop′ = nLoop + 232 − 4 ∧ 0 < nloop ∧ nloop ′ < 232)
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It is now easy to see that each disjunct is satisfiable and integral, which means
that Lem. 3 is applicable. Because the conditions (4) are not simultaneously
satisfiable for all disjuncts, no linear ranking function exists for the program.

3.3 Synthesis of Ranking Functions from Templates

A subset of the ranking functions for bit-vector programs can be identified by
templates of a desired class of functions with undetermined coefficients. In order
to find the coefficients, we consider two methods: (i) an encoding into quantified
Boolean formulas (QBF) to check all suitable values, and (ii) a propositional
SAT-solver to check likely values.

We primarily consider linear functions of the program variables. Let x =
(x1, . . . , x|X |) be a vector of program variables and associate a coefficient ci with
each xi ∈ X . The coefficients constitute the vector c = (c1, . . . , c|X |). We can
then construct the template polynomial

p(c, x) :=
|X |∑
i=1

(ci × castw(xi))

with the bit-width w ≥ maxi(α(xi)) + �log2(|X | + 1)� and α(ci) = w, chosen
such that no overflows occur during summation. The following theorem provides
a bound on w that guarantees that ranking functions can be represented for all
programs that have linear ranking functions.

Theorem 2. There exists a linear ranking function on path π with transition
relation Rπ(x, x′), if

∃c ∀x, x′ . Rπ(x, x′)⇒ p(c, x′) <s p(c, x) . (8)

Vice versa, if there exists a linear ranking function for π, then Eq. (8) must be
valid whenever

w ≥ maxi(α(xi)) · (|X | − 1) + |X | · log2 |X |+ 1 .

It is straightforward to flatten Eq. (8) into QBF. Thus, a QBF solver that
returns an assignment for the top-level existential variables is able to compute
suitable coefficients. Examples of such solvers are Quantor [4], sKizzo [3], and
Squolem [13]. In our experiments, we use an experimental version of
QuBE [11].

Despite much progress, the capacity of QBF solvers has not yet reached the
level of propositional SAT solvers. We therefore consider the following simplistic
way to enumerate coefficients: we restrict all coefficients to α(ci) = 2 and we
fix a concrete assignment γ(c) ∈ {0, 1, 3} to the coefficients (corresponding to
{−1, 0, 1} in 2’s complement). Negating and applying γ transforms Equation 8
into

¬∃x, x′ . Rπ(x, x′) ∧ ¬(p(γ(c), x′) <s p(γ(c), x)) , (9)
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which is a bit-vector (or SMT-BV ) formula that may be flattened to a purely
propositional formula in the straightforward way. The formula is satisfiable iff
p is not a genuine ranking function. Thus, we enumerate all possible γ until
we find one for which Equation 9 is unsatisfiable, which means that p(γ(c), x)
must be a genuine ranking function on π. Even though there are 3|X | possible
combinations of coefficient values to test, this method performs surprisingly well
in practice, as demonstrated by our experimental evaluation in Sect. 4.

Example. We consider the program given in Fig. 1. The only variable in the pro-
gram is i, and it is 8 bits wide. We construct the polynomial p(c, i) = c× cast9(i)
with α(c) = 9. For the only path through the loop in this example, the transition
relation Rπ(i, i′) is i �= 0 ∧ i′ = i & (i− 1). Solving the resulting formula

∃c∀i, i′ . Rπ(i, i′)⇒ p(c, i′) <s p(c, i)

with a QBF-Solver does not return a result within an hour. We thus rewrite the
formula according to Equation 9 and obtain

¬∃i, i′ . Rπ(i, i′) ∧ ¬(p(c, i′) <s p(c, i))

which we solve (in a negligible amount of runtime) for all choices of c ∈ {0, 1, 3}.
The formula is unsatisfiable for c = 1, and we conclude that cast9(i) is a suitable
ranking function. In this particular example, it is possible to omit the cast.

4 Experiments

4.1 Large-Scale Benchmarks

Following Cook et al. [9], we implemented a binary reachability analysis engine
to evaluate our ranking synthesis methods. Our implementation uses SATABS as
the reachability checker [7], which implements SAT-based predicate abstraction.
Our benchmarks are device drivers from the Windows Driver Development Kit
(WDK).5 The WDK already includes verification harnesses for the drivers. We
use goto-cc

6 to extract model files from a total of 87 drivers in the WDK.
Most of the drivers contain loops over singly and doubly-linked lists, which

require an arithmetic abstraction. This abstraction can be automated by existing
shape analysis methods (e.g., the one recently presented by Yang et al. [20]).

Slicing the input. Just like Cook et al. [9], we find that most of the runtime is
spent in the reachability checker (more than 99%), especially after all required
ranking functions have been synthesised and no more counterexamples exist. To
reduce the resource requirements of the Model Checker, our binary reachability
engine analyses each loop separately and generates an inter-procedural slice [12]
of the program, slicing backwards from the termination assertion. In addition, we
5 Version 6, available at http://www.microsoft.com/whdc/devtools/wdk/
6 http://www.cprover.org/goto-cc/

http://www.microsoft.com/whdc/devtools/wdk/
http://www.cprover.org/goto-cc/
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Table 1. The behaviour on the loops of a keyboard driver

1 2 3 4 5 6 7 8 9 10 11 12 13 Loop

list list unr. i++ unr. unr. unr. unr. wait unr. unr. i++ list Type

126 85 687 248 340 298 253 844 109 375 333 3331 146 CE Time [sec]

0.5 0.1 – 0.7 – – – – 0.4 – – 2.2 0.4 Synth. Time [sec]

× × � MO � � � � × � � MO × Terminates?

rewrite the program into a single-loop program, abstracting from the behaviour
of all other loops.7 With this (abstracting) slicer in place, we find that absolute
runtime and memory requirements are reduced dramatically.

As our complete data on Windows drivers is voluminous, we present a typical
example in detail. The full dataset is available online.8 The keyboard class driver
in the WDK (kbdclass) contains a total of 13 loops in a harness (SDV FLAT
HARNESS) that calls all dispatch functions nondeterministically.

Table 1 describes the behaviour of our engine on this driver. For every loop
we list the type (list iteration, i++, unreachable, or ‘wait for device’), the time it
takes to find a potentially non-terminating path (‘CE Time’), the time required
to find a ranking function using our SAT template from Sect. 3.3 (‘Synth. Time’,
where applicable), and the final result. In the last row, ‘MO’ indicates a memory-
out after consuming 2 GB of RAM while proving that no further counterexamples
to termination exist. The entire analysis of this driver requires 2 hours.9

We were able to isolate a possible termination problem in the USB driver
bulkusb that may result in the system being blocked. The driver requests an
interface description structure for every device available by calling an API func-
tion. It increments the loop counter if this did not return an error. The API
function, however, may return NULL if no interface matches the search criteria,
resulting in the loop counter not being incremented. Since numberOfInterfaces is
a local (non-shared) variable of the loop, the problem would persist in a concur-
rent setting, where a device may be disconnected while the loop is executed.

4.2 Experiments on Smaller Examples

The predominant role of the reachability engine on our large-scale experiments
prevents a meaningful comparison of the utility of the various techniques for
ranking function synthesis. For this reason, we conducted further experiments
on smaller programs, where the behaviour of the reachability engine has less
7 Following the hypothesis that loop termination seldom depends on complex variables

that are possibly calculated by other loops, our slicing algorithm replaces all assign-
ments that depend on five or more variables with non-deterministic values, and all
loops other than the analysed one with program fragments that havoc the program
state (non-deterministic assignments to all variables that might change during the
execution of the loop).

8 http://www.cprover.org/termination/
9 All experiments were run on 8-core Intel Xeon 3 GHz machines with 16 GB of RAM.

http://www.cprover.org/termination/
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Table 2. Experimental results on 61 benchmarks drawn from Windows device drivers

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Manual Insp. L L L L N N N L T N T L L N T L L L L L T L L L L L L N T L T
SAT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Seneschal � � � � � � – � � � � � � � � � � � � � � – � � � � � � � – �
Rankfinder � � � � � � � � �� � � � � �� �� � � � � � � � � � � � �� � – � �
QBF [-1,+1] – – � � � � – – – � – � – – – – – – – – – – � – – – – � – � �
QBF P (c, x) – – � � – – – – – – – � – – – – – – – – – – � – – – – – – – –
Biere et al. [5] – – – � – – – – – � – � � – – – – – – � – – � – – – – � – – �
# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Manual Insp. T L L N L T L L L L L L N T L L T T T L T T N L L L L L N T
SAT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Seneschal � � � � � � � � � � � � � � � � � � � � � � � � � � � – � –
Rankfinder � � � � � �� � � � � � � � � � � � � � � – � – � � � � � � �
QBF [-1,+1] � – – – – – – – � – – � � – – � – � � � � – – – – – – – � –
QBF P (c, x) – – – – – – – – – – – – � – – – – – – � – – – – – – – – – –
Biere et al. [5] – – – – � – – – � – – – – � � � – – � � – – – – – – – – � �

� – Termination was proven T – Terminating (non-linear)� – (Possibly) Non-terminating L – Terminating, and linear�� – Incorrect under bit-vector semantics ranking functions exist.
– – Memory or time limits exhausted N – Non-terminating

impact. We manually extracted 61 small benchmark programs from the WDK
drivers. Most of them contain bit-vector operations, including multiplication,
and some of them contain nested loops. All benchmarks were manually sliced by
removing all source code that does not affect program termination (much like an
automated slicer, but more thoroughly). We also employ the same abstraction
technique as described in the previous section. All but ten of the benchmark
programs terminate. The time limit in these benchmarks was 3600 s, and the
memory consumption was limited to 2 GB.

To evaluate the integer linear programming method described in Sect. 3.2, we
developed the prototype Seneschal.10 It is based on the prover Princess [18] for
Presburger arithmetic with uninterpreted predicates and works by (i) translating
a given bit-vector program into a PA formula, (ii) eliminating the quantifiers in
the formula, (iii) flattening the formula to a disjunction of systems of inequalities,
and (iv) applying Lem. 3 to compute ranking functions. Seneschal does currently
not, however, transform systems of inequalities to integral systems, which means
that it is a sound but incomplete tool; the experiments show that transformation
to integral systems is unnecessary for the majority of the considered programs.

Table 2 summarizes the results. The first column indicates the result ob-
tained by manual inspection, i.e., if a specific benchmark is terminating, and if
so whether there is a linear ranking function to prove this. The other columns
represent the following ranking synthesis approaches: SAT is the coefficient enu-
meration approach from Sect. 3.3; Seneschal is the integer linear programming
approach from Sect. 3.2; Rankfinder is the linear programming approach over ra-
tionals from Sect. 3.1; QBF [-1,+1] is a QBF template approach from Sect. 3.3
with coefficients restricted to [−1, +1], such that the template represents the
same ranking functions as the one used for the SAT enumeration approach. QBF
10 http://www.philipp.ruemmer.org/seneschal.shtml

http://www.philipp.ruemmer.org/seneschal.shtml
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P (c, x) is the unrestricted version of this template. Note that two benchmarks
(#27 and #34) are negatively affected by our slicer: due to the abstraction,
no linear ranking functions are found. On the original programs, the SAT-based
approach and Seneschal find suitable ranking functions, on benchmark #34 how-
ever, the Model Checker times out afterwards.

Comparing the various techniques, we conclude that the simple SAT-based
enumeration is most successful in synthesising useful ranking functions. It is able
to prove 34 out of 51 terminating benchmarks and reports 27 as non-terminating.
It does not time out on any instance.

Seneschal shows the second best performance: it proves 31 programs as ter-
minating, almost as many as the SAT-based template approach. It reports 25
benchmarks as non-terminating and times out on 5.

For the experiments using Rankfinder11, the bit-vector operators +, × with
literals, =, <s and <u are approximated by the corresponding operations on the
rationals, whereas nonexistence of ranking functions is reported for programs
that use any other operations. Furthermore, we add constraints of the form
0 ≤ v < 2n, where n is the bit-width of v, restricting the range of pre-state
variables. This results in 23 successful termination proofs, and 35 cases of alleged
non-termination. In three cases, the Model Checker times out on proving the final
property, and in 5 cases Rankfinder returns an unsuitable ranking function.

For the two QBF techniques we used an experimental version of QuBE, which
performed better than sKizzo, Quantor, and Squolem. The constrained tem-
plate (QBF [−1, +1]) is still able to synthesise some useful ranking functions
within the time limit. It proves 9 benchmarks terminating and reports 11 as
non-terminating. The unconstrained approach (QBF P (c, x)), however, proves
only 5 programs terminating and one non-terminating, with the QBF-Solver
timing out on all other benchmarks.

We also implemented the approach suggested by Biere et al. [5] (bottom row
of Table 2), which does not require ranking functions, but instead proves that an
entry state of the loop is never revisited. Generally, these assertions are difficult
for SATABS. While this method is able to show only 14 programs terminat-
ing, there are 4 benchmarks (#31, #45, #50, and #61) that none of the other
methods can handle as they require non-linear ranking functions.

Our benchmark suite, all results with added detail, and additional experiments
are available online at http://www.cprover.org/termination/.

5 Related Work

Numerous efficient methods are now available for the purpose of finding ranking
functions (e.g., [6, 10, 14, 1]). Some tools are complete for the class of ranking
functions for which they are designed (e.g., [14]), others employ a set of heuristics
(e.g., [1]). Until now, no known tool supported machine-level integers.

Bradley et al. [6] give a complete search-based algorithm to generate linear
ranking functions together with supporting invariants for programs defined in
11 http://www.mpi-inf.mpg.de/~rybal/rankfinder/

http://www.cprover.org/termination/
http://www.mpi-inf.mpg.de/~rybal/rankfinder/
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Presburger arithmetic. We propose a related constraint-based method to syn-
thesise linear ranking functions for such programs. It is worth noting that our
method is a decision procedure for the existence of linear ranking functions in
this setting, while the procedure in [6] is sound and complete, but might not
terminate when applied to programs that lack linear ranking functions. An ex-
perimental comparison with Bradley et al.’s method is future work.

Ranking function synthesis is not required if the program is purely a finite-
state system. In particular, Biere, Artho and Schuppan describe a reduction
of liveness properties to safety by means of a monitor construction [5]. The
resulting safety checks require a comparison of the entire state vector whereas the
safety checks for ranking functions refer only to few variables. Our experimental
results indicate that the safety checks for ranking functions are in most cases
easier. Another approach for proving termination of large finite-state systems
was proposed by Ball et al. [2]; however, we would need to develop a technique
to find suitable abstractions. Furthermore, since neither one of these techniques
leads to ranking functions, it is not clear how they can be integrated into systems
whose aim is to prove termination of programs that mix machine integers with
data-structures, recursion, and/or numerical libraries with arbitrary precision.

6 Conclusion

The development of efficient ranking function synthesis tools has led to more
powerful automatic program termination provers. While synthesis methods are
available for a number of domains, efficient procedures for programs over machine
integers have until now not been known. We have presented two new algorithms
solving the problem of ranking function synthesis for bit-vectors: (i) a com-
plete method based on a reduction to quantifier-free Presburger arithmetic, and
(ii) a template-matching method for finding ranking functions of specified classes.
Through experimentation with examples drawn from Windows device drivers we
have shown their efficiency and applicability to systems-level code. The bottle-
neck of the methods is the reachability analysis engine. We will therefore consider
optimizations for this engine specific to termination analysis as future work.
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Abstract. Already in Lamport’s bakery algorithm, integers are used
for fair schedulers of concurrent processes. In this paper, we present the
extension of a fair scheduler from ‘static control’ (the number of processes
is fixed) to ‘dynamic control’ (the number of processes changes during
execution). We believe that our results shed new light on the concept of
fairness in the setting of dynamic control.

1 Introduction

In Lamport’s bakery algorithm [8], integers are used to express the urgency to
schedule a process (the goal being to prevent the starvation of each single process
by ensuring fairness). The same basic idea, though in a different realization,
underlies the explicit fair scheduler of [10]. Here, the urgency to schedule a
process is expressed by a possibly negative integer. The urgency increases (and
the integer value decreases) if the process is enabled and not taken. The non-
starvation of the process apparently relies on a lower-bound invariant: the value
cannot decrease below −n if n is the number of all processes. This lower bound
becomes void when we move from ‘static control’ (the number of processes is
fixed) to ‘dynamic control’ (the number of processes changes during execution).
Indeed, the first contribution of this paper is to show that the scheduler of [10]
does not ensure fairness for dynamic control; in our counterexample a process
starves in an execution where it is enabled in every second step; each time when
it is enabled again, its urgency has already been overtaken by some new process.
This negative result opens the problem of the existence of a fair scheduler for
dynamic control. We present two solutions.

The main contribution of this paper is a fair scheduler for dynamic control.
The originality of this scheduler lies in a heresy. We deviate from the generally ac-
cepted believe that the non-starvation of a process relies on the well-foundedness
of the corresponding sequence of integer values.

The third contribution of this paper is a different kind of fair scheduler for
dynamic control. The originality of our second solution to the problem lies again
in a heresy. We reformulate the problem. By dropping one of the conditions in the
original definition of a fair scheduler, we arrive at a weaker notion of a scheduler
(a “monitor”). The difference between a scheduler and a monitor lies in the fact
that a ‘monitored’ execution may block. Each infinite ‘monitored’ execution is
fair; in comparison, each ‘scheduled’ execution is infinite and fair. In the context
of verification based on the automata-theoretic approach of Vardi-Wolper [15],
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where one checks for the existence of infinite fair executions, the weaker notion
of a monitor is sufficient.

In the remainder of the paper, we will present the results described above,
along with a thorough investigation of a number of annexed questions. We believe
that our results provide a new understanding of fairness in the context of dynamic
control.

Why use explicit scheduling. There may be situations where one would like to
“get rid of fairness”. For example, in program analysis (whose formal founda-
tion can be given by abstract interpretation [5]), one may want to define the
semantics in terms of a (pure) transition system, i.e., a graph. Here, a popular
approach is to take one of the fair schedulers used in operating systems, and to
consider a new system which is composed of the original one and the scheduler,
and whose semantics can be given in terms of a transition system. The objec-
tion to this approach is that the analysis result is valid only for one particular
fair scheduler; i.e., it does not extend to another fair scheduler. To remove this
objection, one has to take a universal scheduler, i.e., one that encompasses all
possible fair schedulers. In contrast with schedulers implemented in operating
systems, a universal scheduler is not meant to be practical. Universality holds if
the scheduler is sufficiently permissive, i.e., if every possible fair execution can
be scheduled (by letting the scheduler choose an appropriate sequence of alter-
natives at all non-deterministic choices). In order to be correct (sound), it must
not be too permissive, i.e., no unfair execution can be scheduled.

Motivation of our work. Our interest for fairness in the setting of dynamic control
stems from three directions.

Networked transportation systems (e.g., cars driving in groups called pla-
toons) are modeled as concurrent systems (see, e.g., [2]). The fact that a traffic
participant can appear and join a platoon is modeled by the creation of a new
concurrent process. Fairness needs to be added as an assumption for the model
for the validity of liveness properties (e.g., the termination of a merge manoeuvre
between platoons).

Operating systems are typical examples of reactive systems where threads
are created specifically for individual tasks. Although the execution of the over-
all system may be infinite, those threads must terminate in order to keep the
overall system reactive. For recent automatic proof techniques addressing the
termination of such threads see [13,14,12,4]. All these techniques are specifically
designed to cope with fairness. Presently, however, they are restricted to the
setting of static control, i.e., to the setting where the number of processes is
statically fixed.

Perhaps surprisingly, recent work on model checking safety properties of op-
erating systems code involve fairness [9]. Fairness is used essentially to eliminate
useless (unfair) paths in the state space (i.e., paths that can be pruned without
affecting the reachability of error states). This work uses explicit scheduling of
the model checker for the “fair” exploration of the state space. Although the
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explicit scheduler in [9] is inspired by [10], it chooses a different idea for the
representation of the relative urgency of processors.

Roadmap. In Section 2 we state the definitions on which we build in this paper.
We formulate the classical notion of (strong) fairness not for Dijkstra’s guarded
command programs but, instead, for infinitary guarded command programs,
i.e., with infinitely many branches in the do loops. These programs formalize
the setting of infinitary control where infinitely many processes can be active at
the same moment. In dynamic control only finitely many processes can be active
at each moment. Then we adapt the notion of explicit scheduling and the specific
scheduler for (strong) fairness from [10], which we call here S88 to the setting
of infinitary control. In Section 3 we show that S88 is not valid for dynamic
control. In the following we present two solutions to overcome this problem. In
Section 4 we present a new scheduler S10 that is valid for dynamic control. In
Section 5 we give up the requirement for a scheduler that the transition relation
is total and introduce a monitor M88 derived from S88. This monitor is also valid
for dynamic control. In Section 6 we investigate which of the previous results
remains true in the setting of infinitary control. Section 7 concludes this paper.

2 Definitions

Though the motivation for considering fairness stems from concurrency, it is
easier and more elegant to study it in terms of structured nondeterministic pro-
grams such as Dijkstra’s guarded commands [7]. We follow this approach in this
paper. In this section, we carry the classical definitions of fairness from Dijkstra’s
guarded command language over to an infinitary guarded command language,
i.e., with infinitely many branches in do loops. It is perhaps a surprise that
the definitions carry over directly. We then immediately have the definitions of
fairness of programs with dynamically created processes because we will define
those formally as a subclass of infinitary guarded command programs.

2.1 Dynamic Control

Our goal is a minimalistic model that allows us the study of fairness for programs
with dynamically created processes. As a starting point we introduce programs
with infinitary control by extending Dijkstra’s language of guarded command
programs [6] with do loops that have infinitely many branches. Syntactically,
these do loops are statements of the form

S ≡ do []∞i=0 Bi→ Si od (1)

where for each i ∈ N the component Bi→ Si consists of a Boolean expression Bi,
its guard, and the statement Si, its command. Therefore a component Bi→ Si

is called a guarded command and S is called an infinitary guarded command.
We define the class of programs with dynamic control as a subclass of pro-

grams with infinitary control. At each moment each of the infinitely many pro-
cesses “exists” (whether is has been created or not). Each process is modeled by
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a branch in the infinitary do loop. However, at each moment, only finitely many
processes have been created (or activated or allocated). All others are dormant.

Processes are referred to by natural numbers. The process (with number) i is
represented by the guarded command Bi→ Si. To model processes creation we
use a Boolean expression cri for each process i such that this process is considered
as being created if cri evaluates to true. All other processes are treated as not
being created yet. It is an important assumption that a created process can
disappear but not reappear, i.e., once the value of the expression cri has changed
from true to false it cannot go back to true.

We define a structural operational semantics in the sense of Plotkin [11] for
infinitary guarded commands. As usual, it is defined in terms of transitions be-
tween configurations. A configuration K is a pair <S, σ> consisting a statement
S that is to be executed and a state σ that assigns a value to each program
variable. A transition is written as a step K→K ′ between configurations. To
express termination we use the empty statement E: a configuration <E, σ> de-
notes termination in the state σ. For a Boolean expression B we write σ |= B
if B evaluates to true in the state σ. Process i is created in a state σ if σ |= cri

and it is enabled in state σ if it is created and its guard Bi evaluates to true,
formally, σ |= cri ∧Bi.

For the infinitary do loop S as in (1) we have two cases of transitions:

1. <S, σ>→<Si;S, σ> if σ |= cri ∧Bi for each i ∈ N,

2. <S, σ>→<E, σ> if σ |= ∧∞
i=1 ¬(cri ∧Bi).

Case 1 states that each enabled component Bi→ Si of S, i.e., with both the
expression cri and the guard Bi evaluating to true in the current state σ, can be
entered. If more than one component of S is enabled, one of them will be chosen
nondeterministically. The successor configuration <Si;S, σ> formalizes the rep-
etition of the do loop: once the command Si is executed the whole loop S has to
be executed again. Formally, the transitions of the configuration <Si;S, σ> are
determined by the transition rules for the other statements of the guarded com-
mand language. For further details see, e.g., [1]. Case 2 states that the do loop
terminates if none of the components is enabled any more, i.e, if all expressions
cri ∧Bi evaluate to false in the state σ.

In this paper we investigate programs with only one infinitary do loop S
of the form (1). This simplifies its definition of fairness and is sufficient for
modeling dynamic control. An execution of S starting in a state σ0 is a sequence
of transitions

K0→K1→K2→ . . . , (2)

with K0 = <S, σ0> as the initial configuration, which is either infinite or maxi-
mally finite, i.e., the sequence cannot be extended further by some transition.

Consider a program S of the form (1). Then for S having infinitary control
there is no further requirement on the set of created processes. A program S has
dynamic control if for every execution (2) of S the set of created processes is
finite in every state of a configuration in (2).
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A program S has bounded control if for every execution (2) there exists some
n ∈ N such that the number of created processes is bounded by n in every state
of a configuration in (2). A program S has static control if there is a fixed finite
set F of processes such that for every execution (2) the set of created processes
is contained in F in every state of a configuration in (2).

Note that we have the following hierarchy: programs with static control are
a special case of programs with bounded control, which are a special case of
programs with dynamic control, which in turn are a special case of programs
with infinitary control.

2.2 Fairness

In this paper we extend the definition of fairness1 of [10] from programs with
static control to programs with process creation and infinitary control. Since
fairness can be expressed in terms of created, enabled, and selected processes
only, we abstract from all other details in executions and define it on runs.

We now fix an execution as in (2) and define the corresponding run. A tran-
sition Kj →Kj+1 with j ∈ N is a select transition if it consists of the selection
of an enabled process of S, formally, if Kj = <S, σ> and Kj+1 = <Si;S, σ>
with σ |= cri ∧Bi for some i ∈ N, so process i has been selected for execution in
this transition. We define the selection of the transition Kj →Kj+1 as the triple
(Cj , Ej , ij), where Cj is the set of all created processes, i.e.,

Cj = {i ∈ N | σ |= cri},

and Ej is the subset of all enabled processes, i.e.,

Ej = {i ∈ Cj | σ |= Bi},

and ij is the (index of the) selected process, i.e., ij = i. Obviously, the selected
command is among the enabled components. A run of the execution (2) is the
sequence of all its selections, formally, the sequence

(Cj0 , Ej0 , ij0)(Cj1 , Ej1 , ij1). . .

such that Cj0Cj1 . . . is the subsequence of configurations with outgoing select
transitions. Computations that do not pass through any select transition yield
the empty run. A run of a program S is the run of one of its executions.

A run
(C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . . (3)

is called fair if it satisfies the condition

∀i ∈ N : (
∞
∃j ∈ N : i ∈ Ej →

∞
∃j ∈ N : i = ij).

1 In the literature, this notion of fairness is qualified as strong fairness (or compassion).
For brevity, we simply refer to this notion without the qualifier in this paper.
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where the quantifier
∞
∃ denotes “there exist infinitely many”. By our assump-

tion (see Subsection 2.1), the fact that the process i is infinitely often enabled,

formally
∞
∃j ∈ N : i ∈ Ej , implies by Ej ⊆ Cj that process i is created at some

moment and stays created forever, formally ∃j0 ∈ N ∀j ≥ j0 : i ∈ Cj .
In a fair run, every process i which is enabled infinitely often, is selected

infinitely often. Note that every finite run is trivially fair. An execution of a
program S of the form (1) is fair if its run is fair. Thus for fairness only select
transitions are relevant; transitions inside the commands Si of S do not matter.
Again, every finite execution is trivially fair. Thus we concentrate on infinite
executions throughout this paper.

Although we are not interested in the case where infinitely many processes
can be enabled at the same time (continuously or infinitely often) and although
this case is perhaps not practically relevant, the definition of fairness still makes
sense, i.e., there exist fair executions in this case.

2.3 Explicit Scheduling

We extend the definition of a scheduler from [10] to the setting of infinitary
control. In a given state σ the scheduler inputs a set C of created processes
and a subset E ⊆ C of enabled processes. It outputs some process i ∈ E and
transitions to a new state σ′. We require that the scheduler is totally defined,
i.e., for every scheduler state and every input set E the scheduler will produce
an output i ∈ E and update its scheduler state. Thus a scheduler can never
block the execution of a program but only influence its direction. Summarizing,
we arrive at the following definition.

Definition 1 ([10]). A scheduler is a triple S = (Σ, Σ0, δ), where

– Σ is a set of states with typical element σ,
– Σ0 ⊆ Σ is the set of initial states, and
– δ is a transition relation of the form

δ ⊆Σ × 2N × 2N × N×Σ

which is total in the following sense:

∀σ ∈ Σ ∀C ∈ 2N ∀E ∈ 2C \ {∅} ∃ i ∈ E ∃σ′ ∈ Σ : (σ, C, E, i, σ′) ∈ δ.

Thus for every state σ, every set C of created processes, and every nonempty
subset E ⊆ C of enabled processes there exists a process i ∈ E and an the
updated state σ′ such that the tuple (σ, C, E, i, σ′) satisfies the transition
relation δ.

A run (C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . . is produced by a scheduler S if there
exists an infinite sequence σ0σ1σ2. . . ∈ Σω with σ0 ∈ Σ0 such that

(σj , Cj , Ej , ij, σj+1) ∈ δ

holds for all j ∈ N. A scheduler S is sound if every run that is produced by S is
fair. A scheduler S is universal if every fair run is produced by S. A scheduler S

is valid if it is both sound and universal.
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2.4 The Scheduler S88

The explicit schedulers given in [10] use auxiliary integer-valued variables (so-
called scheduling variables), one for each process, to keep track of the relative
urgency of each process (relative to the other processes). Making it more urgent
is implemented by decrementing its scheduling value. Thus, scheduling values
can become negative. The crucial step is the non-deterministic update to a non-
negative integer each time after the process has been selected. Then, the process
is not necessarily less urgent than all other processes. However, it is definitely
less urgent than those that already have a negative scheduling value. This fact
is used to prove (by induction) the scheduling invariant : the scheduling value
will never decrease below −n, where n is the number of all processes [10]. This
again means that a process cannot become “arbitrarily urgent”; i.e., it has to be
selected after it has been made more urgent a finite (though unboundedly large)
number of times, which is exactly what fairness means.

In [10] a scheduler for fairness of programs with static control was proposed.
We extend it here to the case of infinitely many components and call it S88.
With each process i it associates a scheduling variable z[i] representing a priority
assigned to that process. A process i has a higher priority than a process j if
z[i] < z[j] holds.

Definition 2 ([10]). The scheduler S88 = (Σ, Σ0, δ) is defined as follows:

– The states σ ∈ Σ are given by the values of an infinitary array z of type
N→ Z, i.e., z[i] is a positive or negative integer for each i ∈ N.

– The initial states in Σ0 are those where each scheduler variable z[i] has some
nonnegative integer value.

– The relation (σ, C, E, i, σ′) ∈ δ holds for states σ, σ′ ∈ Σ, a set C of created
processes, a set E ⊆ C of enabled processes, and a process i ∈ E if the value
of z[i] is minimal in σ, i.e., if

z[i] = min{z[k] | k ∈ E}
holds in σ, and σ′ is obtained from σ by executing the following statement:

UPDATEi ≡ z[i] := ?;
for all j ∈ E \ {i} do z[j] := z[j]− 1 od.

Note that the transition relation δ is total as required by Definition 1. The
update of the scheduling variables guarantees that the priorities of all enabled
but not selected processes j are increased. The priority of the selected process i,
however, is reset arbitrarily. The idea is that by gradually increasing the priority
of enabled processes, their activation cannot be refused forever.

3 The Scheduler S88 and Dynamic Control

For static control the scheduler S88 is valid, i.e., sound and universal as shown in
[10]. A closer examination of the proof shows that this result extends to bounded
control. However, for dynamic control this does not hold any more.
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Theorem 1. The scheduler S88 is not valid for dynamic control.

Proof. We show that S88 is not sound for programs with dynamic control. To
this end, we construct a run produced by S88 in which process 0 is treated unfair,
i.e., it is infinitely often enabled but never selected. The idea is that in each step
a new process is created, which is enabled all the time. The process 0 is only
enabled in every second step. The scheduling variable of the other processes
will decrease more rapidly than the scheduling variable of process 0 and thus
will overtake it. The values of scheduling variables will force S88 to activate the
newly created processes rather than process 0.

Table 1. A run where process 0 is treated unfair

i σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 . . .

0 (0) 0 (-1) -1 (-2) -2 (-3) -3 (-4) -4 . . .

1 0* 0 -1* 0 -1 -2 -3* 0 -1 -2 . . .

2 0 -1* 0 -1 -2* 0 -1 -2 -3 -4 . . .

3 0 -1 -2* 0 -1 -2 -3 -4* 0 . . .

4 0 -1 -2 -3* 0 -1 -2 -3 . . .

5 0 -1 -2 -3 -4* 0 -1 . . .

...
. . . . . .

Table 1 shows an initial segment of this run in detail. In the column denoted
by i the process numbers are shown. The other columns show the values of the
scheduling variables z[i] in the scheduler states σ0, σ1, σ2, . . . . A star ∗ after a
value indicates that in this state the process in the corresponding row is selected.
For example, in state σ0 process 1 is selected. An entry in parenthesis indicates
that in this state the corresponding process is not enabled. This is the case
only for process 0. If process 0 is not enabled its scheduling variable z[0] is
not decremented in the next step. Empty boxes in the table indicate that in
this state the corresponding process is not yet created, otherwise the process is
created. Thus in state σ0 only the processes 0, 1, and 2 are created. Note that
in each step a newly created process appears in the successor state.

In general, in each state σ2n process 0 is not enabled, its priority is −n, and
for each z ∈ {−n, . . . , 0} there are exactly two processes different from process 0
with priority z. In state each σ2n+1 process 0 is enabled, its priority is still −n,
there is one process with priority −n− 1, and for each z ∈ {−n, . . . , 0} there are
again exactly two processes different from process 0 with priority z: the process
scheduled in the previous step and the new process have priority 0 and the two
processes with priority z + 1 in the previous step have now priority z. Then the
single process with priority −n − 1 is scheduled and we arrive at state σ2n+2,
where process 0 has priority −n− 1 and there are two processes different from
0 for each priority z ∈ {−n− 1, . . . , 0}. This concludes the proof. �
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It is interesting to notice the following.

Remark 1. The scheduler S88 is universal for dynamic control.
The proof idea is that at each moment the value of the scheduling variable z[i]
of process i is set to the number of times process i is enabled before i is selected
or disappears or gets disabled forever. In this construction the variables z[i] have
at each moment nonnegative values. The selected process i has the scheduling
value z[i] = 0. All other enabled processes j have scheduling values z[j] ≥ 1.

An alternative scheduler for fairness was proposed in [3], Chapter 6. There it is
shown that this scheduler is, in our terminology, valid for static control. However,
by a variant of the counterexample in Table 1 it can be shown that also this
scheduler is unsound for dynamic control.

4 The Scheduler S10

We obtain the scheduler S10 from S88 by the applying the decrement of the
scheduling variable to all created processes j ∈ C \ {i} and not only to the
enabled processes j ∈ E \ {i}.
Definition 3. The scheduler S10 results from S88 by replacing UPDATEi with

S-UPDATEi ≡ z[i] := ?;
for all j ∈ C \ {i} do z[j] := z[j]− 1 od.

Theorem 2. The scheduler S10 is valid for dynamic control.

Proof. We show that S10 is both sound and universal for dynamic control.
Soundness. Consider a run

(C0, E0, i0). . .(Cj , Ej , ij). . . (4)

of a program of the form (1) with dynamic control that is produced by S10 using
the sequence σ0 σ1 . . .σj σj+1 . . . of scheduler states. We claim that (4) is fair.

Suppose the contrary holds. Then there exists some process i that is enabled
infinitely often, but from some moment on never selected. Formally, for some
j0 ≥ 0

(
∞
∃j ∈ N : i ∈ Ej) ∧ (∀j ≥ j0 : i �= ij)

holds in (4). Then the variable z[i] of S10, which gets decremented whenever the
process i is not selected, becomes arbitrarily small. Thus we can choose j0 large
enough so that z[i] < 0 holds in σj0 . Consider the set

Cri,j = {k ∈ N | k ∈ Cj ∧ σj |= z[k] ≤ z[i]}
of all created processes in Cj whose priority is least that of the neglected pro-
cess i, formally, whose scheduling variable has at most the value of the scheduling
variable of i. Since we consider dynamic control, Cri,j0 is finite in σj0 .
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We show that for all j ≥ j0:

Cri,j+1 ⊆ Cri,j and Cri,j+1 �= Cri,j if i ∈ Ej . (5)

Consider a process p that was not in Cri,j . We show p /∈ Cri,j+1 to prove
the inclusion. If p was scheduled in step j, then σj+1 |= z[i] < 0 ≤ z[p], thus
p /∈ Cri,j+1.

If process p is newly created in step j we exploit two facts. (1) By the definition
of S-UPDATEi, its scheduling variable z[p] is not decremented as long as p is
not created. (2) The process p has not been created before by the assumption
that a created process can disappear but not reappear, stated in Subsection 2.1.
By (1) and (2), z[p] has still its initial nonnegative value in state σj+1, thus
σj+1 |= z[p] ≥ 0. So p �∈ Cri,j+1.

If we take a process p different from the selected process then in the successor
state σj+1 the validity of the inequality z[p] ≤ z[i] is preserved (both p and i
have their scheduling variable decremented by the definition of S-UPDATEi).

If process i is enabled in step j, the scheduler needs to select a process p
from Cri,j . As seen before, the scheduled process is not in Cri,j+1, thus Cri,j �=
Cri,j+1. This proves property (5).

By assumption i is enabled infinitely often, so by (5) the set Cri,j is strictly
decreasing infinitely often. This contradicts the fact that Cri,j0 is finite.

Universality. Consider a fair run

(C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . .. (6)

We show that (6) can be produced by S10 by constructing a sequence σ0. . .σj . . .
of scheduler states satisfying (σj , Cj , Ej , ij , σj+1) ∈ δ for every j ∈ N. The
construction proceeds by assigning appropriate values to the scheduling variables
z[i] of S10. For i, j ∈ N we put

σj(z[i]) = |{k ∈ N | j ≤ k < mi,j ∧ i ∈ Ck}| − |{k ∈ N | mi,j ≤ k < j ∧ i ∈ Ck}| ,

where

mi,j = min

⎧⎪⎨⎪⎩
(1) (j ≤ m ∧ im = i)

m ∈ N ∨
(2) (∀n ≥ m : i �∈ En)

⎫⎪⎬⎪⎭ .

Note that mi,j is the minimum of a non-empty subset of N because the run (6)
is fair. In case (1) of the definition of mi,j , i.e., when i is eventually selected,
the value σj(z[i]) is nonnegative. However, in case (2) of the definition of mi,j ,
i.e., when i is not enabled any more, the value σj(z[i]) can denote arbitrarily
negative values.

This construction of values σj(z[i]) is possible with the assignments in S10.
In the constructed run the selected process i has the scheduling value z[i] = 0.
All other enabled processes j have scheduling values z[j] ≥ 1. So i is the unique
enabled process with the minimum of all scheduling values, which is 0. �
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5 The Monitor M88

The scheduler S88 does not decrease the scheduling variables of processes that are
not enabled. So these scheduling variables cannot become arbitrarily negative.
However, S88 it not valid for dynamic control. The new scheduler S10 is valid for
dynamic control but the scheduling variables can become arbitrarly negative for
created processes that are from some moment on never enabled any more.

In this section we shall propose a variant of S88 where the scheduling variables
are prevented from becoming negative. The price we pay for this property is that
this may lead to a blocking behaviour. Schedulers are required to be nonblocking,
i.e., they should have a totally defined transition relation. We now drop this
requirement and call the resulting device a monitor.

Definition 4. A monitor is a triple M = (Σ, Σ0, δ), where

– Σ is a set of states with typical element σ,
– Σ0 ⊆ Σ is the set of initial states, and
– δ is a transition relation of the form

δ ⊆Σ × 2N × 2N × N×Σ

(without totality requirement as for schedulers).

A run (C0, E0, i0)(C1, E1, i1)(C2, E2, i2). . . is accepted by a monitor M if there
exists an infinite sequence σ0σ1σ2. . . ∈ Σω with σ0 ∈ Σ0 such that

(σj , Cj , Ej , ij, σj+1) ∈ δ

holds for all j ∈ N. A monitor M is sound if every run that is accepted by M is
fair. A monitor M is universal if every fair run is accepted by M. A monitor M

is valid if it is both sound and universal.

Since the totality requirement is dropped for the transition relation δ, the moni-
tor cannot be used to produce a fair run step-by-step because for a given sched-
uler state σ, a set C of created processes, and a set E of enabled processes
there may not be a process i ∈ E and an updated scheduler state σ′ with
(σ, C, E, i, σ′) ∈ δ. However, a monitor can be used as an acceptor of given runs.
Then the question of being able to stepwise produce the run is not relevant.

We modify the scheduler S88 of Definition 2 to a monitor called M88.

Definition 5. The monitor M88 is obtained from the scheduler S88 by changing
the type of the infinitary array z of scheduling variables to N→ N, i.e., for each
process i ∈ N the scheduling variable z[i] can store only nonnegative integers.
As a consequence, inside the statement UPDATEi each decrement operation

z[j] := z[j]− 1

is defined only if z[j] > 0 holds. Otherwise the operation will cause a failure,
which blocks any further execution.
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As in the scheduler S88 the process i with the minimal value of the scheduling
variables among the enabled processes is selected. However, in contrast to S88
and S10 the transition relation of the monitor M88 is not totally defined any
more. Nevertheless, we have the following result.

Theorem 3. The monitor M88 is valid for dynamic control.

Proof. We show that M88 is both sound and universal for dynamic control.
Soundness. Consider a run

(C0, E0, i0). . .(Cj , Ej , ij). . . (7)

of a program of the form (1) with dynamic control that is accepted by M88, and
let σ0. . .σj . . . be a sequence of states with (σj , Cj , Ej , ij, σj+1) ∈ δ for every
j ∈ N. We claim that (7) is fair.

Suppose the contrary holds. Then there exists some process i which is infinitely
often enabled, but from some moment on never selected. Note that whenever
process i is enabled but not selected, the monitor M88 decrements its schedul-
ing variable z[i] provided z[i] > 0 holds. However, z[i] cannot be decremented
infinitely often without raising a failure, Contradiction.
Universality. Let the (7) be fair. Then we can proceed as in the proof outlined
for Remark 1 because according to that construction in each step of the run
exactly the selected process i has the scheduling value z[i] = 0. All other enabled
processes have scheduling values z[j] ≥ 1. Thus the monitor M88 can simulate
the scheduler S88. �
The scheduling variables of the scheduler S88 when applied to programs with
n processes (static control) can become arbitrarily positive but not arbitrarily
negative, i.e., they do not assume values below −n due to an execution invariant
of S88(see [10]). By contrast, the scheduling variables of S10 can become arbi-
trarily negative even when it is applied to programs with static comtrol only. By
definition, the scheduling variables of the monitor M88 stay nonnegative. The
price for this is that the monitor can block the computation.

Other Monitors

The monitor M88 selects a process i with the minimal value of the scheduling
variables among the enabled processes. We discuss two variants of this choice.
Let M88

∗ result from M88 by selecting an enabled process i with z[i] = 0, and
M88

∗∗ result from M88 by selecting an arbitrary enabled process.

Remark 2. The monitors M88
∗ and M88

∗∗ are valid for dynamic control.

Proof. A closer inspection of the proof of Theorem 3 shows that the soundness
argument is independent of how an enabled process is selected. For the univer-
sality argument we notice that in the construction of the monitor state sequence
always an enabled process i with z[i] = 0 is selected. �
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Surprisingly, an attempt to modify the scheduler S10 to a corresponding monitor
M10 fails because we can show that this monitor is not valid. Indeed, let us define
the monitor M10 analogously to Definition 5 by changing in the scheduler S10
the type of the infinitary array z of scheduling variables to N→ N, i.e., for each
process i ∈ N the scheduling variable z[i] can store only nonnegative integers.
Again, the transition relation of the monitor M10 is not totally defined because
the decrement operations z[j] := z[j]− 1 can fail.

In contrast to the monitor M88, we have the following negative result.

Remark 3. The monitor M10 is not valid for dynamic control, not even for static
control.

Proof. We show that M10 is not universal for programs with static control.
Consider a fair run of a program where from some moment on a created process
j is not enabled any more. Then the corresponding variable z[j] gets decremented
whenever another process i is selected. So z[j] = 0 will eventually hold and thus
the run cannot be accepted by M10 without blocking. �

6 Infinitary Fairness

In this section we investigate which of our previous results actually relies on the
restriction to dynamic control. We shall see that some hold even in the setting
of infinitary control and others do not.

Since the scheduler S88 is not valid for dynamic control, it is not valid for
infinitary control either. More precisely, S88 is not sound for infinitary control.
This follows trivially from the corresponding argument in the proof of Theorem 1
for dynamic control. On the other hand, S88 is universal for infinitary control.
Indeed, the proof idea presented for Remark 1 does not rely on the restriction
to dynamic control.

For the scheduler S10 we have analogous results for infinitary control.

Theorem 4. The scheduler S10 is not valid for infinitary control.

Proof. The soundness argument in the proof of
Theorem 2 exploits the assumption of dynamic
control. We show now that S10 is not sound for
programs with infinitary control. To this end, we
construct a run produced by S10 where every pro-
cess is treated unfair. More precisely, every process
is always enabled but selected only once, in the ith
selection of the run: (N, N, 0)(N, N, 1)(N, N, 2) . . .
This is possible by choosing the corresponding se-
quence σ0σ1σ3 . . . of scheduler states as follows:

i σ0 σ1 σ2 σ3 σ4 . . .
0 0* 0 -1 -2 -3 . . .
1 0 -1* 0 -1 -2 . . .

2 0 -1 -2* 0 -1 . . .
3 0 -1 -2 -3* 0 . . .

4 0 -1 -2 -3 -4* . . .
. . . . . . . . . . . . . . . . . . . . .

σj(z[i]) =

{
i + 1− j if i < j

−j if i ≥ j
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The table on the previous page shows an initial segment of this sequence in
detail. As in Table 1, in the column denoted by i the process numbers are shown.
The other columns in the table show the values of the scheduling variables z[i]
in the scheduler states σ0, σ1, σ2, . . .. A star ∗ after a value indicates that in this
state the process in the corresponding row is selected. For example, in state σ0
process 0 is selected. �

On the other hand, the universality of S10 still holds for infinitary control. Indeed,
the universality argument in the proof of Theorem 2 does not use the assumption
of dynamic control. What about the monitor M88? Interestingly, it can also be
used for infinitary control.

Remark 4. The monitor M88 is valid for infinitary control.
This result follows from a closer examination of the proof of Theorem 3 which
does not use the assumption of dynamic control.

7 Conclusion

The results presented in this paper provide a new understanding of fairness
in the context of dynamic control. Fairness means the non-starvation of each
single process. I.e, it must not happen that a process, say i, is enabled infinitely
often but not taken. Thus, at each state σ of an execution, there is only a finite
number of positions where process i is enabled before it is taken. The difficulty
of scheduling a dynamically growing number of processes stems from the need
to prioritize “fairly” among the processes.

Our first result says that correlating the priority to the number of times that
a process was enabled but not taken does not guarantee fairness. Since more and
more newly created processes can increase their priority, it is possible that one
of them overtakes process i in its priority.

Our second result says that correlating the priority to the number of times that
a process was not taken (regardless of whether it was enabled or not) prevents
this kind of overtaking and succeeds in guaranteeing fairness. As a consequence,
the priority of a process that is never enabled again can get arbitrarily high,
and in particular higher than the priority of every enabled process. This fact,
although it contradicts the original intuition about explicit scheduling, does not
impede the functioning of the scheduler.

The third result says that correlating the priority to the number of times that
a process was enabled but not taken does guarantee fairness if this can happen
only a finite number of times. Which itself is enforced by a bound on its priority;
i.e., the priority cannot increase indefinitely. As a result, one obtains blocked
executions (the execution gets blocked if the bound is reached). Although one
needs to overcome a conceptual barrier (since blocking contradicts the philosophy
that underlies the very concept of scheduling), one arrives at the concept of a
monitor which fullfills the purpose of a scheduler in the context of verification.

This leads to a new line of future research: explore the potential of the monitor
for automated verification methods for termination and liveness properties. Tools
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for programs that have terminating, though unboundedly long executions, in
general use integer arithmetic to deal with ranking functions. The concept of
the integer variable that measures the priority of a process is related to the
concept of a rank and requires the same kind of reasoning; i.e., adding an integer-
based monitor to deal with fairness does not add a foreign element as far as the
reasoning method is concerned. For this reason, the potential of the monitor for
automated verification methods seems promising.

We have left open the following question. Does there exists an explicit sched-
uler for infinitary control?
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Abstract. We introduce JTorX, a tool for model-driven test derivation
and execution, based on the ioco theory. This theory, originally presented
in [12], has been refined in [13] with test-cases that are input-enabled.
For models with underspecified traces [3] introduced uioco.

JTorX improves over its predecessor TorX [14] by using uioco and
this newer ioco theory. By being much easier to deploy, due to improved
installation, configuration and usage. And by integrating additional func-
tionality, next to testing: checking for (u)ioco between models [6]; check-
ing for underspecified traces in a model; interactive or guided simulation
of a model. This makes JTorX an excellent vehicle for educational pur-
poses in courses on model-based testing, as experience has shown – and
its usefulness is not limited to education, as experience has shown too.

1 Introduction

Ten years ago we presented TorX, a tool for model-based testing. Its main focus
was on on line test derivation and execution, i.e. a test is derived on demand
while it is being executed (for off line execution a test case was treated as a
special kind of model; only much later TorX was extended with (experimental)
off line test derivation). As we wrote in [1], important features of TorX are
flexibility and openness. However, it turned out that in our attempt to obtain
these features we sacrificed ease of deployment, in particular ease of configura-
tion, and, on Windows, ease of installation. For case studies that was not an
issue because 1) usually one can choose where to run them (on a Unix system),
2) typically they were done by TorX-experts, and 3) the configuration overhead
was small compared to the overall effort of setting up a case study anyway. How-
ever, it was an issue for transfer of the tool to non-TorX-experts, like students
who have to install and use the tool to do tool-based exercises, or staff members
who want to use it to show the idea of model-based testing.

JTorX is our answer to this problem. JTorX is a re-implementation of the
main functionality of TorX in Java. As a consequence, installation of JTorX

is rather simple, also on Windows. Configuration is much simpler than in TorX,
because all of it can be done via the JTorX Graphical User Interface (GUI).

Not only is JTorX easier to deploy, we also used the opportunity to catch up
with theoretical progress, and to add features that are helpful for education and
for quick impromptu demonstrations. These are discussed in the next section.

JTorX is, under BSD-style license, available for free at [17].

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 266–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Features

Catching up with theoretical progress led to the following. The initial design of
TorX, based on the ioco theory of [12], made use of the fact that in that theory
test cases are non input-enabled (once the tester has decided to apply a stimulus
it will not look at output that might be produced by the system under test
(SUT) until the stimulus has been applied). This was already revised when we
started to experiment with timed testing [5]. The design of JTorX is based on
the refined ioco theory of [13] in which test cases are input-enabled. In addition,
JTorX allows testing for uioco (introduced in [3]), a weaker relation than ioco
developed for models that contain underspecified traces. In JTorX the ability
to support off line test derivation has been taken into account from the start.

The following features were added in JTorX to ease educational use, next
to the functionality for on line test derivation and execution: a checker to find
underspecified traces in a given model; a checker that checks (instead of tests)
whether two models are (u)ioco-related [6]; a simulator for manual exploration
of a model (or suspension automaton, see Section 3) or guided simulation of a
given trace, e.g. produced by one of the checkers. The test run can be guided,
using such trace, or a test purpose. To access models, JTorX has built-in sup-
port for: graphml [8] (to allow the use of graph editor yEd [15] to draw a model
as automaton), the Aldebaran (.aut) file format, the Jararaca [16] file format (to
allow a regular expression-style specification of traces to guide a test run), and
the TorX Explorer protocol to allow model access via the mcrl2 [9], LTSmin [4]
and CADP [7] tool environments. To connect to a SUT JTorX has built-in
support for: use of a simulated model; use of a real program that communicates
using labels of the model, either on its standard input and output, or over a
single TCP connection; use of the TorX Adapter protocol (for backwards com-
patibility). Each test run is reported in a (text) log shown in the GUI (and as
in TorX visualized in a dynamically updated message sequence chart). During
a test run (as in TorX), and during simulation, progress through models and
suspension automaton is visualized in dynamically updated automaton viewers.

3 Architecture

The flexibility and openness of TorX were obtained by having a modular tool
architecture. JTorX inherits this architecture (but not the deployment issues,
by having a different implementation). A typical (J)TorX configuration, de-
picted in Fig. 1, contains at least the following components. (Components that
are only used in guided test runs appear dotted in this figure.) An Explorer
provides uniform access to the (labelled transition system) state space of the
Model (or Test Purpose, in case of a guided test run). A Primer provides access
to the suspension automaton (see [13]) of the Model (or Test Purpose) accessed
via its Explorer, i.e. it determinizes and marks quiescent states (in which the
SUT is expected to stay silent) with δ-labelled selfloops. It does this on demand.
To avoid storing states unnecessarily Primer and Driver tell their resp. Explorer



268 A. Belinfante

Explorer
(u)ioco
Primer

Explorer
traces
Primer

Combinator

test
derivation

Driver Adapter

verdict log

user
control

J(TorX)

Model

Test
Purpose

System
Under
Test

Fig. 1. Tool components of a typical (J)TorX configuration. Items TP, Explorer,
Primer and Combinator in the dotted boxes are only present in a guided test run.

and Primer which states (reached by stimulus or observation not in the test run)
to forget. An Adapter provides uniform access to the SUT. The Driver controls a
test run, and decides whether to obtain and apply a stimulus, whether to obtain
and check an observation, or to stop the test run. Additional components, like
the Combinator, are used e.g. to guide a test run using a Test Purpose. Typi-
cally, an Explorer is modeling-formalism dependent, but model-independent; an
Adapter is model-dependent, and specific for a particular (family of) SUT. The
other tool components are model-, formalism- and SUT-independent.

4 Usage

At four universities students have used JTorX in courses on testing techniques,
to compare models, and to test a real program w.r.t. a model that they developed
themselves. Doing these exercises gave the students a deeper understanding of
the ioco theory and its test derivation algorithm, and allowed them to experi-
ence model-based testing in practice. For the tutors, the use of JTorX greatly
reduced the effort needed to set up the exercise class, compared to the use of
TorX in previous years. Moreover, it encouraged developing more elaborate
exercises – for example, testing of a real program (now facilitated by JTorX

built-in standard i/o Adapter) was not done in previous years. For the students,
JTorX clearly provided a better user experience – with TorX there typical
were complaints, e.g. about the GUI, but with JTorX there were none. As a
result, JTorX will continue to be used in these courses.

JTorX found a real, unintended error in a Java program developed as SUT
for one of the courses. The program occasionally lost inputs, because its input
handling was initialized inside (instead of before) its main input-processing loop.

In an internship a student used Unit Testing and then JTorX to test the
program he developed. JTorX found five errors, some of which rather subtle –
these might not have been found without JTorX, even when the time invested
in model-based testing would have been spent on manual testing instead [11].

5 Future Work

We foresee improvements to JTorX in two directions: improvement of the user
experience e.g. by professionalization of the user interface, and extension of the
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functionality. Implementation in JTorX of TorX’ ability to deal with param-
eterized action labels will enable use of its real-time Explorer [5] and its Explorer
for Promela models. Also, connection to TorXakis [10] is planned.

6 Related Work

We are aware of existing tools for model-based testing like those discussed in [2],
but to our knowledge, none of them posseses a similar suitability for education.
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Abstract. Systems and protocols combining concurrency and infinite
state space occur quite often in practice, but are very difficult to verify
automatically. At the same time, if the system is correct, it is desirable
for a verifier to obtain not a simple ”yes” answer, but some independently
checkable certificate of correctness. We present SLAB — the first certify-
ing model checker for infinite-state concurrent systems. The tool uses a
procedure that interleaves automatic abstraction refinement using Craig
interpolation with slicing, which removes irrelevant states and transitions
from the abstraction. Given a transition system and a safety property to
check, SLAB either finds a counterexample or produces a certificate of
system correctness in the form of inductive verification diagram.

1 Slicing Abstractions

SLAB (for sl icing abstractions) is an automatic certifying model checker that
implements the abstraction refinement loop presented in [1]. It interleaves refine-
ment steps with slicing, which tracks the dependencies between variables and
transitions in a system and removes irrelevant parts.

SLAB maintains an explicit graph representation of the abstract model: each
node represents a set of concrete states, identified by a set of predicates; each edge
represents a set of concrete transitions, identified by their transition relations.

Starting with the initial abstraction, the abstract model is transformed by
refinement and slicing steps until the system is proved correct or a concretizable
error path is found.

A refinement step increases the precision of the abstraction by introducing a
new predicate, which is obtained by Craig interpolation from the unsatisfiable
formula corresponding to some spurious error path. To minimize the increase
in the size of the graph, the new predicate is only applied to one specific node
on the error path. This node is split into two copies, the labels of which now
additionally contain the new predicate and its negation, respectively.

A slicing step reduces the size of the abstraction while maintaining all error
paths. Elimination rules drop nodes and edges from the abstraction if they have
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).
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272 K. Dräger et al.

become unreachable or if their label has become unsatisfiable. Simplification
rules remove constraints from transition relations that have become irrelevant
and simplify the graph structure of the abstraction.

2 Certifying Model Checker

If SLAB proves a concurrent system correct, then it produces from the final
abstraction an efficiently and independently checkable certificate of the correct-
ness. Such a certificate is much more useful than the usual binary response
“correct”/“incorrect” (see e.g. [6]): it provides higher degree of confidence in the
results of the verification run; it can be employed in automated theorem proving
by importing it into a theorem prover and composing with certificates from other
subgoals into a single proof; finally, it can be used to obtain proof-carrying code.

SLAB produces certificates in the form of inductive verification diagrams [5]:
directed graphs in which nodes n are labeled with state predicates ϕn, and edges
— with sets of transition relations. They satisfy the following properties (where
we use Φ for the disjunction over all ϕn):

– Every initial state is represented by some node, i.e., init implies Φ;
– If a state s is represented by a node and has an outgoing transition s

τ→ s′,
then s′ is also represented by some node. Equivalently, for each transition
relation τ , the Hoare triple {Φ}τ{Φ} must be valid.

– Every node label precludes the error condition, i.e. Φ implies ¬error .

Thus the disjunction of the certificate node labels forms an inductive invariant
which ensures that an error can never occur, and checking the correctness of the
certificate boils down to verifying the above conditions on Φ.

The edge labels provide an alternative set of simpler Hoare triples for the
second condition: For each node n and transition τ , {ϕn}τ{

∨
m ϕm} must hold,

where the disjunction is over all m with n
τ→ m.

As an example, Fig. 2 shows the specification of a simplified ring-buffer for a
double-ended queue, consisting of cells (represented by integer variables) which
can be either free (0) or occupied (1). Starting with a single occupied cell x1, we
can toggle a cell’s state if the states of its neighbors differ.

init x1 = 1 ∧ x2 = 0 ∧ · · · ∧ xn = 0
error x1 = 1 ∧ x2 = 1 ∧ · · · ∧ xn = 1

τ1 xn + x2 = 1 ∧ x′
1 = 1 − x1 ∧ Δ({x1})

τ2 x1 + x3 = 1 ∧ x′
2 = 1 − x2 ∧ Δ({x2})

...
...

τn x1 + xn−1 = 1 ∧ x′
n = 1 − xn ∧ Δ({xn})

Fig. 1. Initial condition, error condition, and transitions of the deque example. Δ(S)
denotes the frame condition that all variables x /∈ S remain unchanged.
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Fig. 2. A certificate of correctness for the deque example

The certificate produced by SLAB for an instance with 5 cells is shown on
Fig. 2. The inductivity of the diagram guarantees that no error state is reachable.

3 Results

SLAB is written in C++, and is available for the Linux platform. As an under-
lying mechanism for satisfiability checking and Craig interpolation, SLAB uses
the MathSAT 4 SMT solver [2].

The model checker produces certificates both in graphical format as in Fig. 2
for visual inspection by the user, and in the SMT-LIB format, which can be
checked by any of a large number of standard SMT solvers.

Table 1. Experimental results of SLAB, comparing its performance on a range of
benchmarks to the tools ARMC, BLAST and NuSMV. Running times are given in
seconds, with a timeout of 1 hour. All benchmarks were measured on AMD Opteron
2.6Ghz processors.

ARMC BLAST NuSMV SLAB
Benchmark time time time (10) time (100) time certificate size
Deque 5 1.81 0.55 0.03 5.64 0.06 6
Deque 10 776.33 2.32 0.05 13.89 0.18 11
Deque 15 timeout 6.40 0.08 22.71 0.40 16
Deque 20 timeout 13.41 0.14 36.08 0.69 20
Bakery 2 2.26 21.71 0.03 0.72 0.43 25
Bakery 3 33.44 134.72 0.04 6.44 1.45 35
Bakery 4 753.15 error 0.17 293.65 4.00 45
Bakery 5 timeout 879.71 0.33 timeout 10.26 55
Philosophers 3 125.82 15.02 0.24 7.82 0.76 11
Philosophers 4 timeout 92.04 0.89 25.16 3.05 26
Philosophers 5 timeout 658.80 4.36 554.86 11.50 57
Philosophers 6 timeout timeout 9.24 timeout 42.57 120
Fischer 2 1.45 N/A N/A N/A 0.65 24
Fischer 3 48.68 N/A N/A N/A 9.16 170
Fischer 4 1842.85 N/A N/A N/A 122.77 1014
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The user can customize several parameters of the abstraction refinement loop:

– The initial abstraction: The user can choose either a simple 4-state abstrac-
tion, based on the initial and error conditions, or a control flow graph.

– The trace selection strategy: The user can choose between random and de-
terministic selection of traces.

– The node splitting strategy: The user may allow several nodes to be split
along any unsatisfiable trace of the abstraction.

Table 1 shows the performance of SLAB on a range of benchmarks. For com-
parison, we also give the running times of the Abstraction Refinement Model
Checker ARMC [7], the Berkeley Lazy Abstraction Software Verification Tool
BLAST [4] and the New Symbolic Model Checker NuSMV [3], where appli-
cable. The benchmarks include a finite-state concurrent systems (Deque and
Philosophers), an infinite-state discrete system (Bakery), and a real-time system
(Fisher). BLAST and NuSMV are not applicable to the real-time system Fischer.
Because NuSMV is able to verify only finite state systems, the running times for
this tool are given for two cases: when all integer variables are bounded to 10
and 100 values.

Availability. SLAB is available online at http://react.cs.uni-sb.de/slab,
including documentation and the benchmarks used in this paper.

Acknowledgements. We would like to thank Alberto Griggio for fruitful dis-
cussions about the MathSAT 4 SMT solver.
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Abstract. Heap-Hop is a program prover for concurrent heap-manipulating pro-
grams that use Hoare monitors and message-passing synchronization. Programs
are annotated with pre and post-conditions and loop invariants, written in a frag-
ment of separation logic. Communications are governed by a form of session
types called contracts. Heap-Hop can prove safety and race-freedom and, thanks
to contracts, absence of memory leaks and deadlock-freedom. It has been used
in several case studies, including concurrent programs for copyless list transfer,
service provider protocols, and load-balancing parallel tree disposal.

1 Introduction

Copyless message passing is an alternative to lock-based concurrency. Unlike message-
passing in a context of distributed memory, copyless message passing programs can
lead to efficient implementations, as only pointers to the contents of the message in
memory are transferred. To avoid bugs, and in particular races, the programmer has to
make sure that the ownership of the heap region representing the contents of a message
is lost upon sending.

Heap-Hop [1] is a program prover that checks concurrent programs that manip-
ulate the heap, in particular list and tree structures, and synchronize using Hoare
monitors and copyless message passing. Heap-Hop supports asynchronous communi-
cations on channels, each consisting of two endpoints which are dynamically allocated
on the heap. Each endpoint can send to, and receive from, the other endpoint (its peer).
Endpoints can be passed around as any other heap objects, and channels can be ex-
plicitly closed. Upon closure, no message should be pending for either peer, as this
would result in a memory leak. Heap-Hop is based on verification conditions gener-
ation and checking, so the user only has to provide pre and post-conditions and loop
invariants.

The proof system used by Heap-Hop [9] is based on separation logic [7], a logic that
provides a local and modular analysis: the specification of a program p is small, in that
it focuses on the resources actually needed by p to execute correctly, hopefully leading
to concise proofs. The locality principle of separation logic is usually a strength, but
for message passing it is also a weakness, since memory leaks and progress properties
need to be checked on a global view of the program. To ensure these global proper-
ties, we rely on contracts. Contracts are a form of session types [8], or communicating
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finite state machines, that dictate which sequences of messages are admissible on a
channel.

Heap-Hop provides strong guarantees: memory safety, meaning that the program
does not fault on memory accesses; race freedom; contract obedience; and compliance
with user specifications (pre and post-conditions). Moreover, depending on the contract,
Heap-Hop can also ensure deadlock-freedom and absence of memory leaks. We have
tested Heap-Hop on several case studies, including concurrent programs for copyless
list transfer, service providers, communication protocols, and parallel tree disposal.

We first introduce the programming language and annotations with a few examples
of increasing complexity, and then give some insights on Heap-Hop’s internals. We
conclude with some related works.

2 Heap-Hop

Programming Language. In our setting, channels are bidirectional FIFO and always
consist of exactly two endpoints (e and f in the examples below). Communications are
asynchronous, sending never fails, and receiving may block until the right message has
arrived. The first argument of send/receive instructions is a message identifier which
indicates what kind of message is communicated, and the second one is the endpoint
that is used. Other arguments are optional depending on the number of parameters of
the message. open and close respectively allocate and deallocate a channel and its two
endpoints.1 open takes one parameter: the contract identifier explained below.

The following program, with logical annotations in square brackets, exchanges a
memory cell between two threads put and get by passing a message cell.

main() { local x,e,f; x=new(); (e,f)=open(C); put(e,x) || get(f); }
put(e,x) [e|->C{a} * x|->] { send(cell,e,x); } [e|->C{a}]
get(f) [f|->˜C{a}] { y = receive(cell,f); } [f|->˜C{a} * y|->]

The logical annotations are spatial conjunctions (∗) of “points to” predicates that denote
ownership of a cell (x �→) or of an endpoint (e �→ C{a} for contract C in state a).
Notice how the ownership of the cell is transferred from the precondition of put to the
postcondition of get. For Heap-Hop to accept this example, we will annotate the cell

message with the formula val �→,2 to specify that the transmitted value corresponds
indeed to a cell, and we will define the contract C for the channel (e, f).

Contracts are finite state machines that describe the protocol followed by the channel,
i.e. which sequences of sends and receives are admissible on the channel. A contract C
is written from one of the endpoints’ point-of-view, the other one following the dual
contract C̄ (˜C in source code), where sends ! and receives ? have been swapped.

Before giving a contract for the previous example, we make it more interesting by
sending e over itself after sending x, so that get can then close the channel (e, f). We
need a second message close_me whose invariant uses the special src variable which
refers to the sending endpoint, just as val refers to the sent value.

1 We have chosen a close primitive where both ends of a channel are closed together.
2 A message can have several parameters, in which case they are referred to as val0, val1, . . .
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message cell [val|->]
message close_me [val|->C{b} * val==src]
contract C { initial state a { !cell -> a; !close_me -> b; }

final state b {} }

put(e,x) [e|->C{a} * x|->] {
send(cell,e,x);
send(close_me,e,e); } [emp]

get(f) [f|->˜C{a}] {
y = receive(cell,f);
ee = receive(close_me,f);
close(ee,f); } [y|->]

Notice how the postcondition of put is now emp (the empty heap). After the receive
of close_me, and with the help of its invariant, Heap-Hop can prove that e and f form
a channel and that they are both in the same final state, which permits the closing of
(e, f). This would not be the case had we omitted val = src in the invariant.

Let us give a final version of the program that sends a whole linked list starting at
x (denoted by list(x) in the annotations) cell by cell through the channel. Our con-
tract C already allows this: we can send an unbounded number of cells before we leave
the state a. get cannot know when the close_me message will come anymore, so a
switch receive between messages cell and close_me is used, which in general se-
lects either message from the receive queue, whichever comes first.
put(e,x) [e|->C{a} * list(x)] {
local t;
while(x != 0)
[e|->C{a} * list(x)] {
t = x->tl;
send(cell,e,x);
x = t; }

send(close_me,e,e); } [emp]

get(f) [f|->˜C{a}] {
local x, ee = 0;
while(ee == 0) [(†)] {
switch receive {
x=receive(cell,f): {dispose(x);}
ee=receive(close_me,f): {}

}}
close(ee,f); } [emp]

(†) � if ee==0 then f|->˜C{a} else (ee|->C{b} * f|->˜C{b},pr:ee)3

A particularity of the copyless message passing setting is that doing the sending of
the cell before dereferencing x in the example above (i.e. placing the send(cell,e,x);
one line earlier) would result in a fault, as the cell pointed to by x is not owned by this
thread anymore after it has been sent.

Usage. Heap-Hop takes annotated programs as input, and outputs a diagnosis for every
function of the program: either a successful check, or an error report showing the in-
criminated program lines and formulas where the check failed. It also outputs a graph-
ical representation of the contracts declared in the file. Contracts play a fundamental
role in the analysis. Heap-Hop checks whether the following three conditions hold:

Deterministic From every state of the contract, there should be at most one transition
labeled by a given message name and a given direction.

Positional Every state of the contract must allow either only sends or only receives.
Synch All cycles in the contract that go through a final state must contain at least one

send and one receive.

These conditions are sufficient to ensure the absence of memory leak on channel clo-
sure [9]; Heap-Hop will issue a warning if they are not met. If moreover there is only one

3 In f|->˜C{b},pr:ee, pr:ee means that ee is the peer of f .
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channel used in the whole program, without Hoare monitors, and if all switch receive

statements are exhaustive with respect to the contract, then the program is also guaran-
teed to be deadlock-free. Currently, Heap-Hop does not report on deadlock-freedom
since we expect simpler proofs of it to be available using other methods [6].

3 Internals

Heap-Hop is an extension of a previous tool called Smallfoot [2], and uses the same
principles: it first converts the annotated program into verification conditions, then
checks each condition by applying symbolic forward execution, eventually checking
that the computed symbolic heap entails the targeted one. However, in case of non-
deterministic contracts, fundamental changes are needed in the symbolic execution
mechanism. Consider the following example:

contract ND { initial state a { !m -> b; !m -> c; }
state b {} final state c {} }

foo() { (e,f) = open(ND); send(m,e); receive(m,f); close(e,f); }

Starting from state a, symbolic execution could then proceed to state b or c. Notice that
only the choice of state c, which is the final state, allows to close the channel in the end,
and this choice is not evident when the send is executed. For this reason, our symbolic
execution mechanism explores all the possibilities in parallel, by operating on sets of
symbolic heaps and pruning wrong choices along the way.

4 Related Work and Conclusion

As already mentioned, Heap-Hop is an extension of Smallfoot based on a fully formal-
ized proof theory [9]. Another extension of Smallfoot is SmallfootRG [3], that combines
Separation Logic with Rely-Guarantee reasoning. Typical case studies of SmallfootRG
are non-blocking concurrent algorithms, but it does not support message passing. Chal-
ice [6] is a program prover that has been recently extended to support copyless mes-
sage passing, and allows to prove deadlock-freedom using credits and lock levels. Both
SmallfootRG and Chalice could encode our contracts and switch receive constructs,
but this encoding, as well as being tedious, would be incomplete for non-deterministic
contracts. SessionJ [5] and Sing# [4] are realistic programming languages that rely on
contracts. The Sing# compiler uses a static analyzer to check some restricted form of
copyless message-passing, but seemingly does not support ownership transfer of recur-
sive data structures.
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Oxford University Computing Laboratory, Oxford, UK

Abstract. Modern multicore processors, such as the Cell Broadband Engine,
achieve high performance by equipping accelerator cores with small “scratch-
pad” memories. The price for increased performance is higher programming
complexity – the programmer must manually orchestrate data movement using di-
rect memory access (DMA) operations. Programming using asynchronous DMAs
is error-prone, and DMA races can lead to nondeterministic bugs which are hard
to reproduce and fix. We present a method for DMA race analysis which auto-
matically instruments the program with assertions modelling the semantics of a
memory flow controller. To enable automatic verification of instrumented pro-
grams, we present a new formulation of k-induction geared towards software,
as a proof rule operating on loops. We present a tool, SCRATCH, which we ap-
ply to a large set of programs supplied with the IBM Cell SDK, in which we
discover a previously unknown bug. Our experimental results indicate that our k-
induction method performs extremely well on this problem class. To our knowl-
edge, this marks both the first application of k-induction to software verification,
and the first example of software model checking for heterogeneous multicore
processors.

1 Introduction

Heterogeneous multicore processors such as the Cell Broadband Engine (BE) circum-
vent the shared memory bottleneck by equipping cores with small “scratch-pad” mem-
ories [16,18]. These fast, private memories are not coherent with main memory, and
allow independent calculations to be processed in parallel by separate cores without
contention. While this can boost performance,1 it places heterogeneous multicore pro-
gramming at the far end of the concurrent programming spectrum. The programmer
can no longer rely on the hardware and operating system to seamlessly transfer data
between the levels of the memory hierarchy, and must instead manually orchestrate
data movement between memory spaces using direct memory access (DMA). Low-
level data movement code is error-prone: misuse of DMA operations can lead to DMA
races, where concurrent DMA operations refer to the same portion of memory, and
at least one modifies the memory. There is an urgent need for techniques and tools to

� Alastair F. Donaldson is supported by EPSRC grant EP/G051100. Daniel Kroening and Philipp
Rümmer are supported by EPSRC grant EP/G026254/1, the EU FP7 STREP MOGENTES,
and the EU ARTEMIS CESAR project.

1 A supercomputer comprised of Cell processors recently assumed #1 spot on the Top 500 list.
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analyse DMA races, which, if undetected, can lead to nondeterministic bugs that are
difficult to reproduce and fix.

We present a method for DMA race analysis which automatically instruments the
program with assertions modelling the semantics of a memory flow controller. The
instrumented programs are amenable to automatic verification by state-of-the-art model
checkers. Recent dramatic advances in SAT/SMT techniques have led to widespread
use of Bounded Model Checking (BMC) [3,5] for finding bugs in software. As well
as detecting DMA races, we are interested in proving their absence. However, BMC
is only complete if the bound exceeds a completeness threshold [19] for the property,
which is often prohibitively large. We overcome this limitation by presenting a novel
formulation of k-induction [24]. The k-induction method has been shown effective for
verifying safety properties of hardware designs. In principle, k-induction can be applied
to software by encoding a program as a monolithic transition function. This approach
has not proven successful due to the loss of control-flow structure associated with such
a naı̈ve encoding, and because important refinements of k-induction (e.g. restriction to
loop-free paths) are not useful for software where the state-vector is very large.

We present a general proof rule for k-induction that is applicable to imperative pro-
grams with loops, and prove correctness of this rule. In contrast to the naı̈ve encoding
discussed above, our method preserves the program structure by operating at the loop
level. Furthermore, it allows properties to be expressed through assertion statements
rather than as explicit invariants. Our experimental results indicate that this method of
k-induction performs very well when applied to realistic DMA-based programs, which
use double- and triple-buffering schemes for efficient data movement: such programs in-
volve regularly-structured loops for which k-induction succeeds with a relatively small
k. We investigate heuristics to further boost the applicability of k-induction when check-
ing for DMA races, and discuss limitations of k-induction in this application domain.

We have implemented our techniques as a tool, SCRATCH, which checks programs
written for the Synergistic Processor Element (SPE) cores of the Cell BE processor. We
present an evaluation of SCRATCH using a set of 22 example programs provided with
the IBM Cell SDK for Multicore Acceleration [18], in which we discover a previously
unknown bug, which has been independently confirmed. Our experiments show the
effectiveness of our methods in comparison to predicate abstraction: k-induction allows
us to prove programs correct that cannot be verified using current predicate abstraction
tools, and bug-finding is orders of magnitude faster. Additionally, SCRATCH is able to
find bugs which go undetected by a runtime race-detection tool for the Cell processor.

In summary, our major contributions are:

– an automatic technique for instrumenting programs with assertions to check for
DMA races, enabling verification of multicore programs with scratch-pad memory.

– a new proof rule for k-induction operating on programs with loops, which we show
to be effective when applied to a large set of realistic DMA-based programs.

To our knowledge, this marks the first application of k-induction to software verifica-
tion, and of software model checking to heterogeneous multicore programs.
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2 Direct Memory Access Operations

We consider heterogeneous multicore processors consisting of a host core, connected to
main memory, and a number of accelerator cores with private scratch-pad memory. A
DMA operation2 specifies that a contiguous chunk of memory, of a given size, should be
transferred between two memory addresses l and h. The address l refers to accelerator
memory (local store), and h to main memory (host memory). A tag (typically an integer
value) must also be specified with a DMA; the operation is said to be identified by
this tag. It is typical for DMA operations to be initiated by the accelerator cores: an
accelerator pulls data into local store, rather than having the host push data. We assume
this scenario throughout the paper.

DMA operations are non-blocking – an accelerator thread which issues a DMA con-
tinues executing while the operation is handled by a specialised piece of hardware called
a memory flow controller. An accelerator thread can issue a wait operation, specifying
a tag t, which causes execution to block until all DMAs identified by t have completed.
A DMA with tag t is pending until a wait operation with tag t is issued.

Although a DMA may complete before an explicit wait operation is issued, this can-
not be guaranteed, thus access by the host or accelerator to memory that is due to be
modified by a pending DMA should be regarded as a bug. Failure to issue a wait op-
eration may result in nondeterministic behaviour: it may usually be the case that the
required data has arrived, but occasionally the lack of a wait may result in reading from
uninitialised memory, leading to incorrect computation. This nondeterminism means
that bugs arising due to misuse of DMA can be extremely difficult to reproduce and fix.

2.1 DMA Primitives and Properties of Interest

We consider the following primitives for DMA operations:

– put(l, h, s, t): issues a transfer of s bytes from local store address l to host address
h, identified by tag t

– get(l, h, s, t): issues a transfer of s bytes from host address h to local store address
l, identified by tag t

– wait(t): blocks until completion of all pending DMA operations identified by tag t

For each accelerator core, we assume hardware-imposed maximum values D and M
for the number of DMAs that may be pending simultaneously and the number of bytes
that may be transferred by a single DMA, respectively. We assume that tags are integers
in the range [0, D − 1]. On the Cell processor, D = 32 and M = 16384 (16K).

We have informally described the notion of memory being corrupted by DMA op-
erations. A special case of memory corruption is where two pending DMAs refer to
overlapping regions of memory, and at least one of the DMAs modifies the region of
memory. We call this a DMA race, and focus our attention on the detection of DMA
races for the remainder of the paper. This focus is for reasons of space only: our tech-
niques can be readily adapted to detect races where the buffer referred to by a pending
DMA is accessed by non-DMA statements.

2 For brevity, we sometimes write “DMA” rather than “DMA operation.”
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#define CHUNK 16384 // Process data in 16K chunks

float buffers[3][CHUNK/sizeof(float)]; // Triple-buffering requires 3 buffers

void process_data(float* buf) { ... }

void triple_buffer(char* in, char* out, int num_chunks) {
unsigned int tags[3] = { 0, 1, 2 }, tmp, put_buf, get_buf, process_buf;

(1) get(buffers[0], in, CHUNK, tags[0]); // Get triple-buffer scheme rolling
in += CHUNK;

(2) get(buffers[1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags[0]); process_data(buffers[0]); // Wait for and process first buffer
put_buf = 0; process_buf = 1; get_buf = 2;
for(int i = 2; i < num_chunks; i++) {

(4) put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers[get_buf], in, CHUNK, tags[get_buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process_buf]); // Wait for and process data
process_data(buffers[process_buf]); // requested last iteration

tmp = put_buf; put_buf = process_buf; // Cycle the buffers
process_buf = get_buf; get_buf = tmp;

}
... // Handle data processed/fetched on final loop iteration

}

Fig. 1. Triple-buffering example, adapted from an example provided with the IBM Cell SDK [18]

Definition 1. Let op1(l1, h1, s1, t1) and op2(l2, h2, s2, t2) be a pair of simultaneously
pending DMA operations, where op1, op2 ∈ {put, get}. The pair is said to be race free
if the following holds:

((op1 = put ∧ op2 = put) ∨ (l1 + s1 ≤ l2) ∨ (l2 + s2 ≤ l1))∧
((op1 = get ∧ op2 = get) ∨ (h1 + s1 ≤ h2) ∨ (h2 + s2 ≤ h1)).

The first conjunct in Definition 1 asserts that the local store regions referred to by op1
and op2 do not overlap, unless both are put operations (which do not modify local
store); the second conjunct asserts that the host memory regions do not overlap, unless
both op1 and op2 are get operations (which do not modify host memory). We say there
is a DMA race when some pair of pending DMA operations is not race free.

2.2 Illustrative Example: Triple-Buffering

Figure 1, adapted from an example provided with the IBM Cell SDK [18], illustrates the
use of DMA operations to stream data from host memory to local store to be processed,
and to stream results back to host memory. Triple-buffering is used to overlap commu-
nication with computation: each iteration of the loop in triple_buffer puts results
computed during the previous iteration to host memory, gets input to be processed next
iteration from host memory, and processes data which has arrived in local memory.

If num_chunks is greater than three, this example exhibits a local store DMA race,
which we can observe by logging the first six DMA operations. To the right of each
operation we record its source code location and, if appropriate, its loop iteration. We
omit host address parameters as they are not relevant to the data race.
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get(buffers[0], . . . , CHUNK, tags[0]) (1)
get(buffers[1], . . . , CHUNK, tags[1]) (2)
wait(tags[0]) (3)

(*) put(buffers[0], . . . , CHUNK, tags[0]) (4), i=2
get(buffers[2], . . . , CHUNK, tags[2]) (5), i=2
wait(tags[1]) (6), i=2
put(buffers[1], . . . , CHUNK, tags[2]) (4), i=3

(*) get(buffers[0], . . . , CHUNK, tags[0]) (5), i=3

At this point in execution the operations marked (*) are both pending, since the only
intervening wait operation uses a distinct tag. The operations are not race free according
to Definition 1 since they use the same region of local store and one is a get. The race
can be avoided by inserting a wait with tag tags[get_buf] before the get at (5).

We discovered this bug using SCRATCH, our automatic DMA analysis tool, described
in §6, which can also show that the fix is correct. The bug occurs in an example provided
with the IBM Cell SDK, and was, to our knowledge, previously unknown. Our bug
report via the Cell BE forum has been independently confirmed. In the remainder of the
paper, we present the new techniques of SCRATCH that enable these results.

3 Goto Programs

We present our results in terms of a simple goto language, which is minimal, but general
enough to uniformly translate C programs like the one in Figure 1. The syntax of the
goto language is shown in the following grammar, in which x ∈ X ranges over integer
variables, a ∈ A over arrays variables, φ and e over boolean and integer expressions (for
which we do not define syntax, assuming the standard operations), and l1, . . . , lk ∈ �
over integers:

Prog ::= Stmt ; . . . ;Stmt VarRef ::= x || a[e]

Stmt ::= VarRef := ∗ || assume φ || assert φ || goto l1, . . . , lk

A goto program is a list of statements numbered from 1 to n.
The language includes assertions, nondeterminisic assignment (VarRef := ∗), as-

sumptions (which can constrain variables to specific values), and nondeterministic go-
tos. Execution of a goto statement, which is given a sequence of integer values as ar-
gument (the goto targets), causes the value of one of these (possibly negative) integers
to be added to the instruction pointer. We use x := e and a[i] := e as shorthands
for assignments to variables and array elements, respectively, which can be expressed
in the syntax above via a sequence of nondeterministic assignments and assumptions.
For simplicity, we assume variables and array elements range over the mathematical
integers, �; when translating C programs into the goto language the actual range of
variables will always be bounded, so SAT-based analysis of goto programs by means of
bit-blasting is possible.

The transition system described by a program α = α1; . . . ; αn is the graph (S, Eα).
S = {(σ, pc) | σ : (X ∪ (A × �)) → �, pc ∈ �} ∪ {�} is the set of program states,
where σ is a store mapping variables and array locations to integer values, pc is the
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instruction pointer, and � is a distinguished state that designates erroneous termination
of a program. Eα is the set of transitions (we write tσ for the value of an expression
given the variable assignment σ, denote the set of all storage locations by L = X ∪
(A×�), and define tt , ff to be the truth values of boolean expressions):

Eα = {(σ, pc)→ (σ′, pc + 1) | αpc = x := ∗, ∀l ∈ L \ {x}. σ(l) = σ′(l)}
∪ {(σ, pc)→ (σ′, pc + 1) | αpc = a[e] := ∗, ∀l ∈ L \ {(a, eσ)}. σ(l) = σ′(l)}
∪ {(σ, pc)→ (σ, pc + 1) | αpc = assume φ, φσ = tt}
∪ {(σ, pc)→ (σ, pc + 1) | αpc = assert φ, φσ = tt}
∪ {(σ, pc)→ � | αpc = assert φ, φσ = ff }
∪ {(σ, pc)→ (σ, pc + li) | αpc = goto l1, . . . , lk, i ∈ {1, . . . , k}}

Proper termination of α in a state s is denoted by s ↓ and occurs if the instruction
pointer of s does not point to a valid statement: s ↓ ≡ s = (σ, pc) ∧ pc �∈ [1, n]. Note
that no transitions exist from states s with s ↓.

The set traces(α) of (finite and infinite) traces of a program α is defined in terms of
its transition system:

traces(α) =
{

s1 s2 · · · sk | ∃σ. s1 = (σ, 1), sk ↓ or sk = �,
∀i ∈ {1, . . . , k − 1}. si → si+1

}
∪ {s1 s2 · · · | ∃σ. s1 = (σ, 1), ∀i ∈ �. si → si+1}

In particular, no traces exist on which assumptions fail.3 A program α is considered
correct if no trace in traces(α) terminates erroneously, i.e. no trace contains �.

4 Encoding DMA Operations in Goto Programs

We now consider the goto language extended with the DMA primitives of §2.1:

Stmt ::= . . . || get(e, e, e, e) || put(e, e, e, e) || wait(e)

For a goto program with DMAs, we introduce a series of array variables with size D
(see §2.1), which we call tracker arrays. These “ghost variables” log the state of up to D
pending DMA operations during program execution. The tracker arrays are as follows,
with 0 ≤ j < D:

– valid : valid [j] = 1 if values at position j in the other arrays are being used to
track a DMA operation, otherwise valid [j] = 0 and values at position j in the other
arrays are meaningless

– is get : is get [j] = 1 if j-th tracked DMA is a get, otherwise is get [j] = 0
– local , host , size , tag : element j records local store address, host address, size, tag

of j-th tracked DMA, respectively

3 In our context, this is preferable to modelling failed assumptions via a distinguished “blocked
program” state: it simplifies the notion of sequential composition of programs (cf. §5.1).
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Statement Translated form

start of program ∀0≤j<D assume valid [j] = 0;
get(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < D;

∀0≤j<D assert ¬valid [j] ∨ (disjoint(l, s, local [j], size[j])∧
(is get [j] ∨ disjoint(h, s, host [j], size[j])));

assert ¬(valid [0] ∧ valid [1] ∧ · · · ∧ valid [D − 1]);
i := ∗; assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 1; local [i] := l; host [i] := h; size[i] := s;

put(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < D;
∀0≤j<D assert ¬valid [j] ∨ (disjoint(h, s, host [j], size[j])∧

(¬is get [j] ∨ disjoint(l, s, local [j], size[j])));
assert ¬(valid [0] ∧ valid [1] ∧ · · · ∧ valid [D − 1]);
i := ∗; assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 0; local [i] := l; host [i] := h; size[i] := s;

wait(t) assert 0 ≤ t < D;
∀0≤j<D valid [j] := valid [j] ∧ ¬(t = tag [j])

Fig. 2. Rules to translate DMA operations into assertions and assignments to tracker arrays. We
use disjoint(a1, s1, a2, s2) as shorthand for a1 + s1 ≤ a2 ∨ a2 + s2 ≤ a1.

To check properties of DMA operations we translate a program with DMA primi-
tives into a standard goto program, where get, put and wait operations are replaced with
assertions about and assignments to the tracker arrays. The translation rules are given in
Figure 2. We use ∀0≤j<D to indicate that the following statement should be duplicated
D times with increasing values for j. Since the rules of Figure 2 replace single state-
ments with multiple statements, it is necessary to perform a re-numbering of program
statements and goto targets after translation; we omit details of this re-numbering.

The encoding of DMAs is based on Definition 1, and is designed to ensure that cor-
rect programs cannot issue DMA operations that are simultaneously pending but not
race free. Note that in our simple goto language we do not model actual movement of
data via DMA. In practice, to achieve soundness, we must set the memory locations
written to by a DMA operation to nondeterministic values. The Cell processor supports
further DMA primitives involving fences and barriers. Our implementation (§6) sup-
ports these operations via extensions of the rules in Figure 2; we do not present the
extended rules due to lack of space.

5 k-Induction for Goto Programs

Our encoding of DMA programs is directly amenable to Bounded Model Checking [3]
as an effective method to discover DMA races. However, BMC alone cannot be used to
verify the (unbounded) absence of DMA races in programs with loops.

The k-induction procedure [24], proposed as a method to allow verification of hard-
ware designs (represented as finite state machines) using a SAT solver, is a stronger
version of the standard invariant approach to verify safety properties. Using normal
invariants, proving that a program satisfies a safety property φ requires showing that
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(i) some formula I (which often is identical to φ) holds in all initial states, (ii) I is
preserved by all state transitions of the program (I is inductive), and (iii) I implies φ.
The main difficulty of this method is the construction of inductive formulae I . The k-
induction principle addresses this difficulty by weakening (ii) to the property that I has
to be preserved only if it held in the previous k states of program execution. In return,
(i) has to be strengthened appropriately.

We describe the principle using the notation of [9]. Let I(s) and T(s, s′) be formulae
encoding the initial states and transition relation for a finite state system, and P(s) a
formula representing states satisfying a safety property. For k ≥ 0, to prove P by k-
induction it is required first to show that P holds in all states reachable from an initial
state within k steps, i.e. that the following formula (the base case) is unsatisfiable:

I(s1) ∧T(s1, s2) ∧ · · · ∧T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) .

Secondly, it is required to show that whenever P holds in k consecutive states s1, . . . ,
sk, P also holds in the next state sk+1 of the system. This is established by checking
that the following formula (the step case) is unsatisfiable:

P(s1) ∧T(s1, s2) ∧ · · · ∧P(sk) ∧T(sk, sk+1) ∧P(sk+1) .

In principle, k-induction can be used for SAT-based software model checking “out-
of-the-box.” A program can be encoded as a monolithic transition function, where the
program counter is an explicit variable. Assertions appearing in the original program
can be gathered together into a single invariant. The encoded program and invariant can
be represented as a SAT formula, to which k-induction can be applied.

This naı̈ve encoding has not shown success in practice due to the loss of structure
associated with the translation process. Furthermore, important refinements which boost
the applicability of k-induction to hardware designs, such as the restriction to loop-free
paths [24], are not useful when dealing with software where the state-vector is large.

To verify absence of DMA races in goto programs, we present a novel formulation
of k-induction, which operates at the loop level, and prove its correctness.

5.1 A Proof Rule for k-Induction with Loops

To present our proof rule for k-induction we require some additional machinery and
notation. Given programs α = α1; . . . ; αm and β = β1; . . . ; βn, the size of α, denoted
|α|, is m, and we define the sequential composition of α and β as follows:

α � β =def α1; . . . ; αm; β1; . . . ; βn .

For i > 0, we use αi to denote the sequential composition of i copies of α, and α0 to
denote the empty program. For a single-statement program of the form α1, we drop the
leading 1:, writing simply α1.

A program α is self-contained, denoted contained(α), if, for each goto statement
goto . . . , l, . . . appearing in α, we have (i + l) ∈ {1, . . . , |α|+ 1}. In other words, goto
statements can only change the instruction pointer to the locations of statements inside
α, or to the location immediately following α.

We define a function that replaces all assertions in a program with assumptions.
Given a program α = α1; . . . ; αn, the corresponding program αassume = α′

1; . . . ; α′
n

is defined by: α′
i = assume φ if αi = assert φ, and α′

i = αi otherwise.
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Finally, we present k-induction as a proof rule operating on distinguished loops in a
goto program of the following form:

α � goto 1, (|β|+ 2) � β � goto (−|β| − 1) � γ

where α, β and γ are self-contained. The program consists of a prelude α, a loop with
body β and a tail γ. Other than self-containedness, we do not make any assumptions
about the shape of components α, β and γ, which may contain further (nested) loops and
arbitrary control structure. We do not demand the presence of an explicit loop condition:
a loop condition b can be simulated by choosing assume b as the first statement of the
loop body, and assume ¬b as the first statement of the tail. Note that the restriction to
self-contained components is mild, e.g. early exit from the loop via a break statement
can be simulated by a flag together with an appropriate loop condition.

Proof rule for k-induction

contained(α) contained(β) contained(γ) k ≥ 0
α � γ is correct {αassume � βi−1

assume � β � γ is correct}i∈{1,...,k}
βk
assume � β is correct βk

assume � γ is correct

α � goto 1, (|β|+ 2) � β � goto (−|β| − 1) � γ is correct

In this rule, the assertions present in the program (e.g. the formulae in Figure 2)
take the role of the inductive invariant needed for verification. The premises include
base cases requiring the program to be shown correct when the prelude, followed by
between zero and k loop iterations, are executed. The premises βk

assume � β is correct
and βk

assume � γ is correct form the induction step, establishing that if it is possible to
execute k loop iterations from an arbitrary state without violating any assertions then it
is possible to successfully execute a further loop iteration, or the loop tail.

Theorem 2 (Correctness). The above proof rule is sound.

By presenting k-induction using a general proof rule, we do not restrict the method to
a SAT-based implementation. Although our practical implementation is SAT-based, the
rule could as well be used in any (possibly interactive) deductive verification system.

5.2 Heuristics to aid k-Induction for DMA Programs

Through our experiments in §6 we observe that k-induction works extremely well for
checking assertions representing DMA race-freeness, generated by the rules in Figure 2.
For realistic example programs written for the Cell processor, the generated assertions
are inductive already for small k, with no further annotations required to verify cor-
rectness. The result is a verification method that is fully automatic and efficient on a
large range of Cell programs. Intuitively, k-induction works well in this application do-
main because DMA operations in loops are typically designed to be pending for only
a bounded number of loop iterations, allowing k-induction to succeed with a value of
k proportional to the bound. This is analogous to the intuition that k-induction works
well for sequential hardware circuits with pipelines, where the k required for induction
to succeed is proportional to the pipeline depth [1].
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For less regular examples, our practical experience has led to the following heuris-
tics which can be applied to help k-induction succeed, or to quickly determine when
the technique is unlikely to work. These heuristics are merely optimisations to our tech-
nique; we are able to verify all benchmarks presented in §6 without use of heuristics.

Bounded lifetimes. In practice, the programmer often knows that no DMA operation
should pend for more than a small number (Z , say) of loop iterations. To take advantage
of this domain specific information, the tracker arrays can be extended with a compo-
nent to record the number x of enclosing loop iterations for which a DMA has been
pending, asserting that x never exceeds Z . When proving the step case for k > Z , this
allows the assumption that only DMAs issued within the last Z iterations are tracked,
eliminating many unreachable states which might otherwise cause the step case to fail.

Free slots. While it is legal for up to D operations to be pending simultaneously, most
practical applications require significantly fewer simultaneous DMAs. Adding an as-
sertion to the start of the loop body requiring at least Z free slots in the tracker arrays
(for some Z > 0) can help k-induction to succeed when it otherwise would not.

Bounded periods of inactivity. Generally, to prove that a DMA operation is race free,
it is necessary to be able to assume that the operation was race free on a previous loop
iteration. If a DMA statement might not to be executed for an arbitrary number of loop
iterations then k-induction is unlikely to work. By introducing extra instrumentation
to check that each DMA statement is executed at least once every Z iterations (for
some Z > 0) we can set up reasonable conditions under which k-induction “gives up,”
resulting in a base case failure identifying a problematic DMA statement.

6 Experimental Evaluation

We have implemented a prototype tool, SCRATCH,4 built on top of the CBMC model
checker [5]. SCRATCH accepts an arbitrary C program written for an SPE core of the
Cell BE processor, and checks for DMA races involving local memory. The translation
described in §4 is applied to transform the input program into a form where DMAs
are replaced with assertions and assignments to tracker arrays. BMC can be applied
to the resulting program to check for DMA races up to a certain depth, and combined
with k-induction, using the formulation of §5, to prove absence of races. Although our
k-induction method is, in principle, applicable to arbitrary nested loops, for implemen-
tation convenience SCRATCH currently applies k-induction only to single loops. We
are able to analyse many interesting examples with this restriction, in some cases by
converting a nest of two loops into a single loop.

We evaluate SCRATCH using a set of 22 benchmarks adapted from examples supplied
with the IBM Cell SDK for Multicore Acceleration [18], categorized as follows:

– x-buf (x ∈ {1, 2, 3}) Data processing programs which use single-, double- or
triple-buffering for data-movement (cf. Figure 1). I/O indicates that separate buffers
are used for input and output. Some variants of these programs use fences/barriers

4 SCRATCH is available online at http://www.cprover.org/scratch/.
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Benchmark
Correct Buggy

Benchmark
Correct Buggy

k D time D time depth k D time D time depth

race check 1 0 2 0.35 1 0.94 34 cpaudio 3 4 5.83 1 0.99 57
race check 2 0 4 0.35 3 0.95 65 3-buf I/O 3 4 12.29 2 0.67 133
sync atomic op 1 1 0.39 1 0.33 64 2-buf + barrier 3 4 3.23 2 0.56 130
sync mutex 1 1 0.43 1 0.34 74 2-buf I/0 3 4 3.53 3 0.76 137
simple dma 1 1 0.39 1 0.36 80 3-buf + fence 3 5 35.94 3 0.7 184
1-buf 1 1 0.41 1 0.43 100 normalize 3 8 71.74 12 2.34 549
1-buf I/O 1 1 0.44 2 0.54 109 Euler complex 3 10 420.54 8 3.91 273
2-buf 1 2 0.66 2 0.54 87 3-buf I/O + barrier 4 2 9.65 3 0.68 160
2-buf + fence 2 4 1.39 2 0.37 130 3-buf I/O + fence 4 4 12.99 3 0.68 159
Euler simple 2 5 4.79 3 1.32 167 checksum 4 4 3.49 4 0.59 53
3-buf 3 3 15.84 3 0.65 160 Julia 2 7 3 32.75 32 2783.4 1955

Fig. 3. Results using SCRATCH for proving correctness via k-induction, and for bug-finding, on
Cell SDK benchmarks

– race check, simple dma Examples which illustrate data races and use of DMA
– sync atomic/mutex Programs illustrating the use of SDK synchronization primi-

tives for atomic operations and mutexes, in conjunction with DMA operations
– cpaudio, normalize Applications which copy one channel of a stereo audio file to

the other, and normalize the volume of a mono audio file, respectively
– checksum Computes a checksum on data in host memory. Multiple buffers are

used to coordinate data-movement efficiently
– Euler simple/complex Particle simulation using Euler integration. The simple ver-

sion uses separate individual buffers for position, velocity and mass data; the com-
plex version uses double-buffering

– Julia n Quaternion Julia set ray-tracing, where an SPE renders n columns of output

Manual program slicing has been applied to each benchmark to remove portions of code
that do not affect DMA operations. This routine slicing could be automated: the sliced
code uses vector datatypes and intrinsic functions specific to the Cell processor, which
the slicer would need to understand.

Figure 3 shows results applying SCRATCH to correct and buggy versions of the
benchmarks.5 With the exception of 3-buf and cpaudio, bugs are injected into the ex-
amples, either by removing a wait operation, changing the tag used to identify a DMA,
or switching an operation from get to put (or vice-versa). The 3-buf benchmark is the
triple-buffering example discussed in §2.2, in which SCRATCH uncovered an existing
bug. A DMA race occurs when the cpaudio benchmark is executed with zero frames of
audio. This is arguably a bug since the precondition that the number of frames should be
positive is not specified. For each benchmark, we give the smallest value of k for which
correctness can be proved using k-induction (without employing the heuristics of §5.2);
the minimum number D of DMAs which it was necessary to track (setting D to a low
value reduces the size of the tracker arrays, which can significantly reduce verifica-
tion complexity; we compute the optimum value for D iteratively for each benchmark,

5 Experiments are performed on a 3GHz Intel Xeon machine running Linux 2.6 (64-bit).
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Fig. 4. Verification time for the Julia benchmark increases cubically with k

starting with D = 1), and the time, in seconds, taken for verification. We also show the
smallest depth of execution required for bug-finding. Results are ordered with respect to
k, Correct-D and Buggy-D. MiniSat 1.14, compiled with full optimisations, is used as
back-end SAT solver. It has been reported to perform comparatively to state-of-the-art
SMT solvers for SMT-BV [7] on this type of workload.

The results of Figure 3 indicate that k-induction provides a tractable method for
proving correctness for this set of benchmarks: verification is achieved in under 10
seconds for 15 of the 22 examples, with only Euler complex taking longer than two
minutes to check. The normalize and Euler complex benchmarks require the largest
values for D, and result in the largest SAT instances for the correct programs, taking
the longest time to verify. The Julia benchmark contains a loop for which the number
of iterations is a fixed parameter n, the columns of a raytraced image to be computed by
one SPE. For this example, k-induction succeeds with k = n+5 (the results in Figure 3
are for the case where n = 2). In Figure 4, we illustrate the scalability of k-induction
by plotting the time taken for verification of the Julia benchmark against the size of k
when we vary parameter n between 1 and 25. Growth is less than cubic, showing that
our k-induction method scales well.

With the exception of Julia, bug-finding is fast, taking less than 4 seconds. The Ju-
lia benchmark is the only example where the bug leads to unbounded issuing of non-
interfering DMAs. Thus an assertion fails only when an attempt is made to issue a DMA
operation when 32 operations are already pending. This situation requires a large search
depth to detect, resulting in a SAT instance with more than 1.5 million variables which
takes considerable time to solve. The “bounded lifetimes” heuristic of §5.2 can be used
to short-circuit the bug-finding process for this example. Requiring that no DMA pends
for more than three loop iterations (which is the case for the correct version of this
benchmark), bug-finding takes just 1.88 s, requiring a search depth of 901.
Comparison with predicate abstraction The translation implemented by SCRATCH op-
erates at the level of control flow graphs. In order to compare with other tools, we have
hand-translated three of our benchmarks, 1-buf, 2-buf and 3-buf, into C programs that
track DMA operations as described in §4. We aimed to compare with BLAST [2] and
SATABS [6] but were unable to obtain results using BLAST due to a bug in the tool,
which we have reported to the BLAST developers.

Figure 5 shows results for proving correctness and finding bugs using SATABS, with
Cadence SMV as a back-end model checker. For each example, we show the number
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Correct Buggy
Benchmark iterations time SCRATCH speedup iterations time SCRATCH speedup

1-buf 15 9.49 23.14 × 3 1.25 2.91 ×
2-buf >100 >1352.43 >417.78 × 20 33.62 59.97 ×
3-buf >100 >4344.98 >120.9 × 69 4969.03 6641.47 ×

Fig. 5. Results applying CEGAR-based verification to three of the Cell SDK examples using
SatAbs, in comparison to bounded model checking with k-induction using CBMC

of refinement iterations required (iterations), the time taken for verification (time), and
the speed-up factor obtained by using SCRATCH over SATABS (obtained by comparing
with the results of Figure 3). For all three examples, SATABS is eventually able to
find the bug, but is three orders of magnitude slower than SCRATCH when applied to
3-buf . The abstraction-refinement process leads to a conclusive verification result when
applied to the correct version of 1-buf, but is an order of magnitude slower than our
k-induction technique. SATABS was not able to prove correctness for correctness of
2-buf or 3-buf within 100 refinement iterations.

Comparison with IBM Race Check library. The IBM Cell SDK [18] comes with a li-
brary for detecting DMA races [17] at runtime. The library maintains a log of pending
operations, checking each new operation against entries in the log. If a DMA race is
detected, then an error message is written to the console.

Using a Sony PlayStation 3 console, which is equipped with a Cell processor, we
tested the Race Check library on each of our buggy examples. DMA races are detected
for all but three benchmarks, and race detection takes less than 0.1 s in each case. The
bug in cpaudio was not detected since the example runs on a specific input file that does
not expose the bug. The Julia bug, where more than 32 DMA operations may be simul-
taneously pending, is beyond the scope of the library. Although the buggy version of
1-buf I/O crashes when executed on the Cell hardware, the Race Check library does not
detect the DMA race responsible for this crash. This false negative appears to be a bug
rather than a fundamental limitation, since 1-buf I/O is similar to examples where the
Race Check library successfully detects DMA races. Note that runtime race detection
cannot be used to prove absence of DMA races, unlike our k-induction method.

7 Related Work

The concept of k-induction was first published in [24,4], targeting the verification of
hardware designs represented by transition relations (although the basic idea had al-
ready been used in earlier implementations [20] and a version of one-induction used
for BDD-based model checking [8]). A major emphasis of these two papers is on the
restriction to loop-free or shortest paths, which we do not consider in our k-induction
rule due to the size of state vectors and the high degree of determinism in software pro-
grams. Several optimisations and extensions to the technique have been proposed, in-
cluding property strengthening to reduce induction depth [25], improving performance
via incremental SAT solving [9], and supporting verification of temporal properties [1].
Applications of k-induction have focused exclusively on hardware designs [24,4,20]
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and synchronous programs [14,13]. A principle related to k-induction has also been
used for circular reasoning about liveness properties [21]. To the best of our knowl-
edge, there has been no previous work on applying k-induction to imperative programs
comparable to our procedure in §5.

Techniques for detecting data races in shared memory multithreaded applications
have been extensively studied. Notable static methods are based on formal type sys-
tems [11], or use classic pointer-analysis techniques; the latter approach is used by tools
such as RACERX [10] and CHORD [22]. The ERASER tool [23] uses binary rewriting to
monitor shared variables and to find failures of the locking discipline at runtime. Other
dynamic techniques include [12], which is based on state-less search with partial-order
reduction, and [15] which is based on a partial-order reduction technique for SystemC
similar to the method of Flanagan and Godefroid [12].

None of these race detection techniques are applicable to software for heterogeneous
multicore processors with multiple memory spaces. The only race detection tool we
are aware of which is geared towards heterogeneous multicore is the IBM Race Check
library [17], which we compare with in §6. The speed of runtime race detection with this
library is attractive, but requires access to commodity hardware and can only be used to
find bugs which are revealed by a particular set of inputs. In contrast, our k-induction
technique can prove absence of DMA races, and BMC is able to detect potential races
by assuming that input parameters may take any value.

8 Summary and Future Work

We have contributed an automatic technique for analysing DMA races in heterogeneous
multicore programs which manage scratch-pad memory. At the heart of our method
is a novel formulation of k-induction. We have demonstrated the effectiveness of this
technique experimentally via a prototype tool, SCRATCH.

We plan to extend this work in the following ways. We intend to generalise and
make precise our intuitions as to why k-induction works well for DMA-based pro-
grams. Our vision is a set of conditions for identifying classes of programs amenable
to verification by k-induction, thus making the technique more broadly applicable for
software analysis. SCRATCH focuses on analysing DMA races for accelerator memory
by analysing accelerator source code in isolation. It is not possible to check meaningful
properties of host memory without some knowledge of how this memory is structured.
To check DMA races for host memory we plan to design a method which analyses
host and accelerator source code side-by-side. A further challenge is the problem of
DMA race checking between concurrently executing accelerator cores in a heteroge-
neous system. A starting point towards this goal could involve combining our methods
with adapted versions of race checking techniques for shared memory concurrent soft-
ware (cf. §7).

Acknowledgement. We are grateful to Matko Botinčan, Leopold Haller and the anony-
mous reviewers for their comments on an earlier draft of this work.
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Abstract. The typical proof of linearizability establishes an abstrac-
tion map from the concurrent program to a sequential specification, and
identifies the commit points of operations. If the concurrent program uses
fine-grained concurrency and complex synchronization, constructing such
a proof is difficult. We propose a sound proof system that significantly
simplifies the reasoning about linearizability. Linearizability is proved by
transforming an implementation into its specification within this proof
system. The proof system combines reduction and abstraction, which in-
crease the granularity of atomic actions, with variable introduction and
hiding, which syntactically relate the representation of the implemen-
tation to that of the specification. We construct the abstraction map
incrementally, and eliminate the need to reason about the location of
commit points in the implementation. We have implemented our method
in the QED verifier and demonstrated its effectiveness and practicality
on several highly-concurrent examples from the literature.

1 Introduction

Linearizability is a well-known correctness criterion for concurrent data-structure
implementations [1]. A concurrent implementation, denoted Impl, is said to be
linearizable with respect to a sequential specification, denoted Spec, if every
concurrent operation op of Impl takes effect atomically between its call and
return points, where the correct effect is described by a sequential operation op′

in Spec.
The typical proof of linearizability establishes an abstraction map, from Impl-

states to Spec-states [2], and shows that only one action of op, called the commit
action, is mapped to op′, and other actions are mapped to stuttering (identity)
transitions in Spec. Under fine-grained concurrency control, constructing such
a proof requires considerable expertise. First, identifying the commit action be-
comes nontrivial when op is written in terms of many small actions that make
visible changes to the state. It further complicates the analysis when the commit
point is determined at runtime depending on thread interleavings. Second, while
the abstraction map relates Impl-states to Spec-states, it must also filter out the
effects of the partially completed operations of Impl on the state except for the
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commit action. This includes completing partial operations or rolling back the
effects of these operations back to a clean state [3].

In this paper, we present a new method for proving linearizability of programs
with fine-grained concurrency. Our method permits more tractable proofs by
eliminating the above difficulties of constructing an abstraction map and not
requiring the identification of the commit points. In [4], we showed that by
interleaving reduction with abstraction, we can increase atomicity to the point
that assertions in a concurrent program can be verified by sequential (local)
reasoning. In this work, we argue that program rewriting guided by atomicity is
an effective method for proving linearizability and present a sound proof system
and a supporting tool that realize this method in a formal and practical setting.

We prove that Impl is linearizable with respect to Spec, by transforming Impl
to Spec via a sequence of phases. In a reduction phase, we alternate reduction and
abstraction to mark a set of sequentially composed actions as atomic. These ac-
tions are collected together, and the effects of thread interleavings are eliminated.
In a refinement phase, we couple variable introduction and variable hiding, in
order to make the code closer to the specification. These techniques provide us
with the ability to syntactically relate implementation of a data structure to
a specification with a different representation. We also provide the soundness
guarantee that, the proof transformations preserve the behaviors of the original
program. Thus, one can simplify the program by growing atomic blocks and
continue the linearizability proof with another method, e.g., separation logic [5].

Interleaving reduction and refinement phases supports the incremental con-
struction of the abstraction map. By increasing atomicity, a reduction phase
enables a following refinement phase to implicitly establish a simple and clean
abstraction map towards the specification. A refinement phase also helps to
improve a following reduction phase by eliminating superficial conflicts: Two
equivalent operations might conflict on low-level (implementation) variables but
this does not necessarily correspond to real conflicts in terms of the final specifi-
cation. Our solution to this issue indirectly introduces a semantic hierarchy into
mover checks in reduction, which is not particular to linearizability and is likely
to be useful in any kind of reduction proof.

We have implemented our method in the QED verifier. We demonstrate the
effectiveness and practicality of our method by proving linearizability of several
tricky examples from the literature. All proofs are available online and repro-
ducible using QED.

1.1 Related Work

Refinement between a concurrent program and its sequential specification is well-
studied [2,6,7,8]. Previous work showed that, under certain conditions, auxiliary
variables enable construction of an abstraction map to prove refinement [2,6].
However, in practice writing an abstraction map for programs with fine-grained
concurrency remains a challenge since there are a large number of cases to con-
sider. [3] used a complex abstraction map, called aggregation function, that com-
pletes the atomic transactions that are committed but not yet finished. The
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refinement proofs in [1,9,10,11], despite being supported by automated proof
checkers, all require manual guidance for the derivation of the proof, requiring
the user to manage low-level logical reasoning. On the other hand, in our method
the user guides the proof via code transformations at the programming language
level. Recently, [5] provided a tool that automates the derivation of the proof
using shape abstraction. To our knowledge, its automating ability is limited to
linked-list based data structures and it still requires identification of the possible
commit points.

Owicki-Gries [12,1] and rely-guarantee [13] methods have been used in refine-
ment proofs. However, in the case of fine-grained concurrency, deriving the proof
obligations in both approaches requires expertise. The idea of local reasoning is
exploited by separation logic [14] which is not particularly useful for shared ob-
jects with high level of interference. In these cases, we show that abstraction is
an important tool to reduce the effects of interference.

Wang and Stoller [15] statically prove linearizability of the program using its
sequentially executed version as the specification. Their notion of atomicity is
defined over a fixed set of primitives, which is limited in the case of superficial
conflicts. On the other hand, our notion of atomicity is more general and sup-
ported by abstraction to prove atomicity even under high level of interference.
They provided hand-crafted proofs for several non-blocking algorithms, and our
proofs are mechanically checked. In [16], Groves gives a hand-proof of the lin-
earizability of the nonblocking queue, by reducing executions the fine-grained
program to its sequential version. His use of reduction is non-incremental, and
must consider the commutativity of each action by doing a global reasoning,
while our reasoning is local.

2 Motivation and Overview

Our running example is a multiset of integers. Figure 1 shows the concurrent im-
plementation (Impl), and the sequential specification (Spec), of InsertPair and
LookUp operations1. The instruction assume φ blocks until φ becomes true, and
havoc x assigns a nondeterminstic value to x. Our goal is to verify linearizability
of Impl with respect to Spec.

Spec uses the variable S, which maps each integer to its cardinality in the
multiset. Initially, S is empty, so S[x]==0 for every integer x.

Impl contains an array M of N slots. For each slot, the elt field stores an integer,
and the stt field indicates the status of the slot. The atomic FindSlot operation2

allocates an empty slot by setting its stt field to reserved, and returns its index.
FindSlot fails and returns -1 if it cannot find any empty slot. The lock of each slot
is acquired and released separately by lock and unlock operations, respectively.

1 We omit the Insert operation to simplify the explanation.
2 The original implementation of FindSlot uses fine-grain locking, and traverses the

array using a loop similar to that of LookUp. In order to simplify the explanation, we
use a version of FindSlot that has already been transformed using our proof steps.
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Implementation (Impl)
enum Status = { empty,reserved,full };
record Slot { elt: int, stt: Status };
var M: array[0..N-1] of Slot

LookUp(x:int) returns(r:bool)
var i: int;

1 for (i := 0; i < N; i++) {
2 lock(M[i]);
3 if (M[i].elt==x && M[i].stt==full){
4 unlock(M[i]);
5 r := true; return;
6 } else unlock(M[i]);
7 }
8 r := false;

atomic FindSlot(x:int) returns (r:int)
1 if (forall 0<=i<N. M[i].stt != empty) {
2 r := -1;
3 } else {
4 assume (0<=r<N && M[r].stt==empty);
5 M[r].stt := reserved;
6 }

InsertPair(x:int, y:int) returns (r:bool)
var i,j: int;

1 i := FindSlot(x);
2 if (i == -1) {
3 r := false; return;
4 }
5 j := FindSlot(y);
6 if (j == -1) {
7 M[i].stt := empty;
8 r := false; return;
9 }

10 M[i].elt := x;
11 M[j].elt := y;

12 lock(M[i]);
13 lock(M[j]);
14 M[i].stt := full;
15 M[j].stt := full;
16 unlock(M[i]);
17 unlock(M[j]);
18 r := true;

Specification (Spec)
var S: array [int] of int;
atomic LookUp(x:int) returns (r:bool)
r := (S[x] > 0);

atomic InsertPair(x:int, y:int) returns (r:bool)
if(r) { S[x] := S[x] + 1; S[y] := S[y] + 1; }

Fig. 1. The concurrent implementation and the sequential specification of multiset

A typical linearizability proof establishes an abstraction map that relates the
slots M of Impl to the map S of Spec. Let |A| denote the cardinality of the set A.
The following abstraction map expresses the programmer’s design intent clearly:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|

In words, for each integer x, the number of slots i in Impl with M[i].elt==x

and M[i].stt==full represents S[x] in Spec. When the proof is done at finest
granularity of concurrency, more complicated variants of this abstraction map
has to be used. In the following, we envision such a proof, and highlight com-
mon difficulties. We then illustrate how our proposed approach alleviates these
difficulties and allows the proof to use the above map.

2.1 Challenges in a Typical Refinement Proof for Multiset

Abstraction maps and commit points. Many techniques work by first
selecting a commit point in every operation. The most likely choice for the
commit point for InsertPair is line 16, since releasing the first lock makes the
inserted element M[i].elt visible to other threads. Consider an abstraction map
from Impl to Spec and suppose that line 16 of InsertPair is executed by Impl.
This transition must be mapped to a single transition that increments S[x]

and S[y] atomically. As a first try, let us consider the simple abstraction map
introduced above:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|
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This map does not work with this choice of commit point, because when lines
14 and 15 of InsertPair are executed, S[x] and S[y] are incremented, but the
execution has not reached the commit point yet. In addition, the updates that
are propagated to S are not atomic. Our next, slightly more sophisticated map
below does not update S[x] and S[y] while the locks to these cells are held.
(HeldBy(M[i],t) is true when thread t is holding the lock of M[i]):

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full && !HeldBy(M[i],t)}|

The problem with this map is that every slot locked by a thread would be
excluded from S. As a result, at line 16 (the commit point) the map would
increment S[x] but not S[y] since M[j] is still locked. Thus, this map still does
not accomplish the atomic specification state update we are after. The right map
has to complete this partial update at the commit point by incrementing S[y]

as well although the lock of M[j] is still held.
We next try different selections of commit points: lines 14, 15 or 17. For each of

these choices, in order to produce the intended specification state and avoid non-
atomic updates to it, an abstraction map must “roll back” effects of executions
of InsertPair that have not reached their commit point, and must “complete”
the effects of others that are past their commit point but have not yet finished.
To accomplish this, the map must refer to not only the locking state but also
the program counters of all threads.

Non-fixed commit points. Another issue that complicates the linearizability
proof for multiset is that the commit action of LookUp is not fixed, but depends
on the concurrently executing insertions by other threads. If LookUp(x) returns
true its commit action is at line 3, where it finds out that the slot being visited
contains x and is valid. When LookUp(x) fails, its commit point must be chosen
as the first read of a slot it performs or earlier. This is because, in the absence
of a Delete operation, it is possible that x gets inserted into a slot M[i], after
LookUp visits the ith slot and fails to find x, therefore, the commit point cannot
be past the first read of a slot. Techniques that depend on the existence of a
fixed commit point would be ineffective in such situations [13].

2.2 Proof by Reduction and Abstraction

Observe that the code blocks between lines 12-17 of InsertPair is atomic, i.e.,
any execution in which the actions of this block are interleaved with actions
from other threads can be transformed into one in which actions of the commit
block are contiguous. The technique we present allows us to express this fact and
use it in a sound manner in a refinement or linearizability proof. Being able to
treat the commit block as a single atomic action eliminates all of the potential
difficulties outlined above.

In our method the proof is constructed by transforming Impl to Spec, both
shown in Figure 1. This is done through a reduction phase followed by a re-
finement phase. In the reduction phase, we reduce the bodies of InsertPair and
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LookUp to single atomic actions. This phase is guided by a simple hint about the
locking discipline (see [17] for details of automating reduction).

In order to handle the non-fixed commit points of LookUp, we apply a trans-
formation to separate its succeeding and failing executions. Since each failing
iteration of LookUp is a left-mover, the failing branch of LookUp trivially reduces
to a single action. For the successful branch, we apply an abstraction to the fail-
ing iterations that makes them also right-movers, and combine the abstracted
iterations with the final, successful iteration. This reduces the successful branch
into an atomic action. At the end, we obtain LookUp as a single atomic action
that summarizes both successful and failing executions of the original code.

After transforming InsertPair and LookUp to single atomic actions, the locking
state becomes unnecessary. We use variable hiding to clean up the calls to lock

and unlock. Finally, we arrive at the representation of the multiset in Spec in
three proof steps. First, we introduce the Spec variable S to the current version
of the program. Then, we add (and prove) the following invariant, which links
the new variable to the array M:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|

Recall that the above invariant establishes the simplest abstraction map that
reflects the programmer’s design intent. The invariant allows us to add the as-
signments S[x] := S[x] + 1; and S[y] := S[y] + 1; at the end of InsertPair.
We follow the introduction of S with a variable hiding step in which we replace
the bodies of InsertPair and LookUp with the corresponding bodies in Spec (Fig-
ure 1). Our soundness theorems given in Section 5 guarantee that transforming
Impl to Spec using our rules implies the linearizability of Impl.

What is noteworthy about the proof we outlined is that it handles two separate
concerns in separate proof steps: 1) concurrency control using locking and the stt

field, and 2) relating the array-based representation of Impl to the representation
in Spec. This example does not illustrate the use of variable hiding to eliminate
superficial conflicts. In Section 6 we provide an example that does.

3 Concurrent Programs: Syntax and Semantics

Program. A program P is a tuple P = 〈GlobalP ,ProcP 〉. GlobalP is the set of
uniquely-named global variables. ProcP is a set of procedures. A procedure is a
tuple 〈ρ, localρ, bodyρ〉, where ρ is the name, localρ is the set of local variables,
and bodyρ is the body of the procedure.

We distinguish the input variables
−→
inρ ⊆ localρ and the output variables−→

outρ ⊆ localρ. The tuple 〈ρ,
−→
inρ,
−→
outρ〉 is called the signature of the procedure.

The signatures of the procedures in Proc form the signature of the program,
denoted Sig(P). We employ the convention that the variables in

−→
inρ and

−→
outρ

are read-only and write-only, respectively, while the rest of the variables in localρ
can be both read and updated.

We use VarP to denote GlobalP ∪
⋃

ρ∈Proc localρ. We assume that each local
variable is used in a unique procedure. Var ′

P consisting of the primed version
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of each variable in VarP . We omit the subscripts when the program and the
procedure are clear from the context.

Execution model. Let Tid be the set of all thread identifiers. For simplicity of
presentation, we assume that procedure calls are inlined properly, assuming no
recursion in the call chain. In general, our method applies to the inter-procedural
case allowing recursion [4].

Without loss of generality, each thread calls one procedure ρ from Proc, and
terminates when ρ returns. Statements of the procedures may refer to the current
thread id through the special variable tid ∈ Global , whose domain is Tid .

Syntax. We assume that each atomic statement α, which we call an (atomic)
action, is in the form: assert a; p. Let ρ be the procedure whose body contains α,
and V = Global ∪ localρ. The assert predicate a be over only unprimed variables
from V . The transition predicate p is over both primed and unprimed variables
in V ∪ V ′. For any action α, let φα and τα denote its assert and transition
predicates. For instance, φα = a and τα = p, for α given above.

We use sequential composition (;), choice (�) and loop (�) operators to form
compound statements. We also define the nullary action stop, which appears only
at runtime and intuitively marks the end of fully executing a statement.

Program states. A program state s is a pair consisting of
– a variable valuation σs that maps a thread id and a variable to a value, such

that σs(t, g) = σs(u, g) for all states s and thread id’s t, u, whenever g is a
global variable.

– a code map εs that keeps track of a (compound) statement for each thread,
such that εs(t) = c means that at program state s, the remaining part of the
program to be executed by thread t is given by c.

A program state s is called initial if ∀t ∈ Tid . ∃ρ ∈ Proc. εs(t) = bodyρ, i.e.
every thread is about to call a procedure. State s is called final if εs(t) = stop,
for all t ∈ Tid . We write Initial(s) (resp. Final(s)) to denote that s is an initial
(resp. final) state.

Let σs|V denote the projection of valuation σs on V ⊆ Var . Define s |V to be
the program state (σs|V , εs). This definition also pointwise applies to collections
of states.

Predicates over program variables. For an assert predicate x, let x[t] denote
the predicate in which all free occurrences of tid is replaced with t. We say that
a program state s satisfies x[t], denoted as s � x[t] or as x[t](s), if x[t] evaluates
to true when all free occurrences of each unprimed variable v is replaced with
σs(t, v). An assert predicate is called a state predicate if it does not contain any
free occurrence of tid.

Similarly, the pair of program states (s1, s2) satisfies a transition predicate
p[t], denoted as (s1, s2) � p[t] or as p[t](s1, s2), if p[t] evaluates to true when each
unprimed variable v (resp. v′) is replaced with σs1 (t, v) (resp. σs 2(t, v)).

Let fv(p) be the set of free variables in the (state or transition) predicate p.
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Execution semantics. We assume a sequentially-consistent memory model.

For thread t and γ ∈ Atom, (t, γ) is called a transition label. We say s
(t,α)−−−→ s′

holds when t can execute α next (in which case s′ is a (t, α) successor3 of s), all
other threads do not update their control flow, all local variables of other threads
remain the same, the global variables and local variables of t are updated so that

the transition predicate of α is satisfied. Formally, s
(t,α)−−−→ s′ if (s, s′) � τα[t] and

for all u �= t and for any local variable x, σs(u, x) = σs′ (u, x).

Run. A run r of the program is a sequence of state transitions:

r = r1
(t1,α1)−−−−→ r2

(t2,α2)−−−−→ · · · (tn−1,αn−1)−−−−−−−−→ rn

For the definitions that follow, we fix the run r above. Let T id(r) denote the
set of threads occurring in r. Let ri denote the ith program state, and r(i), the
ith transition label (ti, αi) in r. For a state predicate φ, we say that r is a run
of P from φ if Initial(r1) and r1 � φ.

The run is maximal if rn cannot make any transition. Henceforth, we will
only consider maximal runs.

Trace. A trace is a sequence of transition labels, l = l1 . . . lk. The trace moves
a state s1 to sk+1, written s1

l−→ sk+1, if there is a run r of P over l, such that
rj = sj , for all 1 ≤ j ≤ k + 1 and ri

li−→ ri+1.

Violation-freedom. A run r of P from φ is called a violation if ¬φα[t](rk)
evaluates to true for some (t, α) ∈ next(rk). Intuitively, a violation is a run of
P that starts from an initial program state s1 and reaches a program state sk

which violates the assert predicate, φα, of an action α which thread t can execute
at state sk. A run is said to be successful if it is not a violation. We indicate a
successful run as s1

l−→ s2 and a violation as s1
l−→ error.

4 Program Transformations

In this section, we formalize our notion of proof and introduce the rules for the
proof calculus. A proof state is the pair (P , I), where P is a program, and I is
a state predicate, called the inductive invariant of the program. We require that
for every proof state (P , I), all the atomic actions of P preserve I. An atomic

action α preserves I, written α � I, if s1
(t,α)−−−→ s2 and s1 � I imply s2 � I.

A proof consists of rewriting the input program, denoted P1, iteratively so
that, in the limit, one arrives at a program, denoted Pn, that can be verified by
sequential reasoning methods. Formally, the proof is expressed as (P1, true) ��	
(P2, I2) ��	 · · · ��	 (Pn, In) Each proof step is governed by a proof rule, which
we present below.
3 Our technical report [18] contains a more elaborate discussion of the operational

semantics of our formal language.
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The following proof rule states the general form of updating I, replacing it
with a stronger invariant.

Rule 1 (Invariant). Replace invariant I1 with I2 if α � I2 for all the actions
α in P, and I2 ⇒ I1.
The basic idea in reduction and abstraction is to replace an action with another
action that simulates the former.

Definition 1 (Simulation). Let α, β be actions, t be an arbitrary thread id.
We say β simulates α at proof state (P , I), written (P , I) ! α � β, if both of
the following hold:

S1. (I ∧ ¬φα)⇒ ¬φβ S2. (I ∧ τα)⇒ (¬φβ ∨ τβ)

Intuitively, S1 states that if there is a violation with α, there has to be a violation
with β substituted in place of α. S2 states that for each violation-free run,
replacing α with β results in either a violation, or a violation-free run with the
same end state.

4.1 Reduction

Reduction, due to Lipton [19], creates coarse-grained atomic statements by com-
bining fine-grained actions. An action α can be combined with another action
if α is a certain kind of mover. A mover is an action that can commute over
actions of other threads in any run. We write (P , I) ! α : m to indicate that α
is m−mover in the proof state (P , I), where m ∈ {L, R}.

We decide that an action α is a mover by statically checking a simulation
relation, that states that commuting α with every β can lead to the same state
or goes wrong. An assert predicate x is p-stable, if ∀s, s′.x(s) ∧ p(s, s′)⇒ x(s′).

Let wp(p, x), the weakest (liberal) pre-condition of predicate x for transition
predicate p, stand for all states which cannot reach a state where x evaluates to
false after executing p. Formally, wp(p, x) = {s | ∀s′. p(s, s′) ⇒ x(s′)}. For two
transition predicates p and q, define their composition p · q, as the transition
predicate p · q = {(s1, s2) | ∃s3. p(s1, s3) ∧ q(s3, s2)}. The operator � � expresses
the result of combining two actions to one atomic action.4

�α; β� = assert (φα ∧ wp(τα, φβ)); (τα · τβ) �α�β� = assert (φα ∧ φβ); (τα ∨ τβ)

Definition 2 (Left-mover). Action α is a left-mover in proof state (P , I),
denoted (P , I) ! α : L, if the following holds for every action β in P and every
pair of distinct thread ids t and u: (P , I) ! �β[u] ; α[t]� � �α[t] ; β[u]�.

Definition 3 (Right-mover). Action α is a right-mover in proof state (P , I),
denoted (P , I) ! α : R, if, for every action β in P, and every pair of distinct
thread ids t and u: (P , I) ! �α[t] ; β[u]� � �β[u] ; α[t]� and φβ [u] is τα[t]-stable.
4 We assume that a transition predicate τα[t] can only change the variables in the

scope of t and that if t and u are running the same procedure, local variables are
suitably renamed to prevent false conflicts.
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The reduction rules below define the conditions under which non-atomic state-
ments are transformed to atomic actions. We omit the rules about procedure
calls and parallel composition which are similar to those of [4].

Rule 2 (Reduce-Sequential). Replace occurrences of α ; γ with �α ; γ� if
either (P , I) ! α : R or (P , I) ! γ : L.

Rule 3 (Reduce-Choice). Replace occurrences of α � γ with �α � γ�.

Rule 4 (Reduce-Loop). Replace occurrences of α� with β if the following
hold:

L1. (P , I) ! α : m s.t. m ∈ {R, L} L2. β � I
L3. φβ ⇒ τβ [Var/Var ′] L4. (P , I) ! �β ; α� � α

4.2 Abstraction

The purpose of the abstraction rule is to replace an action with another action
An abstraction step consists of replacing an action α with another action β,
which in principle leads to less interference with other actions.

Rule 5 (Abstraction). Replace the action α with action β if β � I and
(P , I) ! α � β.

This rule is usually applied for an action asserta; p by replacing it with 1)
assert b; p such that b ⇒ a or 2) with assert a; q such that p ⇒ q. While the
former corresponds to adding extra assertions to the action, the latter adds
more (non-deterministic) transitions.

4.3 Variable Introduction and Hiding

Intuitively, variable introduction rewrites some actions in the program so that
these can refer to a new (history) variable. Variable hiding is the dual of variable
introduction; each action is rewritten so that it does no longer refer to the
hidden variable. Hiding a variable also requires quantifying out the variable in
the invariant.

In order to ensure soundness, in both cases, we need a relation between actions
over different sets of variables. For this, we extend our simulation relation (�)
for each rule. In addition, we require that the input and output variables of
the procedures (

−→
inρ,
−→
outρ) are fixed during the proof; the rules below are not

applicable to these variables.

Rule 6 (Add-Variable). Add the new variable v to VarP , and replace every
action α with β whenever (P , I) ! α �+v β, which holds if the following are
both valid:

A1. (I ∧ ¬φα)⇒ (∀v . ¬φβ) A2. (I ∧ τα)⇒ (∀v . ¬φβ ∨ (∃v ′. τβ))
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Rule 7 (Hide-Variable). Remove the existing variable v from the program,
and replace the invariant I with ∃v . I. Replace every action α with β whenever
(P , I) ! α �−v β, which holds if the following are both valid:

H1. (∃v . I ∧ ¬φα)⇒ ¬φβ H2. (∃v , v ′. I ∧ τα)⇒ (¬φβ ∨ τβ)

Fix a thread t and a state s. In both of the rules, the first condition (A1,
H1) states that violations are preserved. The second condition (A2, H2) states
that transitions (over the common variables of α and β) are either preserved or
additional violations are introduced.

5 Soundness Theorems

Given a proof (P1, I1) ��	 · · · ��	 (Pn, In), we now provide the soundness
theorems. Each theorem relates Pn to P1, providing a soundness guarantee for
a particular use of our method. Due to lack of space, we provide the proofs in
our technical report [18].

5.1 Proving Assertions

The first theorem is an extension of the main soundness theorem in [4]. Intu-
itively, the theorem states that proof steps preserve violations, and initial-final
state pairs when the output program is good from the final invariant.

Good and Bad. In the following, we define Good(P , I) as the set of pre- and
post-state pairs associated with succeeding (maximal) runs of program P from
states satisfying I. Bad(P , I) is the set of pre-states associated with violations.
Formally,

Good(P , I) = {(s1, s2) | Initial(s1), s1 � I, ∃l. s1
l−→ s2, F inal(s2)}

Bad(P ,I) = {s1 | Initial(s1), s1 � I, ∃l. s1
l−→ error}

P is said to be good from I if Bad(P , I) = ∅; it is called bad from I, otherwise.

Theorem 1. Let (P1, I1) ��	 · · · ��	 (Pn, In) be a sequence of proof steps. Let
V = VarP1 ∩ VarPn and X = (VarP1 ∪ VarPn)\V. The following hold:

C1. Bad |V (P1, ∃X. In) ⊆ Bad |V (Pn, ∃X. In)
C2. ∀(s1, sn) ∈ Good |V (P1, ∃X. In) :

a. s1 ∈ Bad |V (Pn, ∃X. In) or b. (s1, sn) ∈ Good |V (Pn, ∃X. In)

Note that, since the input and output variables of procedures are fixed during
the proof, so the set V above will always be nonempty. A corollary of the above
theorem is that, if Pn is good from In, then P1 is good from In. This means
that, one can prove the assertions in P1 by gradually obtaining programs with
coarser-grained concurrency using our proof rules.
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5.2 Proving Linearizability

In this section, we establish a link between P1 and Pn in the context of proving
linearizability. For this, we first define behavioral simulation, a special kind of
simulation that relates two programs through their observable behaviors over
procedure input and output values.

Behavioral simulation. Let r = s1
l−→ sn be a (maximal) run of the program.

Letρbe theprocedureexecutedby t.We call the tuple (t, ρ, σs1 (t,
−→
inρ), σsn(t,

−→
outρ))

the behavior of t in r and denote it by beh(r, t). The behavior includes the name of
theprocedure calledby t,alongwith thevaluesof the inputand theoutputvariables
of the procedure5. We write Beh(r) to denote {beh(r, t) | t ∈ T id(r)}.

We define fst(r, t) and lst(r, t) be the indices of first and the last actions of t in
r. Formally, with L = {i | r(i) = (t, α)}, fst(r, t) = min(L) and lst(r, t) = max(L).
Let $r be a partial order over Tid(r) ordering threads that do not execute
concurrently: t$r u if lst(r, t) < fst(r, u).

Definition 4. Let P and P ′ be two programs with Sig(P) = Sig(P ′), and let I be
a state predicate. Let X1 = fv(I)\VarP and X2 = fv(I)\VarP ′ . P ′ behaviorally-
simulates P from I, denoted P �I P ′ if for each maximal run r of program
P from ∃X1.I, there exists a maximal run r′ of P ′ from ∃X2.I such that 1)
Beh(r) = Beh(r′) and 2) $r ⊆ $r′

The following theorem connects behavioral simulation to the generic notion of
linearizability. We say P is linearizable to P ′ from I to restrict the definition
of linearizability to runs of P and P ′ from I. A program P is called an atomic
program if for every ρ ∈ ProcP , bodyρ is an atomic action.

Theorem 2. Let P ′ be an atomic program that is good from I. A program P is
linearizable to P ′ from I iff P �I P ′.

The following theorem states that each good program reached during the proof
behaviorally simulates the initial program.

Theorem 3 (Soundness). Let (P1, I1) ��	 · · · ��	 (Pn, In) be a sequence of
proof steps such that Pn is good from In. Then forall 1 ≤ i ≤ n, P1 �In Pi holds.

Theorems 2 and 3 provide two options for proving linearizability of P1 to the
intended specification from I, represented by an atomic program Pn. First, one
can complement another proof method with ours, by first performing the proof
(P1, true) ��	 · · · ��	 (Pk, I), and then applying her method to prove that
Pk is linearizable to Pn. Once the proof passes, this implies that P1 is also
linearizable to Pn, since our transformations preserve all the behaviors of the
program relevant to linearizability. Alternatively, s/he can keep transforming
(Pk, I) up to (Pn, I), and complete the full proof of linearizability in our system.
Note that, for the theorems to ensure soundness in these cases, s/he must also
prove that Pk (resp. Pn) is good from I. The latter is formalized by the following.

5 Notice that the first and the last states of the run provide us the values of
−→
inρ and

−→
outρ,

respectively.
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Corollary 1. Let (P1, true) ��	 · · · ��	 (Pn, I) be a sequence of proof steps,
such that Pn is an atomic program that is good from I. Then, P1 is linearizable
to Pn from I.

6 Implementation and Experience

We implemented our proof method in the QED verifier. QED accepts as input
a multithreaded program written in an extension of the Boogie programming
language and a proof script. All the transformations are applied automatically,
and when necessary, the preconditions of the transformations are checked, by
generating verification conditions and feeding them to the Z3 SMT solver. Using
QED, we mechanically proved the linearizability of the following programs:

– Lock-coupling linked list [13]
– Treiber’s non-blocking stack [20]
– Non-blocking and two-lock queues [21]
– Non-blocking mutex lock implementation adapted from [22]

For each data structure, we chose a generic specification as the target of the
proof, and were able to transform the program to the specification program
through few reduction and refinement phases. The QED tool and the proof
scripts of the above programs are available at http://qed.codeplex.com.

In the rest of the section, we overview the proof of the non-blocking queue,
and describe how coupling variable introduction and hiding helps us to cope with
superficial conflicts. This is an important limitation for reduction, and interest-
ingly, our standard notion of abstraction on the existing variables (Section 4.2)
does not help in this situation. Our solution to eliminating the conflict is to
hide the variables on which the conflict happens; but, differently from the stan-
dard abstraction, introducing new variables, which will carry enough (semantic)
information from the hidden variables and will not cause conflicts.

6.1 Non-Blocking Queue

Figure 2 shows the version of the non-blocking queue [21] after applying a reduc-
tion phase on the original implementation. Atomic action Do Dequeue removes an
element from the queue, and Do Enqueue appends a new element to the queue.
The implementation is lazy in that Do Enqueue does not update the Tail variable
after adding the new node. As a result, at any time Tail may point to any node
between Head and null. The actions labeled Move Tail and Update Tail try to
move the Tail towards the end of the list. This resembles relaxed balancing in
concurrent implementation of tree-like data structures, in which restructuring
the data structure is separated from actual operations, and delayed.

The predicate Reach(next,k,l,m) expresses that, from node k, following zero
or more next pointers, we first reach l and then m [23]. The Reach predicate gives
us the ability to do simple abstractions on actions accessing the list nodes. For
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Implementation (Impl)
record Node { data: int; next: Node; }
var Head, Tail: Node;

Dequeue() returns (x: int)
var tail: Node;
while(true) {

Move_Tail: atomic {
havoc tail;
assume Reach(next, Tail, tail, null)

&& tail != null;
Tail := tail;

}
} // end while

Do_Dequeue: atomic {
if (Head.next == null) {
x := null;
} else {
assume (Head != Tail);
Head := Head.next; x := Head.data;
}

}

Enqueue(x: int)
var node, tail: Node;
atomic {
node := new Node(x);
node.next := null;

}
while(true) {

Move_Tail:atomic {
havoc tail;
assume Reach(next, Tail, tail, null)

&& tail != null;
Tail := tail;

}
} // end while

Do_Enqueue: atomic {
assume (Tail.next == null);
Tail.next := node; tail := Tail;

}
Update_Tail: atomic {

if (Tail == tail) Tail := node;
}

Specification (Spec)
atomic Dequeue() returns (x: int)

if (Head.next == null) {
return null;
} else {
Head := Head.next; x := Head.data;
}

atomic Enqueue(x: int)
node := new Node(x);
node.next := null;
_Tail.next := node;
_Tail := _Tail.next;

Fig. 2. The reduced implementation of the non-blocking queue and its specification

example, a former abstraction step in the reduction phase replaces the action n

:= tail.next with the action havoc n; assume Reach(next,tail,n,n); while the
former is not mover, the latter is.

In order to apply reduction, the only option is to show that Move Tail is
a right-mover, since Do Enqueue and Do Dequeue perform the actual operations,
thus are not movers. Move Tail conflicts with Do Enqueue and Do Dequeue on Tail.
Notice that Move Tail performs an internal operation that does not affect the
semantics of the queue. Thus, these conflicts are superficial. Havocing Tail in
the conflicting actions, or hiding Tail are a valid proof steps, and would make
reduction pass. However, the resulting code would perform incorrect operation.

We eliminate the conflict by coupling the hiding of Tail with introducing
the history variable Tail of the same type. Differently from Tail, Tail always
points to the end of the queue. We then associate the existing variables with the
new variable Tail by the following invariant.

Reach(next, Head, Tail, Tail) && Reach(next, Tail, _Tail, null)

&& (_Tail != null) && (_Tail.next == null)

In order to satisfy the invariant, we add to the end of Do Enqueue the assign-
ment Tail := Tail.next. Once there is Tail to keep track of the end of the list,
we are ready to hide Tail. This is done by replacing the actions in the program
with actions that do not refer to Tail, but now uses Tail to access the end of the
linked list. Figure 3 shows the version of the program after hiding Tail. Notice
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record Node { data: int; next: Node; }
var Head, _Tail: Node;

procedure Dequeue()
var tail: Node;

while(true) {
Move_Tail: atomic { havoc tail; }
} // end while

Do_Dequeue: atomic {
if (Head.next == null) {
x := null;
} else {
Head := Head.next; x := Head.data;
}

}

procedure Enqueue(x: int)
var node, tail: Node;
atomic {
node := new Node(x);
node.next := null;

}

while(true) {
Move_Tail: atomic { havoc tail; }
} // end while

Do_Enqueue: atomic {
_Tail.next := node;
_Tail := _Tail.next;
havoc tail;

}
Update_Tail: atomic { assume true; }

Fig. 3. The version of the non-blocking queue after hiding Tail

that the new form of Move Tail does not perform any semantic operation in the
new program, and does not conflict with other actions. In addition, the actions
Do Enqueue and Do Dequeue now use Tail to correctly perform their operations.

The hiding step also includes existentially quantifying Tail in the invariant
given above. This produces the following invariant for the new program.

Reach(next, Head, _Tail, null) && (_Tail != null) && (_Tail.next == null)

We proceed with a reduction phase that combines the blocks into a single
action for each operation. The combined operations, together with the above
invariant (for simplicity, we omit parts of the representation invariant), give the
correct behavior of a sequential queue implementation. Corollary 1 ensures that
the original implementation in [21] is linearizable to this final program from
the invariant. Note that it also possible to continue the proof with an extra
refinement phase to prove the linearizability to a more generic specification of
the queue.
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Abstract. Intermediate languages are a paradigm to separate concerns in soft-
ware verification systems when bridging the gap between programming languages
and the logics understood by theorem provers. While such intermediate languages
traditionally only offer rather simple type systems, this paper argues that it is
both advantageous and feasible to integrate richer type systems with features like
(higher-ranked) polymorphism and quantification over types. As a concrete solu-
tion, the paper presents the type system of Boogie 2, an intermediate verification
language that is used in several program verifiers. The paper gives two encod-
ings of types and formulae in simply typed logic such that SMT solvers and other
theorem provers can be used to discharge verification conditions.

1 Introduction

Building a program verifier is a complex task that requires understanding of many do-
mains. Designing its foundation draws from domains like semantics, specifications,
and decision procedures, and constructing its implementation involves knowledge of
compilers and software engineering. The task can be made manageable by breaking it
into smaller pieces, each of which is simpler to understand. A successful practice (e.g.,
[11,4,5]) is to make use of an intermediate verification language [16,1,10].

The intermediate verification language serves as a thinking tool in the design of the
verifier front end for each particular source language. As such, it must provide a level of
abstraction that is high enough to give leverage to the front end. At the same time, there
is a risk that the general translations of higher-leverage features become too cumber-
some to sustain good decision procedure performance. Some higher-leverage features,
like a fancy type system, provide safety to the front end by restricting what intermediate
programs are admissible. At the same time, there is a risk that such restrictions lead to
cumbersome encodings in the front end, especially compared to the encodings that are
possible by directly using the more coarse-grained type system of a decision procedure.

In this paper, we introduce the type system of the intermediate verification language
Boogie 2 developed by the authors, the successor of BoogiePL [8,1]. Unlike its untyped
predecessor, whose type annotations were mainly used for some consistency checks,
Boogie 2 features an actual type system. Going beyond the Hindley-Milner style types
in the intermediate verification language Why [10], Boogie 2 features polymorphic
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maps, higher-rank polymorphism, and impredicativity, which are useful in modeling
the semantics of a type-safe object store (as in Spec# or Java).

In addition to introducing the polymorphic features of Boogie, we describe our trans-
lation of Boogie’s polymorphic logic into simply typed logic, which is used by many
satisfiability modulo theories (SMT) solvers that support the SMT-LIB format [2]. In
fact, we give two different translations into simply typed logic, and we present perfor-
mance figures from substantial benchmarks that compare these. The benchmarks come
from the Spec# program verifier [1], the VCC [5] and HAVOC [4] verifiers for C, and
Dafny [14], all of which build on Boogie. All of the benchmarks make extensive use
of so-called triggers required for e-matching [9], and our experiments give evidence to
that the triggers are properly maintained by our translations.

The contributions of our work are: (i) An impredicative type system for an interme-
diate verification language, featuring full higher-ranked polymorphism, (ii) two trans-
lations of the verification language, and especially its polymorphic maps, into simply
typed logic suitable for SMT solvers, (iii) experimental data comparing the performance
of the two translations with each other and with an (unsound) translation ignoring
types.

2 Boogie 2 Types and Expressions

A Boogie program consists of a set of mathematical and imperative declarations that
define a set of execution sequences. The Boogie program is correct if none of those
execution sequences contains an error state [13]. Programs can be written by hand, but
most Boogie programs are machine generated by various program verifiers to encode
the semantics of given source programs. For example, the source-language declaration
in Fig. 1 can be modeled in Boogie as shown in Fig. 2, where the object store is repre-
sented explicitly by a variable Heap whose type is a map from object references and
field names to values (we explain this example in more detail later).

For the purposes of this paper, one can think of the imperative features of Boogie
as convenient syntactic shorthands for writing Boogie expressions. Hence, we focus on
Boogie’s expressions and their types. For further details of the language, we refer to the
Boogie 2 language reference manual [13].

2.1 Type Declarations

The built-in types of Boogie are booleans (bool), mathematical integers ( int), and
bit-vector types of every size (bv0,bv1,bv2, . . .). In addition, there are map types,
which we describe below, and user-defined type constructors. A program can also de-
clare parameterized type synonyms, which are essentially like macros, thus providing
syntactic convenience but not adding to the expressiveness of the type system. A type
denotes a nonempty set of individuals, and the sets denoted by different types are dis-
joint. Each different parameterization of a type constructor yields a distinct type, each
denoting an uninterpreted set of individuals. For example, the type declarations in Fig. 2
introduce a nullary type constructor Ref and a unary type constructor Field . The sets
of individuals denoted by Ref , Field int , and Field Ref are all disjoint.
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class Person { int age; bool isMarried; }

Fig. 1. An example code snippet from a source program

type Ref ;
type Field α;
type HeapType = 〈α〉[Ref ,Field α] α;

const unique age : Field int;
const unique isMarried : Field bool;
var Heap : HeapType;

function IsWellFormed(HeapType) returns (bool);
const unique snapshot : Field HeapType;

Fig. 2. An example of how object-oriented program features, like those in Fig. 1, can be modeled
in Boogie (the language features used are introduced in detail in Section 2). Ref is a type and
Field is a unary type constructor. Type synonym HeapType is defined as the polymorphic map
type that represents the heap. IsWellFormed demonstrates that functions can take polymorphic
maps as arguments. For any r of type Ref , Heap[r , snapshot ] has type HeapType , illustrating
that polymorphic maps can be arbitrarily nested (an instance of impredicativity). The modifier
unique is used to say that the constant declared has a different value than all other unique
constants, which for the 3 constants here also follows from the fact that their types are different.

2.2 Expressions

Boogie expressions include variables and constants, function applications, logical,
arithmetic, and relational operators, as well as logical quantifiers, type coercions, and
map operations. All expressions are total: every well-typed expression yields some ap-
propriately typed value that is a function of its subexpressions. For the most part, typing
of expressions is obvious and straightforward. Let us describe the more salient features.

Polymorphic Functions, Quantifications over Types. Functions can be polymorphic,
that is, they can take type parameters. Analogously, the bound variables in universal and
existential quantifiers can range over both individuals (of specified types) and types.
Polymorphism is useful because it allows a user to provide an axiomatization of, say,
pairs that is independent of the pair element types, while maintaining the type guarantee
that different types of pairs are not mixed up.

For example, Fig. 3 declares a binary type constructor Pair , along with a function
Cons for constructing a pair and a function Left that extracts the left element of a pair.
Type parameters and bound type variables are introduced inside angle brackets, like in
C# or Java. A function declaration in Boogie only defines the signature of the function;
properties of functions can be defined by axioms. The figure includes an axiom that
defines the relationship between Cons and Left . Note that the quantification is over
any element types α and β and any elements a and b of those types. Hence, the axiom
applies generically to pairs with any element types.

The meaning of a function depends on its type-parameter instantiation. That is, a
polymorphic function f is really a family of functions f̄ , one for each possible instan-
tiation (e.g., fint , fRef ).

Type Coercions. Boogie infers instantiations for type parameters of function appli-
cations. Usually, they can be inferred from the types of the function’s arguments, but
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type Pair α β;
function Cons〈α, β〉(α, β) returns (Pair α β);
function Left〈α, β〉(Pair α β) returns (α);
axiom (∀ 〈α, β〉 a : α, b : β • Left(Cons(a, b)) = a );

type Sequence α;
function Length〈α〉(Sequence α) returns (int);
function EmptySequence〈α〉() returns (Sequence α);
axiom (∀ 〈α〉 • Length(EmptySequence() : Sequence α) = 0 );

Fig. 3. Examples of polymorphic functions and quantifications over types in Boogie. In the last
line, the quantifier ranges only over types, not over any individuals, and the type coercion makes
the application EmptySequence() well-typed.

sometimes it is also necessary to consider the context of the function application. In
particular, if a type parameter is used among the domain types in the function’s signa-
ture, then its instantiation in a function application can be inferred from the arguments.
But in the case that a type parameter is used only in the return type, then type inference
needs to consult the context. Type parameters that are not used in either the domain
types or the result type are not allowed.

For example, Fig. 3 declares a function that gives the length of a generic sequence.
Function EmptySequence returns a zero-length sequence of any type. Type parame-
ter α is used only in the return type of EmptySequence , which is common and use-
ful for this and similar functions. Hence, to infer the type parameter in an application
EmptySequence() , the context surrounding the application must be used.

An error is reported if an instantiation for type parameters cannot be determined
uniquely. To deal with such cases, the language offers a type coercion expression e : t ,
which has type t , provided t is a possible typing for expression e . For example, the
expression Length(EmptySequence()) is ill-formed because of the ambiguous type-
parameter instantiation; but with the type coercion in Fig. 3, the ambiguity is resolved.

Because the meaning of a polymorphic function is really that of a family of functions,
note that EmptySequenceint() has a different value than EmptySequenceRef () .

Maps. In addition to functions, Boogie offers maps. Like functions, maps have a list
of domain types and a result type and can be polymorphic. The difference is that maps
are themselves expressions (they are “first class”), unlike functions, which can appear
in an expression only when applied to arguments. This means that program variables
can hold maps (like Heap in Fig. 2).

Though they may have the appearance of higher-order values, maps are but first-order
individuals, and to “apply” them to arguments, one applies Boogie’s built-in map-select
operator, written with square brackets (to be suggestive of retrieving an element at a
given index of an array) [19]. For example, if m is a map of type [int,bool]Ref ,
that is, a map type with domain types int and bool and result type Ref , then the
expression m[5, false] denotes a value of type Ref . Due to maps, Boogie can in many
situations be used like a higher-order language (where functions can be passed around
as values), but still allows the use of efficient first-order reasoners.
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If m is an expression denoting a map, i is a list of expressions whose types cor-
respond to the domain types of m , and x is an expression of the result type of m ,
then the map-update expression m[i := x ] denotes the map that is like m , except that
it maps i to x [19]. Using common notation for arrays, the imperative part of Boogie
allows the assignment statement m[i ] := x ; as a shorthand for m := m[i := x ]; .

Boogie does not promise extensionality of maps, that is, the property that maps with
all the same elements are equal; for example, m and m[i := m[i ]] are not provably
equal, but they are provably equal at all values of the domains. From our experience,
extensionality is not required for most applications; the motivation to exclude exten-
sionality by default is the better performance of decision procedures for non-extensional
maps. Where extensionality is needed, users can supply the required axioms themselves.

A novel and key feature of maps in Boogie is that they can be polymorphic. To
motivate this feature, let us consider one of the most important modeling decisions that
the designer of a program verifier faces: how to model the memory operated on by the
source language. For example, for a type-safe object-oriented language, one may choose
to model the object store (the heap) as a two-dimensional map from object references
and field names to values [23,1,14]. Since the result type of such a map depends on
the selected field name, it is natural to declare the heap to be of a polymorphic map
type. (Without polymorphic maps, one either needs to introduce explicit cast functions
or split the one heap variable into several.)

As we already alluded to, Fig. 2 shows by example some Boogie declarations that
a verifier might use to encode the semantics of the object-oriented program in Fig. 1
(cf. [1,14]). In the example, Ref is used to denote the type of all object references,
Field α denotes the type of field names that in the heap retrieve values of type α , and
〈α〉[Ref ,Field α] α is the polymorphic map type of the heap itself. For instance, if r
is a reference, then Heap[r , age] is an integer and Heap[r , isMarried ] is a boolean.

Boogie’s type system allows advanced uses of polymorphic maps, which is useful
for the kind of semantic models one defines in a program verifier. For example, it is
common to want to define properties of heaps, for example distinguishing heaps that
satisfy some sort of well-formedness condition from heaps that do not. A natural way
to do that is to start by defining a function on heaps, like IsWellFormed in Fig. 2. This
is an example of a higher-rank type.

Type parameters of maps are like those of functions: each type parameter must be
used in either the domain types or the result type of the map type, and it is an error
if type inference cannot uniquely determine the instantiations of type parameters. And
as for functions, a polymorphic map is really a family of maps, one for each possible
type-parameter instantiation. For example, a map m of type 〈α〉[int]α really denotes
a family of maps m̄ , and mint[E ] has a different value than mbool[E ] . It should also
be noted that the types [α]T and 〈α〉[α]T are different: the first is a type with a free
type parameter α and can be instantiated to any (monomorphic) map type [s ]T , while
the second describes polymorphic maps from any type to T .

Equality among map types does not depend on the names or order of type parame-
ters. For example, the type 〈α, β〉[α, β]int is equal to 〈γ, δ〉[δ, γ]int . Polymorphism,
however, is significant: the types [int]bool and 〈α〉[α]bool are incompatible.
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Equality. Equality in Boogie is standard mathematical equality, but the typing of equal-
ity expressions in Boogie is more liberal than is absolutely the standard. The equality
expression E = F is allowed if there is some instantiation of enclosing type parameters
that makes the types of E and F equal. Let us motivate this typing rule.

A common way to specify the effects of a source-language procedure is to use a
modifies clause that lists the object-field locations in the heap that the procedure is
allowed to modify. The modifies clause is then encoded into Boogie as a procedure
postcondition that specifies a relation between the procedure’s heap on entry, written
old(Heap) , and its heap on return, written Heap (see, e.g., [14]). For instance, to
encode that a procedure’s effect on the heap in the source language is limited to p.age
and p.isMarried , one can in Boogie use a postcondition like

( ∀ 〈α〉 r : Ref , f : Field α • Heap[r , f ] = old(Heap[r , f ]) ∨
(r = p ∧ f = age) ∨ (r = p ∧ f = isMarried) )

In order to type check this expression, it is necessary for the type system to consider the
possible instantiation α := int for f = age and α := bool for f = isMarried ,
and Boogie does exactly that. Being liberal in this typing rule does not cause any
semantical problems in Boogie: because different types represent disjoint sets of in-
dividuals, an equation simply evaluates to false if the two sides of the equation eval-
uate to individuals of different types. For example, for the f in the quantifier above,
f = age ∧ f = isMarried type checks but always evaluates to false .

2.3 Formalization of the Type System and Type Checking

The abstract syntactic category of types is described by the following grammar:

Type ::= α | C Type∗ | 〈α∗〉 [Type∗]Type

in which C ∈ C ranges over type constructors (with a fixed arity arity(C )) and α ∈ A
over an infinite set of type variables. We assume that C always contains the pre-defined
nullary constructors bool, int,bv0,bv1,bv2, . . . . Only those types are well-formed
in which type constructors receive the correct number of argument types, and in which
type parameters of polymorphic map types occur in the map domain or result types.

For two types s , t ∈ Type , we write s ≡ t iff s and t are equal modulo renaming or
reordering of bound type parameters. A type substitution is a mapping σ : A → Type
from type variables to types. Substitutions are canonically extended on all types, assum-
ing that variable capture is avoided by renaming bound type variables when necessary.

Formalizing the typing of expressions, the judgment V � E : t says that in a context
with variable-type bindings V , expression E can be typed as type t . Figure 4 shows
the most important typing rules. All other operators are typed as in the rule for function
application. In the figure and the whole paper, F denotes the set of declared functions
and constants, whereas X denotes an infinite set of variables.

Note that for any type-correct program, all type-parameter instantiations have been
resolved. But this does not mean that the application of a polymorphic function or map
can easily be replaced by a specific monomorphic instance, because of quantifications
over types. For example, the application of EmptySequence in Fig. 3 is resolved to
EmptySequenceα , but α is a quantified type variable that refers to any type; hence, the
axiom says something about every member of the EmptySequence family.
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x �→ t ∈ V
V � x : t

V � E : t
V � E :t : t

f 〈ᾱ〉(s̄) returns (t) ∈ F
V � Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V � f (Ē ) : σ(t)
∗

V � E : s V � F : t
σ(s) ≡ σ(t)

V � E = F : bool

(V, x̄ �→ t̄) � E : bool Q ∈ {∀,∃}
V � (Q 〈ᾱ〉 x̄ : t̄ • E ) : bool

V � m : 〈ᾱ〉[s̄]t
V � Ei : σ(si) (for (Ei , si ) ∈ (Ē , s̄))

V � m[Ē ] : σ(t)
∗

V � m : 〈ᾱ〉[s̄ ]t V � F : σ(t)
V � Ei : σ(si) (for (Ei , si) ∈ (Ē , s̄))

V � m[Ē := F ] : 〈ᾱ〉[s̄ ]t ∗

Fig. 4. The typing rules for Boogie expressions. The context of type judgments is a partial map-
ping V : X ⇀ Type that assigns types to variables. The rules marked with ‘*’ impose the side
condition dom(σ) = {ᾱ} . The typing rules show what it means for expressions to be type cor-
rect; they abstract over how type inference is done.

2.4 Matching Triggers

We have one more thing to say about expressions in Boogie, and it concerns the way
many SMT solvers handle universal quantifications, namely by selective instantiation.
Instantiations are based on (user-supplied or inferred) matching triggers, which indicate
which patterns of ground terms in the prover’s state are to give rise to instantiations [9].
Boogie has support for specifying matching triggers for quantifications. For example,

axiom (∀ x : t • {f (x )} fInverse(f (x )) = x );

specifies the trigger f (x ) and says to instantiate the universally quantified variable with
any value appearing among the ground terms as an argument of function f . In an SMT
solver based solely on triggers, these are the only instantiations there will ever be. All
Boogie front ends make heavy use of triggers. (For an application that uses quantifiers
and an explanation of the design of triggers for that application, see [15].)

A trigger is a set of expressions, each of which will undergo the encoding into the
underlying logic that we are about to describe. However, it is important that the logi-
cal encoding not interfere with user-defined triggers or automatically inferred triggers,
since that might lead to poor performance (too many instantiations) or incompleteness
(too few instantiations).

3 Representation of Types as Terms

Automated theorem provers and SMT solvers typically offer only untyped or simple
multi-sorted logics as their input language (with the notable exception of Alt-Ergo [3],
which provides a polymorphic type system). With such a prover as the verification back
end, the expressions from the richer language have to be translated into the simpler
logic. We describe two approaches to this translation in Section 4: one that captures type
information using logical guards and one that encodes type parameters of polymorphic
functions as additional function arguments. In both cases, it is necessary to encode
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Boogie’s types as terms (so that typing conditions can be expressed as formulae), which
is the subject of this section.

As a simply typed target language, we use a subset of the Boogie expression lan-
guage, restricting the available types to (i) the built-in types bool and int (other types
supported directly by the simply typed logic can be treated analogously to int), (ii) a
type U for (non-bool, non- int) individuals, and (iii) a type T for (encoded) types.
If necessary, expressions in this simply-typed language could be translated further to an
untyped logic by adding domain predicates and guards for the types bool, int,U , and
T . Because current SMT solvers are able to directly handle the four types, however,
such a translation will usually not be required. Furthermore, we introduce a function
symbol type : U → T that maps individuals to their type.

We encode types so that T forms an algebraic datatype. If the target logic has direct
support for algebraic datatypes, one may be able to build on it; in the scope of this
paper, we use functions and axioms to describe the encoding.

3.1 Type Constructors

Each type constructor C ∈ C gives rise to a function symbol C# : T arity(C ) → T ,
as well as an axiomatization of a number of properties, including distinctness and
injectivity. To formalize that the images of different type-constructor functions C#

are disjoint, we introduce a function Ctor : T → int and, for each type construc-
tor C , a unique constant nC . Injectivity is achieved by defining selector functions
C−1, . . . ,C−n : T → T for each n -ary type constructor C :

(∀ x̄ : T • Ctor(C#(x̄ )) = nC ) ∧
arity(C )∧

i=1

(∀ x̄ : T • C−i(C#(x̄ )) = xi )

Theoretically, further axioms are needed for a faithful model of the type system. How-
ever, because these additional axioms are of a kind that cannot be expected to be useful
for SMT solvers (e.g., statements about well-foundedness), we practically use only the
axioms shown above in the Boogie implementation.

3.2 Reduction of Map Types to Ordinary Type Constructors

The encoding of Boogie’s polymorphic map types is done by a reduction to normal type
constructors: a map type t containing the free type variables α1, . . . , αn (and arbitrary
bound variables) can be encoded like a type expression Ct α1, . . . , αn , for some fresh
constructor Ct . The access functions can then be seen and axiomatized as ordinary
functions select t , storet , based on the axioms of the first-order theory of arrays [19].

There is a caveat in this construction: if two map types s , t have common instances
u = σs(s) = σt (t) , then an encoding of u using either Cs or Ct will be overly
restrictive. In particular, it might happen that u is encoded as Cs in one part, and as Ct

in another part of the same formula, leading to incompleteness:

function f 〈α〉(α) returns (int);
axiom ( ∀ 〈α〉 m : [α] int • f (m) = 0 ); axiom ( ∀ 〈α〉 m : [int] α • f (m) = 1 );
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If s = [α] int in the first axiom happens to be encoded as Cs α , and t = [int] α in the
second axiom as Ct α , then the inconsistency of the two axioms will be lost: Cs α and
Ct α do not have any common instances. The solution is to define larger classes of type
constructors for map types: we abstract over map types and define constructors only for
“most general” map types. Let us be more precise.

Given two types s , t ∈ Type , we write t + s and say that t is an instance of s iff
there is a substitution σ such that σ(s) ≡ t . Observe that + is a pre-order on types,
but not a partial order because anti-symmetry is violated for types that differ only in
the names of free variables. The induced equivalence relation is denoted with ∼= : for
s , t ∈ Type , we define s ∼= t iff s + t and t + s . It is the case that ≡ ⊆ ∼= .

The pre-order + is canonically extended to TypeC = Type/∼= and partially orders
the set. In fact, (TypeC ,+) is a join-semi-lattice (i.e., any two types have a least com-
mon upper bound) whose � -element is the class of type variables α . The strict order
� satisfies the ascending chain condition (ACC): every ascending chain of types in
TypeC eventually becomes stationary. This is important, because it justifies the exis-
tence of most-general map types that are the basis for our map-type encoding.

Let MC ⊆ TypeC be the set of + -maximal type classes whose elements start with
the map type constructor, and let M be a set of unique representatives for all classes
in MC . The elements of M can be seen as skeletons of map types and determine the
binding and occurrences of bound type variables. Examples of types in M are:

[α] β [α, β] γ [α, β, γ] δ 〈α〉[α] α 〈α〉[α] β 〈α〉[α] (C α)

For every type t that starts with a map type constructor, there is a unique type m =
skel(t) ∈ M with t + m . For example, skel(〈α〉[C α, int]bool) = 〈α〉[C α, β]γ .
This means that every map type t (also types containing free variables) can be rep-
resented in the form σ(skel(t)) , whereby the substitution σ is uniquely determined
for all variables that occur free in skel(t) . We write flesh(t) for the unique substitu-
tion satisfying flesh(t)(skel(t)) = t whose domain is a subset of {α1, . . . , αn} , where
α1, . . . , αn are the free variables in skel(t) . For example, flesh(〈α〉[C α, int]bool) =
(β �→ int, γ �→ bool) .

Translation of Types to Terms. In order to encode types, for each type t ∈M that
contains n free type variables α1, . . . , αn , we introduce a new n -ary function sym-
bol M

#
t : Tn → T . We will use the notation Skel#(s) := M

#
skel(s) for the skeleton

symbol of an arbitrary map type s , and Skel−i(s) := M−i
skel(s) for the selectors. Given

an instantiation μ : A → Term of type variables, types can then be translated to terms:

[[α]]μ = μ(α) [[C t1 . . . tn ]]μ = C#( [[t1]]μ, . . . , [[tn ]]μ )
[[m]]μ = Skel#(m)( [[ flesh(m)(β1)]]μ, . . . , [[ flesh(m)(βn )]]μ)

In the last equation, m is a map type 〈ᾱ〉[s̄ ] t such that skel(m) contains the free type
variables β1, . . . , βn (in this order of occurrence). Some examples are:

[[C T ]]μ = C#(T#) [[ [int]T ]]μ = M
#
[α]β(int#,T#)

[[ [T ]S ]]μ = M
#
[α]β(T#,S#) [[〈α〉[α]S ]]μ = M

#
〈α〉[α]β(S#)
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Symbols and Axioms of Maps with Map Reduction. The access functions select
and store can be seen and axiomatized as ordinary functions, based on the axioms of
the first-order theory of arrays [19]. For each map type m ∈M , we introduce separate
symbols selectm and storem . Suppose that m = 〈ᾱ〉[s̄ ] t ∈M contains the free type
variables β̄ = (β1, . . . , βn) (in this order of occurrence). Then, the access functions
have the following types:

selectm〈ᾱ, β̄〉(m, s̄) returns (t) storem〈ᾱ, β̄〉(m, s̄ , t) returns (m)

It is necessary to include both ᾱ and β̄ as type parameters, because m is parametric in
the latter, and s̄ and t might be parametric in both. The semantics of maps is defined
by axioms similar to the standard axioms of non-extensional arrays [19] (ᾱ′ is a vector
of fresh type variables, and ᾱ �→ ᾱ′ the substitution that replaces ᾱ with ᾱ′ ):

(∀ 〈ᾱ, β̄〉 h : m, x̄ : s̄ , z : t • selectm(storem(h, x̄ , z ), x̄ ) = z ) ∧
(∀ 〈ᾱ, ᾱ′, β̄〉 h : m, x̄ : s̄ , ȳ : (ᾱ �→ ᾱ′)s̄ , z : t •

x̄ = ȳ ∨ selectm(storem(h, x̄ , z ), ȳ) = selectm(h, ȳ) )

4 Translation of Expressions

We define two main approaches to translating typed Boogie expressions into equiva-
lent simply typed expressions: one that captures type information using logical guards
(Section 4.1) and one that encodes type parameters of polymorphic functions as ordi-
nary (additional) arguments (Section 4.2). The second encoding relies on the usage of
e-matching to instantiate quantifiers (in contrast to methods like superposition used in
first-order theorem provers), because typing information is generated such that triggers
can only match on expressions of the right type (also see [6]).

The following Boogie program is used as running example for the translations:

function Mojo〈α〉(α) returns (int); axiom ( ∀ x : int • Mojo(x) = x );
type GuitarPlayer ; axiom ( ∀ g : GuitarPlayer • Mojo(g) = 68 );

Note that it is essential to take the types of the quantified variables into account to not
introduce inconsistent axioms.

4.1 Translation Using Type Guards

There is a long tradition of encoding type information using type guards, e.g., [17,6,7].
As this translation is rather naive and has the disadvantage of complicating the propo-
sitional structure of formulae, it has been claimed [6] that its performance impact is
prohibitive for many applications. We are able to show in Section 5, however, that this
is no longer the case with state-of-the-art SMT solvers.

The Mojo example is complemented with type guards as follows. Because the quan-
tified formulae are now guarded and only concern individuals of the right types, no
contradiction is introduced. The function i2u is defined below.

function Mojo#(U ) returns (U ); const GuitarPlayer# : T ;
axiom (∀ x : U • type(Mojo#(x )) = int# ); // function axiom
axiom (∀ x : U • type(x ) = int# ⇒ Mojo#(x ) = x );
axiom (∀ g : U • type(g) = GuitarPlayer# ⇒ Mojo#(g) = i2u(68) );
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Function Axioms. During the translation, user-defined Boogie functions are replaced
with U -typed functions. For a function f 〈α1, . . . , αm〉(s1, . . . , sn) returns (t) such
that α1, . . . , αk do not occur in s1, . . . , sn (but only in t ), while αk+1, . . . , αm oc-
cur in s1, . . . , sn (and possibly in t ), this post-translation function f # has the type
T k ×U n → U . We will capture the original typing with an axiom of the shape:

(∀ x̄ : Ū , ȳ : T̄ • type(f #(ȳ , x̄ )) = [[t ]]μ ) (1)

This axiom does not contain any quantifiers corresponding to αk+1, . . . , αm that occur
in s1, . . . , sn , which is advantageous for SMT solvers because the formula does not
offer good triggers for αk+1, . . . , αm . Instead, the mapping μ : A → Term that de-
termines the values of type parameters plays a prominent role. We define this mapping
using extractor terms, which are recursively defined over types and describe how the
type parameter values can be reconstructed from the actual arguments x̄ with the help
of the selector functions C−i defined in Section 3.1.

Suppose that α ∈ A is a type variable. Assuming that the term E encodes the
type t ∈ Type , the set extractorsα(E , t) specifies terms that compute α ’s value:

extractorsα(E , β) = if α = β then {E} else ∅
extractorsα(E ,C t1 . . . tn) =

⋃n
i=1 extractorsα(C−i(E ), ti) (C ∈ C)

extractorsα(E ,m) =
⋃n

i=1 extractorsα(Skel−i(m)(E ), flesh(m)(γi))

In the last equation, m is a map type 〈β̄〉[s̄ ] t such that skel(m) contains the free type
variables γ1, . . . , γn (in this order of occurrence). Some examples are:

extractorsα(x ,C β α) = {C−2(x )}
extractorsα(x , 〈β〉[C β α] α) = {C−2(M−1

〈β〉[C β γ] δ(x )), M−2
〈β〉[C β γ] δ(x )}

The extractor C−2(x ) , for instance, can derive α ’s value from the instance C intbool
of C β α , resulting in C−2([[C int bool]]) = C−2(C#(int#,bool#)) = bool# .

A simple optimization (that is implemented in Boogie but left out from this paper for
reasons of presentation) is to keep argument or result types int and bool of functions,
instead of replacing them with U . This can reduce the number of casts to and from U
later needed in the translation.

Embedding of Built-in Types. SMT solvers offer built-in types like booleans, integers,
and bit vectors, whose usage is crucial for performance. We define casts to and from
the type U in order to integrate built-in types into our framework. For the built-in
types bool and int , we introduce the cast functions i2u : int→ U , u2i : U → int ,
b2u : bool→ U , u2b : U → bool and axiomatize them as:

( ∀ x : int • type(i2u(x)) = int# ∧ u2i(i2u(x)) = x ) ∧
( ∀ x : U • type(x) = int# ⇒ i2u(u2i(x)) = x )

and analogously for bool . The axioms imply that i2u and b2u are embeddings into
U , and that u2i and u2b are their inverses. For simplicity, in the following translation
we insert casts in each place where operators over bool or int occur, although many of
the casts could directly be eliminated using the axioms. Such optimizations are present
in the Boogie implementation as well.
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Translation of Expressions. Given an instantiation μ : A → Term of type variables,
the main cases of the translation are:

[[x ]]μ = x (x ∈ X )
[[f (E1, . . . ,En)]]μ = f #([[E1]]μ, . . . , [[En ]]μ)

[[E = F ]]μ = b2u([[E ]]μ = [[F ]]μ)
[[E + F ]]μ = i2u

(
u2i([[E ]]μ) + u2i([[F ]]μ)

) · · ·
[[E ∧ F ]]μ = b2u

(
u2b([[E ]]μ) ∧ u2b([[F ]]μ)

) · · ·
[[(∀ 〈ᾱ〉 x̄ : t̄ • E )]]μ = b2u(∀ x̄ : Ū , ȳ : T̄ • type(x̄ ) = [[t̄ ]]μ′ ⇒ u2b([[E ]]μ′) )
[[(∃ 〈ᾱ〉 x̄ : t̄ • E )]]μ = b2u(∃ x̄ : Ū , ȳ : T̄ • type(x̄ ) = [[t̄ ]]μ′ ∧ u2b([[E ]]μ′) )

In the last two equations, ȳ is a vector of fresh variables, and μ′ = (μ, ᾱ �→ ȳ) . In the
case that a type parameter αi occurs in some of the types t̄ , a more efficient translation
is possible by extracting the value of αi from the bound variables x̄ :

μ′(αi) ∈
⋃m

j=1 extractorsαi (type(xj ), tj )

The optimization is particularly relevant with e-matching-based SMT solvers, because
the formula resulting from the original translation often does not contain good triggers
for the variables ȳ : type parameters ᾱ are used only in types, which usually do not
provide good discrimination for instantiation.

4.2 Translation Using Type Arguments

Our second translation works by explicitly passing the values of type parameters to
functions. In the context of SMT solvers, this allows us to completely leave out type
guards and leads to formulae with a simpler propositional structure, albeit functions
have a higher arity and more terms occur in the formulae. It has to be noted that this
second translation crucially depends on the usage of an SMT solver with e-matching:
such solvers are not able to exploit missing type guards, because typing information is
inserted in expressions in such a way that triggers can only match on expressions of the
right type. The translation trades generality for performance: while it is not applicable
with most first-order theorem provers (e.g., superposition provers), the experimental
evaluation in Section 5 shows a clear performance gain compared to the type guard
translation from the previous section. A similar observation is made in [6].

When using type arguments, the Mojo example gets translated as follows:

function Mojo#(T ,U ) returns (U ); axiom ( ∀ x : U • Mojo#(int#, x) = x );
const GuitarPlayer# : T ; axiom ( ∀ g : U • Mojo#(GuitarPlayer#, g) = i2u(68) );

The Typing of Functions. A function f 〈α1, . . . , αm〉(s1, . . . , sn) returns (t) ∈ F
is during the translation replaced by a function f # with the type Tm ×U n → U , i.e.,
the type parameters are given the status of ordinary function arguments. It is unneces-
sary to generate typing axioms for f # , since typing information is inserted everywhere
in terms during the translation and does not have to be derived by the SMT solver.
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Type Guards Type Arguments No Types

Z3 2.0
Boogie (2598) 2002/595/1, 0.781s 2000/597/1, 0.651s 1984/613/1, 0.813s
VCC (7840) 6999/839/2, 3.447s 6999/836/5, 2.181s 6999/836/5, 2.196s
HAVOC (385) 353/16/16, 0.709s 351/18/16, 0.524s 350/17/18, 0.367s

Z3 1.3
Boogie (2590) 1978/609/3 1.107 1974/611/5 1.212 1961/626/3 2.385

Fig. 5. Results for the different benchmark categories. In each cell, we give the number of times
the outcome valid/invalid/timeout occurred, as well as the average time needed for successful
proof attempts (i.e., counting cases with the outcome valid or invalid).

Translation of Expressions. We maintain both an instantiation μ : A → Term and
an environment V : X → Type that assigns types to variables during the translation:

[[x ]]μ,V = x (x ∈ X )
[[f (Ē )]]μ,V = f #([[σ(ᾱ)]]μ,V , [[Ē ]]μ,V)

[[E = F ]]μ,V = b2u([[E ]]μ,V = [[F ]]μ,V ∧ [[tE ]]μ = [[tF ]]μ)
[[E + F ]]μ,V = i2u

(
u2i([[E ]]μ,V) + u2i([[F ]]μ,V)

) · · ·
[[E ∧ F ]]μ,V = b2u

(
u2b([[E ]]μ,V) ∧ u2b([[F ]]μ,V)

) · · ·
[[(Q 〈ᾱ〉 x̄ : t̄ • E )]]μ,V = b2u(Q x̄ : Ū , ȳ : T̄ • u2b([[E ]](μ, ᾱ�→ȳ),(V, x̄ �→t̄)) )

The second equation assumes f has typing 〈ᾱ〉(s̄) returns (t) and that σ is the instan-
tiation of the type parameters ᾱ that is inferred when applying f to Ē . The types tE , tF
in the third equation are determined by V � E : tE and V � F : tF . In the last equa-
tion, ȳ is a vector of fresh variables, and Q ∈ {∀, ∃} is a quantifier.

5 Experimental Results and Related Work

We quantitatively evaluate the two different translations of Boogie expressions, together
with a third unsound translation that simply erases all type information. The third trans-
lation is close to the translation used by the Boogie 1 tool, so that a comparison between
Boogie 2 and Boogie 1 is possible. The evaluated Boogie programs are:

– The Boogie and SscBoogie regression test suites: A collection of correct and in-
correct programs written in Boogie, Spec# [1], and Dafny [14] that make use of
polymorphism; also parts of the Boogie tool itself (a Spec# program) are included.

– Hyper-V verification conditions generated by VCC [5]: Boogie programs that stem
from a project to verify the Microsoft hypervisor Hyper-V.

– Benchmarks from the HAVOC tool [4]: Regression tests and verification conditions
to prove memory safety and invariants of various C programs.

Because the programs of the last two categories do not use polymorphism, the over-
head of our translations for simple problems (that could really be handled with the “No
Types” translation) is measured.
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For each of the categories, we used Boogie 2 to generate verification conditions
with the different translations and write them to separate files. We then measured the
performance of the state-of-the-art SMT solver Z3 2.01 on the altogether more than
10,000 verification conditions. The prover was run on each verification condition with
a timeout of 120s (1800s for the Boogie tests), measuring the average time needed over
three runs. All experiments were made on an Intel Core 2 Duo, 3.16GHz, with 4GB.

Figure 5 summarizes the results. The time difference between the type argument en-
coding and the translation without types is always very small, the argument encoding is
even faster in two categories. The type guard encoding is close to the other translations
on the Boogie tests, but is on average about 55% slower on the VCC examples, and
performs similarly on the HAVOC examples. One explanation for this phenomenon is
that (in particular) VCC generates a large number of Boogie functions, which leads to
a large number of additional axioms in the type guard encoding.

Related Work. The intermediate verification language Boogie is most closely related
to Why [10], which offers ML-style polymorphism [22]. ML-style polymorphism (or
“let polymorphism”) is more limited than the higher-rank polymorphism in Boogie;
for example, it does not allow polymorphic map types nor general quantifications over
types, both of which are used heavily by some Boogie front ends. Our typing rule for
equality is similar to the “heterogeneous equality” introduced in [18]. Meanwhile, com-
pilers have also explored the benefits of using typed intermediate languages [21].

Couchot and Lescuyer turn formulae with ML-style polymorphism into multi-sorted
and untyped formulae [6], taking advantage of built-in theories. They have implemented
their translations as modules of the Why tool [10] and report on some experiments.
With Simplify [9], they measure a 200% slowdown with their version of a type guard
translation, and a 300% slowdown with their other encoding (which is somewhat similar
to our type argument encoding). In contrast, we measure a slowdown of at most 95%
with the type guards encoding and at most 45% with the type arguments encoding.

Bobot et al. show how to incorporate ML-style polymorphism directly into an SMT
solver [3]. Our type arguments translation is quite similar to the machinery they present.
It would be interesting to put to test their conjecture that building polymorphism into a
prover is a better solution than handling it through a pre-processing step.

There is a large body of work on the encoding of (typed) higher-order logic (HOL)
in first-order logic (FOL). Such translations primarily target FOL provers, in contrast to
SMT solvers as in our case. Meng and Paulson [20] enrich terms with type annotations
in the form of first-order functions and describe different translations, some of which are
sound, while others require proofs to be typechecked and possibly rejected afterwards.
Similarly, Hurd [12] describes translations from HOL to FOL in which type information
can be included in the operator for function application, which is similar to our type
argument encoding (and in particular the handling of map types). Translations in the
same spirit as our type guard encoding have been studied [7] for the Mizar language.

6 Conclusions

We have introduced the type system of Boogie 2, shown how its advanced type fea-
tures are useful to program verifiers in encoding program semantics, and shown how to

1 http://research.microsoft.com/projects/z3/

http://research.microsoft.com/projects/z3/
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translate its polymorphic types and expressions into first-order formulae suitable for
SMT solvers. Our experimental data support the idea that including such advanced
features in an intermediate verification language is both desirable for verifier front
ends and feasible for performance. Future work include further optimizations like
monomorphization.
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Abstract. We propose a symbolic algorithm to accurately predict atomicity vio-
lations by analyzing a concrete execution trace of a concurrent program. We use
both the execution trace and the program source code to construct a symbolic
predictive model, which captures a large set of alternative interleavings of the
events of the given trace. We use precise symbolic reasoning with a satisfiabil-
ity modulo theory (SMT) solver to check the feasible interleavings for atomicity
violations. Our algorithm differs from the existing methods in that all reported
atomicity violations can appear in the actual program execution; and at the same
time the feasible interleavings analyzed by our model are significantly more than
other predictive models that guarantee the absence of false alarms.

1 Introduction

Atomicity, or serializability, is a semantic correctness condition for concurrent pro-
grams. Intuitively, a thread interleaving is serializable if it is equivalent to a serial ex-
ecution, i.e. a thread interleaving which executes a transactional block without other
threads interleaved in between. The transactional blocks are typically marked explic-
itly in the code. Much attention has recently been focused on three-access atomicity
violations [1,2], which involves one shared variable and three consecutive accesses to
the variable. Here we characterize consecutive accesses with respect to a shared vari-
able; these accesses can be separated by events over possibly other shared variables. If
two accesses in a local thread, which are inside a transactional block, are interleaved in
between by an access in another thread, this interleaving may be unserializable if the
remote access has data conflicts with the two local accesses. In practice, unserializable
interleavings often indicate the presence of subtle concurrency bugs in the program.

Known techniques for detecting atomicity violations fall into the following three
categories: static detection, runtime monitoring, and runtime prediction. Type-state or
other static analysis based methods [3,4] try to identify potential violations at compile
time. These methods typically ignore data and most of the synchronization primitives
other than locks, and tend to report a large number of bogus errors. Runtime monitoring
aims at identifying atomicity violations exposed by a given execution trace [5,1,6,7,8].
However, it is a challenging task during testing to trigger the erroneous thread schedule
in the first place. In contrast, runtime prediction aims at detecting atomicity violations
in all feasible interleavings of events of the given trace. In other words, even if no
violation exists in that trace, but an alternative interleaving is erroneous, a predictive
method [9,2,10,11,12,13] may be able to catch it without actually re-running the test.

Although there have been several predictive methods in the literature, they either suf-
fer from imprecision as a result of conservative modeling (or no modeling at all) of the
program data flow and consequently many false negatives [9,2,10], or suffer from a very
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Thread T1 Thread T2

atomic{
t1 : a := x
t2 : x := a + 1

}
t3 : b := x
t4 : if(b > 0)
t5 : x := 5;

(a) first example

Thread T1 Thread T2

atomic{
t1 : x := 1
t2 : a := x + 1

}
t3 : signal(c)

t4 : wait(c)
t5 : x := 3;

(b) second example

Fig. 1. Ignoring data/synchronizations may lead to bogus errors. All variables are initialized to 0.

limited coverage of interleavings due to trace-based under-approximations [11,12,13].
Previous efforts [4,2,10], for instance, focus on the control paths and model only locks
provided that they obey the nested locking discipline. Their model can be viewed as ab-
stracting other synchronization primitives into NOPs, including semaphores, barriers,
POSIX condition variables, and Java’s wait-notify1. Because of such approximations,
the reported atomicity violations may not exist in the actual program. Although poten-
tial atomicity violations can serve as good hints for subsequent analysis, they are often
not immediately useful to programmers, because manually deciding whether such vio-
lations exist in the actual program execution itself is a very challenging task.

Fig. 1 provides two examples in which the transactions, marked by keyword atomic,
are indeed serializable, but atomizer [9] or methods in [2,10] would report them as
atomicity violations. In each example, there are two concurrent threads T1, T2 and a
shared variable x. Variables a, b are thread-local and variable c is a condition variable,
accessible through POSIX-style signal/wait. The given trace is denoted by event se-
quence t1t2t3t4t5 and is a serial execution. If one ignores data and synchronizations,
there seems to be alternative interleavings, t1t3t4t5t2 in (a) and t1t4t5t2t3 in (b), that
are unserializable. However, these interleavings cannot occur in the actual program ex-
ecution, because of the initial value x = 0 and the if-condition in the first example and
the signal/wait in the second example.

Methods using happens-before causalities [11,12] often guarantee no bogus errors,
but tend to miss many real ones. Fig. 2 shows a model in this category—the maximal
causal model [12]—for the examples in Fig. 1. This model has been shown in [12] to
subsume many earlier happens-before causal models. Here events accessing the shared
variable x are represented by the actual values read/written in the given trace, and events
involving thread-local variables only are abstracted into NOPs. The model admits all
interleavings in which these concrete events are sequentially consistent. In Fig. 2, for
example, the alternative sequences are deemed as sequentially inconsistent in both pro-
grams, because consecutive reads t1, t3 in the first example return different values, and
in the second example t2 reads in 1 from x immediately after t5 writing 3. Therefore,
this model can avoid reporting these two bogus errors. However, consider modifying the
programs in Fig. 1 by changing t4 in the first example into if(b≥0), and removing the
signal/wait of t3, t4 in the second example. Now, the aforementioned alternative inter-
leavings expose real atomicity violations, but in both examples, the concrete read/write
events (Fig. 2) remain the same—these real violations will be missed.

1 These synchronization primitives cannot be simulated using only nested locks.
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Thread T1 Thread T2

atomic{
t1 : RD(x) : 0
t2 : WR(x) : 1

}
t3 : RD(x) : 1
t4 : NOP
t5 : WR(x) : 5

(a) first example

Thread T1 Thread T2

atomic{
t1 : WR(x) : 1
t2 : RD(x) : 1

}
t3 : signal(c)

t4 : wait(c)
t5 : WR(x) : 3

(b) second example

Fig. 2. Predictive models using under-approximations may miss real errors

In this paper, we propose a more precise algorithm for predicting atomicity viola-
tions. Given an execution trace on which transactional blocks are explicitly marked, we
check all alternative interleavings of the symbolic events of that trace for three-access
atomicity violations. The symbolic events are constructed from both the concrete trace
and the program source code. Compared to existing causal models, for example, [12],
our model covers more interleavings while guaranteeing no false alarms. Since the al-
gorithm is more precise than the methods in [9,2], we envision the following procedure
in which it may be applied:

1. Run a test of the concurrent program to obtain an execution trace.
2. Run a sound but over-approximate algorithm [9,2] to detect all potential atomicity

violations. If no violation is found, return.
3. Build the precise predictive model, and for each potential violation, check whether

it is feasible. If it is feasible, create a concrete and replayable witness trace.

More specifically, we formulate the checking in Step 3 as a satisfiability problem, by
constructing a formula which is satisfiable iff there exists a feasible and yet unseri-
alizable interleaving of events of the given trace. The formula is in a quantifier-free
first-order logic and is decided by a Satisfiability Modulo Theory (SMT) solver [14].

Our main contributions are applying the trace-based symbolic predictive model to
analyzing atomicity and encoding the detection of three-access violations on its inter-
leavings as an SMT problem, followed by the subsequent analysis using a SMT solver.
Our model for predicting atomicity violations tracks the actual data flow and models
all synchronization primitives precisely. The greater capability of covering interleav-
ings by our method is due to the use of concrete trace as well as the program source
code. Furthermore, using symbolic techniques rather than explicit enumeration makes
the analysis less sensitive to the large number of interleavings.

The remainder of this paper is organized as follows. After establishing notation in
Section 2 and Section 3, we present the SMT-based algorithm for detecting atomicity
violations in Section 4. In Section 5, we explain how to search for an erroneous prefix
as opposed to a complete interleaving. We present experimental results in Section 6,
review related work in Section 7, and give our conclusions in Section 8.

2 Preliminaries

Programs and Traces. A concurrent program has a set of threads and a set SV of
shared variables. Each thread Ti, where 1 ≤ i ≤ k, has a set of local variables LV i.



Trace-Based Symbolic Analysis for Atomicity Violations 331

– Let T id = {1, . . . , k} be the set of thread indices.
– Let Vi = SV ∪ LV i, where 1 ≤ i ≤ k, be the set of variables accessible in Ti.

The remaining aspects of a concurrent program are left unspecified, to apply more gen-
erally to different programming languages. An execution trace is a sequence of events
ρ = t1 . . . tn. An event t ∈ ρ is a tuple 〈tid, action〉, where tid ∈ T id and action is a
computation of the form (assume(c), asgn), i.e. a guarded assignment, where

– asgn is a set of assignments, each of the form v := exp, where v ∈ Vi is a variable
and exp is an expression over Vi.

– assume(c) means the conditional expression c over Vi must be true for the assign-
ments in asgn to execute.

Each event t in ρ is a unique execution instance of a statement in the program. If a
statement in the textual representation of the program is executed multiple times, e.g.,
in a loop or a recursive function, each execution instance is modeled as a separate
event. By defining the expression syntax suitably, the trace representation can model
executions of any multithreaded program2.

The guarded assignment action has three variants: (1) when the guard c = true,
it models normal assignments in a basic block; (2) when the assignment set asgn is
empty, assume(c) models the execution of a branching statement if(c); and (3) with
both the guard and the assignment set, it can model the atomic check-and-set operation,
which is the foundation of all concurrency/synchronization primitives.

Synchronization Primitives. We use the guarded assignments in our implementation
to model all synchronization primitives in POSIX Threads (or PThreads). This includes
locks, semaphores, condition variables, barriers, etc. For example, acquire of a mutex
lock l in the thread Ti, where i ∈ T id, is modeled as event 〈i, (assume(l = 0), {l :=
i})〉; here 0 means the lock is available and thread index i indicates the owner of the
lock. Release of lock l is accurately modeled as 〈i, (assume(l = i), {l := 0})〉. Simi-
larly, acquire of a counting semaphore cs is modeled using (assume(cs > 0), {cs :=
cs − 1}), while release is modeled using (assume(cs ≥ 0), {cs := cs + 1}). Fig. 3
shows the symbolic representations of traces in Fig. 1. Note that signal/wait in the sec-
ond example are modeled using guarded assignments as well. Specifically, wait(c)
is split into two events t4 and t4′ , which first resets c to 0, then waits for c to become
non-zero and in the same atomic action resets c back to 0. This modeling conforms to
the POSIX standard, allowing t3 :signal(c) to be interleaved in between.

Concurrent Trace Programs. The semantics of an execution trace is defined using a
state transition system. Let V = SV ∪ ⋃i LV i, 1 ≤ i ≤ k, be the set of all program
variables and Val be a set of values of variables in V . A state is a map s : V → Val
assigning a value to each variable. We also use s[v] and s[exp] to denote the values of

v ∈ V and expression exp in state s. We say that a state transition s
t−→ s′ exists,

where s, s′ are states and t is an event in thread Ti, 1 ≤ i ≤ k, iff

– t = 〈i, (assume(c), asgn)〉, s[c] is true, and for each assignment v := exp in asgn,
s′[v ] = s[exp] holds; states s and s′ agree on all other variables.

2 Details on modeling generic language constructs, such as those in C/C++/Java, are not directly
related to concurrency; for more information refer to recent efforts in [15,16].
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t1 : 〈1, (assume(true ), {a := x })〉
t2 : 〈1, (assume(true ), {x := a + 1 })〉

t3 : 〈2, (assume(true ), {b := x })〉
t4 : 〈2, (assume(b > 0), { })〉
t5 : 〈2, (assume(true ), {x := 5 })〉

(a) first example

t1 : 〈1, (assume(true ), {x := 1 })〉
t2 : 〈1, (assume(true ), {a := x + 1 })〉
t3 : 〈1, (assume(true ), {c := 1 })〉

t4 : 〈2, (assume(true ), {c := 0 })〉
t4′ : 〈2, (assume(c > 0), {c := 0 })〉
t5 : 〈2, (assume(true ), {x := 3 })〉

(a) second example

Fig. 3. The symbolic representations of concurrent execution traces

Let ρ = t1 . . . tn be an execution trace of program P . Then ρ can be viewed as a total
order on the set of symbolic events in ρ. From ρ one can derive a partial order called
the concurrent trace program (CTP). Previously, we have used CTPs [17,18] to predict
assertion failures and to prune redundant interleavings in stateless model checking.

Definition 1. The concurrent trace program with respect to ρ, denoted CTPρ, is a par-
tially ordered set (T,+) such that,

– T = {t | t ∈ ρ} is the set of events, and
– + is a partial order such that, for any ti, tj ∈ T , ti + tj iff tid(ti) = tid(tj) and

i < j (in ρ, event ti appears before tj).

Intuitively, CTPρ orders events from the same thread by their execution order in ρ;
events from different threads are not explicitly ordered with each other. In the sequel,
we will say t ∈ CTPρ to mean that t ∈ T is associated with the CTP.

We now define feasible linearizations of CTPρ. Let ρ′ = t′1 . . . t′n be a linearization
of CTPρ, i.e. an interleaving of events of ρ. We say that ρ′ is feasible iff there exist
states s0, . . . , sn such that, s0 is the initial state of the program and for all i = 1, . . . , n,

there exists a transition si−1
t′i−→ si. This definition captures the standard sequential

consistency semantics for concurrent programs, where we modeled concurrency primi-
tives such as locks by using auxiliary shared variables.

3 Three-Access Atomicity Violations

An execution trace ρ is serializable iff it is equivalent to a feasible linearization ρ′ which
executes the transactions without other threads interleaved in between. Informally, two
traces are equivalent iff we can transform one into another by repeatedly swapping ad-
jacent independent events. Here two events are considered as independent iff swapping
their execution order always leads to the same program state.

Atomicity Violations. Three-access atomicity violation is a special case of serializabil-
ity violations, involving an event sequence tc . . . tr . . . tc′ such that:

1. tc and tc′ are in a transactional block of one thread, and tr is in another thread;
2. tc and tr are data dependent; and tr and tc′ are data dependent.

The recent study in [1] shows that in practice atomicity violations account for a very
large number of concurrency errors. Depending on whether each event is a read or
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write, there are eight combinations of the triplet tc, tr, tc′ . While R-R-R, R-R-W, and
W-R-R are serializable, the remaining five may indicate atomicity violations.

Given the CTPρ and a transaction trans = ti . . . tj , where ti . . . tj are events from
a thread in ρ, we use the set PAV to denote all these potential atomicity violations.
Conceptually, the set PAV can be computed by scanning the trace ρ once, and for
each remote event tr ∈ CTPρ, finding the two local events tc, tc′ ∈ trans such that
〈tc, tr, tc′〉 forms a non-serializable pattern.

The crucial problem of deciding whether an event sequence tc . . . tr . . . tc′ exists in
the actual program execution is difficult. However, over-approximate algorithms, such
as those based on Lipton’s reduction theory [9] or [10,2], can be used to weed out event
triplets in PAV that are definitely infeasible. For example, the method in [2] reduces
the problem of checking (the existence of) tc . . . tr . . . tc′ to simultaneous reachability
under nested locking. That is, does there exist an event tc′′ such that (1) tc′′ is within the
same thread and is located between tc and tc′ and (2) tc′′ , tr are simultaneously reach-
able? Under nested locking, simultaneous reachability can be decided by a composi-
tional analysis based on locksets and acquisition histories [19]. However, the analysis
in [2] is over-approximate in that it ignores the data flow and synchronizations other
than nested locks3.

Guarded Independence. Sometimes, two events with data conflict may still be inde-
pendent with each other, although they are conflict-dependent. A data conflict occurs
when two events access the same variable and at least one of them is a write. In the lit-
erature, conflict-independence between two events is defined as: (1) executing one does
not enable/disable another, and (2) they do not have data conflict. These conditions are
sufficient but not necessary for two events to be independent. Consider event t1:x=5 and
event t2:x=5, for example. They have a data conflict but are semantically independent.
Here, we use a more precise guarded independence relation as follows (c.f. [20]).

Definition 2. Two events t1, t2 are guarded independent with respect to a condition cG,
denoted 〈t1, t2, cG〉, iff the guard cG(t1, t2) implies that the following properties:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

The guard cG is computed by a static traversal of the control flow structure [20]. For
each event t, let VRD(t) be the set of variables read by t, and VWR(t) be the set of
variables written by t. We define the potential conflict set between t1, t2 ∈ CTPρ as

Ct1,t2 = VRD(t1) ∩ VWR(t2) ∪ VRD(t2) ∩ VWR(t1) ∪ VWR(t1) ∩ VWR(t2) .

For programs with pointers (∗p) and arrays (a[i]), we compute the guarded indepen-
dence relation RG as follows:

1. when Ct1,t2 = ∅, add 〈t1, t2, true〉 to RG;
2. when Ct1,t2 = {a[i], a[j]}, add 〈t1, t2, i �= j〉 to RG;
3. when Ct1,t2 = {∗pi, ∗pj}, add 〈t1, t2, pi �= pj〉 to RG;
4. when Ct1,t2 = {x}, consider the following cases:

3 Programs with only nested locking can enforce mutual exclusion, but cannot coordinate thread
interactions because nested locks cannot simulate powerful primitives such as semaphores.
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a. RD-WR: if x ∈ VRD(t1) and x := e is in t2, add 〈t1, t2, x = e〉 to RG;
b. WR-WR: if x := e1 is in t1 and x := e2 is in t2, add 〈t1, t2, e1 = e2〉 to RG;
c. WR-C: if x is in assume condition cond of t1, and x := e is in t2, add
〈t1, t2, cond = cond[x → e]〉 to RG, in which cond[x → e] denotes the
replacement of x with e.

This set of rules can be easily extended to handle a richer set of language constructs.
Note that among these patterns, the syntactic conditions based on data conflict (conflict-
independence) is able to catch the first pattern only. Also note that methods in [1,2,10]
use conflict-independence (hence conflict-serializable), whereas our method is based
on guarded independence. In symbolic search based on SMT/SAT solvers, the guarded
independence relation can be compactly encoded as constraints in the problem formu-
lation, as described in the next section.

4 Capturing the Feasible Interleavings

Given the CTPρ and a set PAV of event triplets as potential atomicity violations, we
check whether a violation exists in any feasible linearization of CTPρ. For this, we
create a formula Φ which is satisfiable iff there exists a feasible linearization of CTPρ

that exposes the violation. Let Φ := ΦCTPρ ∧ ΦAV , where ΦCTPρ captures all feasible
linearizations of CTPρ and ΦAV encodes the condition that one event triplet exists.

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming CTPρ into a concurrent static single assignment
(CSSA) form. Our CSSA form, inspired by [21], has the property that each variable is
defined exactly once. Here a definition of variable v ∈ V is an event that modifies v,
and a use of v is an event where it appears in a condition or in the right-hand side of an
assignment. Unlike in the classic sequential SSA form, we need not add φ-functions to
model the confluence of multiple if-else branches, because in CTPρ, each thread has a
single control path. All the branching decisions in the program have already been made
during the execution that generates the trace ρ in the first place.

We differentiate the shared variables in SV from the thread-local variables in LVi,
1 ≤ i ≤ k. Each use of v ∈ LVi corresponds to a unique preceding event in the
same thread Ti that defines v. Each use of v ∈ SV , in contrast, may map to multiple
definitions in the same or other threads, and a π-function is added to model these
definitions.

Definition 3. A π-function, added for a shared variable v before its use, has the form
π(v1, . . . , vl), where each vi, 1 ≤ i ≤ l, is either the most recent definition of v in the
same thread as the use, or a definition of v in another concurrent thread.

The construction of the CSSA form consists of the following steps:

1. Create unique names for local/shared variables in their definitions.
2. For each use of a local variable v ∈ LVi, 1 ≤ i ≤ k, replace v with the most recent

(unique) definition v′.
3. For each use of a shared variable v ∈ SV , create a unique name v′ and add the

definition v′ ← π(v1, . . . , vl). Then replace v with the new definition v′.
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t0 : 〈1, (assume(true ), {a0 := 0, b0 := 0, x0 := 0 })〉
t1 : 〈1, (assume(true ), {a1 := π1 })〉 where π1 ← π(x0, x2)
t2 : 〈1, (assume(true ), {x1 := a1 + 1 })〉

t3 : 〈2, (assume(true ), {b1 := π2 })〉 where π2 ← π(x0, x1)
t4 : 〈2, (assume(b1 > 0), { })〉
t5 : 〈2, (assume(true ), {x2 := 5 })〉

Fig. 4. The CSSA form of the concurrent trace program

Fig. 4 shows the CSSA form of the CTP in Fig. 3(a). Note that event t0 is added to model
the initial values of all variables. We add names π1 and π2 for the shared variable uses.
The assignment in t1 becomes a1 := π1 because the value read from x can be defined
as either x0 or x2, depending on the thread interleaving. The local variable a1 in t2, on
the other hand, is uniquely defined as in t1.

The semantics of π-functions are defined as follows. Let v′ ← π(v1, . . . , vl) be
defined in event t, and let each parameter vi, 1 ≤ i ≤ l, be defined in event ti. The eval-
uation of π-function depends on the write-read consistency in a particular interleaving.
Intuitively, (v′ = vi) iff vi is the most recent definition before the use in event t. More
formally, (v′ = vi), 1 ≤ i ≤ l, iff the following conditions hold,

– event ti, which defines vi, is executed before event t; and
– any event tj that defines vj , 1 ≤ j ≤ l and j �= i, is executed either before the

definition in ti or after the use in t.

4.2 Encoding Feasible Linearizations

We construct ΦCTPρ based on the notion of feasible linearizations (defined in Sec-
tion 2). It consists of the following subformulas:

ΦCTP := ΦPO ∧ ΦV D ∧ ΦPI ,

where ΦPO encodes the program order, ΦV D encodes the variable definitions, and ΦPI

encodes the π-functions.
To ease the presentation, we use the following notations.

– Event tfirst: we add a dummy event tfirst to be the first event executed in the CTP.
– Event tifirst: for each i ∈ T id, this is the first event of the thread Ti;
– Preceding event: for each event t, we define its thread-local preceding event t′ as

follows: tid(t′) = tid(t) and for any other event t′′ ∈ CTP such that tid(t′′) =
tid(t), either t′′ + t′ or t + t′′.

– HB-constraint: we use HB(t, t′) to denote that event t is executed before t′.

The detailed encoding algorithm is given as follows:

– Path Conditions. For each event t ∈ CTPρ, we define the path condition g(t) which
is true iff t is executed.
1. If t = tfirst, or t = tifirst where i ∈ T id, let g(t) := true.
2. Otherwise, let g(t) := c ∧ g(t′), where t′ : (assume(c), asgn) is the thread-

local preceding event.
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– Program Order (ΦPO). ΦPO captures the event order within threads. Let ΦPO :=
true initially. For each event t ∈ CTPρ,
1. if t = tfirst, do nothing;
2. if t = tifirst, where i ∈ T id, let ΦPO := ΦPO ∧HB(tfirst, t

i
first);

3. otherwise, t has a thread-local preceding event t′; let ΦPO := ΦPO∧HB(t′, t).
– Variable Definition (ΦV D). Let ΦV D := true initially. For each event t ∈ CTPρ,

1. if t has action (assume(c), asgn), for each assignment v := exp in asgn, let
ΦV D := ΦV D ∧ (v = exp);

– The π-Function (ΦPI ). Let ΦPI := true initially. For each assignment v′ ←
π(v1, . . . , vl), where v′ is used in event t, and each vi, 1 ≤ i ≤ l, is defined in
event ti; let

ΦPI := ΦPI ∧
l∨

i=1

(v′ = vi)∧g(ti)∧HB(ti, t)∧
l∧

j=1,j =i

(HB(tj , ti)∨HB(t, tj))

This encodes that the π-function evaluates to vi iff it chooses the i-th definition
in the π-set (indicated by g(ti) ∧ HB(ti, t)), such that any other definition vj ,
1 ≤ j ≤ l and j �= i, is defined either before ti, or after this use of vi in t.

4.3 Encoding Atomicity Violations

Given a set PAV of potential violations, we build formula ΦAV as follows: Initialize
ΦAV := false. Then for each event triplet 〈tc, tr, tc′〉 ∈ PAV , where tc and tr are
guarded independent under cG(tc, tr), and tr and tc′ are guarded independent under
cG(tr, tc′), as defined in Section 3, let

ΦAV := ΦAV ∨ ( g(tc) ∧ g(tr) ∧ g(tc′) ∧ ¬cG(tc, tr) ∧ ¬cG(tr, tc′)
∧HB(tc, tr) ∧HB(tr, tc′) )

Recall that for two events t and t′, the constraint HB(t, t′) denote that t must be ex-
ecuted before t′. Consider a model where we introduce for each event t ∈ CTP a
fresh integer variableO(t) denoting its position in the linearization (execution time). A
satisfiable assignment to ΦCTPρ therefore induces values of O(t), i.e., positions of all
events in the linearization. HB(t, t′) is defined as follows:

HB(t, t′) := O(t) < O(t′)

In satisfiability modulo theory, HB(t, t′) corresponds to a special subset of Integer
Difference Logic (IDL), i.e. O(t) < O(t′), or simply O(t) −O(t′) ≤ −1. It is special
in that the integer constant c in the IDL constraint (x− y ≤ c) is always −1. Deciding
this fragment of IDL is easier because consistency can be reduced to cycle detection
in the constraint graph, which has a linear complexity, rather than the more expensive
negative-cycle detection [22].

Fig. 5 illustrates the CSSA-based encoding of CTP in Fig. 4. Note that it is common
for many path conditions, variable definitions, and HB-constraints to be constants. For
example, HB(t0, t1) and HB(t0, t5) in Fig. 4 are always true, while HB(t5, t0) and
HB(t1, t0) are always false—such simplifications are frequent and will lead to signifi-
cant reduction in formula size.
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Path Conditions:

t0 : g0 = true
t1 : g1 = true
t2 : g2 = g1

t3 : g3 = true
t4 : g4 = g3 ∧ (b1 > 0)
t5 : g5 = g4

Program Order:

HB(t0, t1)
HB(t1, t2)

HB(t0, t3)
HB(t3, t4)
HB(t4, t5)

Variable Definitions:

(a0 = 0) ∧ (b0 = 0) ∧ (x0 = 0)
a1 = π1

x1 = a1 + 1

b1 = π2

x2 = 5

The π-Functions:
t1 : (π1 = x0) ∧ g0 ∧ HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))

∨ (π1 = x2) ∧ g5 ∧ HB(t5, t1) ∧(HB(t0, t5) ∨HB(t1, t0))
t3 : (π2 = x0) ∧ g0 ∧ HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))

∨ (π2 = x1) ∧ g2 ∧ HB(t2, t1) ∧(HB(t0, t2) ∨HB(t1, t0))

Fig. 5. The CSSA-based encoding of CTPρ in Fig. 4

For synchronization primitives such as locks, there are even more opportunities to
simplify the formula. For example, if π1 ← π(l1, . . . , ln) denotes the value read from
a lock variable l during lock acquire, then we know that (π1 = 0) must hold, since
the lock need to be available. This means for non-zero π-parameters, the constraint
(π1 = li), where 1 ≤ i ≤ n, always evaluates to false. And due to the mutex lock
semantics, for all 1 ≤ i ≤ n, we know li = 0 iff li is defined by a lock release.

The encoding of Φ = ΦCTPρ ∧ΦAV closely follows our definitions of CTP, feasible
linearizations, and the semantics of π-functions. We now state its correctness. The proof
is straightforward and is omitted for brevity.

Theorem 1. Formula Φ = ΦCTPρ ∧ ΦAV is satisfiable iff there exists a feasible lin-
earization of the CTP that violates the given atomicity property.

Let n be the number of events in CTPρ, let nπ be the number of shared variable uses,
let lπ be the maximal number of parameters in any π-function, and let ltrans be the
number of shared variable accesses in trans. We also assume that each event in ρ ac-
cesses at most one shared variable. The size of (ΦPO ∧ΦV D ∧ΦPI ∧ΦAV ) in the worst
case is O(n+n+nπ× l2π +nπ× ltrans). We note that shared variable accesses in typ-
ical concurrent programs are often few and far in between, especially when compared
to computations within threads, to minimize the synchronization overhead. This means
that lπ, nπ, and ltrans are typically much smaller than n, which significantly reduces
the formula size4. In contrast, in conventional bounded model checking (BMC) algo-
rithms for verifying concurrent programs, e.g. [20], which employ an explicit scheduler
variable at each time frame, the BMC formula size quadratically depends on n, and
cannot be easily reduced even if lπ, nπ, and ltrans are significantly smaller than n.

5 Capturing Erroneous Trace Prefixes

The algorithm presented so far aims at detecting atomicity violations in all feasible
linearizations of a CTP. Therefore, a violation is reported iff (1) a three-access atomicity
violation occurs in an interleaving, and (2) the interleaving is a feasible linearization

4 Our experiments show that lπ is typically in the lower single-digit range (the average is 4).
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of CTPρ. Sometimes, this may become too restrictive, because the existence of an
atomicity violation often leads to the subsequent execution of a branch that is not taken
by the given trace ρ (hence the branch is not in CTPρ).

Consider the example in Fig. 6. In this trace, event t4 is guarded by (a = 1). There
is a real atomicity violation under thread schedule t1t5t2 . . .. However, this trace prefix
invalidates the condition (a = 1) in t3—event t4 will be skipped. In this sense, the trace
t1t5t2 . . . does not qualify as a linearization of CTPρ. In our aforementioned symbolic
encoding, the π-constraint in t6 will become invalid.

t6 : (π2 = x1) ∧ g1 ∧ HB(t1, t6) ∧(HB(t4, t1) ∨ HB(t6, t4)) ∧ (HB(t5, t1) ∨ HB(t6, t5))
∨ (π2 = x2) ∧ g4 ∧ HB(t4, t6) ∧(HB(t1, t4) ∨ HB(t6, t1)) ∧ (HB(t5, t4) ∨ HB(t6, t5))
∨ (π2 = x3) ∧ g5 ∧ HB(t5, t6) ∧(HB(t1, t5) ∨ HB(t6, t1)) ∧ (HB(t4, t5) ∨ HB(t6, t4))

Note that in the interleaving t1t5t2 . . ., we have g4, HB(t4, t1), HB(t6, t4),
HB(t4, t5), HB(t6, t4) all evaluated to false. This rules out the interleaving as a feasi-
ble linearization of CTPρ, although it has exposed a real atomicity violation.

Thread T1 Thread T2

atomic{
t1 : x := 0
t2 : a := x + 1

}
t3 : if(a = 1)
t4 : x := 2

t5 : x := 3
t6 : b := x;

(a) the given trace

t1 : 〈1, (assume(true ), {x1 := 0 })〉
t2 : 〈1, (assume(true ), {a1 := π1 + 1 })〉

t3 : 〈1, (assume(a1 = 1), { })〉
t4 : 〈1, (assume(true ), {x2 := 2 })〉

t5 : 〈2, (assume(true ), {x3 := 3 })〉
t6 : 〈2, (assume(true ), {b1 := π2 })〉

(b) erroneous prefix

Fig. 6. The atomicity violation leads to a previously untaken branch

We now extend our notion of feasible linearizations of a CTP to all prefixes of its
feasible linearizations, or the feasible linearization prefixes. The extension is straight-
forward. Let FeaLin(CTPρ) be the set of feasible linearizations of CTPρ. We define
the set FeaPfx(CTPρ) of feasible linearization prefixes as follows:

FeaPfx(CTPρ) := {w | w is a prefix of ρ′ ∈ FeaLin(CTPρ)}
We extend our symbolic encoding to capture these erroneous trace prefixes (as op-

posed to entire erroneous traces). We extend the symbolic encoding in Section 4 as
follows. Let event triplet 〈tc, tr, tc′〉 ∈ PAV be the potential violation. We modify the
construction of ΦPI (for the π-function in event t) as follows:

ΦPI := ΦPI ∧ ( HB(tc′ , t)∨∨l
i=1(v

′ = vi) ∧ g(ti) ∧ HB(ti, t) ∧∧l
j=1,j �=i(HB(tj, ti) ∨ HB(t, tj)))

That is, if the atomicity violation has already happened in some prefix, as indicated
by HB(tc′ , t), i.e. when the event t associated with this π-function happens after tc′ ,
then we do not enforce any read-after-write consistency. Otherwise, read-after-write
consistency is enforced as before, as shown in the second line in the formula above.
The rest of the encoding algorithm remains the same. We now state the correctness of
this encoding extension. The proof is straightforward and is omitted for brevity.
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Theorem 2. Formula Φ = ΦCTPρ ∧ ΦAV is satisfiable iff there exists a feasible lin-
earization prefix of the CTP that violates the given atomicity property.

6 Experiments

We have implemented the proposed algorithm in a tool called Fusion. Our tool is ca-
pable of handling execution traces generated by multi-threaded C programs using the
Linux PThreads library. We use CIL [23] for instrumenting the C source code and use
the Yices SMT solver [14] to solve the satisfiability formulas. Our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora 8.

We have conducted preliminary experiments using the following benchmarks5: The
first set of examples mimic two concurrency bug patterns from the Apache web server
code (c.f. [1]). The original programs, atom001 and atom002, have atomicity viola-
tions. We generated two additional programs, atom001a and atom002a, by adding
code to the original programs to remove the violations. The second set of examples
are Linux/Pthreads/C implementation of the parameterized bank example [24]. We in-
stantiate the program with the number of threads being 2,3,. . .. The original programs
(bank-av) have nested locks as well as shared variables, and have known bugs due
to atomicity violations. We provided two different fixes, one of which (bank-nav) re-
moves all atomicity violations while another (bank-sav) removes some of them. We
used both condition variables and additional shared variables in our fixes. Although
the original programs (bank-av) does not show the difference in the quality of various
prediction methods (because violations detected by ignoring data and synchronizations
are actually feasible), the precision differences show up on the programs with fixes.
In these cases, some atomicity violations no longer exist, and yet methods based on
over-approximate predictive models would still report violations.

Table 1. Experimental results of predicting atomicity violations

Test Program The Given Trace Symbolic Analysis w/o Data [2]
name thrds svars simplify/ original regions orig-pavs hb-pavs sym-avs sym-time (s) pavs
atom001 3 14 50 / 88 1 8 2 1 0.03 1
atom001a 3 16 58 / 100 1 8 2 0 0.03 1
atom002 3 24 349 / 462 1 212 34 33 20.4 33
atom002a 3 26 359 / 462 1 212 34 0 17.6 33
bank-av-2 3 109 278 / 748 2 24 8 8 0.1 8
bank-av-4 5 113 527 / 1213 4 48 16 16 0.6 16
bank-av-6 7 117 770 / 1672 6 72 24 24 2.3 24
bank-av-8 9 121 1016 / 2134 8 96 32 32 2.5 32
bank-sav-2 3 119 337 / 852 2 24 8 4 0.2 8
bank-sav-4 5 123 642 / 1410 4 48 16 8 0.9 16
bank-sav-6 7 127 941 / 1960 6 72 24 12 3.8 24
bank-sav-8 9 131 1243 / 2517 8 96 32 16 4.6 32
bank-nav-2 3 119 341 / 856 2 24 8 0 0.2 8
bank-nav-4 5 123 647 / 1414 4 48 16 0 0.2 16
bank-nav-6 7 127 953 / 1972 6 72 24 0 3.7 24
bank-nav-8 9 131 1163 / 2362 8 96 32 0 140.6 32

5 Examples are available at http://www.nec-labs.com/∼chaowang/pubDOC/atom.tar.gz
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Table 1 shows the experimental results. The first three columns show the statistics
of test cases, including the program name, the number of threads, and the number of
shared variables that are accessed in the given trace. The next two columns show the
length of the trace, in both the original and the simplified versions, and the number of
transactions (regions). Our simplification consists of trace-based program slicing, dead
variable removal, and constant folding; furthermore, variables defined as global, but
not accessed by more than one thread in the given trace, are not counted as shared in
the table (svars). The next four columns show the statistics of our symbolic analysis,
including the size of PAV (orig-pavs), the number of violations after pruning using
a simple static must-happen-before analysis (hb-pavs), the number of real violations
(sym-avs) reported by our symbolic analysis, and the runtime in seconds. In the last
column, we provide the number of (potential) atomicity violations if we ignore the data
flow and synchronizations other than nested locking.

The results show that, if one relies on only static analysis, the number of reported
violations (in orig-pavs) is often large, even for a prediction based on a single trace. Our
simple must-happen-before analysis utilizes the semantics of thread create and join, and
seems effective in pruning away event triplets that are definitely infeasible. In addition,
if one utilizes the nested locking semantics, as in w/o Data [2], more spurious event
triplets can be pruned away. However, note that the number of remaining violations can
still be large. In contrast, our symbolic analysis prunes away all the spurious violations
and reports much fewer atomicity violations. For each violation that we report, we also
produce a concrete execution trace exposing the violation. This witness trace can be
used by the thread scheduler in Fusion, to re-run the program and replay the actual
violation. We also note that the runtime overhead of our symbolic analysis is modest.
The algorithm can be used in the context of a post-mortem analysis.

7 Related Work

We have mentioned in Section 1 some of the static methods [3,4], runtime monitor-
ing [5,1,6,7,8], and runtime prediction [9,2,10,11,12,13] for detecting atomicity viola-
tions. Lu et al. [1] used access interleaving invariants to capture patterns of test runs
and then monitor production runs for detecting three-access atomicity violations. Xu et
al. [5] used a variant of the two-phase locking algorithm to monitor and detect serial-
izability violations. Both methods were aimed at detecting, not predicting, errors in the
given trace. In [4], Farzan and Madhusudan introduced the notion of causal atomicity in
a static program analysis focusing on the control paths; subsequently they used execu-
tion traces for predicting atomicity violations [10,2]. Wang and Stoller [6] also studied
the prediction of serializability violations under the assumptions of deadlock-freedom
and nested locking; their algorithms are precise for checking violations involving one
or two transactions but incomplete for checking arbitrary runs.

Our symbolic encoding for detecting atomicity violations is related to, but is dif-
ferent from, the SSA-based SAT encoding [15], which is popular for sequential pro-
grams. Our analysis differs from the context-bounded analysis in [25,26,16] since they
a priori fix the number of context switches in order to reduce concurrent programs
to sequential programs. In contrast, our method in Section 4 is for the unbounded
case, although context-bounding constraints may be added to further improve perfor-
mance. We directly capture the partial order in difference logic, therefore differing from
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CheckFence [27], which explicitly encodes ordering between all pairs of events in pure
Boolean logic. In [28], a non-standard synchronous execution model is used to sched-
ule multiple events simultaneously whenever possible instead of using the standard in-
terleaving model. Furthermore, all the aforementioned methods were applied to whole
programs and not to concurrent trace programs (CTPs). In previous works [17,18] we
have used the notion of CTP, but the context was stateless model checking to prune
redundant interleavings in the former, and predicting assertion failures in the later.

The quantifier-free formulas produced by our encoding are decidable due to the fi-
nite size of the CTP. When non-linear arithmetic operations appear in the symbolic
execution trace, they are treated as bit-vector operations. This way, the rapid progress
in SMT solvers can be directly utilized to improve performance in practice. In the pres-
ence of unknown functions, trace-based abstraction techniques as in [29], which uses
concrete parameter/return values to model library functions, are employed to derive the
predictive model, while ensuring that the analysis results remain precise.

8 Conclusions

In this paper, we propose a symbolic algorithm for detecting three-access atomicity
violations in all feasible interleavings of events in a given execution trace. The new
algorithm uses a succinct encoding to generate an SMT formula such that the violation
of an atomicity property exists iff the SMT formula is satisfiable. It does not report
bogus errors and at the same time achieves a better interleaving coverage than existing
methods for predictive analysis.
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Abstract. In System-on-Chip (SoC) design, pre-designed and pre-
verified modules are often integrated into the system. In the absence
of a single interface standard for such modules, “plug-n-play style” inte-
gration is not likely, as the modules are often designed to comply with dif-
ferent interface protocols, and a protocol converter is required to mediate
between them. ACS is a tool that allows for automatic checking of pro-
tocol compatibility and automatic converter synthesis for SoC bus based
protocols. It is based on formal foundations and guarantees correct-by-
construction deterministic solutions in VHDL, whenever it is physically
possible to mediate between a given pair of protocols.

Keywords: System-on-Chip, Protocol converter, Protocol compatibility,
Converter synthesis, Bus-based architecture.

1 Introduction

Reuse of Intellectual Property (IP) modules has become common practice in chip
design. Aimed at accelerating the design phase and increasing system reliability,
pre-designed and pre-verified modules are integrated into a single chip. As the
integrated modules are often designed by different groups and for different pur-
poses, they typically comply with different interface protocols. For such modules
to communicate correctly there is a need for a protocol converter that mediates
between them.

In a bus based SoC architecture, the system includes one or more common
buses to which all modules interconnect, and all system communication is man-
aged by the bus interface protocols. A general bus-based SoC architecture, in-
cluding protocol converters for modules is illustrated in Figure 1. For an IP to be
integrated into this architecture it needs to either employ an interface protocol
that is compatible with the bus protocol, or use a protocol converter.

Automatic Converter Synthesis (ACS) is a tool implementation of methods
and algorithms that were developed for provably-correct automatic synthesis of
protocol converters for bus protocols of SoCs. It offers instantaneous generation
of provably-correct converters for mediation between a given pair of protocols.
The methods rely on a dedicated FSM-based formalism and formal definitions
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Fig. 1. A typical SoC architecture Fig. 2. Tool description

of protocol compatibility and correct protocol conversion [1,2,3], and the de-
rived algorithm for automatic converter synthesis has proofs of correctness and
completeness [2].

The paper is organized as follows. An overview of the underlying methods and
algorithms is presented in section 2. A description of the process flow of the tool
is provided in section 3. Experiments with the tool are described in section 4
and the tool status and future work are discussed in section 5.

2 The Formal Foundations

Complete descriptions of the models and methods on which ACS relies are avail-
able [1,2,3]. A brief overview is provided here.

The algorithms implemented in ACS are derived from precise formal definition
of protocol compatibility and correct protocol conversion that arose from an
extensive study of SoC bus protocol characteristics.

The protocol model on which the methods rely distinguishes between control
and data channels, and the IP modules are assumed to transfer data items from
one to another based on control information, indicating when data items are
available on the bus. It is assumed that a data item that is written to the bus
may remain valid for more than a single clock cycle and can therefore be read
from the bus more than once.

Thenotion of protocol compatibility, onwhich the definitions rely, includes three
basic conditions. Two protocols are considered to be compatible if and only if:
1. Data is read by one protocol only when written by the other, ensuring that

data items are read from the bus only when the bus is guaranteed to hold a
valid value.
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2. A given data item is read as distinct exactly once. This guarantees a mutual
understanding between the communicating parties of the amount of data
that is transferred and prevents loss of data and incorrect data duplication.

3. No deadlocks can occur and livelocks can always be avoided, ensuring that
every transfer can terminate in a finite number of steps.

A protocol converter is defined as an FSM with bounded counters and finite
buffers. The buffers store data items that were written to the bus by one protocol
until the other protocol is ready to read them. The general notion of correct
protocol conversion includes two conditions. A converter mediating between two
protocols is correct if and only if:

1. The converter is compatible with each of the protocols, and thereby complies
with the three conditions above.

2. The converter remains neutral in the conversation between the protocols. It
transfers all and only data items that were provided to it by the protocols.

The definition of correct conversion was derived from these notions, and the
algorithm for converter synthesis was designed to guarantee that the convert-
ers produced comply with this definition. Typically, more than one converter
exists that guarantees correct mediation between protocols. In search of these
converters, the first step in automatic synthesis of protocol converters produces
a machine referred to as the Most General Correct Converter (MGC2), which
is a nondeterministic converter that describes all possible behaviors a of a cor-
rect converter and restricts the design space for correct converters. The MGC2

is computed using an iterative algorithm that starts with the construction of
an initial converter that allows every possible sequence of transitions in both
protocols (whether correct or not). This is achieved in two simple steps - the
computation of the cross product of the protocols, and an inversion of chan-
nel actions of the protocols (according to a predefined inversion function). The
converter synthesis algorithm then iteratively restricts the initial converter to
only correct behaviors, until a fixed point is reached, in which none of the be-
haviors enabled by the converter causes a violation of the definition for correct
conversion.

As the produced MGC2 is potentially non-deterministic, an algorithm for
design space exploration of the MGC2 was also developed [3]. The algorithm
extracts deterministic converters out of the MGC2, that are guaranteed to com-
ply with the definition of correct protocol conversion. This is achieved by the
identification of input control conditions for which more than a single behavior is
enabled, and the construction of sub-converters in which a priori choice is taken
to include only one behavior under the identified conditions.

3 ACS Process Flow

The input to the tool consists of a pair of protocol models and mapping infor-
mation. A protocol is specified as a directed graph in the DOT format [4]. The
mapping information indicates the relation between the data channels of the two
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protocols (an output data channel of one protocol is mapped to each input data
channel of the other protocol). The process flow of the tool, as described in this
section, is illustrated in Figure 2.

After loading the input information, in which a syntax check is performed, and
setting some basic parameters (the size of buffers to be used in the converter),
the user can choose to perform an analysis, in which it is checked if a converter
exists for the pair of protocols under the specified parameters. Based on the
construction of the MGC2, a partial analysis option reports on an upper bound
for the number of unique converters that exist, while a full analysis reports on
the exact number of converters that exist and produces a report on the number
of states and transitions in each of the potential converters. A model of the
MGC2 is also provided in the DOT format.

The next step after the analysis of the MGC2 is the converter synthesis. If
specified by the user, the tool can export all converters into files in both the
DOT format and VHDL, enabling instant simulation, comparison between the
different converters, and direct integration into the SoC design.

For a given pair of protocols, the output of the tool is a list of deterministic,
provably-correct converters in VHDL, the number of which depends on the given
protocols and settings. A system designer at this point may choose which of
the converters and integrate it into the system with the use of any standard
hardware design IDE application (such as Xilinx ISE [5]). Comparisons between
the different converters produced by the tool can be made based on the number
of states and transitions in the converters, the size of buffers that each converter
uses (a report of these parameters is produced by the tool), or if other criteria
for comparisons are desired, the designer may wish to run simulations of the
converters in standard hardware simulation tools and examine the converter
performance as done with any VHDL design.

4 Experiments

The PC-based tool was used to generate converters for a number of simple
examples, as well as full scale commercial protocols such as the AMBA protocol
family [6,7,8] and the Open Core Protocol (OCP) [9]. Results of experiments
with commercial protocols are reported in Table 1. The table shows the number
of states and transitions in each MGC2, the number of converters found relative
to the number of different combinations of choices that exist in the MGC2 (#
column), and the execution time on a standard PC (Pentium 4 CPU 3.2GHZ,
2GB of RAM). It also lists the number of states and transitions in the minimal
converter found in each experiment and the improvement it shows relative to
the MGC2.

The experiments illustrate a number of points regarding automatic converter
synthesis. First, the significant difference between the potential number of choice
combinations and the number of correct converters found implies that the likeli-
hood of a successful manual or random search for a deterministic converter is low
and a systematic search is needed. Taking for example the converters between
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Table 1. Experimental results

Initiator Reactor Buffer
MGC2

# Time
Min Improvement

States Trans States Trans States Trans

asb apb

1 0 0 - < 1sec - - - -
2 10 19 4/96 < 1sec 8 13 20% 31%
5 10 19 9/96 2sec 8 13 20% 31%

ocp apb
2 4 15 4/1,024 3sec 2 3 50% 80%
10 4 15 4/1,024 5sec 2 3 50% 80%

ocp asb 2 14 32 4/4,096 1min 7 10 56% 75%
(read) (read) 10 14 32 4/4,096 1min 7 10 56% 75%

ocp asb 2 16 40 1102/65,536 15min 7 10 56% 75%
(write) (write) 10 16 40 1102/65,536 30min 7 10 56% 75%

an OCP master and an APB slave, the design space of the converters include
1024 different combinations of choices between behaviors, and only 4 of these
combinations yield valid unique converters. Second, the table shows that there
can be dramatic differences between different converters for the same pair of
protocols, by showing that the minimal converter found is significantly smaller
than the MGC2. In the example of OCP to APB converters, the MGC2 has
4 states and 14 transitions, but the minimal converter has only 2 states and 3
transitions, which is a significant difference. In this case the measure for compar-
ison was the physical size of the converters (number of states and transitions)
but this comparison can be made for any other meaningful measure that can
be estimated, such as buffer utilization, power consumption etc. The differences
between converters emphasize the advantage of using automatic synthesis in
improving system performance, and this difference appears to grow with the
complexity of the protocols. This can be attributed to the flexibility of complex
protocols, which allow for greater choices for the communicating party, and in
this case the converter.

Converters that were produced by the tool were successfully synthesized to
FPGAs and simulated with the use of standard commercial tools for hardware
design (Xilinx ISE, Modelsim and Synplify simulators).

Note that it is not always possible to generate a converter for any pair of pro-
tocols or for any size of buffers. This limitation has to do with the characteristics
of the protocols involved. For example, an AMBA2 APB master follows a very
simple protocol that does not include any wait states and expects, for example,
that any “read” request be serviced within one clock cycle. Such a protocol can-
not be correctly converted to more complex slaves such as ASB or OCP, since
these slaves do not guarantee an immediate response and may try and force wait
states on the master. No converter can overcome such differences and guarantee
correct conversion for any legal behavior of the protocols. In such cases where it
is not possible to generate a converter the tool will report that the MGC2 could
not be produced.
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5 Status and Future Work

ACS was implemented as a part of ongoing research in formal methods for hard-
ware design automation, and as such it is evolving continuously, following ad-
vances in the research. The tool currently supports automatic converter synthesis
for protocols with unidirectional data channels and matching data bus widths
between protocols, although the algorithms for mismatched data widths have
been already developed [2] and will soon be integrated into the tool. Other
extensions that will be integrated into the tool in the coming months include
automatic compatibility check [2] with counter examples on failure, and buffer
size suggestions.
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Abstract. AlPiNA is a graphical editor and model checker for a class of high-
level Petri nets called Algebraic Petri Nets. Its main purpose is to perform reach-
ability checks on complex models. It performs symbolic model checking based
on ΣDD, an efficient evolution in the Decision Diagrams field, using novel tech-
niques such as algebraic clustering and algebraic unfolding. AlPiNA offers a
user-friendly interface, and is easily extensible.

1 Introduction

This article introduces the AlPiNA model checking tool. AlPiNA allows checking
reachability properties on Algebraic Petri Nets (APN) models, a class of High Level
Petri Nets. It encodes state spaces symbolically as Decision Diagrams [6], which re-
duces memory consumption and computation time that are major obstacles to the prac-
tical use of model checking. Users can specify properties to verify using a dedicated
language, and they can provide additional information on the model to improve model
checking performance. In the current iteration of AlPiNA, we focus on reachability
properties for several reasons – among others, the fact that many interesting properties
can be expressed as reachability properties as proven in CPN Tools [7].

AlPiNA has two main goals. The first goal is improving model checking performance
by leveraging the Decision Diagrams framework and the innovative concepts of alge-
braic clustering and algebraic net unfolding. Algebraic clustering reduces the memory
footprint of state space calculation by semi-automatically decomposing the system in
independent processes. Partial algebraic net unfolding allows reducing the complexity
of the data type unfolding. The second goal of AlPiNA is coupling this high perfor-
mance with a user friendly interface. The user can specify models and properties with a
graphical and textual editor. We propose to separate the model and performance-related
information. This gives the users a high-level view of the model, freeing them from the
need to use low-level formalisms in a complex way.

The article is structured as follows. Section 2 quickly illustrates the theoretical foun-
dations of AlPiNA. Section 3 describes the tool’s architecture and shows some bench-
marks. Finally, the tool’s current status and perspectives are discussed.

� This project was partially funded by the COMEDIA project of the Hasler foundation, ManCom
initiative project number 2107.
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2 Theoretical Foundations of AlPiNA

Concurrency and non-determinism are the major causes of exponential state space ex-
plosion [12]. This happens when model components have few causal dependencies with
each other and therefore evolve almost independently. Because of the exponential na-
ture of the model checking problem, the state space rapidly becomes intractable as the
number of components increases. To overcome this, the state space encoding must have
a lower complexity than the explicit enumeration of states. We extend the approach
initiated by McMillan [4] called Symbolic Model Checking, which exploits maximal
sharing of state elements. In APNs, values are instances of algebraic abstract data types
(ADT), therefore they require a more powerful encoding of the state space than Binary
Decision Diagrams [1]. Because of this, we defined an evolution of Decision Diagrams
(DD) [6] called ΣDD [3].

Clusters (i.e. sets of states) maximize the sharing induced by encoding with DDs [6].
For example, all the places of a Petri net that represent a process and its resources are
grouped together. In this case, the cluster is called a topological cluster [9] since it is
solely based on the Petri net topology. In high-level Petri nets, because of the level of
abstraction, places can represent classes of similar processes and resources. Algebraic
clusters [2] allow the user to group process instances with their resources. AlPiNA
automatically derives clustering from this grouping. The more independent the resulting
clusters are, the more efficient the symbolic representation will be. In the best case, the
memory consumption is logarithmic to the number of states.

Since AlPiNA uses APNs, it has to manipulate universally quantified variables. An
interesting way of improving performance is to perform an algebraic net unfolding [2].
It instantiates the variables of the system in a pre-processing phase, before state space
exploration. By doing this, it becomes possible to compile the model with bindings that
satisfy the transition guards. Unfolding may significantly increase the speed of the state
space construction when the data domains are finite or bounded. Still, it is not always
possible or even desirable to perform unfolding for two reasons. The first reason is that
a bound may be difficult to figure out: if the bound is too small, the validation becomes
incorrect; if it is too large, unfolding may become very expensive and model checking
itself intractable. The second reason is that sometimes it is useless to unfold a data
domain if only a few of its values are effectively used.

To tackle this problem, we propose to perform partial unfolding, i.e. choosing only
a subset of the domains. The choice whether a domain should be part of the unfolding
is a trade-off between the possible speed gain and the cost of the unfolding itself. Its
computational complexity is O(nc) where n is the size of the largest data domain and c
the largest number of input arcs.

In AlPiNA we generate the state space using an algorithm called saturation [5]. The
algorithm benefits from the clustering of the state space to fire all transitions local to a
component before firing inter-component transitions. All the transitions local to a given
cluster are only applied to the subset of the state space relevant to the cluster, avoiding
superfluous computations. A detailed technical description of the encoding as well as
the notion of algebraic cluster and algebraic unfolding has been given in [2].
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3 Tool Description

AlPiNA’s architecture can be seen in Fig. 1. AlPiNA is composed of a Model Checker
Engine (1) and a Graphical User Interface (2) built on top of it.

AlPiNA’s architecture can be seen in Fig. 1. AlPiNA is composed of the Model
Checker Engine (1) and a Graphical User Interface (2) built on top of it.

The foundation of the Model Checker Engine is the symbolic representation offered
by DD structures, as presented in the previous section. The first two layers of our engine
refer to libraries that handle DD structures. The third layer is a bridge between the
APN semantics and the underlying layers. It performs optimisations such as algebraic
clustering and net unfolding. On top of the engine block, we find the property checker
layer, that uses the state space generated by the previous layer to compute the properties
satisfaction. These two layers communicate with the GUI block, they receive the models
and return the generated state space and properties statisfaction results.
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Fig. 1. Architecture Overview

AlPiNA Maria Helena
Partial Unfold. Total Unfold.

Model States Mem Time Mem Time Mem Time Mem Time
Size # (MB) (s) (MB) (s) (MB) (s) (MB) (s)

Distributed Database
10 197E3 10 0.8 12.4 1.3 47 44.3 24 9
15 7.2E7 33 2.6 41 5.8 - - 1.4E3 7.5E3
35 5.8E17 544 69.4 789 278 - - - -

Dining Philosophers
10 186E4 1.9 0.15 375 141 11 5
15 2.5E9 2.6 0.18 - - 409 822

300 1.2E188 162 48.5 - - - -

Slotted Ring
5 53856 4.9 0.2 23 4.3 10 5

10 8.3E9 55.6 1.7 - - - -
15 1.5E15 330 9.8 - - - -

Leader Election
15 399E4 27.7 1.4 795 361 107 142
50 1.7E21 702 76 - - - -

Fig. 2. State space generation

The second block of the AlPiNA architecture is the GUI. We used the Eclipse Tools
from the Eclipse Modeling Project (EMP) [8] to create a user friendly interface, follow-
ing the MDA directives. The first layer is the metamodels specifications, created with
EMF. With these metamodels, we created a graphical concrete syntax using GMF for
the Petri Nets editor, and a textual concrete syntax using XText for the textual editors.
This schema allows us to create an extensible and modular tool.

AlPiNA has good memory consumption and processing time as shown in Fig. 2.
It outperforms by an order of magnitude two widely used high level Petri nets model
checkers, Maria [10] and Helena [11]. This figure shows the results obtained for some
well known examples in the model checking field. The “–” symbol indicates that a result
could not be computed1. Every example shows that the techniques we present in this
tool can produce excellent results when applicable. The distributed database example

1 These benchmarks were computed using a 4 GB ram, 2.5 GHz Core 2 Duo Macbook Pro. The
source code can be downloaded at http://alpina.unige.ch
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shows also that partial net unfolding can give better results than total unfolding. The
blank cells indicate that the test has not been run. Indeed, partial net unfolding is not
useful when the algebra are to small, which is the case for the Dining Philosophers, the
Slotted Ring and the Leader election.

4 Current Status and Perspectives

Compared to other high-level model checkers, AlPiNA has the advantage of treating
state spaces larger by orders of magnitude while being user friendly. Users benefit from
the efficiency based on the Decision Diagrams technology in a transparent manner. They
can also easily specify algebraic clustering and algebraic net unfolding to improve
model checking performance. Thanks to this, AlPiNA outperforms Maria and Helena
when the model has strong concurrency.

All the features mentioned in this paper have been implemented in AlPiNA. A public
release can be found at http://alpina.unige.ch. The tool has a user-friendly interface,
taking full advantage of the EMF tools features. We are currently working on the next
version which should bring modularity to the formalism and CTL support. Moreover,
we will improve user guidance while defining the algebraic clustering.
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Abstract. We present PASS, a tool that analyzes concurrent proba-
bilistic programs, which map to potentially infinite Markov decision pro-
cesses. PASS is based on predicate abstraction and abstraction refinement
and scales to programs far beyond the reach of numerical methods which
operate on the full state space of the model. The computational engines
we use are SMT solvers to compute finite abstractions, numerical meth-
ods to compute probabilities and interpolation as part of abstraction
refinement. PASS has been successfully applied to network protocols and
serves as a test platform for different refinement methods.

1 Introducing PASS

Network protocols are subject to random phenomena like unreliable communi-
cation and employ randomization as a strategy for collision avoidance. Further,
they are often distributed and thus inherently concurrent. To account for both
randomness and concurrency, Markov decision processes (MDPs) are used as
a semantic foundation as they feature both non-deterministic and probabilistic
choice. Typically one is interested in computing (maximal or minimal) reachabil-
ity probabilities, e.g., of delivering three messages after ten transmission attempts
(under best-case and worst-case assumptions concerning the environment).

Probabilistic reachability is expressible in terms of least fixed points of a sys-
tem of recursive equations [1] where the unknowns correspond to the probability
of an individual state. For finite MDPs, probabilistic reachability can be reduced
to linear programming [2] or solved approximately by value iteration. Current
implementations, e.g., in the popular PRISM model checker [3], use numerical
methods like value iteration. However, the infamous state explosion problem is
even more severe than in the qualitative setting. Explicit-state methods do not
scale well in presence of expensive numerical computations. Symbolic techniques
are often not effective because the probabilities arising as intermediate results
of computations exhibit little structure or regularity to exploit.
� This work is supported by the NWO-DFG bilateral project ROCKS, by the DFG

as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS and
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PASS1 uses the same principal machinery, but aims at supporting infinite or
very large models by resorting to counterexample-guided abstraction refinement
(CEGAR): instead of exploring the state space of the model, PASS uses pred-
icate abstraction to maintain a finite abstract model. Analysis of the abstract
model is typically very efficient since it has few states. It yields probability inter-
vals that are guaranteed to contain the probabilities in the original model. The
difference between interval bounds quantifies the approximation error caused by
abstraction. The abstraction is refined until the approximation error is small
enough. Otherwise the abstract model provides diagnostic information to refine
the abstraction. The process is described in [4,5]. A major difference to conven-
tional CEGAR for predicate abstraction lies in the notion and interpretation of
counterexamples: counterexamples are Markov chains rather than single paths.

Predicate abstraction for probabilistic models [6] and suitable refinement tech-
niques [4] premiered in PASS. Preceding abstraction-refinement methods in the
probabilistic setting like magnifying-lens abstraction [7] or RAPTURE [8] are
restricted to finite models, since they locally unfold the state space of the original
model. Our previous version PASS 1.0 has only been able to compute effective
upper bounds on probabilities rather than probability intervals.

Kwiatkowska et al. pioneered game-based abstractions [9] which have the ben-
efit of providing safe upper and lower bounds. The idea is that the abstraction
distinguishes two kinds of non-determinism: non-determinism present in the orig-
inal model and non-determinism that results from abstraction. This has been
applied to a sequential C-like language with probabilistic choice but without
concurrency [10]. In [11], concurrent probabilistic programs have been consid-
ered, but without refinement and only for finite models.

To be able to compute probability intervals, we have recently enhanced the
PASS machinery with notions of game-based abstraction [5]. To this end, we
have introduced a coarser game-based abstraction, called parallel abstraction.
It can be efficiently computed for concurrent probabilistic programs and yields
tight probability bounds, as shown by our experimental results [5]. Beside this
feature, PASS has been improved in terms of robustness, efficiency and usability.

2 Architecture

The architecture of PASS, depicted in Figure 1, revolves around an abstraction
refinement loop.

PASS reads programs in a concurrent, guarded-command language extending
the one of PRISM. The semantics of a program is an MDP in which each state
is a valuation of program variables. Initial states are specified by an expressions
over program variables. The rest of the description consists of commands. Each
command comprises a guard and a set of probabilistic alternatives. Each alter-
native is associated with a probability and an update formula. If a state fulfills
the guard of a command, this state has a probabilistic choice to go to each state
obtained by the respective update formula. Unlike PRISM, we allow variables
1 The acronym stands for Predicate Abstraction for Stochastic Systems.
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with infinite range. Probabilistic reachability properties are specified by giving
an expression that defines the set of goal states. PASS then computes probability
bounds to reach them.

parsermodel property

predicate
abstraction

prob. game

prob.
reachability

predicate
synthesis

Fig. 1. Architecture of PASS

We use the predicate abstraction
method of [5] where probabilistic
programs are abstracted to stochas-
tic games [12]. The abstraction is
implemented using SMT-based enu-
meration. The abstractions of the
commands are stored in BDDs. Prior
to the quantitative analysis, we per-
form a preprocessing step where we
prune the abstract state space to the
states that are both reachable from
an initial abstract state and can reach
a goal state. To this end, we employ
a BDD-based forward and backward
analysis respectively.

The stochastic game is first converted from a symbolic BDD-based represen-
tation to a sparse-matrix representation. Then the lower and upper bound prob-
abilities are computed by value iteration. Value iteration also generates game
strategies, a resolution of non-determinism in the game that witnesses the ob-
tained probabilities. These strategies form the foundation for the notion of an
abstract probabilistic counterexample [4], which can be used to either refute
properties or provide diagnostic information to refine the abstraction.

PASS supports two different refinement methods: Probabilistic CEGAR [4],
which analyzes probabilistic counterexamples based on the idea of strongest ev-
idence [13], and the method in [5], which splits abstract states where certain
strategies in the abstract game and the obtained bounds indicate a loss of pre-
cision. Both methods have their benefits. A comparison is given in [5].

3 Selected Features

Several new features have not been covered in previous publications [6,4,5].

Improved value iteration scheme. It is important to use an efficient value itera-
tion scheme since this step has to be repeated after each refinement step. The
order in which value iteration updates the probabilities at a state has a signif-
icant impact on the number of iterations. The value of a state depends on its
successors. Following the dependencies in the evaluation order can significantly
speed up value iteration [14]. PASS now performs value iteration according to a
reversed depth-first order starting with the goal states.

Interpolation. PASS uses interpolation to analyze paths of the abstract model.
We have written a wrapper to include different interpolation tools with imple-
mented bindings for MathSAT [15], CSIsat [16] and FOCI [17].
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On-the-fly Abstraction. To only compute transitions of abstract states that are
actually reachable, PASS computes the abstraction layer-wise starting with the
initial states interleaving state exploration with SMT-based abstraction. In order
to benefit from learned clauses and avoid a repetitive build up of the SMT
problem, on-the-fly abstraction employs incremental SMT solving across layers.

4 Concluding Remarks

PASS consists of approximately 18.000 lines of C++ code, and has been tested
on a large number of case studies. It is available for Linux with libc6. A PASS
executable and case studies can be downloaded from:

http://depend.cs.uni-sb.de/pass
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Abstract. The Real-Time Calculus (RTC) [1] is a framework to ana-
lyze heterogeneous real-time systems that process event streams of data.
The streams are characterized by pairs of curves, called arrival curves,
that express upper and lower bounds on the number of events that may
arrive over any specified time interval. System properties may then be
computed using algebraic techniques in a compositional way. A well-
known limitation of RTC is that it cannot model systems with states and
recent works [2,3,4,5] studied how to interface RTC curves with state-
based models. Doing so, while trying, for example to generate a stream
of events that satisfies some given pair of curves, we faced a causality
problem [6]: it can be the case that, once having generated a finite pre-
fix of an event stream, the generator deadlocks, since no extension of
the prefix can satisfy the curves anymore. When trying to express the
property of the curves with state-based models, one may face the same
problem. This paper formally defines the problem on arrival curves, and
gives algebraic ways to characterize causal pairs of curves, i.e. curves for
which the problem cannot occur. Then, we provide algorithms to com-
pute a causal pair of curves equivalent to a given curve, in several models.
These algorithms provide a canonical representation for a pair of curves,
which is the best pair of curves among the curves equivalent to the ones
they take as input.

1 Introduction

The increasing complexity of modern embedded systems makes their design more
and more difficult. Modeling and analysis techniques have been developed that
help taking or validating decisions on the conception of a system as early as
possible in the design process.

There exists many methods among which we can distinguish two families.
Computational approaches study fine-grain models of the system to represent
its complete behavior. The validation of the system using such a model may
involve simulation, testing and verification. As opposed, analytical techniques,
such as Real Time Scheduling (founded with [7]) and Real Time Calculus [1], use
purely analytical models, based on mathematical equations that can be solved
efficiently. These models can represent in a simple way the amount of events to
be processed and how fast they can be processed. Solving these equations can
give, for example, the best and worst cases for performances.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 358–372, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Both families of approaches have their advantages and drawbacks. Simulating
precisely an embedded system gives very precise results, but only for one simu-
lation, and one instance of a system. Analytical approaches, on the other hand,
give strict worst case execution times, and usually give results very fast, but do
so only for cases that the theory can take into account. For example, Real-Time
Calculus cannot handle the notion of state in the modeling of a system. Recent
studies try to combine the approaches to take the best of both [2,4,5,8,9]. The
work we present in this paper fully takes its root and motivation in one of those
studies, while trying to combine Real-Time Calculus, state-based models and
abstract interpretation, using synchronous languages [3].

The Real-Time Calculus (RTC) [1] is a framework to model and analyze
heterogeneous system in a compositional manner. It relies on the modeling of
timing properties of event streams with curves called arrival curves (and service
curves, which count available resources instead of events in a similar fashion). A
component can be described with curves for its input stream and available re-
sources and some other curves for the outputs. For already-modeled components,
RTC gives exact bounds on the output stream of a component as a function of
its input stream. This result can then be used as input for the next component.
Arrival curves are function of relative time that constrains the number of events
that can occur in an interval of time. For any sliding window of time of length
Δ, the pair of arrival curves (αu, αl) gives explicitly the lower αl(Δ) and upper
αu(Δ) bounds on the number of events (see examples in Figure 1). But, arrival
curves may also contain implicit constraints indirectly deduced from explicit
ones. This paper studies those implicit constraints and provides algorithms to
make them explicit.

Motivation. Implicit constraints cause problems in several contexts. For sim-
ulation purpose [10], it is typical to produce a stream of events that satisfies
some given arrival curves using a generator of events. Such generators are the
computational representation of a pair of curves, they are built to generate any
streams that satisfies the curves. There are multiple ways to write such genera-
tors [10,9,3,8] but many faced the problem. For the explanation, let us consider
a straightforward one, in discrete time: it computes at each point in time the
lower and upper bounds on the number of events allowed to be emitted, based
on the events already emitted, and it emits a random number of events within
these bounds. Now, it may happen, due to implicit constraints, that some upper
bound is strictly lower than the lower bound, leading the generator to deadlock.

Another case where implicit constraints are problematic is the case of for-
mal verification of a system, with inputs and outputs characterized by arrival
curves. One may want to prove a property like “If the input complies with the
arrival curve pairs αI , then the output satisfies the arrival curve pairs αO”. But
verification tools based on reachability analysis (see, e.g. [11]) usually allow only
the expression of “If the input complies with αI up to time t, then the output
complies with the αO up to time t”. Then, the tool may find a counter-example
violating αO without violating αI up to time t, but it can be the case that
this finite counter-example cannot be extended into an infinite execution that
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satisfies αI . This would therefore be a spurious counter-example. Getting rid of
these counter-examples sometimes requires heavyweight state exploration tech-
niques (for example, the -causal option of lesar [12] does this for Boolean
programs) but not all tools are able to do it (nbac [11] cannot, for example, and
the problem is known to be undecidable for integer programs). The technique
that translates the constraints of arrival curves into a model to be analyzed by
a verifier tool was used for, e.g., timed automata [2,8], event count automata [4]
and synchronous programs [3]. For each tool, one can pose the questions: “what
is the behavior of the tool when used on curves with forbidden regions?” and
“do the tool output curves with forbidden regions?”. Actually, except [3], the
papers do not give answer to them. We will see that [2,8] do not create curves
with forbidden regions while [4] could at least in theory, and we explain why.
Each of the tools would badly behave in the presence of forbidden regions, and
this paper gives a way to get rid of them before using any tool.

Implicit constraints on arrival curves. We distinguish two kinds of implicit
constraints, that we call informally “unreachable regions” and “forbidden re-
gions”. The first one is a well-studied phenomenon within the Real-Time Calcu-
lus community [13] and the second, which may produce deadlocks in generators
and spurious counter-examples in verification is the goal of this paper. Let us
discover those using a pair of arrival curves (αu, αl) (see Figure 1 for an example).

Firstly, by splitting some interval into smaller ones, we can get additional
constraints. As shown in Figure 1.(a), in an interval of size Δ = 6, the curve
says explicitly that the lower bound on the number of events is 1, but splitting
this interval into three intervals of size 2, one can deduce a better bound, which
is 3. Although the curve explicitly specified the bounds αl(6) and αu(6) to be 1
and 7, the number of events in a window of size 6 can actually never be equal to
1 (αl(6)). In other words, the actual implicit lower bound is greater than αl(6):
this means that the curve is equivalent to a tighter curve. A well-known result
[13] is that the upper (resp. lower) curve does not have this kind of implicit
constraints if it is sub-additive (resp. super-additive). The transformation of an
arbitrary curve into an equivalent sub-additive (resp. super-additive) curve mak-
ing those constraints explicit is called sub-additive closure (resp. super-additive
closure). In this paper, we call the region between the curves and its sub-additive
(resp. super-additive) closure unreachable regions. Unreachable regions are due
to constraints of a single curve on itself, and can be computed at some point by
looking only at the past, i.e. smaller Δ.

The second case of implicit constraints can be found by looking at both curves
towards the future. Figure 1.(b) gives an example of such a case: since αl(3) = 0,
the lower curve does not give a lower bound on the number of events that can
occur in a window of time of size 3, but if an execution has no event during such
a window, then the upper curve prevents it from emitting more than 3 events in
the next 2 units of time, while the lower curve will force it to emit at least 4. It
is therefore impossible to emit no events for 3 units of time. We call the regions
that contain such points forbidden regions. No execution can cross a forbidden
region unless it gets blocked some time latter, due to some contradiction between
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Fig. 1. Implicit and explicit constraints on arrival curves

lower and upper constraints. Borrowing the vocabulary used in [6], we call this
kind of implicit constraints causality constraints. A pair of curves for which the
beginning of an execution never prevents the execution from continuing is called
causal. Intuitively, this is the same as having no forbidden region (but we will
see that the relationship between absence of forbidden region and causality is
only an implication).

Surprisingly, this question has received very little attention and to the best
of our knowledge, no transformation has been published to make these implicit
constraints explicit. One may wonder if this is a “true” problem, i.e. if such non
causal curves can be encountered in practice. Indeed, a straightforward answer is
that they cannot come from a real system, since curves derived from execution or
simulation of real systems are always well-formed. The common practice is to use
such curves for the inputs of RTC models. As RTC computations preserve the
causality of the curves, non-causal curves were not considered as a problem so far.
This may explain why no studies have been published yet on the subject. Things
are different when instead of using RTC, one uses other tools for deriving output
arrival curves, given some input arrival curves. Those tools, among them model-
checking of timed automata [14] on abstracted models, abstract interpretation
of Lustre programs [11], may compute non-causal arrival curves, even when the
input is causal.

Additionally, non-causal curves contain implicit constraints that could be
made explicit. If the output of a computation gives the curve in Figure 1, then
making the implicit constraint explicit gives tighter bounds on the number of
events (for example, a tighter bound on the number of events in a window of size
4). We encountered the case, when merging the output of several computations
for the same set of flows of events [9] using different approximate methods. This
provides several pairs of curves, each of them being a valid over-approximation of
the expected result. The basic combination of these curves (point-wise minimum
and maximum) can contain implicit constraints, and making them explicit gives
more precise results from the same analysis.

Contributions. To solve these issues, this paper formally defines the causality
problem and propose several solutions.
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– We give a characterization of the notion of causal pairs of arrival curves.
– Combining this property with existing ones, we give a definition for a canoni-

cal representation of a pair of curves, which is causal and sub-additive/super-
additive. We show that it is also the tightest possible representation of the
original curve.

– We propose an algorithm that transforms a pair of arrival curves into its
equivalent causal representation.

All results in the paper are proven (Due to place limitations, the proofs only
appear in [15]) and may be applied to dense-time or discrete-time arrival curves
on the one hand, to discrete-event or fluid-event models on the other hand. The
implementation part has been developed for discrete-time discrete-event models,
since this was our context of use, but we believe it could be adapted to other
contexts. Furthermore, although all along the paper we talk about arrival curves,
the reader should be convinced that every results also apply to service curves.

The outline of this paper is as follows: Section 2 defines arrival curves and
some few algebraic operators; Section 3 defines causality and gives a character-
ization of it; Section 4 shows how to compute the tightest causal representation
of arrival curves; and Section 5 gives an algorithm for computing it for discrete
finite curves.

2 Arrival Curves

We now define the notion of arrival curves that characterize timing properties
on a set of event streams. A pair of lower and upper arrival curves defines
lower and upper bounds on the number of events allowed in a sliding window
of size δ. Event streams that satisfy the pair of arrival curves are abstracted
with cumulative curves that represent the number of events that occurs since
the beginning t = 0. In this paper, we do not focus on a particular model and
every results (except Section 5) apply to all of them. Namely, time can be either
continuous or discrete, and we consider both the fluid and discrete event-model.
Formally, functions we consider are from T , the time, to E = E ∪{∞}, the event
count; and T (resp. E) can be either R+, the set of non-negative reals, or N ,
the set of naturals. We note F the set of wide-sense increasing functions f from
T to E and such that f(0) = 0; Ffinite is the set of such functions from T to E .
Definition 1 (Arrival Curves and Cumulative Curves). R ∈ Ffinite can
model a cumulative curve: R(t) represents the (finite) amount of events that
occurred in the interval of time [0, t].

A pair of arrival curves is a pair of functions (αu, αl) in F × Ffinite, such
that αl ≤ αu.

Let R be a cumulative curve and (αu, αl) be a pair of arrival curves. R is
said to satisfy (αu, αl) noted R |= (αu, αl) iff(def) ∀x ∈ T , ∀δ ∈ T , R(x +
δ)−R(x) ∈ [αl(δ), αu(δ)]
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We say that a pair of arrival curves (αu, αl) is satisfiable iff(def) there exists
a cumulative curve R that satisfies (αu, αl).

We note R |=≤T (αu, αl), meaning that R satisfies (αu, αl) up to T iff(def)
∀t ≤ T, ∀δ ≤ t, R(t)−R(t− δ) ∈ [αl(δ), αu(δ)]

Next, comes the deconvolution operators that will be intensively used in the
next sections. And then we briefly recall the notions of sub-additivity and super-
additivity, that are used to erase the unreachable regions from the curves. Details
on those notions can be find, e.g. in [13].

Definition 2 (Deconvolutions). Let f, g be functions from T to E and x ∈ T ,

(f - g)(x) def= sup
t≥0
{f(x + t)− g(t)} ((min, +) deconvolution)

(f - g)(x) def= inf
t≥0
{f(x + t)− g(t)} ((max, +) deconvolution)

Definition 3 (Sub/Super-Additivity and Closures). Let f ∈ F , f is said
to be sub-additive (resp. super-additive) iff ∀s, t ∈ T . f(t + s) ≤ f(t) + f(s)
(resp f(t + s) ≥ f(t) + f(s)).

Let f ∈ F . Among all the sub-additive (resp. super-additive) functions g ∈ F
that are smaller (resp. greater) than f there exists an upper (resp. lower) bound
called the sub-additive (resp. super-additive) closure of f and denoted by f (resp.
f). A pair of arrival curves (αu, αl) is Sub-Additive-Super-Additive (denoted SA-
SA for short) iff(def) αu is sub-additive and αl is super-additive. We call (αu, αl)
the SA-SA closure of (αu, αl).

SA-SA closure makes explicit some of the implicit constraints of an arrival curve.
It makes explicit the unreachable regions (Figure 1.(a)), which are the regions
between αl and its super-additive closure αl in the one side, between αu and
its sub-additive closure αu on the other. Informally, they represents the points
between αu and αl that are not reachable by any finite or infinite cumulative
curves.

3 Causality: Definition and Characterization

We now define the notion of causality. The problem we are studying is the one
of an event stream that is correct up to a certain time T , but “can not be
continued” without violating the pair of curves. This can be seen as a deadlock
of the flow, which could then neither let time elapse nor emit an additional event.
A pair of arrival curves for which this problem can not happen is called causal.
We first give a formal definition for causality, and then give a characterization
with algebraic formulas.

Definition 4 (Causal Arrival Curves). Let (αu, αl) be a pair of arrival
curves. (αu, αl) is said to be causal iff any cumulative curve R that satisfies
(αu, αl) up to T can be extended indefinitely into a cumulative curve R′ that
also satisfies (αu, αl). In other words, (αu, αl) is causal iff(def) ∀T ≥ 0,
∀R,
(
R |=≤T (αu, αl)

)
=⇒ (∃R′ | R′ |= (αu, αl) and ∀t ≤ T, R(t) = R′(t)

)
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Unlike the sub-additivity and super-additivity properties, the causality is really
a property on a pair of curves; it does not make sense to say that αu alone, or
αl alone, is causal since the impossibility to extend a cumulative curve can come
only from a contradiction between an upper bound and a lower bound.

3.1 Characterization of Causality

Causality reveals new implicit constraints. Informally, we call forbidden regions
the points between αu and αl that are reachable by finite cumulative curves, but
for which the cumulative curves can trivially not be extended into infinite ones.

Let us consider the curve αl, and try to define αl∗, defined informally as “αl

without its forbidden regions”. αl∗(δ) is the smallest value for which a cumulative
curve R verifying R(t+δ)−R(t) ≥ αl∗(δ) is guaranteed to be extensible infinitely
by emitting the maximum amount of events allowed by αu, without violating
αl (this the same as saying that if R(t + δ) − R(t) < αl∗(δ) for some t, then
R cannot be extended without violating either αu or αl, which means that the
region below αl∗ is forbidden). Computing the forbidden region of αl at abscissa
δ0 means therefore computing the lowest N for which αu(δ) + N would not
cross αl(δ0 + δ) for some δ ≥ 0. This is equivalent to finding the supremum of
the N for which the curves would intersect. Formally, this can be written as
αl∗ = supδ≥0

{
αl(δ0 + δ)− αu(δ)

}
, which is the definition of the deconvolution:

αl - αu. A similar reasoning would lead to the curve αu-αl for the forbidden
regions of αu.

We can therefore define more formally forbidden region as the area between
a curve αu (resp. αl), and αu-αl (resp. αl-αu): intuitively, computing αu-αl

means “removing forbidden regions from αu”, and computing αl - αu means
“removing forbidden regions from αl”. When αu = αu-αl and αl = αl - αu,
we can say that the curves have no forbidden region. The contribution of this
paper is the study of these forbidden regions, giving a formal characterization
and algorithms to detect their presence and to eliminate them.

Theorem 1 (Characterization of Causality). Let (αu, αl) be a pair of ar-
rival curves. The following implications and equivalences hold:

αl = αl - αu

and
αu = αu-αl

(e)
=⇒ (αu, αl) is causal

⇐=(d) ⇐⇒(c) ⇐⇒(b)

αl = αl - αu

and
αu = αu-αl

(a)⇐⇒ (αu, αl) is causal

The main result is equivalence (c) which gives an algebraic characterization
of causality for any pair of arrival curves. Intuitively, it states that a pair of
curves is causal if and only if its SA-SA closure has no forbidden region. A
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weaker version of this theorem is implication (e) which gives only a sufficient
condition: a pair of arrival curves having no forbidden region is causal.

One could have expected for the converse to be true, i.e. that a pair of arrival
curves is causal implies that it doesn’t have forbidden regions. This result is
indeed false in general: a pair of causal curves can have forbidden regions if they
are included in their unreachable regions. This is shown in the counter-example
of Figure 2. The vertically hatched region is a forbidden region, and we do not
have αl = αl-αu, but the curve is still causal. Actually, the forbidden region is
below αl, so it is not reachable.

The causality implies the absence of forbidden region for SA-SA curves
though, since all unreachable regions have been erased from them: this is equiv-
alence (a). The remainders (b) and (d) are intermediate results.

Indication for the proofs: All the proofs are detailed in [15], most of them being
relatively long and technical, using several intermediate lemmas. The following
gives the overall structure and the chronology of the proofs.

(a) The proof is completely skipped here due to space limitations.
(b) The proof is relatively straightforward and based on the fact that (αu, αl)

and (αu, αl) accept the same set of cumulative curves.
(c) This characterization is obtained by transitivity of (a) and (b).
(d) The proof is omitted due to space limitations.
(e) The sufficient condition is obtained by transitivity of (c) and (d).
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Fig. 2. Causal Curve with a Forbidden Region

4 Computing the Causality Closure

The goal of this section is to define the causality closure of a pair of curves
(αu, αl): it is a pair of arrival curves which is causal and equivalent to (αu, αl).
The first step is to define the � operator, which removes the forbidden regions
from a pair of curves.

Notice that removing forbidden regions is done on the pair of curves, globally.
As a result, while removing the forbidden regions on αl, one may introduce new
ones on αu and vice-versa. One natural way to solve this issue is to iterate the
forbidden region removal until one reaches the fix-point (assuming it is reached
in a finite number of steps, which is not always the case).
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To illustrate this, an example is given in Figure 3. The original curve (a) has
both forbidden regions (vertically hatched) and an unreachable region (horizon-
tally hatched).

One region of interest is the little square between δ = 4 and δ = 5, marked
with a “?” in curve (a): if we consider the curves (αu, αl) before any transfor-
mation, it does not seem to be a forbidden region. An execution emitting only 1
event in 4 units of time seems to be able to continue by emitting 3 events right
after. Actually, this is impossible, and there are at least two ways to show it.
the first way to remove this “?”-region is to apply the forbidden regions removal
twice: emitting 3 events as suggested above is not possible given the leftmost for-
bidden region of αu. So, the “?”-region will have to be removed, as a consequence
of the forbidden region on αu. After the second iteration of the forbidden region
removal, we reached the fix-point, and implication (e) guarantees the causality.
This iterative approach will be detailed in Section 5.

However, an interesting property of the � operator is that it does not create
new forbidden regions when applied on SA-SA curves: its application on (αu, αl)
provides the causal canonical representative of (αu, αl) (this approach is further
discussed in this section). Back to the example in Figure 3, a second way to show
that the “?”-region should be removed from αl is to work on αl instead of αl:
since αl(10) = 8 and αu(6) = 6, an execution has to emit at least two events in 4
units of time. This illustrates the approach followed in this section: we eliminate
the forbidden regions with � (3.(c)) only after performing an SA-SA closure
(3.(b)). The iterative approach will be kept for cases where the SA-SA closure
cannot be applied due to algorithmic and coding limitations.
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Fig. 3. Step-by-step causality closure

4.1 Removing Forbidden Regions: The � Operator

We defined pairs of arrival curves as pairs (αu, αl) of functions for which αu ≥ αl.
In addition, we write ⊥AC the set of pairs of functions in F such that the former
constraint is false. To simplify notations, ⊥AC will be used as a single element
even if it represents an infinite set of objects. We note AC the set of all pairs of
arrival curves plus ⊥AC.
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Definition 5. We define the � operator from AC to AC as:

� (⊥AC) = ⊥AC and �
(
αl, αu

)
=

⎛⎝ let L = αl - αu, U = αu-αl

if L ≤ U then (L, U)
else ⊥AC

When (αu, αl) is a pair of arrival curves then L = αl - αu and U = αu-αl

are functions in F (i.e. wide-sense increasing and equal to zero at zero). But
they may cross each other (it may happen that L �≤ U): in these cases, the �
operator computes the value ⊥AC. This means that the pair of arrival curves
was not satisfiable (i.e. no cumulative curve satisfies it).

4.2 �(αu, αl): The Canonical Representative and Its Properties

This section presents the main result of the paper. It basically states that
�(αu, αl) has all the desirable properties: SA-SA, causality, and it is indeed
the best possible pair of curves equivalent to (αu, αl).

Theorem 2. For any pair of arrival curves (αu, αl),
– �(αu, αl) = ⊥AC iff (αu, αl) is non-satisfiable;
– �(αu, αl) is causal, SA-SA and equivalent to (αu, αl), otherwise.
– when (αu, αl) is satisfiable, �(αu, αl) is the tightest pair of curves equivalent

to (αu, αl).

By tightest, we mean that �(αu, αl) is made of the smallest (resp. the greatest)
curve for the upper (resp. lower) part such that the properties are satisfied. The
proofs are given in [15]. This gives an interesting result: given any pair of curves,
one can compute �(αu, αl), and get either the information that the curves are
not satisfiable, or the best possible pair of curves equivalent to the original one.
In addition to this optimality, one also gets the desirable properties: causality
and SA-SA. This result is implementable on top of any algorithmic toolbox
implementing the basic operators: convolution, deconvolution, sub-additive and
super-additive closure.

Theorem 2 also provides the existence and uniqueness of a tightest pair of
curves equivalent to a given one. As a result, the following theorem states that
it is causal.

Theorem 3. Let (αu, αl) be a pair of curves. If (αu, αl) is the tightest pair of
curves representing a set of cumulative curves, then (αu, αl) is causal.

Any computation giving the best possible pair of curves also gives a causal pair of
curves. Theorem 3 explains why, in practice, most pairs of arrival curves usually
manipulated in Real-Time Calculus are causal. Indeed, curves obtained for ex-
ample by measurements on a real system are causal by construction; furthermore
computations made in the RTC framework compute the optimal solution and
thus preserve the causality property. It also probably explains why this problem
received so little attention up to now.

On the other side, non-causal pairs of curves may arise whenever a com-
putation is done in an inexact manner. This typically occurs using other tools
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than RTC algebraic solutions. Indeed, the recent works that interfaces RTC with
state-based models face the problem. In [2], the authors get rid of it by constrain-
ing the class of curves they compute which are causal by definition (the extension
to arbitrary curves which is part of their future works will have to deal with it
though). But, in [9], the output curves are computed, one point at a time on an
abstract model: this does result into non causal curves, which are refined after
being computed. The CATS tool [8] relies on exact model-checking, so applied
on a causal pair of curves, the tool would output causal curves. [4] also uses ex-
act model-checking, but the long-term rate computation uses an approximation,
which could generate non-causal curves (see [15] for an example).

Finally, in ac2lus [3] we use the abstract interpreter nbac [11], which also
does some abstractions, and hence doesn’t guarantee the causality of the curves
computed.

5 Algorithms for Discrete Finite Curves

5.1 Definitions of Finite Arrival Curves

Up to this point, we dealt with infinite pairs of curves, but, as mentionned in
the introduction, the original work that brought us to studying causality was
to connect RTC curves to synchronous programming languages [3]. Our model
uses a simple computer representation of arrival curves: we work in discrete-time,
discrete-event model, and consider only finite curves, which makes them easy
to represent and manipulate algorithmically speaking. We consider the infinite
extension of the curves to remain in the theoretical framework presented in the
previous sections and to be able to apply the same theorems. Therefore, instead
of formalizing the notion of finite curves, we consider the restriction of infinite
curves on a finite interval.

Working with discrete-time (resp. discrete-event) models doesn’t change the
above results, since we considered time (resp. event count) as the set T (resp.
E), being either R+ or N . We now (in this chapter) set T = E = N . On the
other hand, working with finite curves will change the results a bit: the notion
of SA-SA-closure doesn’t fit well in the finite model, since the SA-SA-closure of
a finite curve could be infinite.

We first give some definitions for finite arrival curves and then an algorithm
to efficiently compute the causality closure using the � operator.

Definition 6 (Finite restriction of an arrival curve). We denote by
(αu∣∣

T
, αl∣∣

T
) the restriction of (αu, αl) to [0, T ] defined as:

∀t ≤ T, αu∣∣
T
(t) def= αu(t) and αl∣∣

T
(t) def= αl(t)

∀t > T, αu∣∣
T
(t) def= +∞ and αl∣∣

T
(t) def= αl(T )
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(αu∣∣
T
, αl∣∣

T
) still applies to infinite event streams, but only gives constraints for

finite windows of time. Intuitively, it could be a pair of curves defined over [0, T ].
But defining them as functions over N has the advantage of remaining within
the definition of arrival curves given above: αl∣∣

T
and αu∣∣

T
are still functions in

F , but they can be represented easily as finite arrays of naturals.
It should be noted that finite restrictions of arrival curves can not have

the SA-SA property (as far as ∃t > 0.αu(t) < +∞). However, one can define
the property SA-SA over [0, T ] and the associated closure (see [15] for details).
Additionally, [16], page 7, provides an efficient way to compute the sub-additive
closure in discrete events. It can easily be adapted to compute the SA-SA closure
over [0, T ] leading to a simple, quadratic algorithm.

5.2 Causality Closure for Finite Discrete Curves

Unfortunately, the valid result for infinite curves, stating that �(αu, αl) was a
causal curve equivalent to (αu, αl) is helpless from the algorithmic point of view
with finite curves: computing it would require computing (αu, αl), which is an
infinite curve.

But theorem 1(e) still holds (i.e. the fix-points of � are causal), and it can
easily be shown that applying the � operator doesn’t change the set of accepted
cumulative curves. So, we can compute the fix-point by iterating �.

We illustrate the process with an example in Figure 4. The original pair of
curves is (a), and one can see that although the curves are SA-SA on [0, 4] (but
clearly not SA-SA because of the curve αu with +∞ values), one application of
� is not sufficient: the curve (b) is not even SA-SA on interval [0, 4], and still
has forbidden regions. We iterate the � operator once more and get (c), which
is causal, but not SA-SA.

Another option which may speed up the algorithm, is to apply a finite SA-SA
closure before applying � again: this gives curves (d) and then (e) by applying �
again. Then, neither the SA-SA closure nor � would change the curve anymore:
we reached the fix-point. In this case, the final curve has both the causality and
the SA-SA properties on interval [0, 4].

Theorem 4. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈
[0, T ], αu(t) �= +∞, the sequence �n(αu∣∣

T
, αl∣∣

T
) admits a fix-point (denoted

�∞(αu∣∣
T
, αl∣∣

T
), which is either ⊥AC or a causal pair of arrival curves equiv-

alent to (αu∣∣
T
, αl∣∣

T
).

The above theorem states that, given an finite discrete pair of arrival curves,
one may iteratively compute, by application of the � operator, a causal finite
discrete pair of arrival curves which is equivalent to the original, if it is satisfiable;
otherwise, the computation leads to ⊥AC. The convergence of the iterations
can be accelerated by using, in addition to �, other tightening operators that
preserves the set of accepted cumulative curves like the SA-SA closure. This is
expressed in the following theorem and applied in the example in Figure 4.(d)
and 4.(e).
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Fig. 4. Step-by-step causality closure for finite curves

Theorem 5. For any T > 0 and any pair of arrival curves (αu, αl) with ∀t ∈
[0, T ], αu(t) �= +∞, the sequence defined by (αu

0, α
l
0) = (αu∣∣

T
, αl∣∣

T
) and ∀n ≥ 0,

(αu
n+1, α

l
n+1) = �(αu

n
∣∣
T
, αl

n
∣∣
T
) admits a fix-point, which is either ⊥AC or a

causal and SA-SA pair of arrival curves equivalent to (αu∣∣
T
, αl∣∣

T
).

The detailed proof appears in [15]. It is made simple by the fact that we work in
discrete time and events: this makes the set of possible curves finite. Since the
sequence (αu

n, αl
n) becomes tighter and tighter, it has to reach a fix-point in a

finite number of steps.
We still need a way to compute � efficiently: the definition of � contains the

supremum of an infinite set, which as it is, would not be computable. Fortunately,
the operator � applied to finite restrictions of curves is indeed much simpler.
Since ∀t > T , αu(t) = +∞ and αl(t) = αl(T ), the values of (αu, αl) beyond T
do not have to be taken into account in the computation of the deconvolutions,
so � can be easily computed quadratically.

5.3 Algorithm

The full algorithm for computing the causal and SA-SA pair of curves equivalent
to the finite pair of arrival curves A0 defined on [0, T ] is given in Figure 5.

The loop terminates but finding a bound on the number of iterations other
than the brute-force (just knowing that the sequence is decreasing and that there
is a finite number of possible curves tighter that the original one) is still an open
question. In practice, however, the number of iterations required is low (one or
two in the examples we tried).
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A ← A0

repeat
A ← SA-SA-closure(A) /∗ Not mandatory, but speeds up convergence, and
ensures SA-SA ∗/
A′ ← A
A ← � (A)

until A �= ⊥AC or A′ = A

Fig. 5. Computation of causality closure for finite, discrete curves

After the loop, A is either ⊥AC or a causal pair of finite discrete curves; it
is equivalent to A0, the original pair of curves; and it is SA-SA on the interval
[0, T ] if the SA-SA closure was applied (first line within the loop). In this case,
it is the best pair of curves equivalent to the original A0.

6 Conclusion

We formally defined the notion of causality for RTC curves, and set up a formal
framework to study it. As already mentioned, and although all along the paper
we talk about arrival curves, the results are applicable to arrival curves as well as
to service curves. We started from the intuitive notion of forbidden region, and
the definition of causality based on the possibility to extend a curve, and stated
the equivalence (valid for SA-SA pairs of curves) between absence of forbidden
regions and the definition.

To the best we know, the phenomenon has received little attention and no
work has been yet on the subject. This is mainly due to the usual way arrival
curves were used within the RTC framework on the one hand and to the restric-
tions of the studies to some already causal class of arrival curves in the other
hand. We detailed in which conditions causality can appear and be problematic.
Dealing with general causal pairs of curves in a simulator or a formal verification
tool is very often mandatory (unless using, if at all possible, heavyweight round-
about computations). To avoid non-causal curves, we propose an algorithm that
turns a non-causal pair of curves into a causal one. After application of this al-
gorithm, event generators based on arrival curves cannot deadlock, and formal
verifiers do no more produce spurious counter-examples linked to causality.

The additional benefit of the transformation is that it gives the tightest pair
of curves equivalent to the original one, which is also a canonical representative of
all arrival curve pairs defining the same set of event streams. Indeed, compared to
the “mathematical refinement algorithm” proposed in [9], our algorithm is more
general and potentially more precise. It would be an improvement to replace this
refinement algorithm by the causality closure.

The theorems and algorithms work for discrete and fluid event model, discrete
and continuous time for infinite curves. Given any subset of these models, one
just has to implement the basic operators to be able to use them. They have
also been adapted to discrete time and event model for the case of finite arrival
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curves, where the sub-additive and super-additive closure operators do not make
sense. The later was implemented in the ac2lus [3] toolbox.
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Abstract. We address the problem of computing the information leakage of a
system in an efficient way. We propose two methods: one based on reducing
the problem to reachability, and the other based on techniques from quantitative
counterexample generation. The second approach can be used either for exact or
approximate computation, and provides feedback for debugging. These methods
can be applied also in the case in which the input distribution is unknown. We then
consider the interactive case and we point out that the definition of associated
channel proposed in literature is not sound. We show however that the leakage
can still be defined consistently, and that our methods extend smoothly.

1 Introduction

By information hiding, we refer generally to the problem of constructing protocols or
programs that protect sensitive information from being deduced by some adversary. In
anonymity protocols [4], for example, the concern is to design mechanisms to prevent
an observer of network traffic from deducing who is communicating. In secure infor-
mation flow [17], the concern is to prevent programs from leaking their secret input to
an observer of their public output. Such leakage could be accidental or malicious.

Recently, there has been particular interest in approaching these issues quantitatively,
using concepts of information theory. See for example [13,5,10,6,4]. The secret input
S and the observable output O of an information-hiding system are modeled as random
variables related by a channel matrix, whose (s, o) entry specifies P (o|s), the condi-
tional probability of observing output o given input s. If we define the vulnerability of
S as the probability that the adversary could correctly guess the value of S in one try,
then it is natural to measure the information leakage by comparing the a priori vulner-
ability of S with the a posteriori vulnerability of S after observing O. We consider two
measures of leakage: additive, which is the difference between the a posteriori and a
priori vulnerabilities; and multiplicative, which is their quotient [19,3].

We thus view a protocol or program as a noisy channel, and we calculate the leakage
from the channel matrix and the a priori distribution on S. But, given an operational
specification of a protocol or program, how do we calculate the parameters of the noisy
channel: the sets of inputs and outputs, the a priori distribution, the channel matrix, and
the associated leakage? These are the main questions we address in this paper. We focus
on probabilistic automata, whose transitions are labeled with probabilities and actions,
each of which is classified as secret, observable, or internal.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 373–389, 2010.
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We first consider the simple case in which the secret inputs take place at the begin-
ning of runs, and their probability is fixed. The interpretation in terms of noisy channel
of this kind of systems is well understood in literature. The framework of probabilistic
automata, however, allows to represent more general situations. Thanks to the nonde-
terministic choice, indeed, we can model the case in which the input distribution is
unknown, or variable. We show that the definition of channel matrix extends smoothly
also to this case. Finally, we turn our attention to the interactive scenario in which in-
puts can occur again after outputs. This case has also been considered in literature, and
there has been an attempt to define the channel matrix in terms of the probabilities of
traces [11]. However it turns out that the notion of channel is unsound. Fortunately the
leakage is still well defined, and it can be obtained in the same way as the simple case.

We consider two different approaches to computing the channel matrix. One uses a
system of linear equations as in reachability computations. With this system of equa-
tions one can compute the joint matrix, the matrix of probabilities of observing both s
and o; the channel matrix is trivially derived from this joint matrix. The other approach
starts with a 0 channel matrix, which we call a partial matrix at this point. We iteratively
add the contributions in conditional probabilities of complete paths to this partial ma-
trix, obtaining, in the limit, the channel matrix itself. We then group paths with the same
secret and the same observable together using ideas from quantitative counterexample
generation, namely by using regular expressions and strongly connected component
analysis. In this way, we can add the contribution of (infinitely) many paths at the same
time to the partial matrices. This second approach also makes it possible to identify
which parts of a protocol contribute most to the leakage, which is useful for debugging.

Looking ahead, after reviewing some preliminaries (Section 2) we present restric-
tions on probabilistic automata to ensure that they have well-defined, finite channel
matrices (Section 3). This is followed by the techniques to calculate the channel ma-
trix efficiently (Section 4 and Section 5). We then turn our attention to extensions of
our information-hiding system model. We use nondeterministic choice to model the
situation where the a priori distribution on the secret is unknown (Section 6). Finally,
we consider interactive systems, in which secret actions and observable actions can be
interleaved arbitrarily (Section 7).

2 Preliminaries

2.1 Probabilistic Automata

This section recalls some basic notions on probabilistic automata. More details can be
found in [18]. A function μ : Q→ [0, 1] is a discrete probability distribution on a set Q
if the support of μ is countable and

∑
q∈Q μ(q) = 1. The set of all discrete probability

distributions on Q is denoted by D(Q).
A probabilistic automaton is a quadruple M = (Q, Σ, q̂, α) where Q is a countable

set of states, Σ a finite set of actions, q̂ the initial state, and α a transition function
α : Q→ ℘f (D(Σ ×Q)). Here ℘f(X) is the set of all finite subsets of X . If α(q) = ∅
then q is a terminal state. We write q→μ for μ ∈ α(q), q ∈ Q. Moreover, we write
q

a→r for q, r ∈ Q whenever q→μ and μ(a, r) > 0. A fully probabilistic automaton is
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a probabilistic automaton satisfying |α(q)| ≤ 1 for all states. In case α(q) �= ∅ we will
overload notation and use α(q) to denote the distribution outgoing from q.

A path in a probabilistic automaton is a sequence σ = q0
a1→ q1

a2→ · · · where qi ∈ Q,
ai ∈ Σ and qi

ai+1→ qi+1. A path can be finite in which case it ends with a state. A path is
complete if it is either infinite or finite ending in a terminal state. Given a path σ, first(σ)
denotes its first state, and if σ is finite then last(σ) denotes its last state. A cycle is a
path σ such that last(σ) = first(σ). We denote the set of actions occurring in a cycle
as CyclesA(M). Let Pathsq(M) denote the set of all paths, Paths�

q(M) the set of all
finite paths, and CPathsq(M) the set of all complete paths of an automaton M , starting
from the state q. We will omit q if q = q̂. Paths are ordered by the prefix relation, which
we denote by≤. The trace of a path is the sequence of actions in Σ∗∪Σ∞ obtained by
removing the states, hence for the above σ we have trace(σ) = a1a2 . . .. If Σ′ ⊆ Σ,
then traceΣ′(σ) is the projection of trace(σ) on the elements of Σ′. The length of a
finite path σ, denoted by |σ|, is the number of actions in its trace.

Let M = (Q, Σ, q̂, α) be a (fully) probabilistic automaton, q ∈ Q a state, and let
σ ∈ Paths�

q(M) be a finite path starting in q. The cone generated by σ is the set of
complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic
automaton M = (Q, Σ, q̂, α) and a state q, we can calculate the probability value,
denoted by Pq(σ), of any finite path σ starting in q as follows: Pq(q) = 1 and Pq(σ

a→
q′) = Pq(σ) μ(a, q′), where last(σ)→ μ.

Let Ωq � CPathsq(M) be the sample space, and let Fq be the smallest σ-algebra
generated by the cones. Then P induces a unique probability measure on Fq (which we
will also denote by Pq) such that Pq(〈σ〉) = Pq(σ) for every finite path σ starting in
q. For q = q̂ we write P instead of Pq̂ .

Given a probability space (Ω,F , P ) and two events A, B ∈ F with P (B) > 0, the
conditional probability of A given B, P (A | B), is defined as P (A ∩B)/P (B).

2.2 Noisy Channels

This section briefly recalls the notion of noisy channels from Information Theory [7].
A noisy channel is a tuple C � (X ,Y,P (·|·)) whereX = {x1, x2, . . . , xn} is a finite

set of input values, modeling the secrets of the channel, and Y = {y1, y2, . . . , ym} is
a finite set of output values, the observables of the channel. For xi ∈ X and yj ∈ Y ,
P(yj |xi) is the conditional probability of obtaining the output yj given that the input
is xi. These conditional probabilities constitute the so called channel matrix, where
P(yj |xi) is the element at the intersection of the i-th row and the j-th column. For any
input distribution PX onX , PX and the channel matrix determine a joint probability P∧
on X × Y , and the corresponding marginal probability PY on Y (and hence a random
variable Y ). PX is also called a priori distribution and it is often denoted by π. The
probability of the input given the output is called a posteriori distribution.

2.3 Information Leakage

We recall here the definitions of multiplicative leakage proposed in [19], and additive
leakage proposed in [3]1. We assume given a noisy channel C = (X ,Y,P (·|·)) and a

1 The notion proposed by Smith in [19] was given in a (equivalent) logarithmic form, and called
simply leakage. For uniformity’s sake we use here the terminology and formulation of [3].
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random variable X onX . The a priori vulnerability of the secrets inX is the probability
of guessing the right secret, defined as V(X) � maxx∈X PX(x). The rationale behind
this definition is that the adversary’s best bet is on the secret with highest probability.

The a posteriori vulnerability of the secrets in X is the probability of guessing
the right secret, after the output has been observed, averaged over the probabilities of
the observables. The formal definition is V(X | Y) �

∑
y∈Y PY (y)maxx∈X P (x | y).

Again, this definition is based on the principle that the adversary will choose the secret
with the highest a posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulnerability in terms
of the channel matrix and the a priori distribution, or in terms of the joint probability:

V(X | Y) =
∑
y∈Y

max
x∈X

(P (y |x)PX(x)) =
∑
y∈Y

max
x∈X

P∧(x, y). (1)

The multiplicative leakage is defined as L×(C, PX) � V(X|Y)
V(X) and the additive leakage

as L+(C, PX) � V(X|Y)− V(X).

3 Information Hiding Systems

To formally analyze the information-hiding properties of protocols and programs, we
propose to model them as a particular kind of probabilistic automata, which we call
Information-Hiding Systems (IHS). Intuitively, an IHS is a probabilistic automaton in
which the actions are divided in three (disjoint) categories: those which are supposed
to remain secret (to an external observer), those which are visible, and those which are
internal to the protocol.

First we consider only the case in which the choice of the secret takes place entirely
at the beginning, and is based on a known distribution. Furthermore we focus on fully
probabilistic automata. Later in the paper we will relax these constraints.

Definition 3.1 (Information-Hiding System). An information-hiding system (IHS) is
a quadruple I = (M, ΣS , ΣO, Στ ) where M = (Q, Σ, q̂, α) is a fully probabilistic
automaton, Σ = ΣS ∪ ΣO ∪ Στ where ΣS , ΣO, and Στ are pairwise disjoint sets of
secret, observable, and internal actions, and α satisfies the following restrictions:

1. α(q̂) ∈ D(ΣS ×Q),
2. ∀s ∈ ΣS ∃!q . α(q̂)(s, q) �= 0,
3. α(q) ∈ D(ΣO ∪Στ ×Q) for q �= q̂,
4. ∀a ∈ (ΣS ∪ΣO) . a �∈ CyclesA(M),
5. P(CPaths(M) ∩ Paths�(M)) = 1.

The first two restrictions are on the initial state and mean that only secret actions can
happen there (1) and each of those actions must have non null probability and occur only
once (2), Restriction 3 forbids secret actions to happen in the rest of the automaton, and
Restriction 4 ensures that the channel associated to the IHS has finitely many inputs and
outputs. Finally, Restriction 5 means that infinite computations have probability 0 and
therefore we can ignore them.
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We now show how to interpret an IHS as a noisy channel. We call traceΣS (σ) and
traceΣO(σ) the secret and observable traces of σ, respectively. For s ∈ Σ∗

S , we define
[s] � {σ ∈ CPaths(M) | traceΣS (σ) = s}; similarly for o ∈ Σ∗

O, we define [o] �
{σ ∈ CPaths(M) | traceΣO(σ) = o}.
Definition 3.2. Given an IHS I = (M, ΣS , ΣO, Στ ), its noisy channel is (S,O,P ),
where S � ΣS , O � traceΣO (CPaths(M)), and P(o | s) � P([o] | [s]). The a priori
distribution π ∈ D(S) of I is defined by π(s) � α(q̂)(s, ·). If C is the noisy channel of
I, the multiplicative and additive leakage of I are naturally defined as

L×(I) � L×(C, π) and L+(I) � L+(C, π).

Example 3.3. Crowds [16] is a well-known anonymity protocol, in which a user (called
the initiator) wants to send a message to a web server without revealing his identity. To
achieve this, he routes the message through a crowd of users participating in the proto-
col. Routing is as follows. In the beginning, the initiator randomly selects a user (called
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Fig. 1. Crowds Protocol

a forwarder), possibly himself, and forwards the re-
quest to him. A forwarder performs a probabilistic
choice. With probability p (a parameter of the pro-
tocol) he selects a new user and again forwards the
message. With probability 1−p he sends the message
directly to the server. One or more users can be cor-
rupted and collaborate with each other to try to find
the identity of the initiator.

We now show how to model Crowds as an IHS
for 2 honest and 1 corrupted user. We assume that
the corrupted user immediately forwards messages
to the server, as there is no further information to be
gained for him by bouncing the message back.

Figure 1 shows the automaton2. Actions a and b
are secret and represent who initiates the protocol;
actions A, B, and U are observable; A and B rep-
resent who forwards the message to the corrupted user; U represents the fact that the
message arrives at the server undetected by the corrupted user. We assume U to be ob-
servable to represent the possibility that the message is made publically available at the
server’s site.

The channel associated to this IHS has S = {a, b}, O = {A, B, U}, and a priori
distribution π(a) = 1

3 , π(b) = 2
3 . Its channel matrix is computed in the next section.

4 Reachability Analysis Approach

This section presents a method to compute the matrix of joint probabilities P∧ associ-
ated to an IHS, defined as

P∧(s, o) � P([s] ∩ [o]) for all s ∈ S and o ∈ O.

2 For the sake of simplicity, we allow the initiator of the protocol to send the message to the
server also in the first step of the protocol.
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We omit the subscript ∧ when no confusion arises. From P∧ we can derive the channel
matrix by dividing P∧(s, o) by π(s). The leakage can be computed directly from P∧,
using the second form of the a posteriori vulnerability in (1).

We write xλ
q for the probability of the set of paths with trace λ ∈ (ΣS∪ΣO)� starting

from the state q of M :
xλ

q � Pq([λ]q),

where [λ]q � {σ ∈ CPathsq(M) | traceΣS∪ΣO(σ) = λ}. The following key lemma
shows the linear relation between the xλ

q ’s. We assume, w.l.o.g., that the IHS has a
unique final state qf .

Lemma 4.1. Let I = (M, ΣS , ΣO, Στ ) be an IHS. For all λ ∈ (ΣS ∪ ΣO)� and
q ∈ Q we have

xε
qf

= 1,

xλ
qf

= 0 for λ �= ε,

xε
q =

∑
h∈Στ

∑
q′∈succ(q) α(q)(h, q′) · xε

q′ for q �= qf ,

xλ
q =

∑
q′∈succ(q) α(q)(first(λ), q′) · xtail(λ)

q′

+
∑

h∈Στ
α(q)(h, q′) · xλ

q′ for λ �= ε and q �= qf .

Furthermore, for s ∈ S and o ∈ O we have P([s] ∩ [o]) = xso
q̂ .

Using this lemma, one can compute joint probabilities by solving the system of linear
equations in the variables xλ

q ’s. It is possible that the system has multiple solutions; in
that case the required solution is the minimal one.

Example 4.2. Continuing with the Crowds example, we show how to compute joint
probabilities. Note that qf = S. The linear equations from Lemma 4.1 are

xaA
init = 1

3 · xA
qa
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qa

= p
3 · xA

qa
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qb
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3 · xε
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3 · xB
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3 · xB
qb
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corr, xB
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xaU
init = 1

3 · xU
qa

, xU
qa

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xε
S, xε

corr = xε
S,

xbU
init = 2

3 · xU
qb

, xU
qb

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xε
S, xε

S = 1.

4.1 Complexity Analysis

We now analyze the computational complexity for the computation of the channel ma-
trix of a simple IHS. Note that the only variables (from the system of equations in
Lemma 4.1) that are relevant for the computation of the channel matrix are those xλ

q

for which it is possible to get the trace λ starting from state q. As a rough overestimate,
for each state q, there are at most |S| · |O| λ’s possible: in the initial state one can have
every secret and every observable, in the other states no secret is possible and only a
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suffix of an observable can occur. This gives at most |Q| · |S| · |O| variables. Therefore,
we can straightforwardly obtain the desired set of values in O((|Q| · |S| · |O|)3) time
(using Gaussian Elimination). Note that using Strassen’s methods the exponent reduces
to 2.807, this consideration applies to similar results in the rest of the paper as well.

Because secret actions can happen only at the beginning, the system of equations
has a special form. The variables of the form xso

q̂ only depend on variables of the form
xo

q (with varying o and q �= q̂) and not on each other. Hence, we can first solve for all
variables of the form xo

q and then compute the remaining few of the form xso
q̂ . Required

time for the first step is O((|O| · |Q|)3) and the time for the second step can be ignored.
Finally, in some cases not only do the secret actions happen only at the beginning

of the protocol, but the observable actions happen only at the end of the protocol, i.e.,
after taking a transition with an observable action, the protocol only performs internal
actions (this is, for instance, the case for our model of Crowds). In this case, one might
as well enter a unique terminal state qf after an observable action happens. Then the
only relevant variables are of the form xso

q̂ , xo
q , and xε

qf
; the xso

q̂ only depends on the xo
q ,

the xo
q only depend on xo

q′ (with the same o, but varying q’s) and on xε
qf

and xε
qf

= 1.
Again ignoring the variables xso

q̂ for complexity purposes, the system of equations has
a block form with |O| blocks of (at most) |Q| variables each. Hence the complexity in
this case decreases to O(|O| · |Q|3).

5 The Iterative Approach

We now propose a different approach to compute channel matrices and leakage. The
idea is to iteratively construct the channel matrix of a system by adding probabilities of
sets of paths containing paths with the same observable trace o and secret trace s to the
(o|s) entry of the matrix.

One reason for this approach is that it allows us to borrow techniques from quan-
titative counterexample generation. This includes the possibility of using or extending
counterexample generation tools to compute channel matrices or leakage. Another rea-
son for this approach is the relationship with debugging. If a (specification of a) system
has a high leakage, the iterative approach allows us to determine which parts of the
system contribute most to the high leakage, possibly pointing out flaws of the protocol.
Finally, if the system under consideration is very large, the iterative approach allows us
to only approximate the leakage (by not considering all paths, but only the most relevant
ones) under strict guarantees about the accuracy of the approximation. We will focus
on the multiplicative leakage; similar results can be obtained for the additive case.

5.1 Partial Matrices

We start by defining a sequence of matrices converging to the channel matrix by adding
the probability of complete paths one by one. We also define partial version of the a
posteriori vulnerability and the leakage. Later, we show how to use techniques from
quantitative counterexample generation to add probabilities of many (maybe infinitely
many) complete paths all at once.
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Definition 5.1. Let I = (M, ΣS , ΣO, Στ ) be an IHS, π its a priori distribution, and
σ1, σ2, . . . an enumeration of the set of complete paths of M . We define the partial
matrices Pk : S ×O → [0, 1] as follows

P0(o|s) � 0, Pk+1(o|s) �

⎧⎪⎨⎪⎩
Pk(o|s) + P(〈σk+1〉)

π(s) if traceΣO(σk+1) = o

and traceΣS (σk+1) = s,

Pk(o|s) otherwise.

We define the partial vulnerability Vk
S,O as

∑
o maxs Pk(o|s) · π(s), and the partial

multiplicative leakage Lk
×(I) as V k

S,O/maxs π(s).

The following lemma states that partial matrices, a posteriori vulnerability, and leakage
converge to the correct values.

Lemma 5.2. Let I = (M, ΣS , ΣO, Στ ) be an IHS. Then

1. Pk(o|s) ≤ Pk+1(o|s), and limk→∞ Pk(o|s) = P(o|s),
2. V k

S,O ≤ V k+1
S,O , and limk→∞ V k

S,O = V(S|O),

3. Lk
×(I) ≤ Lk+1

× (I), and limk→∞ Lk
×(I) = L×(I).

Since rows must sum up to 1, this technique allow us to compute matrices up to given
error ε. We now show how to estimate the error in the approximation of the multiplica-
tive leakage.

Proposition 5.3. Let (M, ΣS , ΣO, Στ ) be an IHS. Then we have

Lk
×(I) ≤ L×(I) ≤ Lk

×(I) +
|S|∑
i=1

(1 − pk
i ),

where pk
i denotes the mass probability of the i-th row of Pk, i.e. pk

i �
∑

o Pk(o|si).

5.2 On the Computation of Partial Matrices

After showing how partial matrices can be used to approximate channel matrices and
leakage we now turn our attention to accelerating the convergence. Adding most likely
paths first is an obvious way to increase the convergence rate. However, since automata
with cycles have infinitely many paths, this (still) gives an infinite amount of path to
process. Processing many paths at once (all having the same observable and secret trace)
tackles both issues at the same time: it increases the rate of convergence and can deal
with infinitely many paths at the same time,

Interestingly enough, these issues also appear in quantitative counterexample gen-
eration. In that area, several techniques have already been provided to meet the chal-
lenges; we show how to apply those techniques in the current context. We consider two
techniques: one is to group paths together using regular expression, the other is to group
path together using strongly connected component analysis.
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Regular expressions. In [9], regular expressions containing probability values are used
to reason about traces in Markov Chains. This idea is used in [8] in the context of
counterexample generation to group together paths with the same observable behaviour.
The regular expression there are over pairs 〈p, q〉 with p a probability value and q a
state, to be able to track both probabilities and observables. We now use the same idea
to group together paths with the same secret action and the same observable actions.

We consider regular expressions over triples of the form 〈a, p, q〉 with p ∈ [0, 1]
a probability value, a ∈ Σ an action label and q ∈ Q a state. Regular expressions
represent sets of paths as in [8]. We also take the probability value of such a regular
expression from that paper.

Definition 5.4. The function val : R(Σ)→ R evaluates regular expressions:

val(ε) � 1, val(r · r′) � val (r) × val(r′),
val (〈a, p, q〉) � p, val(r∗) � 1 if val(r) = 1,

val (r + r′) � val(r) + val(r′), val(r∗) � 1
1−val(r) if val (r) �= 1.

The idea is to obtain regular expressions representing sets of paths of M , each regular
expression will contribute in the approximation of the channel matrix and leakage. Sev-
eral algorithms to translate automata into regular expressions have been proposed (see
[14]). Finally, each term of the regular expression obtained can be processed separately
by adding the corresponding probabilities [9] to the partial matrix.

As mentioned before, all paths represented by the regular expression should have the
same observable and secret trace in order to be able to add its probability to a single
element of the matrix. To ensure that condition we request the regular expression to be
normal, i.e., of the form r1 + · · ·+ rn with the ri containing no +’s.

For space reasons, instead of showing technical details we only show an example.

Example 5.5. We used JFLAP 7.0 [12] to obtain the regular expression r � r1 + r2 +
· · ·+ r10 equivalent to the automaton in Figure 1.

r1 � 〈b, 2
3 , qb〉 · r̂� · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r2 � 〈b, 2
3 , qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r3 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r4 � 〈b, 2
3 , qb〉 · r̂� · 〈U, 0.1, S〉,

r5 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r6 � 〈b, 2
3 , qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,

r7 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,

r8 � 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉�·

〈A, 0.3, corr〉 · 〈τ, 1, S〉,
r9 � 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈U, 0.1, S〉,
r10 � 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉 · r̂� · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈U, 0.1, S〉,
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where r̂�(〈τ, 0.3, qb〉� · (〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉� · 〈τ, 0.3, qb〉)�). We also note

val(r1) = 7
20 (b, B), val(r2) = 3

20 (b, A), val(r3) = 1
7 (a,A), val(r4) = 7

60 (b, U),
val(r5) = 3

40 (a, B), val(r6) = 1
20 (b, U), val(r7) = 1

21 (a, U), val(r8) = 9
280 (a,A),

val(r9) = 1
40 (a, U), val(r10) = 3

280 (a, U),

where the symbols between brackets denote the secret and observable traces of each
regular expression.

Now we have all the ingredients needed to define partial matrices using regular
expressions.

Definition 5.6. Let I = (M, ΣS , ΣO, Στ ) be an IHS, π its a priori distribution, and
r = r1 + r2 + · · ·+ rn a regular expression equivalent to M in normal form. We define
for k = 0, 1, . . . , n the matrices Pk : S× O→ [0, 1] as follows

Pk(o|s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k = 0,

Pk−1(o|s) + val(rk)
π(s) if k �= 0 and traceΣO(rk) = o

and traceΣS (rk) = s,

Pk−1(o|s) otherwise.

Note that in the context of Definition 5.6, we have Pn = P .

SCC analysis approach. In [2], paths that only differ in the way they traverse strongly
connected components (SCC’s) are grouped together. Note that in our case, such paths
have the same secret and observable trace since secret and observable actions cannot
occur on cycles. Following [2], we first abstract away the SCC’s, leaving only proba-
bilistic transitions that go immediately from an entry point of the SCC to an exit point
(called input and output states in [2]). This abstraction happens in such a way that the
observable behaviour of the automaton does not change.

Again, instead of going into technical details (which also involves translating the
work [2] from Markov chains to fully probabilistic automata), we show an example.

Example 5.7. Figure 2 shows the automaton obtained after abstracting SCC. In the
following we show the set of complete paths of the automaton, together with their cor-
responding probabilities and traces

σ1 � init
a−→ qa

A−→ corr
τ−→ S, P(σ1) = 7

40 , (a, A),
σ2 � init

b−→ qb
B−→ corr

τ−→ S, P(σ2) = 7
20 , (b, B),

σ3 � init
a−→ qa

U−→ S, P(σ3) = 1
12 , (a, U),

σ4 � init
b−→ qb

U−→ S, P(σ4) = 1
6 , (b, U),

σ5 � init
a−→ qa

B−→ corr
τ−→ S, P(σ5) = 3

40 , (a, B),
σ6 � init

b−→ qb
A−→ corr

τ−→ S, P(σ6) = 3
20 , (b, A).
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B
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40

1
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4

1
3

a
2
3

b

1

Fig. 2. Crowds after the
SCC analysis

Note that the SCC analysis approach groups more paths to-
gether (for instance σ1 group together the same paths than
the regular expressions r3 and r8 in the examples of this
section), as a result channel matrix and leakage are obtained
faster. On the other hand, regular expressions are more in-
formative providing more precise feedback.

5.3 Identifying High-Leakage Sources

We now describe how to use the techniques presented in
this section to identify sources of high leakage of the sys-
tem. Remember that the a posteriori vulnerability can be
expressed in terms of joint probabilities

V(S | O) =
∑

o

max
s

P([s] ∩ [o]).

This suggests that, in case we want to identify parts of the system generating high leak-
age, we should look at the sets of paths [o1]∩ [s1], . . . , [on]∩ [sn] where {o1, . . . on} =
O and si ∈ arg (maxs P([oi] ∩ [s])). In fact, the multiplicative leakage is given divid-
ing V(S | O) by V(S), but since V(S) is a constant value (i.e., it does not depend on the
row) it does not play a role here. Similarly for the additive case.

The techniques presented in this section allow us to obtain such sets and, further-
more, to partition them in a convenient way with the purpose of identifying states/parts
of the system that contribute the most to its high probability. Indeed, this is the aim
of the counterexamples generation techniques previously presented. For further details
on how to debug sets of paths and why these techniques meet that purpose we refer
to [1,8,2].

Example 5.8. To illustrate these ideas, consider the path σ1 of the previous example;
this path has maximum probability for the observable A. By inspecting the path we find

the transition with high probability qa
A→ corr. This suggests to the debugger that the

corrupted user has an excessively high probability of intercepting a message from user
a in case he is the initiator.

In case the debugger requires further information on how corrupted users can inter-
cept messages, the regular expression approach provides further/more-detailed infor-
mation. For instance, we obtain further information by looking at regular expressions
r3 and r8 instead of path σ1 (in particular it is possible to visualize the different ways
the corrupted user can intercept the message of user a when he is the generator of the
message).

6 Information Hiding Systems with Variable a Priori

In Section 3 we introduced a notion of IHS in which the distribution over secrets is
fixed. However, when reasoning about security protocols this is often not the case. In
general we may assume that an adversary knows the distribution over secrets in each
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particular instance, but the protocol should not depend on it. In such scenario we want
the protocol to be secure, i.e. ensuring low enough leakage, for every possible distribu-
tion over secrets. This leads to the definition of maximum leakage.

Definition 6.1 ([19,3]). Given a noisy channel C = (S,O,P ), we define the maximum
multiplicative and additive leakage (respectively) as

ML×(C) � max
π∈D(S)

L×(C, π), and ML+(C) � max
π∈D(S)

L+(C, π).

In order to model this new scenario where the distribution over secrets may change, the
selection of the secret is modeled as nondeterministic choice. In this way such a distri-
bution remains undefined in the protocol/automaton. We still assume that the choice of
the secret happens at the beginning, and that we have only one secret per run. We call
such automaton an IHS with variable a priori.

Definition 6.2. An IHS with variable a priori is a quadruple I = (M, ΣS , ΣO, Στ )
where M = (Q, Σ, q̂, α) is a probabilistic automaton, Σ = ΣS ∪ΣO ∪Στ where ΣS ,
ΣO, and Στ are pairwise disjoint sets of secret, observable, and internal actions, and α
satisfies the following restrictions:

1. α(q̂) ⊆ D(ΣS ×Q),
2. |α(q̂)| = |S| ∧ ∀s ∈ ΣS . ∃ q . π(s, q) = 1, for some π ∈ α(q̂),
3. α(q) ⊆ D(ΣO ∪Στ ×Q) and |α(q)| ≤ 1, for all q �= q̂,
4. ∀a ∈ (ΣS ∪ΣO) . a �∈ CyclesA(M),
5. ∀q, s ∀π∈α(q̂) . (π(s, q) = 1⇒ P(CPathsq(M) ∩ Paths∗q(M)) = 1).

Restrictions 1, 2 and 3 imply that the secret choice is non deterministic and happens
only at the beginning. Additionally, 3 means that all the other choices are probabilistic.
Restriction 4 ensures that the channel associated to the IHS has finitely many inputs
and outputs. Finally, 5 implies that, after we have chosen a secret, every computation
terminates except for a set with null probability.

Given an IHS with variable a priori, by fixing the a priori distribution we can obtain
a standard IHS in the obvious way:

Definition 6.3. Let I = ((Q, Σ, q̂, α), ΣS , ΣO, Στ ) be an IHS with variable a priori
and π a distribution over S. We define the IHS associated to (I, π) as Iπ = ((Q, Σ,
q̂, α′), ΣS , ΣO, Στ ) with α′(q) = α(q) for all q �= q̂ and α′(q̂)(s, ·) = π(s).

The following result says that the conditional probabilities associated to an IHS with
variable a priori are invariant with respect to the a priori distribution. This is fundamen-
tal in order to interpret the IHS as a channel.

Proposition 6.4. Let I be an IHS with variable a priori. Then for all π, π′ ∈ D(S)
such that π(s) �= 0 and π′(s) �= 0 for all s ∈ S we have that PIπ

= PIπ′ .

Proof. The secret s appears only once in the tree and only at the beginning of paths,
hence P([s] ∩ [o]) = α′(q̂)(s, ·)Pqs ([o]) and P([s]) = α′(q̂)(s, ·). Therefore P([o] |
[s]) = Pqs([o]), where qs is the state after performing s. While α′(q̂)(s, ·) is different in
Iπ and Iπ′ , Pqs([o]) is the same, because it only depends on the parts of the paths after
the choice of the secret.
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Note that, although in the previous proposition we exclude input distributions with ze-
ros, the concepts of vulnerability and leakage also make sense for these distributions3.

This result implies that we can define the channel matrix of an IHS I with variable
a priori as the channel matrix of Iπ for any π, and we can compute it, or approximate
it, using the same techniques of previous sectionsSimilarly we can compute or approx-
imate the leakage for any given π.

We now turn the attention to the computation of the maximum leakage. The follow-
ing result from the literature is crucial for our purposes.

Proposition 6.5 ([3]). Given a channel C, arg maxπ∈D(S) L×(C, π) is the uniform dis-
tribution, and argmaxπ∈D(S) L+(C, π) is a corner point distribution, i.e. a distribution
π such that π(s) = 1

κ on κ elements of S, and π(s) = 0 on all the other elements.

As an obvious consequence, we obtain:

Corollary 6.6. Given an IHS I with variable a priori, we haveML×(I) = L×(Iπ),
where π is the uniform distribution, andML+(I) = L+(Iπ′), where π′ is a corner
point distribution.

Corollary 6.6 gives us a method to compute the maxima leakages of I. In the multiplica-
tive case the complexity is the same as for computing the leakage4. In the additive case
we need to find the right corner point, which can be done by computing the leakages for
all corner points and then comparing them. This method has exponential complexity (in
|S|) as the size of the set of corner points is 2|S|−1. We conjecture that this complexity
is intrinsic, i.e. that the problem is NP-hard5.

7 Interactive Information Hiding Systems

We now consider extending the framework to interactive systems, namely to IHS’s in
which the secrets and the observables can alternate in an arbitrary way. The secret part
of a run is then an element of Σ∗

S , like the observable part is an element of Σ∗
O . The

idea is that such system models an interactive play between a source of secret infor-
mation, and a protocol or program that may produce, each time, some observable in
response. Since each choice is associated to one player of this “game”, it seems nat-
ural to impose that in a choice the actions are either secret or observable/hidden, but
not both.

The main novelty and challenge of this extension is that part of the secrets come after
observable events, and may depend on them.

Definition 7.1. Interactive IHS’s are defined as IHS’s (Definition 3.1), except that Re-
strictions 1 to 3 are replaced by α(q) ∈ D(ΣS ×Q) ∪D(Σ −ΣS ×Q).

3 We assume that conditional probabilities are extended by continuity on such distributions.
4 Actually we can compute it even faster using an observation from [19] which says that the

leakage on the uniform distribution can be obtained simply by summing up the maximum
elements of each column of the channel matrix.

5 Since submitting this paper, we have proved that our conjecture is true.
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Example 7.2. Consider an Ebay-like auction protocol with one seller and two possible
buyers, one rich and one poor. The seller first publishes the item he wants to sell, which
can be either cheap or expensive. Then the two buyers start bidding. At the end, the
seller looks at the profile of the bid winner and decides whether to sell the item or
cancel the transaction. Figure 4 illustrates the automaton representing the protocol, for
certain given probability distributions.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

cheap expensive

poor rich poor rich

sell cancel sell cancel sell cancel sell cancel

2
3

1
3

3
5

2
5

1
5

4
5

4
5

1
5

3
4

1
4

3
5

2
5

19
20

1
20

Fig. 3. Ebay Protocol

We assume that the identities of the buyers
are secret, while the price of the item and
the seller’s decision are observable. We ig-
nore for simplicity the hidden actions which
are performed during the bidding phase. Hence
ΣO = {cheap, expensive, sell, cancel}, Στ =
∅, S = ΣS = {poor, rich}, and O =
{cheap, expensive} × {sell, cancel}. The dis-
tributions on S and O are defined as usual.
For instance we have P([cheap sell]) =

P({q0
cheap−→ q1

poor−→ q3
sell−→ q7, q0

cheap−→ q1
rich−→ q3

sell−→ q7}) = 2
3 · 35 · 45 + 2

3 · 25 · 34 = 13
25 .

Let us now consider how to model the protocol in terms of a noisy channel. It would
seem natural to define the channel associated to the protocol as the triple (S,O,P)
where P(o | s) = P([o] | [s]) = P([s]∩[o])

P([s]) . This is, indeed, the approach taken in [11].
For instance, with the protocol of Example 7.2, we would have:

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 3

5 · 4
5

2
3 · 3

5 + 1
3 · 1

5

=
24
35

. (2)

However, it turns out that in the interactive case (in particular when the secrets are not
in the initial phase), it does not make sense to model the protocol in terms of a channel.
At least, not a channel with input S. In fact, the matrix of a channel is supposed to
be invariant with respect to the input distribution (like in the case of the IHS’s with
variable a priori considered in previous section), and this is not the case here. The
following is a counterexample.

Example 7.3. Consider the same protocol as in Example 7.2, but assume now that
the distribution over the choice of the buyer is uniform, i.e. α(q1)(poor, q3) = α(q1)
(rich, q4) = α(q2)(poor, q5) = α(q2)(rich, q6) = 1

2 . Then the conditional probabili-
ties are different than those for Example 7.2. In particular, in contrast to (2), we have

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 1

2 · 4
5

2
3 · 1

2 + 1
3 · 1

2

=
8
15

.

The above observation, i.e. the fact that the conditional probabilities depend on the input
distribution, makes it unsound to reason about certain information-theoretic concepts in
the standard way. For instance, the capacity is defined as the maximum mutual infor-
mation over all possible input distributions, and the traditional algorithms to compute it
are based on the assumption that the channel matrix remains the same while the input
distribution variates. This does not make sense anymore in the interactive setting.
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However, when the input distribution is fixed, the matrix of the joint probabilities is
well defined as P∧(s, o) = P([s] ∩ [o]), and can be computed or approximated using
the same methods as for simple IHS’s. The a priori probability and the channel matrix
can then be derived in the standard way:

π(s) =
∑

o

P∧(s, o), P(o | s) =
P∧(s, o)

π(s)
.

Thanks to the formulation (1) of the a posteriori vulnerability, the leakage can be com-
puted directly using the joint probabilities.

Example 7.4. Consider the Ebay protocol I presented in Example 7.2. The matrix of
the joint probabilities P∧(s, o) is:

cheap sell cheap cancel expensive sell expensive cancel

poor 8
25

2
25

1
25

2
75

rich 1
5

1
15

19
75

1
75

Furthermore π(poor) = 7
15 and π(rich) = 8

15 . Hence we have L×(I) = 51
40 and

L+(I) = 11
75 .

We note that our techniques to compute channel matrices and leakage extend smoothly
to the case where secrets are not required to happen at the beginning. However, no
assumptions can be made about the occurrences of secrets (they do not need to occur at
the beginning anymore). This increases the complexity of the reachability technique to
O((|S| · |O| · |Q|)3). On the other hand, complexity bounds for the iterative approach
remain the same.

8 Related Work

To the best of our knowledge, this is the first work dealing with the efficient com-
putation of channel matrices and leakage. However, for the simple scenario, channel
matrices can be computed using standard model checking techniques. Chatzikokolakis
et al. [4] have used Prism [15] to model Crowds as a Markov Chain and compute its
channel matrix. Each conditional probability P(o|s) is computed as the probability of
reaching a state where o holds starting from the state where s holds. Since for the simple
version of IHS’s secrets occur only once and before observables (as in Crowds), such a
reachability probability equals P(o|s). This procedure leads to O(|S| · |O| · |Q|3) time
complexity to compute the channel matrix, where Q is the space state of the Markov
Chain.

Note that the complexity is expressed in terms of the space state of a Markov Chain
instead of automaton. Since Markov Chains do not carry information in transitions they
have a larger state space than an equivalent automaton. Figure 4 illustrates this: to model
the automaton (left hand side) we need to encode the information in its transitions into
states of the Markov Chain (right hand side). Therefore, the probability of seeing ob-
servation a and then c in the automaton can be computed as the probability of reaching
the state ac. The Markov Chain used for modeling Crowds (in our two honest and one
corrupted user configuration) has 27 states.
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Fig. 4. Automaton vs
Markov Chain

For this reason we conjecture that our complexity O(|O|·
|Q|3) is a considerable improvement over the one on
Markov Chains O(|S| · |O| · |Q|3).

With respect to the interactive scenario, standard model
checking techniques do not extend because multiple occur-
rences of the same secret are allowed (for instance in our
Ebay example, P(cheap sell|rich) cannot be derived from
reachability probabilities from the two different states of the
automaton where rich holds).

9 Conclusion and Future Work

In this paper we have addressed the problem of computing the information leakage of a
system in an efficient way. We have proposed two methods: one based on reachability
techniques; the other based on quantitative counterexample generation.

We plan to use tools developed for counterexamples generation (in particular the
Prism implementation of both techniques presented in Section 5) in order to com-
pute/approximate leakage of large scale protocols. We also intend to investigate in more
depth how the results obtained from those tools can be used to identify flaws of the pro-
tocol causing high leakage.

In Section 7 we have shown that when the automaton is interactive we cannot define
its channel in the standard way. An intriguing problem is how to extend the notion of
channel so to capture the dynamic nature of interaction. One idea is to use channels with
history and/or feedback. Another idea is to lift the inputs from secrets to schedulers on
secrets, i.e. to functions from paths to distributions over secrets.
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Abstract. Information theory provides a range of useful methods to analyse
probability distributions and these techniques have been successfully applied to
measure information flow and the loss of anonymity in secure systems. However,
previous work has tended to assume that the exact probabilities of every action are
known, or that the system is non-deterministic. In this paper, we show that mea-
sures of information leakage based on mutual information and capacity can be
calculated, automatically, from trial runs of a system alone. We find a confidence
interval for this estimate based on the number of possible inputs, observations and
samples. We have developed a tool to automatically perform this analysis and we
demonstrate our method by analysing a Mixminon anonymous remailer node.

1 Introduction

Information theory provides powerful techniques to measure the relation between
different probability distributions and so has proved useful for defining anonymity
[26,15,24,29,9,11] and quantitative information flow [22,21,12,19,2]. Typically, secret
user inputs or users identities are looked on as inputs to an information-theoretic chan-
nel and the publicly observable actions of the system are looked on as the outputs of the
channel. The information theoretic notion of mutual information measures the amount
of information that can be sent across this channel, under a particular usage pattern, and
therefore measures the amount of information that leaks out about the secret inputs. Ca-
pacity is defined as the maximum possible mutual information for any input distribution
and so equals the worst case leakage.

Previous work using capacity and mutual information to measure probabilistic infor-
mation leakage has assumed that the exact behaviour of the system, that is the probabil-
ity of each observation under any user, is known. Typically, one has to construct a model
of the system and use a model checker to compute the actual probabilities. Even then,
calculating the leakage is not straight forward, requiring specific assumptions about the
system [9] or requiring the user to solve a set of equations [18,11]. In this paper we
show that it is possible to quickly and accurately find these measures of information
leakage from trial runs of an implemented system. Basing our method on sampled data,
rather than say the output of a formal model, has the advantage of removing the need
to create an accurate model of the system, which may be very difficult. It also helps to
avoid the problem of the state space of the model becoming too big to be handled by
model checking tools (a problem even harder for probabilistic model checking). Finally
it is often the case that an information leakage attack exploits implementation faults and
so only appears in the implementation itself.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 390–404, 2010.
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The user of our method defines the inputs of the system, which correspond to the
values that we wish to keep secret, and the possible observations an attacker might
make, which corresponds to defining the appropriate attacker model. The system un-
der test is then run a number of times until an estimated probability transition matrix
can be built up. For our results to hold, the outcome of each trial of the system must
be independent of the previous runs. We apply the Blahut-Arimoto algorithm [1,5] to
this matrix in order to estimate the capacity and hence the information leakage of the
system.

Running a numerical process on sampled data does not necessarily produce mean-
ingful results so we prove that our estimate converges to the true information leakage.
To provide accurate bounds on the information leakage we find the distribution that our
estimate comes from. This turns out to be a χ2 distribution in the case that the capacity
is zero and a normal distribution if the capacity is non-zero. In the latter case, the best
estimate of capacity is the mean of the distribution minus a small correction. In find-
ing this result we solve the more general problem of finding the distribution of mutual
information between two random variables, when the probability distribution of one is
known and the other is not. This result also makes it possible to estimate the mutual
information of a system for uniform usage, or any other given prior.

The variance of the estimate is dominated by the number of inputs times the number
of outputs, divided by the number of samples. Therefore a statistical estimate will be
accurate if there are significantly more samples than the product of the number of inputs
and all observable outputs. The ability to generate this many samples, in a reasonable
amount of time, acts as a guide to which systems can and cannot be analysed statisti-
cally. This can be much more efficient than model-checking; complex systems can have
many “internal” states, but generate few observations. In this case, generating samples
is easier than constructing the state space of the system. If the number of observations is
too big, concentrating on some of them may still lead to a useful analysis of the system.

Work outside the field of computer science has dealt with estimating mutual infor-
mation (e.g. [25,6]). To the best of our knowledge ours is the first work to deal with
estimating capacity. The contributions of this paper are: First, showing that information
leakage, as defined by capacity and mutual information, can be automatically calcu-
lated from sampled data. Second, proving bounds on the error of the estimate, and so
establishing what types of systems can and cannot be meaningfully analysed using a
statistical approach. Third, defining a statistical test to detect when there is zero infor-
mation leakage from a system. We demonstrate our method by analyzing a Mixminion
remailer node. We collect data from a running node, using a packet sniffer, and we
analyse this data to see if the timing and size of messages leaving a node leaks any
information about their destination.

In the next section we motivate our approach and Sections 3 describes our system
model. Section 4 describes how we can calculate an estimate of information leakage
from sampled data. We find the distribution that our estimate is drawn from in Sec-
tion 5 and in Section 6 we analyse a mix node. All the proofs and futher examples
are given in a technical report [8]. Our toolset and futher examples are available at
www.cs.bham.ac.uk/˜tpc/AE.

www.cs.bham.ac.uk/~tpc/AE


392 K. Chatzikokolakis, T. Chothia, and A. Guha

Message orderings out A,B,C out A,C,B out B,A,C out B,C,A out C,A,B out C,B,A
in 1,2,3 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666
in 1,3,2 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666
in 2,1,3 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666
in 2,3,1 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666
in 3,1,2 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666
in 3,2,1 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666

(a) Probabilites of outputs for each input for a perfect mix node

Message orderings out A,B,C out A,C,B out B,A,C out B,C,A out C,A,B out C,B,A
in 1,2,3 0 0.3333 0.3333 0 0 0.3333
in 1,3,2 0.3333 0 0 0.3333 0.3333 0
in 2,1,3 0.3333 0 0 0.3333 0.3333 0
in 2,3,1 0 0.3333 0.3333 0 0 0.3333
in 3,1,2 0 0.3333 0.3333 0 0 0.3333
in 3,2,1 0.3333 0 0 0.3333 0.3333 0

(b) Probabilites of outputs for each input for a flawed mix node

Fig. 1. Probabilities of the Message Ordering for Theoretical Mix Nodes

2 Information-Theoretic Measures of Information Leakage

Information theory reasons about the uncertainty of random variables. Given two ran-
dom variables X, Y we write p(x) = P [X = x] and p(y) = P [y = Y ] for their
probability distributions and X ,Y for their sets of values. The entropy of X is defined
as: H(X) = −∑

x∈X p(x) log p(x) and, when the logs are base 2, measures the uncer-
tainty about its outcome in bits. It takes the minimum value 0 when X is constant and
the maximum value log |X | when its distribution is uniform. The conditional entropy
is defined as: H(X |Y ) = −∑

y∈Y p(y)
∑

x∈X p(x|y) log p(x|y) and measures the un-
certainty about X that “remains” when we know Y . It takes its minimum value 0 when
Y completely determines the value of X and its maximum value H(X) when X, Y are
independent.

The mutual information between X, Y , defined as I(X ; Y ) = H(X) − H(X |Y )
measures the information that we learn about X if we observe Y . It is symmetric
(I(X ; Y ) = I(Y ; X)) and ranges between 0 (when X, Y are independent) and H(X)
(when X, Y are totally dependent). Finally, the relative entropy between distributions
p, q is defined as D(p ‖ q) =

∑
x p(x) log p(x)

q(x) .
A channel consists of an input alphabet X , an output alphabet Y and a probability

matrix W where W (y|x) = p(y|x) gives the probability of output y when x is the
input. Given a channel and an input distribution on X , we can define two random vari-
ables X, Y representing the input and output of the channel, and with a slight abuse of
notation we write I(X, W ) for I(X ; Y ). The capacity of the channel is defined as the
mutual information between the input and the output, maximised over all input distri-
butions: C(W ) = maxp(x) I(X, W ).

The analysis of information leakage aims to quantify the amount of information
that an attacker can learn from observing a system. Many authors have pointed out the
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Message orderings out A,B,C out A,C,B out B,A,C out B,C,A out C,A,B out C,B,A
in 1,2,3 0.0 0.0118 0.0473 0.0118 0.0059 0.9231
in 1,3,2 0.0117 0.0 0.0351 0.0292 0.0 0.924
in 2,1,3 0.005 0.0222 0.0278 0.0444 0.0056 0.8944
in 2,3,1 0.0060 0.012 0.0301 0.0361 0.0060 0.9096
in 3,1,2 0.0067 0.0133 0.04 0.02 0.0067 0.9133
in 3,2,1 0.0061 0.0122 0.0549 0.0244 0.0061 0.8963

Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments

natural parallel between the amount of information an attacker can learn about secret
inputs to a system from its public outputs and the amount of information that can be sent
over a channel as measured by mutual information and capacity [22,24,29,12,9,11]. In
such a framework, we have a set X of events that we wish to keep hidden and a set Y
of observable events which model what the attacker can observe about the protocol. We
assume that on each execution, exactly one x ∈ X and y ∈ Y will happen and that the
output of the protocol is chosen probabilistically. The capacity of this system measures
the most an attacker can learn about the secret inputs from observing the public outputs,
that is the maximum possible information leakage of the system.

As an example we consider one of the basic building blocks of anonymous systems:
a mix node [13]. These nodes will listen for encrypted messages and then reorder and
forward all of the messages at the same time. The aim of such a node is to make it
difficult for an observer to link a sender and a receiver. If we take the example in which
1 sends a message to A, 2 sends to B and 3 to C, then Figure 1(a) shows the behaviour of
a perfect mix node. Here we consider if an attacker observing the order of the messages
leave the mix could deduce anything about the order in which the messages entered (if
an attacker could link these orders then they could work out who is communicating with
whom). Each row shows the order in which the messages enter the mix, each column
gives the order in which the messages are forwarded, and each cell gives the conditional
probability of a particular output resulting from a particular input. The capacity of this
matrix is zero, meaning that the idealised mix node leaks no information.

In Figure 1(b) we consider a flawed mix node that just reorders a pair of incoming
messages. In this case an observer can deduce more about the order of the inputs from
the observed outputs and this is reflected by a much higher capacity of 1 bit. For a full
discussion of the use and merits of this metric for measuring information leakage we
refer the reader to the papers cited above. The aim of this paper is to show how the
leakage may be calculated for real systems. Other work in this area uses the entropy
[26,15], conditional entropy [21] and relative entropy [14]. Our methods for calculating
mutual information and capacity could also be adapted to compute these measures.

To apply this kind of analysis to a real system we ran a Mixminion remailer node
and sent messages across it to three different e-mail addresses. We used a packet sniffer
to detect the order in which messages left the node and the results are shown in Figure
2 (a full description of our tests are given in Section 6). In the general case, there is
no analytical formula for capacity, we can find the capacity of the matrices in Figure 1
because they are so simple, matrixes such as Figure 2 pose more of a problem. Recently
Malacaria et al. [18,11], showed that the capacity could be found by solving a series
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of equations, possibly in matlab. However, we wish to fully automate our analysis so
instead we use the iterative Blahut-Arimoto algorithm [1,5], which can compute the
capacity of an arbitrary channel to within a given precision. To explain this algorithm
we first observe that mutual information can be written in terms of relative entropy D:

I(Q, W ) = H(Q) − H(Q|Y ) =
∑

x

∑
y Q(x)W (y|x) log

(
W (y|x)∑

x′ Q(x′)W (y|x′)

)
=

∑
x Q(x)D(W (·|x) ‖ ∑

x′ Q(x′)W (·|x′))

We write Dx(W ‖ QW ) as short hand for D(W (·|x) ‖ ∑
x′ Q(x′)W (·|x′)). This leads

to an upper bound for capacity; by observing that, for any set of numbers {n1, . . . , nm}
and any probability distribution {p1, . . . , pm} it holds that

∑
i pini ≤ maxi ni, we find

that, for all probability distributions Q:∑
x

Q(x)Dx(W ‖QW )≤C(W )≤max
x

Dx(W ‖QW ) (1)

It can be shown [5] that these inequalities become equalities when Q is the input distri-
bution that achieves capacity.

The term Dx(W ‖ QW ) can be thought of as a measure of the effect that choosing
the input x has on the output. Blahut and Arimoto showed that the maximising input
distribution could be found by repeatingly increasing this measure. Given a channel W ,
the algorithm starts from an initial input distribution Q0 (we start from a uniform one,
if no better one is known) and in each step k we obtain a new distribution Qk+1 by
updating the current Qk for each input x as follows:

Qk+1(x) = Qk(x)
exp(Dx(W ‖ QkW ))∑

x′ Qk(x′) exp(Dx′(W ‖ QkW ))

The algorithm is guaranteed to converge to the capacity achieving distribution Q. Fur-
thermore, (1) can be used as a stopping criterion, as for any ε ≥ 0, terminating the
iterations when maxx Dx(W ‖ QkW ) − I(Qk, W ) ≤ ε ensures that the estimate
is within ε of the true capacity, with equality when the capacity has been found (i.e.,
Qk = Q). Matz and Duhamel [20] propose an accelerated algorithm. They demonstrate
super-linear convergence for this algorithm, and prove linear convergence in the general
case.

Applying the Blahut-Arimoto algorithm to the matrix in Figure 2 finds the capacity
to be 0.023, however it would be wrong to take this as evidence that there exists a small
information leak from a Mixminion remailer node. As our data is from trial runs of the
system, we must find a way to distinguish between true information leakage and noise
in the results, which we do in the rest of this paper.

3 System Model and Assumptions

As in other work on information theoretic analysis of information leakage
[22,24,29,12,9,11] a system in our framework consists of a set of secret inputs X , a
set of observable output actions Y and a probability transition matrix W that describes
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the behaviour of the system. We require that, given one particular secret input, the sys-
tem behaves probabilistically. This means that if we run the system W with input x then
there must be a fixed probability of seeing each observable output. In statistical terms,
given a configuration of the system x the trial runs of the system must be independent
and identically distributed: factors other than the input x, that are not accounted for by
the probabilities of the outputs, must not have a statistically significant effect on the
observed actions.

We consider a passive attacker that observes the outputs of the system and may try
to make deductions from these outputs, but does not interact with the system directly.
Capacity measures the most information that can be sent over a channel, no matter how
it is used, so we do not require anything about the distribution of secret inputs. As long
as the attacker does not have any prior knowledge about how the system is being used,
there is no sequence of inputs, or clever processing of the observations, that can lead to
a higher information leakage.

Given these assumptions, our analysis estimates the information leakage as the
information-theoretic capacity of W . This is the maximum amount of information, in
bits, that can be passed over W when it is regarded as a communication channel. In
terms of anonymity, for instance, it is the maximum number of bits that the attacker can
learn about which event took place, on average, from observing the system. An infor-
mation leakage of log2(#X ) means that the system offers no anonymity at all, whereas
an information leakage of 0 means that the system is perfectly anonymous. A capacity
in between these values indicates a partial loss of information. As with any information
theoretic measure of anonymity, we do not distinguish between a small chance of a total
loss of anonymity and a high probability of a partial loss, rather our figure represents
the average case for the average user. We also note that a statistical approach is ill suited
to any measure that rates a tiny probability of a total loss of information as much worse
than no loss of information because such a measure would not be continuous as the
probability tended to zero and so would not allow for accurate confidence intervals to
be found.

Our analysis method makes no assumptions about the distribution on secret inputs
and assesses the whole system; this means that our results are valid no matter how
the system is used but they cannot say anything about a particular observed run of the
system. To do so would require one to make assumptions about the prior distribution as
part of, for instance, a Bayesian analysis [3]. Such an analysis (e.g. [10,27]) gives the
probability of identifying the culprit from given observations, but would not be valid if
the assumptions are wrong or the users’ behaviour changes.

4 Estimating Information Leakage

In this paper we focus on capacity as our measure of information leakage, we now
describe how it can be calculated. There are two main obstacles to finding the capacity
of a real system: firstly we must find a probability transition matrix that reflects the
system under test and gives the conditional probabilities of any observable action (the
outputs) given a particular usage of the system (the inputs). Secondly we must calculate
capacity from this estimated matrix.
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W : the true probability transition matrix for the system
Ŵn : estimated probability transition matrix from n samples
Q : the input distribution that maximises mutual information for W
Q(Ŵn) : the input distribution that maximises mutual information for a Ŵn

C(W ) = I(Q,W ) : the true capacity of W
C(Ŵn) = I(Q(Ŵn), Ŵn) : the true capacity of the matrix found by sampling
Q̂m(Ŵn) : the result of running the Blahut-Arimoto on Ŵn for m iterations
Ĉ(Ŵn) = I(Q̂m(Ŵn), Ŵn) : our estimate of the capacity of W

Fig. 3. Key values for estimating capacity

To find the probability transition matrix we start by defining the inputs (the events
that we wish to keep secret) and the outputs (the actions observable to an attacker).
The latter corresponds to defining an attacker model. Some level of abstraction must be
used; the user of our method, depending on the needs of the analysis, should make this
choice. Our method requires many more samples than the number of observations so
the more fine grained the attacker’s observations are, the more samples we require; we
quantify this in Section 5 where we calculate the variance of our results in terms of the
number of inputs, outputs and samples. Defining the input and output of the channel is
a challenging task and should be approached with some care, as it greatly influences
the result of an information theoretic analysis. The data processing inequality states
that for all functions F and G we have that I(F (X); G(Y )) ≤ I(X, Y ) and picking a
particular set of output actions can be looked on as picking the function G, therefore if
we ignore some possible observations the attacker might make we obtain a lower bound
for the true leakage. This paper primarily deals with the step after picking the inputs and
outputs i.e., how to compute the leakage in a fully automated way.

Once the inputs and outputs are identified we may run trials of the system for each of
the inputs and record the observable outcomes. We use these observations to construct
an estimated matrix. Note that the approximate matrix can be generated using any prob-
ability distribution on the inputs, without having to making any assumptions about how
the system is used. Calculating the capacity then finds the input distribution that leaks
the most information. So we can collect our data for any usage of the system and then
calculate the worst-case scenario.

There are two sources of error in the method we propose. The first comes from
estimating the probability transition matrix for the system and the second from the
approximation of capacity based on this matrix. Running a numerical approximation on
inaccurate data does not necessarily lead to meaningful results, but we prove below that
running the Blahut-Arimoto algorithm on an approximate matrix does return a result
that tends to the true capacity as the sample size and the number of iterations increase.

The values and distributions used in our results are summarised in Figure 3. Our anal-
ysis of a system is based on the probability transition matrix W that gives conditional
probabilities of each input given each output, W (o|a) = p(o|a), i.e., the probability of
the attacker seeing observation o given that the system is started in configuration a. We
will estimate W by running the system n times with a uniform random input each time.
This leads to an estimate Ŵn, which is a matrix drawn from a normal distribution with
mean W and a variance that decreases as n increases.
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Next we have the input distribution that maximises the mutual information for W ,
which we label Q. The true capacity of the system C is given by the mutual informa-
tion for input Q, denoted by C(W ) = I(Q, W ). There is no direct formula to find
Q exactly, so we estimate Q using the Blahut-Arimoto algorithm for m iterations; we
write Q̂m(W ) for this distribution. We may also apply the Blahut-Arimoto algorithm
to our estimated matrix to get Q̂m(Ŵn) which converges to the input distribution that
maximises mutual information for the estimated matrix Ŵn. This leads to our estimate
of capacity for the system: Ĉ(Ŵn) = I(Q̂m(Ŵn), Ŵn).

Our proposed method of analysing systems for information leakage is to use a value
based on Ĉ(Ŵn) in place of the true value C(W ). The estimated value can be auto-
matically calculated from sampled alone, and the following theorem tells us that this
estimate is good, i.e., with enough samples and iterations of the Blahut-Arimoto algo-
rithm our estimate of capacity almost surely converges to the true value:

Theorem 1. For any probability pe > 0 and any real number e > 0 there exists in-
tegers n′, m′ such that for all n > n′ and m > m′ and for an estimated probability
transition matrix found using n samples Ŵn it holds that

p(|I(Q̂m(Ŵn), Ŵn) − I(Q, W )| > e) < pe

Proof Sketch: Our proof is by contradiction. We assume that Ĉ does not almost surely
converge to C. Mutual information is continuous and finite for a fixed number of in-
puts therefore our assumptions imply that there must also be a difference between
I(Q(Ŵn), W ) and I(Q, W ) or between I(Q, Ŵn) and I(Q(Ŵn), Ŵn), however if
these differences exist then either Q(Ŵn) does not maximise mutual information for
Ŵn or Q does not maximise mutual information for W , leading to a contradiction.

5 Bounds on the Possible Error

To be sure of our results we need to know how close our estimate of capacity is to the
real value. There are two ways in which we can find such a bound. We can estimate the
error in each of the matrix entries and then calculate the maximum effect that all of these
errors might cause on our final result. This method is relatively simple but leads to wide
confidence intervals for the final results, we examine this method further in the technical
report version of this paper [8]. A second method is to calculate the distribution that our
results come from, in terms of the value we are trying to estimate. This method provides
much tighter bounds but, due to the maximising nature of capacity, we must relate our
results to a lower bound for capacity: I(Q̂m(Ŵn), W ), rather than the true capacity
I(Q, W ). While this is a lower bound, it is also zero if, and only if, the true capacity is
zero:

Lemma 1. Let Ŵn be a randomly sampled matrix from n samples and Q̂m(Ŵn) be the
result of m iterations of the Blahut-Arimoto algorithm applied to this matrix, starting
from a uniform distribution. Then I(Q̂m(Ŵn), W ) is zero if and only if C(W ) is zero.
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The process of finding our estimation of capacity can be looked on as drawing a value
from a distribution. In this section we show that the value comes from a χ2 distribution
if and only if the true capacity is zero and we also find the mean and variance of the
distribution if the capacity is non-zero. This lets us calculate confidence intervals for a
bound on the true capacity in terms of our estimated value.

The mean and variance of sampled mutual information has been found in the case
that both distributions are unknown [17,23,25]. In our case we know the input distribu-
tion and only sample to find the outputs. Therefore we first solve the general problem
of finding the mutual information when the input distribution is known and the matrix
is sampled, then we describe how we use this result to calculate capacity.

5.1 The Distribution of Mutual Information

Let us denote the input distribution by X and the output distribution by Y . Suppose
there are I inputs and J outputs. A slight abuse of notions lets us write the proofs in a
more readable way, so we write pi = Q(i) = P (X = i), i = 0, · · · , I−1, pj = P (Y =
j), j = 0, · · · , J−1, and pij = P (X = i, Y = j), where the particular distribution (X
or Y ) is clear from the context. For the estimated values we write: p̂j|i = Ŵn(j|i)=the
estimated transition probability from input i to output j, p̂ij = pi × p̂j|i =the estimated
probability of seeing i and j, and p̂j = ΣiQ(i)W (j|i)=the estimated probability of
seeing j.

The mutual information can then be written:

I(X ; Y ) =
I−1∑
i=0

J−1∑
j=0

pij log
(

pij

pipj

)
,

and when both inputs and outputs are sampled the mutual information can be estimated

as Î ′(X ; Y ) =
∑I−1

i=0
∑J−1

j=0 p̂ij log
(

p̂ij

p̂ip̂j

)
, where the p̂’s are the relative frequencies

of the corresponding states, based on n samples. We also have that: p̂i =
∑J−1

j=0 p̂ij and

p̂j =
∑I−1

i=0 p̂ij .
It may be shown that when the inputs have no relation with the outputs, i.e. I(X ; Y )

= 0, then for large n 2nÎ(X ; Y ) has an approximate χ2 distribution with (I−1)(J−1)
degrees of freedom, see [6]. From that, one may say that Î ′(X ; Y ) has an approximate
bias (I−1)(J−1)/2n and approximate variance (I−1)(J−1)/2n2. When I(X ; Y ) >
0, then it may be shown that Î ′(X ; Y ) has mean I(X ; Y )+(I−1)(J−1)/2n+O

( 1
n2

)
and variance

1
n

⎛⎜⎝∑
i,j

pij log2
(

pij

pipj

)
−

⎛⎝∑
i,j

pij log
(

pij

pipj

)⎞⎠2
⎞⎟⎠ + O

(
1
n2

)
,

see Moddemejer [23]. Brillinger [6,7] states that this distribution is approximately
normal.
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In our case the situation is slightly different in that the input distribution is completely
known. Hence, the estimate of I(X ; Y ) is modified to

Î(X ; Y ) =
I−1∑
i=0

J−1∑
j=0

p̂ij log
(

p̂ij

pip̂j

)
There exists no known result that deals with the asymptotic behaviour of the mutual
information estimates in this situation. In this paper, we develop a distribution of the
mutual information estimate for known input distribution when the output is indepen-
dent of the input, i.e., the mutual information is zero, and then proceed to compute the
asymptotic expectation and variance of the mutual information estimate when its actual
value is non-zero.

Firstly, for I(X ; Y ) = 0, i.e. X and Y are independent, we have following;

Theorem 2. When X and Y are independent with distribution of X known, for large n,
2nÎ(X ; Y ) has an approximate χ2 distribution with (I −1)(J −1) degrees of freedom.

We note that this theorem implies that if I(X ; Y ) = 0 then Î(X ; Y ) is drawn from a
distribution with mean (I − 1)(J − 1)/2n and variance (I − 1)(J − 1)/2n2.

When I(X ; Y ) > 0, the distribution is no longer χ2. In this case, we have the fol-
lowing result:

Theorem 3. When I(X ; Y ) > 0, Î(X ; Y ) has mean I(X ; Y ) + (I − 1)(J − 1)/2n +
O

( 1
n2

)
and variance

1
n

∑
i

pi

⎛⎜⎝∑
j

pj|ilog2
(

pij

pj

)
−

⎛⎝∑
j

pj|ilog
(

pij

pj

)⎞⎠2
⎞⎟⎠ + O

(
1
n2

)

To prove this we rewrite our estimate as: Î(X, Y ) = H(X)+Ĥ(Y )−Ĥ(X, Y ), where
Ĥ is the entropy calculated from the sampled data. As the distribution X is known we
know H(X) exactly. We proceed by taking the Taylor expansion of Ĥ(Y ) and Ĥ(X, Y )
to the order of O(n−2). This gives us their expected values in terms of the powers of
the expected difference between the entries of the probability transition matrix and their
true values. As the rows of the matrix are multinomials we know these expectations (see
e.g. [23]). Then, from the expected values of Ĥ(Y ) and Ĥ(X, Y ), we find the expected
value of Î(X, Y ).

To find the variance we observe that:

V (ÎXY ) = V (Ĥ(X, Y )) + V (Ĥ(Y )) − 2Cov(Ĥ(X, Y ), Ĥ(Y ))

As above we find the variance of ĤXY and ĤY , and their co-variance from the Taylor
expansion and the expectations of the rows of the matrix. As suggested by Brillinger
[6,7] we have verified experimentaly that this distribution is approximately normal.

It may be noted that the expression of the primary (O(n−1)) part of the variance
above reduces to zero when X and Y are independent, which is consistent with variance
of the estimate in the case that I(X ; Y ) = 0.



400 K. Chatzikokolakis, T. Chothia, and A. Guha

Comparing our result with that of Moddemejer [23], one point of interest is that the
distribution of the estimate of the mutual information under independence of the input
and the output (i.e. C(W ) = 0) does not change whether we know the input distribution
or not, and the expectation always remains the same, but the variance reduces when
there is some information contained about the output in the input (i.e., C(W)¿0).

In both the zero and the non-zero cases we have a bound on the variance:

Lemma 2. The variance of the estimates of mutual information in Theorem 2 and 3 are
bound above by IJ/n where I and J are the sizes of the distributions domains and n is
the number of samples used to find the estimate.

This means that taking more samples than the product of the number of inputs and
outputs ensures that the variance will be low and the results accurate. As running the
Blahut-Arimoto algorithm on the data we collect can be done in linear time [20] the
time taken to collect the sampled data will be the limiting factor of our method. The
ability to generate more samples than the product of the inputs and outputs, in a rea-
sonable amount of time, acts as a guide to which systems can and cannot be analysed
statistically. We note, however that the variance can actually be much smaller than IJ/n
therefore it may also be possible to get a low variance and accurate results with a smaller
number of samples.

5.2 Using the Distributions for Information Leakage

Our results on the distribution of mutual information show that the mutual information
is zero if, and only if, the distribution of the estimates has mean (I − 1)(J − 1)/2n
and variance (I − 1)(J − 1)/2n2 (where I is the number of inputs and J the number
of outputs). Whereas the mutual information is non-zero if, and only if, the mean is the
true value plus (I − 1)(J − 1)/2n and the variance is the value given in Theorem 3.
Therefore our point estimate of information leakage is:

max(0, I(Q̂m(Ŵn), Ŵn) − (I − 1)(J − 1)/2n).

If a single test falls outside the confidence interval for zero mutual information then
we may take it as evidence that the capacity is non-zero and calculate the confidence
interval accordingly1. However a single test cannot distinguish between zero leakage
and a very small amount. If the result is consistent with the χ2 distribution then we may
conclude that the result is between zero and the upper bound of the confidence interval
for non-zero mutual information. This leads to the following testing procedure:

A Test to Estimate Information Leakage

1. Fix the secret inputs and observable outputs of the system under test. Ensure that
each run of the system is independent.

2. Run n tests of the system with a random input and calculate an estimated matrix
Ŵn (to be sure of good results pick n >> IJ).

1 Here we follow Brillinger and take the non-zero distribution to be normal.
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3. Calculate e = I(Q̂m(Ŵn), Ŵn) and the point estimate for anonymity pe = max
(0, e − (I − 1)(J − 1)/2n), using enough iterations of the Blahut-Arimoto algo-
rithm to make the error in capacity of the estimated matrix much smaller than the
accuracy required by the user.

4. If 2n times e is inside the 95% confidence interval of the χ2((I − 1)(J − 1))
distribution then the confidence interval for the capacity is: 0 to pe+1.65

√
v where

v is the variance as given in Theorem 3
5. If 2n times e is outside the 95% confidence interval of the χ2((I − 1)(J − 1))

distribution then the confidence interval for the capacity is: pe − 1.96
√

v to pe +
1.96

√
v where v is the variance as given in Theorem 3.

In many situations a very small leakage would be acceptable, however if we want to be
sure of zero leakage then we have to run multiple tests and check the goodness of fit
of the variance against the zero and non-zero predictions (tests based on the mean will
not be able to distinguish zero and very small mutual information). To check compat-
ibility of the variances we use the test that the observed variance divided by the true
variance should be approximately χ2 with mean one and variance two over the sample
size minus one [4]. For very small values of mutual information the variance might be
consistent with both predictions, however as the variance of the estimate of values that
are truly zero is O(n−2) and the variance of the estimate of values that are truly non-
zero is O(n−1) it will always be possible to distinguish these cases with a large enough
n. Therefore, even though for large degrees of freedom a χ2 distribution will start to
resemble a normal distribution, a large enough sample size will always be able to tell
the zero and non-zero distributions apart, due to the different orders of magnitude of the
variances. This leads to the following test:

A Test for Zero Information Leakage

1. Fix the secret inputs and observable outputs of the system under test. Ensure that
each run of the system is independent.

2. Run 402 analyses with sample size n (as described above), to find Ŵ1, . . . , Ŵ40.
3. Calculate an estimate of the maximising input distribution Qe = Qm(Ŵ1), then

calculate I(Qe, Ŵ1), . . . , I(Qe, Ŵ40) and find the variance of these results: v.
4. Calculate the variance predicted by Theorem 2 vzero and by Theorem 3 vnotZero.
5. If v/vzero is inside the confidence interval for χ2(2/n) and v/vnotZero is outside

the confidence interval then conclude that the information leakage is zero.
6. If v/vzero is outside the confidence interval for χ2(2/n) and v/vnotZero is inside

the confidence interval then conclude that the information leakage is non-zero.
7. If v is consistent with both predictions then repeat this process with a larger sample

size n.

We note that, due to the differences in magnitude of the two variance predictions, this
test is guaranteed to terminate.

2 We use a sample size of 40 as this should be more than enough to accurately find the variance,
see e.g. ([28], page 153).
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6 Application to the Mixminion Remailer

Returning to the Mixminion remailer mix node from Section 2, we can now analyse the
data properly. In this experiment we test whether an observer can learn anything about
the order in which three short messages entered a mix node by observing messages
coming out. Any link between the order of the inputs and outputs would help an attacker
tell who was sending a message to whom, which is exactly what the mix is trying
to hide. The messages we sent were of different lengths and sent to different e-mail
addresses. In the different tests we alternated the order in which the messages entered
the mix. So the secret inputs are the orders in which the three test messages arrive.

To find the observable outputs of the node we ran the WireShark packet sniffer on
our test machine. This program recorded all incoming and outgoing packets sent to and
from the mix node. To ensure that the observations of the packets leaving our mix were
authentic we sent our messages to their destination via real nodes of the Mixminion
network3. Once all the packets had been collected we recorded the size and number of
packets sent to each of the destination mix nodes and the ordering of the packets to each
node. These digests of the outgoing streams became the outputs of our channel.

In threshold mode the mix strategy is completely independent between firings. While
background network traffic and other programs running on the computer may have an
effect on the output, we avoid this affecting our results by randomising the order in
which the different input messages orderings are tested. Therefore outside conditions
will effect all the results equally, and so our experiments fit the requirement of indepen-
dent and identically-distributed as described in Section 3. To gather our test data we ran
our own Mixminion node. We set the mix time limit to be 2 minutes and in each interval
sent three known test messages into the node, effectively running it as a threshold mix
(we found that the mixes would occasionally take longer than the specified interval, so
that if we set the interval for less than 2 minutes our test messages would occasionally
straddle the boundary between mix firings and so invalidate our results).

We first ran 1000 tests looking only at the ordering of the packets entering and leav-
ing the mix. The results are shown in Figure 2. Here message 1 was being sent to
address A, 2 to B and 3 to C. It was clear that Mixminion usually sent the messages
out in a fixed order (C then B then A), however occasionally a different order was ob-
served. Was this unusual ordering, or anything else, leaking information on the order
of the incoming messages? Or was it unrelated to the Mixminion software and due to
the computer’s network card, or network conditions? A quick run of our software finds
that the capacity of this matrix is 0.023, which is well within the 95% upper confidence
limit for zero leakage (0.0355), therefore there is no evidence of any loss of anonymity.

Next we ran 10000 tests, in batches of a few hundred, over the course of three weeks
and, along with the ordering, also recorded the size and number of packets sent. We
disregarded the results when there were large amounts of packet loss due to network
disruption; we note that this may be a possible way to attack a mix network. We ob-
served 436 different observable outputs in total. The most common observation by far
was 33301 bytes in 32 to 34 packets send to each of the other nodes, with overlapping

3 We only sent messages via nodes where we had received permission from the person running
the node, as our test traffic could easily have looked like an attack on the network.



Statistical Measurement of Information Leakage 403

streams starting in a fixed order. Occasionally the streams would start in a different
order and different numbers of packets, payload size and timings would be observed.

Our software calculated the point estimated of capacity as 0.0249, which is well
within the 95% confidence intervals for the χ2 distribution for the zero case. Leading to
a 95% confidence interval for the information leakage as between 0 and 0.0414. There-
fore our result is consistent with a capacity of zero and we may conclude that, in this
instance, there is no evidence of any loss of anonymity due to the order that messages
arrive and leave a Mixminion. There are known attacks that target more complicated
aspects of networks of Mixminion nodes; we plan to investigate whether our method
can scale up to detect such attacks in the future.

7 Conclusion

The capacity of a channel with discrete inputs and outputs has been proposed as a
metric in a number of areas of computer security. We have shown that such measures
of information leakage can be calculated from sampled data and so made it possible to
apply this theory to real systems. Our calculation of the variance of the estimates can
also be used to tell when systems are, or are not, too complex to successfully analyse
statistically.

As further work plan to use our tool to look for information leaks from real systems.
We also intend to find the distribution of estimates of conditional mutual information
and an upper bound for capacity. For this, we can proceed in the same way as finding
the lower bound; for conditional mutual information we can find the Taylor expansions
of H(X |Y ) and H(X |Y, Z) and for an upper bound on capacity we can find the ex-
pansion of Dx(W ‖ XW ). This would lead to the mean and variance in terms of the
expected differences of the matrix entries, which are known. For conditional mutual
information we can use the appropriate adaptation of the Blahut-Arimoto algorithm to
find our approximation of the maximising input distributions [16].
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Abstract. We study the model checking problem of timed automata
based on SAT solving. Our work investigates alternative possibilities for
coding the SAT reductions that are based on parallel executions of inde-
pendent transitions.

While such an optimization has been studied for discrete systems, its
transposition to timed automata poses the question of what it means for
timed transitions to be executed “in parallel”. The most obvious inter-
pretation is that the transitions in parallel take place at the same time
(synchronously). However, it is possible to relax this condition. On the
whole, we define and analyse three different semantics of timed sequences
with parallel transitions.

We prove the correctness of the proposed semantics and report exper-
imental results with a prototype implementation.

1 Introduction

In this paper, we describe a SAT based model checking algorithm for timed
concurrent systems that includes partial order concepts, as well as its implemen-
tation in the POEM model checker.

While symbolic state exploration with zones [10] as implemented in Uppaal
[2] remains the most widely used algorithm for model checking timed automata,
reductions to SAT solvers [15,13,1,17] have been studied with encouraging re-
sults. However, the situation is far from the dominance of SAT methods used to
analyse synchronous circuits.

On the other hand, the zone based state exploration has seen several works
investigating improvements based on partial order semantics [12,16,7,14]. In the
development of timed automata, this investigation came late, maybe because the
algorithms used defy the intuition of time as a total order. For instance, in [12]
it is possible that the algorithm provides sequences where the time may go back-
wards between transitions (but these executions can nevertheless be reordered
to represent real executions).

The basis of most so-called partial order approaches for model checking asyn-
chronous systems is the structural observation that pairs of independent transi-
tions, i.e. transitions that concern separate parts of a distributed system, may
� Partially supported by the ANR project ECSPER(ANR JC09_472677 ECSPER).

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 405–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



406 J. Malinowski and P. Niebert

be executed in any order with the same result. For timed automata, this was at
first not obvious, since these transitions may reset clocks and the order of firing
introduces a relation on the clock values. The cited works using partial order
concepts for timed automata avoid in one way or another the introduction of
this artificial relation and can therefore outperform the classical algorithms in
many cases.

An obvious question occurs when combining two different methods (here SAT
reductions and partial order semantics): will the performance improve on each
method separately? For untimed asynchronous systems like safe Petri nets, a
positive answer to this question was given in [9,11] and a few sequels. How-
ever, the answer given in those works was to improve the SAT reduction by
allowing several independent transitions to actually occur in parallel, i.e. in one
step. This concept was known before in Petri nets as step semantics [8], but
it found an unexpected application. Intuitively, multisteps (transitions that are
executed in parallel) allow to compress execution sequences leading to a state:
while the overall number of executed transitions remains the same, the possi-
bility of executing several of them in one parallel step means that there are
less intermediate states to consider. Moreover, when coding reachability in SAT,
differently from state exploration, the sub-formulae coding the possible execu-
tion of a transition are present for every step in the sequence anyway. From
this perspective, requiring interleaving semantics can be perceived as nothing
more than a restriction stating that in any multistep at most one transition
takes place. In tight cases, the best SAT solver will have to try out every inter-
leaving, i.e. every permutation of independent transitions. We cannot imagine
a case where this interleaving requirement will have any benefit for the SAT
approach, but relaxing it and allowing multisteps will very often give dramatic
improvements.

The contribution of this work is to extend the reduction with multisteps to
timed automata.

This being said, we invite the reader to consider what it means for several
timed transitions to be executed “in parallel” or in the same multistep before
reading on.

Indeed, the first idea that may come to ones mind is that these transitions
should take place “at the same time”, but this turns out to be just one of several
options, which we call “synchronous”. A more relaxed notion may require that
each transition in a multistep has to be executed temporally before each tran-
sition of the following multistep, yet allowing the individual transitions to take
place at different times, a notion we call “semi synchronous time progress”. Based
on notions from [12,14], the seemingly least restrictive sensible notion limits the
time progress to transitions that are dependent, which we call “relaxed time
progress”. Based on previous work, we show that the three proposed notions of
time progress are equivalent in the sense that the execution sequences of either
semantics can be transformed into execution sequences of the other and into the
classical notion of runs. However, they turn out not to be equivalent with respect
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to performance: the more relaxed notions are more complex to code in SAT but
can in some cases yield superior results.

Plan. The paper is structured as follows: in Section 2, we introduce the basic
notions of timed systems on a certain specification level: multithreaded programs
with shared variables. It is essential to use such a model to understand the SAT
coding. We also introduce notions from timed automata, notably “clocks”, clock
conditions and resets. For the sake of readability, we do not introduce state
invariants at this point. In Section 3, we recall notions of independence in the
context of timed automata and introduce semantics with multisteps. The main
formal tools are developed here, different notions of time progress are formally
defined and their equivalence is shown. In Section 4, we show how these concepts
integrate into a SAT reduction for systems of the kind described in Section 2.
This description, although held informal where possible, aims to give a self-
contained description of how such a reduction is constructed and how the notions
of Section 3 integrate in the construction of a SAT problem instance. In Section
5, we informally discuss how state invariants, an important modelling concept
in timed automata can be integrated with each of the three notions of time
progress. In Section 6, we illustrate the potential of the algorithms by a few
benchmarks in our prototype implementation. We conclude and discuss related
work in Section 7.

2 Preliminaries

Let Ti with 1 ≤ i ≤ N denote a thread with transi its set of transitions. Let
trans =

⋃
transi the set of all transitions. Let Vi be the set of local variables of

Ti and let Vg the set of global variables. Then we introduce V = Vg∪
⋃

Vi the set
of all variables. Each variable v ∈ V takes its values in the domain Dv. Control
locations of a thread Ti are represented by a local variable pci ∈ Vi (program
counter).

A state of a program is a valuation of local and global variables, formally
s : V −→ ⋃

Dv with s(v) ∈ Dv. The set of all states is denoted by S =
∏

Dv.
We moreover assume an initial state s0, i.e. an initial valuation of variables.

Expressions over the variables are defined as usual (e.g. arithmetic expres-
sions). Atoms are comparisons over pairs of expressions and conditions are
boolean combinations of atoms.

Syntactically, a transition t of Ti is enabled by a condition (boolean combina-
tion of atoms) ranging over Vi∪Vg, and it has as effect an action defined as a set
of assignments (of expressions to variables), i.e. values of variables are written.
For both actions and conditions, the variables appearing in the expressions are
read. If t is a transition from the control location loc1 to control location loc2
then the condition of t includes pci = loc1 and the action includes pci := loc2.

For two states s, s′ ∈ S, s
t−→ s′ denotes a state transition enabled at s and

transforming s to s′ when applying the action of t. Let s
t1−→ s1 . . .

tn−→ sn = s′

denote a sequence of transition executions.
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2.1 Adding Time

We introduce real valued variables called clocks which differ from other variables:

– Their values increase synchronously and proportionally with time: if x has
value ρ at time τ then it has value ρ + δ at time τ + δ.

– The only assignments allowed are resets (to zero).
– We only allow comparisons of clocks with integer constants (e.g. x ≤ 3).
– At the initial state s0, all clocks are valued 0.

Now, each transition execution tk has an execution time τk ∈ R+ also called
a timestamp. Then, we denote a timed transition tk executed at time τk as
s

(tk,τk)−−−−→ s′ and timed sequence as s0
(t1,τ1)−−−−→ s1 . . .

(tn,τn)−−−−→ sn = s′.

A timed sequence s0
(t1,τ1)−−−−→ s1 . . .

(tn,τn)−−−−→ sn = s′ satisfies normal time
progress iff for every pair k < l, we have τk ≤ τl.

The reachability problem for timed automata can be understood in this setting
as the existence of a timed sequence with normal time progress leading from s0
to a state s′ satisfying a desired property.

3 Concurrency

In this section, we will review standard notions from classical partial order meth-
ods. Then we will introduce the notion of multisteps, i.e. the execution of sev-
eral transitions in parallel and we will see how to analyse timed systems using
multisteps.

3.1 Independence Relation

A classical definition underlying concurrency analysis is reader-writer depen-
dency as first introduced in [6]: two transitions t1 and t2 are said to be depen-
dent if a variable read in t1 (in the guard or in the action) is written in t2 (or
vice versa), or if the same variable is written by t1 and t2. Otherwise, they are
independent.

A timed sequence s0
(t1,τ1)−−−−→ s1 . . .

(tn,τn)−−−−→ sn = s′ satisfies relaxed time
progress if for every pair k < l with tk, tl dependent, we also have τk ≤ τl.
Note, that normal time progress as defined in the previous section trivially im-
plies relaxed time progress.

We define the Mazurkiewicz equivalence of timed sequences as the least equiv-

alence relation ≡ such that any timed sequence s0 . . . sk−1
(tk,τk)−−−−→ sk

(tk+1,τk+1)−−−−−−−→
sk+1 . . . s′ with tk, tk+1 independent is equivalent to s0 . . . sk−1

(tk+1,τk+1)−−−−−−−→ sk
′

(tk,τk)−−−−→ sk+1 . . . s′ for some state sk
′. In other words, two timed sequences are

equivalent if one can be transformed into the other by a finite number of ex-
changes of adjacent independent transitions together with their execution
times.
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Proposition 1. If a timed sequence satisfies relaxed time progress, then so do
its equivalent sequences. Each timed sequence satisfying relaxed time progress is
equivalent to a timed sequence satisfying normal time progress

Proof. This was originally shown in [12]. Indeed, the order of dependent transi-
tion executions is preserved by exchanges and hence so is relaxed time progress.
For the second part, it is possible to transform a timed sequence with relaxed
time progress by applying a “bubble sort” transformation: suppose that two ad-
jacent transitions are in bad order with respect to their timestamps, then relaxed
time progress implies that they are independent and it is possible to exchange
them. The result follows by applying this reasoning in an induction. �

3.2 Concurrently Enabled Transitions

The notions proposed in the following have first come up in the context of
(untimed) Petri nets under the name step semantics [8], generalized here for our
purposes to timed automata. Let MT = {(t1, τ1), . . . , (tn, τn)} a set of pairwise
independent transitions with timestamps: it is concurrently enabled at global
state s iff each transition is enabled at state s and at time τi. Note, that implicitly
if (t, τa), (t, τb) ∈ MT then τa = τb because a transition is always dependent
with itself. By definition of independence, all possible executions using all these
transitions and beginning at s are equivalent, and lead to the same state s′. Then
we say that they can be executed in parallel and we write s

MT−−→ s′.
A multistep timed sequence is a sequence s0

MT1−−−→ s1 . . .
MTn−−−→ sn = s′. The

interest here of multisteps is immediate: because several transitions are executed
at each multistep, the execution can be shorter (i.e. a lower number of multisteps
may be executed) to reach a certain state than with interleaving semantics.

3.3 Time Progress in Multistep Sequences

A multistep timed sequence s0
MT1−−−→ s1 . . .

MTn−−−→ sn = s′ satisfies relaxed time
progress if for every pair k < l with (t1, τ1) ∈ MTk, (t2, τ2) ∈ MTl, t1, t2 depen-
dent, we also have τ1 ≤ τ2.

Lemma 1. Let s0
MT1−−−→ s1 . . .

MTn−−−→ sn = s′ be a multistep timed sequence

that satisfies relaxed time progress, then there exists a timed sequence s0
(t1,τ1)−−−−→

s1 . . .
(tm,τm)−−−−−→ sm = s′ with m =

∑ |MTi| (the total number of single transition)
that satisfies relaxed time progress.

Proof. We build a timed sequence s
(t1,τ1)−−−−→ . . .

(tm,τm)−−−−−→ sm = s′ by extract-
ing each (ti, τi) from each MTk respecting the order of the MTk (the order of
the (ti, τi) extracted from the same MTk is not important because they are
independent). �

We now introduce alternative representations of time progress of a multistep
timed sequence s0

MT1−−−→ s1 . . .
MTn−−−→ sn = s′:
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t1, τ1

MT1 MT2 MT3

t2, τ2

t5, τ3

t1, τ4

t4, τ5
t2, τ8

t7, τ6

t8, τ7

time

t1, τ1

MT1 MT2 MT3

t2, τ1

t5, τ1

t1, τ2

t4, τ2
t2, τ3

t7, τ3

t8, τ3

time

t1, τ1

MT1 MT2

t2, τ2

t5, τ3

time

t7, τ4
t8, τ5

ζ1 ζ2

Fig. 1. Synchronous, semi synchronous and relaxed time progress in multisteps

– synchronous time progress: for all multisteps MTk and for all pairs of tran-
sitions (t1, τ1), (t2, τ2) ∈ MTk it holds that τ1 = τ2 and for k < l and any
(ta, τa) ∈ Tk, (tb, τb) ∈ MTl it holds that τa ≤ τb, i.e. all transitions in the
same multistep are executed at the same time, and time progresses between
multisteps.

– semi synchronous time progress: for all k < l and any (ta, τa) ∈ MTk,
(tb, τb) ∈ MTl it holds that τa ≤ τb, i.e. all transitions of a later multi-
step are executed at a later time than the transitions of an earlier multistep
(but transitions of a same multistep may be executed at different times).

It is obvious that synchronous time progress implies semi synchronous time
progress which in term implies relaxed time progress.

Theorem 1. Let s, s′ ∈ S, then the following elements can be transformed into
each other:

1) A timed sequence s
(t1,τ1)−−−−→ . . .

(tn,τn)−−−−−→ s′ with normal time progress.

2) A timed sequence s
(t1,τ1)−−−−→ . . .

(tn,τn)−−−−−→ s′ with relaxed time progress.
3) A multistep timed sequence s

MT1−−−→ . . .
MTk−−−→ s′ with synchronous time progress.

4) A multistep timed sequence s
MT1−−−→ . . .

MTl−−−→ s′ with semi synchronous time
progress.

5) A multistep timed sequence s
MT1−−−→ . . .

MTm−−−→ s′ with relaxed time progress.

Proof. • 1 ⇒ 2: by definition
• 2 ⇒ 1: see Proposition 1
• 2 ⇒ 3: we build a multistep timed sequence s

MT1−−−→ . . .
MTn−−−→ sn = s′ where

each MTk is the singleton {(tk, τk)}; it is trivially a multistep timed sequence
with synchronous time progress

• 3 ⇒ 4: by definition
• 4 ⇒ 5: by definition
• 5 ⇒ 2: see Lemma 1 �

4 SAT Reduction

4.1 Context

We have implemented the SAT coding outlined below in the tool POEM (Partial
Order Environment of Marseille).
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Input model
(IF, UppAal, ...) POEM SAT solver

(Picosat, ...)

SAT formula

Solution

Fig. 2. A diagram of POEM with a SAT BACKEND

POEM is a modular model checker written in OCAML. Its main executable
is composed of three parts, a frontend (syntactic analysis), a core with static
analysis and model transformation, and an analysis oriented backend. The fron-
tend part reads the model written in a specification language (currently Uppaal
[2], IF2 [5]) and transforms it into a common format (GDS) on which type
verification, transformations and other aspects of static analysis (notably for
dependency analysis) are applied.

The backends currently use as input the declaration of variables and processes
and a list of transitions much like the one described in Section 2. In particular,
for each transition the sets of written and read variables can be determined
statically (an over approximation) or dynamically (context dependent) where
the latter is close in practice to notions of dynamic dependency relations.

Previously, there was only a state exploration based backend with the un-
derlying algorithms described in [12,14]. In this section, we will describe the
way we coded the SAT backend, which is used to perform a Bounded Model
Checking (BMC): given a multi-threaded program and a reachability property,
we construct a SAT formula Φ that is satisfiable iff a state with the property
can be reached by an execution of the program with up to K multisteps. This
construction involves several aspects described below.

4.2 Coding Variables

Each variable v ∈ V of the input model is transformed into a vector of boolean
variables of size log2 |Dv|. As an example, let’s examine the following declaration
in an IF2 input model:

var x range 0..3;

This command declares a variable x taking its values over the domain [0..3] or
a total of 4 possible values. Then we need a boolean vector of size 2: {x1, x2}.

The program counter pci for each thread Ti is coded as a normal variable, i.e.
as a boolean vector, its length depending on the number of states in the thread.

subsectionCoding expressions
Expressions are coded as digital circuits (like the simple adder below), where

each port is coded as a small set of clauses concerning
input and output variables and the auxiliary cables of the
circuits (that are neither inputs or outputs, 3 for the adder
circuit) are coded using additional boolean variables.

Boolean vectors are manipulated bit-wise, e.g. if x and
y are two variables over the same domain [0..3], then the equality test x = y will
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be coded as z = ((x1 = y1) ∧ (x2 = y2)). Again, the boolean variable z is an
implicit variable added to simplify the formula and to allow subformula sharing
(when the expression x = y appears in some context, it will be replaced by z).

4.3 Coding Time

Clock values increase with time, which is not easy to code in directly. Instead,
we introduce new real valued variables lastx to store the time of the last reset of
clock x, e.g. if we have the following transition s

t,τ−−−→
x:=0

s′, then the action x := 0

will be coded as lastx := τ . A clock comparison in the transition s
t,τ−−−→

x��c
s′

with ��∈ {≤, <, =, >,≥} and c a constant will be coded as τ − lastx �� c.
Hence, it is possible to substitute a clock x by the corresponding variable lastx
with assignments and conditions as above: in this practical coding, variables do
not change between transition occurrences. The variables lastx have the same
expressive power as clocks.

As seen above, real valued variables are used to manipulate time such as lastx
and timestamps τ . However, as analysed in [15,18], it is possible to restrict time
stamps to a bounded interval and fixed point numbers (a certain number of
variables for the bits of the integer part and the bits of the fractional part),
where both the size of the integer part and the precision of the fractional part
depend on the length of the searched sequence (more precicely, the number of
transition executions).

Alternatively, the coding could be applied for an SMT-solver as in [16,1], where
all variables except the timestamps are coded with booleans but the timestamps
are coded as real valued variables.

4.4 Duplication of Variables

Because the formula Φ must represent an execution of depth K, we need to add
a copy of all variables for each step. We denote vi ∈ V i with 1 ≤ i ≤ K the
copy of v ∈ V at step i. Then if K = 5 and v ∈ [0..3], we have to allocate the
following boolean vectors {v1

1 , v
1
2}, {v2

1 , v
2
2}, {v3

1 , v
3
2}, {v4

1 , v
4
2}, {v5

1 , v
5
2}.

The result is that the assignment x := y + 3 at step k will be coded as
xk+1 = yk + 3, i.e. an assignment becomes a relation between the value xk+1 of
x after the current step and the value yk of y before the current step. Note, that
this transition reads y and writes x.

4.5 Transitions and Multisteps

Each execution of transition t in a multistep MTk is coded with one boolean
variable tk indicating if the transition is executed or not.

If the transition sk
t,τ−−−−−−−→

cond,action
sk+1 is executed, then its condition cond is true

at sk (at time τ) and the assignments of the action are performed (where action
is coded as constraints between the variables at sk and at sk+1 as indicated
above. Formally it is coded as

tk+1 → condt(sk, τ) ∧ actiont(sk, sk+1)
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At this point, if sk is determined and the set of executed transitions includes a
transition t that writes v, then actiont(sk, sk+1) also determines the value of v
at sk+1. If however, v is written by no executed transition, then its value must
be maintained. Suppose that the set of transitions that writes v is {ta, tb, tc},
then this requirement is coded by the clause

tk+1
a ∨ tk+1

b ∨ tk+1
c ∨ vk = vk+1

As for dependency, the condition of pairwise independence of transition exe-
cutions in a multistep can be coded by a conjunction of constraints (¬tka ∨ ¬tkb )
for dependent pairs ta, tb.

The combination of the action related clauses, dependency related clauses and
the clauses for the keeping of values ensure the consistency of successor states. In
practice, the constraints concerning writing and reading of variables and those for
dependency are coded together, allowing for a more compact coding with sharing.
Still, the conflict clauses constitute a significant part of the overall formula.

4.6 Coding Time Progress

– Synchronous: all transitions of a multistep MTk are executed at the same
moment τi, i.e. only one timestamp is needed for each step i. We get the
following constraints : ∧

i=1..K−1

τi ≤ τi+1

– Semi synchronous: all transitions of multistep MTk are executed before some
moment ζk (additional variable) and all transitions of multistep MTk+1 are
executed after ζk . Each transition t has its own timestamp τt, resulting to
the following constraints∧

i=1..K−1
t,t′∈trans

(τti ≤ ζi) ∧ (ζi ≤ τt′i+1)

– Relaxed: it is not straight forward to code relaxed time progress since the
condition given in Section 3.3 is not local to two adjacent multi steps. A
trick can be used to make occurrence times of previous multisteps locally
accessible: for transitions that are not executed, the timestamp τk

t has no
meaning. We then use it to represent the last execution time of t before or
including the current multi step. This leads to two cases : if the transition
t, τt is not executed at step i then the value of τt must be maintained at step
i + 1 and if it is executed we add constraints ≤ with timestamps of the last
executions of dependent transitions:∧

k=1..K−1

∧
t∈trans

¬tk → (τk
t = τk−1

t )∧

∧
k=1..K−1

∧
ta∈trans

∧
tb∈trans
taDtb

tka → (τk−1
tb

≤ τk
ta

)

In this formula ta D tb denotes that ta and tb are dependent transitions.
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4.7 The Global Formula

We resume all the steps for the construction of the global formula Φ which states
the existence of a timed multistep sequence:

• Allocate boolean vectors vk
1 , . . . , vk

n for all v ∈ V and for all 1 ≤ k ≤ K
• Initialise Φ with initial assignments (constraints) for each variable v0

• For each step 1 ≤ k ≤ K − 1
• Φ := Φ ∧ transitions coding
• Φ := Φ ∧ dependency coding
• Φ := Φ ∧ value maintaining
• Φ := Φ ∧ time progress coding

• Add to Φ constraints to ensure the desired path property. For reachabil-
ity, this can be achieved by stating that the last state satisfies the desired
property.

5 Integrating State Invariants

The reader familiar with timed automata will have noticed that we have not dealt
with “state invariants” in our reduction. In modelling frameworks like Uppaal, a
state invariant is a condition on clocks that is attached to a state of a thread (a
value of the local program counter in terms of Section 2) and which is intuitively
a “residence permit”: the condition pc3 = loc1 → x < 5 states that the state 1
of thread 3 has to be left by a transition before clock x reaches 5. To avoid this
violation, either a transition of this thread leaving the state could be executed
or a transition of another thread could reset c, thus effectively extending the
residence permit for this state.

More generally, state invariants are of the form pci = lock ⇒ ∧
xj ≤ cj , i.e. a

state value implies a conjunction of upper bounds for clocks. For systems with
just one thread, a state invariant has the same effect as adding the constraints
to each outgoing transition of the state; they add nothing to the expressive-
ness of the formalism. For parallel systems, the invariants also imply additional
constraints for the outgoing transitions (which must therefore be considered to
be reading the corresponding clocks), however, they have a more global effect:
the entire system is forced to execute some transition before the expiring of
the invariants of each thread. This is very useful in modeling the coupling of
subsystems by time, e.g. for modeling timeouts.

It is possible to extend the framework we have developed so far to include
state invariants, but technically, this integration depends on the notion of time
progress and it is quite complex for relaxed timed progress.

Interleaving Semantics and Synchronous Time Progress. Consider a
timed sequence s0

(t1,τ1)−−−−→ s1 . . .
(tn,τn)−−−−→ sn = s′. For standard interleaving se-

mantics, i.e. one transition at a time, the conjunction of all (thread local) state
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invariants at global state si must be satisfied at time τi+1 (the execution time of
the next transition after si). Obviously, since τi+1 ≤ τi+2 the invariant holding
after the execution of the transition also (already) holds at τi+1.

For synchronous time progress, the same coding as for interleaving semantics
is valid! Although we execute several transitions at time τi+1 we do not execute
any transition before that date and hence the state invariant must be satisfied
at τi+1. Since intereavings of timed multisteps with synchronous time progress
do not let time pass between the transitions of a multistep, it is easy to see that
the condition is necessary and sufficient.

Semi Synchronous Time Progress. For semi synchronous time progress,
a similar reasoning as for the synchronous case helps to understand why it is
sufficient to require that for each execution time τk

i+1 of some transition in the
multistep the invariant must be satisfied.

This can be very efficiently coded by requiring the state invariant to hold
at ζi+1, the separating variable introduced in Section 4.7 for coding semi syn-
chronous time progres: if all τk

i+1 satisfy the invariant then so does their maxi-
mum. ζi+1, by the time progress condition situated anywhere between the times-
tamps of MTi+1 and those of MTi+2 can be chosen minimal, i.e. the maximum
timestamp of MTi+1. Requiring ζi+1 to respect the state invariant of si is thus
equivalent to requiring this of every timestamp of MTi+1.

One might argue that this condition, while sufficient, need not be necessary
and that a more relaxed condition, while still sufficient, might allow shorter
timed multi step sequences. However, then a technique as indicated below for
relaxed time progress must be applied. We feel that the technique above is the
natural way of dealing with state invariants in the semi synchronous setting.

Relaxed Time Progress. For relaxed time progress, a technique developed
for handling invariants in the context of state exploration with zones and partial
order semantics [14] can be used. We refer the reader to that paper for technical
details and the somewhat involved development of the correctness proof. But
we can give a hint on the constraints that actually need to be coded for that
approach. One has to distinguish between a local and a global view of invariants:
locally, transitions leaving a state must satisfy the invariant, as discussed at the
beginning of this section. Globally, a transition resetting a clock must satisfy all
variants of the current states of other threads that mention that clock. Finally,
the final state must satisfy the global invariant. These three types of constraints
are not very difficult to code (and are included in our prototype), the condition
for relaxed time progress itself is more complex than this addition.

6 Examples and Experiments

In this section, we present results obtained with a working version of POEM as
used in [14], but with a new SAT backend, implementing all multistep algorithms
and using Picosat [4] as SAT solver.
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The tests were performed on a Mac Pro quad-core 2.66 Ghz, with 16 GB of
memory (but a single core is used only and no more than 1GB is required in
these computations). The time function of the Unix systems was used to get the
timings. By default, they all use seconds except when a ’m’ appears for minutes.
Uppaal [2] times are given for reference.

The numbers for interleaving (only one transition for each step) and multi-
steps columns are in the order: the time for the SAT solver to find a solution,
the number of clauses in the formula and the number of (multi) steps of the
solution, e.g. 2.4/164K/10 indicates a solving time of 2.4s for a formula with
approximatively 164000 clauses and 10 multisteps. The symbol ’−’ is used when
no solution has been found within 20 minutes.

Circuit Analysis

We introduce a simple circuit problem: several NOT gates are connected one to
the other as in figure 3. Each gate has a delay to propagate its input signal to
its output. Initially each value is equal to zero. We want to know if the circuit
can stabilize, i.e. if there exists a time t where input values and output values
are coherent (and thus will no longer change). Of course, the circuit can stabilize
only if there is an even number of gates. It turns out that the desired state is
reachable with one (synchronous) multi step. As can be seen, the more complex
encodings yield no advantage here.

Fig. 3. A circuit with NOT gates

Table 1. Results for the circuit problem

nodes UppAal Interleaving Multistep
synchronous semi synchronous relaxed

4 0 0/12K/2 0/8K/1 0/23K/1 0/53K/1
10 0.1 0.3/48K/5 0/22K/1 0.1/58K/1 0.9/139K/1
16 - 1.7/112K/8 0.5/38K/1 1.6/99K/1 1.2/242K/1
20 - 2.4/164K/10 0.8/48K/1 1.8/123K/1 1.3/301K/1
50 - - 1.2/129K/1 2.3/327K/1 2.8/811K/1

100 - - 3.1/279K/1 3.9/704K/1 5.6/1,7M/1
200 - - 4.3/608K/1 6.1/1.5M/1 11.1/3,8M/1

Timed Network Protocols

We consider the following simplistic broadcast protocol: nodes arranged in a (non
complete) binary tree can only send a signal to their children after receiving
a signal from their parents. When a leaf receives a signal, it sends back an
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acknowledgement. When an interior node receives ac-
knowledgements from its two children, it sends one to its
own parent, and so on. To resume, a signal starts from the
root, is asynchronously propagated to the leaves and back
to the root. A random delay for each transmission between
a parent and its children is added. The model checker is
asked to find a completed broadcast within a tight interval
of time. For this series of examples, the semi synchronous
coding allows significantly shorter multi step runs than the synchronous coding
and sometimes the relaxed coding allows even shorter sequences. It turns out
that shorter here means (much) faster, whereas at the same length, the relaxed
coding comes with an overhead over the semi synchronous coding and is slower.

Table 2. Results for the network protocol problem

nodes UppAal Interleaving Multistep
synchronous semi synchronous relaxed

5 0.0 0/11K/9 0.1/7K/6 0.2/19K/6 0.2/29K/6
10 0.1 2.9/49K/19 0.8/31K/12 0.3/59K/8 0.8/95K/8
15 20.0 19.0/110K/29 0.5/40K/10 0.5/90K/10 1.1/144K/8
20 - 4m46/196K/39 3.5/93K/18 3.5/175K/12 2.3/240K/10
50 - - 18.2/292K/20 5.6/508K/12 8.2/846K/12

100 - - 11m06/812K/28 19.2/1.2M/14 34.1/2M/14
200 - - - 3m09/2.7M/18 2m15/4.6M/16

7 Conclusions and Future Work

We have studied the problem of enhancing the SAT reductions of bounded model
checking of timed automata with the help of multisteps. We have identified three
different alternative semantics for coding and have given a few experiments to
compare them.

Related work. While we are not aware of any work trying the combination we
have considered here (SAT, partial order, timed automata), many aspects of this
work find their origin in other works: The basic coding principles, including the
variable transformation (using timestamps rather than clock values) are already
present in previous works on BMC for timed automata, whether oriented to-
wards pure boolean SAT or SMT (SAT modulo theories) [13,1,15,18]. “Relaxed
semantics” with respect to time has been widely discussed in the context of sym-
bolic state exploration of timed automata, e.g. in [3] whereas the idea of allowing
timestamps to be commuted was first presented in [12]. When abstracting from
time, the key idea of using step semantics in bounded model checking was stated
in [9]. Beyond the context of bounded model checking, one work considers exe-
cuting several transitions of timed automata in parallel in order to avoid zone
splitting [19], but no indication towards SAT applications is found in that work.



418 J. Malinowski and P. Niebert

Interpretation of experimental evidence. We have given two series of experi-
ments that illustrate how the alternative semantics can dramatically improve
the performance of the SAT approach to timed automata reachability. From
these and non-documented experiments, our personal assessment is that “syn-
chronous time progress” is always a good idea to start with (the smallest set
of clauses at the same path length), and if it runs out of time with increasing
path length to switch to semi synchronous time progress. We have not yet found
examples where relaxed time progress yields an advantage in execution time (al-
though sometimes shorter paths were found). Obviously, case studies on realistic
examples are necessary for further evaluation.

Perspectives. We have not implemented a reduction to SMT, but, as outlined
in Section 4, the coding would be the same except for the representation of
time stamps by real valued variables and corresponding constraints. We believe
that the improvement achieved for the current boolean only approach carry
over seamlessly to the SMT case. We might explore an SMT variant of our
implementation in the future.
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Abstract. The choice of where a thread scheduling algorithm preempts
one thread in order to execute another is essential to reveal concurrency
errors such as atomicity violations, livelocks, and deadlocks. We present
a scheduling strategy called preemption sealing that controls where and
when a scheduler is disabled from preempting threads during program
execution. We demonstrate that this strategy is effective in addressing
two key problems in testing industrial-scale concurrent programs: (1)
tolerating existing errors in order to find more errors, and (2) composi-
tional testing of layered, concurrent systems. We evaluate the effective-
ness of preemption sealing, implemented in the Chess tool, for these two
scenarios on newly released concurrency libraries for Microsoft’s .NET
framework.

1 Introduction

Concurrent programs are difficult to design, implement, test, and debug. Fur-
thermore, analysis and testing tools for concurrent programs lag behind similar
tools for sequential programs. As a result, many concurrency bugs remain hidden
in programs until the software ships and runs in environments that differ from
the test environment.

Systematic concurrency testing offers a promising solution to the problem of
identifying and resolving concurrency bugs. We focus on systematic concurrency
testing as implemented in Chess [16], a tool being used to test concurrent pro-
grams at Microsoft. A Chess user provides a collection of tests, each exploring
a different concurrency scenario for a program. A concurrency scenario might
range from a simple harness that calls into a concurrent data structure, to a web
browser starting up and rendering a web page. Given such a scenario, Chess

repeatedly executes the program so that each run of the program explores a
different thread schedule, using novel stateless exploration algorithms [14,15].

Of course, selecting which thread schedules are most useful among the expo-
nentially many possible schedules is a central problem for the effectiveness of a
tool like Chess. We faced the following two related problems when deploying
Chess at Microsoft, which helped motivate this work:

1. Users want the ability to find multiple distinct bugs so they can pipeline the
testing process and not be blocked waiting for bug fixes.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 420–434, 2010.
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Fig. 1. Dependencies among .NET 4.0 concurrency classes. SemaphoreSlim, Barrier,
and ManualResetEventSlim are synchronization primitives (SYN, purple). Blocking
Collection, ConcurrentDictionary, and ConcurrentBag are concurrent data struc-
tures (CDS, orange). Task and TaskScheduler are part of a task parallel library (TPL,
green). PLINQ and Parallel.For are parallel versions of LINQ and for-loops (blue).

2. Users want to perform compositional testing so they can focus the test on
the components they are responsible for.

The first problem arises because many different thread schedules may manifest
the same bug. Thus, even if the systematic search continues after finding a
bug, that same bug may cause the system to crash repeatedly. This problem is
important because large software systems often have a large number of bugs,
some known and many unknown. Known bugs can be in various life stages: the
tester/developer might be debugging, finding the root cause, designing a fix, or
testing the fix. Depending on its severity, a bug may be fixed immediately or
the fix may be deferred to a future release. As a result, it may be several weeks
or even months before a bug is fixed. Thus, a tool such as Chess will be most
useful if it finds new bugs while avoiding schedules that trigger known bugs.

The second problem arises because a systematic search tests all possible sched-
ules, even those that are irrelevant to the part of the system being tested. Well-
engineered software consists of layered modules where upper layers depend on
the services of lower layers, but not vice versa. Figure 1 shows an example of
such a layered system from the .NET 4.0 libraries, which we will return to later
in the paper. Usually, different teams are responsible for developing and testing
different layers. A testing tool should allow users to “focus” the exploration on
specific layers. If a particular layer, such as a low-level concurrency library, has
been extensively tested or verified, then repeatedly testing its functionality when
called from higher layers is a waste of valuable testing resources.
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Preemption sealing is a simple but effective strategy to address these problems.
A preemption is an unexpected interruption of a thread’s execution caused, for
example, by the thread’s time slice expiring or a hardware interrupt occurring.
A preemption-sealing scheduler disables preemptions in a particular scope of
program execution, resorting to non-preemptive scheduling within that scope.

By resorting to non-preemptive scheduling, a preemption-sealing scheduler
avoids exposing concurrency bugs that require at least one preemption within a
given scope. To identify multiple errors, we seal preemptions in a scope related
to the root cause of a bug. For example, if an error-inducing schedule contains
a preemption in method m, we can instruct the scheduler to seal preemptions
whenever control is within the scope of m in subsequent runs. To enable com-
positional testing, the user provides a set of methods or types that already have
undergone thorough testing. By sealing preemptions in these scopes, the sched-
uler conserves valuable testing time.

Preemption sealing builds upon prior work on preemption bounding [14], a
technique that first explores executions containing fewer preemptions. The hy-
pothesis of preemption bounding is that most concurrency errors surface in exe-
cutions that contain few preemptions. This hypothesis has been validated by var-
ious researchers [2,14,12]. Accordingly, a preemption-bounded scheduler explores
executions with fewer preemptions first. Preemption bounding and preemption
sealing are orthogonal scheduling strategies that combine naturally.

We implement preemption sealing in the Chess concurrency testing tool and
evaluate its effectiveness on a set of platform libraries for .NET that provide
essential concurrency constructs to programmers. Testers for these libraries have
been using Chess over the past year to more thoroughly test these critical
platform layers. We leverage 74 of their concurrency unit tests and use them
to demonstrate preemption sealing’s effectiveness in finding multiple errors and
enabling compositional testing. Our experiments show that Chess successfully
finds multiple errors by sealing methods containing bug-inducing preemptions.
Also, on average, compositional testing with preemption sealing cuts the number
of executions explored during testing by more than half.

In the remainder of the paper, we formalize preemption-bounded scheduling
(Section 2), define preemption sealing (Section 3), justify its use for finding
multiple errors (Section 3.1) and compositional testing (Section 3.2), describe
our implementation of preemption sealing and evaluate it on a set of .NET
concurrency platform libraries (Section 4), discuss related work (Section 5), and
conclude (Section 6).

2 Preemption-Bounded Scheduling

We model the execution of a concurrent program as a sequence of events, each
corresponding to an operation performed by a thread. We represent an event with
a five-tuple (tid, ctx, op, loc, blk), where tid is the thread id, ctx is the context of
the thread including its program counter (ctx.pc) and its call stack (ctx.stack),
op is the operation performed, loc is the (shared) memory location or object
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on which the operation is performed, and blk is a boolean flag that indicates
whether the thread is blocked while performing the operation or not. We use |E|
to denote the length of execution E and E[i] to denote the event at position i in
execution E. We access the components of an event e with ’.’ notation:

(e.tid, e.ctx, e.op, e.loc, e.blk)

An event e is blocking if e.blk is true. A completing event for a blocking event e
is the event (e.tid, e.ctx, e.op, e.loc, false). A sequence is well-formed if for every
blocking event e in an execution E, the next event performed by thread e.tid
in E, if any, is the completing event for e. We only consider executions that are
well-formed. Also, we use to denote the op and loc components of events that
do not access shared state.

A context switch in an execution E is identified by an index c such that
0 ≤ c < |E|− 1 and E[c].tid �= E[c+1].tid. A context switch c is said to be non-
preemptive if E[c].blk is true or E[c].op is the thread “exit” operation, signaling
the end of the execution of thread E[c].tid. Otherwise the context switch is said
to be preemptive. We call a preemptive context switch a preemption, for short.

The preemption bound of an execution E is the number of preemptions in E.
Preemption-bounded scheduling ensures that each execution contains at most
P preemptions, where P is a number chosen by the tester. Note that a pre-
emption bound of zero simply means that the scheduler runs non-preemptively,
executing the current thread until it blocks and then switching to a different (en-
abled) thread. If non-preemptive scheduling is unable make progress (because
all threads are blocked), then the program contains a deadlock. Thus, when a
preemption-bounded scheduler runs out of preemptions, it simply resorts to non-
preemptive scheduling until the end of execution or a deadlock is encountered.

In addition to the choice of where to place preemptive context switches, the
scheduler also has the choice of which enabled thread to execute after a context
switch. This latter choice is typically constrained by a desire for fair scheduling,
but fairness is beyond the scope of this paper (for more details about fair stateless
model checking, see [15]). In this paper, we assume the scheduler is free to
schedule any enabled thread after a context switch.

Figure 2(a) shows a buggy “bank account” class Acct and a test method
TestAcct containing a test scenario. The test scenario creates three threads
that test the class Acct. Thread t1 withdraws from the bank account, thread
t2 reads the account balance, and thread t3 deposits to the account.

Figure 2(b) shows an execution of this program that exposes an assertion
failure. For brevity, we represent the context by the program label and use the
string “acc” to refer to the single instance of the Acct class. For example, the
operation at label L2 is a lock operation on the object acc, while the operation at
label L4 is a read operation on the field acc.bal. In this execution, the transition
from (t1,L5, , ,F) to (t3,L6,lock,acc,F) represents a preemption. Thread
t1 is preempted at label L5 of the Read method after reading the account balance,
but before acquiring the lock on acc at label L2 of the Withdraw method. Next,
thread t3 executes the entire Deposit method. Then, because thread t3 has
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(a) public class Acct {

volatile int bal;

public Acct(int n) {

bal = n;

}

public void Withdraw(int n) {

L1: int tmp = Read();

L2: lock (this) {

bal = tmp - n;

L3: }

}

public int Read() {

L4: return bal;

L5: }

public void Deposit(int n) {

L6: lock (this) {

var tmp = bal;

bal = 0;

L7: bal = tmp + n;

LU: }

L8: }

}

void TestAcct() {

var acc = new Acct(10);

var t1 = new Thread(o =>

{ (o as Acct).Withdraw(2);

L9: });

var t2 = new Thread(o =>

{ var b = (o as Acct).Read();

LA: assert(b>=8);

LB: });

var t3 = new Thread(o =>

{ (o as Acct).Deposit(1);

LC: });

t1.Start(acc); t2.Start(acc);

t3.Start(acc);

t1.Join(); t2.Join(); t3.Join();

LD: assert(account.Read() == 9);

LE:

}

(b)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F) (t2,LB, , ,F)

(t1,L1, , ,F) (t1,L4,read,acc.bal,F) (t1,L5, , ,F) (t3,L6,lock,acc,F)

(t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F) (t3,L8, , ,F) (t3,LC, , ,F)

(t1,L2,lock,acc,F) (t1,L3,unlock,acc,F) (t1,LA, , ,F) (t0,LD, , ,F)

(c)
(t3,L6,lock,acc,F) (t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F)

Fig. 2. (a) Simple bank account example with two bugs and (b)-(c) two executions
demonstrating the two bugs.

completed, a non-preemptive context switch returns control to thread t1, which
acquires the lock at label L2 and executes to completion. This execution violates
the assertion at label LD because thread t3’s deposit is lost.

3 Preemption Sealing

Preemption sealing uses information associated with events to determine whether
an event meets certain criteria, which we call a “scope”. If an event is within
scope, preemption sealing prevents the scheduler from performing a preemption
prior to that event.

A scope is a function F that takes an event as input and returns true if that
event is “in scope” and false otherwise. The function F may examine any data
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associated with an event e, such as its thread id, e.tid, its operation, e.op, etc.
In this paper, we assume a finite set of scopes, given by a finite set of functions.
Thus, a scope F identifies a subsequence of an execution E containing those
events E[i] such that F (E[i]) is true. Operationally, for each event executed,
we can apply the function F to determine if it is in the scope of F or outside
it, though we use more efficient means in practice. Preemptions are disabled at
events that are “in scope” and are enabled at events that are not in any scope.

By disabling preemptions in certain scopes, the scheduler effectively focuses
its search on other parts of the search space. Disabling preemptions does not
introduce new deadlocks. As noted in the previous section, when a scheduler has
no preemptions to use, it simply resorts to non-preemptive scheduling. Thus,
the only way the scheduler cannot make progress in the presence of preemption
sealing is if the program deadlocks. Also, it is straightforward to see that dis-
abling preemptions does not introduce additional behaviors in the program and
thus does not introduce safety violations.

Preemption sealing can be seen as an extension of previous work that addresses
the relationship between data races and the placement of preemptions [14]. In
that work, Musuvathi and Qadeer partition the world of all objects into synchro-
nization objects and data objects, as is typical when defining data races. They
show that if a program is data-race free then it is possible to disable preemptions
at operations on data objects without missing errors in the program.

Preemption sealing builds upon this work by disabling preemptions at opera-
tions on synchronization objects when those operations occur within a particular
scope. We discuss circumstances under which preemption sealing can be done
safely without missing errors. In the two scenarios we consider, finding multiple
errors and compositional testing, we find that preemption sealing improves the
efficiency and efficacy of systematic search by eliminating thread interleavings
that fall within a well-defined scope.

3.1 Detecting Multiple Errors

Detecting multiple errors is a difficult problem because many different thread
interleavings may expose the same bug. To alleviate this problem, preemption
sealing capitalizes on the observation that during a preemption-bounded search,
the preemptions involved in a failure-inducing schedule are good indicators of
the root cause of the failure. This observation is a consequence of the following
two reasons: (1) the scheduler always has a choice regarding whether or not to
introduce a preemption prior to a given event and (2) the scheduler carefully
exercises this choice to explore executions with fewer preemptions first. Thus,
the preemptions in a failure-inducing schedule are crucial to expose the bug.
Otherwise, the scheduler would have found the same bug with fewer preemptions.

We return to the bank account example in Figure 2(a) to illustrate the prob-
lem of finding multiple errors. Figure 2(b) shows an execution that ends in an
assertion failure at label LD because the bank account balance is incorrect. This
failure occurs because the Withdraw method does not contain proper synchro-
nization, which makes its effect appear non-atomic. A preemption at label L2 in
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the Withdraw method, followed by complete execution of the Deposit method,
will cause the assertion failure.

Figure 2(c) shows an execution that fails due to another defect in the class
Acct. Because the Read method does not use synchronization, it may observe an
intermediate value of the account balance (after it has been set to zero by the
Deposit method). This execution leads to an assertion failure at label LA.

We wish to find both errors rather than first finding one, asking the program-
mer to fix it, waiting for the fix, and then running again to find the second error.
We would like the search to avoid known errors once they have been identified
by “tolerating” the error in a temporary way.

Our idea is inspired by the observation that programmers intend many, if not
most, methods to appear atomic in their effect when executed concurrently [6].
Thus, once we find an error that requires a preemption in method m to surface,
we wish to seal method m from being preempted in the rest of the search.
Effectively, this means that once the scheduler starts executing method m, it
executes it to completion (modulo the case where m blocks). Note that we could
seal just at the specific program counter where the preemption took place, but
there are likely many other preemption points in the same method that will
expose the same error. The above observation implies that methods are a natural
scope in which to seal preemptions.

We generalize this idea to multiple preemptions. Assume a preemption bounded
search that explores all executions with P preemptions before exploring any ex-
ecutions with P + 1 preemptions. Thus, if no errors were found with P preemp-
tions, then an error found with P +1 preemptions could not be found with P or
fewer preemptions. If an error surfaces in execution E with preemption set S of
size |S|, then at most |S| methods must be sealed. The preemption methods are
the active methods (methods on top of the call stack) in which the preemptions
occur: {m | s ∈ S, E[s].ctx.stack.top = m}. If two different tests fail with the
same set of preemption methods, the failures are likely due to the same error.

Note that preemption sealing at the method level may not eliminate the fail-
ure. For example, suppose method m calls method n and a preemption in either
method leads to the same failure. If the preemption in method n occurs first, then
sealing only method n will not prevent the failure. If the preemption in method
m occurs first, however, and we use dynamic scope when sealing the preemption
in method m, then we will ensure that method n will not be preempted when
called from m. Thus, we use dynamic scoping when sealing preemption methods.

3.2 Compositional Testing

Strict layering of software systems is a basic software engineering practice. Upper
layers depend on the services of lower layers, but not vice versa. Different teams
may develop and test the different layers. The efficiency of testing the entire
system depends greatly on eliminating redundant tests. This observation implies
that in a layered system, tests for the upper layers need not (indeed, should not)
perform redundant tests on the functionality of the lower layers.
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Complicating matters, each layer of a system may be “thread-aware”, protect-
ing its data from concurrent accesses by an upper layer’s threads, while explicitly
creating threads itself to perform its tasks more efficiently.

However, although one may imagine and craft arbitrarily complicated interac-
tions between layers, in practice, function calls into lower layers are often meant
to appear atomic to the upper layers. In fact, several dynamic analysis tools
(such as SideTrack [18], Atomizer [6], and Velodrome [8]) rely on this program-
ming practice, as they are designed to check the atomicity of such function calls.
What this means for preemption sealing is that

if we can establish or trust the lower-level functions to be atomic, it is
safe to disable preemptions in the lower layer while testing the upper
layer.

Although this claim may be simple to understand intuitively, it should be un-
derstood in the context of prior work on atomicity [6]. This work derives the
definition of atomicity from the classic definition of conflict-serializability and
treats all function calls into the lower layer as transactions.

The concept of layering means that we partition the code into an upper layer
A and a lower layer B such that A calls into B, B never calls into A, and
execution starts and ends in A. For an execution E, defined earlier as a sequence
of events, we label all events as A-events or B-events. For simplicity, we assume
that each thread executes at least one A-event or B-event in between any pair
of calls/returns that transition between layers.

For a fixed execution E we define transactions as follows. Let Et be the se-
quence of events by thread t. More formally, Et is the maximal subsequence of
E consisting of events by only t. We then define a transaction of thread t to be
a maximal contiguous subsequence of Et consisting of only B-events. Atomicity
is now characterized as follows, in reverse order of logical dependency:

– The layer B is atomic if all executions E are serializable.
– An execution E is serializable if it is equivalent to a serial execution.
– Two executions are equivalent if one can be obtained from the other by

repeatedly swapping adjacent independent events.
– Two events are dependent if either (1) they are executed by the same thread,

(2) they are memory accesses that target the same location and at least one
writes to the location, (3) they are operations on the same synchronization
object, and are not both side-effect-free.1

– An execution E is called serial if there are no context switches within trans-
actions. For any context switch at position c, the event E[c] is either not
part of any transaction, or is the last event of a transaction.

Thus, if B is atomic, then for any execution that reveals a bug, there exists an
equivalent serial execution that also reveals the bug. Such a serial execution does
not contain any preemptions inside B, so the search will still cover this serial
execution even when sealing preemptions in B.
1 An example of a side-effect-free operation is a failed (blocking) lock acquire

operation.
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4 Implementation and Evaluation

We implemented preemption sealing in Chess, a tool for concurrency test-
ing [14]. Chess repeatedly executes a concurrency unit test and guarantees
that each execution takes a different thread schedule. Chess records the current
thread schedule so that when it finds an error, it can reproduce the schedule
that led to the error. Chess detects errors such as assertion failures, deadlocks,
and livelocks, as well as data races, which are often the cause of other failures.
Chess contains various search strategies, one of which is preemption bounding.

After finding an error, Chess runs in “repro” mode to reproduce the error
by replaying the last stored schedule. During this repro execution Chess col-
lects extensive context information, such as the current call stack, to produce
an attributed execution trace for source-level browsing. During this execution,
Chess also outputs preemption methods from the stored schedule. The preemp-
tion methods consist of methods in which Chess placed a preemption.

To implement preemption sealing, we extended Chess’s API with methods to
enable and disable preemptions. We implemented a preemption sealing strategy
via a Chess monitor that tracks context information, such as which method is
currently on the top of the call stack, and makes calls to the new API to en-
able/disable preemptions. Command-line parameters to Chess enable preemp-
tion sealing based on assembly name, namespace, class name, or method name.
For the purposes of this paper, we use two options: /dpm:M for “disable/seal pre-
emptions in method M”; /dpt:T for “disable/seal preemptions in all methods
in type T”2. As currently implemented, we disable preemptions in the dynamic
scope of a method, which suits our two applications (as discussed previously).
Other scoping strategies are possible within the framework we implemented.

We evaluated preemption sealing’s ability to find multiple errors and enable
compositional testing on new parallel framework libraries available for .NET.
These libraries include:

– Concurrency and Coordination Runtime (CCR) provides a highly concurrent
programming model based on message-passing with powerful orchestration
primitives enabling coordination of data and work without the use of manual
threading, locks, semaphores, etc. (http://www.microsoft.com/ccrdss/)

– New synchronization primitives (SYN), such as Barrier, CountdownEvent,
ManuelResetEventSlim, SemaphoreSlim, SpinLock, and SpinWait;

– Concurrent data structures (CDS), such as BlockingCollection,
ConcurrentBag, ConcurrentDictionary, etc.

– Task Parallel Library (TPL) supports imperative task parallelism.
– Parallel LINQ (PLINQ) supports declarative data parallelism.

In all of the experimental results below, we ran Chess with its default set-
tings: preemptions are possible at all synchronization operations, interlocked
operations, and volatile memory accesses; the scheduler can use at most two
preemptions per test execution.
2 The sense for these switches could trivially be switched so that the user could disable

preemptions everywhere except the specified scope.
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Table 1. Evaluation of preemption sealing for detecting multiple errors (Rows 1-4),
and for compositional testing (Row 5)

Sealed methods/types Asserts Timeouts Livelocks Deadlocks Leaks OK

∅ 5 3 40 0 0 5
+ DQueue.TryDequeue 6 5 0 1 1 40
+ TEW.WaitForTask 5 5 0 2 1 40
+ Port.RegisterReceiver

+ Port.PostInternal
5 5 0 0 0 43

DQueue 5 5 0 2 0 41

4.1 Discovering Multiple Unique Errors

We first evaluate preemption sealing’s ability to discover multiple unique errors
on the CCR code base, which has an accompanying set of concurrency unit tests.
Most of these tests ran without modification under Chess. The only modifica-
tion we made was to decrease the iteration count for certain loops. Some tests
contained high-iteration count loops to increase the likelihood of new thread in-
terleavings. Because Chess systematically searches the space of possible thread
interleavings, this repetition is unnecessary within a single test. We took all of
the CCR unit tests from its CoreSuite, CausalitySuite, SimpleExamples, and
TaskTest suites, which resulted in 53 independent concurrency unit tests.

Table 1 shows the results of running Chess on each of the 53 tests. The first
column shows the set of preemption-sealed methods/types (initially empty). The
next five columns show the number of tests that failed: Asserts occur when a
test assertion fails; Timeouts occur when a test execution takes longer than ten
seconds (Chess default); Livelocks occur when a test executes over 20,000 syn-
chronization operations (Chess default, most concurrency unit tests, including
those in CCR, execute hundreds of synchronization operations); Deadlocks are
self explanatory; Leaks means that the test terminates with child threads alive
- Chess requires that all child threads complete before the test terminates. The
final column (OK) contains the number of tests for which Chess successfully
explored all schedules within the default preemption bound (of two) without
finding an error.

During the first Chess run (Row 1) we see five assertion failures. All of these
failures occurred on the first test execution, which never contains a preemption.
These five failures represent errors in the test harness code. The three timeouts
also occur on the first execution. These timeouts have a single root cause, which
is a loop in the CCR scheduler that contains no synchronization operations,
and that does not yield the processor (a violation of the “Good Samaritan”
principle [15]). Because these assertion failures and timeouts occurred on the
initial execution, which contains no preemptions, they were not candidates for
preemption sealing.

The 40 tests that failed with a livelock all failed well into Chess testing. Each
failure was found in a schedule containing a single preemption in the method
DQueue.TryDequeue, as output by Chess during the repro phase. To evaluate
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preemption sealing, we ran Chess on the 53 tests again, sealing only the method
DQueue.TryDequeue (Row 2). The effect of sealing is stark: all 40 of the tests
that previously livelocked were able to avoid the livelock.3 While sealing only
one method, Chess was able to avoid a livelock in 40 tests, verify 35 of those
tests correct within the default preemption bound, and detect five new failures:
one assertion failure, one deadlock, one thread leak, and two timeouts. The five
new failures all have associated preemption methods, output by Chess (TEW =
TaskExecutionWorker):

– Assertion failure: TEW.WaitForTask, TEW.Signal;
– Timeouts: TEW.WaitForTask;
– Deadlock: Port.RegisterReceiver, Port.PostInternal;
– Thread Leak: TEW.WaitForTask, Port.PostInternal;

Based on these results, we performed two more runs of Chess (Rows 3 and 4 of
Table 1). In the third run, we sealed the additional method TEW.WaitForTask.
This converted one test from an assertion failure into a deadlock. In the fourth
run, we additionally sealed the methods that contained preemptions leading to
the first deadlock: Port.RegisterReceiver and Port.PostInternal. As seen
in Row 4, sealing these methods eliminated both deadlocks and the thread leak,
converting both into passing tests.

The results of this experiment show the efficacy of preemption sealing at the
method level for the CCR code base. Without any code modification, sealing the
method that led to 40 livelocking tests resulted in five new bugs and 35 passing
tests. Further sealing exposed an additional deadlock, and enabled more tests to
run to completion.

4.2 Compositional Testing

When evaluating preemption sealing for compositional testing, we consider two
metrics: (1) what is the bug yield relative to testing without preemption sealing?;
(2) for tests that produce the same results with and without sealing, what is the
run-time benefit of preemption sealing?

We take another look at CCR before moving to the other .NET libraries. CCR
uses a queue (implemented by DQueue) containing tasks for the CCR scheduler
to run. The scheduler removes tasks from this queue, while other CCR primitives
create new tasks that are placed in the queue. Using the terminology from Sec-
tion 3.2, the class DQueue is layer B, and the other components (the scheduler
and the CCR primitives) are layer A, which make use of the services of B.

The last row in Table 1 shows the results of running Chess with preemption
sealing on all methods in the class DQueue. As expected, preemption sealing at
this level will not find the livelock because the method DQueue.TryDequeue is
sealed. However, Chess discovers both deadlocks, which indicates that these
3 An interesting twist to the livelock bug is that while the developer agreed that there

was a potential performance problem, he thought it would not occur very often and
decided not to address the issue. In this case, the ability to avoid the livelock without
requiring a change to the code was crucial to make progress finding more bugs.
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Table 2. Evaluation of preemption sealing for compositional testing. Columns la-
beled ’S’ use preemption sealing and columns labeled ’N’ do not. Abbreviations: Blk-
Col (BlockingCollection), CBag (ConcurrentBag), SemSlim (SemaphoreSlim), MRES
(ManualResetEventSlim), CDict (ConcurrentDictionary), TSchd (TaskScheduler), P
(Pass), D (Deadlock), A (Assert), L (Livelock), T (Thread leak).

Test
Sealed Result Executions Seconds Execs/sec Speed-
scope N S N S N S N S up

BlkCol1 SemSlim D D 59167 18733 527.0 206.0 112.3 91.0 2.6
BlkCol2 ” P P 258447 106608 2128.0 1181.0 121.4 90.3 1.8
BlkCol3 ” D D 265 265 1.8 2.2 147.2 120.5 0.8
BlkColRC1 ” P P 1114 364 8.8 4.5 126.6 80.8 2.0
BlkColRC2 ” P P 2406 510 22.8 7.2 105.5 70.8 3.2
BlkColRC3 ” P P 6084 2391 49.0 33.9 124.1 70.5 1.4
BlkColRC4 ” P P 5003 1012 36.9 13.7 135.6 73.9 2.7
BlkColRC5 ” D D 1 1 0.2 0.3 5.0 3.3 0.7
BarrierRC1 MRES P P 776 109 5.5 1.5 141.1 72.7 3.7
BarrierRC2 ” P P 166 92 1.7 1.0 97.6 92.0 1.7
BarrierRaw ” A A 96 33 0.7 0.7 137.1 47.1 1.0
CBagRC1 CDict P P 559 375 3.7 3.7 151.1 101.4 1.0
CBagRC2 ” P P 559 375 3.8 3.9 147.1 96.2 1.0
CBagAPC ” P P 6639 4168 46.0 39.0 144.3 106.9 1.2
CBagACTA ” P P 8230 5727 58.0 57.0 142.9 100.5 1.0
CBagTTE ” P P 1212 793 7.6 7.5 159.5 105.7 1.0
CBagTTP ” P P 1529 775 12.9 5.6 118.5 138.4 2.3
NQueens1 TSchd L L 1145 1318 19.4 61.8 59.0 21.3 0.3
NQueens2 ” T T 10146 1027 182.1 55.8 55.7 18.4 3.2
NQueens3 ” T T 9887 1027 181.8 56.4 54.4 18.2 3.2
PLINQ ” P P 3668 1031 33.1 12.9 110.8 79.9 2.6

deadlocks are due to defects in layer A. The analysis in the previous section
confirms this result. For the two deadlocks, Chess with the DQueue class sealed
found them in 4,662 schedules (59 seconds) and 142 scheules (2 seconds), re-
spectively. The runs that found the deadlocks without sealing DQueue took 9,774
schedules (126 seconds) and 10,525 schedules (330 seconds), respectively.

The other concurrency libraries that we consider include the layers illustrated
in Figure 1. This figure shows dependencies among a subset of the classes in
these libraries. At the lowest level are the new synchronization primitives (SYN)
and the concurrent data structures (CDS, mostly lock-free). On top of these two
libraries sits a new task scheduler (TPL), with a set of primitives for task paral-
lelism. Finally, on top of TPL sits the implementation of parallel LINQ (PLINQ)
for querying LINQ data providers, and parallel for loops for data parallelism.
The test team for these libraries explicitly developed Chess tests for most of
these classes. We used their tests, unmodified, for our experiments.

Table 2 shows the results of these experiments. The first column is the test
name, which indicates the class being tested. Sealed scope lists the class that
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we told Chess to seal based on the dependencies shown in Figure 1 (see caption
for abbreviations). The next three columns, Result, Executions, and Seconds,
present results for two Chess runs, one without sealing (columns labeled ’N’)
and one with sealing (columns labeled ’S’). The column Execs/sec shows the
executions per second for both runs. Finally, the last column is the speedup in
total execution time attained via preemption sealing.

For example, the first row shows that Chess found a deadlock in the test
BlockCol1 both with and without preemption sealing. With class SemaphoreSlim
sealed, however, Chess found the deadlock after exploring one-third as many
test executions, and 2.6 times faster.

The Result columns validate that preemption sealing at lower layers did not
mask errors in higher layers. Chess reported the same result for all tests both
with and without preemption sealing. On average, preemption sealing reduced
the number of executions explored by more than half. In all but three tests,
preemption sealing reduced the time taken for Chess to finish or left it the same,
resulting in an average speedup of 1.83. We expect these numbers to improve
if we optimize the instrumentation required to implement preemption sealing.
In particular, our instrumentation results in a prohibitive overhead in the TPL
tests, probably due to frequent calls to small methods.

5 Related Work

The main contribution of this paper is the concept of preemption sealing as
a solution to two important problems in concurrency testing—finding multiple
distinct bugs in a single test run, and compositional testing.

The idea of using preemption sealing to discover multiple distinct errors in
concurrent programs can be viewed as a root cause analysis for concurrency
errors. For sequential programs, using executions that pass to help localize the
cause of failures has been popular [1,9]. For example, the SLAM software model
checker [1] determines which parts of an error trace are unique from passing
traces and places halt statements at these locations to guide the model checker
away from the error trace and towards other errors. This idea is analagous to
preemption sealing, but for the sequential rather than the concurrent case.

The idea of using preemption sealing for compositional testing is most closely
related to the use of atomicity for simplifying correctness proofs of multithreaded
programs (e.g., [7,4]). However, that work used atomicity only for the purpose
of static verification; to the best of our knowledge, ours is the first effort to use
this idea in the context of runtime verification. Our use of atomicity for compo-
sitional testing is orthogonal to the large body of work on runtime verification
techniques for detecting atomicity violations (e.g., [13,8,5]). It is also worth
noting that while most work on static compositional verification of concurrent
programs requires manual specifications, our approach is fully automatic; we use
the preemption-sealed version of a component as its specification.

Delta-debugging can be used to identify, from a failing execution, the context
switch points that cause a multithreaded program to fail [3]. Our work exploits
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preemption bounding to make this problem simpler. Since preemptions are the
likely causes of bugs and the erroneous execution discovered by Chess has few
preemptions, the problem of discovering the root cause is greatly simplified.
Finally, our goal goes beyond root-cause analysis to find multiple qualitatively
different bugs.

Apart from improving concurrency testing, preemption sealing can be used to
make programs more resilient to concurrency errors in a spirit similar to recent
work on tolerating locking-discipline violations [17] and deadlocks [20,11].

Recent work has investigated techniques for creating real data-races [19] and
deadlocks [10] by using feedback from other conservative static or runtime anal-
ysis techniques. Our work is orthogonal and complementary to this work; while
they focus on where to place preemptions we focus on where not to place pre-
emptions, via preemption sealing.

6 Conclusions

Preemption sealing is a scheduling strategy that increases the efficiency and
efficacy of run-time tools for detecting concurrency errors. Preemption sealing
has many potential applications and we considered two of them in depth here:
tolerating existing errors in order to find more errors; and compositional testing
of layered systems. The power of preemption sealing is that it does not require
code modifications to the program under test and can be easily implemented in
existing schedulers, whether part of model checking, testing, or verification tools.
Our evaluation shows that preemption sealing is effective at finding multiple bugs
and testing layered concurrent systems more efficiently.
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Abstract. Model checking can be applied to finite state systems in
order to find counterexamples showing that they do not satisfy their
specification. This was generalized to handle parametric systems under
some given constraints, usually using some inductive argument. How-
ever, even in the restricted cases where these parametric methods apply,
the assumption is usually of a simple fixed architecture, e.g., a ring. We
consider the case of nontrivial architectures for communication proto-
cols, for example, achieving a multiparty interaction between arbitrary
subsets of processes. In this case, an error may manifest itself only under
some particular architectures and interactions, and under some specific
values of parameters. We apply here our model checking based genetic
programming approach for achieving a dual task: finding an instance of
a protocol which is suspicious of being bogus, and automatically correct-
ing the error. The synthesis tool we constructed is capable of generating
various mutations of the code. Moving between them is guided by model
checking analysis. In the case of searching for errors, we mutate only the
architecture and related parameters, and in the case of fixing the error,
we mutate the code further in order to search for a corrected version. As a
running example, we use a realistic nontrivial protocol for multiparty in-
teraction. This protocol, published in a conference and a journal, is used
as a building block for various systems. Our analysis shows this protocol
to be, as we suspected, erroneous; specifically, the protocol can reach a
livelock situation, where some processes do not progress towards achiev-
ing their interactions. As a side effect of our experiment, we provide
a correction for this important protocol obtained through our genetic
process.

1 Introduction

Model checking is a successful technique for comparing a model of a system with
some formal specification. One of its limitations is that of state space explosion.
This is combated by many techniques that avoid the simple enumeration of all
the reachable states. Since model checking of concurrent systems is intractable,
this is a very challengeable problem, with many interesting heuristics. Another
limitation of model checking is that the method is mainly restricted to finite state
systems, while the verification of infinite state systems is, in general, undecidable.
The problem of synthesizing correct code or attempting to automatically correct
errors is considered to be even harder than model checking. In some limited cases
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where this was shown to be decidable, the complexity was considerably higher
than simple model checking.

In recent papers [8,9,10] we demonstrated the approach of combining model
checking and genetic programming for the synthesis of correct-by-design pro-
grams. This is in particular effective for the automatic generation of code that is
hard to program manually. Examples are mutual exclusion problems and various
concurrent synchronization problems. In this paper we exploit a related tech-
nique, and extend the tool we developed, to assist the programming throughout
the code development process. Specifically, we use the ability of mutating code,
guided by ranking that is based on model checking, to find errors in some com-
plicated parametric protocol, and, moreover, to correct the errors.

The first main challenge that we tackle here is to check communication proto-
cols that are not limited to a particular number of processes or communication
architecture. Although each instance of the protocol is a finite state system,
this is a parametric problem, which means that in general, its verification is
undecidable [1]. Furthermore, this protocol is not limited to a particular simple
communication pattern or network topology (such as in [4]). We thus use code
mutation to generate instances of the protocol that we want to check. Since there
are several parameters that vary with the code (the number of processes, the
communication network, etc.) it is not simple to detect an instance that would
manifest the error, even if we suspect there exists one. We seek an alternative to
a simple enumeration of the instances of such a protocol. Since the communica-
tion architecture is not fixed, the enumeration can easily progress in a direction
that will not reveal the existence of an error (e.g., focusing on a particular ar-
chitecture such as a ring and just extending the number of processes). We thus
apply some ranking on the checked instances, based on the model checking re-
sults, in order to help direct the search in the space of syntactically constrained
programs towards an instance with an error. Then, when the error is revealed,
we apply similar techniques to help us correct the code.

In essence, we apply model checking techniques for finite state systems on
instances of the code, using the genetic programming approach as a heuristic
method to move between different variations of it, first to find the error, then
to find a correction. The mutation at the search for errors is limited to the
communication architecture and various related parameters. After finding an
erroneous instance of the protocol in this way, we reverse the search and allow
mutating the code in order to correct it. In this latter case, mutation is allowed
on the protocol itself, rather than the architecture. Correcting the code of a
parametric protocol is also challenging. When a new candidate (mutation) for
the protocol is suggested, it is again impossible to apply a decision procedure
to check its correctness. Thus, we have again to check each candidate against
various architectures, a problem that is similar to the one we are faced with
when trying to find the error in the original protocol. We thus alternate between
using mutations for generating new candidate protocols, and using mutations
for generating instances for model checking the suggested corrections. However,
there is some learning process here, as architectures that were shown to create
counterexamples for either the original algorithm or tested mutations can be
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used for the model checking of subsequent candidates. This alternation between
the evolution of architectures and programs code is repeated, gradually adding
new architectures against which the candidates for corrected code need to be
checked. This process continues until a program that cannot be refuted by the
tool is found.

Our running example in this paper is an actual protocol for coordinating
multiprocess interaction in a distributed system, named α-core [13]. This is quite
a nontrivial protocol, which extends the already difficult problem of achieving
multiprocess communication in the presence of nondeterminism both on the
sender and receiver side. The protocol we check appears both in a conference
and in a followup journal paper and is of practical use. Reading the paper, we
were suspicious of the correctness of the protocol, but due to its complexity and,
in particular, its multiple architecture nature, could not pinpoint the problem
with a manually constructed example. Except for the actual debugging of the
protocol, we followed some remarks made by the authors of that protocol in
the original paper [13] about subtle points in the design of the protocol, and
have let our tool discover these problems automatically. Thus, we believe that
a framework that performs a genetic model checking driven mutation, as we
developed and used here, is very effective as an interactive tool in the process of
protocol design.

2 Background

2.1 Model Checking Guided Genetic Programming

Genetic programming [11] is a program synthesis technique based on a search
in the state space of syntactically constrained programs. The search is guided
by providing fitness to the generated candidate programs, usually based on test
cases, but recently also on model checking results [7,8,9].

The genetic search begins with the construction of some random candidate
programs (typically, a few hundreds candidates). Then one iterates the following
steps. Some candidates Γ are selected at random, then they are syntactically
mutated by either erasing, adding or replacing program segments. The code is
often represented using a tree, and the mutation operations may also involve
adding some code, when the syntax requires it (e.g., just removing a test in a
program may result in syntactically erroneous code, hence the missing construct
is generated at random). A powerful operator that combines the code of several
candidates, called crossover1 may also be used, although there are also some
arguments against its utilization. The mutation (and crossover) operations gen-
erate some set of candidates Δ. Fitness of the candidates Γ ∪ Δ is calculated,
trying to rank their potential to further evolve towards correct code. Tradition-
ally, fitness is calculated in genetic programming by checking some test suite. In
contrast, we use model checking for calculating this value. Then, instead of the
old |Γ | candidates selected, we return for the next iteration the |Γ | candidates
with highest fitness value among Γ ∪ Δ.
1 In our work, we did not implement the crossover operation.



438 G. Katz and D. Peled

The iterative process stops either when a candidate that achieves a fitness
value above some level is found, or some limit on the number of iterations expires.
In the former case, provided that the fitness is well crafted, the candidate found
has a good potential to be a solution of the synthesis problem. In the latter case,
the search may restart with some new random candidates.

Model checking based fitness was introduced independently by Johnson [7]
and by us [8]. In [7], fitness value reflected the number of temporal properties
that were satisfied by the checked candidate. We [8] suggested a finer measure
of fitness, with more levels per each property: (1) none of the executions satisfy
the property, (2) some but not all the executions satisfy the property, (3) each
prefix of an execution that does not satisfy the property can be continued into
an execution that satisfies it (hence in order to not satisfy the property, infinitely
many bad choices must be made) and (4) all the executions satisfy the property.
This calls for a deeper model checking algorithm than the standard one [9,12].

In [10] we synthesized solutions for the leader election problem. Since this
problem is parametric, properties were checked against all of the problem in-
stances up to a predefined cutoff value, and the ranking depended on whether
none, some or all of the instances satisfied the properties. We also used there
aggressive partial order reduction to speed up the model checking.

In all cases, a secondary “parsimony” measure was added to the fitness func-
tion in order to encourage the generation of shorter and hopefully efficient pro-
grams. Correcting programs can follow a similar search as described above, by
starting from the bogus version of the code rather than with randomly generated
programs.

2.2 The α-Core Protocol

The α-core protocol is developed to schedule multiprocess interaction. It general-
izes protocols for handshake communication between pairs of processes. For each
multiprocess interaction, there is a dedicated coordinator on a separate process.
To appreciate the difficulty of designing such a protocol, recall for example the
fact that the language CSP of Hoare [5] included initially an asymmetric con-
struct for synchronous communication; a process could choose between various
incoming messages, but had to commit on a particular send. This was important
to achieve a simple implementation. Otherwise, one needs to consider the sit-
uation in which after communication becomes possible between processes, one
of them may already continue to perform an alternative choice. Later Hoare
removed this constraint from CSP. The same constraint appears in the asym-
metric communication construct of the programming language ADA. The Buck-
ley and Silberschatz protocol [3] solves this problem for the symmetric case in
synchronous communication between pairs of processes, where both sends and
receives may have choices. Their protocol uses asynchronous message passing
between the processes to implement the synchronous message passing construct.
The α-core protocol, also based on asynchronous message passing, is more gen-
eral, and uses coordinator processes to allow synchronization among any number
of processes.
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The α-core protocol includes the following messages sent from a participant
to a coordinator:

PARTICIPATE. A participant is interested in a single particular interaction
(hence it can commit on it), and notifies the related coordinator.

OFFER. A participant is interested in one out of several potentially available
interactions (a nondeterministic choice).

OK. Sent as a response to a LOCK message from a coordinator (described
below) to notify that the participant is willing to commit on the interaction.

REFUSE. A participant decides it does not want to commit on an interaction
it has previously applied to, and notifies the coordinator. This message can
also be sent as a respond to a LOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK. A message sent from a coordinator to a participant that has sent an
OFFER. requesting the participant to commit on the interaction.

UNLOCK. A message sent from a coordinator to a locked participant, indi-
cating that the current interaction is canceled.

START. Notifying a participant that it can start the interaction.
ACKREF. Acknowledging a participant about the receipt of a REFUSE

message.

Fig. 1(a) describes the extended state machine of a participant. Each partic-
ipant process keeps some local variables and constants:

IS a set of coordinators for the interactions the participant is inter-
ested in.

locks a set of coordinators that have sent a pending LOCK message.
unlocks a set of coordinators from which a pending UNLOCK message

was received.
locker the coordinator that is currently considered.
n the number of ACKREF messages required to be received from

coordinators until a new coordination can start.
α the coordinators that were asked for interactions but were subse-

quently refused.

The actions according to the transitions are written as a pair en → action ,
where en is the condition to execute the transition, which may include a test of
the local variables, a message that arrives, or both of them (then the test should
hold and the message must arrive). The action is a sequence of statements, exe-
cuted when the condition holds. in addition, each transition is enabled from some
state, and upon execution changes the state according to the related extended
finite state machine. The participant’s transitions, according to the numbering
of Fig. 1(a) are:

1. |IS > 1| → { foreach p ∈ IS do p!OFFER }
2. |IS = 1|→{ locker :=p, were IS ={p}; locker !PARTICIPATE; locks , unlocks :=∅ }
3. p?LOCK → {locker :=p; locks , unlocks :=∅; p!OK }
4. p?LOCK → {locks :=locks ∪ {sender}}
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locking

5 7,8

6

(b) Coordinator

Fig. 1. State machines

5. locks �= ∅ ∧ p?UNLOCK → {locker :=q for some q ∈ locks ; q!OK; locks :=locks \
{q}; unlocks :=unlocks ∪ {p}}

6. locks = ∅ ∧ p?UNLOCK → { foreach q ∈ unlocks ∪ {p} do q!OFFER}
7. p?START → {α:=IS \unlocks \ {locker}; foreach q ∈ α do q!REFUSE; n := |α|;

start participating in the joint action managed by locker}
8. p?LOCK → {}
9. p?UNLOCK → {}

10. p?ACKREF → {n:=n − 1}
11. n = 0 → { Let IS be the new set of interactions required from the current state. }

For a coordinator, whose extended finite state machine appears in Fig. 1(b), we
have the variables waiting , locked , shared and α, holding each a set of processes,
and n is a counter for the number of processes that indicated their wish to
participate in the interaction. The constant C holds the number of processes that
need to participate in the interaction (called, the cardinality of the interaction),
and the variable current is the participant the coordinator is trying to lock. The
transitions, according to their numbering from Fig. 1(b) are as follows:

1. n < C ∧ p?OFFER → {n:=n + 1; shared := shared ∪ {p} }
2. n < C ∧ p?PARTICIPATE → {n:=n + 1; locked := locked ∪ {p} }
3. p?REFUSE → { if n > 0 then n:=n − 1; p!ACKREF; shared :=shared \ {p}}
4. n = C∧shared = ∅ → { foreach q ∈ locked do q!START; locked , shared :=∅; n:=0}
5. n = C ∧ shared �= ∅ → {current := min(shared); waiting :=shared \ {current};

current !LOCK}
6. waiting �= ∅ ∧ p?OK → {locked :=locked ∪ {current}; current :=min(waiting);

waiting :=waiting \ {current }; current !LOCK}
7. waiting = ∅ ∧ p?OK → {locked :=locked ∪ {current}; foreach q in locked do

q!START; locked , waiting , shared :=∅; n:=0}
8. p?REFUSE → {α:=(locked ∩ shared) ∪ {current , p}; foreach q ∈ α \ {p} do

q!UNLOCK; p!ACKREF; shared :=shared \ α; locked :=locked \ α; n:=n − |α|}
9. p?OK → {}



Code Mutation in Verification and Automatic Code Correction 441

As with other concurrency coordination constructs, such as semaphores, the
irresponsible use of the coordination achieved by the α-core protocol can result in
deadlock situation (when processes attempt to get into conflicting coordinations
in incompatible order). What the α-core protocol correctness is prescribed to
guarantee is that if some processes are all interested in some coordination, then
it, or some alternative coordination for at least one of the participant processes
will eventually occur. As we will show later, this property does not really hold
for this protocol.

3 Evolution of Architectures

The α-core algorithm is parametric, and should work for a family of architectures,
where each architecture consists of a set of participants, a set of coordinators,
and a particular connectivity between processes of the two kinds. Additional
configuration parameters, such as buffer sizes, can be instantiated as well. When
verifying the algorithm, we cannot simply perform model checking for all of
the architectures up to some size. One reason for that is the large number of
possible architectures. Another reason is the high model checking complexity for
such a nontrivial protocol, which requires a considerable amount of time and
memory, even after some reduction techniques (such as partial order reduction,
and coarser atomicity) are used.

Instead, we introduce a new method for the evolution of architectures by
genetic programming. The idea is to randomly generate portions of code rep-
resenting various architectures, each being a basis for a distinct instance of the
protocol. Then we gradually evolve these instances and improve them, until a
good solution is found. A “good solution” in this context, is an instance of the
protocol on which a counterexample for the given algorithm can be found. Thus,
our goal at this point is the reverse of the conventional goal of genetic program-
ming, where a good solution is a correct one.

3.1 Architecture Representation

A first step towards our goal is achieving the ability to represent architectures
as portions of code. This is done by creating a dedicated initialization process
(called init), and basing this process on code instructions and building blocks
that can let it dynamically generate any relevant architecture. Depending on the
problem we try to solve, these building blocks may allow the dynamic creation of
processes of various types, and the instantiation of global and local parameters
related to the created processes.

Considering our example, we observe that the α-core protocol involves an
arbitrary number of processes of two types: participating processes, and coor-
dinating processes. A coordinating process can be responsible for coordinating
any given subset of the participating processes, and a participating process may,
at each state, interact with any number of coordinators for coordinations it can
be involved in. It is even possible that there are several coordinating processes
that try to coordinate the same sets of processes. Fig. 2 presents an architecture
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P1

C1 C2

P2

C3

P3

Fig. 2. An architecture with three participants and three coordinators

where there are three participating processes: P1−P3, with three coordinators:
C1 − C3. An edge appears between a participating process and a process that
coordinates it. P2 is interested in a single interaction (handled by C3), while P1
and P3 are involved in multiple interactions.

To enable the generation of such architectures, the following building block
are provided for the init process:

CreateProc(proctype) - Dynamically creates a new process of type proctype.
Participant, Coordinator - constants of type proctype representing partici-

pant and coordinator process types.
Connect(part_proc_id, coord_proc_id) - connects a particular participant

and a coordinator whose process ids are given in the operands. The con-
nection involves updating IS - the set of coordinators that the participant
locally stores, and C - the cardinality of the coordinator.

A complete program representation includes the code for the init process, as well
as skeleton code for each other type of process. At runtime, the init process is
executed first, and according to its instructions, other processes are dynamically
created and instantiated. This is similar to the way Promela code is written and
executed in the Spin model checker [6], where the init process can dynamically
create other processes. When searching for the goal architecture, a permanent
code is given for each of the process types, where the genetic process is allowed
to randomly generate and alter only the code of the init process. Using the above
building blocks, the code for the architecture of Fig. 2 can look as follows.

CreateProc(Participant) Connect(1, 4)

CreateProc(Participant) Connect(1, 5)

CreateProc(Participant) Connect(2, 6)

CreateProc(Coordinator) Connect(3, 4)

CreateProc(Coordinator) Connect(3, 5)

CreateProc(Coordinator) Connect(3, 6)

The number of allowed processes, and accordingly, the range for the process ids
are bounded. As usual, the fitness function is also based on a secondary parsimony
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measure which prefers shorter programs. This often leads to the removal of redun-
dant lines from the code, and to the generation of simpler architectures and coun-
terexamples.

3.2 The Fitness Function

The evolution of architectures is based on a fitness function which gives score to
each program (consisting of architecture and other processes code). Like in our
previous work, here too the fitness values are based on model checking of the
given specification. However the function is different. Since the goal is to fail the
given program, satisfying the negation of the specification increases the fitness
rather than decreases it. This means that it is sufficient to find an architecture
which violates one of the given properties, and since we are dealing with LTL
properties, we only need to find a single execution path that violates a property.
Thus (unlike in our previous work) there is no use in considering the amount of
satisfied paths, or the need to make a distinction between the level of falsifying
the specification (see Section 2.1) when ranking the candidate solutions. Instead,
we apply a different method, and try to split properties into smaller building
blocks (whenever possible) whose satisfaction may serve as an intermediate step
in satisfying an entire property.

As an example, consider the LTL property ϕ = �(P → Q). We showed in [9]
how programs satisfying ϕ can be evolved. However, we are now interested in
progressing towards an architecture violating ϕ. We first negate it, obtaining
¬ϕ = �(P ∧ ¬Q). Then, we can give intermediate ranking to solutions that
contain a path satisfying �P , hoping that they finally evolve to solutions with
a path satisfying the entire ¬ϕ. This method can be particularly useful in a
common case where Q is an assertion about states, and P denotes the location
in the code where Q must hold. That is, P = at(�) for some label � in the
code. Then, when trying to violate the property ϕ, we can give higher fitness
to programs that at least reach the location �, and then give the highest fitness
value if the state property Q is violated when reaching �.

During the development of protocols, the developers often look at some in-
tricate possible behaviors of the protocol. The kind of guided search suggested
above, by mutating the architecture, can also be used, besides for finding errors
in protocols, for finding such scenarios and documenting them. We first demon-
strate this by two nontrivial transitions on the code of the α-core participant
code, which due to its authors, stem from some intricacies (in Section 5.1 we will
show how we used our method for finding a real error in the α-core protocol).

While being in the “sync” state, a participant usually receives ACKREF
messages (transition 10 in Fig. 1(a)), but it can accidentally receive either a
LOCK or UNLOCK messages (transitions 8 and 9 respectively), which it has
to ignore. In order to verify that, we added assertions for the participant’s code
claiming that the received message under the “sync” state must be ACKREF,
and then activated the tool in order to find architectures which refute this as-
sertion. Within seconds, the two architectures depicted in Fig. 3 were generated.
The architecture on the left is related to an example involving the LOCK mes-
sage, and is simpler than the one presented in [13] (although coordinators with
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Fig. 3. Architectures found for intricacies with LOCK (left) and UNLOCK (right)

only one process are not so useful). For the case of the UNLOCK message, an
identical architecture to the one described in [13] was found.

4 Co-evolution of Programs and Counterexamples

After finding a “wrong” architecture for a program, our next goal is to reverse
the genetic programming direction, and try to automatically correct the pro-
gram, where a “correct” program at this step, is one that has passed model
checking against the architecture. Yet, correcting the program for the wrong ar-
chitecture only, does not guarantee its correctness under different architectures.
Therefore, we introduce a new algorithm (see Algorithm 1) which co-evolves
both the candidate solution programs, and the architectures that might serve as
counterexamples for those programs.

Algorithm 1: Model checking based co-evolution
MC-CoEvolution(initialProg, spec, maxArchs)
(1) prog := initialProg
(2) archList := ∅
(3) while |archList| < maxArchs
(4) arch := EvolveArch(prog, spec)
(5) if arch = null
(6) return true // prog stores a “good” program
(7) else
(8) add arch to archlist
(9) prog := EvolveProg(archlist, spec)
(10) if prog is null
(11) return false // no “good” program was found
(12) return false // can’t add more architectures

The algorithm starts with an initial program initProg. This can be the existing
program that needs to be corrected, or, in case that we want to synthesize the
code from scratch, an initial randomly generated program. It is also given a
specification spec which the program to be corrected or generated should satisfy.
The algorithm then proceeds in two steps. First (lines (4)− (8)), the EvolveArch
function is called. The goal of this function is to generate an architecture on
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which the specification spec will not hold. If no such architecture is found, the
EvolveArch procedure returns null, and we assume (though we cannot guarantee)
that the program is correct, and the algorithm terminates. Otherwise, the found
architecture arch is added to the architecture list archList, and the algorithm
proceeds to the second step (lines (9) − (11)).

In this step, the architecture list and the specification are sent to the Evolve-
Prog function which tries to generate programs which satisfy the specification
under all of the architectures on the list. If the function fails, then the algorithm
terminates without success. Since the above function runs a genetic program-
ming process which is probabilistic, instead of terminating the algorithm, it is
always possible to increase the number of iterations, or to re-run the function so
a new search is initiated. If a correct program is found, the algorithm returns to
the first step at line (4), on which the newly generated program is tested. At each
iteration of the while loop, a new architecture is added to the list. This method‘
serves two purposes. First, once a program was suggested, and refuted by a new
architecture, it will not be suggested again. Second, architectures which were
complex enough to fail programs at previous iterations, are good candidates to
do so on future iterations as well. The allowed size of the list is limited in order
to bound the running time of the algorithm.

Both EvolveProg and EvolveArch functions use genetic programming and
model checking for the evolution of candidate solutions (each of them is equipped
with relevant building blocks and syntactic rules), while the fitness function
varies. For the evolution of programs, a combination of the methods proposed
in [9,10] is used: for each LTL property, an initial fitness level is obtained by
performing a deep model checking analysis. This is repeated for all the architec-
tures in archList, which determines the final fitness value. For the evolution of
the architectures, the method explained in the previous section is used.

A related approach for automatic bug fixing was suggested in [2] where pro-
grams and unit tests were co-evolved. However, that work deals with functional
programs, where no model checking is needed. In addition, that work started
with a set of simple data structures, representing test cases, which can then be
evolved by some search algorithm. In contrast, in our work architectures are rep-
resented as variable length programs which allow greater flexibility. Moreover,
we start with a single architecture, and dynamically add new ones only when
necessary during the evolutionary process. In a recent work [15], locating and
repairing bugs on C programs were accomplished by manually defining positive
and negative test cases, and using them in the fitness function.

5 Finding and Correcting Errors in α-Core

5.1 Generation of a Violating Architecture

One weakness of the α-core algorithm is that the REFUSE message is used
both for canceling a previous offer to participate in an interaction, and as a pos-
sible response to a LOCK message. This may lead to some delicate scenarios,
and the authors mention that ideally, it would have been better to add another
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message type. However, in order to keep the algorithm simple, they refrain from
doing so, and instead try to deal with the intricate situations directly. This in-
cludes performing the following action when a coordinator receives a REFUSE
message while being in the “accepting” state according to transition 3:

if n > 0 then n:=n − 1

The variable n serves as a counter for the number of active offers the coordinator
currently has. If both the coordinator and one of its participants try to cancel
the interaction concurrently, n may be wrongly decreased twice. The comparison
to 0 is supposed to avoid the second decrease.

Reading that, we suspected that despite the above check, there may still be
situations on which n is decreased twice due to a single participant refusal, thus
causing n to no longer represent the correct number of active offers. In order to
check that, we added the following assertion to the program of the coordinator
just before receiving any message in the “accepting” state:

ASSERT (n = |shared| + |locked|)

We then applied our tool in order to dynamically search for an architecture
that violates the assertion by the method described in section 3. After a short
progress between various architectures, the tool found several architectures on
which the assertion is indeed violated. The simplest of these architectures is
shown at Fig. 4. It includes two participants denoted P1 and P2, which are
both connected to two coordinators denoted C1 and C2. The message sequence
chart at Fig. 5 shows the related counterexample, having the following messages
(the comments on the right refer to the values of the counter n of C2): At
messages (1)-(4) the two participants offers interactions to the two coordinators,
which causes C2 to set its local counter n to 2. Coordinator C1 responses first,
and successfully locks both participants (messages (5)-(8)). Coordinator C2 then
tries too to lock P1 (message (9)), and its request remains pending. Then C1
asks the participants to start the interaction, which cause them to refuse the
offers previously sent to C2 (messages (10)-(13)). C2 then cancels the interaction
by sending messages (14) and (15) (and resetting n), and a new interaction is
initiated by P2 (messages (16) and (17)), which sets n to 1.

Only then, message (11) with the refusal of P1 is received, and since n > 0
holds, n is wrongly decreased to 0, although there is an active offer by P2. After

C1 C2

P1 P2

Fig. 4. An architecture violating the assertion
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P1 P2 C1 C2

OFFER (1)

OFFER (2)

OFFER (3)
n=1

OFFER (4)
n=2

LOCK (5)

OK (6)

LOCK (7)

OK (8)

LOCK (9)

START (10)

REFUSE (11)

START (12)

REFUSE (13)

ACKREF (14)

UNLOCK (15)
n=0

OFFER (16)

OFFER (17)
n=1

n=0
ACKREF (18)

msc Assertion violation

Fig. 5. A Message Sequence Chart showing the counterexample for the α-core protocol

that, if another process (such as P1) sends a new offer to C2 and no other coordi-
nator tries to lock these participants, C2 will never execute the interaction (since
n is smaller than its cardinality). This violate the property termed Progress in
the α-core protocol paper [13], requiring that an enabled interaction (i.e., one in
which the participating processes have requested OFFER or PARTICIPATE
and did not subsequently sent a REFUSE) will eventually be executed. The
result can be a livelock, as some of the processes are waiting for this subsequent
coordination, which will not happen, or even deadlock, if this coordination is the
only progress that the program is waiting for.

5.2 Generation of a Corrected Algorithm

After finding the error in the algorithm, we set our tool to automatically gener-
ate candidate programs correcting the error. The α-core code was divided into
dynamic parts which the genetic process can change and evolve, and static parts
which are permanent portions of the code, and remain unchanged. We set the
code of the participant, and most of the code of the coordinator as static, and
set as dynamic only the code that we manually identified as wrong by observing
the counterexample we obtained during our search for an error phase. This is the
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code that deals with the REFUSE message. Although we could theoretically
allow the dynamic evolution of the entire program code, the approach we took
has two advantages. First, freely evolving the entire code could lead to a total
change in the structure of the original algorithm, while our goal is to handle
only some functional aspects of the code. Second, the search space for new code
is much smaller, thus allowing a fast progress into correct solutions. Certainly,
restricting the search space can make it impossible to reach a perfect solution,
but in such cases, it is always possible to set more code portions as dynamic,
keeping in mind the trade off between code expressibility and performance.

The tool first found a correction which holds for the architecture of Fig. 4.
However, after reversing its search direction and goal, the tool discovered a new
architecture on which that correction was not valid. This was followed by an al-
ternating series of code corrections, and generation of new violating architectures
(as described in Algorithm 1), until finally a simple correction was generated,
without any architecture on which a violation could be found. The syntax tree
that was generated for this simple correction, and its resultant code are depicted
in Fig. 6.

if

in --

(then)

nop

(else)

sender shared n

(a) Program tree

if sender ∈ shared then n:=n − 1

(b) Program code

Fig. 6. Final generated correction

This code replaces the original handling of the REFUSE message in transi-
tion 3 of the coordinator. Instead of the original code comparing n to 0, this code
decreases n only if the sender participant belongs to the shared list. This indeed
seems to solve the previous error, since after the first decrease of n, the sender
is removed from the shared list, thus avoiding a second redundant decrease.

6 Conclusions

In this work we suggested the use of a methodology and a tool that perform a
search among versions of a program by code mutation, guided by model checking
results. Code mutation is basically the kernel of genetic programming. Here it
is used both for finding an error in a rather complicated protocol, and for the
correction of this same protocol. Although several methods were suggested for
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the verification of parametric systems, the problem is undecidable, and in the few
methods that promise termination of the verification, quite severe restrictions
are required. Although our method does not guarantee termination, neither for
finding the error, nor for finding a correct version of the algorithm, it is quite
general and can be fine tuned through provided heuristics in a convenient human-
assisted process of code correction.

An important strength of the work that is presented here is that it was im-
plemented and applied on a complicated published protocol to find and cor-
rect an actual error. The α-core protocol is useful for obtaining multiprocess
interaction in a distributed system that permits also alternative (i.e., nonde-
terministic) choices. To the best of our knowledge, this error in the protocol is
not documented. Such a method and tool can be used in an interactive code
development process. It is, perhaps, unreasonable to expect in general the auto-
matic generation of distributed code, as it is shown by Pnueli and Rosner [14]
to be an undecidable problem. However, it is also quite hard to expect program-
mers to come up with optimized manual solutions to some existing coordination
problems.
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Abstract. Software model checkers are being used mostly to discover
specific types of errors in the code, since exhaustive verification of com-
plex programs is not possible due to state explosion. Moreover, typical
model checkers cannot be directly applied to isolated components such
as libraries or individual classes. A common solution is to create an ab-
stract environment for a component to be checked. When no constraints
on component’s usage are defined by its developers, a natural choice is
to use a universal environment that performs all possible sequences of
calls of component’s methods in several concurrently-running threads.
However, model checking of components with a universal environment is
prone to state explosion.

In this paper we present a method that allows to discover at least
some concurrency errors in component’s code in reasonable time. The
key ideas of our method are (i) use of an abstract environment that
performs a random sequence of method calls in each thread, and (ii)
restarts of the error detection process according to a specific strategy. We
have implemented the method in the context of Java components and
the Java PathFinder model checker. We have performed experiments on
non-trivial Java components to show that our approach is viable.

1 Introduction

The current practice in the application of model checking to real-world pro-
grams is that model checkers are used mostly as tools for detection of specific
types of errors in the code (e.g. concurrency errors like deadlocks and race con-
ditions), since exhaustive verification of complex programs is not possible due
to state explosion. In this paper we focus on the detection of concurrency errors
in Java components using the Java PathFinder model checker (JPF) [17]. We
use the term component to denote an open Java program that has a well-defined
interface — this includes, for example, Java libraries and individual Java classes.

One of the problems in the application of JPF to Java components is that
it accepts only a runnable Java program with the main method on input, but
a Java component typically does not contain main. Behavior of a Java compo-
nent depends on the context (environment) in which it is used, e.g. on the order
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that component’s methods are called by its actual environment. A common so-
lution is to create an abstract environment (a model of an actual environment)
for the component subject to checking and apply a model checker (JPF) to a
runnable Java program composed of the component and its abstract environ-
ment. An abstract environment for a Java component typically has the form
of a fragment of a Java program that contains the main method. The abstract
environment performs various sequences of calls of component’s methods with
various combinations of method parameters’ values — the goal is to cover as
many control-flow paths in the component’s code as possible, and, when the
focus is on the detection of errors, to trigger as many errors in the component’s
code as possible.

When no constraints on the order of calls of component’s methods are de-
fined by the developers and no knowledge about the target environment (where
the component will be deployed) is available, then a natural choice is to use an
abstract environment that runs several threads concurrently and performs all
possible sequences of calls of component’s methods with many different input
values in each thread — a universal environment. Such an environment exercises
the component very thoroughly and therefore triggers a high percentage of er-
rors in the component’s implementation (if there are some). Nevertheless, model
checking of a non-trivial component with a universal environment is typically
infeasible due to state explosion, even if only a few threads (2-3) are run in par-
allel by the environment. JPF typically runs out of available memory quite soon
(in the order of minutes).

We propose to address this problem by model checking a component with an
abstract environment that (i) performs a randomly selected sequence of method
calls in each thread and (ii) runs exactly two threads in parallel — we use the
term random-sequence environment to denote such an abstract environment.
We restrict the number of threads to two for the reason of feasibility of model
checking, and also because a recent study [10] showed that a great majority of
concurrency errors in real-world programs involve only two threads.

The motivation behind this approach is to discover at least some errors in
the component in reasonable time, when model checking with a universal envi-
ronment is not feasible. We show that although the use of a random-sequence
environment helps to reduce the time and memory needed to find an error with
JPF in most cases, still JPF can run for a very long time for some compo-
nents and random-sequence environments due to state explosion. The cause is
that time and memory requirements of checking with JPF depend very much
on the specific random-sequence environment that is used. Moreover, a result of
the random choice of a sequence environment determines whether an error in
the component is found by JPF, since some random-sequence environments
would not trigger any errors in the component. The whole state space of the
program composed of the component and a particular random-sequence envi-
ronment is traversed by JPF in the case of an environment that does not trigger
any error, and therefore the running time of JPF can be very long.
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In order to avoid very long running times of JPF and to ensure that errors
are found (assuming there are some in the component), we also propose to apply
restarts of the error detection process. The key idea is that if the running time of
JPF for a particular random-sequence environment exceeds a predefined limit,
then (1) JPF is stopped, (2) a new random-sequence environment is generated,
and (3) JPF is started again on the Java program composed of the component
and the new random-sequence environment. This is repeated until JPF finds an
error in the component with some random-sequence environment. Our approach
is greatly inspired by existing work on restart strategies for various long-running
software processes in general [13] and for search tree traversal in SAT solvers
specifically [5,8] — the goal of restarts is to improve performance (e.g., to de-
crease the response time). We show that the application of restarts to the error
detection process significantly reduces the time and memory needed to find an
error in a component, and, in particular, helps to avoid the long running times
of JPF. Using our approach, errors in components’ code are discovered by JPF
in a reasonable time.

The rest of the paper is structured as follows. In Section 2 we describe Java
components used for experiments and in Section 3 we provide information rel-
evant to all experiments that we performed. We provide technical details of
checking with universal environment and present the results of experiments in
Section 4. Then we present the technical details and experimental results for
checking with random-sequence environments and for application of restarts, re-
spectively, in Sections 5 and 6. We evaluate our approach in Section 7, and then
we discuss related work (Section 8) and conclude in Section 9.

2 Example Components

We have used three Java components of different complexity for the purpose of
experiments: AccountDatabase, ConcurrentHashMap, and GenericObjectPool.
All the three components contained known concurrency errors — either already
present in the code or manually injected by us before the experiments. A short
description of each component follows.

The ConcurrentHashMap component (2000 loc in Java) is a part of the
java.util.concurrent package from the standard Java class library, as im-
plemented in GNU Classpath (version 0.98) [20]. The component is an imple-
mentation of a map data structure that allows concurrent accesses and updates.
We have manually injected a race condition into the Java code of the component.

The GenericObjectPool component (500 loc in Java) is a part of the Apache
Commons Pool library (version 1.4) [19]. It represents a robust and configurable
pool for arbitrary Java objects. Again, we have manually injected a race condi-
tion into the component’s Java code.

The AccountDatabase component (170 loc in Java) is a part of the demo
component application developed in the CRE project [1]. It works as a sim-
ple in-memory database for user accounts. The code of the component already
contained a race condition.
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3 General Notes on Experiments

Here we provide information that applies to all the experiments whose results
are presented in Sections 4-7.

For each experiment, we provide total running time of the error detection
process in seconds and, if it is relevant for the experiment, also the number
of runs of the process and memory needed by the process in MBs. We have
repeated each experiment several times to average out the effects of randomness.
The values of numerical variables in the tables (except the number of runs) have
the form M +- CI, where M stands for the mean of measured data and CI is
the half-width of the 90% confidence interval.

All the experiments were performed on the following configuration (HW &
SW): PC with 2xQuadCore CPU (Intel Xeon) at 2.3 GHz and 8 GB RAM,
Gentoo Linux, Sun Java SE 6 Hotspot 64-bit Server VM. We have used the
current version of Java PathFinder as of June 2009 and we limited the available
memory for verification to 6 GB.

4 Checking Components with Universal Environment

In our approach, we have used a restricted form of a universal environment
where only two threads run concurrently. Each thread performs a potentially
infinite loop (termination of the loop depends on non-deterministic choice) and
calls a non-deterministically selected method of the component in each iteration.
The Java code of each thread corresponds to the template in Figure 1a. Since
JPF explores the options of a non-deterministic choice in a fixed order from
the lowest to the highest (from 1 to N in case of code on Figure 1a, where
N is the number of component’s methods), we eliminate the dependence of
results of checking with JPF on a specific order of component’s methods by
randomization — the method to be called for a particular value of the non-
deterministic choice (via Verify.getInt(X)) is determined randomly during
generation of the environment’s code.

while (Verify.getBoolean()) int len = Random.getInt(2*N);

{ for (int i = 1; i <= len; i++) {

int idx = Verify.getInt(X); int idx = Random.getInt(N);

if (idx == 1) comp.method1(..); if (idx == 1) comp.method1(..);

if (idx == 2) comp.method2(..); ...

... if (idx == N) comp.methodN(..);

if (idx == N) comp.methodN(..); }

}

a) b)

Fig. 1. Fragment of Java code of a single thread (a) in a universal environment and
(b) in a random-sequence environment
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Table 1. Results for checking components with a universal environment

Component JPF running time

AccountDatabase 921 ± 121 s
ConcurrentHashMap 1426 ± 377 s
GenericObjectPool 1034 ± 308 s

Input data for the components (e.g., method parameters) are specified in a
Java class that works as a container for the data values [15]. The environment
then retrieves the parameter values from the Java class when it calls methods of
the component. A user has to create the specification of data values manually
such that for each method m of the component, all paths in the control-flow
graph (CFG) of m are covered (explored by JPF) — for each path p in the CFG
of m, at least one combination of values of m’s parameters should be specified
that triggers p when m is called by the environment.

The results of experiments for checking components with a universal environ-
ment of the restricted form, where only two threads run concurrently, are listed
in Table 1. JPF run out of available memory (6 GB) in all experiments and there-
fore it found no errors — this clearly illustrates that JPF checking even with the
restricted universal environment is not feasible for non-trivial Java components.
We present only the running times of JPF in the table to show how fast it run
out of memory.

5 Random-Sequence Environments

Similarly to a universal environment, a random-sequence environment calls meth-
ods of a component in two concurrently-running threads and retrieves method
parameter values from the Java class provided by the user. The key difference
is that, in the case of a random-sequence environment, each thread performs a
randomly selected sequence of calls of the component’s methods. The length of
the sequence is a random number from the interval [1, 2× |M |], where M stands
for the set of component’s methods — we set the maximal length of the sequence
to 2×|M | to ensure that the sequence contains multiple calls of several methods
with a high probability. The Java code of each thread corresponds to the tem-
plate in Figure 1b, where N is the number of component’s methods. The need
for randomness in the selection of a sequence environment is motivated by the
absence of any knowledge about the component’s implementation and expected
usage — in particular, it is not known in advance which sequence environments
trigger an error and which do not, and therefore it is not possible to select only
such sequence environments that trigger errors.

The results of experiments for checking components with random-sequence
environments are listed in Table 2. Since some random-sequence environments
do not trigger any errors, we distinguish between two groups of results based on
whether JPF found an error in the component’s code (value “yes” in the “Error
found” column), or traversed the whole state space and found no error (value
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Table 2. Results for checking components with random-sequence environments

Component Error found Runs Time Memory

AccountDatabase yes 23 1040 ± 802 s 334 ± 134 MB
no 17 12420 ± 8861 s 1784 ± 738 MB

ConcurrentHashMap
yes 37 173 ± 108 s 104 ± 19 MB
no 3 14 ± 10 s 70 ± 12 MB

GenericObjectPool
yes 22 1934 ± 2208 s 186 ± 78 MB
no 18 10230 ± 7979 s 1136 ± 789 MB

“no” in the “Error found” column). Note that JPF did not run out of available
memory in any experiment with random-sequence environments.

The experimental results show that running times of JPF vary to a great
degree independently of whether JPF found an error or not. Although the ex-
perimental results suggest that running times of JPF generally tend to be shorter
when JPF finds an error and much longer when JPF is applied to a component
in an environment that does not trigger any error (this is especially visible for
AccountDatabase and GenericObjectPool), the results show that JPF can run
very long even when it finds an error in the component. The Figures 2, 3 and
4 show graphs of the empirical cumulative distribution function for the exper-
imental results for each component. A point [t, p] in a graph means that the
running time of JPF (regardless of whether JPF finds an error or not) will be
shorter than t with the probability p. The time axis has a logarithmic scale in
each graph. The graphs indicate that if JPF is running for a long time and has
not found an error yet, then the chance that it will find an error (or terminate
with no error found) in reasonable time is significantly decreasing. Solving this
issue was our primary goal in the application of restarts to the error detection
process.

6 Restart Strategies

Based on [13], we define a restart strategy as a sequence (t1, t2, t3, . . .) of times
at which the error detection process is restarted — i.e. as a sequence of restart
times. The key idea is that if in the run n JPF either (a) does not finish in time
tn or (b) traverses the whole state space in a time shorter than tn and does not
find any error or (c) runs out of memory, then the whole error detection process
is restarted with time limit tn+1 for the JPF run, and so on. We say that a run
of the error detection process involves one or more runs of JPF (iterations of the
run-stop-generate-restart loop) and terminates when a specific JPF run finds an
error. For all iterations except the last one, it holds that either JPF traverses the
whole state space before the restart time (and finds no error) or JPF runs out
of the time limit (restart time). Restart of the error detection process involves
three steps: (i) terminating the current run of JPF, (ii) generating a new random-
sequence environment, and (iii) starting a new run of JPF on the Java program
composed of the component and new environment.
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Fig. 2. Graph of the empirical cumulative distribution function for results of checking
AccountDatabase with random-sequence environments
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Fig. 3. Graph of the empirical cumulative distribution function for results of checking
ConcurrentHashMap with random-sequence environments
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ObjectPool
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Fig. 4. Graph of the empirical cumulative distribution function for results of checking
GenericObjectPool with random-sequence environments

The key challenge is to determine the best possible restart strategy. In this
paper, we focus on the use of a predefined application-independent strategy,
which is the typical approach of SAT solvers. Another possible approach would
be to compute the strategy on the basis of a metric of component’s code or state
space traversal process, where the metric can be static, i.e. measured before a
JPF run, or dynamic, i.e. measured on-the-fly during JPF checking — we discuss
this approach in more detail in Section 9.

We have identified three restart strategies, which are widely and successfully
used in state-of-the-art SAT solvers (e.g., [3,4]) and also in search problems of
other kinds: fixed strategy, Luby strategy, and Walsh geometric strategy. We
performed experiments for all the three strategies to find which gives the best
results in the case of error detection with JPF.

Fixed strategy [5] is a constant sequence S = t, t, t, . . ., where t represents the
fixed restart time.

Luby strategy [12] is a sequence S = k1u, k2u, k3u, . . ., where u is a restart
time unit and ki is computed using the following expression:

ki = 2n−1, if i = 2n − 1
ki = ki−2n−1+1 if 2n−1 ≤ i < 2n − 1

The first few elements of the sequence ki are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8.
Walsh geometric strategy [18] is a sequence S = u, ru, r2u, r3u, . . ., where u is

a restart time unit and r > 1 is a ratio of the geometric sequence. In our case
we used r =

√
2.
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The Luby strategy was proposed in [12] for speedup of randomized algorithms
of the Las Vegas type with unknown probability distribution of running time.
However, the theoretical results presented in [12] (e.g., the bound on the running
time with respect to optimal time) are not applicable in our case of model
checking components with random-sequence environments, since our algorithm
is not strictly of the Las Vegas type — in our case, an input of the algorithm
is different for each run, since different sequence environments are randomly
selected. Similarly, the model for restart strategies proposed in [13] cannot be
used in our case, since the probability distribution of JPF running times for
all random-sequence environments is not known in advance. Knowledge of the
probability distribution is one of the requirements of the model.

We present results of experiments for all combinations of the three restart
strategies — fixed, Luby and Walsh — and six different values of restart time
unit — 1 second, 3 seconds, 10 seconds, 30 seconds, 60 seconds, and 600 seconds.
We selected these values of restart time unit in order to cover a wide range of
situations, including corner cases such as too early restarts and too late restarts.
Restart time unit of 1 second is used only for the Luby and Walsh strategies,
since it is too small for the fixed strategy which does not extend the restart time
adaptively — initialization would form a significant part of JPF’s running time
in that case.

The results of experiments are listed in Table 3 for AccountDatabase, in
Table 4 for ConcurrentHashMap, and in Table 5 for GenericObjectPool. Values
in the “Time” column represent the total running time of the error detection
process, i.e. the time needed to detect an error. Total running time of a single
run of the error detection process equals to the sum of JPF running times in
individual iterations. Similarly, values in the “Memory” column represent the

Table 3. Experimental results for error detection with restarts for AccountDatabase

Strategy Unit time Time Memory

Fixed

3 s 197 ± 47 s 72 ± 1 MB
10 s 153 ± 44 s 108 ± 4 MB
30 s 152 ± 46 s 129 ± 11 MB
60 s 287 ± 81 s 169 ± 14 MB

600 s 1212 ± 488 s 430 ± 71 MB

Luby

1 s 215 ± 43 s 116 ± 8 MB
3 s 240 ± 62 s 130 ± 11 MB

10 s 158 ± 46 s 134 ± 14 MB
30 s 244 ± 77 s 158 ± 14 MB
60 s 323 ± 111 s 172 ± 20 MB

600 s 609 ± 172 s 385 ± 78 MB

Walsh

1 s 216 ± 111 s 133 ± 19 MB
3 s 663 ± 529 s 241 ± 90 MB

10 s 284 ± 85 s 174 ± 23 MB
30 s 270 ± 90 s 179 ± 27 MB
60 s 387 ± 135 s 211 ± 37 MB

600 s 1250 ± 545 s 486 ± 148 MB
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Table 4. Experimental results for error detection with restarts for ConcurrentHashMap

Strategy Unit time Time Memory

Fixed

3 s 19 ± 4 s 57 ± 1 MB
10 s 13 ± 3 s 69 ± 6 MB
30 s 29 ± 9 s 79 ± 7 MB
60 s 26 ± 8 s 78 ± 8 MB

600 s 136 ± 75 s 97 ± 15 MB

Luby

1 s 21 ± 4 s 57 ± 3 MB
3 s 15 ± 3 s 61 ± 3 MB

10 s 18 ± 5 s 71 ± 5 MB
30 s 18 ± 6 s 70 ± 7 MB
60 s 43 ± 12 s 89 ± 9 MB

600 s 73 ± 37 s 82 ± 10 MB

Walsh

1 s 18 ± 7 s 59 ± 4 MB
3 s 15 ± 4 s 64 ± 5 MB

10 s 24 ± 5 s 75 ± 5 MB
30 s 22 ± 7 s 72 ± 6 MB
60 s 33 ± 9 s 87 ± 9 MB

600 s 61 ± 36 s 83 ± 12 MB

Table 5. Experimental results for error detection with restarts for GenericObjectPool

Strategy Unit time Time Memory

Fixed

3 s 28 ± 6 s 53 ± 1 MB
10 s 29 ± 7 s 77 ± 3 MB
30 s 79 ± 20 s 93 ± 6 MB
60 s 120 ± 29 s 127 ± 14 MB

600 s 549 ± 182 s 310 ± 66 MB

Luby

1 s 43 ± 9 s 64 ± 4 MB
3 s 33 ± 12 s 65 ± 5 MB

10 s 58 ± 16 s 83 ± 6 MB
30 s 82 ± 24 s 103 ± 12 MB
60 s 89 ± 37 s 117 ± 19 MB

600 s 594 ± 278 s 300 ± 63 MB

Walsh

1 s 50 ± 21 s 74 ± 9 MB
3 s 47 ± 12 s 80 ± 9 MB

10 s 104 ± 73 s 102 ± 24 MB
30 s 75 ± 26 s 105 ± 18 MB
60 s 413 ± 398 s 173 ± 39 MB

600 s 1197 ± 674 s 391 ± 100 MB

memory needed by the error detection processes. Memory needed by a single
run of the error detection process equals to the maximal value over all iterations
in the run. Note that JPF did not run out of memory in any experiment for
restarts of the error detection process.

Experimental results show that extremely long running times of JPF can be
avoided by restarts of the error detection process. On average, the time needed
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to detect an error is the lowest when the fixed strategy with a small restart time
unit (1, 3, 10 or 30 seconds) is used. However, the results also show that use
of too small a restart time unit (1 or 3 seconds) may actually increase the time
needed to detect an error. The error detection process is restarted too early for
JPF to find an error in such a case.

7 Evaluation

Results of all experiments that we performed show that the combination of
checking with random-sequence environment and restarts of the error detection
process has three main benefits: (1) errors are discovered in very short time in
most cases and in reasonable time in the other cases, (2) extremely long running
times of JPF are avoided, and (3) JPF does not run out of memory. Compared
to checking with random-sequence environments only, the use of restarts always
leads to discovery of an error (assuming there are some errors in the component)
and an error is found in shorter time in most cases. Some random-sequence
environments do not trigger any errors and thus none can be discovered by JPF,
when such an environment is used. Nevertheless, when the checked component
does not contain any errors, then the error detection process would be restarted
again and again — it is up to the user to terminate the process after a reasonable
time (when no error is found after several restarts). Compared to checking with
a universal environment, an error is on average found in shorter time using
random-sequence environments and restarts than it takes JPF to run out of
memory when a universal environment is used.

As for the choice of a restart strategy and restart time unit, best results are
achieved using the fixed strategy and short restart times. However, it is not true
that the shortest restart time always provides the best result. Optimal restart
time most probably depends on whether concurrency errors in the component
are “shallow” or “deep”. Shallow errors exhibit themselves in many thread in-
terleavings (on many state space paths) and therefore can be found “early in the
search” by JPF, while deep errors occur only in rare corner cases (for specific
thread interleavings) and thus it takes JPF more time to find them. Use of short
restart times would give better results in discovery of shallow errors than for
deep errors.

Table 6 summarizes the results of experiments with different approaches de-
scribed in this paper and also presents the results of application of a technique
described in [14] on the same components. The technique described in [14] is
our previous work in automated construction of abstract environment for Java

Table 6. Summary and results for a technique proposed in previous work

Component Univ env Random env Restarts Prev work

AccountDatabase 921 ± 121 s 1040 ± 802 s 152 ± 46 s 114 s
ConcurrentHashMap 1426 ± 377 s 173 ± 108 s 13 ± 3 s 64 s
GenericObjectPool 1034 ± 308 s 1934 ± 2208 s 28 ± 6 s 1590 s



462 P. Parizek and T. Kalibera

components with the goal of efficient detection of concurrency errors. It is based
on a combination of static analysis and a software metric — static analysis is
used to identify method sets whose parallel execution may trigger a concurrency
error, and the metric is used to order the sets by the likeliness that an error will
really occur. Table 6 provides the following information for each component:

– the time it takes JPF to run out of memory when checking the component
with a universal environment (the “Univ env” column),

– the time needed to find a concurrency error in the component when only a
random-sequence environment is used (the “Random env” column),

– the time to find an error using a combination of checking with a random-
sequence environment and restarts of the error detection process (in the
“Restarts” column) — the lowest time over all restart strategies and restart
time units is presented, and

– the time to detect an error using the technique described in [14] (the “Prev
work” column) — the lowest time over all configurations of the metric is
presented in the table.

Results in Table 6 show that the method proposed in this paper is an improve-
ment over our previous work [14]. The proposed method gives significantly better
results for the ConcurrentHashMap and GenericObjectPool components, while
both methods give comparable results in case of the AccountDatabase compo-
nent.

8 Related Work

Significant amount of work has been done in various optimizations aiming to-
wards more efficient search for errors in program code via model checking. The
existing approaches include heuristics for state space traversal, context-bounded
model checking, and a combination of model checking with runtime analysis.

Heuristics for state space traversal are typically used to address state explosion
with the goal of detection of specific errors in reasonable time and memory —
for discovery of concurrency errors, a heuristic that prefers aggressive thread
scheduling [6] can be used.

The idea behind context-bounded model checking [2,16] is to check only those
executions of a given program that involve bounded number of thread context
switches. The bound can apply to all threads together [16] or to each thread
separately [2].

An example of a technique based on the combination of runtime analysis with
model checking is [7]. The key idea of [7] is that runtime analysis is performed
first with the goal of detecting potential concurrency errors in a program, and
then a model checker (JPF) is run on the same program, using counterexamples
provided by the runtime analysis as a guide during state space traversal.

A common characteristic of the approaches described above is that, like the
method proposed in this paper, they sacrifice completeness of checking for the
purpose of efficient detection of errors. Nevertheless, the existing approaches are
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complementary to the proposed method — they could be applied during model
checking of a runnable program, i.e. during a single run of the error detection
process, to reduce the time needed to find an error even further.

9 Summary and Future Work

We have proposed a method for efficient detection of concurrency errors in
Java components with Java PathFinder, which is based on random-sequence
environments and restarts of the error detection process according to a pre-
defined application-independent strategy. Results of experiments that we per-
formed show that the application of the proposed method significantly reduces
the time and memory needed to find errors in components’ code. In particular,
JPF does not run out of memory as in the case of checking with a universal
environment and extremely long running times of JPF, which occur in checking
with random-sequence environments only, are also avoided by using restarts.

Although the proposed method is promising, there is a large space for improve-
ments and optimizations that may further reduce time needed to find errors in
the code. Moreover, we focused only on sequential and static restart strategies
in this paper, but it is possible to use also other kinds of restart strategies. We
will investigate some of the following approaches in the future:

– Use of dynamic restart strategies, e.g. such as proposed in [9], in which case
the restart time could be determined dynamically during a JPF run using a
heuristic. The heuristic could be based on the time JPF is already running
or on the (estimated) size of the already traversed part of the state space
(on the number of explored branches).

– Use of parallel restart strategies, e.g. based on the ideas and results published
in [11]. The key idea would be to increase the chance that an error is found
in shorter time by running several instances of the error detection process in
parallel.

– Use of metrics of component’s code to determine statically, i.e. before the
start of the error detection process, the restart strategy and restart time.

Variants of the proposed method could be applied also to detection of other kinds
of errors. For example, errors like null pointer exceptions or assertion violations
often occur only for specific inputs (method parameters) — the idea would be to
create an abstract environment that calls component’s methods with randomly
selected parameter values. We also plan to evaluate the proposed method on
multiple larger case studies.

Acknowledgments. This work was partially supported by the Grant Agency
of the Czech Republic project 201/08/0266 and by the Ministry of Education of
the Czech Republic (grant MSM0021620838). We also thank Nicholas Kidd for
his valuable comments and suggestions.



464 P. Parizek and T. Kalibera

References

1. Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.:
Component Reliability Extensions for Fractal Component Model (2006),
http://kraken.cs.cas.cz/ft/public/public_index.phtml

2. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-Bounded Analysis for Concurrent
Programs with Dynamic Creation of Threads. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505. Springer, Heidelberg (2009)

3. Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT) 4 (2008)

4. Een, N., Sorensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

5. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through
Randomization. In: Proceedings of AAAI 1998 (1998)

6. Groce, A., Visser, W.: Heuristics for Model Checking Java Programs. International
Journal on Software Tools for Technology Transfer 6(4) (2004)

7. Havelund, K.: Using Runtime Analysis to Guide Model Checking of Java Programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885. Springer,
Heidelberg (2000)

8. Huang, J.: The Effect of Restarts on the Efficiency of Clause Learning. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI
(2007)

9. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies.
In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI
2002). AAAI Press, Menlo Park (2002)

10. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from Mistakes: A Comprehensive
Study on Real World Concurrency Bug Characteristics. In: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2008). ACM, New York (2008)

11. Luby, M., Ertel, W.: Optimal Parallelization of Las Vegas Algorithms. In: Enjal-
bert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775. Springer,
Heidelberg (1994)

12. Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms.
Information Processing Letters 47(4) (1993)

13. van Moorsel, A.P.A., Wolter, K.: Analysis of Restart Mechanisms in Software Sys-
tems. IEEE Transactions on Software Engineering 32(8) (2006)

14. Parizek, P., Adamek, J., Kalibera, T.: Automated Construction of Reasonable En-
vironment for Java Components. To appear in Proceedings of International Work-
shop on Formal Foundations of Embedded Software and Component-Based Soft-
ware Architectures (FESCA 2009). ENTCS (2009)

15. Parizek, P., Plasil, F.: Specification and Generation of Environment for Model
Checking of Software Components. In: Proceedings of International Workshop on
Formal Foundations of Embedded Software and Component-Based Software Ar-
chitectures (FESCA 2006). ENTCS, vol. 176(2) (2007)

16. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

http://kraken.cs.cas.cz/ft/public/public_index.phtml


Efficient Detection of Errors in Java Components 465

17. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering Journal 10(2) (2003)

18. Walsh, T.: Search in a Small World. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence, IJCAI 1999 (1999)

19. Apache Commons Pool, http://commons.apache.org/pool/
20. GNU Classpath, http://www.gnu.org/software/classpath/

http://commons.apache.org/pool/
http://www.gnu.org/software/classpath/


Author Index

Abdulla, Parosh Aziz 158
Aderhold, Markus 221
Alkhalaf, Muath 154
Altisen, Karine 358
Andrés, Miguel E. 373
Avnit, Karin 343

Ball, Thomas 420
Bardin, Sébastien 84
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Goré, Rajeev 114
Griggio, Alberto 99
Guha, Apratim 390
Gupta, Aarti 328

Hague, Matthew 145
Hahn, Ernst Moritz 353
Hennicker, Rolf 175
Hermanns, Holger 353
Herrmann, Philippe 84
Heule, Marijn 129
Hoenicke, Jochen 251
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