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Preface

This volume contains a selection of the papers presented at the 18th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2009),
held on June 28, 2009 in Braśılia, Brazil. Previous WFLP meetings were held
in Siena (2008), Paris (2007), Madrid (2006), Tallinn (2005), Aachen (2004),
Valencia (2003), Grado (2002), Kiel (2001), Benicassim (2000), Grenoble (1999),
Bad Honnef (1998), Schwarzenberg (1997, 1995, and 1994), Marburg (1996),
Rattenberg (1993), and Karlsruhe (1992).

The aim of the WFLP series is to bring together researchers interested in
functional programming, (constraint) logic programming, as well as the integra-
tion of the two paradigms. It promotes the cross-fertilizing exchange of ideas
and experiences among researchers and students from the different communi-
ties interested in the foundations, applications, and combinations of high-level,
declarative programming languages and related areas.

WFLP 2009 solicited papers in all areas of functional and (constraint) logic
programming, including but not limited to:

– Foundations: formal semantics, rewriting and narrowing, non-monotonic rea-
soning, dynamics, and type theory.

– Language Design: modules and type systems, multi-paradigm languages,
concurrency and distribution, and objects.

– Implementation: abstract machines, parallelism, compile-time and run-time
optimizations, and interfacing with external languages.

– Transformation and Analysis: abstract interpretation, specialization, partial
evaluation, program transformation, and meta-programming.

– Software Engineering: design patterns, specification, verification and valida-
tion, debugging, and test generation.

– Integration of Paradigms: integration of declarative programming with other
paradigms such as imperative, object-oriented, concurrent, and real-time
programming.

– Applications: declarative programming in education and industry, domain-
specific languages, visual/graphical user interfaces, embedded systems,
WWW applications, knowledge representation and machine learning, de-
ductive databases, advanced programming environments and tools.

The WFLP 2009 workshop was part of the Federated Conference on Rewrit-
ing, Deduction, and Programming (RDP 2009), which grouped together different
events such as the 20th International Conference on Rewriting Techniques and
Applications (RTA 2009), the 9th International Conference on Typed Lambda
Calculi and Applications (TLCA 2009), the 4th Workshop on Logical and Se-
mantic Frameworks, with Applications (LFSA 2009), the 10th International
Workshop on Rule-Based Programming (RULE 2009), and the 9th International
Workshop on Reduction Strategies in Rewriting and Programming (WRS 2009).



VI Preface

There were 14 original contributions to the workshop, the Program Commit-
tee selected nine papers for publication, and revised versions of these selected
papers are included in this volume. Each contribution was reviewed by at least
three Program Committee members. This volume also includes two invited con-
tributions by Claude Kirchner from the Centre de Recherche INRIA Bordeaux
- Sud-Ouest, France, and Roberto Ierusalimschy from the Departamento de In-
formática, PUC-Rio, Brazil. I would like to thank them for having accepted our
invitation for both the scientific program and this volume. I am also grateful to
Andrei Voronkov for his extremely useful EasyChair system for automation of
conference chairing.

I would also like to thank all the members of the Program Committee and
all the referees for their careful work in the review and selection process. Many
thanks to all authors who submitted papers and to all conference participants.
I gratefully acknowledge the Departamento de Sistemas Informáticos y Com-
putación of the Universidad Politécnica de Valencia, who supported this event.
Finally, I express our gratitude to all members of the Local Organization of the
Federated Conference on Rewriting, Deduction, and Programming (RDP 2009),
whose work made the workshop possible.

December 2009 Santiago Escobar
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Michael Hanus Christian-Albrechts-Universität zu Kiel,

Germany
Frank Huch Christian-Albrechts-Universität zu Kiel,

Germany
Tetsuo Ida University of Tsukuba, Japan
Wolfgang Lux Westfalische Wilhelms-Universität Münster,

Germany
Mircea Marin University of Tsukuba, Japan
Camilo Rueda Universidad Javeriana-Cali, Colombia
Jaime Sánchez-Hernández Universidad Complutense de Madrid, Spain
Anderson Santana de Oliveira Universidade Federal do Rio Grande do Norte,

Brazil

Additional Reviewers

Hassan Aı̈t-Kaci
Gloria Alvarez
Demis Ballis
Bernd Braßel
Linda Brodo
Iliano Cervesato
Yukiyoshi Kameyama

Temur Kutsia
Michael Maher
Miguel Palomino
Cody Roux
Albert Rubio
Clara Segura
Peter Sestoft

Nikhil Swamy
Thierry Boy de la Tour
Rafael del Vado Vrseda
Toshiyuki Yamada
Hans Zantema



Table of Contents

Invited Papers

Programming with Multiple Paradigms in Lua . . . . . . . . . . . . . . . . . . . . . . . 1
Roberto Ierusalimschy

Constraint Based Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Claude Kirchner, Florent Kirchner, and Hélène Kirchner

Contributed Papers

Integrating ILOG CP Technology into T OY . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Programming with Multiple Paradigms in Lua

Roberto Ierusalimschy

PUC-Rio, Rio de Janeiro, Brazil
roberto@inf.puc-rio.br

Abstract. Lua is a scripting language used in many industrial applica-
tions, with an emphasis on embedded systems and games. Two key points
in the design of the language that led to its widely adoption are flexi-
bility and small size. To achieve these two conflicting goals, the design
emphasizes the use of few but powerful mechanisms, such as first-class
functions, associative arrays, coroutines, and reflexive capabilities. As a
consequence of this design, although Lua is primarily a procedural lan-
guage, it is frequently used in several different programming paradigms,
such as functional, object-oriented, goal-oriented, and concurrent pro-
gramming, and also for data description.

In this paper we discuss what mechanisms Lua features to achieve its
flexibility and how programmers use them for different paradigms.

1 Introduction

Lua is an embeddable scripting language used in many industrial applications
(e.g., Adobe’s Photoshop Lightroom), with an emphasis on embedded systems
and games. It is embedded in devices ranging from cameras (Canon) to keyboards
(Logitech G15) to network security appliances (Cisco ASA). In 2003 it was voted
the most popular language for scripting games by a poll on the site Gamedev1.
In 2006 it was called a “de facto standard for game scripting” [1]. Lua is also
part of the Brazilian standard middleware for digital TV [2].

Like many other languages, Lua strives to be a flexible language. However,
Lua also strives to be a small language, both in terms of its specification and its
implementation. This is an important feature for an embeddable language that
frequently is used in devices with limited hardware resources [3]. To achieve these
two conflicting goals, the design of Lua has always been economical about new
features. It emphasizes the use of few but powerful mechanisms, such as first-
class functions, associative arrays, coroutines, and reflexive capabilities [4,5].

Lua has several similarities with Scheme, despite a very different syntax. (Lua
adopts a conventional syntax instead of Lisp’s S-expressions.) Both languages
are dynamically typed. As in Scheme, all functions in Lua are anonymous first-
class values with lexical scoping; a “function name” is just the name of a regular
variable that refers to that function. As in Scheme, Lua does proper tail calls.
Lua also offers a single unifying data-structure mechanism.

1 http://www.gamedev.net/gdpolls/viewpoll.asp?ID=163

S. Escobar (Ed.): WFLP 2009, LNCS 5979, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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However, to keep the language and its implementation small, Lua is more
pragmatic than Scheme. Its main data structure is the table, or associative arrays,
instead of lists. (The former seems a better fit for procedural programming,
while the latter seems better for functional programming.) Instead of a hierarchy
of numerical types —real, rational, integer— in Lua all numbers are double
floating-point values. (With this representation, Lua transfers all the burden of
numeric specification and implementation to the underlying system.) Instead
of full continuations, Lua offers one-shot continuations in the form of stackfull
coroutines [6]. (Efficient implementations of coroutines are much simpler than
efficient implementations of full continuations and most uses of continuations
can be done with coroutines/one-shot continuations.)

As an authentic scripting language, a design goal of Lua is to offer strong
support for dual-language programming [7]. The API with C is a key ingredient
of the language. To easy the integration between the scripting language and
the host language, Lua is amenable to different kinds of programming: event-
driven, object oriented, etc. Moreover, to better explore the flexibility offered
by the language, Lua programmers frequently use several paradigms, such as
functional, object-oriented, goal-oriented, and concurrent programming, and also
data description.

In this paper we discuss what mechanisms Lua features to achieve its flexibil-
ity and how programmers use them for different paradigms. The rest of the paper
is organized around different paradigms. The next section describes the uses of
Lua for data description. Section 3 discusses Lua support for functional program-
ming. Section 4 discusses object-oriented programming in Lua. Section 5 shows
how we can use coroutines to implement goal-oriented programming, where a
goal is either a primitive goal or a disjunction of alternative goals. Section 6 dis-
cusses two ways to implement concurrency in Lua: collaborative multithreading,
using coroutines, and Lua processes, using multiple independent states. Finally,
Section 7 draws some conclusions.

2 Data Description

Lua was born from a data-description language, called SOL [8], a language some-
what similar to XML in intent. Lua inherited from SOL the support for data
description, but integrated that support into its procedural semantics.

SOL was somewhat inspired by BibTeX, a tool for creating and formating
lists of bibliographic references [9]. A main difference between SOL and BibTeX
was that SOL had the ability to name and nest declarations. Figure 1 shows a
typical fragment of SOL code, slightly adapted to meet the current syntax of
Lua. SOL acted like an XML DOM reader, reading the data file and building
an internal tree representing that data; an application then could use an API to
traverse that tree.

Lua mostly kept the original SOL syntax, with small changes. The semantics,
however, was very different. In Lua, the code in Figure 1 is an imperative pro-
gram. The syntax {first = "Daniel", ...} is a constructor : it builds a table,
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dan = name{first = "Daniel", last = "Friedman"}

mitch = name{last = "Wand",

first = "Mitchell",

middle = "P."}

chris = name{first = "Christopher", last = "Haynes"}

book{"essentials",

author = {dan, mitch, chris},

title = "Essentials of Programming Languages",

edition = 2,

year = 2001,

publisher = "The MIT Press"

}

Fig. 1. Data description with SOL/Lua

or associative array, with the given keys and values. The syntax name{...} is
sugar for name({...}), that is, it builds a table and calls function name with
that table as the sole argument. The syntax {dan,mitch,chris} again builds a
table, but this time with implicit integer keys 1, 2, and 3, therefore representing
a list. A program loading such a file should previously define functions name and
book with appropriate behavior. For instance, function book could add the table
to some internal list for later treatment.

Several applications use Lua for data description. Games frequently use Lua
to describe characters and scenes. HiQLab, a tool for simulating high frequency
resonators, uses Lua to describe finite-element meshes [10]. GUPPY uses Lua to
describe sequence annotation data from genome databases [11]. Some descrip-
tions comprise thousands of elements running for a few million lines of code.
The user sees these files as data files, but Lua sees them as regular code. These
huge “programs” pose a heavy load on the Lua precompiler. To handle such files
efficiently, and also for simplicity, Lua uses a one-pass compiler with no interme-
diate representations. As we will see in the next section, this requirement puts
a burden on other aspects of the implementation.

3 Functional Programming

Lua offers first-class functions with lexical scoping. For instance, the following
code is valid Lua code:

(function (a,b) print(a+b) end)(10, 20)

It creates an anonymous function that prints the sum of its two parameters and
applies that function to arguments 10 and 20.



4 R. Ierusalimschy

All functions in Lua are anonymous dynamic values, created at run time. Lua
offers a quite conventional syntax for creating functions, like in the following
definition of a factorial function:

function fact (n)
if n <= 1 then return 1
else return n * fact(n - 1)
end

end

However, this syntax is simply sugar for an assignment:

fact = function (n)
...

end

This is quite similar to a define in Scheme [12].
Lua does not offer a letrec primitive. Instead, it relies on assignment to close

a recursive reference. For instance, a strict recursive fixed-point operator can be
defined like this:

local Y
Y = function (f)

return function (x)
return f(Y(f))(x)

end
end

Or, using some syntactic sugar, like this:

local function Y (f)
return function (x)

return f(Y(f))(x)
end

end

This second fragment expands to the first one. In both cases, the Y in the function
body is bounded to the previously declared local variable.

Of course, we can also define a strict non-recursive fixed-point combinator in
Lua:

Y = function (le)
local a = function (f)
return le(function (x) return f(f)(x) end)

end
return a(a)

end

Despite being a procedural language, Lua frequently uses function values.
Several functions in the standard Lua library are higher-order. For instance,
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the sort function accepts a comparison function as argument. In its pattern-
matching functions, text substitution accepts a replacement function that re-
ceives the original text matching the pattern and returns its replacement. The
standard library also offers some traversal functions, which receive a function to
be applied to every element of a collection.

Most programming techniques for strict functional programming also work
without modifications in Lua. As an example, LuaSocket, the standard library for
network connection in Lua, uses functions to allow easy composition of different
functionalities when reading from and writing to sockets [13].

Lua also features proper tail calls. Again, although this is a feature from
the functional world, it has several interesting uses in procedural programs. For
instance, it is used in a standard technique for implementing state machines [4].
In these implementations, each state is represented by a function, and tail calls
transfer the program from one state to another.

Closures

The standard technique for implementing strict first-class functions with lexical
scoping is with the use of closures. Most implementations of closures neglect as-
signment. Pure functional languages do not have assignment. In ML assignable
cells have no names, so the problem of assignment to lexical-scoped variables
does not arise. Since Rabbit [14], most Scheme compilers do assignment con-
versions [15], that is, they implement assignable variables as ML cells on the
correct ground that they are not used often.

None of those implementations fit Lua, a procedural language where assign-
ment is the norm. Moreover, as we already mentioned, Lua has an added require-
ment that its compiler must be fast, to handle huge data-description “programs”,
and small. So, Lua uses a simple one-pass compiler with no intermediate repre-
sentations which cannot perform even escape analysis.

Due to these technical restrictions, previous versions of Lua offered a restricted
form of lexical scoping. In that restricted form, a nested function could access the
value of an outer variable, but could not assign to such variable. Moreover, the
value accessed was frozen when the closure was created. Lua version 5, released
in 2003, came with a novel technique for implementing closures that satisfies the
following requirements [16]:

– It does not impact the performance of code that does not use non-local
variables.

– It has an acceptable performance for imperative programs, where side effects
(assignment) are the norm.

– It correctly handles sharing, where more than one closure modifies a non-
local variable.

– It is compatible with the standard execution model for procedural languages,
where variables live in activation records allocated in an array-based stack.

– It is amenable to a one-pass compiler that generates code on the fly, without
intermediate representations.



6 R. Ierusalimschy

4 Object-Oriented Programming

Lua has only one data-structure mechanism, the table. Tables are first-class,
dynamically created associative arrays.

Tables plus first-class functions already give Lua partial support for objects.
An object may be represented by a table: instance variables are regular table
fields and methods are table fields containing functions. In particular, tables
have identity. That is, a table is different from other tables even if they have the
same contents, but it is equal to itself even if it changes its contents over time.

One missing ingredient in the mix of tables with first-class functions is how
to connect method calls with their respective objects. If obj is a table with a
method foo and we call obj.foo(), foo will have no reference to obj. We could
solve this problem by making foo a closure with an internal reference to obj,
but that is expensive, as each object would need its own closure for each of its
methods.

A better mechanism would be to pass the receiver as a hidden argument to
the method, as most object-oriented languages do. Lua supports this mechanism
with a dedicated syntactic sugar, the colon operator : the syntax orb:foo() is
sugar for orb.foo(orb), so that the receiver is passed as an extra argument to
the method. There is a similar sugar for method definitions. The syntax

function obj:foo (...) ... end

is sugar for

obj.foo = function (self, ...) ... end

That is, the colon adds an extra parameter to the function, with the fixed name
self. The function body then may access instance variables as regular fields of
table self.

To implement classes and inheritance, Lua uses delegation [17,18]. Delega-
tion in Lua is very simple and is not directly connected with object-oriented
programming; it is a concept that applies to any table. Any table may have a
designated “parent” table. Whenever Lua fails to find a field in a table, it tries
to find that field in the parent table. In other words, Lua delegates field accesses
instead of method calls.

Let us see how this works. Let us assume an object obj and a call obj:foo().
This call actually means obj.foo(obj), so Lua first looks for the key foo in
table obj. If obj has such field, the call proceeds normally. Otherwise, Lua
looks for that key in the parent of obj. Once it found a value for that key, Lua
calls the value (which should be a function) with the original object obj as the
first argument, so that obj becomes the value of the parameter self inside the
method’s body.

With delegation, a class is simply an object that keeps methods to be used
by its instances. A class object typically has constructor methods too, which are
used by the class itself. A constructor method creates a new table and makes it
delegates its accesses to the class, so that any class method works over the new
object.
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If the parent object has a parent, the query for a method may trigger an-
other query in the parent’s parent, and so on. Therefore, we may use the same
delegation mechanism to implement inheritance. In this setting, an object rep-
resenting a (sub)class delegates accesses to unknown methods to another object
representing its superclass.

For more advanced uses, a program may set a function as the parent of a
table. In that case, whenever Lua cannot find a key in the table it calls the
parent function to do the query. This mechanism allows several useful patterns,
such as multiple inheritance and inter-language inheritance (where a Lua object
may delegate to a C object, for instance).

5 Goal-Oriented Programming

Goal-oriented programming involves solving a goal that is either a primitive
goal or a disjunction of alternative goals. These alternative goals may be, in
turn, conjunctions of subgoals that must be satisfied in succession, each of them
giving a partial outcome to the final result. Two typical examples of goal-oriented
programming are text pattern matching [19] and Prolog-like queries [20].

In pattern-matching problems, the primitive goal is the matching of string
literals, disjunctions are alternative patterns, and conjunctions represent se-
quences. In Prolog, the unification process is an example of a primitive goal,
a relation constitutes a disjunction, and rules are conjunctions. In those con-
texts, a problem solver uses a backtracking mechanism that successively tries
each alternative until it finds an adequate result.

A main problem when implementing problem solvers in conventional pro-
gramming languages is that it is difficult to find an architecture that keeps the
principle of compositionality. Following this principle, a piece of code that solves
a problem should be some composition of the pieces that solve the subproblems.
Because each subproblem may have more than one possible solution, an adequate
architecture should provide an efficient way for each subproblem to produce its
solutions one by one, by demand.

Lazy functional languages provide an interesting architecture for problem solv-
ing: the piece of code that solves a problem simply returns a list of all possible
solutions [21]. Laziness ensures that the code actually produces only the solutions
needed to find a global solution for the entire problem.

In Lua, we can use coroutines [22] for the task. A well-known model for Prolog-
style backtracking is the two-continuation model [23,24]. Although this model
requires multi-shot continuations, it is not difficult to adapt it to coroutines that
are equivalent to one-shot continuations [25,6]. The important point is that the
coroutine model keeps the principle of compositionality for the resulting system,
as we will see in the following example.

Figure 2 shows a simple implementation of a pattern-matching library, taken
from [6]. Each pattern is represented by a function that receives the subject plus
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-- matching any character (primitive goal)

function any (S, pos)

if pos < string.len(S) then coroutine.yield(pos + 1) end

end

-- matching a string literal (primitive goal)

function lit (str)

local len = string.len(str)

return function (S, pos)

if string.sub(S, pos, pos+len-1) == str then

coroutine.yield(pos+len)

end

end

end

-- alternative patterns (disjunction)

function alt (patt1, patt2)

return function (S, pos)

patt1(S, pos); patt2(S, pos)

end

end

-- sequence of sub-patterns (conjunction)

function seq (patt1, patt2)

return function (S, pos)

local btpoint = coroutine.wrap(function() patt1(S, pos) end)

for npos in btpoint do patt2(S, npos) end

end

end

Fig. 2. A simple pattern-matching library

the current position and yields each possible final position for that match. More
specifically, the code for a pattern yields all values j such that sub(s, i, j − 1)
(that is, the substring of s from i to j − 1) matches the pattern.

Function any is a primitive pattern that matches any character. Function lit
builds a primitive pattern that matches a literal string. Its resulting function only
checks whether the substring from the subject starting at the current position
is equal to the literal pattern; if so it yields the next position, otherwise it ends
without yielding any option.

Function alt builds an alternative of two patterns: it simply calls the first
one and then the second one. Each subpattern will yield its possible matchings.

Finally, function seq builds a sequence of two patterns. It runs the first one
inside a new coroutine to collect its possible results and runs the second pattern
for each of these results.
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The next fragment shows a simple use:

-- subject
s = "abaabcda"
-- pattern: (.|ab)..

p = seq(alt(any, lit("ab")), seq(any, any))
seq(p, print)(s, 1)
-- results
--> abaabcda 4
--> abaabcda 5

It “sequences” the pattern with the print function, which prints its arguments
(the subject plus the current position after matching p), and then calls the
resulting pattern with the subject and the initial position (1).

6 Concurrent Programming

Traditional multithreading, which combines preemption and shared memory,
is difficult to program and prone to errors [26]. Lua avoids the problems of
traditional multithreading by cutting either preemption or shared memory.

To achieve multithreading without preemption, Lua uses coroutines. A stack-
ful coroutine [6] is essentially a thread; it is easy to write a simple scheduler with
a few lines of code to complete the system. The book Programming in Lua [4]
shows an implementation for a primitive multithreading system with less than
50 lines of Lua code.

This combination of coroutines with a scheduler results in collaborative mul-
tithreading, where each thread should explicitly yield periodically. This kind of
concurrency seems particularly apt for simulation systems and games.2

Coroutines offer a very light form of concurrency. In a regular PC, a program
may create tens of thousands of coroutines without draining system resources.
Resuming or yielding a coroutine is slightly more expensive than a function call.
Games, for instance, may easily dedicate a coroutine for each relevant object in
the game.

When compared to traditional multithreading, collaborative multithreading
trades fairness for correctness. In traditional multithreading, preemption is the
norm. It is easy to achieve fairness, because the system takes care of it through
time slices. However, it is difficult to achieve correctness, because race conditions
can arise virtually in any point of a program. With collaborative multithreading,
or coroutines, there are no race conditions and therefore it is much easier to
ensure correctness. However, the programmer must deal with fairness explicitly,
by ensuring that long threads yield regularly.

Lua also offers multithreading by removing shared memory. In this case, the
programming model follows Unix processes, where independent lines of execution
do not share any kind of state: Each Lua process has its own logical memory space

2 Simula offered coroutines for this reason [27].
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with independent garbage collection. All communication is done through some
form of message passing. Messages cannot contain references, because references
(addresses) have no meaning across different processes. A main advantage of
multiple processes is the ability to benefit from multi-core machines and true
concurrency. Processes do not interfere with each other unless they explicitly
request communication.

Lua does not offer an explicit mechanism for multiple processes, but it allows
us to implement one as a library on top of stock Lua. Again, the book Program-
ming in Lua [4] presents a simple implementation of a library for processes in
Lua written with 200 lines of C code.

The key feature in Lua to allow such implementation is the concept of a
state. Lua is an embedded language, designed to be used inside other appli-
cations. Therefore, it keeps all its state in dynamically-allocated structures, so
that it does not interfere with other data from the application. If a program
creates multiple Lua states, each one will be completely independent of the
others.

The implementation of Lua processes uses multiple C threads, each with its
own private Lua state. The library itself, in the C level, must handle threads,
locks, and conditions. But Lua code that uses the library does not see that
complexity. What it sees are independent Lua states running concurrently, each
with its own private memory. The library provides also some communication
mechanism. When two processes exchange data, the library copies the data from
one Lua state to the other.

Currently there are two public libraries with such support: LuaLanes [28],
which uses tuple spaces for communication, and Luaproc [29], which uses named
channels.

7 Final Remarks

Lua is a small and simple language, but is also quite flexible. In particular, we
have seen how it supports different paradigms, such as functional programming,
object-oriented programming, goal-oriented programming, and data description.

Lua supports those paradigms not with many specific mechanisms for each
paradigm, but with few general mechanisms, such as tables (associative arrays),
first-class functions, delegation, and coroutines. Because the mechanisms are not
specific to special paradigms, other paradigms are possible too. For instance,
AspectLua [30] uses Lua for aspect-oriented programming.

All Lua mechanisms work on top of a standard procedural semantics. This
procedural basis ensures an easy integration among those mechanisms and be-
tween them and the external world; it also makes Lua a somewhat conven-
tional language. Accordingly, most Lua programs are essentially procedural, but
many incorporate useful techniques from different paradigms. In the end, each
paradigm adds important items into a programmer toolbox.
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Abstract. Numerous computational and deductive frameworks use the
notion of strategy to guide reduction and search space exploration, mak-
ing the macro scale control of micro operations an explicit object of
interest. In recent works, abstract strategies have been defined in exten-
sion but also intensionally. In this paper we complete these views with a
new declarative approach based on constraints, which are used to model
the different parts of a strategy. This procedure allows us to express
elaborate strategies in a declarative and reusable way.

1 Introduction

The fundamental complementarity between deduction and computation, as em-
phasized in particular in deduction modulo [8], gives now rise to a completely
new generation of proof assistants where customized deductions are performed
modulo appropriate and user definable computations. This collusion of deduc-
tion and computation in next-generation proof assistants has inspired our recent
work at providing a uniform definition for strategies, starting from a rule-based
view point [12].

For term rewriting, reduction strategies study which expressions should be
selected for evaluation and which rules should be applied. These choices are usu-
ally made to increase the efficiency of evaluation but may affect fundamental
properties of computations such as confluence or (non-)termination. Program-
ming languages like TOM [3], ELAN [4], Maude [20] and Stratego [22] allow for
the explicit definition of the evaluation strategy.

Deductive environments include interactive proof assistants, automated the-
orem provers, proof checkers, and logical frameworks. For these systems, strate-
gies (also called tacticals in some contexts) are used for proof search and proof
planning, restriction of search spaces, specification of control components, com-
bination of different proof techniques and computation paradigms, or meta-level
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programming in reasoning systems. Interest for these fundamental elements of
deductive systems has been growing in recent years: see for instance [7,10,6,17]
in the field of procedural proof assistants.

One main difficulty in defining strategies, both for deduction or computation,
is precisely the specification of the strategy that the user wants the system to
apply. Indeed, a strategy describes paths in the search or the reduction space
that are complex objects, depending of the initial goal, but also of past and
future of the current state exploration. To deal with this difficulty, we have first
defined abstract strategies in extension [12] so that the strategy object, as well
as its basic properties, can be studied thoroughly and precisely. A second step
then consisted in providing a language to help describe the strategies of interest
in an operational fashion. This approach is developed in [5] under the name of
intensional strategies.

In what follows we develop another point of view, using the modeling capabil-
ities of constraints to provide a declarative way of defining strategies. One of the
main interest of this new approach is that the constraints solving process is taken
care of by the environment, releasing the user of making procedural description
of search or reduction paths. The constraints then become very powerful tools,
well-suited to model the complexity, non-determinism, and infiniteness of strate-
gies. By calling upon constraints either symbolic or numeric, the user can focus
on the properties and correctness of the strategies he wants to define. More-
over, this declarative approach being free from circumstantial details such as an
execution context, it bears the promise of both portability and reusability.

Based on the previous works of [12,5], the next section synthesizes the frame-
works of abstract reduction strategies and of intensional strategies. We then
define derivation schemas, a way to algebraize the notion of abstract strate-
gies. Derivation variables are in particular introduced and are one of the main
schematisation tool. These schemas can then be instantiated by the solutions of
appropriate constraints via the adapted notion of substitution. We illustrate our
approach by using progressively complex examples, making use mainly in this
paper of equality constraints.

We assume the reader familiar with term rewriting and basic notions of term
algebra as typically defined in [2] or [13].

2 Abstract Reduction Strategies

In this section, we recall from previous works, the general notion of abstract
reduction systems already presented in [21,12,5], as well as the definitions of
abstract strategies given in [12] and intensional strategies given in [5].

2.1 Abstract Reduction Systems

When abstracting the notion of strategies, one important preliminary remark is
that we need to start from an appropriate notion of abstract reduction system
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(ARS) based on the notion of oriented labeled graph instead of binary relation.
This is due to the fact that, speaking of derivations, we need to make a difference
between “being in relation” and “being connected”. Typically modeling ARS as
relations as in [2] allows us to say that, e.g., a and b are in relation but not
that there may be several different ways to derive b from a. Consequently, we
need to use a more expressive approach, similar to the one proposed in [21,
Chapter 8], based on a notion of oriented graph. Our definition is similar to
the one given in [12] with the slight difference that we make more precise the
definition of steps and labels. Similarly to the step-based definition of an abstract
reduction system of [21], this definition that identifies the reduction steps avoids
the so-called syntactic accidents [18], related to different but indistinguishable
derivations.

Definition 1 (Abstract reduction system). Given a countable set of objects
O and a countable set of labels L mutually disjoint, an abstract reduction system
(ARS) is a triple (O,L, Γ ) such that Γ is a functional relation from O×L to O:
formally, Γ ⊆ O × L×O and (a, φ, b1) ∈ Γ and (a, φ, b2) ∈ Γ implies b1 = b2.

The tuples (a, φ, b) ∈ Γ are called steps and are often denoted by a
φ−→ b. We

say that a is the source of a
φ−→ b, b its target and φ its label. Moreover, two

steps are composable if the target of the former is the source of the latter.

The condition that Γ is a functional relation implies that an ARS is a partic-
ular case of a labeled transition system. Actually, labels characterize the way
an object is transformed: given an object and a transformation, there is at
most one object resulting from the transformation applied to this particular
object.

The next definitions can be seen as a renaming of usual ones in graph theory.
Their interest is to allow us to define uniformly derivations and strategies in
different contexts.

Definition 2 (Derivation). Given an abstract reduction system A = (O,L, Γ )
we call derivation over A any sequence π of steps

(
(ti, φi, ti+1)

)
i∈� for any right-

open interval � ⊆ N starting from 0. If � contains at least one element, then:

– Dom(π) = t0 is called the source (or domain) of π,
– l(π) = (φi)i∈� is a sequence called label of π,
– For any non empty subinterval �′ ⊆ �, π′ =

(
(ti, φi, ti+1)

)
i∈�′ is a factor of

π. If �′ contains 0, then π′ is a prefix of π. If �′ �= �, π′ is a strict factor
(prefix).

If � is finite, it has a smallest upper bound denoted by n� or simply n and then:

– Im(π) = tn is called the target (or image) of π,
– |π | = card(�) is called the length of π,
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In such a case, π is said to be finite and is also denoted by π = (t0, l(π), tn)

or t0
l(π)−−→ tn. The sequence containing no step is called empty derivation and

is denoted by Λ and by convention l(Λ) = ε where ε is the empty sequence of
elements of L.

We denote by Γ ω
A (resp. Γ ∗

A, resp. Γ+
A ) the set of all derivations (resp. finite,

resp. non-empty and finite) over A.
Note that a step may be considered as a derivation of length 1.

Definition 3 (Composable derivations). Two derivations over a same ab-
stract reduction system A = (O,L, Γ ), say π1 =

(
(ti, φi, ti+1)

)
i∈�1

and π2 =(
(ui, φi, ui+1)

)
i∈�2

are composable iff either one of the derivation is empty or �1

is finite and then tn1 = u0 where n1 is the smallest upper bound of �1. In such a
case, the composition of π1 and π2 is the unique derivation π =

(
(vi, φi, vi+1)

)
i∈�

denoted by π = π1π2 such that for all j < |π1 |, vj = tj and for all j ≥ |π1 |,
vj = uj−|π1 |.

The composition is associative and has a neutral element which is Λ. Adopting
the product notation, we denote

∏n
i=1 πi = π1 . . . πn, πn =

∏n
i=1 π and πω =∏

i∈N
π.

Like for graphs and labeled transition systems, in order to support intuition,
we will often use the obvious graphical representation to denote the correspond-
ing ARS.

a

φ1
��

φ2

��

b
φ3

��

φ4

��
c d

a

φ1

��

φ2

��
a

φ1
��
b

φ2

��

(a) Alc (b) Ac (c) Aloop

Fig. 1. Graphical representation of abstract reduction systems

Example 1 (Abstract reduction systems). The abstract reduction system

Alc = ({a, b, c, d}, {φ1, φ2, φ3, φ4}, {(a, φ1, b), (a, φ2, c), (b, φ3, a), (b, φ4, d)})

with a finite number of objects but infinite derivations is depicted in Figure 1(a).
Γ ω
Alc

contains for instance π1, π1π3, π1π4, π1π3π1, (π1π3)n, (π1π3)ω, . . ., with π1 =
(a, φ1, b), π2 = (a, φ2, c), π3 = (b, φ3, a), π4 = (b, φ4, d).

Another abstract reduction system with an infinite set of objects and a count-
able infinite set of derivations starting from a same source is Aex =

({aj
i | i, j ∈ N}, N ∪ {φj

i | 1 ≤ i < j}, {(a0
0, j, a

j
1) | 1 ≤ j} ∪ {(aj

i , φ
j
i , a

j
i+1) | 1 ≤ i < j})
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whose relation can be depicted by:

a1
1

a2
1

φ2
1 �� a2

2

a0
0

1

		������������������

2



��������������

n

����������������

...

���
��

��
��

��
��

��
��

��
�

...

an
1

φn
1 �� . . .

φn
n−2 �� an

n−1

φn
n−1 �� an

n

...

2.2 Abstract Strategies

We use a general definition slightly different from the one used in [21, Chapter
9]. This approach has already been proposed in [12] and improved in [5].

Definition 4 (Abstract Strategy). Given an ARS A, an abstract strategy
ζ over A is a subset of derivations of Γ ω

A.

A strategy can be a finite or an infinite set of derivations, and the derivations
themselves can be finite or infinite in length.

An abstract strategy over an abstract reduction system A = (O,L, Γ ) induces
a (partial) function from O to 2O. This functional point of view has been already
proposed in [4]; we just briefly recall it in our formalism.

The domain of a strategy ζ is the set of objects that are source of a derivation
in ζ:

Dom(ζ) =
⋃
π∈ζ

Dom(π)

The application of a strategy is defined (only) on the objects of its domain. The
application of a strategy ζ on a ∈ Dom(ζ) is denoted ζa and is defined as the
set of all objects that can be reached from a using a finite derivation in ζ:

ζa = {Im(π) | π ∈ ζ, π finite and Dom(π) = a}

If a �∈ Dom(ζ) we say that ζ fails on a (either ζ contains no derivation or it
contains no derivation of source a).

If a ∈ Dom(ζ) and ζa = ∅, we say that the strategy ζ is indeterminate on
a. In fact, ζ is indeterminate on a if and only if ζ contains no finite derivation
starting from a.



18 C. Kirchner, F. Kirchner, and H. Kirchner

Example 2 (Strategies). Let us consider again the abstract reduction system Alc

presented in Example 1 and define the following strategies:

1. The strategy ζu = Γ ω
Alc

, also called the Universal strategy [12] (w.r.t. Alc),
contains all the derivations of Alc. We have ζua = ζub = {a, b, c, d} and ζu

fails on c and d.

2. The strategy ζf = ∅, also called Fail, contains no derivation and thus fails
on any x ∈ {a, b, c, d}.

3. For the strategy ζc =
{(

a
φ1φ3−−−→ a

)n

a
φ2−→ c | n ≥ 0

}
no matter which deriva-

tion is considered, the object a eventually reduces to c: ζca = {c}. ζc fails on
b, c and d.

4. The strategy ζω =
{(

a
φ1φ3−−−→ a

)ω
}

is not terminating on a and fails on b, c

and d.

The so-called Universal and Fail strategies introduced in Example 2 can be
obviously defined over any abstract reduction system.

2.3 Intensional Strategies

In [5], the notion of intensional strategy is introduced. The essence of the idea is
that strategies are considered as a way of constraining and guiding the steps of
a reduction. So at any step in a derivation, it should be possible to say whether
a contemplated next step obeys the strategy ζ. In order to take into account the
past derivation steps to decide the next possible ones, the history of a derivation
has to be memorized and available at each step. Let us first introduce the notion
of traced-object where each object memorizes how it has been reached.

Definition 5 (Traced-object). Given a countable set of objects O and a count-
able set of labels L mutually disjoint, a traced-object is a pair [α] a where α is a
sequence of elements of O × L called trace or history.

The set of traces may be considered as a monoid
(
(O × L)∗,�

)
generated by

(O × L) and whose neutral element is denoted by Λ.

Definition 6 (Traced object compatible with an ARS). A traced-object
[α] a is compatible with A = (O,L, Γ ) iff α = ((ai, φi))i∈� for any right-open
interval � ⊆ N starting from 0 and a = an and for all i ∈ �, (ai, φi, ai+1) ∈ Γ .
In such a case, we denote by �α� the derivation

(
(ai, φi, ai+1)

)
i∈� and by O[A]

the set of traced objects compatible with A. Moreover, we define an equivalence
relation ∼ over O[A] as follows: [α] a ∼ [α′]a′ iff a = a′. We naturally have
O[A]/∼= O.

An intensional strategy, as defined in [5], chooses the next step not only regarding
the current object (or state), but also taking the history of objects into account.
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Definition 7 (Intensional strategy (with memory)). An intensional strat-
egy over an abstract reduction system A = (O,L, Γ ) is a partial function λ
from O[A] to 2Γ such that for every traced object [α] a, λ([α] a) ⊆ {π ∈ Γ |
Dom(π) = a}.

An intensional strategy naturally generates an abstract strategy, as follows [5].

Definition 8 (Extension of an intensional strategy). Let λ be an inten-
sional strategy over an abstract reduction system A = (O,L, Γ ). The extension
of λ is the abstract strategy ζλ consisting of the following set of derivations:

π = ((ai, φi, ai+1))i∈� ∈ ζλ iff ∀j ∈ �, (aj , φj , aj+1) ∈ λ([α] aj)

where α = ((ai, φi))i∈�.

This extension may obviously contain infinite derivations; in such a case it also
contains all the finite derivations that are prefixes of the infinite ones. Indeed, it
is easy to see from Definition 8 that the extension of an intensional strategy is
closed under taking prefixes.

It has been shown in [5] that the set of finite derivations generated by an inten-
sional strategy λ can be constructed inductively as follows. Given an intensional
strategy with memory λ over an abstract reduction system A = (O,L, Γ ), the
finite support of its extension is the subset of ζλ made of only finite derivations.
This is again an abstract strategy denoted ζ<ω

λ inductively defined as follows:

– ∀ [Λ] a ∈ O[A], λ([Λ] a) ⊆ ζ<ω
λ ,

– ∀α s.t. π = �α� ∈ ζ<ω
λ and π′ ∈ λ ([α] Im(π)) , ππ′ ∈ ζ<ω

λ

Each intensional strategy λ over A = (O,L, Γ ) induces an ARS Aλ =(
O[A],L, Γλ

)
such that ([α] a, φ, [α� (a, φ)] b) ∈ Γλ iff (a, φ, b) ∈ λ([α] a).

This is denoted by: [α] a
φ−→λ [α� (a, φ)] b.

A special case are memoryless strategies, where the function λ does not depend
on the history of the objects. This is the case of many strategies used in rewriting
systems, as shown in the next examples.

Example 3. Let us define the following strategies:

– The intensional strategy λu defined on all objects in O such that for any
object a ∈ O, λu(a) = {π | π ∈ Γ, Dom(π) = a} obviously generates the
Universal strategy ζu (of Example 2).

– The intensional strategy λf defined on no object in O generates the Fail
strategy ζf (of Example 2).

– Let us consider an abstract reduction system A where objects are terms,
reduction of Γ is term rewriting with a rewrite rule in the rewrite system,
and labels are positions where the rewrite rules are applied. Let us consider
an order < on the labels which is the prefix order on positions. Then the
intensional strategy that corresponds to innermost rewriting is λinn such that

λinn(t) = {π : t
p−→ t′ | p = max({p′ | t

p′
−→ t′ ∈ Γ})}. When a lexicographic

order is used, the classical rightmost-innermost strategy is obtained.
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However the following examples of strategies cannot be expressed without the
knowledge of the history and illustrate the interest of traced objects.

Example 4.

– The intensional strategy that restricts the derivations to be of bounded
length k makes use of the size of the trace α, denoted |α|:

λltk([α] a) = {π | π ∈ Γ, Dom(π) = a, |α| < k − 1}

– The strategy that alternates reductions from a set (of steps) Γ1 with reduc-
tions from a set Γ2 can be generated by the following intensional strategy:

λΓ1;Γ2([Λ]a) = {π1 | π1 ∈ Γ1, Dom(π1) = a}
λΓ1 ;Γ2([α′ � (u, φ′)] a) = {π1 | π1 ∈ Γ1, Dom(π1) = a} if u

φ′
−→ a ∈ Γ2

λΓ1 ;Γ2([α
′ � (u, φ′)] a) = {π2 | π2 ∈ Γ2, Dom(π2) = a} if u

φ′
−→ a ∈ Γ1

However, as noticed in [5], the fact that intensional strategies generate only prefix
closed abstract strategies prevents us from computing abstract strategies that
look straightforward like the ones in the next example.

Example 5. We consider again the abstract reduction system Alc and a strategy
reduced to only one derivation ζ = {a φ1−→ b

φ3−→ a
φ2−→ c}. ζ cannot be computed

by an intensional strategy λ built as before since ζ<ω
λ would contain too many

derivations, namely all prefixes of the derivation:

[Λ] a
φ1−→λ [(a, φ1)] b

φ3−→λ [(a, φ1)� (b, φ3)] a
φ2−→λ [(a, φ1)� (b, φ3)� (a, φ2)] c

In a similar way, there is no intensional strategy that can generate a set of
derivations of length exactly k.

The next section introduces another approach to define abstract strategies that
in particular avoids this problem.

3 Constraints and Strategies

Since a strategy is a set of derivations, this set can be described in extension, as
done in Example 2. But such definitions are not so convenient especially when
the set is infinite. In this section, we make use of constraints as the basic language
construction to describe strategies in a compact way. The schematization power
of constraints is universally used in informatics and mathematics. More specifi-
cally, constraints have been extensively used in constraint logic programming [9],
rewriting and deduction [14], and constraint solving itself [11] to mention just a
few.

Since abstract reduction systems may involve infinite sets of objects, of re-
duction steps and of derivations, we can use constraints at different levels that
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can be ultimately combined: (i) to describe the objects occurring in a derivation
(ii) to describe via the labels the requirements on the steps of reductions (iii) to
describe the structure of the derivation itself (iv) to express requirements on the
histories.

The framework we develop now allows us to define a strategy ζ as all in-
stances σ(S) of a derivation schema S such that σ is solution of a constraint C
involving derivation variables in XD, typically denoted by D, object variables in
XO, typically denoted X , and label variables in XL, typically denoted L. Similar
schemes could be done for history but are left out of this paper for simplification
purpose. Therefore, in order to represent the objects is a generic way, we make
use of (open) first-order terms T (F ,XO) over a signature F .

Definition 9. A derivation schema is a derivation on an abstract reduction
system A = (T (F ,XO),L∪XL, Γ ∪XD). It is a sequence of steps, written either

π = ((ai, φi, ai+1))i∈� or π = aj
φj−→ aj+1

φj+1−−−→ . . . ai
φi−→ ai+1 when π is finite,

and where each ai is a term of T (F ,XO), each φi may be a label or a variable
in XL, each step (a, φ, b) may be a step of Γ or a variable in XD, each sequence
π may be a sequence of steps or a variable in XD.

Notice that in this definition, we may also define term based labels and even
derivations. Again, we choose not to get too general in this paper to keep the
main ideas more apparent.

Notice also that, up to the labels, derivation schema are terms build over the
binary symbol → with terms of T (F ,XO) as leaves. As we will see, this view is
quite fruitful and require to assume from now on that the labeled arrow symbols
are “associative” with neutral element Λ, in the following sense:

a1
φ1−→ (a2

φ2−→ a3) = (a1
φ1−→ a2)

φ2−→ a3 (1)

Λ
φ−→ a = a

φ−→ Λ = a (2)

We have now to make clear how derivation schema can be instantiated to
express derivations.

Definition 10. Given a derivation schema S on an abstract reduction system
A = (T (F ,XO),L ∪ XL, Γ ∪ XD), a substitution σ is composed of substitutions
σO of T (F ,XO), σL from XL to L∪XL and σΓ from XD to Γ ∪XD. The image
of S by σ is given by the instance of each of its step:

if a, b ∈ T (F ,XO), φ ∈ L ∪ XL, D, D′ ∈ Γ ∪ XD, π = ((ai, φi, ai+1))i∈�,

σ(a, φ, b) = (σO(a)
σL(φ)−−−−→ σO(b))

σ(D, φ, b) = (σΓ (D)
σL(φ)−−−−→ σO(b))

σ(a, φ, D) = (σO(a)
σL(φ)−−−−→ σΓ (D))

σ(D, φ, D′) = (σΓ (D)
σL(φ)−−−−→ σΓ (D′))

σ(π) = (σ(ai, φi, ai+1))i∈�
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To describe sets of derivations, it is convenient to use notations like {x → D|D ∈
ζ} where by convention x → D is exactly x when ζ = ∅.

Definition 11. A derivation constraint over (T (F ,XO),L∪XL, Γ∪XΓ ) is a for-
mula C involving free variables variables of XO, XL and XΓ . We denote Sol(C)
the set of solutions σ of C, that are ground instances of variables of C.

The previous definition is on purpose quite general and leaves open the language
on which the formulae are built. This can be for instance equality constraints,
membership constraints or ordering constraints but also anti-pattern constraints
like in [15] as well as first-order constraints or higher-order constraints involv-
ing functional variables, all these possibly occurring modulo some congruence
typically defined by an equational theory like associativity or commutativity.

In order to make some syntactic evidence that a given formula is considered
as a constraint, the predicate symbols appearing in such a constraint are distin-
guished with a question mark like in X + Y =? Z + X .

Definition 12. The abstract strategy schematized by (S | C), where S is a
derivation schema and C a derivation constraint over an abstract reduction sys-
tem A = (O ∪ XO,L ∪ XL, Γ ∪ XΓ ), is the subset ζ of derivations of Γ ω

(O,L,Γ )
defined as

ζ = {σ(S) | σ ∈ Sol(C)}

Note that for any (ground) abstract reduction system A = (O,L, Γ ), the uni-
versal strategy, which corresponds to the set of all derivations can be (trivially)
described as (D | D ∈? Γ ω

A).
In order to relate these definitions with the previous concepts, we may point

out that if we consider the abstract strategy ζλ generated by the intensional
strategy λ, ζλ can be described as

(D | D ∈? Γ ω
A ∧ [(X, L, Y ) ∈? D ⇒ (X, L, Y ) ∈? λ(X)])

To illustrate the expressivity of strategies with constraints, let us begin with
an example of an abstract reduction system on terms, and remind the classical
fact that if the symbol · is associative, then the equation x · a =?

A a · x has an
infinite set of solutions {x �→ an|n ∈ N} (where as usual we use the notation
an = a · an−1, a is a constant and x is a variable).

Example 6 (Simple constraints on terms). The infinite set of derivations of length
one that transform a into f(an) is simply described by:

(a → f(X) | X · a =?
A a ·X)

But it is of course also interesting to use constraints to describe the structure
of derivations. In this context a simple and useful remark is that, as mentioned
above, the arrow symbols in derivation can be considered as associative, so that
the derivations a → (b → c) and (a → b) → c are equivalent.
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Example 7 (Simple constraints on derivations). Let us consider the ARS Alc of
Example 1. Then, the same equation as above allows us to describe ζloop1 , the
infinite set of derivations that have a finite cycle on a → b:

(D | D φ3−→ (a
φ1−→ b) =?

A (a
φ1−→ b)

φ3−→ D)

that is (omitting obvious labels for simplicity)

{a → b, (a → b) → (a → b), (a → b)3, . . .} = {(a → b)n∀n ≥ 0}.

Since we have no restriction on linearity, we may do it twice as in

(D L−→ D | D L−→ (a
φ1−→ b) =?

A (a
φ1−→ b)

φ3−→ D)

(notice here the use of the label variable).

Then strategies like ζc =
{(

a
φ1φ3−−−→ a

)n φ2−→ c | n ≥ 0
}

given in Example 2,

can be simply expressed is the following way:

(D
φ3−→ a

φ2−→ c | D φ3−→ (a
φ1−→ b) =?

A (a
φ1−→ b)

φ3−→ D).

Example 8. In order to insert an element a at all possible positions into a given
derivation π, we can use again an equational constraint modulo associativity and
write :

(D → a → D′ | D → D′ =?
A π).

Example 9. To illustrate more complex constraints, let us express the set of
derivations Aex of Example 1 as follows:

(a0
0

L−→ X
L′
−→ D | X ∈? O ∧ L ∈? N ∧ L′ ∈? L ∧ |X → D| =? L ∧D ∈? Γ ∗

Aex
)

where |X → D| denotes the length of this derivation.

Constraints can also be used to control exponents in regular expressions or be
used to impose precise behaviors, e.g., for all variables to provide different values.
We may use this agility by introducing anti-patterns [16].

Let us terminate this list of increasingly elaborated examples with a constraint
based description of innermost rewriting.

Example 10 (Innermost). In this example, we assume the reader familiar with
first-order term rewriting. The arrow symbol here means rewriting with a set
of rewrite rules R build over a set of term T (F, X). Therefore, given a term, a
derivation step is characterized by an occurrence and a rewrite rule. How can we
describe, using appropriate constraints, that only innermost redexes are reduced?
One of the difficulty is that the property to be innermost is not intrinsic to a
derivation but to the application of a derivation to a term.
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Let x be a variable representing the term to be reduced. The set of innermost
derivations can be defined in the following way:

IM(x) =
(
D | (∃y ∈ T (F, X), D =? x → D′ the derivation is non

∧ empty
D′ ∈? IM(y) the remainder should
∧ be innermost too
(∃g → d ∈ R, ∃ω, ∃σ, x|ω =? σ(g)) it matches
∧
¬(∃w′ < w, ∃l → r ∈ R, ∃α, x|ω′ =? α(l)) with no match above
∧
y =? x[σ(d)]ω)

)
gives the value to y.

Remark that when a term is normalized, there is no IM derivation. As for the
variety of the language, notice the set constraint on the second part of the
conjunction. Finally, we could also use matching constraints to get rid of the
explicit use of σ and α.

Relating this definition to the intensional strategy λinn defined in Example 3,
we could also write:

IM(x) =
(
D | (∃y, D =? x

L−→ D′ the derivation is non empty
∧
D′ ∈? IM(y) the remainder should be innermost too
∧
(x L−→ y) ∈? λinn(x))

)
with λinn defined as in Example 3.

4 Conclusion

In this paper we came back on the definition of abstract strategies. After recalling
the extensional and intensional ways to define them, we introduced derivation
schemas and constraint based description of strategies. We applied this to both
simple and more complex examples to illustrate the agility of the constraint
based approach.

This procedure is quite powerful and allows us to describe, in a declarative
fashion, strategies than can arguably be seen as elaborate. Our goal here is to
free the user from the burden of engaging in the procedural definition of search
spaces or reduction trees, and the complexity associated with the specification
of history- and future-dependent derivations.

We are planning to apply this approach to theorem proving strategies, such as
focusing, that currently rely mainly on syntactic apparatus [1,19] to guide proof
search exploration. Application to constraint based specification of reduction
strategies also appears quite challenging and remains to be explored.

Let us mention that the ability to explicitly use negations or complement
problems could be of great help is defining strategies. For instance, the possi-
bility of excluding conflicting assignments from proof exploration is a feature
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that is widely used in modern SAT solvers. In this context, we anticipate anti-
patterns [16] to provide a useful constrained strategy tool.

Let us finally remark that strategies are currently defined using ML-like func-
tional languages in theorem provers like Coq, HOL or Isabelle. This work is a first
step to allow for a constraint based family of strategy languages in a constraint
programming style.
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Abstract. The constraint functional logic programming system T OY
has been using the SICStus Prolog finite domain (FD) constraint solver.
In this work, we show how to integrate the ILOG CP FD constraint solv-
ing technology into this system, with the aim of improving its application
domain and performance. We describe our implementation emphasizing
the synchronization between Herbrand computations in the T OY side
and FD constraint solving in the ILOG CP side. Finally, performance
results are reported and discussed.

1 Introduction

T OY [1] is a system implemented in SICStus Prolog 3.12.8 [11]. Its operational
semantics is based on a lazy narrowing calculus and includes several constraint
domains allowing its cooperation. This system allows Herbrand equality and dise-
quality constraints (managed by the constraint domain H), linear and non-linear
arithmetic constraints over reals (R), finite domain constraints over integers
(FD), and a communication domain M which makes possible the cooperation
among H, R and FD. Whereas R as FD rely on the constraint solvers provided
by SICStus Prolog, solving in H and M needs an explicit management [3]. T OY
offers a wide range of finite domain constraints comparable to many CLP(FD)
systems, using a concrete constraint solving system as one of its components
[5]. Here, we focus on this particular constraint domain for integrating a new
constraint solving system based on ILOG CP technology.

The generic component architecture of the connection between T OY and its
external FD constraint system is shown to the left of Fig. 1. T OY identifies each
FD constraint during goal solving, and factorizes this (possibly) composed con-
traint into primitive ones, adding new produced variables if necessary [3]. Then,
it posts these primitive constraints to solveFD , which acts as an intermediary
between T OY and the external FD system. solveFD sends the constraints to
this system and collects its computed answers.
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1.1 T OY with SICStus Prolog CLP(FD): T OY(FDs)

T OY (referred to as T OY(FDs) from now on) has been using the FD con-
straint system provided in the library clpfd of SICStus Prolog, which is ba-
sically composed of a constraint store and solver. The component architecture
of the connection between T OY and SICStus Prolog FD constraint system is
shown in the middle of Fig. 1. Next, we show a basic example for illustrating
the use of the system T OY(FDs) with finite domains constraints.

TOY

Constraints 
over integers 

SICStus Prolog 

Other
domains 

Other
solvers

FD external 
system

solveFD solveOther

TOY

Constraints 
over integers 

SICStus Prolog 

Other
domains 

Other
solvers

clpfd

solveFDsolveOther

Constraints 
over integers 

SICStus
Prolog 

Other
solvers

ILOG CP 
Application

Concert 2.6 
Solver 6.6

solveFD solveOther

Other
domains 

TOY

      Generic   TOY(FDS)          TOY(FDI)          

Fig. 1. Architectural Components

Example 1. Let’s consider that X is an integer between 5 and 12, Y is an integer
between 2 and 17, X+Y=17 and X-Y=5. It is possible to solve this problem in
T OY(FDs) as shown in the following interactive session:

TOY(FDs)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

yes
{ 5 # + Y #= X,
X # + Y #= 17,
X in 10..12,
Y in 5..7 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

However, the use of the SICStus Prolog FD system reveals some disadvan-
tages:

– Recent works [2] have proved that its performance can be enhanced, which
is needed when dealing with complex problems.
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– The constraint solver works as a black-box for predefined search processing.
This precludes user-defined interactions for pruning the search tree.

– There are no debugging capabilities allowing, for instance, to derive the
subset of infeasible constraints.

1.2 ILOG CP to Improve T OY

ILOG CP 1.4 [7] is an industrial technology market leader. It has a declarative
nature. It provides aC++API to access its libraries. ItsFDconstraint solverworks
as a glass-box, allowing interactions during the solving process. It also includes
debugging techniques helping the user to discover the unfeasible subset of the input
constraint set. It allows the user to define new classes of constraints in order to
formulate different and complex properties. The use of different constraint solvers
for a unique application domain is also allowed. Moreover, libraries using specific,
efficient algorithms for solving complex scheduling problems are provided.

Any ILOG CP 1.4 application isolates objects responsible of modeling the user
problem from objects responsible of solving any concrete model. Following this
idea, the problem is modeled in a generic language, easing the task of expressing
the constraints of the problem. Once the modeling phase is completed, the model
can be solved by one or more different constraint solvers. The solver extracts all
of the modeling objects contained into the model, creating a one-to-one object
translation. This new objects belonging to the solver are semantically equivalent
to the modeling objects, but their internal structure is targeted at the solver.
It is possible to access each object created by the solver through the associated
object contained into the model. The most paradigmatic tool representing this
philosophy is ILOG OPL Studio [8]. ILOG CP 1.4 includes the library ILOG
Concert 2.6 to provide the necessary interface for connecting models to solvers.
Three libraries are provided for FD constraint solving:

* ILOG Solver 6.6, for generic FD problems solving.
* ILOG Scheduler 6.6, with specific algorithms for solving scheduling problems.
* ILOG Dispatcher 4.6, with specific algorithms for solving routing problems.

In this work we will consider only ILOG Solver 6.6. Fig. 2. shows the basic
objects needed to model and solve the FD problem proposed in Example 1:

– IloEnv env . It manages the memory of any object of the application.
– IloModel model(env). Is the main modeling object. Contains the set of

objects responsible of formulating the FD problem, which are:
• FD constraints, each of them modeled as an IloConstraint object.
• FD decision variables, each of them modeled as an IloIntVar object.

– IloIntVarArray vars(env). This vector is intended to make possible to
reference, from a unique object, any IloIntVar contained in model.

– IloSolver solver(env). Is the main solving object. Contains the set of
objects responsible of solving the FD problem, which are:
• FD constraints, each of them modeled as an IlcConstraint object.
• FD decision variables, each of them modeled as an IlcIntVar object.
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ILOG CP Application 

ILOG CONCERT 2.6 

IloEnv env
IloIntVarArray   vars = [x, y]

IloModel model  = [x,y,c0,c1]

IloIntVar x
IloIntVar y

IloConstraint c0 = x + y == 17
IloConstraint c1 = x – y == 5 

ILOG SOLVER 6.6 

                     
   IloGoal   goal

IloSolver   solver = [x’,y’,c0’,c1’]

IlcIntVar x’ in 10..12 
IlcIntVar y’ in 5..7

IlcConstraint c0’ = x’ + y’ == 17 
IlcConstraint c1’ = x’ – y’ == 5 

Fig. 2. Generic ILOG CP Application

The main methods of solver we use in this work are:
• solver.extract(model). For each IloIntVar and IloConstraint con-

tained in model it creates an associated new IlcIntVar or
IlcConstraint object, whose internal structure is targeted at solver
solving techniques.

• solver.propagate(). Propagates the IlcConstraint set contained in
solver. This propagation prunes some values of the IlcIntVar set con-
tained in solver by using limit consistency techniques. In Fig. 2. we can
see the remaining values of the IlcIntVar set contained in solver after
the propagation of the IlcConstraint set.

• solver.solve(goal). Uses the labeling enumeration procedure defined
in goal to look for a first concrete solution of the FD problem contained
in solver.

– IloGoal goal(env,vars,Strategy). This object represents a labeling enu-
meration procedure which labels the IlcIntVars contained in solver as-
sociated to the IloIntVars contained in vars. By this labeling procedure,
solver is able to find the different extensional solutions to the FD problem.
In this work we use two labeling strategies predefined in ILOG Solver 6.6:
• A static search procedure IloChooseFirstUnboundInt, which selects

the variables in the textual order they occur in vars.
• A dynamic search procedure ‘first fail’ IloChooseMinSizeInt, which

selects first the variable of vars with minimum domain size.
For a given variable, both strategies select first the minimum value in its
domain.

2 T OY with ILOG CP: T OY(FDi)

In this section, we explain in detail how to integrate ILOG CP FD technology
into the system T OY (referred to as T OY(FDi) from now on). T OY is im-
plemented in SICStus Prolog while ILOG CP is a technology implemented and
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available in C++. So, first we study how to make a connection between T OY
and ILOG CP by connecting SICStus Prolog and C++. Our approach is based
on the integration of a C++ foreign resource into a SICStus Prolog application.
Due to the different nature of both languages, we study the emerging difficulties
to establish a communication between T OY and ILOG CP, as well as the deci-
sions we have made to solve them. Also, an example of the behavior of the new
system T OY(FDi) is shown.

2.1 Connecting SICStus Prolog to C++

It is possible to communicate a SICStus Prolog application to a C++ compo-
nent. The C++ component needs to be a dynamic library with a specific internal
file structure. This communication is done by mapping a set of linking Prolog
predicates (contained in the Prolog application) to a set of C++ functions (de-
fined in the C++ component). SICStus Prolog also defines a set of possible
conversions between Prolog arguments and C++ arguments. Each argument of
a linking Prolog predicate must also indicate if it is either an input argument
(sent to the C++ function) or an output argument (computed by the C++ func-
tion). There is a bidirectional conversion between a Prolog term and the C++
type SP term ref. By invoking SP term ref object methods, C++ functions
can perform the following actions:

– Create and assign Prolog terms.
– Obtain the contents of a Prolog term.
– Compare and unify Prolog terms.

This context supports the necessary conditions to connect T OY and ILOG
CP by making just a few changes in the component architecture of T OY , whose
new structure can be seen on the right hand side of Fig. 1.

- From the point of view of T OY , it is necessary to put a new Prolog predicate
in any place of solveFD where a communication with ILOG CP is needed
(posting a new constraint, declaring a new ILOG decision variable, etc.)

- On the other hand, we build a new ILOG CP application which integrates
ILOG Concert 2.6 and ILOG Solver 6.6 libraries. This application contains
instances of the basic modeling and solving objects explained in Section
1.2. It also includes the set of C++ functions linked to the existing Prolog
predicates in solveFD.

Each time solveFD calls any interfaced predicate, first, it turns all Prolog
arguments into C++ arguments. Next, it transfers the program control to the
C++ function, which uses and/or computes them within its body. Once the
C++ function has finished, the execution control comes back to solveFD, which
continues with the evaluation of the next call.

Creating a SICStus Prolog C++ Foreign Resource
SICStus Prolog supplies a tool, splfr [10], for creating a dynamic library as, for
instance interface.dll taking as input two files:
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– interface.pl Declares the mapping of each Prolog predicate to each C++
function. It groups all of these functions in a unique resource. For example:
foreign(f1,p1(+integer)).
foreign(f2,p2(+term,-term)).
foreign resource(interface,[f1,f2]).

– interface.cpp Includes the C++ functions mapped to Prolog facts. It adds
as many auxiliary functions and libraries as needed. For example:
void f1(long l){...}
void f2(SP term ref t1, SP term ref t2){...}

The macro splfr is used as a shortcut to the execution of some compiling
and linking commands offered by Microsoft Visual C++ [9]. First of all, tak-
ing interface.pl as input, it creates two new files, interface glue.c and
interface glue.h, which provides the necessary glue code for the SICStus
application.

2.2 Communication between T OY and ILOG CP

In this section we explain in detail how to solve the communication difficulties
between SICStus Prolog and ILOG CP in the system T OY(FDi). As T OY is a
system implemented in SICStus Prolog, the communication between T OY and
its FD technology is quite natural in T OY(FDs). However, as ILOG CP is
implemented in C++, some glue code is needed to fix the impedance mismatch
problem in T OY(FDi).

There have been four difficult tasks to overcome in the new system T OY(FDi).
We explain each of them in the next subsections. When we make reference to any
ILOG CP application object, we use the notation of Section 1.2. To this end, we
use model if we refer to the ILOG Concert 2.6 model object, we use solver if we
refer to the ILOG Solver 6.6 generic FD solver, and we use vars if we refer to the
decision variables contained in model.

Managing FD constraints
The set of FD constraints of a T OY goal involves a set of logic variables that
we denote as ‘FD logic variables’. To model the FD constraint set with ILOG
CP, some points must be taken into account:

– We need to create as many IloIntVar decision variables as FD logic vari-
ables take part into the FD constraint set. These variables must be added
to model and vars.

– We must find a bijective relation that associates each FD logic variable of
the T OY goal to each decision variable existing in the ILOG CP vector vars.

– We model each FD constraint in ILOG CP over the set of decision variables
of the vector vars associated to the set of FD logic variables involved in
that FD constraint.

Whatever way of communication between T OY and ILOG CP, for each FD
constraint and each FD logic variable we need three instances:
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- The FD constraint and FD logic variable contained in T OY.
- The IloConstraint and IloIntVar contained in model.
- The IlcConstraint and IlcIntVar created by solver from its associated
IloConstraint and IloIntVar contained in model, respectively.

Fig. 3. shows the association between the different instances of an element in
T OY , ILOG Concert 2.6 and ILOG Solver 6.6.

TOY    ILOG CONCERT 2.6          ILOG SOLVER 6.6

X      IloIntVar x IlcIntVar x’
Y    IloIntVar y   IlcIntVar y’
X #> Y     IloConstraint c0 = x > y  IlcConstraint c0’ = x’ > y’

Fig. 3. Association between T OY and ILOG CP

A first attempt for mapping a FD logic variable to a decision variable of
vars is tried. It intends to manage vars and a SP term ref vector, making
them evolve simultaneously. The elements of the SP term ref vector are in fact
the SP term ref conversions of the FD logic variables. Each time solveFD sends
a new FD constraint to ILOG CP, the associated C++ function will first look for
its FD logic variables in the SP term ref vector. If it can not find any variable,
we can ensure that the C++ function is dealing with a new FD logic variable
not handled before. So, the C++ function adds this new FD logic variable
to the SP term ref vector last position, say i. Immediately, a new IloIntVar
decision variable is created and added to model and vars[i]. When each FD
logic variable of the FD constraint sent by solveFD is contained at an index of
the SP term ref vector, the FD constraint is modeled over the decision variables
of vars associated to these indexes.

However, this first attempt fails. This is due to the rules which govern the
scope of a SP term ref. When a C++ function containing SP term refs (as
arguments or dynamically created within it) finishes its execution, all these
SP term refs become invalid. Let’s see the next example, where we define an
interface between the Prolog predicates p1, p2 and p3 and the C++ functions
f1, f2 and f3, respectively. Functions f1 and f2 receive a Prolog term as an
argument, while f3 receives two Prolog terms.

– Let’s call p3 with two occurrences of the logic variable X, as p3(X,X). If we
call SP compare(t1,t2) within f3(SP term ref t1, SP term ref t2)
the result says that both SP term refs are in fact the same Prolog term.

– But, let’s do the call p1(X). We store t1 of f1(SP term ref t1) in a global
vector with type SP term ref. When f1 finishes, the program control comes
back to Prolog. Now, we call p2 with the logic variable X again, p2(X).
If we call SP compare(t1,t2) within f2(SP term ref t2) between t2 and
the SP term ref stored in the vector during f1, the result says that both
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SP term refs are different. There is no doubt that both are in fact the same
Prolog term. The problem is that, when f1 finishes, the SP term ref stored
in the vector becomes invalid.

The second and successful attempt relies on the management of the bijective
relation, which is done in the Prolog application by the use of a list of FD logic
variables (referred to as V from now on). We want V to be used in each solveFD

predicate. On the one hand, SICStus Prolog does not allow global variables.
On the other hand, there is a logic variable Cin [4], which represents a mixed
constraint store and is common to each solveFD predicate. Our plan is to store
any data structure demanded by the communication between T OY and ILOG
CP, specifically our FD logic variables list V, into Cin. Each time a solveFD

predicate manages a new FD constraint, we can check whether a FD logic
variable belongs to V or not by accessing it within Cin. Any new FD logic
variable is automatically added to the end of V, say at position i. Here, a new
call to the C++ function which creates a new IloIntVar is done. This function
adds this decision variable to model and vars[i]. Once all FD logic variables
of the FD constraint belong to V, solveFD determines their indexes, and puts
them as arguments to the C++ function, which models the FD constraint by
adding to model a new IloConstraint over the associated positions of vars.

Synchronizing ILOG CP with T OY
T OY can also bind its FD logic variables through an equality constraint in
the Herbrand solver. For example, in the goal TOY(FDi)> X #>= 0, X == 3 the
variable X is bound to the value 3. This is done by the Prolog term unification
which results from the Herbrand equality constraint X == 3. This unification
is visible at any occurrence of that FD logic variable, particularly the one in
V. This causes an inconsistency between the contents of V and vars. To repair
this lack of synchronization we must send an equality constraint to ILOG CP,
making the mapped decision variable in vars equals to the bound value.

A first attempt tries to synchronize by an event-driven approach. To capture
events, SICStus Prolog provides the module of attributed variables. This mod-
ule assigns attributes to a set of logic variables. Each time an attributed logic
variable is bound, the predicate verify attributes(+Var, +Value, +Goals)
is triggered. We use the attribute fd for each FD logic variable. Thus, each
time the Herbrand solver binds a FD logic variable, verify attributes(+Var,
+Value, +Goals) will automatically call the C++ function which synchronizes
the associated decision variable of vars.

However, this first attempt fails. For this synchronization we need to know
which index does the associated decision variable have in vars. We can only
get this index by looking for the FD logic variable in V. But the arguments
of verify attributes(+Var, +Value, +Goals) are fixed. As SICStus Prolog
does not allow global variables, there is no way to get access to V.

A second attempt consists of making the Herbrand solver responsible of call-
ing the C++ synchronization function. But this idea must be rejected, because
there is a basic principle of independency between the different solvers of the
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system T OY . Any solution to this problem must respect the idea of solving the
synchronization within solveFD.

The third (and successful) attempt modifies the internal structure of V. Now
it becomes a list of pairs. The first element of each pair contains the FD logic
variable, and the second one contains a flag which determines if the bound FD
logic variable has been synchronized with vars. Thus, while the FD logic variable
is not bound, the value of the flag remains at 0. When the FD logic variable
becomes bound, the value of the flag indicates whether the variable of vars is
synchronized or not.

Each time solveFD sends a new FD constraint to ILOG CP, it must previ-
ously:

– Look for any pair in V (say at position i) whose pattern is [value,0]
– Add to model the new IloConstraint vars[i]==value.
– Change the pair at position i of V by [value,1]

Once there are no pairs with the pattern [value,0] in the list, solveFD

is able to send the new FD constraint. Also, at the end of the T OY goal, a
new synchronization is done. This synchronization attempt is clearly inefficient,
making it a task to be improved in new releases of T OY(FDi). Let’s consider
the next goal:

Toy(FDi)> X #>= 2, X == 1, X1 == 1, X2 == 1, ... , X1000 == 1

The first FD logic variable of the goal in the narrowing order is X, which
occurs at the first position of V and vars. The synchronization of X == 1 as
vars[0] == 1 makes the FD problem infeasible. So, the T OY goal will fail af-
ter X == 1, and there is no need for computing the rest of the goal expressions.
However, the first equality vars[0] == 1 is not computed until the next FD
constraint is posted.
As X == 1, X1 == 1, X2 == 1, ... , X1000 == 1 are computed by the Her-
brand solver there are no more FD constraints in the goal, so the synchronization
will not occur until the end of the goal. The goal will useless compute a thousand
of successful expressions. After that, it synchronizes vars[0] == 1 and fails.

Synchronizing T OY with ILOG CP
ILOG CP can bind variables in vars via the IlcConstraint set propagation pro-
duced by solver.propagate() or a labeling enumeration procedure goal used
by solver.solve(goal). This produces a lack of synchronization between the
vector vars and V. To synchronize, whenever any IlcIntVar var’ (associated
to the IloIntVar var contained in vars[i]) is bound to value, the pair [Var,0]
contained at position i of V must be automatically unified with [value,1].

To this end, the predicates of solveFD send the list V as an input argument to
the C++ functions managing the FD constraints in ILOG CP. An output argu-
ment is also added to obtain the new state of V computed by the C++ function
after solver propagation or labeling. A new global variable vector<int,int>
must be created in ILOG CP. Each pair of the vector contains:
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– The index i in vars of the IloIntVar associated to the IlcIntVar treated.
– The value that solver has obtained for this IlcIntVar.

Any C++ function clears vector<int,int> at the beginning of the man-
agment of a new FD constraint. After the solving techniques used, the C++
function accesses to the content of vector<int,int>, to see whether there are
any variable that has been bound. By using vector<int,int> and V, the C++
function builds the new state of V, unifying as many FD logic variables as
vector<int,int> demands.

The only remaining task to be explained is how the solving techniques add au-
tomatically each pair to vector<int,int>. To do so, we use demons to capture
bind events. Thus, a new demon object IlcDemon RealizeVarBound is created.
It concerns on how to insert each new pair into the vector<int,int>. This de-
mon is triggered by the propagation of a constraint IlcCheckWhenBound. Each
IlcCheckWhenBound constraint involves one IloIntVar. This constraint propa-
gates when the IlcIntVar associated to this IloIntVar becomes bound. ILOG
CP associates a demon to a method of a constraint class. When the demon is
triggered, the method of this constraint class is automatically executed. We asso-
ciate RealizeVarBound to the method varDemon of the IlcCheckWhenBound con-
straint class. This method checks the index in vars of the associated IloIntVar
of the bound IlcIntVar and its value, adding both of them as a new pair of
integers to the global vector<int,int>. We summarize how our ILOG CP ap-
plication adds the pairs to the vector<int,int> in the next three steps:

– For each new decision variable IloIntVar added to vars[i] and model, we
impose the constraint IlcCheckWhenBound.

– When the IlcIntVar associated to vars[i] is bound to value,
IlcCheckWhenBound propagates, triggering the demon RealizeVarBound.

– RealizeVarBound executes the IlcCheckWhenBound method varDemon,
which adds the pair <i,value> to vector<int,int>.

Solutions in T OY(FDi)
Any T OY(FDs) solution is expressed in general with constraints (equality, dise-
quality and FD constraints –including ranges–). Of course, T OY(FDs) accepts
to label FD variables by using a FD labeling enumeration procedure, in order
to obtain the extensional solution to a goal.

The system T OY(FDi) presented in this work reproduces the solution struc-
ture of T OY(FDs). But, as a first approach, we do not support the use of
backtracking, so we can only use labeling enumeration procedures to look for
the first concrete solution to a goal. When the goal is completely finished, we
show to the user the set of non-ground FD constraints as well as the remaining
values of the FD variables.

ILOG Solver 6.6 does not grant access to simplified constraints (i.e., solved
forms). So, to show the solution to the user, we do not parse the IlcConstraint
set contained in solver. Instead of that, we store in Cin a list with the FD
constraints (referred to as C from now on) appearing in the T OY goal. When a
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solveFD predicate manages a new FD constraint of the goal, this constraint is
added to C. In the solution we show any non-ground element of C.

To show the remaining values of the FD logic variables, we access to each
IlcIntVar contained in solver throughout its associated IloIntVar contained
in model. ILOG Solver 6.6 provides some methods to check the remaining values
of these variables.

2.3 A T OY(FDi) Example

In this section we detail how goal solving works with the new system T OY(FDi)
following Example 1:

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

We specify how the data structures of solveFD and ILOG CP evolve with each
goal expression evaluation. On the one hand, we look at the state of V and C
within Cin. On the other hand, we look at the state of vars, model and solver
by pointing out any IloIntVar, IloConstraint, IlcIntVar, IlcConstraint
object accessed through them. Any new element added by the evaluation of a
goal expression is highlighted in boldface. At the beginning of the computation,
all data structures are empty, as we can see in Fig. 4.

solveFD

---------------------------------------------------------------------------------------------- 
Cin  { V = [] ;  C = [] } 

R     H    M 

ILOG CP application 

     vars    = []   
     model  = []      solver = []

ILOG SOLVER 6.6          ILOG CONCERT 2..6 

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5 

Fig. 4. Beginning of the computation

Now, we detail in Fig. 5. the evaluation of the goal expression X #>= 5.
First, we model the FD constraint in ILOG Concert 2.6:

1. As X is not contained in V, we add the new pair [X,0] in the position 0 of V.
Then, we create a new IloIntVar x and we add it to vars[0] and model.
Now, X and x are associated due to they are at the same index (0) of V and
vars, respectively.

2. We add the propagator IloCheckWhenBound c1(x,0) to be able to synchro-
nize the FD logic variable X when the IlcIntVar associated to x becames
bound to a value.
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3. We add the new FD constraint X #>= 5 to C. Then, we add to model the
IloConstraint c0.

Then, we solve the FD problem contained in model:

4. We use solver.extract(model) to make a one-to-one object translation of
the model content. This creates the new objects x’,c0’ and c1’.

5. We use solver.propagation(). It prunes some values of the domain of x’.
6. As the state of solver remains feasible, T OY continues with the evaluation

of the next goal expression.

Cin  { V = [[X,0]] ;  C = [X#>5] } 

     vars     = [x]   
     model  = [x,c0,c1]      solver = [x’,c0’,c1’]
  -----------------------------------                       ------------------------------------ 
     IloIntVar x               IlcIntVar x’ in 5..sup
     IloConstraint c0 = x > 5     IlcConstraint c0’ = x’ > 5
     IloCheckWhenBound c1(x,0)    IlcCheckWhenBound c1’(x’,0)

R     H    M 

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5 

Fig. 5. Evaluation of the first FD constraint

We do not detail here the evaluation of X #<= 12, Y #>= 2 and Y# <= 17,
which are quite similar to X #>=5. The evaluation continues with the expression
X #+ Y == 17. As this is a compound constraint, T OY decomposes it into the
primitive constraints X #+ Y == _Z and _Z == 17.

– The evaluation of X #+ Y == _Z adds this constraint to C. It also adds
[_Z,0] to V, _z to model and _z’ to solver.

– In the evaluation of _Z == 17 the constraint is sent to the Herbrand solverH,
which binds the variable _Z to the value 17. This causes that the instances of
_Z in V and C are also unified to 17, producing a lack of consistency between
_Z and its associated variables in ILOG _z and _z’. The synchronization of
_z and _z’ will happen with the management of the next FD constraint or
at the end of the T OY goal.

The evaluation continues with the expression X #- Y == 5. As this is a com-
pound constraint, T OY decomposes it into the primitive constraints:
X #- Y == _T and _T == 5. We detail here the evaluation of the goal expression
X #- Y == _T, which can be seen in Fig. 6.

In the top of Fig. 6. we see the state before the evaluation starts. We can see
that the constraint _Z == 17 appears in the Herbrand solver of T OY. Also, the
instances of _Z in V and C are highlighted, because they have been unified to 17.
The variables associated to _Z in ILOG are also highlighted, because they have
not been bound yet to the value 17.

In the middle of Fig. 6. we see the state after the synchronization of _Z with
_z and _z’. Now the IlcIntVar z’ is also bound to the value 17. The pair
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TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5 

Cin  { V = [[X,0],[Y,0],[17,0]] ;  C = [X#>5,…, X #+ Y == 17] } R          H         M 

  _Z == 17      vars     = [x,y,_z]   
     model  = [x,c0,...,_z,c7]     solver = [x’,c0’,...,_z’,c7’]
  -----------------------------------                       ------------------------------------ 
     IloIntVar _z               IlcIntVar _z’ in 7..29        
     IloConstraint c7 = x + y == _z    IlcConstraint c0’ = x’ + y’ == _z
     IloCheckWhenBound c6( z,2)                     IlcCheckWhenBound c6’( z’,2)

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5 

Cin  { V = [[X,0],[Y,0],[17,1]] ;  C = [X#>5,…, X #+ Y == 17] } 

     vars     = [x,y,_z]   
     model  = [x,c0,...,_z,c7,c8]     solver = [x’,c0’,...,_z’,c7’,c8’]
  -----------------------------------                       ------------------------------------ 
     IloIntVar _z      IlcIntVar _z’ in 17..17        
     IloConstraint c8 = _z == 17        IlcConstraint c8’ = _z == 17

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == _Z, Z == 17, X #- Y == _T, _T == 5 

Cin  { V = [[X,0],[Y,0],[17,1],[_T,0]] ;  C = […,X #+ Y == 17,X #- Y ==_T]

     vars     = [x,y,_z,_t]   
     model  = [x,...,c8,_t,c9,c10]    solver = [x’,...,c8,_t’,c9’,c10’]
  -----------------------------------                       ------------------------------------ 
     IloIntVar _t     IlcIntVar _t’ in -7..7       
     IloConstraint c9 = x - y == 5       IlcConstraint c9’ = x’ – y’ == 5
     IloCheckWhenBound c10( t,3)                  IlcCheckWhenBound c10’( t’,3)

R          H         M 

      _Z == 17 

R          H         M 

      _Z == 17 

Fig. 6. Constraint management with synchronization

[17,0] of V has been changed by [17,1], because the variables associated in
ILOG are now synchronized.

After synchronizing ILOG CP with the equalities produced by the Herbrand
solver, we manage the constraint X #- Y == _T. We can see this in the bottom
of Fig. 6.
T OY continues with the evaluation of the next goal expression. The constraint

_T == 5 is sent to the Herbrand solver H. This will bind the variable _T to the
value 5. The instances of _T in V and C will be unified to 5. This produces a
lack of consistency between _T (now bound to 5) and its associated variables in
ILOG _t and _t’. As there are no more FD constraints, the synchronization
will happen at the end of the T OY goal.

With this last synchronization we create a new IloConstraint c = t == 5
in model. Then solver will translate and propagate this new constraint, binding
the IlcIntVar t’. We modify the pair [5,0] of the list V to [5,1].
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Now the goal is completely finished. As the state of solver remains feasible,
T OY shows the solution of the computation to the user. First we show the FD
constraints by displaying any non-ground term contained in C. Then we show the
values for the FD logic vars by accessing its associated IlcIntVars contained
in ILOG. We do not show the extra variables produced during narrowing.

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

yes
{ X #>= 5

X #=< 12
Y #>= 2
Y #=< 17
X #+ Y == 17
X #- Y == 5
X in 10..12
Y in 5..7 }

Elapsed time: 0 ms.

In Fig. 7. we see the state of T OY(FDi) after the computation.

TOY > X #>= 5, X #<= 12, Y #>= 2, Y #<= 17, X #+ Y == 17, X #- Y == 5 

Cin  { V = [[X,0],[Y,0],[17,1],[5,1]] ;  C = […,X #+ Y == 17,X #- Y == 5] } 

     vars     = [x,y,_z,_t]   
     model  = [x,...,c10,c11]    solver = [x’,...,c10’,c11’]
  -----------------------------------                       ------------------------------------ 
     IloIntVar x     IlcIntVar _x’ in 10..12       
     IloIntVar y     IlcIntVar _y’ in 5..7       
     IloIntVar _z     IlcIntVar _z’ in 17..17           
     IloIntVar t IlcIntVar t’ in 5..5       

R          H         M 

      _Z == 17 
      _T == 5 

Fig. 7. T OY(FDi) state after computation

3 Measuring Performance

In this section we use two test parametric, scalable (on n) benchmark programs
which model systems of linear equations A ∗ X = b. Each system has n inde-
pendent equations with n variables [X1,...,Xn] whose domains are {1..n}.
Each system has a unique integer solution. The matrix A takes the value i on
its diagonal coefficients Ai,i and the value 1 for the rest of them.

Both benchmark programs have been run in a machine with an Intel Dual
Core 2.4Ghz processor and 4GB RAM memory. The SO used is Windows XP
SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used
is ILOG CP 1.4, with ILOG Concert 2.6 and ILOG Solver 6.6 libraries. Microsoft
Visual C++ 6.0. tools are used for compiling and linking the application.
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We show performance results (expressed in miliseconds) for the following sys-
tems: both T OY(FDs) and T OY(FDi) just described, and also for a C++
program directly modelling the problems using the ILOG CP libraries (denoted
by FDs, FDi and ILOG in the tables, respectively). The latter will help us in
analysing the overhead due to T OY implementation of lazy narrowing.

For each benchmark, we show three instances of n: 4, 12 and 15 variables. In
each case, we present results for the two labeling strategies
IloChooseFirstUnboundInt and IloChooseMinSizeInt (denoted by ff) pre-
sented in the section 1.2.

Also, we show the speedups of T OY(FDi) with respect to T OY(FDs) and
ILOG CP respectively. Specifically, we denote as:

– (a) the speedup of T OY(FDi) with respect to T OY(FDs) using the static
search procedure to solve the problem.

– (b) the speedup of T OY(FDi) with respect to T OY(FDs) using the ‘first
fail’ search procedure.

– (c) the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the static search procedure.

– (d) the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the ‘first fail’ search procedure.

The benchmark programs are:

– First: The solution [X1,...,Xn] holds: ∀i ∈ {1 . . . n} Xi = i. Performance
measurement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 0 15 0 0 15 15 1.0 - 0 0
12 31 1.750 156 516 15 281 5.0 0.29 10.4 1.83
15 297 299,312 423 67,376 63 20,578 1.42 0.22 6.7 3.27

For this first benchmark, T OY(FDi) takes more time than T OY(FDs) for
solving with the static search procedure, but less time for the dynamic search
procedure. The solving time difference between them grows as we increase
the number of variables for the benchmarks. Looking at how the domains of
the variables evolve after the initial constraint propagation, we can conclude
that the structure of the solution for this first benchmark fits quite well into
the static search procedure, while it is dramatically harmful to the dynamic
search procedure. This help us to realize that, for problems where the needed
exploration to obtain the solution is really small, then T OY(FDi) is slower
than T OY(FDs). This is because of the time involved in the communication
between the Prolog implementation of T OY(FDi) and ILOG CP. However,
as the nodes needed to be explored increase slightly, this waste of time is
overcome, making T OY(FDi) more efficient than T OY(FDs).

– Second: The solution [X1, ,Xn] holds: ∀i ∈ {1..n} Xi = n−(i−1). The above
conclusions are clearly confirmed in this second benchmark, as T OY(FDi)
is faster than T OY(FDs) for both search procedures. In this case, the struc-
ture of the solution is dramatically harmful for the static strategy, while it
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behaves better for the dynamic strategy. In the former, T OY(FDi) takes
slightly less solving time than T OY(FDs). In any case, these measurements
point out that our first approach to integrate the ILOG CP technology into
T OY(FDi) is encouraging, but also that the management of the additional
data structures used for the interface should be optimized. Performance mea-
surement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 16 16 16 31 31 15 1.0 1.93 0.51 2.06
12 531 250 437 126 109 63 0.83 0.50 4 2
15 15,563 21,968 13,937 3,406 843 1,765 0.90 0.16 16.53 1.93

4 Conclusions and Future Work

In this work, we have studied how to integrate the FD ILOG CP technology into
the system T OY . We have shown that this technology offers some advantages
over the existing system T OY(FDs) based on the FD technology of SICStus
Prolog. We have described in detail our implementation, showing that the ap-
plication architecture of T OY and ILOG CP are hard to integrate in terms of
a correct communication between them. We have shown by means of two scal-
able benchmarks that the new system T OY(FDi) is faster than T OY(FDs)
as the benchmark increases its size. However, we have concluded that there
is a performance penalization due to the management of the data structures
that make possible the connection of T OY with its new FD component. There-
fore, optimizing this management will be the target of our immediate future
work. As many practical FD problems covered by T OY(FDs) require the use
of non-deterministic functions, backtracking management will be covered in a
next work. This will also allow us to use labeling enumeration procedures to find
the different extensional solutions of a goal. So, we will be able to deal with an
extended set of benchmarks (as the one seen in [5]) in T OY(FDi) future releases.
Another subject of interest is to test the constraint libraries ILOG Scheduler 6.6
and ILOG Dispatcher 4.6 bundled in ILOG CP 1.4, as well as other constraint
libraries, as Gecode [6].
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Abstract. Context-sensitive rewriting is a restriction of rewriting that
can be used to elegantly model declarative specification and program-
ming languages such as Maude. Furthermore, it can be used to model
lazy evaluation in functional languages such as Haskell. Building upon
previous work on constrained equational rewrite systems (CERSs), an
expressive and elegant class of rewrite systems that contains built-in
numbers and supports the use of collection data structures such as sets
or multisets, context-sensitive rewriting with CERSs is investigated in
this paper. This integration results in a natural way for specifying al-
gorithms in the rewriting framework. In order to automatically prove
termination of this kind of rewriting, a dependency pair framework for
context-sensitive rewriting with CERSs is developed, resulting in a flexi-
ble termination method that can be automated effectively. Several pow-
erful termination techniques are developed within this framework. An
implementation in the termination prover AProVE has been successfully
evaluated on a large collection of examples, including several examples
obtained from functional Maude modules.

1 Introduction

Ordinary term rewrite systems (TRSs) have been succesfully used for modeling
algorithms in a functional programming style. Ordinary TRSs, however, impose
serious drawbacks. First, collection data structures such as sets or multisets can-
not be represented easily since these non-free data structures typically cause non-
termination of the ordinary rewrite relation. Notice that these collection data
structures are used in real-life functional programming languages such as OCaml
(using Moca [7], which adds relational data types to the language) and can be
used in Maude by specifying suitable equational attributes. Second, and equally
severe, domain-specific knowledge about primitive data types such as natural
numbers or integers is not directly available in ordinary TRSs. These primitives
are available in any real-life programming language, thus making an integration
into the term rewriting framework highly desirable. It has been shown in [12]
that constrained equational rewrite systems (CERSs) provide an expressive and
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convenient tool for modeling algorithms that solves both of these drawbacks.
Since [12] considers only natural numbers as a primitive data type, the first con-
tribution of this paper is a reformulation of the ideas from [12] that allows for
built-in integers.1 An integration of integers into the term rewriting framework
is important for automated termination proving since most currently available
termination techniques are based on syntactic considerations, whereas termina-
tion of algorithms operating on integers often requires semantical reasoning that
is commonly based on properties of ≥ or > in integers.

Example 1. This example illustrates the use of collection data structures and
integers in Maude and OCaml. Consider the following functional Maude module
operating on lists.

fmod LISTS is

protecting INT .

sorts List .

subsorts Int < List .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

op length : List -> Int .

op reverse : List -> List .

var N : Int .

var K L : List .

eq length(nil) = 0 .

eq length(N) = 1 .

eq length(K L) = length(K) + length(L) .

eq reverse(nil) = nil .

eq reverse(N) = N .

eq reverse(K L) = reverse(L) reverse(K) .

endfm

The same program can also be written in OCaml (using Moca [7]).

type ’a t = private

| Nil

| Element of ’a

| Concat of ’a t * ’a t

begin

associative

neutral (Nil)

end

let rec length x = match x with

| Nil -> 0

| Element _ -> 1

| Concat (k, l) -> length(k) + length(l)

1 Another recent integration of integers into the term rewriting framework is presented
in [16]. The approach of [16] is incomparable to the approach of the present paper.
On the one hand, [16] provides a more complete integration of integers since mul-
tiplication and division are supported. On the other hand, [16] does not consider
collection data structures or context-sensitive rewriting.
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let rec reverse x = match x with

| Nil -> Nil

| Element _ -> x

| Concat (k, l) -> Concat (reverse l, reverse k)

Notice the use of equational attributes in both examples. These examples can
be modeled using the following rewrite rules:

length(nil) → 0
length([n]) → 1

length(k ++ l) → length(k) + length(l)
reverse(nil) → nil
reverse([n]) → [n]

reverse(k ++ l)) → reverse(l) ++ reverse(k)

A suitable treatment of the equational attributes that closely follows the treat-
ment in Maude and OCaml is discussed in Sect. 2. ♦
Even though CERSs are an expressive and elegant tool for modeling algorithms,
they do not incorporate reduction strategies that are commonly used in declar-
ative specification and programming languages such as Maude [9]. Context-
sensitive rewriting [25,27] has been introduced as an operational restriction of
term rewriting that can be used to model such reduction strategies (the close
relationship between context-sensitive rewriting and Maude’s strat-annotations
has been investigated in [26]). Furthermore, context-sensitive rewriting allows
to model lazy evaluation as used in functional programming languages such as
Haskell (the relationship between lazy evaluation and context-sensitive rewriting
has been investigated in [28]). In context-sensitive rewriting, a replacement map
specifies the arguments where an evaluation may take place for each function
symbol, and a reduction is only allowed at a position that is not forbidden by a
function symbol occurring somewhere above it. The second contribution of this
paper is to introduce context-sensitive rewriting for CERSs, thus combining the
expressiveness of CERSs with increased flexibility for the reduction strategy.

Example 2. This example demonstrates the use of context-sensitive rewriting
and integers in Maude.

fmod LAZY-LISTS is

protecting INT .

sorts List LazyList .

op nil : -> List [ ctor ] .

op cons : Int List -> List [ ctor ] .

op lazycons : Int LazyList -> LazyList [ ctor strat (1) ] .

op from : Int -> LazyList .

op take : Int LazyList -> List .

var M N : Int .

var L : LazyList .

eq from(N) = lazycons(N, from(N + 1)) .

ceq take(N, L) = nil if N <= 0 .

ceq take(N, lazycons(M, L)) = cons(M, take(N - 1, L)) if N > 0 .

endfm
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Here, the strat-annotation specifies that only the first argument of lazycons
may be reduced, i.e., the second argument of lazycons is “frozen”. This example
can be modeled using the following rewrite rules, where the constraints of the
take-rules directly correspond to the if-conditions used in Maude:

from(n) → lazycons(n, from(n + 1))
take(n, l) → nil �n ≤ 0�

take(n, lazycons(m, l)) → cons(m, take(n− 1, l)) �n > 0�

The semantics of the strat-annotation is modeled by a replacement map with
μ(lazycons) = {1}. Notice that the use of CERSs makes it very easy to model
many functional Maude modules occurring in practice. ♦

Termination also is a fundamental property of context-sensitive rewriting. As il-
lustrated by Ex. 2, context-sensitive rewriting may result in a terminating rewrite
relation where regular rewriting is not terminating. Thus, proving termination
of context-sensitive rewriting is quite challenging.

For ordinary TRSs, there are two approaches to proving termination of
context-sensitive rewriting. The first approach is to apply a syntactic transfor-
mation in such a way that termination of context-sensitive rewriting with a TRS
is implied by (regular) termination of the TRS obtained by the transformation.
For details on this approach, see [17,30]. While the application of these transfor-
mations allows the use of any method for proving termination of the transformed
TRS, they often generate TRSs whose termination is hard to establish.

The second approach consists of the development of dedicated methods for
proving termination of context-sensitive rewriting. Examples for adaptations of
classical methods are context-sensitive recursive path orderings [8] and context-
sensitive polynomial interpretations [29]. The main drawback of these adapta-
tions is the limited power which is inherited from the classical methods.
Adapting the more powerful dependency pair method [4] to context-sensitive
TRSs has been a challenge. A first adaptation of the dependency pair method
to context-sensitive TRSs has been presented in [2]. But this adaptation has
severe disadvantages since it requires collapsing dependency pairs. An alterna-
tive adaptation of the dependency pair method to context-sensitive TRSs has
recently been presented in [1]. This adaptation does not require collapsing de-
pendency pairs and makes it much easier to adapt techniques developed within
the ordinary dependency pair method to the context-sensitive case.

The third and main contribution of this paper is the development of a de-
pendency pair method for context-sensitive rewriting with CERSs, taking [1] as
a starting point. This adaptation is non-trivial since [1] is concerned with ordi-
nary (syntactic) rewriting, whereas rewriting with CERSs is based on normal-
ized equational rewriting that uses constructor equations and constructor rules.
While the techniques presented in this paper are quite similar to the correspond-
ing techniques in [1], their soundness proofs are more complex and cannot be
presented due to space limitations. They can be found in the full version [14].

The techniques developed in this paper have been fully implemented in the ter-
mination prover AProVE [18]. The implementation has been successfully
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evaluated on a large collection of examples. This evaluation shows that the im-
plementation succeeds in proving termination of many context-sensitive CERSs
corresponding to functional Maude modules and OCaml programs.

After fixing terminology, Sect. 2 recalls and extends the CERSs introduced in
[12]. In contrast to [12] which only supports natural numbers, it is now possible to
consider built-in integers. Context-sensitive rewriting with CERSs is introduced
in Sect. 3. The main technical result of this paper is presented in Sect. 4. By
a non-trivial extension of [1], termination of context-sensitive rewriting with
a CERS is reduced to showing absence of infinite chains of dependency pairs.
Sect. 5 introduces several powerful termination techniques that can be applied
in combination with dependency pairs. These techniques lift the most commonly
used termination techniques introduced for CERSs in [12] to context-sensitive
CERSs. An implementation of these techniques in AProVE [18] is discussed and
evaluated in Sect. 6.

2 Constrained Equational Rewrite Systems

Familiarity with the notation and terminology of term rewriting is assumed, see
[5] for an in-depth treatment. This paper uses many-sorted term rewriting over
a set S of sorts. It is assumed in the following that all terms, substitutions,
replacements, etc. are sort-correct. For a signature F and a disjoint set V of
variables, the set of all terms over F and V is denoted by T (F ,V). The set of
positions of a term t is denoted by Pos(t), where Λ denotes the root position.
The set of variables occurring in a term t is denoted by V(t), and F(t) denotes
the set of function symbols occurring in t. This naturally extends to pairs of
terms, sets of terms, etc. The root symbol of a term t is denoted by root(t).

A context over F is a term C ∈ T (F ∪
⋃

s∈S{�s},V). Here, �s : → s is a
fresh constant symbol of sort s, called hole. If the sort of a hole can be derived
or is not important, then � will be used to stand for any of the �s. If C is
a context with n holes and t1, . . . , tn are terms of the appropriate sorts, then
C[t1, . . . , tn] is the result of replacing the occurrences of holes by t1, . . . , tn “from
left to right”. A substitution is a mapping from variables to terms, where the
domain of the substitution may be infinite. The application of a substitution σ
to a term t is written as tσ, using postfix notation.

A finite set E = {u1 ≈ v1, . . . , un ≈ vn} of equations induces a rewrite relation
→E by letting s →E t iff there exist a position p ∈ Pos(s) and a substitution
σ such that s|p = uiσ and t = s[viσ]p for some ui ≈ vi ∈ E . The reflexive-
transitive-symmetric closure of →E is denoted by ∼E . If equations are used in
only one direction, they are called rules. A term rewrite system (TRS) is a finite
set R = {l1 → r1, . . . , lm → rm} of rules. Equational rewriting uses both a set
E of equations and a set R of rules. Intuitively, E is used to model “structural”
properties, while R is used to model “simplifying” properties.

Definition 3 (E-Extended Rewriting). Let R be a TRS and let E be a set of
equations. Then s →E\R t if there exist a rule l → r ∈ R, a position p ∈ Pos(s),
and a substitution σ such that (i) s|p ∼E lσ, and (ii) t = s[rσ]p.
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Writing >Λ∼E and >Λ−→E\R denotes that all steps are applied below the root, and
>Λ−→E\R−→! denotes normalization with >Λ−→E\R.

In order to allow for built-in numbers and collection data structures, [12] has
introduced a new class of rewrite systems. Both built-in numbers and collection
data structures are modeled using E-extended rewriting. In order to model the
set of integers, recall that Z is an Abelian group with unit 0 that is generated
using the element 1. Integers can thus be modeled using the function symbols
FZ = {0 : → int, 1 : → int, − : int→ int, + : int×int→ int}. Terms over
FZ are written using a simplified notation, e.g., x−2 instead of x+((−1)+(−1)).

As is well-known, equational completion [23,6] generates the following rules
SZ and equations EZ from the defining properties of Abelian groups:

x + 0 → x x + (−x) → 0
−− x → x (x + (−x)) + y → 0 + y

−0 → 0 x + y ≈ y + x
−(x + y) → (−x) + (−y) x + (y + z) ≈ (x + y) + z

Recall that equality w.r.t. the properties of Abelian groups is reduced to EZ-
equivalence of →EZ\SZ

-normal forms. This idea can be used for natural numbers
with FN = {0 : → nat, 1 : → nat, + : nat× nat → nat}, SN = {x + 0 → x},
and EN = {x+ y ≈ y +x, x+(y + z) ≈ (x+ y)+ z} as well [12]. In the following,
Num denotes one of Z or N, and num denotes the sort int or nat, respectively.

Properties of the built-in numbers are modeled using the predicate symbols
P = {>, ≥, �}. The rewrite rules that are used in order to specify the defined
function symbols are equipped with constraints over these predicate symbols
that guard when a rewrite step may be performed. An atomic Num-constraint
has the form t1 P t2 for a predicate symbol P ∈ P and terms t1, t2 ∈ T (FNum ,V).
The set of Num-constraints is the closure of the set of atomic Num-constraints
under � (truth), ¬ (negation), and ∧ (conjunction). The Boolean connectives
∨, ⇒, and ⇔ can be defined as usual. Also, Num-constraints have the expected
semantics. The main interest is in Num-satisfiability (i.e., the constraint is true
for some instantiation of its variables) and Num-validity (i.e., the constraint is
true for all instantiations of its variables). Both of these properties are decidable.

In order to extend FNum by collection data structures and defined functions, a
finite signature F over the sort num and a new sort univ is used. The restriction
to two sorts is not essential, but the techniques presented in the remainder of this
paper only need to differentiate between terms of sort num and terms of any other
sort. Collection data structures can be handled similarly to the built-in numbers
by using equational completion on their defining properties [11,12], see Fig. 1.
In the following, a combination of Num with (signature-disjoint) collection data
structures C1, . . . , Cn is considered. In order to do so, let S = SNum ∪

⋃n
i=1 SCi

and E = ENum ∪
⋃n

i=1 ECi .

Definition 4 (Constrained Rewrite Rules). A constrained rewrite rule has
the form l → r�ϕ� for terms l, r ∈ T (F ∪ FNum ,V) and a Num-constraint ϕ
such that root(l) ∈ F − F(E ∪ S) and V(r) ∪ V(ϕ) ⊆ V(l).



50 S. Falke and D. Kapur

Constructors SC and EC
Compact Lists nil, ins ins(x, ins(x, ys)) → ins(x, ys)
Compact Lists nil, [·], ++ x ++ nil → x

nil ++ y → y
[x] ++ [x] → [x]

x ++ (y ++ z) ≈ (x ++ y) ++ z

Multisets ∅, ins ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))
Multisets ∅, {·},∪ x ∪ ∅ → x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z
x ∪ y ≈ y ∪ x

Sets ∅, ins ins(x, ins(x, ys)) → ins(x, ys)
ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

Sets ∅, {·},∪ x ∪ ∅ → x
x ∪ x → x

(x ∪ x) ∪ y → x ∪ y
x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

x ∪ y ≈ y ∪ x

Fig. 1. Modeling collection data structures

In a constrained rewrite rule l → r���, the constraint � is usually omitted. A
finite set R of constrained rewrite rules and the sets S and E for modeling Num
and collection data structures as given above are combined into a constrained
equational rewrite system (CERS)2 (R,S, E).

The rewrite relation of a CERS is defined as follows [12]: First, the redex
is normalized by →E\S . Then, the redex is E-matched to the left-hand side of
a rewrite rule and it is checked whether the matching substitution makes the
constraint of that rewrite rule Num-valid. Notice that checking the instantiated
constraint for validity requires the matching substitution to be Num-based, i.e.,
all variables of sort num have to be mapped to terms from T (FNum ,V).

Definition 5 (Rewrite Relation of a CERS). For a CERS (R,S, E), let
s

S→Num‖E\R t iff there exist l → r�ϕ� ∈ R, a position p ∈ Pos(s), and a Num-

based substitution σ such that (i) s|p >Λ−→E\S−→! ◦ >Λ∼E lσ, (ii) ϕσ is Num-valid, and
(iii) t = s[rσ]p.

It is shown in [14] that S→Num‖E\R is decidable for the CERSs considered in this
paper. The function symbols occurring at the root position of left-hand sides in
R are of particular interest since they are the only function symbols that allow
a reduction to take place. These are the defined symbols D(R).

Example 6. This example is closely related to Ex. 2, but instead of a list the
function from now generates a set built using ∅ and ins as in Fig. 1. Consider
the following rewrite rules:
2 A more abstract definition of CERSs that allows for more general non-free data

structures is given in [14]. The main requirement is that →E\S needs is convergent.
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from(x) → ins(x, from(x + 1))
take(0, xs) → nil

take(x, ins(y, ys)) → cons(y, take(x− 1, ys))�x > 0�
pick(ins(x, xs)) → x
drop(ins(x, xs)) → xs

Notice that the term take(2, from(0)) admits an infinite reduction in which the
from-rule is applied again and again. However, there also is a finite reduction of
that term which results in the normal form cons(0, cons(1, nil)). This reduction
can be enforced using context-sensitive rewriting, cf. Ex. 8. ♦

3 Context-Sensitive Rewriting with CERSs

A context-sensitive rewriting strategy is given using a replacement map μ with
μ(f) ⊆ {1, . . . , arity(f)} for every function symbol f ∈ F ∪FNum . Replacement
maps specify the argument positions of function symbols where reductions are
allowed. If the replacement map restricts reductions in a certain argument posi-
tion, then the whole subterm below that argument position may not be reduced.
Formally, μ is used to define the set Posμ(t) of active positions of a term t.
Here, a position is active if it can be reached from the root of the term by only
descending into argument positions that are not restricted by the replacement
map, i.e., Posμ(x) = {Λ} for x ∈ V and Posμ(f(t1, . . . , tn)) = {Λ} ∪ {i.p | i ∈
μ(f) and p ∈ Posμ(ti)}. Dually, the set of inactive positions of t is defined as
Pos¬μ(t) = Pos(t)− Posμ(t). The context-sensitive rewrite relation of a CERS
will be obtained by a small modification of Def. 5 such that the position where
the reduction takes place has to be active, see Def. 7 below.

The concept of active positions can also be used to define active (and inactive)
subterms of a given term. t �μ s denotes that s is an active subterm of t, i.e.,
t|p = s for an active position p ∈ Posμ(t). If p �= Λ, then this is written t �μ s.
Analogously, t �¬μ s means that s is an inactive subterm of t. The classification
of active and inactive subterms can easily be extended to other notions as well
to obtain the sets Vμ(t) of variables occurring in active positions in t, V¬μ(t) of
variables occurring in inactive positions in t, etc.

Now a context-sensitive constrained equational rewrite system (CS-CERS)
(R,S, E , μ) combines a regular CERS with a replacement map. As already no-
ticed in [15] for the AC -case, the permutative nature of the equations in E
disallows some choices of μ since inactive subterms may otherwise become ac-
tive subterms (or vice versa) by applying equations from E . Therefore, μ needs
to satisfy the following conditions:

μ(+) = {1, 2} μ(ins) = ∅ or μ(ins) = {1, 2}
μ(−) = {1} μ( ++ ) = μ(∪) = {1, 2}

As mentioned above, the rewrite relation of a CS-CERS is obtained by a small
modification of Def. 5 such that the position where the reduction takes place has
to be active.
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Definition 7 (Rewriting with a CS-CERS). For a CS-CERS (R,S, E , μ),
let s

S→Num‖E\R,μ t iff there exist l → r�ϕ� ∈ R, an active position p ∈ Posμ(s),

and a Num-based substitution σ such that (i) s|p >Λ−→E\S−→! ◦ >Λ∼E lσ, (ii) ϕσ is
Num-valid, and (iii) t = s[rσ]p.

Example 8. The CERS from Ex. 6 becomes a CS-CERS by considering the re-
placement map μ with μ(ins) = ∅ and μ(f) = {1, . . . , arity(f)} for all f �= ins.
Then the reduction of the term take(2, from(0)) has the following form:

take(2, from(0)) S→Num‖E\R,μ take(2, ins(0, from(1)))
S→Num‖E\R,μ cons(0, take(2 − 1, from(1)))
S→Num‖E\R,μ cons(0, cons(1, take(1− 1, from(2))))
S→Num‖E\R,μ cons(0, cons(1, nil))

Notice that an infinite reduction of this term from Ex. 6 is not possible since
the recursive call in the rule from(x) → ins(x, from(x + 1)) occurs in an inactive
position. ♦

4 Dependency Pairs for Rewriting with CS-CERSs

Recall from [4] that dependency pairs are built from recursive calls to defined
symbols occurring in right-hand sides of R since only these recursive calls may
cause non-termination. As usual, a signature F 	 is introduced, containing the
function symbol f 	 : s1 × . . . × sn → top for each function symbol f : s1 ×
. . . × sn → s from D(R). Here, top is a fresh sort. For t = f(t1, . . . , tn), the
term f 	(t1, . . . , tn) is denoted by t	. A dependency pair generated from a rule
l → r�ϕ� has the shape l	 → t	�ϕ�, where t is a subterm of r with root(t) ∈ D(R).
The main theorem for CERSs [12] states that a CERS is terminating if it is not
possible to construct infinite chains from the dependency pairs.

For context-sensitive rewriting, one might be tempted to restrict the gener-
ation of dependency pairs to recursive calls occurring in active positions since
these are the only places where reductions may occur. As shown in [2] for ordi-
nary TRSs, this results in an unsound method if rules have migrating variables,
i.e., variables x with r �μ x but l ��μ x for some rule l → r. In Ex. 6 and 8, the
variable x is migrating in the pick-rule and xs is migrating in the drop-rule. The
reason that migrating variables require attention is that recursive calls occurring
in inactive positions might be promoted to active positions if they are matched
to a migrating variable of another rule. Thus, [2] introduces collapsing depen-
dency pairs for such migrating variables, but this causes severe disadvantages
that make it hard to extend methods for proving termination from ordinary
rewriting to context-sensitive rewriting. While progress has been made [2,3,20],
the resulting methods are quite weak in practice.

An alternative to the collapsing dependency pairs needed in [2] has recently
been presented in [1]. The main observation of [1] is that only certain instantia-
tions of the migrating variables need to be considered. A first, naive approach for
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this would be to consider only instantiations by hidden terms, which are terms
with a defined root symbol occurring inactively in right-hand sides of rules.

Definition 9 (Hidden Term). A term t is hidden for (R,S, E , μ) iff root(t) ∈
D(R) and there exists a rule l → r�ϕ� ∈ R such that r �¬μ t.

In Ex. 8, the term from(x+1) is hidden since ins(x, from(x+1))�¬μ from(x+1).
As shown in [1] for ordinary TRSs, it does not suffice to consider only the hidden
terms. Instead, it becomes necessary to consider certain contexts that may be
built above a hidden term using the rewrite rules. Formally, this observation
is captured using the notion of hiding contexts. The definition in this paper
generalizes the one given in [1] by also considering S and E .

Definition 10 (Hiding Contexts). Given a CS-CERS (R,S, E , μ), f ∈ F ∪
FNum hides position i iff i ∈ μ(f) and either f ∈ F(E ∪ S) or there exist a rule
l → r�ϕ� ∈ R and a term s = f(s1, . . . , si, . . . , sn) with r �¬μ s and si �μ x for
an x ∈ V or si �μ g(. . .) with g ∈ D(R). A context C is hiding iff C = � or
C = f(t1, . . . , ti−1, C

′, ti+1, . . . , tn) where f hides position i and C′ is hiding.

In Ex. 8, + hides positions 1 and 2 and − and from hide position 1. Notice
that there are infinitely many hiding contexts, but that these hiding context
have a regular shape. In order to represent all hiding contexts using only finitely
many dependency pairs, fresh function symbols Unum and Uuniv and unhiding
dependency pairs are used. The purpose of these unhiding dependency pairs is
to extract a hidden term from a hiding context surrounding it.

Definition 11 (Context-Sensitive Dependency Pairs). Let (R,S, E , μ) be
a CS-CERS. The set of context-sensitive dependency pairs of R is defined as
DP(R, μ) = DPo(R, μ) ∪ DPu(R, μ) where

DPo(R, μ) = {l	 → t	�ϕ� | l → r�ϕ� ∈ R, r �μ t, root(t) ∈ D(R)}
DPu(R, μ) = {l	 → Us(x)�ϕ� | l → r�ϕ� ∈ R, r �μ x, l ��μ x}

∪ {Us(g(x1, . . . , xi, . . . , xn)) → Us′(xi)��� | g hides position i}
∪ {Us(h) → h	��� | h is a hidden term}

Here, Unum : num→ top and Uuniv : univ→ top are fresh function symbols that
are added to F 	 and s and s′ are the appropriate sorts. Furthermore, μ(Unum) =
μ(Uuniv) = ∅ and μ(f 	) = μ(f) for all f ∈ F .

Example 12. For Ex. 8, DP(R, μ) is as follows:

take	(x, ins(y, ys)) → take	(x− 1, ys) �x > 0� (1)

take	(x, ins(y, ys)) → Unum(y) �x > 0� (2)

take	(x, ins(y, ys)) → Uuniv(ys) �x > 0� (3)

pick	(ins(x, xs)) → Unum(x) (4)

drop	(ins(x, xs)) → Uuniv(xs) (5)

Uuniv(from(x + 1)) → from	(x + 1) (6)
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Unum(x + y) → Unum(x) (7)
Unum(x + y) → Unum(y) (8)

Unum(−x) → Unum(x) (9)
Uuniv(from(x)) → Unum(x) (10)

For this, recall the hidden terms and the hiding contexts from above. ♦

As usual in methods based on dependency pairs, context-sensitive dependency
pairs can be used in order to build chains, and the goal is to show that S→Num‖E\R,μ

is terminating if there are no infinite minimal chains.

Definition 13 ((P ,R,S, E , μ)-Chains). Let (R,S, E , μ) be a CS-CERS and
let P be a set of dependency pairs. A (variable-renamed) sequence of dependency
pairs s1 → t1�ϕ1�, s2 → t2�ϕ2�, . . . from P is a (P ,R,S, E , μ)-chain iff there

exists a Num-based substitution σ such that tiσ
S→Num‖E\R,μ→∗ ◦ >Λ−→E\S−→! ◦ >Λ∼E si+1σ

and ϕiσ is Num-valid for all i ≥ 1. The above (P ,R,S, E , μ)-chain is minimal
iff tiσ does not start an infinite S→Num‖E\R,μ-reduction for all i ≥ 1.

Here, S→Num‖E\R,μ→∗ corresponds to reductions occurring strictly below the root of

tiσ and >Λ−→E\S−→! ◦ >Λ∼E corresponds to normalization and matching before applying
si+1 → ti+1�ϕi� at the root position. Notice that this definition of chains is es-
sentially identical to the non-context-sensitive case in [12]. Proving the following
result for CS-CERSs constitutes the main technical contribution of this paper.
The proof requires several technical lemmas that handle the subtle interplay
between R, S, E , and μ.3 It can be found in the full version [14].

Theorem 14. Let (R,S, E , μ) be a CS-CERS. Then S→Num‖E\R,μ is terminat-
ing if there are no infinite minimal (DP(R, μ),R,S, E , μ)-chains.

In the next section, several techniques for showing absence of infinite chains are
presented. These techniques are given in the form of CS-DP processors that op-
erate on CS-DP problems in the spirit of [19]. Here, a CS-DP problem has the
form (P ,R,S, E , μ), where P is a finite set of dependency pairs and (R,S, E , μ)
is a CS-CERS. A CS-DP processor is a function that takes a CS-DP problem
as input and returns a finite set of CS-DP problems as output. A CS-DP pro-
cessor Proc is sound iff for all CS-DP problems (P ,R,S, E , μ) with an infinite
minimal (P ,R,S, E , μ)-chain there exists a CS-DP problem (P ′,R′,S′, E ′, μ′) ∈
Proc(P ,R,S, E , μ) with an infinite minimal (P ′,R′,S′, E ′, μ′)-chain. For a termi-
nation proof of the CS-CERS (R,S, E , μ), sound CS-DP processors are applied
recursively to the initial CS-DP problem (DP(R, μ),R,S, E , μ). If all resulting
CS-DP problems have been transformed into ∅, then termination has been shown.
3 Amongst others, it needs to be shown that an application of rules from S and equa-

tions from E transforms a hiding context into another hiding context. For example,
the hiding context from(� + 1) is transformed into the hiding context from(1 + �)
by the equation x + y ≈ y + x.
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5 CS-DP Processors

This section introduces several sound CS-DP processors. Most of these processors
are similar to corresponding processors for the non-context-sensitive case [12].

5.1 Dependency Graphs

Like the corresponding DP processor from [12], the CS-DP processor introduced
in this section decomposes a CS-DP problem into several independent CS-DP
problems by determining which dependency pairs from P may follow each other
in a (P ,R,S, E , μ)-chain. The processor relies on the notion of (estimated) de-
pendency graphs, which has initially been introduced for ordinary TRSs [4]. Here,
the estimation from [12] is adaptated using an approach similar to [2,1].

Definition 15 (Estimated Context-Sensitive Dependency Graphs). For
a CS-DP problem (P ,R,S, E , μ), the nodes of the estimated (P ,R,S, E , μ)-
dependency graph EDG(P ,R,S, E , μ) are the dependency pairs in P and there
is an arc from s1 → t1�ϕ1� to s2 → t2�ϕ2� iff there is a substitution σ such that

capμ(t1)σ
>Λ−→E\S−→! ◦ >Λ∼E s2σ and ϕ1σ, ϕ2σ are Num-valid. capμ is given by

1. for x ∈ V, capμ(x) = x if sort(x) = num and capμ(x) = y otherwise,
2. capμ(f(t1, . . . , tn)) = f(t′1, . . . , t

′
n) if f �∈ D(R), where t′i = ti if i �∈ μ(f)

and t′i = capμ(ti) if i ∈ μ(f), and
3. capμ(f(t1, . . . , tn)) = y if f ∈ D(R).

Here, y is the next variable in an infinite list y1, y2, . . . of fresh variables.

Incomplete methods to implement this estimation are given in [10].

Theorem 16 (CS-DP Processor Using Dependency Graphs). The CS-
DP processor with Proc(P ,R,S, E , μ) = {(P1,R,S, E , μ), . . . , (Pn,R,S, E , μ)},
where P1, . . . ,Pn are the strongly connected components (SCCs) of the estimated
dependency graph EDG(P ,R,S, E , μ), is sound.

Example 17. For the dependency pairs from Ex. 12, the following estimated
dependency graph EDG(P ,R,S, E , μ) is obtained:

(1) (6)

(4) (2) (3) (5)

(7), (8), (9) (10)

Here, the nodes for (7)–(9) have been combined since they have “identical”
incoming and outgoing arcs. This estimated dependency graph contains two
SCCs, and, according to Thm. 16, the following CS-DP problems are obtained:

({(1)},R,S, E , μ) (11)
({(7), (8), (9)},R,S, E , μ) (12)

These CS-DP problem can now be handled independently of each other. ♦
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5.2 Subterm Criterion

The subterm criterion for ordinary TRSs [21] is a relatively simple technique
which is nonetheless surprisingly powerful. The technique works particularly well
for functions that are defined using primitive recursion. The subterm criterion
applies a projection which collapses a term f 	(t1, . . . , tn) to one of the ti.

Definition 18 (Projections). A projection is a mapping π that assigns to
every f 	 ∈ F 	 with arity(f 	) = n an i with 1 ≤ i ≤ n. The mapping that assigns
to every term f 	(t1, . . . , tn) the term tπ(f�) is also denoted by π.

After applying a projection, the subterm relation modulo E is used. For CS-
CERSs, this relation needs to take the replacement map into account by only
considering subterms in active positions. This is similar to [2].

Definition 19 (E-μ-Subterms). Let (R,S, E , μ) be a CS-CERS and let s, t be
terms. Then t is a strict E-μ-subterm of s, written s�E,μ t, iff s ∼E ◦�μ ◦ ∼E t.
The term t is an E-μ-subterm of s, written s �E,μ t, iff s �E,μ t or s ∼E t.

The subterm criterion is now implemented by the following CS-DP processor.
Notice that the sets R and S do not need to be considered when operating on
the CS-DP problem (P ,R,S, E , μ).

Theorem 20 (CS-DP Processor Using the Subterm Criterion). For a
projection π, let Proc be a CS-DP processor with Proc(P ,R,S, E , μ) =

• {(P − P ′,R,S, E , μ)}, if P ′ ⊆ P such that
– π(s) �E,μ π(t) for all s → t�ϕ� ∈ P ′, and
– π(s) �E,μ π(t) for all s → t�ϕ� ∈ P − P ′.

• (P ,R,S, E , μ), otherwise.

Then Proc is sound.

Example 21. Recall the CS-DP problem (12) from Ex. 17, consisting of the de-
pendency pair (7)–(9). Using π(Unum) = 1, this CS-DP problem can easily be
handled since all dependency pairs are removed from it. ♦

5.3 Reduction Pairs

As usual in methods based on dependency pairs, well-founded relations on terms
may be used in order to remove dependency pairs from CS-DP problems. Often,
reduction pairs [24] are used for this purpose, and they can immediately be
applied for CS-CERSs as well. If the CS-CERS uses built-in natural numbers,
then PA-reduction pairs [12] may be used. Here, it is shown that a special class
of polynomial interpretations is applicable if integers are built-in.4

4 It is also possible to develop a general framework of Z-reduction pairs [10].
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A Z-polynomial interpretation Pol fixes a constant cPol ∈ Z and maps

1. the symbols in FZ to polynomials over Z in the natural way, i.e., Pol(0) = 0,
Pol(1) = 1, Pol(−) = −x1 and Pol(+) = x1 + x2,

2. the symbols in F to polynomials over N such that Pol(f) ∈ N[x1, . . . , xn] if
arity(f) = n, and

3. the symbols in F 	 to polynomials over Z such that Pol(f 	) ∈ Z[x1, . . . , xn]
if arity(f 	) = n and Pol(f 	) is weakly increasing in all xi where the ith

argument of f 	 has sort univ.

Terms are mapped to polynomials by defining [x]Pol = x for variables x ∈ V and
[f(t1, . . . , tn)]Pol = Pol(f)([t1]Pol , . . . , [tn]Pol ).

Definition 22 (�Pol , �Pol , and ∼Pol for Z-Polynomial Interpretations).
Let Pol be a Z-polynomial interpretation. Then s �Pol t iff [sσ]Pol ≥ cPol and
[sσ]Pol > [tσ]Pol for all ground substitutions σ : V(s) ∪ V(t) → T (F ∪ FZ).
Analogously, s �Pol t iff [sσ]Pol ≥ [tσ]Pol for all ground substitutions σ : V(s) ∪
V(t) → T (F ∪ FZ) and s ∼Pol t iff [sσ]Pol = [tσ]Pol for all ground substitutions
σ : V(s) ∪ V(t) → T (F ∪ FZ).

For constrained terms, it suffices to consider all substitutions σ that make the
constraint Z-valid. This is similar to the PA-reduction pairs of [12].

Definition 23 (�Pol and �Pol on Constrained Terms). Let Pol be a Z-
polynomial interpretation, let s, t be terms and let ϕ be a Z-constraint. Then
s�ϕ� �Pol t�ϕ� iff sσ �Pol tσ for all Z-based substitutions σ such that ϕσ is
Z-valid. Similarly, s�ϕ� �Pol t�ϕ� iff sσ �Pol tσ for all Z-based substitutions σ
such that ϕσ is Z-valid.

Thus, s�ϕ� �Pol t�ϕ� if the following formulas are true in the integers (here,
x1, . . . , xn are the variables occurring in [s]Pol or [t]Pol):

∀x1, . . . , xn. ϕ ⇒ [s]Pol ≥ cPol

∀x1, . . . , xn. ϕ ⇒ [s]Pol > [t]Pol

Since Pol(−) is not monotonic in its argument, it becomes necessary to im-
pose restrictions on the CS-DP problem under which Z-polynomial interpreta-
tions may be applied. More precisely, it has to be ensured that no reduction with
S→Num‖E\R,μ takes place below an occurrence of −. The easiest way to ensure this
is as follows: If all arguments of right-hand sides from P are terms in T (FZ,V),
then no reduction with S→Num‖E\R,μ can take place between instantiated de-
pendency pairs in a chain since chains are built using Z-based substitutions.
Additional sufficient conditions and refined techniques are presented in [14].

Theorem 24 (CS-DP Processor Using Z-Polynomial Interpretations).
Let Proc be a CS-DP processor with Proc(P ,R,S, E , μ) =

• {(P − P ′,R,S, E , μ)}, if all arguments of right-hand sides of P are terms
from T (FZ,V), Pol is a Z-polynomial interpretation, P ′ ⊆ P, and
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– s�ϕ� �Pol t�ϕ� for all s → t�ϕ� ∈ P ′

– s�ϕ� �Pol t�ϕ� for all s → t�ϕ� ∈ P − P ′

• {(P ,R,S, E , μ)}, otherwise.

Then Proc is sound.

If P contains right-hand sides with arguments that are not from T (FZ,V), then
it might be possible to use a non-collapsing argument filter [24] for the function
symbols f 	 ∈ F 	 that ensures that this condition is satisfied afterwards.

Example 25. Recall the CS-DP problem (11) from Ex. 17, consisting of the de-
pendency pair (1). Using a non-collapsing argument filtering that only retains
the first argument of take	, this dependency pair is transformed into

take	(x) → take	(x− 1) �x > 0�

Now Thm. 24 can be applied and using cPol = 0 and Pol(take	) = x1 concludes
the termination proof of the running example since

∀x. x > 0 ⇒ x ≥ 0
∀x. x > 0 ⇒ x > x− 1

are true in the integers. ♦

6 Evaluation and Conclusions

This paper has presented a generalization of the constrained equational rewrite
systems (CERSs) introduced in [12]. Then, context-sensitive rewriting strategies
for these generalized CERSs have been investigated. The main interest has been
in the automated termination analysis for such context-sensitive CERSs. For
this, a dependency pair framework for CS-CERSs has been developed, taking
the recent method of [1] for ordinary context-sensitive TRSs as a starting point.
Then, many of the DP processors developed for non-context-sensitive rewriting
in [12] have been adapted to the context-sensitive case.

The techniques presented in this paper have been fully implemented in the
termination prover AProVE [18], resulting in AProVE-CERS.

While most of the implementation is relatively straightforward, the compu-
tation of the estimated dependency graph is non-trivial since, given s and t, it

needs to be checked whether there exists a σ such that sσ
>Λ−→E\S−→! ◦ >Λ∼E tσ. Notice

that this is a generalization of E-unifiability that stems from the normalization
process used in CERSs. If E- or E ∪ S-unifiability is decidable, then the above
problem can be approximated by these. Otherwise, syntactic unifiability can be
used as a (weak) approximation. Details on this can be found in [10].

An automatic generation of Z-polynomial interpretations is non-trivial as well
since the constraints of the rewrite rules need to be utilized. This is done by first
using the constraints in order to derive upper and/or lower bounds on vari-
ables. These upper and/or lower bounds are then used in combination with
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absolute positiveness [22] in order to automatically generate a suitable (con-
crete) Z-polynomial interpretations from a parametric Z-polynomial interpreta-
tion (i.e., a Z-polynomial interpretation where the coefficients are parameters
that need to be instantiated). The approach is discussed in detail in [13].

In order to evaluate the effectiveness of the approach on “typical” algorithms,
the implementation has been evaluated on a collection of 150 (both context-
sensitive and non-context-sensitive) examples. Most of these examples stem from
the Termination Problem Data Base, suitably adapted to make use of built-in
integers and/or collection data structures. The majority of examples correspond
to functional programs as written in OCaml. Additionally, the collection contains
several examples corresponding to functional Maude modules taken from [9] that
operate on sets or multisets. The collection furthermore contains more than
40 examples that were obtained by encoding programs from the literature on
termination proving of imperative programs into CERSs, see [13].

With a time limit of 60 seconds for each example, AProVE-CERS succeeds in
proving termination of 140 (93.3%) of the examples, taking an average time of
2.15 seconds for each example.5 An empirical comparison with AProVE-Integer
based on the methods presented in [16] has been conducted on a subset of 80
examples where the methods of [16] are applicable (i.e., examples that use nei-
ther context-sensitive strategies nor collection data structures).6 Out of these
80 examples, AProVE-CERS succeeds on 73, while AProVE-Integer succeeds on
72. There are examples that can only be handled by AProVE-CERS but not
by AProVE-Integer, and vice versa. On examples that can be handled by both
AProVE-CERS and AProVE-Integer, the system AProVE-CERS that is based on
the present paper is much faster than AProVE-Integer, on average by a fac-
tor of three (in the most extreme case, AProVE-CERS succeeds in 0.1s while
AProVE-Integer needs 52.7s in order to prove termination). The detailed empiri-
cal evaluation, including all termination proofs generated by AProVE-CERS and
AProVE-Integer, is available at http://www.cs.unm.edu/~spf/tdps/.
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Abstract. We give a novel transformation method for proving termination of
higher-order rewrite rules in Klop’s format called Combinatory Reduction Sys-
tem (CRS). The format CRS essentially covers the usual pure higher-order
functional programs such as Haskell. Our method called higher-order semantic
labelling is an extension of a method known in the theory of term rewriting.
This attaches semantics of the arguments to each function symbol. We system-
atically define the labelling by using the complete algebraic semantics of CRS,
Σ-monoids. We also examine the power of higher-order semantic labelling by
several examples. This includes an interesting example from the viewpoint of
functional programming.

1 Introduction

Rewrite rules appear everywhere in computer science. In programming language theory,
we use often transformation of states, expressions, terms, or programs given by some
form of rewrite rules. Functional programs such as Haskell can also be regarded as
rewrite rules. When reasoning with such rewrite rules, termination is one of the most
important property, because it is necessary for decidable equality checking. This topic
has been extensively investigated in the field of term rewriting [BN98, Ter03].

In this paper, we deal with higher-order rewrite rules in Klop’s format called com-
binatory reduction systems (CRSs) [Klo80, KOR93]. The format CRS is known as one
of the most early detailed formulation of higher-order rewriting systems (i.e. rewriting
systems having the feature of variable binding and meta-level substitutions) in the the-
ory of term rewriting. A CRS is a set of rewrite rules on second-order terms. We give a
method to prove termination, meaning strong normalisation, of a CRS by a translation
called higher-order semantic labelling. This is an extension of a method for first-order
term rewriting systems (TRSs) [Zan95].

Weakness of existing syntactic methods. Higher-order extensions of term rewrit-
ing systems [Ter03] are known as several formats: major representatives are CRSs,
Higher-order Rewrite Systems [Nip91], and Inductive Data Type Systems [BJO02].
There exist several termination criteria: higher-order recursive path order (HORPO)
[JR07], the General Schema [BJO02, Bla00], hereditary monotone functional inter-
pretation [Pol94], binding algebra interpretation [Ham05]. Recently improvements of
HORPO/General Schema are actively investigated [BR01, Raa01, JR06]. A recent sur-
vey on this field can be found in [BJR08].

S. Escobar (Ed.): WFLP 2009, LNCS 5979, pp. 62–78, 2010.
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For CRSs, the General Schema is a decidable syntactic criteria of termination
[Bla00]. The idea of the General Schema is to control the arguments of the right-hand
side recursive calls in a rewrite rule by checking that they are smaller than the left-hand
sides ones in the strict subterm order extended in a multiset or lexicographic manner.

The General Schema criteria is effective for rewrite rules defined structural recur-
sively on term structures. However, there are many realistic rewrite rules which do not fit
into this scheme. We use often rewrite rules defined non-structural recursively on term
structures. The General Schema is not applicable to prove termination of such rewrite
rules. What does this mean? This implies that rather than syntactic structures, semantic
structures should be more explicit in many situations, and they can be a “hint” of com-
plete termination proofs. Our approach to give termination proofs in this paper does not
aim to be fully automatic. Finding appropriate semantics of rewrite rules automatically
is hard in general. But in most cases, one has the intended semantics for rewrite rules
in one’s mind that matches the intended application (if not, why one could write such
rewrite rules?) Hence, making such semantics explicit is merely a matter of formula-
tion. Notice that our method is not fully semantical either. We combine both syntactic
and semantical information. Below, we give two examples to illustrate this situation.

Example 1 (The prefix sum of a list). Consider the following CRS P for computing
the prefix sum of a list, i.e., the list with the sum of all prefixes of a given list using the
higher-order function map (taken from [BR01]).

map(a.f[a], nil)→ nil

map(a.f[a], x : xs)→ f[x] : map(a.f[a], xs)

ps(nil)→ nil

ps(x : xs)→ x : ps(map(a.x + a, xs))

We want to prove termination of the CRS P. Unfortunately, the CRS P does not
follow the General Schema, hence the exiting syntactic method is not powerful enough.
This is because the argument of ps in the right-hand side of the last rule is not a subterm
of the argument of ps in the left-hand side. However, we know that the map function
does not change the length of a list, thus a shorter list than x : xs is always used in
the recursive call of ps. To prove termination of ps, this “semantic” information (rather
than only syntactical structures) should be effectively used.

Higher-order semantic labelling developed in this paper solves this problem. It is a
method to reflect such information in rewrite rules. In this case, we use the “length” of
a list for ps as the semantics. Higher-order semantic labelling transforms the original
CRS P to the following labelled CRS:

ps0(nil)→ nil

psi+1(x : xs)→ x : psi(map(a.x + a, xs))

where i ∈ N. This i denotes the “semantics” of argument ps, i.e., the length of a list.
This transformation to attach semantics to function symbols is systematically defined in
the structure of Σ-monoids, which is abstract algebraic structures of higher-order terms.
Then, this labelled CRS successfully follows the General Schema with the precedence
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psi > ps j > map > : for i > j ∈ N. This ordering is used to compare two term
structures in a recursive manner. If two root function symbols can be compared by
the ordering, thier arguments need not to be comparied. Hence, the order psi+1 > psi

effectively solve the above mentioned problem on the mismatch between the term size
and semantical size. Our main theorem (Thm. 10) of higher-order semantic labelling is
that if the labelled CRS is terminating, then the original CRS is terminating. Hence, we
can conclude termination of the CRS P.

Example 2 (Haskell’s rewrite rules). Glasgow Haskell Compiler (GHC) has a pragma
called “rewrite rules” [JTH01] for an optimization purpose. GHC applies rewrite rules
to the source program wherever it can. The following is an example that composes two
maps in a program.

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

Rewriting by this Haskell’s rewrite rule are expected to be terminating at the com-
pile time. But GHC makes no attempt to ensure that the rule is terminating because
of complications of the combination of the rewrite rule and compiler’s optimization
rules [JTH01]. But ideally we should ensure termination of rewrite rules. To consider
this problem in a formal setting, we model this Haskell’s rewrite rule as the following
CRS’s rewrite rule:

map(f,map(g, xs))→ map(a.f[g[a]], xs)

A difficulty is that this rule is not defined structural recursively on a data structure.
Moreover, the first argument of map in the right-hand side is bigger than ones in the
left-hand side. Hence, this does not follow the General Schema.

Higher-order semantic labelling again solves this problem. We use “the number of
maps” in the second argument of map as the semantics. Higher-order semantic la-
belling transforms the original rule to the following labelled rules:

mapi+1(f,mapi(g, xs))→ mapi(a.f[g[a]], xs) for all i ∈ N
mapi(f, xs) → map j(f, xs) for all i > j ∈ N

Each label denotes the number of maps in the second argument. The General Schema
succeeds in showing termination of the rules with the precedence mapi > map j for all
i > j ∈ N. Hence by our main theorem, we conclude termination of the original map’s
rule.

These two examples use seemingly simple semantics, i.e., “the length of lists” and “the
number of maps”. But to compute them actually needs a sophisticated semantical ac-
count because the rewrite rules involve higher-order functions. Moreover, semantics
need not to be numbers or “sizes”. Arbitrary (higher-order) algebraic structures (e.g.
λ-terms, domains, categories, etc.) can be semantics of a CRS. In other words, the se-
mantic information for labels cannot obtained by just syntactic counting of symbols. In
this paper, using the complete algebraic semantics Σ-monoid, we systematically give
higher-order semantic labelling for CRSs.
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Contribution. The contribution of this paper is summarised as follows.

(i) Theoretical contribution.
• We generalised semantics labelling for TRSs [Zan95] to higher-order semantic

labelling for CRSs in the framework of Σ-monoids. This also showed that Σ-
monoids was certainly the right structure as the semantics of CRSs.
• We showed that semantic labelled meta-terms form a Σ-monoid.
• We identified the commutativity of the labelling operation with the substitu-

tions appearing in formulation of CRSs is an essential property to establish
semantic labelling.

(ii) Practical contribution. We demonstrate higher-order semantic labelling by several
examples for which the General Schema alone fails.

Background. Semantic labelling on higher-order terms has been defined for Inductive
Datatype Systems [Ham07]. The present paper much simplifies the labelling method
to deal with CRSs. We also aim to apply it to examples taken from functional pro-
gramming. The semantics used in this paper is based on the algebraic semantics of
CRS Σ-monoids. The notion of Σ-monoids was introduced by Fiore, Plotkin and Turi
[FPT99], then a higher-order abstract syntax for free Σ-monoids was developed by the
author [Ham04]. The algebraic semantics for CRSs [Ham05] was an application of this
Σ-monoid structure. The outline of semantic labelling for CRSs (without proofs) was
presented at 13th International Conference on Logic for Programming Artificial Intelli-
gence Reasoning (LPAR’06) as a short paper.

How to read the paper. Theories on term rewriting usually avoid the use of seman-
tics as much as possible. In contrast to it, we rely on the semantics of higher-order
terms and rewriting. The semantics structure Σ-monoid is a natural extension of the
first-order universal algebra to the second-order setting by shifting the base category
from Set to a presheaf category [FPT99]. It is systematically defined in the framework
of categorical universal algebra. Why categorical notions are needed is to make defini-
tions and discussions on higher-order rewriting mathematically simple, manageable and
systematic. The seemingly “elementary” extension of first-order semantic structures to
higher-order setting by hand (within ordinary set-theoretic setting) makes definitions
and theories quite complex because of the combinations of ordinary first-order struc-
tures and higher-order structures. Category theory prevents this explosion by giving a
right abstraction for algebraic and higher-order terms. Hence, this paper assumes basic
knowledge of category theory for reading the development of the semantic labelling
method, such as functor categories, monoidal categories, monoids and algebras (e.g.
[Mac71] Chap. II, VII).

Future work. As a future work, we plan to make our method to be more accessible
for users of proof assitants and dependently-typed programming languages. One of the
most expected area that seriously needs termination proofs is proof assitants. Finding
appropriate semantics fully automatic is impossible, but one’s intended semantics might
be directly mechanised within a proof assitant such as Coq or Agda. Combining it
with syntactic methods will greatly reduce efforts to give full termination proofs in
proof assitants. Hence, giving a convenient library and recipes for higher-order semantic
labelling in a proof assitant
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Organisation. This paper is organised as follows. We first review the definition of
CRSs in Section 2 and the semantics of CRSs in Section 3. We give higher-order se-
mantic labelling of CRSs in Section 4. In Section 5, we give the quasi-model version of
higher-order semantic labelling and show several examples of termination proof using
our method. All omitted proofs are given in Appendix.

2 Combinatory Reduction Systems

CRS. We review the definition of CRSs. We use the definition of the standard reference
[KOR93] of CRSs with a slight modification of syntax used in [DR98]: −.− and −[−]
instead of ordinary ones [−]− and −(−) in [KOR93].

Assume a signature Σ of function symbols f l with arity, metavariables zl with arity
(in both cases the superscript l ∈ N is the arity).

(i) CRS terms have the form t ::= x | x.t | f l(t1, . . . , tl). These forms are respectively
called variables, abstractions, and function terms.

(ii) CRS meta-terms extend CRS terms to t ::= x | x.t | f l(t1, . . . , tl) | zl [t1, . . . , tl].
The last form is called a meta-application.

(iii) A valuation θ is a mapping that assigns to n-ary metavariable z an n-ary substitute
(a meta-level lambda notation, cf. [KOR93]) θ : z � λ(x1, . . . , xn).t where t is a
term. Any valuation is extended to a function on meta-terms:

θ(x) = x θ( f (t1, . . . , tl)) = f (θ(t1), . . . , θ(tl))

θ(x.t) = x.θ(t) θ(z[t1, . . . , tl]) = θ(z) (θ(t1), . . . , θ(tl)) (1)

Note that the right-hand side of the equation (1) uses an application at the meta-
level to the substitute. The valuation is safe if there are no two substitutes θ(z) and
θ(z’) such that θ(z) contains a free variable x which appears also bound in θ(z’).

(iv) CRS rules, written l → r, consist of two meta-terms l and r with the following
additional restrictions:

(iv-a) l and r are closed (w.r.t. variables) meta-terms,
(iv-b) l must be a “pattern”, i.e. a function term where all meta-applications have the

form z[x1, . . . , xn] with distinct variables xi,
(iv-c) r can only contain meta-applications with meta-variables occurring in the left-

hand side.
The rewrite rule l → r is safe for θ , if for all z in l and r, the substitute θ(z) does
not have a free variable x occurring in an abstraction x.− of l and r. A set of rewrite
rules under the signature Σ is called a CRS and denoted by (Σ,R) or simply R.

(v) The CRS rewrite relation→R is generated by context and safe valuation closure of
a given CRS R:

l→ r ∈ R
θ(l)→R θ(r)

safe θ
s→R t

x.s→R x.t
s→R t

f (. . . , s, . . .)→R f (. . . , t, . . .)

where l→ r must be safe for the safe valuation θ. The third rule means rewriting at
the i-th argument of f . We say that R is terminating if→R is well-founded.
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Structural CRSs. In this paper, we treat CRSs using (meta-)terms built from binding
signatures, which we call structural CRSs (cf. Aczel’s contraction schemes [Acz78]).
A binding signature Σ consists of a set Σ of function symbols with an arity function a :
Σ→ N∗, whereN∗ denotes the set of all finite sequences of natural numbers. A function
symbol of binding arity 〈n1, . . . , nl〉, denoted by f : 〈n1, . . . , nl〉, has l arguments and
binds ni variables in the i-th argument (1 ≤ i ≤ l). For a formal treatment of named
variables modulo α-equivalence in CRSs, we assume the method of de Bruijn levels
[dB72] for the naming convention of variables (N.B. not for metavariables) in CRSs. We
also use the convention that n ∈ N denotes the set {1, . . . , n} (n is possibly 0). Under the
method of de Bruijn levels, this n means the set of variables from 1 to n. Structural meta-
terms are of the form t ::= x | f (x1 · · · xi1.t1 , . . . , x1 · · · xil.tl) | zl [t1, . . . , tl] satisfying
the restriction generated by the inference system given blow. Fix an N-indexed set Z of
metavariables defined by Z(l) � {z | z has arity l}. A meta-term t is structural if n 	 t
is derived from the following rules for some n ∈ N.

x ∈ n
n 	 x

f : 〈i1, . . . , il〉 ∈ Σ n+i1 	 t1 · · · n+il 	 tl
n 	 f ( n+1 . . .n+i1.t1, . . . , n+1 . . .n+il.tl )
z ∈ Z(l) n 	 t1 · · · n 	 tl

n 	 z[t1, . . . , tl]
By using these rules, we obtain meta-terms in the method of de Bruijn levels. A rewrite
rule 1. · · ·n.l → 1. · · ·n.r is called structural if l and r are structural, i.e. n 	 l and
n 	 l. A CRS is structural if all rules are structural. A valuation θ is structural if for
any mapping by θ : z 
→ λ(x1, . . . , xn).t, t is a structural term and all variables in t are
included in x1, . . . , xn. We may use the notation Z|n 	 s→ t for a rule or a rewrite step
if metavariables and variables in s and t are included in Z and n respectively. We may
also simply write Z 	 s→ t or n 	 s→ t if the other part is not important.

3 Semantics of CRSs

3.1 Binding Algebras

The semantics of CRS is given by the notion of binding algebras and Σ-monoids. What
are Σ-monoids? A Σ-monoid is an algebra equipped with substitution operation on (se-
mantics of) terms. This substitution operation is called multiplication, typically denoted
by β in this paper. Why this is a multiplication is that the substitution operation satisfies
the monoid law (imagine compositions of substitutions with the identity substitution)
in an abstract setting.

We review the notion of binding algebras and Σ-monoids. For detail, see [FPT99].
Let F be the category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as ob-
jects, and all functions between them as arrows. This is the category of object variables
by the method of de Bruijn levels (i.e. natural numbers) and their renamings. We use
the functor category SetF. An object A of SetF is often called a presheaf . Subscripts
may be used to denote parameters. The functor δ : SetF → SetF for “index extension”
is defined by (δL)(n) = L(n+1) for L ∈ SetF. To a binding signature Σ, we associate the
signature functor Σ : SetF → SetF given by ΣA =

∐
f :〈n1 ,...,nl〉∈Σ

∏
1≤i≤l δ

ni A.A Σ-algebra
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is a pair (A, α) consisting of a presheaf A ∈ SetF called a carrier and a map ([ ] denotes
a copair of coproducts) α = [ fA] f∈Σ : ΣA � A called an algebra structure, where
fA is an operation fA : δn1 A × . . . × δnl A � A defined for each function symbol f :
〈n1, . . . , nl〉 ∈ Σ. The “presheaf of variables” V ∈ SetF is defined by V(n) = n, V(ρ) =
ρ (ρ : m → n in F). For presheaves A and B, (A • B)(n) � (

∐
m∈N A(m) × B(n)m)/ ∼

where ∼ is the equivalence relation generated by (t; uρ1, . . . , uρm) ∼ (A(ρ)(t); u1, . . . , ul)
for ρ : m → l in F. Then, (SetF, •,V) forms a monoidal category [Mac71], where the
“substitution” monoidal product is defined as follows. An element of A(m) × B(n)m is
denoted by (t; u1, . . . , um) where t ∈ A(m) and u1, . . . , um ∈ B(m). A representative of an
equivalence class in A•B(n) is also denoted by this notation. Let Σ be a signature functor
with strength st defined by a binding signature. A Σ-monoid M = (M, α, η, μ) consists
of a monoid (M, η : V → M, μ : M • M → M) in the monoidal category (SetF, •,V)
with a Σ algebra structure α : ΣM → M satisfying μ◦(α•idM) = α◦Σμ◦st. A Σ-monoid
morphism M � M′ is a morphism in SetF which is both Σ-algebra homomorphism
and monoid morphism.

3.2 Algebra of Meta-terms

Let Z be an arbitrary N-indexed set of metavariables (cf. Sec. 2). The presheaf MΣZ of
meta-terms is defined by MΣZ(n) = {t | n 	 t}.We abbreviate n+1, . . . , n+k.t to n+	k.t. For
every f : 〈i1, . . . , il〉 ∈ Σ, we define the map fT : δi1 MΣZ×· · ·×δil MΣZ � MΣZ in SetF

by (t1, . . . , tl) � f (n+	i1.t1, . . . , n+	il.tl). The multiplication β : MΣZ•MΣZ � MΣZ
is a map in SetF that performs a substitution of variables defined inductively as follows.

β(n)(i; 	t) = ti β(n)(z[s1, . . . , sl]; 	t) = z[β(n)(s1;	t), . . . , β(n)(sl;	t)]

β(n)( f (m+	i1.s1, . . . ,m+	il.sl); 	t) = f (m+	i1. β(m+i1)(s1; upi1 (	t),m+1, . . . ,m+i1), . . .

m+	il. β(m+il)(sl; upil (	t),m+1, . . . ,m+il)

where f : 〈i1, . . . , il〉 ∈ Σ and 	t denotes t1, . . . , tm, and the weakening map from MΣZ(m)
to MΣZ(m + i) is defined by upi � MΣZ(idm + wi) where wi : 0 → i. Then, the
structural meta-terms (MΣZ, [ fT ] f∈Σ, ν, β) is a free Σ-monoid over a presheaf Ẑ, where
ν : V � MΣZ in SetF is defined by x � x and Ẑ(n) =

∐
k∈N F(k, n) × Z(k)

[Ham04]. Hereafter, givenN-indexed set Z, we abuse the notation to use Z to denote its
presheaf version Ẑ ∈ SetF in an assignment.

Definition 3. We call an assignment a morphism φ : Z � A of SetF whose target
A has a Σ-monoid structure (A, α, η, μ). By freeness, an assignment φ : Z � A is
extended to the Σ-monoid morphism φ∗ : MΣZ � A defined by

φ∗n(x) = ηn(x) (x ∈ n)

φ∗n( f (n+	i1.t1, . . . , n+	il.tl)) = fA(φ∗n+i1 (t1), . . . , φ∗n+il (tl))

φ∗n(z[t1, . . . , tl]) = μn( φl(z); φ
∗
n(t1), . . . φ∗n(tl) )

where f : 〈i1, . . . , il〉 ∈ Σ.
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When the N-indexed set of metavariables Z = 0 (empty set), MΣ0 is the presheaf
of all structural terms (written as TΣV in [Ham05]). Moreover, MΣ0 forms the initial Σ-
monoid [FPT99, Ham04]. An assignment θ : Z � MΣ0 gives a structural valuation,
and θ∗ : MΣZ � MΣ0 gives its “homomorphic” extension on meta-terms. We also
call a valuation an assignment θ : Z � MΣ0.

3.3 Algebraic Semantics of Rewriting

Henceforth, in this paper we consider structural CRSs only. So we say “a CRS” for a
structural CRS.

The notions of models and quasi-models for CRSs are defined as follows. For a
presheaf A, we write ≥A for a family of preorders {≥A(n)}n∈N, where ≥A(n) is a preorder
on a set A(n) for each n ∈ N. Let (A1,≥A1 ), . . . , (Al,≥Al), (B,≥B) be presheaves equipped
with preorders. A map f : A1 × · · ·×Al

� B in SetF is weakly monotone if all n ∈ N,
all a1, b1 ∈ A1(n), . . . , al, bl ∈ Al(n) with ak ≥A(n) bk for some k and a j = b j for all j � k,
then f (n)(a1, . . . , al) ≥B(n) f (n)(b1, . . . , bl). A weakly monotone V+Σ-algebra (A,≥A)
is a V+Σ-algebra A = (A, [ν, [ fA] f∈Σ]), where ν : V � A, equipped with preorders
{≥A(n)}n∈N, such that every operation fA is weakly monotone. Let A be a V + Σ-algebra.
A term-generated assignment φ : Z � A is a morphism of SetF that is expressed as

the composite Z
θ� MΣ0

!A� A for some valuation θ, where !A is the unique V+Σ-
algebra homomorphism from the initial V + Σ-algebra MΣ0. A V+Σ-algebra A satisfies
a rewrite rule Z 	 	n.l → 	n.r if φ∗(n)(l) = φ∗(n)(r) for all term-generated assignments
φ : Z � A. A model A for a CRS (Σ,R) is a V+Σ-algebra A that satisfies all rules
in the weakening closure R◦ (cf. [Ham05]). A weakly monotone V+Σ-algebra (A,≥A)
satisfies a rewrite rule Z 	 	n.l → 	n.r if φ∗(n)(l) ≥A(n) φ

∗(n)(r) for all term-generated
assignments φ : Z � A. A quasi-model A for (Σ,R) is a weakly monotone V+Σ-
algebra A that satisfies all rules in the weakening closure R◦. An important fact is that
any Σ-monoid (M, α, ν, μ) gives a V+Σ-algebra (M, [ν, α]). Thus in this paper, we will
basically work with Σ-monoids rather than V+Σ-algebras, which gives uniform semantic
treatment of algebras with substitutions.

4 Higher-Order Semantic Labelling

We are now ready to give our semantic labelling for CRSs. We give an abstract formu-
lation along the idea of initial algebra semantics in the framework of Σ-monoids.

4.1 Semantic Labelling for Meta-terms

Henceforth, we assume that Z is an N-indexed set of metavariables, Σ is a binding
signature and M is a Σ-monoid. We introduce labelling of functions symbols: choose
for every f ∈ Σ a corresponding non-empty set S f of labels, called semantic label set.
The binding signature Σ for labelled function symbols is defined by

Σ = { fp | f ∈ Σ, p ∈ S f }
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where the binding arity of fp is defined to be the binding arity of f . A function symbol
is labelled if S f contains more than one element. For unlabelled f , the set S f containing
only one element can be left implicit; in that case we will often write f instead of fp.

Choose for f : 〈i1, . . . , il〉 ∈ Σ, a semantic label map that is a morphism of SetF

defined by
〈〈−〉〉 f : δi1 M × · · · × δil M � KS f .

where KS f ∈ SetF is the constant presheaf defined by KS f (n) = S f . If it is clear from the
context, the superscript of 〈〈−〉〉 f will be omitted. The semantic label map was originally
called a projection, denoted by π f in [Zan95]. Then, as in the case of ordinary signature,
we define MΣZ by the presheaf of all meta-terms generated by the labelled signature Σ.

Definition 4 (Labelling map). Let φ : Z � M be an assignment. The labelling map
φL : MΣZ � MΣZ is a morphism of SetF defined by

φL
n : MΣZn

� MΣZn

φL
n(x) = x φL

n(z[	t]) = z[φL
n	t]

φL
n( f (n+	i1.t1, . . . , n+	il.tl)) = f〈〈φ∗n+i1 (t1),...,φ∗n+il (tl)〉〉

f

n
(n+	i1.φ

L
n+i1 t1, . . . , n+	il.φ

L
n+il tl)

We state the following characterisation that clarifies what is the mathematical struc-
ture of semantic labelled meta-terms.

Theorem 5. For each assignment φ : Z � M, (MΣZ, [ fφ] f∈Σ, νφ, βφ) is a Σ-monoid.

Corollary 6. For each assignment φ : Z → M, the labelling map φL : MΣZ → MΣZ is
the unique Σ-monoid morphism (MΣZ, [ fT ] f∈Σ, ν, β)→ (MΣZ, [ fφ] f∈Σ, νφ, βφ).

Proof. Let iφ : Z → MΣZ be the assignment into the Σ-monoid (MΣZ, [ fφ] f∈Σ, νφ, βφ)
defined by z 
→ z. It is clear that i∗φ = φ

L by just comparing the definitions of φL and the
Σ-monoid extension (−)∗. Hence φL gives a Σ-monoid morphism. ��
Below we describes the Σ-monoid structure on MΣZ mentioned above for each assign-
ment φ : Z � M. Let | − | be the function that erases all labels in a labeled meta-term
for the ordinary signature Σ.

Unit. νφ : V→ MΣZ is defined by x 
→ x.

Operations. For f : 〈i1, . . . , il〉 ∈ Σ, the corresponding operation fφ : δi1 MΣZ × · · · ×
δil MΣZ

� MΣZ is defined by

fφ(n)(s1, . . . , sl) = f〈〈φ∗n+i1
(|s1|),...,φ∗n+il

(|sl|)〉〉
n
(n + i1.s1, . . . , n + il.sl).

Multiplication. βφ : MΣZ • MΣZ
� MΣZ is defined by

βφ(n)(x; 	t) = tx

βφ(n)(z[s1, . . . , sl]; 	t) = z[βφ(n)(s1;	t), . . . , βφ(n)(sl;	t)]

βφ(n)( fq(m+	i1.s1, . . . ,m+	il.sl); 	t)

=

⎧
⎪⎨
⎪⎩

fp(m+	i1. βφ(m+i1)(s1; upm+i1 (	t),m+1, . . . ,m+i1), . . .) if m + 1 > n
fp(n+	i1. βφ(n+i1)(s1; upn+i1 (	t), n+1, . . . , n+i1), . . .) if m + 1 ≤ n
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where p = 〈〈φ∗(n)|βφ(n+ i1)(s1; upi1 (	t), n+1, . . . , n+ i1)|, . . . , φ∗(n)|βφ(n+ il)(sl; upil (	t),
n + 1, . . . , n + il)|〉〉n. For the third clause, we assume that m is the length of 	t, and I is
the maximum of i1, . . . , il, Note that the length of “upi1 (	t), n+1, . . . , n+i1” is m+ i1, and
it renames m + k by n + k to make bound variables sense.

Laws. To check that MΣZ satisfies the monoid law is straightforward induction on meta-
terms. To check the Σ-monoid law βφ ◦ ([ fφ] f∈Σ • id) = [ fφ] f∈Σ ◦ Σβφ ◦ st, we instantiate
this at n ∈ F and chase an element, this eventually becomes the equality

βφ(n)( fr(m+	i1.s1, . . . ,m+	il.sl); 	t) = fp(m+	i1. βφ(m+i1)(s1; upi1 (	t),m+1, . . . ,m+i1), . . .

m+	il. βφ(m+il)(sl; upil (	t),m+1, . . . ,m+il)

where r = 〈〈φ∗n+i1
(|s1|), . . . , φ∗n+il

(|sl|)〉〉n and p is the one given above. This obviously
holds by the definition of βφ.

4.2 Commutativity

In CRSs, there are two kinds of variables, i.e. “variables” and “metavariables”. Accord-
ingly, there are two kinds of substitutions:

• substitution of variables (written as β in Lemma 7), to perform (essentially) the
β-reduction of an instantiated meta-application, such as an instance of f[x].
• substitution of metavariables (written as θ in Lemma 8), used to instantiate rewrite

rules, and formally called valuation (Def. 3).

The labelling map φL has to commute with these two substitutions. This is needed is
that to establish higher-order semantic labelling. We translate a usual rewrite s→R t to
the labelled rewrite φL

n s →R φL
nt (Prop. 9). This process requires to push substitutions

from inside to outside of an application of the labelling map in term structures in two
levels (i.e. for variables and for metavariables). Mathematically, this is commutativity
of labelling with substitutions.

Lemma 7. Let φ : 0 � M be an assignment. Then, the following diagram com-
mutes in SetF:

MΣ0 • MΣ0
β � MΣ0

MΣ0 • MΣ0

φL • φL

�

βφ
� MΣ0

φL

�

Proof. Since φL is a Σ-monoid morphism, it preserves the multiplication.

Lemma 8. Let φ : 0 � M and θ : Z � MΣ0 be assignments. Then, the following
diagram commutes in SetF:

MΣZ
θ∗ � MΣ0

MΣZ

(φ∗θ)L

�

(φLθ)
∗

� MΣ0

φL

�
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Here (−)∗ denotes the Σ-monoid morphism extension (−)∗ (cf. Def. 3) for the case of
the labelled signature Σ.

4.3 Labelled System

For a given CRS (Σ,R) and Σ-monoid M, we define the labelled rules by

R = {Z 	 	n.φL
nl→ 	n.φL

nr | Z 	 	n.l→ 	n.r ∈ R, assignment φ : Z � M}.

Thus R is a set of rewrite rules on labelled terms in MΣZ(0). So, (Σ,R) forms a CRS
that gives rewriting on Σ-terms. We have seen that the labelling map φL is a Σ-monoid
morphism, i.e., preserves Σ-meta-term structures. The following proposition states that
φL moreover preserves R-rewrite structures.

Proposition 9. Let M be a model of R. If we have CRS rewriting n 	 s→R t on MΣ0n,
then for the assignment φ : 0 � M, we have rewriting n 	 φL

n s→R φL
nt on MΣ0n.

Theorem 10 (Higher-order semantic labelling). Let M be a model of R. A CRS R is
terminating if and only if R is terminating.

Proof. For both directions, we prove contrapositions. [⇐]: By Prop. 9. [⇒]: By erasing
all labels in rewrite steps. ��

4.4 Example

We illustrate how to apply the higher-order semantic labelling method. Higher-order se-
mantic labelling itself merely transforms a CRS into a labelled one. We need separately
a way to prove termination of the labelled system. For this purpose, we use Blanqui’s
version of the General Schema for CRSs [Bla00] to prove termination of labelled CRSs
because in our experience, this is the most powerful decidable method to prove termi-
nation of CRSs. The General Schema uses a precedence which is a partial order on
function symbols occurring in a CRS. Using a precedence, if all rewrite rules of a given
CRSs follows the General Schema, we conclude termination of it.

Example 11 (CRS for prefix sum). Consider the example of CRS P for computing
prefix sum of lists given in Example 1. The CRS P is formulated under the binding
signature Σ = {map : 〈1, 0〉,S, ps : 〈0〉, 0, nil : 〈〉,+, “ : ” : 〈0, 0〉}.

To use higher-order semantic labelling, we need a model of P. Here we take the
presheaf Mn � (Nn → N) of all functions on N. This M forms a monoid in the
monoidal category SetF by taking the multiplication β : M • M → M as the com-
position “◦”, and the unit ν : V → M as the projections of Cartesian products i 
→ πi.
To construct a Σ-monoidM, we define a Σ-algebra structure onM. First, we define the
operations at the stage 0 (here we call the component parameter of a natural transfor-
mation stage):

mapM0
( f , y) = y ps(x) = x :M0 (x, y) = y + 1 nilM0 = 0 x +M0 y = 0.
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The idea of this model is to count the number of cons’s. The definition of :M0 reflects
this idea and the definition of mapM0

comes from the observation that map does not
change the number of cons’s. For each f : 〈i1, . . . , il〉 ∈ Σ, the operation at stage n ≥ 1 is
given by using pairing of functions fMn (a1, . . . , al) � fM0 ◦〈a1, . . . , al〉,more concretely,
fMn (a1, . . . , al)(Γ) = fM0 (a1(Γ), . . . , al(Γ)) for Γ ∈ Nn. This indeed gives a morphism
of SetF. We can straightforwardly check that this gives a model of P. We label the
function symbol ps and assume that other function symbols are unlabelled. We use the
natural numbers N as the semantic label set S ps. The semantic label map is defined by
〈〈x〉〉ps

0 = x. Then, we have the following labelled rules

ps0(nil)→ nil

psi+1(x : xs)→ x : psi(map(a.x + a, xs))

for all i ∈ N. the General Schema succeeds in showing termination of this labelled CRS
with the precedence psi > ps j > map > nil, : for i > j ∈ N.

5 Labelling with Quasi-models

Until now the model M was a presheaf and semantic label set S f was a set. Here we
require them to be equipped with well-founded partial orders. The operations fM and
semantic label map 〈〈−〉〉 f have to be weakly monotone morphisms in SetF. Moreover,
here M is only required to be a quasi-model for a CRS, meaning that the interpretation
of the left-hand side of a rule is greater than or equal to (≥) the corresponding right-hand
side.

We define this labelling with quasi-models formally. For f : 〈i1, . . . , il〉 ∈ Σ, we
associate a well-founded poset (S f ,≥S ) of semantic labels and a semantic label map
that is a weakly monotone morphism 〈〈−〉〉 f : δi1 M × · · · × δil M � KS f . The labelled

signature Σ is defined by using the semantic label set S f as in Sec. 4. Let (M,≥M) be
a quasi-model for a CRS R. Using the semantic label map and the Σ-monoid M, the
labelled CRS R is also defined by the same as in Sec. 4.3. Moreover, we define the CRS
Decr (called “decreasing rules”) over Σ to consist of the rules

fp(	i1.z1[	i1], . . . , 	i1.zl[	il]) → fq(	i1.z1[	i1], . . . , 	i1.zl[	il])

for all f : 〈i1, . . . , il〉 ∈ Σ and all p >S q ∈ S f . Here each metavariable zk has arity ik
(for 1 ≤ k ≤ l) and >S denotes the strict part of ≥S .

Proposition 12. Let (M,≥M) be a quasi-model for R. If we have rewriting n 	 s →R t
on MΣ0n, then for the assignment φ : 0 � M, n 	 φL

n s →∗Decr;→R φL
nt holds. Here

“;” denotes the sequential composition of relations.

Theorem 13. Let M be a quasi-model for a CRS R andR the labelled CRS with respect
to M. Then R is terminating if and only if R ∪ Decr is terminating.

Proof. For both directions, we prove contrapositions. [⇐]: By Prop. 12. [⇒]: By eras-
ing all labels in rewrite steps. ��
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Example 14 (CRS for quick sort). Quick sort algorithm on natural numbers can be
implemented as the CRS R with the standard rewrite rules: if,++, filter, “>”, “≤”.

0 > y → false 0 ≤ y → true
x > 0 → true s(x) ≤ 0 → false
s(x) > s(y) → x > y s(x) ≤ s(y) → x ≤ y
if(true, x, y) → x nil ++ys → ys
if(false, x, y)→ y (x : xs) ++ys→ x : (xs ++ys)

filter(p, nil)→ nil

filter(p, x : xs)→ if(p[x], x : filter(p, xs), filter(p, xs))

qsort(nil)→ nil

qsort(x : xs)→ qsort(filter(a. a ≤ x, xs)) ++((x : nil) ++

qsort(filter(a. a > x, xs)))

Since the argument of qsort in the right-hand side of the last rule (filter(· · · )) is struc-
turally bigger than the argument of qsort in the left-hand side (x : xs), the General
Schema is not applicable. The higher-order recursive path ordering for the correspond-
ing rewrite system written in the format called Inductive Data Type Systems [BJO02]
also fails [BR01].

Here, we use higher-order semantic labelling with a quasi-model. Let D = N × N∗
with the order 〈n, l〉 ≥ 〈n′, l′〉 def⇐⇒ n ≥ n′. We use the carrierMk � (Dk → D). The
operations at stage 0 are:

trueM0 = 〈1, ε〉 falseM0 = 〈0, ε〉 0M0 = 〈0, ε〉 sM0 (〈n, l〉) = 〈n + 1, l〉
>M0 (m, n) =

{ 〈1, ε〉 if m > n
〈0, ε〉 otherwise

≤M0 (m, n) =

{ 〈1, ε〉 if m ≤ n
〈0, ε〉 otherwise

qsortM0
(〈n, l〉) = 〈n, ε〉 ifM0 (b, y, z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y if b = 〈1, ε〉
z if b = 〈0, ε〉
〈0, ε〉 otherwise

filterM0 (p, 〈n, l〉) = 〈the number of p(〈i, ε〉) = 〈1, ε〉 for every i in l, ε〉
++M0 (〈n, l〉, 〈n′, l′〉) = 〈n + n′, l · l′〉

nilM0 = 〈0, ε〉 :M0 (〈a, s〉, 〈n, l〉) = 〈n + 1, a · l〉
The operations at stage n > 0 are defined similarly to Example 11. This is indeed a
quasi-model and cannot be a model. We label the function symbol qsort only. The se-
mantic label set S qsort isNwith the usual order. The semantic label map is 〈〈〈n, l〉〉〉qsort

0 =

n, which is weakly monotone. Then, we have the labelled rules:

qsort0(nil)→ nil
qsorti+1(x : xs)→ qsort j(filter(a.a ≤ x, xs)) ++((x : nil) ++

qsortk(filter(a.a > x, xs))) where i + 1 > j, k
qsorti(xs)→ qsort j(xs) for all i > j ∈ N

the General Schema shows termination of the labelled CRS with the precedence qsorti >
qsort j > filter > if,++, “>”, “≤” > nil, :, 0,S, true, false for i > j ∈ N.
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Example 15 (Haskell’s rewrite rule for map/map). Consider the CRS’s rewrite rule
in Example 2. We take the same carrierMn = (Nn → N) as in Example 14. Now the
operation onM is mapM0

: (N → N) × N � N, mapM0
( f , x) = x + 1. TheM is

indeed a quasi-model. We use the semantic label set and semantic label map for map
are S map = N with the usual order, and 〈〈 f , x〉〉map

0 = x, which is weakly monotone. This
gives the labelled rules given in Introduction, hence the original rule terminates.

6 Conclusion

We have given a method of proving termination of higher-order rewrite rules in Klop’s
format called combinatory reduction system (CRS). The method to prove termination,
called higher-order semantic labelling, is an extension of a method known in the theory
of term rewriting. This attaches semantics of the arguments to each function symbol.
We systematically define the labelling by using the complete algebraic semantics of
CRS, Σ-monoids. A key to establish the main theorem of semantic labelling was com-
mutativity of labelling with two kinds of substitutions appearing in formulation of CRS.
We have examined the power of higher-order semantic labelling by several examples
taken from functional programming. This shows usefulness of higher-order semantic
labelling in programming languages.

Acknowledgments. I am grateful to the anonymous referees for useful comments on
improving the presentation of the paper. This work is supported by the JSPS Grant-in-
Aid for Scientific Research (19700006).
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A Appendix

A.1 Proof of Lemma 8

By induction on meta-terms in MΣZ. The cases x and f (	s) ∈ MΣZn are straightforward.
For the case z[	t] ∈ MΣZn, we have the following.

lhs = φLθ∗(z[	t])

= φLβ(θz; θ∗	t) = βφ(φ
Lθz; φLθ∗	t) (by Lemma 7)

rhs = (φLθ)∗(φ∗θ)Lz[	t]

= (φLθ)∗z[(φ∗θ)L	t]

= βφ(φ
Lθz; (φLθ)∗(φ∗θ)L	t)

= βφ(φ
Lθz; φLθ∗	t) = lhs (by I.H.)
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A.2 Proof of Proposition 9

By induction on proof trees of →R. Since R is structural, it suffices to consider the
following two cases [Ham05].

(i) Case n 	 θ∗nl→R θ∗nr.
This is derived from Z 	 	n.l → 	n.r ∈ R where θ : Z � MΣ0. Let φ : 0 � M
be the assignment. Now we have a labeled rule

(φ∗θ)L
nl→ (φ∗θ)L

nr ∈ R.

By Lemma 8 and closedness of R-rewrite by the valuation φLθ : Z � MΣ0, we
have

φL
n(θ∗nl) = (φLθ)

∗
n(φ∗θ)L

nl →R (φLθ)
∗
n(φ∗θ)L

nr = φL
n(θ∗nr)

(ii) Case n 	 f (. . . , n +	i.s, . . .)→R f (. . . , n +	i.t, . . .).
This is derived from n + i 	 s →R t. Since M is a model, notice φ∗n+i s = φ

∗
n+it. By

induction hypothesis, we have φL
n+i s→R φL

n+it. So,

φL
n( f (. . . , n +	i.s, . . .))

= f〈〈...,φ∗n+i s,...〉〉n (. . . , n +	i.φL
n+i s, . . .)

= f〈〈...,φ∗n+it,...〉〉n (. . . , n +	i.φL
n+i s, . . .)

→R f〈〈...,φ∗n+i t,...〉〉n (. . . , n +	i.φL
n+it, . . .)

= φL
n( f (. . . , n +	i.t, . . .))

A.3 Proof of Proposition 12

By induction on proof trees of→R.

(i) Case n 	 θ∗nl→R θ∗nr. This case is proved by the same as in the proof of Prop. 9.
(ii) Case n 	 f (. . . , n + i.s, . . .)→R f (. . . , n + i.t, . . .)

This is derived from n + i 	 s →R t. Since (M,≥M) is a quasi-model, we have
φ∗n+i s ≥M(n+i) φ

∗
n+it. By induction hypothesis, we have φL

n+i s →∗Decr;→R φL
n+it. No-

tice also that 〈〈−〉〉 is weakly monotone. So,

φL
n( f (. . . , n + i.s, . . .)) = f〈〈...,φ∗

n+	i
s,...〉〉

n
(. . . , n +	i.φL

n+i s, . . .)

→∗Decr f〈〈...,φ∗n+i t,...〉〉n (. . . , n +	i.φL
n+i s, . . .)

→∗Decr;→R f〈〈...,φ∗n+i t,...〉〉n (. . . , n +	i.φL
n+it, . . .)

= φL
n( f (. . . , n +	i.t, . . .))

A.4 Structural CRSs as Typed CRSs

In [Bla00], Blanqui defined a version of higher-order rewriting format Inductive Data
Type Systems (IDTS), which he called “new definition of IDTS” ([Bla00] Def. 1). We
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call his “new definition of IDTS” typed CRS since as mentioned in his paper, it is a
simply-typed version of CRS. Blow we show that our structural CRSs is a subclass of
Blanqui’s typed CRSs. Hence we can apply General Schema for typed CRSs given in
[Bla00] to structural CRSs to show termination of structural CRSs.

To give a typed CRSs, the following alphabetA ([Bla00] Def. 1) is required. In typed
CRSs, types are simple types generated by the base types. (i) a set of base types, (ii)
type-indexed collection of variables, (iii) type-indexed collection of function symbols,
(iv) type-indexed collection of metavariables. Then the set of all meta-terms of a typed
CRS is constructed fromA, and a typed CRS is a set of pairs of meta-terms.

Suppose that a structural CRS (Σ,R) using a N-indexed set Z of metavariables is
given. We show that this gives rise to the following alphabet A and typed CRS. We
assume the only base type ι and all variables (now, natural numbers) have the base type.
For each function symbol f : 〈i1, . . . , il〉 ∈ Σ, we assign to the type f : ιi1 , . . . , ιil → ι
where ιi = (ι → · · · → ι) → ι (the part (ι → · · · → ι) denotes i-times ι). For each
metavariable z of arity n in Z, we associate a metavariable z in A of the type ιn → ι.
Then, the set of all structural meta-terms

⋃
k∈N MΣZ(k) is equal to the set of all meta-

terms of typed CRS given in [Bla00] under this alphabetA. Thus, the structural CRS R
is a typed CRS. Valuations and generation of a rewrite relation for structural CRSs also
fit into those of typed CRS version.
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Abstract. This paper presents a taxonomy of some exact, right-to-left,
string-matching algorithms. The taxonomy is based on results obtained
by using logic program transformation over a naive and nondeterministic
specification. A derivation of the search part and some notes about the
preprocessing part of each algorithm is presented. The derivations show
several design decisions behind each algorithm, and allow us to organize
the algorithms within a taxonomic tree, giving us a better understanding
of these algorithms and possible mechanical procedures to derive them.

1 Introduction

Taxonomies of algorithms play an important role in computer programming
[Par76, Dar78, Lau89, WZ96]: First, taxonomies of algorithms allow us to un-
cover the rationale behind the design of each algorithm and to know better how
an algorithm works; second, these taxonomies can increase our comprehension of
how an algorithm can efficiently be implemented or automatically derived; third,
a taxonomy can also reveal certain faults in the design of an algorithm; finally, we
can even discover minor variants as by-products of our main branches or deve-
lopments. We will show how program transformation is not only a valuable tool
to improve programs, but it also can be a useful tool for a better understanding
of existing algorithms. This paper presents a taxonomy, based on logic program
transformation, of some exact and right-to-left string-matching algorithms.

There are two main groups of string-matching algorithms classified accord-
ing to a pair of schedules of character comparisons: either from left to right
or from right to left. The Knuth–Morris–Pratt (KMP) algorithm [KMP77] be-
longs to the first group. The search part of the KMP algorithm has been the
subject of intensive study in program derivation [CD89, Smi91, SGJ96]. How-
ever, this algorithm is hardly used in practice. Instead, string searching is often
implemented following the Boyer–Moore (BM) algorithm [Ste94] or some vari-
ant; these algorithms belong to the second group. This paper shows how to ob-
tain BM-like programs from naive and nondeterministic logic programs, through
transformational methods and by using the powerset construction together with
deterministic unfolding and constraint introduction.
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Overview. We assume from our readers some basic familiarity with logic pro-
gramming [Llo87] and logic program transformation [PP98]. An overview of this
paper is as follows. Section 2 introduces the string-matching problem and des-
cribes the BM algorithm. Section 3 gives some logic program transformation
techniques and the main points of our derivations. Section 4 is devoted to derive
the BM algorithm and some of its variants. Section 5 presents related work and
Section 6 gives some conclusions.

2 The Boyer–Moore Algorithm

The exact string-matching problem. The exact string-matching problem consists
in finding the occurrences (if any) of a string called the pattern within another
string called the text. Formally, let A be a non-empty and finite set called the
alphabet. The elements of A are called characters or symbols. The set A∗ consists
of finite sequences of characters and these sequences are called strings. We denote
by Set(S) the set of elements occurring in the string S, and by #(S) its length.

Let S1 and S2 be two strings in A∗. The string S1 is a substring of S2 if S1 is
a subsequence of S2. We define a partial order relation in A∗ as follows: S1 � S2

if S1 is a substring of S2. If S1 � S2 we say that S1 occurs in S2. Let S, T be
strings. The concatenation of S and T , S ++T , is the new string ST . The set
A∗ endowed with the operation ++ is a non-commutative monoid with a unit
element called the empty word, ε. A border of a string S is a non-empty string
U such that S = T1U = UT2. When we refer to the border of a string S as that
having the maximum length among borders of S. Given the strings S1 and S2,
in the exact string-matching problem we want to know whether S1 � S2. This
is equivalent to know if there are two strings U and V such that S2 = US1V .
This specification of occurrence is nondeterministic, because U and V are not
determined. In case of U = ε, S1 occurs as a prefix in S2. In case of V = ε, S1

occurs as a suffix in S2. If U = V = ε, S1 is exactly S2 (character-by-character).
A configuration between P and T is a static view of P and T placed together

to make comparisons between characters. The portion of the text of size #(P )
where P is placed is called a window of T . A transition is a pair of configurations.
The purpose of transitions is to explain how a new configuration is reached
from a previous one, given a rule to do this transition. A matching schedule
is a sequential order (by reading a permutation from left to right) to make
comparisons between characters of P and those in a window of T when trying
to find P in T . The execution of a schedule is halted when a mismatch between
characters occurs. The main matching schedule used in this paper is one based
on comparing character-to-character from right to left within each window.

Naive string-matching algorithms. A naive left-to-right algorithm for solving the
exact string-matching problem is to begin with a configuration where the pattern
is placed leftmost in the text with a left-to-right matching schedule within the
window. In this algorithm, if a mismatch occurs we displace the window one
character to the right of the text and start the matching schedule again. If all
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characters of the pattern and those correspondent within the window of the
text match, an occurrence has been found. This process is repeated until we do
not have any new windows to explore. In the naive right-to-left string-matching
algorithm we align the pattern and the text again from the leftmost part of the
text, but we apply a right-to-left matching schedule in the current window. In
both algorithms, if mismatches happen every time we almost finish comparing
all characters of the pattern with those of the text, we obtain a worst-case
performance, which is quadratic [CR94]. In practice, the expected performance
of this algorithm is linear. We will focus our attention on right-to-left string-
matching algorithms. The representative algorithm of this kind is the Boyer–
Moore algorithm, which has a sublinear efficiency and is described in the next.

The Boyer–Moore algorithm. Boyer and Moore [BM77] improved the average
case of the naive right-to-left string matching algorithm in a sublinear algorithm.
Trying to match a pattern with a portion of a text, in case of a mismatch this
algorithm uses two precomputed functions, based uniquely on the knowledge
provided by the pattern, to carry out a shift from left to right. These functions
are called the good suffix rule or δ2 function and the bad character rule or δ1

function. Both functions interact each other through the max function. There are
several variants of the Boyer–Moore algorithm, depending on whether we use the
δ1 or the δ2 function, or both. For example, we can use only the δ2 function. By
using enhanced versions of partial deduction, this variant was derived in [HR03];
in functional programming this variant was also derived in [Bir05]. Similarly,
the variant that only uses δ1 was derived in [MACD01] and [HR01]. However,
in several variants no memory is kept of partial matchings obtained from the
previous steps, as it was noticed in [AG86] and where is devised a variant of
the Boyer–Moore algorithm that incorporates a memory, so avoiding redundant
comparisons. In every variant, the search is fast on average, because in many
cases the shifts are close to the length of the pattern.

We now give a description of the BM algorithm [BM77, Ste94]. We denote
by Rk the kth character of a string R, trying to keep k in an appropriate range
(otherwise, Rk is undefined). In addition, T denotes a text of length n and P
denotes the pattern of length m. We try to apply the index i to the text T
and the index j to the pattern P . Consider first a mismatch between Pm and
Ti. If Ti does not occur in P at all, then the pattern is shifted m characters to
the right. The next comparison is then between Pm and Ti+m. If, on the other
hand, Ti does occur in P , with rightmost occurrence in Pk, then Ti and Pk are
lined up (i.e. the pattern is shifted m− k characters) and the test is resumed by
comparing Pm with Ti+m−k.

To align a particular character of the pattern with that of the text, we use
the following δ1 function:

δ1(x)=
{

m if x �∈ Set(P ) ,
m− k k = max{j ∈ � | Pj = x}

If such a character exists in the text but does not exist in the pattern, we shift
the pattern over the text the total length of the pattern, m.
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Consider a match between Pm and Ti. Comparisons of pattern and text char-
acters continue from right to left until a complete match is obtained or a mis-
match at Pj and Ti′ , say, occurs. In this case, the suffix of the pattern given by
Pj+1, . . . , Pm is equal to the text substring Ti′+1, . . . , Ti′+m−j , and Pj �= Ti′ .

If Ti′ does not occur in p at all, we can then shift the pattern m− j positions
to the right (just past Ti′), and the next comparison will be between Pm and
Ti′+m. The text index will then be incremented by m positions.

If, on the other hand, Ti′ does occur in P , consider the rightmost such an
occurrence, Pk. There are two possibilities: Pk is placed either to the left or to
the right of Pj . In case Pk is to the left, then Pk and Ti′ and are lined up, and
the next comparison will be between Pm and Ti′+m−k. Hence, we can use δ1 to
compute the shift of the text index in both cases of a partial match we have
covered in our explanation so far. If, however, Pk is to the right of Pj , then δ1

would yield a negative value, meaning a backwards displacement of the pattern.
In this case we ignore δ1 and shift the pattern one character to the right,which
always ensure us correctness.

In case of partial matchings involving at least one character, we may shift the
pattern more characters than those prescribed by δ1. Instead of determining
the occurrence within the pattern of the text character Ti′ that caused the
mismatch, we can determine a reoccurrence of the pattern suffix already matched.
In this case, Pj+1, . . . , Pm = Ti−m+j+1, . . . , Ti and Pj �= Ti−m+j . If the suffix
Pj+1, . . . , Pm also appears in P as a substring Pj+1−k, . . . , Pm−k, with Pj−k �=
Pj , and it is the rightmost such an occurrence, then the pattern may surely be
shifted k characters to the right.

initializeBM(P, δ1, δ2); {preprocessing stage to tabulate the δ1,δ2 functions}
i := m; j := m;
while (j > 0) and (i ≤ n) do

if Ti = Pj then {rightmost characters coincide}
begin {trying to extend the matching from right to left}

i := i − 1; j := j − 1
end

else {a failed comparison between characters}
begin

i := i + max(δ1(ti), δ2(j)); {shift based on precomputed functions}
j := m

end
if j < 1 then i := i + 1 {Pattern found}

else i := 0 {Pattern not found}

Fig. 1. The Boyer–Moore algorithm
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It may also happen that such a reoccurrence may “fall off” the left end of P ,
in case a border occurs: a suffix of Pj+1−k, . . . , Pm−k appears as a prefix of P .
In this case, k ≥ j. The definition of the δ2 function is:

δ2(j) = min{k + m− j | k ≥ 1 and (k ≥ j or Pj−k �= Pj)
and ((k ≥ d or Pd−k = Pd) for j < d ≤ m)}

The value of δ2 always yields a positive shift. Hence, by obtaining the maximum
of both δs, we not only avoid the possibility of a negative shift prescribed by δ1,
but also move the pattern as many characters as possible, given δ1, δ2 and the
current information. Figure 1 shows the BM algorithm.

3 Logic Programming and Exact String Matching

Having described our main algorithm to deal with, in this section we describe
some logic program transformation tools to be used in our derivations; also, in
this section we give the main guidelines of these derivations.

3.1 Logic Program Transformation Tools

Equality theory. To use logic programming, we suppose the SLDNF-resolution
rule, and the conventional unification algorithm. Because the unification algo-
rithm of logic programming is greedy and hides some, perhaps useful, infor-
mation, we try to replace it by some explicit equation introduction, which is
basically an introduction of constraints. This equation introduction is logically
justified by using the standard equality theory of first-order logic; to deal with
inequations we suppose Clark’s equality theory [Cla78]. Both of these tools are
applied over Herbrand universes. We will use some restricted forms of equations:
An equation X = Y has normal form if X is a variable and Y is a term with-
out any occurrence of X in Y (occur-check rule). An inequation is the negation
of a normalized equation. Because equation introduction helps us to deal with
several instances of variables, this tool is strongly related to the technique of par-
tial evaluation named bounded static variation (also colloquially know as “The
Trick”), a binding-time source-program transformation [DRK06].

Deterministic unfolding. In the unfold/fold method [PP98], when we unfold a
clause C with respect to an atom q and q is defined by several clauses, we
obtain several clauses again. If we simplify these resultant clauses and get only
one clause, we say that the unfolding is deterministic. If the surviving clause is
unfolded again with respect the same atom A, and we get only one clause again,
and so on, we have a succession of deterministic unfolding steps. If after n+1 of
these unfolding steps we obtain two or more clauses, without any possibility of
eliminating some of them, we stop unfolding at step n, and we have a succession
of deterministic unfolding steps of size n; this succession is a valuable tool for
assuring termination when we apply the unfolding rule; moreover, this succession
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also avoids dealing with an over-specialized program. The unfolding rule and the
“extended” folding rule (where several clauses are used for folding) are the basic
components of the disjunctive partial deduction [PPR97]. An opportunity of
simplifying clauses after unfolding is when we have in the body of the resultants
clauses an unsatisfiable set of atoms. For example, if we have:

p(X)←X = b ∧ q(X) (1)
q(X)←X = a (2)
q(X)←X = b (3)

by unfolding q(X) in (1) (underlined subgoal) we have the two clauses: p(X)←
X = b∧X = a and p(X)←X = b∧X = b. The body of the first clause has the
set of equations: {X = b, X = a}, which originates the following false fact: b = a
(when we apply the substitution σ = {X/b}). Hence, this clause is eliminated
because it is useless in the computational process of resolution (clause removal
rule [FPP02]). The body of the other clause is {X = b, X = b} = {X = b}, and
then the only clause we obtain is: p(X)←X = b, so that the unfolding of clause
(1) with respect to q is deterministic. When we eliminate the occurrence of a
subgoal q within the body of a clause by a succession of deterministic unfolding
steps we say that we have applied total unfolding to q.

Clause splitting rule. The clause splitting rule allows us to treat complementary
cases, perhaps in an exhaustive way. Given the following clause C : p ← q by
applying the clause splitting rule [FPP02] we generate a pair of clauses: p←r∧q
and p←s∧q, where r∨s is equivalent to true. The subgoal r can be an equation,
and then s is the negation of this equation (i.e., an inequation). The equations
can be introduced by the equation introduction rule.

We can also apply the clause splitting rule to sets:

p(X)←X ∈ S ∧ g(X) (4)
p(X)←X �∈ S ∧ g(X) (5)

where S is a set. If S is a finite set, to say, S = {a, b}, the clause splitting rule
over S is extended and is expressed as:

p(X)←X = a ∧ g(X) (6)
p(X)←X = b ∧ g(X) (7)
p(X)←X �= a ∧X �= b ∧ g(X) (8)

which essentially means a total unfolding of member/2 and nonmember/2 :

member(E, [A|Ls])←E = A (9)
member(E, [A|Ls])←member(E,Ls) (10)
nonmember(E, Ls])←\+ member(E,Ls) (11)

It is also possible to introduce inequations expressed as inequalities [FPP02].
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Extended folding. In [GK94] we found a basic idea: we can use definitions con-
sisting of several clauses to fold. Applied to partial deduction, this idea gener-
ated the disjunctive partial deduction [PPR97]. Consider the following relation:
R = {(a, a), (a, b), (b, a)} defined on A × A, with A={a, b} This relation is
nondeterministic in the first argument, because (a, X) leaves us X with several
possibilities: either X = a, or X = b. A transformation over this relation al-
lows us to speak of a function instead of a relation: ΛR = {(a, {a, b}), (b, {a})}
[BdM97]. The cost is the following: R ⊂ A × A, but R ⊂ A × P(A), where
P(A) is the power set of A. This particular fact has extensively been exploited
in functional programming to simulate nondeterminism having initially relations
and finally functions (which are implemented in Haskell, for example) [BdM97].

In logic programming an application of the same technique results more nat-
ural because we can model relations as predicates, and we would have a logic
program as the following: {r(a, a)←, r(a, b)←, r(b, a)←}. By introducing equa-
tions we have:

r(X, Y )← X = a ∧ Y = a (12)

r(X, Y )← X = a ∧ Y = b (13)
r(X, Y )←X = b ∧ Y = a (14)

where clauses (12) and (13) share the subgoal X = a. We name this common
subgoal a pivot and show it boxed-in. For folding, we create a new definition:
g(Y )←Y = a and g(Y )←Y = b. By using the pivot X = a and folding wrt this
new definition, we have the program consisting of clauses r(a, Y ) ← g(Y ) and
r(b, Y )← h(Y ), where h(Y )← Y = a (by unfolding g/1 and h/1 in the body of
these clauses we would obtain the original definition of r/2, which is described
as in-situ folding.) This new definition of r/2 is deterministic with respect to
its first argument. So that by using extended folding we decrease or eliminate
nondeterminism to obtain deterministic implementations. This method is rooted
in the powerset construction (named in [BdM97] as Eilenberg–Wright Lemma (p.
122)) to transform nondeterministic automata into deterministic ones.

3.2 Guidelines of Our Derivations

As we have seen, the pattern P occurs in a string T if there exist strings X1 and
X2 such that T = (X1 ++ P ) ++ X2. We use this specification as a guide in the
following naive logic program that solves the string-matching problem:

substring(P, T )← append(X1, P, X2) ∧ append(X2, X3, T ) (15)

where append has the usual definition. We should notice the existential variables
X1 and X2, and that we associate append/3 to the left. Adapting our notation
to logic programming, now we consider a particular pattern P = p1 . . . pn; this
pattern is represented by the list [p1, . . . , pn], or as [p1 : pn], where with the
notation Oi : Oj we abbreviate the sequence of objects Oi, Oi+1, . . . , Oj if i < j,
or the sequence Oi, Oi−1, . . . , Oj if j < i. If i = j, Oi : Oj = Oi. Moreover,
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we use Ai : Aj = Bi : Bj as an abbreviation of a conjunction of equations:
Ai = Bi∧Ai+1 = Bi+1∧ . . .∧Aj = Bj and Ai : Aj ≈ Bi : Bj as an abbreviation
of a conjunction of equations: Ai : Aj−1 = Bi : Bj−1 but Aj �= Bj . Indexes
i and j follow the previous convention if i < j or j > i. Again, if i = j,
Ai : Aj = Bi : Bj is reduced to Ai = Bi.

From the clause (15), by using some standard techniques of logic program
transformation and partial deduction, we obtain the following clauses:

ssP ([p1 : pm |L ])← (16a)
ssP ([A |L ])← ssP (L) (16b)

� By equation introduction
ssP ([A1 : Am |L ])←A1 : Am = p1 : pm (16c)
ssP ([A |L ])← ssP (L) (16d)

� By reordering the equations and the most specific program
ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (16e)
ssP ([A1 : Am |L ])← ssP ([A2 : Am |L ]) (16f)

This last program (16e,16f) disallows to use texts of length lesser than m. With
this matching schedule, each particular mismatched character involves a suffix
of the pattern (including the ε string). Thus, we have that either Am = pm or
Am �= pm; and, if Am = pm then either Am−1 = pm−1 or Am−1 �= pm−1, and so
on. Finally, if Am : A2 = pm : p2 then either A1 = p1 or A1 �= p1. We call the
program incorporating in the body of its clauses these equations and inequations
a program in triangular form.

Program 1

ssP ([A1 : Am |L ])← Am : A1 = pm : p1 (17a)
ssP ([A1 : Am |L ])← Am �= pm ∧ ssP ([A2 : Am |L ]) (17b)
m−1∧
k=1

ssP ([A1 : Am |L ])←Am : Ak ≈ pm : pk ∧ ssP ([A2 : Am |L ]) (17c)

ssP ([A1 : Am |L ])← Am : A1 = pm : p1 ∧ ssP ([A2 : Am |L ]) (17d)

(We use the
∧

symbol to concisely denote the conjuntion of clauses, by following
the declarative reading of a logic program.) Clauses (17a) and (17d) deal with a
total match and possible reoccurrences of the pattern, respectively. Clause (17b)
treats an initial mismatching. The other clauses find partial matchings of size
k − 1, and the constraint Ak �= pk:

ssP ([A1 : Am |L ])←Am : Ak ≈ pm : pk ∧ ssP ([A2 : Am |L ]) (18)

where k is such that 1 ≤ k ≤ m− 1.
In Prog. 1 the nondeterminism has been increased, but we can make the

following process to decrease it. We select Am = pm as pivot, because this
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subgoal is common to the body of several clauses, and define a new predicate
to fold some clauses. Similarly, we select Am−1 = pm−1 as the next pivot. This
process gives us every pivot, consecutively. Without any application of some
other rule, apart from the folding rule, we would get the following cascade-like
program:

Program 2

ssP ([A1 : Am |L ])← Am = pm ∧ new1([A1 : Am |L ]) (19)
ssP ([A1 : Am |L ])← Am �= pm ∧ ssP ([A2 : Am |L ]) (20)

m−1∧
k=1

[
newk([A1 : Am |L ])← Am−k = pm−k ∧ new2([A1 : Am |L ])
newk([A1 : Am |L ])← Am−k �= pm−k ∧ ssP ([A2 : Am |L ])

]
(21)

newm([A1 : Am |L ]) ← (22)
newm([A1 : Am |L ])← ssP ([A2 : Am |L ]) (23)

Further constraints will affect the number of new predicates, but the (definition-
folding) process will be the same for each variant. The main idea is to decrease the
length of the size of the list [A2 : Am |L ] at each recursive call of ssP /1, because
when we decrease this size we increase the shift and, therefore, we decrease the
number of comparisons. We will apply deterministic unfolding to carry out this
objective, as we will see in the next section.

4 Deriving the Search Part of Some Variants of the
Boyer–Moore Algorithm

Now we derive the BM algorithm and some of its variants. First, we derive
variants restricted to use either the δ1 or the δ2 function. Next, we derive the
search phase of the BM algorithm by using the maximum of both functions. We
continue with the derivation of the BMH and the BMPS algorithms. Finally,
we derive the BMAG algorithm. This algorithm differs from the previous ones
because it incorporates a memory, so avoiding at all to access twice or more
times a character text.

We define an auxiliary predicate:

shift(1, [A |L1 ], L1)← (24a)
shift(N, [A |L1 ], L2)←N1 is N − 1 ∧ shift(N1, L1, L2) (24b)

where shift(N, L1, L2) holds when L1 is L2 without its first N elements. This
predicate will be useful in the following.

A variant involving δ1. We begin by applying the clause splitting rule to (16f):

Program 3

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (25a)
ssP ([A1 : Am |L ])←Am = pm ∧ ssP ([A2 : Am |L ]) (25b)
ssP ([A1 : Am |L ])←Am �= pm ∧ ssP ([A2 : Am |L ]) (25c)
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We notice that the negative information of Am �= pm in clause (25c) can be
reinforced with the introduction of the constraints over sets given by ∈ and �∈.
Let Set(P ) be the set of characters of the pattern P = p1 : pm, and ρ be its
cardinality (ρ ≤ m, where m is the length of the pattern). We apply the clause
splitting rule to (25c), using Am ∈ Sp ∨ Am �∈ Set(P ), to obtain the following
other two clauses:

ssP ([A1 : Am |L ])← Am �= pm ∧Am ∈ Set(P ) ∧ ssP ([A2 : Am |L ]) (26a)
ssP ([A1 : Am |L ])← Am �= pm ∧Am �∈ Set(P ) ∧ ssP ([A2 : Am |L ]) (26b)

When we eliminate the subgoal (Am ∈ Set(P )) by unfolding, we get ρ new
clauses; a clause, in particular, contains the following equation and inequation:
Am �= pm, Am = pm in its body, and this clause is eliminated. (Note that
unfolding Am �∈ Set(P ) means to introduce ρ inequations.) In detail, we have
that from the clause (26a) we get the following new clauses:

ssP ([A1 : Am |L ])← Am �= pm ∧Am = p1 ∧ ssP ([A2 : Am |L ]) (27)
...

ssP ([A1 : Am |L ])← Am �= pm ∧Am−1 = pm−1 ∧ ssP ([A2 : Am |L ]) (28)

whereas from the clause (26b) we get the clause:

ssP ([A1 : Am |L ])←Am �= pm ∧Am �= p1 ∧
. . . ∧Am �= pm ∧ ssP ([A2 : Am |L ]) (29)

where we can apply subgoal simplification (Am �= pm, Am = pk, pk �= pm implies
Am = pk).

After deterministic unfolding, for each value pi (except for pm, in clause (25b)),
we have a correspondent shift value. These values are asserted as facts, and these
facts tabulate the δ1 function:

d1(p1, V1)← . . . d1(pm−1, Vm−1)← d1(pm, 1)← d1(x, m)←

where x is a meta-character indicating that x �∈ Set(P ). Thus, we have the
following program:

Program 4

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (30a)
ssP ([A1 : Am |L ])← d1(Am, V al) ∧

shift(V al, [A2 : Am |L ], L1) ∧ ssP (L1) (30b)

Because δ1(pm) = 0 we have to deal with this case in a special form (to force a
shift different from zero, Boyer and Moore put δ1(pm) = 1). A conservative shift
of one character is enough for this case: we refrain from unfolding clause (25b),
according to Boyer and Moore, but deterministic unfolding could be applied
without any problem to (25b).
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A variant involving only δ2. From the program in triangular form we can obtain
a variant related to the δ2 function. To decrease the length of [A2 : An |L ] in the
recursive call of ssP /1, we use deterministic unfolding. Depending on whether
pm : pk = pm+1 : pk+1 and pk−1 �= pk hold either we do not unfold or begin to
unfold with respect to the definition of ssP /1 given by clauses 16e and 16f.

We can get from the BM algorithm and its δ2 function an analogous of the
next table of the KMP algorithm. Let us consider the following clause:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1∧Ak �= pk∧ssP ([A2 : Am |L ]) (31)

Name Am : Ak+1 = pm : pk+1 ∧ Ak �= pk a semi-suffix of size k, denoted by
ssuf(k). For each ssuf(k) we obtain a value V sk:

d2(ssuf(1), V s1)← . . . d2(ssuf(m− 1), V sm−1)← d2(ssuf(m), V sm)←

Unfolding each clause of Prog. 1 we would get the δ2 function [HR01]. By using
the shift/3 function we obtain the following clause:

ssP ([A1 : Am |L ])← d2(ssuf(k), V sk) ∧
shift(V sk, [A2 : Am |L ], L1) ∧ ssP (L1) (32)

When we execute Prog. 2, this program would incorporate in its search phase
the δ2 function. Nondeterminism, however, has been increased. The technique to
derive a deterministic program is given by the cascade-like program of Subsec-
tion 3.2, where nondeterminism is reduced, except for clause (17d), which finds
reoccurrences when a pattern overlaps with itself.

The max(δ1, δ2) function and the Boyer–Moore algorithm. Now we analyze the
BM algorithm itself. In the search phase, the BM algorithm uses max(δ1, δ2).
Consider the following subgoal: Am : Ak+1 = pm : pk+1 ∧Ak �= pk. This subgoal
incorporates information about a semi-suffix of size k, and information about
Ak �= pk. With respect to the semi-suffix of size k we have found a value associ-
ated with ssuf(k), trough the table d2. With respect to the inequation Ak �= pk

we also have some information, stored in table d1. Each shift is correct, but our
objective is to have the major shift possible to get the following clause:

ssP ([A1 : Am |L ])← d1(c, V al1) ∧ d2(ssuf(k), V al2) ∧
max(V al1 − (m− k), V al2, V al) ∧
shift(V al, [A1 : Am |L ], L1) ∧ ssP (L1) (33)

(V al1 − (m− k) could be negative or zero, but when taking the maximum, the
0 value is discarded, because V2 is always positive.)

The justification is as follows. From: {p←r1, p←r2, r1←, r2←} we can derive
a new program, {p←or(r1, r2), or(r1, r2)←r1, or(r1, r2)←r2, r1←, r2←} where
or(r1, r2) is a subgoal having the possibility of producing answers.
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The Horspool variant. In [Hor80] it was noticed the only purpose of δ2 is to
optimize the handling of repetitive patterns and avoid the worst case. In [Hor80]
a simplified and practical variang of the BM algorithm was also presented. This
variant deals only with the δ1 function, and a particular value of the δ2 function:
δ2(x)|x=m, where δ2(x)|x=m means to find the rightmost occurrence of pm. The
text character that aligns with pm is always chosen (regardless of the position
where the mismatch occurred). From the clause

ssP ([A1 : An |L ])←Am = pm ∧ ssP ([A2 : An |L ]) (34)

by deterministic unfolding we get δ2(m). If we have δ12(pm) = δ2(m) and
δ12(pk) = δ1(pk), for pk �= pm, we obtain the Horspool variant. If we do not
unfold clauses related to the other arguments in the δ2 function (BMH algo-
rithm saves preprocessing in this part) we get the BMH algorithm.

The PS variant. After unfolding clause (26a), we get some clauses of the form:

ssP ([A1 : Am |L ])← Am �= pm ∧Am = pk ∧ ssP ([A2 : Am |L ])

where Am is the rightmost character within the pattern. But the clause splitting
rule can be applied to other rules having an inequation:

ssP ([A1 : Am |L ])← Am : Ak+1 = pm : pk+1 ∧Ak �= pk ∧ ssP ([A2 : Am |L ])

and then we have a clause of the following form:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1 ∧Ak �= pk

∧Ak = ps ∧ ssP ([A2 : Am |L ])

where ps ∈ Set(P ). If we align with respect to ps we have either some or none de-
terministic unfolding steps. In every case, we have to shift at least one character.
On the other hand, if we do some deterministic unfolding steps in ssP /1 and try
to satisfy the conjunction of equations Am : Ak+1 = pm : pk+1 ∧Ak �= pk we get
an advance related with δ2. In fact in xpk+1 : pm, according to Boyer and Moore,
we move the pattern over the text a shift given by δ2 or by the value associated
with x (x is a meta-symbol, representing a variable). And, due to pspk+1 : pm

implies xpk+1 : pm, shifts based on pspk+1 : pm are larger than those based on
the max of δ1 and δ2. In a certain way, this variant is more natural than the
BM algorithm because we want exact reoccurrences of substrings. However, the
preprocessing of this variant is very high (we need to consider at least ρ ∗ m
distinct clauses). This variant was given in [PS90].

The BMAG variant. As pointed out in [AG86], when the BM algorithm shifts the
pattern to the right, it does not retain any information about characters already
matched. Thus, each previous variant (and the BM algorithm itself) makes some
unnecessary comparisons. In the following variant of the BM algorithm, we keep
track of substrings already matched during previous alignments, and exploit
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such recordings later in the matching process. With this method, no character
of the text needs to be accessed more than twice. Moreover, we will see how
clause (17d) helps to resume efficiently the pattern matching process following
the detection of an occurrence of the pattern. At the moment of processing
the recursive call of this clause we obtain the procedure devised by Galil and
presented in [AG86] for detecting consecutive overlapping occurrences at once.
Let us suppose the configuration given in (a), Fig. 2, where a mismatch occurs

P1 P2 P3 P4 P5

P : a b c a b
T : a b d a b c a b . . .

T1 T2 T3 T4 T5 T6 T7 T8 . . .

︸ ︷︷ ︸
window

(a)

P1 P2 P3 P4 P5

P : a b c a b

T : a b d a b c a b . . .

T1 T2 T3 T4 T5 T6 T7 T8 . . .

︸ ︷︷ ︸
new window

(b)

Fig. 2. Configurations and a transition in the BMAG algorithm

between c and d (T3 �= P3), but the substring ab(= P4P5) of the pattern matches
with the substring ab(= T4T5) of the text. The BM algorithm shifts the pattern
from left to right, and gives us the configuration shown in (b), Fig. 2, where
a total match occurs (underlined characters in the same column indicates a
comparison already made). However, to find this match the BM algorithm has
to make five comparisons: T8 : T4 = P5 : P1, whereas the BMAG algorithm
only makes three comparisons: T8 = P5, T7 = P4 and T6 = P3. This is because
the BMAG algorithm records the previous matching between the substrings
P4P5(= ab) and T4T5(= ab), and does not need to make some comparisons
again.

Following our approach to get a δ2 value, we would have the following process.
From clause

ssP ([A1 : A5 |L ])←A5 = b ∧A4 = a ∧A3 �= c ∧ ssP ([A2 : A5 |L ])

we get, by deterministic unfolding, the following one:

ssP ([A1 : A5 |L ])←A5 = b ∧A4 = a ∧A3 �= c ∧ ssP ([A4 : A5 |L ])

I.e., at the recursive call, character inspection begins with A4 instead of A2. At
the recursive call, we have that

ssP ([A
√
1 , A

√
2 , A3, A4, A5 |L])← A5 = b ∧A4 = a ∧A3 = c ∧A

√
2 = a ∧A

√
1 = b

where the
√

in A
√
1 , and A

√
2 indicates that A1 and A2 are already known.

To avoid unnecessary comparisons, we treat separately each case of overlap-
ping. In our example we continue as follows. We define a predicate ssbac

P :

ssbac
P ([A1, A2, A3, A4, A5 ])←A5 = b ∧A4 = a ∧A3 = c
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for avoiding to compare again the substring ab:

ssP ([A1 : A5 |L ])← A5 = b ∧A4 = a ∧A3 �= c ∧ ssbac
P ([A4 : A5 |L ])

Variables A1 and A2 are only used as places to be omitted in a re-scanning.
Further optimizations can be achieved by applying our previous technology to
ssbac

P (clause splitting, deterministic unfolding, and folding, but now only to
A5 = b ∧A4 = a ∧A3 = c).

Because there exist at most m suffixes of a pattern of length m, we deal with
at most m special cases. Even more, some suffixes (implicit in the recursive call)
of the same length can be analyzed as a particular case.

Formally, to derive the BMAG algorithm, we need some means to keep track
of which segments of the text matched some suffix of the pattern. In our deriva-
tion, we detect such suffixes in the recursive call of each clause after applying
deterministic unfolding to such a clause:

ssP ([A1 : Am|L ])← Am : Ak+1 = pm : pk+1 ∧Ak �= pk ∧ (35)
shift(d(k), [A2 : Am|L ], L1) ∧ ssP (L1) (36)

where d(k) is a displacement value (d(k) is always at least 1). With a displace-
ment of d(k) we detect d(k)− 1 coinciding characters. The complementary part
in the pattern has m− d(k) characters.

sspm:pm−d(k)
P p([A1 : Am|L ])← Am : Am−d(k) = pm : pm−d(k) (37)

Hence, d(k) characters are not more revisited. The new formulation of (36) is:

ssP ([A1 : Am|L ])←Am : Ak+1 = pm : pk+1 ∧Ak �= pk ∧ (38)
shift(d(k), [A2 : Am|L ], L1) ∧ sspm:pm−d(k)

P (L1) (39)

This is called prefix memorization in [CR02, p.30]. Applying the clause split-
ting rule to the new defined predicates, we create new (sub)-triangular forms, to
deal with every case of mismatching. If there exists a mismatching we call ssP /1
(upper level) to deal with a possible total occurrence of the pattern. Furthermore,
it is possible to do some extra deterministic unfolding steps and, finally, we can
apply a systematic folding to the sub-triangular form to reduce nondeterminism.

Let us detail the procedure. First, we create new definitions:

new([B1 : Bm |L ])←Bm : Bm−k = pm : pm−k (40)
new([B1 : Bm |L ])← ssP ([B1 : Bm|L ]) (41)

We only need to analyze cases from Bm−k to Bm at the next call of ssP /1.
The next task is to define new predicates to separately treat each clause. Now
we apply the clause splitting rule, but only to Bm−k : Bm; next, we apply
deterministic unfolding; finally, we fold for eliminating nondeterminism.
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5 Related Work

In [CD78, Dar78, RS83] the authors obtain families of several kinds of algorithms
by using formal languages, but the mechanization of their derivations is left as
an open problem. In our case, when dealing with string-matching algorithms,
some parts of our derivations are mechanizable (mainly those parts supported
by partial deduction), but some human assistance is necessary to obtain specific
algorithms. In [PS90] and [Pep91] there are derivations of the search part of
the BMPS variant. In [MACD01] there is a derivation of a simplified version
(which includes the shifts given by the δ1 function) of the search part of the
Boyer–Moore algorithm using a naive specification equipped with a database to
record comparisons. The complete search phase of the Boyer–Moore algorithm
was derived in [DRK06]. In [Bir05] there is a derivation of another variant of
the Boyer–Moore algorithm, relying on the definition of δ2. In contrast to these
works, we have begun with nondeterministic programs, and instead of explicit
backtracking, we have taken benefit from nondeterminism of logic programming.

6 Conclusions

This paper has shown several relationships among some right-to-left string-
matching algorithms (see Fig. 3) via certain design decisions and steps of logic
program transformation. The final programs have some inefficiency related with
the access in linear time of lists. However, it can be asserted that all our ma-
chinery performs well over specifications based on indexing; this has been shown
in [HR03], at least for the BM variant restricted to use only the δ2 function.

As future work, a proposal is to add other exact string-matching algorithms
to the taxonomy presented here. In fact, at least two left-to-right algorithms
can also be obtained from our techniques by altering the matching schedule:
the Morris–Pratt and the Knuth–Morris–Pratt algorithms. In a similar vein, the
Simon algorithm, as described in [CR94], is another candidate to be derived and
added to the taxonomy. Depending on some more liberal matching schedules,
some other algorithms could be included, for example, those described in [Sun90].
Other possible taxonomies related to text processing would follow the method
of taking the text as static, instead of the pattern. McCreight and Ukkonen
algorithms take this method and they would be good candidates to be derived.

Right-to-left
naive algorithm

Pre-algorithms
�����

������

Without memory
��������

					
With memory

BM BMPS BMH BMAG

Fig. 3. A taxonomic tree of some right-to-left string-matching algorithms
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Abstract. This paper shows that type-checking and type-inference
problems are equivalent in domain-free lambda calculi with existential
types, that is, type-checking problem is Turing reducible to type-
inference problem and vice versa. In this paper, the equivalence is
proved for two variants of domain-free lambda calculi with existential
types: one is an implication and existence fragment, and the other is a
negation, conjunction and existence fragment. This result gives another
proof of undecidability of type inference in the domain-free calculi with
existence.

Keywords: undecidability, existential type, type checking, type
inference, domain-free type system.

1 Introduction

Existential types correspond to second-order existence in logic by the Curry-
Howard isomorphism, and so they are a natural notion from the point of view
of logic. They have been also studied actively from the point of view of com-
puter science since Mitchell and Plotkin [11] showed that abstract data types
are existential types. Furthermore, calculi with existential types work as suit-
able target calculi of continuation-passing-style (CPS) translations. Some studies
on CPS translations for polymorphic calculi have shown that the negation (¬,
which corresponds to continuation types), conjunction (∧, which corresponds to
product types), and existence (∃) fragment of lambda calculus is an essence of a
target calculus of CPS translations for various systems, such as the polymorphic
lambda calculus [5], the lambda-mu calculus [3,8], and delimited continuations.
Hasegawa [9] showed that a ¬∧∃-fragment is even more suitable as a target cal-
culus of a CPS translation for delimited continuations such as shift and reset
[2]. These can be seen as an extension of the study of Thielecke [18], in which he
showed that the negation and conjunction fragment of a lambda calculus suffices
as a target of CPS translations of various first-order calculi.

Domain-free type systems [1], which are in an intermediate style between
Church and Curry style, are useful to study some extensions of polymorphic
typed calculi and for theoretical studies on CPS translations. In domain-free style
lambda calculi, types of parameters of functions are not explicitly annotated in
lambda abstraction terms λx.M as in the Curry style, while as in the Church

S. Escobar (Ed.): WFLP 2009, LNCS 5979, pp. 96–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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style, terms contain type information for second-order quantifiers, such as a type
abstraction λX.M for ∀-introduction rule, and a term 〈A, M〉 with a witness
A for ∃-introduction rule. In [7], it is shown that an extension of the Damas-
Milner polymorphic type assignment system, which can be seen as a Curry-
style formulation, with a control operator destroys the type soundness. Similarly,
Fujita [3] showed that the Curry-style lambda-mu calculus, which is an extension
of the polymorphic lambda calculus and introduced by Parigot [14], does not
enjoy the subject reduction property. Fujita introduced a domain-free lambda-
mu calculus to have the subject reduction. In addition, the ¬ ∧ ∃-fragment of
the domain-free typed lambda calculus works as a target calculus of a CPS
translation for the domain-free lambda-mu calculus.

Some decision problems on typability of terms in typed calculi have been
widely studied. One is type-checking problem (TC), which is a problem deciding
whether Γ  M : A is derivable for given Γ , M , and A. Type-inference problem
(TI) is another problem deciding whether there exist Γ and A such that Γ  
M : A is derivable for given M . In the usual notation, TC asks Γ  M : A?
for given Γ , M , and A, and TI asks ?  M :? for given M . In this paper, TC0

and TI0 denote type checking and inference for closed terms, respectively. These
questions are fundamentally important in typed lambda calculi.

For polymorphic types, we have already had some results on these problems.
Wells [19] showed that TC and TI in the Curry-style polymorphic lambda cal-
culus are equivalent and these problems are undecidable. Two problems are said
to be equivalent if one is Turing reducible to the other and vice versa, where a
decision problem P is said to be Turing reducible to another problem Q when
there exists computable function F such that for each instance p of P , F (p)
is an instance of Q which holds if and only if p holds. Nakazawa and Tatsuta
[13] showed that TC and TI in the domain-free polymorphic lambda calculus
are equivalent, and these are undecidable. On the other hand, despite of their
computational importance, properties of existential types have not been studied
enough yet. It is only recent that inhabitation problem, which corresponds to
provability of formulas, in the ¬∧∃-fragment was proved to be decidable in [17].
TC and TI in domain-free lambda calculi with existential types were proved to
be undecidable in [12,13]. However any direct relation between TC and TI for
existential types has not been known yet.

This paper proves that TC and TI are equivalent in two variants of domain-
free lambda calculi with existential types: implication and existence fragment
DF-λ→∃, and negation, conjunction, and existence fragment DF-λ¬∧∃. Moreover,
this result gives another proof of undecidability of TI in DF-λ→∃ and DF-λ¬∧∃.

First, we prove that TC and TI are equivalent in DF-λ→∃. In DF-λ→∃, it is
easy to prove that TI is Turing reducible to TC. The reduction from TC to TI
is proved by adapting the idea of [13]. The key of the proof is the fact that, for
given a closed term M and a type A, we can construct another closed term JM,A

which is typable if and only if  M : A holds.
Secondly, we prove that TC and TI are equivalent in DF-λ¬∧∃. Similarly to

DF-λ→∃, the proof of the reduction from TC to TI consists of two parts: the
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reduction from TC to TC0 and that from TC0 to TI. However, since DF-λ¬∧∃

does not have implication, we need a non-trivial idea to prove the reduction from
TC to TC0. In this paper, using the well-known fact that the implication A → B
is (classically) equivalent to ¬(A∧¬B), we show that TC can be reduced to TC0

in DF-λ¬∧∃. The proof of the other direction from TI to TC also consists of two
parts: TI can be reduced to TI0 , and TI0 can be reduced to TC. In order to
prove the former part, the above idea can be used.

Figure 1 summarizes the related results including ours. In the diagram, P ≤ Q
means that the problem P is Turing reducible to Q, and P � Q means that
P and Q are equivalent, that is, both P ≤ Q and Q ≤ P hold. F denotes the
polymorphic lambda calculus. SUP means the semi-unification problem and 2UP
means the second-order-unification problem. Since undecidability of SUP and
2UP has been already proved by Kfoury et al. [10] and Schubert [15], respectively,
all of the problems in the diagram are undecidable. �∗ is the main result of this
paper, and it gives a new proof of undecidability of TI in DF-λ→∃ and DF-λ¬∧∃.

Curry style: SUP
[19]
≤ TC in F

[19]
� TI in F

domain-free style: 2UP
[4]
≤ TC in DF-F

[13]
� TI in DF-F

≤

[12]

≤

[12]

domain-free style: TC in DF-λ→∃/λ¬∧∃ �∗ TI in DF-λ→∃/λ¬∧∃

Fig. 1. TC and TI for polymorphic and existential types

The section 2 introduces the domain-free lambda calculi with existence:
DF-λ→∃ and DF-λ¬∧∃. We state our main theorems in the section 3, and we
prove them in the sections 4 and 5.

2 Domain-Free Lambda Calculi with Existence

In this section, we define the domain-free lambda calculi with Existential types:
DF-λ→∃ and DF-λ¬∧∃.

These calculi are expressive enough to represent every function which is repre-
sentable in System F , because we can interpret every term of System F in each
of DF-λ→∃ and DF-λ¬∧∃ by CPS translations [5,8]. Furthermore, as pointed
out in [11], the existential types can be seen as the abstract data types in the
following sense. If a term M has a type B[X := A], we can hide the informa-
tion of the type A by constructing the term 〈A, M〉, which has the existential
type ∃X.B. A term N of the existential type ∃X.B can be used with N [Xx.P ],
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which intuitively means let 〈X, x〉 = N in P . In this paper, we use the nota-
tion M [Xx.N ] following [12,13]. We can write the term 〈A, M〉 in the style of
modules of Standard ML as struct type X = A val x = M end.

Here are examples of terms with the existential type. First, we define a term
of the type ∃X.¬X ∧X .

....
 F : ¬int  1 : int

(Ax)

 〈F, 1〉 : ¬int ∧ int
(∧I)

 〈int, 〈F, 1〉〉 : ∃X.¬X ∧X
(∃I)

We can consider this term 〈int, 〈F, 1〉〉 as a module, which is implemented as
〈F, 1〉 by the type int, but the information of int is hidden in the type ∃X.¬X∧
X . We can give a name to this module by the binding mechanism of λ-calculus
such as (λm.m[Xp.(pπ1)(pπ2)])〈int, 〈F, 1〉〉. The term λm.m[Xp.(pπ1)(pπ2)] is
typed as follows, where Γ denotes the type assignment p : ¬X ∧X .

m : ∃X.¬X ∧ X � m : ∃X.¬X ∧ X
(Ax)

Γ � p : ¬X ∧ X
(Ax)

Γ � pπ1 : ¬X
(∧E1)

Γ � p : ¬X ∧ X
(Ax)

Γ � pπ2 : X
(∧E2)

Γ � (pπ1)(pπ2) : ⊥ (¬E)

m : ∃X.¬X ∧ X � m[Xp.(pπ1)(pπ2)] : ⊥ (∃E)

� λm.m[Xp.(pπ1)(pπ2)] : ¬(∃X.¬X ∧ X)
(¬I)

Users of the module do not need to know which type is used in
the implementation of the module. We can consider that the term
(λm.m[Xp.(pπ1)(pπ2)])〈int, 〈F, 1〉〉 corresponds to the following program of
Standard ML.

structure m = struct
type X = int
val p = (F,1)

end
let val (f,a) = m.p in
f a

end

The signatures of Standard ML corresponds to type annotations to terms of
the existential type such as 〈A, M〉∃X.B. We have no such annotations in the
domain-free style.

2.1 Lambda Calculus with Implication and Existence

First, we define the domain-free lambda calculus DF-λ→∃ with implication (→)
and existence (∃).
Definition 1. The types (denoted by A, B, ... , and called →∃-types) and the
terms (denoted by M , N , ...) of DF-λ→∃ are defined by

A ::= X | A→A | ∃X.A,

M ::= x | λx.M | 〈A, M〉 | MM | M [Xx.M ].
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X and x denote a type variable and a term variable, respectively. In the type
∃X.A, the variable X in A is bound. In the term λx.M , the variable x in M is
bound. In the term N [Xx.M ], the variables X and x in M are bound. A variable
is free if it is not bound. A term is closed if it contains no free term variable.
We use ≡ to denote syntactic identity modulo renaming of bound variables.

For n ≥ 3, A1→· · ·→An−1→An denotes A1→(· · ·→(An−1→An)), and
M1M2 · · ·Mn denotes ((M1M2) · · · )Mn. Γ denotes a finite set of type assign-
ments in the form of x : A.

Typing rules of DF-λ→∃ are the following.

Γ, x : A  x : A
(Ax)

Γ, x : A  M : B

Γ  λx.M : A→B
(→I)

Γ1  M : B→A Γ2  N : B

Γ1, Γ2  MN : A
(→E)

Γ  N : A[X := B]
Γ  〈B, N〉 : ∃X.A

(∃I)
Γ1  M : ∃X.A Γ2, x : A  N : C

Γ1, Γ2  M [Xx.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X as a free variable.

2.2 Lambda Calculus with Negation, Conjunction, and Existence

Then we define the domain-free lambda calculus DF-λ¬∧∃ with negation (¬),
conjunction (∧), and existence (∃). From the point of view of computation, the
negation corresponds to the type of continuations, and the conjunction to the
product type.

Definition 2. The types (denoted by A, B, ... , and called ¬∧∃-types) and the
terms (denoted by M , N , ...) of DF-λ¬∧∃ are defined by

A ::= X | ⊥ | ¬A | A ∧A | ∃X.A,

M ::= x | λx.M | 〈M, M〉 | 〈A, M〉 | MM | Mπ1 | Mπ2 | M [Xx.M ].

Bound and free variables, and closed terms are defined similarly to DF-λ→∃. For
n ≥ 3, A1 ∧ · · · ∧An−1 ∧An denotes A1 ∧ (· · · ∧ (An−1 ∧An)).

Typing rules of DF-λ¬∧∃ are the following.

Γ, x : A  x : A
(Ax)

Γ, x : A  M : ⊥
Γ  λx.M : ¬A

(¬I)
Γ1  M : ¬A Γ2  N : A

Γ1, Γ2  MN : ⊥ (¬E)

Γ1  M : A Γ2  N : B

Γ1, Γ2  〈M, N〉 : A ∧B
(∧I)

Γ  M : A1 ∧A2

Γ  Mπ1 : A1
(∧E1)

Γ  M : A1 ∧A2

Γ  Mπ2 : A2
(∧E2)

Γ  N : A[X := B]
Γ  〈B, N〉 : ∃X.A

(∃I)
Γ1  M : ∃X.A Γ2, x : A  N : C

Γ1, Γ2  M [Xx.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X as a free variable. Note that
the typing rules of DF-λ¬∧∃ for the terms λx.M and MN differ from those of
DF-λ→∃.
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3 Type Checking and Type Inference

In this section, we introduce two decision problems on typability of terms, and
state our main theorem.

Type checking (TC) is a problem deciding whether Γ  M : A is derivable
for given Γ , M , and A. Type inference (TI) is a problem deciding whether there
exist Γ and A such that Γ  M : A is derivable for given M . In the usual
notation, TC asks Γ  M : A? for given Γ , M , and A, and TI asks ?  M :? for
given M .

These two problems are equivalent in the Curry-style polymorphic lambda
calculus [19], and in the domain-free polymorphic lambda calculus [13]. Two
problems are said to be equivalent if one is Turing reducible to the other and
vice versa. Hence the equivalence of TC and TI means that (i) for any instance
Γ  M : A? of TC, we can effectively construct a term N such that the answer
of the given instance of TC is the same as that of the instance ?  N :? of TI,
and (ii) for any instance ?  M :? of TI, we can effectively construct an instance
Γ  N : A? of TC whose answer is the same as the given instance of TI. TC0

and TI0 denote type checking and type inference for closed terms, respectively.
In general, if a decision problem P1 is Turing reducible to another decision

problem P2, then decidability of P2 implies decidability of P1, and equivalently
undecidability of P1 implies undecidability of P2. In [19,13], they showed un-
decidability of TI in the polymorphic lambda calculi by the Turing reducibility
of TC to TI. On the other hand, undecidability of TC and TI in the domain-
free lambda calculi with existential types has been proved in [12,13] by the re-
ducibility of each problems for polymorphic types to those for existential types.
However, direct relationship between TC and TI for existential types has not
been known yet. In this paper, we will prove that TC and TI are equivalent in
DF-λ→∃ and DF-λ¬∧∃.

Theorem 1. 1. Type checking and type inference are equivalent in DF-λ→∃, that
is, type checking in DF-λ→∃ is Turing reducible to type inference in DF-λ→∃ and
vice versa.

2. Type checking and type inference are equivalent in DF-λ¬∧∃.

Since TC is undecidable in these calculi, this result gives another proof of unde-
cidability of TI in them.

For each system, the proof of the reduction from TC to TI consists of two
parts. First, we show that TC can be reduced to TC0. Secondly, we show that
TC0 can be reduced to TI.

The key of the proof of the reduction from TC0 to TI is the fact that we can
effectively construct a term JM,A from a given pair of a closed term M and a
type A such that the instance  M : A of TC0 is equivalent to the instance
 JM,A :? of TI. By this fact, we can conclude that TC0 can be reduced to TI.
In order to show that, we borrow the idea of [13] for polymorphic types.

In DF-λ→∃, the reduction from TC to TC0 is easy, whereas the reduction is
not easy to prove for DF-λ¬∧∃ due to absence of implication. In our proof, we
show that we can construct a DF-λ¬∧∃-term λx.M for a DF-λ¬∧∃-term M and a
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variable x such that Γ, x : A  M : B holds if and only if Γ  λx.M : ¬(A∧¬B)
holds. By this construction, we can prove that TC can be reduced to TC0 in
DF-λ¬∧∃.

Similarly, the proof of the reduction from TI to TC consists of two parts: the
reduction from TI to TI0, and the reduction from TI0 to TC. For DF-λ¬∧∃, the
proof of the reduction from TI to TI0 has the similar difficulties to the case of
the reduction from TC to TC0. We can also use the same technique by λx.M to
prove it.

We prove the equivalence in DF-λ→∃ in the section 4, where we show how to
construct JM,A from M and A. In the section 5, we show the reduction from
problems for open terms to those for closed terms, and prove the equivalence in
DF-λ¬∧∃.

4 TC and TI Are Equivalent in DF-λ→∃

In this section, we prove that TC and TI are equivalent in DF-λ→∃.
At first, we show that TI is Turing reducible to TC (that is denoted by TI ≤

TC).

Proposition 1. TI in DF-λ→∃ is Turing reducible to TC in DF-λ→∃.

Proof. For a given instance ?  M :? of TI in DF-λ→∃, we can effectively con-
struct the list (x1, · · · , xn) of all of the free variables in M . Then the TI problem
?  M :? is equivalent to a TC problem  λy.(λx.y)(λx1. · · ·λxn.M) : X→X?,
where x and y are fresh variables. In fact, if the term λy.(λx.y)(λx1 . · · ·λxn.M)
has the type X → X , then M has some type. Conversely, if Γ  M : A holds for
some Γ and A, we have the following for some B,

y : X, x : B  y : X
(Ax)

y : X  λx.y : B→X
(→I)

Γ  M : A....
 λx1 · · ·λxn.M : B

y : X  (λx.y)(λx1 · · ·λxn.M) : X
(→E)

 λy.(λx.y)(λx1 · · ·λxn.M) : X→X
(→I),

where we can suppose that {x1, · · · , xn} = {z | (z : C) ∈ Γ} without loss of
generality because the left-hand side is the set of all of the free variables of M . �

As we have stated in the previous section, the proof of TC ≤ TI consists of two
steps: TC ≤ TC0 and TC0 ≤ TI. It is easy to prove TC ≤ TC0 for DF-λ→∃. In
the following, we show TC0 ≤ TI, that is, for a given instance  M : A? of TC0,
we effectively construct a DF-λ→∃-term JM,A such that the instance ?  JM,A :?
of TI is equivalent to the given instance of TC0.

In the rest of this section, O is supposed to be a fixed type variable, and not
to be bound by any existential quantifier. ¬OA denotes A→O.

First, we define some auxiliary functions on types to prove the key lemma.
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Definition 3. 1. lvar(A) is the leftmost variable of A when it is free in A, and
otherwise lvar(A) is undefined. lvar(A) is defined by

lvar(X) ≡ X,

lvar(A→B) ≡ lvar(A),

lvar(∃X.A) ≡
{

undefined (lvar(A) = X),
lvar(A) (otherwise).

2. The left depth ldep(A) is the depth from the root to the leftmost variable in
the syntax tree of A. It does not depend on whether the variable is free or bound.
ldep(A) is defined by

ldep(X) = 0,

ldep(A→B) = ldep(A) + 1,

ldep(∃X.A) = ldep(A) + 1.

3. The left-bound-variable depth lbdep(A) is ldep(B) when A includes a subex-
pression ∃X.B and the leftmost variable of A is bound by this quantifier. When
the leftmost variable of A is free, lbdep is undefined. lbdep(A) is defined by

lbdep(X) = undefined,

lbdep(A→B) = lbdep(A),

lbdep(∃X.A) =
{

ldep(A) (lvar(A) = X),
lbdep(A) (otherwise).

Lemma 1. 1. ldep(A[Y := B]) �= ldep(A) implies lvar(A) ≡ Y ,
2. lvar(A) ≡ X implies lbdep(A[X := B]) = lbdep(B) and lvar(A[X := B]) ≡

lvar(B).

Proof. 1. By induction on A.
When A is X(X �≡ Y ), ldep(X [Y := B]) = ldep(X) holds.
When A is Y , we have lvar(Y ) ≡ Y .
When A is C→D, we have

ldep((C→D)[Y := B]) = ldep((C[Y := B])→(D[Y := B]))
= ldep(C[Y := B]) + 1

and

ldep(C→D) = ldep(C) + 1.

Therefore, if ldep((C→D)[Y := B]) �= ldep(C→D) holds, we have ldep(C[Y :=
B]) �= ldep(C). From the induction hypothesis, ldep(C[Y := B]) �= ldep(C)
implies lvar(C) ≡ Y . Hence, lvar(C→D) ≡ Y holds.

When A is ∃X.C, we have

ldep((∃X.C)[Y := B]) = ldep(C[Y := B]) + 1
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and

ldep(∃X.C) = ldep(C) + 1.

Therefore, if ldep((∃X.C)[Y := B]) �= ldep(∃X.C) holds, we have ldep(C[Y :=
B]) �= ldep(C). From the induction hypothesis, ldep(C[Y := B]) �= ldep(C)
implies lvar(C) ≡ Y . Hence, lvar(∃X.C) ≡ Y holds.

2. By induction on A.
When A is a variable, since we have lvar(A) ≡ X , A is X . Hence, we have

lbdep(X [X := B]) = lbdep(B) and lvar(X [X := B]) ≡ lvar(B).
When A is C→D, if lvar(C→D) ≡ Y holds, we have lvar(C) ≡ Y . From the

induction hypothesis, lvar(C) ≡ Y implies lbdep(C[Y := B]) = lbdep(B), and so
we have

lbdep((C→D)[Y := B]) = lbdep(C[Y := B]→D[Y := B])
= lbdep(C[Y := B])
= lbdep(B).

Moreover, from the induction hypothesis, lvar(C) ≡ Y implies lvar(C[Y := B]) ≡
lvar(B), and so we have

lvar((C→D)[Y := B]) ≡ lvar(C[Y := B]→D[Y := B])
≡ lvar(C[Y := B])
≡ lvar(B).

When A is ∃X.C, if lvar(∃X.C) ≡ Y holds, we have lvar(C) ≡ Y �≡ X . We
can suppose that X is not contained freely in B by renaming the bound variable
X . From the induction hypothesis, we have lvar(C[Y := B]) ≡ lvar(B) �≡ X , and
then we have

lbdep((∃X.C)[Y := B]) = lbdep(∃X.C[Y := B])
= lbdep(C[Y := B]).

From the induction hypothesis, lvar(C) ≡ Y implies lbdep(C[Y := B]) =
lbdep(B). Hence we have lbdep((∃X.C)[Y := B]) = lbdep(B). Furthermore,
from the induction hypothesis, lvar(C) ≡ Y implies lvar(C[Y := B]) ≡ lvar(B)
and so we have

lvar((∃X.C)[Y := B]) ≡ lvar(∃X.C[Y := B])
≡ lvar(C[Y := B])
≡ lvar(B),

since lvar(C[Y := B]) �≡ X holds. �

By Lemma 1, the following key lemma is proved.

Lemma 2. If Γ  x〈¬O∃X.X, x〉 : A is derivable in DF-λ→∃, then Γ contains
x : ¬O∃X.X.
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Proof. Suppose that Γ  x〈¬O∃X.X, x〉 : A is derivable, and the type assign-
ment for x in Γ be x : Cx.

Since the term x〈¬O∃X.X, x〉 is typable, its type derivation is as follows for
some C.

Γ  x : ∃Y.C→A
(Ax)

Γ  x : C[X := ¬O∃X.X ]
(Ax)

Γ  〈¬O∃X.X, x〉 : ∃Y.C
(∃I)

Γ  x〈¬O∃X.X, x〉 : A
(→E)

From the form of (Ax) rules in the derivation, we have

∃Y.C→A ≡ Cx ≡ C[Y := ¬O∃X.X ].

Then we have

ldep(Cx) = ldep(∃Y.C→A) = ldep(∃Y.C) + 1 = ldep(C) + 2,

ldep(Cx) = ldep(C[Y := ¬O∃X.X ]).

Hence we have ldep(C[Y := ¬O∃X.X ]) �= ldep(C), and then lvar(C) ≡ Y holds
by Lemma 1.1. By Lemma 1.2, we have

lbdep(C[Y := ¬O∃X.X ]) = lbdep(¬O∃X.X) = lbdep(∃X.X) = ldep(X) = 0.

On the other hand, since lvar(C) ≡ Y holds, we have

lbdep(∃Y.C→A) = lbdep(∃Y.C) = ldep(C).

Therefore, we have ldep(C) = 0, and then C must be a variable. Hence, C is
identical to Y because of lvar(C) ≡ Y , and therefore Cx must be ¬O∃X.X . �

Then we can show the following proposition, from which TC0 ≤ TI follows
directly.

Proposition 2. For a closed DF-λ→∃-term M and a →∃-type A, we can effec-
tively construct a closed DF-λ→∃-term JM,A such that  M : A is derivable if
and only if  JM,A : B is derivable for some type B.

Proof. Define JM,A as λx.(λy.x〈A, M〉)(x〈¬O∃X.X, x〉), where both x and y
are fresh variables. It is easy to see that  M : A implies  JM,A : ¬O¬O∃X.X ,
because x : ¬O∃X.X  x〈A, M〉 : O is derivable as follows.

x : ¬O∃X.X  x : ¬O∃X.X
(Ax)

....
 M : A

 〈A, M〉 : ∃X.X
(∃I)

x : ¬O∃X.X  x〈A, M〉 : O
(→E)

For the converse direction, we use Lemma 2. Suppose that  JM,A : B is
derivable for some B. Since JM,A includes x〈¬O∃X.X, x〉 as a subterm, the
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derivation of  JM,A : B includes a derivation of Γ  x〈¬O∃X.X, x〉 : B′ for
some Γ and B′ as a subderivation. Then Γ contains x : ¬O∃X.X by Lemma
2. Because of this, the derivation of JM,A has to include a subderivation of
x : ¬O∃X.X  x〈A, M〉 : O which is the same as the above one. Hence it
includes the derivation of  M : A. �
Proof (of Theorem 1.1). TI ≤ TC is proved in Proposition 1. TC ≤ TC0 is easily
proved in a similar way to Proposition 1. TC0 ≤ TI immediately follows from
Proposition 2. �

5 TC and TI Are Equivalent in DF-λ¬∧∃

In this section, we prove that TC and TI are equivalent in DF-λ¬∧∃.
The proof is similar to DF-λ→∃, and consists of the following four parts: (i)

TC ≤ TC0, (ii) TC0 ≤ TI, (iii) TI ≤ TI0, and (iv) TI0 ≤ TC. In contrast to
DF-λ→∃, neither (i) nor (iii) is easy to prove for DF-λ¬∧∃ due to absence of
implication.

5.1 Translation to Closed Terms

First, we show TC≤TC0 and TI≤TI0. In DF-λ¬∧∃, we cannot type the term
λx1. · · ·λxn.M , because N has to be typed with ⊥ in order to type the lambda
abstraction λx.N . Therefore, we define a construction λx.M , which can be con-
sidered as an interpretation of the implication introduction in DF-λ¬∧∃. It should
be noted that the construction can be defined as long as we have negation and
conjunction, and so existence is not essential for the discussion in this subsection.

Definition 4. For any ¬ ∧ ∃-types A and B, A⇒B denotes the type ¬(A ∧
¬B). Similarly to the ordinary implication →, A1⇒· · ·⇒An⇒B denotes
A1⇒(· · ·⇒(An⇒B)). For a DF-λ¬∧∃-term M and a variable x, we define λx.M
as λc.(λx.(cπ2)M)(cπ1), where c is a fresh term variable.

It is easy to see that the set of free variables of λx.M is the set obtained by
removing x from the set of free variables of M .

Lemma 3. Γ, x : A  M : B holds if and only if Γ  λx.M : A⇒B.

Proof. Suppose that Γ, x : A  M : B holds, and then we have the following
type derivation for Γ  λx.M : ¬(A ∧ ¬B).

c : A ∧ ¬B  c : A ∧ ¬B
c : A ∧ ¬B  cπ2 : ¬B

....
Γ, x : A  M : B

Γ, c : A ∧ ¬B, x : A  (cπ2)M : ⊥
Γ, c : A ∧ ¬B  λx.(cπ2)M : ¬A

c : A ∧ ¬B  c : A ∧ ¬B
c : A ∧ ¬B  cπ1 : A

Γ, c : A ∧ ¬B  (λx.(cπ2)M)(cπ1) : ⊥
Γ  λx.M : ¬(A ∧ ¬B)

Conversely, if we have Γ  λx.M : ¬(A ∧ ¬B), then its derivation must be in
the above form. �
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Proposition 3. 1. TC in DF-λ¬∧∃ is Turing reducible to TC0 in DF-λ¬∧∃.
2. TI in DF-λ¬∧∃ is Turing reducible to TI0 in DF-λ¬∧∃.

Proof. 1. For a given instance x1 : A1, · · · , xn : An  M : B of TC, we can
effectively construct an instance  λx1. · · ·λxn.M : A1⇒· · ·⇒An⇒B of TC0,
which is equivalent to the given instance by Lemma 3.

2. For a given DF-λ¬∧∃-term M , let the list of free variables of M be
x1, · · · , xn. It should be noted that we can effectively construct the list. We
show that the instance  λx1. · · ·λxn.M :? of TI0 is equivalent to the given
instance ?  M :? of TI.

If Γ  M : B is derivable for some Γ and B, then Γ ′  M : B is derivable,
where Γ ′ is {x1 : A1, · · · , xn : An} and each xi : Ai is contained in Γ . Then we
have  λx1. · · ·λxn.M : A1⇒· · ·⇒An⇒B by Lemma 3, hence λx1. · · ·λxn.M
has a type.

Conversely, if λx1. · · ·λxn.M has a type, then M has some type because it is
a subterm of λx1. · · ·λxn.M . �

From the point of view of logic, the translation λx.M becomes clearer. The
judgment x : A  M : B implicitly means the implication A→B. Since DF-λ¬∧∃

has no implication, we have to interpret the implication by means of negation
and conjunction. In order to do that, we use the well-known fact that A→B is
(classically) equivalent to ¬(A ∧ ¬B), which is denoted by A⇒B in this paper.
Since we cannot conclude B from A⇒B and A in the intuitionistic logic, A⇒B
is not an intuitionistic implication. We can consider an elimination rule for ⇒
such as

Γ1  M : A⇒B Γ2  N : A

Γ1, Γ2  M@N : ¬¬B ,

where M@N is defined as λk.M〈N, k〉. We can consider that the constructions
λx.M and M@N realize the interpretation of the variant of implication, which
is implicitly implemented by “ ”, in DF-λ¬∧∃.

The translation which maps λx.M to λx.M and MN to M@N is also impor-
tant from the point of view of computer science, because it can be considered
as a variant of continuation-passing-style translations into the lambda calculus
with continuation types and product types. Such translations have been studied
in [18,5,8].

In addition, note that we can construct a simpler closed term N and a type
C from a given instance x1 : A1, · · · , xn : An  M : B of TC. N and C can be
defined as follows:

N ≡ λc.(λx1. · · · (λxn−1.(λxn.(cπn+1
n+1)M)(cπn+1

n ))(cπn+1
n−1) · · · )(cπn+1

1 ) : ⊥,

C ≡ ¬(A1 ∧ · · · ∧An ∧ ¬B),

where πn
m is the m-th projection for n-tuples, which can be constructed by π1

and π2. Then we can show that x1 : A1, · · · , xn : An  M : B holds if and only
if  N : C holds. This construction can be used to prove TI ≤ TI0 as well.
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5.2 Proof of Equivalence

We complete the proof of equivalence in DF-λ¬∧∃. TC0 ≤ TI can be proved
similarly to DF-λ→∃ by replacing ¬O by ¬.

Lemma 4. If Γ  x〈¬∃X.X, x〉 : A is derivable in DF-λ¬∧∃, then Γ contains
x : ¬∃X.X.

Proof. The definitions of the auxiliary functions for negation and conjunction
are

lvar(¬A) ≡ lvar(A),
lvar(A ∧B) ≡ lvar(A),

ldep(¬A) = ldep(A) + 1,

ldep(A ∧B) = ldep(A) + 1,

lbdep(¬A) = lbdep(A),
lbdep(A ∧B) = lbdep(A),

and the same statement as Lemma 1 holds for DF-λ¬∧∃. Hence the claim is
proved similarly to Lemma 2. �

The following proposition is also proved similarly to DF-λ→∃.

Proposition 4. For a closed DF-λ¬∧∃-term M and a ¬ ∧ ∃-type A, we can
effectively construct a closed DF-λ¬∧∃-term J ′

M,A such that  M : A is derivable
if and only if  J ′

M,A : B is derivable for some type B.

Proof. Define J ′
M,A as λx.(λy.x〈A, M〉)(x〈¬∃X.X, x〉), where both x and y are

fresh variables. The proof is similar to Proposition 2, using Lemma 4. Note that
the lambda abstractions and function applications in J ′

M,A correspond to the
introduction and elimination rules of negation. �

The theorem for DF-λ¬∧∃ is proved as follows.

Proof (of Theorem 1.2). TC ≤ TC0 and TI ≤ TI0 are proved by Proposition 3.
TC0 ≤ TI immediately follows from Proposition 4. TI0 ≤ TC is easily proved
similarly to DF-λ→∃, that is, each instance  M :? of TI0 can be translated to
an equivalent instance  λy.(λx.y)M : ¬⊥ of TC. �

6 Concluding Remarks

In this paper, we show equivalence between the type checking and the type
inference in the domain-free lambda calculi with existential types: DF-λ→∃ and
DF-λ¬∧∃.
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As another style for existential types, we can consider a system with no type
annotations in terms. The system was introduced in [16], and it has the following
rules for existential types.

Γ  N : A[X := B]
Γ  〈∃, N〉 : ∃X.A

(∃I) Γ1  M : ∃X.A Γ2, x : A  N : C

Γ1, Γ2  M [x.N ] : C
(∃E)

Fujita and Schubert [6] call such a style the type-free style, and they showed
that TC and TI are undecidable in the type-free-style λ→∃ by the reduction
of the second-order unification problem. However, decidability of the problems
in the type-free-style λ¬∧∃ has not been studied. The direct relations between
TC and TI in these type-free-style calculi with existence are not known, either.
The technique in this paper essentially use type annotations in terms, and so it
cannot be directly adapted to the type-free-style calculi.

The undecidability of the type inference is a negative result for automatic
check on safety of program execution. Therefore it is also future work to study
on type systems with the existential type in which the type inference problems
are decidable. In particular, the type annotations for existential types such as
〈A, M〉∃X.B correspond to the signatures in Standard ML, and so it is important
future work to study on the type-related problems in the type systems with such
type annotations.

Acknowledgments. We are grateful to Professor Santiago Escobar and the anony-
mous referees for comments to the previous version of this paper.
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Abstract. A logic program strongly terminates if it terminates for any
selection rule. Clearly, considering a particular selection rule—like Pro-
log’s leftmost selection rule—allows one to prove more goals terminating.
In contrast, a strong termination analysis gives valuable information for
those applications in which the selection rule cannot be fixed in advance
(e.g., partial evaluation, dynamic selection rules, parallel execution). In
this paper, we introduce a fast and accurate size-change analysis that can
be used to infer conditions for both strong termination and strong quasi-
termination of logic programs. We also provide several ways to increase
the accuracy of the analysis without sacrificing scalability. In the experi-
mental evaluation, we show that the new algorithm is up to three orders
of magnitude faster than the previous implementation, meaning that we
can efficiently deal with programs exceeding 25,000 lines of Prolog.

1 Introduction

Analysing the termination of logic programs is a challenging problem that has
attracted a lot of interest (see, e.g., [6,9,26,32] and references therein). However,
strong termination analysis (i.e., termination for any selection rule) has received
little attention, a notable exception being the work by Bezem [3], who introduced
the notion of strong termination by defining a sound and complete characterisa-
tion (the so-called recurrent programs). Also, we can find a well established line
of research on termination of logic programs with dynamic selection rules (e.g.,
[28,5,27,30,29]). In these works, however, there are a number of assumptions,
like the use of local selection rules (a slight extension of the left-to-right selec-
tion rule), input-consuming derivations (i.e., derivations where input arguments
are not instantiated by SLD resolution steps [4]), etc., which are not useful in
our context.
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In this work, we consider strong (quasi-)termination1 so that our results can
be applied to any application domain where the selection rule is not known in
advance or should be dynamically defined, e.g., partial evaluation, resolution
with dynamic selection rules, parallel execution, etc.

Consider, for instance, the case of partial evaluation [17], a well-known tech-
nique for program specialisation. Within the so-called offline approach to partial
evaluation, there is a first stage called binding-time analysis (BTA) that should
analyse the termination of the program and also propagate known data follow-
ing the program’s control flow. In this context, one of the main limitations of
previous approaches to the offline partial evaluation of logic programs like, e.g.,
[8], is that the associated BTA is usually rather expensive and does not scale
up well to medium-sized programs. Intuitively speaking, this is mainly due to
the fact that the termination analysis and the algorithm for propagating known
information are interleaved, so that every time a call is annotated as “not un-
foldable”, the termination analysis has to be re-executed to take into account
that some bindings will not be propagated anymore.

In recent work [20,33], we have shown that this drawback can be overcome
by using instead a strong termination analysis based on the size-change prin-
ciple [18,31]. In this case, both tasks—termination analysis and propagation of
known information—are kept independent, so that the termination analysis is
done once and for all before the propagation phase, resulting in major efficiency
improvements over the previous approach of [8]. Initially, all calls are assumed to
be unfolded, but this decision is gradually revised. However, as the size-change
analysis is independent of the selection rule, we do not need to recompute this
(possibly expensive) phase again after each change.

The new BTA scheme of [20], however, still had some shortcomings concern-
ing both efficiency and accuracy. In particular, the size-change analysis involves
computing the composition closure of the so-called size-change graphs of the pro-
gram. This is often an expensive process with a worst case exponential growth
factor [18].

In order to overcome this drawback, in this work we introduce an efficient al-
gorithm for the size-change analysis based on the insight that many size change
graphs are irrelevant for inferring strong termination and quasi-termination con-
ditions. In particular, we introduce an ordering for size-change graphs, so that
only the weakest graphs need to be kept without compromising correctness nor
accuracy.

Then, we consider the application of the new analysis to the particular do-
main of offline partial evaluation (cf. Sect. 4) and empirically evaluate the new
algorithm. In summary, the empirical results demonstrate the usefulness and
scalability of our proposals in practice, meaning that we can efficiently deal with
realistic interpreters and systems exceeding 25,000 lines of Prolog.

1 A computation quasi-terminates if it reaches finitely many different states. This
is an essential property in many contexts since it allows one to construct a
finite representation of the search space, thus allowing for finite analysis and trans-
formation.
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Finally, in Sect. 5 we develop a further improvement of our new algorithm
in the context of partial evaluation. Indeed, the fact that the size-change anal-
ysis considers strong termination may involve a significant loss of accuracy. For
instance, given the clauses

p(X) ← q(X, Y ), p(Y ).
q(s(X), X).

the size-change analysis infers no relation between the sizes of p(X) and p(Y ) in
the first clause (while, in contrast, one can easily determine that the argument
of p decreases from one call to the next one by assuming Prolog’s leftmost selec-
tion rule). Clearly, this fact makes the size change analysis independent of the
selection rule and, particularly, of whether q(X, Y ) is unfolded before selecting
p(Y ) or not. However, in many cases, some partial knowledge is available (e.g.,
one can safely assume that all facts can be unfolded no matter the available
information) and could be used to improve the accuracy of the analysis. For this
purpose, we develop an extension of the size-change analysis that allows us to
propagate some size information from left to right.

2 Fundamentals of Size-Change Analysis

The size-change principle [18] was originally aimed at proving the termination
of functional programs. This analysis was adapted to the logic programming
setting in [33], where both termination and quasi-termination were analysed.
The main difference w.r.t. previous termination analyses for logic programs is
that [33] considers strong termination, i.e., termination for all computation rules.
As mentioned in the introduction, this makes the output of the analysis less
accurate but allows the definition of much faster analyses that can be successfully
applied in a number of application domains (e.g., for defining a faster binding-
time analysis; see [20] for more details).

For conciseness, in the remainder of this paper, we write “(quasi-)termination”
to refer to “strong (quasi-)termination.”

Size-change analysis is based on constructing graphs that represent the de-
crease of the arguments of a predicate from one call to another. For this purpose,
some ordering on terms is required. Analogously to [31], in [33] reduction pairs
(�,�) consisting of a quasi-order and a compatible well-founded order (i.e.,
� ◦ �⊆� and � ◦ �⊆�), both closed under substitutions, were used. The
orders (�,�) are induced from so-called norms. Here, we only consider the well-
known term-size norm || · ||ts [11] which counts the number of (non-constant)
function symbols. The associated induced orders (�ts,�ts) are defined as fol-
lows: t1 �ts t2 (resp. t1 �ts t2) if ||t1σ||ts > ||t2σ||ts (resp. ||t1σ||ts � ||t2σ||ts)
for all substitutions σ that make t1σ and t2σ ground. For instance, we have
f(s(X), Y ) �ts f(X, a) since ||f(s(X), Y )σ||ts > ||f(X, a)σ||ts for all σ that
makes X and Y ground.

We produce a size-change graph G for every pair (H, Bi) of every clause H ←
B1, . . . , Bn of the program. Formally,
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Definition 1 (size-change graph). Let P be a program and (�,�) a reduction
pair. We define a size-change graph for every clause p(s1, . . . , sn) ← Q of P and
every atom q(t1, . . . , tm) in Q (if any).

The graph has n output nodes marked with {1p, . . . , np} and m input nodes
marked with {1q, . . . , mq}. If si � tj holds, then we have a directed edge from
output node ip to input node jq marked with �. Otherwise, if si � tj holds, then
we have an edge from output node ip to input node jq marked with �.

A size-change graph is thus a bipartite labelled graph G = (V, W, E) where
V = {1p, . . . , np} and W = {1q, . . . , mq} are the labels of the output and input
nodes, respectively, and E ⊆ V ×W × {�,�} are the edges.

Example 1. Consider the following program MLIST :

(c1) mlist(L, I, [ ]) ← empty(L).
(c2) mlist(L, I, LI) ← nonempty(L), hd(L, X), tl(L, R),ml(X, R, I, LI).

(c3) ml(X, R, I, [XI|RI]) ← mult(X, I, XI), mlist(R, I, RI).

(c4) mult(0, Y, 0). (c5) mult(s(X), Y, Z) ← mult(X, Y, Z1), add(Z1, Y, Z).
(c6) add(X, 0, X). (c7) add(X, s(Y ), s(Z)) ← add(X, Y, Z).

(c8) hd([X | ],X ). (c9) empty([ ]).

(c10) tl([ |R],R). (c11) nonempty([ | ]).

which is used to multiply all the elements of a list by a given number. The
program is somewhat contrived in order to better illustrate our technique.

Here, the size-change graphs associated to, e.g., clause c3 are as follows:2

1ml

�ts �� 1mult

2ml 2mult

3ml

�ts 






 3mult

4ml

�ts 








1ml 1mlist

2ml

�ts 






 2mlist

3ml

�ts 






 3mlist

4ml

�ts 








using a reduction pair (�ts,�ts) induced from the term-size norm.

In order to identify the program loops, we should compute roughly the com-
position closure of the size-change graphs by composing them in all possible
ways.

Definition 2 (graph composition, idempotent multigraph).A multigraph
of P is inductively defined to be either a size-change graph of P or the composi-
tion (see below) of two multigraphs of P . Given two multigraphs:

G = ({1p, . . . , np}, {1q, . . . , mq}, E1) and H = ({1q, . . . , mq}, {1r, . . . , lr}, E2)

2 In general, we denote with p/n a predicate symbol of arity n. However, in the ex-
amples, we simply write p for predicate p/n when no confusion can arise.
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w.r.t. the same reduction pair (�,�), then the composition

G • H = ({1p, . . . , np}, {1r, . . . , lr}, E)

is also a multigraph, where E contains an edge from ip to kr iff E1 contains
an edge from ip to some jq and E2 contains an edge from jq to kr. If some of
the edges are labelled with �, then so is the edge in E; otherwise, it is labelled
with �.

We say that a multigraph G of P is idempotent when G = G • G. Intuitively
speaking, an idempotent multigraph represents a chain of multigraphs.

Example 2. For the program MLIST of Example 1, we have the following four
idempotent multigraphs:

1mlist 1mlist

2mlist

�ts �� 2mlist

3mlist
�ts �� 3mlist

1ml 1ml

2ml 2ml

3ml

�ts �� 3ml

4ml
�ts �� 4ml

1mult
�ts �� 1mult

2mult

�ts �� 2mult

3mult 3mult

1add

�ts �� 1add

2add
�ts �� 2add

3add
�ts �� 3add

that represent how the size of the arguments of the four potentially looping
predicates changes from one call to another.

The main termination results from [20,33] can be summarised as follows:

– A predicate p/n terminates if every idempotent multigraph for p/n contains
at least one edge ip

�−→ ip, 1 ≤ i ≤ n, such that the i-th argument of every
call to this predicate is ground.3

– A predicate p/n quasi-terminates if every idempotent multigraph for p/n

contains edges j1
p

R1−→ 1p, . . . , jn
p

Rn−→ np, Ri ∈ {�, �}, and the arguments
j1, . . . , jn are ground in every call to p/n. Additionally, the considered quasi-
order � should be well-founded and finitely partitioning [10,32], i.e., there
should not be infinitely many “equal” ground terms under �.

These conditions, though in principle undecidable, can be approximated in a
number of ways. For instance, in the context of partial evaluation, the computed
binding-times—static for definitely known arguments and dynamic for possibly
unknown arguments—can easily be used for this purpose (cf. Sect. 4.1).

3 A Procedure for Size-Change Analysis

In this section, we introduce a fast and accurate procedure for the size-change
analysis of logic programs. In principle, a naive procedure for computing the set
of idempotent multigraphs of a program may proceed as follows:

1. First, the size-change graphs of the program are built according to Def. 1.
3 A more relaxed condition based on the notion of instantiated enough w.r.t. a norm

[25] can be found in [20].
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2. Then, after initialising a set M with the computed size-change graphs, one
proceeds iteratively as follows:
(a) compute the composition of every pair of (not necessarily different)

multigraphs of M;
(b) update M with the new multigraphs.
This process is repeated until no new multigraphs are added to M.

Unfortunately, such a naive algorithm is unacceptably expensive and does not
scale up to even simple programs. Therefore, in the following, we introduce a
much more efficient procedure. Our algorithm does not compute all size-change
graphs, but only a subset of them which is sufficient to produce correct annota-
tions for partial evaluation. Intuitively speaking, it improves the naive procedure
by taking into account the following observations:

– Firstly, only the size-change graphs in the path of a (potential) loop need to
be constructed. For instance, in Example 1, the size-change graph from mlist
to empty cannot contribute to the construction of any idempotent multi-
graph. This is a general optimization that is not tied to partial evaluation
(similar optimisations can be found, e.g., in [1,12]).

– Secondly, in many cases, computing the idempotent multigraphs for a single
predicate for each loop suffices to compute correct annotations for partial
evaluation. For instance, in Example 2, the idempotent multigraphs for both
mlist and ml actually refer to the same loop. This is somehow redundant
since either the two multigraphs will point out that both predicates terminate
or that both of them may loop.

– Finally, when we have multigraphs G1 and G2 for a given predicate p/n such
that termination of p/n using G1 always implies termination of p/n using G2,
then we can safely discard G2. A similar optimisation can be found in [1].

These observations allow us to design a faster procedure for size-change analysis.
It proceeds in a stepwise manner as follows:

a) Identifying the program loops. In order to identify the (potential) pro-
gram loops, we first construct the call graph of the program, i.e., a directed graph
that contains the predicate symbols as vertices and an edge from predicate p/n
to predicate q/m for each clause of the form4 p(tn) ← B1, . . . , q(sm), . . . , Bk,
k ≥ 1, in the program.

For instance, the call graph of program MLIST in Example 1 is as follows:

mlist
��

���������������������
��						

�� �������� ml�� �� mult��
�� add��

empty nonempty hd tl

Then, we compute the strongly connected components (SCC) of the call graph
and delete both trivial SCCs (i.e., SCCs with a single predicate symbol which is

4 We use tn to denote the sequence t1, . . . , tn.
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not self-recursive) and edges between SCCs. We denote the resulting graph with
scc(P ) for any program P . E.g., for program MLIST , scc(MLIST ) is as follows:

mlist
��
ml�� mult�� add��

b) Determining the initial set of size-change graphs. We denote by
sc graphs(P ) a subset of the size-change graphs of program P that fulfils the
following condition: there is a size-change graph from atom p(tn) to atom q(sm)
in sc graphs(P ) iff there is an associated edge from p/n to q/m in scc(P ). E.g.,
for program MLIST of Example 1, sc graphs(MLIST ) contains only four size-
change graphs, while the naive approach would have constructed ten size-change
graphs.

In principle, only the size-change graphs in sc graphs(P ) need to be con-
sidered in the size-change analysis. This refinement is correct since idempotent
multigraphs can only be built from the composition of a sequence of size-change
graphs that follows the path of a cycle in the call graph (i.e., a path of scc(P )).

Furthermore, not all compositions between these size-change graphs are actu-
ally required. As mentioned before, computing a single idempotent multigraph
for each (potential) program loop suffices. In the following, we say that S is a
cover set for scc(P ) if S contains at least one predicate symbol for each loop in
scc(P ). We denote by CS(P ) the set of cover sets for scc(P ).

Definition 3 (initial size-change graphs). Let P be a program and S ∈
CS(P ) be a cover set for scc(P ). We denote by i sc graphs(P, S) the size-change
graphs from sc graphs(P ) that start from a predicate of S.

Intuitively, the size-change graphs in i sc graphs(P, S) will act as the seeds of
our iterative process for computing idempotent multigraphs. As a consequence,
only idempotent multigraphs for the predicates of S are produced. Therefore,
the termination result of Sect. 2 should be rephrased as follows:

A predicate p/n terminates if there exists some (not necessarily differ-
ent) predicate q/m in the same cycle of scc(P ) and every idempotent
multigraph of q/m contains at least one edge iq

�−→ iq, 1 ≤ i ≤ m, such
that the i-th argument of every call to this predicate q/m is ground.

(∗)

A similar condition could be given for quasi-termination. Proving the correctness
of this refinement is not difficult and relies on the fact that either all predicates
in a loop are terminating or none.

Example 3. Given the program MLIST of Example 1, we have that both S1 =
{mlist/3,mult/3, add/3} and S2 = {ml/4,mult/3, add/3} are cover sets for
scc(MLIST ). For instance, the set i sc graphs(P, S1) contains only the three
size-change graphs starting from mlist/3, mult/3 and add/3.
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c) Computing the idempotent multigraphs. The core of our improved
procedure for size-change analysis is shown in Fig. 1. The algorithm considers
the following ordering on multigraphs:

Definition 4 (weaker multigraph). Given two multigraphs G1 = 〈V1, W1, E1〉
and G2 = 〈V2, W2, E2〉, we say that G1 is weaker than G2, in symbols G1 # G2,
iff the following conditions hold:

– the output and input nodes coincide, i.e., V1 = V2 and W1 = W2, and
– for every edge i

R1−→ j ∈ E1, R1 ∈ {�, �}, there exists an edge i
R2−→ j ∈ E2,

R2 ∈ {�, �}, such that R1 # R2

where �#�, �#� and �#�, but � �# �.

Basically, if a multigraph G is weaker than another multigraph H, then we have
that whenever termination can be proved with G only, it could also be proved
with both G and H. Indeed, if G # H and G′ # H′ then G •G′ # H•H′. Thus, by
induction, we can prove that for every size change graph derivable from H there
is a corresponding weaker graph derived from G. Therefore, one can safely discard
H from the computed sets of multigraphs. Intuitively speaking, an idempotent
multigraph represents a chain of multigraphs, and this chain is only as strong as
its weakest segment.

Example 4. Consider the following four clauses extracted from the regular ex-
pression matcher from [21]:

generate(or(X, ), H, T ) ← generate(X, H, T ).
generate(or( , Y ), H, T ) ← generate(Y, H, T ).
generate(star( ), T, T ).
generate(star(X), H, T ) ← generate(X, H, T 1), generate(star(X), T 1, T ).

Here, we have the following three size-change graphs:5

1gen
�ts �� 1gen

2gen
�ts �� 2gen

3gen
�ts �� 3gen

1gen
�ts �� 1gen

2gen
�ts �� 2gen

3gen 3gen

1gen
�ts �� 1gen

2gen 2gen

3gen
�ts �� 3gen

using a reduction pair based on the term-size norm, where generate is abbrevi-
ated to gen in the graphs. Here, both the second and third size-change graphs
are weaker than the first one, hence the first graph can be safely discarded and
also does not have to be composed with other graphs.

The algorithm of Fig. 1 follows these principles:
5 Note that the first two clauses produce the same size-change graph, otherwise we

would have four size-change graphs, one for each body atom in the program.
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1. Input: a program P and a cover set S ∈ CS(P )
2. Initialisation:

i := 0; Mi := i sc graphs(P, S); SC := sc graphs(P )
3. repeat

– Madd := ∅; Mdel := ∅
– for all G1 ∈ Mi and G2 ∈ SC such that G1 • G2 is defined

(a) G := G1 • G2

(b) if 	 ∃H ∈ (Mi ∪Madd) \Mdel such that G � H or H � G
then Madd := Madd ∪ {G}

(c) if ∃H ∈ (Mi ∪Madd)\Mdel such that G � H then Madd := Madd∪{G}
and Mdel := Mdel ∪ {H ∈ (Mi ∪Madd) \Mdel) | G � H}

– Mi+1 := (Mi ∪Madd) \Mdel

– i := i + 1
until Mi = Mi+1

Fig. 1. An improved algorithm for size-change analysis

– In every iteration, we only consider compositions of the form G1 • G2 where
G1 belongs to the current set of multigraphs Mi and G2 is one of the original
size-change graphs in sc graphs(P ).

– Also, those graphs that are stronger than some other graphs are removed
from the computed multigraphs in every iteration. Here, Madd denotes the
weakest multigraphs that should be added to Mi, while Mdel keeps track of
the already computed graphs (i.e., from Mi∪Madd) that should be deleted
because a weaker multigraph has been produced.

Example 5. Consider again program MLIST of Example 1. By using the im-
proved procedure with the cover set {mlist/3,mult/3, add/3}, only five compo-
sitions are required to get the fixpoint (actually, three of them are only needed to
check that a graph is indeed idempotent) and return the final set of idempotent
multigraphs (i.e., the first, third and fourth graphs shown in Example 2). With
the original algorithm, 48 compositions were required. This is a simple example,
but gives an idea of the speedup factor associated to the new algorithm (more
details can be found in Sect. 4).

The following result formally states the correctness of keeping only the weakest
multigraphs during the iterative process:

Theorem 1. Let P be a logic program and M be the set of idempotent multi-
graphs of P computed using the naive algorithm shown at the beginning of this
section. Let M′ be the set of idempotent multigraphs computed with the algorithm
of Fig. 1 using a cover set S. Then, a predicate p/n ∈ S is (quasi-)terminating
w.r.t. M iff it is (quasi-)terminating w.r.t. M′.
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Fig. 2. BTA using Size-Change Analysis

As a straightforward corollary, we have that proving termination using the naive
algorithm is equivalent to proving termination according to (∗) above using the
improved algorithm of Fig. 1 for all program predicates (and not only for those
predicates in the cover set).

4 Application to Partial Evaluation and Experiments

In this section, we apply our new algorithm to the case of offline partial eval-
uation of logic programs, both to show the usefulness of the technique in that
setting and also to evaluate its scalability in realistic applications.

4.1 Offline Partial Evaluation of Logic Programs

There are two basic approaches to partial evaluation, differing in the way termi-
nation issues are addressed [7,17]. Online specializers include a single, monolithic
algorithm, while offline partial evaluators contain two clearly separated stages:
a binding-time analysis (BTA) and the proper partial evaluation. A BTA nor-
mally includes both a termination analysis and an algorithm for propagating
static (i.e., known) information through the program. The output of the BTA is
an annotated version of the source program where every call is decorated either
with unfold (to be evaluated) or memo (to be residualized, i.e., the call will be-
come part of the residual program); also, every procedure argument is annotated
either with static (definitely known at partial evaluation time) or dynamic (pos-
sibly unknown at partial evaluation time). Typically, offline partial evaluators
are faster but less precise than online partial evaluators.

Figure 2 illustrates the scheme of a BTA that uses the size-change analysis
of Fig. 1, where patterns are expressions of the form p(b1, . . . , bn), with p/n
a predicate symbol of arity n and b1, . . . , bn binding-times. Here, we consider
a simple domain of binding-times with only two elements: static and dynamic;
more refined domains can be found in, e.g., [8].
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An offline partial evaluator takes an annotated program and an initial set of
atoms and proceeds iteratively as follows:

– First, the initial atoms are unfolded as much as possible according to the
program annotations. This is called the local level of partial evaluation.

– Then, every atom in the leaves of the incomplete SLD trees produced in the
local level are added—after generalising their dynamic arguments—to the
set of (to be) partially evaluated atoms. This is called the global level of
partial evaluation.

Similarly, termination issues can be split into local and global termination, i.e.,
termination of the local and global levels, respectively. Following the (quasi-)
termination results sketched at the end of Sect. 2, source programs are annotated
as follows:6

Local termination. If all idempotent multigraphs for a predicate p/n include
an edge ip

�−→ ip and the i-th argument of p/n is static, then all calls to p/n
are annotated with unfold; otherwise, they are annotated with memo.

Global termination. If all idempotent multigraphs for a predicate p/n include
an edge jp

R−→ ip such that R ∈ {�, �} and its j-th argument is static, then
the i-th argument of p/n can be kept as static (assuming it is known at
partial evaluation time); otherwise, it should be annotated as dynamic so
that it will be generalised at the global level.

4.2 Prolog Implementation and Empirical Evaluation

We have implemented our new algorithm from Fig. 1 (cf. Sect. 3) for size-change
analysis in SICStus Prolog. To be able to measure the effectiveness of the re-
striction to SCCs (i.e., the restriction to sc graphs(P )) and the restriction to
only consider one predicate per loop (i.e., the restriction to i sc graphs(P, S) for
some cover set S), we have provided a way to turn these optimisations off. We
also compare to the old implementation from [20], which includes none of the
new ideas presented in this paper.

An interesting implementation technique, which all three versions consider
(not described in [20]), is the use of hashing7 to more quickly identify which
size-change graphs already exist and which ones can be composed with each
other. All these three algorithms are integrated into the same BTA from [20],
which provides a command-line interface. The BTA is by default polyvariant
(but can be forced to be monovariant) and uses a domain with the following
values: static, list nv (for lists of non-variable terms), list, nv (for non-variable
terms), and dynamic. The user can also provide hints to the BTA (see below).
The implemented size-change analysis uses a reduction pair induced from the
term-size norm.
6 The groundness of an argument is now replaced by the argument being static.
7 We note that, in earlier versions of SICStus, term hash generates surprisingly many

collisions; a problem which we reported and which has been fixed in version 4.0.5.
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Evaluation of Efficiency. Figure 3 contains an overview of our empirical results,
where all times are in seconds. A value of 0 means that the timing was below our
measuring threshold. The experiments were run on a MacBook Pro with a 2.33
GHz Core2 Duo Processor and 3 GB of RAM. Our BTA was run using SICStus
Prolog 4.0.5. The first six benchmarks come from the DPPD [21] library, vanilla,
ctl and lambdaint come from [19]. The picemul program is the PIC processor
emulator from [14] with 137 clauses and 855 lines of code. javabc and javabc heap
are Java Bytecode interpreters from [13] with roughly 100 clauses. peval includes
over 2500 lines of Prolog from a partial evaluator for the ground representation
from [23]. self app are the 1925 lines of our size-change analysis and BTA itself.
dSL is an interpreter of 444 lines for the dSL specification language [34]. csp is
the core interpreter for full CSP-M from [24], consisting of 1771 lines of code.
prob is the core interpreter of ProB [22] for B machines, not containing the kernel
predicates or the model checker. It consists of 1910 lines of code and deals with
B expressions, predicates and substitutions. promela is an interpreter for the full
Promela language (see, e.g., [16]), consisting of 1148 lines of code. Finally, goedel
is the source code of the Gödel system [15] consisting of 27354 lines of Prolog.8

The “noentry” annotation in Fig. 3 means that no entry point was provided,
hence only the size-change analysis was performed (and no propagation of static
information).

The output of the new BTA (without SCC) and the old BTA from [20] are
identical as far as local and global annotations are concerned.

In summary, the new size change analysis is always faster and we see improve-
ments of roughly three orders of magnitude on the most complicated examples
(up to a factor of 3500 for prob (noentry)). We are able to deal with realistic
interpreters and systems exceeding 25K lines of code. For goedel, a small part
of the inferred termination conditions are as follows:

is_not_terminating(parse_language1, 6, [d,_,_,_,_,_]).
global_binding_times(parse_language1, 6, [s,d,s,s,d,s]).
is_not_terminating(build_delay_condition, 4, [d,d,_,_]).
global_binding_times(build_delay_condition, 4, [s,s,d,d]).

In particular, this means that the analysis has been able to infer that the pred-
icate parse language1 can be unfolded if the first argument is static, and that
the first, third, fourth and last argument do not need to be generalised to ensure
quasi-termination.

Compared to the BTA from [8] using binary clauses rather than size-change
analysis, the difference is even more striking. This BTA is in turn, e.g., 200 times
slower than the old BTA for the picemul example; see [20]. We have also tried
the latest version of Terminweb,9 based upon [6]. However, the online version
failed to terminate successfully on, e.g., the picemul example (for which our

8 Downloaded from http://www.cs.bris.ac.uk/Research/LanguagesArchitecture/

goedel/ and put into a single file, removing module declarations and adapting some
of the code for SICStus 4.

9 http://www.cs.bgu.ac.il/∼mcodish/TerminWeb/
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Benchmark Old BTA New BTA New BTA
from [20] (without SCC) (with SCC)

contains.kmp 0.01 0.00 0.00
imperative-power 2.35 0.03 0.02
liftsolve.app 0.02 0.01 0.01
match-kmp 0.00 0.00 0.00
regexp.r3 0.01 0.00 0.00
ssuply 0.01 0.01 0.01
vanilla 0.01 0.00 0.00
lambdaint 0.17 0.02 0.02
picemul 0.31 0.15 0.15
picemul (noentry) 0.18 0.01 0.01
ctl 0.03 0.02 0.02
javabc 0.03 0.03 0.03
javabc heap 0.09 0.09 0.09
peval 0.48 0.15 0.06
self app (noentry) 0.34 0.20 0.05
dSL 0.03 0.01 0.01
csp (noentry) 5.16 0.21 0.09
prob 387.12 1.41 0.61
prob (noentry) 386.63 0.79 0.11
promela (noentry) 330.05 0.35 0.34
goedel (noentry) 1750.90 13.32 2.61

Fig. 3. Empirical results (times in milliseconds)

size-change analysis takes 0.01 s). We have also tried TermiLog,10 but it timed
out after 4 minutes (the maximum time that can be set in the online version).

Evaluation of Precision. Without the use of the proposed optimisations in the
algorithm of Fig. 1, the precision remains unchanged w.r.t. [20], and as such
the same specialisations can be achieved as described in [20] using hints: e.g.,
Jones-optimal specialisation for vanilla, reproducing the decompilation from Java
bytecode to CLP from [13] or automatically generating the generated code from
[14] for picemul.

With the SCC optimisations, we reduce the number of predicates that are
memoised. This in turn also reduces the number of hints that a user has to
provide to obtain the desired specialisation.

For example, the vanilla example required two hints in [20] and now only
one hint is required to obtain a good specialisation. For lambdaint 6 hints were
required in [20] to get good performance. Now only two hints are required, ex-
pressing the fact that the expression being evaluated and the list of bound vari-
able names are expected to be static and should not be generalised away by the
BTA.11 In the following section we show how the precision of the size-change
10 http://www.cs.huji.ac.il/∼naomil/termilog.php
11 This does not give exactly the same result; the solution with 6 hints memoises on

eval if, which in this case leads to a more efficient version than memoising on eval.
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analysis can be further improved in the setting of partial evaluation, further
reducing the need for hints.

5 Propagating Partial Left-to-Right Information

In this section, we extend the size-change analysis in order to right-propagate
size information in some cases. Consider, e.g., clause (c2) in Example 1:

(c2) mlist(L, I, LI) ← nonempty(L), hd(L, X), tl(L, R),ml(X, R, I, LI).

Since our size-change analysis considers strong termination, we compare the size
of the head of the clause with the size of each atom in the body independently.
Therefore, we get no relation between the sizes of list L in the head and its head
X and tail R in the call to ml .

In some cases, however, one might assume some additional restrictions. For
instance, in many partial evaluators a left-to-right selection rule is used with
the only exception that those calls which are annotated with memo are skipped.
Therefore, if we know that some calls can be fully unfolded without entering
an infinite loop (the case, e.g., of non-recursive predicates), then one can safely
propagate the size relationships for the success patterns of these calls to the
subsequent atoms in the clause. In principle, these “fully unfoldable” calls can
be detected using a standard left-termination analysis (i.e., one that consid-
ers a standard left-to-right computation rule), e.g., [6], while size relations of
success patterns can be obtained from the computation of the convex hull of
[2]. Here, though, we consider that this information is provided by the user
by means of hints of the form ’$FULLYUNFOLD’(p,n,size relations) where
size_relations are the interargument size relations for the success patterns of
p/n. For instance, for the program MLIST of Ex. 1, we may have the following
hints:

’$FULLYUNFOLD’(hd,2,[1>2]). ’$FULLYUNFOLD’(tl,2,[1>2]).

which should be read as “when the call to hd (resp. tl) succeeds, the size of its
first argument is strictly greater than the size of its second argument”. We note
that, in order to be safe, the interargument size relations should be based on the
same norm used to induce the reduction pair considered in the construction of
the size-change graphs.

Let us now describe how the size-change analysis can be improved by using
this new kind of hints. Consider a clause of the form

P ← Q1, . . . , Qi−1, p(t1, . . . , tn), Qi+1, . . . , Qm.

together with the hint ’$FULLYUNFOLD’(p,n,I). Then, we first replace this
clause by the following ones:

P ← Q1, . . . , Qi−1, pentry(x1, . . . , xk, t1, . . . , tn).
pentry(x1, . . . , xk, y1, . . . , yn) ← p(y1, . . . , yn), pexit(x1, . . . , xk, y1, . . . , yn).
pexit(x1, . . . , xk, y1, . . . , yn) ← Qi+1, . . . , Qm.



Fast and Accurate Strong Termination Analysis 125

where

{x1, . . . , xk} = (Var(P, Q1, . . . , Qi−1) ∩ Var(Qi+1, . . . , Qm)) \ Var(p(t1, . . . , tn))

This transformation is clearly safe w.r.t. SLD resolution since the original clause
can be obtained by just unfolding both pentry and pexit.

Now, the size-change graphs of the first and third clauses are computed as
usual. For the second clause, however, we assume that the atom p(y1, . . . , yn)
could be fully unfolded producing the set of clauses

pentry(x1, . . . , xk, y1, . . . , yn)σ1 ← pexit(x1, . . . , xk, y1, . . . , yn)σ1.
. . .
pentry(x1, . . . , xk, y1, . . . , yn)σj ← pexit(x1, . . . , xk, y1, . . . , yn)σj .

where σ1, . . . , σj are the computed answers and the set of interargument size
relations I safely approximates the size relations between the arguments of pentry

and pexit. Note that we do not need to fully unfold p/n to construct the size-
change graphs (it is rather a device to show the correctness of our approach).
Formally, for every relation i > j (resp. i � j) in the interargument size relations

for p/n, we should add an edge ipentry

�−→ jpexit (resp. ipentry

�−→ jpexit) to the
size-change graph from pentry to pexit. Moreover, we add an edge of the form

ipentry

�−→ ipexit since both pentry and pexit are actually the same predicate.
For instance, by considering the previous hints for program MLIST , the clause

(c2) is transformed into

(c21) mlist(L, I, LI) ← nonempty(L), hdentry (L, X, I, LI).
(c22) hdentry (L, X, I, LI) ← hd(L, X), hdexit (L, X, I, LI).
(c23) hdexit (L, X, I, LI) ← tlentry(L, R, X, I, LI).
(c24) tlentry(L, R, X, I, LI) ← tl(L, R), tlexit(L, R, X, I, LI).
(c25) tlexit(L, R, X, I, LI) ← ml(X, R, I, LI).

Now, by using the interargument size relations for hd and tl , we construct the
following size-change graphs associated to clauses c22 and c24:

1hdentry �ts

��
�ts �� 1hdexit

2hdentry

�ts �� 2hdexit

3hdentry

�ts �� 3hdexit

4hdentry

�ts �� 4hdexit

1tlentry �ts

���������
�ts �� 1tlexit

2tlentry

�ts �� 2tlexit

3tlentry

�ts �� 3tlexit

4tlentry

�ts �� 4tlexit

5tlentry

�ts �� 5tlexit

Finally, by constructing the size-change graphs for clauses c21, c23 and c25 as
usual, the size-change analysis is now able to infer the right relation between the
sizes of list L in the atom mlist(L, I, LI) and the head X and tail R in the atom
ml(X, R, I, LI).
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6 Discussion and Conclusion

In this paper, we have presented a new algorithm to perform strong termina-
tion and quasi-termination inference using size-change analysis. The experiments
have shown that we can analyse the full 25K lines of source code of the Gödel
system in under three seconds. The main application of this algorithm is for
offline partial evaluation of large programs. In the experimental evaluation we
have shown that, with our new algorithm, we can now deal with realistic inter-
preters, such as the interpreter for the full B specification language from [22].
Together with the selective use of hints [20], we have obtained both a scalable
and an effective partial evaluation procedure. The logical next step is to bring
this work to practical fruition, by, e.g., optimising the interpreter from [22] for
particular specifications, speeding up the animation and model checking process.
This challenge has been on our research agenda for quite a while, and we now
believe that the goal can be achieved in the near future. One remaining technical
hurdle is the treatment of meta predicate annotations (the B interpreter uses
meta-predicates to implement delaying versions of negation and findall).
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Departamento de Sistemas Informáticos y Computación
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Abstract. Type systems are widely used in programming languages as a
powerful tool providing safety to programs, and forcing the programmers
to write code in a clearer way. Functional logic languages have inherited
Damas & Milner type system from their functional part due to its sim-
plicity and popularity. In this paper we address a couple of aspects that
can be subject of improvement. One is related to a problematic feature
of functional logic languages not taken under consideration by standard
systems: it is known that the use of opaque HO patterns in left-hand sides
of program rules may produce undesirable effects from the point of view
of types. We re-examine the problem, and propose a Damas & Milner-
like type system where certain uses of HO patterns (even opaque) are
permitted while preserving type safety, as proved by a subject reduction
result that uses HO-let-rewriting, a recently proposed reduction mecha-
nism for HO functional logic programs. The other aspect is the different
ways in which polymorphism of local definitions can be handled. At the
same time that we formalize the type system, we have made the effort
of technically clarifying the overall process of type inference in a whole
program.

1 Introduction

Type systems for programming languages are an active area of research [18], no
matter which paradigm one considers. In the case of functional programming,
most type systems have arisen as extensions of Damas & Milner’s [4], for its
remarkable simplicity and good properties (decidability, existence of principal
types, possibility of type inference). Functional logic languages [12,8,7], in their
practical side, have inherited more or less directly Damas & Milner’s types.
In principle, most of the type extensions proposed for functional programming
could be also incorporated to functional logic languages (this has been done, for
instance, for type classes in [15]). However, if types are not only decoration but
are to provide safety, one should be sure that the adopted system has indeed good
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properties. In this paper we tackle a couple of orthogonal aspects of existing FLP
systems that are problematic or not well covered by standard Damas & Milner
systems. One is the presence of so called HO patterns in programs, an expressive
feature allowed in some systems and for which a sensible semantics exists [5];
however, it is known that unrestricted use of HO patterns leads to type unsafety,
as recalled below. The second is the degree of polymorphism assumed for local
pattern bindings, a matter with respect to which existing FP or FLP systems
vary greatly.

The rest of the paper is organized as follows. The next two subsections further
discuss the two mentioned aspects. Sect. 2 contains some preliminaries about FL
programs and types. In Sect. 3 we expose the type system and prove its soundness
wrt. the let rewriting semantics of [11]. Sect. 4 contains a type inference relation,
which let us find the most general type of expressions. Sect. 5 presents a method
to infer types for programs. Finally, Sect. 6 contains some conclusions and future
work. Omitted proofs can be found in [13].

1.1 Higher Order Patterns

In our formalism patterns appear in the left-hand side of rules and in lambda
or let expressions. Some of these patterns can be HO patterns, if they contain
partial applications of function or constructor symbols. HO patterns can be a
source of problems from the point of view of the types. In particular, it was shown
in [6] that unrestricted use of HO patterns leads to loss of subject reduction, an
essential property for a type system expressing that evaluation does not change
types. The following is a crisp example of the problem.

Example 1 (Polymorphic Casting [2]). Consider the program consisting of the
rules snd X Y → Y , and true X → X , and false X → false, with the usual
types inferred by a classical Damas & Milner algorithm. Then we can write the
functions unpack (snd X) → X and cast X → unpack (snd X), whose inferred
types will be ∀α.∀β.(α → α) → β and ∀α.∀β.α → β respectively. It is clear that
the expression and (cast 0) true is well-typed, because cast 0 has type bool (in
fact it has any type), but if we reduce that expression using the rules of cast
and unpack the resulting expression and 0 true is ill-typed.

The problem arises when dealing with HO patterns, because unlike FO patterns,
knowing the type of a HO pattern does not always permit us to know the type
of its subpatterns. In the previous example the cause is function co, because
its pattern snd X is opaque and shadows the type of its subpattern X . Usual
inference algorithms treat this opacity as polymorphism, and that is the reason
why it is inferred a completely polymorphic type for the result of the function
co.

In [6] the appearance of any opaque pattern in the left-hand side of the rules
is prohibited, but we will see that it is possible to be less restrictive. The key is
making a distinction between transparent and opaque variables of a pattern:
a variable is transparent if its type is univocally fixed by the type of the pattern,
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and is opaque otherwise. We call a variable of a pattern critical if it is opaque in
the pattern and also appears elsewhere in the expression. The formal definition
of opaque and critical variables will be given in Sect. 3. With these notions we
can relax the situation in [6], prohibiting only those patterns having critical
variables.

1.2 Local Definitions

Functional and functional logic languages provide syntax to introduce local def-
initions inside an expression. But in spite of the popularity of let-expressions,
different implementations treat them differently because of the polymorphism
they give to bound variables. This difference can be observed in Ex. 2, being
(e1, . . . , en) and [e1, . . . , en] the usual tuple and list notation respectively.

Example 2 (let expressions). Let e1 be let F = id in (F true, F 0), and e2 be
let [F, G] = [id, id] in (F true, F 0, G 0, G false)

Intuitively, e1 gives a new name to the identity function and uses it twice with
arguments of different types. Surprisingly, not all implementations consider this
expression as well-typed, and the reason is that F is used with different types
in each appearance: bool → bool and int → int. Some implementations as Clean
2.2, PAKCS 1.9.1 or KICS 0.81893 consider that a variable bound by a let-
expression must be used with the same type in all the appearances in the body
of the expression. In this situation we say that lets are completely monomorphic,
and write letm for it.

On the other hand, we can consider that all the variables bound by the let-
expression may have different but coherent types, i.e., are treated polymorphi-
cally. Then expressions like e1 or e2 would be well-typed. This is the decision
adopted by Hugs Sept. 2006, OCaml 3.10.2 or F# Sept. 2008. In this case, we
will say that lets are completely polymorphic, and write letp.

Finally, we can treat the bound variables monomorphically or polymorphi-
cally depending on the form of the pattern. If the pattern is a variable, the let

Programming language and version letm letpm letp

GHC 6.8.2 ×
Hugs Sept. 2006 ×

Standard ML of New Jersey 110.67 ×
Ocaml 3.10.2 ×

F# Sept. 2008 ×
Clean 2.0 ×
T OY 2.3.1* ×

Curry PAKCS 1.9.1 ×
Curry Münster 0.9.11 ×

KICS 0.81893 ×
(*) we use where instead of let, not supported by T OY

Fig. 1. Let expressions in different programming languages
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treats it polymorphically, but if it is compound the let treats all the variables
monomorphically. This is the case of GHC 6.8.2, SML of New Jersey v110.67
or Curry Münster 0.9.11. In this implementations e1 is well-typed, while e2 not.
We call this kind of let-expression letpm.

Fig. 1 summarizes the decisions of various implementations of functional and
functional logic languages. The exact behavior wrt. types of local definitions is
usually not well documented, not to say formalized, in those systems. One of our
contributions is this paper is to technically clarify this question by adopting a
neutral position, and formalizing the different possibilities for the polymorphism
of local definitions.

2 Preliminaries

We assume a signature Σ = DC ∪ FS, where DC and FS are two disjoint
sets of data constructor and function symbols resp., all them with associated
arity. We write DCn (resp FSn) for the set of constructor (function) symbols
of arity n. We also assume a denumerable set DV of data variables X . We
define the set of patterns Pat % t ::= X | c t1 . . . tn (n ≤ k) | f t1 . . . tn (n <
k), where c ∈ DCk and f ∈ FSk; and the set of expressions Exp % e ::=
X | c | f | e1 e2 | λt.e | letm t = e1 in e2 | letpm t = e1 in e2 | letp t = e1 in e2

where c ∈ DC, f ∈ FS and t is a linear pattern. We split the set of patterns
in two: first order patterns FOPat % fot ::= X | c t1 . . . tn where c ∈ DCn,
and Higher order patterns HOPat = Pat � FOPat. Expressions h e1 . . . en

are called junk if h ∈ CSk and n > k, and active if h ∈ FSk and n ≥ k.
FV (e) is the set of variables in e which are not bound by any lambda or let
expression and is defined in the usual way (notice that since our let expressions
do not support recursive definitions the bindings of the pattern only affect e2:
FV (let∗ t = e1 in e2) = FV (e1) ∪ (FV (e2) � var(t)). A one-hole context C is
an expression with exactly one hole. A data substitution θ ∈ PSubst is a finite
mapping from data variables to patterns: [Xi/ti]. Substitution application over
data variables and expressions is defined in the usual way. A program rule is
defined as PRule % r ::= f t1 . . . tn → e (n ≥ 0) where the set of patterns ti is
linear and FV (e) ⊆

⋃
i var(ti). Therefore, extra variables are not considered in

this paper. A program is a set of program rules Prog % P ::= {r1; . . . ; rn}(n ≥ 0).
For the types we assume a denumerable set T V of type variables α and a

countable alphabet T C =
⋃

n∈N
T Cn of type constructors C. The set of simple

types is defined as SType % τ ::= α | τ1 → τ2 | C τ1 . . . τn (C ∈ T Cn). Based on
simple types we define the set of type-schemes as TScheme % σ ::= τ | ∀α.σ. The
set of free type variables (FTV) of a simple type τ is var(τ), and for type-schemes
FTV (∀αi.τ) = FTV (τ) � {αi}. A type-scheme ∀αi.τn → τ is transparent if
FTV (τn) ⊆ FTV (τ). A set of assumptions A is {si : σi}, where si ∈ DC ∪
FS ∪ DV . Notice that the transparency of type-schemes for data constructors
is not required in our setting, although that hypothesis is usually assumed in
classical Damas & Milner type systems. If (si : σi) ∈ A we write A(si) = σi. A
type substitution π ∈ T Subst is a finite mapping from type variables to simple
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types [αi/τi]. For sets of assumptions FTV ({si : σi}) =
⋃

i FTV (σi). We will
say a type-scheme σ is closed if FTV (σ) = ∅. Application of type substitutions
to simple types is defined in the natural way, and for type-schemes consists in
applying the substitution only to their free variables. This notion is extended
to set of assumptions in the obvious way. We will say σ is an instance of σ′ if
σ = σ′π for some π. τ ′ is a generic instance of σ ≡ ∀αi.τ if τ ′ = τ [αi/τi] for some
τi, and we write it σ � τ ′. We extend � to a relation between type-schemes by
saying that σ � σ′ iff every simple type such that is a generic instance of σ′ is
also a generic instance of σ. Then ∀αi.τ � ∀βi.τ [αi/τi] iff {βi}∩FTV (∀αi.τ) = ∅
[3]. Finally, τ ′ is a variant of σ ≡ ∀αi.τ (σ �var τ ′) if τ ′ = τ [αi/βi] and βi are
fresh type variables.

3 Type Derivation

We propose a modification of Damas & Milner type system [4] with some differ-
ences. We have found convenient to separate the task of giving a regular Damas
& Milner type and the task of checking critical variables. To do that we have
defined two different type relations:  and  •.

The basic typing relation  in the upper part of Fig. 2 is like the classical
Damas & Milner’s system but extended to handle the three different kinds of
let expressions and the occurrence of patterns instead of variables in lambda
and let expressions. We have also made the rules more syntax-directed so that
the form of type derivations depends only on the form of the expression to be
typed. Gen(τ,A) is the closure or generalization of τ wrt. A [4,3,19], which
generalizes all the type variables of τ that do not appear free in A. Formally:
Gen(τ,A) = ∀αi.τ where {αi} = FTV (τ) � FTV (A). As can be seen, [LETm]
and [LETh

pm] behave the same, and do not generalize any of the types τi for the
variables Xi to give a type for the body. On the contrary, [LETX

pm] and [LETp]
generalize the types given to the variables. Notice that if two variables share the
same type in the set of assumptions A, generalization will lose the connection
between them. This fact can be seen with e2 in Ex. 2. Although the type for both
F and G can be α → α (with α a variable not appearing in A) the generalization
step will assign both the type-scheme ∀α.α → α, losing the connection between
them. Fig. 3 shows a type derivation for the expression λ(snd X).X .

The  • relation (lower part of Fig. 2) uses  but enforces also the absence of
critical variables. A variable Xi is opaque in t when it is possible to build a type
derivation for t where the type assumed for Xi contains type variables which do
not occur in the type derived for the pattern. The formal definition is as follows.

Definition 1 (Opaque variable of t wrt. A). Let t be a pattern that admits
type wrt. a given set of assumptions A. We say that Xi ∈ Xi = var(t) is opaque
wrt. A iff ∃τi, τ s.t. A⊕ {Xi : τi}  t : τ and FTV (τi) � FTV (τ).

Example 3 (Opaque variables of t wrt. A).

– We will see that X is an opaque variable in snd X wrt. any set of assumptions
A1 containing the usual type-scheme for snd (snd : ∀α.∀β.α → β → β) and
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[ID] A  s : τ
if

s ∈ DC ∪ FS ∪ DV
∧ (s : σ) ∈ A ∧ σ � τ

[APP]

A  e1 : τ1 → τ
A  e2 : τ1

A  e1 e2 : τ

[Λ]

A⊕ {Xi : τi}  t : τt

A⊕ {Xi : τi}  e : τ

A  λt.e : τt → τ

if {Xi} = var(t)

[LETm]

A⊕ {Xi : τi}  t : τt

A  e1 : τt

A⊕ {Xi : τi}  e2 : τ2

A  letm t = e1 in e2 : τ2

if {Xi} = var(t)

[LETX
pm]

A  e1 : τ1

A⊕ {X : Gen(τ1,A)}  e2 : τ2

A  letpm X = e1 in e2 : τ2

[LETh
pm]

A⊕ {Xi : τi}  h t1 . . . tn : τt

A  e1 : τt

A⊕ {Xi : τi}  e2 : τ2

A  letpm h t1 . . . tn = e1 in e2 : τ2

if {Xi} = var(t1 . . . tn)
∧ h ∈ DC ∪ FS

[LETp]

A⊕ {Xi : τi}  t : τt

A  e1 : τt

A⊕ {Xi : Gen(τi,A)}  e2 : τ2

A  letp t = e1 in e2 : τ2

if {Xi} = var(t)

[P]
A  e : τ

A • e : τ
if critV arA(e) = ∅

Fig. 2. Rules of type system

Assuming A ≡ {snd : ∀α.∀β.α → β → β} and A′ ≡ A⊕ {X : γ}

[Λ]

[APP]
(∗)

A⊕ {X : γ}  snd X : bool → bool
[ID]

A′  X : γ

A  λ(snd X).X : (bool → bool) → γ

where the type derivation for (∗) is:

[APP]

[ID]
A′  snd : γ → bool → bool

[ID]
A′  X : γ

A′  snd X : bool → bool

Fig. 3. Example of type derivation using 
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any type assumption for X . It is clear that snd X admits a type wrt. that
A1, e.g. bool → bool (see Fig. 3). However we can build the type derivation
A1 ⊕ {X : γ}  snd X : bool → bool such that FTV (γ) = {γ} � ∅ =
FTV (bool → bool).

– On the other hand we can see that X is not opaque in snd [X, true]. It cor-
responds to the intuition, since in this case the pattern itself fixes univocally
the type of the variable X . Consider a set of assumptions A2 containing the
usual type-schemes for snd and the list constructors, and the assumption
{X : bool}. Clearly snd [X, true] admits type wrt. A2. The only assumption
for X that we can add to A2 in order to derive a type for snd [X, true] is
{X : bool}, otherwise the subpattern [X, true] would not admit any type.
Therefore any type derivation has to be of the shape A2 ⊕ {X : bool}  
snd [X, true] : τ , and obviously FTV (bool) = ∅ ⊆ FTV (τ), for any τ .

Def. 1 is based on the existence of a certain type derivation, and therefore cannot
be used as an effective check for the opacity of variables. Prop. 1 provides a
more operational characterization of opacity that exploits the close relationship
between  an type inference 	 presented in Sect. 4.

Proposition 1. Xi ∈ Xi = var(t) is opaque wrt. A iff A⊕{Xi : αi} 	 t : τg|πg

and FTV (αiπg) � FTV (τg).

We write opaqueV arA(t) for set of opaque variables of t wrt. A. Now, we can
define the critical variables of an expression e wrt. A as those variables that,
being opaque in a let or lambda pattern of e, are indeed used in e. Formally:

Definition 2 (Critical variables)
critV arA(s) = ∅ if s ∈ DC ∪ FS ∪ DV
critV arA(e1 e2) = critV arA(e1) ∪ critV arA(e2)
critV arA(λt.e) = (opaqueV arA(t) ∩ FV (e)) ∪ critV arA(e)
critV arA(let∗ t = e1 in e2)

= (opaqueV arA(t) ∩ FV (e2)) ∪ critV arA(e1) ∪ critV arA(e2)

Notice that the if we write the function unpack of Ex. 1 as λ(snd X).X , it is
well-typed wrt.  using the usual type for snd. However it is ill-typed wrt.  •

since X is a critical variable, i.e., it is an opaque variable in snd X and it occurs
in the body of the λ-abstraction.

The typing relation  • has been defined in a modular way in the sense that
the opacity check is kept separated from the regular Damas & Milner typing.
Therefore it is easy to see that if every constructor and function symbol in
program has a transparent assumption, then all the variables in patterns will be
transparent, and so  • will be equivalent to  . This happens in particular for
those programs using only first order patterns and whose constructor symbols
come from a Haskell (or Toy, Curry)-like data declaration.

3.1 Properties of the Typing Relations

The typing relations fulfill a set of useful properties. Here we use  ? for any of
the two typing relations:  or  •.
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Theorem 1 (Properties of the typing relations)
a) If A  ? e : τ then Aπ  ? e : τπ, for any π ∈ T Subst.
b) Let s ∈ DC ∪FS ∪DV be a symbol not occurring in e. Then A  ? e : τ ⇐⇒

A⊕ {s : σs}  ? e : τ .
c) If A ⊕ {X : τx}  ? e : τ and A ⊕ {X : τx}  ? e′ : τx then A ⊕ {X : τx}  ?

e[X/e′] : τ .
d) If A⊕ {s : σ}  e : τ and σ′ � σ, then A⊕ {s : σ′}  e : τ .

Part a) states that type derivations are closed under type substitutions. b) shows
that type derivations for e depend only on the assumptions for the symbols in
e. c) is a substitution lemma stating that in a type derivation we can replace
a variable by an expression with the same type. Finally, d) establishes that
from a valid type derivation we can change the assumption of a symbol for a
more general type-scheme, and we still have a correct type derivation for the
same type. Notice that this is not true wrt. the typing relation  • because a
more general type can introduce opacity. For example the variable X is opaque
in snd X with the usual type for snd, but with a more specific type such as
bool → bool → bool it is no longer opaque.

3.2 Subject Reduction

Subject reduction is a key property for type systems, meaning that evaluation
does not change the type of an expression. This ensures that run-time type errors
will not occur. Subject reduction is only guaranteed for well-typed programs, a
notion that we formally define now.

Definition 3 (Well-typed program). A program rule f t1 . . . tn → e is well-
typed wrt. A if A  • λt1 . . . λtn.e : τ and τ is a variant of A(f). A program P
is well-typed wrt. A if all its rules are well-typed wrt. A. If P is well-typed wrt.
A we write wtA(P).

Notice the use of the extended typing relation  • in the previous definition. This
is essential, as we will explain later. Returning to Ex. 1, we can see that the
program will not be well-typed because of the rule unpack (snd X) → X , since
λ(snd X).X will be ill-typed wrt. the usual type for snd, as we explained before.

Although the restriction that the type of the lambda abstraction associated to
a rule must be a variant of the type of the function symbol (and not an instance)
might seem strange, it is necessary. Otherwise, the fact that a program is well-
typed will not give us important information about the functions like the type of
their arguments, and will make us to consider as well-typed undesirable programs
like P ≡ {f true → true; f 2 → false} with the assumptions A ≡ {f :: ∀α.α →
bool}. Besides, this restriction is implicitly considered in [6].

For subject reduction to be meaningful, a notion of evaluation is needed. In
this paper we consider the let-rewriting relation of [11]. As can be seen, let-
rewriting does not support let expressions with compound patterns. Instead of
extending the semantics with this feature we propose a transformation from let-
expressions with patterns to let-expressions with only variables (Fig. 4). There
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TRL(s) = s, if s ∈ DC ∪ FS ∪ DV
TRL(e1 e2) = TRL(e1) TRL(e2)

TRL(letK X = e1 in e2) = letK X = TRL(e1) in TRL(e2), with K ∈ {m, p}
TRL(letpm X = e1 in e2) = letp X = TRL(e1) in TRL(e2)

TRL(letm t = e1 in e2) = letm Y = TRL(e1) in letm Xi = fXi Y in TRL(e2)
TRL(letpm t = e1 in e2) = letm Y = TRL(e1) in letm Xi = fXi Y in TRL(e2)

TRL(letp t = e1 in e2) = letp Y = TRL(e1) in letp Xi = fXi Y in TRL(e2)

for {Xi} = var(t) ∩ FV (e2), fXi ∈ FS1 fresh defined by the rule fXi t → Xi,
Y ∈ DV fresh, t a non variable pattern.

Fig. 4. Transformation rules of let expressions with patterns

are various ways to perform this transformation, which differ in the strictness of
the pattern matching. We have chosen the alternative explained in [17] that does
not demand the matching if no variable of the pattern is needed, but otherwise
forces the matching of the whole pattern. This transformation has been enriched
with the different kinds of let expressions in order to preserve the types, as is
stated in Th. 2. Notice that the result of the transformation and the expressions
accepted by let-rewriting only has letm or letp expressions, since without com-
pound patterns letpm is the same as letp. Finally, we have added polymorphism
annotations to let expressions (Fig. 5). Original (Flat) rule has been split into
two, one for each kind of polymorphism. Although both behave the same from
the point of view of values, the splitting is needed to guarantee type preservation.
λ-abstractions have been omitted, since they are not supported by let-rewriting.

(Fapp) f t1θ . . . tnθ →l rθ, if (f t1 . . . tn → r) ∈ P and θ ∈ PSubst

(LetIn) e1 e2 →l letm X = e2 in e1 X, if e2 is an active expression, variable
application, junk or let rooted expression, for X fresh.

(Bind) letK X = t in e →l e[X/t], if t ∈ Pat

(Elim) letK X = e1 in e2 →l e2, if X 	∈ FV (e2)

(Flatm) letm X = (letK Y = e1 in e2) in e3 →l letK Y = e1 in (letm X =
e2 in e3), if Y 	∈ FV (e3)

(Flatp) letp X = (letK Y = e1 in e2) in e3 →l letp Y = e1 in (letp X = e2 in e3)
if Y 	∈ FV (e3)

(LetAp) (letK X = e1 in e2) e3 →l letK X = e1 in e2 e3, if X 	∈ FV (e3)

(Contx) C[e] →l C[e′], if C 	= [ ], e →l e′ using any of the previous rules

where K ∈ {m, p}

Fig. 5. Higher order let-rewriting relation →l
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Theorem 2 (Type preservation of the let transformation). Assume A  •

e : τ and let P ≡ {fXi ti → Xi} be the rules of the projection functions needed in
the transformation of e according to Fig. 4. Let also A′ be the set of assumptions
over that functions, defined as A′ ≡ {fXi : Gen(τXi ,A)}, where A 	• λti.Xi :
τXi |πXi . Then A⊕A′  • TRL(e) : τ and wtA⊕A′(P).

Th. 2 also states that the projection functions are well-typed. Then if we start
from a well-typed program P wrt. A and apply the transformation to all its
rules, the program extended with the projections rules will be well-typed wrt. the
extended assumptions: wtA⊕A′ (P ( P ′). This result is straightforward, because
A′ does not contain any assumption for the symbols in P , so wtA(P) implies
wtA⊕A′ (P).

Th. 3 states the subject reduction property for a let-rewriting step, but its
extension to any number of steps is trivial.

Theorem 3 (Subject Reduction). If A  • e : τ and wtA(P) and P  e →l e′

then A  • e′ : τ .

For this result to hold it is essential that the definition of well-typed program re-
lies on  •. A counterexample can be found in Ex. 1, where the program would be
well-typed wrt.  but the subject reduction property fails for and (cast 0) true.

The proof of the subject reduction property is based on the following lemma,
an important auxiliary result about the instantiation of transparent variables.
Intuitively it states that if we have a pattern t with type τ and we change its
variables by other expressions, the only way to obtain the same type τ for the
substituted pattern is by changing the transparent variables for expressions with
the same type. This is not guaranteed with opaque variables, and that is why
we forbid their use in expressions.

Lemma 1. Assume A⊕{Xi : τi}  t : τ , where var(t) ⊆ {Xi}. If A  t[Xi/si] :
τ and Xj is a transparent variable of t wrt. A then A  sj : τj.

4 Type Inference for Expressions

The typing relation  • lacks some properties that prevent its usage as a type-
checker mechanism in a compiler for a functional logic language. First, in spite
of the syntax-directed style, the rules for  and  • have a bad operational be-
havior: at some steps they need to guess a type. Second, the types related to
an expression can be infinite due to polymorphism. Finally, the typing relation
needs all the assumptions for the symbols in order to work. To overcome these
problems, type systems usually are accompanied with a type inference algorithm
which returns a valid type for an expression and also establishes the types for
some symbols in the expression.

In this work we have given the type inference in Fig. 6 a relational style to
show the similarities with the typing relation. But in essence, the inference rules
represent an algorithm (similar to algorithm W [4,3]) which fails if any of the
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[iID] A 	 s : τ |id if
s ∈ DC ∪ FS ∪ DV
∧ (s : σ) ∈ A ∧ σ �var τ

[iAPP]

A 	 e1 : τ1|π1

Aπ1 	 e2 : τ2|π2

A 	 e1 e2 : απ|π1π2π
if

α fresh type variable
∧ π = mgu(τ1π2, τ2 → α)

[iΛ]
A⊕ {Xi : αi} 	 t : τt|πt

(A⊕ {Xi : αi})πt 	 e : τ |π
A 	 λt.e : τtπ → τ |πtπ

if
{Xi} = var(t)
∧ αi fresh type variables

[iLETm]

A⊕ {Xi : αi} 	 t : τt|πt

Aπt 	 e1 : τ1|π1

(A⊕ {Xi : αi})πtπ1π 	 e2 : τ2|π2

A 	 letm t = e1 in e2 : τ2|πtπ1ππ2

if {Xi} = var(t) ∧ αi fresh type variables
∧ π = mgu(τtπ1, τ1)

[iLETX
pm]

A 	 e1 : τ1|π1

Aπ1 ⊕ {X : Gen(τ1,Aπ1)} 	 e2 : τ2|π2

A 	 letpm X = e1 in e2 : τ2|π1π2

[iLETh
pm]

A⊕ {Xi : αi} 	 h t1 . . . tn : τt|πt

Aπt 	 e1 : τ1|π1

(A⊕ {Xi : αi})πtπ1π 	 e2 : τ2|π2

A 	 letpm h t1 . . . tn = e1 in e2 : τ2|πtπ1ππ2

if h ∈ DC ∪ FS ∧ {Xi} = var(h t1 . . . tn)
∧ αi fresh type variables ∧ π = mgu(τtπ1, τ1)

[iLETp]

A⊕ {Xi : αi} 	 t : τt|πt

Aπt 	 e1 : τ1|π1

Aπtπ1π ⊕ {Xi : Gen(αiπtπ1π,Aπtπ1π)} 	 e2 : τ2|π2

A 	 letp t = e1 in e2 : τ2|πtπ1ππ2

if {Xi} = var(t) ∧ αi fresh type variables
∧ π = mgu(τtπ1, τ1)

[iP]
A 	 e : τ |π
A 	• e : τ |π if critV arAπ(e) = ∅

Fig. 6. Inference rules
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Assuming A ≡ {snd : ∀α.∀β.α → β → β} and A′ ≡ A⊕ {X : γ}

[iΛ]

[iAPP]
(∗)

A⊕ {X : γ} 	 snd X : ε → ε|π
[iID]

A′ 	 X : γ|id
A 	 λ(snd X).X : (ε → ε) → γ|π

where the type inference for (∗) is:

[iAPP]

[iID]
A′ 	 snd : δ → ε → ε|id

[iID]
A′ 	 X : γ|id

A′ 	 snd X : ε → ε|[δ/γ, ζ/ε → ε] ≡ π

where π ≡ [δ/γ, ζ/ε → ε] is the mgu of δ → ε → ε and γ → ζ
γ, δ, ε and ζ are fresh type variables

Fig. 7. Example of type inference using 	

rules cannot be applied. This algorithm accepts a set of assumptions A and an
expression e, and returns a simple type τ and a type substitution π. Intuitively, τ
will be the “most general” type which can be given to e, and π the “minimum”
substitution we have to apply to A in order to able to derive a type for e.
Fig. 7 contains an example of type inference for the expression λ(snd X).X .

Th. 4 shows that the type and substitution found by the inference are correct,
i.e., we can build a type derivation for the same type if we apply the substitution
to the assumptions.

Theorem 4 (Soundness of 	?). A 	? e : τ |π =⇒ Aπ  ? e : τ

Th. 5 expresses the completeness of the inference process. If we can derive a type
for an expression applying a substitution to the assumptions, then inference will
succeed and will find a type and a substitution which are the most general ones.

Theorem 5 (Completeness of 	 wrt  ). If Aπ′  e : τ ′ then ∃τ, π, π′′. A 	
e : τ |π ∧ Aππ′′ = Aπ′ ∧ τπ′′ = τ ′.

A result similar to Th. 5 cannot be obtained for 	• because of critical variables,
as the following example 4 shows.

Example 4 (Inexistence of a most general typing substitution). Let A ≡ {snd′ :
α → bool → bool} and consider the following two valid derivations D1 ≡
A[α/bool]  • λ(snd′ X).X : (bool → bool) → bool and D2 ≡ A[α/int]  •

λ(snd′ X).X : (bool → bool) → int. It is clear that there is not a substitution
more general than [α/bool] and [α/int] which makes possible a type derivation
for λ(snd′ X).X . The only substitution more general than these two will be
[α/β] (for some β), converting X in a critical variable.

In spite of this, we will see that 	• is still able to find the most general substi-
tution when it exists. To formalize that, we will use the notion of Π•

A,e, which
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denotes the set collecting all type substitution π such that Aπ gives some type
to e.

Definition 4 (Typing substitutions of e)
Π•

A,e = {π ∈ T Subst | ∃τ ∈ SType. Aπ  • e : τ}

Now we are ready to formulate our result regarding the maximality of 	•.

Theorem 6 (Maximality of 	•)

a) Π•
A,e has a maximum element ⇐⇒ ∃τg ∈ SType, πg ∈ T Subst. A 	• e :

τg|πg.
b) If Aπ′  • e : τ ′ and A 	• e : τ |π then exists a type substitution π′′ such
that Aπ′ = Aππ′′ and τ ′ = τπ′′.

5 Type Inference for Programs

In the functional programming setting, type inference does not need to distin-
guish between programs and expressions, because the program can be incor-
porated in the expression by means of let expressions and λ-abstractions. This
way, the results given for expressions are also valid for programs. But in our
framework it is different, because our semantics (let-rewriting) does not sup-
port λ-abstractions and our let expressions do not define new functions but only
perform pattern matching. Thereby in our case we need to provide an explicit
method for inferring the types of a whole program. By doing so, we will also
provide a specification closer to implementation.

The type inference procedure for a program takes a set of assumptions A
and a program P and returns a type substitution π. The set A must contain
assumptions for all the symbols in the program, even for the functions defined in
P . We want to reflect the fact that in practice some defined functions may come
with an explicit type declaration. Indeed this is a frequent way of documenting a
program. Furthermore, type declarations are sometimes a real need, for instance
if we want the language to support polymorphic recursion [16,10]. Therefore, for
some of the functions –those for which we want to infer types– the assumption
will be simply a fresh type variable, to be instantiated by the inference process.
For the rest, the assumption will be a closed type-scheme, to be checked by the
procedure.

Definition 5 (Type Inference of a Program). The procedure B for type
inference of a program {rule1, . . . , rulem} is defined as:

B(A, {rule1, . . . , rulem}) = π, if

1. A 	• (ϕ(rule1), . . . , ϕ(rulem)) : (τ1, . . . , τm)|π.
2. Let f1 . . . fk be the function symbols of the rules rulei in P such that A(f i)

is a closed type-scheme, and τ i the type obtained for rulei in step 1. Then
τ i must be a variant of A(f i).
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ϕ is a transformation from rules to expressions defined as:

ϕ(f t1 . . . tn → e) = pair λt1. . . . λtn.e f

where () is the usual tuple constructor, with type () : ∀αi.α1 → . . . αm →
(α1, . . . , αm); and pair is a special constructor of tuples of two elements of the
same type, with type pair : ∀α.α → α → α.

Example 5 (Type Inference of Programs).

– Consider the program P consisting in the rules {ugly true → true, ugly 0 →
true} and the set of assumptions A ≡ {ugly : ∀α.α → bool}. Our intu-
ition advises us to reject this program because the type of ugly expresses
parametric polymorphism, and the rules are not parametric but defined for
arguments whose types are not compatible. Using procedure B we will first
infer the type for the expression associated to the program, getting
A 	• (pair λtrue.true ugly, pair λ0.true ugly) : (bool → bool, int → bool)|π
for some π that affects only type variables generated during the inference.
Since ugly has a closed type-scheme in A then we will check that the types
bool → bool and int → bool inferred for its rules are variants of ∀α.α → bool.
This check will fail, therefore the procedure B will reject the program.

– Consider the programP ≡ {and true X → X, and false X → false, id X →
X} and the set of assumptions A ≡ {and : β, id : ∀α.α → α}. In this case
we want to infer the type for and (instantiating type variable β) and check
that the type for id is correct. Using procedure B, in the first step we infer
the type for the expression associated to the program:
A 	• (pair λtrue.λX.X and, pair λfalse.λX.false and, pair λX.X id) :
(bool → bool → bool, bool → bool → bool, γ → γ) : [β/bool → bool → bool]1

Therefore the type inferred for and would be the expected one: bool →
bool → bool. Since id has a closed type-scheme in A then the second step
will check the type inferred γ → γ is a variant of ∀α.α → α. The check is
correct, therefore B succeeds with the substitution [β/bool → bool → bool].

The procedure B has two important properties. It is sound: if the procedure B
finds a substitution π then the program P is well-typed with respect to the as-
sumptions Aπ (Th. 7). And second, if the procedure B succeeds it finds the most
general typing substitution (Th. 8). It is not true in general that the existence
of a well-typing substitution π′ implies the existence of a most general one. A
counterexample of this fact is very similar to Ex. 4.

Theorem 7 (Soundness of B). If B(A,P) = π then wtAπ(P).

Theorem 8 (Maximality of B). If wtAπ′(P) and B(A,P) = π then ∃π′′ such
that Aπ′ = Aππ′′.
1 Note that the bindings for type variables which are not free in A have been omitted

here for the sake of conciseness.
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Notice that types inferred for the functions are simple types. In order to obtain
type-schemes we need and extra step of generalization, as discussed in the next
section.

5.1 Stratified Type Inference of a Program

It is known that splitting a program into blocks of mutually recursive functions
and inferring the types in order may reduce the need of providing explicit type-
schemes. This situation is shown in the next example.

Example 6 (Program Inference vs Stratified Inference).
A ≡ {true : bool, 0 : int, id : α, f : β, g : γ}
P ≡ {id X → X ; f → id true; g → id 0}
P1 ≡ {id X → X}, P2 ≡ {f → id true}, P3 ≡ {g → id 0}

An attempt to apply the procedure B to infer types for the whole program fails
because it is not possible for id to have types bool → bool and int → int at the
same time. We will need to provide explicitly the type-scheme for id : ∀α.α → α
in order to the type inference to succeed, yielding types f : bool → bool and
g : int → int. But this is not necessary if we first infer types for P1, obtaining
δ → δ for id which will be generalized to ∀δ.δ → δ. With this assumption the
type inference for both programs P2 and P3 will succeed with the expected types.

A general stratified inference procedure can be defined in terms of the basic
inference B. First, it calculates the graph of strongly connected components from
the dependency graph of the program, using e.g. Kosaraju or Tarjan’s algorithm
[20]. Each strongly connected component will contain mutually dependent func-
tions. Then it will infer types for every component (using B) in topological order,
generalizing the obtained types before following with the next component.

Although stratified inference needs less explicit type-schemes, programs in-
volving polymorphic recursion still require explicit type-schemes in order to infer
their types.

6 Conclusions and Future Work

In this paper we have proposed a type system for functional logic languages based
on Damas & Milner type system. As far as we know, prior to our work only [6]
treats with technical detail a type system for functional logic programming. Our
paper makes clear contributions when compared to [6]:

– By introducing the notion critical variables, we are more liberal in the treat-
ment of opaque variables, but still preserving the essential property of subject
reduction; moreover, this liberality extends also to data constructors, drop-
ping the traditional restriction of transparency required to them. This is
somehow similar to what happens with existential types [14] or generalized
abstract datatypes [9], a connection that we plan to further investigate in the
future.
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– Our type system considers local pattern bindings and λ-abstractions (also
with patterns), that were missing in [6]. In addition to that, we have made
a rather exhaustive analysis and formalization of different possibilities for
polymorphism in local bindings.

– Subject reduction was proved in [6] wrt. a narrowing calculus. Here we do it
wrt. an small-step operational semantics closer to real computations.

– In [6] programs came with explicit type declarations. Here we provide algo-
rithms for inferring types for programs without such declarations that can
became part of the type stage of a FL compiler.

We have in mind several lines for future work. As an immediate task we
plan to implement and integrate the stratified type inference into the T OY
[12] compiler. Apart from the relation to existential types mentioned above, we
are interested in other known extensions of type system, like type classes or
generic programming. We also want to generalize the subject reduction property
to narrowing, using let narrowing reductions of [11], and taking into account
known problems [6,1] in the interaction of HO narrowing and types. Handling
extra variables (variables occurring only in right hand sides of rules) is another
challenge from the viewpoint of types.
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5. González-Moreno, J., Hortalá-González, T., Rodŕıguez-Artalejo, M.: A higher order
rewriting logic for functional logic programming. In: Proc. International Conference
on Logic Programming (ICLP 1997), pp. 153–167. MIT Press, Cambridge (1997)
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Abstract. Safe is a first-order eager language with facilities for pro-
grammer controlled destruction and copying of data structures. It
provides also regions, i.e. disjoint parts of the heap, where the program
allocates data structures. The runtime system does not need a garbage
collector and all allocation/deallocation actions are done in constant
time. The language is aimed at inferring and certifying upper bounds for
memory consumption in a Proof Carrying Code environment. Some of its
analyses have been presented elsewhere [7,8]. In this paper we present
an inference algorithm for annotating programs with regions which is
both simpler to understand and more efficient than other related al-
gorithms. Programmers are assumed to write programs and to declare
datatypes without any reference to regions. The algorithm decides the
regions needed by every function. It also allows polymorphic recursion
with respect to regions. We show convincing examples of programs be-
fore and after region annotation, prove the correctness and optimality of
the algorithm, and give its asymptotic cost.

1 Introduction

Safe1 [7] was introduced as a research platform for investigating the suitability of
functional languages for programming small devices and embedded systems with
strict memory requirements. The final aim is to be able to infer —at compile
time— safe upper bounds on memory consumption for most Safe programs. The
compiler produces Java bytecode as a target language, so that Safe programs
can be executed in most mobile devices and web browsers.

In most functional languages memory management is delegated to the runtime
system. Fresh heap memory is allocated during program evaluation as long as
there is enough free memory available. Garbage collection interrupts program
execution in order to copy or mark the live part of the heap so that the rest is
considered as free. This does not avoid memory exhaustion if not enough free
memory is recovered to continue execution. In that case the program simply
� Work supported by the Ministry of Science grants AP2006-02154, TIN2008-
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aborts. The main advantage of this approach is that programmers do not have
to bother about low level details concerning memory management. Its main
disadvantages are:

1. The time delay introduced by garbage collection may prevent the program
from providing an answer in a required reaction time.

2. Memory exhaustion may provoke unacceptable personal or economic damage
to program users.

3. The programmer cannot easily reason about memory consumption.

These reasons make garbage collectors not very convenient for programming
small devices. A possibility is to use heap regions, which are disjoint parts of the
heap that are dynamically allocated and deallocated. Much work has been done
in order to incorporate regions in functional languages. They were introduced
by Tofte and Talpin [13,14] in MLKit by means of a nested letregion construct
inferred by the compiler. The drawbacks of nested regions are well-known and
they have been discussed in many papers (see e.g. [4]). The main problem is that
in practice data structures do not always have the nested lifetimes required by
the stack-based region discipline.

In order to overcome this limitation several mechanisms have been proposed.
An extension of Tofte and Talpin’s work [2,11] allows to reset all the data struc-
tures in a region, without deallocating the whole region. The AFL system [1]
inserts (as a result of an analysis) allocation and deallocation commands sep-
arated from the letregion construct, which now only brings new regions into
scope. In both cases, a deep knowledge about the hidden mechanism is needed
in order to optimize the memory usage. In particular, it is required to write
copy functions in the program which are difficult to justify without knowing the
annotations inferred later by the compiler.

Another more explicit approach is to introduce a language construct to free
heap memory. Hofmann and Jost [5] introduce a pattern matching construct
which destroys individual constructor cells than can be reused by the memory
management system. This allows the programmer to control the memory con-
sumed by the program and to reason about it. However, this approach gives
the programmer the whole responsibility for reusing memory, unless garbage
collection is used.

In order to overcome the problems related to nested regions, our functional
language Safe has a semi-explicit approach to memory control: it combines im-
plicit regions with explicit destructive pattern matching, which deallocates in-
dividual cells of a data structure. This feature avoid the use of explicit copy
functions of other systems. In Safe, regions are allocated/deallocated by follow-
ing a stack discipline associated with function calls and returns. Each function
call allocates a local working region, which is deallocated when the function re-
turns. Region management does not add a significant runtime overhead because
all its related operations run in constant time (see Sec. 2.3).

Notice that regions and explicit destruction are orthogonal mechanisms: we
could have destruction without regions and the other way around. This com-
bination of explicit destruction and implicit regions is novel in the functional
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programming field. However, destructive pattern matching is not relevant to
this paper. More details about it can be found in [7,8]

Due to the aim of inferring memory consumption upper bounds, at this mo-
ment Safe is first-order. Its syntax is a (first-order) subset of Haskell extended
with destructive pattern matching. Due to this limitation, region inference can
be expected to be simpler and more efficient than that of MLKit. Their algorithm
runs in time O(n4) in the worst case, where n is the size of the term, including
in it the Hindley-Milner type annotations. The explanation of the algorithm and
of its correctness arguments [10] needed around 40 pages of dense writing. So, it
is not an easy task to incorporate the MLKit ideas into a new language.

The contribution of this paper is a simple region inference algorithm for Safe.
It allows polymorphic recursion w.r.t. regions (region-polymorphic recursion, in
the following). Hindley-Milner type inference is in general undecidable under
polymorphic recursion, but when restricting to region-polymorphic recursion it
becomes decidable. Our algorithm runs in O(n) time in the worst case (being n
as above) if region-polymorphic recursion is not inferred. If the latter appears,
the algorithm needs O(n2) time in the worst case. Moreover, the first phase of the
algorithm can be directly integrated in the usual Hindley-Milner type inference
algorithm, just by considering regions as ordinary polymorphic type variables.
The second phase involves very simple set operations and the computation of a
fixpoint. Unlike [10], termination is always guaranteed without special provisions.
There, they had to sacrifice principal types in order to ensure termination. Due
to its simplicity, we believe that the algorithm can be easily reused in a different
first-order functional language featuring Hindley-Milner types.

The plan of the paper is as follows: In Sec. 2 we summarize the language
concepts and part of its big-step operational semantics. In Sec. 3 the region
inference algorithm is presented in detail, including its correctness and cost.
Section 4 shows some examples of region inference with region polymorphic
recursion. Finally, Sec. 5 compares this work with other functional languages
with memory management facilities.

2 Language Concepts and Inference Examples

2.1 Operational Semantics

In Fig. 1 we show a simplified version of the Safe language without the destruc-
tion facilities but with explicit region arguments and region types. A program
is a sequence of possibly recursive polymorphic data and function definitions
followed by a main expression e, using them, whose value is the program result.
The abbreviation xi

n stands for x1 · · ·xn. We use a, ai, . . . to denote atoms, i.e.
either program variables or basic constants. The former are denoted by x, xi, . . .
and the latter by c, ci . . . etc. Region arguments r, ri . . . occur in function defi-
nitions and in function and constructor applications. They are containers used
at runtime to pass region values around. Region values k are runtime numbers
denoting actual regions in the region stack, and region types ρ are static anno-
tations assigned to region variables and occuring in type declarations.
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prog → data i
n
; decj

m
; e

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| f ai
n @ rj

l {function application}
| C ai

n @ r {constructor application}
| . . . let, case . . .

Fig. 1. Simplified Safe

Safe was designed in such a way that the compiler has a complete control on
where and when memory allocation and deallocation actions will take place at
runtime. The smallest memory unit is the cell, a contiguous memory space big
enough to hold any data construction. A cell contains the mark of the constructor
and a representation of the free variables to which the constructor is applied.
These may consist either of basic values or of pointers to other constructions. It is
allocated at constructor application time and can be deallocated by destructive
pattern matching. A region is a collection of cells, not necessarily contiguous
in memory. Regions are allocated/deallocated by following a stack discipline
associated with function calls and returns. Each function call allocates a local
working region, which is deallocated when the function returns.

In Fig. 2 we show those rules of the big-step operational semantics which are
relevant with respect to regions. We use v, vi, . . . to denote values, i.e. either
heap pointers or basic constants, and p, pi, q, . . . to denote heap pointers.

A judgement of the form E  h, k, e ⇓ h′, k, v means that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to
values and region variables to actual region identifiers. We adopt the convention
that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p to construction cells w
of the form (j, C vi

n), meaning that the cell resides in region j. Actual region
identifiers j are just natural numbers denoting the offset of the region from
the bottom of the region stack. Formal regions appearing in a function body are
either region variables r corresponding to formal arguments or the constant self ,
which represents the local working region. By h( [p �→ w] we denote the disjoint

(f xi
n@ rj

m = e) ∈ Σ [xi �→ E(ai)
n
, rj �→ E(r′j)

m
, self �→ k + 1] � h, k + 1, e ⇓ h′, k + 1, v

E � h, k, f ai
n@ r′j

m ⇓ h′ |k, k, v
[App]

j ≤ k fresh(p)
E[r �→ j, ai �→ vi

n] � h, k, C ai
n@r ⇓ h � [p �→ (j, C vi

n)], k, p
[Cons ]

Fig. 2. Operational semantics of Safe expressions
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union of heap h with the binding [p �→ w]. By h |k we denote the heap obtained
by deleting from h those bindings living in regions greater than k.

The semantics of a program is the semantics of the main expression e in an
environment Σ, which is the set containing all the function and data declarations.

Rule App shows when a new region is allocated. Notice that the body of
the function is executed in a heap with k + 2 regions. The formal identifier
self is bound to the newly created region k + 1 so that the function body may
create data structures in this region or pass this region as a parameter to other
function calls. Before returning from the function, all cells created in region k+1
are deleted. In rule Cons a fresh construction cell is allocated in the heap.

2.2 Region Annotations

The aim of the region inference algorithm is to annotate both the program
and the types of the functions with region variables and region type variables
respectively. Before explaining the inference algorithm we show some illustrative
examples.

Regions are essentially the parts of the heap where the data structures live.
We will consider as a data structure (DS) the set of cells obtained by starting
at one cell considered as the root, and taking the transitive closure of the relation
C1 → C2, where C1 and C2 are cells of the same type T , and in C1 there is a
pointer to C2. That means that, for instance in a list of type [[a]], we consider
as a DS all the cells belonging to the outermost list, but not those belonging
to the individual innermost lists. Each one of the latter constitute a DS living
in a possibly different region from the outermost’s one. However, since all the
innermost lists have the same type, they will be forced to reside in the same
region. A DS completely resides in one region. A DS can be part of another DS,
or two DSs can share a third one. The basic values —integers, booleans, etc.—
do not allocate cells in regions. They live inside the cells of DSs, or in the stack.

These decisions are reflected in the way the type system deals with datatype
definitions. Polymorphic algebraic data types are defined through data declara-
tions as the following one:

data Tree a = Empty | Node (Tree a) a (Tree a)

The types assigned by the compiler to constructors include an additional argu-
ment indicating the region where the constructed values of that type are allo-
cated. In the example, the compiler infers:

data Tree a @ ρ = Empty@ ρ | Node (Tree a @ ρ) a (Tree a @ ρ)@ ρ

where ρ is the type of the region argument given to the constructors. After
region inference, constructions appear in the annotated text with an additional
argument r that will be bound at runtime to an actual region, as in Node lt x

rt @ r. Constructors are polymorphic in region arguments, meaning that they
can be applied to any actual region. But, due to the above type restrictions, and
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in the case of Node, this region must be the same where both the left tree lt and
the right tree rt live.

Several regions can be inferred when nested types are used, as different com-
ponents of the data structure may live in different regions. For instance, in the
declaration

data Table a b = TBL [(a,b)]

the following three region types will be inferred for the Table datatype:

data Table a b @ ρ1 ρ2 ρ3 = TBL ([(a, b)@ ρ1]@ ρ2)@ ρ3

In that case we adopt the convention that the last region type in the list is the
outermost one where the constructed values of the datatype are to be allocated.

After region inference, function applications are annotated with the additional
region arguments which the function uses to construct DSs. For instance, in the
definition

concat [] ys = ys

concat (x:xs) ys = x : concat xs ys

the compiler infers the type concat :: ∀aρ1ρ2.[a]@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2

and annotates the text as follows:

concat [] ys @ r = ys

concat (x:xs) ys @ r = (x : concat xs ys @ r) @ r

The region of the output list and that of the second input list must be the same
due to the sharing between both lists introduced by the first equation. Functions
are also polymorphic in region types, i.e. they can accept as arguments any actual
regions provided that they satisfy the type restrictions (for instance, in the case
of concat, that the second and the output lists must live in the same region).
Sometimes, several region arguments are needed as in:

partition y [] = ([],[])

partition y (x:xs) | x <= y = (x:ls,gs)

| x > y = (ls ,x:gs)

where (ls,gs) = partition y xs

The inferred type is partition :: ∀ρ1ρ2ρ3ρ4.Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 →
([Int ]@ρ2, [Int ]@ρ3)@ρ4. The algorithm splits the output in as many regions as
possible. This gives more general types and allows the garbage to be deallocated
sooner.

When a function body is executing, the live regions are the working regions of
all the active function calls leading to this one. The live regions in scope are those
where the argument DSs live (for reading), those received as additional argu-
ments (for reading and writing) and the own self region. The following example
builds an intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)
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where the inferred types are as follows:

makeTree :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → Tree a@ρ2

inorder :: ∀aρ1ρ2.Tree a@ρ1 → ρ2 → [a]@ρ2

treesort :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → [a]@ρ2

After region inference, the definition is annotated as follows:

treesort xs @ r = inorder (makeTree xs @ self) @ r

i.e. the intermediate tree is created in the self region and it is deallocated upon
termination of treesort.

The region inference mechanism will not lead to rejecting programs. It always
succeeds although, of course, it will not be able to detect all garbage. Section 3
explains how the algorithm works and shows that it is optimal in the sense that
it assigns as many DS as possible to the self region of the function at hand.

2.3 Region Implementation

As we said above, the heap is implemented as a stack of regions. Each region is
pushed initially empty, this action being associated with a Safe function invo-
cation. During function execution new cells can be added to, or removed from,
any active region as a consequence of constructor applications and destructive
pattern matching. Upon function termination the whole topmost region is deal-
located. In Fig. 3 we show the main interface between a running Safe program
and the Memory Management System (MMS). It is written in Java since the
code generated by the Safe compiler is Java bytecode. The MMS maintains a
pool of fresh cells, so that ‘allocating’ and ‘deallocating’ a cell respectively mean
removing it from, or adding it to the pool.

Notice that access to an arbitrary region is needed in InsertCell , whereas
ReleaseCell is only provided with the cell pointer as an argument. We have im-
plemented all the methods running in constant time by representing the regions
and the pool as circular doubly-chained lists. Removing a region amounts to
joining two circular lists, which can obviously be done in constant time. The
region stack is represented by a static array of dynamic lists, so that constant
time access to each region is provided. Fig. 4 shows a picture of the heap.

Tail recursive functions can very easily be detected at compile time so that a
special translation for them would not push a new empty region at each invoca-
tion, but instead reuse the current topmost region. This translation (not yet imple-
mented in our compiler) would not avoid consuming new cells at each invocation

void PushRegion () -- creates a top empty region
void PopRegion () -- removes the topmost region
cell ReserveCell () -- returns a fresh cell
void InsertCell (p, j) -- inserts cell p into region j
void ReleaseCell (p) -- releases cell p

Fig. 3. The interface of the Safe Memory Management System
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Fig. 4. A picture of the Safe Virtual Machine heap and fresh cells pool

but at least would consume a constant stack space in the region stack. Consuming
constant heap space in tail recursive functions is not feasible in general because
any function invocation may freely access regions below the topmost one.

The Safe virtual machine has also a conventional stack where local variables
are kept. The code generated for function invocation guarantees that tail recur-
sive functions always consume constant stack space. In this respect, no special
translation is needed.

3 The Region Inference Algorithm

The main correctness requirement to the region inference algorithm is that the
annotated type of each function can be assigned to the corresponding annotated
function in the type system defined in [7]. The main constraints posed by that
system with respect to regions are reflected in the function and constructor
typing rules, shown in Fig. 5.

fresh(ρself ), ρself 	∈ regions(s) R = regions(ti
n) ∪ {ρj

l} ∪ regions(s)
Γ + [xi : ti]

n
+ [rj : ρj ]

l
+ [self : ρself ] + [f : ∀ρ ∈ R . ti

n → ρj
l → s] � e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(∀ρ ∈ R . ti
n → ρj

l → s, Γ )]}
[FUNB]

Σ(C) = σ si
n → ρ → T @ρm � σ Γ = ([ai : si]

n

i=1) + [r : ρ]

Γ � C ai
n@r : T @ρm [CONS]

Fig. 5. Typing rules for function definition and constructor application
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In rule [FUNB] the fresh (local) program region variable self is assigned a fresh
type variable ρself that cannot appear in the function result type. This prevents
dangling pointers arising by region deallocation at the end of a function call.
The only regions in scope for writing are self and the argument regions.

Notice that region-polymorphic recursion is allowed: inside the body e, dif-
ferent applications of f may use different regions. We use gen(σ′, Γ ) and tf � σ
to respectively denote (standard) generalization of a type with respect to type
variables excluding region types, and instantiation of a polymorphic type.

The types of the constructors are given in an initial environment Σ built
from the datatype declarations. These types reflect the fact that the recursive
substructures live in the same region. For example, in the case of lists and trees:

[ ] : ∀a, ρ.ρ → [a]@ρ
(:) : ∀a, ρ.a → [a]@ρ → ρ → [a]@ρ
Empty : ∀a, ρ.ρ → Tree a@ρ
Node : ∀a, ρ.Tree a@ρ → a → Tree a@ρ → ρ → Tree a@ρ

As a consequence, rule [CONS] may force some of the actual arguments to live
in the same regions.

3.1 A High-Level View of the Algorithm

Figure 6 shows a high-level view of the Hindley-Milner (abbreviated HM in the
following) type inference algorithm of the Safe compiler, written in Haskell, in
which some parts have to do with region inference.

The first phase, decorDecsData, annotates the data declarations with region
variables and infers the types of the data constructors. These are saved in the
assumption environment as. A fresh region variable is generated for each non-
recursive nested data type and one more for the type being defined, which is
placed as an additional argument of each constructor. Only the recursive occur-
rences are forced to have the same region arguments. All the region variables are
reflected in the type so that all the regions in which the structure has a portion
are known. In Sec. 2.2 we have shown some examples of the result produced by
this phase.

After this, the equations defs defining functions are grouped by function
name, traversed, and their HM-types and regions inferred for each function (al-
gorithm decorAndGenOuterDefs, see below), accumulating the inferred type in
the assumption environment as in order to infer subsequent function definitions.

decorProg :: Assumps -> Prog a -> (Assumps, Prog ExpTipo)
decorProg asInit (datas, defs, exp) = (as’,(datas’, concat defs’, exp’))
where (as,datas’) = decorDecsData asInit datas

groups = groupBy sameName defs
(as’, defs’) = mapAccumL decorAndGenOuterDefs as groups
exp’ = decorAndGenMainExp as’ exp

Fig. 6. A high-level view of the Hindley-Milner inference algorithm
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decorAndGenOuterDefs Γ Defs = (Γ ∪ [f �→ t+],Defs ′′)
where f = extractFunctionName Defs

(Defs ′,Eqs, Freshexpl , trecj
p) = decorAndGenEqs Γ Defs

θ1 = solveEqs Eqs
t = θ1(type Defs ′)
(θ2, ϕj

p) = handleRecCalls t (θ1(trecj
p))

θ = θ2 ◦ θ1

Rexpl = θ(Freshexpl )
(θself , t

+,RegMap) = inferRegions t Rexpl ϕj
p

Defs ′′ = annotateDef (θself ◦ θ) RegMap

Fig. 7. HM-type and region inference for a single function

Finally, the main expression exp of the program is inferred, and decorated by
decorAndGenMainExp (not shown).

3.2 Region Inference of Function Definitions

Figure 7 shows in Haskell-like pseudocode the HM-inference process for a single
function consisting of a list Defs of equations. Let us call such function f .

We have a decoration phase decorAndGenEqs which generates fresh type and
region type variables, and equations relating types that have to be unified, but
delays all the unifications to a subsequent phase. Some of these equations cor-
respond to the usual HM type inference, e.g. a = [b] → b, but some other unify
region type variables, e.g. ρ1 = ρ2. The decoration phase generates a set Freshexpl

of fresh region type variables assigned to the region arguments of constructor
applications and (already inferred) function applications. This set will be needed
in the second phase of region inference.

Unification equations are solved by solveEqs and handleRecCalls . The former
solves all the equations in the usual HM style except those related to the recursive
applications of f , which are solved in a special way by the latter: Hindley-Milner
types of recursive applications are unified with the inferring function’s type,
while region type variables are not unified. This is due to the fact that the type
trecj of every application of f should be a fresh instance of the HM type t of the
function with respect to the region types. Each region substitution ϕj reflects
this fact by mapping the region type variables in t to those in trecj . For instance,
if the type inferred for a function after solveEqs is [a]@ρ1 → b and there is a
single recursive application with type [a]@ρ2 → [c]@ρ2, the resulting substitution
of handleRecCalls is θ = [b �→ [c]@ρ1] with a region mapping ϕ = [ρ1 �→ ρ2].

The next step is the application of the final substitution θ to the set Freshexpl

of explicit region types obtained above, obtaining the smaller set Rexpl . Then, the
second and final phase, inferRegions , of region inference is done. Its purpose is
to detect how many explicit region arguments the (possibly recursive) function
f must have, and to infer which region types must be assigned to the local
working region self . This algorithm is depicted in Fig. 8 and explained in the
next section. It delivers a substitution θself mapping some region type variables
to the reserved type variable ρself assigned to the local region self , a map RegMap
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inferRegions t Rexpl ϕj
p = ([ρ �→ ρself | ρ ∈ Rself ], ti

n → ρk
m → t′, [ρk �→ rj

m])
where ti

n → t′ = t
Rout = regions t′

Rin = regions ti
n

Rarg = Rexpl ∩ (Rin ∪ Rout )
(R′

arg , R
′
expl) = computeRargFP Rin Rout Rarg Rexpl ϕj

p

Rself = R′
expl − (Rout ∪ Rin )

ρk
m = R′

arg

computeRargFP Rin Rout Rarg Rexpl ϕj
p

| Rarg == R′
arg = (R′

arg , R
′
expl)

| otherwise = computeRargFP Rin Rout R′
arg R′

expl ϕj
p

where R′
expl = Rexpl ∪

⋃p
j=1 {ϕj(ρ) | ρ ∈ Rarg}

R′
arg = R′

expl ∩ (Rin ∪ Rout)

Fig. 8. Second phase of the region inference algorithm

mapping some other region type variables to region arguments, and the extended
function type t+. The last step adds these region arguments to the definition of f .
The function’s body is traversed again and the above substitutions and mappings
are used to incorporate the appropriate region arguments to all the expressions,
including the recursive applications of f . Additionally, the final substitution
θself ◦ θ is applied to all the types.

3.3 Second Phase of Region Inference

Algorithm inferRegions of Fig. 8 receives the type t obtained for the function
f by the HM inference, the set Rexpl of initial explicit region types, and the
list of substitutions ϕj

p associated with the recursive applications of f . First,
it computes the sets Rin and Rout of region type variables of respectively the
argument and the result parts of t. Let ρself be an additional fresh type variable
for self .

Given these three sets, the region inference problem can be specified as finding
three sets R′

expl , R′
arg and Rself , respectively standing for the sets of final explicit

region types, of region types needed as additional arguments of f , and of region
types that must be unified with ρself , subject to the following restrictions:

1. R′
expl ⊆ Rself ∪R′

arg 3. Rself ∩ (Rin ∪Rout) = ∅
2. Rself ∩R′

arg = ∅ 4. Every recursive application of f is typeable

The first one expresses that everything built by f ’s body must be in regions in
scope. The second and third ones state that region self is fresh and hence differ-
ent from any other region received as an argument or where an input argument
lives. These restrictions and the extension of (3) to Rout are enforced by the
typing rule [FUNB]. The last one can be further formalised by requiring that f ’s
type, extended with the region arguments in R′

arg , can produce type instances
for typing all the recursive applications of f , each one extended with as many
region arguments as the cardinal of R′

arg . So, in order to satisfy restriction (4)
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one must provide a decoration of each recursive application of f with appropri-
ate region arguments, of region types belonging either to Rself or to R′

arg , as
restriction (1) requires.

In the extended version of this paper [9] we show that any sets R′
expl , R′

arg

and Rself satisfying these restrictions produce a version of f which admits a
type in the type system. The correctness of the type system with respect to the
semantics was established in [7]. There, we proved that dangling pointers arising
from region deallocation or destructive pattern matching are never accessed by
a well-typed program.

Notice that an algorithm choosing any R′
arg ⊇ R′

expl and Rself = ∅ would be
correct according to this specification. But this solution would be very poor as,
on the one hand no construction would ever be done in the self region and, on
the other, there might be region arguments never used. We look for an optimal
solution in two senses. On the one hand, we want R′

arg to be as small as possible,
so that only those regions where data are built are given as arguments. On the
other hand, we want Rself to be as big as possible, so that the maximum amount
of memory is deallocated at function termination.

3.4 The Kernel of the Algorithm

Our algorithm initially computes Rarg = Rexpl ∩ (Rin ∪ Rout), by using the
set Rexpl of initial explicit region types. Then, it starts a fixpoint algorithm
computeRargFP (see Fig. 8) trying to get the type of f ’s recursive applications
as instances of the type of f extended with the current set Rarg of arguments.
It may happen that the set of explicit regions R′

expl may grow while considering
different applications (see the examples in Sec. 4). Adding more explicit variables
to one application will influence the type of the applications already inferred.
As R′

arg depends on R′
expl , it may also grow. So, a fixpoint is used in order

to obtain the final R′
arg and R′

expl from the initial ones. Due to our solution
above, R′

arg cannot grow greater than Rin ∪Rout , so termination of the fixpoint
is guaranteed. Once obtained the final R′

arg and R′
expl , the set Rself is computed

as Rself = R′
expl − (Rin ∪ Rout ). Notice that R′

arg = R′
expl ∩ (Rin ∪ Rout) is an

invariant of the algorithm.
We show below that these choices maximise the data allocated to the self

region, which in turn maximises the amount of memory reclaimed at runtime
when the corresponding function call finishes. With respect to the remaining DSs
not being inferred to live in self , they will be allocated to the regions which are
parameters to the function being called. It is the caller function’s responsibility
to determine where to put these DSs by passing the suitable arguments. Since the
caller function is also inferred by the algorithm, the parameter assignment is done
in such a way that the data allocated in the caller’s self region is also maximised.
From a global point of view, every cell not being created in the current topmost
region (i.e. the region bound to the self identifier) will be created in the highest
possible region and hence, will be deallocated at the earliest time allowed by the
type system.
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3.5 Correctness, Optimality and Efficiency

First we prove that the proposed solution satisfies the above specification:

1. R′
expl ⊆ (R′

expl − (Rin ∪Rout)) ∪ (R′
expl ∩ (Rin ∪Rout ))

2. (R′
expl − (Rin ∪Rout )) ∩ (R′

expl ∩ (Rin ∪Rout)) = ∅
3. (R′

expl − (Rin ∪Rout )) ∩ (Rin ∪Rout ) = ∅

The three immediately follow by set algebra. We will show now that it is optimal:
let us assume a different solution R̂self , R̂expl , R̂arg satisfying the above restric-
tions. Notice that Rexpl ⊆ R′

expl by construction. Without loss of generality we
can rename those variables in R̂expl which decorate copy expressions, constructor
applications and function calls differerent from f , so that such decorations coin-
cide with those in R′

expl . After such renaming Rexpl ⊆ R̂expl . We can also rename
the argument regions in recursive calls to f that also appear in R′

expl . For exam-
ple, assume there is a recursive call decorated by R′

expl as f :: ti
n → ρ′1 → ρ′2 → t.

If that recursive call was decorated by R̂expl as f :: t′i
n → ρ̂1 → ρ̂2 → ρ̂3 → t′,

then ρ̂1 would be renamed as ρ′1 and ρ̂2 as ρ′2.
We must show that R̂self ⊆ Rself and R′

arg ⊆ R̂arg . Let us assume ρ ∈ R′
arg .

By definition of R′
arg , ρ ∈ R′

expl and ρ ∈ Rin ∪ Rout . By (3), ρ ∈ Rin ∪ Rout

implies that ρ /∈ R̂self . Now we distinguish two cases:

ρ ∈ Rexpl As Rexpl ⊆ R̂expl , then ρ ∈ R̂expl . By (1) ρ ∈ R̂arg .
ρ ∈ R′

expl −Rexpl If ρ ∈ R̂expl , then by ρ ∈ R̂arg . Otherwise, R′
expl contains more

explicit variables which are also arguments of f than R̂expl . This case is not
possible because R′

expl is the least fixpoint of function computeRargFP by
construction. By (4), R̂expl is also a fixpoint of computeRargFP ; otherwise,
the recursive calls would not be typeable.

Consequently, ρ ∈ R′
arg . So, Rarg is as small as possible. By constraints (2)

and (1), then Rself is as big as possible. Regarding regions, there are no principal
types in our system, since other correct types bigger than our minimal type could
not be obtained as an instance of it.

Our sets are implemented as balanced trees, and operations such as ∪, ∩,
and ‘−’ are done in a time in Θ(n + m), being n and m the cardinalities of
the respective sets, so each iteration of the fixpoint algorithm is linear with the
number of region type variables occurring in a function body. As it is done in
[10], considering as the term size n the sum of the sizes of the abstract syntax
tree and of the HM type annotations, each iteration needs time linear with this
size. If several iterations are needed, these cannot be more than the number of
region type variables in Rin ∪Rout . This gives us O(n2) cost in the worst case.

4 Examples

As a first example, consider the previously defined function partition . A region
variable ρ1 is created for the input list, so that it has type [Int ]@ρ1. In addi-
tion seven fresh type region variables are generated, one for each constructor
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application, let say ρ2 to ρ8, and so Freshexpl = {ρ2, . . . , ρ8}. We show them as
annotations in the program just in order to better explain the example:

partition y [ ] = ([ ] :: ρ2, [ ] :: ρ3) :: ρ4

partition y (x : xs) | x ≤ y = (x : ls :: ρ5, gs) :: ρ6

| x > y = (ls , x : gs :: ρ7) :: ρ8

where(ls , gs) = partition y xs

The type inference rules generate the following equations relative to these type
region variables: ρ2 = ρ5, ρ3 = ρ7, and ρ4 = ρ6 = ρ8, so the initial Rexpl in this
case is {ρ2, ρ3, ρ4}. After unification, the type of partition is Int → [Int ]@ρ1 →
([Int ]@ρ2, [Int ]@ρ3)@ρ4, so Rin = {ρ1} and Rout = {ρ2, ρ3, ρ4}. Then, Rarg =
{ρ2, ρ3, ρ4}. Now we shall compare the type of the definition (augmented with
the variables of Rarg) and the type used in the recursive call, where the tuple
(ls , gs) is assumed to live in the region ρ9.

Definition: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int ]@ρ2, [Int ]@ρ3)@ρ4

Rec. call: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ9 → ([Int ]@ρ2, [Int ]@ρ3)@ρ9

We obtain the region substitution ϕ = [ρ1 �→ ρ1, ρ2 �→ ρ2, ρ3 �→ ρ3, ρ4 �→ ρ9].
As a consequence, the variable ρ9 is made explicit, so Rexpl = {ρ2, ρ3, ρ4, ρ9}.
The set Rarg does not change and hence the fixpoint has been computed. We
get Rself = {ρ9} and the program is annotated as follows:

partition :: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int ]@ρ2, [Int ]@ρ3)@ρ4

partition y [ ] @ r2 r3 r4 = ([ ]@r2, [ ]@r3)@r4

partition y (x : xs) @ r2 r3 r4 | x ≤ y = ((x : ls)@r2, gs)@r4

| x > y = (ls , (x : gs)@r3)@r4

where (ls , gs) = partition y xs @ r2 r3 self

Notice that the tuple resulting from the recursive call to partition is located in
the working region. Without region-polymorphic recursion this tuple would have
to be stored in the output region r4, requiring O(n) space in a caller region.

Another example is the dynamic programming approach to computing bino-
mial coefficients by using the Pascal’s triangle. We start from the unit list [1],
which corresponds to the 0-th row of the triangle. If [x0, x1, . . . , xi−1, xi] are
the elements located on the i-th row, then the elements of the i + 1-th row are
given by the list [x0 +x1, x1 +x2, . . . , xi−1 +xi, xi]. The binomial coefficient

(
n
m

)
can be obtained from the m-th element in the n-th row of the Pascal’s triangle.
Function sumList , computes the i + 1-th row of the triangle from its i-th row:

sumList (x : [ ]) = (x : [ ] :: ρ2) :: ρ3

sumList (x : xs) = (x + y : sumList xs) :: ρ4 where (y : ) = xs

In the definition above we just show those region variables belonging to
Freshexpl . Let us assume that after unification the input list has type [Int ]@ρ1. In
addition, the variables ρ2, ρ3 and ρ4 are unified, so Rexpl = {ρ2} and the inferred
type (without region parameters) for sumList is [Int ]@ρ1 → [Int ]@ρ2. Hence we
get Rin = {ρ1}, Rout = {ρ2} and Rarg = {ρ2}. We extend the signature of
sumList to [Int ]@ρ1 → ρ2 → [Int ]@ρ2.
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Next we analyse the recursive call. Since the inferred type for xs is [Int ]@ρ1

and the type of the recursive call’s result is [Int ]@ρ2, the type for sumList in
this call is [Int ]@ρ1 → [Int ]@ρ2. By pairing with the type of sumList in the
definition, we get that the additional argument needed in the recursive call also
has type ρ2. Therefore, ρ2 is added to the set of explicit variables Rexpl . Since
it was already in this set, Rexpl stays the same as the one calculated previously
and hence Rarg also does, so the fixpoint has been reached. Finally we obtain
Rself = ∅ and the function is annotated as follows:

sumList :: [Int ]@ρ1 → ρ2 → [Int ]@ρ2

sumList (x : [ ]) @ r = (x : ([ ] @ r))@ r
sumList (x : xs) @ r = (x + y : sumList xs @ r) @ r where (y : ) = xs

Function pascal iterates over the initial list in order to get the desired row.
Below we show the region variables generated in constructor applications and in
non-recursive function applications, just after type unification:

pascal 0 = (1 : [ ] :: ρ1) :: ρ1

pascal n = (1 : sumList (pascal (n− 1))) :: ρ1

The type inferred for pascal is Int → [Int ]@ρ1. Hence Rin = ∅, Rout = {ρ1}
and Rexpl = {ρ1}, which gives us an initial Rarg = {ρ1}. The type signature
for pascal changes accordingly to Int → ρ1 → [Int ]@ρ1. Let us assume that the
result of the recursive call to pascal has type [Int ]@ρ2. Therefore, the type of
this function in the recursive call is Int → ρ2 → [Int ]@ρ2. Since ρ2 is now made
explicit, it is added to Rexpl , which now contains the region variables {ρ1, ρ2}.
However, Rarg stays the same and hence the fixpoint has been reached. Finally,
we get Rself = {ρ2} and the program is annotated as follows:

pascal :: Int → ρ1 → [Int ]@ρ1

pascal 0 @ r = (1 : [ ] @ r)@ r
pascal n @ r = (1 : sumList (pascal (n− 1) @ self ) @ r) @ r

The resulting list from the recursive call to pascal will be destroyed once the
calling function finishes. Hence a function call pascal n has a cost of O(n) in
space. Without region-polymorphic recursion the result of every recursive call
would be built in the output region r, which would imply O(n2) heap cost.

5 Related Work and Conclusions

The pioneer work on region inference is that of M. Tofte, J.-P. Talpin and their
colleagues on the MLKit compiler [14,10] (in what follows, TT). Their language
is higher-order and they also support polymorphic recursion in region arguments.
The TT algorithm has two phases, respectively called S and R. The S-algorithm
just generates fresh region variables for values and introduces the lexical scope of
the regions by using a letregion construct. The R-algorithm is responsible for
assigning types to recursive functions. It deals with region-polymorphic recursion
and also computes a fixpoint. The total cost is in O(n4). The meaning of a typed
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expression letregion ρ in e : μ is that region ρ does not occur free in type
μ, so it can be deallocated upon the evaluation of e. Our algorithm has some
resemblances with this part of the inference, in the sense that we decide to unify
with ρself all the region variables not occurring in the result type of a function.
They do not claim their algorithm to be optimal but in fact they create as many
regions as possible, trying to make local all the regions not needed in the final
value. One problem reported in [12] is that most of the regions inferred in the first
versions of the algorithm contained a single value so that region management
produced a big overhead at runtime. Later, they added a new analysis to collapse
all these regions into a single one local to the invocation (allocated in the stack).
So, having a single local region self per function invocation does not seem to us
to be a big drawback if function bodies are small enough. We believe that region-
polymorphic recursion has a much bigger impact in avoiding memory leaks than
multiplicity of local regions. So, we claim that the results of our algorithm are
comparable to those of TT for first-order programs.

A radical deviation from these approaches is [4] which introduces a type sys-
tem in which region life-times are not necessarily nested. The compiler annotates
the program with region variables and supports operations for allocation, releas-
ing, aliasing and renaming. A reference-counting analysis is used in order to
decide when a released region should be deallocated. The language is first-order.
The inference algorithm [6] can be defined as a global abstract interpretation
of the program by following the control flow of the functions in a backwards
direction. Although the authors do not give either asymptotic costs or actual
benchmarks, it can be deduced that this cost could grow more than quadrati-
cally with the program text size in the worst case, as a global fixpoint must be
computed and a region variable may disappear at each iteration. This lack of
modularity could make the approach unpractical for large programs.

Another approach is [3] in which type-safe primitives are defined for creat-
ing, accessing and destroying regions. These are not restricted to have nested
lifetimes. Programs are written and manually typed in a C-like language called
Cyclone, then translated to a variant of λ-calculus, and then type-checked. So,
the price of this flexibility is having explicit region control in the language.

The main virtue of our design is its simplicity. The previous works have no
restrictions on the placement of cells belonging to the same data structure. Also,
in the case of TT and its derivatives, they support higher-order functions. As a
consequence, the inference algorithms are more complex and costly. In our lan-
guage, regions also suffer from the nested lifetimes constraint, since both region
allocation and deallocation are bound to function calls. However, the destructive
pattern matching facility compensates for this, since it is possible to dispose of
a data structure without deallocating the whole region where it lives. Alloca-
tion and destruction are not necessarily nested, and our type system protects
the programmer against misuses of this feature. Since allocation is implicit, the
price of this flexibility is the explicit deallocation of cells.

In the near future we plan to extend Safe to support higher-order functions and
mutually recursive data structures. We expect high difficulties in other aspects
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of the language such as extending dangling pointers safety analyses or memory
bounds inference, but not so many to extend the region inference algorithm
presented here. It is still open whether we could achieve a cost better than the
O(n4) got by Tofte and Talpin.
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Abstract. In this paper, we extend the well-known Naish’s declarative
debugging scheme for diagnosing wrong computed answers in first-order
lazy functional-logic programs to the higher-order setting of the simply
typed λ-calculus, where programs are presented by conditional pattern
rewrite systems. Our approach generalizes and combines declarative de-
bugging techniques previously developed for less expressive declarative
programming paradigms involving applicative rewrite rules instead of
λ-abstractions and decidable higher-order unification. Debugging starts
with the observation of a wrong computed answer which the user re-
gards as incorrect w.r.t. an intended model that provides a declarative
description of the program’s semantics. Debugging proceeds by explor-
ing an abridged proof tree built on a higher-order rewriting logic with
λ-abstractions that provides a purely declarative view of the computa-
tion. Finally, debugging ends with the detection of a defined function rule
in the program that is incorrect w.r.t. the intended model. We prove the
logical correctness of the debugging method for any sound goal solving
system whose computed answers are logical consequences of the program.

1 Introduction

According to a well-known conception, programs in a declarative programming
language can be viewed as theories in some suitable logic, while computations
can be viewed as deductions. The Constructor-based ReWriting Logic CRWL [5]
provides a suitable framework for rule-based declarative (functional and logic)
programming with non-deterministic and lazy functions with call-time choice
semantics, where programs are constructor-based Conditional Term Rewrite Sys-

tems (CTRS for short). As a concrete example, the following “Prolog-like” CTRS
fragment defines a possibly non-deterministic function flight , given by first-order
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conditional rewrite rules (→) where the conditional part (formed only by equa-
tions ==) is delimited by the “⇐” symbol:

connection (madrid, tokyo) → false

flight (valencia) → barcelona
flight (barcelona) → X ⇐ connection (X, tokyo) == false
flight (Y ) → X ⇐ flight (X) == Y

Functional-logic languages with a sound and complete operational semantics
are mainly based on narrowing, a transformation rule which combines the basic
execution mechanism of functional and logic languages, namely rewriting with
unification. For example, the function flight is non-deterministic because the
execution by narrowing of the goal flight (barcelona) == F yields {F �→ madrid}
and {F �→ valencia} as computed answers.

Since the classical notion of rewriting is not suitable in this setting, a new
notion of rewriting is adopted as the basis of proof calculi for joinability (==) and
reduction (→) statements. The most important result is the existence of sound
and complete lazy narrowing calculi [5,18] for solving goals in first-order CRWL-
theories presented by CTRS-programs. Moreover, a higher-order extension of
CRWL is presented in [4] but using only applicative rewrite rules instead of
λ-abstractions and higher-order unification.

In this paper, we use a higher-order rewriting logic (called GHRC, Goal-

oriented Higher-order Rewriting Calculus) for declarative programming with higher-
order functions and λ-terms as data structures to obtain more of the expressivity
of higher-order functional programming. More precisely, we adopt the framework
of the simply typed λ-calculus in which terms are in βη-normal form and theo-
ries are presented by Conditional Pattern Rewrite Systems (CPRS for short). As
a simple example of such higher-order programs, the following pattern rewrite
system (adapted from [7]) shows how simple circuits and hardware gates can
be represented and computed within higher-order functional-logic programming
with lambda abstractions.

map (λu, v. F (u, v), [ ]) → [ ]
map (λu, v. F (u, v), [ (X, Y ) |Rs ]) → [ F (X, Y ) |map (λu, v. F (u, v),Rs) ]

nand (0, X) → 1 size (λu, v. u) → 0
nand (X, 0) → 1 size (λu, v. v) → 0
nand ( 1, 1) → 0 size (λu, v.nand (F (u, v), G(u, v))) → 1 +

size (λu, v. F (u, v)) + size (λu, v. G(u, v))

The goal of this example is to compute functions composed of nand-functions (or
gates). Thus we first specify the nand-function and some auxiliary functions, as
the classical higher-order function map on pairs of numbers. In this program, the
function size serves two purposes. First, it counts the number of nand functions,
but also assures that some λ-term contains no other functions. For instance, we
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can synthesize an or -function consisting of three nand -gates from the following
goal composed by two equality statements.

λx, y.map (F, [ (0, 0), (x, 1), (1, y) ]) == [0, 1, 1], size (F ) == 3

The first equality asserts the behavior of the or -function and the second equality
specifies the size to restrict the search space. The solution is found by exhaustive
search using a higher-order lazy narrowing calculus with definitional trees [20]:

{F �→ λu, v.nand (nand (u, u),nand (v, v))}

The previous program is a non-conditional pattern rewrite system, where equal-
ity statements are only used in the goal. As a simple example of a conditional pat-
tern rewrite system we can define a higher-order function diff , where diff (f, x)
computes the differential of a function f at some point x:

diff (λy. y, x) → 1
diff (λy. sin(f(y)), x) → cos(f(x)) ∗ diff (λy. f(y), x) ⇐ π/4 ≤ f(x) ≤ π/2
diff (λy. ln(f(y)), x) → diff (λy. f(y), x)/f(x) ⇐ f(x) �= 0

In this work, only equality statements are supported by our current programming
framework, although the same ideas can be applied to integrate non-equality
constraints in the conditional part of pattern rewrite rules and goals.

We are interested in the logical characterization and the practical applica-
tion to debugging of the semantics of programs formalized by constructor-based
CPRSs, where the notion of lazy and possibly non-deterministic higher-order
functions and conditional equations involving λ-abstractions plays a central role.
In contrast to more traditional frameworks such as equational logic and alterna-
tive approaches such as needed rewriting [7] the higher-order rewriting logic on
lambda abstractions GHRC has the ability to characterize the intended computa-
tional behavior based on conditional higher-order narrowing for non-determinism
in a correct and efficient way [5,18,20] (see Section 7 for more related work and
comparisons with other approaches).

Recently, in [21] we have presented a model-theoretic semantics from tradi-
tional theories in higher-order declarative (functional and logic) programming,
and a fixpoint semantics that matches the pattern model of a CPRS, useful for
verification and algorithmic debugging purposes. However, in this paper we pre-
fer to develop an independent and more easy theoretical framework for declara-
tive debugging based on the notion of interpretation of a CPRS, in order to
generalize and combine declarative debugging techniques and implementations
previously developed for first-order lazy functional-logic programming [1,2].

2 Motivating Example

A frequent claim about declarative programming languages is that the task of
reasoning about programs (as e.g., CTRSs or CPRSs) is easier than in other pro-
gramming paradigms because of the existence of an underlying logic providing
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λx, y. map (λu, v. nand (u, v), [(0, 0), (x, 1), (1, y)]) → [0, 1, 1]

nand (0, 0) → 0 λx, y. map (λu, v. nand (u, v), [(x, 1), (1, y)]) → [1, 1]

λx. nand (x, x) → 1

nand (1, 1) → 1 map (λu, v. nand (u, v), [ ]) → [ ]

λx, y. map (λu, v. nand (u, v), [(0, 0), (x, 1), (1, y)]) == [0, 1, 1]

λx, y.map (λu, v. nand (u, v), [(1, y)]) == [1]

size (λu, v. nand (u, v)) == 3

size (λu, v. nand (u, v)) → 3

size (λu, v. u) → 1 size (λu, v. v) → 1

Fig. 1. Computation trees for declarative debugging involving lambda abstractions

more or less natural logical methods for that purpose. In the case of higher-order
functional-logic programming, the proof calculus offered by our GHRC approach
gives an attractive and mathematically well-founded basis for reasoning on the
semantics of programs. In particular, GHRC provides firm theoretical founda-
tions for the declarative debugging of functional-logic programs with lambda
abstractions, following the classical declarative debugging approach proposed by
Shapiro and Naish [16]. In order to illustrate the main features of this diagnosis
technique and to motivate the approach presented in this work we consider a
simple debugging example. The following higher-order functional-logic program
involving lambda abstractions is an erroneous fragment of the previous pattern
rewrite system for hardware synthesis (errors are marked by a box):

map (λu, v. F (u, v), [ ]) → [ ]
map (λu, v. F (u, v), [ (X, Y ) |Rs ]) → [ F (X, X ) |map (λu, v. F (u, v),Rs) ]

nand (0, 0 ) → 0 size (λu, v. u) → 1
nand (X, X ) → 1 size (λu, v. v) → 1
nand ( 1, 1) → 1 size (λu, v.nand (F (u, v), G(u, v))) → 1 +

size (λu, v. F (u, v)) + size (λu, v. G(u, v))
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The debugging technique starts with the observation of a solution computed
from a goal and a CPRS by means of a suitable goal solving system (see, e.g.,
[7,20]). For instance, we consider our previous goal to compute the or -function
consisting of three nand -gates, but now we obtain {F �→ λu, v.nand (u, v)}
as the computed answer. The user regards this solution as incorrect (because
the user really expects as solution {F �→ λu, v.nand (nand (u, u),nand (v, v))})
according to their own intended interpretation of the declarative description of
the program’s semantics.

Then, debugging proceeds by exploring a suitable computation tree, obtained
as a proof tree in the logical calculus offered by the higher-order rewriting logic
GHRC for the witness that the obtained computed answer is a solution of the ini-
tial goal. This proof tree provides a purely declarative view of the computation,
so that the user does not need to understand the complex underlying operational
mechanism based on conditional higher-order narrowing described in [7,20].
The computation trees for our current example are graphically represented in
Fig. 1 (more on its structure and construction will be explained in Section 6).
Each node of this tree represents the computation of some observable result, de-
pending on the results of its children nodes. Declarative diagnosis explores this
proof tree looking for a so-called buggy node which computes an incorrect result
from children whose results are correct; such a node must point to an incorrect
program fragment. The search for a buggy node can be implemented with the
help of an external oracle (usually the user with some semi-automatic support)
who has a reliable declarative knowledge of the expected program semantics.
Finally, debugging ends with the detection of a function rule in the CPRS R
that is incorrect w.r.t. the intended interpretation I.

For instance, the first computation tree depicted in Fig. 1 has a buggy node
because 0 (resp. 1) is not the truth value for nand (0, 0) (resp. nand (1, 1)).
Analogously, λx.nand (x, x) → 1 is incorrect w.r.t. the user’s intended program
semantics; as we have shown previously, nand (0, 0) → 1 and nand (1, 1) → 0.
After these corrections, there is another buggy node for the function map because
the user knows that map (λu, v.nand (u, v), [(1, 1)]) is [0] instead of [1] as the
reduction statement λy.map (λu, v.nand (u, v), [(1, y)])→ [1] claims. Finally, the
first and second pattern rewrite rules of the function size are also incorrect w.r.t.
the user’s intended interpretation because size (λu, v. u) (resp. size (λu, v. v))
yields 0 instead of 1. After these new corrections in the program, no more wrong
computed answers will be observed for the goal discussed above, and the right
solution {F �→ λu, v.nand (nand (u, u),nand (v, v))} is then obtained.

This paper is structured as follows. In Section 3 we introduce the basic no-
tions and notations from the λ-calculus and higher-order term rewriting which
are needed to understand the theoretical framework. In Section 4 we introduce
the higher-order conditional rewriting logic characterized by the proof system
GHRC, as a generalization of the proof system which underlies the first-order
rewriting logic CRWL. Section 5 is concerned with the declarative semantics
of GHRC-programs, presented as a simpler alternative to the model-theoretic
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semantics of [21]. In Section 6 we discuss the application of GHRC to the de-
velopment of a declarative debugging technique of wrong computed answers for
functional-logic programming with lambda abstractions. Finally, Section 7 sum-
marizes some conclusions and presents a brief outline of related and planned
future work.

3 Preliminary Notions

We assume the reader is familiar with the notions and notations pertaining to
λ-calculus and higher-order term rewriting (see, e.g., [7]). The set of types for
simply typed λ-terms is generated by a set B of base types (e.g., nat, bool) and
the function type constructor “→”. Simply typed λ-terms are generated in the
usual way from a signature F of function symbols and a countably infinite set
V of variables by successive operations of abstraction and application. We also
consider the enhanced signature F⊥ = F ∪ Bot, where Bot = {⊥b | b ∈ B}
is a set of distinguished B-typed constants. The constant ⊥b is intended to
denote an undefined value of type b. We employ ⊥ as a generic notation for
a constant from Bot. In this paper, we assume the following conventions of
notation: X, Y, Z, R, H , possibly primed or with subscripts, denote free variables;
f, f ′ denote function symbols, and a a (free or bound) variable or a constant from
F ; l, r, s, t, u, possibly primed or with subscript, denote terms; π, π′, π1, π2, . . .
denote terms of base type. We also define the arity of f ∈ F as ar(f) = n ≥ 0.
A sequence of syntactic objects o1, . . . , on, where n ≥ 0, is abbreviated by on. For
instance, the simply typed λ-term λx1. . . . λxk.(· · · (a t1) · · · tn) is abbreviated
by λxk.a(tn). Substitutions γ ∈ Subst(F⊥,V) are finite type-preserving mappings
from variables to terms, denoted by {Xn �→ tn}, and extend homomorphically
from terms to terms. By convention, we write ε for the identity substitution, tγ
instead of γ(t), and γγ′ for the function composition γ′ ◦ γ.

The long βη-normal form of a term, denoted by t+η
β, is the η-expanded form

of the β-normal form of t. It is well-known that s =αβη t if s+η
β =α t+η

β [8].
Since βη-normal forms are always defined, we will in general assume that terms
are in long βη-normal form and are identified modulo α-conversion. For brevity,
we may write variables and constants from F in η-normal form, e.g., X instead
of λxk.X(xk). We assume that the transformation into long βη-normal form is
an implicit operation, e.g., when applying a substitution to a term. With these
conventions, every term t has a unique long βη-normal form λxk.a(tn), where
a ∈ F⊥ ∪ V and a() coincides with a. The symbol a is called the root of t and
is denoted by hd(t). We distinguish between the set T (F⊥,V) of partial terms
(terms for short) and the set T (F ,V) of total terms. T (F⊥,V) is a poset with
respect to the approximation ordering #, defined as the least partial ordering
such that:

λxk.⊥ # λxk.t t # t
s1 # t1 · · · sn # tn

λxk.a(sn) # λxk.a(tn)

We adopt the convention that the free and bound variables inside a term are kept
disjoint, and assume that bound variables with different binders have different
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names. The set of free variables of a term t is denoted by FV(t). To manipulate
terms, we define:

• The set of positions in t: Pos(λxk.a(tn)) = {1i | 0 ≤ i ≤ k} ∪ {1k.j.q | 1 ≤
j ≤ n, q ∈ Pos(tj)}, where “.” denotes sequence concatenation and 1k is the
sequence of 1 repeated k times. The empty sequence is denoted by ε. Note
that, with this convention, we have 10 = ε.

• The subterm t|p of t at some position p ∈ Pos(t):

(λxk.a(tn))|p =
{

λxi+1 . . . xk.a(tn) if p = 1i with 0 ≤ i ≤ k,
ti|q if p = 1k.i.q and 1 ≤ i ≤ n.

A position p is maximal in t if t|p is of base type. The set of maximal positions
in a term t is denoted by MPos(t).

• The sequence of variables abstracted on the path to position p ∈ Pos(t):

seqbv(t, p) =

⎧⎨
⎩

ε if p = ε,
x.seqbv(s, q) if t = λx.s and p = 1.q,
seqbv(ti, q) if t = a(tn), 0 < i ≤ n, and p = i.q.

The set of variables abstracted on the path to position p ∈ Pos(t) is BV(t, p)
= {seqbv(t, p)}, and the set of variables with bound occurrences in t is BV(t)
=

⋃
p∈Pos(t) BV(t, p). Moreover, we also define t
p = λxk.(t|p), where xk =

seqbv(t, p).

A pattern [14] is a term t for which all subterms t|p = X(tn), with X ∈ FV(t) and
p ∈ MPos(t), satisfy the condition that t1↓η, . . . , tn↓η is a sequence of distinct
elements of BV(t, p). Moreover, if all such subterms of t satisfy the additional
condition BV(t, p)\{t1↓η, . . . , tn↓η} = ∅, then the pattern t is fully extended. It is
well known that unification of patterns is decidable and unitary [14]. Therefore,
for every t ∈ T (F⊥,V) and pattern π, there exists at most one matcher between
t and π, which we denote by matcher(t, π). An equation is a multiset {{s, t}},
written s == t, where s, t ∈ T (F⊥,V) are terms of the same type.

In our theoretical framework, programs are considered as a special kind of
conditional rewrite systems over fully extended linear patterns, with conditional
equations between total terms.

Definition 1 (Programs). A Conditional Pattern Rewrite System (CPRS for
short) is a finite set of conditional rewrite rules of the form f(ln) → r ⇐ C:

• f(ln) and r are total terms of the same base type,

• f(ln) is a fully extended linear pattern, and

• C is a (possibly empty) finite sequence of equations between total terms. In
symbols, C ≡ sm == tm, with si, ti ∈ T (F ,V) for i = 1, . . . , m.

The term f(ln) is called the left hand side (lhs), r is the right hand side (rhs),
and C is the conditional part of the pattern rewrite rule.
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Each CPRS R induces a partition of F into Fd (defined function symbols) and
Fc (data constructors):

Fd = {f ∈ F | ∃(f(ln) → r ⇐ C) ∈ R}, Fc = F \ Fd.

R is a constructor-based CPRS if each conditional pattern rewrite rule f(ln) →
r ⇐ C satisfies the additional condition that l1, . . . , ln ∈ T (Fc,V).

4 The Higher-Order Rewriting Logic GHRC

In this section we extend the constructor-based Conditional ReWriting Logic
CRWL from [5], in order to deal with conditional pattern rewrite rules. In
contrast to Meseguer’s rewriting logic and the reflection approach [13], which
aims at modelling change caused by concurrent actions at a very high abstrac-
tion level, our rewriting logic intends to model the evaluation of λ-terms in a
constructor-based language involving lazy functions. As in [5], we do not im-
pose non-ambiguity conditions. This means that non-deterministic functions are
allowed.

For all these reasons, we need to consider a (conditional) higher-order rewri-
ting logic for declarative programming with non-strict and non-deterministic
functions with call-time choice semantics, as an extension of the first-order
rewriting logic CRWL. In order to obtain this aim, we propose this logic as the
basis of a proof calculus, called GHRC (Goal-oriented Higher-order Rewriting
Calculus), for reduction and joinability statements to a common value, designed
as a generalization of the first-order proof system GORC which underlies the
CRWL logic [5]. First, we need to define the suitable notion of value that is used
in our setting with λ-abstractions and decidable higher-order unification.

Definition 2 (Values). A value is a partial term t which has the following
property: ∀ p ∈ MPos(t), ∀ (π → r ⇐ C) ∈ R, � matcher(t
p, π

�seqbv(t,p)). In
this definition, we implicitly assume that FV(t) ∩ FV(π) = ∅. A total value is
a value which is a total term. A value substitution is a substitution which binds
variables to values. We write Val(F⊥,V) (resp. Val(F ,V)) for the set of values
(resp. total values), and VSubst(F⊥,V) for the set of substitutions which bind
variables to values.

For a given CPRS R we want to derive statements of the following kind:

• reduction statements: s � t, where s, t ∈ T (F⊥,V) are of the same type,
whose intended meaning is that the term s can be reduced to t, so that the
possibly partial term t approximates the denotation of s, as we will argue in
Section 5.

• equality statements: s == t, which holds iff reduction statements s � u and
t � u can be derived for some total value u ∈ Val(F ,V).

The GHRC-provability relation is defined by the proof system given in Table 1.
Note that GHRC-reduction is related to the idea of approximation, as shown by
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Table 1. The GHRC proof calculus

B Bottom λxk.π � λxk.⊥

MN Monotonicity
λxk.s1 � λxk.t1 · · · λxk.sn � λxk.tn

λxk.a(sn) � λxk.a(tn)

RF Reflexivity s � s

OR Outermost

Reduction

C�xkθ r�xkθ � u

λxk.s1 � l
�xk
1 θ · · ·λxk.sn � l

�xk
n θ λxk.f(l�xk

n θ) � u

λxk.f(sn) � u

if u 	= λxk.⊥, θ ∈ VSubst(F⊥,V), and (f(ln) → r ⇐ C) ∈ R.

J Join
s � u t � u

s == t
if u ∈ Val(F ,V).

rule B. In rule J, we interpret equality (==) as joinability to a common total
value u, since we wish to specify joinability as a generalization of strict equality,
where total values in our higher-order framework play the same role as total
constructor terms in the first-order framework (see [5]). Moreover, note that in
rule OR for Outermost Reduction we use program rule instances (f(ln) → r ⇐
C)θ with θ ∈ VSubst(F⊥,V) to reflect the so-called call-time choice for non-
determinism (see the “coin example” in [5]). The other inference rules in GHRC
are easier to understand.

Now, the main difference with respect to other similar proof systems is that
the rule OR has been replaced by the consecutive application of two inference
steps, AR for Argument Reduction and FA for Function Application, whose
separate specification is displayed below:

AR
λxk.s1 � l

�xk

1 θ · · · λxk.sn � l
�xk
n θ λxk.f(l�xk

n θ) � u

λxk.f(sn) � u

if f ∈ Fd, u �= λxk.⊥, and θ ∈ VSubst(F⊥,V).

FA
C�xkθ r�xkθ � u

λxk.f(l�xk
n θ) � u

if (f(ln) → r ⇐ C) ∈ R, θ ∈ VSubst(F⊥,V).

Taken together, these two rules say that a call to a function f is evaluated by
computing approximated values for the arguments, and then applying a defining
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rule for f . The conclusion λxk.f(l�xk
n θ) � u introduces a so-called basic fact,

which is only needed for debugging purposes in declarative programming, as we
will argument in Section 6.

Detailed examples of GHRC-derivations in the form of proof trees in this kind
of rewriting logics can be found in [5,18] and Example 1 below. We write R  ϕ
if ϕ is a provable statement from a CPRS R, PT (ϕ) for the set of proof trees
for ϕ and PT L(ϕ) for the proof trees of PT (ϕ) which end with the application
of an inference rule L ∈ {B,MN,RF,OR,J}. We also write R  L ϕ if there
exists a proof of R  ϕ which ends with the application of rule L, and R �L ϕ
if there is no such a proof.

Finally, to complete the presentation of the higher-order rewriting logic GHRC
in a declarative programming setting, we give a definition for the class of goals
(from a given CPRS R) and the set of solutions of a goal with which we are
going to work.

Definition 3 (Goals and Solutions).

• A goal G for a given CPRS R is a multiset {{sn == tn}} of equations between
total terms of the same type. Equations are symmetric: s == t ≡ t == s.

• γ ∈ Subst(F⊥,V) is a solution of a goal G ≡ {{sn == tn}} if γ�FV(G) ∈
VSubst(F⊥,V), and for each equation si == ti in G there exists a proof tree
Pi ∈ PT (siγ == tiγ). The proof tree Pi is called a witness that γ is a solution
of si == ti. We write Soln(G) for the set of solutions of a goal G.

Example 1. For the CPRS of simple composition of circuits and hardware syn-
thesis introduced in Section 1, we can check that the computed answer γ = {F �→
λu, v.nand (nand (u, u),nand (v, v))} is a solution of the goal {{λx, y.map (λu, v.
F (u, v), [(0, 0), (x, 1), (1, y)]) == [0, 1, 1], size (λu, v. F (u, v)) == 3 }}. We have
the following logical proof in the GHRC-calculus for R  λx, y.map (λu, v.nand
(nand (u, u),nand (v, v)), [(0, 0), (x, 1), (1, y)]) == [0, 1, 1], where R is the CPRS
containing all the pattern rewrite rules mentioned in this example.

J λx, y.map (λu, v.nand (nand (u, u),nand (v, v)), [(0, 0), (x, 1), (1, y)]) == [0, 1, 1]
OR λx, y.map (λu, v.nand (nand (u, u),nand (v, v)), [(0, 0), (x, 1), (1, y)])→ [0, 1, 1]

MN λx, y. [nand (nand (0, 0),nand (0, 0)) |
map (λu, v.nand (nand (u, u),nand (v, v)), [(x, 1), (1, y)])]→ [0, 1, 1]

OR nand (nand (0, 0),nand (0, 0)) → 0
OR nand (0, 0) → 1
OR nand (1, 1) → 0

OR λx, y.map (λu, v.nand (nand (u, u), nand (v, v)), [(x, 1), (1, y)])→ [1, 1]
MN λx, y. [nand (nand (x, x),nand (1, 1)) |

map (λu, v.nand (nand (u, u),nand (v, v)), [(1, y)])]→ [1, 1]
OR λx.nand (nand (x, x),nand (1, 1)) → 1

B λx.nand (x, x) → ⊥
OR nand (1, 1) → 0
OR nand (⊥, 0) → 1

OR λy.map (λu, v.nand (nand (u, u), nand (v, v)), [(1, y)]) → [1]
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MN λy. [nand (nand (1, 1),nand (y, y)) |
map (λu, v.nand (nand (u, u), nand (v, v)), [ ])→ [1]

OR λy.nand (nand (1, 1), nand (y, y))→ [1]
OR nand (1, 1)→ 0

B λy.nand (y, y)→⊥
OR nand (0,⊥)→ 1

OR map (λu, v.nand (nand (u, u), nand (v, v)), [ ])→ [ ]

The logical proof for R  size (λu, v.nand (nand (u, u),nand (v, v))) == 3 is as
follows:

J size (λu, v.nand (nand (u, u), nand (v, v))) == 3
OR size (λu, v.nand (nand (u, u), nand (v, v))) → 3

OR 1 + size (λu, v.nand (u, u)) + size (λu, v.nand (v, v)) → 3
OR size (λu, v.nand (u, u)) → 1

OR 1 + size (λu, v. u) + size (λu, v. u) → 1
OR size (λu, v. u) → 0

OR size (λu, v.nand (v, v)) → 1
OR 1 + size (λu, v. v) + size (λu, v. v) → 1

OR size (λu, v. v) → 0 ��

Finally, we give two results which characterizes the semantics proofs built with
GHRC and generalizes useful known properties of CRWL-deductions for the first-
order case (see [5,18] for more details and intuitive or informal explanations).
The proof of Lemma 1 is given in [21].

Lemma 1 (Basic Semantic Property of GHRC-deductions). Let s ∈
Val(F⊥,V). If R  s � t then t ∈ Val(F⊥,V), s - t, and R �OR s � t.
Moreover, if t ∈ Val(F ,V) then s ≡ t.

Lemma 2. If R  t � u, p ∈ Pos(t) is a safe position of t (i.e., hd(t|q)
∈ BV(t, q) ∪ Fc for each q ≤ p), and u ∈ Val(F ,V), then p ∈ Pos(u) and
R  t
p � u
p.

Proof. By induction on the length of p. By definition of GHRC, R  L t �
u, where L ∈ {B,OR (=AR+FA),RF,MN}. We note that L �∈ {B,OR}
because p ∈ Pos(t) is a safe position and u ∈ Val(F ,V). If L = RF then t = u
and Lemma 2 holds trivially. Otherwise t = λxk.a(tn), u = λxk.a(un), and
R  λxk.ti � λxk.ui for i = 1, . . . , n. If p = 1k then Lemma 2 holds trivially.
Otherwise p = 1k.m.q. Let p′ = 1k.q, t′ = λxk.tm, and u′ = λxk.um. Then p′ is
shorter than p, R  t′ � u′, p′ ∈ Pos(t′) is a safe position, and u′ ∈ Val(F ,V).
By induction hypothesis for p′ we obtain p′ ∈ Pos(u′) a safe position, and
R  t′
p′ � u′
p′ . Since t′
p′ = t
p and u′
p′ = u
p, we have R  t
p � u
p.
Also, p′ ∈ Pos(u′) is a safe position, and a ∈ Fc ∪ {xk} yields p ∈ Pos(u) a safe
position. �

5 Intended Models of CPRS-Programs

In this section, we briefly introduce some notions and results on the declarative
semantics of CPRS-programs which are needed for the rest of the sections in
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Table 2. The semantic calculus GHRCI

BI Bottom λxk.π � λxk.⊥

MNI Monotonicity
λxk.s1 � λxk.t1 · · · λxk.sn � λxk.tn

λxk.a(sn) � λxk.a(tn)

RFI Reflexivity s � s

ORI Outermost

Reduction
λxk. s1 � t

�xk
1 · · · λxk. sn � t

�xk
n u � s

λxk. f(sn) � s

if u 	= λxk.⊥ and (λxk. f(t�xk
n ) � u) ∈ I.

JI Join
s � u t � u

s == t
if u ∈ Val(F ,V).

the paper. The semantic definition of interpretation is simpler than the one in
the first-order setting [5,21] and our previous related work [21], where a more
general notion of interpretation (under the name of Algebra) was presented.
In our debugging scheme we will assume that the intended model of a CPRS-
program is an interpretation.

Definition 4 (Interpretations and Models).

(1) A basic fact λxk. f(t�xk
n ) � u asserts that the (possibly non-linear) partial

term u ∈ Val (F⊥,V) approximates the result of f(tn), a fully extended linear
pattern with the exact number of arguments expected by f ’s arity, and with
arguments ti ∈ Val (F⊥,V), which represent the partial approximations of
f ’s actual parameters needed to compute u as result. Moreover, f(tn) and u
are partial terms of the same base type.

(2) An interpretation I is a set of basic facts fulfilling the following require-
ments for all f ∈ Fd with ar(f) = n, and f(tn), f(sn) fully extended linear
patterns with tn, sn ∈ Val (F⊥,V) arbitrary partial terms of the same base
type that t, s ∈ Val (F⊥,V):

• (λxk. f(t�xk
n ) � λxk.⊥) ∈ I.

• If (λxk. f(t�xk
n ) � λxk. t) ∈ I, λxk. t

�xk

i # λxk. s
�xk

i , λxk. t - λxk. s,

then also (λxk. f(s�xk
n ) � λxk. s) ∈ I.
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• If (λxk. f(t�xk
n ) � λxk. t) ∈ I and θ ∈ VSubst(F⊥,V), then (λxk.

f(t�xk
n θ) � λxk. tθ) ∈ I.

A given reduction or equality statement ϕ is valid in the interpretation I iff
ϕ is a provable statement from I in the semantic calculus GHRCI presented

in Table 2. In general, for every basic fact λxk. f(t�xk
n ) � u, it can be proved

that it is valid in I iff (λxk. f(t�xk
n ) � u) ∈ I. The denotation of a term

t ∈ T (F⊥,V) is the set [[ t ]]I = { s ∈ Val (F⊥,V) | t � s is valid in I }.
(3) I is a model of a given CPRS R (i.e., I |= R) iff every conditional pattern

rewrite rule (f(ln) → r ⇐ C) ∈ R is valid in I (i.e., I |= f(ln) → r ⇐ C):
For any substitution θ ∈ VSubst (F⊥,V) and C ≡ sm == tm, either [[ siθ ]]I

∩ [[ tiθ ]]I ∩ Val (F ,V) �= ∅ (i.e., I satisfies Cθ) and [[ f(lnθ) ]]I ⊇ [[ rθ ]]I, or
else I does not satisfy Cθ.

Finally, from Definition 4 we can prove that the GHRC proof calculus is seman-
tically sound. The proof is quite standard and details can be found in [21].

Theorem 1 (Semantic Correctness of GHRC). If G ≡ {{sn == tn}} is a
goal for a CPRS R and γ ∈ Soln (G) then γ ∈ Soln I (G) for all models I of R
(i.e., every siγ == tiγ is valid in I).

6 Declarative Debugging of Wrong Answers in GHRC

In this section, we extend the declarative method for diagnosing wrong computed
answers in first-order lazy functional-logic programs [1] to the higher-order set-
ting of functional-logic programs with lambda abstractions.

Definition 5 (Symptoms and Errors). Assume that I is the intended model
for a given CPRS R, and consider a substitution γ ∈ VSubst (F ,V) produced as
a computed answer for the goal G ≡ {{sn == tn}} by a goal solving system.

(1) γ is a wrong answer w.r.t. I (serving as a symptom) iff γ /∈ Soln I(G)
(i.e., there exists si == ti in G such that siγ == tiγ is not valid in I).

(2) R is incorrect w.r.t. I iff there exists some conditional pattern rewrite rule
(f(ln) → r ⇐ C) ∈ R (manifesting an error) that is not valid in I (i.e.,
I �|= f(ln) → r ⇐ C).

We say that a goal solving system is called GHRC-sound iff for any computed
answer γ obtained for a goal G using a CPRS R we have that γ ∈ Soln (G). The
goal solving calculus HOLNDT given in [20] is GHRC-sound. This claim can be
proved by a straightforward adaptation of the soundness theorem for HOLNDT.
Now we prove that the observation of an error symptom by any GHRC-sound
goal solving system implies the existence of some error in the CPRS-program.

Theorem 2. Assume that a GHRC-sound goal solving system computes γ ∈
Subst (F ,V) as an answer for the goal G using a given CPRS R. If γ is a wrong
answer w.r.t. the user’s intended model I then some conditional pattern rewrite
rule belonging to R is not valid in I.
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λx, xs. f([x|xs]) == λxs.pair (snd (f(xs)), fst (f(xs)))

λx, xs. f([x|xs]) �
λxs.pair (sum (xs), length (xs))

λx, xs. sum ([x|xs]) �
λxs. sum (xs)

λx, xs. length ([x|xs]) �
λxs. length (xs)

λxs. f(xs) �
λxs.pair (sum (xs), length (xs))

λxs.snd (pair(sum(xs), length(xs)))�
λxs. sum (xs)

λxs. fst (pair (sum (xs), length (xs))) �
λxs. length (xs)

Fig. 2. Computation tree in GHRC for declarative debugging with lambda abstractions

Proof. Because of the GHRC-soundness of the goal solving system, we know
that γ ∈ Soln (G). Then, from Theorem 1 we obtain γ ∈ SolnJ (G) for all model
J of R. Since γ is a wrong answer w.r.t. the user’s intended model I, it must be
the case that γ /∈ Soln I(G) because of Definition 5. Therefore, we can conclude
that the user’s intended model I is not a model of R. Then, by Definition 4,
some conditional pattern rewrite rule belonging to R is not valid in I. ./

The debugging scheme proposed in [16] assumes that any terminated compu-
tation can be represented as a finite tree, called computation tree. The root of
this tree corresponds to the result of the main computation, and each node
corresponds to the result of some intermediate subcomputation. According to
previous approaches in declarative debugging [1], our aim is to use proof trees
in the GHRC proof calculus as computation trees. To this purpose, the only
relevant nodes are those which correspond to the conclusion of FA steps. This
is because all the other inference rules in GHRC, being program independent,
cannot give rise to incorrect steps. The debugger works by navigating the com-
putation tree, looking for erroneous nodes. Following the terminology of [16], an
erroneous node with no erroneous children is called a buggy node.

The next theorem guarantees the logical correctness of declarative debugging
with GHRC-proof trees for functional-logic programs with lambda abstractions:

Theorem 3 (Declarative Diagnosis of Wrong Answers). Assume a wrong
answer γ ∈ Subst (F ,V), computed for the goal G using a given CPRS R, such
that γ /∈ Soln I(G), and I is the user’s intended model of R. Consider any
GHRC-proof tree witnessing γ ∈ Soln (G) as a computation tree, which must
exist due to the existence of GHRC-sound goal solving systems. Then, declarative
debugging has the following two properties:
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(a) Completeness: navigating the computation tree will find a buggy node.
(b) Soundness: every buggy node in the computation tree points to a conditional

pattern rewrite rule belonging to R which is not valid in I.

Proof. Item (a) follows immediately from the Weak Completeness of Declarative
Debugging proved in [16], provided that the search strategy used to navigate
the tree does not miss existing buggy nodes. To prove item (b), assume that
the intended model is I, and consider any given buggy node. This node must

contain a basic fact λxk. f(l�xk
n θ) � u which is not valid in I and has been

inferred as the conclusion of a FA inference step using some conditional pattern
rewrite rule belonging to R, say (f(ln) → r ⇐ C) ∈ R and θ ∈ VSubst (F⊥,V).

Therefore, the children of λxk. f(l�xk
n θ) � u in the GHRC-proof tree, C�xkθ

and r�xkθ � u are valid in I, because they are the children of a buggy node.
With this we can conclude that C�xkθ and r�xkθ � u are valid in I (i.e., I
satisfies C�xkθ and u ∈ [[ r�xkθ ]]I), while λxk. f(l�xk

n θ) � u is not valid in I
(i.e., u /∈ [[ λxk. f(l�xk

n θ) ]]I). Then [[ r�xkθ ]]I � [[ λxk. f(l�xk
n θ) ]]I , which means

(see Definition 4) that the conditional pattern rewrite rule (f(ln) → r ⇐ C) ∈ R
is not valid in I. ./

Example 2. For the particular function f → λxs. pair(sum(xs), length(xs)),
where pair is a data constructor, and

sum ([ ]) → 0 length ([ ]) → 0 fst (pair (x, y)) → x
sum ([x|xs]) → x+sum(xs) length ([x|xs]) → 1+length(xs) snd (pair(x, y)) → y

we can check that γ = {E �→ pair(0, 0), G �→ λu, z.pair(u + fst(z), 1 + snd(z))}
is a solution of the goal {{f([ ]) == E, λx, xs. f([x|xs]) == λx, xs. G(x, f(xs))}}.
Now we suppose that we obtain the solution {G �→ λz. pair(snd(z), fst(z))}.
We know that this is a wrong computed answer, but we don’t know exactly why.
For this reason, we decide to explore the corresponding computation tree (see
Fig. 2). Looking at the leaves of this tree, we find two buggy nodes (represented
by double rectangles) concerning to the application of the functions fst and
snd , respectively. We note that we have written erroneous pattern rewrite rules:
fst (pair (x, y)) → y and snd (pair (x, y)) → x. Moreover, we also learn that the
application of the functions sum and length is also erroneous, because we have
another two buggy nodes, suggesting that we have written again two incorrect
pattern rewrite rules: sum ([x|xs]) → sum (xs) and length ([x|xs]) → length (xs).
We can correct all of them to obtain the CPRS represented above, and the right
computed answer for the goal if we repeat the computation. ./

7 Conclusions, Related and Future Work

We have presented a generalization of the well-known Naish’s declarative method
for diagnosing wrong computed answers in first-order lazy functional-logic pro-
gramming [1] to the more expressive setting of the simply typed λ-calculus with
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decidable higher-order unification [14], where the notion of lazy and possibly
non-deterministic higher-order function [5] plays a central role (in comparison
with related work [4,7]). Moreover, we have used the powerful and generic se-
mantic framework introduced in our previous work [21] to define a more suitable
and specific model-theoretic semantics for declarative debugging based only on
the simple notion of interpretation and the intended model of a CPRS-program.

All of the many higher-order extensions of functional-logic languages are, to
our knowledge, limited to first-order unification and are not complete in our
higher-order sense. For instance, the work [10] uses higher-order variables, but
only (first-order) narrowing on first-order terms plus β-reduction as the opera-
tional model. The work [4] similarly permits higher-order variables. Higher-order
unification is currently used in theorem provers like Isabelle [12], and for higher-
order logic programming in the language λProlog [15]. Other currently developed
functional-logic languages such as Oz [17], Escher [9] and Curry [6] do not utilize
higher-order unification and hence do not focus on a theoretical framework for
declarative debugging as the approach presented in this paper.

Planned future work will include further theoretical investigation to integrate
non-equality constraints (e.g., see −π/4 ≤ f(x) ≤ π/2 and f(x) �= 0 in Section
1) in the conditional part of pattern rewrite rules and goals, following the line
of recent researches on constraint rewriting logics [3,19]. On the practical side,
we are currently working on the development of a debugger which implements
our declarative debugging method, following the line of previous works [1,2]. A
difficult issue in the construction of reasonable higher-order functional-logic pro-
gramming languages is the high degree of non-determinism that must be explored
to compute all the answers. Without higher-order patterns, this is managed by
sophisticated demand-driven strategies to restrict the degree of non-determinism
(see [18]). Adding higher-order features increases the search space dramatically.
For this purpose, we have presented in [20] an appropriate operational semantics
based on narrowing with higher-order overlapping definitional trees, a useful tool
for achieving a demand-driven strategy which avoids unneeded steps to reduce
the huge search space for bindings of higher-order variables. Although in this
paper we propose only a more specific language to construct proofs for debug-
ging and verification purposes, we believe that the integration of appropriate
definitional proof trees could be useful to the development of efficient debuggers
in our higher-order logical framework.
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Sáenz-Pérez, Fernando 27
Segura, Clara 145

Tamarit, Salvador 111

Vidal, Germán 111


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Programming with Multiple Paradigms in Lua
	Introduction
	DataDescription
	Functional Programming
	Object-Oriented Programming
	Goal-Oriented Programming
	Concurrent Programming
	FinalRemarks
	References

	Constraint Based Strategies
	Introduction
	Abstract Reduction Strategies
	Abstract Reduction Systems
	Abstract Strategies
	Intensional Strategies

	Constraints and Strategies
	Conclusion
	References


	Contributed Papers
	Integrating ILOG CP Technology into $T OY$
	Introduction
	$TOY$ with SICStus Prolog CLP($FD$): $TOY(FDs)$
	ILOG CP to Improve $TOY$

	$TOY$ with ILOG CP: T$OY(FDi)$
	Connecting SICStus Prolog to C++
	Communication between $TOY$ and ILOG CP
	A $TOY(FDi)$ Example

	Measuring Performance
	Conclusions and Future Work
	References

	Termination of Context-Sensitive Rewriting with Built-In Numbers and Collection Data Structures
	Introduction
	Constrained Equational Rewrite Systems
	Context-Sensitive Rewriting with CERSs
	Dependency Pairs for Rewriting with CS-CERSs
	CS-DP Processors
	Dependency Graphs
	Subterm Criterion
	Reduction Pairs

	Evaluation and Conclusions
	References

	Semantic Labelling for Proving Termination of Combinatory Reduction Systems
	Introduction
	Combinatory Reduction Systems
	Semantics of CRSs
	Binding Algebras
	Algebra of Meta-terms
	Algebraic Semantics of Rewriting

	Higher-Order Semantic Labelling
	Semantic Labelling for Meta-terms
	Commutativity
	Labelled System
	Example

	Labelling with Quasi-models
	Conclusion
	References

	A Taxonomy of Some Right-to-Left String-Matching Algorithms
	Introduction
	The Boyer–Moore Algorithm
	Logic Programming and Exact String Matching
	Logic Program Transformation Tools
	Guidelines of Our Derivations

	Deriving the Search Part of Some Variants of the Boyer–Moore Algorithm
	Related Work
	Conclusions
	References

	Type Checking and Inference Are Equivalent in Lambda Calculi with Existential Types
	Introduction
	Domain-Free Lambda Calculi with Existence
	Lambda Calculus with Implication and Existence
	Lambda Calculus with Negation, Conjunction, and Existence

	Type Checking and Type Inference
	TC and TI Are Equivalent in DF-\lamda^{right arrow\exists}
	TC and TI Are Equivalent in DF-\lambda^{\neg\Lambda\exists
	Translation to Closed Terms
	Proof of Equivalence

	Concluding Remarks
	References

	Fast and Accurate Strong Termination Analysis with an Application to Partial Evaluation
	Introduction
	Fundamentals of Size-Change Analysis
	A Procedure for Size-Change Analysis
	Application to Partial Evaluation and Experiments
	Offline Partial Evaluation of Logic Programs
	Prolog Implementation and Empirical Evaluation

	Propagating Partial Left-to-Right Information
	Discussion and Conclusion
	References

	New Results on Type Systems for Functional Logic Programming
	Introduction
	Higher Order Patterns
	Local Definitions

	Preliminaries
	Type Derivation
	Properties of the Typing Relations
	Subject Reduction

	Type Inference for Expressions
	Type Inference for Programs
	Stratified Type Inference of a Program

	Conclusions and Future Work
	References

	A Simple Region Inference Algorithm for a First-Order Functional Language
	Introduction
	Language Concepts and Inference Examples
	Operational Semantics
	Region Annotations
	Region Implementation

	The Region Inference Algorithm
	A High-Level View of the Algorithm
	Region Inference of Function Definitions
	Second Phase of Region Inference
	The Kernel of the Algorithm
	Correctness, Optimality and Efficiency

	Examples
	Related Work and Conclusions
	References

	A Theoretical Framework for the Declarative Debugging of Functional Logic Programs with Lambda Abstractions
	Introduction
	Motivating Example
	Preliminary Notions
	The Higher-Order Rewriting Logic GHRC
	Intended Models of CPRS-Programs
	Declarative Debugging of Wrong Answers in GHRC
	Conclusions, Related and Future Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




