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Abstract. The productivity of a compiler development team depends
on its ability not only to the design effective solutions to known code
generation problems, but also to uncover potential code improvement op-
portunities. This paper describes a data mining tool that can be used to
identify such opportunities based on a combination of hardware-profiling
data and on compiler-generated counters. This data is combined into
an Execution Flow Graph (EFG) and then FlowGSP, a new data min-
ing algorithm, finds sequences of attributes associated with subpaths of
the EFG. Many examples of important opportunities for code improve-
ment in the IBM® Testarossa compiler are described to illustrate the
usefulness of this data mining technique. This mining tool is specially
useful for programs whose execution is not dominated by a small set of
frequently executed loops. Information about the amount of space and
time required to run the mining tool are also provided. In comparison
with manual search through the data, the mining tool saved a significant
amount of compiler development time and effort.

1 Introduction

Compiler developers continue to face the challenges of accelerated time-to-market
and significantly reduced release cycles for both hardware and software. Micro-
architectures continue to grow in numbers, complexity, and diversity. In this
evolving technological environment, commercial-compiler developing teams must
discover and rank the next set of opportunities for code transformations that will
provide the highest performance improvement per development cost ratio.

The discovery of opportunities for profitable code transformations in large
enterprise applications presents additional challenges. Traditionally, compiler de-
velopers have relied on the intuition that the code that is relevant for perfor-
mance improvement is located in easily identifiable, frequently executed, regions
of the code — often called hot loops. However, many enterprise applications
do not exhibit discernible regions of frequently executed code. Rather, these
applications exhibit a flat profile: thousands of methods are invoked along an
execution path, and no single method accounts for a significant portion of the
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execution time — even though a typical transaction executes millions of instruc-
tions. Thus, focusing development effort on any single method provides negligible
overall performance improvement. However, these applications may display code
patterns that appear repeatedly throughout the code base. Even though no sin-
gle instance of such a pattern is executed frequently, the aggregated run time
of the pattern may be significant. Applications with flat profiles are becoming
increasingly important for commercial compilers that are used to generate code
for middleware and enterprise information-technology (IT) infrastructure.

Thus, a challenge when developing a compiler for applications with flat pro-
files is to discover code patterns whose aggregated execution time is significant
so that development efforts can be focused into improving the code genera-
tion for such patterns. This paper describes a data mining infrastructure, based
on the recently developed FlowGSP algorithm [I3], which can be used for au-
tomatic analysis of code compiled by the IBM Testarossa Just-in-Time (JIT)
Compiler [§]. This infrastructure was used to discover patterns in the code gen-
erated for applications running in the BM® WebSphere® Application Server
and for SPECjvm2008 [20] running under Linux® for System 7® [22119).

WebSphere Application Server is a fully compliant Java™ Enterprise Edi-
tion (JEE) application server written in Java code [II]. This paper uses the
DayTrader Benchmark in the WebSphere Application Server[7]. This benchmark
produces a typical WebSphere Application Server profile reporting the compi-
lation of thousands of methods, with no method representing more than 2% of
the total execution time. For instance, cache misses represent 12% of the overall
run time in one run of a certain application in application server. But, to ac-
count for 75% of the misses requires the aggregation of misses from 750 different
methods [8].

SPECjvm2008 exemplifies the growing variety of industry standards that
are quickly expanding the scope of benchmarks. The SPECjvm2008 suite com-
prises more than double the number of benchmarks that were in its predecessor,
SPECjvm98 [18]. Some of the benchmarks in the newer suite have flat profiles,
making the analysis and identification of opportunities for code improvement
more difficult, more tedious and more indeterminate.

The IBM Testarossa JIT compiler ships as part of the IBM Developer Kit
for Java which powers thousands of mission-critical applications on everything
from embedded devices, to desktops, to high-end servers. The IBM Testarossa
JIT is a state-of-the-art commercial compiler that offers a very complete set
of traditional OO-based and Java-based optimizations. As a dynamic compiler,
Testarossa is also equipped with a sophisticated compilation control system for
online feedback-directed re-compilation [21].

The analysis presented in this paper was performed on Linux for System z.
System z10™ is the latest and most powerful incarnation of IBM’s mainframe
family, which continues to provide the foundation for IT centers for many of
the world’s largest institutions. The System z10 processor has a 4.4 GHz dual
core super-scalar pipeline, executes instructions in order, and can be character-
ized as an address-generation-interlocked pipeline. This processor is a complex
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instruction set computer with a rich set of register-to-register, register-to-storage,
storage-to-storage, and complex branching operations, in addition to hardware
co-processors for cryptography, decimal-floating-point, and Lempel-Ziv compres-
sion [22]. The System z10 processor also provides an extensive set of performance-
monitoring counters that can be used to examine the state of the processor as
it executes the program.

The data mining infrastructure was applied to a large set of compiler at-
tributes and hardware counters. The attributes and hardware data are organized
in a directed graph representing program flow. Edge frequencies are used to rep-
resent the probabilistic flow between basic blocks. The FlowGSP algorithm is
general and can mine any flow graph. A vertex in this flow graph may represent
any single-entry-single-exit region such as an instruction, a basic block, a byte-
code, or a method. Attributes are associated with each vertex, and the algorithm
mines for sequences of attributes along a path.

The main contributions of this paper are:

— An introduction of the problem of identifying important code patterns that
occur in applications with flat profiles, such as enterprise applications.

— A description of a new data mining framework that can be used to discover
important opportunities for code generation improvement in a commercial
dynamic compiler environment.

— A demonstration of the effectiveness of the data mining tool through the
narrative of several discoveries in the code generated for the System z archi-
tecture by the IBM Testarossa compiler.

— Statistics on space and time requirements for the usage of the mining tool
in this environment. This information should be relevant for other compiler
groups that wish to implement a similar tool, as well as for researchers that
wish to improve on our design.

Section 2] explains the need for the mining tool through the description of one
of the important discoveries in a very common segment of code. The mining
tool is described in Section Several additional improvement opportunities
discovered by the tool are described in Section @l Experimental data describing
the time and space requirements for the usage of the tool in the Testarossa
environment is presented in Section Bl Section [ discusses previous work related
to the development of similar analysis tools.

2 DMotivating Case Study

This section outlines the motivation for the use of data mining to discover pat-
terns that account for significant execution time by describing one such pattern
discovered by FlowGSP. The data mined by FlowGSP to discover this pattern in-
cludes, instruction type, execution time, cache misses, pipeline interlock, etc [13].
This pattern is part of the array-copy code generated by Testarossa for the Sys-
tem z10 platform. FlowGSP identified that, in some benchmarks, more than
5% of the execution time was due to a single instruction called execute (EX).
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This finding is surprising because the IBM Testarossa JIT compiler uses this
instruction in only one scenario — to implement the tail-end of an array copyEl
More specifically, a variable-length array copy is implemented with a loop that
executes an MVC (Move Characters) instruction. The MVC instruction is very
efficient at copying up to 256 bytes. The 256-byte copy length is encoded as a
literal value of the instruction. Figure[llshows the code generated for array copy-
ing. Any residual of the copy after the repeated execution of MVCs is handled by
using the EX instruction. The EX instruction executes a target instruction out
of order. Before executing the target, EX replaces an 8-bit literal value specified
in the target with an 8-bit field from a register specified in EX. The overloading
is done through an OR of the two bit fields. For the residual array-copy code
generated by Testarossa, the register specified in EX contains the length of the
residual array and the target instruction is a MVC instruction.

Rsrc = Address of source array;
Rtrgt = Address of target array;
while (Rlength >= 256)
MVC Rsrc, Rtrgt, 256
Rsrc = Rsrc + 256;
Rtrgt = Rtgt + 256;
Rlength = Rlength — 256;
}
EX ResLabel, Rlength, mvcLabel;

ResLabel: MVC Rsrc, Rtrgt, 0

Fig. 1. Pseudo-assembly code for array copy

After the data mining tool identified that 5% of the time was spent in EX,
we examined the profiling data more carefully to find out that the 5% of time
spent in EX is spread over several methods. Therefore, the time spent in the EX
instruction would not be apparent from a study of individual methods. More-
over, part of that time is spent in the MVC instruction. Nonetheless, the EX
instruction incurs significantly more misses in the data-cache and the translation-
look-aside-buffer (TLB) misses than expected. There are two potential reasons
for this:

1. The length of many array copies is less than 256 byte long. In this case, data
cache misses would occur while fetching the source/target operands of MVC.
2. The EX instruction misses the cache upon fetching the overloaded MVC.
This miss occurs because the targeted MVC instruction is located next to
other insructions used by the program, and hence resides in the instruction
cache. On a z10, the EX instruction needs the targeted MVC in the data

1 Array copies use 256-byte copy instructions, the tail-end is any final portion of the
copy that is smaller than 256 bytes.
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cache. Moving the targeted MVC from the instruction cache to the data
cache incurs an extra cost that was not apparent to the compiler designers.

This discovery started an important review of the array-copy code generated by
the compiler. A suitable strategy must be designed to isolate the targeted MVC
from the other data values that are located around it. This strategy must take
into consideration the long lines in the architecture.

An important question is why there is the need for a data mining tool to
discover such an opportunity. Could simple inspection of the hardware and com-
piler profiling data reveal this opportunity? Even if a developer were to spot the
cache miss caused by the EX instruction, she would have no way to know that
the aggregation of occurrences of EX in many infrequently executed methods is
amount to significant performance loss that needs to be addressed. Even though
profile logs of code generated by this commercial compiler had been inspected
by hand for many years, the issue with the use of EX and MVC for array copy
had never been regarded as worthy of attention from the team. Once the mining
tool reported it, one of the developers remarked: “Now we can see!”.

3 The Mining Tool

The mining tool design is based on a new data mining algorithm called FlowGSP.
FlowGSP mines for subpaths in an execution flow graph (EFG). Jocksch formally
defines a an EFG as a directed flow graph possibly containing cycles [13]. Each
EFG vertex is annotated with a normalized weight and has an associated list of
attributes. Each EFG edge is annotated with a normalized execution frequency.
A subpath is of interest if either its frequency of execution, called frequency sup-
port, or vertex weights, called weight support, is above a set threshold. A subpath
is also of interest if the difference between its frequency and weight support is
higher than a difference support. FlowGSP reports sequences of attributes whose
aggregated support over the entire EFG is higher than the specified supports.

FlowGSP is an extension of the Generalized Sequential Pattern (GSP) algo-
rithm, originally introduced by Agrawal et al. [I]. The main difference between
FlowGSP and GSP is that GSP was designed to mine for sequences of attributes
in a list of totally ordered transactions while FlowGSP enables the mining for
sequences of attributes in subpaths of a flow graph, thus allowing a partial order
between the transactions (vertices in the EFG). Similar to GSP, FlowGSP allows
for windows and gaps. A window allows attributes that occur in distinct vertices
that are close in a subpath — within the specified window — to be regarded
as occurring in the same vertex. A gap is a maximum number of vertices in the
subpath that do not contain attributes in the sequence.

3.1 Preparation of Data for Mining

The overall architecture and flow in a system that uses FlowGSP for mining is
shown in Figure 2l Performance-counter data generated by the hardware [12]
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Fig. 2. Overall architecture and flow in system that uses FlowGSP for mining

is added to the control-flow-graph representation of the program created by
the compiler to produce the input for the mining tool. The Testarossa compiler
comes equipped with a rich set of logging features, including the ability to report
all generated machine instructions. The only modification to the compiler was
to annotate each instruction with a corresponding basic block so that the log
can then be transformed into an EFG. In the implementation of the mining
tool, the hardware performance counter information and the control-flow-graph
data from the compiler are stored in IBM DB2® Version 9.1 Express Edition
for Linux, a relational database. A relational database was chosen because the
amount of input data is quite large (some applications running in the WebSphere
Application Server contain over 4000 methods). A flat representation of this data
could result in a very large input file with very poor random-access performance.
Moreover, a relational database allows concurrent access to the data, which
enables the use of a parallel implementation of FlowGSP.

For the use of the mining tool reported in this paper, each vertex in the EFG
represents an instruction. The weight of each instruction represents the amount
of total execution time spent on that instruction. The System Z operating system
uses an event-based sampling mechanism: active events and the instruction un-
der execution are recorded when the sample takes place. Instructions that occupy
more cycles will be sampled more frequently, and the number of sampling hits
or “ticks” is recorded on each instruction. The vertex weights are calculated by
counting the number of sampling ticks on each instruction. The edge frequencies
in the EFG are a measure of how many times each edge was taken during program



16 A. Jocksch et al.

execution. In the case of edges that lie between basic blocks, this value can be
read directly from the control flow graph in the compiler logs. For intra-basic-
block edges, edge weights are assigned the frequency of the basic block in which
they reside. Both edge and basic block frequencies in the control flow graph are
obtained by the compiler through counters inserted in the JVM interpreter.

Each vertex is assigned attributes based on the corresponding instruction’s
characteristics or events observed on the instruction in the hardware profile data.
Examples of attributes include: opcode, whether an instruction-cache miss was
observed, and whether the instruction caused a TLB miss.

In this application FlowGSP is mining for sequences of attributes that occur
in subpaths of the EFG, but this search is based on edge frequency collected
by the compiler. Precise path execution frequency cannot be derived from edge
frequencies [2]. Therefore, the results produced by the mining tool are an ap-
proximation. The support reported for a sequence of attributes represents the
maximal possible execution of that path that could have occurred based on the
edge-frequency information available [13].

FlowGSP is a general flow mining algorithm that can be applied to any
flow graph. For instance, each vertex of the EFG could represent any single-
entry/single-exit region, including a Java bytecode, a basic block, or an entire
method. The vertex weights and edge frequencies would have to be computed
accordingly.

3.2 Operation of the Mining Algorithm

When the tool is run, it first recreates the control flow graph from the information
taken from the compiler logs. Then, it inserts each instruction from the hardware
profile into the correct basic block using the instruction’s annotations. The tool
constructs and mines only a single method at a time in order to match the level of
granularity of the compiler; the Testarossa JIT compiles each individual method
in isolation. As a consequence, FlowGSP does not discover patterns that cross
method boundaries. However, this restriction is a design decision of the tool, not
a limitation of the algorithm.

To mine graphs containing cycles, FlowGSP does not allow a vertex that is the
start vertex of a current candidate sequence to start a new sequence. Therefore
a vertex within a cycle can only start a sequence the first time that it is visited.
FlowGSP can detect frequent subpaths that occur over cycles but avoids looping
indefinitely because the lenght of a sequence is bounded by an specified constant.
Jocksch provides a detailed description of FlowGSP [13].

FlowGSP is an iterative generate-and-test algorithm. Each iteration creates
a set of candidate sequences from the survivors of the previous generation, and
then calculates their supports and tests them against the provided thresholds
(discussed in Section B3]). Each iteration discovers longer sequences in the data.
Execution terminates when either a specified number of iterations have com-
pleted or no new candidate sequences meet the minimum support thresholds.
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3.3 Support Thresholds for Mining

FlowGSP accepts a number of parameters that can adjust the type and quantity
of sequences that are discovered. FlowGSP takes a maximal support threshold
and a differential support threshold. If the support of a sequence does not meet
either of these thresholds, then the sequence is excluded from further mining.
FlowGSP also accepts a maximum allowable gap size and window size. The
maximum gap size determines how much space is allowed between each part of
a sequence, and the maximum window size determines how many vertices to
consider when searching for one part of a sequence.

Table [l lists the parameters used in the experimental evaluation for both the
SPECjvm2008 benchmarks and the DayTrader 2.0 benchmark in the WebSphere
Application Server. The support values for the application server are lower than
the corresponding values for the SPECjvm2008 benchmarks because the ap-
plication server is orders of magnitude larger than any of the SPECjvm2008
benchmarks and has an extremely flat profile. The System z10 instructions are
grouped into pairs for execution. Therefore, events that occur on one instruction
of a pair can sometimes also appear on the other instruction. A window size of
one is used to group paired instructions together so that more accurate patterns
can be discovered.

Table 1. FlowGSP parameters used during this study

Parameter crypto compiler sunflow montecarlo xml serial WebSphere
Maximal support 1% 7% 7% 7% 15% ™% 1%
Diff. support 1% 7% 7% 7% 15% ™% 1%
Gap size 1 0 0 0 0 0 0
Window size 1 0 1 1 1 1 1
Iterations 5 5 5 5 5 5 5

4 Opportunities Discovered

Before the development of the data-mining framework, significant development
resources had been invested on the search for performance improvement op-
portunities in applications running in the WebSphere Application Server. This
investment resulted in many observations about potential opportunities for per-
formance improvement. Therefore, a first effort to test the FlowGSP algorithm,
and to build confidence in the compiler development team about the efficacy of
the framework, was a set of acid tests to find out if data mining could discover
the opportunities for code improvement that were already known to the team.
FlowGSP performed extremely well in these tests: it identified all the patterns
that were listed by the developers. Examples of these patterns include:

1. A high correlation between data cache misses, TLB misses, and instruction
cache misses. Consultation with hardware experts led to the observation that
the page table is loaded through the instruction cache, which explained the
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unusual correlation. After FlowGSP confirmed and quantified this correla-
tion, large pages (1 MB instead of 4 KB) were used to reduce the number of
TLB misses, resulting in a performance improvement of 3% on applications
running in the WebSphere Application Server.

2. A high incidence for instruction-cache misses on entry to JIT code methods.
These are cold cache misses for which effective prefetching is a challenge
because of dynamic method dispatching. This observation led to additional
efforts for inlining and code-cache organization by the compiler team, as well
as to discussions on how to mitigate the cache misses in future hardware
releases.

3. A high correlation between branch misprediction and instruction cache misses
on indirect branches with a higher-than-expected occurrence of these events.
A large volume of indirect branches overflows the branch-table buffers. The
compiler team implemented code transformations to transform indirect
branches into direct branches through versioning. Moreover, the hardware
team was engaged to look for solutions to mitigate this issue in future
hardware.

The discovery of these issues through manual inspection of performance-monitor
data by analysts required orders of magnitude more time and effort than the
analysis with the data-mining tool based on FlowGSP. Moreover, the manual
approach is not easy to reproduce for a new data set and is less deterministic.

Once the development team was confident about the results produced by the
mining tool, they started examining the output of the tool to find new oppor-
tunities for code improvement. The time spent in the EX instruction in array
copies described in Section [2]is one such opportunity. The team discovered most
of the new opportunities when applying the tool to profiling data collected from
newer benchmarks, such as the SPECjvm2008. While extensive development ef-
fort has been dedicated to discover opportunities in applications running in the
WebSphere Application Server over many years, these newer benchmarks have
received relatively less attention from the compiler development team. Some of
the new discoveries are listed here:

— Stores account for a majority of data cache directory misses [I4] in all
SPECjvm2008 benchmarks. This is unexpected because the load-to-store
ratio in programs is typically on the order of 5:1. Moreover, intuition would
indicate that a program writes to locations from which it has read recently.
Discussions and analysis are still under way to better understand this ra-
tio. The serial benchmark spends three times more time servicing direc-
tory lookups for stores than for loads. This benchmark is highly parallel in
nature, which, on the surface, would lead developers to dismiss cache con-
tention as a concern. The trends presented by FlowGPS, which would have
remained unobserved under manual inspection, have been instrumental in
forcing developers to reconsider cache contention as a possible concern.

— Address-generation interlock (AGI) accounts for more than 10% of the ex-
ecution time in some benchmarks. In the System z architecture, an AGI
occurs when the computation of the address required by a memory access
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instruction has not completed by the time that the instruction needs it [22].
In some cases, such as in a small pointer-chasing loop, AGls are difficult to
avoid. The mining tool’s finding is helping to focus analysis in this bench-
mark, and the team is planning a review of the instruction scheduling in the
compiler to reduce the impact of AGIs on execution time.

— Branch misses account for 9% of execution time in montecarlo, a benchmark
from the SPECjvm2008 suite. This is unexpected because the execution of
this benchmark is dominated by a single method with several hot loops and
the benchmark has very good instruction locality. This result led to further
analysis that uncovered a limitation in the hardware’s instruction fetch unit:
the unit stops predicting branches when it cannot detect any previously
taken branches within a given window further down the instruction stream.
A consequence of this limitation is that when the compiler unrolls a loop, it
needs to take into account the size of this window to ensure that the loop
backedge is predicted correctly. The compiler team is currently re-examining
the loop unrolling strategy to take into account the penalty for branch misses.

Experienced compiler developers will understand the value of the observations
above to provide direction to a compiler development team. These observations
focus on the z/ architecture®, the Testarossa compiler, and are based on mining
data from the SPECjvm2008 benchmark suite. A similar approach can be used to
most combinations of compiler/architecture/application. Moreover, the mining
tool can be used to discover opportunities that might be specific to important
applications.

5 Experimental Data on the Usage of the Mining Tool

This section presents statistics on the usage of storage and on the time required to
mine several benchmarks. The goal of this section is to provide developers with an
idea of the resources needed to deploy such a tool, and to encourage researchers
to come up with improvements on our tool design. Information reported here
include size of input data, overall running time, number of sequences generated,
and the format of the rules output by the tool.

5.1 Profiling and Storage Requirements

This experimental evaluation uses the DayTrader 2.0 benchmark in the
WebSphere Application Server 7.0 and programs from the SPECjvm2008 bench-
mark suite. All programs are run using the IBM Testarossa JIT compiler. The
WebSphere Application Server workload is DayTrader 2.0 and the server is run
for 5 minutes once a stable throughput has been achieved. This delay is necessary
to ensure that the Testarossa JIT has compiled the majority of the methods in
the application server to native code. The throughput of the application server
increases as methods are compiled to native code. Therefore, stabilization of
throughput is an indication that the majority of the code being executed has
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been natively compiled. A hardware profile of 5 minutes of execution of the
WebSphere Application Server results in roughly 37 MB of compressed data.
The same run produces a 5.9 GB uncompressed, plain-text compiler logE At
the time of this writing, the Testarossa JIT does not have an option to output
logs in a compressed format. Compressing the compiler-generated log using gzip
reduces its size to around 700 MB.

Table 2. SPECjvm2008 benchmarks studied

# of Methods to # of Methods # Unique

Benchmark Account for 50% of time Compilations Methods Invoked
compiler.compiler 60 3659 7113
compiler.sunflow 55 4009 6946
crypto.signverify 2 1219 4654
scimark.montecarlo 1 703 4077
serial 8 2967 7645
xml.transform 25 5374 12430

The SPECjvm2008 benchmarks are profiled for a period of 4 minutes after a 1-
minute warm-up time. Only a minute is required until the most of the benchmark
code is being executed natively because the SPECjvm2008 benchmarks used in
this study are significantly smaller than applications running in the WebSphere
Application Server. The 6 SPECjvm2008 benchmarks examined in this study are
listed in Table[2l The data in this table provides an indication of how flat the exe-
cution profile of each benchmark is by listing the number of methods that need to
be examined to account for 50% of the execution time[ The table also show the
total number of method compilations and the total number of unique methods
that are invoked when the benchmark is executed. These benchmarks were cho-
sen because they form a representative sample of the SPECjvm2008 benchmark
suite and they produce both flat and non-flat profiles. Running these bench-
marks for 5 minutes results in 7 MB of hardware profiling data per benchmark
on average, and an average uncompressed compiler log with 1.4 GB of data.
The benchmark with largest hardware profile is compiler.compiler which pro-
duces 12 MB of data. largest compiler log has 3.3 GB of data and is produced
by xml.transform. The benchmark scimark.montecarlo produces the smallest
hardware profile (385 KB) and the smallest compiler log (97 MB).

5.2 Time Needed to Mine

The execution time of the tool depends on the size of the log of the program
being mined and the parameters passed to the tool. FlowGSP is multi-threaded

2 The compiler option required to output control flow graph data also outputs a large
volume of information that was extraneous to the mining process.

3 This measurement is an approximation because the number of sampling ticks in the
performance monitor that is used to determine the number of methods shown in the
table.
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in order to exploit the resources available in multi-core architectures. FlowGSP
was run with 8 threads on a machine equipped with two AMD 2350 quad-
core CPUs and 8 GB of memory. All runs were performed with the parameters
outlined in Section

Table 3. Running times of FlowGSP, in seconds

Program Execution Time
Websphere App. Server (DayTrader 2.0) 6399
compiler.compiler 815
compiler.sunflow 539
scimark.montecarlo 2
xml.transform 557
serial 215
crypto.signverify 177

Table Bllists the running time of FlowGSP on both the DayTrader 2.0 bench-
mark in the WebSphere Application Server and SPECjvm2008 benchmark profiles
with execution time in seconds. The xml . transform,compiler.sunflow,serial,
and scimark.montecarlobenchmarks terminated when no more candidates with
support greater than the minimum threshold remained. ZXml.transform
and scimark.montecarlo terminated after three iterations, compiler.sunflow
and serial after four iterations. Montecarlo has one small method which oc-
cupies almost 100% of total execution time. Therefore the time to mine this
benchmark is significantly lower. The times reported in Table [ indicate that
the mining tool based in FlowGSP can be used on a daily basis in the develop-
ment of a production compiler.

5.3 Sequences Reported by Mining

FlowGSP outputs frequent sequences in the following format:

S =(S1,...,Sk)
where each s; € s1,..., s, is a set of attributes:
si = (a1,...,ax)

Each sequence is accompanied by four values, which indicate the sequence’s
weight, frequency, maximal, and differential support. In this use of the data-
mining tool the vertices of the EFG are instructions. Examples of attributes in-
clude the instruction type, occurrence of cache misses, pipeline interlock, branch
missprediction, the type of bytecode the originated the isntruction, etc. Results
are output to a plain-text file. In the experiments reported here, the DayTrader
2.0 benchmark in WebSphere produced 1286 sequences while the SPECjvm2008
data produced, on average, 64,000 sequences. The SPECjvm2008 benchmarks
exhibited a very wide range in terms of the number of sequences generated. The
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most sequences were discovered in the scimark.montecarlo benchmark with
roughly 291,000 sequences. On the other hand, the xml.tranform benchmark
had the smallest number of sequences at around 1,900.

In general, support thresholds for the SPECjvm2008 benchmarks were set
generously low because this is an initial exploration of the applications of data
mining in the compiler development. These low thresholds ensure that no inter-
esting sequences are overlooked. With experience the support threshold can be
increased to allow only the most interesting sequences to be reported. It could
be possible in future work to automate this process based on the number of
surviving sequences.

We implemented an user interface to display the results of mining. This in-
terface allows sequences to be sorted lexicographically or by any of the support
metrics. A maximum and minimum support value can be specified to reduce the
number of sequences displayed. The tool can also selectively display sequences
based on whether they do or do not contain specific attributes. This filtering is
particularly effective at reducing the number of sequences that must be examined
by a compiler developer. For instance, the serial benchmark contained 16,518
sequences, but only 2,880 involved pipeline stalls due to AGI interlocks. Rank-
ing these resulting sequences by maximal or differential support allows quick
identification of the most interesting patterns.

The tool also allows the developer to specify one rule as the baseline against
which all other sequences are compared. This feature allows for easy comparison
of sequences with respect to the baseline sequence.

6 Related Work

This is potentially the first attempt to use data mining to discover patterns of
execution that occur frequently in an application but yet do not necessarily occur
inside loops. Work that is related to this approach include performance analysis
tools, the use of performance counters in JVMs, and the search for code bloat.

Optiscope is an “optimization microscope” developed to aid compiler devel-
opers in understanding low-level differences in the code generated by a compiler
executing different code transformations, or between code generated by two dif-
ferent compilers for the same program [I5]. Optiscope automatically matches up
code in two hardware profiles that originated from the same region of source
code. Optiscope focuses on loops. In contrast, FlowGSP focuses on finding in-
teresting patterns within a single hardware profile and aims to discover common
patterns that occur throughout the profile.

The design of most _existing performance analysis tools, such as the popular
Intel VTune for Intel® chipsets [B], focuses on locating small regions of code
that are frequently executed to concentrate development efforts on these re-
gions. Chen et al. try to capture the most execution time with the least amount
of code []. Similarly, Schneider et al. use hardware performance monitors to “di-
rect the compiler to those parts of the program that deserve its attention” [17].
Contrary to earlier work, the premise of this paper is that in some applica-
tions these parts are scattered through the code and not concentrated in smaller
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regions. Hundt presents HP Caliper, a framework for developing performance
analysis tools on the Intel Itanium® platform running HP-UX [I0]. Similar
to the approach presented here, Caliper integrates sampled hardware perfor-
mance counters with compiler-generated dynamic instrumentation. Dynamic in-
strumentation involves changing program instructions on the fly to obtain more
accurate program analysis. However, unlike our mining tool, HP Caliper does
not attempt to mine the combined data for patterns.

Huck et al. present PerfExplorer, a parallel performance analysis tool [9].
PerfExplorer incorporates a number of automated data analysis techniques such
as k-means and hierarchical clustering, coefficient of correlation analysis, and
comparative analysis. PerfExplorer targets application developers seeking to un-
derstand bottlenecks in their code, not compiler developers. Also, PerfExplorer
does not search for frequent sequences in the data.

Cuthbertson et al. incorporate performance counter information into a pro-
duction JVM to improve program performance [6]. They use a custom library to
retrieve instruction cache miss information on the Intel Itanium platform. This in-
formation is used to guide both object allocation and instruction scheduling in or-
der to increase performance. They achieve an average performance increase of 2%
on various Java benchmarks. Schneider et al. perform similar work using hardware
counters on the Intel Itanium platform to guide object co-allocation [17]. How-
ever, these approaches can only improve the performance of existing code trans-
formations whereas FlowGSP is aimed at discovering opportunities for new code
transformations. Also, both approaches only look at a small fraction of all avail-
able program data. It is not clear how much increased overhead will result from
increasing the amount of data being brought into the compiler.

Buytaert et al. use hardware-performance counters to both improve the ac-
curacy and decrease the cost of hot method detection in a production JVM [3].
Their focus is purely on improving the efficiency and accuracy of the JVM and
does not provide any insights into new opportunities for code transformations.

Xu et al. develop a method for profiling Java programs to identify areas of code
bloat [23]. They evaluate the DaCapo benchmark suite, elements of the Java 1.5
standard library, and Eclipse 3.1, and are able to identify a number of specific
opportunities to improve performance by decreasing bloat. Similarly, Novark et
al. develop a tool called Hound to identify memory leaks and sources of bloat
in C and C++ programs [16]. Hound was able to achieve a 14% performance
increase in one of the studied benchmarks by identifying a single line of code
that needed to be changed. While removing code bloat can significantly improve
the performance of applications, it only addresses performance from the point
of view of the application programmer. Proper use of code transformations by
the compiler is equally as important in increasing program performance.

7 Conclusion

In compiler and computer-architecture development, as in Science in general,
discovering the question to ask is often as difficult as finding the answer. Recent
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developments in hardware performance-monitoring tools, and in leaner tech-
niques to insert profiling counters in generated code, have provided developers
with an unprecedented amount of data to examine the run-time behavior of a
program. The combination of these techniques amounts to a very powerful scope.
The mining tool presented in this paper is a mechanism to help focus this pow-
erful scope on patterns that happen frequently enough to warrant the attention
of compiler or hardware developers. This paper describes the methodology and
the tool used for this mining task. It also presents several examples of discov-
eries that were done using the tool. Then, it presents statistics on the amount
of space and time that is required to use the tool to mine the data produced
by enterprise software in a high-end hardware platform with a mature compiler
infrastructure. This data indicates that this methodology can be used routinely
for the development of production compilers.
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