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Abstract. Instead of writing SQL queries directly, programmers often
prefer writing all their code in a general purpose programming language
like Java and having their programs be automatically rewritten to use
database queries. Traditional tools such as object-relational mapping
tools are able to automatically translate simple navigational queries writ-
ten in object-oriented code to SQL. More recently, techniques for trans-
lating object-oriented code written in declarative or functional styles
into SQL have been developed. For code written in an imperative style
though, current techniques are still limited to basic queries. JReq is a
system that is able to identify complex query operations like aggregation
and nesting in imperative code and translate them into efficient SQL
queries. The SQL code generated by JReq exhibits performance compa-
rable with hand-written SQL code.

1 Introduction

Because of the widespread use of databases by computer programs, language
designers have often sought to find natural and elegant ways for programmers
to write database queries in general purpose programming languages. Although
techniques have been developed to integrate database query support into func-
tional languages, for imperative languages such as Java, current techniques are
not yet able to handle complex database queries involving aggregation and nest-
ing. Support for aggregation is important because it allows a program to calcu-
late totals and averages across a large dataset without needing to transfer the
entire dataset out of a database. Similarly, support for nesting one query inside
another significantly increases the expressiveness of queries, allowing a program
to group and filter data at the database instead of transferring the data to the
program for processing.

We have developed an approach for allowing programmers to write complex
database queries inside the imperative language Java. Queries can be writ-
ten using the normal imperative Java style for working with large datasets—
programmers use loops to iterate over the dataset. The queries are valid Java
code, so no changes are needed to the Java language to support these complex
queries. To run these queries efficiently on common databases, the queries are
translated into SQL using an algorithm based on symbolic execution. We have
implemented these algorithms in a system called JReq.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 84{103.|2010.
© Springer-Verlag Berlin Heidelberg 2010



JReq: Database Queries in Imperative Languages 85

These are the main technical contributions of this work: a) We demonstrate
how complex queries can be written in Java code using loops and iterators.
We call this programming style the JReq Query Syntax (JQS) b) We describe
an algorithm that can robustly translate complex imperative queries involving
aggregation and nesting into SQL c¢) We have implemented this algorithm in
JReq and evaluated its performance.

2 Background

Currently, the most common interface for accessing database queries from Java
is to use a low-level API like JDBC. With JDBC, queries are entirely separated
from Java. They are written in the domain-specific language SQL, they are
stored in strings (which must be compiled and error-checked at runtime), and
programmers must manually marshal data into and out of queries (Fig. [[2)).
Object-oriented databases [II] and object-relational mapping tools like
Hibernate, Ruby on Rails, or EJB3 provide a higher-level object-oriented API
for accessing databases. Although these tools provide support for updates,
error-handling, and transactions, their support for queries is limited. Traditional
object-oriented operations such as navigational queries are well-supported, but
relational-style queries that filter or manipulate datasets must still be encoded
in strings and data must still be manually marshaled into and out of queries.
Figure [[l shows an example of such a query written using the Java Persistence

API [A].

List 1 = em.createQuery("SELECT a FROM Account a "
+ "WHERE 2 * a.balance < a.creditLimit AND a.country = :country")
.setParameter ("country", "Switzerland")
.getResultList();

Fig. 1. A sample query written in the Java Persistence Query Language (JPQL)

In imperative languages like Java, the normal style for filtering and manipu-
lating large datasets is for a programmer to use loops to iterate over the dataset.
As a result, researchers have tried to develop systems that allow programmers
to write database queries in imperative languages using such a syntax. We have
previously developed a system called Queryll [§] that was able to translate sim-
ple queries written in an imperative form to SQL. The system made use of fairly
ad hoc algorithms that could not be scaled to support more complex queries
involving nesting or aggregation. Wiedermann, Ibrahim, and Cook [I9/20] have
also successfully translated queries written in an imperative style into SQL. They
use abstract interpretation and attribute grammars to translate queries written
in Java into database queries. Their work focuses on gathering the objects and
fields traversed by program code into a single query (similar to the optimisations
performed by Katz and Wong [9]) and is also able to recognise simple filtering
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constraints. Their approach lacks a mechanism for inferring loop invariants and
hence cannot handle queries involving aggregation or complex nesting since these
operations span multiple loop iterations.

An alternate approach for supporting complex database queries in imperative
languages is to incorporate declarative and functional language features into the
languages. Kleisli [2T] demonstrated that it was possible to translate queries writ-
ten in a functional language into SQL. Microsoft was able to add query support
to object-oriented languages by extending them with declarative and functional
extensions in a feature called Language INtegrated Query (LINQ) [I5]. LINQ
adds a declarative syntax to .Net languages by allowing programmers to specify
SQL-style SELECT..FROM..WHERE queries from within these languages. This
syntax is then internally converted to a functional style in the form of lambda
expressions, which is then translated to SQL at runtime. Unfortunately, adding
similar query support to an imperative programming language like Java without
adding specific syntax support for declarative or functional programming results
in extremely verbose queries [4].

The difficulty of translating imperative program code to a declarative query
language can potentially be avoided entirely by translating imperative program
code to an imperative query language. The research of Liewen and DeWitt [10]
or of Guravannavar and Sudarshan [7] demonstrate dataflow analysis techniques
that could be used for such a system. Following such an approach would be
impractical though because all common query languages are specifically designed
to be declarative because declarative query languages allow for more optimisation
possibilities.

3 JReq Query Syntax

The JReq system allows programmers to write queries using normal Java code.
JReq is not able to translate arbitrary Java code into database queries, but
queries written in a certain style. We call the subset of Java code that can be
translated by JReq into SQL code the JReq Query Syntax (JQS). Although this
style does impose limitations on how code must be written, it is designed to be
as unrestrictive as possible.

3.1 General Approach and Syntax Examples

Databases are used to store large amounts of structured data, and the most
common coding convention used for examining large amounts of data in Java
is to iterate over collections. As such, JReq uses this syntax for expressing its
queries. JQS queries are generally composed of Java code that iterates over
a collection of objects from a database, finds the ones of interest, and adds
these objects to a new collection (Fig. 2l). For each table of the database, a
method exists that returns all the data from that table, and a special collection
class called a QueryList is provided that has extra methods to support database
operations like set operations and sorting.
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QueryList<String> results = new QueryList<String>();
for (Account a: db.allAccounts())
if (a.getCountry().equals("UK"))
results.add(a.getName()) ;

Fig. 2. A more natural Java query syntax

JQS is designed to be extremely lenient in what it accepts as queries. For sim-
ple queries composed of a single loop, arbitrary control-flow is allowed inside the
loop as long as there are no premature loop exits nor nested loops (nested loops
are allowed if they follow certain restrictions), arbitrary creation and modifica-
tion of variables are allowed as long as they are scoped to the loop, and methods
from a long list of safe methods can be called. At most one value can be added
to the result-set per loop iteration, and the result-set can only contain numbers,
strings, entities, or tuples. Since JReq translates its queries into SQL, the re-
strictions for more complex queries, such as how queries can be nested or how
variables should be scoped, are essentially the same as those of SQL.

One interesting property of the JQS syntax for queries is that the code can be
executed directly, and executing the code will produce the correct query result.
Of course, since one might be iterating over the entire contents of a database
in such a query, executing the code directly might be unreasonably slow. To
run the query efficiently, the query must eventually be rewritten in a database
query language like SQL instead. This rewriting essentially acts as an optional
optimisation on the existing code. Since no changes to the Java language are
made, all the code can compile in a normal Java compiler, and the compiler
will be able to type-check the query statically. No verbose, type-unsafe data
marshaling into and out of the query is used in JQS.

In JQS, queries can be nested, values can be aggregated, and results can be
filtered in more complex ways. JQS also supports navigational queries where
an object may have references to various related objects. For example, to find
the customers with a total balance in their accounts of over one million, one
could first iterate over all customers. For each customer, one could then use a
navigational query to iterate over his or her accounts and sum up the balance.

QueryList results = new QueryList();
for (Customer c: db.allCustomer()) {
double sum = O;
for (Account a: c.getAccounts())
sum += a.getBalance();
if (sum > 1000000) results.add(c);
}

Intermediate results can be stored in local variables and results can be put into
groups. In the example below, a map is used to track (key, value) pairs of the
number of students in each department. In the query, local variables are freely
used.
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QueryMap<String, Integer> students =
new QueryMap<String, Integer>(0);
for (Student s: db.allStudent()) {
String dept = s.getDepartment();
int count = students.get(dept) + 1;
students.put (dept, count);
}

Although Java does not have a succinct syntax for creating new database entities,
programmers can use tuple objects to store multiple result values from a query
(these tuples are of fixed size, so query result can still be mapped from flat
relations and do not require nested relations). Results can also be stored in sets
instead of lists in order to query for unique elements only, such as in the example
below where only unique teacher names (stored in a tuple) are kept.

QuerySet teachers = new QuerySet();
for (Student s: db.allStudent()) {
teachers.add(new Pair(
s.getTeacher() .getFirstName(),
s.getTeacher() .getLastName()));
}

In order to handle sorting and limiting the size of result sets, the collection
classes used in JQS queries have extra methods for sorting and limiting. The
JQS sorting syntax is similar to Java syntax for sorting in its use of a separate
comparison object. In the query below, a list of supervisors is sorted by name
and all but the first 20 entries are discarded.

QuerySet<Supervisor> supervisors = new QuerySet<Supervisor>();
for (Student s: db.allStudent())
supervisors.add(s.getSupervisor());
supervisors
.sortedByStringAscending(new StringSorter<Supervisor>() {
public String value(Supervisor s) {return s.getName();}})
.firstN(20);

For certain database operations that have no Java equivalent (such as SQL reg-
ular expressions or date arithmetic), utility methods are provided that support
this functionality.

4 Translating JQS Using JReq

In the introduction, it was mentioned that imperative Java code must be trans-
lated into a declarative form in order to be executed efficiently on a database.
This section explains this translation process using the query from Fig. [2] as an
example.

Since JQS queries are written using actual Java code, the JReq system can-
not be implemented as a simple Java library. JReq must be able to inspect and
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Fig. 3. JReq inserts itself in the middle of the Java toolchain and does not require
changes to existing tools

modify Java code in order to identify queries and translate them to SQL. A sim-
ple Java library cannot do that. One of our goals for JReq, though, is for it to
be non-intrusive and for it to be easily adopted or removed from a development
process like a normal library. To do this, the JReq system is implemented as
a bytecode rewriter that is able to take a compiled program outputted by the
Java compiler and then transform the bytecode to use SQL. It can be added
to the toolchain as an independent module, with no changes needed to existing
IDEs, compilers, virtual machines, or other such tools (Fig. Bl). Although our
current implementation has JReq acting as an independent code transforma-
tion tool, JReq can also be implemented as a post-processing stage of a com-
piler, as a classloader that modifies code at runtime, or as part of a virtual
machine.

The translation algorithm in JReq is divided into a number of stages. It first
preprocesses the bytecode to make the bytecode easier to manipulate. The code
is then broken up into loops, and each loop is transformed using symbolic execu-
tion into a new representation that preserves the semantics of the original code
but removes many secondary features of the code, such as variations in instruc-
tion ordering, convoluted interactions between different instructions, or unusual
control flow, thereby making it easier to identify queries in the code. This fi-
nal representation is tree-structured, so bottom-up parsing is used to match the
code with general query structures, from which the final SQL queries can then
be generated.

4.1 Preprocessing

Although JReq inputs and outputs Java bytecode, its internal processing is not
based on bytecode. Java bytecode is difficult to process because of its large in-
struction set and the need to keep track of the state of the operand stack. To
avoid this problem, JReq uses the SOOT framework [I8] from Sable to convert
Java bytecode into a representation known as Jimple, a three-address code ver-
sion of Java bytecode. In Jimple, there is no operand stack, only local variables,
meaning that JReq can use one consistent abstraction for working with values
and that JReq can rearrange instruction sequences without having to worry
about stack consistency. Figure [l shows the code of the query from Fig. ] after
conversion to Jimple form.
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$accounts = $db.allAccounts()
$iter = $accounts.iterator()
goto loopCondition
loopBody: $next = $iter.next()
$a = (Account) $next
$country = $a.getCountry()
$cmp0 = $country.equals("UK")
if $cmp0==0 goto loopCondition
loopAdd: $name = a$.getName ()
$results.add($name)
loopCondition: $cmpl = $iter.hasNext()
if $cmpl!=0 goto loopBody
exit:

Fig. 4. Jimple code of a query

4.2 Transformation of Loops

Since all JQS queries are expressed as loops iterating over collections, JReq needs
to add some structure to the control-flow graph of the code. It breaks down the
control flow graph into nested strongly-connected components (i.e. loops), and
from there, it transforms and analyses each component in turn. Since there is
no useful mapping from individual instructions to SQL queries, the analysis
operates on entire loops. Conceptually, JReq calculates the postconditions of
executing all of the instructions of the loop and then tries to find SQL queries
that, when executed, produce the same set of postconditions. If it can find such a
match, JReq can replace the original code with the SQL query. Since the result of
executing the original series of instructions from the original code gives the same
result as executing the query, the translation is safe. Unfortunately, because of
the difficulty of generating useful loop invariants for loops [3], JReq is not able
to calculate postconditions for a loop directly.

JReq instead examines each loop iteration separately. It starts at the entry
point to the loop and walks the control flow graph of the loop until it arrives
back at the loop entry point or exits the loop. As it walks through the control
flow graph, JReq enumerates all possible paths through the loop. The possible
paths through the query code from Fig.[d are listed in Fig.[Bl Theoretically, there
can be an exponential number of different paths through a loop since each if
statement can result in a new path. In practise, such an exponential explosion in
paths is rare. Our Java query syntax has an interesting property where when an
if statement appears in the code, one of the branches of the statement usually
ends that iteration of the loop, meaning that the number of paths generally
grows linearly. The only type of query that seems to lead to an exponential
number of paths are ones that try to generate “CASE WHEN... THEN” SQL
code, and these types of queries are rarely used. Although we do not believe
exponential path explosion to be a problem for JReq, such a situation can be
avoided by using techniques developed by the verification community for dealing
with similar problems [6].
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Type Path

Exiting loopCondition — exit

Looping loopCondition — loopBody —O

Looping loopCondition — loopBody — loopAdd —O

Fig. 5. Paths through the loop

Path: loopCondition — loopBody — loopAdd —O
Preconditions S$iter.hasNext() != 0
((Account)$iter.next()).getCountry().equals("UK”) 1= 0
Postconditions  $iter.hasNext()
$cmpl = $iter.hasNext()
Siter.next()
$next = Siter.next()
$a = (Account) $iter.next()
((Account)$iter.next()).get Country()
$Scountry = ((Account)$iter.next()).getCountry()
((Account)$iter.next()).getCountry().equals(” UK”)
$emp0 = ((Account)$iter.next()).get Country().equals(”UK”)
((Account)$iter.next()).getName()
$name = ((Account)$iter.next()).getName()
$results.add(((Account)3iter.next()).getName())

Fig. 6. Hoare triple expressing the result of a path (expressions that will be pruned by
liveness analysis are indented)

For each path, JReq generates a Hoare triple. A Hoare triple describes the
effect of executing a path in terms of the preconditions, code, and postconditions
of the path. JReq knows what branches need to be taken for each path to be
traversed, and the conditions on these branches form the preconditions for the
paths. Symbolic execution is used to calculate the postconditions for each path.
Essentially, all variable assignments and method calls become postconditions.
The use of symbolic execution means that all preconditions and postconditions
are expressed in terms of the values of variables from the start of the loop
iteration and that minor changes to the code like simple instruction reordering
will not affect the derived postconditions. There are many different styles of
symbolic execution, and JReq’s use of symbolic execution to calculate Hoare
triples is analogous to techniques used in the software verification community,
particularly work on translation validation and credible compilation [T412].

Figure[d shows the different preconditions and postconditions of the last path
from Fig. Bl Not all of the postconditions gathered are significant though, so
JReq uses variable liveness information to prune assignments that are not used
outside of a loop iteration and uses a list of methods known not to have side-
effects to prune safe method calls. Figure [ shows the final Hoare triples of all
paths after pruning.

Basically, JReq has transformed the loop instructions into a new tree repre-
sentation where the loop is expressed in terms of paths and various precondition
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Exiting Path
Preconditions $iter.hasNext() == 0
Postconditions
Looping Path
Preconditions $iter.hasNext() = 0
((Account)$iter.next()).getCountry().equals(”UK”) == 0
Postconditions S$iter.next()
Looping Path
Preconditions $iter.hasNext() = 0
((Account)$iter.next()).getCountry().equals("UK”) != 0
Postconditions $iter.next()
$results.add(((Account)$iter.next()).getName())

Fig. 7. Final Hoare triples generated from Fig. @] after pruning

and postcondition expressions. The semantics of the original code are preserved
in that all the effects of running the original code are encoded as postcondi-
tions in the representation, but problems with instruction ordering or tracking
instruction side-effects, etc. have been filtered out.

In general, JReq can perform this transformation of loops into a tree represen-
tation in a mechanical fashion, but JReq does make some small optimisations to
simplify processing in later stages. For example, constructors in Java are meth-
ods with no return type. In JReq, constructors are represented as returning the
object itself, and JReq reassigns the result of the constructor to the variable on
which the constructor was invoked. This change means that JReq does not have
to keep track of a separate method invocation postcondition for each constructor
used in a loop.

4.3 Query Identification and Generation

Once the code has been transformed into Hoare triple form, traditional transla-
tion techniques can be used to identify and generate SQL queries. For example,
Fig. B shows how one general Hoare triple representation can be translated into
a corresponding SQL form. That particular Hoare triple template is sufficient to
match all non-nested SELECT...FROM...WHERE queries without aggregation
functions. In fact, because the transformation of Java code into Hoare triple form
removes much of the syntactic variation between code fragments with identical
semantics, a small number of templates is sufficient to handle most queries.

Since the Hoare triple representation is in a nice tree form, our implementation
uses bottom-up parsing to classify and translate the tree into SQL. When using
bottom-up parsing to match path Hoare triples to a template, one does have to
be careful that each path add the same number and same types of data to the
result collection (e.g. in Fig. Bl one needs to check that the types of the various
val A, being added to $results is consistent across the looping paths). One can
use a unification algorithm across the different paths of the loop to ensure that
these consistency constraints hold.
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Exiting Path

Preconditions $iter.hasNext() == 0 SELECT

Postconditions exit loop CASE WHEN pred; THEN vall;
Looping Path; WHEN preds THEN valls

Preconditions $iter.hasNext() != 0

END,

Postconditions $iter.next() CASE WHEN pred; THEN valB
...etc. WHEN preds THEN valBs
Looping Path,,

Preconditions $iter.hasNext() != 0 END,

pred, e
Postconditions $iter.next|() FROM ?
$results.add(valA,, valB,,, ...) WHERE pred; OR preds OR ...
...etc.

Fig. 8. Code with a Hoare triple representation matching this template can be trans-
lated into a SQL query in a straight-forward way

One further issue complicating query identification and generation is the fact
that a full JQS query is actually composed of both a loop portion and some
code before and after the loop. For example, the creation of the object holding
the result set occurs before the loop, and when a loop uses an iterator object
to iterate over a collection, the definition of the collection being iterated over
can only be found outside of the loop. To find these non-loop portions of the
query, we recursively apply the JReq transformation to the code outside of the
loop at a higher level of nesting. Since the JReq transformation breaks down a
segment of code into a finite number of paths to which symbolic execution is
applied, the loop needs to be treated as a single indivisible “instruction” whose
postconditions are the same as the loop’s postconditions during this recursion.
This recursive application of the JReq transformation is also used for converting
nested loops into nested SQL queries. Figure [0 shows the Hoare triples of the
loop and non-loop portions of the query from Fig.

Figure shows some sample operational semantics that illustrate how the
example query could be translated to SQL. In the interest of space, these opera-
tional semantics do not contain any error-checking and show only how to match
the specific query from Fig. [ (as opposed to the general queries supported by
JReq). The query needs to be processed three times using mappings S, F, and
W to generate SQL select, from, and where expressions respectively. o holds in-
formation about variables defined outside of a loop. In this example, o describes
the table being iterated over, and X describes how to look up fields of this table.

JReq currently generates SQL queries statically by replacing the bytecode
for the JQS query with bytecode that uses SQL instead. Static query generation
allows JReq to apply more optimisations to its generated SQL output and makes
debugging easier because we can examine generated queries without running the
program. During this stage, JReq can also optimise the generated SQL queries
for specific databases though our prototype currently does not contain such
an optimiser. In a previous version of JReq, SQL queries were constructed at
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Hoaretriples(

Exit(
Pre($iter.hasNext() == 0),
Post ()

),

Looping(
Pre($iter.hasNext() != 0,

((Account)$iter.next()) .getCountry() .equals("UK") == 0),
Post (Method($iter.next()))
),
Looping(
Pre($iter.hasNext() != 0,
((Account)$iter.next()) .getCountry() .equals("UK") != 0),
Post (Method($iter.next()),
Method ($uk.add (((Account)$iter.next()) .getName())))))

PathHoareTriple(
Pre(),
Post($results = (new QueryList()).addAll(
$db.allAccounts() .iterator () .AddQuery()))))

Fig. 9. The Hoare triples of the loop and non-loop portion of the query from Fig.
The loop Hoare triples are identical to those from Fig. [7l except they have been
rewritten so as to emphasise the parsability and tree-like structure of the Hoare triple
form.

runtime and evaluated lazily. Although this results in slower queries, it allows
the system to support a limited form of inter-procedural query generation. A
query can be created in one method, and the query result can later be refined
in another method.

During query generation, JReq uses line number debug information from the
bytecode to show which lines of the original source files were translated into
SQL queries and what they were translated into. IDEs can potentially use this
information to highlight which lines of code can be translated by JReq as a pro-
grammer types them. Combined with the type error and syntax error feedback
given by the Java compiler at compile-time, this feedback helps programmers
write correct queries and optimise query performance.

4.4 Implementation Expressiveness and Limitations

The translation algorithm behind JReq is designed to be able to recognise queries
with the complexity of SQL92 [1]. In our implementation though, we focused on
the subset of operations used in typical SQL database queries. Figure [[I] shows
a grammar of JQS, the Java code that JReq can translate into SQL. We specify
JQS using the grammar of Hoare triples from after the symbolic execution stage
of JReq. We used this approach because it is concise and closely describes what
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a = Exit (Pre($iter.hasNext ()==0), Post())
b = Looping(Pre($iter.hasNext()!=0, ...),
Post (Method ($iter.next())))
¢ = Looping(Pre($iter.hasNext()!=0, d),
Post (Method ($iter.next()), e))
e = Method (resultset.add (child))
S+ (child, o) | select
Wk (d,o) || where
S+ (Hoaretriples(a,b,c), o) | select
W  (Hoaretriples(a,b,c), o) || where

Wk (left,o) | where;
Wk (right,o) || where,

Wk (left.equals(right)==0, ) || where;<>where,

Wk (left,o) | where;
Wk (right,o) || where,
W (left.equals(right) '=0,0) || where;=where, S+ ("UK",o) || “UK”
w |_ <"UK",O’> ll “UK”

X'+ (child, o, NAME) | val X+ {child, o, COUNTRY) {} val
S+ (child.getName (), o) |} val S (child.getCountry(), o) | val
W E (child.getName (), o) |} val W F (child.getCountry(), o) | val

Y F ((Account)$iter.next (), o, COUNTRY) || 0(NEXT).Country
Y F ((Account)$iter.next (), o, NAME) || o(NEXT).Name

F I ($db.allAccounts() .iterator(),o) || Account

Sk (HoareTriples(...),o[NEXT := A]) | select
W  (HoareTriples(...),o[NEXT := A]) |} where
F + (iterator,o) | from
(resultset.addAll(iterator .AddQuery()), o) |
SELECT select FROM from AS A WHERE where

Fig. 10. Sample operational semantics for translating Fig. @ to SQL

queries will be accepted. We have found that specifying JQS using a traditional
grammar directly describing a Java subset to be too imprecise or too narrow to
be useful. Because JReq uses symbolic execution, for each query, any Java code
variant with the same semantic meaning will be recognised by JReq as being
the same query. This large number of variants cannot be captured using a direct
specification of a Java grammar subset.

In the figure, the white boxes refer to grammar rules used for classifying loops.
The grey boxes are used for combining loops with context from outside of the
loop. There are four primary templates for classifying a loop: one for adding
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<Query> =
PathHoareTriple(Pre(), Post(<var> = <add-subquery-instruction>[<SortLimit>]))
| PathHoareTriple(Pre(), Post(<var> = <group-subquery-instruction>[.asList()<SortLimit>]))
| PathHoareTriple(Pre(), Post(<var> = <agg-subquery-instruction>))

!

<Sortl

Limit> ::=

[.sortedBy(Int | Double | String | Date)(Ascending | Descending)(<sort expr>)]*

[firstN(<constant>)]

<add-subquery-instruction>, <group-subquery-instruction>,
<agg-subquery-instruction>, <partial-subquery-instruction> ::=

new (QueryList | QuerySet)().addAll(<iterator>.AddQuery(<parameters>))
| new QueryMap().putAll(<iterator>.GroupQuery(<parameters>))
| <agg-init> (+= | max= | min= | tuple=) <iterator>.AggQuery(<parameters>)

| <var>.addAll(<iterator>.AddQuery(<parameters>))
| <var>.putAll(<iterator>.GroupQuery(<parameters>))

| <var> (+= | max= | min= | tuple=) <iterator>.AggQuery(<parameters>))

!

<iterator> ::=
<list>.iterator()

<parameters> ::= HoareTriples(
<expr> [, <expr>]*

Exit(Pre(<var>.hasNext() == 0), Post())
[, <Looplgnorable>]* [, <LoopTemplate>]+)

<HoareTriples> ::=

| HoareTriples(
Exit(Pre(<var>.hasNext() == 0), Post()),
Looping(Pre(<var>.hasNext() != 0),
Post(<partial-subquery-instruction>)))

!

<Looplgnorable> ::=

Looping(
Pre( <var>.hasNext() !=0
[, <Precondition>]*),
Post(Method(<var>.next())))

<LoopTemplate> ::=
Looping(
Pre(<var>.hasNext() != 0 [, <Precondition>]*),
Post(Method(<var>.next()), <LoopAction>))

!

<LoopAction> ::=
Method(<var>.add(<expr>))
| Method(<var>.put(<expr>, <expr>))
| <var> = <Agg>

<Precondition> ::=

<expr> (== | <|>|<=|>=| =) <expr>
| <expr>.equals(<expr>)

| Date.(before | after)(<expr>, <expr>)
| Util.SQLStringLike(<expr>, <expr>)

!

<Agg> =
<expr> + <expr>
| Math.max(<expr>, <expr>)
| new <Tuple>(<Agg> [,<Agg>]+)

| <list>.contains(<expr>)

<expr> =

<expr> (* | /| +| -) <expr>
| <list>.getValue()

| <var>

| <constant>

| <var>.next()

| new <Tuple>(<expr> [, <expr>]+) | (Integer | Double | String).valueOf(<expr>)

| <expr>.(int | double)Value()

| Util.(SQLSubstring | addDays | addMonths | addYears)(<expr>, <expr>)

| Util.extractYear(<expr>)
| <expr>.get<field name>()
| <agg-subquery-instruction>

N,

<list> ::=
<exp
| <va

r>.get<joinLink>()
r>.all<table name>()

| new QueryList()
| <list>.with(<expr>)
| <group-subquery-instruction>.asList()

| <ad

d-subquery-instruction>

Fig. 11. JQS grammar
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elements to a collection, one for adding elements to a map, one for aggregating
values, and another for nested loops resulting in a join. Most SQL operations
can be expressed using the functionality described by this grammar.

Some SQL functionality that is not currently supported by JQS include set
operations, intervals, and internationalisation because the queries we were work-
ing with did not require this functionality. We also chose not to support NULL
and related operators in this iteration of JQS. Because Java does not support
three-value logic or operator overloading, we would have to add special objects
and methods to emulate the behaviour of NULL, resulting in a verbose and
complicated design. Operations related to NULL values such as OUTER JOINs
are not supported as well.

JQS also currently offers only basic support for update operations since it
focuses only on the query aspects of SQL. SQL’s more advanced data manip-
ulation operations are rarely used and not too powerful, so it would be fairly
straight-forward to extend JQS to support these operations. Most of these oper-
ations are simply composed of a normal query followed by some sort of INSERT,
DELETE, or UPDATE involving the result set of the query.

In the end, our JReq system comprises approximately 20 thousand lines of
Java and XSLT code. Although JReq translations can be applied to an entire
codebase, we use annotations to direct JReq into applying its transformations
only to specific methods known to contain queries. Additionally, we had some
planned features that we never implemented because we did not encounter any
situations during our research that required them: we did not implement han-
dling of non-local variables, we did not implement type-checking or unification
to check for errors in queries, and we did not implement pointer aliasing support.

5 Evaluation

51 TPC-W

To evaluate the behaviour of JReq, we tested the ability for our system to handle
the database queries used in the TPC-W benchmark [I6]. TPC-W emulates
the behaviour of database-driven websites by recreating a website for an online
bookstore.

We started with the Rice implementation of TPC-W [2], which uses JDBC
to access its database. For each query in the TPC-W benchmark, we wrote an
equivalent query using JQS and manually verified that the resulting queries were
semantically equivalent to the originals. We could then compare the performance
of each query when using the original JDBC and when using the JReq system.
Our JReq prototype does not provide support for database updates, so we did
not test any queries involving updates. Since this experiment is intended to ex-
amine the queries generated by JReq as compared to hand-written SQL, we also
disabled some of the extra features of JReq such as transaction and persistence
lifecycle management.

We created a 600 MB database in PostgreSQL 8.3.0 [13] by populating
the database with the number of items set to 10000. We did not run the
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complete TPC-W benchmark, which tests the complete system performance of
web servers, application servers, and database servers. Instead, we focused on
measuring the performance of individual queries instead. For each query, we
first executed the query 200 times with random valid parameters to warm the
database cache, then we measured the time needed to execute the query 3000
times with random valid parameters, and finally we garbage collected the system.
Because of the poor performance of the getBestSellers query, we only executed it
for 50 times to warm the cache and measured the performance of executing the
query only 250 times. We first took the JQS version of the queries, measured the
performance of each query consecutively, and repeated the benchmark 50 times.
We took the average of only the last 10 runs to avoid the overhead of Java dy-
namic compilation. We then repeated this experiment using the original JDBC
implementation instead of JQS. The database and the query code were both run
on the same machine, a 2.5 GHz Pentium IV Celeron Windows machine with
1 GB of RAM. The benchmark harness was run using Sun’s 1.5.0 Update 12
JVM. JReq required approximately 7 seconds to translate our 12 JQS queries
into SQL.

The performance of each of the queries is shown in Table[Il In all cases, JReq is
faster than hand-written SQL. These results are a little curious because one usu-
ally expects hand-written code to be faster than machine-generated code. If we
look at the one query in Fig. [[2that shows the code of the original hand-written
JDBC code and compares it to the comparable JQS query and the JDBC gen-
erated from that query, we can see that the original JDBC code is essentially
the same as the JDBC generated by JReq. In particular, the SQL queries are
structurally the same though the JReq-generated version is more verbose. What

Table 1. The average execution time, standard deviation, and difference from hand-
written JDBC/SQL (all in milliseconds) of the TPC-W benchmark are shown in this
table with the column JReq NoOpt referring to JReq with runtime optimisations dis-
abled. One can see that JReq offers better performance than the hand-written SQL
queries.

JDBC JReq NoOpt JReq

Query Time o Time o A Time o A
getName 3502 112 3633 24 1% 2241 15 (38%)
getCustomer 8424 79 8944 57 6% 3939 24 (53%)
doGetMostRecentOrder 29108 731 88831 644 205% 8009 57 (72%)
getBook 6392 30 7347 55  15% 3491 27 (45%)
doAuthorSearch 10216 24 10414 559 2% 7306 46 (28%)
doSubjectSearch 16999 128 16898 86 (1%) 13667 120 (20%)
getIDandPassword 3706 33 3820 41 3% 2375 25 (36%)
doGetBestSellers 4472 50 4455 51 (0%) 3936 39 (12%)
doTitleSearch 27302 203 26979 418 (1%) 23985 61 (12%)
doGetNewProducts 23111 68 24447 128 6% 21086 70 (9%)
doGetRelated 6162 52 7731 92 25% 2690 34 (56%)

)

getUserName 3506 57 3569 13 2% 2214 11 (3%
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Original hand-written JDBC query

PreparedStatement getUserName = con.prepareStatement(
"SELECT c_uname FROM customer WHERE c_id = ?");

getUserName.setInt(1, C_ID);

ResultSet rs=getUserName.executeQuery();

if (!rs.next()) throw new Exception();

u_name = rs.getString("c_uname");

rs.close(); stmt.close();

Comparable JQS query
EntityManager em = db.begin();
DBSet<String> matches = new QueryList<String>();
for (DBCustomer c: em.allDBCustomer())
if (c.getCustomerId()==C_ID) matches.add(c.getUserName());
u_name = matches.get();
db.end(em, true);

JDBC generated by JReq
PreparedStatement stmt = null; ResultSet rs = null;
try { stmt = stmtCache.poll();
if (stmt == null) stmt = em.db.con.prepareStatement (
"SELECT (A.C_UNAME) AS COLO "
+ "FROM Customer AS A WHERE (((A.C_ID)=7))");
stmt.setInt (1, paramO);
rs = stmt.executeQuery();
QueryList toReturn = new QueryList();
while(rs.next()) { Object value = rs.getString(1);
toReturn.bulkAdd(value); }
return toReturn;
} catch (SQLException e) { ... } finally {
if (rs != null) try { rs.close(); } catch...
stmtCache.add(stmt); }

Fig. 12. Comparison of JDBC vs. JReq on the getUserName query

makes the JReq version faster though is that JReq is able to take advantage of
small runtime optimisations that are cumbersome to implement when writing
JDBC by hand. For example, all JDBC drivers allow programmers to parse SQL
queries into an intermediate form. Whenever the same SQL query is executed
but with different parameters, programmers can supply the intermediate form
of the query to the SQL driver instead of the original SQL query text, thereby
allowing the SQL driver to skip repeatedly reparsing and reanalysing the same
SQL query text. Taking advantage of this optimisation in hand-written JDBC
code is cumbersome because the program must be structured in a certain way
and a certain amount of bookkeeping is involved, but this is all automated by
JReq.

Table[ also shows the performance of code generated by JReq if these runtime
optimisations are disabled (denoted as JReq NoOpt). Of the 12 queries, the
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performance of JReq and hand-written JDBC is identical for six of them. For
the six queries where JReq is slower, four are caused by poorly formulated queries
that fetched more data than the original queries (for example, they fetch entire
entities whereas the original queries only fetched most of the fields of the entity).
Two other queries are slower because JReq generates queries that are more
verbose than the original queries thereby requiring more work from the SQL
parser.

Overall though, all the queries from the TPC-W benchmark, a benchmark
that emulates the behaviour of real application, can be expressed in JQS, and
JReq can successfully translate these JQS queries into SQL. JReq generates SQL
queries that are structurally similar to the original hand-written queries for all
of the queries. Although the machine-generation of SQL queries may result in
queries that are more verbose and less efficient than hand-written SQL queries,
by taking advantage of various optimisations that a normal programmer may
find cumbersome to implement, JReq can potentially exceed the performance of
hand-written SQL.

5.2 TPC-H

Although TPC-W does capture the style of queries used in database-driven web-
sites, these types of queries make little use of more advanced query functionality
such as nested queries. To evaluate JReq’s ability to handle more difficult queries,
we have run some benchmarks involving TPC-H [I7]. The TPC-H benchmark
tests a database’s ability to handle decision support workloads. This workload is
characterised by fairly long and difficult ad hoc queries that access large amounts
of data. The purpose of this experiment is to verify that the expressiveness of
the JQS query syntax and JReq’s algorithms for generating SQL queries are
sufficient to handle long and complex database queries.

We extracted the 22 SQL queries and parameter generator from the TPC-H
benchmark and modified them to run under JDBC in Java. We chose to use
MySQL 5.0.51 for the database instead of PostgreSQL in this experiment in
order to demonstrate JReq’s ability to work with different backends. For this
benchmark, we used a 2.5 GHz Pentium IV Celeron machine with 1 GB of RAM
running Fedora Linux 9, and Sun JDK 1.5.0 Update 16.

We then rewrote the queries using JQS syntax. All 22 of the queries could be
expressed using JQS syntax except for query 13, which used a LEFT OUTER
JOIN, which we chose not to support in this version of JQS, as we described
in Sect. 4l To verify that the JQS queries were indeed semantically equivalent
to the original queries, we manually compared the query results between JDBC
and JReq when run on a small TPC-H database using a scale factor of 0.01,
and the results matched. This shows the expressiveness of the JQS syntax in
that 21 of the 22 queries from TPC-H can be expressed in the JQS syntax and
be correctly translated into working SQL code. JReq required approximately 33
seconds to translate our 21 JQS queries into SQL.

We then generated a TPC-H database using a scale factor of 1, resulting in
a database about 1GB in size. We executed each of the 21 JQS queries from
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Table 2. TPC-H benchmark results showing average time, standard deviation, and
time difference (all results in seconds)

JDBC JReq JDBC JReq
Query Time o Time o A Query Time o Time o A
ql 73.5 04 719 3.4 (2%) ql2 23.4 0.5 29.7 0.2 2%
q2 1454 2.2 146.0 1.9 0% ql4 491.7 8.9 500.8 10.1 2%
q3 37.9 0.6 386 0.9 2% qlb 24.9 0.7 24.8 0.6 (0%)
q4 23.0 0.5 23.8 0.2 3% ql6 21.3 06 >1hr 0.2 -
ab 209.1 4.2 206.1 3.2 (1%) ql7 2.1 0.2 11.0 3.6 429%

q6 152 0.3 158 03 4% q18 >1hr 0.0 349.3 4.0 -
qr 79.1 0.5 831 1.6 5% ql9 2.8 0.1 18.1 0.4 540%

q8 48.8 1.7 51.0 1.9 4% q20 69.4 4.3 508.4 11.4 633%
q9 682.0 974 690.2 979 1% q21 245.5 3.2 517.0 7.1 111%
ql0 471 1.0 472 05 0% 22 1.1 0.0 1.6 0.0 43%
qll 41.7 0.6 419 0.7 1%

TPC-H in turn using random query parameters, with a garbage collection cycle
run in-between each query. We then executed the corresponding JDBC queries
using the same parameters. This was repeated six times, with the last five runs
kept for the final results. Queries that ran longer than one hour were cancelled.
Table 2] summarises the results of the benchmarks.

Unlike TPC-W, the queries in TPC-H take several seconds each to execute,
so runtime optimisations do not significantly affect the results. Since almost all
the execution time occurs at the database and since the SQL generated from the
JQS queries are semantically equivalent to the original SQL queries, differences
in execution time are mostly caused by the inability of the database’s query
optimiser to find optimal execution plans. In order to execute the complex queries
in TPC-H efficiently, query optimisers must be able to recognise certain patterns
in a query and restructure them into more optimal forms. The particular SQL
generated by JReq uses a SQL subset that may match different optimisation
patterns in database query optimisers than hand-written SQL code. For example,
the original SQL for query 16 evaluates a COUNT(DISTINCT) operation inside
of GROUP BY. This is written in JQS using an equivalent triply nested query,
but MySQL is not able to optimise the query correctly, and running the triply
nested query directly results in extremely poor performance. On the other hand,
in query 18, JReq’s use of deeply nested queries instead of a more specific SQL
operation (in this case, GROUP BY..HAVING) fits a pattern that MySQL is
able to execute efficiently, unlike the original hand-written SQL. Because of the
sensitivity of MySQL’s query optimiser to the structure of SQL queries, it will
be important in the future for JReq to provide more flexibility to programmers
in adjusting the final SQL generated by JReq.

Overall, 21 of the 22 queries from TPC-H could be successfully expressed using
the JQS syntax and translated into SQL. Only one query, which used a LEFT
OUTER JOIN, could not be handled because JQS and JReq do not currently
support the operation yet. For most of the queries, the JQS queries executed
with similar performance to the original queries. Where there are differences in
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execution time, most of these differences can be eliminated by either improving
the MySQL query optimiser, adding special rules to the SQL generator to gen-
erate patterns that are better handled by MySQL, or extending the syntax of
JQS to allow programmers to more directly specify those specific SQL keywords
that are better handled by MySQL.

6 Conclusions

The JReq system translates database queries written in the imperative language
Java into SQL. Unlike other systems, the algorithms underlying JReq are able
to analyse code written in imperative programming languages and recognise
complex query constructs like aggregation and nesting. In developing JReq, we
have created a syntax for database queries that can be written entirely with
normal Java code, we have designed an algorithm based on symbolic execution
to automatically translate these queries into SQL, and we have implemented a
research prototype of our system that shows competitive performance to hand-
written SQL.

We envision JReq as a useful complement to other techniques for translat-
ing imperative code into SQL. For common queries, existing techniques often
provide greater syntax flexibility than JReq, but for the most complex queries,
programmers can use JReq instead of having to resort to domain-specific lan-
guages like SQL. As a result, all queries will end up being written in Java, which
can be understood by all the programmers working on the codebase.
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