Is Reuse Distance Applicable to Data Locality Analysis
on Chip Multiprocessors?

Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen

Computer Science Department
The College of William and Mary, Williamsburg, VA, USA
{jiang, eddy, ktian, xshen}@cs.wm.edu

Abstract. On Chip Multiprocessors (CMP), it is common that multiple cores
share certain levels of cache. The sharing increases the contention in cache and
memory-to-chip bandwidth, further highlighting the importance of data locality
analysis.

As a rigorous and hardware-independent locality metric, reuse distance has
served for a variety of locality analysis, program transformations, and perfor-
mance prediction. However, previous studies have concentrated on sequential
programs running on unicore processors. On CMP, accesses by different threads
(or jobs) interact in the shared cache. How reuse distance applies to the new ar-
chitecture remains an open question—particularly, how the interactions in shared
cache affect the collection and application of reuse distance, and how reuse-
distance—based locality analysis should adapt to such architecture changes.

This paper presents our explorations towards answering those questions. It
first introduces the concept of concurrent reuse distance, a direct extension of
the traditional concept of reuse distance with data references by all co-running
threads (or jobs) considered. It then discusses the properties of concurrent reuse
distance, revealing the special challenges facing the collection and application of
concurrent reuse distance on CMP platforms. Finally, it presents the solutions to
those challenges for a class of multithreading applications. The solutions center
on a probabilistic model that connects concurrent reuse distance with the data
locality of each individual thread. Experiments demonstrate the effectiveness of
the proposed techniques in facilitating the uses of concurrent reuse distance for
CMP computing.

1 Introduction

Because of the well-known memory wall problem, on traditional architecture, data lo-
cality has been one of the most prominent factors that determine the performance of a
program. Its importance becomes even more pronounced on modern Chip Multiproces-
sors (CMP), where cache and memory bandwidth are shared by a growing number of
cores.

In decades of locality research on uni-core architecture, two classes of metrics have
been used. One is on the hardware level; an example is cache miss rates. The other is on
the program level; reuse distance is a representative. Reuse distance is also called LRU
stack distance [19], referring to the number of distinct data elements referenced between

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 264-282] 2010.
(© Springer-Verlag Berlin Heidelberg 2010

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 265

this and the previous accesses to the same data element [9]]. Unlike hardware-level met-
rics, reuse distance is inherent to a program, independent to hardware configurations
but applicable for the performance prediction of various hardware. It is accurate, and
from point to point (from one access to another). In contrast, a cache miss rate is an
average value over an interval. Furthermore, reuse distance appears to be cross-input
predictable for many programs [9I36]. These features make it appealing for a wide
range of uses in software refactoring [3]], data reorganization [34136], performance pre-
diction [32/33l17]], memory disambiguation [IOU11]], software-controlled object-level
partitioning [[16], and so forth.

The rise of multicore has complicated the characterization of data locality. With
cache being shared among multiple cores, accesses to memory by a process are not
solely determined by that process itself, but also affected by the other processes run-
ning on the same chip. The processes (or threads) that co-run on a chip equipped with
shared cache are called the cache sharers or co-runners of one another.

Many recent studies [1412021112]] in the architecture area have started to explore the
implications of such architectural changes to the application of hardware-level locality
metrics. But we are not aware of any such systematic studies on reuse distance.

In this work, we initiate an exploration in that direction. The exploration reveals that
in CMP environments, reuse distance loses some of its appealing properties, and that
loss impairs many of its uses. However, for a large class of multithreading programs,
the loss is remediable through a probabilistic model that connects co-run locality with
the memory behaviors of individual cache sharers.

Specifically, our exploration includes three components. First, we analyze the com-
plexities in extending the traditional reuse distance model to CMP environments (Sec-
tion). The analysis is based on a straightforward extension of the concept of reuse
distance. In the measurement of a reuse distance, the extended concept counts the num-
ber of distinct data elements of all cache sharers that are accessed between two con-
secutive references to the same data element. For clarity, we call such a reuse distance
concurrent reuse distance and the traditional one standalone reuse distance. By com-
paring these two types of reuse distance, we uncover the loss of hardware-independence
by concurrent reuse distance and the special challenges in its measurement. We show
that the loss of hardware-independence causes a chicken-egg dilemma for performance
prediction. Furthermore, the dilemma is hard to resolve through the standard iterative
approach.

Second, by drawing on the observations exposed in a recent study, we find that the
hardware dependence of concurrent reuse distance can be relaxed for a class of mul-
tithreading applications (Section[3). Based on the relaxation, we develop a probabilis-
tic model to capture the statistical connections between concurrent reuse distance and
standalone data locality for multithreading applications. The model simplifies the at-
tainment of concurrent reuse distance, laying the foundation for many of its uses.

Finally, we evaluate the accuracy of the probabilistic model on both synthetic and
real traces (Sectiond). The results demonstrate that with the probabilistic model, con-
current reuse distance can be obtained in a reasonable accuracy, suggesting its poten-
tial for locality enhancement in CMP environments. We conclude the paper with some

266 Y. Jiang et al.

discussions on the potential uses and limitations of concurrent reuse distance, some
related work, and a short summary.

2 Concept and Properties of Concurrent Reuse Distance

Concurrent reuse distance is a direct extension of the traditional concept of reuse dis-
tance (standalone reuse distance). This section discusses the distinctive complexities of
concurrent reuse distance and the implications by comparing it with standalone reuse
distance. As a preparation, we first review the properties and uses of standalone reuse
distance.

2.1 Review of Standalone Reuse Distance and Its Properties

Standalone reuse distance is a widely used locality model on traditional architecture
without cache sharing. It is also called LRU stack distance [19], defined as the number
of distinct data elements accessed between the current and the previous references to
the same element [9]]. Its appealing properties include the following.

— Rigorousness: Standalone reuse distance is point-to-point, offering a rigorous mea-
surement of locality. In contrast, a cache miss rate is an average value over an
interval, and its value depends on the length of the interval.

— Value: The value of standalone reuse distance is bounded—no greater than the num-
ber of distinct data elements in the program. This property has simplified the search
for patterns between standalone reuse distance and program data size [9].

— Cross-Input Predictability: A number of studies have shown that the standalone
reuse distance histograms of many programs are predictable across program in-
puts [OI3624I17]]. This property is essential for its uses in program performance
prediction.

— Independence on Hardware: Standalone reuse distance is a program-level attribute,
determined by the program and input data sets, independent to the hardware con-
figurations. But on the other hand, it is strongly related to hardware performance.
As shown in Figure[I] from the histogram of reuse distance, it is easy to estimate
the cache miss rate of the execution on an arbitrary cache.

Different levels of standalone reuse distance suit different uses. The first class of uses
are for cross-architecture prediction of cache miss rates (as illustrated in Figure [I) and
program performance [17/33I32]]. The used reuse distance histograms are typically on
the whole-program level, with the accesses of all data in the execution considered.

The second class of uses is for program refactoring [3]], data reorganization [34136]],
and software-controlled object-level partitioning [16]]. For these uses, the reuse distance
is typically on the object level; each reuse distance histogram corresponds to an impor-
tant data object (e.g., an array) in the program. Such a histogram reflects the match or
mismatch of cache and the accesses to the object, offering hints for data transformations
or cache partition.

The third class of uses is on the instruction level. From the distance of data store in-
structions, Fang and others [11]] accurately determine on which specific store instruction
a load depends, and use that information for memory disambiguation.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 267

)
=3
R

, Cache size

I =ln

Reuse distance (cache blocks)

15%

10%

Percent of references

w
R

Fig. 1. The histogram of the standalone reuse distance of an execution. Every memory reference
on the right side of the cache-size line is considered a cache miss because too many other data
have been brought into cache since its previous reference.

2.2 Concurrent Reuse Distance

Concurrent reuse distance is a straightforward extension of standalone reuse distance
for programs running on shared cache. It is defined as the number of distinct data ele-
ments that all sharers of a cache access between the current and the previous references
to the same data element. In this section, we consider the general case, where cache
sharers can be independent programs, or threads of parallel applications that share the
same address space.

Properties. As a straightforward extension, concurrent reuse distance keeps some prop-

erties that standalone reuse distance has. It is point-to-point, and its value is bounded, no

greater than the sum of the numbers of total distinct data elements of all cache sharers.
However, concurrent reuse distance has a distinctive property:

Its value depends on the relative execution speeds of cache sharers.

Consider two processes, P; and P», running on a chip with shared cache. The process
P, conducts a sequence of memory references as abcba (each letter for one data el-
ement) during a time interval 7" (called a reuse internal). Without loss of generality,
suppose P, and P, access different sets of data in that interval. The concurrent reuse
distance of the second access to a is 2 + x, where 2 is the number of distinct data ele-
ments (b and ¢) accessed by P; in that time interval, and x is the number of distinct data
elements accessed by P, in that time interval. The value of = depends on the relative
speeds of the two processes, r = Speed(P,)/Speed(P;). The larger r is, the more data
are likely to be accessed by P, in that time interval, and hence the greater « tends to be.

Challenges. This property results in some implications important for the measurement
and application of concurrent reuse distance.

Challenges to Measurement. Traditional approaches are insufficient for measuring con-
current reuse distance. A typical way to obtain standalone reuse distance is through pro-
gram instrumentation, which inserts memory monitoring and other relevant instructions

268 Y. Jiang et al.

into the program code so that when the program runs, the inserted instructions would
collect the memory reference trace and compute the standalone reuse distance.

The instrumented program typically runs hundreds of times slower than the original
program does. This slowdown causes inconveniences but no errors to the collection of
standalone reuse. However, for concurrent reuse distance, the slowdown would change
the relative running speed r among cache sharers, hence causing measurement errors.

To examine the seriousness of this problem, we measure how much the relative speed
r changes because of the instrumentation. We use a set of randomly chosen SPEC
CPU2000 programs and a dual-core Xeon 7120M with 4MB shared L3 cache. For ev-
ery pair of the programs, say program ¢ and j, we first run them on two sibling cores
and record their respective average IPCs (instructions per cycle), denoted as / PC); and
IPC}, by reading the hardware performance counters through PAPI [5]. We then use
PIN [37]] to instrument the programs with the code for the collection of standalone reuse
distance. We run the instrumented version on the two sibling cores and record the new
IPCs as I PC} and I PC}. The relative running speeds before and after the instrumen-
tation are r = I PC;/IPCj, and v’ = IPC]/IPC}. We compute the changes of the
relative running speed as follows:

change of relative speeds = |r —1'|/r. (1)

Table[[reports the results. After instrumentation, the differences of the speeds of those
programs become smaller than before. This phenomenon is intuitive considering that
the instrumented code dominates the running time of all programs. (The instrumented
code is similar for all programs.) The 31-248% changes of the relative speeds caused
by the instrumentation suggest the large departure of the measured concurrent distance
from the real. This large departure hurts many uses of concurrent reuse distance as most
typical uses of reuse distance—such as program refactoring, data reorganization, object-
level partitioning, memory disambiguation—have relied on an accurate measurement of
the reuse distances.

Deprivation of Hardware-Independence. The reliance on relative execution speeds of
cache sharers deprives concurrent reuse distance of hardware-independence. That inde-
pendence has been a property important for many uses of standalone reuse distance. The
deprivation is because the variance in running environments—such as the cache size,
the number of cores per chip, the operating systems—often affects the running speeds
of different programs in different degrees, and hence changes the relative speeds.

Table 1. Changes of Relative Running Speeds Caused by Program Instrumentation

sharers 1&42&43&41&52&53&51&62&63&6

r 0.40 0.59 0.25 044 0.55 043 037 048 0.30

r 0.77 0.77 0.87 093 0.89 093 0.99 1.11 0.88

changes (%) 92.5 30.5 248 111 61.8 116 168 131 193
* programs: 1-ammp; 2-art; 3-mcf; 4-bzip2; 5-gzip; 6-mesa.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 269

Table 2. Changes of Relative Running Speeds Due to Architectural Differences

sharers 1&42&43&41&52&53&51&62&63&6
r 0.40 0.59 0.25 044 0.55 043 037 048 0.30
r 040 048 03 057 072 054 037 048 0.31
changes (%) 0 18.6 20.0 29.5 309 256 O 0 33
*1: on Xeon E5310; r’: on Xeon 7120M.
* programs: 1-ammp; 2-art; 3-mcf; 4-bzip2; 5-gzip; 6-mesa.

Table2lshows the changes of the relative speeds when the co-runs happen on a quad-
core Intel Xeon E5310 processor with two 4MB L2 cache on each chip, compared to
their co-runs on the dual-core Xeon 7120M. Four of the co-runs show negligible changes.
Examination shows that the IPC of each of the programs does change considerably in
the two architectures. For instance, in the co-runs of ammp and bzip2 (i.e., 1&4) , the
IPCs of ammp are respectively 0.34 and 0.79 on the two machines. But the IPC of bzip2
changes proportionally from 0.72 to 1.97. Their relative speeds hence remain the same.
However, the relative speeds of the other five co-runs do change substantially, from 19%
to 31%, reflecting the hardware-dependence of concurrent reuse distance.

Chicken-Egg Dilemma. As a consequence of the hardware-dependence, one of the main
uses of standalone reuse distance—cross-architecture performance prediction
936.24/17]—becomes difficult if not impossible for concurrent reuse distance. The
difficulty is a chicken-egg dilemma as illustrated in Figure [2l The ultimate target of
the performance prediction is the IPC on the new platform, which is supposed to be
predicted from the reuse distance collected on a training platform. This prediction is
possible for standalone reuse distance because the distance is inherent to the program
(and input data sets) and do not change across architecture. However, the prediction be-
comes difficult for concurrent reuse distance because of its dependence of architecture.
To solve this issue, we need first predict the concurrent reuse distance on the new archi-
tecture. This prediction however depends on exactly what the concurrent reuse distance
is used to predict—the IPC. This inter-dependence forms a chicken-egg dilemma, as
showed by the circular flow in Figure 21
A typical way to solve such kind of dilemmas is through iterative processes. For this
particular problem, the process may start with guessing some initial values for the IPCs
of co-running jobs. Suppose we have two co-running jobs, I and J and their IPCs are
initially guessed to be I PCy(I) and I PC(J). The concurrent reuse distances can then

O:predictor
training o)
CRD ~ ~
training platform testing platform

Fig. 2. The difficulty in applying concurrent reuse distance (CRD) to cross-platform performance
prediction. The inter-dependence between CRD and IPC forms a chicken-egg dilemma.

270 Y. Jiang et al.

CRD()!
CRD(D)|
IPC(J) ! CacheMiss(J) 1
IPC(D) CacheMiss(I) |
IPC(J)}
IPC(D?

Fig. 3. Analysis showing that the iterative approach cannot solve the chicken-egg dilemma in
performance prediction based on concurrent reuse distance

be approximated, denoted as C RDy(I) and C'RDg(J), from which, the IPCs can be
updated accordingly to I PC(I) and I PC4(J). This process continues until reaching
a stable point, where the distances or the IPCs remain constant across iterations.

Further analysis however shows that this iterative process does not work for concur-
rent reuse distance as illustrated in Figure Bl Without loss of generality, assume

[PCy(J) IPCo(J)
1PCy(I) = IPCy(I)’

It means that the relative speed of J (with the speed of I in the respective iteration
as the baseline) becomes lower in iteration 1 than in iteration 0. So more data of [
would be likely to be accessed in a reuse interval of J in iteration 1 than in iteration 0.
The result is that the distances in C RD1(J) would be larger than those in CRDy(J).
For the opposite reason, the distances in CRD1(I) would be smaller than those in
CRDy(I). Consequently, the number of cache misses predicted from C RD1 (J) would
be higher than from CRDg(.J), leading to a further decrease of I PC/(.J) and a further
increase of TPC(I). Hence, (IPCy(J)/IPC5(I)) would become even smaller than
(IPCy(J)/IPC:(I)). This decreasing trend would continue for more iterations until
the ratio becomes 0 (unless it stops in a local trap).

In summary, this section shows that despite being a direct extension of standalone
reuse distance, concurrent reuse distance is both hard to measure and difficult to use in
multicore environment. These conclusions are obtained through an analysis of general
co-runs. Fortunately, the next section will show that these difficulties can be overcome
for a class of important multithreading programs.

3 Concurrent Reuse Distance for Multithreading Programs

The previous section shows the difficulties in applying concurrent reuse distance to
independent programs co-running on a multicore platform. This section shows that for
co-running threads of a multithreading program, those obstacles are circumventive.

The solution is based on some recently uncovered features of the execution of mul-
tithreading programs on multicore processors. At the kernel of the solution is a prob-
abilistic model that connects concurrent reuse distance with the data locality of each
individual thread. We first examine the features of the multithreading programs and
then present the probabilistic model.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 271

Table 3. Relative Speeds of Co-Running Threads in Multithreading Applications and the Changes
Due to Architecture and Input Variations

input machine IPC(thread 0)/IPC(thread 1) for programs
blackscholes bodytrack canneal facesim fluidanimate streamcluster swaptions
simlarge 7120M 1.00 0.96 1.00 1.00 1.00 1.00 1.00
E5310 1.00 1.00 1.00 1.00 0.99 1.00 1.00
native 7120M 1.00 0.92 1.00 1.00 0.99 1.00 1.00
E5310 1.00 0.99 1.00 1.01 0.99 1.00 1.00
changes by arch. (%) 0 5.9 0 0 0.5 0 0
changes by input (%) 0 2.6 0 0.5 0.5 0 0

3.1 Independence to Architecture and Inputs

A recent study on PARSEC [4]], a suite of contemporary multithreading bench-
marks, exhibits two phenomena. First, for most of those programs (except pipelin-
ing programs), all parallel threads conduct similar computations. Second, the relations
among threads, in terms of the amount of shared data and communications, are quite
uniform across different thread groups. These phenomena hold across architectures,
numbers of threads, assignment of threads to cores, input data sets, and program phases.

The implication to concurrent reuse distance is that contrary to those of the co-runs
of independent programs, the relative speeds among threads tend to remain the same
across architectures and program inputs. For confirmation, we run all the non-pipelining
pthread programs in PARSEC on two types of architectures. One is quad-core Intel
Xeon E5310 processors with two 4MB L2 cache on each chip. The other is dual-core
Xeon 7120M with 4MB shared L3 cache. We employ two inputs for each program, a
small one (simlarge) and a large one (native). The running times on the two inputs differ
by a factor of 43 to 180. In every run, 8 threads are created and are bound to cores such
that adjacent threads (e.g., threads O and 1) are ensured to run on two sibling cores with
cache shared.

Table [3] reports the relative running speeds between two co-running threads (e.g.,
IPC(thread 0)/IPC(thread 1)). The numbers are the average of five repetitive runs (neg-
ligible variation appears among the five runs). The bottom two rows are the average
changes in the relative speeds— computed in a similar way as Formula [Tl in Sec-
tion 221 —caused respectively by the variation of architecture and program inputs. The
unanimous close-to- 1 relative speeds indicate that two co-running threads have virtually
the same speeds, no matter on what machine they run or what inputs they use.

We note that the absolute speeds of two co-running threads do change across archi-
tectures and inputs. But they change in the same rate so that their relative speed remains
the same. As it is the relative speed that matters to the concurrent reuse distance, the
results confirm the independence of the concurrent reuse distance of those programs to
architecture and input data sets.

3.2 Probabilistic Model for Approximating Concurrent Reuse Distance

The previous section suggests that concurrent reuse distance is potentially useful for a
class of multithreading applications. To realize the potential, it is important to explore

272 Y. Jiang et al.

the connections between concurrent reuse distance and the memory behaviors of indi-
vidual threads. The rationale is that if concurrent reuse distance can be derived from the
locality information of each individual cache sharer, the appealing properties of stan-
dalone locality would directly benefit the prediction and application of concurrent reuse
distance.

Overview. We propose a probabilistic model to derive concurrent reuse distance his-
togram from locality information of each individual thread. The model starts with the
locality of individual threads, characterized with time distance histograms. Time dis-
tance is defined as the number of memory references in a reuse intervall. In the refer-
ence sequence “a b b ¢ a”, the time distance of the final access is 4 (while the reuse
distance is 2.) Time distance histogram is similar to the reuse distance histogram shown
in Figure [[lexcept that the X-axis is replaced by time distance.

The probabilistic model includes two parts. The first computes the number of distinct
data elements accessed by each cache sharer in an arbitrary time interval. The second
handles the effects that data sharing among threads imposes on concurrent reuse dis-
tance. The next two sub-sections explain the two parts respectively.

Part I: From Time to Data Accesses. Let M () (A) represent the statistical expecta-
tion of the number of distinct data accessed by process j in an arbitrary A-long time
interval. The goal of this part of the model is to compute M %) (A) from the time dis-
tance histogram of the process j.

The computation includes three steps. Step 1: From the time distance histogram of
each data object, we calculate the probability for a data object, say O;, of process j to ap-
pearina A-long time interval, denoted by P;(A). Step 2: From P;(A) (4 = 0,1,--- ,N—
1; N is the total number of distinct data objects ever accessed by process j in its entire
execution), we obtain the probability for that interval to contain k& (k = 0,1,--- | N)
distinct objects of process j, denoted by P(k, A). Step 3: From P(k, A), we compute
the expected number of distinct objects that process j accesses in the interval, which is
the value of M) (A). We explain each of the three steps as follows.

Compute P;(A)

For the object O, to be accessed in a A-long interval, it can be either accessed in the
first A-1 time points, or, not until the end of the interval. With ¢;(A) representing the
probability for the data to be not accessed until the end of the interval, P;(A) can be

expressed as Pi(A) = Pi(A—1) + ¢;(A).

Hence the following equations:

Pi(A—=1)=P(A—2)+q(A—1);
Pi(A=3)+¢(A-2);

T
>
|

N/
[

Pi(1) = Pi(0) + ¢i(1).

! We use logical time—that is, the number of data references—for the length of an interval.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 273

Apparently P;(0) is 0 (no objects can be accessed in a O-long interval.) Deduction from
these equations produces the following formula:

A
P(A) = ai(r).)

Notice that ¢;(7) equals the probability for O; to I) be the final data reference in an
interval of length 7, and meanwhile, 2) have a time distance larger than 7 at that data

reference (otherwise, it would be also accessed at other points in that interval.) With pgl)

@) '

and p;”’ respectively denoting the probabilities for the two conditions to hold, ¢;(7) can

be computed as ¢;(7) = pgl)pg2).
The probability p§2) comes directly from the time distance histogram (denoted as
H;) of object O; as Z(ST:TH H;(5). With pgl) = n;/T (n; is the total references to O;

in all the T" data references in the execution), ¢;(7) can be computed as

qi(r):Zj 3" Hi(9). 3)

o=7+1

Together, Equations 2l andBllead to the following computation of P;(A) from the time
distance histogram:

L AT
Pi(4) = TZZ > Hi(9). (4)

T=1§=7+1

Compute P(k, A) and M) (A)
With P;(A) (i = 0,1,---, N — 1), we can compute the probability for an interval to
contain k distinct data, denoted as P(k, A) as follows:

P(k,A) =" (the probability for the interval to contain and only contain all
the members of 5),

where, S is a k-member subset of A = {O1,09,--- ,On_1}. Using P;(A), P(k, A)
can be computed as followd:

Pk, 2)y= Y ((JIFR@) T a-pia)). (5

S:|S|=k;SCA i€S JEA—S

2 This computation, as most trace-based locality analyses (e.g., [8I25123]]), assumes data dis-
tribute independently from one another. Results of those previous studies have shown minor
influence of the assumption on locality characterization when the program contains a large
number of data.

274 Y. Jiang et al.

Recall that M () (A) is the statistical expectation of the number of distinct data accessed
by process j in an arbitrary time interval of length A. According to the definition of
statistical expectation, we can compute M) (A) from P(k, A) as follows:

min(A—1,N)
MDAy = > k-P(k,A) (6)
k=0
Discussion. When there are no data sharing among cache sharers, a combination of
their M) (8)s (j = 1,2,...# of sharers) is enough to approximate their concurrent
reuse distance histograms. Let d be the time distance of a data reuse by process j.
Suppose d; is the number of memory references by one of its cache sharers, process i,
during the same (physical) time period. The concurrent reuse distance of process j can
be computed as MD (d) + 374 o runmers M (di). (Note, the values of d and d;s
may be different, depending on the relative speeds of cache sharers.)
This combination, however, is not sufficient for co-running threads in multithreading
applications because of the effects of inter-thread data sharing.

Part II: Handling Data Sharing. In this section, we use the following example for
explanation. There are two co-running threads 7 and 7%. Suppose in a certain time
period, the memory reference sequence is

abXXbXcdXa

where, an X represents some reference conducted by 75, and the other letters represent
the references by T7. Clearly, this time period corresponds to a reuse interval of refer-
ence to “a” in the standalone execution of 1% with standalone reuse distance of 3 (for
accesses to b, c, and d). We now examine its corresponding concurrent reuse distance

for element “a” in three scenarios.

— Scenario 1: All Xs are something different from the data accessed by 7. Let the
four Xs be “p q p q”. Apparently, the concurrent reuse distance of the reuse inter-
val is just the sum of the numbers of distinct data in each of the two standalone
reference sequences: 3 + 2 = 5.

— Scenario 2: The four Xs are “p a p q”. This scenario illustrates the first effect of data
sharing. The reference to “a” breaks the reuse interval into two: “abpa” and “abp
c d g a”. The consequence is that the original reuse interval becomes meaningless.
The approximation of the ultimate concurrent reuse distances of 7T} has to include
a reuse distance of 2 (for “a b p a”) and a reuse distance of 5 (for “abpcdqa”).

— Scenario 3: The four Xs are “p ¢ p ¢”. This scenario illustrates the second effect
of data sharing. Because “c” is referenced by 77 in that interval, the references to
it by 75 should not be counted in the concurrent reuse distance. So the resulting

concurrent reuse distance is 3 + 1 = 4 (rather than 5 as in Scenario 1).

The last two scenarios show the two effects of data sharing on concurrent reuse distance
approximation.

To approximate the concurrent reuse distance of co-running threads, we first assume
no data shared across the threads, and apply the model described in Part I to compute a

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 275

concurrent reuse distance histogram, R’ for each thread. We then revise R’ by consid-
ering the two effects of data sharing. The revision tries to find the statistical expectation
of the correct concurrent reuse distance for each reuse interval contained in R'.

To explain the revision step, we first introduce some notations. For simplicity, we as-
sume there are only two co-running threads. Let N; and N5 represent the total numbers
of distinct data accessed by thread 1 and thread 2 (in their entire execution), S represent
the set of data shared by the two threads. Suppose that there is a reuse interval V' with
ending elements as e accessed by thread 1 and its reuse distance in R’ is d’ (which needs
to be revised in this revision process). Let n; and n9 be the numbers of distinct data
among the data accessed respectively by the two threads in V'; both can be computed
by Equation[6l

Treating the First Effect. The revision step first treats the interval-breaking effect that
data sharing may impose to the concurrent reuse distance (the second effect is tem-
porarily ignored). It computes the probability for the reuse interval V' to be broken.
That event happens only when the following two events both occur. The first is that e
is a shared data element; clearly the probability is |S|/N;. The second is that e ever
appears in the references by thread 2 in the interval V; as any of the ny data ele-
ments could be e, the probability is no/Na. So the probability for the reuse interval
to be broken is (|.S|/N1) * (n2/N2). Because ¢ may appear anywhere in 1/, assume
the broken effect distributes to all sub-intervals of V' uniformly. The probability for the
resulting reuse intervals to have reuse distance of a (o« = 0,1,...,d’) is the same,
(|S]/Ny) * (n2/N2)/(d" + 1). Hence the number of reuse intervals of distance « in R’
should increase by (|S|/N1)* (n2/N2)/(d’ +1). Meanwhile, because the original reuse
interval is broken, the number of reuse intervals of distance d’ in R’ should decrease by
(|S]/Ny) * (n2/Nz). We use R” to denote the resulting histogram after this treatment.

Treating the Second Effect. In the treatment to the second effect of data sharing on
concurrent reuse distance, each interval is not breakable as the interval-breaking effect
has already been considered. For a reuse interval V' in R”, let S; denote the set of
distinct data among all references conducted by thread 1 in that interval, and Sy for
thread 2. In R”, the reuse distance of that interval would be n; + no. In this step,
we want to correct this distance value by considering that there may be some overlap
between S and Sa. Let C represent the overlap set. Apparently, C C S. The probability
for |C| = cis

S|

) () 2= OO0

N1*|S|)

where, (Nl) * (N"‘) is the possible ways to have a reuse interval like V/, ('S')(A

ni no
is the number of ways for d shared data to appear in S, and () (gj:f) is the number

of ways for thread 2 to access ¢ data in the d shared data accessed by thread 1.

Those probabilities are enough to compute the statistical expectation of the concur-
rent reuse distance for every reuse distance in R’. Although our explanation uses two
threads as the example, the model supports an arbitrary number of co-running threads.

276 Y. Jiang et al.

4 Evaluation

This section reports the accuracy of the concurrent reuse distance produced by the prob-
abilistic model. We use both the traces from real programs and some synthetic traces
for the evaluation. The synthetic traces allow us to test memory reference patterns that
are not covered by the selected programs.

4.1 Synthetic Traces

In order to test the model on traces with various data reuse patterns, we develop a trace
generator that produces data reference traces according to users’ specifications. The
parameters that control the generated trace include the following:

- ni, na, ..., nk: the number of unique data blocks (in the unit of cache lines) in the
co-running programs.

— s: the data sharing rate. It is the total number of shared data blocks divided by n;.

— distribution: the distribution of standalone reuse distances. We test the follow-
ing typical distributions: the random, the exponential (A = —0.97), the Normal
(mean = 100, std. = 33). Choosing these distributions is because they have
been widely used as the primitive distributions in statistical mixture models [13];
the reuse patterns in many real traces can be regarded as the combination of those
distributions [23].

The underlying scheme of the trace generator is a stochastic process similar to the one
used in standalone reuse distance studies [22]].

Table [presents the accuracies on a set of traces. The bottom three groups above the
average row are the results when there are four co-runners, among which, the first pair
both have n; unique data items, and the second pair both have n..

Following previous work [9]], we define accuracy as (1 — F/2), where E is the
sum of the absolute differences between the predicted and the real reuse histograms at
every reuse distance. Division by 2 normalizes the accuracy to [0, 100%]. To completely
expose prediction errors, we use the finest granularity: The width of each bar in all the
histograms used in this experiment is 1.

The overall average accuracy is 87.9%. For larger-grained histograms (e.g., 1K-wide
bars in many real uses), the accuracy would be higher as errors inside a bar would be
smoothed out. The results also show that the effectiveness of the prediction approach
is not significantly sensitive to reuse patterns, indicated by the similar accuracy across
distributions. The presence of data sharing reduces the prediction accuracy by 5-7%,
reflecting the extra complications caused by the sharing to concurrent reuse distance
approximation. For most cases, the prediction accuracy is above 80%, verifying the ex-
istence of the statistical connections between concurrent reuse distance and the memory
behaviors of individual threads, and demonstrating the capability of the probabilistic
model in capturing such connections.

4.2 Traces from Real Programs

Because instrumentation changes the relative speeds of cache sharers, the real memory
traces of co-running threads are difficult to collect on real machines. For our evalua-
tion purpose, we employ a simulator to record the traces. The simulator is constructed

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 277

based on SIMICS [38] with GEMS [18]], a cycle-accurate multiprocessor simulator. The
simulated system is a dual-core UltraSPARC architecture with IMB shared L2 cache.

We simulate three representative PARSEC programs [4]]. For each program, we use
the fast mode of the simulator to move into the region of interest (the labels to those
regions come with the original benchmarks) and then collect memory references in
one-million-cycle-long detailed simulation.

Program swaptions is an Intel RMS workload which uses the Heath-Jarrow-Morton
(HIM) framework to price a portfolio of swaptions. The program uses few (23) locks.
There are 27% data that are shared between two threads in the collected memory refer-
ence trace. The prediction accuracy by the probabilistic model is 74%. The accuracy is
relatively lower than those on synthetic traces. The reason is that this program accesses
distinct data elements more frequently than the synthetic traces. The reuse distance
tends to span a broader range.

Program vips is based on the VASARI Image Processing System (VIPS). It includes
fundamental image operations such as an affine transformation and a convolution. The
program uses locks intensively. There are totally over 33,000 locks. But there are neg-
ligible portion of data that are shared between threads. The probabilistic model is able
to predict the concurrent reuse distance by 76% accuracy.

The last program is streamcluster. It is an RMS kernel developed by Princeton Uni-
versity that solves the online clustering problem. It is a data-level parallel program. This
program uses modest number of locks, but many barriers (129,600). There are 3% data

Table 4. Accuracy of the Prediction of Concurrent Reuse Distance Histograms

distr. s=0 s=10% $s=20% average
n1=200 n1=200 n1;=200 n1=200 n1=200 n;=200
n2=100 12=200 n2=100 n2=200 n2=100 n2=200

random 94.9 93.3 91.3 90.0 89.7 79.8 89.8

expon. 93.2 92.3 91.1 92.2 93.4 90.1 92.1

normal 95.9 94.6 94.4 80.8 93.4 91.6 91.8

random+

expon. 94.0 93.3 88.5 87.2 84.0 79.0 87.7

random+

normal 93.9 93.5 87.4 90.9 91.6 89.1 91.1

expon.+

normal 93.6 94.2 92.5 79.9 92.2 89.9 90.4

2random-+

expon.+

normal 88.2 88.5 83.3 82.0 82.5 81.6 84.4

random+

2expon.+

normal 89.0 84.8 70.1 72.8 85.3 83.5 80.9

random+

expon.+

2normal 85.0 85.9 84.1 80.0 81.2 81.2 82.9

average 92.0 91.2 87.0 84.0 88.1 85.1 87.9

s: the sharing ratio. n1,n2: the number of distinct data of the co-running programs.

278 Y. Jiang et al.

shared between two threads in the generated memory reference trace. The approximated
concurrent reuse distance histogram has the highest error, 28%. It is mainly due to its
irregular data references.

4.3 Discussions

The significance of the model is that it shows the possibility of deriving concurrent
reuse distance from the memory behaviors of individual threads, opening the door to
many potential uses of concurrent reuse distance. Some of these uses are similar to how
standalone reuse distance is applied to sequential programs running on uni-core proces-
sors. Examples include cross-architecture performance prediction [32133l17], software
refactoring [3]], locality enhancement [3436/TO/TTIT6]. With the statistical model and
the discoveries in Section[3] all these uses become possible for multithreading applica-
tions running on CMP.

Some other potential uses of concurrent reuse distance are specific to multithreading
applications. An example is thread scheduling [28I30]. It is well known that using hy-
perthreads may both increase and decrease the performance of applications [15]]. From
the predicted concurrent reuse distance histograms, one can estimate the cache miss
rates of a variety of numbers of threads co-running on a chip. On a CMP processor
with hyperthreads enabled (such as Intel Nehalem), that prediction will help determine
whether to use hyperthreads or not and how many threads to spawn would yield the best
performance.

In our experiments, the longest run of the model takes about 20 seconds. There are
many ways to reduce the overhead, such as memory reference sampling [33],
employment of coarse-grained histograms, and use of mathematical approximation
formulas [23]. Recall that the goal of this work is to reveal the inherent properties
of concurrent reuse distance, including its connections with standalone reuse
distance—what the probabilistic model captures. Creating a lightweight tool for con-
current reuse distance approximation is orthogonal to the main goal of this work. So
sophisticated overhead reduction remains our future work.

5 Related Work

Since the early days in computing [8/19], decades of efforts have contributed a solid
foundation for understanding the behavior of dedicated cache systems. Standalone reuse
distance has been one of the most influential locality metric [TORITZITTI36].

However, reuse distance has not been systematically studied in the environment of
multicore with cache sharing. The studies close to this work include the following sev-
eral explorations in predicting miss rates on shared cache.

Ding and Chilimbi have proposed an approach to all-window profiling for con-
current executions, through which, they found that memory accesses by multiple threads
of a server application typically show non-uniform interleaving patterns. Chandra et
al. (6] have developed three statistical models to predict cache miss rates of co-running
processes from the circular stack distance histograms of individual process. Chen and
Aamodt extend the models to predict cache contention on Simultaneous Multi-
threading architecture. Our work differs from these studies in three aspects. First, their

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 279

models predict cache miss rates rather than concurrent reuse distance. As a program-
level locality characterization, reuse distance has a variety of uses besides performance
prediction, such as software refactoring [3]], guiding data transformations [34/36]], mem-
ory disambiguation [TOITT]. It is not clear how the previous models apply to these uses.
Second, the previous models are for independent jobs, while our model allows data
sharing among cache sharers. Finally, because of the use of circular stack distance his-
tograms, the previous models have certain but limited cross-architecture predictive ca-
pability. They require that the number of cache sets must remain the same, and the
cache associativity of the new machine must be smaller than the cache associativity of
the training architecture.

Berg et al. [1]] propose a statistical model to estimate the miss rate of shared cache
for multithreading programs. Unlike the previously mentioned two studies, their model
starts directly from concurrent reuse distance. They assume that the concurrent reuse
distance of the interleaved memory reference traces is already available somehow (they
obtain it through a simulator), and use it as one of the inputs to their statistical model.
The authors collect the traces using simulator for their experiment. It is not clear how
such traces can be obtained on real machines. Our model concentrates on the attainment
of concurrent reuse distance.

In addition, there has been some work on analyzing the interactions among different
threads on dedicated cache in a time-sharing environment [29127]. These studies mainly
focus on predicting the footprint size of a thread as the interactions on cache mainly
occur at context switch time; while with shared cache, the interactions happen at almost
every cache access—footprint size prediction becomes insufficient.

There have been a wealth of research trying to optimize shared cache performance
through either hardware extensions[[14120/21]], or operating system scheduling [12126/28].
They mainly rely on hardware-level locality information collected by hardware per-
formance monitors or special hardware extensions. As mentioned in Section [T} reuse
distance differs from hardware-level metrics. It is hardware-independent and captures
program-level locality characterizations, important for a variety of locality analysis and
program optimizations.

6 Conclusions

The explorations described in this paper lead to the following conclusions. First, de-
spite the wide applicability of reuse distance on traditional architectures, applying it to
CMP environments is challenging. The obstacles stem from the reliance of concurrent
reuse distance on the relative running speeds among cache sharers. The reliance makes
the measurement of reuse distance difficult as instrumentation would change the rel-
ative speeds. It also deprives reuse distance of its hardware-independence, impairing
many of its uses. Second, experimental evidences show that the relative speeds of many
non-pipelining multithreading applications remain unchanged across architectures and
inputs because of the uniformity among threads. That observation grants reuse distance
the potential applicability for multithreading applications running on CMP environ-
ments. Finally, a probabilistic model shows the promise of facilitating the realization of
such potential by offering a mechanism to derive concurrent reuse distance histograms
from the memory behaviors of individual threads.

280 Y. Jiang et al.

Despite the findings and revealed potential, there is no doubt that much further stud-
ies are needed before concurrent reuse distance can be practically applied. This work
hopefully can help stimulate such studies to systematically extend the commonly used
locality model, reuse distance, to modern CMP environments.

Acknowledgments

We owe the anonymous reviewers our gratitude for their helpful comments on the paper.
The discussions with Chen Ding’s group at University of Rochester helped the refine-
ment of the final version of this paper. This material is based upon work supported by
the National Science Foundation under Grant No. 0720499 and 0811791 and IBM CAS
Fellowship. Any opinions, findings, and conclusions or recommendations ex- pressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation or IBM.

References

1. Berg, E., Hagersten, E.: Fast data-locality profiling of native execution. ACM SIGMETRICS
Performance Review 33, 169—180 (2005)

2. Beyls, K., D’Hollander, E.H.: Reuse Distance as a Metric for Cache Behavior. In: Proceed-
ings of the IASTED Conference on Parallel and Distributed Computing and Systems (2001)

3. Beyls, K., D’Hollander, E.: Discovery of locality-improving refactoring by reuse path anal-
ysis. In: Gerndt, M., Kranzlmiiller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 220-229.
Springer, Heidelberg (2006)

4. Bienia, C., Kumar, S., Singh, J.P.,, Li, K.: The PARSEC benchmark suite: characterization
and architectural implications. In: Proceedings of International Conference on Parallel Ar-
chitectures and Compilation Techniques, Toronto, pp. 72-81 (2008)

5. Browne, S., Deane, C., Ho, G., Mucci, P.: PAPI: A portable interface to hardware perfor-
mance counters. In: Proceedings of Department of Defense HPCMP Users Group Confer-
ence (1999)

6. Chandra, D., Guo, F.,, Kim, S., Solihin, Y.: Predicting inter-thread cache contention on a
chip multi-processor architecture. In: Proceedings of the International Symposium on High
Performance Computer Architecture (2005)

7. Chen, X.E., Aamodt, T.M.: A First-Order Fine-Grained Multithreaded Throughput Model.
In: Proceedings of the International Symposium on High-Performance Computer Architec-
ture, Raleigh, pp. 329-340 (2009)

8. Denning, P.: Thrashing: Its causes and prevention. In: Proceedings of the AFIPS 1968 Fall
Joint Computer Conference (1968)

9. Ding, C., Zhong, Y.: Predicting Whole-Program Locality with Reuse Distance Analysis. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Diego, pp. 245-257 (2003)

10. Fang, C., Carr, S., Onder, S., Wang, Z.: Instruction Based Memory Distance Analysis and its
Application to Optimization. In: Proceedings of International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 27-37 (2005)

11. Fang, C., Carr, S., Onder, S., Wang, Z.: Feedback-directed Memory Disambiguation Through
Store Distance Analysis. In: Proceedings of the 20th ACM International Conference on Su-
percomputing, Cairns, Queensland, Australia, pp. 278-287 (2006)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 281

Fedorova, A., Seltzer, M., Smith, M.D.: Improving Performance Isolation on Chip Multipro-
cessors via an Operating System Scheduler. In: Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques, pp. 25-38 (2007)

Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Hei-
delberg (2001)

Hsu, L.R., Reinhardt, S.K., Lyer, R., Makineni, S.: Communist, utilitarian, and capitalist
cache policies on CMPs: caches as a shared resource. In: Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques, Seattle, pp. 13-22 (2006)
Liao, C., Liu, Z., Huang, L., Chapman, B.: Evaluating OpenMP on Chip Multithreading
Platforms. In: Proceedings of International Workshop on OpenMP (2005)

Lu, Q., Lin, J., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Soft-OLP: improving hard-
ware cache performance through software-controlled object-level partitioning. In: Proceed-
ings of the International Conference on Parallel Architecture and Compilation Techniques,
pp- 246-257 (2009)

Marin, G., Mellor-Crummey, J.: Cross architecture performance predictions for scientific
applications using parameterized models. In: Proceedings of Joint International Conference
on Measurement and Modeling of Computer Systems, New York, pp. 2-13 (2004)

Martin, M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore,
K.E., Hill, M.D., Wood, D.A.: Multifacet’s General Execution-driven Multiprocessor Simu-
lator (GEMS) Toolset. Computer Architecture News, 92-99 (2005)

Mattson, R.L., Gecsei, J., Slutz, D., Traiger, I.L.: Evaluation techniques for storage hierar-
chies. IBM System Journal 9(2), 78-117 (1970)

Rafique, N., Lim, W., Thottethodi, M.: Architectural support for operating system-driven
CMP cache management. In: Proceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniques, pp. 2—12 (2006)

Settle, A., Kihm, J.L., Janiszewski, A., Connors, D.A.: Architectural Support for Enhanced
SMT job scheduling. In: Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques, pp. 63-73 (2004)

Shen, X., Shaw, J.: Scalable Implementation of Efficient Locality Approximation. In: Ama-
ral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 202-216. Springer, Heidelberg (2008)
Shen, X., Shaw, J., Meeker, B., Ding, C.: Locality approximation using time. In: Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages (2007)

Shen, X., Zhong, Y., Ding, C.: Regression-based multi-model prediction of data reuse sig-
nature. In: Proceedings of the 4th Annual Symposium of the Las Alamos Computer Science
Institute, Sante Fe, New Mexico (2003)

Smith, A.J.: On the Effectiveness of Set Associative Page Mapping and Its Applications in
Main Memory Management. In: Proceedings of the 2nd International Conference on Soft-
ware Engineering, pp. 286-292 (1976)

Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multithreading pro-
cessor. In: Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 66—76 (2000)

Suh, G.E., Devadas, S., Rudolph, L.: Analytical Cache Models with Applications to Cache
Partitioning. In: Proceedings of the 15th international conference on Supercomputing, Sor-
rento, Italy, pp. 1-12 (2001)

Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on SMP-CMP-
SMT multiprocessors. SIGOPS Oper. Syst. Rev. 41(3), 47-58 (2007)

Thiebaut, D., Stone, H.S.: Footprints in the Cache. ACM Transactions on Computer Sys-
tems 5(4) (1987)

Zhang, E.Z., Jiang, Y., Shen, X.: Does Cache Sharing on Modern CMP Matter to the Per-
formance of Contemporary Multithreaded Programs? In: Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (2010)

282

31.

32.

33.

34.

35.

36.

37.

38.

Y. Jiang et al.

Ding, C., Chilimbi, T.: All-Window Profiling of Concurrent Executions. In: Proceedings of
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 265—
266 (2008)

Zhong, Y., Dropsho, S.G., Ding, C.: Miss Rate Prediction Across All Program Inputs. In:
Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques (2003)

Zhong, Y., Dropsho, S.G., Shen, X., Studer, A., Ding, C.: Miss rate prediction across program
inputs and cache configurations. IEEE Transactions on Computers 56(3), 328-343 (2007)
Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array Regrouping and Structure Splitting us-
ing Whole-Program Reference Affinity. In: Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 255-266 (2004)

Zhong, Y., Chang, W.: Sampling-based Program Locality Approximation. In: Proceedings of
the International Symposium on Memory Management (2008)

Zhong, Y., Shen, X., Ding, C.: Program Locality Analysis Using Reuse Distance. ACM
Transactions on Programming Languages and Systems 31(6) (2009)

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (2005)

Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation Platform. Computer,
50-58 (2002)

	Is Reuse Distance Applicable to Data Locality Analysis on Chip Multiprocessors?
	Introduction
	Concept and Properties of Concurrent Reuse Distance
	Review of Standalone Reuse Distance and Its Properties
	Concurrent Reuse Distance

	Concurrent Reuse Distance for Multithreading Programs
	Independence to Architecture and Inputs
	Probabilistic Model for Approximating Concurrent Reuse Distance

	Evaluation
	Synthetic Traces
	Traces from Real Programs
	Discussions

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

