

Lecture Notes in Computer Science 6011
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Rajiv Gupta (Ed.)

Compiler
Construction

19th International Conference, CC 2010
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010
Paphos, Cyprus, March 20-28, 2010
Proceedings

13

Volume Editor

Rajiv Gupta
University of California Riverside
Department of Computer Science and Engineering
Riverside, CA 92521, USA
E-mail: gupta@cs.ucr.edu

Library of Congress Control Number: 2010922288

CR Subject Classification (1998): D.2, D.3, D.2.4, C.2, D.4, D.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11969-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11969-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Foreword

ETAPS 2010 was the 13th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised the usual five sister conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 19 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, CMCS,
COCV, DCC, DICE, FBTC, FESCA, FOSS-AMA, GaLoP, GT-VMT, LDTA,
MBT, PLACES, QAPL, SafeCert, WGT, and WRLA) and seven invited lec-
tures (excluding those that were specific to the satellite events). The five main
conferences this year received 497 submissions (including 31 tool demonstration
papers), 130 of which were accepted (10 tool demos), giving an overall accep-
tance rate of 26%, with most of the conferences at around 24%. Congratulations
therefore to all the authors who made it to the final programme! I hope that most
of the other authors will still have found a way of participating in this exciting
event, and that you will all continue submitting to ETAPS and contributing to
make of it the best conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination toward theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2010 was organised by the University of Cyprus in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the Cyprus Tourism Organisation.

VI Foreword

The organising team comprised:

General Chairs: Tiziana Margaria and Anna Philippou
Local Chair: George Papadopoulos
Secretariat: Maria Kittira
Administration: Petros Stratis
Satellite Events: Anna Philippou
Website: Konstantinos Kakousis.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Luca
de Alfaro (Santa Cruz), Gilles Barthe (IMDEA-Software), Giuseppe Castagna
(CNRS Paris), Marsha Chechik (Toronto), Sophia Drossopoulou (Imperial
College London), Javier Esparza (TU Munich), Dimitra Giannakopoulou
(CMU/NASA Ames), Andrew D. Gordon (MSR Cambridge), Rajiv Gupta
(UC Riverside), Chris Hankin (Imperial College London), Holger Hermanns
(Saarbrücken), Mike Hinchey (Lero, the Irish Software Engineering Research
Centre), Martin Hofmann (LM Munich), Joost-Pieter Katoen (Aachen), Paul
Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald Luettgen
(Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Potsdam),
Ugo Montanari (Pisa), Oege de Moor (Oxford), Luke Ong (Oxford), Fer-
nando Orejas (Barcelona) Catuscia Palamidessi (INRIA Paris), George Pa-
padopoulos (Cyprus), David Rosenblum (UCL), Don Sannella (Edinburgh), João
Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), and Martin Wirsing (LM Munich).

I would like to express my sincere gratitude to all of these people and
organisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2010, George
Papadopoulos, for arranging for us to have ETAPS in the most beautiful sur-
roundings of Paphos.

January 2010 Vladimiro Sassone

Preface

The CC 2010 Programme Committee is pleased to present the proceedings of
the 19th International Conference on Compiler Construction (CC 2010) which
was held during March 25–26 in Paphos, Cyprus, as part of the Joint European
Conference on Theory and Practice of Software (ETAPS 2010). As in the last
few years, papers were solicited on a wide range of areas including traditional
compiler construction, compiler analyses, runtime systems and tools, program-
ming tools, techniques for specific domains, and the design and implementation
of novel language constructs. We received submissions from a wide variety of
areas and the papers in this volume reflect this variety.

The Programme Committee received 56 submissions. From these, 16 research
papers were selected, giving an overall acceptance rate of 28%. The Programme
Committee carried out the reviewing and paper selection completely electron-
ically, in two rounds. In the first round at least three Programme Committee
members reviewed each paper, and through discussion among the reviewers those
papers which were definite “accepts” and those which needed further discussion
were identified. Our second round concentrated on the papers needing further
discussion, and we added an additional review to help us decide which papers
to finally accept.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for all the care they put into their submissions.
Our gratitude also goes to the Programme Committee members and external
reviewers for their substantive and insightful reviews. Also, thanks go to the
developers and supporters of the EasyChair conference management system for
providing a reliable, sophisticated and free service.

CC 2010 was made possible by the ETAPS Steering Committee and the local
Organizing Committee. Finally, we are grateful to Jim Larus for giving the CC
2010 invited talk.

January 2010 Rajiv Gupta

Conference Organization

Programme Chair

Rajiv Gupta UC Riverside, USA

Programme Committee

Jack Davidson Unversity of Virginia, USA
Paul Feautrier Ecole Normale Supérieure de Lyon, France
Guang Gao Unversity of Delaware, USA
Antonio Gonzalez Intel Barcelona Research Center, Spain
Laurie Hendren McGill University, Canada
Robert Hundt Google, USA
Suresh Jagannathan Purdue University, USA
Chandra Krintz UC Santa Barbara, USA
Julia Lawall DIKU, Denmark
Madan Musuvathi Microsoft Research, USA
Michael O’Boyle University of Edinburgh, USA
Yunheung Paek Seoul National University, Republic of Korea
Santosh Pande Georgia Institute of Technology, USA
Christoph von Praun Georg-Simon-Ohm Hochschule Nürnberg,

Germany
Vivek Sarkar Rice University, USA
Bernhard Scholz The University of Sydney, Australia
Bjorn De Sutter Ghent University, Belgium
Andreas Zeller Saarland University, Germany

External Reviewers

Alex Aleta
Rajkishore Barik
Indu Bhagat
Zoran Budimlic
Bernd Burgstaller
Qiong Cai
Romain Cledat
Josep M. Codina
Jesse Doherty
S. M. Farhad
Enric Gibert
Christian Grothoff

Lang Hames
Surinder Kumar Jain
Surinder Jain
Kyoungwon Kim
Yongjoo Kim
Tushar Kumar
Akash Lal
Nurudeen Lameed
Jongwon Lee
David Li
Pedro Lopez
Marc Lupon

X Conference Organization

Carlos Madriles
Nagy Mostafa
Sarang Ozarde
Greogory Prokopski
Easwaran Raman
August Schwerdfeger
Tianwei Sheng
Jun Shirako

Jaswanth Sreeram
Neil Vachharajani
Xavier Vera
Eran Yahav
Seungjun Yang
Jonghee Youn
Jisheng Zhao

Table of Contents

Invited Talk

Programming Clouds . 1
James Larus

Optimization Techniques

Mining Opportunities for Code Improvement in a Just-In-Time
Compiler . 10

Adam Jocksch, Marcel Mitran, Joran Siu, Nikola Grcevski, and
José Nelson Amaral

Unrestricted Code Motion: A Program Representation and
Transformation Algorithms Based on Future Values 26

Shuhan Ding and Soner Önder

Optimizing Matlab through Just-In-Time Specialization 46
Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge

RATA: Rapid Atomic Type Analysis by Abstract Interpretation –
Application to JavaScript Optimization . 66

Francesco Logozzo and Herman Venter

Program Transformations

JReq: Database Queries in Imperative Languages . 84
Ming-Yee Iu, Emmanuel Cecchet, and Willy Zwaenepoel

Verifying Local Transformations on Relaxed Memory Models 104
Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh

Program Analysis

Practical Extensions to the IFDS Algorithm . 124
Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez

Using Ownership to Reason about Inherent Parallelism in
Object-Oriented Programs . 145

Andrew Craik and Wayne Kelly

XII Table of Contents

Register Allocation

Punctual Coalescing . 165
Fernando Magno Quintão Pereira and Jens Palsberg

Strategies for Predicate-Aware Register Allocation 185
Gerolf F. Hoflehner

Preference-Guided Register Assignment . 205
Matthias Braun, Christoph Mallon, and Sebastian Hack

Validating Register Allocation and Spilling . 224
Silvain Rideau and Xavier Leroy

High-Performance Systems

Automatic C-to-CUDA Code Generation for Affine Programs 244
Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan

Is Reuse Distance Applicable to Data Locality Analysis on Chip
Multiprocessors? . 264

Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen

The Polyhedral Model Is More Widely Applicable Than You Think 283
Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet,
Albert Cohen, and Cédric Bastoul

The Hot Path SSA Form: Extending the Static Single Assignment
Form for Speculative Optimizations . 304

Subhajit Roy and Y.N. Srikant

Author Index . 325

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 1–9, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Programming Clouds

James Larus

Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus@microsoft.com

Abstract. Cloud computing provides a platform for new software applications
that run across a large collection of physically separate computers and free
computation from the computer in front of a user. Distributed computing is not
new, but the commodification of its hardware platform—along with ubiquitous
networking; powerful mobile devices; and inexpensive, embeddable, network-
able computers—heralds a revolution comparable to the PC.

Software development for the cloud offers many new (and some old chal-
lenges) that are central to research in programming models, languages, and
tools. The language and tools community should embrace this new world as fer-
tile source of new challenges and opportunities to advance the state of the art.

Keywords: cloud computing, programming languages, software tools, optimi-
zation, concurrency, parallelism, distributed systems.

1 Introduction

As I write this paper, cloud computing is a hot new trend in computing. By the time
you read it, the bloom may be off this rose, and with a sense of disillusionment at yet
another overhyped fad, popular enthusiasm may have moved on to the next great idea.
Nevertheless, it is worth taking a close look at cloud computing, as it represents a
fundamental break in software development that poses enormous challenges for the
programming languages and tools.

Cloud computing extends far beyond the utility computing services offered by
Amazon’s AWS, Microsoft’s Azure, or Google’s AppEngine. These services provide
a foundation for cloud computing by supplying on-demand, internet computing re-
sources on a vast scale and at low cost. Far more significant, however, is the software
model this hardware platform enables; one in which software applications are exe-
cuted across a large collection of physically separate computers and computation is no
longer limited to the computer in front of you. Distributed computing is not new, but
the commodification of its hardware platform—along with ubiquitous networking;
powerful mobile devices; and inexpensive, embeddable, networkable computers—
may bring about a revolution comparable to the PC.

Programming the cloud is not easy. The underlying hardware platform of clusters
of networked parallel computers is familiar, but not well supported by programming
models, languages, or tools. In particular, concurrency, parallelism, distribution, and

2 J. Larus

availability are long-established research areas in which progress and consensus has
been slow and painful. As cloud computing becomes prevalent, it is increasingly
imperative to refine existing programming solutions and investigate new approaches
to constructing robust, reliable software. The languages and tools community has a
central role to play in the success of cloud computing.

Below is a brief and partial list of areas that could benefit from further research and
development. The discussion is full of broad generalizations, so if I malign or ignore
your favorite language or your research, excuse me in advance.

1. Concurrency. Cloud computing is an inherently concurrent and asynchronous
computation, in which autonomous processes interact by exchanging messages.
This architecture gives raise to two forms of concurrency within a process:

• The first, similar to an operating system, provides control flow to respond to inher-
ently unordered events.

• The second, similar to a web server, supports processing of independent streams of
requests.

Neither use of concurrency is well supported by programming models or lan-
guages. There is a long-standing debate between proponents of threads and event
handling [1-3] as to which model best supports concurrency. Threads are close to
a familiar, sequential programming model, but concurrency still necessitates
synchronization to avoid unexpected state changes in the midst of an apparently
sequential computation. Moreover, the high overhead of a thread and the cost of
context switching limits concurrency and constrains system architectures. Event
handlers, on the other hand, offer low overhead and feel more closely tied to the
underlying events. However, handlers provide little program structure and scale
poorly to large systems. They also require developers to explicitly manage pro-
gram state. Other models, such as state machines or Actors, have not yet emerged
in a general-purpose programming language.

2. Parallelism. Cloud computing runs on parallel computers, both on the client and
server. Parallelism currently is the dominate approach to increasing processor per-
formance without exceeding power dissipation limitations [4]. Future processors
are likely to become more heterogeneous, as specialized functional units greatly
increase performance or reduce power consumption for specific tasks.

Parallelism, unfortunately, is a long-standing challenge for computer science.
Despite four decades of experience with parallel computers, we have not yet
reached consensus on the underlying models and semantics or provided adequate
programming languages and tools. For most developers, shared-memory parallel
programs are still written in the assembly language of threads and explicit synchro-
nization. Not surprisingly, parallel programming is difficult, slow, and error-prone
and will be a major impediment in developing high-performance cloud applications.

The past few years have seen promising research on new, higher-level parallel
programming models, such as transactional memory and deterministic execution
[5, 6]. Neither is a panacea, but both abstractions could hide some complexities of
parallelism.

3. Message passing. The alternative to shared-memory parallel programming is
message passing, ubiquitous on the large clusters used in scientific and technical

 Programming Clouds 3

computing. Because of its intrinsic advantages, message passing will be the pri-
mary parallel programming model for cloud computing as well. It scales across
very large numbers of machines and is suited for distributed systems with long
communications latencies. Equally important, message passing is a better pro-
gramming model than shared memory as it provides inherent performance and cor-
rectness isolation with clearly identified points of interactions. Both aspects con-
tribute to more secure and robust software systems [7].

Message passing can be more difficult to program than shared memory, in large
measure because it is not directly supported by many programming languages.
Message-passing libraries offer an inadequate interface between the asynchronous
world of messages and the synchronous control flow of procedure calls and re-
turns. A few languages, such as Erlang, integrate message into existing language
constructions such as pattern matching [8], but full support for messages requires
communications contracts, such as Sing# [9], and tighter integration with the type
system and memory model.

4. Distribution. Distributed systems are a well-studied area with proven solutions for
difficult problems such as replication, consistency, and quorum. This field has fo-
cused considerable effort on understanding the fundamental problems and in for-
mulating efficient solutions. One challenge is integrating these techniques into a
mainstream programming model. Should they reside in libraries, where developers
need to invoke operations at appropriate points, or can they be better integrated
into a language, so developers can state properties of their code and the run-time
system can ensure correct execution?

5. High availability. The cloud end of cloud computing provides of services poten-
tially used by millions of clients, and these services must be highly available. Fail-
ures of systems used by millions of people are noteworthy events widely reported
by the media. And, as these services become integrated into the fabric of everyday
life, they become part of the infrastructure that people depend on for their busi-
nesses, activities, and safety.

High availability is not the same as high reliability, the focus of much research
on detecting and eliminating software bugs. A reliable system that runs slowly un-
der heavy load may fail to provide a necessary level of service. Conversely, com-
ponents of a highly available system can fail frequently, but a properly architected
system will continue to provide adequate levels of service [10].

Availability starts at the architecture level of the system, but programming lan-
guages have an important role to play in the implementation. Existing language
provide little support for systematically handling unexpected and erroneous condi-
tions beyond exceptions, which are notoriously difficult to use properly [11]. Error
handling is complex and delicate code that runs when program invariants are vio-
lated, but it is often written as an afterthought and rarely thoroughly tested. Better
language support, for example lightweight, non-isolated transactions, could help
developers handle and recover from errors [12].

6. Performance. Performance is primarily a system-level concern in cloud computing.
Many performance problems involve shared resources running across large numbers
of computers and complex networks. Few techniques exist to analyze a design or

4 J. Larus

system in advance, to understand bottlenecks or predict performance. As a conse-
quence, current practice is to build, overprovision, measure, tweak, and pray.

One pervasive concern is detecting and understanding performance problems.
Amazon’s Dynamo system uses service-level agreements (SLA) among system
components to quickly identify performance problems [13]. These SLAs are the
performance equivalents of pre- and post-conditions. Making performance into a
first-class programming abstraction, with full language and tools support, would
help with the construction of complex, distributed systems.

7. Application partitioning. Current practice is to statically partition functionality
between a client and service by defining an interface and writing both endpoints
independently. This approach leads to inflexible architectures that forego opportu-
nities to migrate computations to where they could run most efficiently. In particu-
lar, battery powered clients such as phones are limited in memory or processing
capability. Migrating a running computation from a phone to a server might enable
it to complete faster (or at all) or to better utilize limited network bandwidth by
moving computation to data rather than the reverse [14].

Even within a data center, code mobility is valuable. It permits server workloads
to be balanced to improve performance or consolidated to reduce power consump-
tion. Currently virtual machines move an entire image, from the operating system
up, between computers. Finer-grain support for moving computations could lower
the cost of migration and provide mechanisms useful in a wider range of circum-
stances.

Statically partitioned systems could benefit from better language support. Mi-
crosoft’s prototype Volta tool offered a single-source programming model for writ-
ing client-server applications [15]. The developer writes a single application, with
annotations as to which methods run on the client or server. The Volta compiler
partitions the program into two executables, a C# one for running on the server and
a Javascript one for the client. Similar programming models could simplify the de-
velopment of cloud applications by providing developers with a higher-level ab-
straction of their computation.

8. Defect detection. Software defect detection has made considerable progress over
the past decade in finding low-level bugs in software. The tools resulting from this
effort are valuable to cloud computing, but are far from sufficient. Few tools have
looked for bugs in complex systems built from autonomous, asynchronous compo-
nents. Although this domain appears similar to reactive systems, the complexity of
cloud services present considerable challenges in applying techniques from this
area.

9. High-level abstractions. Google’s Map-Reduce and Microsoft Dryad are two
higher level programming models that hide much of the complexity of writing a
server-side analytic application [16, 17]. A simple programming model hides much
of the complexity of data distribution, failure detection and notification, communi-
cation, and scheduling. It also opens opportunities for optimizations such as specu-
lative execution. These two abstractions are intended for code that analyzes large
amounts of data. There is a pressing need for similarly abstract models for writing
distributed client-server applications and web services.

 Programming Clouds 5

This list of open problems is not exhaustive, but instead is a starting point for research
directly applicable to problems facing developers of cloud computing applications.

2 Orleans

Orleans is a project under development in the Cloud Computing Futures (CCF) group
in Microsoft Research. Its goal is to achieve significant improvements in productivity
of building cloud computing applications. Orleans specifically addresses the chal-
lenges of building, deploying, and operating very large cloud applications that en-
compass thousands of machines in multiple datacenters, constantly evolving software,
and large teams to construct, maintain, and administer these properties.
At a coarse level, Orleans consists of three interdependent components:

• Programming model
• Programming language and tools
• Runtime.

Software for a cloud application, both the portion that runs on servers in a data cen-
ter and the part that runs on clients, will be written in DC#, an extended version of C#
that provides explicit support for the Orleans programming model. Orleans tools help
a developer build reliable code by providing static and dynamic defect detection and
test tools. Application code runs on the Orleans run-time system, which provides
robust, tested implementations of the abstractions needed for these systems. These
abstractions in turn execute on Azure, Microsoft’s data center operating system.

2.1 Design Philosophy

Orleans is frankly a prescriptive system—it strongly encourages the use of software
architectures and design patterns that have proven themselves in practice. Because
Orleans targets large-scale cloud computing, the key criterion for adopting a principle
is that it results in a scalable, resilient, reliable system. Cloud software is scalable if it
a system can grow to accommodate a steadily increasing number of clients without
requiring major rewrites, even when the increase in volume spans multiple orders of
magnitude. The common practice today is to plan on several complete rewrites of a
system as an internet property grows in popularity, even though there are multiple
examples of scalable internet properties whose design principles are widely known.
Today’s general-purpose programming languages and tools provide little or no sup-
port for these principles, so the burden of scalability is shifted to developers; and
consequently most new enterprises choose short-term expediency to get their websites
up quickly.

A system is resilient if it can tolerate failures in its components: the computers,
communication network, other services on which it relies, and even the data center in
which it runs. Toleration requires the system to detect a failure, respond to it in a
manner that minimizes the effect of a failure on unrelated components and clients,
restore service when possible by using other resources, and resume execution when
the failure is corrected.

6 J. Larus

The distributed systems community has studied techniques for building scalable,
resilient software systems for many years. A small number of abstractions have
proven their value in building these systems: asynchronous communications and
software architecture; data partitioning; data replication; consensus; and consistent,
systematic design policies. Orleans will build these ideas into its programming and
data model and provide first-class support for them in the DC# language and tools.
These abstractions by no means guarantee a well-written program or successful sys-
tem; it still remains true that it is possible to write a bad program in any language.
However, these abstractions have proven their value in many systems and are well
studied and understood, and they provide a solid basis for building resilient systems.

2.2 Centrality of Failure

In ordinary software, error-handling code is home to a disproportionate share of de-
fects. This code is difficult to write because invariants and preconditions often are
invalid after an error and paths through this code are less well tested because they are
uncommon. Distributed systems complicate error handling by introducing new failure
modes, such as asynchronous communications and partial failure, which are challeng-
ing to reason about and difficult to handle correctly. Much of the difficulty of building
a reliable internet property is attributable to asynchrony and failure.

Distributed systems research offer some techniques for masking failures and asyn-
chrony (e.g., Paxos), but they have significant drawbacks and are unsuitable to mask
all failures in a responsive service. Paxos and other replication strategies increase the
quantity of resources dedicated to a computation task by a significant (3 – 5x)
amount. In addition, these techniques increase the time to perform an operation. Be-
cause of increased cost and latency, replication strategies must be used sparingly in
scalable services.

Other techniques, such as checkpoint and restart, are more successful for non-
reactive computations (e.g., large-scale analytic computations implemented with map-
reduce or Dryad) in which it is possible to capture input to a portion of a computation
and in which a large recovery cost is less than the far-more-expensive alternative of
rerunning the entire computation. Another advantage is that it is possible to automate
the failure detection and error recovery process.

Programming models also have a significant influence on the correctness and resil-
iency of code. For example, every client making a remote procedure call (RPC) has to
deal with three possibilities: the call succeeds and the client knows it; the call fails
and the client knows it; the call times out and the client does not know whether it
succeeded or failed. In more sophisticated models that allow simultaneous RPC calls,
complexity further increases when calls complete in arbitrary orders. Complicating
this reasoning is the syntactic similarity of an RPC call and a conventional call, which
encourage a developer to conflate the two, despite their vast difference in cost and
semantics. For these reasons, undisciplined use of RPC has proven to be a bad ab-
straction for building distributed systems.

2.3 Orleans Programming Model

The Orleans programming model is inherently more resilient. An application is
composed of loosely coupled components, each of which executes in its own failure

 Programming Clouds 7

container. In Orleans, these components are called grains. A grain consists of a single-
threaded computation with its local state. It can fail and be restarted without directly
affecting the execution of any other grain—though it may indirectly affect a depend-
ent grain that cannot respond appropriately to its failure. All communications between
grains occurs across channels: higher-order (i.e., can send a channel over a channel),
strongly typed paths for sending messages between grains. The code within a grain is
inherently asynchronous, to deal with the unpredictable arrival of messages across
multiple channels or the unpredictable ordering of messages between asynchronous
services. This model exposes the reality of a distributed system (communication via
messages that arrive at unpredictable times) but constrains it, in single threaded, iso-
lated containers, to simplify reasoning about and analyzing code.

Grains are not distributed objects. The differences between the two models are
fundamental. Orleans does not provide a pointer or reference to a grain, nor do grains
reside in a global address space. A computation communicates with a grain through a
channel, which is a capability, not a reference. A common channel allows two grains
to communicate according to the channel’s protocol. However, the channel does not
uniquely identify either grain since channels can be passed around. Nor does a chan-
nel identify the location of a grain, which can migrate between machines while the
channel is active.

Moreover, interactions between grains are asynchronous, not RPC. One grain can
request another grain perform an operation by sending a message (which could be
wrapped in syntactic sugar to look like a method invocation). The receiving grain has
the freedom to process this request in any order with respect to its on-going computa-
tions and other requests. When the operation completes, the grain can send back its
result. In general, the first grain will not block waiting for this value, as it would for a
method call, but instead will process other, concurrent operations.

An important property of a grain is that it can migrate between computers. Migra-
tion allows Orleans to adaptively execute a system: to reduce communication latency
by moving a computation closer to a client or data resource, to increase fault tolerance
by moving a computation to a less tightly coupled system, and to balance the load
among servers.

Grains encourage an SPMD (single program, multiple data) style of programming.
The same computation (code) runs in all grains of a particular type, and each grain’s
computation executes independently of other grains and the computations are initiated
at different times.

However, it is also possible to use grains to implement a dataflow programming
model. In this case, a grain is a unit of computation that accepts input and sends re-
sults across channels. Dataflow is appropriate for streaming computation and can
achieve the scalability of asynchronous data parallelism by replicating dataflow
graphs and computations.

What is the appropriate size for a grain? In today’s scalable services, it is necessary
to partition the data manipulated by the service at a fine granularity, to allow for
rebalancing in the face of load and usage skew. For example, code acting on behalf
of a Messenger user does not assume it is co-located with another Messenger user,
and it must expect the location of a user’s data to change when a server is added or
removed. Similar properties hold for Hotmail user’s address books, subscriptions in
Live Mesh’s pub-sub service, ongoing meetings in Office Communications Server,
rows in Google’s BigTable, keys in Amazon’s Dynamo, etc. With this fundamental

8 J. Larus

assumption, a system can spread a large and varying collection of data items (e.g., a
user’s IM presence) across a large number of servers, even across multiple data
centers. Though partitioning by user is illustrative, grains can represent many
other entities. For example, a user’s mailbox may contain grains corresponding to mail
messages.

2.4 Orleans Data Model

Data in cloud computing application exists in a richer, more complex environment
than in non-distributed applications. This environment has a number of orthogonal
dimensions. Unlike the local case, a single model does not meet all needs. Different
grains will require different guarantees, and the developer must assume responsibility
for selecting the properties that match the importance of data, semantics of operations,
and performance constraints on the system. Orleans will implement a variety of dif-
ferent types of gains that support the different models for the data they contain, so an
application developer can declare the properties of a particular grain and expect the
system to implement its functionality.

Data can be persistent, permitting it to survive a machine crash. Changes to the
data are written to durable storage and Orleans can keep independent copies of the
data on distinct computers (or data centers), to increase availability in the face of
resource failures.

Replicating the data among machines introduces the issue of consistency among
the replicas. Strong consistency requires the replicas to change simultaneously, while
weaker models tolerate divergence among the copies.

Within a grain, Orleans supports a simple, local concurrency model. Data local to
the grain is only modified by code executing in the grain and execution is single-
threaded, so from the perspective of this code, the execution model is mostly sequen-
tial. However, when code for an operation ends and yields control back to the grain,
other operations can execute and modify the grain’s local state, so a developer cannot
make assumptions across turns in a grain.

Orleans does not impose a single model on the operations exported by a grain. The
semantics of concurrent operations has been formalized in numerous ways, and differ-
ent models (e.g., sequential consistency, serializability, linearizability) offer varying
tradeoffs among simplicity, generality, and efficiency. Orleans will need to provide the
support that enables a developer to implement these models where appropriate.

3 Conclusion

Until recently, only a handful of people had ever used more than one computer to
solve a problem. This is no longer true, as search engines routinely execute a query
across a thousand or so computers. Cloud computing is the next step into a world in
which computation and data are no longer tightly tied to a specific computer and it is
possible to share vast computing resources and data sets to build new forms of com-
puting that go far beyond the familiar desktop or laptop PCs.

Software development for the cloud offers many new (and some old challenges)
that are central to research in programming models, languages, and tools. The lan-
guage and tools community should embrace this new world as fertile source of new
challenges and opportunities to advance the state of the art.

 Programming Clouds 9

References

1. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative Task Man-
agement without Manual Stack Management or, Event-driven Programming is Not the
Opposite of Threaded Programming. In: Proceedings of the USENIX 2002 Conference,
pp. 289–302. Usenix, Monterey (2002)

2. Ousterhout, J.: Why Threads are a Bad Idea (for most purposes). In: Proceedings of the
1996 USENIX Technical Conference. Usenix, San Diego (1996)

3. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: Scalable
Threads for Internet Services. In: Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pp. 268–281. ACM, Bolton Landing (2003)

4. Larus, J.: Spending Moore’s Dividend. Communications of the ACM 52, 62–69 (2009)
5. Larus, J., Kozyrakis, C.: Transactional Memory. Communications of the ACM 51, 80–88

(2008)
6. Bocchino Jr., R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel Programming Must Be De-

terministic by Default. In: First USENIX Workshop on Hot Topics in Parallelism. Usenix,
Berkeley (2009)

7. Hunt, G., Larus, J.: Singularity: Rethinking the Software Stack. ACM SIGOPS Operating
Systems Review 41, 37–49 (2007)

8. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Pragmatic
Bookshelf, Raleigh (2007)

9. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R., Levi, S.:
Language Support for Fast and Reliable Message Based Communication in Singularity
OS. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems, Leuven, Belgium, pp. 177–190 (2006)

10. Barroso, L.A., Hölzle, U.: The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, vol. 6. Morgan & Claypool, San Francisco (2009)

11. Weimer, W., Necula, G.C.: Exceptional Situations and Program Reliability. ACM Trans-
actions on Programming Languages and Systems 30, 1–51 (2008)

12. Lenharth, A., Adve, V.S., King, S.T.: Recovery Domains: An Organizing Principle for Re-
coverable Operating Systems. In: Proceeding of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pp. 49–60. ACM,
Washington (2009)

13. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available
Key-value Store. In: Proceedings of the 21st ACM SIGOPS Symposium on Operating Sys-
tems Principles, pp. 205–220. ACM, Stevenson (2007)

14. Gray, J.: Distributed Computing Economics. Microsoft Research, p. 6. Redmond, WA
(2003)

15. anon.: Volta Technology Preview from Microsoft Live Labs Helps Developers Build In-
novative, Multi-Tiered Web Applications with Existing Tools, Technology. Microsoft
Press Pass (2007)

16. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM 51, 107–113 (2008)

17. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-parallel
Programs from Sequential Building Blocks. In: Proceedings of the 2nd ACM SI-
GOPS/EuroSys European Conference on Computer Systems 2007, pp. 59–72. ACM, Lis-
bon (2007)

Mining Opportunities for Code Improvement in
a Just-In-Time Compiler

Adam Jocksch1, Marcel Mitran2, Joran Siu2,
Nikola Grcevski2, and José Nelson Amaral1

1 Department of Computing Science
University of Alberta, Edmonton, Canada

{ajocksch,amaral}@cs.ualberta.ca
2 IBM Toronto Software Laboratory, Toronto, Canada

Abstract. The productivity of a compiler development team depends
on its ability not only to the design effective solutions to known code
generation problems, but also to uncover potential code improvement op-
portunities. This paper describes a data mining tool that can be used to
identify such opportunities based on a combination of hardware-profiling
data and on compiler-generated counters. This data is combined into
an Execution Flow Graph (EFG) and then FlowGSP, a new data min-
ing algorithm, finds sequences of attributes associated with subpaths of
the EFG. Many examples of important opportunities for code improve-
ment in the IBM R© Testarossa compiler are described to illustrate the
usefulness of this data mining technique. This mining tool is specially
useful for programs whose execution is not dominated by a small set of
frequently executed loops. Information about the amount of space and
time required to run the mining tool are also provided. In comparison
with manual search through the data, the mining tool saved a significant
amount of compiler development time and effort.

1 Introduction

Compiler developers continue to face the challenges of accelerated time-to-market
and significantly reduced release cycles for both hardware and software. Micro-
architectures continue to grow in numbers, complexity, and diversity. In this
evolving technological environment, commercial-compiler developing teams must
discover and rank the next set of opportunities for code transformations that will
provide the highest performance improvement per development cost ratio.

The discovery of opportunities for profitable code transformations in large
enterprise applications presents additional challenges. Traditionally, compiler de-
velopers have relied on the intuition that the code that is relevant for perfor-
mance improvement is located in easily identifiable, frequently executed, regions
of the code — often called hot loops. However, many enterprise applications
do not exhibit discernible regions of frequently executed code. Rather, these
applications exhibit a flat profile: thousands of methods are invoked along an
execution path, and no single method accounts for a significant portion of the

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 10–25, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 11

execution time — even though a typical transaction executes millions of instruc-
tions. Thus, focusing development effort on any single method provides negligible
overall performance improvement. However, these applications may display code
patterns that appear repeatedly throughout the code base. Even though no sin-
gle instance of such a pattern is executed frequently, the aggregated run time
of the pattern may be significant. Applications with flat profiles are becoming
increasingly important for commercial compilers that are used to generate code
for middleware and enterprise information-technology (IT) infrastructure.

Thus, a challenge when developing a compiler for applications with flat pro-
files is to discover code patterns whose aggregated execution time is significant
so that development efforts can be focused into improving the code genera-
tion for such patterns. This paper describes a data mining infrastructure, based
on the recently developed FlowGSP algorithm [13], which can be used for au-
tomatic analysis of code compiled by the IBM Testarossa Just-in-Time (JIT)
Compiler [8]. This infrastructure was used to discover patterns in the code gen-
erated for applications running in the IBM R© WebSphere R© Application Server
and for SPECjvm2008 [20] running under Linux R© for System Z R© [22,19].

WebSphere Application Server is a fully compliant JavaTM Enterprise Edi-
tion (JEE) application server written in Java code [11]. This paper uses the
DayTrader Benchmark in the WebSphere Application Server[7]. This benchmark
produces a typical WebSphere Application Server profile reporting the compi-
lation of thousands of methods, with no method representing more than 2% of
the total execution time. For instance, cache misses represent 12% of the overall
run time in one run of a certain application in application server. But, to ac-
count for 75% of the misses requires the aggregation of misses from 750 different
methods [8].

SPECjvm2008 exemplifies the growing variety of industry standards that
are quickly expanding the scope of benchmarks. The SPECjvm2008 suite com-
prises more than double the number of benchmarks that were in its predecessor,
SPECjvm98 [18]. Some of the benchmarks in the newer suite have flat profiles,
making the analysis and identification of opportunities for code improvement
more difficult, more tedious and more indeterminate.

The IBM Testarossa JIT compiler ships as part of the IBM Developer Kit
for Java which powers thousands of mission-critical applications on everything
from embedded devices, to desktops, to high-end servers. The IBM Testarossa
JIT is a state-of-the-art commercial compiler that offers a very complete set
of traditional OO-based and Java-based optimizations. As a dynamic compiler,
Testarossa is also equipped with a sophisticated compilation control system for
online feedback-directed re-compilation [21].

The analysis presented in this paper was performed on Linux for System z.
System z10TM is the latest and most powerful incarnation of IBM’s mainframe
family, which continues to provide the foundation for IT centers for many of
the world’s largest institutions. The System z10 processor has a 4.4 GHz dual
core super-scalar pipeline, executes instructions in order, and can be character-
ized as an address-generation-interlocked pipeline. This processor is a complex

12 A. Jocksch et al.

instruction set computer with a rich set of register-to-register, register-to-storage,
storage-to-storage, and complex branching operations, in addition to hardware
co-processors for cryptography, decimal-floating-point, and Lempel-Ziv compres-
sion [22]. The System z10 processor also provides an extensive set of performance-
monitoring counters that can be used to examine the state of the processor as
it executes the program.

The data mining infrastructure was applied to a large set of compiler at-
tributes and hardware counters. The attributes and hardware data are organized
in a directed graph representing program flow. Edge frequencies are used to rep-
resent the probabilistic flow between basic blocks. The FlowGSP algorithm is
general and can mine any flow graph. A vertex in this flow graph may represent
any single-entry-single-exit region such as an instruction, a basic block, a byte-
code, or a method. Attributes are associated with each vertex, and the algorithm
mines for sequences of attributes along a path.

The main contributions of this paper are:

– An introduction of the problem of identifying important code patterns that
occur in applications with flat profiles, such as enterprise applications.

– A description of a new data mining framework that can be used to discover
important opportunities for code generation improvement in a commercial
dynamic compiler environment.

– A demonstration of the effectiveness of the data mining tool through the
narrative of several discoveries in the code generated for the System z archi-
tecture by the IBM Testarossa compiler.

– Statistics on space and time requirements for the usage of the mining tool
in this environment. This information should be relevant for other compiler
groups that wish to implement a similar tool, as well as for researchers that
wish to improve on our design.

Section 2 explains the need for the mining tool through the description of one
of the important discoveries in a very common segment of code. The mining
tool is described in Section 3. Several additional improvement opportunities
discovered by the tool are described in Section 4. Experimental data describing
the time and space requirements for the usage of the tool in the Testarossa
environment is presented in Section 5. Section 6 discusses previous work related
to the development of similar analysis tools.

2 Motivating Case Study

This section outlines the motivation for the use of data mining to discover pat-
terns that account for significant execution time by describing one such pattern
discovered by FlowGSP. The data mined by FlowGSP to discover this pattern in-
cludes, instruction type, execution time, cache misses, pipeline interlock, etc [13].
This pattern is part of the array-copy code generated by Testarossa for the Sys-
tem z10 platform. FlowGSP identified that, in some benchmarks, more than
5% of the execution time was due to a single instruction called execute (EX).

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 13

This finding is surprising because the IBM Testarossa JIT compiler uses this
instruction in only one scenario – to implement the tail-end of an array copy.1

More specifically, a variable-length array copy is implemented with a loop that
executes an MVC (Move Characters) instruction. The MVC instruction is very
efficient at copying up to 256 bytes. The 256-byte copy length is encoded as a
literal value of the instruction. Figure 1 shows the code generated for array copy-
ing. Any residual of the copy after the repeated execution of MVCs is handled by
using the EX instruction. The EX instruction executes a target instruction out
of order. Before executing the target, EX replaces an 8-bit literal value specified
in the target with an 8-bit field from a register specified in EX. The overloading
is done through an OR of the two bit fields. For the residual array-copy code
generated by Testarossa, the register specified in EX contains the length of the
residual array and the target instruction is a MVC instruction.

Rsrc = Address o f sou rce array ;
Rtrgt = Address o f t a r g e t array ;
whi le (Rlength >= 256)

MVC Rsrc , Rtrgt , 256
Rsrc = Rsrc + 256 ;
Rtrgt = Rtgt + 256 ;
Rlength = Rlength − 256 ;

}
EX ResLabel , Rlength , mvcLabel ;
. . .

ResLabel : MVC Rsrc , Rtrgt , 0

Fig. 1. Pseudo-assembly code for array copy

After the data mining tool identified that 5% of the time was spent in EX,
we examined the profiling data more carefully to find out that the 5% of time
spent in EX is spread over several methods. Therefore, the time spent in the EX
instruction would not be apparent from a study of individual methods. More-
over, part of that time is spent in the MVC instruction. Nonetheless, the EX
instruction incurs significantly more misses in the data-cache and the translation-
look-aside-buffer (TLB) misses than expected. There are two potential reasons
for this:

1. The length of many array copies is less than 256 byte long. In this case, data
cache misses would occur while fetching the source/target operands of MVC.

2. The EX instruction misses the cache upon fetching the overloaded MVC.
This miss occurs because the targeted MVC instruction is located next to
other insructions used by the program, and hence resides in the instruction
cache. On a z10, the EX instruction needs the targeted MVC in the data

1 Array copies use 256-byte copy instructions, the tail-end is any final portion of the
copy that is smaller than 256 bytes.

14 A. Jocksch et al.

cache. Moving the targeted MVC from the instruction cache to the data
cache incurs an extra cost that was not apparent to the compiler designers.

This discovery started an important review of the array-copy code generated by
the compiler. A suitable strategy must be designed to isolate the targeted MVC
from the other data values that are located around it. This strategy must take
into consideration the long lines in the architecture.

An important question is why there is the need for a data mining tool to
discover such an opportunity. Could simple inspection of the hardware and com-
piler profiling data reveal this opportunity? Even if a developer were to spot the
cache miss caused by the EX instruction, she would have no way to know that
the aggregation of occurrences of EX in many infrequently executed methods is
amount to significant performance loss that needs to be addressed. Even though
profile logs of code generated by this commercial compiler had been inspected
by hand for many years, the issue with the use of EX and MVC for array copy
had never been regarded as worthy of attention from the team. Once the mining
tool reported it, one of the developers remarked: “Now we can see!”.

3 The Mining Tool

The mining tool design is based on a new data mining algorithm called FlowGSP.
FlowGSP mines for subpaths in an execution flow graph (EFG). Jocksch formally
defines a an EFG as a directed flow graph possibly containing cycles [13]. Each
EFG vertex is annotated with a normalized weight and has an associated list of
attributes. Each EFG edge is annotated with a normalized execution frequency.
A subpath is of interest if either its frequency of execution, called frequency sup-
port, or vertex weights, called weight support, is above a set threshold. A subpath
is also of interest if the difference between its frequency and weight support is
higher than a difference support. FlowGSP reports sequences of attributes whose
aggregated support over the entire EFG is higher than the specified supports.

FlowGSP is an extension of the Generalized Sequential Pattern (GSP) algo-
rithm, originally introduced by Agrawal et al. [1]. The main difference between
FlowGSP and GSP is that GSP was designed to mine for sequences of attributes
in a list of totally ordered transactions while FlowGSP enables the mining for
sequences of attributes in subpaths of a flow graph, thus allowing a partial order
between the transactions (vertices in the EFG). Similar to GSP, FlowGSP allows
for windows and gaps. A window allows attributes that occur in distinct vertices
that are close in a subpath — within the specified window — to be regarded
as occurring in the same vertex. A gap is a maximum number of vertices in the
subpath that do not contain attributes in the sequence.

3.1 Preparation of Data for Mining

The overall architecture and flow in a system that uses FlowGSP for mining is
shown in Figure 2. Performance-counter data generated by the hardware [12]

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 15

�

Source Code

Application

�

�

�

�Compiler

Java

Application

Byte Codes

�

�

�

�
Compiler

JiT

Control

Flow Graph Log
Compiler

Code

Generated

�

�

�

�
Preparation

Data

Flow Graph

Execution

�

�

�

�
Execution

Program

Profile

Hardware

Data

Input

�

�

�

�
FlowGSP

Sequences
Mined

�

�
� � �

�

���� ���

�
�

���

�
�

�	

�
� �

Fig. 2. Overall architecture and flow in system that uses FlowGSP for mining

is added to the control-flow-graph representation of the program created by
the compiler to produce the input for the mining tool. The Testarossa compiler
comes equipped with a rich set of logging features, including the ability to report
all generated machine instructions. The only modification to the compiler was
to annotate each instruction with a corresponding basic block so that the log
can then be transformed into an EFG. In the implementation of the mining
tool, the hardware performance counter information and the control-flow-graph
data from the compiler are stored in IBM DB2 R© Version 9.1 Express Edition
for Linux, a relational database. A relational database was chosen because the
amount of input data is quite large (some applications running in the WebSphere
Application Server contain over 4000 methods). A flat representation of this data
could result in a very large input file with very poor random-access performance.
Moreover, a relational database allows concurrent access to the data, which
enables the use of a parallel implementation of FlowGSP.

For the use of the mining tool reported in this paper, each vertex in the EFG
represents an instruction. The weight of each instruction represents the amount
of total execution time spent on that instruction. The System Z operating system
uses an event-based sampling mechanism: active events and the instruction un-
der execution are recorded when the sample takes place. Instructions that occupy
more cycles will be sampled more frequently, and the number of sampling hits
or “ticks” is recorded on each instruction. The vertex weights are calculated by
counting the number of sampling ticks on each instruction. The edge frequencies
in the EFG are a measure of how many times each edge was taken during program

16 A. Jocksch et al.

execution. In the case of edges that lie between basic blocks, this value can be
read directly from the control flow graph in the compiler logs. For intra-basic-
block edges, edge weights are assigned the frequency of the basic block in which
they reside. Both edge and basic block frequencies in the control flow graph are
obtained by the compiler through counters inserted in the JVM interpreter.

Each vertex is assigned attributes based on the corresponding instruction’s
characteristics or events observed on the instruction in the hardware profile data.
Examples of attributes include: opcode, whether an instruction-cache miss was
observed, and whether the instruction caused a TLB miss.

In this application FlowGSP is mining for sequences of attributes that occur
in subpaths of the EFG, but this search is based on edge frequency collected
by the compiler. Precise path execution frequency cannot be derived from edge
frequencies [2]. Therefore, the results produced by the mining tool are an ap-
proximation. The support reported for a sequence of attributes represents the
maximal possible execution of that path that could have occurred based on the
edge-frequency information available [13].

FlowGSP is a general flow mining algorithm that can be applied to any
flow graph. For instance, each vertex of the EFG could represent any single-
entry/single-exit region, including a Java bytecode, a basic block, or an entire
method. The vertex weights and edge frequencies would have to be computed
accordingly.

3.2 Operation of the Mining Algorithm

When the tool is run, it first recreates the control flow graph from the information
taken from the compiler logs. Then, it inserts each instruction from the hardware
profile into the correct basic block using the instruction’s annotations. The tool
constructs and mines only a single method at a time in order to match the level of
granularity of the compiler; the Testarossa JIT compiles each individual method
in isolation. As a consequence, FlowGSP does not discover patterns that cross
method boundaries. However, this restriction is a design decision of the tool, not
a limitation of the algorithm.

To mine graphs containing cycles, FlowGSP does not allow a vertex that is the
start vertex of a current candidate sequence to start a new sequence. Therefore
a vertex within a cycle can only start a sequence the first time that it is visited.
FlowGSP can detect frequent subpaths that occur over cycles but avoids looping
indefinitely because the lenght of a sequence is bounded by an specified constant.
Jocksch provides a detailed description of FlowGSP [13].

FlowGSP is an iterative generate-and-test algorithm. Each iteration creates
a set of candidate sequences from the survivors of the previous generation, and
then calculates their supports and tests them against the provided thresholds
(discussed in Section 3.3). Each iteration discovers longer sequences in the data.
Execution terminates when either a specified number of iterations have com-
pleted or no new candidate sequences meet the minimum support thresholds.

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 17

3.3 Support Thresholds for Mining

FlowGSP accepts a number of parameters that can adjust the type and quantity
of sequences that are discovered. FlowGSP takes a maximal support threshold
and a differential support threshold. If the support of a sequence does not meet
either of these thresholds, then the sequence is excluded from further mining.
FlowGSP also accepts a maximum allowable gap size and window size. The
maximum gap size determines how much space is allowed between each part of
a sequence, and the maximum window size determines how many vertices to
consider when searching for one part of a sequence.

Table 1 lists the parameters used in the experimental evaluation for both the
SPECjvm2008 benchmarks and the DayTrader 2.0 benchmark in the WebSphere
Application Server. The support values for the application server are lower than
the corresponding values for the SPECjvm2008 benchmarks because the ap-
plication server is orders of magnitude larger than any of the SPECjvm2008
benchmarks and has an extremely flat profile. The System z10 instructions are
grouped into pairs for execution. Therefore, events that occur on one instruction
of a pair can sometimes also appear on the other instruction. A window size of
one is used to group paired instructions together so that more accurate patterns
can be discovered.

Table 1. FlowGSP parameters used during this study

Parameter crypto compiler sunflow montecarlo xml serial WebSphere

Maximal support 1% 7% 7% 7% 15% 7% 1%
Diff. support 1% 7% 7% 7% 15% 7% 1%
Gap size 1 0 0 0 0 0 0
Window size 1 0 1 1 1 1 1
Iterations 5 5 5 5 5 5 5

4 Opportunities Discovered

Before the development of the data-mining framework, significant development
resources had been invested on the search for performance improvement op-
portunities in applications running in the WebSphere Application Server. This
investment resulted in many observations about potential opportunities for per-
formance improvement. Therefore, a first effort to test the FlowGSP algorithm,
and to build confidence in the compiler development team about the efficacy of
the framework, was a set of acid tests to find out if data mining could discover
the opportunities for code improvement that were already known to the team.
FlowGSP performed extremely well in these tests: it identified all the patterns
that were listed by the developers. Examples of these patterns include:

1. A high correlation between data cache misses, TLB misses, and instruction
cache misses. Consultation with hardware experts led to the observation that
the page table is loaded through the instruction cache, which explained the

18 A. Jocksch et al.

unusual correlation. After FlowGSP confirmed and quantified this correla-
tion, large pages (1 MB instead of 4 KB) were used to reduce the number of
TLB misses, resulting in a performance improvement of 3% on applications
running in the WebSphere Application Server.

2. A high incidence for instruction-cache misses on entry to JIT code methods.
These are cold cache misses for which effective prefetching is a challenge
because of dynamic method dispatching. This observation led to additional
efforts for inlining and code-cache organization by the compiler team, as well
as to discussions on how to mitigate the cache misses in future hardware
releases.

3. A high correlation between branch misprediction and instruction cache misses
on indirect branches with a higher-than-expected occurrence of these events.
A large volume of indirect branches overflows the branch-table buffers. The
compiler team implemented code transformations to transform indirect
branches into direct branches through versioning. Moreover, the hardware
team was engaged to look for solutions to mitigate this issue in future
hardware.

The discovery of these issues through manual inspection of performance-monitor
data by analysts required orders of magnitude more time and effort than the
analysis with the data-mining tool based on FlowGSP. Moreover, the manual
approach is not easy to reproduce for a new data set and is less deterministic.

Once the development team was confident about the results produced by the
mining tool, they started examining the output of the tool to find new oppor-
tunities for code improvement. The time spent in the EX instruction in array
copies described in Section 2 is one such opportunity. The team discovered most
of the new opportunities when applying the tool to profiling data collected from
newer benchmarks, such as the SPECjvm2008. While extensive development ef-
fort has been dedicated to discover opportunities in applications running in the
WebSphere Application Server over many years, these newer benchmarks have
received relatively less attention from the compiler development team. Some of
the new discoveries are listed here:

– Stores account for a majority of data cache directory misses [14] in all
SPECjvm2008 benchmarks. This is unexpected because the load-to-store
ratio in programs is typically on the order of 5:1. Moreover, intuition would
indicate that a program writes to locations from which it has read recently.
Discussions and analysis are still under way to better understand this ra-
tio. The serial benchmark spends three times more time servicing direc-
tory lookups for stores than for loads. This benchmark is highly parallel in
nature, which, on the surface, would lead developers to dismiss cache con-
tention as a concern. The trends presented by FlowGPS, which would have
remained unobserved under manual inspection, have been instrumental in
forcing developers to reconsider cache contention as a possible concern.

– Address-generation interlock (AGI) accounts for more than 10% of the ex-
ecution time in some benchmarks. In the System z architecture, an AGI
occurs when the computation of the address required by a memory access

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 19

instruction has not completed by the time that the instruction needs it [22].
In some cases, such as in a small pointer-chasing loop, AGIs are difficult to
avoid. The mining tool’s finding is helping to focus analysis in this bench-
mark, and the team is planning a review of the instruction scheduling in the
compiler to reduce the impact of AGIs on execution time.

– Branch misses account for 9% of execution time in montecarlo, a benchmark
from the SPECjvm2008 suite. This is unexpected because the execution of
this benchmark is dominated by a single method with several hot loops and
the benchmark has very good instruction locality. This result led to further
analysis that uncovered a limitation in the hardware’s instruction fetch unit:
the unit stops predicting branches when it cannot detect any previously
taken branches within a given window further down the instruction stream.
A consequence of this limitation is that when the compiler unrolls a loop, it
needs to take into account the size of this window to ensure that the loop
backedge is predicted correctly. The compiler team is currently re-examining
the loop unrolling strategy to take into account the penalty for branch misses.

Experienced compiler developers will understand the value of the observations
above to provide direction to a compiler development team. These observations
focus on the z/architecture R©, the Testarossa compiler, and are based on mining
data from the SPECjvm2008 benchmark suite. A similar approach can be used to
most combinations of compiler/architecture/application. Moreover, the mining
tool can be used to discover opportunities that might be specific to important
applications.

5 Experimental Data on the Usage of the Mining Tool

This section presents statistics on the usage of storage and on the time required to
mine several benchmarks. The goal of this section is to provide developers with an
idea of the resources needed to deploy such a tool, and to encourage researchers
to come up with improvements on our tool design. Information reported here
include size of input data, overall running time, number of sequences generated,
and the format of the rules output by the tool.

5.1 Profiling and Storage Requirements

This experimental evaluation uses the DayTrader 2.0 benchmark in the
WebSphere Application Server 7.0 and programs from the SPECjvm2008 bench-
mark suite. All programs are run using the IBM Testarossa JIT compiler. The
WebSphere Application Server workload is DayTrader 2.0 and the server is run
for 5 minutes once a stable throughput has been achieved. This delay is necessary
to ensure that the Testarossa JIT has compiled the majority of the methods in
the application server to native code. The throughput of the application server
increases as methods are compiled to native code. Therefore, stabilization of
throughput is an indication that the majority of the code being executed has

20 A. Jocksch et al.

been natively compiled. A hardware profile of 5 minutes of execution of the
WebSphere Application Server results in roughly 37 MB of compressed data.
The same run produces a 5.9 GB uncompressed, plain-text compiler log.2 At
the time of this writing, the Testarossa JIT does not have an option to output
logs in a compressed format. Compressing the compiler-generated log using gzip
reduces its size to around 700 MB.

Table 2. SPECjvm2008 benchmarks studied

Benchmark
of Methods to # of Methods # Unique

Account for 50% of time Compilations Methods Invoked
compiler.compiler 60 3659 7113
compiler.sunflow 55 4009 6946
crypto.signverify 2 1219 4654
scimark.montecarlo 1 703 4077

serial 8 2967 7645
xml.transform 25 5374 12430

The SPECjvm2008 benchmarks are profiled for a period of 4 minutes after a 1-
minute warm-up time. Only a minute is required until the most of the benchmark
code is being executed natively because the SPECjvm2008 benchmarks used in
this study are significantly smaller than applications running in the WebSphere
Application Server. The 6 SPECjvm2008 benchmarks examined in this study are
listed in Table 2. The data in this table provides an indication of how flat the exe-
cution profile of each benchmark is by listing the number of methods that need to
be examined to account for 50% of the execution time.3 The table also show the
total number of method compilations and the total number of unique methods
that are invoked when the benchmark is executed. These benchmarks were cho-
sen because they form a representative sample of the SPECjvm2008 benchmark
suite and they produce both flat and non-flat profiles. Running these bench-
marks for 5 minutes results in 7 MB of hardware profiling data per benchmark
on average, and an average uncompressed compiler log with 1.4 GB of data.
The benchmark with largest hardware profile is compiler.compiler which pro-
duces 12 MB of data. largest compiler log has 3.3 GB of data and is produced
by xml.transform. The benchmark scimark.montecarlo produces the smallest
hardware profile (385 KB) and the smallest compiler log (97 MB).

5.2 Time Needed to Mine

The execution time of the tool depends on the size of the log of the program
being mined and the parameters passed to the tool. FlowGSP is multi-threaded
2 The compiler option required to output control flow graph data also outputs a large

volume of information that was extraneous to the mining process.
3 This measurement is an approximation because the number of sampling ticks in the

performance monitor that is used to determine the number of methods shown in the
table.

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 21

in order to exploit the resources available in multi-core architectures. FlowGSP
was run with 8 threads on a machine equipped with two AMD 2350 quad-
core CPUs and 8 GB of memory. All runs were performed with the parameters
outlined in Section 3.

Table 3. Running times of FlowGSP, in seconds

Program Execution Time

Websphere App. Server (DayTrader 2.0) 6399
compiler.compiler 815
compiler.sunflow 539
scimark.montecarlo 2
xml.transform 557
serial 215
crypto.signverify 177

Table 3 lists the running time of FlowGSP on both the DayTrader 2.0 bench-
mark in the WebSphere Application Server and SPECjvm2008 benchmark profiles
with execution time in seconds. The xml.transform,compiler.sunflow,serial,
and scimark.montecarlobenchmarks terminated when no more candidates with
support greater than the minimum threshold remained. Xml.transform
and scimark.montecarlo terminated after three iterations, compiler.sunflow
and serial after four iterations. Montecarlo has one small method which oc-
cupies almost 100% of total execution time. Therefore the time to mine this
benchmark is significantly lower. The times reported in Table 3 indicate that
the mining tool based in FlowGSP can be used on a daily basis in the develop-
ment of a production compiler.

5.3 Sequences Reported by Mining

FlowGSP outputs frequent sequences in the following format:

S = 〈s1, . . . , sk〉

where each si ∈ s1, . . . , sk is a set of attributes:

si = (α1, . . . , αk)

Each sequence is accompanied by four values, which indicate the sequence’s
weight, frequency, maximal, and differential support. In this use of the data-
mining tool the vertices of the EFG are instructions. Examples of attributes in-
clude the instruction type, occurrence of cache misses, pipeline interlock, branch
missprediction, the type of bytecode the originated the isntruction, etc. Results
are output to a plain-text file. In the experiments reported here, the DayTrader
2.0 benchmark in WebSphere produced 1286 sequences while the SPECjvm2008
data produced, on average, 64,000 sequences. The SPECjvm2008 benchmarks
exhibited a very wide range in terms of the number of sequences generated. The

22 A. Jocksch et al.

most sequences were discovered in the scimark.montecarlo benchmark with
roughly 291,000 sequences. On the other hand, the xml.tranform benchmark
had the smallest number of sequences at around 1,900.

In general, support thresholds for the SPECjvm2008 benchmarks were set
generously low because this is an initial exploration of the applications of data
mining in the compiler development. These low thresholds ensure that no inter-
esting sequences are overlooked. With experience the support threshold can be
increased to allow only the most interesting sequences to be reported. It could
be possible in future work to automate this process based on the number of
surviving sequences.

We implemented an user interface to display the results of mining. This in-
terface allows sequences to be sorted lexicographically or by any of the support
metrics. A maximum and minimum support value can be specified to reduce the
number of sequences displayed. The tool can also selectively display sequences
based on whether they do or do not contain specific attributes. This filtering is
particularly effective at reducing the number of sequences that must be examined
by a compiler developer. For instance, the serial benchmark contained 16,518
sequences, but only 2,880 involved pipeline stalls due to AGI interlocks. Rank-
ing these resulting sequences by maximal or differential support allows quick
identification of the most interesting patterns.

The tool also allows the developer to specify one rule as the baseline against
which all other sequences are compared. This feature allows for easy comparison
of sequences with respect to the baseline sequence.

6 Related Work

This is potentially the first attempt to use data mining to discover patterns of
execution that occur frequently in an application but yet do not necessarily occur
inside loops. Work that is related to this approach include performance analysis
tools, the use of performance counters in JVMs, and the search for code bloat.

Optiscope is an “optimization microscope” developed to aid compiler devel-
opers in understanding low-level differences in the code generated by a compiler
executing different code transformations, or between code generated by two dif-
ferent compilers for the same program [15]. Optiscope automatically matches up
code in two hardware profiles that originated from the same region of source
code. Optiscope focuses on loops. In contrast, FlowGSP focuses on finding in-
teresting patterns within a single hardware profile and aims to discover common
patterns that occur throughout the profile.

The design of most existing performance analysis tools, such as the popular
Intel VTune for Intel R© chipsets [5], focuses on locating small regions of code
that are frequently executed to concentrate development efforts on these re-
gions. Chen et al. try to capture the most execution time with the least amount
of code [4]. Similarly, Schneider et al. use hardware performance monitors to “di-
rect the compiler to those parts of the program that deserve its attention” [17].
Contrary to earlier work, the premise of this paper is that in some applica-
tions these parts are scattered through the code and not concentrated in smaller

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 23

regions. Hundt presents HP Caliper, a framework for developing performance
analysis tools on the Intel Itanium R© platform running HP-UX [10]. Similar
to the approach presented here, Caliper integrates sampled hardware perfor-
mance counters with compiler-generated dynamic instrumentation. Dynamic in-
strumentation involves changing program instructions on the fly to obtain more
accurate program analysis. However, unlike our mining tool, HP Caliper does
not attempt to mine the combined data for patterns.

Huck et al. present PerfExplorer, a parallel performance analysis tool [9].
PerfExplorer incorporates a number of automated data analysis techniques such
as k-means and hierarchical clustering, coefficient of correlation analysis, and
comparative analysis. PerfExplorer targets application developers seeking to un-
derstand bottlenecks in their code, not compiler developers. Also, PerfExplorer
does not search for frequent sequences in the data.

Cuthbertson et al. incorporate performance counter information into a pro-
duction JVM to improve program performance [6]. They use a custom library to
retrieve instruction cache miss information on the Intel Itanium platform. This in-
formation is used to guide both object allocation and instruction scheduling in or-
der to increase performance. They achieve an average performance increase of 2%
on various Java benchmarks. Schneider et al. perform similar work using hardware
counters on the Intel Itanium platform to guide object co-allocation [17]. How-
ever, these approaches can only improve the performance of existing code trans-
formations whereas FlowGSP is aimed at discovering opportunities for new code
transformations. Also, both approaches only look at a small fraction of all avail-
able program data. It is not clear how much increased overhead will result from
increasing the amount of data being brought into the compiler.

Buytaert et al. use hardware-performance counters to both improve the ac-
curacy and decrease the cost of hot method detection in a production JVM [3].
Their focus is purely on improving the efficiency and accuracy of the JVM and
does not provide any insights into new opportunities for code transformations.

Xu et al. develop a method for profiling Java programs to identify areas of code
bloat [23]. They evaluate the DaCapo benchmark suite, elements of the Java 1.5
standard library, and Eclipse 3.1, and are able to identify a number of specific
opportunities to improve performance by decreasing bloat. Similarly, Novark et
al. develop a tool called Hound to identify memory leaks and sources of bloat
in C and C++ programs [16]. Hound was able to achieve a 14% performance
increase in one of the studied benchmarks by identifying a single line of code
that needed to be changed. While removing code bloat can significantly improve
the performance of applications, it only addresses performance from the point
of view of the application programmer. Proper use of code transformations by
the compiler is equally as important in increasing program performance.

7 Conclusion

In compiler and computer-architecture development, as in Science in general,
discovering the question to ask is often as difficult as finding the answer. Recent

24 A. Jocksch et al.

developments in hardware performance-monitoring tools, and in leaner tech-
niques to insert profiling counters in generated code, have provided developers
with an unprecedented amount of data to examine the run-time behavior of a
program. The combination of these techniques amounts to a very powerful scope.
The mining tool presented in this paper is a mechanism to help focus this pow-
erful scope on patterns that happen frequently enough to warrant the attention
of compiler or hardware developers. This paper describes the methodology and
the tool used for this mining task. It also presents several examples of discov-
eries that were done using the tool. Then, it presents statistics on the amount
of space and time that is required to use the tool to mine the data produced
by enterprise software in a high-end hardware platform with a mature compiler
infrastructure. This data indicates that this methodology can be used routinely
for the development of production compilers.

Acknowledgments

We are very thankful to Jane Bartik and John Rankin from the IBM Pough-
keepsie campus for sharing their invaluable insight into the z/Architecture. This
work was supported by an IBM Centre for Advanced Studies fellowship and by
grants from the Natural Science and Engineering Research Council (NSERC) of
Canada through its Collaborative Research and Development program.

Trademarks

The following are trademarks or registered trademarks of IBM Corporation in
the United States, other countries, or both: IBM, Websphere, z10, and DB2.
The symbol R© or TMindicates U.S. registered or common law trademarks owned
by IBM at the time of publication. Such trademarks may also be registered or
common law trademarks in other countries. Other company, product, and service
names may be trademarks or service marks of others.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: International Conference
on Data Engineering (ICDE), March 1995, pp. 3–14 (1995)

2. Ball, T., Mataga, P., Sagiv, M.: Edge profiling versus path profiling: the showdown.
In: Symposium on Principles of Programming Languages (POPL), San Diego, CA,
USA, pp. 134–148 (1998)

3. Buytaert, D., Georges, A., Hind, M., Arnold, M., Eeckhout, L., De Bosschere,
K.: Using HPM-sampling to drive dynamic compilation. In: Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), Montreal, Quebec,
Canada, pp. 553–568 (2007)

4. Chen, H., Hsu, W.-C., Lu, J., Yew, P.-C., Chen, D.-Y.: Dynamic trace selection
using performance monitoring hardware sampling. In: Code Generation and Opti-
mization (CGO), San Francisco, CA, USA, pp. 79–90 (2003)

5. Intel Corporation. Intel v-Tune performance analyzer, http://software.intel.
com/en-us/articles/intel-vtune-performance-analyzer-white-papers/

http://software.intel.com/en-us/articles/intel-vtune-performance-analyzer-white-papers/
http://software.intel.com/en-us/articles/intel-vtune-performance-analyzer-white-papers/

Mining Opportunities for Code Improvement in a Just-In-Time Compiler 25

6. Cuthbertson, J., Viswanathan, S., Bobrovsky, K., Astapchuk, A., Kaczmarek, E.,
Srinivasan, U.: A practical approach to hardware performance monitoring based
dynamic optimizations in a production JVM. In: Code Generation and Optimiza-
tion (CGO), Seattle, WA, USA, pp. 190–199 (2009)

7. Geronimo, A.: Apache daytrader benchmark sample (October 2009), http://

cwiki.apache.org/GMOxDOC20/daytrader.html
8. Grcevski, N., Kielstra, A., Stoodley, K., Stoodley, M., Sundaresan, V.: Java just-in-

time compiler and virtual machine improvements for server and middleware appli-
cations. In: Conference on Virtual Machine Research and Technology Symposium
(VM), San Jose, CA, USA, pp. 12–12 (2004)

9. Huck, K.A., Malony, A.D.: PerfExplorer: A performance data mining framework
for large-scale parallel computing. In: ACM/IEEE Conference on Supercomputing
(SC), Seattle, WA, USA, p. 41 (2005)

10. Hundt, R.: HP Caliper: A framework for performance analysis tools. IEEE Con-
currency 8(4), 64–71 (2000)

11. IBM Corporation. WebSphere Application Server (October 2009), http://www-01.
ibm.com/software/websphere/

12. Jackson, K.M., Wisniewski, M.A., Schmidt, D., Hild, U., Heisig, S., Yeh, P.C., Gel-
lerich, W.: Ibm system z10 performance improvements with software and hardware
synergy. IBM J. of Res. and Development 53(1), Paper 16:1–8 (2009)

13. Jocksch, A.: Data mining flow graphs in a dynamic compiler. Master’s thesis, Uni-
versity of Alberta, Edmonton, AB, Canada (October 2009)

14. Mak, P., Walters, C.R., Strait, G.E.: IBM system z10 processor cache subsystem
microarchitecture. IBM J. of Res. and Development 53(1), Paper 2:1–12 (2009)

15. Moseley, T., Grunwald, D., Peri, R.V.: Optiscope: Performance accountability for
optimizing compilers. In: Code Generation and Optimization (CGO), Seattle, WA,
USA (2009)

16. Novark, G., Berger, E.D., Zorn, B.G.: Efficiently and precisely locating memory
leaks and bloat. In: Conference on Programming Language Design and Implemen-
tation (PLDI), Dublin, Ireland, pp. 397–407 (2009)

17. Schneider, F.T., Payer, M., Gross, T.R.: Online optimizations driven by hardware
performance monitoring. In: Conference on Programming Language Design and
Implementation (PLDI), pp. 373–382 (2007)

18. Shiv, K., Chow, K., Wang, Y., Petrochenko, D.: SPECjvm2008 performance charac-
terization. In: SPEC Workshop on Computer Performance Evaluation and Bench-
marking, Austin, TX, USA, pp. 17–35 (2009)

19. Shum, C.-L.K., Busaba, F., Dao-Trong, S., Gerwig, G., Jacobi, C., Koehler, T.,
Pfeffer, E., Prasky, B.R., Rell, J.G., Tsai, A.: Design and microarchitecture of the
IBM system z10 microprocessor. IBM J. of Res. and Development 53(1), Paper
1:1–12 (2009)

20. Standard Performance Evaluation Corporation. SPEC: The standard performance
evaluation corporation, http://www.spec.org/

21. Sundaresan, V., Maier, D., Ramarao, P., Stoodley, M.: Experiences with multi-
threading and dynamic class loading in a java just-in-time compiler. In: Code
Generation and Optimization (CGO), New York, NY, USA, pp. 87–97 (2006)

22. Webb, C.F.: IBM z10: The next generation mainframe microprocessor. IEEE Mi-
cro 28(2), 19–29 (2008)

23. Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow:
profiling copies to find runtime bloat. In: Conference on Programming Language
Design and Implementation (PLDI), Dublin, Ireland, pp. 419–430 (2009)

http://cwiki.apache.org/GMOxDOC20/daytrader.html
http://cwiki.apache.org/GMOxDOC20/daytrader.html
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/websphere/
http://www.spec.org/

Unrestricted Code Motion:
A Program Representation and Transformation

Algorithms Based on Future Values�

Shuhan Ding and Soner Önder

Department of Computer Science
Michigan Technological University
shding@mtu.edu, soner@mtu.edu

Abstract. We introduce the concept of future values. Using future val-
ues it is possible to represent programs in a new control-flow form such
that on any control flow path the data-flow aspect of the computation is
either traditional (i.e., definition of a value precedes its consumers), or re-
versed (i.e., consumers of a value precede its definition). The representa-
tion hence allows unrestricted code motion since ordering of instructions
are not prohibited by the data dependencies. We present a new program
representation called Recursive Future Predicated Form (RFPF) which
implements the concept. RFPF subsumes general if-conversion and per-
mits unrestricted code motion to the extent that the whole procedure
can be reduced to a single block. We develop algorithms which enable
instruction movement in acyclic as well as cyclic regions and give exam-
ples of various optimizations in RFPF form.

1 Introduction

Code motion is an essential tool for many compiler optimizations. By reorder-
ing instructions, a compiler can eliminate redundant computations [4,9,10],
schedule instructions for faster execution [17], or enable early initiation of long
latency operations, such as possible cache misses. In these optimizations, the
range of code motion is limited by data and control dependencies [4,5]. There-
fore, code-optimization algorithms which rely on code-motion have to make sure
that control and data dependencies are not violated.

Ability to move code in a control-flow setting in an unrestricted manner would
have several significant benefits. Obviously, having the necessary means to move
instructions in an unrestricted manner while maintaining correct program se-
mantics could enable the development of simpler algorithms for program opti-
mization. More importantly however, when we permit code motion beyond the
obvious limits, code-motion itself can become a very important tool for program
analysis.

� This work is supported in part by a NSF CAREER award (CCR-0347592) to Soner
Önder.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 26–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unrestricted Code Motion: A Program Representation 27

In this paper, we first present the concept of future values. Future values allow
a consumer instruction to be placed before the producer of its source operands.
Using the concept, we develop a program representation which is referred to
as Recursive Future Predicated Form (RFPF). RFPF is a new control-flow form
such that on any control flow path the data-flow aspect of the computation is
either traditional (i.e., definition of a value precedes its consumers), or reversed
(i.e., consumers of a value precede its definition). When an instruction is to be
hoisted above an instruction that defines its source operands, the representa-
tion updates the data-flow aspect to become reversed (i.e., future, meaning that
the instruction will encounter the definition of its source operands in a future se-
quence of control-flow). If, on the other hand, the same instruction is propagated
down, the representation will update the data-flow aspect to become traditional
again. The representation hence allows unrestricted code motion since ordering
of instructions is not prohibited by the data dependencies. Of course, for correct
computation, the values still need to be produced before they can be consumed.
However, with the aid of a future values based program representation, the actual
time that this happens will appropriately be delayed.

RFPF is a representation built on the principle of single-assignment [3,7] and
it subsumes general if-conversion [2]. In this respect, RFPF properly extends
the SSA representation and covers the domain of legal transformations resulting
from instruction movements. Possible transformations range from the starting
SSA form where all data-flow is traditional, to a final reduction where the en-
tire procedure becomes a single block through upward code motion, possibly with
mixed (i.e., traditional and future) data-flow. We refer to a procedure which is
reduced to a single block through code motion to be in complete RFPF. Complete
RFPF expresses the program semantics without using control-flow edges except
sequencing. During the upward motion of instructions, valuable information is
collected and as it is shown later in the paper, this information can be used to
perform several sophisticated optimizations such as Partial Redundancy Elim-
ination (PRE). Such optimizations typically require program analysis followed
by code motion and/or code restructuring [12,9,4].
Our contributions in this paper are as follows: (1) We introduce the novel concept
of future values which permits a consumer instruction to be encountered before
the producer of its source operand(s) in a control-flow setting; (2) Using future
values, we introduce the concept of future predicates which permits instruction
hoisting above the controlling instructions by specifying future control flow; (3)
We introduce the concept of instruction-level recursion. This concept allows the
loops to be represented as straight-line code and analyzed with ease. Combina-
tion of future predicates and instruction-level recursion enables predication of
backward branches; (4) Using the concepts of future values, future predicates and
instruction-level recursion, we develop a unified representation (RFPF) which is
control-flow based, yet instructions can freely be reordered in this representa-
tion by simply comparing the instruction’s predicate, source and destination
variables to the neighboring instruction; (5) We illustrate that unrestricted code
motion itself can be used to analyze programs for optimization opportunities.

28 S. Ding and S. Önder

We present a PRE example in which redundancy cannot be eliminated using
code motion alone and restructuring is necessary, yet both the discovery and
the optimization of the opportunity can be performed with ease; (6) We present
algorithms to convert conventional programs into the RFPF. These algorithms
are low in complexity and with the exception of identification of loop headers
and the nesting of the loops in the program, they do not need additional external
information to be represented. Instead, these algorithms operate by propagating
instructions and predicates and use only the local information available at the
vicinity of moved instructions; (7) We illustrate that for any graph with mixed-
mode data-flow, there is a path through instruction reordering and control flow
node generation to convert the future data-flow in the representation back to a
traditional SSA graph, or generate code directly from the representation.

In the remainder of the paper, in Section 2, we first present the concept of
future values. Section 3 through Section 6 illustrate a process through which
instructions can be hoisted to convert a program into RFPF while collecting
the data and control dependencies necessary to perform optimizations. For this
purpose, we first illustrate how the concept can be used for instruction movement
in an acyclic region in Section 3. This set of algorithms can be utilized by existing
optimization algorithms that need code motion by incorporating the concept of
future-values into them. Code motion in cyclic regions requires conversion of
loops into instruction-level recursion. We introduce the concept of instruction-
level recursion in Section 4. This section presents the idea of recursive predicates
and illustrates how backward branches can be predicated. Next, in Section 5
we give an algorithm for computing recursive predicates. Combination of code
motion in acyclic and cyclic regions enables the development of an algorithm that
generates procedures in complete RFPF from a given SSA program using a series
of topological traversals of the graph and instruction hoisting. Since reordering of
instructions has to deal with explicit dependencies, memory dependencies pose
specific challenges. We discuss the handling of code motion involving memory
dependencies in Section 6. Section 7 gives examples of optimizations using the
RFPF form. We discuss the conversion back into CFG in Section 8. Finally we
describe the related work in Section 9 and summarize the paper in Section 10.

2 The Concept of Future Values

Any instruction ordering must respect the true data dependencies as well as the
control dependencies. As a result, an instruction cannot normally be hoisted
beyond an instruction which defines the hoisted instruction’s source operand(s).
When such a hoisting is permitted, a future dependency results:

Definition 1. When instructions I and J are true dependent on each other and
the instruction order is reversed, the true dependency becomes a future depen-
dency and is marked on the source operand with the subscript f.

Consider the statements shown in Figure 1(a). In this example, the control first
encounters instruction i1 which computes the value x, and then encounters the

Unrestricted Code Motion: A Program Representation 29

i2: z = x + a

i1: x = a + b

(a) True dependence

i1: x = a + b

i2: z = x + a

(b) Future (reversed) dependence

fControl flow Control flow

i1: if(a < b)
i2: x = x +1

i1: P=(a < b)
i2: [P]x = x + 1

i2: [Pf]x = x + 1
i1: P=(a < b)

(c) Traditional control-flow (d) If-conversion (e) Future control-dependence

Fig. 1. The concept of Future data and control dependences

instruction i2 which consumes the value. In Figure 1(b), the instruction i2
has been hoisted above i1, and its source operand x has been marked to be
a future value using the subscript f. If the machine buffers any instructions
whose operands are future values alongside with any operand values which are
not future until the producer instruction is encountered, the instructions can be
executed with proper data flow between them even though the order at which
the control has discovered them is reversed. Similarly, we can represent control
dependencies in future form as well. Consider Figure 1(c). In this example, i2
is control dependent on i1. In Figure 1(d) predicate P is used to guard i2,
which represents the same control dependence. When the order of i1 and i2 is
reversed(Figure 1(e)), predicate P becomes a future value and thus the original
control dependence becomes future control dependence.

The combination of future data and control dependencies and single-
assignment semantics permit unrestricted code motion. In the rest of the paper,
single-assignment semantics is assumed and all the transformations maintain the
single-assignment semantics. We first discuss code motion using future values in
acyclic regions involving control dependencies.

3 Code Motion in Acyclic Code

For an acyclic control-flow graph G =< s, N, E > such that, s is the start node,
N is the set of nodes and E is the set of edges, instruction hoisting involves one
of three possible cases. These are: (1) movement that does not involve control
dependencies (i.e., straight-line code), (2) splitting (i.e., parallel move to prede-
cessor basic blocks), and (3) merging (i.e., parallel move to a predecessor block
that dominates the source blocks). Note that movement of a φ-node is a special
case and normally would destroy the single-assignment property. We examine
each of these cases below:

Case 1 (Basic block code motion). Consider instructions I and J . Instruction J
follows instruction I in program order. If I and J are true dependent, hoisting J
above I converts the true dependency to a future dependency. Alternatively, if
the instructions are future dependent on each other, hoisting J above I converts
the future dependency to a true dependency (Figure 1(a) and (b)).

30 S. Ding and S. Önder

When code motion involves control dependencies, the instruction propagation
is carried out using instruction predication, instruction cloning and instruction
merging. An instruction is cloned when the instruction is moved from a control
independent block to a control dependent block. Cloned copies then propagate
along the code motion direction into different control dependent blocks. When
cloned copies of instructions arrive at the same basic block they can be merged.

Case 2 (Splitting code motion). Consider instruction I that is to be hoisted
above the block that contains the instruction. For each incoming edge ei a new
block is inserted, a copy of the instruction is placed in these blocks and a φ-node
is left in the position of the moved instruction (Figure 2).

I: x1 =

I1: x1,1,2= I2: x1,2,2=

J: x1 = φ(x1,1,2, x1,2,2)

Fig. 2. Splitting code motion

I

if (P)

if (P)

[¬P] I

N YYN

Fig. 3. Merging code motion

Note that in Figure 2, when generated copies I1 and I2 are merged back into a
single instruction, the inserted φ-node can safely be deleted and the new instruc-
tion can be renamed back to x1. The two new names created during the process,
namely, x1,1,2 and x1,2,2 are eliminated as part of the merging process. In order
to facilitate easy merging of clones, we adopt the naming convention vi,j,k where
vi is an SSA name, j is the copy version number and k is the total number of
copies. Generated copies can be merged when they arrive at the immediate dom-
inator of the origin block, and in case of reduction to a single block, all copies
can be merged. We discuss these aspects of merging later in Section 3.3.

Case 3 (Merging code motion). Consider instruction I that is to be hoisted into
a block where the source block is control dependent on the destination block. The
instruction I is converted to a predicated instruction labeled with the controlling
predicate of the edge (Figure 3).

3.1 Future Predicated Form

When a predicated instruction is hoisted above the instruction which defines its
predicate, the predicate guarding the instruction becomes future as the predicate
is also a value and the data dependence must be updated properly. Figure 4 shows
a control dependent case. Instruction I is control dependent on condition a0 < b0.
When the instruction I is moved from B2 to B1, it becomes predicated and is
guarded by Q (Figure 4(b)). In the next step, the instruction is hoisted above
the definition of Q and its predicate Q becomes future (i.e., Qf) (Figure 4(c)).

Unrestricted Code Motion: A Program Representation 31

Y

B2

B1

if (a0 < b0)

I: z1 = x1 + y1

t0 = x1 + y1

N

YN

if (d0 < e0)

B0 B0

N

B2

Y

B1

YN

if (P)

P = d0 < e0

t0 = x1 + y1

Q = a0 < b0

if (Q)

[Q] I: z1 = x1 + y1

B0

N

B2

Y

Q = a0 < b0

B1

YN

P = d0 < e0

t0 = x1 + y1

[Qf] I: z1 = x1 + y1

if (P)

if (P)

B0

N

B2

Y

Q = a0 < b0

B1

t0 = x1 + y1

[P ∧ Qf] I: z1 = x1 + y1

YN

if (P)

if (P)

P = d0 < e0

(a) before code (b) after code (c) future (d) nested
motion motion predicate predicate

Fig. 4. Code motion across control dependent regions

When a predicated instruction is hoisted further, it may cross additional
control dependent regions and will acquire additional predicates. Consider Fig-
ure 4(c). Since the target instruction is already guarded by the predicate Qf ,
when it moves across the branch defined by P , it becomes guarded by a nested
predicate (Figure 4(d)). In terms of control flow, it means that predicate P must
appear, and it will appear before Q. Similarly, if P is true, then Q must also
appear since if the flow takes the true path of P the predicate Q will eventually
be encountered. In other words, the conjunction operator has the short-circuit
property and it is evaluated from left to right. Semantically, a nested predicate
which involves future predicates is quite interesting as it defines possible control
flow.

3.2 Elimination of φ-Nodes

RFPF transformations aim to generate a single block representing a given pro-
cedure. The algorithms developed for this purpose hoist instructions until all
the blocks, except the start node are empty. Proper maintenance of the program
semantics during this process requires the graph to be in single-assignment form.
On the other hand, movement of φ-nodes as regular instructions is not possible
and the elimination of φ-nodes result in the destruction of the single-assignment
property. For example, elimination of the φ-node x3 = φ(x1, x2) involves inser-
tion of copy operations x3 = x1 and x3 = x2 across each incoming edge in that
order. Such elimination creates two definitions of x3 and the resulting graph is
no longer in single-assignment form. Our solution is to delay the elimination of
φ-nodes until the two definitions can be merged, at which time a gating function
[13] can be used if necessary:

Definition 2. We define the gating function ψp(a1, a2) as an executable func-
tion which returns the input a1 if the predicate p is true and a2 otherwise.

32 S. Ding and S. Önder

K: x3 = φ(x1, x2)

I: x1 = J: x2 =
J: x2 =

K2: x3,2,2 = x2

K: x3 = φ(x3,1,2, x3,2,2)

K1: x3,1,2 = x1

I: x1 =

Fig. 5. φ-node elimination

Note that during merging, cloned copies already bring in the necessary informa-
tion for computing the controlling predicate for the gating function. The merging
process is enabled by transforming the φ-node in a manner similar to the splitting
case described above:

Case 4 (φ-node elimination). Consider the elimination of theφ-nodex3=φ(x1, x2)
(Figure 5). φ-node elimination can be carried out by placing copy operations
x3,1,2 = x1 and x3,2,2 = x2 across each incoming edge in that order and updat-
ing the φ-node with the new definitions to become x3 = φ(x3,1,2, x3,2,2).

Merging of the instructions x3,1,2 = x1 and x3,2,2 = x2 requires the insertion of
a gating function since the right-hand sides are different. Once the instructions
are merged, the φ-node can be eliminated. It is important to observe that until
the merging takes place and the deletion of the φ-node, instructions which use
the φ-node destination x3 can be freely hoisted by converting their dependencies
to future dependencies.

3.3 Merging of Instructions

In general, upward instruction movement will expose all paths resulting in many
copies of the same instruction guarded by different predicates. This is a de-
sired property for optimizations that examine alternative paths such as PRE
and related optimizations since partial redundancy needs to be exposed before
it can be optimized. We illustrate an example of PRE optimization in Section 7.
On the other hand, the code explosion that results from the movement must be
controlled. RFPF representation allows copies of instructions with different pred-
icates to be merged. Merging can be carried out between copies of instructions
which result from a splitting move, as well as those created by φ-node elimina-
tion. As previously indicated, merging of two instructions with the same deriva-
tive destination (i.e., such as those which result from φ-node elimination) requires
the introduction of the gating function ψ into the representation, whereas merg-
ing of the two copies of the same instruction can be conducted without the use
of a gating function. When the merged instructions are the only copies, the re-
sulting instruction can be renamed back to the φ destination. Otherwise, a new
name is created for the resulting instruction, which will be merged with other
copies later during the instruction propagation.

Unrestricted Code Motion: A Program Representation 33

Definition 3. Two instructions γ : xi,m,k ← e1 and δ : xi,n,k ← e2, where γ
and δ are predicate expressions, represent the single instruction γ∨δ : xi,(m,n),k ←
e1 if e1 and e2 are identical.

Definition 4. Two instructions γ : xi,m,k ← e1 and δ : xi,n,k ← e2, where γ
and δ are predicate expressions represent the single instruction γ∨δ : xi,(m,n),k ←
ψP (e1, e2) if e1 and e2 are not identical. The predicate expression P is the first
predicate expression in γ and δ such that P controls γ and ¬P controls δ.

Definition 5. Instruction γ : xi,(p,...,q),k ← e can be renamed back to γ : xi ← e
if (p, . . . , q) contains a total of k version numbers.

Theorem 1. Copy instructions generated from a given instruction I during up-
ward propagation are merged at the immediate dominator of the source node of
I, since all generated copies will eventually arrive at the immediate dominator
of the source block.

Proof. Let node A be the immediate dominator of the source node I has origi-
nated from in the forward CFG. Assume there’s one copy instruction I ′ which
does not pass through A during the whole propagation. For this to happen,
there must be a path p, which from the start node reaches I’ and then reaches
the source node of I. The fact that p does not pass through node A conflicts the
assumption that A is the immediate dominator node of I.

................

if (a ¡ b)

I: z = x + y
B4

B1

YN

B3
B2

................

B1

YN

B3
B2

if (P)

P = a < b

B4

I2: z,2,2 = x + yI1: z,1,2 = x + y

J: z = φ(z,1,2, z,2,2)

................

B1

B4

J: z = φ(z,1,2, z,2,2)

N Y

if (P)

[¬P] I1: z,1,2 = x + y

[P] I2: z,2,2 = x + y

P = a < b

B2 B3

................

B1

B4

N Y

if (P)

J: z = φ(z,1,2, z,2,2)

I: z = x + y

P = a < b

B2 B3

(a) (b) (c) (d)

Fig. 6. Instruction propagation

Let us now see through an example how the instruction merging effectively
eliminates unnecessary code duplication. Consider the CFG fragment shown in
Figure 6(a). Suppose that instruction I needs to be moved to block B1. Further
note that instruction I is control independent of the block B1. We first insert the
branch condition P = a < b in block B1. Moving of I is accomplished by applying
the splitting transformation, followed by progression of I1 and I2 into blocks B2
and B3 respectively and the deletion of temporary nodes inserted during the
movement (Figure 6(b)). Next, the instructions I1 and I2 are propagated using
a merge move which predicates them with ¬P and P respectively and places them

34 S. Ding and S. Önder

in block B1 (Figure 6(c)). At this point, using Definition 3, the two instructions
can be reduced to a single instruction I without a predicate (Figure 6(d)) and the
φ-node can be deleted. Note that the merging of the instructions and the deletion
of φ node must be carried out at the same step to maintain single-assignment
property.

I: z = e

B3

YN

if (Q=...)

N Y

B1

B2

if (P=...)

I3: z,3,3 = e

I2: z,2,3 = eI1: z,1,3 = e

YN

if (Q=...)

B3

J: z = φ(z,1,3, z,2,3, z,3,3)

B2

N

if (P=...)

Y

B1

I3: z,3,3 = e

[γ]I1: z,1,3 = e1

[δ] I2: z,2,3 = e2

B3

J: z = φ(z,1,3, z,2,3, z,3,3)

B1

N Y

if (P=...)

YN

B2

if (Q=...)

(a) (b) (c)

I3: z,3,3 = e

B3

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

N Y

if (P=...)

B1

Y

B2

if (Q=...)

= ψQf
(e2, e1)

[γ ∨ δ] I1,2: z,(1,2),3

N

[β]I3: z,3,3 = e3

B3

if (P=...)

[α] I1,2: z,(1,2),3

= ψQf
(e2, e1)

B1

N Y

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

YN

if (Q=...)

B2

B3

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

B1

N Y

if (P=...)

[α ∨ β] I: z = ψPf
(e3, ψQf

(e2, e1))

YN

if (Q=...)

B2

(d) (e) (f)

Fig. 7. Instruction merging

A detailed example which shows how the adopted naming convention facili-
tates instruction merging is illustrated in Figure 7(a). In this example regions
represented as clouds are arbitrary control and dataflow regions an instruction
has to pass through and cloud regions have no incoming or outgoing edges ex-
cept for the explicitly indicated ones. Instruction I, which computes e is moved
across block B3 by applying a splitting transformation (Figure 7(b)). Next, two
of the total three copy instructions, namely, I1 and I2 converge in block B2 and

Unrestricted Code Motion: A Program Representation 35

during propagation may acquire different expressions, namely, e1 and e2. These
two instructions are merged into I1,2 using Definition 4 (Figure 7(c)(d)).

Note that future predicate Qf is used in the gating function for choosing
between e1 and e2. At this point, checking the name of destination z,(1,2),3,
indicates that there are unmerged copies. Further instruction propagation results
in the merging of I1,2 and I3 in block B1. Applying Definition 4 and 5, all the
copy instructions are reduced into a single instruction I, which is represented
through a nested gating function. At this point the φ-node can be deleted. The
final result is shown in Figure 7(f).

4 Instruction-Level Recursion

In a reducible control-flow graph, a loop region is a strongly connected region
where the loop header forms the upward propagation boundary. Therefore mov-
ing instructions across the loop header requires a new approach. This approach
is to convert every instruction within the loop region to an equivalent instruction
that can iterate in parallel with the loop execution independently. We define an
instruction that schedules its next iteration, a recursive instruction.

Conceptually, a recursive instruction appears as a function call that is spawned
at the point the control visits the instruction. The instruction executes within
this envelope and checks a predicate to see if it should execute in the next
iteration. If the predicate is true, a recursive call is performed. Otherwise the
function returns the last value it had computed. In this way, as long as the
predicate which controls the loop iteration is known, any loop instruction can
iterate itself and hence it can be separated from the loop structure (or pushed
out of the loop region). In other words, an instruction that is hoisted above the
loop header becomes a recursive instruction controlled by a special predicate
called the Recursive Predicate:

Definition 6. Recursive Predicate: In a loop L that has a single loop header
H and a single backedge e, the predicate expression which allows control flow to
reach e from H without going through e is Recursive Predicate for L.

For loops with multiple edges we can use the disjunction of the recursive pred-
icates computed for each edge. This follows from the observation that we can
insert an empty block such that all the backedges are connected to this block
and removed from the loop header and a single exit from this block becomes
the single backedge for the graph. Since the controlling predicate of the newly
inserted block’s outgoing edge is the disjunction of the controlling predicates of
all the incoming edges, such graphs can be reduced into a single backedge case
described above.

Since the instruction returns only its last value, we can establish proper data
dependencies with instructions outside the loop region. Note that, a recursive
instruction should also include a predicate to implement the control flow within
the loop body:

36 S. Ding and S. Önder

Definition 7. Recursive Predicated Instruction: xi = (R)[P]{I : xij =
.....}, where I is the instruction, xi is the SSA name of the instruction’s destina-
tion, j is the loop nest level, P is the predicate guarding I obtained through acyclic
instruction propagation into the loop header and R is the recursive predicate the
instruction iterates on.

Note that the recursive instruction renames the destination of the original instruc-
tion by appending the loop nest level, and the function returns the original name.
In Section 5.2 we revisit this renaming. From an executable semantics perspec-
tive, a recursive predicate must need to know the number of readers it is being
waited by and should generate a new value after all the readers have read it.

5 Code Motion in Cyclic Code and Recursive Future
Predicated Form

We follow a hierarchical approach to perform code motion in cyclic code. For this
purpose, starting with the inner-most loops, we convert the loops into groups
of recursive instructions, propagate them to the loop header of the immediately
enclosing loop and apply the procedure repeatedly until all cyclic code is con-
verted into recursive instruction form, eventually leading to a single block for
the procedure.

5.1 φ-Nodes in Loop Header

Although any code movement within a given loop can be carried out using
the acyclic code motion techniques, the φ-nodes in the loop header cannot be
eliminated using the techniques developed for acyclic regions. Instead, we adopt
the executable function from [13]:

Definition 8. We define the gating function μ(ainit, aiter) as an executable
function. ainit represents external definitions that can reach the loop header
prior to the first iteration. aiter represents internal definitions that can reach
loop header from within the loop following an iteration. ainit is returned when
control reaches loop header from outside of the loop. aiter is returned in all sub-
sequent iterations.

5.2 Conversion of Loops into Instruction-Level Recursion

The conversion is achieved by following the following steps:

1. Identify a single-entry, multi-exit region where the entire region is dominated
by an inner-most loop header.

2. Propagate all instructions except branches to the loop header using acyclic
code motion discussed before.

3. Calculate the controlling predicates for the exit edges and calculate the
Recursive Predicate using Algorithm 1 shown in Figure 8.

Unrestricted Code Motion: A Program Representation 37

Algorithm 1
for each back-edge and exit edge e do

begin
let b be the block which e originates from
let I be any instruction originally in block b
let α(I) be the predicate expression guarding I
if block b has a branch on predicate P then

if e is on the true path of the branch then
p(e) ← α(I) ∧ P if e is a back-edge
q(e) ← α(I) ∧ P if e is an exit edge

else
p(e) ← α(I) ∧ ¬P if e is a back-edge
q(e) ← α(I) ∧ ¬P if e is an exit edge

end
else /* e is fall through backedge */

p(e) ← α(I) if e is a back-edge
end
if e is a back edge then

RP ← p(e)
end

Fig. 8. Algorithm 1: Compute RecursivePredicate and ExitPredicate

4. Pick an unused SSA name for the RecursivePredicate.
5. Convert φ-nodes to gating function μ.
6. Insert (RP)[T]RP = at the very beginning of loop header where RP is

the SSA name picked in the previous step and it is assigned to the com-
puted RecursivePredicate by converting all the predicate variables in the
computed predicate to future form.

7. Convert every instruction in the header to recursive form using RP and
delete the back edges and branches. The conversion involves renaming all
instructions which are in the loop body such that each SSA name that is
defined in the block is appended the loop nest level, starting with zero at the
inner-loop and incrementing. This renaming will update any uses which are
loop carried to the new name while keeping names which are defined outside
the loop unchanged.

Once the above process is completed, an inner-most loop has been converted
to a sequential code. We apply the above process until the entire procedure is
converted into a single block.

Theorem 2. The predicate expression controlling the backedge e can be com-
puted correctly using Algorithm 1.

Proof. Figure 9 that contains an arbitrary innermost loop is used to demonstrate
the proof. B1 is the loop header, e1 is a backedge originating from block B3 which

38 S. Ding and S. Önder

contains instruction J. Assume a trivial instruction K is inserted in e1 as shown
in Figure 9(b). The predicate expression controlling K, namely γ is the same as
the one controlling e1. γ is computed by propagating instruction K to B1. For
that purpose, K is first moved into block B3. K becomes β : K in B3 where
three cases may happen:

case1: β = P if e1 is the taken edge of B3,
case2: β = ¬P if e1 is the fall through edge of B3,
case3: β = true which means K is not guarded by any predicate if B3 is ended
with an unconditional jump.

Propagate β : K and instruction J to B1. Since β : K and J propagate from the
same block, the predicates guarding these two instructions are the same when
they reach B1. Assume J becomes α : J in B1, then K becomes α : {β : K}.
Combining nested predication yields γ = α ∧ β.

B1

B2

B3

e2

e1

I

if (Q)

if (P)

J

Y

N

B1

B2

B3

e2

e1

I

if (Q)

if (P)

J

Y

N K

(a) (b)

Fig. 9. Theorem 2

Note that although K may be split into multiple copies during the prop-
agation, the last copy instruction is merged and hence the resulting instruc-
tion is renamed back to K in the loop header B1 if it is not merged before
reaching B1.

Figure 10(a) is an example that shows the steps of transforming cyclic code.
The region cut out is a loop region with a single loop header B2. Following
the algorithm, we first propagate every instruction inside the loop into the loop
header(Figure 10(b)). During the instruction propagation, the necessary pred-
icate information to compute the RecursivePredicate and controlling predi-
cates for the exit edges are collected naturally, shown on the right side of Fig-
ure 10(b). Next, everything in the loop region except the loop header and the
back edge is deleted.(Figure 10(c)). The result of the conversion is shown in
Figure 10(d).

Unrestricted Code Motion: A Program Representation 39

use w2

Y

B1

START

w0 = 0

z0 = 2

B2

N

if (P = (z1 ≥ 0)

z1 = φ(z0, z2)

w1 = φ(w0, w2)

e1exit

eback

B4

use w1

if (S = (w2 > z2))

B3

w2 = x4 + w1
z2 = z1 − 1

YN

END

e2exit

B5

x4 = 1

use w2

B4

use w1

B1

START

w0 = 0

z0 = 2

YN

END

e2exit

B2

if (S)

Y

B3

Ne1exit

B5

z1 = φ(z0, z2)
w1 = φ(w0, w2)

P = (z1 ≥ 0)

[P] x4 = 1

[P] w2 = x4 + w1

[P] z2 = z1 − 1

[P] S = (w2 > z2)

if (P)

eback

p(e1exit) = ¬P

p(eback) = P ∧ S

p(e2exit) = P ∧ ¬S

(a) A single-entry loop (b) Apply acyclic code motion
and compute RecursivePredicate

use w2

B4

use w1

B1

START

w0 = 0

z0 = 2

END

B2

z1 = φ(z0, z2)
w1 = φ(w0, w2)

P = (z1 ≥ 0)

[P] w2 = x4 + w1

[P] z2 = z1 − 1

[P] S = (w2 > z2)

e2exit : P ∧ ¬S

eback : P ∧ S

B5

e1exit : ¬P

[P] x4 = 1

B1

START

w0 = 0

z0 = 2

END

B5

e1exit : ¬P

e2exit : P ∧ ¬S

z2 = (RP 0)[P 0]{z2 0 = z1 0 − 1}

B2

B4

use w1

use w2

w2 = (RP 0)[P 0]{w2 0 = x4 0 + w1 0}

x4 = (RP 0)[P 0]{x4 0 = 1}

P = (RP 0)[T]{P 0 = (z1 0 ≥ 0)}

z1 = (RP 0)[T]{z1 0 = μ(z0, z2 0)}

w1 = (RP 0)[T]{w1 0 = μ(w0, w2 0)}

RP = (RP 0)[T]{RP 0 = P 0(f) ∧ S 0(f)}

S = (RP 0)[P 0]{S 0 = (w2 0 > z2 0)}

(c) Eliminate loop (d) Convert to recursive form
except loop header

Fig. 10. Program 1: Conversion of a cyclic program into RFPF

40 S. Ding and S. Önder

6 Code Motion Involving Memory Dependencies and
Function Calls

Memory dependencies pose significant challenges in code motion. There are many
cases a compile time analysis of memory references does not yield precise an-
swers. Our solution is to assume dependence and enforce the original memory
ordering in the program through predication. Since a series of consecutive load
operations without intervening stores have no dependence on each other, RFPF
allows these loads to be executed in any order once the dependence of the first
load in the series is satisfied. We define the memory operations as: MEM, @P where
MEM represents a Load/Store operation and P is a predicate whose value is set
to 1 when the memory operation MEM gets executed. Any memory operation
that has a dependence with MEM will be guarded by P as a predicated opera-
tion. In this way, the dependence among memory operations are converted into
data dependencies explicitly. Once the memory operations are converted in this
manner, they can be moved like any other instruction. Because of the predica-
tion, if a memory operation is hoisted above another which defines its controlling
predicate, the controlling predicate becomes a future value (Figure 11).

LW1, @P1

[P1] SW1, @P2
f[P1] SW1, @P2

SW1

LW1

LW1, @P1

memory reorderingpredicated memory

Fig. 11. Predicated memory and reordered memory

Our algorithm to rewrite memory operations is based on Cytron et al’s SSA
construction algorithm [7]. Since all the load/store operations can be treated
as assignments to the same variable, Cytron et al’s algorithm can be modified
to accomplish the rewriting. Due to lack of space, we are unable to include the
algorithm.

We employ a similar algorithm for handling function calls. Because of their
side effects such as input/output, function calls may not be reordered without
a proper analysis of the functions referenced. Therefore, we introduce a single
predicate for each call instruction which is set when the call is executed. A single
φ node is needed at merge steps to enforce the function call order on any path.

7 Optimizations Using RFPF

Many optimizations can be carried out on the complete RFPF and as well as dur-
ing the transformation process. One of the advantages of RFPF is its ability to
perform traditional optimizations while keeping the graph in single-assignment

Unrestricted Code Motion: A Program Representation 41

form with minimal book keeping. We show two examples of optimizations, one
which can be employed during the transformation and another after the graph
is converted into full RPFP.

Case study 1. PRE during the transformation:

Consider Figure 12(a). There’s a redundant computation of x0+y0 along the path
(B2 B4 B5). Most PRE algorithms cannot capture this redundancy because node
B4 destroys the available information for x0 + y0. On the other hand, instruc-
tion propagation and RFPF cover the case. Observe that during the instruction
propagation, one of the clones, namely, (I1) reaches node B2(Figure 12(b)). By
applying Value numbering [1] in the basic block, x0 + y0 in I1 is subsumed by
z1(Figure 12(c)).

Q

P

N Y

N Y

B2

B5

B3

B4

I: z2 = x0 + y0

B1

J: z1 = x0 + y0

Q

P

N Y

N Y

B2 B3

B4

B1

[Qf] I2: z2,2,2 = x0 + y0

J: z1 = x0 + y0

[Qf] K: z2 = φ(z2,1,2, z2,2,2)

B5

[Qf] I1: z2,1,2 = x0 + y0

Q

P

N Y

N Y

B2 B3

B4

B1

[Qf] I2: z2,2,2 = x0 + y0

J: z1 = x0 + y0

[Qf] K: z2 = φ(z2,1,2, z2,2,2)

[Qf] I1: z2,1,2 = z1

B5

(a) A PRE example (b) Code motion (c) Value numbering

Fig. 12. Partial redundancy elimination during the code motion

By further propagating and merging, instruction I1 and I2 are merged in B1
with the addition of the gating function ψ (Figure 13(a)) yielding the complete
RFPF:

B1

P=.....

Q=.....

[Q] I: z2 = ψP (x0 + y0, z1)

[¬P] J: z1 = x0 + y0

Figure 13(b) gives the result of transforming RFPF back into SSA using the
algorithm in Section 8. This graph is functionally equivalent to Figure 13(c),
which shows the result by using the PRE algorithm of Bodik et al. [4]. This
algorithm separates the expression available path from the unavailable path by
node cloning which eliminates all redundancies. As it can be seen, RFPF can
perform PRE and keep the resulting representation in the SSA form.

The dependency elimination in our example is not a coincidence. By splitting
instructions into copies, we naturally split the dataflow information available

42 S. Ding and S. Önder

Q

N Y
B5

B4

YN

P

B3B2

[¬Pf] J: z1 = x0 + y0

[Qf] I: z2 = ψPf
(x0 + y0, z1)

B1

P

N Y

J: z1 = x0 + y0

B2 B3

B1

B4

Y

N

N

Y

K:z2 = φ(z2,1,2, z2,2,2)

B5

if (P)

Q

I2: z2,2,2 = x0 + y0I1: z2,1,2 = z1

P

N Y

B2 B3

B1

J: z1 = t

Q

B4’

N

I: z2 = t

YN

B5

Y

Q

B4

t = x0 + y0

t = x0 + y0

(a) Instruction merging (b) RFPF to CFG (c) Bodik et al., [4]

Fig. 13. Merging and Converting Back to CFG

B2

x3 = −1

x2 = 0

use x4

YN

YN

if (Q = y ≥ 0)

B1

START

END

x4 = φ(x3, x1, x2)

B5

B4

if (R=(y==0))

B3

read x1

y = 0

x2 = 0

x4,3,3 = x2

use x4

YN

if (Q = y ≥ 0)

B1

START

END

B3

read x1

y = 0

B5

B2

x3 = −1

x4,1,3 = x3
B4Y

if (R=(y==0))

[¬Rf] x4,2,3 = x1

x4 = φ(x4,1,3, x4,2.3, x4,3,3)

N

(a) A CP Example (b) Transform to RFPF

read x1

y = 0
Q = (y ≥ 0)
Q : R = (y == 0)
Q ∧ R : x2 = 0
¬Q : x3 = −1
x4 = ψQ(ψR(x2, x1), x3)
use x4

read x1

y = 0
Q = true
true : R = true
true : x2 = 0
false : x3 = −1
x4 = ψtrue(ψtrue(0, x1), x3)
use 0(x4)

(c) Complete RFPF (d) Apply CCP

Fig. 14. Constant propagation on RFPF

path from unavailable path. From the perspective of the total number of the
computations, RPFP yields essentially the same result. The optimality of RPFP
and code motion based PRE in RFPF is yet to be studied, but its ability to
catch difficult PRE cases is quite promising.

Unrestricted Code Motion: A Program Representation 43

Case study 2. Constant propagation in complete RFPF:

We use another example(Figure 14(a)) to show how to do constant propaga-
tion(CP) in complete RFPF. As in the PRE example, constant propagation
chances are caught in node B2 and B4(Figure 14(b)). Figure 14(c) and (d)
shows complete RFPF of the program and the result after optimization. We use
the conditional constant propagation(CCP) approach described in [18]. Note
that x4 becomes a constant in our representation because gating function ψ can
be evaluated given the constant information of the predicate and the variable
values.

The choice of applying various optimizations during or after the transfor-
mation has to be decided based on foreseen benefits. This is an open research
problem and it’s a part of our future work.

8 Algorithms for Converting RFPF Back to CFG

The inverse transformation algorithms are necessary because the existing algo-
rithms can be applied on CFG for further optimizations and to produce machine
code. In different stages of compilation, the conversion algorithms have different
goals. Before scheduling, the goal is to minimize number of nodes in the resulting
CFG. After scheduling, the goal is to maximize the issue rate on the resulting
CFG. At the register allocation stage, the goal is to minimize live range of vari-
ables in the resulting CFG. So we must take into account different optimality
criteria for different conversion stages. The basic algorithm to transform RFPF
back to CFG consists of three steps:

1. Reorder RFPF in a way that no future values occur by pushing-down or
moving-up instructions, which forms an initial instruction list.

2. Group instructions with identical predicates together. Such grouping reduces
the multiple node insertions for a branch condition and forms the loop struc-
tures.

3. Iterate through the instruction list and insert instructions one by one into
corresponding basic blocks.

The optimality of the resulting graph is dependent on how the predicate expres-
sions are analyzed and combined. A complete inverse transformation framework
is part of our future work.

9 Related Work

Intermediate program representation design has always been a very important
topic for optimizing compiler research since the choice of program representation
affects significantly the design and complexity of optimization algorithms. Some
of the most relevant to this work are the control flow graph [1], def-use chains [1],
program dependence graph [8], static single assignment(SSA) [7,3], and the

44 S. Ding and S. Önder

program dependence web [13]. We directly use these prior art in this paper.
The SSA form as well as the gating functions that the program dependence
web proposes are significant for correct translation of programs into RFPF.
The dependence flow graph [14] contributed to our thinking in designing the
representation.

Allen et al. proposed the idea of isomorphic control transformation(ICT) [2]
which converts the control dependencies into data dependencies. This idea forms
the basis of hyperblock formation in many techniques, including ours as well
as others [11]. Warter et al. [17] proposes a technique which uses ICT and
apply local scheduling techniques on the hyperblock and then transforms the
scheduled code back to CFG representation. RFPF follows a similar, but a more
comprehensive path.

Partial redundancy elimination(PRE) proposed by Morel and Renvoise [12]
is a powerful optimization technique which is usually carried out using code mo-
tion [9,10]. As it is well known, code motion alone cannot completely eliminate
partial redundancies. Click proposed an approach using global value numbering
supported by code motion is proposed to eliminate redundancies [6]. This ap-
proach may insert extra computations along some path. Bodik et al. [4], give an
algorithm based on the integration of code motion and CFG restructuring which
achieves the complete removal of partial redundancies. Chow et al. [5] proposes
a similar PRE algorithm for SSA yielding similar optimality to lazy code mo-
tion. The algorithm maintains its output in the same SSA form. VanDrunen and
Hosking [16] present a structurally similar PRE for SSA covering more cases.
Control flow obfuscate data-flow information needed by many optimization al-
gorithms. Thakur and Govindarajan [15] proposes a framework to find out the
merge region in a CFG which prevents the data-flow analysis, and restructure
the CFG to make data-flow analysis more accurate. Our technique of instruction
propagation and merging exposes similar opportunities.

10 Conclusion

We have presented a new approach to program representation and optimization.
The most significant difference of our approach is to move instructions to collect
the necessary data and control flow information, and in the process yield a
representation in which compiler optimizations can be carried out. Our future
work involves transformation and adaptation of state-of-the-art optimization
algorithms into the new framework.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1986)

2. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: POPL 1983: Proceedings of the 10th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pp. 177–189. ACM,
New York (1983)

Unrestricted Code Motion: A Program Representation 45

3. Bilardi, G., Pingali, K.: Algorithms for computing the static single assignment
form. J. ACM 50(3), 375–425 (2003)

4. Bod́ık, R., Gupta, R., Soffa, M.L.: Complete removal of redundant expressions. In:
PLDI 1998: Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pp. 1–14. ACM, New York (1998)

5. Chow, F., Chan, S., Kennedy, R., Liu, S.M., Lo, R., Tu, P.: A new algorithm for
partial redundancy elimination based on ssa form. In: PLDI 1997: Proceedings
of the ACM SIGPLAN 1997 conference on Programming language design and
implementation, pp. 273–286. ACM, New York (1997)

6. Click, C.: Global code motion/global value numbering. SIGPLAN Not. 30(6), 246–
257 (1995)

7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

8. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

9. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: PLDI 1992: Proceedings
of the ACM SIGPLAN 1992 conference on Programming language design and
implementation, pp. 224–234. ACM, New York (1992)

10. Knoop, J., Rüthing, O., Steffen, B.: Optimal code motion: theory and practice.
ACM Trans. Program. Lang. Syst. 16(4), 1117–1155 (1994)

11. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective
compiler support for predicated execution using the hyperblock. In: MICRO 25:
Proceedings of the 25th annual international symposium on Microarchitecture, pp.
45–54. IEEE Computer Society Press, Los Alamitos (1992)

12. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22(2), 96–103 (1979)

13. Ottenstein, K.J., Ballance, R.A., MacCabe, A.B.: The program dependence web:
a representation supporting control-, data-, and demand-driven interpretation of
imperative languages. SIGPLAN Not. 25(6), 257–271 (1990)

14. Pingali, K., Beck, M., Johnson, R.C., Moudgill, M., Stodghill, P.: Dependence
flow graphs: An algebraic approach to program dependencies. Tech. rep., Cornell
University, Ithaca, NY, USA (1990)

15. Thakur, A., Govindarajan, R.: Comprehensive path-sensitive data-flow analysis. In:
CGO 2008: Proceedings of the sixth annual IEEE/ACM international symposium
on Code generation and optimization, pp. 55–63. ACM, New York (2008)

16. VanDrunen, T., Hosking, A.L.: Anticipation-based partial redundancy elimination
for static single assignment form. Softw. Pract. Exper. 34(15), 1413–1439 (2004)

17. Warter, N.J., Mahlke, S.A., Hwu, W.M.W., Rau, B.R.: Reverse if-conversion. In:
PLDI 1993: Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, pp. 290–299. ACM, New York (1993)

18. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

Optimizing Matlab through Just-In-Time
Specialization�

Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge

School of Computer Science, McGill University, Montreal, QC, Canada
{mcheva,hendren,clump}@cs.mcgill.ca

Abstract. Scientists are increasingly using dynamic programming lan-
guages like Matlab for prototyping and implementation. Effectively
compiling Matlab raises many challenges due to the dynamic and com-
plex nature of Matlab types. This paper presents a new JIT-based ap-
proach which specializes and optimizes functions on-the-fly based on the
current types of function arguments.

A key component of our approach is a new type inference algorithm
which uses the run-time argument types to infer further type and shape
information, which in turn provides new optimization opportunities.
These techniques are implemented in McVM, our open implementation
of a Matlab virtual machine. As this is the first paper reporting on
McVM, a brief introduction to McVM is also given.

We have experimented with our implementation and compared it to
several other Matlab implementations, including the Mathworks
proprietary system, McVM without specialization, the Octave open-
source interpreter and the McFor static compiler. The results are quite
encouraging and indicate that specialization is an effective optimization—
McVM with specialization outperforms Octave by a large margin and
also sometimes outperforms the Mathworks implementation.

1 Introduction

Scientists are increasingly using dynamic languages to prototype and implement
their applications. Matlab is particularly appealing because it has an interactive
development environment, a rich set of libraries, and highly expressive semantics
due to its dynamic nature. However, even though the dynamic nature of Matlab

may be convenient for scientists, it provides many challenges for effective and
efficient compilation and execution. Furthermore, scientists would like to have
reasonable performance as many scientific applications are computation-heavy
and execute for a long time. Ideally this performance should be achieved without
requiring a rewrite of Matlab code to a more static language such as Fortran.

For good performance, we require an optimizing compiler that works directly
on Matlab programs. However, Matlab poses several challenges. Firstly, Mat-

lab programs are normally developed incrementally, using an interactive devel-
opment loop and mixing Matlab scripts (a sequence of commands like those
� This work was supported, in part, by NSERC and FQRNT.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 46–65, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimizing Matlab through Just-In-Time Specialization 47

typed into the interactive loop prompt) with functions that are defined in sep-
arate source files. This means that code is dynamically-loaded and not all code
is known ahead-of-time. Secondly, Matlab’s type system is both dynamic and
intricate. The types of variables are not declared, but rather change as the com-
putation proceeds. For example, it is not even straightforward to determine
which values are scalars and which are arrays since a scalar assignment, such
as x = 1, is assumed to define x as an 1 × 1 array. Furthermore, the size of an
array dynamically increases as new values are written outside the current array
bounds, and the effective base type of an array can change when an element of
a more general type is written into it.

All of these challenges suggest that Matlab is best optimized on-the-fly us-
ing a JIT compiler within a Matlab Virtual Machine. We have developed a
new open Matlab VM called McVM which includes a JIT compiler built upon
LLVM [1] which we briefly introduce in this paper. The main feature of the
McVM JIT is a new on-the-fly specialization algorithm which specializes func-
tions based on the run-time types of their arguments. This relies on a type and
shape inference analysis which is specifically tailored to abstract the key features
of the types in the function body. This type and shape analysis must be simple
enough to work in the JIT context, but at the same time it must abstract the
key features needed for optimization. Our approach is to combine 8 different
simple abstractions, consisting of a variable’s overall type, whether or not it is
a scalar or a 2D matrix, its shape, and so on. The results of this type and shape
inference analysis are then used to compile a specialized and optimized version
of the function.

In order to determine the effectiveness of this argument-type-based special-
ization approach, we have implemented it and compared it against both McVM
without specialization and three other existing Matlab implementations: the
Mathworks proprietary implementation, Octave1 which is an open-source Mat-

lab interpreter, and McFor which is our group’s static Matlab-to-Fortran com-
piler. Initial results are quite encouraging and show that specialization works,
provides good performance and that a reasonable number of specialized versions
of functions are created.

The main contributions of this paper are:

McVM: an introduction of McVM giving our design criteria and an overview
of the architecture of the system (Section 3);

Specialization: an introduction our approach for specializing functions on-the-
fly based on the run-time types of function arguments (Section 4);

Type and Shape Inference: a new type and shape inference algorithm which
approximates type and shape information based on argument types (Section
5); and

Experimental Validation: an experimental validation showing the overall ef-
fectiveness of McVM and the the effectiveness of specialization and type
inference, in particular (Section 6).

1 www.gnu.org/software/octave/

www.gnu.org/software/octave/

48 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

In the remainder of this paper we first describe the challenges of compiling
Matlab in Section 2, then we address each of our main contributions in Sections
3 through 6. We then discuss related work in Section 7 and give conclusions and
future work in Section 8.

2 Optimization Challenges

Matlab presents many challenges to an optimizing compiler. Traditional static
optimization techniques do not work because of the highly dynamic nature and
the complex semantics of the language. Dynamic loading of functions and scripts
prevents us from assuming the entire program is known ahead of time, for ex-
ample. One of the main challenges, however, is dealing with types, since the
language is dynamically typed and follows intricate type rules.

Listing 1 shows an example of a simple program that illustrates some of the
intricacies of the Matlab type system. In this example, the caller function
calls the sumvals function twice, with different argument types each time. The
sumvals function is designed to sum numbers within a range of values. However,
as this example illustrates, in Matlab, it can be applied to both scalar types
and arrays of values. Specifically, the variable a will be assigned the scalar integer
value 5 * 10e11, while b will be assigned the 1×2 floating-point array 1.0e12
* [0.8533 1.7067]. These two values are then concatenated into c, a 1 × 3
array.

function s = sumvals (start , step , stop)
i = start;
s = i;

while i < stop
i = i + step;
s = s + i;

end
end

function caller ()
a = sumvals (1, 1, 10^6);
b = sumvals ([1 2], [1.5 3], [20^5, 20^5]);
c = [a b];

disp(c);
end

Listing 1. Implicit typing in Matlab programs

Since the sumvals function can apply to either scalars or arrays, and the values
operated on could be either integer, real or complex, compiling this program into
efficient machine code can be challenging: type information is not explicit, and
can change dynamically. A naive compiler could always store the variables inside
the sumvals function as the widest available type (i.e.: complex matrices) or even
generate code based on the idea that the type of all variables in the function are
unknown, which is clearly very inefficient.

Optimizing Matlab through Just-In-Time Specialization 49

To generate efficient code, type inference is needed to extract implicit type
information in the source program. In the case where sumvals is called with only
scalar integer inputs, it is possible to logically infer that all of the intermediate
variables will also be scalar integers, and generate efficient code for this case. As
for the case where sumvals is called with arrays as input, it should be possible
to at least infer that complex values will never occur in the computation. This
example motivates our approach of specialization based on the run-time types
of arguments. Our approach will compile two different versions of the function
based on the call signatures. This ensures that efficient code can be generated
for each case. More details of our specialization technique are given in Section 4
and our type inference analysis is described in Section 5.

3 Design Overview

Our approach to optimization requires the ability to both interpret and compile
multiple versions of code. The McVM virtual machine thus implements a mixed
mode design, consisting of both interpreter and JIT components. The design is
modular, making use of external front-end and low-level back-end components to
simplify implementation complexity; Figure 1 shows the overall structure, which
we now describe in more detail.

Fig. 1. Structure of the McVM Virtual Machine

50 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

The McLab front-end is used to parse interactive-mode commands and M-file
source code, producing a common Abstract Syntax Tree (AST) representation
for both interpretation and compilation. The functionality of the interpreter is
divided into interpretation logic and state management (housekeeping), while the
JIT compiler manages the function specialization/versioning system, and gener-
ates low-level intermediate code for the statements it can compile. Our design
allows for incremental and flexible development, with the JIT relying on the in-
terpreter as fallback to evaluate code for which there is not yet compiler support.

At the core, McVM’s implementation of matrix types depends directly on a set
of mathematical libraries (ATLAS, BLAS and LAPACK) to perform fast matrix
and vector operations. We use the Boehm garbage collector library for garbage
collection [2], and our JIT compiler uses the LLVM framework to implement low-
level JIT compilation and generate machine code [1]. The JIT compiler also im-
plements several analyses to gain additional information about source programs
being compiled, including basic analyses and optimizations such as live variables,
reaching definitions, bounds check alimination, as well as type inference.

The McVM interpreter performs a straightforward, pre-order traversal of the
internal AST in order to execute the input code. This interpretation approach is
naive, but provides a correct, if low-performance execution that can serve both
as a reference and act as a fallback when JIT compilation cannot be performed.
The interpreter also serves housekeeping roles, providing essential run-time ser-
vices. These include taking care of loading Matlab files on-demand, execut-
ing interactive-mode commands, hosting library function bindings, maintaining
bindings to global variables, and so forth.

The JIT compiler improves performance by translating high-level source code
into a more efficient low-level form. A fundamental design goal in our VM was to
aim for a simple and easily extensible design—similar to the phc compiler [3], our
JIT compiler is built as an extension of the interpreter. The compiler can thus fall
back to interpreting sections of code it cannot compile, mixing sections of both
compiled and interpreted code in the execution of a given function. This allows
for incremental JIT development, and also for language modifications to be more
easily incorporated—new data types or statements can be added by modifying
only the interpreter, relying on the fallback mechanism for any new features. The
JIT compiler can later be modified, if necessary, to gain performance benefits
from any additional optimization opportunities.

The JIT compiler performs actual code generation in conjunction with LLVM.
During run-time, the input AST is first translated by our JIT compiler into a
low-level, RISC-like Static Single Assignment (SSA) representation. From this,
LLVM generates machine-specific executable code; LLVM also performs basic
optimization passes on the code, such as constant propagation, dead code elim-
ination and redundant operation elimination. As such, it greatly simplifies the
construction of a JIT compiler by completely hiding much of the platform-specific
details and providing low-level optimizations.

Our fallback mechanism requires a high-level strategy to coordinate the tran-
sition from compiled code to interpretation and vice-versa. In particular, at each

Optimizing Matlab through Just-In-Time Specialization 51

step of the compilation process the JIT must track how and where each live
variable is stored in order to appropriately transfer execution context. When in-
terpreter fallback code is generated, instructions are issued to flush any register
variables into memory for interpreter consumption. Upon returning to compiled
execution, variables are copied back into their original registers. While spilling
variables in this way is expensive, it has the advantage that the interpreter fall-
back mechanism does not impose extra penalties on compiled code in the case
of functions which do not need to use it.

The McVM JIT compiler is able to compile and make use of specialized ver-
sions of functions based on call signatures. This corresponds to the two shaded
boxes in Figure 1 labeled “Versioning Logic” and “Type Inference”. In the next
two sections we examine these two important components in more detail.

4 Just-In-Time Specialization

Exposing and using type information is central to most existing approaches to
Matlab optimization [4,5]. McVM uses run-time type information to create
multiple specialized versions of Matlab functions. This allows for optimized
function dispatch and improved code generation for many common operations,
greatly reducing overhead costs necessary in a more generic design. Below we
describe our precise versioning strategy, followed by core optimizations so
enabled.

4.1 Function Versioning

Specialization requires creating type-specific versions of function bodies. This
process is performed at run-time, by “trapping” commands issued through the
interpreter (including calls made in the read-eval-print loop of the interactive
mode). If the command is a call to a function (and not a script), the inter-
preter will try and pass control to the JIT compiler. When this happens, the
JIT compiler builds an argument type string from the input arguments to the
function, and attempts to locate a previously compiled version of the function
with a matching argument type string. If none exists a new version will first be
compiled, appropriately specialized to the given argument types. This removes
significant dispatch overhead, allowing, for instance, scalar variables to be stored
on the stack instead of as objects allocated on the heap. While compiling spe-
cialized function versions, the JIT compiler also considers functions called by the
function being compiled, compiling them as direct calls to specialized versions
as well. Thus entire executions can be specialized in a “deep” fashion.

As an example of how our function versioning works, consider the sumvals
function shown earlier in Listing 1. This function is meant to sum numerical
values in the range from start to stop, inclusively. In the absence of type in-
formation and specialization a compiler must make conservative assumptions,
assuming iteration is potentially performed over arrays. Expensive heap storage
is thus required, as well as function calls to generically perform every operation
(addition, comparison, etc.).

52 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

function s <scalar int> = sumvals (start <scalar int>, step <scalar int>,
stop <scalar int >)

i <scalar int > = start;
s <scalar int > = i;

while i < stop
i <scalar int > = i + step;
s <scalar int > = s + i;

end

end

Listing 2. The type-annotated sumvals function

At an actual invocation of the function, however, such as in Listing 1: a =
sumvals (1, 1, 10^6);, argument types are known to be scalar integers. This
information is flowed through the function by our type inference, producing a
type-annotated version as shown in Listing 2. From this, efficient code can be
generated: all variables are easily stored on the stack, and there is no need to
make expensive dispatches, because there are efficient machine instructions to
add and compare scalar integer values.

The obvious downside is that this scheme has the potential to generate many
specialized versions of a function, with each requiring additional compilation
time, and potentially impacting the performance of the instruction cache, should
multiple versions be executed. We will see that this is not the case in practice
(see Section 6). From our observations, Matlab programs tend to have few long
functions and fewer call sites than code written in other programming languages.

4.2 Additional Optimizations

Type-based specialization greatly simplifies basic arithmetic operations, allowing
many uses of scalars to be implemented in just a few machine instructions. The
type information, however, also facilitates the optimization of a number of other
common operations, in particular certain array access operations, and use of
library function calls. These optimizations improve performance by both taking
advantage of type information, and eliminating cases where interpreter fallback
is otherwise required.

Matlab possesses a sophisticated array indexing scheme that allows pro-
grammers to read or write to n-dimensional slices (sub-arrays) based on ranges
of indices, specified independently for each dimension. This behaviour is im-
plemented through the interpreter, using the fallback mechanism to evaluate
complex array reads and writes. When types are known, however, such as in x
= a(i); where i is a scalar, optimized code can be generated to read or write the
value directly. Type information includes array dimensions as well, eliminating
the need for many dynamic array bounds checks.

Library functions are implemented in our virtual machine as native C++
functions which take as input (and return as output) dynamically allocated
arrays of pointers to data objects. This strategy is conservatively correct in the

Optimizing Matlab through Just-In-Time Specialization 53

presence of unknown types, but can be inefficient because each call to these
functions requires array allocation. Even for variables known to be scalar, the
use of a generic library routine requires boxing and unboxing arguments and
return values respectively, reducing the benefit from other optimizations.

To address these issues, we have devised a further simple specialization scheme
for some library functions. Multiple, type-specific versions of library functions
are first registered ahead-of-time in McVM. When a library function call is en-
countered, the JIT compiler will attempt to locate an appropriately special-
ized version, matching function argument and return types. An obvious example
where this is beneficial is in the case of functions like abs or sin, where scalar
data allows the direct use of the native C++ versions of these library functions.

5 Type and Shape Inference System

The McVM JIT compiler uses data provided by our type inference analysis to
implement the just-in-time function specialization scheme described in Section 4.
The more information the analysis provides about the concrete types and shapes
of program variables, the more interpretive dispatching and storage overhead can
be eliminated, and the faster the resulting compiled code will be, as demonstrated
in Section 6.

Our type inference analysis works on a per-function basis, with the assumption
that the whole program is not necessarily known at run-time, and new functions
could be loaded at any time. The analysis assumes that the set of possible types
for each input argument of a given function are known, and infers the set of
possible types for every variable at every point (before and after every statement)
in the function, given those possible input argument types.

The analysis is an abstract interpretation style analysis, which implements a
compositional forward analysis directly on the structured AST representation.
The analysis computes an abstraction of the actual types and shapes of variables
at each program point. The actual abstraction is a carefully designed combina-
tion of simple abstractions, where each element of the abstraction captures a key
aspect of the variable’s type or shape. For example the isScalar flag indicates
when a variable is definitely a scalar variable. If this flag is true, then the JIT
compiler can allocate it to a register, which is much more efficient than storing
it as a matrix. Another key point of our analysis is that it is flow-sensitive, and
we thus have type and shape information for each program point.

5.1 Abstract Domain

In the real domain of Matlab programs, variables at different program points
are bound to actual values (data objects). In our abstract domain, variables in-
stead map to sets of possible abstract types. These sets contain zero or more type
abstractions summarizing all possible types and shapes the specific variable can
have. Each type abstraction is actually an 8-tuple: 〈overallT ype, is2D, isScalar,
isInteger, sizeKnown, size, handle, cellTypes〉.

54 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

If an abstract type set contains multiple type abstractions, it means that the
variable whose potential types are represented by the set at that program point
could be one of the several types represented by each type abstraction in the
set. The empty set is the ⊥ element of the type lattice, representing situations
where no information has been computed yet. The set of all type objects is the
� element of the lattice, representing the situation where the type of a variable
cannot be determined.

The core of the abstraction is the first item of the 8-tuple, the overallType,
which represents a specific Matlab language type, such as character array,
floating-point matrix, complex number matrix, etc. Figure 2 represents the hi-
erarchical type lattice of McVM overallType values.

Fig. 2. Hierarchical lattice of McVM types

The remaining elements of each 8-tuple provide abstractions of different fea-
tures of the type. Table 1 describes the fields stored in type objects. These fields
cannot hold arbitrary values. For example, if the isScalar flag is set to True,
then the sizeKnown flag must also be True. However, the is2D flag does not
necessarily indicate that the matrix size is known.

For each statement in a program, our analysis produces a mapping of symbols
to sets of type abstractions representing the type that each variable in the current
function may hold before the statement is executed. Formally, if O is the set of
all possible type abstractions and S is the set of all symbols, then our analysis
operates in the domain of subsets of M , where M is the set of all pairs of symbols
and subsets of O (mappings of symbols to type sets):

M = { (s, t)| s ∈ S, t ∈ P (O)}

5.2 Merge Operator

A merge operator is required to implement inference rules for control flow state-
ments. This is because when multiple control paths join at a given point in a

Optimizing Matlab through Just-In-Time Specialization 55

Table 1. Description of type object fields

Field Meaning/Description Default
overallType An element of the set of possible McVM data types. Undefined

is2D Flag whose value applies to matrix types only. A True value indicates
that the matrix has at most two dimensions. False means it is not
known how many dimensions the matrix has.

False
(unknown)

isScalar Flag whose value applies to matrix types only. A True value indicates
that the matrix is a scalar. False means the matrix may not be scalar.

False
(unknown)

isInteger Flag whose value applies to matrix types only. A True value indicates
that the matrix contains only integer values. False means the matrix
may contain non-integer values.

False
(unknown)

sizeKnown Flag whose value applies to matrix types only. A True value indicates
the size of the matrix is known. False means the size is not known.

False
(unknown)

size Applies to matrix types only. A vector of integers storing the dimen-
sions of the matrix. This is only defined if the sizeKnown flag is set
to True.

Undefined

handle Applies to function handles types only. Stores a pointer to the func-
tion object the handle points to. This value can be null if the specific
function is not known at inference time.

null
(unknown)

cellTypes Applies to cell array types only. Set of type objects representing the
possible types the cell array stores.

⊥
(undefined)

program, our analysis needs to merge the mappings of symbols to type sets for
each of these control flow paths into one single mapping. In our analysis, the
merging of two type mappings is accomplished by performing, for each symbol,
the joining of the type sets for each type mapping:

merge(M1, M2) = {(s, t)| (s, t1) ∈ M1, (s, t2) ∈ M2, t = join(t1, t2)}

The joining of type sets is accomplished by using set union as a merge operator
and then applying a filter operator to the result:

join(t1, t2) = filter (t1 ∪ t2)

The filter operator takes a type set as input and returns a new type set in which
all type objects having the same overallType value have been merged into one.
It does so in a pessimistic way, that is, if one of the type objects to be merged
has an unknown value for one of its flags, the merged type object will have the
unknown value for this flag. For example, if we are filtering a type set containing
multiple double matrix type objects, the resulting type object will have the
integer flag set to true only if all input type objects did.

5.3 Inference Rules

Our type inference analysis follows inference rules to determine the mapping of
possible variable types after a given statement based on the possible types before
that same statement. Each kind of statement has an associated type inference
rule that takes the mapping of possible input types as input and returns the
mapping of possible output types as output. Expression statements, such as
disp(3); use the identity type mapping, that is, the output types they produce
are the same as the input types.

56 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

The statements that are at the core of our type inference analysis are assign-
ment statements. They are the only kind of statement that can define a variable,
and thus, change its type. In the case of an assignment statement of the form
v = op(a, b);, where op is an element of the set R of all possible binary oper-
ators, we have that the type of v is redefined as the set of possible output types
of the operator being applied to the possible types of a and b, according to its
own type rule:

typeRulev=op(a,b) (Min) = {(s, t) ∈ Min| s �= v} ∪ typeRuleop(v,a,b) (Min)

typeRuleop(v,a,b) (Min) = { (v, t)| t = outtypeop ({(a, t) ∈ Min} , {(b, t) ∈ Min})}
As an example, we can look at the assignment c = [a b]; in Listing 1. This
represents the horizontal concatenation of arrays a and b. In this case, a holds the
value 5 * 10e11, which is a scalar integer value, and b holds the value 1.0e12
* [0.8533 1.7067], a 1 × 2 floating-point array. Thus, the type abstractions
for a and b are:

type(a) = {〈overallT ype = double, is2D = T, isScalar = T, isInteger = T,

sizeKnown = T, size = (1, 1), handle = null, cellT ypes = ⊥〉}

type(b) = {〈overallT ype = double, is2D = T, isScalar = F, isInteger = F,

sizeKnown = T, size = (1, 2), handle = null, cellT ypes = ⊥〉}
The type rule associated with the horizontal concatenation operation allows us
to infer that c will be a 1 × 3 floating-point array, that is:

outtypehcat(type(a), type(b)) = {〈overallT ype=double, is2D = T, isScalar = F,

isInteger = F, sizeKnown = T, size = (1, 3),
handle = null, cellT ypes = ⊥〉}

In the case of if statements, the type inference process is handled differently.
The “true” and “false” branches of the statement are both treated as compound
statements, as if all statements on either branch were one statement. The output
type mappings are determined separately for both branches and then merged
together into one mapping of the possible types at the output of the if statement
itself:

typeRuleif (Min) = merge (typeRuletrueStmt (Min) , typeRulefalseStmt (Min))

Handling of loop statements is slightly more complex. Because types at the input
of the loop depend on types at the output, a fixed point must be iteratively
computed. Before we apply our type inference analysis, all loop statements are
converted to while loops. As is the case for if statements, statements in the
loop body are treated as one single compound statement. Special care is taken
to properly deal with both break and continue statements.

Optimizing Matlab through Just-In-Time Specialization 57

5.4 Inference Process

In terms of abstract interpretation, we wish to compute, for a given function, the
least fixed point of the mapping of program statements and variables to sets of
possible types before that given program point. The type inference process for a
function begins with the type sets for the input parameters of the function being
given. Because of the Matlab semantics, the possible types of all other variables
are initialized to �. This is because undeclared variables could be globals, and
thus, could potentially hold any type.

The body of the function is then analyzed. The function body itself is a
compound statement. When inferring the types in a compound statements, the
statements it contains are traversed in order, and the inferred output type of
each statement is stored in a global mapping (e.g.: hash map) of the types at
the output of each statement.

6 Evaluation

In order to assess the performance of our virtual machine we compare the actual
performance of McVM to that obtained by several related systems: Mathworks
Matlab, GNU Octave (the GNU Matlab environment) and McFor (a Mat-

lab to Fortran translator built by Jun Li, a member of the McLab team). The
Octave and Matlab performance numbers are intended to give us some idea
of how well our current solution performs against competing implementations.
The McFor numbers are provided as a rough “upper bound” on performance—
Fortran compilers are known to perform very well on numerical computations,
giving an indication of potential compiler performance for non-interactive code.

We have performed our tests on a total of 20 benchmark programs. These
benchmarks are gathered from previous work on optimizing Matlab

2, in the
FALCON [6] and OTTER projects, Mathworks’ CentralFile Exchange, Chalmers
University, and from individual course work and student projects at McGill. Sev-
eral of these are currently unsupported by the McFor Fortran translator as it
lacks support for cell arrays, closures and function handles at this time. The left
part of Table 2 provides characteristic numbers for each of the benchmarks sup-
ported by McVM. Number of functions and statements (3-address form) relate
to the overall (static) input load on our system, while number of call sites di-
rectly affects specialization. Maximum loop nesting depth affects the theoretical
efficiency of our dataflow analysis.

Not all benchmarks benefit equally from our optimizations of course, and
in the following sections we show further profiling numbers intended to ex-
plain where specific performance bottlenecks occur. Section 6.2 describes the
behaviour of the type inference system, while Section 6.3 gives data on the spe-
cialization system, including compiler overhead. All of our benchmarking metrics
were gathered on a system equipped with an Intel Core 2 Quad Q6600 processor
(quad core, 2.4GHz) and 4GB of dual channel DDR2 RAM, running Ubuntu 9.10

2 http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/

58 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

(linux kernel 2.6.31, 32-bit). We have gathered our Matlab performance num-
bers using Matlab R2009a, and our GNU Octave numbers on Octave version
3.0.5. The Fortran code produced by McFor was compiled using the GNU Fortran
compiler version 4.4.1. Because of significant variance when timing benchmarks,
attributable to i-cache effects and the garbage collector, all benchmark timing
measurements are based on an average over 10 runs.

6.1 Baseline Performance

The rightmost columns of Table 2 show a comparison of benchmark running
times under our four execution environments, as well as a version of McVM
with the JIT and specialization disabled, giving absolute time as well as times
normalized to the McVM JIT (values greater than 1 are running slower than
McVM with JIT). As we can see, McVM with JIT performs better than Matlab

in 8 out of 20 benchmarks, sometimes by a fair margin. In the cases where it
does worse than Matlab, the running times can be relatively close (as with
nnet), or, as exemplified by the crni benchmark, sometimes dramatically less;
we discuss reasons for this poor performance in Section 6.2.

GNU Octave, possessing no JIT compiler, does rather poorly in general. It
trails far behind Matlab and outperforms McVM with JIT on only a sin-
gle benchmark. Interestingly, McVM in interpreted mode, although it performs
much worse than the JIT on several benchmarks, actually performs better on
some (this will also be discussed further). The McFor running times are generally
well ahead of Matlab and McVM, with the exception of the clos benchmark.
This suggests that Matlab and McVM both are still far from the “optimal”
performance level.

6.2 Type Inference Efficiency

Our ability to optimize strongly depends on the behaviour of our type inference
system. The leftmost part of Table 3 thus shows relevant run-time profiling infor-
mation, dynamically weighted by the relative execution counts of the associated
statements. The first data column gives the percentage of type sets that are at
top, providing no type information, while column 3 shows the percentage of type
sets which contain only one type, and so give exact type data. The third column
shows the percentage of times where variables holding scalar values were known
ahead of time to be scalar, and the fourth column is the percentage of times
where the size of matrix variables was known by the type inference system.

In general the more type information our system has the better it will be able
to optimize code generation. Knowledge of which variables are scalars is even
more critical, however, as it lets the JIT compiler know which variables can be
stored on the stack. As we can see, this matches our results: benchmarks with
speedups of over 99% all have 100% of scalar variables known. The behaviour
of the crni benchmark can also be explained by this data. As can be seen in
Table 3, scalars are known in only 68.7% of cases, one of the lowest such ratios.
An examination of the code reveals this benchmark uses matrix “creation on

Optimizing Matlab through Just-In-Time Specialization 59

Table 2. Benchmark characteristics and comparison of running times. Columns 6–
10 give absolute running times, while columns 11–14 are performance normalized to
McVM JIT. The geometric mean was used for relative values (columns 11–14).

Static Measurements Performance (s) Relative to McVM JIT

B
en

ch
m

ar
k

Fu
nc

ti
on

s

St
m

ts

L
oo

p
N

es
ti

ng

C
al

l
Si

te
s

M
cV

M
JI

T

M
A

T
L
A

B

M
cV

M
no

JI
T

O
ct

av
e

M
cF

or

M
A

T
L
A

B

M
cV

M
no

JI
T

O
ct

av
e

M
cF

or

adpt 2 196 2 6 13.4 2.66 12.6 45.9 0.72 0.20 0.94 3.42 0.05
beul 10 511 1 38 3.07 3.09 1.56 7.62 N/A 1.01 0.51 2.49 N/A
capr 5 214 2 10 3.51 8.10 1674 5256 1.26 2.31 478 1499 0.36
clos 2 58 2 3 6.84 0.75 13.6 17.5 7.87 0.11 1.99 2.56 1.15
crni 3 142 2 7 1321 6.95 1788 5591 3.56 0.01 1.35 4.23 0.00
dich 2 144 3 7 2.80 4.71 1149 4254 1.88 1.68 410 1517 0.67
diff 2 253 3 6 30.0 5.26 41.9 120 0.65 0.17 1.39 3.98 0.02
edit 2 130 2 6 54.9 11.0 81.4 394 0.13 0.20 1.48 7.17 0.00
fdtd 2 157 1 3 20.1 3.32 8.56 172 0.29 0.17 0.43 8.55 0.01
fft 2 159 3 8 12.8 16.2 2470 8794 9.13 1.27 193 689 0.72
fiff 2 120 2 4 5.37 6.97 1528 4808 0.99 1.30 285 895 0.18

mbrt 3 78 2 11 34.6 4.53 98.6 295 0.96 0.13 2.84 8.51 0.03
nb1d 3 194 2 11 4.10 9.85 4.24 43.9 0.74 2.40 1.03 10.7 0.18
nb3d 3 164 2 12 3.88 1.54 2.51 40.8 0.89 0.40 0.65 10.5 0.23
nfrc 5 151 2 11 15.7 4.94 26.0 80.3 N/A 0.32 1.66 5.13 N/A
nnet 4 186 3 16 6.95 6.35 7.32 26.5 N/A 0.91 1.05 3.81 N/A
play 6 364 2 29 3.37 8.68 4.24 29.0 N/A 2.57 1.26 8.60 N/A
schr 8 203 1 32 2.48 2.07 3.03 2.31 N/A 0.84 1.22 0.93 N/A
sdku 9 363 2 49 1.23 9.74 16.0 112 N/A 7.93 13.1 90.9 N/A
svd 11 308 3 42 8.24 2.38 7.02 10.9 N/A 0.29 0.85 1.33 N/A

mean 4.3 205 2.1 15.6 77.7 5.96 447 1505 2.24 0.49 3.91 15.4 0.08

assignment” to initialize its input data, resulting in several unknown types being
propagated through the entire program. We examine ways to fix this weakness
of our type inference system as part of future work.

While our JIT compiler is able to speed up most benchmarks, sometimes
by very significant margins, some still show slowdowns over interpreted perfor-
mance. These do not necessarily have poor type information. The nb3d bench-
mark, for example, has 100% scalar variables known and 96.9% singleton type
sets. Most of these benchmarks makes heavy use of complex slice read opera-
tions operating on entire columns or rows of a matrix at a time, and these are
currently implemented through our (expensive) interpreter fallback mechanism.

6.3 JIT Specialization

The benefit of JIT specialization depends on how well it improves the code as
well as any introduced overhead. The rightmost three columns of Table 3 show

60 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

Table 3. Profiled performance. All values are percentages.

B
en

ch
m

ar
k

T
op

se
ts

Si
ng

le
to

n
se

ts

Sc
al

ar
s

kn
ow

n

Si
ze

kn
ow

n

JI
T

sp
ee

du
p

M
at

ri
ce

s
cr

ea
te

d

Sl
ic

e
re

ad
s

E
nv

.
lo

ok
up

s

adpt 4.18 95.8 100 90.0 -6.82 24.8 16.8 39.2
beul 55.2 44.8 71.3 29.5 -96.3 85.5 49.8 114
capr 0.01 100 100 82.8 99.8 0.00 0.00 0.00
clos 0.00 100 100 99.9 49.7 0.00 100 0.00
crni 19.1 71.4 68.7 54.8 26.1 66.7 69.2 55.2
dich 2.09 97.9 100 85.1 99.8 0.00 0.00 0.00
diff 14.3 82.1 66.7 66.7 28.2 68.3 100 2.45
edit 5.14 94.9 96.8 81.5 32.5 65.0 40.0 81.6
fdtd 0.01 100 100 49.8 -135 88.1 90.0 90.5
fft 0.00 100 100 80.3 99.5 0.00 0.00 0.00
fiff 0.01 100 100 86.1 99.6 0.01 0.00 0.00

mbrt 9.09 90.9 100 100 64.9 33.3 100 0.00
nb1d 5.84 94.2 88.1 34.5 3.33 75.6 0.00 14.9
nb3d 3.13 96.9 100 16.5 -54.6 94.0 98.3 76.2
nfrc 16.4 82.7 100 98.9 39.8 42.5 100 19.8
nnet 52.6 47.4 98.7 55.1 5.08 86.9 100 82.8
play 23.3 66.6 77.5 52.1 20.6 72.5 100 45.9
schr 31.8 55.3 99.5 41.7 18.3 65.5 54.0 84.6
sdku 14.8 85.2 83.8 49.7 92.3 7.55 5.69 4.65
svd 16.4 73.8 94.2 59.7 -17.4 84.7 100 60.2

mean 13.7 84.0 92.3 65.7 23.5 48.0 56.2 38.6

the effect of JIT compilation on three profile measures, the number of matrices
created, the number of slice reads, and the number of environment lookups, in
each case presented as a percentage of the original, interpreted quantity. These
are all expensive operations, and so large reductions should map to large im-
provements from JIT compilation. The fft benchmark, for instance, has 100%
of its 789 million interpreter slice reads eliminated, and runs over 190 times
faster with the JIT compiler enabled.

For a better understanding of the cost/benefit of different components of our
system, we also evaluate the performance of McVM with specific JIT optimiza-
tions disabled. Relative to the McVM JIT compiler with all optimizations en-
abled, the five leftmost columns in Table 4 show the ratio of run-times of McVM
with optimizations to arithmetic operations, array operations, function calls,
specialized library functions, and the entire JIT selectively disabled (a number
greater than one signifies a slowdown). Clearly, arithmetic operation and array
access optimizations have a tremendous impact as they speed up several bench-
marks by two orders of magnitude. In certain cases, such as dich, optimizing
library functions also has a large impact.

Optimizing Matlab through Just-In-Time Specialization 61

Table 4. Relative JIT performance with specific optimizations disabled (columns 2–
6), and overhead of the optimization system (columns 7–10). The geometric mean was
used for relative values (columns 2–6).

B
en

ch
m

ar
k

A
ri
th

.

A
rr

ay

D
ir
ec

t
ca

lls

L
ib

ra
ry

JI
T

#
fu

nc
ti

on
s

#
ve

rs
io

ns

C
om

pi
le

(s
)

A
na

ly
si
s

(s
)

adpt 1.43 1.12 0.97 1.07 0.94 2 2 0.86 0.79
beul 1.03 1.00 1.00 1.00 0.51 9 16 1.20 0.90
capr 590 428 1.73 1.05 478 5 5 0.50 0.43
clos 3.40 1.01 1.00 1.00 1.99 2 2 0.14 0.12
crni 1.63 1.27 0.75 0.99 1.35 3 3 0.32 0.26
dich 459 282 1.00 29.7 410 2 2 0.38 0.32
diff 2.20 1.03 1.01 0.96 1.39 2 2 1.19 1.10
edit 1.90 1.46 0.61 0.98 1.48 2 2 0.22 0.17
fdtd 1.25 1.10 1.01 0.87 0.43 2 2 0.48 0.38
fft 144 143 1.02 1.01 193 2 2 0.58 0.54
fiff 280 204 1.01 1.05 285 2 2 0.24 0.20

mbrt 3.57 1.05 1.05 0.99 2.84 3 3 0.14 0.11
nb1d 0.90 1.22 1.06 0.97 1.03 3 3 0.51 0.42
nb3d 0.66 1.07 1.08 0.97 0.65 3 3 0.57 0.46
nfrc 1.33 1.04 1.77 0.98 1.66 5 5 0.22 0.15
nnet 1.20 1.01 1.02 0.98 1.05 4 4 0.36 0.29
play 1.21 1.03 1.11 0.98 1.26 6 10 0.58 0.42
schr 1.47 1.00 1.02 1.00 1.22 8 9 0.55 0.45
sdku 1.42 1.67 1.13 0.97 13.1 9 11 1.08 0.85
svd 3.92 0.98 1.05 0.98 0.85 11 15 0.79 0.61

mean 4.56 3.28 1.04 1.17 3.91 4.2 5.2 0.55 0.45

The direct call mechanism has much less impressive benefits. It improves
benchmarks that perform many function calls, but can also yield lower perfor-
mance in cases where the types of input parameters to a function are unknown.
A version of the function then gets compiled with insufficient type information,
whereas the interpreter can extract exact type information on-the-fly when a
call is performed with direct calls disabled.

Given our specialization strategy, compilation overhead is a concern—if types
are highly variable, many function versions will be compiled, adding CPU and
memory overhead. We thus measured the number of functions compiled, as well
as the total number of specialized versions for each of our benchmarks. Columns
7 and 8 in Table 4 show that excessive specialization is not a problem in practice.
In most cases functions are always called with the same argument types, and
there are never more than twice as many versions as compiled functions.

The last two columns of Table 4 give the absolute compile-time overhead and
its analysis-time constituent. As we can see, most of the compilation time is
spent performing analyses on the functions to be compiled, as opposed to code

62 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

generation. The slowest compilation time is associated with the diff benchmark.
We attribute this to the large quantity of code contained in a triple nested
loop in this benchmark, for which our analyses take longer to compute a fixed
point. In most cases these costs are not excessive and are easily overcome by the
performance improvement, especially for longer running benchmarks.

7 Related Work

Our approach to optimizing Matlab has concentrated on dynamic features of
the language that interfere with more traditional optimization. This brings to-
gether more traditional work on compiling scientific, array-intensive languages
and techniques for optimizing dynamic languages, and specifically dynamic spe-
cialization and type inference.

Previous compiler approaches to Matlab have mainly focused on numerical
performance, primarily in the context of static language subsets or contexts. As
well as more traditional loop and array optimizations, code restructuring can be
performed to ensure programs take good advantage of optimized instrinics [7].
Good performance can also be achieved by translating Matlab code to other
static languages, such as C [8] or Fortran 90 [6,9], where further aggressive opti-
mization or parallelization can be performed. A major source of complexity for
almost all Matlab optimizations, as in our case, is analyzing and understand-
ing array properties, such as shape and size [10]. Elphick et al. identify similar
typing and dynamic language concerns in their partial evaluation approach to
optimizing Matlab programs [5]. They develop MPE, an online system to par-
tially evaluate Matlab source functions into more efficient Matlab code. Their
design is intra-procedural and does not handle polyvariant types, but as such
may provide an additional and orthogonal benefit to our approach.

Full VM approaches have also been applied, including JIT-based solutions.
MaJIC combines JIT-compilation with an offline code cache maintained through
speculative compilation of Matlab code into C/Fortran [4]. They derive the
most benefit from optimizations such as array bounds check removals and register
allocation. The Match VM project translates Matlab programs to a lower-
level intermediate form which is then analyzed for dependencies and used to
automatically parallelize computation [11]. The result is invisible to the user,
and by relying on run-time estimates for scheduling avoids static array analysis
requirements.

Program Specialization. We use program specialization [12] in order to opti-
mize effectively in the presence of imprecise type information. More specifically,
we apply procedure cloning [13] to create specialized copies of function bodies in
which we can make stronger typing assumptions. Such specialization techniques
have previously been used offline to translate Matlab code into optimized C
or Fortran code [14]. Our design extends on run-time specialization techniques
used by languages such as SELF [15] and is similar to the approach used to
optimize the JIT compilation of generics for the C# language [16]. More gen-
eral specialization designs have also been applied [17]. In practice this can yield

Optimizing Matlab through Just-In-Time Specialization 63

very significant performance gains—Schultz and Consel report speedups of up
to 300% for their specializing JSpec Java compiler [18].

Run-time specialization accommodates Matlab’s dynamic nature, and is a
technique that has been applied in many other dynamic optimization contexts.
The Psyco python virtual machine, for instance, implements specialization “by
need” [19], a process similar to the online partial evaluation approaches applied
to Matlab [5] and Maple [20]. This specialization technique involves interleav-
ing program specialization and execution; the specializer can request facts such
as the type of variables while a procedure is executing, and depending on the
result, potentially modify the compiled code to be more efficient. The design
goal was to eliminate much of the interpretative overhead through the use of
JIT compilation, without sacrificing the dynamic features of the language. Ap-
proaches such as Psyco differ from our system by working on fine-grain code
fragments rather than functions, trading simpler code-generation and analysis
requirements for smaller specialized sequences.

Similar to the Psyco effort, the TraceMonkey VM for the JavaScript language
has focused on just-in-time specialization based on type information in order to
increase performance [21]. The design is based on a bytecode interpreter that
can identify frequently executed bytecode sequences (traces) going through loops
and compile them to efficient native code based on collected type information. A
crucial assumption of their system is that programs will spend most of their time
in loops, and that the types of variables will remain mostly stable throughout
the execution of loops. They have achieved speedups of up to 25 times on some
benchmarks. However, their current VM does poorly on benchmarks making
extensive use of recursion.

Type Inference. Our specialization approach is facilitated by a type inference
analysis [22], where we use a straightforward, if non-trivial dataflow analysis
to determine type information. The problem, of course, has been examined in
many contexts, and poses an efficiency and accuracy trade-off even in the case of
statically typed languages, such as C++ [23] or Java [24]. In these cases relatively
cheap flow-insensitive approaches to type analysis have been shown effective. In
a more general and flow-sensitive sense the type inference problem can also be
seen as a bidirectional dataflow analysis, propagating type information both
along and against the direction of control flow [25]. In most such analyses types
are considered static, although dynamic types may be reduced to static types
through the use of a Static Single Assignment (SSA) representation.

Type inference on dynamic languages brings additional complexity. Constructs
like eval, Matlab’s cd, as well as dynamic loading and reflection features, make
it difficult or impossible to know the entire call graph of a program ahead of
time. Despite this, there have been efforts to statically perform type inference
on dynamic languages such as Matlab [26] and Ruby [27]. These approaches
show potential to detect type errors ahead of time, but they do not address
the aforementioned problems. Our approach, on the other hand, can operate on
programs whose call graphs are not fully known ahead of time.

64 M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge

8 Conclusions and Future Work

Our experience with McVM demonstrates that online specialization is an ef-
fective and viable technique for optimizing Matlab programs. Although other
specialization and partial evaluation approaches have been applied to Mat-

lab [4,5] and similar dynamic language contexts [19,21], we provide an efficient
and full JIT solution. Our approach focuses on optimizing code generation, uses
a coarse-grained strategy that minimizes specialization overhead, and is specifi-
cally designed to accommodate complex dynamic language properties. Combined
with an effective type and shape inference strategy, McVM is able to achieve
performance up to three orders of magnitude faster than competing Matlab

implementations such as GNU Octave, and in several cases faster than the com-
mercial product.

Further improvements to performance are possible in a number of ways. The
need to be conservative in our type inference analysis means that unknown types
dominate in merges. The result is that once “unknown” types are introduced,
they often propagate and undermine the type inference efforts. Our code gen-
eration strategy is then left with very little information to operate on. In many
cases, however, even if the type of a variable cannot be determined with 100%
certainty, it may be possible to mitigate the impact of unknown types by pre-
dicting the most likely outcome.

A speculative design enables heuristic judgements. It is likely, for example,
that if a variable is repeatedly added to integer matrices, that it is also an integer
matrix. Our code generation system could use these “best guesses” to generate an
optimized code path. The types of variables can then be tested during execution
and either an optimized path or default code chosen as appropriate. Speculative
approaches have been successful based on external compilation [4], and a JIT-
based solution has potential to yield further significant speed gains.

References

1. Lattner, C.: LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
Comp. Sci. Dept., U. of Illinois at Urbana-Champaign (December 2002)

2. Boehm, H., Spertus, M.: Transparent programmer-directed garbage collection for
C++ (2007)

3. Biggar, P., de Vries, E., Gregg, D.: A practical solution for scripting language
compilers. In: SAC 2009, pp. 1916–1923. ACM, New York (2009)

4. Almási, G., Padua, D.: MaJIC: compiling MATLAB for speed and responsiveness.
In: PLDI 2002, pp. 294–303. ACM, New York (2002)

5. Elphick, D., Leuschel, M., Cox, S.: Partial evaluation of MATLAB. In: Pfenning,
F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 344–363. Springer,
Heidelberg (2003)

6. Derose, L., Rose, L.D., Gallivan, K., Gallivan, K., Gallopoulos, E., Gallopoulos, E.,
Marsolf, B., Marsolf, B., Padua, D., Padua, D.: FALCON: A MATLAB interactive
restructuring compiler. In: Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter,
D., Nicolau, A., Padua, D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 269–288.
Springer, Heidelberg (1996)

Optimizing Matlab through Just-In-Time Specialization 65

7. Birkbeck, N., Levesque, J., Amaral, J.N.: A dimension abstraction approach to
vectorization in MATLAB. In: CGO 2007, pp. 115–130. IEEE Computer Society,
Los Alamitos (2007)

8. Joisha, P.G., Banerjee, P.: A translator system for the MATLAB language: Re-
search articles. Softw. Pract. Exper. 37(5), 535–578 (2007)

9. Rose, L.D., Padua, D.: A MATLAB to Fortran 90 translator and its effectiveness.
In: ICS 1996, pp. 309–316. ACM, New York (1996)

10. Joisha, P.G., Banerjee, P.: An algebraic array shape inference system for
MATLAB R©. ACM Trans. Program. Lang. Syst. 28(5), 848–907 (2006)

11. Haldar, M., Nayak, A., Kanhere, A., Joisha, P., Shenoy, N., Choudhary, A., Baner-
jee, P.: Match virtual machine: An adaptive runtime system to execute MATLAB
in parallel. In: ICPP 2000, pp. 145–152 (2000)

12. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, Inc., Englewood Cliffs (1993)

13. Cooper, K.D., Hall, M.W., Kennedy, K.: Procedure cloning. Computer Languages,
96–105 (1992)

14. Chauhan, A., McCosh, C., Kennedy, K., Hanson, R.: Automatic type-driven library
generation for telescoping languages. In: SC 2003, vol. 1, pp. 58113–695 (1917)

15. Chambers, C., Ungar, D.: Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. SIGPLAN
Not. 24(7), 146–160 (1989)

16. Kennedy, A., Syme, D.: Design and implementation of generics for the .NET Com-
mon Language Runtime. In: PLDI 2001, pp. 1–12. ACM, New York (2001)

17. Shankar, A., Sastry, S.S., Bod́ık, R., Smith, J.E.: Runtime specialization with op-
timistic heap analysis. SIGPLAN Not. 40(10), 327–343 (2005)

18. Schultz, U., Consel, C.: Automatic program specialization for Java. ACM Trans.
Program. Lang. Syst. 25(4), 452–499 (2003)

19. Rigo, A.: Representation-based just-in-time specialization and the Psyco prototype
for Python. In: PEPM 2004, pp. 15–26. ACM, New York (2004)

20. Carette, J., Kucera, M.: Partial evaluation of Maple. In: PEPM 2007, pp. 41–50.
ACM, New York (2007)

21. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Ka-
plan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E.W., Re-
itmaier, R., Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type
specialization for dynamic languages. In: PLDI 2009, pp. 465–478. ACM, New
York (2009)

22. Duggan, D., Bent, F.: Explaining type inference. Science of Computer Program-
ming, 37–83 (1996)

23. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
OOPSLA 1996, pp. 324–341. ACM, New York (1996)

24. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: OOPSLA 2000, pp. 281–293. ACM, New York (2000)

25. Singer, J.: Sparse bidirectional data flow analysis as a basis for type inference. In:
Web proceedings of the Applied Semantics Workshop (2004)

26. Joisha, P.G., Banerjee, P.: Correctly detecting intrinsic type errors in typeless
languages such as MATLAB. In: APL 2001, pp. 7–21. ACM, New York (2001)

27. Furr, M., An, J.h.D., Foster, J.S., Hicks, M.: Static type inference for Ruby. In:
SAC 2009, pp. 1859–1866. ACM, New York (2009)

RATA: Rapid Atomic Type Analysis by
Abstract Interpretation – Application to

JavaScript Optimization

Francesco Logozzo and Herman Venter

Microsoft Research, Redmond, WA (USA)
{logozzo,hermanv}@microsoft.com

Abstract. We introduce RATA, a static analysis based on abstract
interpretation for the rapid inference of atomic types in JavaScript

programs. RATA enables aggressive type specialization optimizations in
dynamic languages. RATA is a combination of an interval analysis (to
determine the range of variables), a kind analysis (to determine if a vari-
able may assume fractional values, or NaN), and a variation analysis (to
relate the values of variables). The combination of those three analyses
allows our compiler to specialize Float64 variables (the only numeri-
cal type in JavaScript) to Int32 variables, providing large performance
improvements (up to 7.7×) in some of our benchmarks.

1 Introduction

JavaScript is probably the most widespread programming platform in the
world. JavaScript is an object-oriented, dynamically typed language with clo-
sures and higher-order functions. JavaScript runtimes can be found in every
WEB browser (e.g., Internet Explorer,Firefox, Safari and so on) and in pop-
ular software such as Adobe Acrobat and Adobe Flash. Large and complex
WEB applications such as Microsoft Office WEB Apps or Google Mail, rely on
JavaScript to run inside every browser on the planet.

A fast JavaScript implementation is crucial to provide a good user expe-
rience for rich WEB applications and hence enabling their success. Because of
its dynamic nature, a JavaScript program cannot statically be compiled to
efficient machine code. A fully interpreted solution for JavaScript runtime is
generally acknowledged to be too slow for the new generation of web applica-
tions. Modern implementations rely on Just-in-time (JIT) techniques: When a
function f is invoked at runtime, f is compiled to a function f′ in machine code,
and it is then executed. The performance gain of executing f′ pays off the extra
time spent in the compilation of f. The quality of the code that the JIT gen-
erates for f′ depends on the amount of dynamic and static information that is
available to it at the moment of the invocation of f. For instance, if the JIT
knows that a certain variable is of an atomic type then it generates specialized
machine instructions (e.g., incr for an Int32) instead of relying on expensive
boxing/unboxing operations.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 66–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 67

Motivating Example. Let us consider the nestedLoops function in Fig. 1.
Without any knowledge of the concrete types of i and j, the JIT should generate
a value wrapper containing: (i) a tag with the dynamic type of the value, and
(ii) the value. Value wrappers are disastrous for performance. For instance, the
execution of nestedLoops takes 310ms on our laptop. 1 In fact, the dynamic
execution of the statement i++ involves: (i) an “unbox” operation to fetch the old
value of i and check that it is a numerical type; (ii) incrementing i; (iii) a “box”
operation to update the wrapper with the new value. The JIT can specialize the
function if it knows that i and j are numerical values. In JavaScript, the only
numerical type is a 64 bits floating point (Float64) which follows the IEEE754
standard [16,19]. In our case, a simple type inference can determine that i and
j are Float64: they are initialized to zero and only incremented by one. The
execution time then goes down to 180ms.

The JIT may do a better job if it knows that i and j are Int32: floating
point comparisons are quite inefficient and they usually requires twice or more
instructions to perform than integer comparisons on a x86 architecture. A simple
type inference does not help, as it cannot infer that i and j are bounded by
10000. In fact, it is safe to specialize a numerical variable x with type Int32
when one can prove that for all possible executions:

(i) x never assumes values outside of the range [−231, 231 − 1]; and
(ii) x is never assigned a fractional value (e.g., 0.5).

Contribution. We introduce RATA, Rapid Atomic Type Analysis, a new static
analysis based on abstract interpretation, to quickly and precisely infer the nu-
merical types of variables. RATA is based on a combination of an interval anal-
ysis (to determine the range of variables), a kind analysis (to determine if a
variable may assume fractional values, or NaN) and a variation analysis (to re-
late the values of variables). In our example, the first analysis discovers that
i ∈ [0, 10000], j ∈ [0, 10000] and the second that i, j ∈ Z. Using this informa-
tion, the JIT can further specialize the code so that i and j are allocated in
integer registers, and as a matter of fact the execution time (inclusive of the
analysis time) drops to 31ms!

The function bitsinbyte in Fig. 1 (extracted from the SunSpider bench-
marks [31]) illustrates the need for the variation analysis. The interval analysis
determines that m ∈ [1, 256], c ∈ [0, +∞]. The kind analysis determines that
m, c ∈ Z. If we infer that c ≤ m then we can conclude that c is an Int32. In
general, we can solve this problem using a relational, or weakly relational ab-
stract domain, such as Polyhedra [12], Subpolyhedra [23], Octagons [26], or Pen-
tagons [24]. However, all those abstract domains have a cost which is quadratic
(Pentagons), cubic (Octagons), polynomial (Subpolyhedra) or exponential (Poly-
hedra) and hence we rejected their use, as non-linear costs are simply not tol-
erable at runtime. Our variation analysis infers that: (i) m and c differ by one

1 The data we report is based on the experience with our own implementation of a
JavaScript interpreter for .Net. More details will be given in Sect. 6.

68 F. Logozzo and H. Venter

function nestedLoops()

{

var i, j;

for(i = 0; i < 10000; i++)

for(j = 0; j < i; j++) {

// do nothing...

}

}

function bitsinbyte(b) {

var m = 1, c = 0;

while(m<0x100) {

if(b & m) c++;

m <<= 1;

}

return c;

}

Fig. 1. Two small JavaScript functions showing the impact of type specialization on
performance. With no type information the execution of nestedLoops takes 310ms,
when i and j are treated as Float64 it takes 180ms and when they are treated as
Int32 it only takes 31ms. To infer i, j to be Int32, one needs a more powerful analysis
than a simple type inference. In bitsinbyte one needs to discover that c is bounded
by m in order to determine thas is an Int32.

at the entry of the loop; (ii) c is incremented by 0 or 1 at each loop iteration;
and (iii) m, the guard variable of the loop, monotonically increases at each loop
iteration (even if non-linearly). As a consequence, m ≤ 256 implies that c ≤ 256,
which combined with the interval and kind information allows the analysis to
conclude that c is a Int32.

The precision of RATA is in between Intervals [10] and Octagons. It is more
precise than Intervals, as it can express kind information and relative variable
growth. It is less precise than Octagons, for whereas the Octagon abastract
domain can exactly represent relations such as c ≤ m ∧ m ≤ 256 our analysis
considers the weaker property ∃x ∈ Vars.c �= x ∧ c ≤ x ∧ x ≤ 256. It is worth
remarking that RATA is designed to be very fast, to be invoked by the JIT at
runtime, and to be used for program optimization.

2 The JavaScript= Language

We illustrate our analysis using a small untyped imperative language,
JavaScript=, defined in Fig. 2, which models the subset of JavaScript we
consider in our analysis. A program is a sequence of function declarations and
a statement (the global statement). For simplicity we assume functions to have
only one parameter. Local (global) variables are declared with the var (global)
keyword. The JavaScript language does not provide immediate syntax to dif-
ferentiate globals from locals, which can be easily determined by the parser. The
difference is relevant for the soundness of our analysis, so we make the distinction
explicit in the syntax of JavaScript=. Variable assignment, function invocation,
statement concatenation, loop, conditional are as usual. The statement IgnoredC
abstracts the language statements which do not affect locals such as object cre-
ation, closures and so on. The statement HavocC models any statement that we
do not consider in the analysis, and that may have some effect of locals, e.g.
throw and eval. To ease the presentation we admit only strict inequalities and
equalities for guards. Expressions can be constants or variables, and they are

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 69

Prog ::= F C

F ::= function f(x) {C} F | ε
C ::= var x; | global x; | x = e; | x = f(e); | C C | while(b) {C};

| if(b) {C }else {C }; | HavocC; | IgnoredC
b ::= e < e | e ≤ e | e == e

e ::= k | x | e + e | e opnume | e opinte | Ignorede
k ::= NumericalConstant | StringConstant | Ignoredk

opint ::= <<|>>| & |ˆ opnum ::= / | ∗ | % | −

Fig. 2. The syntax of the JavaScript= language

combined with binary operators. We distinguish three kinds of binary operators:
(i) sum, +, which can be either the usual IEEE754 addition when its operands
are numerical values or string concatenation otherwise; (ii) numerical operations
which return a numerical value (or NaN if the operation is undefined, e.g. 0/0);
(iii) int operations, which always return a Int32 value. The expression Ignorede
abstracts the expressions that we do not consider here such as Boolean operators
and casting. A constant can either be an IEEE754 64-bits numerical constant, a
string literal or some constant we do not deal with (e.g., Boolean constants).

It is worth mentioning that even if in the definition of JavaScript= we ignore
some language constructs, our implementation takes care of them e.g. by syntax
rewriting (“x+ = 2” → “x = x + 2”).

3 Background

3.1 IEEE754 Standard

The IEEE754 standard defines, among other things, the arithmetic format for
floating point computations. When using 64-bits (Float64), the standard format
allows numbers as large as ±1.7976931348623157·10308 and as small as ±5·10−324

to be represented. All the integers between −253 and 253 are exactly represented.
Outside of this interval, one may lose precision in the trailing digits. Unlike
machine integers: (i) Float64 numbers do not overflow, and (ii) two special
values represent infinities: ±∞. For instance, 1/0 = +∞ = +∞ + 10. The
Float64 format also specifies a special value NaN (Not-a-Number) as the result
of invalid operations, e.g.,∞/∞. A peculiar property of NaN is that NaN �= NaN.

One can specialize a Float64 variable x to a Int32 without changing the
semantics of the program if one can prove that x will never assume: (i) a fractional
value, a NaN or an infinity; and (ii) a value outside of the range [−231, 231 − 1].
The goal of RATA is to enable such specialization.

3.2 Abstract Interpretation

Abstract interpretation [10,11] is a general theory of semantic approximations.
Its more interesting application is to define and prove soundness of program anal-
yses. From the abstract interpretation perspective, a static analysis is a program

70 F. Logozzo and H. Venter

semantics that is coarse enough to be computable and precise enough to capture
the properties of interests. The concrete semantics of a program is defined over
a complete lattice 〈C,�〉. The abstract semantics is defined as a fixpoint over a
complete lattice 〈A, �̄〉, which is related to C by a Galois connection, i.e., a pair of
monotonic functions 〈α, γ〉 such that ∀c ∈ C. c � γ◦α(c) and ∀ā ∈ A. α◦γ(ā)�̄ā.
We write 〈C,�〉 −−−→←−−−

α

γ 〈A, �̄〉 to denote that. An abstract transfer function τ̄ is
a sound approximation of a concrete τ if ∀ā ∈ A. α ◦ τ ◦ γ(ā)�̄τ̄(ā). In general,
the abstract domain A may contain strictly increasing infinite (or very long)
chain. Hence, to ensure the convergence of fixpoint iterations one should use a
widening operator, which extrapolates the limit of the sequence. Precision lost
by the widening can be recovered using a narrowing operator.

4 Numerical Abstract Domains

The Rapid Atomic Type Analysis (RATA) is meant to be used in an online
context, as an oracle for the JIT that can use the inferred types to generate
more specialized code. RATA is a combination of three different static analyses.
An interval analysis to determine the range of the variables. A kind analysis to
infer if a variable can assume a fractional or a NaN value. A variation analysis
to infer loose relationships about program variables, and hence refine the ranges
and the kinds. The analysis should be very fast, to avoid causing untoward pauses
in normal program execution. We rejected the use of expressive yet expensive
numerical abstract domains. For instance, Octagons have a cubic complexity (in
the number of program variables), Polyhedra are exponential, and Subpolyhedra
lay in between.

4.1 Extended Intervals

The interval abstract domain was introduced by Cousot & Cousot in [10] as
example of the application of Abstract Interpretation to program optimization
(specifically array bounds check removal). Inspired by this idea, we use it for type
specialization. Our extended intervals are a little bit different from the originals,
in that we also consider intervals potentially containing NaN, intervals abstracting
non-numerical values, intervals abstracting floats and intervals bounded only by
Int32 values. An interval can either be the empty interval, the interval containing
only NaN, a Int32-bounded interval, an open interval or the unknown interval
(�i):

Intv = ⊥i | NaN | Normal(a, b) | OpenLeft(b) | OpenRight(a) | �i

a, b ∈ Int32

More formally, the meaning of an interval is given by the concretization function
γi ∈ [Intv → P(Val)]. The set Val is the set of concrete JavaScript= values. We
are interested only in numerical values, so we let Val = IgnoredVal∪R∪{±∞, NaN}.
For simplicity, we let R

∗ = R∪{±∞, NaN}, and we extend the usual axioms over
reals so that ∀r ∈ R. −∞ < r < +∞ and ∀r ∈ R

∗. r �= NaN. The concretization
function and the induced order �i are in Fig. 3.

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 71

γi(⊥i) = ∅
γi(NaN) = {NaN}
γi(Normal(a, b)) = {r | r ∈ R, a ≤ r ≤ b} ∪ {NaN}
γi(OpenLeft(b)) = {r | r ∈ R, r ≤ b} ∪ {NaN}
γi(OpenRight(a)) = {r | r ∈ R, a ≤ r} ∪ {NaN}
γi(�i) = Val

�i

OpenLeft(b′)

���������������
OpenRight(a′)

����������������

OpenLeft(b)

��

Normal(a′, b′)

��������������

��������������
OpenRight(a)

��

Normal(a, b)

��������������

�� ��������������

NaN

��

⊥i

��

Fig. 3. The concretization γi and the order i on the extended intervals. We assume
that a′ ≤ a ≤ b ≤ b′.

Example 1. γi(OpenRight(10)) = {10 . . .11 · · · + ∞} ∪ {NaN}.
The abstraction function αi ∈ [P(Val) → Intv] is defined as

αi(R) =
⊔

i{α̇i(r) | r ∈ R} where

α̇i(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NaN r is NaN
OpenRight(231 − 1) 231 − 1 < r ≤ +∞
OpenLeft(−231) −∞ ≤ r < −231

Normal(floor(r), ceiling(r)) −231 ≤ r ≤ 231 − 1
�i otherwise

(floor(r) = max{x ∈ Z | x ≤ r} and ceiling(r) = min{x ∈ Z | r ≤ x}).
Example 2. αi({10.3, +∞, NaN}) = OpenRight(10), αi({3.14}) = Normal(3, 4).

Theorem 1. 〈P(Val),⊆〉 −−−→←−−−
αi

γi 〈Intv,�i〉.
It is worth noting that for Th. 1 to hold we need to map ±∞ to the smallest
abstract element containing ±∞.

The abstract domain Intv is precise enough to capture that the value of a
variable is always within the Int32 range, but it cannot capture the fact that a
variable never assumes fractional values, crucial for soundness : e.g., 1/2 is 0.5
with Float64 semantics and 0 with Int32 semantics.

Example 3. For the function bitsinbyte, the analysis with Intv infers that m :
Normal(0, 512), c : OpenRight(0), b : �i.

4.2 Kinds

The elements of the Kind abstract domain are either the empty kind, a 32-bits
integer, a 64-bit floating point number or an unknown kind of value:

Kind = ⊥k | Int32 | Float64 | �k.

72 F. Logozzo and H. Venter

γk(⊥k) = ∅
γi(Int32) = {r | r ∈ Z,−231 ≤ r ≤ 231 − 1}
γi(Float64) = {r | r ∈ R

∗, r is a 64 bits IEEE 754 number}
γi(�k) = Val

�k

Float64

��

Int32

��

⊥k

��

Fig. 4. The concretization γk and the order k of the Kinds

The meaning function γk ∈ [Kind → P(Val)] and the induced order �k are in
Fig. 4. The abstraction function αk ∈ [P(Val) → Kind] is

αk(R) =
⊔

k{α̇k(r) | r ∈ R} where α̇k(r) =

⎧⎪⎨⎪⎩
Int32 r is a Int32

Float64 r is a Float64

�k r otherwise

Example 4. αk({10.3, +∞, NaN}) = αk({3.14}) = Float64.

Theorem 2. 〈P(Val),⊆〉 −−−−→←−−−−
αk

γk 〈Kind,�k〉.

The abstract domain of Kind in isolation is of almost no use (maybe except for
trivial, loop free programs). In the nestedloops example, knowing that i is
initialized to a Int32, it is compared to a Int32, and only incremented by one
it is not enough to deduce that i is an Int32. In fact if the loop guard were
instead i≤231, then after the last iteration of the loop i = 231 + 1 which is a
fine Float64 value, but not an Int32.

4.3 K-Intervals

The combination of extended intervals and kinds allow the derivation of very
powerful yet rapid analyses. We call the reduced product of Kind and Intv a
k-interval. The elements of the abstract domain are pairs in Intv × Kind , and
the concretization γki ∈ [Intv × Kind → P(Val)] is γki(〈i, k〉) = γi(i) ∩ γk(k).
The abstraction αki ∈ [P(Val) → Intv×Kind] is the simple pairwise abstraction:
αki(R) = 〈αi(R), αk(R)〉. The order �ki is the pairwise extension of the order on
the basic domains. We write x : t to denote that the variable x has a k-interval t.

Theorem 3. 〈P(Val),⊆〉 −−−−→←−−−−
αki

γki 〈Intv × Kind,�ki〉.

K-Intervals are more expressive than the single domains and can represent ad-
dition information, crucial to type specialization:

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 73

function loop() {

var x;

x = 0;

while(x < 10000) {

x = x + 1;

}

}

function loopToN(n) {

var x;

x = 0;

while(x < n) {

x = x + 1;

}

}

loopToN(99999);

loopToN(1234);

Fig. 5. In order to infer that x : Int32, in the first example RATA uses a widening
with a threshold, and in the second a narrowing as re-execution. The function loopToN

is analyzed at the first invocation, it is specialized for Int32, and the specialization is
re-used at the second invocation.

Example 5. The k-interval t = 〈OpenRight(10), Int32〉 represents the set of
Int32 larger than or equal to 10:

γki(t) = {10 . . . 11 · · ·+ ∞, NaN} ∩ {r | r ∈ Z,−231 ≤ r ≤ 231 − 1}
= {10, 11 . . .231 − 1}.

It is worth noting that t′ = 〈Normal(10, 231 − 1), Int32〉 is such that γki(t′) =
γki(t), so that t and t′ are two abstract elements with the same concretization.
To keep a low analysis overhead, we do not impose a canonical form for abstract
elements.

Roughly, if the analysis determines that x : t then there exists a variable y,
which is known to be an Int32, such that x ≤ y. This information is weaker
than that one gets for instance with Octagons, which automatically discovers
the particular y and v ≥ 0 such that x ≤ y− v.

5 Rapid Atomic Type Analysis

The Rapid Atomic Type Analysis is defined by structural induction on the pro-
gram syntax. It has two main phases: (i) numerical invariant inference with
Intv × Kind ; and (ii) type refinement via variation analysis.

5.1 Numerical Analysis

The numerical invariant analysis N�·� infers, for each program point an abstract
state σ ∈ Σ = [Vars → Intv ×Kind], that is a map from variables to k-intervals.

Invocation of the Analysis. When the JIT encounters a function call f(v),
where v is a value of dynamic type t, it first searches the cache to see if it has
already specialized f for the type t. If this is not the case, it invokes RATA to
infer the atomic numerical types for f’s locals, to be used for type specialization.

74 F. Logozzo and H. Venter

eval(k, σ) =

⎧⎪⎨⎪⎩
〈Normal(k, k), Int32〉 k is Int32

〈�i, Float64〉 k is Float64

〈�i,�k〉 otherwise
eval(x, σ) = σ(x)
eval(e1 + e2, σ) = let v1 = eval(e1, σ), v2 = eval(e2, σ) in

if v1 == 〈�i,�k〉 ∨ v2 == 〈�i,�k〉then 〈�i,�k〉
else (v1+̄v2) �ki 〈�i, Float64〉

eval(e1 opnum e2, σ) = (eval(e1, σ)ōpnum eval(e2, σ)) �ki 〈�i, Float64〉
eval(e1 opint e2, σ) = (eval(e1, σ)ōpint eval(e2, σ)) �ki 〈�i, Int32〉
eval(f(e)) = �i

Fig. 6. The abstract evaluation of expressions. The abstract operators +̄, ōpnum , ōpint

are the abstract counterparts of concrete the concrete operators.

Initial State. At the entry point of f, the global values are set to 〈�i,�k〉 (any
value), the local values are set to 〈⊥i,⊥k〉 (uninitialized), and the actual value
v of the parameter x is generalized to 〈�i, αk({v})〉. We generalize the actual
value of the parameter so that the result of the analyses can be re-used.

Example 6. The initial abstract state for the analysis of loopToN(99999) in Fig. 5
is σ0 = [n �→ 〈�i, Int32〉, x �→ 〈⊥i,⊥k〉]. The specialization of loopToN can be
cached and reused for loopToN(1234) as σ0 is an over-approximation of [n �→
〈Normal(1234, 1234), Int32〉, x �→ 〈⊥i,⊥k〉].

Variables. RATA is a modular analysis, run on a per-method basis. In the
general case, at the moment of the invocation of RATA, we have not seen all
the assignments to globals, so that the only sound assumption for globals is the
open-world assumption, i.e., they can assume any value.

Assignment. An assignment x = e in a pre-state σ0, updates the entry for xwith
eval(e, σ0) if x is a local variable (or a parameter) or it does nothing otherwise.
The evaluation function eval ∈ [e× Σ → Intv × Kind] is in Fig. 6. The k-interval
for a constant is assigned according to its type. The “+” operator is polymorphic
in JavaScript: it can either be string concatenation or numerical addition. As
a consequence, if no information on the operands is available, nothing can be in-
ferred on the result. Otherwise, we know that it is at least a Float64. The result
of a opnum (opint) is at least a Float64 (an Int32). The return value of a function
call is ignored: to statically determine which function is invoked requires a quite
complex global program analysis, out of the scope of this paper.

Test. A precise handling of tests enables the refinement of the abstract states,
and hence a more precise analysis. A too precise analysis of tests (e.g., using for-
ward/backwards iterations [9]) may cause slowdowns unacceptable for an online
analysis. In our implementation we only consider comparisons between a variable
and an expression, or between two variables. For equalities, we have that:

N�x == e�(σ0) = σ0[x �→ σ0(x) �ki eval(e, σ0)], and
N�x == y�(σ0) = σ0[x, y �→ σ0(x) �ki σ0(y)].

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 75

For an inequality x < e, the upper bound of x is refined by the upper bound of
eval(e, σ0) (upp(〈i, t〉) is the open k-interval bounded by the upper bound of i,
it can be +∞):

N�x < e�(σ0) = σ0[x �→ σ0(x) �ki upp(eval(e, σ0))].

Similarly for an inequality x < y, the upper bound for x can be refined by the
upper bound of y, and the lower bound of y can be refined by the lower bound
of x:

N�x < y�(σ0) = σ0[x �→ σ0(x)�ki upp(eval(y, σ0)), y �→ σ0(y)�ki low(eval(x, σ0))].

Example 7. Let us assume that σ0 = [x �→ 〈OpenRight(10),�i〉]. Then:

N�x < 1000�(σ0) = [x �→ 〈Normal(10, 1000),�i〉].
Note that it would be unsound to assume that x is an Int32 or that x :
Normal(10, 999).

Sequence. The analysis of a sequence of statements is the composition of the
analyses: N�C1 C2�(σ0) = N�C2�(N�C1�(σ0)).

Conditional. For a conditional the analysis first refines the pre-state with the
guards, and then joins the results (the function Not negates the Boolean expres-
sion b):

N�if(b) {C1}else {C2};�(σ0) = N�C1�(N�b�(σ0)) �ki N�C2�(N�Not(b)�(σ0)).

Loop. A loop invariant for while(b) {C}; is a fixpoint of the functional F ∈
[Σ → Σ]:

F (X) = σ0�̇kiN�C�(N�b�(X)),

where σ0 is the abstract state at the entry point of the loop and �̇ki is the point-
wise extension of �ki. An invariant can be computed with the usual fixpoint
iteration techniques. The abstract domain Intv × Kind does not contain infinite
ascending chains, but it contains very very long chains (up to 232 + 3 elements).
We need a widening operator to speed up the convergence of the iterations to
a post-fixpoint. A widening with thresholds [6,22], and the re-execution from a
post-fixpoint (a form of narrowing [22]) guarantee a good precision yet providing
good performance. We illustrate those two techniques with examples.

Example 8. The iterations with the classical widening for the loop function of
Fig. 5 produce the following sequence of abstract values for x:

〈Normal(0, 0), Int32〉 �ki 〈Normal(0, 1), Int32〉 �ki 〈OpenRight(0), Float64〉,
as the upper bound for x is extrapolated to +∞. The threshold (or staged)
widening tries to extrapolate the upper bound to constants appearing in guards,
producing the sequence:

〈Normal(0, 0), Int32〉 �ki 〈Normal(0, 1), Int32〉 �ki 〈Normal(0, 10000), Int32〉.

76 F. Logozzo and H. Venter

In general, during the analysis we collect all the constants that appear in the
tests, and we use them as steps for widening with a threshold.

Example 9. The type of x in function loopToN of Fig. 5 depends on the input
parameter. When it is invoked with an Int32 value, then we would like RATA to
discover that x is an Int32. Widening with thresholds is of no help here (there are
no constants in guards) so the iterations stabilize at I = 〈OpenRight(0), Float64〉.
A re-execution of the loop with initial state I will refine the abstract state to
〈OpenRight(0), Int32〉.
Re-execution is justified by Tarski’s fixpoint theorem [29], which states that in a
partial order lfp(F) = �{I | F (I) � I}. So, if I is a post-fixpoint for F , then F (I)
is still above the least fixpoint lfp(F), and hence it is a sound approximation of
the loop invariant. During re-execution, we refine the abstract semantics of the
tests appearing in loops which involve inequalities where one of the operands is
an Int32. For instance in the loopToN example:

N�x < n�([x �→ 〈OpenRight(0), Float64〉]) = [x �→ 〈Normal(0, 231 − 2), Int32〉].
In Ex. 7 we pointed out that in general it is not sound to assume x : Int32 after
a test x < y when y : Int32. However during re-execution this is sound as there
are essentially three cases why x : Float64 in I: (i) x was a Float64 at the loop
entry; (ii) x may be assigned a fractional value (or NaN or an infinite) in the loop
body; or (iii) the analysis of the loop could not figure out that x : Int32. In the
first two cases, F (I) will imply that x : Float64 (because of the definition of
F). In the third case one may hope to recover some of the lost precision. In our
running example:

F (I) = [x �→ 〈Normal(0, 0), Int32〉]�̇ki[x �→ 〈Normal(1, 231 − 1), Int32〉]
= [x �→ 〈Normal(0, 231 − 1), Int32〉] �̇ki I.

(Recall that γki(〈Normal(0, 231 − 1), Int32〉) = γki(〈OpenRight(0), Int32〉)).

Ignored Statements and Havoc. Ignored statements have no effect on the
local state, so the analysis treats them as the identity : N�IgnoredC�(σ0) = σ0.
Havoc statements may have some side-effect on local variables. We abstract them
by N�HavocC�(σ0) = 〈�i,�k〉.

5.2 Variation Analysis

The numerical analysis alone cannot determine that c : Int32 in bitsinbyte
(Fig. 1). It discovers the loop invariant σL = [m �→ 〈Normal(1, 512), Int32〉, c �→
〈OpenRight(0), Float64〉] (we omit b). The invariant σL can be refined by the
variation analysis. At the loop entry, c and m differ by one. At each iteration
c is either incremented by one or it remains the same, whereas m is multiplied
by 2, thus m grows faster than c. However, m bounded implies that c should be
bounded too, thus we can safely refine σL to σL[c �→ 〈Normal(0, 512), Int32〉].

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 77

We run the variation analysis V�·� on a per-loop basis. The goal of the analysis
is to compute, for each loop and each variable an interval over-approximating
the increment of a variable in a single loop iteration. The variation analysis is
similar in many aspects to the numerical analysis above, with the major dif-
ference that the initialization and the assignments are re-interpreted. An ab-
stract state is a map from local variables to intervals. At the loop entry point,
all the local variables are set to the interval [0, 0] 2 (no increment). For as-
signments, we compute variable increments. We consider simple forms of incre-
ments and decrements, and we abstract away all the other expressions. So, we let
V�x = x± k�(σ0) = σ0[x �→ ±[k , k]], and V�x = e�(σ0) = σ0[x �→ [−∞, +∞]].

Once we have computed ν, the increment ranges for the variables in the loop,
we use this information to refine the numerical loop invariant σL to σ′

L according
to refinement rules that looks like:

∀x, y. x �= y ∧ σ0 |= x < y ∧ y is upper-bounded by b ∧ ν |= x < y
=⇒ σ′

L(x) = σL(x)�̇ki〈OpenLeft(b),�k〉,
(the intuitive meaning of σ0 |= x < y is that in the k-interval σ0, x < y and
the meaning of ν |= x < y is that according to ν, x grows slower than y). The
rule above essentially states that if y is an upper bound for x at the entry of the
loop, and y is bounded by b during all the executions of the loop, and x does not
grow more than y in the loop, then b should be an upper bound for x too. We
omit all the other (tedious) refinement rules, which consider the combination of
the other cases (e.g., σ0 |= x ≤ y, lower bounds, decrements and so on).

5.3 Atomic Types

The atomic types T for a function are obtained by joining together the post-
states of all the statements in the function body. The reason for that is that we
want to assign a unique atomic type at each local variable. One may wonder why
we designed a flow-sensitive analysis if we were interested in a flow-insensitive
property (the type of a local variable through all the function’s body). Actually,
in an early stage of this project we tried to avoid the joining phase by designing
a flow-insensitive analysis. For instance, the abstract semantics of the sequence
was N�C1 C2�(σ0) = let σ = N�C1�(σ0)in N�C2�(σ)�̇kiσ. We immediately realized
that a flow-insensitive analysis was too imprecise for handling loops, and in
particular it voided the advantages of the re-execution step and the variation
analysis which we found crucial for precision. Therefore, we rejected the flow-
insensitive analysis for a flow-sensitive followed by a join-all step.

6 Experiments

We have implemented RATA in our JavaScript engine for .Net. The engine
itself is written in C#. It parses the JavaScript source, it compiles the main
2 We use the notation [a, b] to avoid confusion between the range intervals of the

previous sections and the increment intervals. In the implementation we share the
code, though.

78 F. Logozzo and H. Venter

0

100

200

300

400

500

600

700

Fig. 7. The results of the optimizations enabled by a text-book type inference algorithm
(blue/light bars) and RATA (red/dark bars). Times are expressed in milliseconds. On
numerical intensive benchmarks RATA enables up to a 7.7× speed-up.

(global) function and it generates proxies for function invocations. When the
execution encounters a function proxy, the JavaScript engine resolves it, and
it checks if it has a specialized version in the cache which matches the actual
parameters. If this is the case, then it executes the cached version. Otherwise:
(i) it runs the RATA to infer the atomic types for the locals of the variables;
(ii) it compiles the function in memory, performing atomic type specialization;
(iii) executes the specialized function, and caches it for future needs. It is worth
noting that the specialization is polymorphic: If the same function is invoked
at two points of time with two actual parameters of different types, then it is
analyzed and specialized twice.

We report the experience of applying RATA on the SunSpider JavaScript
benchmarks [31]. The SunSpider benchmarks measure JavaScript performance
for problems that presents difficulties to JavaScript implementations. They are
designed to be balanced and to stress different areas of the language. They are
commonly used to compare the JavaScript performance of different browsers,
or different versions of the same browser. We run the experiments on a 2.1GHz
Centrino Duo Laptop, 4Gbyte, under Windows 7 and .Net v3.5. We compared a
text-book type inference algorithm [2] with RATA. The type inference algorithm
determines which locals are definitely doubles, and for some expressions it can
also infer that a local is an Int32.

The results of our experiments are in Fig. 7. Measuring the performances
of managed programs is quite complex, as their runtime behavior depends on
too many variables [18]. In general, when the execution time is too low, it is

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 79

global x;

x = 0;

while(x < 4) {

foo(x);

x = x + 1;

}

function zeroarray(arr) {

var x; x = 0;

while(x < arr.length) {

arr[x] = 0; x = x + 1; }

}

global a; a = new Array(10);

zeroarray(a)

Fig. 8. Two code snippets in which it would be unsound to infer that x : Int32. In
the first case, x is declared in the global scope and its value can be changed by foo. In
the second case, x depends on the property arr.length which in general is a UInt32.
Furthermore, JavaScript allows the user-redefinition of Array, so that we need a global
analysis to determine that a is an array.

impossible to distinguish the effective time spent in computation from the ex-
ternal noise (e.g., the garbage collector, the thread scheduler, network traffic,
background services and so on). We run each JavaScript program in the Sun-
Spider suite 80 times choosing the best execution time. The execution times of
Fig. 7 do not include the compilation and the type inference/RATA time. The
reason for that is that we observed the analysis time to be of the same order
of magnitude of the experiment noise (few tenths of milliseconds). We also ob-
served that the runtime costs of the type inference and RATA were comparable.
We modified some tests so to have them run longer, reducing the external noise,
and hence obtaining more meaningful measurements.

The results of Fig. 7 show that in 12 tests RATA enables the JIT to generate
more optimized code, and hence to obtain significant performance improvements.

Most of the benchmarks in the 3d family benefit from Int32 type infer-
ence. The tests themselves manipulate many doubles (and arrays of doubles),
but RATA manages to discover that 20 locals in 3d-cube and 11 locals in
3d-raytrace are Int32 which convey respectively a 1.75× and 1.1× speed-up
over the double-only version. We inspected the results of the analysis, and we
found that in the first test RATA found all the Int32 variables one may expect,
and in the second test it missed three. The reason for that was in an imprecision
of handling the return statement. Finally, the locals on 3d-morph depends on
some global values, so nothing can be inferred about them.

The best performance improvements are in the bitops family benchmarks.
RATA discovers that all the local variables are Int32 in the test bitops-bits
-in-byte, which provides a 6.6× speed-up with respect to the same test when
all the locals are inferred to be doubles. Similar results are observed in the
bitops-3bit-bits-in-byte (2.8×) and the bitops-nsieve-bits (2×) tests,
where RATA is again precise enough to infer all the Int32 locals. The test
bitops-bitwise-and contains only globals, so there is no hope to statically
optimize it.

Example 10. The test bitops-bitwise-and contains a main loop that looks like
the first code snippet of Ex. 8. In general, it is unsound to infer that x : Int32 as

80 F. Logozzo and H. Venter

foo may change the value of x. Functions are analyzed top-down: first the JIT
runs RATA on the global statement, and then, at the first concrete occurrence,
it invokes RATA on foo. As a consequence when inferring the type of x, RATA
assumes the worst case for foo. Determining x : Int32 requires a bottom-up
purity analysis or an effect analysis [4], which are out-of-the scope of the paper,
and in general too expensive to be performed online.

In the access-nsieve benchmark, RATA local inference enables a significant
speedup (7.7×) over the Float64-specialized version. In particular, the inner
function contains two nested loops and a counter variable. Fixpoint computation
with re-execution and variation analysis are cardinal to infer that all the locals
involved are indeed Int32. The other two benchmarks of the access family
benchmarks perform computations which either depend on globals or on very
short loops.

The controlflow-recursive benchmark stresses JavaScript implementa-
tions with standard recursive-function benckmarks such as fibonacci or
ackerman. RATA infers that the variables inside those functions are Int32 and
thus achieves a slight performance improvement (1.12×).

The cryptographic benchmarks benefit by an aggressive type specialization.
RATA infers all the Int32 locals for the crypto-aes and the crypto-sha1
benchmarks, enabling a 2.3× and 1.5× speedup. The crypto-md5 benchmark
contains many functions taking an array as parameter, and iterating over its
elements. The next example shows that it would be unsound to infer those locals
to be Int32.

Example 11. Let us consider the zeroarray function of Fig. 8. In JavaScript,
the length property of Array is a UInt32, i.e., it can assume values as large
as 232 − 1. As a consequence, even if we know that arr is an array, we cannot
conclude x : Int32. In general, to infer that x : Int32, we should refine RATA to
track that arr is an array and that arr.length < 231−1. The JavaScript lan-
guages allows the redefinition of Array, so we need a global analysis to guarantee
that the value of a is actually an array.

The execution time of date and string manipulating benchmarks is heavily dom-
inated by the interaction with the object model, and by other non-numerical
computations so that RATA is of no help here.

Math benchmarks manipulate double values, but the inference of some Int32
locals enable up to a 2× speedup in math-cordic, a slight improvement in
math-partialsums. For atomic type inference, the test math-spectral-norm
looks like crypto-md5, and as a consequence nothing can be statically inferred.

To sum up, RATA is precise enough to infer all (but 3) of the local variables
which are Int32 in the SunSpider benchmarks. One may wonder if broadening
the analysis to also consider Int64, UInt32 and so on may provide further per-
formance gains. According to the previous experience of the second author with
JScript.NET, those cases are so rare, and they complicate so much the imple-
mentation and the JIT code generation, that it seems not worthwhile to try.

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 81

7 Related Work

Just-in-time compilation is known at least from 1960. In his LISP paper [25],
McCarthy sketches the dynamic compilation of functions into machine code,
a process fast enough that the compiler’s output does not need to be saved.
Deutsch and Schiffman introduced in [14] lazy JIT compilation for Smalltalk,
where functions were compiled at the first usage, and cached for further usage.
The Self programming language influenced the JavaScript design. The first
Self compiler used a data-flow analysis (“Class analysis”) to compute an over-
approximation of the set of possible classes that variables might hold instances
of and hence to optimize dynamic dispatching [8]. Further versions of the Self
compiler introduced more aggressive type analyses [30], but they did not consider
the specialization of atomic types as here [1].

The implementation of popular dynamic languages as Python try to optimize
the generated code by performing some kind of online static analysis. The JIT
compiler of the PyPy system [28] uses “flexswitches” to perform type special-
ization [13]. Flexswitches are essentially a form of online partial evaluation [21].
Psyco [27] is another implementation of Python which tries to guess Int32 vari-
ables at runtime. The tracing JIT generalizes the ideas of Psyco and PyPy. A
tracing JIT essentially identifies frequently executed loop traces at runtime, and
it dynamically generates specialized machine code [17]. RATA is complemen-
tary to a tracing JIT. In his master thesis, Cannon presented a localized atomic
type inference algorithm for Python [7]. His analysis is based on the Cartesian
product algorithm, and it is less precise than ours. As a consequence, it is not
a surprise that his experimental results are less satisfactory than ours. In [3],
Anderson et al. introduced an algorithm for type inference of JavaScript to
derive the types of objects. It is unclear if their algorithm is fast enough to be
used in dynamic compilation. They did not consider the inference of Int32 vari-
ables which require reasoning on the values of variables. In this sense, our work
is then complementary to theirs. In [20], Jensen et al. presented an abstract
interpretation based static analysis to check the absence of common errors in
JavaScript programs. Their analysis is more oriented to program verification
than optimization. However, for numerical values their abstract domain is less
precise than ours and so they are not likely to discover all the numerical prop-
erties that RATA can discover.

Abstract Interpretation is mainly applied to program verification (e.g., [6,15])
and offline program optimization (e.g., [10,5]). To the best of our knowledge this
is the first work which applies full-powered Abstract Interpretation techniques
(e.g., infinite lattices, widenings and narrowings) to online program optimiza-
tion. We believe that this is a promising line of work.

8 Conclusions

We have presented RATA, a new static analysis, based on abstract interpreta-
tion, for the rapid inference of atomic types in dynamic languages. The analysis is

82 F. Logozzo and H. Venter

a combination of three analyses: a range analysis, a kind analysis and a variation
analysis. We formalized the underlying abstract domains and we related them to
the concrete values via Galois connections. We described the analysis, and we re-
ported the results of the atomic type specialization on the SunSpider JavaScript
benchmarks (the industrial standard for comparing JavaScript implementa-
tions). We observed that: (i) RATA is precise enough to infer all the Int32
locals that one may hope to infer statically; and (ii) the Int32-specialization
produces remarkable performance improvements in most tests (up to a 7.7×
speed-up for numerical intensive ones).

For the future, we plan to extend RATA to whole program analysis, and in
particular to apply it to the wider goal of program verification.

References

1. Agesen, O., Hölzle, U.: Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages. In: OOPSLA 1995. ACM
Press, New York (1995)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

3. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for javascript.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452. Springer, Hei-
delberg (2005)

4. Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACO 2007 (2007)

5. Blanchet, B.: Escape Analysis: Correctness proof, implementation and experimen-
tal results. In: POPL 1998 (1998)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003.
ACM Press, New York (2003)

7. Cannon, B.: Localized type inference of atomic types in Python. Master’s thesis,
California Polytechnic State University (2005)

8. Chambers, C., Ungar, D.: Customization: Optimizing compiler technology for self,
a dynamically-typed object-oriented programming language. In: PLDI 1989. ACM
Press, New York (1989)

9. Cousot, P.: The calculational design of a generic abstract interpreter. In: Calcula-
tional System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977
(1977)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979 (1979)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978 (1978)

13. Cuni, A., Ancona, D., Rigo, A.: Faster than C#: Efficient implementation of dy-
namic languages on.NET. In: ICOOOLPS 2009. ACM Press, New York (2009)

14. Deutsch, L.P., Schiffman, A.M.: Efficient implementation of the smalltalk-80 sys-
tem. In: POPL1980. ACM Press, New York (1980)

15. Ferrara, P., Logozzo, F., Fähndrich, M.A.: Safer unsafe code in.Net. In: OOPSLA
2008 (2008)

RATA: Rapid Atomic Type Analysis by Abstract Interpretation 83

16. Flanagan, D.: JavaScript, the definitive guide. O’Reilly, Sebastopol (2009)
17. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M., Kaplan,

B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmaier, R.,
Bebenita, M., Chang, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI 2009 (2009)

18. Georges, A., Eeckhout, L., Buytaert, D.: Java performance evaluation through
rigorous replay compilation. In: OOPSLA 2008 (2008)

19. IEEE. IEEE standard for floating-point arithmetic. Technical report, IEEE (2008)
20. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for javascript. In: Palsberg,

J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

21. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, Englewood Cliffs (1993)

22. Laviron, V., Logozzo, F.: Refining abstract interpretation-based static analyses
with hints. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 343–358. Springer,
Heidelberg (2009)

23. Laviron, V., Logozzo, F.: Subpolyhedra: a (more) scalable approach to infer linear
inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,
pp. 229–244. Springer, Heidelberg (2009)

24. Logozzo, F., Fähndrich, M.A.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. In: SAC 2008 (2008)

25. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Commun. ACM 3(4), 184–195 (1960)

26. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, p. 155. Springer,
Heidelberg (2001)

27. Rigo, A.: Representation-based just-in-time specialization and the psyco prototype
for Python. In: PEPM 2004. ACM Press, New York (2004)

28. Rigo, A., Pedroni, S.: PyPy’s approach to virtual machine construction. In: OOP-
SLA Companion 2006. ACM Press, New York (2006)

29. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

30. Ungar, D., Smith, R.B., Chambers, C., Hölzle, U.: Object, message, and perfor-
mance: How they coexist in self. IEEE Computer 25(10), 53–64 (1992)

31. WebKit. SunSpider JavaScript benchmarks,
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

JReq: Database Queries in Imperative
Languages

Ming-Yee Iu1, Emmanuel Cecchet2, and Willy Zwaenepoel1

1 EPFL, Lausanne, Switzerland
2 University of Massachusetts Amherst, Amherst, Massachusetts

Abstract. Instead of writing SQL queries directly, programmers often
prefer writing all their code in a general purpose programming language
like Java and having their programs be automatically rewritten to use
database queries. Traditional tools such as object-relational mapping
tools are able to automatically translate simple navigational queries writ-
ten in object-oriented code to SQL. More recently, techniques for trans-
lating object-oriented code written in declarative or functional styles
into SQL have been developed. For code written in an imperative style
though, current techniques are still limited to basic queries. JReq is a
system that is able to identify complex query operations like aggregation
and nesting in imperative code and translate them into efficient SQL
queries. The SQL code generated by JReq exhibits performance compa-
rable with hand-written SQL code.

1 Introduction

Because of the widespread use of databases by computer programs, language
designers have often sought to find natural and elegant ways for programmers
to write database queries in general purpose programming languages. Although
techniques have been developed to integrate database query support into func-
tional languages, for imperative languages such as Java, current techniques are
not yet able to handle complex database queries involving aggregation and nest-
ing. Support for aggregation is important because it allows a program to calcu-
late totals and averages across a large dataset without needing to transfer the
entire dataset out of a database. Similarly, support for nesting one query inside
another significantly increases the expressiveness of queries, allowing a program
to group and filter data at the database instead of transferring the data to the
program for processing.

We have developed an approach for allowing programmers to write complex
database queries inside the imperative language Java. Queries can be writ-
ten using the normal imperative Java style for working with large datasets—
programmers use loops to iterate over the dataset. The queries are valid Java
code, so no changes are needed to the Java language to support these complex
queries. To run these queries efficiently on common databases, the queries are
translated into SQL using an algorithm based on symbolic execution. We have
implemented these algorithms in a system called JReq.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 84–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

JReq: Database Queries in Imperative Languages 85

These are the main technical contributions of this work: a) We demonstrate
how complex queries can be written in Java code using loops and iterators.
We call this programming style the JReq Query Syntax (JQS) b) We describe
an algorithm that can robustly translate complex imperative queries involving
aggregation and nesting into SQL c) We have implemented this algorithm in
JReq and evaluated its performance.

2 Background

Currently, the most common interface for accessing database queries from Java
is to use a low-level API like JDBC. With JDBC, queries are entirely separated
from Java. They are written in the domain-specific language SQL, they are
stored in strings (which must be compiled and error-checked at runtime), and
programmers must manually marshal data into and out of queries (Fig. 12).

Object-oriented databases [11] and object-relational mapping tools like
Hibernate, Ruby on Rails, or EJB3 provide a higher-level object-oriented API
for accessing databases. Although these tools provide support for updates,
error-handling, and transactions, their support for queries is limited. Traditional
object-oriented operations such as navigational queries are well-supported, but
relational-style queries that filter or manipulate datasets must still be encoded
in strings and data must still be manually marshaled into and out of queries.
Figure 1 shows an example of such a query written using the Java Persistence
API [5].

List l = em.createQuery("SELECT a FROM Account a "

+ "WHERE 2 * a.balance < a.creditLimit AND a.country = :country")

.setParameter("country", "Switzerland")

.getResultList();

Fig. 1. A sample query written in the Java Persistence Query Language (JPQL)

In imperative languages like Java, the normal style for filtering and manipu-
lating large datasets is for a programmer to use loops to iterate over the dataset.
As a result, researchers have tried to develop systems that allow programmers
to write database queries in imperative languages using such a syntax. We have
previously developed a system called Queryll [8] that was able to translate sim-
ple queries written in an imperative form to SQL. The system made use of fairly
ad hoc algorithms that could not be scaled to support more complex queries
involving nesting or aggregation. Wiedermann, Ibrahim, and Cook [19,20] have
also successfully translated queries written in an imperative style into SQL. They
use abstract interpretation and attribute grammars to translate queries written
in Java into database queries. Their work focuses on gathering the objects and
fields traversed by program code into a single query (similar to the optimisations
performed by Katz and Wong [9]) and is also able to recognise simple filtering

86 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

constraints. Their approach lacks a mechanism for inferring loop invariants and
hence cannot handle queries involving aggregation or complex nesting since these
operations span multiple loop iterations.

An alternate approach for supporting complex database queries in imperative
languages is to incorporate declarative and functional language features into the
languages. Kleisli [21] demonstrated that it was possible to translate queries writ-
ten in a functional language into SQL. Microsoft was able to add query support
to object-oriented languages by extending them with declarative and functional
extensions in a feature called Language INtegrated Query (LINQ) [15]. LINQ
adds a declarative syntax to .Net languages by allowing programmers to specify
SQL-style SELECT..FROM..WHERE queries from within these languages. This
syntax is then internally converted to a functional style in the form of lambda
expressions, which is then translated to SQL at runtime. Unfortunately, adding
similar query support to an imperative programming language like Java without
adding specific syntax support for declarative or functional programming results
in extremely verbose queries [4].

The difficulty of translating imperative program code to a declarative query
language can potentially be avoided entirely by translating imperative program
code to an imperative query language. The research of Liewen and DeWitt [10]
or of Guravannavar and Sudarshan [7] demonstrate dataflow analysis techniques
that could be used for such a system. Following such an approach would be
impractical though because all common query languages are specifically designed
to be declarative because declarative query languages allow for more optimisation
possibilities.

3 JReq Query Syntax

The JReq system allows programmers to write queries using normal Java code.
JReq is not able to translate arbitrary Java code into database queries, but
queries written in a certain style. We call the subset of Java code that can be
translated by JReq into SQL code the JReq Query Syntax (JQS). Although this
style does impose limitations on how code must be written, it is designed to be
as unrestrictive as possible.

3.1 General Approach and Syntax Examples

Databases are used to store large amounts of structured data, and the most
common coding convention used for examining large amounts of data in Java
is to iterate over collections. As such, JReq uses this syntax for expressing its
queries. JQS queries are generally composed of Java code that iterates over
a collection of objects from a database, finds the ones of interest, and adds
these objects to a new collection (Fig. 2). For each table of the database, a
method exists that returns all the data from that table, and a special collection
class called a QueryList is provided that has extra methods to support database
operations like set operations and sorting.

JReq: Database Queries in Imperative Languages 87

QueryList<String> results = new QueryList<String>();

for (Account a: db.allAccounts())

if (a.getCountry().equals("UK"))

results.add(a.getName());

Fig. 2. A more natural Java query syntax

JQS is designed to be extremely lenient in what it accepts as queries. For sim-
ple queries composed of a single loop, arbitrary control-flow is allowed inside the
loop as long as there are no premature loop exits nor nested loops (nested loops
are allowed if they follow certain restrictions), arbitrary creation and modifica-
tion of variables are allowed as long as they are scoped to the loop, and methods
from a long list of safe methods can be called. At most one value can be added
to the result-set per loop iteration, and the result-set can only contain numbers,
strings, entities, or tuples. Since JReq translates its queries into SQL, the re-
strictions for more complex queries, such as how queries can be nested or how
variables should be scoped, are essentially the same as those of SQL.

One interesting property of the JQS syntax for queries is that the code can be
executed directly, and executing the code will produce the correct query result.
Of course, since one might be iterating over the entire contents of a database
in such a query, executing the code directly might be unreasonably slow. To
run the query efficiently, the query must eventually be rewritten in a database
query language like SQL instead. This rewriting essentially acts as an optional
optimisation on the existing code. Since no changes to the Java language are
made, all the code can compile in a normal Java compiler, and the compiler
will be able to type-check the query statically. No verbose, type-unsafe data
marshaling into and out of the query is used in JQS.

In JQS, queries can be nested, values can be aggregated, and results can be
filtered in more complex ways. JQS also supports navigational queries where
an object may have references to various related objects. For example, to find
the customers with a total balance in their accounts of over one million, one
could first iterate over all customers. For each customer, one could then use a
navigational query to iterate over his or her accounts and sum up the balance.

QueryList results = new QueryList();

for (Customer c: db.allCustomer()) {

double sum = 0;

for (Account a: c.getAccounts())

sum += a.getBalance();

if (sum > 1000000) results.add(c);

}

Intermediate results can be stored in local variables and results can be put into
groups. In the example below, a map is used to track (key, value) pairs of the
number of students in each department. In the query, local variables are freely
used.

88 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

QueryMap<String, Integer> students =

new QueryMap<String, Integer>(0);

for (Student s: db.allStudent()) {

String dept = s.getDepartment();

int count = students.get(dept) + 1;

students.put(dept, count);

}

Although Java does not have a succinct syntax for creating new database entities,
programmers can use tuple objects to store multiple result values from a query
(these tuples are of fixed size, so query result can still be mapped from flat
relations and do not require nested relations). Results can also be stored in sets
instead of lists in order to query for unique elements only, such as in the example
below where only unique teacher names (stored in a tuple) are kept.

QuerySet teachers = new QuerySet();

for (Student s: db.allStudent()) {

teachers.add(new Pair(

s.getTeacher().getFirstName(),

s.getTeacher().getLastName()));

}

In order to handle sorting and limiting the size of result sets, the collection
classes used in JQS queries have extra methods for sorting and limiting. The
JQS sorting syntax is similar to Java syntax for sorting in its use of a separate
comparison object. In the query below, a list of supervisors is sorted by name
and all but the first 20 entries are discarded.

QuerySet<Supervisor> supervisors = new QuerySet<Supervisor>();

for (Student s: db.allStudent())

supervisors.add(s.getSupervisor());

supervisors

.sortedByStringAscending(new StringSorter<Supervisor>() {

public String value(Supervisor s) {return s.getName();}})

.firstN(20);

For certain database operations that have no Java equivalent (such as SQL reg-
ular expressions or date arithmetic), utility methods are provided that support
this functionality.

4 Translating JQS Using JReq

In the introduction, it was mentioned that imperative Java code must be trans-
lated into a declarative form in order to be executed efficiently on a database.
This section explains this translation process using the query from Fig. 2 as an
example.

Since JQS queries are written using actual Java code, the JReq system can-
not be implemented as a simple Java library. JReq must be able to inspect and

JReq: Database Queries in Imperative Languages 89

Fig. 3. JReq inserts itself in the middle of the Java toolchain and does not require
changes to existing tools

modify Java code in order to identify queries and translate them to SQL. A sim-
ple Java library cannot do that. One of our goals for JReq, though, is for it to
be non-intrusive and for it to be easily adopted or removed from a development
process like a normal library. To do this, the JReq system is implemented as
a bytecode rewriter that is able to take a compiled program outputted by the
Java compiler and then transform the bytecode to use SQL. It can be added
to the toolchain as an independent module, with no changes needed to existing
IDEs, compilers, virtual machines, or other such tools (Fig. 3). Although our
current implementation has JReq acting as an independent code transforma-
tion tool, JReq can also be implemented as a post-processing stage of a com-
piler, as a classloader that modifies code at runtime, or as part of a virtual
machine.

The translation algorithm in JReq is divided into a number of stages. It first
preprocesses the bytecode to make the bytecode easier to manipulate. The code
is then broken up into loops, and each loop is transformed using symbolic execu-
tion into a new representation that preserves the semantics of the original code
but removes many secondary features of the code, such as variations in instruc-
tion ordering, convoluted interactions between different instructions, or unusual
control flow, thereby making it easier to identify queries in the code. This fi-
nal representation is tree-structured, so bottom-up parsing is used to match the
code with general query structures, from which the final SQL queries can then
be generated.

4.1 Preprocessing

Although JReq inputs and outputs Java bytecode, its internal processing is not
based on bytecode. Java bytecode is difficult to process because of its large in-
struction set and the need to keep track of the state of the operand stack. To
avoid this problem, JReq uses the SOOT framework [18] from Sable to convert
Java bytecode into a representation known as Jimple, a three-address code ver-
sion of Java bytecode. In Jimple, there is no operand stack, only local variables,
meaning that JReq can use one consistent abstraction for working with values
and that JReq can rearrange instruction sequences without having to worry
about stack consistency. Figure 4 shows the code of the query from Fig. 2 after
conversion to Jimple form.

90 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

$accounts = $db.allAccounts()

$iter = $accounts.iterator()

goto loopCondition

loopBody: $next = $iter.next()

$a = (Account) $next

$country = $a.getCountry()

$cmp0 = $country.equals("UK")

if $cmp0==0 goto loopCondition

loopAdd: $name = a$.getName()

$results.add($name)

loopCondition: $cmp1 = $iter.hasNext()

if $cmp1!=0 goto loopBody

exit:

Fig. 4. Jimple code of a query

4.2 Transformation of Loops

Since all JQS queries are expressed as loops iterating over collections, JReq needs
to add some structure to the control-flow graph of the code. It breaks down the
control flow graph into nested strongly-connected components (i.e. loops), and
from there, it transforms and analyses each component in turn. Since there is
no useful mapping from individual instructions to SQL queries, the analysis
operates on entire loops. Conceptually, JReq calculates the postconditions of
executing all of the instructions of the loop and then tries to find SQL queries
that, when executed, produce the same set of postconditions. If it can find such a
match, JReq can replace the original code with the SQL query. Since the result of
executing the original series of instructions from the original code gives the same
result as executing the query, the translation is safe. Unfortunately, because of
the difficulty of generating useful loop invariants for loops [3], JReq is not able
to calculate postconditions for a loop directly.

JReq instead examines each loop iteration separately. It starts at the entry
point to the loop and walks the control flow graph of the loop until it arrives
back at the loop entry point or exits the loop. As it walks through the control
flow graph, JReq enumerates all possible paths through the loop. The possible
paths through the query code from Fig. 4 are listed in Fig. 5. Theoretically, there
can be an exponential number of different paths through a loop since each if
statement can result in a new path. In practise, such an exponential explosion in
paths is rare. Our Java query syntax has an interesting property where when an
if statement appears in the code, one of the branches of the statement usually
ends that iteration of the loop, meaning that the number of paths generally
grows linearly. The only type of query that seems to lead to an exponential
number of paths are ones that try to generate “CASE WHEN...THEN” SQL
code, and these types of queries are rarely used. Although we do not believe
exponential path explosion to be a problem for JReq, such a situation can be
avoided by using techniques developed by the verification community for dealing
with similar problems [6].

JReq: Database Queries in Imperative Languages 91

Type Path

Exiting loopCondition → exit
Looping loopCondition → loopBody →�
Looping loopCondition → loopBody → loopAdd →�

Fig. 5. Paths through the loop

Path: loopCondition → loopBody → loopAdd →�
Preconditions $iter.hasNext() != 0

((Account)$iter.next()).getCountry().equals(”UK”) != 0
Postconditions $iter.hasNext()

$cmp1 = $iter.hasNext()
$iter.next()

$next = $iter.next()
$a = (Account) $iter.next()
((Account)$iter.next()).getCountry()
$country = ((Account)$iter.next()).getCountry()
((Account)$iter.next()).getCountry().equals(”UK”)
$cmp0 = ((Account)$iter.next()).getCountry().equals(”UK”)
((Account)$iter.next()).getName()
$name = ((Account)$iter.next()).getName()

$results.add(((Account)$iter.next()).getName())

Fig. 6. Hoare triple expressing the result of a path (expressions that will be pruned by
liveness analysis are indented)

For each path, JReq generates a Hoare triple. A Hoare triple describes the
effect of executing a path in terms of the preconditions, code, and postconditions
of the path. JReq knows what branches need to be taken for each path to be
traversed, and the conditions on these branches form the preconditions for the
paths. Symbolic execution is used to calculate the postconditions for each path.
Essentially, all variable assignments and method calls become postconditions.
The use of symbolic execution means that all preconditions and postconditions
are expressed in terms of the values of variables from the start of the loop
iteration and that minor changes to the code like simple instruction reordering
will not affect the derived postconditions. There are many different styles of
symbolic execution, and JReq’s use of symbolic execution to calculate Hoare
triples is analogous to techniques used in the software verification community,
particularly work on translation validation and credible compilation [14,12].

Figure 6 shows the different preconditions and postconditions of the last path
from Fig. 5. Not all of the postconditions gathered are significant though, so
JReq uses variable liveness information to prune assignments that are not used
outside of a loop iteration and uses a list of methods known not to have side-
effects to prune safe method calls. Figure 7 shows the final Hoare triples of all
paths after pruning.

Basically, JReq has transformed the loop instructions into a new tree repre-
sentation where the loop is expressed in terms of paths and various precondition

92 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

Exiting Path
Preconditions $iter.hasNext() == 0
Postconditions

Looping Path
Preconditions $iter.hasNext() != 0

((Account)$iter.next()).getCountry().equals(”UK”) == 0
Postconditions $iter.next()

Looping Path
Preconditions $iter.hasNext() != 0

((Account)$iter.next()).getCountry().equals(”UK”) != 0
Postconditions $iter.next()

$results.add(((Account)$iter.next()).getName())

Fig. 7. Final Hoare triples generated from Fig. 4 after pruning

and postcondition expressions. The semantics of the original code are preserved
in that all the effects of running the original code are encoded as postcondi-
tions in the representation, but problems with instruction ordering or tracking
instruction side-effects, etc. have been filtered out.

In general, JReq can perform this transformation of loops into a tree represen-
tation in a mechanical fashion, but JReq does make some small optimisations to
simplify processing in later stages. For example, constructors in Java are meth-
ods with no return type. In JReq, constructors are represented as returning the
object itself, and JReq reassigns the result of the constructor to the variable on
which the constructor was invoked. This change means that JReq does not have
to keep track of a separate method invocation postcondition for each constructor
used in a loop.

4.3 Query Identification and Generation

Once the code has been transformed into Hoare triple form, traditional transla-
tion techniques can be used to identify and generate SQL queries. For example,
Fig. 8 shows how one general Hoare triple representation can be translated into
a corresponding SQL form. That particular Hoare triple template is sufficient to
match all non-nested SELECT...FROM...WHERE queries without aggregation
functions. In fact, because the transformation of Java code into Hoare triple form
removes much of the syntactic variation between code fragments with identical
semantics, a small number of templates is sufficient to handle most queries.

Since the Hoare triple representation is in a nice tree form, our implementation
uses bottom-up parsing to classify and translate the tree into SQL. When using
bottom-up parsing to match path Hoare triples to a template, one does have to
be careful that each path add the same number and same types of data to the
result collection (e.g. in Fig. 8, one needs to check that the types of the various
valAn being added to $results is consistent across the looping paths). One can
use a unification algorithm across the different paths of the loop to ensure that
these consistency constraints hold.

JReq: Database Queries in Imperative Languages 93

Exiting Path
Preconditions $iter.hasNext() == 0
Postconditions exit loop

Looping Pathi

Preconditions $iter.hasNext() != 0
...

Postconditions $iter.next()
...etc.

Looping Pathn

Preconditions $iter.hasNext() != 0
predn

Postconditions $iter.next()
$results.add(valAn, valBn, ...)

...etc.

SELECT

CASE WHEN pred1 THEN valA1

WHEN pred2 THEN valA2

...

END,

CASE WHEN pred1 THEN valB1

WHEN pred2 THEN valB2

...

END,

...

FROM ?

WHERE pred1 OR pred2 OR ...

Fig. 8. Code with a Hoare triple representation matching this template can be trans-
lated into a SQL query in a straight-forward way

One further issue complicating query identification and generation is the fact
that a full JQS query is actually composed of both a loop portion and some
code before and after the loop. For example, the creation of the object holding
the result set occurs before the loop, and when a loop uses an iterator object
to iterate over a collection, the definition of the collection being iterated over
can only be found outside of the loop. To find these non-loop portions of the
query, we recursively apply the JReq transformation to the code outside of the
loop at a higher level of nesting. Since the JReq transformation breaks down a
segment of code into a finite number of paths to which symbolic execution is
applied, the loop needs to be treated as a single indivisible “instruction” whose
postconditions are the same as the loop’s postconditions during this recursion.
This recursive application of the JReq transformation is also used for converting
nested loops into nested SQL queries. Figure 9 shows the Hoare triples of the
loop and non-loop portions of the query from Fig. 2.

Figure 10 shows some sample operational semantics that illustrate how the
example query could be translated to SQL. In the interest of space, these opera-
tional semantics do not contain any error-checking and show only how to match
the specific query from Fig. 2 (as opposed to the general queries supported by
JReq). The query needs to be processed three times using mappings S, F , and
W to generate SQL select, from, and where expressions respectively. σ holds in-
formation about variables defined outside of a loop. In this example, σ describes
the table being iterated over, and Σ describes how to look up fields of this table.

JReq currently generates SQL queries statically by replacing the bytecode
for the JQS query with bytecode that uses SQL instead. Static query generation
allows JReq to apply more optimisations to its generated SQL output and makes
debugging easier because we can examine generated queries without running the
program. During this stage, JReq can also optimise the generated SQL queries
for specific databases though our prototype currently does not contain such
an optimiser. In a previous version of JReq, SQL queries were constructed at

94 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

Hoaretriples(

Exit(

Pre($iter.hasNext() == 0),

Post()

),

Looping(

Pre($iter.hasNext() != 0,

((Account)$iter.next()).getCountry().equals("UK") == 0),

Post(Method($iter.next()))

),

Looping(

Pre($iter.hasNext() != 0,

((Account)$iter.next()).getCountry().equals("UK") != 0),

Post(Method($iter.next()),

Method($uk.add(((Account)$iter.next()).getName())))))

PathHoareTriple(

Pre(),

Post($results = (new QueryList()).addAll(

$db.allAccounts().iterator().AddQuery()))))

Fig. 9. The Hoare triples of the loop and non-loop portion of the query from Fig.
2. The loop Hoare triples are identical to those from Fig. 7, except they have been
rewritten so as to emphasise the parsability and tree-like structure of the Hoare triple
form.

runtime and evaluated lazily. Although this results in slower queries, it allows
the system to support a limited form of inter-procedural query generation. A
query can be created in one method, and the query result can later be refined
in another method.

During query generation, JReq uses line number debug information from the
bytecode to show which lines of the original source files were translated into
SQL queries and what they were translated into. IDEs can potentially use this
information to highlight which lines of code can be translated by JReq as a pro-
grammer types them. Combined with the type error and syntax error feedback
given by the Java compiler at compile-time, this feedback helps programmers
write correct queries and optimise query performance.

4.4 Implementation Expressiveness and Limitations

The translation algorithm behind JReq is designed to be able to recognise queries
with the complexity of SQL92 [1]. In our implementation though, we focused on
the subset of operations used in typical SQL database queries. Figure 11 shows
a grammar of JQS, the Java code that JReq can translate into SQL. We specify
JQS using the grammar of Hoare triples from after the symbolic execution stage
of JReq. We used this approach because it is concise and closely describes what

JReq: Database Queries in Imperative Languages 95

a = Exit(Pre($iter.hasNext()==0), Post())

b = Looping(Pre($iter.hasNext()!=0, ...),

Post(Method($iter.next())))

c = Looping(Pre($iter.hasNext()!=0, d),
Post(Method($iter.next()), e))

e = Method(resultset.add(child))
S � 〈child, σ〉 ⇓ select
W � 〈d, σ〉 ⇓ where

S � 〈Hoaretriples(a, b, c), σ〉 ⇓ select
W � 〈Hoaretriples(a, b, c), σ〉 ⇓ where

W � 〈left, σ〉 ⇓ wherel

W � 〈right, σ〉 ⇓ wherer

W � 〈left.equals(right)==0, σ〉 ⇓ wherel<>wherer

W � 〈left, σ〉 ⇓ wherel

W � 〈right, σ〉 ⇓ wherer

W � 〈left.equals(right)!=0, σ〉 ⇓ wherel=wherer S � 〈"UK", σ〉 ⇓ “UK”
W � 〈"UK", σ〉 ⇓ “UK”

Σ � 〈child, σ, Name〉 ⇓ val

S � 〈child.getName(), σ〉 ⇓ val
W � 〈child.getName(), σ〉 ⇓ val

Σ � 〈child, σ, Country〉 ⇓ val

S � 〈child.getCountry(), σ〉 ⇓ val
W � 〈child.getCountry(), σ〉 ⇓ val

Σ � 〈(Account)$iter.next(), σ,Country〉 ⇓ σ(next).Country
Σ � 〈(Account)$iter.next(), σ,Name〉 ⇓ σ(next).Name

F � 〈$db.allAccounts().iterator() , σ〉 ⇓ Account

S � 〈HoareTriples(...), σ[next := A]〉 ⇓ select
W � 〈HoareTriples(...), σ[next := A]〉 ⇓ where
F � 〈iterator, σ〉 ⇓ from

〈resultset.addAll(iterator.AddQuery()), σ〉 ⇓
SELECT select FROM from AS A WHERE where

Fig. 10. Sample operational semantics for translating Fig. 9 to SQL

queries will be accepted. We have found that specifying JQS using a traditional
grammar directly describing a Java subset to be too imprecise or too narrow to
be useful. Because JReq uses symbolic execution, for each query, any Java code
variant with the same semantic meaning will be recognised by JReq as being
the same query. This large number of variants cannot be captured using a direct
specification of a Java grammar subset.

In the figure, the white boxes refer to grammar rules used for classifying loops.
The grey boxes are used for combining loops with context from outside of the
loop. There are four primary templates for classifying a loop: one for adding

96 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

Fig. 11. JQS grammar

JReq: Database Queries in Imperative Languages 97

elements to a collection, one for adding elements to a map, one for aggregating
values, and another for nested loops resulting in a join. Most SQL operations
can be expressed using the functionality described by this grammar.

Some SQL functionality that is not currently supported by JQS include set
operations, intervals, and internationalisation because the queries we were work-
ing with did not require this functionality. We also chose not to support NULL
and related operators in this iteration of JQS. Because Java does not support
three-value logic or operator overloading, we would have to add special objects
and methods to emulate the behaviour of NULL, resulting in a verbose and
complicated design. Operations related to NULL values such as OUTER JOINs
are not supported as well.

JQS also currently offers only basic support for update operations since it
focuses only on the query aspects of SQL. SQL’s more advanced data manip-
ulation operations are rarely used and not too powerful, so it would be fairly
straight-forward to extend JQS to support these operations. Most of these oper-
ations are simply composed of a normal query followed by some sort of INSERT,
DELETE, or UPDATE involving the result set of the query.

In the end, our JReq system comprises approximately 20 thousand lines of
Java and XSLT code. Although JReq translations can be applied to an entire
codebase, we use annotations to direct JReq into applying its transformations
only to specific methods known to contain queries. Additionally, we had some
planned features that we never implemented because we did not encounter any
situations during our research that required them: we did not implement han-
dling of non-local variables, we did not implement type-checking or unification
to check for errors in queries, and we did not implement pointer aliasing support.

5 Evaluation

5.1 TPC-W

To evaluate the behaviour of JReq, we tested the ability for our system to handle
the database queries used in the TPC-W benchmark [16]. TPC-W emulates
the behaviour of database-driven websites by recreating a website for an online
bookstore.

We started with the Rice implementation of TPC-W [2], which uses JDBC
to access its database. For each query in the TPC-W benchmark, we wrote an
equivalent query using JQS and manually verified that the resulting queries were
semantically equivalent to the originals. We could then compare the performance
of each query when using the original JDBC and when using the JReq system.
Our JReq prototype does not provide support for database updates, so we did
not test any queries involving updates. Since this experiment is intended to ex-
amine the queries generated by JReq as compared to hand-written SQL, we also
disabled some of the extra features of JReq such as transaction and persistence
lifecycle management.

We created a 600 MB database in PostgreSQL 8.3.0 [13] by populating
the database with the number of items set to 10000. We did not run the

98 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

complete TPC-W benchmark, which tests the complete system performance of
web servers, application servers, and database servers. Instead, we focused on
measuring the performance of individual queries instead. For each query, we
first executed the query 200 times with random valid parameters to warm the
database cache, then we measured the time needed to execute the query 3000
times with random valid parameters, and finally we garbage collected the system.
Because of the poor performance of the getBestSellers query, we only executed it
for 50 times to warm the cache and measured the performance of executing the
query only 250 times. We first took the JQS version of the queries, measured the
performance of each query consecutively, and repeated the benchmark 50 times.
We took the average of only the last 10 runs to avoid the overhead of Java dy-
namic compilation. We then repeated this experiment using the original JDBC
implementation instead of JQS. The database and the query code were both run
on the same machine, a 2.5 GHz Pentium IV Celeron Windows machine with
1 GB of RAM. The benchmark harness was run using Sun’s 1.5.0 Update 12
JVM. JReq required approximately 7 seconds to translate our 12 JQS queries
into SQL.

The performance of each of the queries is shown in Table 1. In all cases, JReq is
faster than hand-written SQL. These results are a little curious because one usu-
ally expects hand-written code to be faster than machine-generated code. If we
look at the one query in Fig. 12 that shows the code of the original hand-written
JDBC code and compares it to the comparable JQS query and the JDBC gen-
erated from that query, we can see that the original JDBC code is essentially
the same as the JDBC generated by JReq. In particular, the SQL queries are
structurally the same though the JReq-generated version is more verbose. What

Table 1. The average execution time, standard deviation, and difference from hand-
written JDBC/SQL (all in milliseconds) of the TPC-W benchmark are shown in this
table with the column JReq NoOpt referring to JReq with runtime optimisations dis-
abled. One can see that JReq offers better performance than the hand-written SQL
queries.

JDBC JReq NoOpt JReq
Query Time σ Time σ Δ Time σ Δ

getName 3592 112 3633 24 1% 2241 15 (38%)
getCustomer 8424 79 8944 57 6% 3939 24 (53%)
doGetMostRecentOrder 29108 731 88831 644 205% 8009 57 (72%)
getBook 6392 30 7347 55 15% 3491 27 (45%)
doAuthorSearch 10216 24 10414 559 2% 7306 46 (28%)
doSubjectSearch 16999 128 16898 86 (1%) 13667 120 (20%)
getIDandPassword 3706 33 3820 41 3% 2375 25 (36%)
doGetBestSellers 4472 50 4455 51 (0%) 3936 39 (12%)
doTitleSearch 27302 203 26979 418 (1%) 23985 61 (12%)
doGetNewProducts 23111 68 24447 128 6% 21086 70 (9%)
doGetRelated 6162 52 7731 92 25% 2690 34 (56%)
getUserName 3506 57 3569 13 2% 2214 11 (37%)

JReq: Database Queries in Imperative Languages 99

Original hand-written JDBC query

PreparedStatement getUserName = con.prepareStatement(

"SELECT c_uname FROM customer WHERE c_id = ?");

getUserName.setInt(1, C_ID);

ResultSet rs=getUserName.executeQuery();

if (!rs.next()) throw new Exception();

u_name = rs.getString("c_uname");

rs.close(); stmt.close();

Comparable JQS query

EntityManager em = db.begin();

DBSet<String> matches = new QueryList<String>();

for (DBCustomer c: em.allDBCustomer())

if (c.getCustomerId()==C_ID) matches.add(c.getUserName());

u_name = matches.get();

db.end(em, true);

JDBC generated by JReq

PreparedStatement stmt = null; ResultSet rs = null;

try { stmt = stmtCache.poll();

if (stmt == null) stmt = em.db.con.prepareStatement(

"SELECT (A.C_UNAME) AS COL0 "

+ "FROM Customer AS A WHERE (((A.C_ID)=?))");

stmt.setInt(1, param0);

rs = stmt.executeQuery();

QueryList toReturn = new QueryList();

while(rs.next()) { Object value = rs.getString(1);

toReturn.bulkAdd(value); }

return toReturn;

} catch (SQLException e) { ... } finally {

if (rs != null) try { rs.close(); } catch...

stmtCache.add(stmt); }

Fig. 12. Comparison of JDBC vs. JReq on the getUserName query

makes the JReq version faster though is that JReq is able to take advantage of
small runtime optimisations that are cumbersome to implement when writing
JDBC by hand. For example, all JDBC drivers allow programmers to parse SQL
queries into an intermediate form. Whenever the same SQL query is executed
but with different parameters, programmers can supply the intermediate form
of the query to the SQL driver instead of the original SQL query text, thereby
allowing the SQL driver to skip repeatedly reparsing and reanalysing the same
SQL query text. Taking advantage of this optimisation in hand-written JDBC
code is cumbersome because the program must be structured in a certain way
and a certain amount of bookkeeping is involved, but this is all automated by
JReq.

Table 1 also shows the performance of code generated by JReq if these runtime
optimisations are disabled (denoted as JReq NoOpt). Of the 12 queries, the

100 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

performance of JReq and hand-written JDBC is identical for six of them. For
the six queries where JReq is slower, four are caused by poorly formulated queries
that fetched more data than the original queries (for example, they fetch entire
entities whereas the original queries only fetched most of the fields of the entity).
Two other queries are slower because JReq generates queries that are more
verbose than the original queries thereby requiring more work from the SQL
parser.

Overall though, all the queries from the TPC-W benchmark, a benchmark
that emulates the behaviour of real application, can be expressed in JQS, and
JReq can successfully translate these JQS queries into SQL. JReq generates SQL
queries that are structurally similar to the original hand-written queries for all
of the queries. Although the machine-generation of SQL queries may result in
queries that are more verbose and less efficient than hand-written SQL queries,
by taking advantage of various optimisations that a normal programmer may
find cumbersome to implement, JReq can potentially exceed the performance of
hand-written SQL.

5.2 TPC-H

Although TPC-W does capture the style of queries used in database-driven web-
sites, these types of queries make little use of more advanced query functionality
such as nested queries. To evaluate JReq’s ability to handle more difficult queries,
we have run some benchmarks involving TPC-H [17]. The TPC-H benchmark
tests a database’s ability to handle decision support workloads. This workload is
characterised by fairly long and difficult ad hoc queries that access large amounts
of data. The purpose of this experiment is to verify that the expressiveness of
the JQS query syntax and JReq’s algorithms for generating SQL queries are
sufficient to handle long and complex database queries.

We extracted the 22 SQL queries and parameter generator from the TPC-H
benchmark and modified them to run under JDBC in Java. We chose to use
MySQL 5.0.51 for the database instead of PostgreSQL in this experiment in
order to demonstrate JReq’s ability to work with different backends. For this
benchmark, we used a 2.5 GHz Pentium IV Celeron machine with 1 GB of RAM
running Fedora Linux 9, and Sun JDK 1.5.0 Update 16.

We then rewrote the queries using JQS syntax. All 22 of the queries could be
expressed using JQS syntax except for query 13, which used a LEFT OUTER
JOIN, which we chose not to support in this version of JQS, as we described
in Sect. 4.4. To verify that the JQS queries were indeed semantically equivalent
to the original queries, we manually compared the query results between JDBC
and JReq when run on a small TPC-H database using a scale factor of 0.01,
and the results matched. This shows the expressiveness of the JQS syntax in
that 21 of the 22 queries from TPC-H can be expressed in the JQS syntax and
be correctly translated into working SQL code. JReq required approximately 33
seconds to translate our 21 JQS queries into SQL.

We then generated a TPC-H database using a scale factor of 1, resulting in
a database about 1GB in size. We executed each of the 21 JQS queries from

JReq: Database Queries in Imperative Languages 101

Table 2. TPC-H benchmark results showing average time, standard deviation, and
time difference (all results in seconds)

JDBC JReq JDBC JReq
Query Time σ Time σ Δ Query Time σ Time σ Δ

q1 73.5 0.4 71.9 3.4 (2%) q12 23.4 0.5 29.7 0.2 27%
q2 145.4 2.2 146.0 1.9 0% q14 491.7 8.9 500.8 10.1 2%
q3 37.9 0.6 38.6 0.9 2% q15 24.9 0.7 24.8 0.6 (0%)
q4 23.0 0.5 23.8 0.2 3% q16 21.3 0.6 > 1 hr 0.2 -
q5 209.1 4.2 206.1 3.2 (1%) q17 2.1 0.2 11.0 3.6 429%
q6 15.2 0.3 15.8 0.3 4% q18 > 1 hr 0.0 349.3 4.0 -
q7 79.1 0.5 83.1 1.6 5% q19 2.8 0.1 18.1 0.4 540%
q8 48.8 1.7 51.0 1.9 4% q20 69.4 4.3 508.4 11.4 633%
q9 682.0 97.4 690.2 97.9 1% q21 245.5 3.2 517.0 7.1 111%
q10 47.1 1.0 47.2 0.5 0% q22 1.1 0.0 1.6 0.0 43%
q11 41.7 0.6 41.9 0.7 1%

TPC-H in turn using random query parameters, with a garbage collection cycle
run in-between each query. We then executed the corresponding JDBC queries
using the same parameters. This was repeated six times, with the last five runs
kept for the final results. Queries that ran longer than one hour were cancelled.
Table 2 summarises the results of the benchmarks.

Unlike TPC-W, the queries in TPC-H take several seconds each to execute,
so runtime optimisations do not significantly affect the results. Since almost all
the execution time occurs at the database and since the SQL generated from the
JQS queries are semantically equivalent to the original SQL queries, differences
in execution time are mostly caused by the inability of the database’s query
optimiser to find optimal execution plans. In order to execute the complex queries
in TPC-H efficiently, query optimisers must be able to recognise certain patterns
in a query and restructure them into more optimal forms. The particular SQL
generated by JReq uses a SQL subset that may match different optimisation
patterns in database query optimisers than hand-written SQL code. For example,
the original SQL for query 16 evaluates a COUNT(DISTINCT) operation inside
of GROUP BY. This is written in JQS using an equivalent triply nested query,
but MySQL is not able to optimise the query correctly, and running the triply
nested query directly results in extremely poor performance. On the other hand,
in query 18, JReq’s use of deeply nested queries instead of a more specific SQL
operation (in this case, GROUP BY...HAVING) fits a pattern that MySQL is
able to execute efficiently, unlike the original hand-written SQL. Because of the
sensitivity of MySQL’s query optimiser to the structure of SQL queries, it will
be important in the future for JReq to provide more flexibility to programmers
in adjusting the final SQL generated by JReq.

Overall, 21 of the 22 queries from TPC-H could be successfully expressed using
the JQS syntax and translated into SQL. Only one query, which used a LEFT
OUTER JOIN, could not be handled because JQS and JReq do not currently
support the operation yet. For most of the queries, the JQS queries executed
with similar performance to the original queries. Where there are differences in

102 M.-Y. Iu, E. Cecchet, and W. Zwaenepoel

execution time, most of these differences can be eliminated by either improving
the MySQL query optimiser, adding special rules to the SQL generator to gen-
erate patterns that are better handled by MySQL, or extending the syntax of
JQS to allow programmers to more directly specify those specific SQL keywords
that are better handled by MySQL.

6 Conclusions

The JReq system translates database queries written in the imperative language
Java into SQL. Unlike other systems, the algorithms underlying JReq are able
to analyse code written in imperative programming languages and recognise
complex query constructs like aggregation and nesting. In developing JReq, we
have created a syntax for database queries that can be written entirely with
normal Java code, we have designed an algorithm based on symbolic execution
to automatically translate these queries into SQL, and we have implemented a
research prototype of our system that shows competitive performance to hand-
written SQL.

We envision JReq as a useful complement to other techniques for translat-
ing imperative code into SQL. For common queries, existing techniques often
provide greater syntax flexibility than JReq, but for the most complex queries,
programmers can use JReq instead of having to resort to domain-specific lan-
guages like SQL. As a result, all queries will end up being written in Java, which
can be understood by all the programmers working on the codebase.

References

1. American National Standards Institute: American National Standard for Informa-
tion Systems—Database Language—SQL: ANSI INCITS 135-1992 (R1998). Amer-
ican National Standards Institute (1992)

2. Amza, C., Cecchet, E., Chanda, A., Elnikety, S., Cox, A., Gil, R., Marguerite, J.,
Rajamani, K., Zwaenepoel, W.: Bottleneck characterization of dynamic web site
benchmarks. Tech. Rep. TR02-389, Rice University (February 2002)

3. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, New York (2007)

4. Cook, W.R., Rai, S.: Safe query objects: statically typed objects as remotely ex-
ecutable queries. In: ICSE 2005: Proceedings of the 27th international conference
on Software engineering, pp. 97–106. ACM, New York (2005)

5. DeMichiel, L., Keith, M.: JSR 220: Enterprise JavaBeans 3.0,
http://www.jcp.org/en/jsr/detail?id=220

6. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: POPL 2001, pp. 193–205. ACM, New York (2001)

7. Guravannavar, R., Sudarshan, S.: Rewriting procedures for batched bindings. Proc.
VLDB Endow. 1(1), 1107–1123 (2008)

8. Iu, M.Y., Zwaenepoel, W.: Queryll: Java database queries through bytecode rewrit-
ing. In: van Steen, M., Henning, M. (eds.) Middleware 2006. LNCS, vol. 4290, pp.
201–218. Springer, Heidelberg (2006)

http://www.jcp.org/en/jsr/detail?id=220

JReq: Database Queries in Imperative Languages 103

9. Katz, R.H., Wong, E.: Decompiling CODASYL DML into relational queries. ACM
Trans. Database Syst. 7(1), 1–23 (1982)

10. Lieuwen, D.F., DeWitt, D.J.: Optimizing loops in database programming lan-
guages. In: DBPL3: Proceedings of the third international workshop on Database
programming languages: bulk types & persistent data, pp. 287–305. Morgan Kauf-
mann, San Francisco (1992)

11. Maier, D., Stein, J., Otis, A., Purdy, A.: Development of an object-oriented DBMS.
In: OOPLSA 1986, pp. 472–482. ACM Press, New York (1986)

12. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI 2000,
pp. 83–94. ACM, New York (2000)

13. PostgreSQL Global Development Group: PostgreSQL,
http://www.postgresql.org/

14. Rinard, M.C.: Credible compilation. Tech. Rep. MIT/LCS/TR-776, Cambridge,
MA, USA (1999)

15. Torgersen, M.: Language INtegrated Query: unified querying across data sources
and programming languages. In: OOPSLA 2006, pp. 736–737. ACM Press, New
York (2006)

16. Transaction Processing Performance Council: TPC Benchmark W (Web Com-
merce) Specification Version 1.8. Transaction Processing Performance Council
(2002)

17. Transaction Processing Performance Council: TPC Benchmark H (Decision Sup-
port) Standard Specification Version 2.8.0. Transaction Processing Performance
Council (2008)

18. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON 1999: Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research, p.
13. IBM Press (1999)

19. Wiedermann, B., Cook, W.R.: Extracting queries by static analysis of transparent
persistence. In: POPL 2007, pp. 199–210. ACM Press, New York (2007)

20. Wiedermann, B., Ibrahim, A., Cook, W.R.: Interprocedural query extraction for
transparent persistence. In: OOPSLA 2008, pp. 19–36. ACM, New York (2008)

21. Wong, L.: Kleisli, a functional query system. J. Funct. Program. 10(1), 19–56 (2000)

http://www.postgresql.org/

Verifying Local Transformations on Relaxed
Memory Models

Sebastian Burckhardt1, Madanlal Musuvathi1, and Vasu Singh2

1 Microsoft Research
2 EPFL, Switzerland

Abstract. The problem of locally transforming or translating programs
without altering their semantics is central to the construction of correct
compilers. For concurrent shared-memory programs this task is chal-
lenging because (1) concurrent threads can observe transformations that
would be undetectable in a sequential program, and (2) contemporary
multiprocessors commonly use relaxed memory models that complicate
the reasoning.

In this paper, we present a novel proof methodology for verifying
that a local program transformation is sound with respect to a specific
hardware memory model, in the sense that it is not observable in any
context. The methodology is based on a structural induction and relies on
a novel compositional denotational semantics for relaxed memory models
that formalizes (1) the behaviors of program fragments as a set of traces,
and (2) the effect of memory model relaxations as local trace rewrite
operations.

To apply this methodology in practice, we implemented a semi-
automated tool called Traver and used it to verify/falsify several compiler
transformations for a number of different hardware memory models.

1 Introduction

Compilers perform a series of transformations that translate a high-level program
into low-level machine instructions, while optimizing the code for performance.
For correctness, these transformations must preserve the meaning for any in-
put program. Proving the correctness of program transformations has been well
studied for sequential programs [29,18,17,19].

However, concurrent shared-memory programs require additional caution be-
cause transformations that reorder, introduce, or eliminate accesses to shared
memory may be observed by concurrent threads and can thus introduce sub-
tle safety or liveness errors in an otherwise correct program. For example, the
redundant read elimination shown in Fig. 1 is not safe because it leads to non-
termination, and the branch consolidation in Fig. 2 is unsafe because it can lead
to an assertion violation.

Typically, only a very small part of all memory accesses (namely the accesses
that are used for synchronization purposes) are susceptible to such issues. How-
ever, in the absence of a whole-program-analysis or user-provided annotations,

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 104–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verifying Local Transformations on Relaxed Memory Models 105

int X = 0;

Transformation Observer

int r1 = X;

while(X == 0);
⇒int r1 = X;

while(r1 == 0);
X = 1;

Fig. 1. Redundant read elimination causing nontermination

bool B = false, X = false, Y = false;

Transformation Observer

bool r = B;

if(r) {
X = r; Y = !r;

} else {
Y = !r; X = r;

}

⇒
bool r = B;

X = r;

Y = !r;

X = true;

assert(X || Y);

Fig. 2. This branch consolidation is unsafe: the assert can fail in the transformed
program, but not the original program. The reason is that the transformation changes
the order of the writes to X and Y in the then-branch.

we can not distinguish between data accesses and accesses that are used for
synchronization. In practice, most compilers rely on the programmer to provide
special type qualifiers like ’volatile’ [20] or ’atomic’ [4] or on custom annota-
tions to identify synchronization accesses. Programs that correctly convey all
synchronization are called ’properly labeled’ [14] or ’data-race-free’ [2].

There is a general understanding on how to correctly transform data-race free
programs [20,4,25]. In this paper, however, we address the more conservative
problem of safely transforming general programs, including programs that con-
tain data races, or programs that are missing the annotations or types needed
to identify synchronization accesses.

It may seem at first that under this conservative restriction, very few transfor-
mations would be safe. However, we can assume that programs that are designed
to work on relaxed hardware memory models are resilient to certain transforma-
tions. Clearly, there is no need for a compiler to be more conservative than the
hardware executing the compiled program.

For example, consider the example in Fig. 2 again, but let the execution be
on a machine that relaxes write-to-write order. Now, we may argue that the
transformation is indeed correct as it does not introduce new behaviors: if write-
to-write order is relaxed by the hardware, the assertion violation may occur even
for the original untransformed program.

For some transformations it can be rather mind-boggling to determine whether
it is safe for a given architecture. For instance, by using the methodology

106 S. Burckhardt, M. Musuvathi, and V. Singh

presented in this paper, we will prove (though not fully comprehend) that the
transformation

{r := A; if r == 0 then A := 0} → {r := A}

is safe on a sequentially consistent machine, unsafe on a machine that relaxes
write-to-read order (such as TSO), but once more safe on a machine that addi-
tionally relaxes write-to-write order (such as PSO).

Overall, we summarize our contributions as follows:

– (Section 3) We build a semantic foundation for relaxed hardware memory
models. We show how many common relaxations can be explained as local
rewrite operations on memory access sequences. In particular, we present a
novel aggregation rule that can explain the effect of store buffers, the most
common relaxation of all. Our semantics is compositional (it defines the be-
havior of program fragments recursively) and can model infinite executions.

– (Section 4) We present a proof methodology to verify the soundness of local
program transformations over relaxed memory models, based on a notion of
observations. We introduce a notion of invisible rewrite rules (Section 4.1)
to reason about all possible program contexts.

– (Section 5) We show how to apply the methodology in practice by veri-
fying/falsifying 8 program transformation for 5 different memory models
(including sequential consistency), aided by a custom semi-automatic tool
called Traver. Given a local program transformation and a memory model,
Traver uses an automated theorem prover [11] to prove that the set of obser-
vations of the transformed program is contained in the set of observations
of the original program, for all possible program contexts. Conversely, when
provided with an additional falsification context, Traver can automatically
show that the transformation leads to observable differences in behavior.
This produces a certificate of unsoundness of the transformation.

2 Related Work

Our calculus and semantics, and in particular the handling of infinite executions,
were inspired by Brookes’ fully abstract denotational semantics for sequentially
consistent programs [6]. Languages and semantics to study relaxed memory mod-
els have been developed before, in both operational style [5] and algebraic style
[24]. Our work differs in that it (1) guarantees fairness for infinite executions and
(2) relates to contemporary multiprocessor architectures and common program
transformations.

Much prior work on hardware memory models focuses on the complex in-
tricacies of axiomatic specifications and gives only partial formalizations (in
particular, program syntax is generally ignored). Some work departs from the
mainstream and uses an operational style [23] or an algebraic style [3,27] (where
the algebraic style bears some similarity to our use of dynamic rewrite rules, but

Verifying Local Transformations on Relaxed Memory Models 107

does not include the important store-load aggregation rule which is crucial to
correctly model contemporary hardware memory models). Recently, researchers
have proposed revised axiomatic formalizations of the x86 architecture [13,22].
Our work is orthogonal: our goal is to find simple yet precise means to reason
about various common hardware relaxations, rather than fully model all details
of one specific hardware architecture.

Our work was partly motivated by recent work [9,26] that demonstrated the
difficulty of manually verifying compiler optimizations against memory models.
It is also similar to efforts on verifying the soundness of compiler transformations
for language-level models (Java, DRF) [25]. Unlike the latter, however, we define
soundness of transformations relative to the hardware memory model (and are
thus not susceptible to whether programs are data-race-free or not), can han-
dle infinite executions, and provide a tool that helps to automate parts of the
verification/falsification effort.

3 Semantic Foundation

In this section, we lay the foundation for understanding hardware memory mod-
els and for reasoning about them formally. We start by demonstrating how we
explain typical relaxations in the hardware using dynamic rewrite operations.
We then formalize this concept by defining a simple imperative language for
shared-memory programs and a compositional denotational semantics. Along
the way, we discuss various challenges, such as how our semantics handles infi-
nite executions and fairness.

We start with a quick introduction to relaxed hardware memory models, re-
visiting classical examples [1,14]. We use special diagrams called derivations to
explain how to understand relaxations as a consequence of dynamic rewriting
of access sequences. We distinguish three types of dynamic rewrite operations:
reordering, aggregation, and splitting.

Ordering relaxations allow the hardware to execute operations in a different
order than specified by the program. This can speed up execution as it allows
the hardware to delay the completion of operations with high latency (such as
propagating stores to a global shared memory) past subsequent operations with
low latency (such as reading a locally cached value). In Fig. 3 (a) and (b), we
show classic “litmus tests” to illustrate the effects of ordering relaxations. These
programs distinguish syntactically between processor-local registers (lowercase
identifiers) and shared memory locations (capitalized identifiers).

Not all effects can be explained by simply reordering instructions. For exam-
ple, the program in Fig. 3(c) is a variation of 3(b) that shows how stored values
can be visible to subsequent loads by the same processor before they have been
committed to shared memory. This effect is very common and often attributed
to processor-local “store buffers”. We explain this effect as an aggregation of the
store with the following load.

More formally, let 〈ld L, x〉 and 〈st L, x〉 represent store or load accesses
from/to location L, with loaded/stored value of x. Now consider the dynamic

108 S. Burckhardt, M. Musuvathi, and V. Singh

(a) (b) (c)

Initially: A = B = 0
P1 P2

A := 1
B := 1

r := B
s := A

Eventually: r = 1, s = 0

Initially: A = B = 0
P1 P2

A := 1
r := B

B := 1
s := A

Eventually: r = s = 0

Initially: A = B = 0
P1 P2

A := 1
u := A
r := B

B := 1
v := B
s := A

Eventually: r = s = 0, u = v = 1

Fig. 3. (a) This outcome is possible if the stores by P1 are reordered, or if the loads
by P2 are reordered. (b) This outcome (known as Dekker) is possible if the stores are
delayed past the loads. (c) This outcome (a variation of Dekker) is possible if stores
can be both forwarded to loads and delayed past loads.

sss (swap store-store)
〈st L, x〉〈st L′, x′〉 L�=L′

→ 〈st L′, x′〉〈st L, x〉
sll (swap load-load)

〈ld L, x〉〈ld L′, x′〉 → 〈ld L′, x′〉〈ld L, x〉
ssl (swap store-load)

〈st L, x〉〈ld L′, x′〉 L�=L′
→ 〈ld L′, x′〉〈st L, x〉

sls (swap load-store)
〈ld L, x〉〈st L′, x′〉 L�=L′

→ 〈st L′, x′〉〈ld L, x〉
asl (aggregate store-load)

〈st L, x〉〈ld L, x〉 → 〈st L, x〉

Model Rewrite Rules
SC (none)
390 ssl
TSO ssl asl
x86-TSO ssl asl
PSO ssl asl sss
CLR ssl asl sll

RMO ssl asl sss sll�c �d sls�c �d

Alpha ssl asl sss sll�= sls�c �d

Fig. 4. Dynamic rewrite operations employed by some commercial hardware memory
models and by the CLR memory model. The symbols � c, � d and �= indicate that the
accesses are swapped only if they are not control dependent, not data dependent, or
target a different location, respectively.

〈st A, 1〉〈st B, 1〉⏐⏐�sss

〈st B, 1〉〈st A, 1〉 〈ld B, 1〉〈ld A, 0〉︸ ︷︷ ︸
〈st B, 1〉〈ld B, 1〉〈ld A, 0〉〈st A, 1〉

〈st A, 1〉〈ld B, 0〉⏐⏐�ssl

〈ld B, 0〉〈st A, 1〉

〈st B, 1〉〈ld A, 0〉⏐⏐�ssl

〈ld A, 0〉〈st B, 1〉︸ ︷︷ ︸
〈ld B, 0〉〈ld A, 0〉〈st A, 1〉〈st B, 1〉

〈st A, 1〉〈ld A, 1〉〈ld B, 0〉⏐⏐�asl

〈st A, 1〉〈ld B, 0〉⏐⏐�ssl

〈ld B, 0〉〈st A, 1〉

〈st B, 1〉〈ld B, 1〉〈ld A, 0〉⏐⏐�asl

〈st B, 1〉〈ld A, 0〉⏐⏐�ssl

〈ld A, 0〉〈st B, 1〉︸ ︷︷ ︸
〈ld B, 0〉〈ld A, 0〉〈st A, 1〉〈st B, 1〉

Fig. 5. Top left: Derivation for Fig. 3(a). P1 issues two stores that get reordered by
sss before being interleaved with the two loads by P2. Note that we could provide
an alternative derivation where the loads get reordered by sll. Top right: Derivation
for Fig. 3(b). Both store-load sequences are reordered by ssl before being interleaved.
Bottom: Derivation for Fig. 3(c). Both processors first aggregate the stores with the
first following load by asl, then delay it past the second load by ssl.

Verifying Local Transformations on Relaxed Memory Models 109

rewrite operations in Fig. 4. All of these operations preserve the semantics of
single-processor programs, as long as the conditions are observed (asl applies
only to accesses that target the same location and store/load the same value,
while sss, ssl, and sls apply only to accesses that target different locations).

To see how these dynamic rewrite operations can explain the examples in
Fig. 3, consider the derivation diagrams in Fig. 5. Each processor first produces
a sequence of memory accesses consistent with the program. These sequences are
dynamic, as they contain data that may not be known statically (such as actual
addresses and values loaded or stored), and may repeat program fragments that
execute in loops. The access sequences may then be locally modified by the dy-
namic rewrite operations. Next, the sequences of the processors are interleaved.
Informally, an interleaving shuffles the various sequences while maintaining the
access order within each sequence (we give a formal definition in Section 3.2).
Our derivation diagrams show which sequences are being interleaved with an un-
derbrace. At the end of the derivation (but not necessarily before), the sequence
must be value-consistent ; that is, loaded values must be equal to the latest value
stored to the same location, or the initial value if there is no preceding store.

In general, it is quite difficult to establish a precise relationship between ab-
stract memory models (described as a collection of relaxations, in the style of
[1]) and official memory model specifications of commercially available multipro-
cessors. However, it is possible and sensible for research purposes to model just
the abstract core of such models, by focusing on the behavior of regular loads
and stores. Fig. 4 shows how can model the core of many commercial hardware
memory models, and even the CLR memory model, using the dynamic rewrite
rules defined in Fig. 3. Our main sources for constructing this table were [16]
for 390, [28] for TSO, PSO and RMO, [10] for Alpha, [22] for x86-TSO, and
[7,12,21] for CLR.

Beyond simple loads and stores, all of these architectures contain additional
constructs (such as locked instructions, compare-and-swaps, various memory
fences, or volatile memory accesses). Many of them can be formalized using
custom syntax and rewrite rules. However, for simplicity, we stick to regular
loads and stores in this paper, augmented only by atomic load-stores (which
offer a general method to represent synchronization operations such as locked
instructions or compare-and-swap) and a full memory fence. Also, we do not
currently model control or data dependencies (which would require us to follow
the machine language syntax much more closely, as done in [22], for example).

Some memory models (such as PPC, ARM, RC, and PC) allow stores to be
split into separate components for each processor. By combining the asl rule
with a hierarchical cache organization, our formalism can handle a limited form
of store splitting that is sufficient to explain most examples (for more detail on
this topic, see [8]).

To correctly handle examples that involve synchronization with spinloops
(such as Fig. 1), our formalism must handle infinite executions and model fairness
conditions (e.g., the store must eventually be performed). To illustrate the sub-
tleties of infinite rewriting, consider first the program in Fig. 6(a). If we naively

110 S. Burckhardt, M. Musuvathi, and V. Singh

(a) (b)

Initially: A = B = r = s = 0
P1 P2

A := 1
while (r == 0)

r := B

while (s == 0)
s := A

B := 1
Eventually: P1, P2 do not terminate

Initially: A = B = r = s = 0
P1 P2

while (r == 0){
r := B
A := 1
B := 0

}

while (s == 0){
s := A
B := 1
A := 0

}
Eventually: P1, P2 do not terminate

Fig. 6. (a) This outcome is not possible: the store by P1 has to reach P2 eventually,
and vice versa. (b) This outcome is possible: both processors repeat Dekker forever.

allow infinite applications of ssl, the store of A can be delayed past the infinite
number of subsequent loads in the while loop. As a result, the program may
not terminate, which we would like to disallow for the following reason. On ac-
tual hardware, stores are not retained indefinitely, so this program is guaranteed
to terminate. Now consider Fig. 6(b). This program is essentially a “repeated
Dekker” (Fig. 3(b)) and it is conceivable that both P1 and P2 keep executing
forever. To explain such behavior, we need to apply ssl infinitely often.

To handle both these examples correctly, our denotational semantics uses
parallel rewriting on infinite traces (to be formally defined in the next section).

3.1 A Simple Imperative Language for Shared Memory

We now proceed to formalize our description of relaxed memory models. We
start by defining a simple imperative “toy” programming language that is suffi-
cient to express the relevant concepts. It is explicitly parallel and distinguishes
syntactically between shared variables (uppercase identifiers) and local variables
(lowercase identifiers). All variables are mutable and lexically scoped, and must
be initialized. For example, the litmus test in Fig. 3(a) looks as follows:

share A = 0 in (share B = 0 in
(local r = 0 in (local s = 0 in

((A := 1; B := 1) ‖ (r := B; s := A)))))

The formal syntax is shown in Fig. 7. We let L be the set of shared variables
(locations in shared memory), R be the set of processor-local variables (regis-
ters), V = L ∪R be the set of all variables, and X be the set of values assumed
by the variables.

The (load) and (store) statements move values between local and shared vari-
ables. The (assign) statement performs computation, such as addition, on local
variables. The (compare-and-swap) statement compares the values of L and rc ,
stores rn to L if they are equal, and assigns the original value of L to rr . Note that
our language does not contain lock or unlock instructions, as there is in fact no

Verifying Local Transformations on Relaxed Memory Models 111

L ∈ L (shared variable)
r ∈ R (local variable)
x ∈ X (value)
f : Xn → X (local computation), n ≥ 0
s ::= skip (skip)

| r := L (load)
| L := r (store)
| r := f(r1, . . . , rn) (assign), n ≥ 0
| rr := cas(L, rc, rn) (compare and swap)
| fence (full memory fence)
| get r (read from console)
| print r (write to console)
| s; s (sequential composition)
| s1 ‖ · · · ‖ sn (parallel composition), n ≥ 2
| if r then s else s (conditional)
| while r do s (loop)
| local r = x in s (local variable declaration)
| share L = x in s (shared variable declaration)

Fig. 7. Syntax of program snippets s

blocking synchronization at the hardware level (blocking synchronization can be
implemented using spinloops and compare-and-swap). We also include a (fence)
statement to enforce a full memory fence.

The statements (get) and (print) represent simple I/O in the form of reading
from or writing to an interactive console. The statements (sequential composi-
tion), (conditional) and (loop) have their usual meaning (we let the special value
0 denote false, and all others denote true). The statement (parallel composition)
executes its components concurrently, and waits for all of them to finish be-
fore completing. The statements (local) and (shared) declare mutable variables
and initialize them to the given value. Compared to let, as used in functional
languages, they differ by (1) allowing mutation of the variable, and (2) strictly
restricting the scope and lifetime to the nested snippet.

To enforce that local variables are not accessed concurrently, we define the
free variables as in (Fig. 8) and call a snippet ill-formed if it contains a parallel
composition s1 ‖ · · · ‖ sn such that for some i, j, we have (FV (si)∩FV (sj)∩R) �=
∅, and well-formed otherwise. We let S be the set of all well-formed snippets.

Finally, we define a program to be a well-formed snippet s with no free vari-
ables. We let P be the set of all programs.

Note that conventional hardware memory models consider only a restricted
shape of programs (a single parallel composition of sequential processes). Our
syntax is more general, as it allows arbitrary nesting of declarations and com-
positions. This (1) simplifies the definitions and proofs, (2) lets us perform local
reasoning (because we can delimit the scope of variables), and (3) allows us to
explore the implications of hierarchical memory organizations.

112 S. Burckhardt, M. Musuvathi, and V. Singh

FV (skip) = ∅
FV (r := L) = {r, L}
FV (L := r) = {L, r}

FV (r0 := f(r1 . . . rn)) = {r0, r1, . . . rn}
FV (rr := cas(L, rc, rn)) = {L, rr , rc , rn}

FV (fence) = ∅
FV (get r) = {r}

FV (print r) = {r}
FV (s; s′) = FV (s) ∪ FV (s′)

FV (s1 ‖ · · · ‖ sn) = FV (s1) ∪ · · · ∪ FV (sn)
FV (if r then s else s′) = {r} ∪ FV (s) ∪ FV (s′)

FV (while r do s) = {r} ∪ FV (s)
FV (local r = x in s) = FV (s) \ {r}

FV (share L = x in s) = FV (s) \ {L}
Fig. 8. Definition of the set of free variables FV (s) of s

3.2 Denotational Semantics

Our semantics mirror the ideas behind the derivation diagrams used in the pre-
vious section. Informally speaking, each processor generates a set of potential
traces. These traces are concatenated by sequential composition, interleaved by
parallel composition, and modified by the dynamic rewrite operations of the
memory model. They are then filtered by requiring value consistency (after be-
ing interleaved and reordered).

To capture the semantics of a program or snippet more formally, we first
define a set B of behaviors; We then recursively define the semantic function
[[]]M to map any snippet s onto the set [[s]]M ⊂ B of its behaviors for a given
memory model M . We represent the memory model M as a set of dynamic
rewrite operations, and model its effect on behaviors as a closure operator.

To capture behaviors locally, we use a combination of state valuations (to
capture local state) and event traces (to capture externally visible events and
accesses to shared variables). Let Q be the set of local states, defined as functions
R → X , and let Evt be the set of events e of the form

e ::= 〈ld L, x〉 | 〈st L, x〉 | 〈ldst L, xl, xs〉 | 〈fence〉 | 〈get x〉 | 〈print x〉.
We let Evt∗ be the set of finite event sequences (containing in particular the
empty sequence, denoted ε), we let Evtω be the set of infinite event sequences,
and we let Evt∞ = Evt∗ ∪ Evtω be the set of all event sequences. For two
sequences w ∈ Evt∗ and w′ ∈ Evt∞, we let ww′ ∈ Evt∞ be the concatenation
as usual. For a sequence of finite sequences w1, w2, · · · ∈ Evt∗, we let w1w2 · · · ∈
Evt∞ be the concatenation (which may be finite or infinite).

We then define the set of behaviors

B = (Q × Q × Evt∗) ∪ (Q × Evt∞).

A triple (q, q′, w) represents a terminating behavior that starts in local state
q, ends in local state q′, and emits the finite event sequence w. A pair (q, w)

Verifying Local Transformations on Relaxed Memory Models 113

represents a nonterminating behavior that starts in local state q and emits the
(finite or infinite) event sequence w. For a set B ⊆ B and states q, q′ ⊆ Q we
define the projections [B]qq′ = {w | (q, q′, w) ∈ B} and [B]q = {w | (q, w) ∈ B}.

To specify dynamic rewrite operations formally, we use rewrite rules (as in
Fig. 4) of the form p

ϕ→ q where p and q are symbolic event sequences (that is,
sequences of events where locations and values are represented by variables) and
where ϕ (if present) is a formula over the variables appearing in p and q which
describes conditions under which the rewrite rule applies. We let T be the set
of all such rewrite rules.

Definition 1. A memory model is a finite set M ⊂ T of rewrite rules.

Definition 2. For a rewrite rule t = p
ϕ→ q, let gt ⊂ Evt∗ × Evt∗ be the set of

pairs (w1, w2) such that there exists a valuation of the variables in p, q for which
p = w1, q = w2 and ϕ is true. Then, define the operator t : P(Evt∗) → P(Evt∗)
to map a set A of finite event sequences to the set

t(A) = {ww2w
′ | w, w′ ∈ Evt∗ ∧ (w1, w2) ∈ gt ∧ ww1w

′ ∈ A}
For a set of rewrite rules M ⊂ T and a set of finite sequences A ⊂ Evt∗, we define
the result of applying M to A as M(A) = A ∪⋃

t∈M t(A). In order to apply M
to infinite sequences as well, we first introduce a definition for parallel rewriting.
We generalize the notation for sequence concatenation to sets of sequences as
usual (elementwise): for example, for S ⊆ Evt∗ and S′ ⊆ Evt∞ we let SS′ =
{ss′ | s ∈ S, s ∈ S′}.
Definition 3. Let f : P(Evt∗) → P(Evt∗). Then we define the operators Pf :
P(Evt∗) → P(Evt∗) and P̂f : P(Evt∞) → P(Evt∞) by

Pf (A) =
⋃

{ f(A1) · · · f(An) | Ai ⊂ Evt∗ such that A1 · · ·An ⊆ A}
P̂f (Â) =

⋃
{ f(A1)f(A2)f(A3) · · · | Ai ⊂ Evt∗ such that A1A2A3 · · · ⊆ Â}

Note that P̂f (Â) may contain infinite sequences even if Â does not.1 We now
show how to construct fixpoints for the effect of memory models M ⊆ T on
behaviors.

Definition 4. Let M be a memory model. We define M∗ : P(Evt∗) → P(Evt∗)
and M∞ : P(Evt∞) → P(Evt∞) by

M∗(A) =
⋃
k≥0

Mk(A) M∞(Â) =
⋃
k≥0

(P̂M∗)k(Â)

Moreover, for a set B ⊆ B of behaviors, define the closure BM =

{(q, q, w) | q, q′ ∈ Q and w ∈ M∗([B]qq′)}∪{(q, w) | q ∈ Q and w ∈ M∞([B]q)}.
1 for example, consider Â = {ε} and M = {ε → 0}. Then P̂M (Â) contains the infinite

sequence 000 · · · .

114 S. Burckhardt, M. Musuvathi, and V. Singh

We can show that this is indeed a closure operation, namely, that (BM)M = BM

(see our tech report [8] for a proof). Note that our use of parallel rewriting
applies the rewrite rules in a “locally finite” manner, which is important to
handle infinite executions correctly.2

Definition of the Semantics. Using the notations listed in the next paragraph,
Fig. 9 shows our recursive definition of the semantic function [[.]]M : S → P(B)
that assigns to each snippet s the set of behaviors [[s]]M that s may exhibit
on memory model M . It computes behaviors of snippets from the inside out,
applying the rewrite rules at each step. Sequential composition appends the
behaviors of its constituents, while parallel composition interleaves them. The
behaviors of a load include all possible values it could load (because the actual
value depends on the context which is not known at this point). Value consistency
is enforced at the level of the shared-variable declaration, at which point we also
project away accesses to that variable.3 Fences are modeled as events that do
not participate in any rewrite rules, thus enforcing ordering.

Notations used. For q ∈ Q, r ∈ R and x ∈ X we let q[r �→ x] denote the
function that maps r to x, but is otherwise the same as the function q. For a
shared variable L ∈ L, let Evt(L) ⊆ Evt be the set of memory accesses to L. For
w ∈ Evt∞ and i ∈ N, let w[i] ∈ Evt be the event at position i (starting with 1).
Let dom w ⊆ N be the set of positions of w. For two sequences w, w′ ∈ Evt∞ we
define the set of fair interleavings (w # w′) ⊆ Evt∞ to consist of all sequences
u ∈ Evt∞ such that there exist strictly monotonic functions f : dom w → dom u
and g : dom w′ → dom u satisfying rg f ∩ rg g = ∅ and rg f ∪ rg g = dom w,
and such that w[i] = u[f(i)] and w′[i] = u[g(i)] for all valid positions i. Note
that the interleaving operator # is commutative and associative. For a subset
of events C ⊆ Evt , we define the projection function proj C : Evt∞ → Evt∞ to
map a sequence to the largest subsequence containing only events in C. We write
proj−L short for the function projEvt\Evt(L) (which removes all accesses to L).
We call a sequence w ∈ Evt∞ value-consistent with respect to a shared variable
L ∈ L and an initial value x ∈ X if for each load of L appearing in w, the value
loaded matches the value of the rightmost store to L that precedes the load in
w, or the initial value x if there is no such store. We let Cons(L, x) ⊆ Evt∞

be the set of all sequences that are value-consistent with respect to L and x.
Similarly, we let Cons(L, x, x′) ⊆ Evt∗ be the set of finite sequences that are
value-consistent with respect to initial and final values x and x′ of L, respectively.
For simplicity, we assume X = Z.

2 For example, consider the operation ssl in Fig. 4 which represents the effect of
stores being delayed in a buffer; while there is no bound on how long stores can be
delayed, they must be eventually performed. Our formalism reflects this properly, as
follows (using digits 0,1 instead of load and store events for illustration purposes).
Let A = {1010 . . . } and M = {10 → 01}. Then 0k1010 . . . is in M∞(A), but 000 · · ·
is not.

3 This behavior is similar to “hide” operators in process algebras. It implies that the
behaviors of a program (unlike the behaviors of snippets) contain only external events.

Verifying Local Transformations on Relaxed Memory Models 115

[[skip]]M = {(q, q, ε) | q ∈ Q}M

[[r :=h L]]M = {(q, q[r �→ x], 〈ld L, x〉) | q ∈ Q, x ∈ X}M

[[L :=h r]]M = {(q, q, 〈st L, q(r)〉 | q ∈ Q}M

[[r0 := f(r1 . . . rn)]]M = {(q, q[r0 �→ f(q(r1) . . . q(rn)], ε) | q ∈ Q}M

[[rr := cash(L, rc , rn)]]M =
({(q, q[rr �→ q(rc)], 〈ldst L, q(rc), q(rn)〉) | q ∈ Q}
∪ {(q, q[rr �→ x], 〈ldst L, x, x〉) | q ∈ Q, x ∈ X , x �= q(rc)}

)M

[[get r]]M = {(q, q[r �→ x], 〈get x〉) | q ∈ Q, x ∈ X}M

[[print r]]M = {(q, q, 〈print q(r)〉 | q ∈ Q}M

[[s1; s2]]M =⎛⎝ {(q, q′, w) | there exist (q, q′′, w1) ∈ [[s1]]M and (q′′, q′, w2) ∈ [[s2]]M with w = w1w2}
∪ {(q, w) | (q, w) ∈ [[s1]]M}
∪ {(q, w) | there exist (q, q′, w1) ∈ [[s1]]M and (q′, w2) ∈ [[s2]]M with w = w1w2}

⎞⎠M

[[s1 ‖ · · · ‖ sn]]M =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

{(q, q′, w) | there exist (q, qi, wi) ∈ [[si]]M for all 1 ≤ i ≤ n such that
w ∈ w1 # . . . # wn and such that q′(r) = qi(r) for all r ∈ FV (si) and
q′(r) = q(r) for all r /∈ FV (s1) ∪ . . .FV (sn)}

∪ {(q, w) | there exist w1, . . . , wn ∈ Evt∞ and a nonempty subset D ⊆ {1, . . . , n}
such that for all j ∈ D, we have a behavior (q, wj) ∈ [[sj]]M ,
and for all j /∈ D, we have a behavior (q, qj , wj) ∈ [[sj]]M for some qj ,
and w ∈ w1 # . . . # wn}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M

[[if r then s1 else s2]]M =({(q, q′, w) | (q(r) �= 0 ∧ (q, q′, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, q′, w) ∈ [[s2]]M)}
∪ {(q, w) | (q(r) �= 0 ∧ (q, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, w) ∈ [[s2]]M)}

)M

[[while r do s]]M =⎛⎜⎜⎜⎜⎝
{(q0, qn, w1 · · ·wn) | there exist n ≥ 0 and q0, . . . , qn such that (qi, qi+1, wi+1) ∈ [[s]]M

for 0 ≤ i < n, and q0(r) �= 0, . . . , qn−1(r) �= 0, and qn(r) = 0}
∪ {(q0, w1w2 · · ·) | ∃q1, q2, . . . : (qi, qi+1, wi+1) ∈ [[s]]M and qi(r) �= 0}
∪ {(q0, w1 · · ·wn) | there exist n ≥ 1 and q0, . . . , qn−1 such that qi(r) �= 0 for all i and

(qi, qi+1, wi+1) ∈ [[s]]M for 0 ≤ i < n − 1 and (qn−1, wn) ∈ [[s]]M}

⎞⎟⎟⎟⎟⎠
M

[[local L = x in s]]M =⎛⎝ {(q, q′, w) | there exists a behavior (q[r �→ x], q′′, w) ∈ [[s]]M
such that q′ = q′′[r �→ q(r)]}

∪ {(q, w) | there exists a behavior (q[r �→ x], w) ∈ [[s]]M}

⎞⎠M

[[share L = x in s]]M =⎛⎜⎜⎝
{(q, q′, w) | there exists a behavior (q, q′, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}
∪ {(q, w) | there exists a behavior (q, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}

⎞⎟⎟⎠
M

Fig. 9. Denotational Semantics of our Calculus, parameterized by a set M of dynamic
rewrite rules. An empty set M represents the standard semantics (sequential consis-
tency).

116 S. Burckhardt, M. Musuvathi, and V. Singh

p1 p2 p3 p4

⎡⎣ local r = 1 in
local s = 2 in
(print r) ‖ (print s)

⎤⎦
⎡⎢⎢⎣

local r = 1 in
local s = 2 in
print r;
print s

⎤⎥⎥⎦
⎡⎣ local r = 1 in

while r do
print r

⎤⎦
⎡⎢⎢⎢⎢⎣

local r = 0 in
get r;
while r do

skip;
print r

⎤⎥⎥⎥⎥⎦
Fig. 10. Four example programs. p1 and p2 always terminate, p3 never terminates, and
p4 sometimes terminates. p1 can be soundly transformed to p2, but not vice versa.

4 Verifying Local Program Transformations

In this section, we present our methodology for verifying the soundness of local
program transformations on a chosen hardware memory model. We start with a
general definition of what can be observed about a program execution. Next, we
show how to prove that a local, static program transformation is unobservable
(and thus sound) if its effect on dynamic traces can be captured by invisible
rewrite rules on those traces (Section 4.1) . For each memory model, we present
a list of invisible rewrite rules and describe how we proved invisibility.

For our purposes, the observable behavior of a program includes (1) whether
the program terminates or diverges, and (2) the sequence of externally visible
events (that is, interactions of the program with the environment). We formalize
this by defining the subset Ext ⊂ Evt of externally visible events and the set O
of observations as

Ext = {〈get n〉 | n ∈ Z} ∪ {〈print n〉 | n ∈ Z}
O = {u | u ∈ Ext∗} ∪ {∇u | u ∈ Ext∞}

An observation of the form u represents a terminating execution that produces
the finite event sequence u; an observation of the form ∇u represents a nontermi-
nating execution that produces the (finite or infinite) sequence u. For example,
the program p1 in Fig. 10 has two possible observations, 〈print 1〉〈print 2〉 and
〈print 2〉〈print 1〉; the program p2 has one possible observation, 〈print 1〉〈print 2〉;
the program p3 has one possible observation, ∇〈print 1〉ω; and the program p4
has the set {〈get 0〉〈print 0〉} ∪ {∇〈get n〉 | n �= 0} of observations.

Using the semantics established in the previous section, we now formally define
the set of observations of a program p on a memory model M as follows:

obsM (p) = {u | ∃(q, q′, w) ∈ [[p]]M : u = projExt(w)}
∪ {∇u | ∃(q, w) ∈ [[p]]M : u = projExt(w)}

For programs p, p′ ∈ P , we let 〈p ⇒ p′〉 represent the global transformation of p
into p′. We then define a global transformation 〈p ⇒ p′〉 to be sound for memory
model M if it does not introduce any new observations, that is, obsM (p′) ⊆
obsM (p).

Note that we consider it acceptable if the transformed program has fewer
observations than the original one. For example, we would consider it o.k. to

Verifying Local Transformations on Relaxed Memory Models 117

edl (eliminate double load) : 〈ld L, x〉〈ld L, x〉 → 〈ld L, x〉
eds (eliminate double store) : 〈st L, x〉〈st L, x′〉 → 〈st L, x′〉

ecs (eliminate confirmed store) : 〈st L, x〉〈ld L, x〉 → 〈st L, x〉
asl (aggregate store-load) : 〈st L, x〉〈ld L, x〉 → 〈st L, x〉

iil (invent irrelevant load) : ε → 〈ld L, ∗〉
eil (eliminate irrelevant load) : 〈ld L, ∗〉 → ε

Fig. 11. A list of rewrite rules that are invisible for certain memory models. The last
two contain wildcards; the meaning is that those rules apply to sets of behaviors, rather
than indidvidual behaviors.

transform program p1 to program p2 in Fig. 10, which essentially reduces the
nondeterministic choices available to the scheduler in scheduling the two print
statements. An external entity interacting with the program cannot conclusively
detect that a transformation took place. The reason is that schedulers are free
to favor certain schedules over others (as long as the schedules themselves are
fair). Therefore, an observer can not tell whether the reduction in schedules is
caused by the transformation or by a whim of the scheduler.

In this work, we focus on local transformations, that is, transformations of
components whose context is not known. See Fig. 12 for 8 examples of local
transformations. More formally, we define a program context to be a “program
with a hole []”, defined syntactically as follows:

c ::= [] | c ; s | s ; c | local r = x in c | share L = x in c
| while r do c | if r then c else s | if r then s else c
| s1 ‖ · · · ‖ sk−1 ‖ c ‖ sk+1 ‖ · · · ‖ sn (where 1 ≤ k ≤ n)

For a context c and snippet s, we let c[s] be the snippet obtained by replacing
the hole in c with s. For two snippets s, s′ ∈ S, we let 〈s → s′〉 be a local transfor-
mation. We say a local transformation 〈s → s′〉 induces a global transformation
〈p ⇒ p′〉 if there exists a context c such that p = c[s], p′ = c[s′], and we say a
local transformation is sound if all induced global transformations are sound.

4.1 Invisible Rewrite Rules

To determine whether a local transformation 〈s → s′〉 (such as shown in Fig. 12)
is sound, we can compare the set of behaviors [[s]]M and [[s′]]M . Because our de-
notational semantics is defined recursively, it is quite obvious that [[s′]]M = [[s]]M
implies obsM (c[s′]) = obsM (c[s]) in any context c, and thus that the transforma-
tion is sound. Unfortunately, not all transformations are that simple to prove,
because a transformation can be sound even if [[s′]]M �= [[s]]M (our semantics is
not fully abstract).4

4 For example, consider the “redundant read-after-read elimination” transformation
from Fig. 12, and consider M = SC = ∅. Clearly, the sets [[s′]]M and [[s]]M are not
the same and not contained in each other (all behaviors of [[s′]]M contain one fewer
load). Nevertheless, this transformation is actually safe, because the removal of the
read can not be observed by any context.

118 S. Burckhardt, M. Musuvathi, and V. Singh

(load reordering) {if r then {s := A; t := B} else {t := B; s := A}}
→ {s := A; t := B}

(store reordering) {if r then {A := s; B := t} else {B := t; A := s}}
→ {A := s; B := t}

(irrelevant read elim.) {local r = 0 in {r := A; if r then {B := s} else {B := s}}}
→ {B := s}

(irrelevant read introd.) {if r then local s = 0 in {s := A; B := s}}
→ {local s = 0 in {s := A; if r then B := s}}}

(redundant read-after-read elim.) {r := A; b := A} → {r := A; b := r}
(redundant read-after-write elim.) {A := r; s := A} → {A := r; s := r}

(redundant write-before-write elim.) {A := r; A := s} → {A := s}
(redundant write-after-read elim.) {r := A; if r == 0 then A := 0} → {r := A}

Fig. 12. Some examples of local transformations [26]. The snippets follow the syntax
defined in §3.1, with L = {A, B, . . . } and R = {r, s, t, . . . }.

To handle a larger generality of transformations, we introduce the concept
of “invisible” rewrite rules on dynamic traces. Essentially, we show that certain
dynamic rewrite operations never alter the set of observations. In particular, any
rewrite rule that is already part of the memory model is invisible. In general,
there can be many more such rules, however. Consider the rules shown in Fig. 11.
All of these rules are “invisible” on at least some of the memory models.

More formally, we say a local transformation 〈s → s′〉 is covered by a set of
rewrite rules D if

[[s′]]M ⊆ fD([[s]]M),

where the operator fD : P(B) → P(B) on behaviors is defined as parallel
rewriting5

[fD(B)]qq′ = PD([B]qq′) [fD(B)]q = P̂D([B]q).

The following definition and theorem relate how invisibility provides the means
to prove the soundness of a local transformation by showing that it is covered
by some set D of invisible rules.

Definition 5 (Invisibility). Let D be a set of rewrite rules, and let M be a
memory model. We say D is invisible on M if it is the case that any local
transformation that is covered by D is sound for M . We say an individual rule
d is invisible on M if the set {d} is invisible on M .

Theorem 1. The dynamic rewrite rules edl, eds, ecs, asl, eil, and iil are
invisible on SC, the rules edl, eds, eil, and iil are invisible on TSO, 390 and
PSO, the rules edl, eds, eil, and iil are invisible on CLR, and the set {eds, ecs}
is invisible on PSO.

5 Recall our earlier definition of [X]qq′ = {w | (q, q′, w) ∈ X} and [X]q = {w | (q, w) ∈
X} for a set X ⊂ B of behaviors.

Verifying Local Transformations on Relaxed Memory Models 119

The proof of Thm. 1 is based on structural induction, and is available in our
tech report [8]. However, walking through the entire proof whenver we wish to
enlarge the list of rules or memory models in Thm. 1 is unpractical. Thus, we
have broken out a set of conditions that are sufficient to prove invisibility, and
can be checked with relative ease.

Theorem 2 (Simple Conditions for Invisibility). Let M ⊆ T be a memory
model, and let D ⊆ T be a set of rewrite rules. Then the following conditions
are sufficient to guarantee that D is invisible on M :

1. (Commutativity). m(PD(A)) ⊆ PD(M∗(A)) for all m ∈ M and A ⊆ Evt∗.
2. (Atomicity). if (S1, S2) ∈ Gd for some d ∈ D, then all sequences in S2 are

of length 0 or 1.
3. (Value Consistency) if (S1, S2) ∈ Gd for some d ∈ D, and w2 ∈

S2 ∩ Cons(L, x, x′) for some L, x, and x′, then there exists a w1 ∈ S1 ∩
Cons(L, x, x′) such that proj−L({w2}) ∈ D(proj−L({w1})).

4. (External Consistency) if (S1, S2) ∈ Gd for some d ∈ D, then
projExt (S2) ⊆ projExt(S1).

We illustrate the use of these conditions by walking through one case, namely
M = 390 = {ssl} and D = {edl}. Atomicity is immediate (the right-hand side of
edl is a single event). Value Consistency is straightforward because the left- and
right-hand side of edl are functionally equivalent, and the projection proj−L will
either map them both to ε or both to themselves. External Consistency is trivial
as edl does not contain external events. Commutativity requires some work.
To show that ssl(Pedl(A)) ⊂ Pedl(ssl∗(A)) for all A, we examine ssl(Pedl(A))
and think about all possible scenarios where ssl rewrites modified positions of
a parallel application of edl (if it rewrites only unmodified positions, it clearly
commutes with Pedl). Thinking about this scenario (matching the left-hand side
of ssl with the right-hand side of edl), we can single out the following situation

〈st L, x〉〈ld L′, x′〉〈ld L′, x′〉 ∈ A
〈st L, x〉〈ld L′, x′〉 ∈ PD(A)
〈ld L′, x′〉〈st L, x〉 ∈ ssl(Pedl)

Now we understand that starting with the same first line, we can get to the same
last line by first applying ssl twice and then applying Pedl:

〈st L, x〉〈ld L′, x′〉〈ld L′, x′〉 ∈ A
〈ld L′, x′〉〈st L, x〉〈ld L′, x′〉 ∈ ssl(A)
〈ld L′, x′〉〈ld L′, x′〉〈st L, x〉 ∈ ssl(ssl(A))

〈ld L′, x′〉〈st L, x〉w′ ∈ Pedl(ssl(ssl(A)))

which implies the claim.

5 Application

To simplify the task of proving or refuting soundness, we automated some parts
of the proof by developing a tool called Traver, written in F# and using the

120 S. Burckhardt, M. Musuvathi, and V. Singh

transformation name
(see Fig. 12) S

C 39
0

T
S
O

P
S
O

C
L
R

(load reordering) × × × × √
(store reordering) × × × √ ×
(irrelevant read elim.)

√
(eil)

√
(eil)

√
(eil)

√
(eil)

√
(eil)

(irrelevant read intr.)
√

(iil)
√

(iil)
√

(iil)
√

(iil)
√

(iil)
(red. read-after-read elim.)

√
(edl)

√
(edl)

√
(edl)

√
(edl)

√
(edl)

(red. wr.-bef.-wr. elim.)
√

(eds)
√

(eds)
√

(eds)
√

(eds)
√

(eds)
(red. read-after-wr. elim.)

√
(asl) × √ √ √

(red. wr.-after-read elim.)
√

(ecs) × × √
(eds, ecs) ×

Fig. 13. Soundness results for the examples from Fig. 12. For sound transformations
(marked by

√
), we list the set D of invisible rules employed by the proof. For unsound

transformations (marked by ×), we show example derivations in Fig. 14. All results
were validated by our tool.

automated theorem prover Z3 [11]. It operates in one of two modes, verification
or falsification.

– In verification mode, Traver takes as input a local transformation 〈s → s′〉,
a memory model M , and a set D of invisible rewrite rules supplied by the
user. It then executes both s and s′ symbolically to obtain symbolic repre-
sentations of their behaviors, and attempts to prove that D covers 〈s → s′〉
by computing the closure of [[s]]M under D and checking whether it contains
[[s′]]M . If successful, soundness is established. Otherwise, the result is incon-
clusive,and Traver reports a behavior in the set difference to the user (which
can be inspected to find new candidates for invisible rules that may help to
prove soundness, or provide ideas on how to falsify the transformation).

– In falsification mode, Traver takes as input a local transformation 〈s → s′〉,
a memory model M , and a context c (which may contain several threads).
It then computes the closure of c[s′] and c[s] under interleavings under M ,
and solves for a behavior of c[s′] that is not observationally equivalent to any
behavior in c[s] (assuming that all initial and final values of all variables are
being observed) . If such a behavior is found, soundness has been successfully
refuted. Otherwise, the result is inconclusive.

For both modes, the snippets s, s′ are supplied to Traver using a sugared syn-
tax, which makes it very easy to try out many different local transformations
(however, we currently support loop-free snippets without parallel composition
only). The model M is specified by selecting a subset of the rewrite rules in
Fig. 4 and Fig. 11 (not including rewrite rules that are conditional on control or
data dependencies).

Using our tool, we successfully proved or refuted soundness of the 8 transfor-
mations in Fig. 12 for the memory models SC, 390, TSO,6 PSO, and CLR as
defined in Fig.4. The total time needed by the tool to prove/refute all examples
is about 15 seconds. The results are shown in Fig. 13.
6 Note that the results for TSO also apply for x86-TSO and for x86-IRIW

Verifying Local Transformations on Relaxed Memory Models 121

[
A := 1;
r := A;
s := B;

B := 1;
fence;
t := A;

]
⇓[

A := 1;
r := 1;
s := B;

B := 1;
fence;
t := A;

]
final values s = t = 0, A = B = r = 1

〈st A, 1〉〈ld B, 0〉
〈ld B, 0〉〈st A, 1〉 〈st B, 1〉〈fence〉〈ld A, 0〉︸ ︷︷ ︸
〈ld B, 0〉〈st B, 1〉〈fence〉〈ld A, 0〉〈st A, 1〉

⎡⎢⎣ B := 1;
r := A;

if(r == 0)
A := 0;

A := 1;
fence;
s := B;

⎤⎥⎦
⇓[

B := 1;
r := A;

A := 1;
fence;
s := B;

]
final values r = s = 0, A = B = 1

〈st B, 1〉〈ld A, 0〉
〈ld A, 0〉〈st B, 1〉 〈st A, 1〉〈fence〉〈ld B, 0〉︸ ︷︷ ︸
〈ld A, 0〉〈st A, 1〉〈fence〉〈ld B, 0〉〈st B, 1〉

Fig. 14. (Left.) Derivation showing that the redundant-read-after-write-elimination is
not sound on 390. (Right.) Derivation showing that the redundant-write-after-read-
elimination is not sound on 390, on TSO , and on CLR. (Both.) We show the original
program, the transformed program, and an execution of the transformed program that
is not possible on the original program. All shared variables and registers are initially
zero.

As expected, the first two transformations (load-reordering, store-reordering)
are unsound for all models except models that specifically relax load-load order
or store-store order.

The next four transformations (irrelevant-read-elimination, irrelevant-read-
introduction, redundant-read-after-read-elimination, and redundant-write-
before-write-elimination) are sound for all memory models. The last two
transformations proved more interesting. For both, we were able to prove that
they are sound on SC . However, they exhibit some surprising behavior on relaxed
memory models.

– The redundant-read-after-write-elimination is unsound on 390. Fig. 14 (left)
shows a derivation to explain this effect. Intuitively, the sequence {A :=
r; s := A} has a fence-like effect on 390 which is lost by the transformation.
However, on memory models that also support store-load forwarding (asl),
this transformation is sound.

– The redundant-write-after-read elimination is unsound on 390, TSO, and
CLR, but sound on PSO . Fig. 14 (right) shows a derivation to explain this
effect. Intuitively, the reason is that because the transformed snippet is a
simple load, it can be swapped with a preceding store if the rule ssl is part
of the memory model. This would not be possible with the original code
unless the memory model also contains the rule sss which in turn sheds
some light on why this transformation is sound for PSO .

We believe it would have been very difficult to correctly determine soundness of
these transformations (in particular the last two) or to discover the derivations
that explain the effects without our proof methodology.

122 S. Burckhardt, M. Musuvathi, and V. Singh

6 Conclusion and Future Work

Our experience with Traver has successfully demonstrated the power of formal-
ism and automation in discovering corner cases where normal intuition fails. We
believe that the proof methodology and the tool presented in the paper have
many more uses in the future. Of particular interest are (1) verifying trans-
lations involving different memory models (between different architectures, or
between different intermediate representations), and (2) extending our method-
ology to transformations involving higher-level synchronization such as locks,
semaphores, or sending and receiving messages on channels.

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

2. Adve, S., Hill, M.: A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

3. Arvind, Maessen, J.-W.: Memory model = instruction reordering + store atomicity.
In: ISCA, pp. 29–40 (2006)

4. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Programming Language Design and Implementation (PLDI), pp. 68–78 (2008)

5. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: Prin-
ciples of Programming Languages, POPL (2009)

6. Brookes, S.: Full abstraction for a shared variable parallel language. In: LICS, pp.
98–109 (1993)

7. Brumme, C.: cbrumme’s weblog,
http://blogs.gotdotnet.com/cbrumme/archive/2003/05/17/51445.aspx

8. Burckhardt, S., Musuvathi, M., Singh, V.: Verification of compiler transformations
for concurrent programs. Technical Report MSR-TR-2008-171, Microsoft Research
(2008)

9. Cenciarelli, P., Sibilio, E.: The java memory model: Operationally, denotationally,
axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 331–346.
Springer, Heidelberg (2007)

10. Compaq Computer Corporation. Alpha Architecture Reference Manual, 4th edn.
(January 2002)

11. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Duffy, J.: Joe Duffy’s Weblog,
http://www.bluebytesoftware.com/blog/2007/11/10/CLR20MemoryModel.aspx

13. Sarkar, S., et al.: The semantics of x86-CC multiprocessor machine code. In: Prin-
ciples of Programming Languages, POPL (2009)

14. Gharachorloo, K.: Memory Consistency Models for Shared-Memory Multiproces-
sors. PhD thesis, University of Utah (2005)

15. Intel Corporation. Intel 64 Architecture Memory Ordering White Paper (August
2007)

16. International Business Machines Corporation. z/Architecture Principles of Opera-
tion, 1st edn. (December 2000)

http://blogs.gotdotnet.com/cbrumme/archive/2003/05/17/51445.aspx
http://www.bluebytesoftware.com/blog/2007/11/10/CLR20MemoryModel.aspx

Verifying Local Transformations on Relaxed Memory Models 123

17. Klein, G., Nipkow, T.: A machine-checked model for a java-like language, virtual
machine, and compiler. ACM Transactions on Programming Languages and Sys-
tems 28(4), 619–695 (2006)

18. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: Programming Language Design and Implementation
(PLDI), pp. 220–231 (2003)

19. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Principles of programming languages (POPL), pp. 42–54
(2006)

20. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Principles of Pro-
gramming Languages (POPL), pp. 378–391 (2005)

21. Morrison, V.: Understand the impact of low-lock techniques in multithreaded apps.
MSDN Magazine 20(10) (October 2005)

22. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO (extended
version). Technical Report UCAM-CL-TR-745, Univ. of Cambridge (2009)

23. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 34–41 (1995)

24. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: PPoPP 2007: Principles and practice of parallel programming, pp.
161–172 (2007)

25. Sevcik, J.: Program Transformations in Weak Memory Models. PhD thesis, Uni-
versity of Edinburgh (2008)

26. Sevcik, J., Aspinall, D.: On validity of program transformations in the Java memory
model. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008)

27. Shen, X., Arvind, Rudolph, L.: Commit-reconcile & fences (crf): A new memory
model for architects and compiler writers. In: ISCA, pp. 150–161 (1999)

28. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR
Prentice Hall, Englewood Cliffs (1994)

29. Young, W.D.: A mechanically verified code generator. Journal of Automated Rea-
soning 5(4), 493–518 (1989)

Practical Extensions to the IFDS Algorithm

Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez

University of Waterloo, Canada
{nanaeem,olhotak,j2rodrig}@uwaterloo.ca

Abstract. This paper presents four extensions to the Interprocedural Finite Dis-
tributive Subset (IFDS) algorithm that make it applicable to a wider class of
analysis problems. IFDS is a dynamic programming algorithm that implements
context-sensitive flow-sensitive interprocedural dataflow analysis. The first exten-
sion constructs the nodes of the supergraph on demand as the analysis requires
them, eliminating the need to build a full supergraph before the analysis. The
second extension provides the procedure-return flow function with additional in-
formation about the program state before the procedure was called. The third
extension improves the precision with which φ instructions are modelled when
analyzing a program in SSA form. The fourth extension speeds up the algorithm
on domains in which some of the dataflow facts subsume each other. These ex-
tensions are often necessary when applying the IFDS algorithm to non-separable
(i.e. non-bit-vector) problems. We have found them necessary for alias set anal-
ysis and multi-object typestate analysis. In this paper, we illustrate and evaluate
the extensions on a simpler problem, a variation of variable type analysis.

1 Introduction

The Interprocedural Finite Distributive Subset (IFDS) algorithm [15] is an efficient and
precise, context-sensitive and flow-sensitive dataflow analysis algorithm for the class of
problems that satisfy its restrictions. Although this class includes the classic bit-vector
dataflow problems, the original IFDS algorithm is not directly suitable for more inter-
esting problems for which context- and flow-sensitivity would be useful, particularly
problems involving objects and pointers. The algorithm can be extended to solve this
larger class of problems, however, and in this paper, we present four such extensions.

The IFDS algorithm is an efficient dynamic programming instantiation of the func-
tional approach to interprocedural analysis [19]. The fundamental restrictions of the
algorithm, which we do not seek to eliminate in this paper, are that the analysis domain
must be a powerset of some finite set D, and that the dataflow functions must be dis-
tributive. We present a detailed overview of the IFDS algorithm in Section 2, and further
illustrate the algorithm with a running example variable type analysis in Section 3.

A more practical restriction is that the set D must be small, because the algorithm
requires as input a so-called exploded supergraph, and the number of nodes in this
supergraph is approximately the product of the size of D and the number of instructions
in the program. Our first extension, presented in Section 4, removes the restriction on the
size of D by enabling the algorithm to compute only those parts of the supergraph that
are actually reached in the analysis. This allows the algorithm to be used for problems

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 124–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Practical Extensions to the IFDS Algorithm 125

in which D is theoretically large, but only a small subset of D is encountered during
the analysis, which is typical of analyses modelling objects and pointers.

A second practical restriction of the original IFDS algorithm is that it provides lim-
ited information to flow functions modelling return flow from a procedure. For many
analyses, mapping dataflow facts from the callee back to the caller requires informa-
tion about the state before the procedure was called. In Section 5, we extend the IFDS
algorithm to provide this information to the return flow function.

A third limitation of many standard dataflow analysis algorithms, IFDS included, is
that they can be less precise on a program in Static Single Assignment (SSA) form [2]
than on the original non-SSA form of the program. When an instruction has multiple
control flow predecessors, incoming dataflow facts are merged before the flow function
is applied; this imprecisely models the semantics of φ instructions in SSA form. In
Section 6, we present an example that exhibits this imprecision, and we extend the
IFDS algorithm to avoid it, so that it is equally precise on SSA form as on non-SSA
form programs. SSA form is not only a convenience; in prior work, we showed that
SSA form can be used to improve running time and space requirements of analyses
such as alias set analysis [13].

Finally, the IFDS algorithm does not take advantage of any structure in the set D.
In many analyses of objects and pointers, some elements of D subsume others. In Sec-
tion 7, we present an extension that exploits such structure to reduce analysis time.

We have implemented the IFDS algorithm with all four of these extensions, as well
as the running example variable type analysis. In Section 8, we report on an empirical
evaluation of the benefits of the extensions. We survey related work in Section 9 and
conclude in Section 10.

2 Background: The Original IFDS Algorithm

The IFDS algorithm of Reps et al. [15] is a dynamic programming algorithm that com-
putes a merge-over-all-valid paths solution to interprocedural, finite, distributive, subset
problems. The merge is over valid paths in that procedure calls and returns are correctly
matched (i.e. the analysis is context sensitive). The algorithm requires that the domain
of dataflow facts be the powerset of a finite set D, with set union as the merge operator.
The data flow functions must be distributive over set union: f(a) ∪ f(b) = f(a ∪ b).

The algorithm follows the summary function approach to context-sensitive interpro-
cedural analysis [19], in that it computes functions in P(D) → P(D) that summarize
the effect of ever-longer sections of code on any given subset of D. The key to the effi-
ciency of the algorithm is the compact representation of these functions, made possible
by their distributivity. For example, suppose the set S = {a, b, c} is a subset of D. By
distributivity, f(S) can be computed as f(S) = f({}) ∪ f({a}) ∪ f({b}) ∪ f({c}).
Thus every distributive function in P(D) → P(D) is uniquely defined by its value on
the empty set and on every singleton subset of D. Equivalently, the function can be
defined by a bipartite graph 〈D ∪ {0}, D, E〉, where E is a set of edges from elements
of D∪{0} to elements of (a second copy of) D. The graph contains an edge from d1 to
d2 if and only if d2 ∈ f({d1}). The special 0 vertex represents the empty set: the edge
0 → d indicates that d ∈ f({}). The function represented by the graph is defined to be

126 N.A. Naeem, O. Lhoták, and J. Rodriguez

0 a b c d

0 a b c d

g = λS.(S \ {a}) ∪ {b, c}
(a)

0 a b c d

0 a b c d

f = λS.(S \ {d}) ∪ {b}
(b)

0 a b c d

0 a b c d

f ◦ g = λS.(S \ {a, d}) ∪ {b, c}
(c)

Fig. 1. Compact representation of functions and their composition

f(S) = {b : (a, b) ∈ E ∧ (a = 0 ∨ a ∈ S)}. For example, the graph in Figure 1(a)
represents the function g(S) = {x : x ∈ {b, c} ∨ (x = d ∧ d ∈ S)}, which can be
written more simply as g(S) = (S \ {a}) ∪ {b, c}.

The composition f ◦ g of two functions can be computed by combining their graphs,
merging the nodes of the range of g with the corresponding nodes of the domain of f ,
then computing reachability from the nodes of the domain of g to the nodes of the range
of f . That is, a relational product of the sets of edges representing the two functions
gives a set of edges representing their composition. An example is shown in Figure 1.
The graph in Figure 1(c), representing f ◦ g, contains an edge from x to y whenever
there is an edge from x to some z in the representation of g in Figure 1(a) and an edge
from the same z to y in the representation of f in Figure 1(b).

We have reproduced the original IFDS algorithm [15] in Figure 2. The input to the
algorithm is a so-called exploded supergraph that represents both the program being
analyzed and the dataflow functions. The supergraph is constructed from the interpro-
cedural control flow graph (ICFG) of the program by replacing each instruction with
the graph representation of its flow function. Thus the vertices of the supergraph are
pairs 〈l, d〉, where l is a label in the program and d ∈ D∪{0}. The supergraph contains
an edge 〈l, d〉 → 〈l′, d′〉 if the ICFG contains an edge l → l′ and d′ ∈ f({d}) (or
d′ ∈ f({}) when d = 0), where f is the flow function of the instruction at l. For each
interprocedural call or return edge in the ICFG, the supergraph contains a set of edges
representing the flow function associated with the call or return. The flow function on
the call edge typically maps facts about actuals in the caller to facts about formals in the
callee. The merge-over-all-valid paths solution at label l contains exactly the elements
d of D for which there exists a valid path from 〈s, 0〉 to 〈l, d〉 in the supergraph. The
dataflow analysis therefore reduces to valid-path reachability on the supergraph.

The IFDS algorithm works by incrementally constructing two tables, PathEdge and
SummaryEdge, representing the flow functions of ever longer sequences of code. The
PathEdge table contains triples 〈d, l, d′〉, indicating that there is a path from 〈sp, d〉 to
〈l, d′〉, where sp is the start node of the procedure containing l. These triples are of-
ten written in the form 〈sp, d〉 → 〈l, d′〉 for clarity, but the start node sp is uniquely
determined by l, so it is not stored in an actual implementation. The SummaryEdge
table contains triples 〈c, d, d′〉, where c is the label of a call site. Such a triple indicates
that d′ ∈ f({d}), where f is a flow function summarizing the effect of the procedure
called at c. These triples are often written 〈c, d〉 → 〈r, d′〉, where r is the instruction

Practical Extensions to the IFDS Algorithm 127

declare PathEdge, WorkList, SummaryEdge: global edge set

algorithm Tabulate(G�
IP)

begin
1 Let (N �, E�) = G�

IP

2 PathEdge:={ 〈smain, 0〉 → 〈smain, 0〉 }
3 WorkList:={ 〈smain, 0〉 → 〈smain, 0〉 }
4 SummaryEdge:= ∅
5 ForwardTabulateSLRPs()

6 foreach n ∈ N � do
7 Xn := { d2 ∈ D|∃d1 ∈ (D ∪ {0}) s.t.

˙
sprocOf(n), d1

¸ → 〈n, d2〉 ∈ PathEdge

8 od
end
procedure Propagate(e)

begin
9 if e /∈ PathEdge then Insert e into PathEdge; Insert e into WorkList; fi

end
procedure ForwardTabulateSLRPs()

begin
10 while WorkList 	= ∅ do
11 Select and remove an edge 〈sp, d1〉 → 〈n, d2〉 from WorkList

12 switch n

13 case n ∈ Callp :

14 foreach d3 s.t. 〈n, d2〉 →
˙
scalledProc(n), d3

¸ ∈ E� do
15 Propagate

`˙
scalledProc(n), d3

¸ → ˙
scalledProc(n), d3

¸´

16 od
17 foreach d3 s.t. 〈n, d2〉 → 〈returnSite(n), d3〉 ∈ (E� ∪ SummaryEdge) do
18 Propagate(〈sp, d1〉 → 〈returnSite(n), d3〉)
19 od
20 end case
21 case n ∈ ep :

22 foreach c ∈ callers(p) do
23 foreach d4,d5 s.t. 〈c, d4〉 → 〈sp, d1〉 ∈ E� and

〈ep, d2〉 → 〈returnSite(c), d5〉 ∈ E� do
24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then
25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge

26 foreach d3 s.t.
˙
sprocOf(c), d3

¸ → 〈c, d4〉 ∈ PathEdge do
27 Propagate

`˙
sprocOf(c), d3

¸ → 〈returnSite(c), d5〉
´

28 od
29 fi
30 od
31 od
32 end case
33 case n ∈ (Np − Callp − {ep}) :

34 foreach 〈m, d3〉 s.t. 〈n, d2〉 → 〈m, d3〉 ∈ E� do
35 Propagate(〈sp, d1〉 → 〈m, d3〉)
36 od
37 end case
38 end switch
39 od

end

Fig. 2. Original IFDS Algorithm reproduced from [15]

128 N.A. Naeem, O. Lhoták, and J. Rodriguez

following c. For convenience, Reps’s presentation of the IFDS algorithm [15] assumes
that in the ICFG, every call site c has a single successor, a no-op “return site” node r.

The PathEdge and SummaryEdge tables are interdependent. Consider the edge
〈sp, d1〉 → 〈ep, d2〉 added to PathEdge, in which ep is the exit node of some proce-
dure p. This edge means that d2 ∈ fp({d1}), where fp is the flow function representing
the effect of the entire procedure p. As a result, for every call site c calling procedure p,
a corresponding triple must be added to SummaryEdge indicating the newly-discovered
effect at that call site. In fact, several such triples may be needed for a single edge added
to PathEdge, since the effect of a procedure at c is represented not just by fp, but by
the composition fr ◦ fp ◦ fc, where fc and fr are the flow functions representing the
function call and return. This composition is computed by combining the graphs repre-
senting fc and fr from the supergraph with the newly discovered edge 〈d1, d2〉 of fp.
That is, for each d4 and d5 such that 〈d4, d1〉 ∈ fc and 〈d2, d5〉 ∈ fr, 〈c, d4, d5〉 is
added to SummaryEdge. This is performed in lines 23 to 25 of the algorithm.

Conversely, consider a triple 〈c, d4, d5〉 added to SummaryEdge, indicating a new
effect of the call at c. As a result, for each d3 such that there is a path from 〈s, d3〉 to
〈c, d4〉, where s is the start node of the procedure containing c, there is now a valid path
from 〈s, d3〉 to 〈r, d5〉, where r is the successor of c. Thus 〈s, d3〉 → 〈r, d5〉 must be
added to PathEdge. This is performed in lines 26 to 28 of the algorithm.

3 Running Example: Type Analysis

The extensions to the IFDS algorithm presented in this paper were originally motivated
by context-sensitive alias set analysis [13] and multi-object typestate analysis [12]. The
same extensions are applicable to many other kinds of analyses. In this paper, we will
use a much simpler analysis as a running example to illustrate the IFDS extensions.

The example analysis is a variation of Variable Type Analysis (VTA) [21] for Java.
The analysis computes the set of possible types for each variable. This information can
be used to construct a call graph or to check the validity of casts. At each program point
p, the analysis computes a subset of D, where D is defined as the set of all pairs 〈v, t〉,
where v is a variable in the program and t is a class in the program. The presence of the
pair 〈v, t〉 in the subset indicates that the variable v may point to an object of type t.

For the sake of the example, we would like the analysis to analyze only the applica-
tion code and not the large standard library. The analysis therefore makes conservative
assumptions about the unanalyzed code based on statically declared types. For exam-
ple, if m() is in the library, the analysis assumes that m() could return an object of the
declared return type of m() or any of its subtypes. To this end we amend the meaning
of a pair 〈v, t〉 to indicate that v may point to an object of type t or any of its subtypes.

The unanalyzed code could write to fields in the heap, either directly or by calling
back into application code. To keep the analysis sound yet simple, we make the con-
servative assumption that a field can point to any object whose type is consistent with
its declared type. We model a field read x = y.f with the pair 〈x, t〉, where t is the
declared type of f. We make these simplifications because the analysis is intended to
illustrate the extensions to the IFDS algorithm, not necessarily as a practical analysis.

Practical Extensions to the IFDS Algorithm 129

When the declared type of a field is an interface, the object read from it could be
of any class that implements the interface. For a read from such a field, we generate
multiple pairs 〈x, ti〉, where the ti are all classes that implement the interface. If class
A extends B and both implement the interface, it is redundant to include 〈x, B〉 since
〈x, A〉 already includes all subclasses of A, including B. For efficiency, we generate
only those pairs 〈x, ti〉 where ti implements the interface and its superclass does not.

The analysis is performed on an intermediate representation comprising the fol-
lowing kinds of instructions, in addition to procedure calls and returns: s ::= x ←
y | y.f ← x | x ← y.f | x ← null | x ← new T | x ← (T)y. The instructions
copy pointers between variables, store and load objects to and from fields, assign null
to variables, create new objects and cast objects to a given type, respectively. We use
�s�P : P(D) → P(D) to denote the transfer function for the type analysis. The IFDS
algorithm requires the transfer function to be decomposed into its effect on each indi-
vidual element of D and on the empty set. We decompose it as �s� : D ∪ {0} → P(D)
and define �s�P (P) � �s�(0) ∪⋃

d∈P �s�(d). The decomposed transfer function �s� is
defined in Figure 3.

�x ← y�(〈v, t〉) �

⎧⎨⎩
{〈x, t〉 , 〈y, t〉} if v = y

{〈v, t〉} if v �= y and v �= x
∅ if v �= y and v = x

�y.f ← x�(〈v, t〉) �{〈v, t〉}

�x ← null|new T |y.f�(〈v, t〉) �
{ {〈v, t〉} if v �= x

∅ otherwise

�x ← new T �(0) �{〈x, T 〉}
�x ← y.f�(0) �{〈x, c〉 : c ∈ implClasses(type(f))}

�x ← (T)y�(〈v, t〉) �
⋃

c∈implClasses(T)

cast(x, y, c)(〈v, t〉)

cast(x, y, t2)(〈v, t1〉) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{〈v, t1〉} if v �= x and v �= y

∅ if v = x and v �= y
{〈x, t1〉 , 〈y, t1〉} if v = y and t1 <: t2
{〈x, t2〉 , 〈y, t2〉} if v = y and t2 <: t1

∅ if v = y and t1 and t2 are unrelated

�s�(0) � ∅ if s �= x ← y.f and s �= x ← new

Fig. 3. Intraprocedural flow functions for the running example type analysis

The flow function for a copy instruction (x ← y) applied to a pair 〈v, t〉 requires
three cases. When v is the same as y, the pair 〈v, t〉 is preserved and, since the value
of y is copied to x, a new pair 〈x, t〉 is created. If v is neither x nor y, the value of v
is unaffected by the copy and the pair is therefore preserved. If v is x, and x and y are
distinct, then since the existing value of x is overwritten by the new value, the existing
pair 〈v, t〉 describing the old value of v is discarded, and the result is the empty set.

The store instruction (v.f ← x) has no effect on the values of local variables, and
its flow function is therefore the identity. The flow function for an assignment to x

130 N.A. Naeem, O. Lhoták, and J. Rodriguez

via a load, new or null does not affect 〈v, t〉, unless v is x, in which case the existing
value of x is overwritten, so the pair is dropped from the set. An allocation instruction
x ← new T generates the new pair 〈x, T 〉. A load instruction x ← y.f creates the pair
〈x, t〉, if the type of the field f is a class t, or the set of pairs 〈x, ti〉, if the type of the
field f is an interface, where the ti are all of the classes implementing the interface, as
explained earlier. The helper function implClasses(t) computes this set of classes.

The most interesting case is the cast instruction (x ← (T)y). The first complication
is that T could be an interface. Such a cast is treated as casts to all classes implementing
T . The flow function is the union of the flow functions modelling casts to these classes,
reflecting the fact that the cast to the interface type succeeds if the cast to at least one
of the implementing classes succeeds. For the simpler case of a cast to a type t2 that is
a class, not an interface, there are still several cases. The cast instruction has no effect
on 〈v, t1〉 when v is neither x nor y. When v is x, the pair is dropped because the cast
overwrites the existing value of x. When v is y and t1 <: t2, indicating that we already
know that y points to an object whose type is a subtype of t2, the cast acts as a copy and
the new pair 〈x, t1〉 is generated. When v is y and t2 <: t1, indicating that y is being
cast to a more restrictive type than the type it is already known to point to, we generate
the new pair 〈x, t2〉, indicating that x must point to a subtype of the more restrictive cast
type. The original pair 〈y, t1〉 can also be changed to the more precise pair 〈y, t2〉, since
if control flow proceeds after the cast, the cast must have succeeded, and therefore y
must point to an object whose type is a subtype of the cast type. For the purposes of the
example, we assume that a failing cast terminates the program rather than being caught
by an exception handler; catching class cast exceptions is rare in practice.

4 Demand Construction of the Supergraph

The number of nodes in the exploded supergraph G� is |Inst| × (|D| + 1), where |Inst|
is the number of instructions in the program and |D| is the size of D. In many analyses,
D, though finite, is very large. For example, in an alias set analysis [13], D is a union
of the powersets of the sets of variables of all procedures, and therefore exponential in
the number of variables in a procedure. In our example variable type analysis, D =
|Var| × |Class|, where Var is the set of all variables in the program and Class is the set
of all classes in the program, so |D| is over one million even for a moderate program
with a thousand variables and a thousand classes. Constructing and storing a graph
that is a million times larger than the ICFG is not practical. In practice, only a small
subgraph of G� is reachable by valid paths from 〈smain, 0〉 and therefore explored by
the algorithm. Unfortunately, we cannot know exactly which subgraph this is before
running the IFDS algorithm, since determining which nodes are reachable is exactly
what the IFDS algorithm does. Therefore, our first extension to the IFDS algorithm
modifies it to request only those parts of the supergraph that it encounters, instead of
requiring the whole supergraph as input.

The extended IFDS algorithm with all four of our extensions is shown in Figure 4.
Parts of the algorithm that were changed from the original or added are underlined.

The input to the extended algorithm is a function that, given a supergraph node n�,
computes all of the edges leaving that node (i.e. the flow function of the desired analy-
sis). For clarity of presentation, we have split this function into four separate functions:

Practical Extensions to the IFDS Algorithm 131

declare PathEdge, WorkList, SummaryEdge, Incoming, EndSummary: global
algorithm Tabulate(flow, passArgs, returnVal, callFlow)

...
procedure ForwardTabulateSLRPs()
begin

10 while WorkList �= ∅ do
11 Select and remove an edge 〈sp, d1〉 π→〈n, d2〉 from WorkList
12 switch n

13 case n ∈ Callp :
14 foreach d3 ∈ passArgs(〈n, d2〉) do

15 Propagate
(〈

scalledProc(n), d3

〉 0→ 〈
scalledProc(n), d3

〉)
15.1 Incoming

[〈
scalledProc(n), d3

〉]∪ = 〈n, d2〉
15.2 foreach 〈ep, d4〉 ∈ EndSummary

[〈
scalledProc(n), d3

〉]
do

15.3 foreach d5 ∈ returnVal(〈ep, d4〉 , 〈n, d2〉) do
15.4 Insert 〈n, d2〉 → 〈returnSite(n), d5〉 into SummaryEdge
15.5 od
15.6 od
16 od
17 foreach d3 s.t. d3 ∈ callFlow(〈n, d2〉) or

〈n, d2〉 → 〈returnSite(n), d3〉 ∈ SummaryEdge do

18 Propagate
(
〈sp, d1〉 n→〈returnSite(n), d3〉

)
19 od
20 end case
21 case n ∈ ep :
21.1 EndSummary [〈sp, d1〉]∪ = 〈ep, d2〉
22 foreach 〈c, d4〉 ∈ Incoming [〈sp, d1〉] do
23 foreach d5 ∈ returnVal(〈ep, d2〉 , 〈c, d4〉) do
24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then
25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge
26 foreach d3 s.t.

〈
sprocOf(c), d3

〉 → 〈c, d4〉 ∈ PathEdge do

27 Propagate
(〈

sprocOf(c), d3

〉 c→〈returnSite(c), d5〉
)

28 od
29 fi
30 od
31 od
32 end case
33 case n ∈ (Np − Callp − {ep}) :
34 foreach m, d3 s.t. n → m ∈ CFG and d3 ∈ flow(〈n, d2〉 , π) do

35 Propagate
(
〈sp, d1〉 n→〈m, d3〉

)
36 od
37 end case
38 end switch
39 od

end

Fig. 4. Extended IFDS Algorithm

132 N.A. Naeem, O. Lhoták, and J. Rodriguez

– flow(n�) computes all intraprocedural edges.1

– passArgs(n�) computes call-to-start edges when n� is at a call site.
– returnVal(n�) computes exit-to-return-site edges when n� is at the exit of a proce-

dure.2

– callFlow(n�) computes call-to-return-site edges when n� is at a call site. These edges
model procedure-local information that is not affected by the called procedure.

The original IFDS algorithm queries the edges of the supergraph E� in five places. The
queries on lines 14, 17 and 34, and the second query on line 23 can simply be replaced
by calls to passArgs, callFlow, flow, and returnVal, respectively.

However, the first query on line 23 asks to evaluate the inverse of the flow function:
find all call nodes 〈c, d4〉 from which an edge leads to the procedure start node 〈sp, d1〉.
This would require computing the inverse of the flow function, which can be difficult
for many analyses. Moreover, even though 〈sp, d1〉 is reachable in G�, many of its pre-
decessors in E� may not be, and enumerating them may be intractable. For example, for
an alias set analysis, the number of predecessors for most nodes is 2|Var|−1, where |Var|
is the number of variables in the calling procedure. The extended algorithm therefore
maintains a set Incoming[〈sp, d1〉] that records nodes that the analysis has observed to
be reachable and predecessors of 〈sp, d1〉. Whenever the call to passArgs(〈n, d2〉) in
line 14 returns 〈sp, d3〉, 〈n, d2〉 is added in line 15.1 to Incoming(〈sp, d3〉).

An obvious issue with querying the set of nodes already observed to be predecessors
of 〈sp, d1〉 is what must be done when a new predecessor is observed later. The solution
is to keep track of exit nodes for which a given value of Incoming has been queried (line
21.1). Then, whenever a new predecessor is observed, those exit nodes are reprocessed
to reflect the new predecessor. A simple way to reprocess the exit nodes correctly is to
add them to the worklist. However, this approach is very inefficient, because whenever
a new predecessor is added at one call site, the effect of the procedure is reprocessed
for all predecessors at all call sites of the procedure. This intuitively poor performance
was confirmed by our experience with the initial implementation of the algorithm.

A better way to reprocess the exit node is to recognize that when a new predecessor
of 〈sp, d1〉 is observed, the predecessor tells us the relevant call site. Instead of adding
the corresponding exit node to the worklist, we can immediately process that exit node,
but do only the work necessary for that one predecessor. Concretely, we duplicate the
effect of lines 24 through 29 after line 15.1. The effect of lines 24, 25 and 29, adding
the appropriate edge to SummaryEdge, is done in lines 15.3 through 15.5. The effect of
lines 26 through 28 is already done by lines 17 through 19 of the original algorithm.

5 Return Flow Functions

In the original IFDS algorithm, the return flow function is modelled by interprocedural
edges in the exploded supergraph that lead from the exit of a procedure to the call
site that called the procedure. In the callee, each flow fact is represented in terms of
the local scope of the callee. For many analyses, it is necessary to map information

1 In Figure 4, flow has a second parameter π, which will be explained in Section 6.
2 In Figure 4, returnVal has a second node parameter, which will be explained in Section 5.

Practical Extensions to the IFDS Algorithm 133

in the callee back to the caller. For example, in the code on the right, the cast inside
ensureCircle succeeds only if the object pointed to by z, which is also pointed to
by x and y, is of type Circle or its subtype. Therefore, if ensureCircle returns
normally, we know that x cannot point to an arbitrary Shape, but only to a Circle.
However, the original IFDS algorithm cannot discover this fact: although it determines
that at the exit of ensureCircle, z points to an object of type Circle, there is no
way in the supergraph to associate z in the callee with x in the caller.

void ensureCircle(Shape y){
Shape z = y;
(Circle) z;

}
Shape x = ...;
ensureCircle(x);

Yet with a small extension, this reverse
mapping can be recovered. The fact that z
points to a subtype of Circle is expressed
by the edge 〈sensureCircle, 〈y,Shape〉〉 →
〈eensureCircle, 〈z,Circle〉〉 in PathEdge. This
edge means that at the beginning of the pro-
cedure, there was an object pointed to by y,
and at the exit of the procedure, the same
object is pointed to by z and we know it is of type Circle. In addition,
Incoming[〈sensureCircle, 〈y,Shape〉〉] contains 〈c, 〈x,Shape〉〉. This means that the
object passed in through y from the call site c was pointed to by x in the caller scope.
We can combine the context information provided by Incoming with the intraprocedu-
ral information computed in PathEdge to determine that the object pointed to by x at
the call site is known to be of type Circle after the call.

This extension appears in the extended algorithm in Figure 4 on line 23. The return-
Val function takes, in addition to the node d2 at the exit instruction ep, a second node d4
at the call site c. These arguments indicate not only that the node d2 is reachable at ep,
but that it is reachable from some node d1 at the start instruction sp of the procedure,
and that a passArgs edge leads to the latter node from node d4 at the call site c. Thus the
returnVal function can use the caller-side state from the time the procedure was invoked
to map the callee-side state at the exit of the procedure back to the caller-side context.

This extension is not merely an extension of the IFDS algorithm, but an extension of
the exploded supergraph abstraction that the algorithm is based on. In the supergraph,
for every pair of nodes d2 at an exit node and d5 at a return site, there either is or is not an
edge from d2 to d5; if there is such an edge, the algorithm adds a SummaryEdge from
〈c, d4〉 to 〈returnSite(c), d5〉 for every call site c calling the procedure and for every
reachable node d4 at c. However, the extended algorithm gives the analysis designer
more flexbility, in that the decision to add the SummaryEdge is additionally dependent
on the specific call-site node 〈c, d4〉 being considered. It is as if the supergraph edge
〈ep, d2〉 → 〈returnSite(c), d5〉 can both exist and not exist, depending on which call
site node 〈c, d4〉 is being taken on the path used to reach 〈ep, d2〉.

6 Static Single Assignment (SSA) Form

Static Single Assignment (SSA) form [2] is a popular intermediate representation that
makes many program analyses simpler and more efficient. Standard dataflow analysis
algorithms such as the original IFDS can be applied unchanged to programs in SSA
form, but without appropriate extensions, such an analysis may be less precise than

134 N.A. Naeem, O. Lhoták, and J. Rodriguez

when the same analysis is done on the original, non-SSA version of the program. In this
section, we discuss the reasons for the precision loss and propose an extension to the
IFDS algorithm that fully restores the lost precision. The extended algorithm analyzes
a program in SSA form as precisely as in its original, non-SSA form.

The defining feature of SSA form is that every variable is written to in only one
instruction in the program. To convert a program to SSA form, every variable is renamed
at each of its definitions, so each definition writes to a fresh, unique variable. Every
use of a variable must also be renamed to match the reaching definition. A problem
arises when multiple definitions reach a use: to which of the new names should the
variable at the use be renamed? The solution is to add φ pseudo-instructions to select the
reaching definition based on the control flow path taken. A φ instruction at a control flow
merge point defines a new variable whose value is selected from among the reaching
definitions depending on the edge taken into the merge point. Thus only the φ definition
of the variable reaches the instructions following the merge.

The φ pseudo-instruction differs from normal instructions in two ways. First, if mul-
tiple variables require φ assigments at a given merge point, the φ assignments are per-
formed simultaneously, in parallel. The set of φ instructions at the merge point defines,
for each incoming control-flow edge, a permutation of the variables. Thus it is clearer
to group all of the φ instructions at a given merge point into a single multi-variable
φ instruction. Multiple instructions in sequence would suggest that the operations are
performed one after the other, which is an incorrect semantics for φ instructions.

Second, unlike other instructions, the effect of a φ depends on the control-flow edge
taken to reach the instruction. This causes many dataflow analysis algorithms, including
the original IFDS, to lose precision when analyzing a program in SSA form, compared
to analyzing the same program in its original non-SSA form. We will present an exam-
ple program that exhibits such precision loss in Section 6.1. In most dataflow analyses,
at a control flow merge point, the analysis first merges the dataflow facts from the in-
coming edges, then passes the merged value to the flow function of the instruction after
the merge (i.e. out[s] = fs(

⋃
p∈pred(s) out[p])). Merging before applying the flow func-

tion reflects the structure of the control flow graph, and is appropriate when the merge
is followed by a non-φ instruction. When the merge is followed by a φ instruction, how-
ever, the merge preceding the flow function application makes it impossible for the flow
function fs to depend on the control flow predecessor that its input came from, since the
inputs from all the predecessors have been merged into a single dataflow value. Most
dataflow analyses treat a φ instruction such as x3 = φ(x1, x2) as an assignment from
both x1 and x2 to x3, ignoring the control flow edges on which those values of x1 and
x2 arrived.

To analyze SSA-form code as precisely as non-SSA-form code, the merge must be
delayed until after the φ instruction. That is, the φ flow function is applied separately to
the dataflow value on each incoming control flow path, and the merge is performed on
the outputs of the φ flow function, not on its input. As a result, the incoming control flow
edge associated with each dataflow value can be made available to the flow function fφ

modelling the φ instruction. Formally, out[φ] =
⋃

p∈pred(φ) fφ(p, out[p]).
Extending the IFDS algorithm to perform dataflow merges after φ instructions in-

stead of before them requires two modifications. First, every edge added to PathEdge

Practical Extensions to the IFDS Algorithm 135

is annotated with a control flow predecessor. The edge 〈sp, d1〉 n→ 〈m, d2〉 indicates
that there is a path in the supergraph starting at the dataflow fact d1 at the start node sp,
leading to the dataflow fact d2 at node m, and that the second-last node on the path is
at node n. In other words, the dataflow fact d2 reaches m along the incoming control
flow edge from n. Two PathEdge edges that differ only in the control flow predecessor
are considered to be distinct. The PathEdge edges created in lines 18, 27, and 35 of the
algorithm are annotated with the control flow predecessor, shown above the arrow. The
PathEdge edge created in line 15 corresponds to the empty path from 〈s, d3〉 to itself, so
there is no control flow predecessor to record. We therefore use a dummy predecessor,
which we write as 0. However, the target of this edge is the start node of the procedure,
which is never a φ instruction, so the predecessor will never be needed for this node.

Second, the flow function is extended with a second parameter, and when the func-
tion is called in line 34, the control-flow predecessor π of the PathEdge edge currently
being processed is passed in. Thus the flow function for the φ instruction can depend
on the control-flow predecessor π associated with the dataflow value d2 reaching n.

An obvious optimization is to annotate only those edges 〈sp, d1〉 → 〈m, d2〉 in which
m is a φ instruction, and leave all other edges unannotated. We do this in our imple-
mentation, but have not shown it in Figure 4 to avoid cluttering the algorithm.

6.1 Example of Precision Loss

An example of how merging dataflow information before rather than after a φ instruc-
tion reduces precision is shown in Figure 5. The original non-SSA source code of the
example program is in Figure 5(a). A variable x is initialized as a Circle. In the left
branch of the conditional, x is cast to Square. In the right branch, x is redefined as a
Triangle. Figure 5(b) shows the results of running the type analysis on the code. The
flow function for the cast operation kills the flow fact 〈x,Circle〉, since a Circle
cannot be successfully cast to a Square. Therefore, the type analysis indicates that
the only possible type for receiver x at instruction x.draw() is Triangle. This is
sound since the cast operation can never succeed and therefore a program executing the
left branch can never reach the draw call. Conversely, if the program reaches the draw
call it must have taken the right branch and the receiver must be a Triangle.

Figure 5(c) shows the same code after SSA conversion. The receiver x3 for the call
x3.draw() is x1 when the path follows the left branch and x2 when the path follows
the right branch, as reflected in the φ function. The left predecessor of the φ function has
no flow facts because the cast kills 〈x1,Circle〉 as before. The right predecessor has
the facts 〈x1,Circle〉 and 〈x2,Triangle〉. The original IFDS algorithm would first
merge the incoming flow facts from the two branches, then apply the flow function that
models the φ as a copy from both x1 and x2. At the call to x3.draw(), the analysis
would compute the facts 〈x3,Circle〉 and 〈x3,Triangle〉, which is less precise
than the non-SSA version of the analysis that was able to rule out x being a Circle.

In the extended IFDS algorithm, the merge is not performed before the flow function
of the φ instruction, so the flow function has information about the control flow edge
on which each dataflow fact arrives. For facts coming in from the left edge, it models a
copy from x1 to x3; for facts coming in from the right edge, it models a copy from x2
to x3. Thus only the fact 〈x2,Triangle〉 coming from the right edge leads to a new

136 N.A. Naeem, O. Lhoták, and J. Rodriguez

Object x = new Circle
if (cond) ... = (Square) x;
else x = new Triangle;
x.draw();

(a) Original Source Code

(b) Non-SSA Type Results (c) SSA Type Results

Fig. 5. The effect on precision due to the choice of merge strategy at φ nodes

fact 〈x3,Triangle〉. The fact 〈x1,Circle〉 does not give rise to 〈x3,Circle〉, as
it did before, because it comes in from the right edge, which is not associated with a
copy from x1 to x3. Thus the extended IFDS algorithm achieves the same precision on
the SSA-form version of the program as on the original non-SSA-form version.

7 Exploiting Structure in the Set D

The IFDS algorithm requires that the dataflow domain be the powerset of a finite set
D. The elements of D are treated independently and equally. The algorithm does not
assume or take advantage of any relationships between the elements of D. This is ap-
propriate for bit-vector dataflow problems. For example, the liveness of variable x at
some program point implies nothing about the liveness of a different variable y.

However, some domains have more structure in the form of subsumption relation-
ships between elements. In the example type analysis, the fact 〈x,Circle〉 subsumes
the fact 〈x,Shape〉, since knowing that x points to an object whose type is some
subtype of Circle implies that its type is also a subtype of Shape. Therefore, if
the analysis computes, for some program point, the set {〈x,Circle〉 , 〈x,Shape〉},
which means that x points to a subtype of Circle or that x points to a subtype of
Shape, then this set provides no additional information compared to the smaller set
{〈x,Shape〉} that could have been computed; the two sets are equivalent.

Practical Extensions to the IFDS Algorithm 137

Formally, we can define for an arbitrary analysis the partial order a ≤ b, meaning
that a subsumes b (for example, 〈x,Circle〉 ≤ 〈x,Shape〉). We require all of the
dataflow functions to be monotone in the partial order: a ≤ b =⇒ flow(a) ≤ flow(b).
We consider two sets computed by the analysis to be equivalent, written D1 ∼ D2, if
every element of each set is subsumed by some element of the other set:

D1 ≤ D2 ⇐⇒ ∀d1 ∈ D1∃d2 ∈ D2 s.t. d1 ≤ d2

D1 ∼ D2 ⇐⇒ D1 ≤ D2 ∧ D2 ≤ D1

The original IFDS algorithm handles analyses in which D has structure correctly but
not as efficiently as possible. Because it ignores the subsumption relationship, it com-
pute {〈x,Circle〉 , 〈x,Shape〉} instead of the equivalent smaller set {〈x,Shape〉}.
We have extended the algorithm to use subsumption relationships in D to find smaller
equivalent sets. The extension reduces the size not only of the final result, but of the
intermediate sets during execution of the algorithm. The performance improvement is
cumulative since smaller intermediate sets require less further processing.

The extended algorithm is as precise as the original IFDS algorithm in the sense
that if the algorithms compute dataflow facts Dext and Dorig, respectively, for a given
program point, then Dext ∼ Dorig.

Extending the algorithm to exploit subsumption requires two steps. First, the Prop-
agate function is changed to only add an edge to PathEdge if it does not subsume any
already existing edge, as shown in Figure 6.3 Any edges in PathEdge and in the Work-
List subsuming the newly-added edge are redundant and can be removed in line 9.1.

procedure Propagate(〈sp, d1〉 → 〈n, d2〉)
begin

9 if � ∃ 〈sp, d1〉 → 〈n, d3〉 ∈ PathEdge s.t. d2 ≤ d3 then
Insert e into PathEdge; Insert e into WorkList; fi

9.1 Remove all edges 〈sp, d1〉 → 〈n, d3〉 s.t. d3 ≤ d2 from PathEdge and from WorkList
end

Fig. 6. Extended Propagate Procedure

Second, the worklist is modified so that subsumed elements are processed before
subsuming ones. Without an appropriate worklist ordering, the algorithm might do the
work of constructing the full sets and only afterwards discover an element that the
existing elements subsume, making the existing elements unnecessary. Thus only after
all of the work was done would the algorithm discover that the work was not necessary.

To define a suitable worklist ordering, we define an estimate function mapping each
element of D to an integer with the property that d1 ≤ d2 =⇒ estimate(d1)

3 Though it may seem counterintuitive, it is correct to only add elements that do not subsume an
existing element, rather than elements not themselves subsumed by an existing element. The
interpretation of the PathEdge set is a disjunction of the possible types for each variable: any
element in the set is a possible abstraction of runtime behaviour. If a subsumes b, then adding
a to a disjunction already containing b does not change the meaning of the disjunction.

138 N.A. Naeem, O. Lhoták, and J. Rodriguez

≤ estimate(d2). For all analyses we have encountered, we have found it easy to de-
fine such an estimate. For the example type analysis, we use the following estimate: the
class Object has estimate 0, and the estimate of each other class is one less than the
estimate of its superclass. For a given estimate function, the worklist is implemented as
a priority queue that makes the algorithm process edges with the highest estimate first.

This ordering heuristic does not completely guarantee that the algorithm will never
call Propagate with an edge that makes a previous edge unnecessary, but it does ensure
this property in most cases, and works well in practice. Recall that each flow function
is monotonic, so that a ≤ b =⇒ flow(a) ≤ flow(b). We can be sure to compute
flow(b) and flow(a) in the correct order (that is, flow(b) first) by following the or-
dering heuristic to remove b from the worklist before a. However, at a control flow
merge point, it is possible that a and b appear at two different control flow predeces-
sors p, p′, which are modelled by different flow functions. There is no guarantee that
a ≤ b =⇒ flowp(a) ≤ flowp′(b), so we cannot guarantee that it is more efficient to
compute flowp′(b) before flowp(a).

8 Empirical Evaluation

We have performed experiments on the variable type analysis to measure the following:

– How large is the supergraph, and what fraction of it is reachable along valid paths?
– How does taking advantage of subsumption relationships in D reduce the number of

dataflow facts that must be processed and the running time of the IFDS algorithm?

We implemented the extended IFDS algorithm and the example type analysis in
Scala [14] using Soot [22] as a front-end to parse and convert Java classes into 3-address
code and construct a control flow graph (CFG). Both normal Java control flow and con-
trol flow due to exceptions was represented by edges in the CFG. We ran the extended
algorithm on the DaCapo Benchmark Suite, version 2006-10-MR2 [1]. Since most of
the benchmarks use reflection, we provided Soot with summaries of uses of reflec-
tion obtained by instrumenting the benchmarks using ProBe [11] and *J [5].4 Statistics
about the benchmarks are presented in Table 1. The Methods column shows the number
of methods in the part of the call graph analyzed by the IFDS analysis; since the type
analysis does not analyze the library, we cut off the call graph at any call into the library.
Not analyzing the library is a characteristic of our example analysis, and not a limita-
tion of the IFDS algorithm in general. In earlier work [12], we evaluated two IFDS
analyses that successfully analyze the whole program including the standard library.
The Variables column shows the number of SSA variables in the analyzed methods.
The Instructions column shows the number of instructions after conversion to the inter-
mediate representation presented in Section 3. The Possible Types column shows the
number of concrete classes in the benchmark. These are the classes that could appear
as the type associated with a variable in the analysis results.

We first measured the size of the complete exploded supergraph. In general, the num-
ber of nodes in the exploded graph is given by |Inst|×(|D|+1) where D = Var×Class,

4 We excluded the Eclipse benchmark because it makes such heavy use of reflection that Soot is
unable to process it.

Practical Extensions to the IFDS Algorithm 139

Table 1. Benchmark Characteristics

Benchmark Methods Variables Instructions Possible Types
antlr 949 10839 16621 257
bloat 3142 33727 46550 623
chart 9419 91280 129850 2292
fop 13556 131901 185129 3400
hsqldb 768 8004 11552 443
jython 5487 56090 74031 1079
luindex 1306 12519 18131 617
lusearch 1633 14850 21368 676
pmd 3643 33945 49640 998
xalan 786 7708 11084 451

Var is the set of all variables in the program and Class is the set of all classes. How-
ever, when analyzing a given method, only the local variables of that method need
to be tracked. Thus a much smaller exploded supergraph can be constructed of size∑

m∈Methods |Varm| × |Class| × |Instm|, where |Varm| and |Instm| are the numbers of
variables and instructions in method m. We measured the size of this smaller, more
reasonable exploded supergraph. In addition to the number of nodes, we computed the
number of edges in the exploded supergraph. To do this, we applied the flow function
to every node of the exploded supergraph and counted the number of outgoing edges.
The sizes of the exploded supergraph are shown using diamond shapes in Figure 7.
The sizes range from 138 million to 21 billion nodes. On average (geometric mean),
each exploded supergraph has 1.16 times as many edges as nodes. The largest exploded
supergraphs took over 24 hours to enumerate.

We also measured the sizes of the reachable part of the supergraph that is explored
when the IFDS algorithm has been extended with demand supergraph construction.
These sizes are shown as horizontal lines in Figure 7. The number of edges in the reach-
able part of the supergraph is 1.09 times the number of nodes. On average (geometric
mean), the complete supergraph contains 2081 times as many nodes as the reachable
part of the supergraph. Constructing the supergraph on demand rather than exhaustively
is key to analyzing benchmarks of this size in reasonable time and memory bounds.

Next, we measured the effect of using subsumption relationships in D to avoid prop-
agating dataflow facts that subsume existing facts. We ran the type analysis three times.
In the first run, the subsumption extension from Section 7 was turned off, so all dataflow
facts were propagated regardless of their subsumption relationships. In the second run,
the subsumption extension was turned on, but the original first-in first-out (FIFO) work-
list was used. In the third run, both the subsumption extension and the subsumption-
aware worklist ordering from Section 7 were used. For each case, we measured the
running time of the analysis and the total number of pairs 〈v, t〉 computed (i.e. the sum
over all instructions of the number of 〈v, t〉 pairs for that instruction). The results are
shown in Table 2. Empty cells in the table indicate that the analysis did not complete
within 10000 seconds of CPU time and 10 GB of memory. The subsumption-extended
analysis completed on all of the benchmarks, but the unextended analysis completed
on only five benchmarks within these time and memory limits. Columns 2 and 3 show

140 N.A. Naeem, O. Lhoták, and J. Rodriguez

Fig. 7. Number of nodes and edges in the exploded supergraph and its reachable subgraph. The
letters N and E after each benchmark name designate nodes and edges, respectively.

Table 2. Effect of taking advantage of subsumption relationships in D

Facts (x103) Time (s)
Benchmark w/o subs. w subs. w/o subs. w subs., w/o PQ w subs., w PQ

antlr 546 309 179 44 45
bloat 2037 1544 1518
chart 2817 3377 3197
fop 4408 3247 2847
hsqldb 1758 224 4720 60 60
jython 1015 1225 697
luindex 2900 326 9860 75 70
lusearch 3432 356 9776 78 68
pmd 556 241 211
xalan 1809 218 4813 61 60

the number of 〈v, t〉 pairs without and with the subsumption extension (this number is
independent of the worklist ordering). Columns 4, 5, and 6 show the running time of the
three runs of the analysis. On the five benchmarks on which all algorithms ran to com-
pletion, the unextended analysis had to compute 6.3 times as many pairs as the extended
analysis, so the unextended analysis took 55 times as long as the extended analysis (geo-
metric mean). In the extended analysis, the subsumption-aware priority queue worklist
reduced the running time by 10% (geometric mean over all benchmarks). Extremes
were jython, where the reduction was 43%, and antlr, where the running time increased
by 2% due to the higher cost of maintaining a priority queue compared to a FIFO list.
The subsumption extension presented in Section 7 is very important for the speed of the
analysis and for its ability to analyze programs of significant size.

Practical Extensions to the IFDS Algorithm 141

9 Related Work

Sharir and Puneli [19] extended Kildall’s framework of intraprocedural dataflow anal-
ysis [9, 10] to two frameworks of context-sensitive interprocedural dataflow analysis,
which they called the call-strings approach and the functional approach. The two frame-
works compute a merge-over-all-valid-paths solution, where a valid path is one in which
procedure calls and returns are correctly matched. The call-strings approach treats calls
and returns from a procedure like all other control flow but restricts propagation to valid
paths by tagging propagated dataflow facts with a call string (an abstraction of the active
call stack). In the functional approach, the effects of each procedure are summarized by
a summary function fp : D → D, where D is the dataflow analysis domain. The sum-
mary function is then used at each call site of the procedure to model the effect of the
call. The key operation in the functional approach is function composition. For exam-
ple, to compute the summary function fr of a caller procedure that contains a call site
to a callee procedure, the summary function fe of the callee procedure must be com-
posed with functions representing the intraprocedural effects of the caller procedure.
Although the functional approach has the potential to be more precise and more effi-
cient than the call strings approach, a key challenge is devising efficient representations
of the summary functions that are amenable to function composition.

The IFDS framework [15] provides such an efficient representation of summary
functions for the functional approach, as discussed in Section 2. When the dataflow
domain is P(D) for a finite set D and all of the dataflow functions are distributive,
they can be compactly represented using bipartite graphs with O(D) nodes. Function
composition can be computed efficiently in this representation, and the composition
of distributive functions is also distributive. Thus the IFDS algorithm makes the func-
tional approach practical for the class of dataflow analyses satisfying these restrictions.
The IFDS algorithm has been used to solve both locally separable problems such as
reaching definitions, available expressions and live variables, and non-locally-separable
problems such as uninitialized variables and copy-constant propagation.

The IDE [18] algorithm generalizes IFDS to a wider class of dataflow analyses.
Whereas in IFDS, the dataflow facts are elements of P(D), the IDE algorithm allows
dataflow facts that are maps drawn from D → L, where D is a finite set and L is a
finite-height semi-lattice.5 The IDE algorithm has been used to express copy-constant
propagation and linear constant propagation [18]. The IDE literature calls elements of
D → L environments, so the flow functions that are composed in the algorithm are
environment transformers drawn from (D → L) → (D → L). Provided these trans-
formers are distributive, they can be represented efficiently using graphs similar to those
used in the IFDS algorithm, with additional labels on the edges of the graph describing
the effect of the edge on elements of L. Whereas the IFDS problem computes reach-
ability along valid paths, the IDE algorithm additionally evaluates functions L → L
along those paths. The overall structure of both algorithms is very similar, however. All
of the extensions presented in this paper are equally applicable to the IDE algorithm as
well as to the IFDS algorithm. We have implemented the extensions in both algorithms.

5 The domain P(D) is isomorphic to D → L if L is chosen to be the two-point lattice.

142 N.A. Naeem, O. Lhoták, and J. Rodriguez

Demand-driven variations of the IFDS and IDE algorithms have been thoroughly
studied [3, 4, 8, 16, 18]. These algorithms differ from the exhaustive algorithms in that
rather than computing all nodes reachable from the start node, they determine whether a
given node n is reachable. These algorithms can be faster when only a small number of
nodes are queried. The algorithms work by exploring reverse paths along the supergraph
from the given node n, by evaluating inverses of the dataflow functions. The demand-
driven computation of reachability implemented by these algorithms is distinct from
and complementary to the demand-driven exploded supergraph construction that we
presented in Section 4. The purpose of demand supergraph construction is to avoid con-
structing the whole supergraph, which may be much larger than its reachable subgraph;
the demand-driven reachability algorithms do require the whole exploded supergraph to
be constructed ahead of time. Although our extended IFDS algorithm constructs the ex-
ploded supergraph on demand, it then exhaustively computes all nodes reachable along
valid paths, rather than answering reachability queries for specific notes. An interesting
direction for future work would be to combine demand supergraph construction with
demand-driven reachability queries. Such an algorithm appears to be challenging to de-
sign and to tune, however. The key difficulty that we had to overcome in constructing
the exploded supergraph on demand was the need, on line 23 of the original IFDS algo-
rithm, to evaluate the inverse of the dataflow function. The demand-driven supergraph
reachability algorithms require much more evaluation of inverse dataflow functions.

Others have noticed limitations of the original IFDS algorithm, and mention imple-
menting extensions similar to some of those that we have presented here [6, 7, 17, 20,
23]. Fink et al. [6, 7] used the IFDS algorithm to verify typestate properties of objects.
To verify that an object respects a temporal property, they build precise abstractions of
the objects in the program and aliasing between them. The analysis computes an object
abstraction containing sets of access paths that must or must-not reference an object.
This abstraction is computed using the IFDS algorithm with extensions for exceptional
control flow and polymorphic dispatch. Though their presentation focuses on the type-
state analysis rather than specifics of their extensions to the IFDS algorithm, their im-
plementation depends on constructing the exploded supergraph on demand, providing
call-site information to return flow functions, and exploiting subsumption between ele-
ments of D. Shoham et al. [20] apply the infrastructure of Fink et al. [6, 7], along with
its IFDS extensions, to statically extract finite-state automata of sequences of API calls.

Some shape analyses that have been implemented as instances of the IFDS algorithm
construct the supergraph on demand for scalability. Rinetzky et al. [17] present an effi-
cient shape analysis for the class of cutpoint-free programs, in which at each procedure
call, the subgraph of the heap reachable in the callee can only be reached in the caller
through arguments of the call. Yang et al. [23] present a different shape analysis that
works for general programs. Both of these analyses are instances of the IFDS algorithm,
and both implementations construct only the reachable part of the supergraph.

Several of the analyses just mentioned [6, 7, 17, 20, 23] use partial joins, an exten-
sion similar to subsumption in the analysis domain D that we discussed in Section 7.
Whereas a partial join enables the analysis designer to sacrifice precision for efficiency,
exploiting subsumption does not change analysis precision. A partial join may make
the analysis output depend on the order of exploration; exploiting subsumption does

Practical Extensions to the IFDS Algorithm 143

not. A partial join operator †� is a partial function †� : D × D � D with the property
that if a†�b = d, then each of a and b subsume d. Whenever the partial join IFDS al-
gorithm encounters both a and b in a given set, it replaces them with d, reducing the
size of the set. This operation is sound, since if each of a and b subsume d, then so
does their disjunction. However, it may reduce precision. For example, if we also de-
fine a†�c = d, it becomes impossible for the analysis to distinguish {a, b} from {a, c},
even though neither set subsumes the other (i.e. {a, b} �∼ {a, c}). Our subsumption ex-
tension can be implemented using the following definition of a partial join: if a ≤ b,
then a†�b = b†�a = b, else a†�b is undefined.

Our previous work [12] on verifying temporal properties of groups of interacting
objects also uses the IFDS and IDE algorithms. Verifying typestate-like properties of
multiple objects requires two separate abstractions and analyses: an alias-set abstraction
to track the objects in the program and a second abstraction of the typestate of groups
of objects. We used the IFDS algorithm to compute these abstractions. We used the IDE
algorithm to compute the set of events that might trigger a violation of a temporal prop-
erty. In later work [13] we improved the alias-set analysis using properties of programs
in SSA form. Our extension to the IFDS algorithm to precisely handle φ instructions,
as presented in Section 6, was essential to obtaining precise alias set information.

10 Conclusions

We presented four extensions to the IFDS algorithm that make it applicable to a wider
class of interprocedural dataflow analysis problems, in particular analyses of objects
and pointers. The extended algorithm does not require an exploded supergraph as input,
but builds it on demand, only for those dataflow facts for which it is actually needed.
The extended algorithm provides caller-side context information from before a proce-
dure call to the flow function that maps callee-side state back to the caller after the call.
The extended algorithm analyzes programs in SSA form as precisely as programs not
in SSA form. The extended algorithm takes advantage of structure in the dataflow anal-
ysis domain to significantly speed up analyses exhibiting such structure. We illustrated
our extensions on a variation of variable type analysis, and we have applied them to
more complicated analyses including alias set analysis [13] and multi-object typestate
analysis [12]. The extensions apply not only to the IFDS algorithm but also to the more
general IDE algorithm.

References

1. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R., Di-
wan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee,
H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van Drunen, T., von Dincklage, D., Wie-
dermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis. In:
OOPSLA 2006, pp. 169–190 (2006)

2. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient method of
computing static single assignment form. In: POPL 1989, pp. 25–35 (1989)

144 N.A. Naeem, O. Lhoták, and J. Rodriguez

3. Duesterwald, E., Gupta, R., Soffa, M.L.: Demand-driven computation of interprocedural
data flow. In: POPL 1995, pp. 37–48 (1995)

4. Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven interpro-
cedural data flow analysis. ACM Trans. Program. Lang. Syst. 19(6), 992–1030 (1997)

5. Dufour, B.: Objective quantification of program behaviour using dynamic metrics. Master’s
thesis, McGill University (June 2004)

6. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in
the presence of aliasing. In: ISSTA 2006, pp. 133–144 (2006)

7. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in
the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2), 1–34 (2008)

8. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: SIGSOFT
FSE 1995, pp. 104–115 (1995)

9. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7, 305–317
(1977)

10. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973, pp. 194–
206 (1973)

11. Lhoták, O.: Comparing call graphs. In: PASTE 2007, pp. 37–42 (2007)
12. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects. In: OOP-

SLA 2008, pp. 347–366 (2008)
13. Naeem, N.A., Lhoták, O.: Efficient alias set analysis using SSA form. In: ISMM 2009, pp.

79–88 (2009)
14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press (2008)
15. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reach-

ability. In: POPL 1995, pp. 49–61 (1995)
16. Reps, T.W.: Solving demand versions of interprocedural analysis problems. In: Fritzson, P.A.

(ed.) CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)
17. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free pro-

grams. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302. Springer,
Heidelberg (2005)

18. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theoretical Computer Science 167(1-2), 131–170 (1996)

19. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 7, pp. 189–
233. Prentice-Hall, Englewood Cliffs (1981)

20. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-
based abstractions. In: ISSTA 2007, pp. 174–184 (2007)

21. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon, E., Godin,
C.: Practical virtual method call resolution for Java. In: OOPSLA 2000, pp. 264–280 (2000)

22. Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan, V.: Optimiz-
ing Java bytecode using the Soot framework: is it feasible? In: Watt, D.A. (ed.) CC 2000.
LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

23. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Using Ownership to Reason about Inherent
Parallelism in Object-Oriented Programs

Andrew Craik and Wayne Kelly

Queensland University of Technology
2 George St GPO Box 2434

Brisbane QLD 4001 Australia
a.craik@qut.edu.au, w.kelly@qut.edu.au

Abstract. With the emergence of multi-cores into the mainstream, there
is a growing need for systems to allow programmers and automated sys-
tems to reason about data dependencies and inherent parallelism in imper-
ative object-oriented languages. In this paper we exploit the structure of
object-oriented programs to abstract computational side-effects. We cap-
ture and validate these effects using a static type system. We use these as
the basis of sufficient conditions for several different data and task paral-
lelism patterns. We compliment our static type system with a lightweight
runtime system to allow for parallelization in the presence of complex data
flows. We have a functioning compiler and worked examples to demon-
strate the practicality of our solution.

1 Introduction

Imperative programming languages have an inherently sequential semantics, but
programs in these languages may contain sections which can be safely executed
concurrently. The problem of automatically detecting and exploiting this inher-
ent parallelism is long-standing but still beyond the current state-of-the-art for
general programs. The emergence of multi-core computing into the mainstream
has only increased the need for solutions. Rapid growth in the number of cores
per chip is projected and so scalability of proposed solutions is becoming a key
concern. Given the difficulty of the problem, we must find a way to reformulate
it so that it becomes more tractable even if we loose some precision. We seek
a solution that yields sufficient conditions for parallelism that are permissive
enough to be useful while allowing programmers and automated systems to eas-
ily reason about inter-procedural data dependencies and inherent parallelism in
large complex applications.

Parallelism research has traditionally focused on scientific applications where
data-flow analysis has tended to be used to solve complicated array index
expressions and pointer may-alias questions. We believe that these traditional
approaches have met with limited success outside the realm of scientific applica-
tions for two main reasons: (1) the analyses are too fine grained and (2) they do

Funding provided by Microsoft Research and the Queensland State Government

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 145–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 A. Craik and W. Kelly

not facilitate abstraction and composition. These traditional approaches employ
very complex and detailed dependence analyses which do not support abstrac-
tion. This lack of abstraction hinders their ability to reason across method and
component barriers. At the heart of the problem is the fact that, tradition-
ally, method signatures provide no information about side-effects. This makes
it impossible to reason about inter-procedural dependencies without examining
method implementations and all those which may be called. The pervasive use
of dynamic linking and late binding in modern componentized software systems
further exacerbates this problem.

Current approaches to parallelizing applications tend to follow one of two
main schools of thought: (1) statically determine potential conflicts and prevent
them from occuring or (2) allow conflicts to occur and incurr a runtime penalty
to resolve them. Both approaches have different strengths and weaknesses and
have been used to solve different types of problems. In this work we have chosen
to use static analysis, but there is also valuable and interesting work in the field
of runtime conflict resolution. Ultimately, some combination of these approaches
may prove the best compromise.

We address the problem of reasoning about inherent parallelism in the spe-
cific context of imperative object-oriented languages for two reasons. Firstly,
the emergence of multi-cores means that parallelism will now enter the domain
of general purpose desktop and server applications; imperative object-oriented
languages dominate this development space. Secondly, the object-oriented pro-
gramming model provides structure to the memory allocated by the program
and we seek to exploit this structure to facilitate reasoning at higher levels of
abstraction. The use of these higher levels of abstraction allow our techniques to
scale across large and complex applications unlike traditional data flow analysis
techniques.

Capturing the side-effects of methods is difficult as they may, directly or in-
directly, access a virtually uncountable number of memory locations with no
easily describable structure. To simplify reasoning about data dependencies we
abstract these effects by exploiting the hierarchical “ownership” relationships
which inherently exist within object-oriented programs. Objects contain other
objects as part of their representation and we view this as providing a large
tree structure to all of the objects in the program’s heap. We can, therefore,
summarize method side-effects in terms of the subtrees which may be accessed
or modified. To reason that two computations are independent (i.e. can be ex-
ecuted in parallel) we can reason about the parts of this ownership tree that
could, potentially, be accessed instead of reasoning about the individual mem-
ory locations themselves. If the sub-trees accessed are disjoint then there can
be no data dependencies. This approach sacrifices some precision so that we
can perform inter-procedural dependency analyses in a scalable and composable
manner.

We have developed a static type system based on Ownership Types[1–6]
which is a type system formulated to capture this “ownership” tree. Our system
captures, computes, and validates computation side-effects in terms of these

Using Ownership to Reason about Inherent Parallelism 147

ownerships. Because of the hierarchical nature of ownership, we can describe
side-effects at different levels of granularity. The side-effects in turn can be used
to statically reason about the presence of inherent parallelism.

Complex inter-procedural data flows in addition to dynamic linking and late
binding reduce our ability to statically determine the relationship between some
contexts at compile time. Because of this, we have complemented our static type
system with a runtime representation of these ownership relationships that allow
us to determine the disjointness of effects at runtime in O(1) time. Such runtime
tests result in conditional parallelism and allow us to parallelize more cases.

To help demonstrate the efficiency and effectiveness of our system for real
applications we have created an extension of the C� language with support for
ownership and effect annotations (the same could easily be done using Java as
the base language). We have implemented a compiler for this extended language
that performs type checking and generates parallelized C� source code as output.
Complete source code for our compiler and runtime system is available from our
web site [7] together with some examples that we have applied our system to.
Snippets from one of those examples are presented in Section 7 together with
runtime results.

The reader is asked to note that this paper only addresses the question of
where inherent parallelism can be found. We address neither the question of
which parallelism should be exploited nor how best to exploit it.

Our specific contributions in this paper are:

– Application of Ownership Types to the problem of automatically paralleliz-
ing programs; the use of which has been suggested, by several authors, but
there have been no experiments performed to determine if these reasoning
systems work in practice for detecting inherent parallelism [3, 6–8].

– Sufficient conditions for the safe parallelization of data parallel foreach loops
and several task parallelism patterns based on our framework for abstracting
and reasoning about side-effects and data dependencies.

– A lightweight runtime ownership system which allows our techniques to op-
erate in the presence of complex data flows. Our runtime implementation
provides effect disjointness tests in constant time.

2 Background

To facilitate discussion of our parallelism analyses in subsequent sections, we
first provide the reader with background information on Ownership Types and
our static type system. We begin by providing a brief introduction to Ownership
Types.

2.1 Introduction to Ownership Types

Consider the following code snippet:

private Object[] signers;
public Object[] getSigners() {...return signers;}

148 A. Craik and W. Kelly

Note that despite the private annotation on the signers field, it is possible for
the getSignersmethod to return the object referenced by this field. The private
annotation on the field only protects the name of the field and not the data it
contains. This code was the source of the infamous getSigners bug in Java 1.1.1
for precisely this reason [9]. Ownership Types [1–6] is one of the systems originally
proposed to enforce this kind of protection in a rigorous manner.

Enforcing encapsulation requires each object to track: (1) which object’s rep-
resentation it is part of and (2) which objects are part of its representation.
In Ownership Types this tracking is achieved through the notions of ownership
and object contexts (here after referred to as contexts). As Clark, Noble, and
Potter eloquently described it, “Each object owns a context, and is owned by
a context that it resides within” [1]. This definition creates a tree of ordered
contexts rooted in the top context called world. Each object has a context in
which it may store its representation (the object’s this context). Encapsulation
enforcement in these systems is achieved by only permitting the object itself to
name its this context. If one is unable to name a context one cannot name the
type of a reference to an object in that context.

In the getSigners example, the signers field would have been denoted as
owned by the this context which would have prevented its contents being re-
turned and directly accessed by external components. Such invariants are useful
from the perspective of parallelism analysis because we can reason that others
are not accessing the protected data; that is we have some means of containing
the scope of effects.

2.2 Ownership Syntax

Our system’s ownership syntax is similar to that used by Effective Ownership
Types [6]. Ownership Types are a form of constructed type similar to the idea
of generic types. While generic types are constructed by providing a list of ac-
tual type parameters, Ownership Types are constructed by providing a list of
contexts. Methods are normally parameterized by data values. In generic types,
methods can also be parameterized by types; in a similar manner, we allow meth-
ods to be parameterized by context parameters. In the case of class definitions,
the first formal context parameter in the list, by convention, represents the con-
text that owns the object. Any other formal context parameters, if they exist,
can be used as actuals to construct other types used within the class. In our ex-
tended C� language we support both generics and ownership types, so a class can
have both type parameters and context parameters. Our syntax for ownership
types uses square brackets for delineating the list of formal context parameters
and vertical bars for delineating the list of actual context parameters. Whilst
contexts are associated with objects, we cannot refer to the context of arbitrary
objects, the only contexts that we can name are the special contexts this and
world and formal context parameters visible in the current lexical scope. Below
is an example showing this syntax:

Using Ownership to Reason about Inherent Parallelism 149

class LinkedList<T>[x] {
private Link<T>|this| head;
...

}
class Link<T>[y] {
private Link<T>|y| next;
private T dt;
...

}

In the above example, the head node is part of the representation of the
linked-list and so is owned by the this context of the linked-list. The next field
of the node class is defined recursively to also be owned by the same linked-list
object. Simply having a private reference to an object does not imply that you
own it. It is up to the programmer to decide the logical ownership relationships.

We also allow an objects’ state to be subdivided into a set of named sub-
contexts to allow effects to be described at a sub-object level of granularity.
Aldrich and Chambers were the first to propose such a subdivision of an object
as part of their Ownership Domains system[10]. Section 7 demonstrates how
these subcontexts are used in practice.

Finally, it is important to note that the built-in value types like int, double,
and string as well user defined value types in the form of structs do not have
have owners because they cannot be aliased; they are passed and copied by value
not by reference like classes.

2.3 Side-Effects

Our system partitions effects into stack and heap effects. Stack effects only ap-
pear as part of local data-dependency analysis. Heap effects are captures by
listing the contexts read and written. Programmers are required to specify heap
read and write effects as lists of contexts on method signatures. The type rules
for our language enforce the invariant that if an expression or statement reads
some value on the heap then the context that owns the value or one of its an-
cestors is included in the computed read effect set and similarly for writes. The
type rules for our language can be found in our companion technical report [11].

Note that the scope of effects can be described at different levels of abstraction
due to the hierarchical nature of contexts. The scope of effects can be thought
of as similar to street addresses. We could describe an effect as being limited to
a very precise location, for example 5th Avenue, Manhattan. It is also correct,
but less precise, to say that the effect is limited to New York City or indeed
to the United States. If we were then to observe an effect occurring in Boston
we would know that the effect in New York and the effect in Boston could not
interfere because they are in different cities. If, however, we were to observe an
effect occurring in New York City, we know that the effect could interfere with
our effect on 5th Avenue.

Consider our previous linked-list example, the following shows the syntax for
declaring effects:

150 A. Craik and W. Kelly

class Link<T>[o] {
private Link<T>|o| next;
private T data;
public Link<T>|o| getNext() reads<this> writes<> {
return next;

}
public T getNextData() reads<o> writes<> {
return next.data;

}
}

In the above example, the getNext method reads a field from the current
object which is captured as a read of this. The getNextData method reads the
current object, generating a read effect of this. It also causes a read of the object
referenced by next which is owned by o. The read effect contains only o because
this is part of o’s representation and so a read of o includes a read of this.

This idea and style of effect annotation has been used before by other authors
for different purposes. Geenhouse and Boyland were amongst the first to propose
an effect system in terms of ownership style contexts[8]. Clarke and Drossopoulou
extended these ideas to show how effects could be used for the purposes of vali-
dating program properties[3]. Lu and Potter have also proposed effect systems for
reasoning about programs[6]. Other authors then took these effect systems and
applied them to the problem of verifying locking protocols/ordering in already
parallelized programs. Examples of such systems include the work of Boyapati,
Lee, and Rinard[12] and Cunningham et al.[13]. Note that this is a very a differ-
ent, and we believe less interesting, problem than the problem of automatically
detecting the inherent parallelism in a sequential problem.

To support legacy components written without any context or effect anno-
tation we employ two strategies. By default, any object without an owner is
assumed to be owned by world and any method that does not have declared ef-
fects is assumed to read and write world. Such code will prevent parallelization
but is guaranteed to be safe. In addition, we have invented a syntactic construct
that allows programmers to specify ownerships and effects for existing legacy
classes. The added ownership and effect information is treated as programmer
assertions which are accepted on trust rather than being verified.

2.4 Separating Ownership from Encapsulation

The original ownership type systems[1] were designed to enforce strong encap-
sulation. They both provide a notation for describing which objects were owned
by which other objects and placed strong restrictions on which contexts could be
read or written from other contexts. Our proposed use of Ownership Types can
work with such restrictions; however, they are not strictly necessary for our pur-
poses. Like many recent Ownership systems, including MOJO [2] and Jo∃[14],
we choose to omit such strong encapsulation enforcement to make programming
easier; we only need to track reads and writes of the heap, not restrict them.

Using Ownership to Reason about Inherent Parallelism 151

3 Ownerships and Data Dependencies

The key idea of this paper is that we can use the overlap of the read and write
effect sets of sections of code to determine if data dependencies can exist. Data
dependencies can be classified as either flow, output, or anti-dependencies. If the
write set of one section of code does not overlap with the read set of some other
then a flow dependence cannot exist. Similarly for output and anti dependencies.

When considering the overlap of effect sets we consider stack and heap ef-
fects separately as they represent disjoint sets of memory locations. Sets of stack
effects overlap if they contain the same local variable or parameter names. Deter-
mining if sets of heap effects overlap is harder because context parameters with
different names do not necessarily represent disjoint subtrees of the ownership
tree. One context’s relationship to another can be said to be:

– equal (=) they are one and the same
– dominating (<) one context is directly or indirectly owned by that on the

other
– disjoint (|) they appear on different branches of the ownership tree

Two context sets S1 and S2 overlap if any of the contexts in the two sets overlap:

overlaps
(
S1, S2

)
= ∃s ∈ S2 ∃t ∈ S2 ¬(s # t

)
In some cases we can statically determine that all of the relevant contexts do

not overlap and so we can safely parallelize the code. Similarly, in other cases
we can statically determine that the effect sets are not disjoint and so we will
not try to parallelize the code. In the remaining cases we may not be able to
statically determine if the relevant effects can overlap, but we can determine this
dynamically with our runtime system. As we will describe in Section 4, we can
compute the relationship of two arbitrary contexts in constant time. It is impor-
tant to note that presence of a runtime system does not require modifications
to our static type system or our sufficient conditions for parallelism.

The following section discusses how the relationship between contexts can
be tested at runtime. Following our discussion of our runtime system, we will
formulate sufficient conditions for parallelism based on the data dependency
techniques developed in this section.

4 The Runtime Representation

Consider the following code snippet of a method parameterized with two context
parameters:

public void method[c1,c2](...) reads<c1> writes<c2> { ... }

Note that the relationship between c1 and c2 is not known until the method
is invoked. There may be some calls where c1|c2 and others where they are

152 A. Craik and W. Kelly

not. Producing code for every possible combination of context relationships is
not feasible in general and so we need to be able to ask questions about the
relationship of contexts at runtime.

Our runtime system compliments the static system by allowing context rela-
tionships to be checked at runtime. Further, each individual context relationship
test can be done in O(1) time even though the program may have a theoretically
unbounded number of memory locations in use.

4.1 Context Testing

What we are trying to do is to find the relationship between two nodes in a tree.
There are three different relationships which we may want to test for: equality,
domination, and disjointness. What we are trying to do is determine if one
context is included in the ownership subtree rooted at a second context. This
problem is analogous to trying to determine if one type is a sub-type of a second
type in an object-oriented language with single inheritance; this is known as the
type-extension problem[15].

We map contexts to objects at runtime; this means that an object’s this con-
text is represented by the object itself; the distinction between the this context
and this variable is, therefore, removed at runtime. The naive implementation
of a runtime system would have each object maintain a single parent pointer to
its owner. Context relationship tests could then be performed by chasing point-
ers in the same way that Wirth performed type-extension tests in Oberon[15].
This solution consumes a constant amount of space per object and provides
constant-time object creation overhead, but O(n) time relationship tests where
n is the height of the hierarchy.

The runtime testing of context relationships is a potentially frequently ex-
ecuted operation. We have, therefore, chosen to use Cohen’s solution to the
type-extension problem[16] which uses Dijkstra’s views[17]; each object main-
tains an array of pointers to its ancestors. This solution allows us to perform
relation tests in O(1) time at the cost of O(n) creation time and space per object,
where n is the height of the hierarchy. Fortunately, the maximal depth of owner-
ship hierarchies tends to be low according to recent studies applying ownership
to larger programs [18]. Alternative hybrid approaches, like the use of skip lists
[19], could be used to provide implementations with time and space performance
between these extremes.

4.2 Static Test Minimization

Even with the efficient runtime system outlined, it is necessary to minimize the
number of disjointness tests required. We use two techniques to achieve this:

Static Reasoning. At compile time there are a limited number of context
relationships which are statically known for any given class:

Using Ownership to Reason about Inherent Parallelism 153

– An object’s this context is dominated by its owning context
– All of the declared subcontexts are dominated by the this context
– All subcontexts of an object are disjoint from one another

This information can be used to make some parallelization decisions at compile
time without runtime tests.

Context Constraints. We have added syntax to our language which allow
programmers to statically constrain the relationship between context parame-
ters on classes or methods, similar to C�’s constraints on generic type parameters.
The programmer can specify the relationship between contexts to be domination
(<) or independence (|). The constraints are preserved by the type system dur-
ing type extension, abstraction, and overriding. The compiler statically enforces
these constraints during type checking. The example below shows a class with
such constraints; specifically that o is dominated by d and d is independent of
context t.

class Foo[o,d,t] where o < d where d | t

5 Task Parallelism

Imperative programs are composed out of sequence, selection, and repetition
constructs. Selection is an inherently sequential operation in the absence of spec-
ulative execution so we focus on the parallelization of sequence and repetition
constructs.

If a programmer has a set of operations that need to be performed, the im-
perative paradigm requires them to be listed in some arbitrary sequence thereby
imposing a total order on the them. In actuality, the data dependencies between
operations may only imply a partial order to the steps. The difference between
this partial order and the total order represents potential for parallelism. We can
construct the partial order by computing the data dependencies between oper-
ations. Our effects system allows us to build a Data Dependency Graph (DDG)
easily to allows to detect and exploit this parallelism.

6 Loop Parallelism

Repetition parallelism can take many different forms. In this paper we focus
on data parallel loops; those in which the structure of any available parallelism
is based around the data. In C� data parallel loops most commonly take the
form of the foreach loop which are the only type of loop considered in this
section. We will present sufficient conditions for two parallelism patterns for such
loops: (1) data parallelism where loop iterations execute independently and are
distributed across multiple processors and (2) pipelining where the execution
of a loop iteration is divided up into stages and distributed across multiple
processors.

154 A. Craik and W. Kelly

6.1 Loop Parallelism

The data parallelism pattern can only be safely applied if there are no inter-
iteration dependencies. We begin by considering the following simple loop:

foreach (T|c| element in collection)
element.operation();

We now state informal conditions which are sufficient to ensure there are no such
dependencies:

– Loop Condition 1: There are no control dependencies which would prevent
loop parallelization.

– Loop Condition 2: The objects traversed by the iterator are all different.
Note that they all share the same owner so this implies their contexts are
all disjoint.

– Loop Condition 3: The operation only mutates the representation of
its “own” element and does not read the state owned by any of the other
elements.

Detecting the control dependencies which are the subject of Loop Condition 1 is
a much simpler problem than detecting data dependencies; we do not claim any
new contribution with respect to detecting control dependencies in this paper.
Loop condition 2 can be satisfied in one of two ways. Either we can dynami-
cally test the uniqueness condition just prior to loop execution or we can have
the programmer assert the uniqueness condition. In the case of a programmer
assertion we have the option of verifying the uniqueness invariant at runtime
or turning off such assertion checking in order to improve efficiency. If checked,
such a uniqueness invariant could be verified either when an insertion takes place
or just prior to when the invariant actually needs to hold. The uniqueness as-
sertion can be made by annotating either the collection itself or its enumerator
(a collection may contain duplicates, but if its enumerator only returns unique
elements then the condition is still effectively met). The uniqueness annotation
could be placed on the collection class, or just on specific instances of that col-
lection class. Which of the above possibilities is used to ensure loop condition 2
is met will depend on programmer preferences and performance considerations
- we therefore do not stipulate a single mechanism.

Loop Condition 3 says that the write set of operation can contain at most
this. The read set can contain this, but it may also contain other contexts r,
provided that we know r to be disjoint from c.

We now more formally state our sufficient conditions for parallelism: Let R
and W represent the read and write effects of operation:

1. Loop Condition 2: The values in the collection traversed by the iterator
are asserted to be unique meaning that
∀i ∈ 1..|iterated values| ∀j ∈ 1..|iterated values| i �= j ⇒
iterated values[i] �= iterated values[j]

2. Loop Condition 3:
∀w ∈ W w � this ∧ ∀r ∈ R r � this ∨ (

r �= c
)

Using Ownership to Reason about Inherent Parallelism 155

If any one of the conditions is known not to hold, then we must execute the
original sequential loop to preserve program correctness. We may not be able
to decide if conditions 2 and 3 hold at compile-time depending on the contexts
concerned. Context relationships may not be known until runtime and so condi-
tionally parallel code is emitted when this is the case:

if (/*runtime test: all r’s are disjoint from c*/)
parallel.foreach (element in collection) { element.op(); }

else
foreach (element in collection) { element.op(); }

Facilitating Upward Data Access. So far we have formulated a sufficient
condition for data parallel loops designed to allow reading of disjoint and de-
scendent contexts. We now look at facilitating access to ancestor contexts.

Figure 1 illustrates the ownership tree we would like to be able to support.
We have a collection of elements d1...dn which are owned by some object c. From
context c we wish to read data from context r. If context r is not in scope (ie
we cannot name it) then we must access r through context b, an upward access.

Fig. 1. Ownership relationships between contexts at runtime used for example of cap-
turing context disjointness

Abstracting a safe read of the disjoint context r to be a read of b suddenly
makes the read unsafe in our current scheme. To avoid this problem, we introduce
the notion of sub-contexts to allow us to partition contexts like b.

With sub-contexts, context b would “own” a finite number of named sub-
contexts b1 and b2. We only permit the this context to be subdivided into sub-
contexts. Using these sub-contexts reading r could be summarized as a read of
b1 rather than b itself. If the elements returned by the enumerator are located
in sub-context b2, then we could safely allow the read of b1 as it is disjoint
from c. The idea of sub-contexts has been presented previously by other authors
including Clarke and Drossopoulou who used them to provide more precise effect
information[3].

Within each class, the programmer can decide if they wish to declare sub-
contexts and if they do, they can declare as many as they desire. In the extreme
case, each private field might be given its own sub-context, but programmers
would more commonly create a sub-context to encapsulate a group of related
private fields. The more sub-contexts, the more information that needs to be

156 A. Craik and W. Kelly

passed as context arguments on types; the creation of sub-contexts is a trade-
off between precision and complexity. Sub-contexts are limited in scope to their
class of declaration. To children they look like any other context passed down
from the parent while to parents they appear to be part of the owning class’
representation.

Loop Body Re-writing. Now that we have explored the sufficient conditions
for the parallelization of a simple data parallel loop, the question of how to
generalize these conditions to handle arbitrary foreach loop bodies arises.

Consider the following loop:

class Foo[o] {
foreach (T|e| elem in collection)
// sequence of statements possibly including local variable defs

}

Fortunately, generalization to arbitrary loop bodies is a natural extension of
our existing techniques. We can conceptually re-write the loop body as:

class Foo[o] {
foreach (T|e| elem in collection)
elem.loopBody|o|(this);

}

where o is the owner of the class containing the loop and conceptually becomes
a method of the element type T:

class T {
void loopBody[c](Foo|c| me) {
// same sequence of statements replacing all elem by this
// and all this by me

}}

6.2 Pipelining

The data parallelism pattern for loop parallelization can only be applied to loops
without inter-iteration dependencies. Consider the following loop:

foreach (T|o| elem in collection) {
S_A; S_B; S_C; S_D;

}

This loop may, for example, have both intra- and inter-loop iteration depen-
dencies as depicted in Figure 2. Despite the presence of the dependencies it is
possible, for example, to execute iteration 1 of S B in parallel with iteration 2 of
S A (provided iteration 1 of S A has already completed execution).

The only form of dependence that we must rule out is a dependence from an
iteration p of statement Si to a later iteration q of some statement Sj where

Using Ownership to Reason about Inherent Parallelism 157

Fig. 2. Diagram showing the permitted data dependencies between stages and itera-
tions. SA through SA represent four pipeline stages and Iteration1 through Iteration3
represent three iterations.

j < i. In Figure 2, these dependencies would take the form of diagonal edges
moving down and to the left.

To determine which dependencies exist we must first compute the loop body’s
“virtual” effects of each statement within the loop body using the techniques
from Section 6.1. So if a statement reads or writes any part of the representation
of the loop iteration variable elem then that will show-up as this in the virtual
effect set of that statement.

We now formalize the sufficient conditions for the safe pipelining of a data
parallel loop with stages S1..Sn:

1. the enumerated values are asserted to be unique which means that
∀i ∈ 1..|iterated values| ∀j ∈ 1..|iterated values| i �= j ⇒
iterated values[i] �= iterated values[j]

2. There does not exist a dependence (flow, output, or anti) from Si to Sj

where j < i. The presence of such dependencies is determined as described
previously based on the disjointness of the read and write virtual effect sets
of the statements in question.

A number of techniques for detecting and scheduling loops for pipelined execu-
tion have been developed over the years [20]. All of these techniques consume a
data dependency graph (DDG), like that used for the separation of code blocks
into sequences for concurrent execution (see Section 5).

As with full loop parallelization, pipelining relies on specific relationship be-
tween the contexts being read and written. If these relationships cannot be stat-
ically determined, both the sequential and pipelined versions of the loop can be
produced and the choice of which to execute deferred until runtime.

6.3 Data Parallel for Loops

Our techniques only work on data parallel which typically take the form of
foreach loops in C�. We cannot handle arbitrary for loops as they provide no
means of associating iterations with distinct data elements. There are, however,
some loops expressed as for loops, which are data parallel in nature and could
conceptually be converted to foreach. This is not done in many cases due to
the semantic restrictions of foreach loops. Specifically, foreach loops only give us

158 A. Craik and W. Kelly

access to the value of each element, but do not allow you to change the elements
of the collection in place. Further, for loops are often used we need not just the
value of each element, but also the index of the element within the collection:

for (int i = start; i < list.Count; ++i)
list[i] = func(i, list[i], ...);

To support such cases, we have extended the syntax and semantics of foreach
loops, over collections which support indexing, to address both of these problems.
The following shows our syntax for expressing such a loop as a foreach loop:

foreach (ref ElemType e at Index i in list)
e = func(i, e, ...);

One remaining problem with foreach loops is how to efficiently execute them in
parallel across multiple processors. In the case of a for ranging over index values,
it is relatively easy to express the subranges to be assigned to each processor.
A common approach to parallelizing such loops to use a preliminary inspector
phase which sequentially extracts each of the elements prior to the actual loop
which then processes partitions of these elements in parallel. In specific cases,
the inspector phase can be avoided by using custom collection traversal code. In
the case of a list, this produces the same code as the equivalent parallel for loop.

The above syntax can only be used on collections which have specific support
for such enhanced iteration. This support can be added to existing classes using
C�’s extension method mechanism and ref call parameters (source available on
our website[7].

6.4 Proof of Correctness

Finally, in this section we present a proof that loop conditions 1, 2 and 3 as
presented in Section 6.1 are sufficient to safely parallelize a foreach loop without
synchronization. Proofs of the correctness of the sufficient conditions for the
other patterns we have presented are very similar and straightforward.

As demonstrated in our technical report [11], our static type system guaran-
tees that if a code fragment directly or indirectly writes a field of an object then
the owning context of the object, or one of the contexts which dominates it will
appear in the computed write set of the expression. Similarly for read sets.

A loop can be parallelized provided no data or control dependencies ex-
ist between iterations. Loop Condition 1 tells us that no problematic control
dependencies, such as exceptions, exist. Data dependencies take one of three
forms as previously described: output dependencies, flow dependencies, and anti-
dependencies.

Assume, by way of contradiction, that an output dependence exists
between iterations. The collection must contain two separate elements e1 and e2
such that e1.operation() writes to a field of some object x and
e2.operation() writes to that same field of x.

Using Ownership to Reason about Inherent Parallelism 159

Fig. 3. The relationships between e1, e2, and x

The write set of operation() may contain only this, so we know that
e1.operation() can only write to objects that are either e1 or strictly dom-
inated by e1. Similarly, e2.operation() can only write object that are either e2
or strictly dominated by e2. Figure 3 shows this set of relationships.

Each object is owned by a unique context. If x is dominated by e1 and e2, it
must be the case that either e1 dominates e2 or e2 dominates e1. But, e1 and e2
are directly owned by the same owner c and e1 �= e2 by Loop Condition 1 which
provides the contradiction.

Assume now, by way of contradiction, that a flow dependence exists. The
collection must contain two elements e1 and e2 such that e1.operation()writes
to some field x and e2.operation() reads that same field x. We know from the
previous step of the proof above that there is no x that is part of both e1’s and
e2’s representation.

The only other source of such a flow dependence would be if e2.operation()
reads the same field x via some context r such that r is disjoint with respect to
e1’s and e2’s owning context c. Figure 4 shows the relationship between c, e1,
e2, and x.

Fig. 4. Relationship of e1,e2,c,r, and x and the separation of c and r for the proof of
the absence of flow dependencies

So, x is dominated by e1 which is dominated by c. But x must also be dom-
inated by r which is not possible as c # r. Therefore, no flow dependence can
exist. A mirror argument can be made to prove the absence of anti-dependencies.

7 Worked Example

In this section we will present an example of the parallelization of a ray tracing
application. This much example demonstrates inter-procedural effect analysis
and conditional parallelization based on runtime context relationship testing.
The original application was released by Microsoft as part of its Samples for
Parallel Programming with the .NET Framework 4 [21]. Note that this example

160 A. Craik and W. Kelly

has already been manually parallelized by Microsoft programmers. We are not
trying to do a better job of parallelizing the application, we are simply trying to
demonstrate that our system can automatically detect the known data parallel
loops. Traditional data dependency analysis based systems would struggle to
handle the inter-procedural data dependencies found in the program.

The key source of parallelism in this application is the loop in the Render
method, where the color of each pixel is determined by tracing rays from the
light sources in the scene to the camera. Each ray only reads the state of the
scene as its path and color are computed which allows us to trace multiple rays
at the same time. The original formulation of this loop is presented below:

internal void Render(Scene scene, Color[] scr) {
Camera camera = scene.Camera;
for (int y = 0; y < screenHeight; y++) {
int stride = y * screenWidth;
for (int x = 0; x < screenWidth; x++) {
scr[x + stride].color = TraceRay(new Ray(camera.Pos,

GetPoint(x, y, camera)), scene, 0);
}}}

The first problem is that the loop is in not in the form of a foreach loop.
Note that the loop is actually iterating over the elements of the scr array and
so can be transformed using our modified foreach loop syntax. We then add the
ownership annotations to this modified loop to produce the following code:

internal void Render[s,t](Scene|s| scene, Color[]|t| scr)
reads<this,s,t> writes<t> {
Camera|s| camera = scene.Camera;
foreach(ref Color pixel at int Index in scr) {
pixel = TraceRay|s|(new Ray(camera.Pos,GetPoint|s|(
Index % screenWidth, Index / screenWidth, camera)), scene, 0);

}}

The power of our system becomes evident when we attempt to determine if
the loop can be safely parallelized. In traditional systems the required data de-
pendence analysis would be very complicated because of the aliasing possibilities
and number of methods invoked. Our system, on the other hand, allows us to
look at the declared effects of the TraceRay and GetPoint methods. They read
contexts s t and write nothing. Our compiler and the type system it implements
ensures that the method body effects are consistent with the declared effects;
the method body cannot cause side-effects not listed in the declared effects. For
example, the Normal method indirectly called by TraceRay:

abstract class SceneObject[o] {
public abstract Vector Normal(Vector pos) reads<this> writes<>;

}

Using Ownership to Reason about Inherent Parallelism 161

class Sphere[o] : SceneObject|o| {
public override Vector Normal(Vector pos) reads<this> writes<>...
}
class Plane[o] : SceneObject|o| {
public override Vector Normal(Vector pos) reads<this> writes<>...
}

Note that our compiler also enforces effect consistency in the presence of over-
riding so that we do not need to determine which SceneObject implementation
is being used. The read effect of this is abstracted to become context s (the
owner of the scene) in TraceRay.

From the loop body’s effects of reading contexts this, s and t and writing
t and our sufficient conditions, the sufficient conditions for safely executing the
foreach loop in parallel are (1) the elements of scr are unique, (2) this is
disjoint from or a child of t, and (3) s is disjoint from or a child of t. Because
the relationship between the relevant contexts is not known until runtime, the
loop is conditionally parallelized by the compiler subject to these being true.

Table 1. The number of frames rendered per second by the sample ray tracing appli-
cation. The original sequential and parallel values were obtained from the unmodified
application. The enhanced foreach value was obtained from the ownership annotated
code.

Implementation Frames / sec
original sequential 0.325
original parallel 0.707
enhanced foreach 0.609

Table 1 shows the average number of frames per second rendered with each of
the three implementations. The original parallel and sequential values were ob-
tained using the original code supplied by Microsoft, while the enhanced foreach
value was obtained using the automatically parallelized version of the appli-
cation. The performance runs were conducted on an Intel Core 2 Duo T5800
with 4GB of RAM running Windows 7 Professional 64bit Edition and the .NET
4 Beta 1 runtime. Overall the results show that the performance of the auto-
matically parallelized application is very close to that of the hand parallelized
version. There is some performance degradation which can be attributed to a
combination of the overheads added by the runtime ownership tracking system
and by the overheads incurred in the use of the new enhanced foreach loop; these
overheads can be reduced with further development and optimization. Overall,
our system is lightweight and efficient at identifying exploitable parallelism.

To annotate the program, after applying the loop transformation discussed
earlier in this section, we had to modify 99 lines out of 619 lines of the original
application (15%). The majority of these changes were adding method effect lists
to method signatures and the addition of context parameters to types. While

162 A. Craik and W. Kelly

somewhat burdensome, smart defaulting and ownership inference could reduce
this annotation overhead while still providing the benefits outlined previously.

8 Related Work

As was highlighted in the introduction we are not the first to propose captur-
ing effects using ownership contexts nor are we the first to propose many of
the language features discussed in this paper. We are the first to apply Own-
ership Types to the problem of automatically parallelizing existing imperative
programs. Others have applied Ownership Types to the simpler, and we feel
less interesting, problem of verifying lock ordering in parallelized programs to
prevent deadlocks and data races [12, 13]. We now discuss a few of the most
directly related works in this area of automated parallelization.

A large body of work has been previously published on the use of local dataflow
analysis to extract parallelism from complex iterative algorithms expressed in
imperative languages. One example of such work is that of Rus, Pennings and
Rauchwerger [22]. These techniques proved very good at extracting fine-grained
parallelism from the complex iterative numerical kernels common in the HPC
workloads at which they were targeted. Our work has focused on extracting
a more course-grained parallelism which scales across method and component
boundaries. This kind of course-grained parallelism will become increasingly im-
portant as the number of cores per chip grows and more general purpose appli-
cations need to exploit parallelism.

Marron, Stefanovic, Kapur, and Hermenegildo proposed techniques for rea-
soning about data dependencies in Java [23]. Their approach is to perform com-
plex analyses at compile-time on unmodified programs and not try to facilitate
programmer reasoning directly as we do. They employ static analysis to deter-
mine data dependencies, but need to examine the implementation of any method
called to compute dependencies. They do memoize their method analyses, but
do not provide the consistency guarantees on overriding like we do and do not
make their effects part of the programmers conceptualization. They do, how-
ever, handle looping constructs other than foreach loops. It is unclear how
their techniques would work for large programs.

Various parallel programming languages have also been developed, but they
are largely designed for expressing parallelism rather than facilitating the pro-
cess of parallelizing an existing application by automatically detecting inherent
parallelism. X10 [24] is a programming language under development by IBM as
part of the DARPA HPCS program which is designed to support parallel pro-
gramming. Its syntax and features are inspired by Java, but a number of different
parallelization and synchronization mechanisms have been purposely included in
the language syntax. Our language and X10 serve different purposes. X10 helps
programmers familiar with parallelism write and debug parallel applications.
We aim to provide a framework for programmers and automated tools to reason
about inherent parallelism in sequential programs. Our work and X10 can be
viewed as complimentary.

Using Ownership to Reason about Inherent Parallelism 163

9 Conclusions and Future Work

In this paper we have presented an effects system based on topological ownerships
which allow us to reason about the data dependencies in modern imperative
object-oriented languages. We have presented sufficient conditions for the safe
exploitation of several different patterns of task and data parallelism. We have
demonstrated the need for a complimentary runtime ownership system and how
such a system can be efficiently implemented.

In the future we hope to expand our techniques to include other looping
patterns and continuing to loosen the sufficient conditions for parallelization.
To reduce the burden on the programmer we would like to explore automated
ownership inference. It would be interesting to explore how our techniques can
be applied to C�’s pointers, possibly similar to Cyclone [25]. We hope to continue
to add our annotations to further real applications to gain further understanding
in how our extensions affect program development and how much of the available
parallelism we are able to successfully exploit. We do not claim that our system
is ready for production use, but we feel that some kind of framework to facilitate
reasoning about inherent parallelism is necessary. We hope that this work will
stimulate further exploration of this space.

References

1. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: 13th ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 48–64. ACM Press, New York (1998)

2. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple ownership. In: 22nd
annual ACM SIGPLAN conference on Object-Oriented Programming Systems and
Applications, pp. 441–460. ACM Press, New York (2007)

3. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type
and effect. In: OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 292–
310. ACM, New York (2002)

4. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic java.
In: OOPSLA 2006: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pp. 311–324.
ACM, New York (2006)

5. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-
standing. In: OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pp. 311–
330. ACM, New York (2002)

6. Lu, Y., Potter, J.: Protecting representation with effect encapsulation. In: POPL
2006: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp. 359–371. ACM, New York (2006)

7. Craik, A., Kelly, W.: Mquter parallelism research (2009),
http://www.mquter.qut.edu.au/par

8. Geenhouse, A., Boyland, J.: An object-oriented effects system. In: Guerraoui, R.
(ed.) ECOOP 1999. LNCS, vol. 1628, p. 205. Springer, Heidelberg (1999)

http://www.mquter.qut.edu.au/par

164 A. Craik and W. Kelly

9. Sun Microsystems, Jdk 1.1.1 signing flaw (March 1997)
10. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from

mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

11. Craik, A.: Ownership types for reasoning about parallelism - type system and
semantics. Technical report, QUT ePrints, Queensland University of Technology
(2009), http://eprints.qut.edu.au/

12. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: 17th ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 211–230. ACM
Press, New York (2002)

13. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universes for race safety. In: 1st
International Workshop on Verification and Analysis of Multi-Threaded Java-like
Programs (2007)

14. Cameron, N., Drossopoulou, S.: Existential quantification for variant ownership.
In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 128–142. Springer, Hei-
delberg (2009)

15. Wirth, N.: Type extensions. ACM Trans. Program. Lang. Syst. 10(2), 204–214
(1988)

16. Cohen, N.H.: Type-extension type test can be performed in constant time. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13(4), 626–629
(1991)

17. Dijkstra, E.W.: Recusive programming. Numerische Mathematik 2(1), 312–318
(1960)

18. Abi-Antoun, M., Aldrich, J.: Compile-time views of execution structure based on
ownership. In: International Workshop on Aliasing, Confinement, and Ownership
in Object-Oriented Programming 2007 (2007)

19. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

20. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Com-
put. Surv. 27(3), 367–432 (1995)

21. Microsoft Corporation, Samples for parallel programming with the .net framework
4 (May 2009)

22. Rus, S., Pennings, M., Rauchwerger, L.: Sensitivity analysis for automatic paral-
lelization on multi-cores. In: ICS 2007: Proceedings of the 21st annual international
conference on Supercomputing, pp. 263–273. ACM, New York (2007)

23. Marron, M., Stefanovic, D., Kapur, D., Hermenegildo, M.: Identification of heap-
carried data dependence via explicit store heap models. In: Amaral, J.N. (ed.)
LCPC 2008. LNCS, vol. 5335, pp. 94–108. Springer, Heidelberg (2008)

24. Saraswat, V., Nystrom, N.: Report on the experiment language x10. Technical
Report 1.7.5, IBM (2009)

25. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, 2002, pp. 282–293. ACM
Press, New York (2002)

http://eprints.qut.edu.au/

Punctual Coalescing

Fernando Magno Quintão Pereira1 and Jens Palsberg2

1 Universidade Federal de Minas Gerais, Belo Horizonte
2 University of California, Los Angeles

Abstract. Compilers use register coalescing to avoid generating code
for copy instructions. For architectures with register aliasing such as
x86, Smith, Ramsey, and Holloway (2004) presented a polynomial-time
approach, while Scholz and Eckstein (2002) presented an optimal, expo-
nential-time approach together with a near-optimal, quadratic-time
heuristic. Both methods scale poorly after aggressive live range split-
ting, especially for programs in elementary form where live ranges are
split at every program point. In contrast, we mentioned in a previous
paper (2008), without giving details, that we have a scalable, linear-time
heuristic for programs in elementary form. In an effort to formalize that
heuristic, we discovered an even better algorithm, called Punctual Co-
alescing, which we present here. Punctual Coalescing is scalable, linear
time, locally optimal in general, close to globally optimal for straight-line
code, and proven correct with the Twelf theorem prover. We define global
optimality with an ILP-formulation and we show via experiments that
Punctual Coalescing compares well to this and two other approaches.

1 Introduction

Register allocation is the problem of mapping program variables to physical loca-
tions, which are either registers or memory. Compared to mapping all variables
to memory, a good register allocator can improve the speed of the generated
code on a RISC architecture by 250% [22]. We will focus on a combination of
three important challenges for register allocation, namely live-range splitting,
coalescing and aliasing, which we recall next.

To keep more variables in registers, compiler writers use live-range splitting
[2,6,17,26,31]: split the live range of a variable y by (1) introducing a fresh vari-
able name x, (2) inserting the copy instruction x = y somewhere in y’s live
range, and (3) using the name x instead y after that copy instruction. After the
split, the register allocator has the opportunity to map x to a register and y
to memory, or vice versa. Coalescing [9,11,12,15,16,17,23,30] is the dual of live-
range splitting: eliminate copy instructions of the form x = y by mapping both
x and y to the same register. Intuitively, the more we do live-range splitting, the
more we need coalescing to eliminate unnecessary copy instructions. The third
challenge, aliasing, is a property of architectures such as ARM, PowerPC, Sparc
v8/v9, and x86: quoting Smith et al., “two registers alias when assigning a value
to one may change the value of the other” [33]. Open until now is the prob-
lem of designing a scalable, high-quality, and provably correct register allocator

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 165–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 F.M.Q. Pereira and J. Palsberg

that after aggressive live-range splitting does coalescing for an architecture with
aliasing. Let us briefly summarize the most closely related previous works.

There exist register allocation algorithms that deal with aliasing. An exam-
ple is the integer linear programming (ILP) approach of Kong and Wilken [19].
Scholz and Eckstein (2002) [32] have addressed aliasing with partitioned boolean
quadratic programming (PBQP). They presented an optimal, exponential-time
approach together with a near-optimal, quadratic-time heuristic. Smith, Ram-
sey, and Holloway [33] have generalized graph coloring register allocation to
incorporate aliased registers. Also based on graph coloring allocation, Minwook
et al. [1] have described an optimistic coalescing algorithm that is competitive
with Smith et al.’s iterative approach. These methods scale poorly after aggres-
sive live range splitting. Intuitively, aggressive live-range splitting enables a high
number of variables to be mapped to registers, but it also overwhelms the reg-
ister allocator with copy instructions. We will show how to deal with the high
number of copy instructions by adopting a particular program representation
and then developing a new coalescing algorithm.

We will work with Appel and George’s idea from 2001 [2] of “ultimate” live-
range splitting that splits every live-range at every program point, that is, be-
tween every pair of consecutive instructions. The result is a program in what
we call elementary form. A compiler can convert any program to elementary
form in polynomial time, and the elementary program requires at most as many
registers as its original version. We use the notion of elementary form because it
allows us to avoid a difficult problem. The problem of finding the minimal num-
ber of registers that is needed to compile straight-line code to an architecture
with aliasing is NP-complete [21], while for a program in elementary form, the
problem can be solved in linear time by a puzzle solver [26]. Our goal is to add
coalescing to the linear-time puzzle solver without changing the time complexity.

In a previous paper [26] we mentioned, without giving details, that we have
a scalable puzzle solver that embodies a heuristic for coalescing. In other words,
that unpublished heuristic goes a long way toward solving the open problem.
In an effort to formalize that heuristic, we discovered an even better algorithm,
called Punctual Coalescing, which we present here.

Punctual Coalescing is scalable, runs in linear time, and is a form of biased
coloring [9] that uses only local information. The puzzle solver with Punctual Co-
alescing traverses the dominator tree of the source program finding at each pro-
gram point a register assignment that minimizes the number of variables sent to
memory. The assignment is guided by the assignment found at the most-recently
visited program point. Punctual coalescing is well suited for just-in-time com-
pilers such as TraceMonkey [14], and tree-scan-based allocators such as Braun
and Hack’s [8]. We have proved the correctness of Punctual Coalescing, and in
particular we have proved the main lemma with the Twelf theorem prover [28].

In general, punctual coalescing is locally optimal for straight-line code, and
close to globally optimal. Our experiments with compiling SPEC CPU 2000 to
x86 show that punctual coalescing finds a locally optimal solution for 89% of
the program points in our benchmarks. We define global optimality with an

Punctual Coalescing 167

ILP-formulation that combines ideas from papers by Kong and Wilken [19], who
showed how to handle aliasing, and by Grund and Hack [16], who showed how to
handle coalescing. During the compilation of the SPEC CPU 2000 benchmark
suite to x86, only one copy was inserted per 14 instructions in the original pro-
gram. These copies were typically used to insert fixing code between basic blocks,
and to avoid conflicts with pre-allocated registers, as we discuss in Section 6.

We have done an experimental comparison of four register assignment ap-
proaches: register allocation via coloring of chordal graphs [25], the heuristics
used in the original puzzle solver [26], the punctual coalescing algorithm and the
ILP formulation – the last two algorithms are introduced in this paper. To over-
come scalability issues with the ILP approach we derived long program traces
from SPEC CPU 2000, that is, long sequences of code that were executed in
order. For those program traces our experiments show that Punctual Coalescing
is considerably better than the other approaches and close to globally optimal.

In the next section we briefly review register allocation by puzzle solving,
and illustrate the coalescing problem with an example. In Section 3 we describe
Punctual Coalescing, in Section 4 we describe our ILP-formulation of global
optimality, in Section 5 we show experimental results, in Section 6 we discuss
limitations of punctual coalescing and in Section 7 we conclude the paper.

2 Background

A program point is any point in between two consecutive instructions, or in
between two consecutive basic blocks. The program in Figure 1 has five program
points, numbered 2 to 6. A variable v is alive at program point p if there is a
path from p to an instruction that uses v that does not cross a definition of v.
For instance, in Figure 1, variable a is alive at program points 2, 3, 4, 5 and 6.
The program points where variable v is alive form v’s live range. We can split the
live range of a variable inserting a copy instruction at some program point in the
live range, and doing variable renaming. Many register allocators use live range
splitting to keep more variables in registers [2,17,26,31,34]. The elementary form
is a program representation introduced by Appel and George [2] in which the
live ranges of variables are split at each program point. If P is a program with
V variables and I instructions, and P ′ is P converted to elementary form, then
P ′ contains O(I × V) variables. Many register allocators are at least O(V 2) –
in particular, aliasing aware methods such as Scholz and Eckstein [32]’s PBQP
approach and Smith et al.’s [33] extensions for Chaitin style algorithms. Hence,
these algorithms run in at least O(I2×V 2) when applied to elementary programs.

Register allocation by puzzle solving: Register allocation by puzzle solving [26]
relies on elementary form to minimize register usage. In this paradigm, registers
are modeled as a puzzle board, and the live ranges of the variables as puzzle
pieces. There is one puzzle per program instruction, and the challenge is to
arrange the pieces on the board, so that no piece will be left out. We illustrate
this method with the example given in Figure 1. The program on the left side

168 F.M.Q. Pereira and J. Palsberg

a = •

B = •

c = •

d = B

E = c

• = a,d,E

a B c d E

R
3
 = R

0

a

a
B

a
c

B

a c
B

d

c

E
d a

E d a

a

a

a

a

a

a

B

B

B

c

c

c

d

d

d

E

E

R0 R1 R2 R3
1

2

3

4

5

6

Fig. 1. An example of register allocation by puzzle solving

of the figure has six instructions and five variables, a, B, c, d and E. The live
ranges of the variables are shown in the middle of the figure. We assume a target
architecture with two registers, each one with two aliases. Such architectures are
called T1, for type 1 puzzle. The type of a puzzle is determined by the number
of columns in each board area: a puzzle Tn has 2n columns per area. Lower
case letters denote single precision values, whereas upper case letters denote
double precision values. We can store two single precision values or one double
precision value in one register. The opcode of each instruction is not relevant
to our explanations, so we use •’s for “don’t care’s”. The right side of Figure 1
shows a solution to this instance of the register allocation problem.

In this paper we provide coalescing algorithms for T1 puzzles. These puzzles
model registers that have two independent aliases, such as the general purpose
registers found in x86 (AX, BX, CX and DX), and the floating point registers
found in ARM and PowerPC. It subsumes T0 puzzles, which we find in integer
registers of PowerPC and ARM. T1 puzzles have three types of pieces: X, Y and
Z. X pieces, such as a, d and E in puzzle six of Figure 1 can only be placed on
the upper half of a board area. On the other hand, Z pieces such as B in puzzle
two are only placed on the lower half of an area. Y pieces such as a and B in
puzzle three occupy the upper and lower part of an area. A T1 puzzle piece may
have width one or two. Size one pieces such as a, c and d in Figure 1 fit in one
column of an area; they represent eight bit variables in x86, or single precision
floating point values in ARM and PowerPC. Size two pieces, such as B and E
span two columns. They represent 16 or 32 bit values in x86, or double precision
numbers in ARM and PowerPC. We will be working with padded puzzles, that
is, our puzzle solver expects that the area of the pieces will equal the area freely
available on the board. We pad a puzzle by adding to its original set of pieces
as many size one X and Z pieces as needed. A puzzle has solution if, and only
if, the padded version does [26, Lemma 26].

Punctual Coalescing 169

Register coalescing: The register assignment in Figure 1 is optimal in two senses.
First, it uses the minimal number of registers – it is not possible to compile this
program with only one register divided into two aliases. Second, it uses the
minimal number of copies to split the live ranges of variables. In order to obtain
the minimal register assignment, we had to move variable a from register R0 to
register R3. This split is performed by a register move inserted at program point
five. This solution is globally optimal – the minimal register assignment requires
the insertion of one copy instruction into the source code. In general, inserting
copies to avoid mapping variables to memory leads to faster programs [26];
however, ideally we would like to minimize the number of copies inserted into
the final program – an optimization known as coalescing. We distinguish two
variations of coalescing: global and punctual, which we define below:

– Global Coalescing

Instance: a program P in elementary form that can be compiled with K
registers.
Problem: find a register assignment for P , using K registers, that minimizes
the number of instructions between puzzles.

– Punctual Coalescing

Instance: two consecutive puzzles p1 and p2, such that p1 is already solved.
Problem: find a solution of p2 that minimizes the number of copies inserted
between p1 and p2. We call puzzle p1 the guider, and puzzle p2 the follower.

In the definition of global coalescing we assume that the input program is greedy
K-colorable [6, p.18], that is, it is possible to find an allocation of variables to
registers using at most K registers. K colorability ensures that spilling plays
no role in the coalescing problem. This is the principle behind many register
allocators based on live range splitting [2,17,18,25,26,31]. These algorithms are
divided into two phases [6]. Initially a spilling phase removes variables, mapping
them to memory, in order to ensure K colorability. Subsequently, a coloring phase
finds a valid mapping of variables to registers using the available registers.

Global coalescing has a natural description as a graph coloring problem. The
interference graph of a program is the interference graph of the live-ranges of
the variables in the program. That is, given a program P , if G is its interference
graph, then G has one vertex for each variable in P , and two nodes are adjacent
if, and only if, they correspond to variables with overlapping live ranges. In the
global coalescing problem we consider a second type of edge called affinity edge.
There exists an affinity edge between two nodes v1 and v2 if P contains a copy
instruction v1 = v2. The global coalescing problem asks for a coloring of G with
at most K colors that maximizes the number of affinity related nodes that get
the same color. In the presence of register aliasing, we consider each color as an
integer number, so that some nodes must receive two consecutive colors. Figure 2
shows the graph coloring representation for the coalescing problem in Figure 1.
Dashed lines represent affinity edges, grey nodes represent variables that fit into
a full register, and white nodes represent variables that fit in half a register.

170 F.M.Q. Pereira and J. Palsberg

B

a a

c

dB

a

c

B Ed

a

c d

a

E

a

Fig. 2. A graph coloring representation for the global coalescing problem in Figure 1

Global coalescing is the version traditionally studied in the compiler literature.
This problem is NP-complete [6]; thus, it is normally solved by heuristics, such
as Chaitin’s aggressive algorithm [12], or Brigg’s conservative algorithm [9]. In
Section 4 we give an optimal solution to this problem, in a T1 architecture, via
integer linear programming. When restricted to program traces, global coalescing
has polynomial time solution for T0 register banks, and is NP-complete for T1
register banks [21]. The problem is NP-complete if some variables are forced to
be in particular registers [4], even restricted to program traces in T0 settings.
Punctual coalescing has polynomial time solution for T0 and T1 architectures,
as we show in Section 3. The complexity of this problem in the context of higher
order register banks, or when pre-coloring is allowed is left open.

A sequence of optimal solutions to the punctual coalescing problem might
produce a solution to its global counterpart, as in Figure 1. However, that is not
always the case, as we show in Figure 3. The figure contains three instances of the
punctual coalescing problem, one for each point between two consecutive puzzles.
Each of these instances is optimally solved, and a copy is inserted between puzzles
two and three. However, there is a register assignment that does not require
copies between instructions, shown in the right column of the figure.

3 An Efficient Punctual Coalescing Algorithm

In this section we describe a strategy for solving the punctual coalescing problem.
Our strategy is optimal for settings with initially empty follower boards. By
optimal we mean that, if an instance of punctual coalescing has a solution with
at most n copies inserted, then our algorithm will find it.

If a piece v fills the bottom of area a in the guider’s board, we say that a
is the preferred area for v in the follower’s board. For instance, in Figure 1, R1
is the preferred area for piece c in puzzle four, because the bottom part of R1
is holding c in puzzle three. Also, R2/R3 are the preferred areas of piece B in
puzzle three, for these areas are the location of B in puzzle two. In general, X
and Y pieces have preferred areas, whereas Z pieces never have it.

We extend the notation introduced in [26] to include preferences between
pieces and board areas. If a piece has no preference, we call it anonymous, in
contrast with labeled pieces, which have preference for some area. Anonymous
pieces are marked with the symbol •, and labeled pieces are given the name

Punctual Coalescing 171

a,b,c,d = •

• = b,d

E = •

• = E,a,c

a B c d E

a b c d

a
b d

a c

E

a

a

a
E

E

d

R0 R1 R2 R3
1

2

3

4
a

c

c

c

c

d

d

d

R
1
 = R

2

c

E

a c

a c

a
b d

a c

E

c

E

a c

b d

R0 R1 R2 R3

Punctual Global

Fig. 3. An example where a sequence of optimal punctual coalescings is worse than
global coalescing

of the variable that they represent. Each column of the board area now has a
label, which is the name of the piece with a preference for that column. There
are eight ways, up to symmetry, to label a T1 area. These patterns are shown
in Figure 4. The shaded areas are not part of the pattern; they only illustrate
where the preferred pieces should stay. Each area of the follower board has one
of these patterns. Going back to the running example from Figure 1, area R0/R1
of puzzle two has pattern (h). However, the same area in puzzle five has pattern
(g), with a preference for pieces a and c, as the registers R0 and R1 contain these
pieces in puzzle four. As another example, we illustrate puzzle three below:

ya yB•

ya yB
xc

x•

yB

ya
zB

Puzzle 2: the guider Puzzle 3: the follower

Our puzzle solving algorithm is given in Figure 5. This algorithm, written in
a visual language, solves puzzles by pattern matching. It has eight statements,
one for each possible pattern of preferences that can be found in an area. Each
statement is composed by one or more rules, which specify how an area must
be filled with pieces. Syntactically, a rule is a two-by-two diagram formed by
a pattern and a strategy. The pattern is one of the eight configurations given
in Figure 4. A strategy is a description of how to complete the area, including
which pieces to use and where to put them. We say that the pattern of a rule
matches an area a if the pattern contains the same sequence of preferences as a.
For a rule r and an area a where the pattern of r matches a:

– the application of r to a succeeds if the pieces needed by the strategy of r
are available; the result is that these pieces are placed in a;

– the application of r to a fails otherwise.

The complexity of solving a puzzle with A areas is O(A). The rules of a statement
are tried in order. If one of them succeeds, then the statement succeeds. If no

172 F.M.Q. Pereira and J. Palsberg

ybya xbxa xa y x y• • •xxyy •

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Patterns of preferences. The shaded areas are not part of the notation; they
only emphasize where the preferred pieces should stay.

rule succeeds, then the statement fails. The solution of a puzzle is found by
successive applications of statements on empty board areas, as follows:

For each i from 1 to 8:
For each empty area a such that the pattern of si matches a:

– apply si to a
– if the application of si to a fails,

then terminate the entire execution and report failure.

If the preferred area of a piece v is filled with a piece other than v, and v
is still available to fill other areas, we remove the name of v and mark it as an
anonymous piece. We illustrate this step in the figure below, which uses puzzle
five from Figure 1 as an example:

ya xc yd •

yd ya
ZE

xc x• x• xc

ZE

yd •

yd y•
rule r

2

statement s
7

The piece x• was added to pad the puzzle. This example shows the application of
the second rule of statement seven of our solving algorithm. After the application,
the piece ya can no longer be allocated into its preferred spot, so we relabel it
to an anonymous piece y•.

The algorithm in Figure 5 determines an order in which areas must be filled
with pieces. Part of the ordering that we chose is arbitrary, e.g, any ordering
between statements one to seven would preserve the optimality of the solution.
However, some choices are essential to guarantee the optimal solution of punctual
coalescing. For instance, the figure below illustrates a case in which we get more
copies if we switch the precedence between statements seven and eight:

a
•

b d •

•
a c

•
e

ya xb yc xd ye

a c e

•

b d •

• •

• db

e c

s8
 before s7

s
7 before s

8

Similarly, the figure below illustrates a case in which we get worse results if we
invert the order of rules inside statement five:

Punctual Coalescing 173

y

1

(:z•

x x

z•z•
ybya

z•

xbxa xbxa

z•z•
)

x•x

z•z•z•

x•x

z•

x•x• x•x•

z•z•(:)(:)
xxa

z•

x

z•

x•x•

z•

x•

z•
(:)

(:)

(:)
2 3 4

5 6

7

8

x ybya xbxa xbxa

x x

yy x

yy

• • • • •

••

xxxyy

•

x

y

x

: y•

y

y

y

y: y•

y •

xx•

z•
:

y x

Fig. 5. Program Pc that solves punctual coalescing for empty follower boards

xa yb yc

b c

•

a •

•

• •

•

a

• •

• ••

a •

•

• •

•

•
bc

cb
•

inverted s5

normal s
5

Correctness. We have proven that the algorithm in Figure 5 solves a puzzle
with an initially empty board, if, and only if, that puzzle has solution [24, ch.4].
This result comes from the combination of two lemmas: progress (Lemma 1) and
preservation (Lemma 2). In particular, we give a mechanical proof of Lemma 2
using the Twelf Meta Theorem prover [28].

Lemma 1. (Progress) If P is a solvable puzzle, then there is a rule r in the
algorithm from Figure 5 that applies to P .

Lemma 2. (Preservation) If P is a solvable puzzle, and the algorithm from
Figure 5 applies rule r to P to produce P ′, then P ′ is solvable.

We also show the optimality of our solution, which we state as Theorem 1 below.
To state optimality we need to define the number of displaced pieces. The number
n of pieces displaced in a solution of a type-1 puzzle, as found by the algorithm in
Figure 5, is determined uniquely by the types of patterns and the number of size
2 Z pieces in the puzzle. There are eight different patterns, shown in Figure 4.
We let Z2 be the number of size 2 Z pieces, and we let Pi, i ∈ {a, . . . , h} be the
number of patterns i in the puzzle board. The algorithm to compute n is given
below:

174 F.M.Q. Pereira and J. Palsberg

– let nd = Z2 − (Pb + Pd + Pe + Pf)
– if nd ≤ 0

• then n ← 0
• else if Ph ≥ nd

∗ then n ← nd

∗ else n ← Ph + 2 × (nd − Ph)

Theorem 1. (Optimality) If P is solvable with n displaced pieces, and rule r
is applied on P producing P ′ and causing k displaced pieces, then P ′ is solvable
with at most n − k displaced pieces.

The proofs of progress, preservation and optimality are given in [24, ch.4].

4 ILP Formulation

We use a 0/1 integer linear programming (ILP) formulation to find a solution
to the global coalescing problem. Our ILP model uses three sets: puzzle areas
R, puzzle pieces V and a set N of puzzles with one element for each split point
in the source program. The set R contains 3m elements, where m is the number
of columns in the puzzle board. We assume that, for all i, 0 ≤ i ≤ m, areas 2i
and 2i + 1 alias area i + 2m. Figure 6 gives an example. In this case we have
two puzzle areas, labeled four and five. Area four is divided into columns zero
and one, and area five is divided into columns two and three. We define binary
variables pnvr ranging on these three sets. Each pnvr is 1 if piece p has been
allocated to the area r of the puzzle n, and is 0 otherwise. Notice that pnvr only
exists if the piece v has the same width as area r. For instance, in Figure 6, piece
a of puzzle five produces the variables p5a0, p5a1, p5a2 and p5a3, but not p5a4,
because piece a has width one, and area four has width two.

Following Grund et al. [16], we define affinity variables. The affinity variable
aijvr is 0 if the puzzle pieces pivr and pjvr have the same value. This happens
when the pieces representing variable v have been assigned to the same puzzle
area r across two consecutive puzzles i and j. Affinity variables model the control
flow graph of the source program. Thus, due to affinity edges, our ILP model
finds an optimal solution to register coalescing for the whole program, and not
only for a single program block. The objective function consists in minimizing
the sum of the affinity variables:

min f =
∑

i,j,v,r

aijvr

Our formulation uses three basic types of constraints:

1. Each puzzle piece must be allocated to just one area. That is, given piece v
at puzzle n, for each area r with the same width as v we have that:∑

r

pnvr = 1

Punctual Coalescing 175

Puzzle 5: E
5
 = c

5

3

4 5

20 1

i ii

iii iv

v vi

vii viii
a5

c5
d5

E5

a4 c4 d4

E6d6a6

Fig. 6. Puzzle five from Figure 1

i p5a0 + p5c0 + p5d0 ≤ 1 v p5a2 + p5c2 + p5d2 ≤ 1
ii p5a1 + p5c1 + p5d1 ≤ 1 vi p5a3 + p5c3 + p5d3 ≤ 1
iii p5a0 + p5d0 + p5E4 ≤ 1 vii p5a2 + p5d2 + p5E5 ≤ 1
iv p5a1 + p5d1 + p5E4 ≤ 1 viii p5a2 + p5d2 + p5E5 ≤ 1

Fig. 7. Constraints asserting that a puzzle area can contain only one piece

2. Each puzzle area must contain at most one piece. That is, given an area,
we define four inequalities, one for each region where a piece can be placed.
For all pnvr that can be placed on the same region, and all 0 ≤ i ≤ m, we
have the equations below, where the double summation is due to the double
aliasing of T1 puzzles:∑

v

pnv(2i) +
∑

v

pnv(2m+i) ≤ 1 and also
∑

v

pnv(2i+1) +
∑

v

pnv(2m+i) ≤ 1

3. Each affinity edge aijvr must be greater than or equal the absolute value of
pivr − pjvr.

4.1 Example

As an example, we model the constraints that are produced by the puzzle in
Figure 6, i.e, puzzle five from Figure 1. We have numbered the puzzle areas
using roman numerals to help our explanation. Also, we have added indices to
the variable names, to distinguish those that are part of puzzle five from those
that are part of other puzzles. For each of the four quadrants of an area we have
a constraint that forces the piece stored in that location to be unique. These
constraints are given in Figure 7. Notice that the constraint that refers to an
area uses only the variables that may be allocated in that area. In this way, the
constraint of area i mentions only pieces a5, c5 and d5.

Figure 8 shows the constraints used to guarantee that each piece will receive
a puzzle area. There are four such constraints, one for each variable.

Finally, the affinity edges add 44 equations to our model. These equations are
described by the expressions below:

∀(r ∈ {0, 1, 2, 3}, v ∈ {a, c, d}), f45vr ≥ p4vr − p5vr and also f45vr ≥ p5vr − p4vr

∀(r ∈ {0, 1, 2, 3}, v ∈ {a, d}), f56vr ≥ p5vr − p6vr and also f56vr ≥ p6vr − p5vr

∀(r ∈ {4, 5}), f56Er ≥ p5Er − p6Er and also f56Er ≥ p6Er − p5Er

176 F.M.Q. Pereira and J. Palsberg

a p5a0 + p5a1 + p5a2 + p5a3 = 1 d p5d0 + p5d1 + p5d2 + p5d3 = 1
c p5c0 + p5c1 + p5c2 + p5c3 = 1 E p5E4 + p5E5 = 1

Fig. 8. Constraints asserting that a piece must be placed on only one area

5 Experimental Results

This section empirically validates our punctual coalescing approach. In order
to ensure reproducibility, the material used in these experiments is available at
http://homepages.dcc.ufmg.br/~fpereira/projects/puzzles/punctual/.

Punctual Coalescing in x86. We have implemented our punctual coalescing
algorithm on top of the original puzzle solver [26], running on LLVM 2.2 [20].
When compiling SPEC CPU 2000, our implementation is 4% slower than LLVM’s
default register allocator, an extended version of linear scan [29]. We emphasize
that our implementation is a research artifact, whereas LLVM’s is an industrial
quality software that does not convert the input program into elementary form.

In terms of number of copies, results are very good: no copy was required be-
tween two consecutive puzzles in which the follower had an empty puzzle board
during the compilation of SPEC CPU 2000. These puzzles account for 89% of the
instructions in the source programs. The puzzle solver inserted approximately
one copy per each group of 14 puzzles; however, these copies were used to im-
plement fixing code between basic blocks (63% of copies), and to avoid conflicts
between program variables and pre-allocated registers (37% of copies); we discuss
these issues in Section 6. These results mean that we have not found a pattern
such as that in Figure 1 in our benchmarks. However, x86 is an “easy” target for
punctual coalescing, because it contains only four aliased registers (AX, BX, CX
and DX). Moreover 67% of the puzzles that we found contain only pieces of the
same size, in which case it is possible to find a solution for punctual coalescing
requiring zero copies [24, ch.4]. Thus, to verify the behavior of our algorithm in
a larger puzzle board and with more diverse inputs, we tested it in an artificial
architecture, as we describe in the next section.

Punctual versus Global Coalescing. We have seen, in Section 2, that a se-
quence of optimal solutions to punctual coalescing may be worse than an optimal
solution to global coalescing, even for straight line programs. The objective of
this section is to measure this difference and to compare the punctual coalescer
with other polynomial-time algorithms. In these experiments, we use LLVM [20]
to compile SPEC CPU 2000 to an artificial architecture. LLVM uses a typed in-
termediate representation, in which integer values have a well known bit width:
1, 8, 16 or 32 bits. We assume a T1 architecture with 32-bit registers, each of
them divided into two 16-bit aliases. A register may contain one 32-bit value,
or two 1, 8, or 16-bit values. LLVM’s IR does not use any form of pre-allocated
registers; thus, all the puzzle instances produced have an empty register board.

Punctual Coalescing 177

0.0

0.2

0.4

0.6

0.8

1.0

gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Size 2 pieces only Size 1 pieces only Size 1 and size 2 pieces

#traces

#puzzles

longest trace

97

3954

201

297

12907

224

2182

87062

608

26

1412

238

79

8172

728

321

9257

255

833

47920

480

922

38108

320

73

2596

188

190

15401

420

Fig. 9. Puzzle distribution obtained from LLVM’s intermediate representation.
#traces: the total number of traces produced. #puzzles: the total number of puzzles
produced. longest trace: size of longest trace, in number of puzzles.

The nature of the data produced. We use program traces in these experiments, as
they are small enough for our ILP solver to handle. A trace is a set of instructions
that are executed in sequence. We build traces by concatenating successive basic
blocks. For each function in SPEC CPU 2000, we compile the longest trace that
we obtain given a depth first traversal of the function’s control flow graph. Our
longest trace, taken from 186.crafty, contains 728 puzzles. For each trace, we
assume that our target architecture contains exactly the minimal number of
registers necessary to compile all its puzzles. This number, called T1 register
pressure, has a simple formula for puzzles with initially empty boards. In the
formula below, Y is the number of size two Y pieces, and y is the number of size
one Y pieces; similar notation applies to Z, z, X and x:

T1 register pressure = !(2Y + y + max((2X + x), (2Z + z)))/2" (1)

By equaling available registers and register pressure, we ensure that an optimal
allocator can find a register assignment without causing spills. Spilling plays no
role in the experiments, because the four register assignment algorithms that we
compare fit the model explained in Section 2, which decouples register assign-
ment from register spilling [6].

Given the scenario previously described, we obtained the puzzle distribution
detailed in Figure 9. We have produced 5,020 traces from the ten integer SPEC
CPU 2000 programs that LLVM is able to compile in our system. Together, these
traces contain 226,789 puzzles. We distinguish three groups of puzzles: (i) those
with all the pieces having size two, (ii) those with all the pieces having size one
and (iii) those having pieces of both sizes. We notice that size one pieces are
rare: puzzles of group (ii) correspond to less than 2% of all the puzzles, and over
60% of our puzzles are in group (i), thus containing only size two pieces. This
discrepancy is due to most C programmers seldom using the char and short
data types, recurring instead to int, even to represent boolean variables.

The Competing Coalescers. We compare four register assignment algorithms.
Two of them are the punctual coalescer of Section 3 and the ILP formulation

178 F.M.Q. Pereira and J. Palsberg

of Section 4. The other two algorithms are polynomial-time register assign-
ment heuristics: a coalescing oblivious allocator based on the coloring of chordal
graphs [25], and the register assignment heuristics used in the original puzzle
based allocator [26]. The ILP algorithm uses CPLEX, the two punctual ap-
proaches – the optimal and the heuristic – are implemented in C++, and the
chordal based allocator is written in Java.

Register allocation via coloring of chordal graphs follows from the fact that
programs in static single assignment (SSA) [13] form have chordal interference
graphs, and thus, can be optimally colored in polynomial time [5,10,18]. This
property also applies to elementary programs, which are in SSA form [26]. In
this experiments, we use the register allocator introduced by Pereira and Pals-
berg [25]. This chordal allocator is not guaranteed to deliver optimal results in
the presence of aliasing. If we fail to find an allocation with n registers, where n
is the T 1 register pressure of the input program, then we re-run the algorithm
with n + 1 registers. None of our traces has caused such an iteration.

We have included the chordal based approach in these experiments to show
how bad a coalescing oblivious algorithm can do compared to an optimal alloca-
tor. There exists effective coalescing heuristics for chordal based allocators. Good
examples are given by Bouchez et al. [7] and Hack et al. [17]. However, we do
not use these sophisticated coalescing methods. Instead, after color assignment
is performed, we use a very simple coalescing heuristics. If we let G = (V, E, A)
be an interference graph with a set V of vertices, a set E of interference edges,
and a set A of affinity edges, our heuristics is:

∀ affinity edge (u, v) ∈ A such that (u, v) /∈ E
if ∃ color c such that c is not assigned to any neighbor of u or v,

assign c to u and v

The original puzzle solving heuristics [26] was the inspiration for the punctual
algorithm described in Section 3. The original placement rules are shown in
Figure 10. The main difference between this program and the program shown in
Figure 5 is the arbitrary choice of pieces for areas without preferences. In Figure 5
we use p• to denote a piece that has no preference for any area, and we use pa

to denote a piece that has preference for a given area a. In Figure 10 we write
p? to indicate that we do not take the preference of piece p into consideration
when choosing an area to place it.

Results for SPEC CPU 2000 traces. Figure 11 compares the number of copies
inserted by the coalescing algorithms. The ILP solver did not finish running on
four traces, given a two hours time limit. In total we run the CPLEX solver for 5+
days in order to find solutions to all the traces. In contrast the punctual coalescer,
implemented in C++, took 33 seconds to find a register allocation for all the
traces, and the original heuristics took 30 seconds. The chordal based algorithm
runs for 6+ hours; however, we point that this is a Java program implemented
with no concern for fast running time. For any practical purposes, the ILP and
the two punctual approaches generate a very small number of copies, hence
causing negligible increase in code size. Furthermore, for straight line programs,

Punctual Coalescing 179

y

y y
1

ya yb

ya yb3

x

z •

y x

ya

5

x x?

x •

z •

7

z • z •

x x x x

x

z • z •

x()
2

: xa xb xa xb

z • z •

xa xb xa xb

z •
()
4

:
y y• •

x?

z •
ya ya y?()

6

: x x?

z • z •

x • x •

x

z •
y?

8

():

x? x?

z • z •

••

y? y?

x?

z •
y?

•• ••
9

(): :
Fig. 10. The puzzle solving program for empty boards used by Pereira and Palsberg [26]

Benchmark gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Chordal 13,471 47,677 329,783 4,757 46,182 27,082 174,633 199,355 10,581 101,816
Original 13 32 241 1 21 19 135 79 12 44
Punctual 0 10 17 0 1 5 33 1 0 0
ILP 0 2 4 0 0 0 3 0 0 0

Fig. 11. Number of copies inserted by: (chordal) the coalescing oblivious register al-
locator via coloring of chordal graphs. (original) the coalescing heuristics used in the
original puzzle solver [26], (punctual) the algorithm from Section 3, (ILP) the ILP
formulation from section 4.

the optimal punctual approach delivers results that are very close to the ILP
method. For instance, our punctual coalescing algorithm required 17 copies to
solve the 87,000 puzzles of gcc. This is less than one copy per 5,000 puzzles! Only
the punctual algorithms – optimal and heuristic – are implemented in LLVM, an
there is no runtime performance difference between them. Based on the results
of Hack and Goos [17], we speculate that there will be no measurable differences
among the four algorithms when targeting x86.

The influence of variable widths on the performance of punctual coalescing. We
have observed that the width of the variables found in the traces plays an im-
portant role on the quality of the solution produced by punctual coalescing. The
width of a variable determines if it fits in half a register, or if it demands a full
register. In order to support this observation, we define two types of register
pressures: T0 and T1. The T1 register pressure is computed by Equation 1. The
T0 register pressure is the register pressure computed assuming a register bank
without aliasing, and it is calculated by Equation 2, where X, Y, Z, x, y and z
are defined as in Equation 1.

180 F.M.Q. Pereira and J. Palsberg

Fig. 12. (Left) Histogram of average register pressures. (Right) Histogram of maximum
register pressures.

T1 register pressure = Y + y + max((X + x), (Z + z)) (2)

For instance, in the example of Figure 1, the average T1 register pressure
is 1.83, and the maximum T1 register pressure is 2. On the other hand, the
average T0 register pressure is 2.5, and the maximum T0 register pressure is 3.
Figure 12 gives a histogram in which the traces produced from SPEC CPU 2000
are grouped according to the T0 and T1 register pressures. Both numbers are
very similar in our benchmarks. On the average, each of our puzzles could be
solved with 7.13 registers, assuming no aliasing, and with 7.08, given T1 aliasing.
Furthermore, 95.2% of all the traces could be compiled with 16 registers of type
T0, whereas 95.4% of the functions could be compiled assuming a T1 target
architecture. These numbers are similar because programmers tend to use 32 bit
types such as int instead of smaller types.

Punctual coalescing tends to produce better results when the T1 pressure is
close to the T0 pressure. The intuition behind this fact is simple: for T0 puzzles,
if the number of registers is greater than or equal to the maximum register
pressure in the trace, then there is a register assignment that requires no copy,
and the punctual coalescing strategy discussed in Section 3 trivially finds it. As
an illustration, we have inverted the proportion of size one and size two variables

Fig. 13. Histograms obtained by inverting the proportion of size one and size two
pieces in our benchmarks. (Left) average register pressures. (Right) maximum register
pressures.

Punctual Coalescing 181

Benchmark gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Chordal 15,160 48,878 337,608 4,746 55,468 26,894 176,097 204,325 10,581 101,747
Original 282 1,025 5,554 91 683 486 2,128 3,686 182 1,456
Punctual 25 108 516 20 29 47 251 288 13 111
ILP 0 2 39 0 1 9 21 0 2 8

Fig. 14. Number of copies inserted by different allocators compiling the traces from
Figure 13

presented in Figure 9, obtaining the histograms in Figure 13. In this artificial
setting, we have more size one than size two variables, resulting in a conspicuous
difference between the T1 and T2 register pressures. The results of global and
punctual coalescing in this new context are given in Figure 14. Our punctual
technique inserts 20 times more copies than before; however, this number is still
negligible given the amount of puzzles solved: one copy per each 160 puzzles.

6 Limitations of Punctual Coalescing

The punctual coalescing algorithm of Section 3 may not give optimal results
in two situations: settings with two or more guiding puzzles, and settings with
non-empty follower boards.

Two or more guiding puzzles stems from a merge in the control-flow graph of
the input program. Figure 15 shows an example. The program in Figure 15(a)
contains four basic blocks. Three of these blocks – L1, L2 and L4 – form the
program trace in Figure 1. If our punctual coalescer traverses this trace first,
then it will produce one copy instruction, moving variable a from register R0
into register R3, as seen in Figure 1, and shown again in Figure 15(b). However,
when performing register assignment in the trace formed by basic block L3, our
coalescer will not take into consideration the mapping of variables to registers

a = •

B = •

c = •

d = B

E = c

• = a,d,E

E = B

d = a

L1

L2 L3

L4

a

c

c

c

a

a

a

a

B

B

B

d

d
E

E ad

Ba

a

E

d

R0 = •

R2R3 = •

R1 = •

R2 = R2R3

R3 = R1

R0R1 = R1

• = R3,R2,R0R1

R2R3 = R2R3

R1 = R0

xchg(R0R1,R2R3)

xchg(R2,R3)
E

L1

L2 L3

L4

(a) (b) (c)

R0R1 R2R3

Puzzle board:

Fig. 15. The complete example, from puzzle solving to code generation

182 F.M.Q. Pereira and J. Palsberg

in block L4, previously visited. Thus, it may be necessary to insert fixing code
between basic blocks L3 and L4. The insertion of this code is analogous to
SSA elimination after register allocation, and there are standard algorithms to
perform it [27]. Figure 15(c) shows the final assembly program produced; fixing
code is shown in bold face. We borrowed the xchg instruction, that swaps the
contents of two registers, from the x86 lexicon.

The problem of maximizing coalescing in a setting with two or more guiding
puzzles is NP-complete. The reduction is from the Global Pinning problem,
defined by Rastello et al. [30]. However, we have observed that in practice, at
least in the x86 architecture, the punctual coalescer produces good results: SSA
elimination after register allocation adds approximately 5% more instructions
to the final assembly program, and has negligible impact on the run time of
compiled programs [26]. As a future work, we will couple register assignment
with the static branch prediction technique of Ball and Larus [3] to increase the
likelihood that our puzzle solver will traverse hot program paths first.

Non-empty follower boards stem from constraints in the target architecture’s
instruction set. For instance, x86’s div instruction always produces a result in
register AX. Thus, the puzzle board created for a div instruction contains the
area that corresponds to AX initially taken. Punctual coalescing is not guaranteed
to deliver optimal results if the follower board contains pre-allocated pieces. Pre-
assignment may take away the preferred spot of Y and X pieces. When faced with
pre-allocation we use the original puzzle solving algorithm [26] to eliminate areas
containing pre-assigned pieces, and then apply the punctual coalescing program
from Figure 5 on the remaining areas. In the x86 experiments, move and swap
instructions due to pre-coloring increased the final assembly program in about
2%. Optimal punctual coalescing in face of pre-assignment is an open-problem.

7 Conclusion

This paper has presented punctual coalescing, a technique for reducing the num-
ber of copy instructions inserted by tree-scan register allocators that rely on live
range splitting to lower register pressure. In addition, this paper gave an opti-
mal solution to global coalescing in register banks with aliasing. A comparison
between these two techniques showed that the linear time punctual approach is
very close to the exponential time global algorithm for straight line programs.
We are currently adapting our punctual algorithm to run on a trace compiler[14].

References

1. Ahn, M., Lee, J., Paek, Y.: Optimistic coalescing for heterogeneous register archi-
tectures. SIGPLAN Notices 42(7), 93–102 (2007)

2. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers.
In: PLDI, pp. 243–253. ACM, New York (2001)

3. Ball, T., Larus, J.R.: Branch prediction for free. In: PLDI, pp. 300–313. ACM, New
York (1993)

Punctual Coalescing 183

4. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. interval graphs. Discrete
Mathematics 100(1-3), 267–279 (1992)

5. Bouchez, F.: Allocation de registres et vidage en mémoire. Master’s thesis, ENS
Lyon (October 2005)

6. Bouchez, F.: A Study of Spilling and Coalescing in Register Allocation as Two
Separate Phases. PhD thesis, ENS Lyon (2008)

7. Bouchez, F., Darte, A., Rastello, F.: Advanced conservative and optimistic register
coalescing. In: CASES, pp. 147–156. ACM, New York (2008)

8. Braun, M., Hack, S.: Register spilling and live-range splitting for SSA-form pro-
grams. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp.
174–189. Springer, Heidelberg (2009)

9. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. TOPLAS 16(3), 428–455 (1994)

10. Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal register sharing for high-
level synthesis of SSA form programs. TCAD 25(5), 772–779 (2006)

11. Chaitin, G.J.: Register allocation and spilling via graph coloring. In: Symposium
on Compiler Construction, vol. 17(6), pp. 98–105 (1982)

12. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

14. Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M.R.,
Bebenita, M., Change, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI, pp. 465–478. ACM, New York (2009)

15. George, L., Appel, A.W.: Iterated register coalescing. Transactions on Program-
ming Languages and Systems (TOPLAS) 18(3), 300–324 (1996)

16. Grund, D., Hack, S.: A fast cutting-plane algorithm for optimal coalescing. In:
Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 111–125.
Springer, Heidelberg (2007)

17. Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI, pp. 227–237.
ACM, New York (2008)

18. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

19. Kong, T., Wilken, K.D.: Precise register allocation for irregular architectures. In:
MICRO, pp. 297–307. IEEE, Los Alamitos (1998)

20. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE, Los Alamitos (2004)

21. Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation. Theoretical
Computer Science 407(1-3), 258–273 (2008)

22. Nandivada, V.K., Pereira, F., Palsberg, J.: A framework for end-to-end verification
and evaluation of register allocators. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 153–169. Springer, Heidelberg (2007)

23. Park, J., Moon, S.-M.: Optimistic register coalescing. In: IEEE PACT, pp. 196–204
(1998)

24. Pereira, F.M.Q.: Register Allocation by Puzzle Solving. PhD thesis, University of
California, Los Angeles (2008)

184 F.M.Q. Pereira and J. Palsberg

25. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg
(2005)

26. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: PLDI, pp.
216–226. ACM, New York (2008)

27. Pereira, F.M.Q., Palsberg, J.: SSA elimination after register allocation. In: de Moor,
O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 158–173. Springer,
Heidelberg (2009)

28. Pfenning, F., Schürmann, C.: Twelf - a meta-logical framework for deductive sys-
tems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999)

29. Poletto, M., Sarkar, V.: Linear scan register allocation. TOPLAS 21(5), 895–913
(1999)

30. Rastello, F., de Ferriére, F., Guillon, C.: Optimizing translation out of SSA using
renaming constraints. Technical Report 03-35, École Normale Supérieure de Lyon
(2003)

31. Sarkar, V., Barik, R.: Extended linear scan: an alternate foundation for global
register allocation. In: LCTES/CC, pp. 141–155. ACM, New York (2007)

32. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In:
LCTES/SCOPES, pp. 139–148. ACM, New York (2002)

33. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: PLDI, pp. 277–288. ACM, New York (2004)

34. Traub, O., Holloway, G.H., Smith, M.D.: Quality and speed in linear-scan register
allocation. In: PLDI, pp. 142–151. ACM, New York (1998)

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 185–204, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Strategies for Predicate-Aware Register Allocation

Gerolf F. Hoflehner

Intel Corporation
2200 Mission College Blvd

Santa Clara, CA 95054
gerolf.f.hoflehner@intel.com

Abstract. For predicated code a number of predicate analysis systems have
been developed like PHG, PQA or PAS. In optimizing compilers for (fully)
predicated architectures like the Itanium® 2 processor, the primary application
for such systems is global register allocation. This paper classifies predicated
live ranges into four types, develops strategies based on classical dataflow
analysis to allocate register candidates for all classes efficiently, and shows that
the simplest strategy can achieve the performance potential provided by a PQS-
based implementation. The gain achieved in the Intel® production compiler for
the CINT2006 integer benchmarks is up to 37.6% and 4.48% in the geomean.

Keywords: Register Allocation, Predication, Compiler, Itanium processor,
EPIC, PQS.

1 Introduction

Register allocation solves the decision problem which symbolic register (“candidate”)
should reside in a machine register. A symbolic register represents a user variable or a
temporary in a compiler internal program representation. Register assignment solves
the decision problem which specific machine registers to assign a given symbolic
register. Solutions of both problems must take into account constraints between sym-
bolic registers. A coloring allocator abstracts the allocation problem to coloring an
undirected interference graph with K colors, which represent K machine registers.
Then a coloring is a mapping of a large number of symbolic register candidates to a
small, finite set of physical registers. Chaitin describes - in “broad brush strokes” - the
fundamental building blocks of coloring allocators [6]. Eminent is the interference
graph that encodes the information when two symbolic registers cannot be assigned
the same physical register. In this case, they are said to interfere. A node in this undi-
rected graph is a live range, which represents a candidate and the program points at
which the candidate could be allocated a register. A live range is typically modeled by
the outcome of two dataflow algorithms: a backward live variable analysis and a for-
ward available variable (or reaching definition) analysis. The live range consists of all
program points where the symbolic register is both live and available. To allocate as
many symbolic registers to machine registers as possible the allocator must determine
the start of a live range and its interferences precisely. Both problems are harder to
solve on predicated architectures like the Itanium processor (“IA-64”).

186 G.F. Hoflehner

1.1 Predication

Predication is the conditional execution of an instruction guarded by a qualifying
predicate. For example, on IA-64 the qualifying predicate is a binary (“predicate”)
register that holds a value of 1 (=True) or 0 (=False). The (qualifying) predicate regis-
ter is encoded in the instruction. When its value is 1 at run-time, the predicate is set.
When the value is 0 at run-time, the predicate is clear. On IA-64 almost all instruc-
tions are predicated. As (almost) fully predicated architecture IA-64 supports if-
conversion. If-conversion is a compiler optimization that can eliminate conditional
forward branches and their potential branch mis-prediction penalty (Fig. 1). The in-
structions dependent on the branch are predicated up to a merge point in the original
control-flow graph. This eliminates the conditional branch and converts control de-
pendencies (instructions dependent on the branch) into data dependencies (between
qualifying instruction predicates) (Allen et al. [2]). As a result if-conversion trans-
forms a control-flow region into a linear (“predicated”) code region (“hyperblock”).
The paths in the control-flow region become execution traces in the predicated code.
In the predicated region all paths of the original region overlap and predicated instruc-
tions make it harder for the register allocator to find the start of a live range and de-
termine its precise interferences.

1.2 Overview

The rest of the paper is structured as follows: section 2 gives the background on color-
ing allocators and the Itanium architecture. Section 3 presents register allocation for
predicated code. This section is the core of the paper and presents four classes of
predicated live ranges, two methods of precise live tracking interference tracking, and
three implementation strategies. Section 4 discusses measurement setup and results.
Section 5 reviews related work. Section 6 has conclusions.

(a) Control-flow Graph (b) Unpredicated Code

B1:

cmp p3,p0=cond

(p3)br.cond B3

B2: V1=

br B4

B3: V2=

B4:

B1:

cmp p3,p2=cond

(p2)V1=

(p3)V2=

B4:

(c) Predicated Code

V1= V2=

B4

B1

B3B2

(a) Control-flow Graph (b) Unpredicated Code

B1:

cmp p3,p0=cond

(p3)br.cond B3

B2: V1=

br B4

B3: V2=

B4:

B1:

cmp p3,p2=cond

(p2)V1=

(p3)V2=

B4:

(c) Predicated Code

V1= V2=

B4

B1

B3B2 V1= V2=

B4

B1

B3B2 V1= V2=

B4B4

B1

B3B2

Fig. 1. Example with control-flow graph, non-predicated and predicated code

 Strategies for Predicate-Aware Register Allocation 187

2 Background

This section gives the background on basic coloring allocator and the Itanium archi-
tecture.

2.1 Chaitin-Style Register Allocation

A Chaitin-style graph-coloring algorithm has six phases (Fig. 2): “renumber”, “build”,
“coalesce”, “simplify”, “spill” and “select”. At the start of the algorithm each sym-
bolic register corresponds to a single register candidate node (“renaming”). This
phase may split disjoint definition-use chains of a single variable into multiple dis-
joint candidates. It also ensures contiguous numbering of candidates which reduces
memory requirements for dataflow-analysis and interference graph. Node interference
relies on dataflow analysis to determine the live range of a node. The live range of a
node consists of all program points where the candidate is both live and available.
Dataflow analysis is necessary only once, not at each build step. The “build” phase
constructs the interference graph. The nodes in the interference graph represent regis-
ter candidates. Two nodes are connected by an interference edge when they cannot be
assigned the same register. This is the case when their live ranges intersect. The num-
ber of edges incident with a node is the degree of the node. Building the interference
graph is a two pass algorithm. In the first pass, starting with the live out information,
node interference is determined by a backward sweep over the instructions in each
basic block. Interference is a symmetric relation stored in a triangular matrix. This is
usually a large, sparse bit matrix inadequate for querying the neighbors of a given
node. To remedy this for each node an adjacency vector is allocated in a second pass.
The length of the vector is the degree of the node, and the vector lists all neighbors of
the node.

The next phase, “coalescing” (aka “subsumption”, “node fusion”), is an optimiza-
tion that is not needed for solving the register allocation problem, but is part of the
original Chaitin allocator. It fuses the source and destination node of a move instruc-
tion when the nodes do not interfere. This reduces the size of the interference graph

Fig. 2. Chaitin’s model for a coloring allocator

188 G.F. Hoflehner

and eliminates the move instruction, since source and destination get assigned the
same register. In Chaitin’s original implementation any possible pair of nodes is coa-
lesced. This form of coalescing is called “aggressive coalescing”. After possibly sev-
eral iterations of “coalesce” and (re-) “build”, the simplification phase iterates over
the nodes in the interference graph using simple graph theory to filter candidates that
can be certainly allocated to machine registers: when a register candidate has fewer
than K interference edges (a low degree node that has fewer than K neighbors), then it
can always be assigned a color. Low degree nodes and their edges are removed from
the graph (“simplify”) and pushed on a stack (“coloring stack”). Node removal may
produce new low degree nodes. When only high degree (“significant”) nodes that
have K or more neighbors are left simplification is in a blocking state. It transitions
out of a blocking state using a heuristic based cost function that determines the “best
node” to be removed from the graph. A node that is removed from the graph in block-
ing state is “spilled” and appended to a spill list. The edges of a spilled node are re-
moved from the graph, so new low degree nodes can get exposed and simplification
continues until all nodes have been pushed to the coloring stack or appended to the
spill list. The cost function that decides on the “best node” estimates the execution
time increase caused by spill code normalized by the degree of the node. The higher
the degree the less likely a node will be allocated a register.

2.2 Itanium® 2 Processor Architecture

The Itanium processor family is a commercially available implementation of the
EPIC (“Explicitly Parallel Instruction Computing”) computing paradigm. In EPIC
the compiler has the job of extracting instruction level parallelism (ILP) and com-
municating it to the processor. Instructions are grouped in fixed-size bundles. These
are simple structures that contain three instructions and information about the func-
tional unit each instruction must be issued. IA-64 is a 64bit computer architecture
distinguished by a fully predicated instruction set, dynamic register stack, rotating
registers and support for control- and data speculation. Predication and speculation
allow the compiler to remove or break two instruction dependence barriers:
branches and stores. Predicates enable the compiler to remove branches (“branch
barrier removal”), control speculation allows it to hoist load instruction across
branches (“breaking the branch barrier”), and data speculation makes it possible to
hoist load instruction across stores (“breaking the store barrier”). Using predication
and rotating registers the compiler can generate kernel-only pipelined loops. The
dynamic register stack gives the compiler fine-grain control over register usage. In
general exploiting instruction-level parallelism using Itanium features increases
register pressure and poses new challenges for the register allocator. To support the
EPIC paradigm the Itanium processor provides a large number of architected regis-
ters. Relevant for register allocation are the 128 general (integer) registers r0-r127,
128 floating point register f0-f127, 64 predicate registers p0-p63 and 8 branch reg-
isters b0-b7. The floating point and predicate register files contain rotating registers
f32-f127 and p16-p63 respectively. Unique for Itanium are the 96 stacked integer

 Strategies for Predicate-Aware Register Allocation 189

registers, r32-r127, which are controlled by a special processor unit, the Register
Stack Engine (RSE).

3 Register Allocation for Predicated Code

The IA-64 architecture is a fully predicated architecture with 64 predicate registers
[10]. Each instruction (with some exceptions like the alloc instruction) is guarded
by a qualifying predicate. A fully predicated architecture supports if-conversion, an
optimization that can eliminate forward branches (Allen et al. [2]). If-conversion
transforms a region of the control-flow graph to linear (“predicated”) code. In this
predicated region all execution paths of the original control-flow region overlap.
The proper representation of a predicated region is a hyperblock, which is a predi-
cated single entry multiple exit region. The compiler picks a single entry acyclic
control-flow region as a candidate region for if-conversion. It may have multiple
exits. Basic blocks where the paths originating from the single entry meet, are
merge points and mark a potential end node for the region former. Typically the
compiler has a threshold for the number of blocks in a region. The decision whether
or not to if-convert a candidate region is driven by a predication oracle. It computes
the estimated execution times of the predicated and control-flow version of the
candidate region. When the estimated execution time for the predicated region is
faster than the estimated execution time for the original control-flow regions, the
candidate region is if-converted. The register allocator must handle predicated code
formed from control-flow graph regions. This section investigates the impact of
predicated code on the register allocator, discusses the predicate query system
(PQS), classifies predicated live ranges and interference tracking, and presents a
family of predicate-aware register allocators. The allocator based on “use-and-
partition tracking” is equivalent to a PQS-based allocator, but simpler allocators are
investigated as well.

3.1 Impact of Predicated Code

On a predicated architecture completeness and soundness of live variable and disjoint
live range information are harder problems than for non-predicated code. For exam-
ple, for live variables, completeness means at any program point where a variable is
actually live, liveness computation reports it as live. Soundness means that at any
point where the liveness computation reports a variable as live, it is actually live. The
remainder of this section discusses live range extension, interference graph construc-
tion for predicated live ranges and global disjointness information.

In non-predicated code a definition is the start of a live range. This is not necessar-
ily true for predicated code. In Fig. 3 the predicated live range for virtual register V1,
which corresponds to variable “a” in the source code, must span lines 1 to 7. This
shows that a predicated definition of V1 (line 4) is not necessarily the start of the live
range. Otherwise, the live range for V1 would extend incorrectly from line 4 to 7 in
the predicated code.

190 G.F. Hoflehner

Fig. 3. Example with source code, predicated code and predicated live range. The bar at the
right represents the actual live range of V1.

On the other hand, when no predicated definition is the start of a live range, predi-

cated live ranges would extend to more program points than necessary increasing
register pressure and consumption. All predicated live ranges would behave like live
ranges of undefined or partially defined variables in non-predicated code. A variable
is partially defined if there is (at least) one definition-free path from function entry to
a use and (at least) another path that contains a definition. Depending on the run-time
execution path the variable is defined or undefined. In cyclic code, the live range of a
partially defined variable typically spans the entire loop nest that contains the defini-
tion. This is a result of the dataflow algorithms that determine a live range. Available
variable analysis (forward) propagates the is_available property to every point in the
loop nest. Live variable analysis (backwards) propagates the is_live property from the
use to every point in the loop nest. Thus the live range, which consists of all program
points where a variable is both available and live, spans the entire loop nest. This
must be so since the variable could be defined in the first iteration and used in all
subsequent iterations. Since the variable is live across the entire loop nest, it interferes
with all variables in the loop. Therefore it will not be “destroyed” after being defined
in the first iteration. In acyclic code, live range extension cannot occur because a live
range cannot extend to a program point where it is not available. Fig. 4 illustrates live
range extension in cyclic code for the predicated live range of V1: unless a predicated
definition is recognized as the start of the live range for V1, it will extend across the
entire loop nest (the large live range from line 2-10). The correct live range is the
small live range from line 5, the first predicated definition of V1, to line 8, the use of
V1. Live range extension for predicated code could also cause non-termination of a
coloring allocator: When the allocator spills a predicated live range, it introduces one
or more new predicated live ranges replacing the original. But the new live ranges
share the same predicate. Due to live range extension the interferences in the next
allocation round may actually increase. Since the new live ranges introduced for spill-
ing are marked as non-spillable the allocator may no longer find spill candidates in
the simplification phase. At this point the allocator would have to give up. So there is
not only a potential run-time performance loss due to extra register pressure, but also
a stability reason why a predicate-aware allocator must recognize the start of

 Strategies for Predicate-Aware Register Allocation 191

Fig. 4. Example for live range extension in predicated code. Short bar represents exact live
range, while the long bar represents the extended live range of V1.

predicated live ranges. This impacts live range analysis (in particular, live variable
analysis) and interference graph construction, which happens in the “build” phase of
the allocator.

In non-predicated code interference is a function of “liveness”. In predicated code
interference is a function of liveness and predicate disjointness. Disjoint live ranges
do not interfere and can be assigned the same register. The allocator queries a Predi-
cate Data Base (PDB) for disjointness information when it constructs the interference
graph: if the sets of predicates that guard two live ranges L1 and L2 are disjoint, no
interference edge needs to be added between them.

Interference graph construction for predicated code is similar to non-predicated
code: it is a backward scan of the instructions in a basic block with a single, non-
predicated live vector initialized with the live-at-exit candidates. For each candidate
the guarding predicates (=qualifying predicates of the instruction that references the
candidate) are recorded as predicate sets associated with the live range in a separate
table. The compiler routine checking for interference takes the qualifying predicate,
candidate and the live vector as arguments. For each live candidate in the live vector
it checks if the qualifying predicate is disjoint from all predicates in its predicate set.
Interference is recorded accordingly in the interference graph. A defined variable is
removed from the live vector when it is recognized as the start of its live range. Each
candidate used in the current instruction is added to the live vector and the qualifying
predicate is recorded in its predicate set. This is the set of predicates under which a
candidate is live and is kept in the table mentioned above. The live vector representa-
tion in the predicate-aware allocator does not (need to) change and can remain predi-
cate-unaware.

Finally, a predicate-aware live variable analysis must treat predicated live ranges
conservatively across back edges. For example, in Fig. 5 variable B would be live
under P2 and variable A under predicate P1. In one scenario, P1 could be true in the
first iteration and false in the second. If B is live under P1, the allocator would recog-
nize A and B as disjoint and could assign them the same physical register. In this case

192 G.F. Hoflehner

Fig. 5. Propagating liveness property under p0 on back edge

the assignment to A in the first iteration would overwrite B, which is used in the sec-
ond iteration. When the live range of B becomes live under p0, which is the True
predicate, then – since p0 interferes with every predicate – the live ranges for A and B
are no longer disjoint.

For general graphs, global disjointness can be represented like interference in a

triangular matrix of size)|BO(| 2 , where |B| is the number of basic blocks in the

routine. Global disjointness calculation is reaching-definition analysis for block
predicates on the acyclic control-flow graph. This graph is derived from the original
control-flow graph by removing back edges. Attention must be paid to irreducible
graphs, which have retreat edges that are not back edges. Removing retreat edges
gives an acyclic graph, but global disjointness is not necessarily consistent with local
disjointness in an arbitrary acyclic region of the original graph.

3.2 Predicate Partition Graph (PPG) and Query System (PQS)

In predicated code live variable analysis and interference graph construction must
reason about predicates. Both must find the start of a live range. Interference calcula-
tion must also recognize disjoint live ranges. The predicate query system (PQS) as
described in Gillies et al. [8] provides predicate information to solve both problems. It
is a set of predicate query routines on the predicate partition graph (PPG). The PPG is
a directed acyclic graph whose nodes represent predicates and whose labeled edges
represent partition relations between predicates. A partition P2|P1P = is represented

by labeled edges P1P r⎯→⎯ and P2P r⎯→⎯ . The common label indicates both edges
belong to the same partition. The partitions represent execution paths and are derived
by a single traversal of the control flow graph. For each block in the graph that has
two or more successors or predecessors the partition PN|...|P2|P1P = is added to

the graph, where P is the block predicate of the block and predicates Pi (i=1,…,N) are
the block predicates corresponding to the successors (predecessors).

B =
V =

V =

(P2) =B
(P1) =A

…
(P1) A=

CMP P1,P2=V,r0

B =
V =

V =

(P2) =B
(P1) =A

…
(P1) A=

CMP P1,P2=V,r0

B =
V =

V =

B =
V =

V =

(P2) =B
(P1) =A

…
(P1) A=

CMP P1,P2=V,r0

(P2) =B
(P1) =A

…
(P1) A=

CMP P1,P2=V,r0

- P1 and P2 are disjoint
- Assume P1 is true in first iteration
- Assume P2 is true in second itera-

tion
- If A and B are assigned same regis-

ter, then use of B under P2 actually
uses value of A from the previous
iteration.

 Propagate liveness property un-
der p0 across back edges. In irreducible
graphs propagate liveness property
under p0 across retreat edges.

 Strategies for Predicate-Aware Register Allocation 193

Fig. 6. Example to illustrate liveness under predicate sets. C source code and corresponding
predicated code in an intermediate representation.

There are two preparation steps before the partition graph is built: first, the control
flow graph is completed. Completion is necessary for the uniqueness of the predicate
partitions and preciseness of disjointness. Completion is a single pass over the con-
trol-flow graph and inserts empty basic blocks on critical edges. A critical edge is
defined as follows: If basic block B1 has two or more successors and basic block B2
has two or more predecessors, then the edge B1 → B2 is critical. The inserted block is
referred to as JS (“Join-Split”) block. Second, a block predicate is assigned to each
basic block. For this, the compiler uses the RK algorithm (Park and Schlansker [16]).
The characteristic of the RK algorithm is that it assigns the same block predicate to a
set of control-equivalent basic blocks. Two basic blocks B1 and B2 are control-
equivalent if B1 executes whenever B2 executes and vice versa. Using a single predi-
cate for a class of control-equivalent blocks results in a more compact representation
of the predicate relations derived from the control-flow graph in the PPG.

We use a more elaborate version of the example in Johnson and Schlansker 12] to
illustrate the predicate partition graph and PQS. Fig. 6 shows source code and predi-
cated code of our example, while Fig. 7 has the control-flow graph including block
predicates and PPG. Control-equivalent basic blocks are assigned the same block
predicates. The edge from Block 3 to Block 8 is critical, and the completion phase
inserted JS-Block B6’ on the edge. The acyclic predicate partition graph correspond-
ing to the control-flow graph fragment is shown in Fig. 7. Partitions

P3|P2P1 = (edges “a”), P8|P7P1 = (edges “e”) and P6|P6'P3 = (edges “c”) are

194 G.F. Hoflehner

Fig. 7. Control-Flow Graph and PPG for the example in Fig. 6

forward partitions, partition P6|P6'|P2P1 = (edges “d”) is a backward partition

and P5|P4P2 = (edges “b”) is both, a forward and a backward partition.

Both live variable analysis and interference calculation use PQS queries that walk
the predicate partition graph (PPG) to compute accurate liveness information at each
instruction. Fig. 10 shows two predicated live ranges A and B and their predicated
sets during a PQS-based backward traversal of instructions 1-20 in the predicated
code fragment of the example. The interference graph construction uses this backward
traversal to find and record live range interferences.

PQS is powerful, but it comes at a cost. First, it requires the construction of the
predicate partition graph, which is linear in space and time of the number of basic
blocks. Second, unlike classical live variable analysis, which operates on basic blocks,
the granularity for PQS-based predicated live variable dataflow is an instruction, so
customized dataflow routines are required. Finally, the PQS queries are invoked at
every predicated instruction. These cost factors motivate alternative solutions.

3.3 A Family of Predicate-Aware Register Allocators

This section assumes all predicated code is compiler generated. We propose a family
of predicate-aware allocation schemes based solely on classical register allocation
techniques. This is based on the observation that computing partitions based on PQS
at every instruction during interference graph construction and live variable analysis
is not necessary for all live ranges. Specifically, PQS partitions are not necessary
when the qualifying predicates for the definitions and uses of a live range match or a
definition dominates all uses. In other cases, partitions can be pre-computed at
each use on demand. Building and repeatedly querying the PPG is not necessary. In
particular we will identify four types of predicated live ranges – match, dominate,

 Strategies for Predicate-Aware Register Allocation 195

partition, overlap - two methods for interference modeling – “simple” and “complex”,
and three implementation strategies. In Strategy 1, only match and dominate live
ranges are modeled precisely. Strategy 2 models all simple live ranges precisely, and
Strategy 3 models all live range precisely, which is equivalent to a PQS-based imple-
mentation. The four types of predicated live ranges are recognized in the original
control-flow region.

There are four fundamental relations between predicated definitions and uses
(Fig. 8). Predicated live ranges are classified based on the original control-flow region
the predicated code is derived from. It is important to keep the correspondence be-
tween blocks and qualifying predicates in mind. A definition is clearly the start of the
live range when the qualifying predicates of the definition and use match. This is also
the case when the qualifying predicate of the definition dominates the qualifying
predicates of the uses. When multiple definitions reach a use, two cases are possible.
First, when definitions form a partition, the qualifying predicates of the definitions are
mutually disjoint and the first definition in the hyperblock is the start of the live
range. In this case the allocator gets precise disjointness by tracking liveness under all
predicates that reach the use. Therefore it can track liveness under all definition predi-
cates reaching a use rather than the qualifying predicate of the use (instruction). For
example, in the partition case in Fig. 8, instead of tracking liveness under P3, re-
cording liveness under P1 and P2 would give precise disjointness information. In this
scenario, the definition of V under P2 (or P1) would kill liveness under P2 (or P1).
Any subsequent – in the backward traversal – variables (defined or used) under P2 (or
P1) do not interfere with V. This would not be the case if the live range were tracked
using P3, unless a system like PQS partitioned P3 at the definition of V qualified
under P2. Second, when definitions don’t form a partition (“overlap”), recording
liveness under the reaching predicates would find the start of the live range, but dis-
jointness would be conservative. For example, variables under qualifying predicate P2
could interfere with V, although V might have been killed under P2, since V would be
live under P1, too (see “overlap” I n Fig. 8).

The live range for a variable defined in the region and live is completed (=made
strict relative to the region) by adding pseudo definitions into region blocks based on
two rules: first, if the variable V is live at entry of two successors, follow both paths.
Second, if block B1 has two successors, B2 and B3, and variable V is live at entry in
B2, but dead at entry in B3, insert a pseudo definition at the beginning of B2. The
pseudo definition does not start the live range, but is used to form a partition.

Fig. 8. Classification of predicated live ranges

(P1) V= (P2) V=

(P3) …=V

(P1) V=

(P2) V=

(P3) …V

(P1) V=

(P2) ...=V (P3) …=V

(P1) V=

(P1) …=V

dominate partition overlapmatch

(P1) V= (P2) V=

(P3) …=V

(P1) V=

(P2) V=

(P3) …V

(P1) V=

(P2) ...=V (P3) …=V

(P1) V=

(P1) …=V

dominate partition overlapmatch

(P1) V= (P2) V=

(P3) …=V

(P1) V=

(P2) V=

(P3) …V

(P1) V=

(P2) ...=V (P3) …=V

(P1) V=

(P1) …=V

dominate partition overlap

(P1) V= (P2) V=

(P3) …=V

(P1) V=

(P2) V=

(P3) …V

(P1) V=

(P2) ...=V (P3) …=V

(P1) V=

(P1) …=V

dominate

(P1) V=

(P2) ...=V (P3) …=V

(P1) V=

(P1) …=V

(P1) V=

(P1) …=V

dominate partition overlapmatch

196 G.F. Hoflehner

Fig. 9. Example from Fig. 6 and two variables A and B and their predicate sets as seen by
interference graph construction for a) partition based tracking and b) PQS-based tracking

Our example Fig. 6 illustrates the four fundamental relations. Live ranges D, a,
and b are defined and used under a single predicate (“match”). In live range C the
definition under (P2) dominates the uses under (P4) and (P5) (“dominate”). In live
range A the qualifying predicates of the definitions (P3, P4 and P5) form a partition
for the use under (P1) (“partition”). Live range B has uses under (P1) and (P2). The
qualifying predicates (P4) and (P5) form a partition for (P2) (“partition”). For (P1)
there is no partition. Since B is live at the entry of the predicated region, there is a
pseudo definition of B in block 3 under (P3), since B is live at entry in block 3, but
dead at entry in block 2.

The start of predicated live ranges can be found performing live variable analysis be-
fore if-conversion. After a region is if-converted, the first definition of a variable (= start
of its live range) can be marked in a forward sweep over all instructions in the (linear)
if-converted region, using the live-at-entry vector and recording definitions: at a given
predicated instruction if the variable defined is not live-at-entry and no other definition
of the variable has been seen, the first definition of the variable has been found.

Based on the types of predicated live ranges, three strategies for predicate-aware
register allocation can be defined that model predicate disjointness with increasing
accuracy:

Strategy 1: Dominate-or-Match
The qualifying predicates of instructions that use a variable form the predicate set of
that variable. For live ranges with matching qualifying predicates for definition and
uses, interference is precise. This is true also when the definition predicate dominates
all use predicates.

Predicated Code

A B A B
1: (P1) D= {} {P3} {} {P6',P6}
2: (P1) cmp P2,P3=(x<y) {} {P3} {} {P6',P6}
3: (P2) a=… {} {P3} {} {P6',P6}

4: (P2) C=… {} {P3} {} {P6',P6}
5: (P2) cmp P4,P5=(a==3) {} {P3} {} {P6',P6}
6: (P3) A=… {} {P3} {} {P6',P6}
7: (P3) b=… {P3} {P3} {P6',P6} {P6',P6}
8: (P3) cmp P6,p0=(b>10) {P3} {P3} {P6',P6} {P6',P6}
9: (P4) A=… {P3} {P3} {P6',P6} {P6',P6}
10: (P4) B=…; (P4) B1=…; {P3,P4} {P3} {P4,P6',P6} {P6',P6}
11: (P4) …=C {P3,P4} {P3,P4} {P4, P6',P6} {P4,P6',P6}
12: (P5) A=… {P3,P4} {P3,P4} {P4,P6',P6} {P4,P6',P6}
13: (P5) B=…; (P5) B1=…; {P3,P4,P5} {P3,P4} {P1} {P4,P6',P6}

14: (P5) …=C {P3,P4,P5} {P3,P4,P5} {P1} {P1,P2}
15: (P2) …=B; (P2)… = B1; {P3,P4,P5} {P3,P4,P5} {P1} {P1,P2}
16: (P6) … {P3,P4,P5} {P3,P4,P5} {P1} {P1}
17: (P1) …=D {P3,P4,P5} {P3,P4,P5} {P1} {P1}
18: (P1) …=A {P3,P4,P5} {P3,P4,P5} {P1} {P1}
19: (P1) …=B {} {P3,P4,P5} {} {P1}
20: (P1) cmp P7,P8=i!=5 {} {} {} {}

Predicate Sets For Variables
 Partition PQS

 Strategies for Predicate-Aware Register Allocation 197

Strategy 2: Partition Tracking
In addition to Strategy 1, live ranges are recorded under qualifying predicates of
the -possibly pseudo- definitions that reach a use, if this set is a partition and the
qualifying predicate of the use post-dominates each definition predicate. The qualify-
ing predicates at the definitions are either in the partition or -in case the predicate is
from a pseudo definition- dominate a partition predicate.

Fig. 9 has the predicated code from our example and considers two live ranges A
and B to illustrate Strategy 2. For live range A, {P3, P4, P5} reach the use under (P1).
Since P3, P4 and P5 are mutually disjoint and the use post-dominates the definitions,
this partition is the predicate set at the use of A. Live range B is similar to live range
A, except that B is completed by a (implicit) pseudo definition at the entry of block 3.
Completion ensures that all live ranges with uses in the region are strict and enables
partition formation at uses. A live range is strict when there is a definition on every
path to a use.

After if-conversion each read operand (“use) is augmented with a list of qualifying
predicates that represent the qualifying predicates of its reaching definitions. Strategy
2 relies on reaching definition analysis per predicated region: when more than one
definition predicate reaches a use and the predicates are disjoint, record the partition
that represents reaching qualifying predicates at each use.

The following theorem lists the live ranges whose interferences can be modeled
precisely by Strategy 2.

Theorem 1. (Characterization of Simple Live Ranges)

Strategy 2 can model interferences precisely for the following live ranges:
• Definition and use predicate match
• Definition predicate dominates use predicate
• Definition predicates form a partition. Use predicate post-dominates each

partition predicate.
• Two definition predicates reaching a use are on at most one execution

trace (or execution path in the original control-flow region).

Proof
Precise interference means for each predicated live range L:
When L is recognized as live at a given program point, L is actually live.
When L is recognized as dead, it is actually dead.
When L is recognized as disjoint from another live range L’, it is actually disjoint.
When L is recognized as interfering with L’, it is actually interfering.
The theorem is clear for the simple cases, match and dominate. In these cases the
predicate set of a live range consists of the qualifying predicates seen at its uses. The
matching or dominating definition stops the live range (Strategy 1). For the remaining
cases we need to develop some intuition first. Tracking a live range under the qualify-
ing predicate of the use ensures that disjointness in the predicated region is precise
with respect to instructions (variables) that are not on a path to the use in the original
control-flow graph. In case the definition predicates form a partition and the use
predicate post-dominates all partition predicates, then all paths starting at definitions
end at the use. There cannot be an off path instruction in the predicated region that
would introduce an interference that is not visible in the original control-flow graph.

198 G.F. Hoflehner

Fig. 10. Tracking live variable of B under partition P2|P3 would result in extra interference
with E in the predicated code. Tracking B under P5 does not cause this interference since P4
and P5 are disjoint.

Therefore tracking the live range under partition predicates cannot introduce extra
interferences. The case of two definitions that don’t from a partition and reach a use
can be reduced to the partition case. Since there is only one path that contains both
definitions, there must exist a basic block with a predicate disjoint to the “second”
definition predicate (= block predicate of block containing the “second” definition).
Since the region is assumed to be complete (=JS blocks inserted as needed), the block
can be chosen so that the block containing the “first” definition predicate dominates
it. Inserting a pseudo definition in the selected block ensures the partition property:
since the qualifying predicate of the pseudo definition is disjoint from the qualifying
predicate of the second definition, they form a partition at the use. In this case one
partition predicate (from the pseudo definition) will not be a definition predicate, but
dominated by it (the definition predicate of the first definition). This proves the theo-
rem for two definitions. The general case of N definitions can be reduced to this spe-
cial case.

Consider the example code in Fig. 10 to visualize an imprecise interference when
the use does not post-dominate definitions. P2|P3 form a partition for live range B, but
the use under P5 does not post-dominate P2. In the predicated code there could be an
off-path instruction like the definition of E under P4 “before” the use of B under P5.
If liveness of B were tracked under partition predicates P2|P3, E and B would inter-
fere, since P2 and P4 are not disjoint. On the other hand, if liveness of B is tracked
under P5, E and B cannot interfere, since clearly P4 and P5 are disjoint. This scenario
cannot happen when the use post-dominates all partition predicates, since there cannot
be an “off-path” instruction on the execution trace.

The remaining live ranges require a more sophisticated method to model interfer-
ences precisely. There are two cases left: first, the use does not post-dominate the
partition predicates. Second, two or more definitions overlap on more than one execu-
tion trace (or execution path in the original control-flow graph). The first case can be
handled by tracking the live range under the use and the partition predicates. The

 Strategies for Predicate-Aware Register Allocation 199

second case is reduced to partition, dominate or match live ranges by splitting. Split-
ting is described below.

Strategy 3: Use-and-partition Tracking
In addition to Strategy 2, track live variables under use-and-partition predicates and
“split” live ranges when two definitions overlap on more than one path.

When the use does not post-dominate the definition, the use predicate (=qualifying
predicate of the instruction containing the use) gets associated with the partition predi-
cates. This is necessary for precise disjointness information: when the use does not post-
dominate all predicates in a partition (of two or more predicates), disjointness could be
conservative. Therefore, the live range is tracked under the qualifying predicate of the
use and the partition predicates. Since the partition predicates represent disjoint portions
of execution traces, precise disjointness is due to the following rule used during interfer-
ence calculation: at any given instruction, if the qualifying predicate of a definition of
live range L1 interferes with the use predicate of live range L2, but not with any of its
associated partition predicates, then live ranges L1 and L2 are (actually) disjoint at this
point. This gives precise disjointness: First, when the use does not post-dominate the
definitions, there can be instructions on the execution trace that are not on any path from
the definition to the use. Since the qualifying predicate of the use is disjoint from the
qualifying predicate of these instructions, no imprecise interference can be encountered.
Second, false interferences could be recorded with variables in instructions on paths to a
definition, but the rule above is preventing this, since at every definition the qualifying
predicate is removed from the partition.

In case definitions overlap on more than one execution path, additional live range
splitting is necessary. This is achieved by inserting an identity move under the quali-
fying predicate of the definition. This move only changes predicate tracking for the
live range.

Fig. 11. Complex live range tracking and splitting for live range of variable V. Only the con-
trol-flow graph of the region is shown before if-conversion. An identical move for variable V in
basic block Bx with block predicate Px splits the original complex live range for V into a parti-
tion and a dominate live range.

P2
B2

Px
Bx

V=

A=
V=

=V

P1
B1

P1
B4

P3
B3

V=V

P2
B2

Px
Bx

V=

A=
V=

=V

P1
B1

P1
B4

P3
B3

V=V

P2
B2

Px
Bx

V=

A=
V=

=V

P1
B1

P1
B4

P3
B3

V=V

200 G.F. Hoflehner

Fig. 11 illustrates a live range V in a control-flow graph snippet. The definitions
for V overlap on more than one path to the use. There are two definitions of V in
blocks B1 and B2. The use in block B4 post-dominates the definitions, but the defini-
tions in blocks B1 and B2 overlap on paths 21 → and 231 →→ . The disjoint parti-
tion for the definition in block B4 is P2| Px, where Px is a JS block. Since P1 does
neither dominate nor match Px, tracking under Px would not find the start of the live
range. The trick is adding identical move in block Bx, which is inserted by control-
flow graph completion. The use in block B4 is recorded under P2 and Px, which form
a partition. At the definition in block Bx the predicate set for V contains Px together
with the associated partition P1|P1’, which corresponds to definitions of V reaching
the use. The original live range has been split into a “partition” live range (see Fig.
8), which is covered by Strategy 2, and a “dominate” live range.

From the discussion is it clear that Strategy 3 models interference precisely when
a live range has two definitions on more than one execution path. The identity move
can be inserted where the two definitions merge. Note that translating out of an SSA
representation (15]) before if-conversion would yield the moves. The general case is

Theorem 2. (Characterization of Complex Live Ranges)

Strategy 3 can model interferences precisely for the following live ranges:
• Use predicate does not post-dominate partition predicates (1)
• When definitions overlap on more than one path, the live range can be split

and handled by Strategy 2 or the case above. (2)

Proof
Preciseness for first case (1) is clear: The qualifying predicate of the use avoids inter-
ferences with an off-path instruction, which could be on the trace from a definition to
the use. Partition tracking asserts that there is no conservative (false) interference with
variables in instructions on the path from the entry code to the definition. Interference
calculation is modified: if, at a given instruction in the interference graph construc-
tion, a qualifying predicate interferes with the use predicate from a live candidate, but
not with the associated partition predicates, the live range under the qualifying predi-
cate is (actually) disjoint from the live candidate.

Overlapping live ranges on multiple paths can be split into to simpler live ranges:
Assume the live range has n > 2 definitions. Like in Fig. 11 an identical move can be
inserted at a merge point of any two definitions. The live range section with the two
definitions and the use in the identical “mov” is either a partition live range or can be
modeled by use-and-partition tracking. This splitting technique can be applied itera-
tively until a split live range has only two definitions. This completes the proof of the
theorem since it holds in the case n=2. □

We identified four types of predicated live ranges – match, dominate, partition and
overlap – and two methods for interference modeling – “simple” and “complex”, and
three implementation strategies. The simple method covers all “match” and “domi-
nate”, and some partition and overlap live ranges (“simple live ranges”), while the
complex method handles remaining partition and overlap live ranges (“complex live
ranges”). Strategy 1 models only “match” and “dominate” live ranges precisely. Strat-
egy 2 models all simple live ranges precisely, and finally Strategy 3 models all live
range precisely. Strategy 3 is equivalent to a PQS-based implementation.

 Strategies for Predicate-Aware Register Allocation 201

4 Results

We obtained the performance data on a 1.6 GHz Montecito processor using the Intel
Fortran/C++ optimizing compiler (version 11.1). The detailed configuration is listed
in Table 1. The benchmark suite is CINT2006, a popular industry-standardized CPU-
intense suite used by OEMs for stressing a system’s processor, memory subsystem
and compiler. We only show CINT2006 data, since the CFP2006 data are similar.

Table 1. Experimental Setup

Processor Intel Itanium 2 (Montecito) Processor, 1.6 GHz
Compiler Intel Fortran/C++ Compiler (Version 11.1)
Memory 4 Gb Main, 16 K L1D, 16KB L1I , 256K L2D, 1M L2I , 12M L3 D+I
OS Red Hat Enterprise Linux AS Release 4 (Kernel 2.6.9-36.EL #1 SMP)

The gains from predicate-aware register allocation are for two different implemen-
tations. In section 3.3 we classified four types of predicated live ranges: match, domi-
nate, partition, and overlap and showed that simple live range tracking gives precise
interference for match, dominate, as well as some partition and overlap live ranges.
When a use predicate does not post-dominate all partition predicates or definitions
overlap on many (= two or more) paths, complex live range tracking techniques must
be employed for precise interference modeling. The basic implementation that tracks
liveness under the qualifying use predicates and marks first predicate definitions
(Strategy 1) gives practically identical run-time performance as the PQS-based im-
plementation. The difference (“Delta”) between the methods shown in Table 2 is
within the run-to-run variation of the benchmarks.

Table 2. Performance Gains from Predicate-Aware Allocation on CINT2006

Benchmark Basic allocation PQS allocation Delta

400.perlbench 37.67% 37.67% 0.00%

401.bzip2 5.01% 5.01% 0.00%

403.gcc 1.71% 1.45% -0.26%

429.mcf 0.93% 0.93% 0.00%

445.gobmk 2.91% 2.91% 0.00%

456.hmmer 1.20% 1.20% 0.00%

458.sjeng 8.01% 8.01% 0.00%

462.libquantum 0.00% 0.37% 0.37%

464.h264ref 0.00% 1.03% 1.03%

471.omnetpp 0.40% 0.40% 0.00%

473.astar 0.97% 0.00% -0.96%

483.xalancbmk 0.00% 0.00% 0.00%

Geomean 4.48% 4.50% 0.01%

202 G.F. Hoflehner

The outlier in Table 2 is the 37.67% gain in 400.perlbench. This is due to reduced
RSE traffic in S_regmatch, the hottest (and self-recursive) function of the benchmark.
Without a predicate-aware allocator all 96 register on the register stack get allocated.
With a predicate-aware allocator only about half the number of registers is used. The
increase in register pressure without the predicate-aware allocator is explained with
live range extensions in loops (see Fig. 4).

The performance data suggest that basic predicate-awareness in the coloring al-
locator reaps the performance benefits. The performance gain from the simplest
predicate-aware allocator (Strategy 1) and PQS-based predicate-aware allocator
match. The basic predicate-aware allocator models precise interference only for
match and dominate live ranges, but is conservative for all partition and overlap live
ranges. For the experiment, live ranges were first completed in the original control-
flow graph of the candidate region. Then a region-based reaching definition analy-
sis was performed. Together with dominator information, this is sufficient to
classify predicated live ranges within the region. When a live range falls into multi-
ple classes, only the “most complex” class (overlap > partition > dominate > match)
gets accounted for. The data for predicated live ranges distribution is in Table 3.
There are only two benchmarks (402.bzip2 and 471.omnetpp) that have more than
10% (11.44% and 12.01%) partition and overlap live ranges. For all other bench-
marks this number is below 10%. The data in the tables were collected for all
predicated live ranges in all predicated regions of a benchmark. Since only rela-
tively few partition and overlap live ranges exist, a system like PQS or complex live
range tracking is not necessary for precise interference modeling. The data and code
analysis suggests that the complex tracking cases are very rare (less than 2.5% for
all benchmarks). If conservative disjointness for partition and overlap live ranges is
a concern, Strategy 2 models more than 97.5% of the predicated live ranges
precisely.

Table 3. Distribution of Predicated Live Ranges

Benchmark match dominate partition overlap

400.perlbench 73.92% 16.16% 9.46% 0.46%

401.bzip2 63.27% 22.68% 11.44% 2.61%

403.gcc 71.59% 20.78% 6.80% 0.83%

429.mcf 72.64% 20.46% 6.42% 0.48%

445.gobmk 77.94% 18.84% 2.91% 0.31%

456.hmmer 69.86% 22.67% 6.68% 0.79%

458.sjeng 73.68% 18.26% 7.37% 0.69%

462.libquantum 74.51% 16.67% 8.39% 0.44%

464.h264ref 74.70% 16.32% 8.87% 0.11%

471.omnetpp 66.77% 21.04% 12.01% 0.17%

473.astar 75.73% 18.63% 4.70% 0.94%

483.xalancbmk 69.81% 20.98% 6.82% 2.39%

 Strategies for Predicate-Aware Register Allocation 203

5 Related Work

There are a number of approaches to represent predicate relations in a compiler. The
IMPACT compiler uses the Predicate Hierarchy Graph (PHG) (Mahlke et. al. [13]).
For each definition of a predicate the PHG tracks the predicates that guard the defini-
tion. It can also handle OR-expressions and is applied to code in hyperblock regions.
A hyperblock is a predicated superblock, which is an acyclic single entry multiple exit
region. A more sophisticated approach than the PHG is the predicate query system
(PQS) (Gillies et al. [8], Johnson and Schlansker [12]). It uses the predicate partition
graph to determine predicate relations. PQS can determine accurately predicate rela-
tions that can be expressed as logical partitions. Here two predicates P2 and P3 form a
predicate partition P1 when P1 is the union of P2 and P3, and P2 and P3 cannot both
be true simultaneously. Both PHG and PQS use approximations in the analysis of
already predicated code. In this case the code is not derived from the control-flow
graph, but instead supplied by the user (in the case of assembly code) or an earlier
compiler phase. When the code is derived from the control-flow graph, PQS can rep-
resent predicate disjointness information accurately in acyclic regions. More subtle
predicate analysis methods that derive accurate predicate relations for already predi-
cated code have been developed also. Eichenberger [7] represents logical predicate
relations, so called P-facts, and determines predicate relations in a logic solver. He
applies this information for register allocation in hyperblocks. Sias et al. [18] devel-
oped the predicate analysis system (PAS), which is as accurate as Eichenberger, but
can determine predicate relations globally using a BDD solver. In contrast to the ap-
proaches described in literature, this paper makes no attempt to address the general
predicate relation problem. It makes the assumption that predicated code is derived
from acyclic control-flow graph regions. This holds in general for compilers. Our
paper shows that classical interference calculation can be extended in various degrees
of accuracy to model interference of predicated live ranges precisely. PQS-based
allocation is used for reference.

6 Conclusions

This paper classified predicated live ranges into four types: match, dominate, partition
and overlap. It described implementation strategies based on classical dataflow analy-
sis to allocate register candidates for all classes efficiently and precisely. We imple-
mented a basic predicate-aware allocator that models match and dominate live ranges
precisely, and partition and overlap live ranges conservatively. We compared the
basic allocator to a PQS-based allocator and found practically no performance differ-
ence on CINT2006. In this case investing in a sophisticated predicate database and
query system for a predicate-aware allocator is not necessary. The reason is that only
a small portion of live ranges in predicated code require complex live range tracking
for precise interference modeling. The gain achieved from predicate-aware register
allocation on the CINT2006 integer benchmarks is up to 37.6% and 4.48% in the
geomean for the SPEC base options of the Intel Itanium production compiler.

204 G.F. Hoflehner

References

1. Aho, V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, & Tools,
2nd edn. Addison Wesley, Reading (2007)

2. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.D.: Conversion of Control Dependence
to Data Dependence. In: Proceedings of the 10th ACM Symposium on Principle of Pro-
gramming Languages, POPL 1983, January 1983, pp. 177–189 (1983)

3. Bharadwaj, J., Chen, W.J., Chuang, W., Hoflehner, G., Menezes, K., Muthukumar, K.,
Pierce, J.: The Intel IA-64 Compiler Code Generator. IEEE Micro, 44–52 (Septem-
ber/October 2000)

4. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to Graph Coloring Register Alloca-
tion. ACM Transactions on Programming Languages and Systems 16(3), 428–455 (1994)

5. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.:
Register allocation via coloring. Comp. Lang. 6(1), 47–57 (1981)

6. Chaitin, G.J.: Register Allocation and Spilling via Graph Coloring. In: Proceedings of the
ACM SIGPLAN 1982 Symposium on Compiler Construction, pp. 98–105 (1982)

7. Eichenberger, A., Davidson, E.S.: Register allocation for predicated code. In: Proceedings
of the 28th Annual International Symposium on Microarchitecture, MICRO-28, December
1995, pp. 180–191 (1995)

8. Gillies, D.M., Ju, R.D.-C., Johnson, R., Schlansker, M.S.: Global Predicate Analysis and
its Application to Register Allocation. In: Proceedings of the 29th International Sympo-
sium on Microarchitecture, MICRO-29, December 1996, pp. 114–125 (1996)

9. Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H., Zahir, R.: Introducing the IA-64 Ar-
chitecture. IEEE Micro, 12–22 (September/October 2000)

10. Intel Corporation, Intel® Itanium® Architecture Software Developer’s Manual, Revision
2.2, vol. 1-3 (January 2006),
http://developer.intel.com/design/itanium/manuals/
iiasdmanual.htm

11. Intel Corporation, Intel® Itanium® 2 Processor Reference Manual (May 2004),
http://download.intel.com/design/Itanium2/manuals/
25111003.pdf

12. Johnson, R., Schlansker, M.S.: Analysis techniques for predicated code. In: Proceedings of
the 29th International Symposium on Microarchitecture, MICRO-29, December 1996, pp.
100–113 (1996)

13. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective compiler
support for predicated execution using the hyperblock. In: Proceeding of the 25th Annual
International Symposium on Microarchitecture MICRO-25, December 1992, pp. 45–54
(1992)

14. McNairy, C., Soltis, D.: Itanium 2 Processor Microarchitecture. IEEE Micro, 44–55
(March/April 2003)

15. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco (1997)

16. Park, J.C.H., Schlansker, M.S.: On predicated execution. Tech. Rep. HPL-91-58, HP
Laboratories, Palo Alto, CA (May 1991)

17. Schlansker, M.S., Rau, B.R.: EPIC: Explicitly Parallel Instruction Computing. Computer,
37–45 (February 2000)

18. Sias, J.S., Hwu, W.-M.W., August, D.I.: Accurate and Efficient Predicate Analysis with
Binary Decision Diagrams. In: Proceedings of the 33rd International Symposium on Mi-
croarchitecture MICRO-33, December 2000, pp. 112–123 (2000)

Preference-Guided Register Assignment

Matthias Braun1, Christoph Mallon2, and Sebastian Hack2

1 Karlsruhe Institute of Technology
matthias.braun@kit.edu

2 Computer Science Department
Saarland University

{mallon,hack}@cs.uni-saarland.de

Abstract. This paper deals with coalescing in SSA-based register allo-
cation. Current coalescing techniques all require the interference graph
to be built. This is generally considered to be too compile-time intensive
for just-in-time compilation. In this paper, we present a biased coloring
approach that gives results similar to standalone coalescers while signif-
icantly reducing compile time.

1 Introduction

The register allocation phase of a compiler maps the variables of a program to
the registers of the processor. One important part of register allocation is co-
alescing. Coalescing is an optimization that tries to remove register-to-register
move instructions by assigning the source and the target of the move the same
register. One serious drawback of coalescing is that it can increase the register
demand of the program. Consider the example in Figure 1. The register demand
in the SSA-form program P is 2 everywhere. If we perform classical SSA de-
struction and coalesce the move instructions represented by the φ-function, that
is merge the live ranges of e1, e2, and e3 into one (as shown in P ′), we need
3 registers for a valid register assignment, as can be verified by coloring the
interference graph G of P ′.

a ← · · ·

d ← · · ·
e1 ← a + · · ·

← d

b ← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

(a) Program P

a ← · · ·

d ← · · ·
e ← a + · · ·
← d

b ← · · ·
c ← a + · · ·
e ← b
← c

(b) Program P ′

a

b

c

e

d

(c) Interference
graph of P ′

Fig. 1. Coalescing a φ-function

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 205–223, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 M. Braun, C. Mallon, and S. Hack

Chaitin et al. [1] express register allocation by graph coloring and show that,
if one makes no assumption about coalescing, every undirected interference
graph G corresponds to a program P for which holds: An optimal register allo-
cation for P is an optimal coloring of G. Although this approach is very popular,
it has two undesirable properties:

– Because graph coloring is NP-complete, we need a heuristic to color such
a graph. Hence, we might fail to color a graph with k colors although the
graph is k colorable. For register allocation this means that we unnecessarily
spill variables to memory.

– For any given n ∈ N there exists a graph that has a largest clique of size l
but needs l + n colors for an optimal coloring. The size of the largest clique
in that graph corresponds to the register pressure in the program. Hence, as
in the example above, we need l + n registers although there are never more
than l variables alive.

Consequently, recent register allocation approaches do not allow arbitrary co-
alescing of live ranges: In an SSA-form program, some live ranges are split by
φ-functions. This splitting is sufficient to overcome both drawbacks mentioned
above (see [2–4] for proofs):

1. An optimal register assignment can be computed in linear time.
2. The register pressure equals the minimum number of registers needed for

the program.

Live-range splitting by φ-functions is not the only source of move instructions
in a program. Treating register constraints as they are incurred by some archi-
tectures and application binary interfaces, also provokes the insertion of move
instructions: Assume a variable v is an argument to a function call and the ABI
dictates that it has to be in register R1. Then, we need to move v to R1 in front
of the call. On the other hand, if we assigned R1 to v in the first place, we can
save this move.

All these live-range splits result in move instructions. Usually, reducing the
number of move instructions is the task of the coalescing phase of a register
allocator. However, most of the existing coalescing techniques are very compile-
time intensive: They all require the interference graph to be materialized as a
data structure. Some of them even perform updates on that graph. However,
in just-in-time compilation, constructing and updating the interference graph is
considered too costly.

1.1 Contributions

In this paper, we pursue a new approach to coalescing: We assume that spilling
already took place and the register pressure everywhere in the program is ≤ k,
where k is the number of available registers. Instead of delegating coalescing to
a separate phase, we make the assignment pass aware of move instructions by
biasing the assignment: We try to assign sources and targets of move instructions
the same register. To this end, we extend the conventional SSA register allocation
algorithm by the following techniques:

Preference-Guided Register Assignment 207

– We compute register preferences for each variable. These preferences reflect
the register constraints the variable is exposed to. Hence, instead of non-
deterministically choosing a register during the assignment phase, we are
able to make a more profound register choice. In doing so, we avoid many of
the moves that are usually inserted due to register constraints. Section 3.1
discusses register preferences in more detail.

– When coloring the target of a move, e.g. the result of a φ-function, we prop-
agate preferences for that color to the not-yet-colored sources, in this case
the operands of the φ-function. Thus, when those variables are to be colored,
we attempt to assign them the same register as the target of the φ-function.
Section 3.3 gives a detailed discussion.

– When a variable is assigned to a register and the most preferable register
is occupied by another variable, we allow for optimistically moving the oc-
cupying variable to a different register. Placing a variable in the preferred
register from the start is often better than doing it right in front of the
program point that caused the preference: If we assume that the register is
occupied at that point we need two moves (one to free the register and one
to move the variable to it) instead of the one needed to free the register upon
the variable’s definition. Details are discussed in Section 3.4.

– Based on profile data or estimated execution frequencies, we compute an
order of the basic blocks in a control-flow graph that aids in removing more
moves on frequently executed traces of the CFG (Section 4).

Our experimental evaluation (see Section 5) shows that coalescing in an SSA-
based register allocator is important: The runtime of the benchmarks is decreased
by 5% and the number of executed move instructions is decreased by 55% per-
cent. Compared to our previous work based on graph recoloring [5], register
allocation and coalescing is 2.27 times faster. Our compile-time measurements
show a linear behavior of the presented algorithm.

2 SSA-Based Register Allocation

This section reviews the basics of SSA-based register allocation and describes
how register constraints are treated by an SSA-based allocator.

Register allocation on the SSA form uses the live-range splitting caused by
φ-functions. The φ-functions of a basic block basically act as control-flow depen-
dent parallel moves (see Figure 2). This splitting and the dominance property
of the SSA form1 cause the interference graphs for SSA-form programs to be
chordal (see [2–4] for proofs). Chordal graphs have two properties that make
them appealing for register allocation:

1. They are optimally colorable in time O(ω(G) · |V |) where ω(G) is the size of
the largest clique in G and V is the set of G’s nodes.

2. The size of the largest clique in the graph is equal to the minimum number
of colors needed for a coloring - the graph’s chromatic number.

1 The fact that each use of a variable is dominated by its definition.

208 M. Braun, C. Mallon, and S. Hack

x3 ← φ(x1, x2)
y3 ← φ(y1, y2)

(x3, y3) ← (x1, y1) (x3, y3) ← (x2, y2)

Fig. 2. φ-functions are parallel Moves

Furthermore, for each clique in the interference graph there is a location in the
program where all the variables of the clique are alive. Thus, unlike conventional
graph-coloring register allocation, lowering the register pressure to the number of
available registers k results in a k-colorable interference graph. Hence, pressure-
based spilling heuristics [6–8] already lead to k-colorable interference graphs.

2.1 Register Assignment

After the spilling phase has lowered the register pressure everywhere to at most k,
registers can be assigned. While the interference graph is helpful to reason about,
it actually never has to be built as a data structure when assigning registers. A
SSA interference graph can be colored using a node elimination algorithm like
the one used by Chaitin et al. [1] in their seminal paper. However, the advantage
of SSA-based register allocation is that this elimination order coincides with
dominance:

Before a variable v can be eliminated, all variables that dominate v and
interfere with v have to be eliminated.

Consequently, an order that colors a program point only after its dominators
have been colored leads to an optimal coloring of the SSA interference graph.

Algorithm 1 shows the assignment pass for a single basic block B. This algo-
rithm is then applied to every basic block such that the immediate dominator
of B is processed before B itself (in Section 4 we propose a specific coloring
order). We maintain a bit set occupied of registers used by currently live vari-
ables. We initialize this bitset with the registers of the values that are live-in at
the beginning of B. Note that all live-in values already have a register assigned
because:

1. The definition of a variable dominates all program points where it is alive.
2. All dominators of B have already been processed.

Then, all φ-functions of B are assigned. The arguments of the φ-functions are
ignored in B because they correspond to move instructions in the predecessor
blocks and hence don’t represent live values in B.

The instructions inside the basic block are now processed in order: For every
variable that dies at a program point, the register is put back into the pool of
free registers. For every value which is defined by an instruction, a free register
is chosen (function get register) and put into the occupied set.

Preference-Guided Register Assignment 209

Algorithm 1. Coloring of a basic block

proc color block(block):
Determine initial register occupation and color φ−nodes
occupied ← ∅
for val in block.live in:

occupied ← occupied ∪ { val.register }
for phi in block.phi nodes:

phi.register ← get register(phi, occupied)
occupied ← occupied ∪ { phi.register }

Assign registers
for insn in block.instructions:

enforce constraints(insn)
for a in insn.arguments:

if dies(a, insn):
occupied ← occupied \ { a.register }

for r in insn.results:
r.register ← get register(r, occupied)
occupied ← occupied ∪ { r.register }

block.processed ← true
Create φ−moves where necessary
for pred in block.preds:

if pred.processed:
implement phi copies(pred, block)

for succ in block.succs:
if succ.processed:

implement phi copies(block, block.succs[0])

2.2 Register Constraints

In practice, the instruction set architecture (ISA) and the application binary
interface (ABI) impose several constraints on the registers that are allocatable
for a variable at a program point. Most prominent and omnipresent are caller-
and callee-save registers across function calls. For example, the x86 ABIs state
that the contents of the registers eax, ecx, and edx are destroyed after a function
call. The return value of a function returning an int is delivered in eax.

Traditionally, such constraints are handled by splitting the live ranges of all
variables alive across such a constrained instruction by inserting a parallel move
instruction. In doing so, all registers become available in front of that instruc-
tion and the assignment pass can easily compute an assignment that fulfills these
constraints. In Algorithm 1 this is expressed by the function enforce constraints

210 M. Braun, C. Mallon, and S. Hack

w〈R0〉 ← call(x〈R1〉, y〈R2〉)
...

uses of x, y, z, w

(a) A constrained instruction

(x′〈R1〉, y′〈R2〉, z′) ← (x, y, z)
w〈R0〉 ← call(x′, y′)

...
uses of x′, y′, z′, w

(b) Splitting live ranges

Fig. 3. A call instruction with register constraints

which we do not describe in further detail here. Figure 3 gives an example of a
constrained call instruction and the inserted parallel move2.

To model register constraints, we annotate every program point � with two
partial functions (one for the defined and one for the used variables) that map
a variable that has a register constraint at that program point to the register it
is required to be in:

construse
� : Var ↪→ Reg constrdef

� : Var ↪→ Reg

where Var is the set of variables and Reg ⊂ N is the set of registers. For the
example in Figure 3, we have:

construse
� (x) = R1, construse

� (y) = R2 constrdef
� (w) = R0

2.3 Implementing Parallel Moves

The parallel move instructions are implemented after register assignment. Con-
cerning the assigned registers, a parallel move corresponds to a register permu-
tation that can be implemented with moves, swaps, xors, and so on [9]. For
example, assume our architecture has four registers. Consider the following par-
allel move and a register allocation (indicated by the superscripts):

Move: (a4, b2, c3) ← (d3, e1, f4) Permutation:
[
2 3 4
1 4 3

]
This can be implemented with the following sequence of instructions:

move R2 ← R0
swap R3, R4

3 Coalescing with Register Preferences

In principle, Algorithm 1 can compute any legal register assignment for a CFG.
The set of valid register allocations is basically characterized by the freedom of
the function get register: Whenever a register is assigned to a variable, get register
can choose among a set of free registers. However, regarding coalescing, not all
2 Register constraints are indicated in angle brackets.

Preference-Guided Register Assignment 211

Algorithm 2. Choosing a register by preference

proc get register(var, occupied):
sort var.prefs by preference
for (reg,pref) in var.prefs:

if reg /∈ occupied:
return reg

valid allocations are equally preferable. An allocation in which many sources
and targets of moves have the same color is better because it will result in less
shuffle code in the program. Given an oracle telling us the best register for each
variable, the algorithm would produce an optimal coalescing3.

Unfortunately the coalescing problem is NP-hard even for programs in SSA-
form [3, 9]. We thus rely on a heuristic approach that is guided by register prefer-
ences which are calculated before coloring and can be updated while allocating.
To this end, we introduce a preference analysis that computes a preference vec-
tor for every variable. Such a vector has a component for every register. The
higher the value of a component, the more preferable it is to assign the variable
to the corresponding register. This vector is then used by get register to select a
“good” register (see Algorithm 2). The following sections describe the preference
analysis and a mechanism to adjust the preferences while assigning registers for
φ-functions.

3.1 Register Preferences

Consider the example in Figure 4a. Assume the set of available registers when y
is colored to be {R0, R2} and assume the allocator (nondeterministically) chooses
R2. Then, in front of its use, y has to be moved from R2 to R0 in order to fulfill
the register constraint. If the allocator knew that y is needed in R0, it could have
selected it in the first place.

To make a sensible choice in the presence of register constraints, we need to
propagate information from constrained uses of variables to the point where the
color selection is done.

Reconsider the live ranges in Figure 4a. When assigning registers to the vari-
ables, we first assign a color to x. Since x interferes with two variables (y, z)
which have constrained definitions or uses to R1 and R0, it would be good to
choose one of the other registers: R2 or R3. If we would assign x to R0, we
would have to move it aside to make room for y right in front of its constrained
use. Correspondingly, the variables y and z should have a strong dislike for all
registers other than the ones occurring in their constraints. Furthermore, they
interfere with each other, so they have an even stronger dislike for each other’s

3 Optimal for a given set of parallel moves. There are cases where a different placement
of parallel moves can lead to a better overall result.

212 M. Braun, C. Mallon, and S. Hack

x ←
y ←

z〈R1〉 ←
← y〈R0〉
← z
← x

Var Preference vector
x [−1,−1, 0, 0]
y [0,−2,−1,−1]
z [−2, 0,−1,−1]

(a) Constrained live ranges

x ← · · ·

z ← φ(x, y)
...
← z

y〈R0〉 ← · · ·

(b) A φ-function with
constrained arguments

Fig. 4. Examples for Preferences and constrained φ-functions

preferred register. Our analysis which is explained in the next section, computes
the preference vectors shown in Figure 4a.

Thus, the allocator puts x in register R2 or R3 and leaves R0 and R1 untouched.
y and z can then be directly allocated to R0 and R1 obviating any moves.

3.2 Preference Analysis

The register preference vector pref (v) of a variable v is given by

pref (v) =
∑

{�|v is alive before �}
f� · c use

� (v)

+
∑

{�|v is alive after �}
f� · c def

� (v)

where f� denotes the execution frequency of program point �. This execution
frequency can either be gathered from profile data or estimated (see e.g. [10]). For
the sake of brevity, let � ∈ {use, def }. c�

� (v) is the constraint vector concerning
the used (defined) variables of program point � for variable v:

c�
� (v) :=

{
ei − 1 if v ∈ dom constr�

� and i = constr�
� (v)

−∑
i∈R ei else with R = ran constr�

�

where ei is the vector that is one at component i and zero everywhere else. 1 is
the vector containing only ones.

Thus, the preference vector of a variable contains the sum of dislikes (negative
preferences) caused by register constraints of program points where the variable
is alive. To calculate the preferences, we perform a backward walk over the
program’s basic blocks so we can keep track of live values. When we encounter a
constrained definition/use we add preferences to all other variables alive at that
point. This is a simple flow-insensitive analysis and can be done in a single pass
over the program.

Preference-Guided Register Assignment 213

3.3 Affinity Chunks

Besides register constraints, φ-functions are the second source of shuffle code. A
“bad” register assignment can cause a cascade of move instructions to be inserted
at the end of a φ predecessor block. In contrast to constrained instructions, the
desirable register of an operand of a φ-function is not fixed a priori: It depends on
which registers the other operands and the result variable of the φ are allocated
to. Therefore, we do not consider φ-functions when performing the preference
analysis but modify the preference vectors during the assignment process. When
coloring a φ-function, a preference for the chosen color is added to the preference
vectors of the still uncolored variables of the same affinity chunk.

A second observation is that the constraints of the arguments of a φ-function
affect the φ-function as well. Consider the example in Figure 4b. One variable
of the affinity chunk of the φ-function needs to be in R0 upon its definition.
Assigning z any other register than R0 will cause a move on the loopback edge
which needs to be avoided at all costs. Hence, we propagate the preference for R0
to the whole affinity chunk of y and thus try to assign x and z to R0 as well.
In general, the preferences for all members of an affinity chunk are weighted by
their execution frequencies and distributed among its members.

When coloring a φ-function, we want to assign that register to all not-yet
colored variables of the φ’s affinity component. However, such an affinity com-
ponent can exhibit interferences within itself. Thus, one usually splits up the
affinity components into interference-free chunks by aggressive coalescing. Ag-
gressive coalescing itself is an NP-complete problem; it is an instance of a mini-
mum multi-cut (see [3, 9] for example). In practice, one is content with a heuristic
that greedily tries to merge chunks. Let C and D be two chunks that we want
to merge. To merge the chunk, there must not exist an interference between
both chunks. If there is, the chunks cannot be merged and we “sacrifice” every
affinity edge between both chunks. That means, that we no longer try to assign
the same color to the variables of the move instruction, represented by the lost
affinities. Of course, the order in which the chunks are merged decides on how
good the results are, i.e. how many moves are introduced. This greedy heuristic
requires an interference check between the two chunks. Naively, one could test
each variable pair for interference, resulting in a quadratic algorithm. Recently,
Boissinot et al. [11] gave a linear algorithm, exploiting SSA properties, to per-
form that check. However, this linear check still has to be performed whenever
two chunks are to be merged.

To avoid this overhead, we do not split chunks up to the last interference edge
but allow for remaining interferences within a chunk. This does not pose any
correctness problems, as we use these chunks only to propagate register prefer-
ences when a φ-function is colored. In the worst case, we propagate preferences
to a variable that interferes with that φ-function.

Our “approximated” chunks are computed using a union-find data structure.
Whenever we encounter a φ-function, we check, whether the result variable of
that φ-function and its operands interfere. This is can be done efficiently since
we still have the set of live-in variables calculated by the liveness analysis. The

214 M. Braun, C. Mallon, and S. Hack

chunk of an operand is merged with the φ’s if the operand and the φ do not
interfere. This can be done in hand with the preference analysis.

3.4 Optimistic Move Insertion

There is further room for reducing the number of move instructions: The fixed
positions of the parallel moves aren’t always optimal. A typical situation is shown
in Figure 5a:

w〈R0〉 ← call()
x ←

...
← x〈R0〉
← w

(a) Program P

w〈R0〉 ← call()
x〈R1〉 ←

...
w〈R2〉 ← w〈R0〉
x〈R0〉 ← x〈R1〉

← x〈R0〉
← w〈R2〉

(b) Assignment for P

w〈R0〉 ← call()
w〈R1〉 ← w〈R0〉
x〈R0〉 ←

...
← x〈R0〉
← w〈R1〉

(c) Assignment with opti-
mistic move

Fig. 5. Candidate for optimistic move insertion

Algorithm 3. Choosing a register with optimistic move insertion

proc get register(var, occupied):
sort var.prefs by preference
for (reg,pref) in var.prefs:

if reg /∈ occupied:
return reg

Determine costs for moving the variable
which occupies the register away
ovar ← reg.current variable
sort ovar.prefs by preference
for (oreg,opref) in ovar.prefs:

if oreg /∈ occupied:
other win ← opref − oreg.current pref
break

next pref ← preference value for next register
win ← next pref − pref
if win + other win > block.execfreq:

create move from reg to oreg
return reg

Preference-Guided Register Assignment 215

When the allocator reaches the assignment to variable x register R0 is already
occupied by w. A classical allocator would assign the next free register to x,
say R1. A fixup would only occur before the constrained use of x. At this point
however at least 2 move instructions are necessary: Variable w has to be moved
away from R0 and variable x into it. Instead, it is more beneficial to move vari-
able w away from R0 before the assignment to x as shown in Figure 5c compared
to Figure 5c.

This situation is handled by optimistically inserting such early moves into the
program: When the allocator finds that a desired output register is occupied
by another variable then we determine the costs of moving that variable into
another register. The cost is the sum of the preference differences when freeing
the register by moving the occupying variable away and the preference differences
when assigning the next possible register instead of the desired one. We compare
these costs with the execution frequency of the current block. Higher costs are an
indication that a move at the current position is cheaper than a later fixup. The
move instruction is created optimistically. An improved version of get register is
shown in Algorithm 3.

4 Block Coloring Order

To retain the properties by SSA-based register allocation, we color basic blocks
in dominance order. This still provides many valid visiting orders. We choose an
order in which we color the most often executed basic blocks first while coloring
paths beginning at the start block. By following the control flow along the “hot”
paths, there is always one control flow predecessor colored already and we can
assign φ-functions the same color as their operands in this predecessor.

fA = 1
tA = 1A

fB = 0.5
tB = 1.5B

fC = 5.5
tC = 6.5C

fD = 5
tD = 11.5 D

fE = 0.5
tE = 7 E

fF = 1
tF = 8F

Fig. 6. A control-flow graph annotated with execution frequencies (f) and trace
values (t)

216 M. Braun, C. Mallon, and S. Hack

Algorithm 4. Determining the block coloring order

proc blockorder():
for b in reverse postorder(blocks):

t ← 0
for p in control flow predecessors(b):

if t < trace[p]:
t ← trace[p]

trace[b] ← t + frequency(b)
order ← ∅
for b in sort(blocks, by: trace)

order ← add trace(order, block)
return order

proc add trace(order, block):
if not block ∈ order:

best trace ← 0
best pred ← null
for p in preds(block)

if backedge(p, block): continue
if best trace < trace[p]:

best trace ← trace[p]
best pred ← p

if not best pred ← null:
order ← add trace(order, block)

order ← order + block
return order

To determine these paths in the control flow graph, we calculate a trace value
for each basic block: First we gather execution frequencies for each basic block.
This can be done heuristically (cf. Wagner et al. [10]) or they can be obtained
from profiling information. Using the execution frequencies, we calculate the
trace value of each block: The trace value of a block is the maximum of the trace
values of its control flow predecessors (disregarding back edges) plus its own
execution frequency. This approximates the amount of instructions executed
from the start to each block while considering that a block can be executed
multiple times.

Then we select the block with the highest trace value and determine a path
to the start. Before this block is colored, we color its control flow predecessor
(again ignoring back edges) which has the highest trace value. In turn, we repeat
this until we reach the start block. This path then is colored in reverse order.
After that, we select the block with the highest trace value from the remain-
ing uncolored blocks and again construct a path towards the start block but this

Preference-Guided Register Assignment 217

time stopping at some already colored block. Again, this new path is colored in
reverse order and the process is repeated until all blocks are colored. Algorithm 4
shows the procedure as pseudo code.

In the example in Figure 6 the block with the highest trace value is D, there-
fore we first color the path A, C, D. Of the remaining, i.e. uncolored, blocks
block F has the highest trace value, so we color its path E, F (A and C are
already colored). B is colored last.

5 Experimental Evaluation

We implemented the presented coalescing algorithm in the libFirm [12] com-
piler. This compiler produces code for the x86 architecture and features a com-
pletely SSA-based register allocator as presented in [9]. All measurements were
conducted on the integer part CINT2000 of the CPU2000 benchmark [13]. The
program 252.eon is missing because the compiler does not support C++. The
time measurements were performed on a Core 2 Duo 2GHz PC with 2GB RAM
running a Linux 2.6.24 kernel. The benchmarks mostly exercise the seven general-
purpose registers of the x86. The execution frequencies were statically estimated
using a Markov-chain model [10]. We compare the algorithm presented in this
paper with our previous work performing colaescing by recoloring[5] after regis-
ter allocation.

5.1 Compile Time

Figure 7 shows the runtime of the preference-guided assignment algorithm de-
scribed in this paper running on the entire CINT2000 benchmark set. We do not
show CFGs larger than 2000 instructions because they are rare and unnecessarily
scale the figure. The runtime behavior of the few CFGs not shown is consistent
with those shown.

CFGs as large as 2000 instructions are processed well within 20 msecs (� 10μs
per instruction) on the machine we experimented on. On average, an instruc-
tion took 6.2μs to allocate while the average speed of the recoloring approach
is 14.1μs. In comparison to the recoloring algorithm the approach presented here
accelerates the allocation by a of factor 2.27.

5.2 Code Quality

We evaluate the quality of the produced code based on two experiments:

1. Counting the number of executed move/swap instructions in the bench-
marks.

2. Measuring actual runtime of the benchmarks.

218 M. Braun, C. Mallon, and S. Hack

0 500 1000 1500 2000
0

5

10

15

20

Number of Instructions

A
llo

ca
ti
on

T
im

e
[m

se
c.

]

Fig. 7. Allocator runtime

Counting moves and exchanges. By instrumenting the created binaries using
Valgrind [14], we counted the number of move and swap instructions in the runs
of the benchmarks. Table 1 shows the results of counting the move/exchange
instructions.

The column “No Coalescing” corresponds to not performing any sophisti-
cated coalescing at all: For live-range splits that are due to register constraints,
get register will try to assign targets and corresponding sources at parallel moves
the same register if possible. Else, no effort is made to coalesce copies.

The column “Pref. Guided” denotes the algorithm presented in this paper
and “Recoloring” is the aforementioned recoloring approach. For every evaluated

Table 1. Number of executed move and swap operations in billions

Benchmark No Coalescing Pref. Guided Recoloring
Copies Swaps Percent Copies Swaps Percent Copies Swaps Percent

164.gzip 24.1 18.3 11.76% 8.5 2.0 3.22% 5.8 0.3 1.88%
175.vpr 19.2 7.0 12.12% 11.7 1.1 6.28% 7.5 1.0 4.28%
176.gcc 16.9 7.9 14.02% 7.8 0.9 5.42% 6.5 0.4 4.37%
181.mcf 4.4 3.1 13.66% 3.3 0.0 6.67% 2.9 0.0 5.89%
186.crafty 29.0 4.9 16.30% 18.7 1.1 10.16% 17.5 1.0 9.58%
197.parser 34.4 11.9 13.19% 16.2 3.1 5.98% 13.9 1.8 4.93%
253.perlbmk 50.0 19.3 15.69% 23.3 1.4 6.23% 21.6 0.6 5.62%
254.gap 31.2 6.2 13.81% 17.2 1.4 7.40% 15.5 1.1 6.65%
255.vortex 44.0 3.8 13.11% 11.2 0.7 3.69% 9.5 0.3 3.03%
256.bzip2 34.6 9.8 14.14% 19.9 1.7 7.53% 17.0 3.1 7.01%
300.twolf 17.4 17.6 10.89% 10.3 5.6 5.25% 8.0 3.4 3.85%

Average 27.7 10.0 13.47% 13.5 1.7 5.93% 11.4 1.2 4.97%

Preference-Guided Register Assignment 219

N
or

m
al

iz
ed

R
un

ti
m

e
(s

m
al

le
r

is
be

tt
er

)

no coalescing coalescing by recoloring preference based coloring (this paper)

gz
ip

1.
00

0.
91

0.
92

vp
r

1.
00

0.
97

0.
95

gc
c

1.
00

0.
94

0.
95

m
cf

1.
00

1.
01

0.
97

cr
af

ty
1.

00
0.

95
0.

96

pa
rs

er
1.

00
0.

98
0.

97

pe
rl
bm

k
1.

00
0.

89
0.

93

ga
p

1.
00

0.
94

0.
95

vo
rt

ex
1.

00
0.

96
0.

97

bz
ip

2
1.

00
0.

95
0.

96

tw
ol

f
1.

00
0.

94
0.

93

Fig. 8. SPEC CINT2000 runtimes with different coalescing schemes

coalescing algorithm, we show the number of move/swap instructions and the
percentage of all instructions being moves or exchanges. The preference-guided
approach significantly reduces moves and swaps but does not reach the perfor-
mance of the recoloring apporach. Performing almost no coalescing results in
13.46% of all executed instructions being moves or swaps. This number is de-
creased by our approach to 5.93% and to 4.97% by the recoloring technique.
Hence, the code quality of the technique presented in this paper is very close
to the recoloring approach which currently is one of the best conservative coa-
lescers [5].

Runtime of the benchmarks. Figure 8 shows the runtime of the benchmarks
normalized to “No Coalescing” as explained above. We see that performing
coalescing is important and moves are not for free: The benchmark runtimes
are decreased by 5%. Furthermore, the preference-guided approach is on par
with the recoloring technique. Between those two, there is no clear winner.
However, we suspect (without having verified this claim) that a smaller CPU
with less pipelines and no out-of-order scheduling is more susceptible to register
moves. Therefore, the recoloring approach might produce faster programs on
such systems.

Finally, to show that our compiler produces high-quality results and the SSA-
based register allocation technique is competetive, we compare the benchmark
runtimes against those produced by GCC 4.2.4 and LLVM 2.5. libFirm has
the smallest code base among these compilers and performs only a subset of
the optimizations the others do. All compilers ran on maximum optimization
level and had machine-dependent optimizations for the benchmarking machine

220 M. Braun, C. Mallon, and S. Hack

N
or

m
al

iz
ed

R
un

ti
m

e
(s

m
al

le
r

is
be

tt
er

)

GCC LLVM libFirm

gz
ip

1.
00

1.
01

0.
91

vp
r

1.
00

1.
00 1.
05

gc
c

1.
00 1.

09
1.

09

m
cf

1.
00 1.
05

0.
98

cr
af

ty
1.

00
0.

91
0.

90

pa
rs

er
1.

00 1.
08

0.
99

pe
rl
bm

k
1.

00 1.
09 1.
14

ga
p

1.
00

1.
01 1.

10

vo
rt

ex
1.

00
1.

19
1.

08

bz
ip

2
1.

00 1.
06

0.
91

tw
ol

f
1.

00
0.

99
0.

93

Fig. 9. SPEC CINT2000 runtimes relative to GCC and LLVM

(see above) turned on4. As can be seen in Figure 9 the runtime of the benchmark
programs produced by our compiler is on par with the others.

6 Related Work

Graph-based approaches. The first graph-coloring allocator due to Chaitin et
al. [1] used aggressive coalescing and did not make any effort at all to respect
the chromatic number of the graph. Since then, a lot of work was done on
safe coalescing. Briggs et al. [15] introduced conservative coalescing. To decide
whether an affinity can be coalesced, they considered the degree of the resulting
coalesced node. Only if that node’s degree was lower than k, the copy was coa-
lesced. George and Appel’s iterated coalescing [16] improves upon conservative
coalescing by applying Briggs et al.’s criterion and a new one iteratively to the
graph. Park and Moon [17] left the road of safe coalescing and improved upon
the aggressive scheme.

Live-range splitting. Live-range splitting has often been proposed to aid coloring.
To our knowledge, Fabri [18] was first to observe this. Appel and George [19]
presented an ILP approach to reduce the register pressure everywhere to k by
allowing every live range being split at every program point. Lueh et al.’s fusion
based allocator [20] integrates live-range splitting into the register allocator.
They start by building the interference graphs of certain regions (that can be
basic blocks, loops, traces, etc.) that are not imposed by the allocator but can be

4 -O3 -fomit-frame-pointer -march=native

Preference-Guided Register Assignment 221

chosen by the compiler writer. In a later step, the interference graphs are fused
to form the complete interference graph. During this fusion process, live ranges
can be split or spilled if the fused interference graph was no longer colorable.
Recently, Nakaike et al. [21] proposed a dynamic approach that splits around
basic blocks and uses coalescing to unify split live-ranges in hot code regions.

Linear-scan allocators. Wimmer and Mössenböck [22] give a highly tuned ex-
tension of Traub’s version [23] of linear scan. Their register hints is a similar
technique to our preference propagation for φ-functions. Furthermore, they can
take register constraints into account. Recently, Sarkar and Barik [24] introduced
more aggressive live-range splitting to linear scan allocators however without
performing coalescing.

SSA-based register allocation. Budimlic et al. [25] pioneered in coalescing on
SSA-form programs already using many properties that SSA-based register al-
location relies on. However, they are only concerned with aggressive coalescing.
In 2005, three groups [2, 4, 26] independently from each other discovered that
the interference graphs of SSA-form programs are chordal. All yet published
coalescing techniques tailored to SSA-based register allocation use interference
graphs.

Bouchez et al. [3] investigate the theoretic background of coalescing. They
show that coalescing is NP-complete concerning the number of affinities, also
in the SSA-based setting. Later, Bouchez et al. proposed several extensions to
conservative coalescing [27]. Brisk [28] presents a biased coloring algorithm for
chordal graphs. Hack et al. [4, 5] present two approaches based on recoloring:
First, the program is colored using the standard algorithm presented in Section 2.
Then, the color assignment is changed by assigning move-related nodes the same
color. Color clashes are resolved recursively through the graph.

Pereira and Palsberg [29] consider the problem of subregisters. In this setting,
optimal allocation even inside a basic block is NP-complete. Therefore, they split
live ranges after every program point and allocate each instruction separately.
In doing so, they process the program points in dominance order and perform
coalescing only along dominance order. Especially, moves on loop back edges are
not coalesced.

7 Conclusions

In this paper, we presented an SSA-based register assignment algorithm that uses
register preferences to bias the register assignment in order to reduce shuffle code.
In doing so, we do not need a separate coalescing pass in the register allocator.
Furthermore, building the interference graph, which is considered a red rag for
just-in-time compilation, is no longer necessary. Compared to a state-of-the art
coalescing technique, our algorithm gives competitive results while reducing the
runtime of the register allocation by a factor of 2.27.

222 M. Braun, C. Mallon, and S. Hack

Acknowledgements. We thank Michael Beck, Alain Darte, Gerhard Goos,
Daniel Grund, Fabrice Rastello, Jan Reineke, and Christian Würdig for several
insightful discussions. Furthermore, we thank the anonymous reviewers for their
valuable comments.

References

1. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via graph coloring. Journal of Computer Lan-
guages 6, 45–57 (1981)

2. Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal Register Sharing for
High-Level Synthesis of SSA Form Programs. IEEE Trans. on CAD of Integrated
Circuits and Systems 25(5), 772–779 (2006)

3. Bouchez, F., Darte, A., Rastello, F.: On the Complexity of Register Coalescing.
In: CGO, San Jose, USA. IEEE Computer Society Press, Los Alamitos (2007)

4. Hack, S., Grund, D., Goos, G.: Register Allocation for Programs in SSA Form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

5. Hack, S., Goos, G.: Copy Coalescing by Graph Recoloring. In: PLDI, pp. 227–237.
ACM Press, New York (2008)

6. Braun, M., Hack, S.: Register Spilling and Live-Range Splitting for SSA-Form
Programs. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501,
pp. 174–189. Springer, Heidelberg (2009)

7. Morgan, R.: Building an Optimizing Compiler. Digital Press, Newton (1998)
8. Paleczny, M., Vick, C., Click, C.: The Java HotSpotTMServer Compiler. In: Pro-

ceedings of the JavaTM Virtual Machine Research and Technology Symposium
(JVM 2001) (April 2001)

9. Hack, S.: Register Allocation for Programs in SSA Form. PhD thesis, Universität
Karlsruhe (October 2007)

10. Wagner, T.A., Maverick, V., Graham, S.L., Harrison, M.A.: Accurate Static Esti-
mators for Program Optimization. In: PLDI, pp. 85–96. ACM, New York (1994)

11. Boissinot, B., Darte, A., Dupont de Dinechin, B., Guillon, C., Rastello, F.: Re-
visiting out-of-SSA translation for correctness, code quality, and efficiency. In:
CGO, pp. 114–125. IEEE Computer Society Press, Los Alamitos (2009); Best pa-
per award

12. The libFirm Compiler, http://www.libfirm.org
13. Standard Performance Evaluation Corporation: SPEC CPU2000 V1.3
14. Valgrind Instrumentation Framework for Building Dynamic Analysis Tools,

http://www.valgrind.org

15. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to Graph Coloring Register
Allocation. TOPLAS 16(3), 428–455 (1994)

16. George, L., Appel, A.W.: Iterated Register Coalescing. TOPLAS 18(3), 300–324
(1996)

17. Park, J., Moon, S.M.: Optimistic Register Coalescing. ACM Transactions on Pro-
gramming Languages and Systems 26(4), 735–765 (2004)

18. Fabri, J.: Automatic Storage Optimization. In: SIGPLAN 1979: Proceedings of the
1979 SIGPLAN Symposium on Compiler Construction, pp. 83–91. ACM Press,
New York (1979)

http://www.libfirm.org
http://www.valgrind.org

Preference-Guided Register Assignment 223

19. Appel, A.W., George, L.: Optimal Spilling for CISC Machines with Few Regis-
ters. In: ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, June 2001, pp. 243–253 (2001)

20. Lueh, G.Y., Gross, T., Adl-Tabatabai, A.R.: Fusion-based Register Allocation.
ACM Transactions on Programming Languages and Systems 22(3), 431–470 (2000)

21. Nakaike, T., Inagaki, T., Komatsu, H., Nakatani, T.: Profile-based Global Live-
Range Splitting. In: PLDI 2006: Proceedings of the 2006 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 216–227. ACM
Press, New York (2006)

22. Wimmer, C., Mössenböck, H.: Optimized interval splitting in a linear scan register
allocator. In: VEE 2005: Proceedings of the 1st ACM/USENIX international Con-
ference on Virtual Execution Environments, pp. 132–141. ACM Press, New York
(2005)

23. Traub, O., Holloway, G., Smith, M.D.: Quality and speed in linear-scan register
allocation. In: PLDI 1988: Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, pp. 142–151. ACM Press,
New York (1998)

24. Sarkar, V., Barik, R.: Extended linear scan: An alternate foundation for global
register allocation. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 141–155. Springer, Heidelberg (2007)

25. Budimlić, Z., Cooper, K.D., Harvey, T.J., Kennedy, K., Oberg, T.S., Reeves, S.W.:
Fast copy coalescing and live-range identification. In: PLDI, pp. 25–32. ACM Press,
New York (2002)

26. Bouchez, F., Darte, A., Guillon, C., Rastello, F.: Register Allocation: What Does
the NP-Completeness Proof of Chaitin et al. Really Prove? Or Revisiting Register
Allocation: Why and How? In: Almási, G.S., Caşcaval, C., Wu, P. (eds.) KSEM
2006. LNCS, vol. 4382, pp. 283–298. Springer, Heidelberg (2007)

27. Bouchez, F., Darte, A., Rastello, F.: Advanced Conservative and Optimistic Reg-
ister Coalescing. In: CASES, pp. 147–156 (2008)

28. Brisk, P., Verma, A.K., Ienne, P.: An Optimistic and Conservative Register As-
signment Heuristic for Chordal Graphs. In: CASES, pp. 209–217 (2007)

29. Pereira, F., Palsberg, J.: Register Allocation by Puzzle Solving. In: PLDI, pp.
216–226. ACM, New York (2008)

Validating Register Allocation and Spilling

Silvain Rideau1 and Xavier Leroy2

1 École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
silvain.rideau@ens.fr

2 INRIA Paris-Rocquencourt, BP 105, 78153 Le Chesnay, France
xavier.leroy@inria.fr

Abstract. Following the translation validation approach to high-assurance
compilation, we describe a new algorithm for validating a posteriori the
results of a run of register allocation. The algorithm is based on backward
dataflow inference of equations between variables, registers and stack lo-
cations, and can cope with sophisticated forms of spilling and live range
splitting, as well as many architectural irregularities such as overlapping
registers. The soundness of the algorithm was mechanically proved using
the Coq proof assistant.

1 Introduction

To generate fast and compact machine code, it is crucial to make effective use
of the limited number of registers provided by hardware architectures. Register
allocation and its accompanying code transformations (spilling, reloading, coa-
lescing, live range splitting, rematerialization, etc) therefore play a prominent
role in optimizing compilers.

As in the case of any advanced compiler pass, mistakes sometimes happen in
the design or implementation of register allocators, possibly causing incorrect
machine code to be generated from a correct source program. Such compiler-
introduced bugs are uncommon but especially difficult to exhibit and track down.
In the context of safety-critical software, they can also invalidate all the safety
guarantees obtained by formal verification of the source code, which is a growing
concern in the formal methods world.

There exist two major approaches to rule out incorrect compilations. Compiler
verification proves, once and for all, the correctness of a compiler or compilation
pass, preferably using mechanical assistance (proof assistants) to conduct the
proof. Translation validation checks a posteriori the correctness of one run of
compilation: a validator, conceptually distinct from the compiler itself, is given
the intermediate code before and after a compilation pass, and verifies that they
behave identically using static analysis or (specialized) theorem proving technol-
ogy [1,2,3,4]. For additional confidence, the validator can itself be mechanically
verified once and for all; this provides soundness guarantees as strong as compiler
verification and reduces the amount of compiler code that needs to be proved
correct, at the expense of weaker completeness guarantees [5].

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 224–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Validating Register Allocation and Spilling 225

This paper describes a new algorithm to validate (in one pass) register allo-
cation plus splitting, reloading, coalescing, live range splitting, dead code elimi-
nation, and enforcement of calling conventions and architectural constraints on
registers. This algorithm is based on a backward dataflow analysis that refines
standard liveness analysis. It comes accompanied with a machine-checked proof
of soundness, conducted using the Coq proof assistant [6,7]. Our algorithm im-
proves on an earlier algorithm by Huang, Childers and Soffa [8] because it is
mechanically proved and because it can deal with overlapping registers. (See
section 6 for a discussion.)

This work is part of the CompCert project, which aims at formally verifying
a realistic optimizing compiler for the C language, usable in the context of criti-
cal embedded systems [9]. Currently, CompCert follows the compiler verification
approach for its register allocation and spilling/reloading passes. While the veri-
fied register allocator is a state-of-the-art George-Appel graph coloring allocator
[10], the spilling strategy that was proved correct is very naive: it inserts spills
after every definition and reloads before every use of a temporary that could
not be allocated to a register, reserving some registers specially for this purpose
[11, section 11]. This strategy is adequate for a register-rich target architecture
such as the PowerPC, but more sophisticated strategies are needed to retarget
CompCert to a register-poor architecture like x86. Proving those sophisticated
strategies is a daunting task. The verified validation algorithm presented in this
paper offers an attractive alternative, reducing the amount of code that needs
to be proved and enabling the use of advanced spilling strategies. Moreover, we
can experiment with various register allocation algorithms and spilling strategies
without having to re-do any proofs.

The remainder of this paper is organized as follows. Section 2 outlines the
source and target languages for the untrusted register allocator and character-
izes the code transformations it is allowed to make. Section 3 describes our val-
idation algorithm. Section 4 sketches its proof of soundness. Section 5 discusses
experience gained with a prototype implementation. Related work is reviewed
in section 6, followed by concluding remarks in section 7.

2 A Bird’s Eye View of Register Allocation and Spilling

2.1 Source Language

As input for register allocation, we consider the RTL intermediate language
of the CompCert compiler [11, section 6]. This is a standard Register Transfer
Language where control is represented by a control flow graph (CFG). Each node
of a CFG carries an abstract instruction, corresponding roughly to one machine
instruction but operating over variables x (also called temporaries) instead of
hardware registers. Every function has an unlimited supply of variables and
their values are preserved across function calls. Each variable has a machine
type comprising a register class (typically, int or float) and a bit size (8, 16,
32, 64).

226 S. Rideau and X. Leroy

Control-flow graphs:
g ::= p �→ I finite map

CFG nodes:
p, s ∈ N

RTL instructions:
I ::= nop(s) no operation

| op(op, �x, xd, s) arithmetic operation
| load(κ,mode, �x, xd, s) memory load
| store(κ,mode, �x, xs, s) memory store
| call(τ, id, �x, xd, s) function call
| cond(cond , �x, strue , sfalse) conditional branch
| return(x) function return

Each RTL instruction carries the list of its successors s in the CFG. For exam-
ple, nop(s) performs no computation and continues at node s, like an uncondi-
tional branch. op(op, �x, xd, s) applies the arithmetic operation op (taken from a
machine-dependent set of operators) to the values of variables �x, stores the result
in variable xd, and continues at s. load(κ,mode, �x, xd, s) loads a memory quan-
tity κ (e.g. “8-byte signed integer” or “64-bit float”) from an address determined
by applying addressing mode mode to the values of registers �x, stores the re-
sult in xd, and continues at s. store(κ,mode, �x, xs, s) is similar, except that the
value of xs is stored at the computed address instead. cond(cond , �x, strue , sfalse)
evaluates the boolean condition cond over the values of �x and continues at strue

or sfalse depending on the result. return(x) terminates the current function, re-
turning the value of x as the result. Finally, call(τ, id, �x, xd, s) calls the function
named id, giving it the values of �x as arguments and storing the returned result
in xd. The τ parameter is the type signature of the call, specifying the number
and types of arguments and results: this is used during register allocation to de-
termine the calling conventions for the call. The full RTL language, described in
[11], supports additional forms of function calls such as calls through a function
pointer and tail calls, which we omit here for simplicity.

RTL functions:
f ::= {name = id; typesig = τ ; params = �x;

code = g; entrypoint = p}

An RTL function is defined by its name, its type signature, the list of parameter
variables, a CFG, and a node in the CFG that corresponds to the function entry
point.

2.2 Target Language

The purpose of register allocation is to transform RTL functions into LTL func-
tions. LTL stands for “Location Transfer Language” and is a minor variation on
RTL where variables are replaced by locations. A location is either a machine
register r or a slot S(δ, n) in the activation record of the function; δ is the byte
offset and n the byte size of the slot.

Validating Register Allocation and Spilling 227

Locations:
� ::= r machine register

| S(δ, n) stack slot
Control-flow graphs:

g′ ::= p �→ I ′

LTL instructions:
I ′ ::= nop(s) no operation

| op(op, ��, �, s) arithmetic operation
| load(κ,mode, ��, �d, s) memory load
| store(κ,mode, ��, �s, s) memory store
| call(τ, id, s) function call
| cond(cond , ��, strue , sfalse) conditional branch
| return function return

LTL functions:
f ′ ::= {name = id; typesig = τ ;

code = g′; entrypoint = p}

Most LTL instructions are identical to RTL instructions modulo the replacement
of variables x by locations �. However, function calls and returns are treated
differently: the locations of arguments and results are not marked in the call
and return instructions nor in the params field of functions, but are implicitly
determined by the type signature of the call or the function, following the calling
conventions of the target platform. We model calling conventions by the following
three functions:

– arguments(τ): the list of locations for the arguments of a call to a function
with signature τ . The LTL code is responsible for moving the values of
the arguments to these locations (registers or stack slots) before the call
instruction.

– parameters(τ): the list of locations for the parameters of a function with
signature τ . On entrance, the LTL function expects to find the values of its
arguments at these locations, and is responsible for moving them to other lo-
cations if desired. parameters(τ) is usually identical to arguments(τ) mod-
ulo relocation of stack slot offsets.

– result(τ): the location used to pass the return value for a function with
signature τ .

2.3 The Effect of Register Allocation on the Code

The essence of register allocation is to replace variables by the locations that
were assigned to it in each instruction of the source RTL code, leaving the rest of
the instruction unchanged. For example, the RTL instruction op(add, x.y, z, s)
can become the LTL instruction op(add, EAX.EBX, EAX, s) if the allocator decided
to assign x and z to register EAX and y to register EBX at this program point.
However, this is not the only effect of register allocation on the code: it can also
insert or delete some instructions in the following cases.

228 S. Rideau and X. Leroy

– Spilling: a move from a register r to a stack slot is inserted at some point
after an instruction that assigns r, to save the result value on the stack and
free the register r for other uses.

– Reloading: symmetrically, a move from a stack slot to a register is inserted
at some point before a use of r.

– Coalescing: some variable copies op(move, x, y, s) present in the input RTL
code may disappear if the register allocator assigned the same location to x
and y. We model this deletion as replacing the op(move, . . .) instruction by
a nop instruction.

– Live range splitting: if the allocator decided to split a live range of a
variable x into several variables x1, . . . , xn connected by move instructions,
some of these moves may remain in the generated LTL code as newly inserted
instructions.

– Enforcement of calling conventions: additional moves may be inserted
in the generated LTL code to deposit arguments to function calls and return
values of functions in the locations dictated by the calling conventions, and
fetch function parameters and return values from these locations.

– Enforcement of architectural constraints: the register allocator can
also introduce move instructions to work around irregularities of the target
architecture: two-address instructions, special registers, etc.

– Dead code elimination: the register allocator can also eliminate side
effect-free instructions such as op and load whose result variables are never
used. Dead code elimination can be performed in a separate pass prior to
register allocation, but the availability of liveness information during register
allocation makes it convenient to perform dead code elimination at the same
time.

The validation algorithm we present next is able to cope with all these modifi-
cations of the code performed during register allocation. Other code transforma-
tions that sometimes accompany register allocation, such as rematerialization,
are discussed in section 7.

3 The Validation Algorithm

Like intraprocedural register allocation itself, the validator proceeds function per
function. It takes as input an RTL function f , the corresponding LTL function
f ′ produced by the untrusted register allocator, and a partial map ϕ from the
CFG nodes of f ′ to those of f .

The purpose of ϕ is to connect the computational instructions of the LTL
code back to the corresponding instructions in the original RTL. Since deleted
instructions are not actually removed but simply turned into LTL nop instruc-
tions, ϕ also maps these nop instructions back to the corresponding deleted RTL
instruction. Finally, LTL move instructions that were inserted during register al-
location are not in the domain of ϕ, indicating that they are new. (All these

Validating Register Allocation and Spilling 229

properties of ϕ are checked during validation.) We assume that the register al-
locator has been lightly instrumented to produce this mapping ϕ and give it as
additional argument to our validator.

The validation algorithm proceeds in two steps:

– A set of structural checks (section 3.1) verifies that the computational in-
structions in the two CFGs match properly, that their successors agree, and
that the ϕ mapping is consistent.

– A backward dataflow analysis (section 3.2) establishes that the same values
flow in both CFGs.

The combination of these two steps suffices to ensure that the two functions f
and f ′ behave identically at run-time (as proved in section 4).

3.1 Structural Checks

The main structural check is performed on each pair of RTL instructions and
LTL instructions that match according to the ϕ mapping. For each mapping
p′ �→ p in ϕ, the validator calls the following check_instr predicate:

check instr(f, f ′, ϕ, p, p′) =
let I = f.code(p) and I ′ = f ′.code(p′) in
let s1, . . . , sn be the successors of I
and s′1, . . . , s

′
m be the successors of I ′ in

I and I ′ are structurally similar
and path(f ′, ϕ, si, s

′
i) for i = 1, . . . , n

An RTL instruction I is structurally similar to an LTL instruction I ′ if they are
identical modulo changes of successors and replacement of registers by locations,
or if I is an op or load and I is a nop (dead code elimination). Table 1 gives a
more precise definition. The ∼ relation (pronounced “agree”) between a variable
x and a location � means that x and � agree in register class and in size. For
example, a variable of class int and size 32 bits agrees with the x86 register EAX

Table 1. Structural similarity between RTL and LTL instructions

Instruction I Instruction I ′ Condition
nop(s) nop(s′)
op(op, �x, x, s) op(op, ��, �, s′) if �x ∼ �� and x ∼ �
op(op, �x, x, s) nop(s′)
load(κ,mode, �x, x, s) load(κ,mode, ��, �, s′) if �x ∼ �� and x ∼ �
load(κ,mode, �x, x, s) nop(s′)
store(κ,mode, �x, x, s) store(κ, mode, ��, �, s′) if �x ∼ �� and x ∼ �
call(τ, id, �x, x, s) call(τ, id)
cond(cond , �x, s1, s2) cond(cond , ��, s′1, s

′
2) if �x ∼ ��

return(x) return

230 S. Rideau and X. Leroy

and the stack slot S(0, 4), but not with the register AX (wrong size) nor with the
register XMM0 (wrong class) nor with the stack slot S(0, 8) (wrong size).

Besides structural similarity, check_instr also verifies the consistency of the
successors of the two instructions I and I ′. Naively, if ϕ maps the program point
of I ′ to the program point of I, one could expect that the i-th successor of I ′ is
mapped to the i-th successor of I. In the example below, this is the case for the
left successors of the cond instructions.

condI

op load

cond I ′

op move

move

load

ϕ

ϕ
ϕ

/∈ Dom(ϕ)

/∈ Dom(ϕ)

This is not always the case because of the fresh move instructions that can be
inserted during register allocation. However, there must exist a (possibly empty)
path from the i-th successor of I ′ to a CFG node that is mapped to the i-th
successor of I. This path must consist of move instructions that are not in the
domain of ϕ. (See example above, right successors of the cond instructions.) This
condition is checked by the auxiliary predicate path:

path(f ′, ϕ, p, p′) =
false if the node p′ was previously visited;
true if ϕ(p′) = p;
path(f ′, ϕ, p, s′) if p′ /∈ Dom(ϕ) and f ′.code(p′) = op(move, , , s′);
false, otherwise.

Besides calling check_instr on each pair (p, p′) of matching program points,
the structural check pass also verifies that the two functions f, f ′ agree in name
and type signature, and that there exists a valid path (in the sense above) from
the entry point of f ′ to a point that maps to the entry point of f . (Typically,
this path corresponds to move instructions that shuffle the parameters of the
function.)

check structure(f, f ′, ϕ) =
f.name = f ′.name and f.typesig = f ′.typesig
and path(f ′, ϕ, f.entrypoint, f ′.entrypoint)
and for each p, p′ such that ϕ(p) = p′,

check instr(f, f ′, ϕ, p, p′)

There is one last family of structural checks that we omitted here: enforcement
of architectural constraints on the uses of locations. In the case of a RISC load-
store architecture, for instance, argument and result locations must be hardware
registers for all instructions except move operations, for which one of the source

Validating Register Allocation and Spilling 231

and destination can be a stack slot, but not both. CISC architectures like the
x86 tolerate stack slots as arguments or results of some operations, but impose
other constraints such as the result location being identical to the first argument
location in the case of two-address instructions. These checks can be performed
either during validation or as part of a later compiler pass; we omit them for
simplicity.

3.2 Dataflow Analysis

To show that the original RTL function f and the register-allocated LTL function
f ′ compute the same results and have the same effects on memory, we use a
dataflow analysis that associates to each program point p′ of f ′ a set E(p′) of
equations between variables and locations:

E(p′) = {x1 = �1; . . . ; xn = �n}
The semantic meaning of these equations is that in every execution of the code,
the value of xi at point ϕ(p′) in f is equal to the value of �i at point p′ in f ′.

There are two ways to build and exploit these sets of instructions: the forward
way and the backward way. For concreteness, assume that we have structurally-
similar op instructions at points p′ in f ′ and p = ϕ(p′) in f :

f.code(p) = op(op, �x, x, s) f ′.code(p′) = op(op, ��, �, s′)

These instructions use �x and �� and define x and �, respectively.
In the forward approach, we assume given a set E of variable-location equa-

tions that hold “before” points p, p′. We can then check that {�x = ��} ⊆ E. If
so, we know that both op instructions are applied to the same argument values,
and since the operator op is the same in both instructions, they will compute
the same result value and store it in x and �. To obtain the equations that hold
“after” these instructions, we remove from E all equations invalidated by the
parallel assignment to x and � (see below for a discussion), then add the equation
x = �.

In the backward approach, we are given a set E of equations that must hold
“after” points p, p′ for the rest of the executions of f, f ′ to produce identical
results and effects. We first check that the assignment to x and � performed by
the two op instructions does not render unsatisfiable any of the equations in
E. If this check succeeds, we can remove the equation x = � from E, since it
is being satisfied by the parallel execution of the two op instructions, then add
the equations {�x = ��}, since these are necessary for the two op instructions to
produce the same result value. This gives us the set of equations that must hold
“before” points p, p′.

In this work, we adopt the backward approach, as it tends to produce smaller
sets of equations than the forward approach, and therefore runs faster. (To build
an intuition, consider a long, straight-line, single-assignment sequence of instruc-
tions: the forward approach produces sets whose cardinal grows linearly in the
number of instructions, while the backward approach produces sets whose car-
dinal is only proportional to the length of the live ranges.)

232 S. Rideau and X. Leroy

Unsatisfiability and Overlap. We mentioned the need to check that assigning
in parallel to x and � does not render unsatisfiable any equation in a set E.
An example of this situation is E = {y = �} where x �= y. The LTL-side op
instruction overwrites � with a statically-unknown value, while the RTL-side op
instruction leaves y unchanged. Therefore, there is no way to statically ensure
that y = � after executing these two instructions. In register allocation terms,
this situation typically occurs if the allocator wrongly assigned � to both x and
y, despite x and y being simultaneously live and not being copies of one another.

The determination of unsatisfiable equations is made more complicated by the
fact that LTL locations can overlap, i.e. share some bits of storage. Two overlap-
ping locations contain a priori different values, yet assigning to one changes the
value of the other. Overlap naturally occurs with stack slots: for instance, the
slots S(0, 8) (eight bytes at offset 0) and S(4, 4) (four bytes at offset 4) clearly
overlap. Some processor architectures also exhibit overlap between registers. For
example, on the x86 architecture, the 64-bit register RAX contains a 32-bit sub-
register EAX, a 16-bit sub-register AX, and two 8-bit sub-registers AL and AH. All
these registers overlap pairwise except AL and AH. In summary, for two locations
�1 and �2 there are three mutually-exclusive possibilities:

– Equality (written �1 = �2): both locations always contain the same value.
– Disjointness (written �1 ⊥ �2): assigning to one location does not change the

value of the other.
– Partial overlap (written �1 # �2): the values of the locations are a priori

different, yet assigning to one affects the value of the other.

For stack slots, we have the following definitions:

S(δ1, n1) = S(δ2, n2) ⇐⇒ δ1 = δ2 ∧ n1 = n2

S(δ1, n1) ⊥ S(δ2, n2) ⇐⇒ [δ1, δ1 + n1) ∩ [δ2, δ2 + n2) = ∅
For registers, the precise definitions of ⊥ depends on the target architecture.

Armed with these notions of overlap and disjointness, we can formally define
the compatibility between a pair x, � of destinations and a set of equations E,
written (x, �) ⊥ E:

(x, �) ⊥ E
def= ∀(x′ = �′) ∈ E, (x′ = x ∧ �′ = �) ∨ (x′ �= x ∧ �′ ⊥ �)

Note that if (x, �) ⊥ E holds, assigning in parallel the same value to x and � will
satisfy the equation x = � and preserve the satisfiability of all other equations
appearing in E. (See lemma 2 in section 4.)

The Transfer Function. In preparation for a backward dataflow analysis,
we now define the transfer function transfer(f, f ′, ϕ, p′, E) that computes the
set E′ of equations that must hold “before” program point p′ in order for the
equations E to hold “after” point p′. Here, E and E′ range over sets of equations
plus the symbolic constant � denoting inconsistency, or in other words the fact
that the analysis failed to validate the flow of data.

Validating Register Allocation and Spilling 233

transfer(f, f ′, ϕ, p′, E) =
if E = � then � (1)
else if ϕ(p′) = p then:

if f.code(p) = nop() and f ′.code(p′) = nop(): (2)
E

if f.code(p) = op(move, xs, xd,) and f ′.code(p′) = nop(): (3)
E[xd ← xs]

if f.code(p) = op(, �x, x,) or load(, , �x, x,) and f ′.code(p′) = nop(): (4)
if (x =) ∈ E then � else E

if f.code(p) = op(, �x, x,) and f ′.code(p′) = op(, ��, �,) (5)
or f.code(p) = load(, , �x, x,) and f ′.code(p′) = load(, , ��, �,):

if (x, �) ⊥ E then (E \ {x = �}) ∪ {�x = ��} else �
if f.code(p) = store(, , �x, x,) and f ′.code(p′) = store(, , ��, �,): (6)

E ∪ {x = �} ∪ {�x = ��}
if f.code(p) = call(, , �x, x,) and f ′.code(p′) = call(τ,): (7)

if (x, result(τ)) ⊥ E and E does not mention caller-save locations
then (E \ {x = result(τ)}) ∪ {�x = arguments(τ)}
else �

if f.code(p) = cond(, �x, ,) and f ′.code(p′) = cond(, ��, ,): (8)
E ∪ {�x = ��}

if f.code(p) = return(x) and f ′.code(p′) = return: (9)
{x = result(f ′.typesig)}

else if p′ /∈ Dom(ϕ) then:
if f ′.code(p′) = op(move, �s, �d,): (10)

E[�d ← �s]

Fig. 1. The transfer function for backward dataflow analysis

The transfer function is defined in figure 1. We now explain its various cases.
First, inconsistency propagates up, therefore E′ = � if E = � (case 1). Then,
we discuss whether the instruction at p′ in f ′ is mapped to a structurally-similar
instruction at p in f (i.e. ϕ(p′) = p) or is new (i.e. p′ /∈ Dom(ϕ)).

If ϕ(p′) = p, we examine the shape of the two similar instructions. For in-
structions that perform no definitions, such as store and cond, we simply add
equations {xi = �i} to E, where x1, . . . , xn are the uses of the RTL instruction
and �1, . . . , �n those of the LTL instruction (cases 6 and 8). These equations
must be satisfied “before” for the two instructions to behave the same.

For instructions that define a variable x or a location �, such as op and load,
we first check compatibility between (x, �) and E, and return � if false; for in
this case there is no way to ensure that the equations E will be satisfied after
the assignments to x and �. Otherwise, we remove the equation x = � because
the execution of the two instructions will satisfy it, then add equations {xi = �i}
before the uses as in the case of store or cond instructions.

The cases of call and return instructions are similar, except that the uses
and defs of these LTL instructions are not marked in the instructions (as in RTL),
but are implicitly determined from a type signature. Therefore, the uses and defs
of an LTL call(τ, . . .) are respectively arguments(τ) and result(τ) (case 7),

234 S. Rideau and X. Leroy

and the uses of an LTL return are {result(f ′.typesig)} (case 9). Moreover, not
all registers and stack slots are preserved across an LTL function call, but only
those marked as callee-save by the application binary interface used. The call
case therefore returns � if the set E of equations “after” contains any equation
x = � where � is caller-save: since the value of � after the call is unpredictable,
this equation cannot be satisfied.

Two cases remain that correspond to RTL instructions that were eliminated
(turned into nop) during register allocation. Case 3 corresponds to one step of
coalescing: a move instruction from xs to xd was eliminated because xs and xd

were assigned the same location. In this case, any equation xd = � holds “after”
provided that xs = � holds “before”; and any equation x = � with x �= xd holds
after if only if it holds before. Therefore, the set E′ of equations “before” is

E[xd ← xs]
def= {(xs = �) | (xd = �) ∈ E} ∪ {(x = �) | (x = �) ∈ E ∧ x �= xd}

Case 4 corresponds to dead code elimination: an op or load instruction was
removed because its destination variable x is not used later. We check that this
is the case by making sure that no equation x = � for some � occurs in E,
returning E if so and � if not.

Finally, let us consider the case p′ /∈ Dom(ϕ), indicating that the instruction
at p′ was inserted during register allocation. By our assumptions on what an
allocator is allowed to do, this new LTL instruction must be a move (case 10).
Let �s be its source and �d its destination. By a similar reasoning as in case 3, an
equation x = �d is satisfied after the move if x = �s is satisfied before. Moreover,
the move preserves satisfiability of any equation x = � such that � ⊥ �d. However,
equations x = � where � # �d are not satisfiable because of overlap. The set E′

of equations before point p′ is, therefore:

E[�d ← �s] = � if there exists (x = �) ∈ E such that � # �d

E[�d ← �s] = {(x = �s) | (x = �d) ∈ E} ∪ {(x = �) | (x = �) ∈ E ∧ � ⊥ �d}
otherwise

The Dataflow Analysis and Its Uses. Armed with the transfer function of
figure 1, we set up backward dataflow equations of the form

E(p′) =
⋃

{transfer(f, f ′, ϕ, s′, E(s′) | s′ successor of p′ in f ′}

The unknowns are E(p′), the set of equations that must hold after each program
point p′ of the transformed function f ′. By convention on �, we take � ∪ E =
E∪� = �. We then solve those equations by standard fixpoint iteration, starting
with E(p′) = ∅ for all points p′. (In our case, we reused a generic implementation
of Kildall’s algorithm provided by the CompCert compiler.)

Interestingly, this dataflow analysis generalizes liveness analysis, in the fol-
lowing sense: if {x1 = �1; . . . ; xn = �n} are the equations “after” inferred at a
program point p′ mapped to p by ϕ, then the first projection {x1, . . . , xn} is
the set of variables live in the original function f after point p and the second

Validating Register Allocation and Spilling 235

projection {�1, . . . , �n} is the set of locations live in the transformed function f ′

after point p′.
The validator then considers the set E0 of equations “before ” the function

entry point:

E0
def= transfer(f, f ′, ϕ, f ′.entrypoint, E(f ′.entrypoint))

If E0 = �, an unprovable equation was encountered at some reachable instruc-
tion; validation therefore fails. Otherwise, we need to make sure that the equa-
tions in E0 always hold. The only variable-location equations that hold with
certainty are those between the RTL function parameters and the corresponding
LTL locations:

Eparams
def= {f.params = parameters(f ′.typesig)}

The validator could, therefore, check that E0 ⊆ Eparams and signal an error
otherwise. However, this check is too strong for C programs: it amounts to im-
posing Java’s “definite assignment” rule. Indeed, E0 ⊆ Eparams implies that all
variables live at the beginning of the RTL function are parameters of this func-
tion. This is not always the case in RTL code generated from valid C functions
such as:

int f(int x) {

int y;

if (x != 0) y = 100 / x;

if (x != 0) return y; else return -1;

}

Here, the local variable y is live at the beginning of f, yet the function is semanti-
cally well-defined. Performed on the corresponding RTL code and a correct LTL
register allocation of this code, the dataflow analysis of our validator produces
an E0 containing the equation y = � for some �. (This equation arises from the
use of y in the “then” branch of the second “if”, combined with the lack of a
definition of y in the “else” branch of the first “if”.)

How, then, can we avoid rejecting such correct codes at validation time? We
take advantage of two very reasonable assumptions:

1. The semantics of RTL, like that of C, states that a program has undefined
behavior if at run-time it uses the value of an undefined variable.

2. When establishing the correctness of a run of register allocation via valida-
tion, we are only interested in RTL programs that have well-defined behav-
ior. For source programs with undefined behaviors, the register allocator can
produce arbitrary code. (Most compilers take this “garbage in, garbage out”
view of optimization.)

Now, an equation x = � at a program point where x is guaranteed to be
uninitialized can safely be considered as always satisfied: since the RTL program
has well-defined semantics, it is not going to use the value of x before defining

236 S. Rideau and X. Leroy

it, therefore the actual value of x does not matter, and we might just as well
assume that it matches the value of � in the LTL code. The check performed by
the validator on the initial equations E0 is, therefore,

E0 ∩ f.params ⊆ Eparams

where the intersection E ∩ X between a set of equations E and a set of RTL
variables X is defined as

E ∩ X
def= {(x = �) | (x = �) ∈ E ∧ x ∈ X}

3.3 The Validation Algorithm

Combining the definitions of sections 3.1 and 3.2, we obtain the main validation
function:

check function(f, f ′, ϕ) =
if check structure(f, f ′, ϕ) = false, return false
compute the solutions E(p′) of the dataflow equations

E(p′) =
⋃{transfer(f, f ′, ϕ, s′, E(s′) | s′ successor of p′ in f ′}

let E0 = transfer(f, f ′, ϕ, f ′.entrypoint, E(f ′.entrypoint))
check E0 �= � and E0 ∩ f.params ⊆ {f.params = parameters(f ′.typesig)}
Typically, this validator is combined with an untrusted implementation of a

register allocator regalloc, as follows:

validated regalloc(f) =
let (f ′, ϕ) = regalloc(f) in
if check function(f, f ′, ϕ) then return f ′ else abort compilation

4 Soundness Proof

There are two properties of interest for a translation validator. One is sound-
ness : if the validator says “yes”, the transformed code behaves identically to the
source code. The other is relative completeness: the validator never raises a false
alarm; in other words, it accepts all valid instances of the code transformation
considered. The completeness property is, necessarily, relative to a limited class
of program transformations such as those listed in section 2.3: otherwise, vali-
dation would boil down to checking semantic equivalence between two arbitrary
programs, which is undecidable.

We have formally proved the soundness of the validation algorithm presented
in section 3. The proof was mechanized using the Coq proof assistant, bringing
near-absolute confidence. This section gives a simplified sketch of this soundness
proof. Relative completeness is difficult to even state formally, so we did not
attempt to prove it. Testing shows no false alarms (see section 5). We conjecture
that our validator is complete for all program transformations that can only
rename variables, insert move operations, and delete operations and loads, but
treat as uninterpreted (and therefore preserve) all other computations.

Validating Register Allocation and Spilling 237

4.1 Dynamic Semantics

In preparation for stating and proving soundness, we need to give formal seman-
tics to the RTL and LTL languages. The full semantics of RTL is described in
[11, section 6]. Here, for simplicity, we outline the semantics of the fragment of
RTL that excludes function calls and returns, and therefore is given relative to
a single function f .

The semantics is presented in small-step style as a transition relation → be-
tween execution states. States are triples (p, e, m) where p is the current program
point (a CFG node), e is a partial map from variables to values, and m is the
memory state: a partial map from (pointer, memory quantity) pairs to values.
Values are the discriminated union of integers, floating-point numbers, and point-
ers. (In the full semantics of RTL, the state contains additional components such
as the function currently executing and an abstract call stack.)

The transition relation → between states is defined by the rules of figure 2.
The rules discriminate on the instruction at the current program point p, then
update the three components of the state accordingly. The partial functions op,
mode and cond are the semantic interpretations of operators, addressing modes
and conditions as functions over values. We make no assumptions about these
interpretations, except that the move operation is the identity: move(v) = v.
The notation e[x ← v] stands for the variable environment mapping x to v and
all other variables y to e(y). The initial state is (f.entrypoint, [f.params �→
�vargs], minit) where �vargs are the values of the arguments given to function f .
The final state is (p, e, m) where p points to a return instruction.

The semantics of LTL is essentially isomorphic to that of RTL, at least for the
fragment considered here. (The full LTL treats function calls somewhat differ-
ently from RTL, to reflect the passing of function arguments and results through
conventional locations.) LTL states are triples (p′, e′, m′) of a program point p′

in f ′, an environment e′ mapping locations to values, and a memory state m′.
The main difference between RTL and LTL is the update e′[� ← v] of a location

f.code(p) = nop(s)

(p, e, m) → (s, e, m)

f.code(p) = op(op, �x, x, s) op(e(�x)) = v

(p, e, m) → (s, e[x ← v], m)

f.code(p) = load(κ,mode, �x, x, s) mode(e(�x)) = vad m(vad, κ) = v

(p, e, m) → (s, e[x ← v], m)

f.code(p) = store(κ,mode, �x, x, s) mode(e(�x)) = vad m[(vad, κ) ← e(x)] = m′

(p, e, m) → (s, e, m′)

f.code(p) = cond(cond , �x, s1, s2) s =

{
s1 if cond(e(�x)) = true

s2 if cond(e(�x)) = false

(p, e, m) → (s, e, m)

Fig. 2. Transition rules for the simplified semantics of RTL

238 S. Rideau and X. Leroy

� by a value v: it sets � to v, but as collateral damage is also sets overlapping
locations �′ # � to unspecified values:

e′[� ← v](�) = v

e′[� ← v](�′) = e′(�′) if �′ ⊥ �

e′[� ← v](�′) is unspecified if �′ # �

Note that the values of stack locations S(δ, n) are stored in the location environ-
ment e′ and not in the memory state m′. This simplifies the proof. A separate
proof, detailed in [11, section 12], shows that accesses to stack locations can later
be reinterpreted as memory loads and stores within the activation record.

4.2 Equation Satisfaction

The crucial invariant of the soundness proof is the following: whenever control
reaches point p′ in the LTL function f ′ and matching point ϕ(p′) in the RTL
function f , the corresponding environments e and e′ satisfy the equations E “be-
fore” point p′ inferred by the validator. Equation satisfaction is written e, e′ |= E
and defined as

e, e′ |= E
def= ∀(x = �) ∈ E, x ∈ Dom(e) =⇒ e(x) = e′(�)

This predicate enjoys nice properties that are keys to the soundness proof. First,
satisfaction implies that the argument values to matching RTL and LTL opera-
tions are identical. (This lemma is used in the parts of the soundness proof that
corresponds to cases 3, 6, 7, 8 and 9 of the transfer function.)

Lemma 1. If e, e′ |= E ∪ {�x = ��} and e(�x) is defined, then e′(��) = e(�x).

Second, satisfaction is preserved by several kinds of parallel or unilateral as-
signments. (For each lemma we indicate the corresponding cases of the transfer
function.)

Lemma 2 (Parallel assignment – cases 5 and 7). If e, e′ |= E \ (x = �)
and (x, �) ⊥ E then e[x ← v], e′[� ← v] |= E

Lemma 3 (RTL assignment to a dead variable – case 4). If e, e′ |= E
and (x =) /∈ E then e[x ← v], e′ |= E

Lemma 4 (Coalesced RTL move – case 3). If e, e′ |= E[xd ← xs] then
e[xd ← e(xs)], e′ |= E

Lemma 5 (Inserted LTL move – case 10). If E[�d ← �s] �= � and e, e′ |=
E[�d ← �s] then e, e′[�d ← e′(�s)] |= E

Finally, satisfaction holds in the initial states, taking �x = f.params and �� =
parameters(f ′.typesig) and �v to be the values of the function parameters.

Lemma 6. If E ∩ �x ⊆ {�x = ��}, then for any e′ such that e′(��) = �v, we have
[�x �→ �v], e′ |= E.

Validating Register Allocation and Spilling 239

4.3 Forward Simulation

The soundness proof takes the form of a forward simulation diagram relating
one transition in the RTL code to one or several transitions in the LTL code,
starting and ending in matching states. (The “or several” part corresponds to
the execution of move instructions inserted during register allocation.)

s1

s2

s′1

s′2

(RTL) + (LTL)

≈

≈

The relation ≈ between RTL and LTL states is defined as follows:

(p, e, m) ≈ (p′, e′, m′) def=
ϕ(p′) = p ∧ e, e′ |= transfer(f, f ′, ϕ, p′, E(p′)) ∧ m = m′

That is, the program points must match according to the ϕ mapping; the variable
and location environments must satisfy the dataflow equations “before” point p′;
and the memory states are identical.

Theorem 1 (Forward simulation). Assume that check function(f, f ′, ϕ) =
true. Let E(p′) be the solutions to the dataflow equations. If s1 → s2 and s1 ≈
s′1, there exists s′2 such that s′1

+→ s′2 and s2 ≈ s′2.

The proof of this theorem proceeds in two steps. First, we show that the LTL
code can make one transition from s′1 to some state (p′, e′, m′) that does not
necessarily match s2 (because ϕ(p′) can be undefined) but is such that e, e′ |=
transfer(f, f ′, ϕ, p′, E(p′)). This part of the proof proceeds by case analysis
on the RTL and LTL instructions pointed to by s1 and s′1, and exercises all
cases of the structural checks and the transfer function except the path check
and case 10. Then, the following lemma shows that we can extend this LTL
transition with zero, one or several transitions (corresponding to executions of
inserted move instructions) to reach a state matching s2.

Lemma 7 (Execution of inserted moves). Assume path(f ′, ϕ, p, p′) = true
and e, e′ |= transfer(f, f ′, ϕ, p′, E(p′)). Then, there exists p′′ and e′′ such that
(p′, e′, m) ∗→ (p′′, e′′, m) and ϕ(p′′) = p and e, e′′ |= transfer(f, f ′, ϕ, p′′, E(p′′)).

From the forward simulation theorem 1, semantic preservation for whole pro-
grams (that is, agreement between the observable behaviors of the source RTL
code and transformed LTL code) follows easily using the general results of [11,
section 3.7].

5 Implementation and Experimental Results

We implemented the validation algorithm and a prototype register allocator
within the CompCert verified compiler [9]. Like all other verified parts of this

240 S. Rideau and X. Leroy

compiler, the validator is written directly in the Gallina specification language
of the Coq proof assistant, in pure functional style. Sets of equations are imple-
mented as persistent AVL trees, using the FSet standard library of Coq. This
implementation supports insertion and removal of equations in O(log n) time,
but the compatibility check (x, �) ⊥ E requires an O(n) traversal of the set E.
Whether a better data structure could support compatibility check in logarith-
mic time is an open question.

The Gallina implementation of the validator lends itself immediately to pro-
gram proof within Coq. Efficient Caml code is automatically generated from the
Gallina code using Coq’s program extraction facility. The generated Caml code
is then linked with a register allocator hand-written in Caml.

The prototype register allocator we experimented with is a standard Chaitin-
style graph coloring allocator, using George and Appel’s iterated register coa-
lescing algorithm to color the interference graph [10]. If some variables x were as-
signed stack slots and are used by instructions that demand a hardware register,
spill and reload instructions to/from fresh temporary variables are introduced
and register allocation is repeated. Two spilling strategies were experimented.
The first simply inserts a reload before every use of a spilled variable and a
spill after every definition. The second splits the live ranges of a spilled variable
at every definition and every use, in the hope that reloaded values can stay in
a register across several reloads in parts of the code where register pressure is
low. (This is a less aggressive form of splitting than that considered by Appel
and George [12].) Since we are targeting a register-rich architecture (the Pow-
erPC), spilling occurs rarely. To stress the validator, we reduced the number of
callee-save registers, forcing considerable spilling across function calls.

On the CompCert test suite, the validator performed as expected: it did not
raise any false alarms, but found several mistakes in our implementation of
the second spilling strategy. The compile-time overhead of the validator is very
reasonable: validation adds 20% to the time taken by register allocation and 6%
to the whole compilation time.

From a proof engineering viewpoint, the validator is a success. Its mechanized
proof of correctness is only 900 lines of Coq, which is quite small for a 350-line
piece of code. (The typical ratio for Coq program proofs is 6 to 8 lines of proof
per line of code.) In contrast, 4300 lines of Coq proof were needed to verify
the register allocation and spilling passes of the original CompCert compiler.
Even this earlier development used translation validation on a sub-problem: the
George-Appel graph coloring algorithm was implemented directly in untrusted
Caml code, then followed by a verified validator to check that the resulting as-
signment is a valid coloring of the interference graph. Later, Blazy, Robillard
and Appel conducted a Coq proof of the graph coloring algorithm [13]. This is
a fairly large proof: in total, more than 10000 lines of proof are needed to com-
pletely verify the original CompCert register allocation and spilling passes. In
summary, the translation validation approach delivers a ten-fold reduction in the
proof effort compared with the compiler verification approach, while providing

Validating Register Allocation and Spilling 241

soundness guarantees that are just as strong. Of course, the compiler verifica-
tion approach offers additional formal guarantees: not just soundness, but also
completeness (register allocation never fails at compile-time). In contrast, the
verified validator approach cannot rule out the possibility of a spurious compile-
time error.

6 Related Work

The idea of translation validation goes back at least to Samet’s 1975 Ph.D.
thesis [14]. It was rediscovered and popularized by Pnueli et al. ten years ago
[1]. Some translation validators proceed by generation of verification conditions
followed by model checking or automatic theorem proving [1,15,16,17]; others
rely on less powerful but cheaper and more predictable approaches based on
symbolic evaluation and static analyses [2,3,4,5,8,18]. For another dividing line,
some validators are general-purpose and apply to several compilation passes [2]
or even to a whole compiler [3], while others are specialized to particular families
of optimizations, such as software pipelining [15,19,18], instruction scheduling [5],
partial redundancy elimination [4], or register allocation [8]. The present work
falls squarely in the cheap, specialized, static analysis-based camp.

The earlier work most closely related to ours is that of Huang, Childers and
Soffa [8]: a validator for register allocation that was prototyped within SUIF.
Their validator proceeds by forward dataflow analysis and global value num-
bering. A nice feature of their validator, which ours lacks, is the production of
meaningful explanations when an error is detected. On the other hand, their val-
idation algorithm was not proved sound. Such a proof appears delicate because
the semantic interpretation of global value numbers is difficult.

The general-purpose validators of Necula [2] and Rival [3] can also validate
register allocation among other program transformations. They proceed by sym-
bolic evaluation: variables and locations in the source and transformed code are
associated symbolic expressions characterizing their values, and these expres-
sions are compared modulo algebraic identities to establish semantic equivalence.
Symbolic evaluation is a very versatile approach, able to validate many program
transformations. On the particular case of register allocation and spilling, it ap-
pears no more powerful, but more costly, than the specialized techniques used
by Huang et al. and by us.

7 Conclusions and Future Work

The validation algorithm for register allocation and spilling presented in this paper
is simple enough to be integrated in production compilers and efficient enough to
be invoked on every compilation run. At the same time, the mechanically-checked
proof of soundness brings considerable confidence in its results.

Our validator can be improved in several directions. One is to design a more
efficient data structure to represent sets of equations. As mentioned in section 5,

242 S. Rideau and X. Leroy

the simple representation of equation sets as AVL trees performs compatibil-
ity checks in linear time. A more sophisticated data structure might support
logarithmic-time operations over equation sets.

Another direction is to introduce additional forms of equations to enable the
validation of even more code transformations related to register allocation. For
example, rematerialization of constants [20] could probably be validated if we
were able to keep track of equations of the form x = constant . Likewise, the
parts of the function prologue and epilogue that save and restore used callee-
save registers to/from stack slots (currently treated in CompCert by a separate,
verified pass) could be validated along with register allocation if we had equations
of the form init(r) = �, where init(r) is a symbolic constant denoting the value
of callee-save register r on entrance to the function.

References

1. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

2. Necula, G.C.: Translation validation for an optimizing compiler. In: Programming
Language Design and Implementation 2000, pp. 83–95. ACM Press, New York
(2000)

3. Rival, X.: Symbolic transfer function-based approaches to certified compilation.
In: 31st symposium Principles of Programming Languages, pp. 1–13. ACM Press,
New York (2004)

4. Tristan, J.B., Leroy, X.: Verified validation of Lazy Code Motion. In: Programming
Language Design and Implementation 2009, pp. 316–326. ACM Press, New York
(2009)

5. Tristan, J.B., Leroy, X.: Formal verification of translation validators: A case study
on instruction scheduling optimizations. In: 35th symposium Principles of Pro-
gramming Languages, pp. 17–27. ACM Press, New York (2008)

6. Coq development team: The Coq proof assistant. Software and documentation,
http://coq.inria.fr/ (1989–2010)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical
Computer Science. Springer, Heidelberg (2004)

8. Huang, Y., Childers, B.R., Soffa, M.L.: Catching and identifying bugs in register
allocation. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 281–300. Springer,
Heidelberg (2006)

9. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

10. George, L., Appel, A.W.: Iterated register coalescing. ACM Transactions on Pro-
gramming Languages and Systems 18(3), 300–324 (1996)

11. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

12. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers.
In: Programming Language Design and Implementation 2001, pp. 243–253. ACM
Press, New York (2001)

13. Blazy, S., Robillard, B., Appel, A.W.: Formal verification of coalescing graph-
coloring register allocation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012,
pp. 145–164. Springer, Heidelberg (2010)

http://coq.inria.fr/

Validating Register Allocation and Spilling 243

14. Samet, H.: Automatically Proving the Correctness of Translations Involving Opti-
mized Code. PhD thesis, Stanford University (1975)

15. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: Int.
Conf. on Compilers, Architecture, and Synthesis for Embedded Systems (CASES
2002), pp. 280–287. ACM Press, New York (2006)

16. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: VOC: A methodology for translation
validation of optimizing compilers. Journal of Universal Computer Science 9(3),
223–247 (2003)

17. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A
translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

18. Tristan, J.B., Leroy, X.: A simple, verified validator for software pipelining. In:
37th symposium Principles of Programming Languages. ACM Press, New York
(to appear, 2010) (accepted for publication)

19. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Programming Language Design and Implementation
2009, pp. 327–337. ACM Press, New York (2009)

20. Briggs, P., Cooper, K.D., Torczon, L.: Rematerialization. In: Programming Lan-
guage Design and Implementation 1992, pp. 311–321. ACM Press, New York (1992)

Automatic C-to-CUDA Code Generation for Affine
Programs

Muthu Manikandan Baskaran1, J. Ramanujam2, and P. Sadayappan1

1 The Ohio State University, USA
2 Louisiana State University, USA

Abstract. Graphics Processing Units (GPUs) offer tremendous computational
power. CUDA (Compute Unified Device Architecture) provides a multi-threaded
parallel programming model, facilitating high performance implementations of
general-purpose computations. However, the explicitly managed memory hierar-
chy and multi-level parallel view make manual development of high-performance
CUDA code rather complicated. Hence the automatic transformation of sequen-
tial input programs into efficient parallel CUDA programs is of considerable in-
terest.

This paper describes an automatic code transformation system that gener-
ates parallel CUDA code from input sequential C code, for regular (affine) pro-
grams. Using and adapting publicly available tools that have made polyhedral
compiler optimization practically effective, we develop a C-to-CUDA transfor-
mation system that generates two-level parallel CUDA code that is optimized
for efficient data access. The performance of automatically generated code is
compared with manually optimized CUDA code for a number of benchmarks.
The performance of the automatically generated CUDA code is quite close to
hand-optimized CUDA code and considerably better than the benchmarks’ per-
formance on a multicore CPU.

1 Introduction

Graphics Processing Units (GPUs) represent the most powerful multi-core systems cur-
rently in use. For example, the NVIDIA GeForce 8800 GTX GPU chip has a peak
performance of over 350 GFLOPS and the NVIDIA GeForce GTX 280 chip has a
peak performance of over 900 GFLOPS. There has been considerable recent interest in
using GPUs for general purpose computing [8,13,12]. Until recently, general-purpose
computations on GPUs were performed by transforming matrix operations into special-
ized graphics processing, such as texture operations. The introduction of the CUDA
(Compute Unified Device Architecture) programming model by NVIDIA provided a
general-purpose multi-threaded model for implementation of general-purpose compu-
tations on GPUs. Although more convenient than previous graphics programming APIs
for developing GPGPU codes, the manual development of high-performance codes with
the CUDA model is still much more complicated than the use of parallel program-
ming models such as OpenMP for general-purpose multi-core systems. It is therefore
of great interest, for enhanced programmer productivity and for software quality, to
develop compiler support to facilitate the automatic transformation of sequential input
programs into efficient parallel CUDA programs.

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 244–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatic C-to-CUDA Code Generation for Affine Programs 245

There has been significant progress over the last two decades in the development
of powerful compiler frameworks for dependence analysis and transformation of loop
computations with affine bounds and array access functions [1,5,6,24,18,14,9,25,23,4].
For such regular programs, compile-time optimization approaches have been devel-
oped using affine scheduling functions with a polyhedral abstraction of programs and
data dependencies. CLooG [4,7] is a powerful open-source state-of-the-art code gen-
erator that transforms a polyhedral representation of a program and affine scheduling
constraints into concrete loop code. The Pluto source-to-source optimizer [5,6,22] en-
ables end-to-end automatic parallelization and locality optimization of affine programs
for general-purpose multi-core targets. The effectiveness of the transformation system
has been demonstrated on a number of non-trivial application kernels for multi-core
processors, and the system implementation is publicly available [22].

In this paper we describe an end-to-end automatic C-to-CUDA code generator using
a polyhedral compiler transformation framework. We evaluate the quality of the gen-
erated code using several benchmarks, by comparing the performance of automatically
generated CUDA code with hand-tuned CUDA code where available and also with op-
timized code generated by the Intel icc compiler for a general-purpose multi-core CPU.

The rest of the paper is organized as follows. Section 2 provides an overview of the
polyhedral model for representing programs, dependences, and transformations. Sec-
tion 3 provides an overview of the NVIDIA GPU architecture and the CUDA program-
ming model. The design and implementation of the C-to-CUDA transformer is pre-
sented in Section 4. Experimental results are provided in Section 5. We discuss related
work in Section 6 and conclude with a summary in Section 7.

2 Background

This section provides background information on the polyhedral model. A hyperplane
in n dimensions is an n− 1 dimensional affine subspace of the n-dimensional space
and can be represented by an affine equality. A halfspace consists of all points of an
n-dimensional space that lie on one side of a hyperplane (including the hyperplane); it
can be represented by an affine inequality. A polyhedron is the intersection of finitely
many halfspaces. A polytope is a bounded polyhedron.

In the polyhedral model, a statement s surrounded by m loops is represented by an
m-dimensional polytope, referred to as an iteration space polytope. The coordinates of
a point in the polytope (referred to as the iteration vector is) correspond to the values of
the loop indices of the surrounding loops, starting from the outermost. In this work we
focus on programs where loop bounds are affine functions of outer loop indices and
global parameters (e.g., problem sizes). Similarly, array access functions are also affine
functions of loop indices and global parameters. Hence the iteration space polytope
Ds of a statement s can be defined by a system of affine inequalities derived from the
bounds of the loops surrounding s. Each point of the polytope corresponds to an instance
of statement s in program execution. Using matrix representation to express systems of

affine inequalities, the iteration space polytope is defined by Ds

⎛⎝ is
n
1

⎞⎠≥ 0, where Ds is

a matrix representing loop bound constraints and n is a vector of global parameters.

246 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

Affine array access functions can also be represented using matrices. Let a[Fras(is)]
be the rth reference to an array a in statement s whose corresponding iteration vector

is is. Then Fras(is) = Fras

⎛⎝ is
n
1

⎞⎠, where Fras is a matrix representing an affine mapping

from the iteration space of statement s to the data space of array a. Row i in the matrix
Fras (often referred to as the access matrix) defines a mapping corresponding to the ith
dimension of the data space. When the rank of the access matrix of an array reference is
less than the iteration space dimensionality of the statement in which it is accessed, the
array is said to have an order of magnitude (or higher-order) reuse due to that reference.

Given an iteration space polytope D and a set of array access functions F1,F2, . . . ,Fk
of k references to an array in the iteration space, the set of array elements accessed in
the iteration space or the accessed data space is given by DS =

⋃k
j=1 F jD, where F jD

is the image of the iteration space polytope D formed by the affine access function F j
and it gives the set of elements accessed by the reference F j in D.

Dependences. There has been a significant body of work on dependence analysis in
the polyhedral model [9,24,29]. An instance of statement s, corresponding to iteration
vector is within iteration domain Ds, depends on an instance of statement t (with it-
eration vector it in domain Dt), if (1) is and it are valid points in the corresponding
iteration space polytopes, (2) they access the same memory location, and (3) is is exe-
cuted before it . Since array accesses are assumed to be affine functions of loop indices
and global parameters, the constraint that defines conflicting accesses of memory lo-
cations can be represented by an affine equality (obtained by equating the array access
functions in source and target statement instances). Hence all constraints to capture a
data dependence can be represented as a system of affine inequalities/equalities with a
corresponding polytope (referred to as a dependence polytope).

Affine Transforms. The polyhedral model has been effectively used to find good affine
program transformations that are aimed at either improvement of sequential programs
(source-to-source transformation) or automatic parallelization of programs or both
[10,18,14,11,14,23,6].

A one-dimensional affine transformation of a statement s is represented in the poly-

hedral model as φs(is) = Cs.

⎛⎝ is
n
1

⎞⎠, where Cs is a row vector and the affine mapping

φs represents an affine hyperplane that maps each instance of statement s to a point in
a dimension of the transformed iteration space. An affine transformation is valid only
if it preserves the dependences in the original program. An m-dimensional affine map-
ping can be represented using a matrix with m rows, where each row represents a one-
dimensional mapping. A set of linearly independent one-dimensional affine functions
(φ1

s ,φ2
s , . . . ,φk

s) maps each instance of statement s into a point in the multi-dimensional
transformed space. The transformation matrix captures a composition of transforma-
tions like fusion, skewing, reversal and shifting.

It has been shown (in automatic transformation systems like Pluto) that key compiler
transformations like tiling can be effectively performed using the polyhedral model.
When tiling is performed, in the tiled iteration space, statement instances are repre-
sented by higher dimensional statement polytopes involving supernode or inter-tile

Automatic C-to-CUDA Code Generation for Affine Programs 247

for (i=0;i<N;i++) {
P: x[i]=0;
for (j=0;j<N;j++)

Q: x[i]+=a[j][i]∗y[j];
}

(a) Original code

Dorig
Q .

⎛⎜⎜⎝
i
j

N
1

⎞⎟⎟⎠≥ 0 Dtiled
Q .

⎛⎜⎜⎜⎜⎜⎝
it
jt
i
j

N
1

⎞⎟⎟⎟⎟⎟⎠≥ 0

(c) Original and tiled iteration space

for (it =0; it <=floord(N−1,32);it++) {
for (jt =0; jt <=floord(N−1,32);jt++) {

if (jt == 0) {
for (i=max(32∗it ,0);

i<=min(32∗it+31,N−1); i++) {
P: x[i]=0;
Q: x[i]=x[i]+a [0][i]∗y [0];

}
}
for (i=max(32∗it ,0);
i<=min(32∗it+31,N−1); i++) {
for (j=max(32∗jt ,1);
j<=min(32∗jt+31,N−1);j++) {
Q: x[i]=x[i]+a[j][i]∗y[j];

}
}

}
}

(b) Tiled code

Fig. 1. Example to illustrate Tiling: Transpose matrix vector multiply (tmv) kernel

iterators and intra-tile iterators. The code in Figure 1(b) represents the tiled version
of the code in Figure 1(a). The original iteration space and the transformed iteration
space are illustrated in Figure 1(c).

3 GPU Architecture and the CUDA Programming Model

In this Section, we provide an overview of the GPU parallel computing architecture, the
CUDA programming interface, and the GPU execution model.

3.1 GPU Computing Architecture

NVIDIA GPUs comprises of a set of multiprocessor units called streaming multiproces-
sors (SMs), each one containing a set of processor cores (called streaming processors
(SPs)). The NVIDIA GeForce 8800 GTX has 16 SMs, each consisting of 8 SPs. The
NVIDIA GeForce GTX280 has 30 SMs with 8 SPs in each SM. The SPs within an
SM communicate through a fast explicitly managed on-chip local store, also called the
shared memory, while the different SMs communicate through slower off-chip DRAM,
also called the global memory. Each SM unit also has a fixed number of registers.

Different types of memory in the GPUs are addressable in CUDA programming
model. The memories are organized in a hybrid cache and local-store hierarchy. The
memories are as follows: (1) off-chip global memory (768MB on the 8800 GTX), (2)
off-chip local memory, (3) on-chip shared memory (16KB per multiprocessor in 8800
GTX), (4) off-chip constant memory with on-chip cache (64KB in 8800 GTX), and (5)
off-chip texture memory with on-chip cache.

The off-chip DRAM in the GPU device (i.e., the global memory) has a very high la-
tency (about 100−200 cycles). Hence reducing the latency in accessing data from global

248 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

memory is critical for good performance. The global memory accesses in NVIDIA GPU
chips are characterized by a hardware optimization – global memory access coalescing.
Accesses from adjacent threads in a half-warp to adjacent locations (that are aligned to 4,
8, or 16 bytes) in global memory are coalesced into a single contiguous aligned memory
access. Interleaved access to global memory by threads in a thread block is essential to
exploit this architectural feature and is therefore an important optimization for a C-to-
CUDA compiler.

The shared memory in each SM is organized into banks. When multiple addresses
belonging to the same bank are accessed at the same time, bank conflict occur. Each
SM has a set of registers. The constant and texture memories are read-only regions in
the global memory space and they have on-chip read-only caches. Accessing constant
cache is faster, but it has only a single port and hence it is beneficial when multiple pro-
cessor cores load the same value from the cache. Texture cache has higher latency than
constant cache, but it does not suffer greatly when memory read accesses are irregular
and it is also beneficial for accessing data with 2D spatial locality. It is extremely im-
portant to reduce the number of accesses to off-chip memory and maximize utilization
of the on-chip memories.

3.2 CUDA Programming Model

Programming GPUs for general-purpose applications is enabled through a C/C++ lan-
guage interface exposed by the NVIDIA Compute Unified Device Architecture (CUDA)
technology [20]. The CUDA programming model provides an abstraction of the GPU
parallel architecture using a minimal set of programming constructs such as hierarchy
of threads, hierarchy of memories, and synchronization primitives. A CUDA program
comprises of a host program which is run on the CPU or host and a set of CUDA ker-
nels that are launched from the host program on the GPU device. The CUDA kernel is a
parallel kernel that is executed on a set of threads. The threads are organized into groups
called thread blocks. The threads within a thread block synchronize among themselves
through barrier synchronization primitives in CUDA and they communicate through
shared memory. A kernel comprises of a grid of one or more thread blocks. Each thread
in a thread block is uniquely identified by its thread id (threadIdx) within its block and
each thread block is uniquely identified by its block id (blockIdx). The dimensions of
the thread and thread block are specified at the time of launching the kernel, through
the identifiers blockDim and gridDim, respectively.

Each CUDA thread has access to the different memories at different levels in the hi-
erarchy. The threads have a private local memory space and register space. The threads
in a thread block share a shared memory space. The GPU DRAM is accessible by all
threads in a kernel.

3.3 GPU Execution Model

NVIDIA GPUs use a Single Instruction Multiple Threads (SIMT) model of execution.
The threads in a kernel are executed in groups called warps, where a warp is a unit of
execution. The scalar SPs within an SM share a single instruction unit and the threads of
a warp are executed on the SPs. All the threads of a warp execute the same instruction
and each warp has its own program counter. The SM hardware employs zero-overhead

Automatic C-to-CUDA Code Generation for Affine Programs 249

CLooG
Affine

Transformation
Framework

Source
(C)Code

Scanner/
Parser +

Dependence Tester

GPU Transformations

Target
(CUDA)
Code

Multi-level Tiling
+ Parallelism

Extraction

AST
Post-

processing

On-chip Memory
Management +
Data Movement

Pluto

Code Gen
+ CLAST

Fig. 2. The C-to-CUDA Code Generation Framework

warp scheduling through the CUDA runtime scheduler. Any warps whose next instruc-
tion has ready operands is eligible for execution. Eligible warps are selected for execu-
tion by a prioritized scheduling policy. The warp scheduling is completely transparent
to the CUDA programmer.

The computational resources on a multiprocessor unit, i.e., the shared memory and
the register bank, are shared among the active thread blocks on that unit. For exam-
ple, an application abstracted as a grid of 64 thread blocks can have 4 thread blocks
mapped on each of the 16 multiprocessors of the NVIDIA GeForce 8800 GTX. The
GeForce 8800 GTX GPU has a 16 KB shared memory space and 8192 registers. If
the shared memory usage per thread block is 8 KB and the register usage is 4096, at
most 2 thread blocks can be concurrently active on a multiprocessor; when one of the
two thread blocks completes execution, another thread block can become active on the
multiprocessor.

4 Design of C-to-CUDA Generator

In this section, we describe the C-to-CUDA code generator. Before providing details on
the various transformation aspects, we first outline the general steps involved in source-
to-source code generation using a polyhedral compiler framework.

1. The input program is run through a scanner and parser that constructs an abstract
syntax tree (AST) for the input program. From the AST, iteration space polytopes
and array access functions are extracted.

2. Data dependences are analyzed and dependence polytopes (described in Section 2)
are generated.

3. After analyzing the dependences, affine statement-wise transforms are determined.
The affine transforms provide the new lexicographic ordering of the statements in
the transformed program.

4. When tiling has to be performed, the affine statement-wise transforms are used as
tiling hyperplanes to generate higher-dimensional statements domains (involving
supernode iterators and intra-tile iterators).

5. The transformed statement polytopes along with the affine transformations are pro-
vided to a polyhedral code generator such as CLooG to generate transformed code.

As described in Section 3, the GPU architecture represents a multi-level parallel ar-
chitecture. It has various memory units (with different access properties) that are at
different proximity with respect to the chip (on-chip and off-chip) and have very dif-
ferent access latencies. We now discuss the various issues that are addressed by our

250 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

code generation system for generating effective CUDA code along the lines of the code
generation process described above. There are several publicly available polyhedral
transformation frameworks and tools. We used the Pluto [22] polyhedral parallel tiling
infrastructure and CLooG [4,7], a state-of-the-art polyhedral code generator. The se-
quence of steps in the implemented system is shown in Fig. 2.

1. One of the key optimizations is to generate efficient access pattern for global (off-
chip) memory access. Pluto finds affine transforms that are (1) communication-
optimized, and (2) locality-optimized. At Step 3 of the code generation process
(outlined above), our framework finds affine transforms that enable global memory
coalescing in addition to being communication-optimized and locality-optimized.
(detailed in [2]).

2. Two levels of parallelism must be extracted to exploit parallelism at the thread
block level and the thread level for GPUs. At Step 4, we use the affine transforms
determined at Step 3 to find multi-level tiled statement domains and identify and
extract parallelism.

3. A critical optimization for GPUs is the utilization of on-chip memories. It is ben-
eficial to move repeatedly reused data from off-chip memory to on-chip memory
before the first use and move it back after the last use. At Step 4, our framework
generates iteration space polytopes of data movement statements using polyhedral
techniques, in addition to generating the transformed statement domains. (detailed
in [3]).

4. At Step 5, we use the CLooG polyhedral code generator to generate the target code
structure. Suitable input, in the form of a description of all statements (computation
and data movement), together with their iteration spaces (as polytopes) as well as
the transformations (as scheduling functions) specifying the new execution order
for each statement instance, is input to the CLooG code generator. The union of
all input iteration space polytopes is scanned by CLooG according to the specified
scheduling functions, in order to generate loop nests in the target program that
execute the statement instances in this new execution order.

5. After Step 5, the AST of the generated parallel tiled code is post processed to gen-
erate compilable CUDA code. The post processing is primarily (1) to introduce
thread-centricity in the parallel code, i.e., to add thread identifier and thread block
identifier, and (2) add inter-thread and inter-thread-block synchronizations at ap-
propriate execution points.

In the rest of this section, we provide details on the following three aspects of the C-to-
CUDA generator:

1. generation of multi-level tiled parallel code,
2. generation and placement of code to move data between on-chip and off-chip mem-

ories, and
3. generation of thread-centric parallel code.

4.1 Multi-level Parallel Tiled Code Generation

Tiling Hyperplanes and Tiling Legality Condition. In order to generate tiled code,
Pluto finds affine transforms that satisfy the following tiling legality condition [6] in a

Automatic C-to-CUDA Code Generation for Affine Programs 251

multi-statement imperfectly nested program and use them as tiling hyperplanes which
constitute the loops in the transformed program:
A set of one-dimensional affine transformation functions (one corresponding to each
statement in a imperfectly nested multi-statement program), {φs1 ,φs2 , . . . ,φsn}, repre-
sents a valid tiling hyperplane if for each pair of dependent statement instances (isp , isq)
φsq(isq)−φsp(isp)≥ 0. This condition guarantees that any inter- or intra-statement affine
dependence is carried in the forward direction along the tiling hyperplane. Hence if a
program is transformed using the affine transforms satisfying the above condition, then
rectangular tiling is legal in the transformed program.

Affine transformations for CUDA. With CUDA, execution of a program involves dis-
tributing the computation across thread blocks and across threads within a thread block.
For tiling at the outer level (at the level of thread blocks), our framework uses the affine
transforms generated by Pluto. For finding tiling hyperplanes to generate tiled code at
the inner level (at the level of threads), we modify Pluto to generate program transfor-
mations that enable interleaved access to global memory by threads in a thread block
- this is necessary to facilitate coalesced global memory accesses that improve global
memory access bandwidth. An approach to achieve this was developed in [2]. We incor-
porated that approach in our system by framing additional constraints to feed to Pluto
while finding affine statement-wise transforms. The additional constraints are:

– If two statement instances access adjacent elements of an array (based on the actual
array layout), then the statement instances are scheduled to execute at the same
time; (and)

– If two statement instances access adjacent elements of an array (based on the actual
array layout), then the statement instances are scheduled to execute on adjacent
processors.

Extracting Parallel Loops. The affine transformations may or may not result in
synchronization-free parallel tile loops (doall loops). If doall loops exist in the tile
space, they are used as parallel loops. However when no synchronization-free paral-
lelism exists, parallel code generation needs additional processing. There may be one
or more loops that carry dependences (doacross loops). Since the tiling legality condi-
tion assures that the dependences are always carried in the forward direction, pipelined
parallelism with synchronization can be exploited in such cases.

If {φ1,φ2, . . . ,φn} represent the doacross loops in the tile space, then the sum φ1 +
φ2 + · · ·+φn carries all dependences that are carried by each φi,1≤ i≤ n, and represents
a legal wavefront of tiles such that all tiles in the wavefront are parallel [15]. In other
words, the set of loops are transformed (using a unimodular skewing transformation) as
follows: ⎛⎜⎜⎜⎜⎜⎝

φ′1

φ′2

φ′3

...
φ′n

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

...
φn

⎞⎟⎟⎟⎟⎟⎠ .

This ensures that φ′1 is sequential and φ′2,φ′3, . . . ,φ′n represent the parallel loops. This is
the approach we employ to extract parallel loops at one level. A synchronization call to

252 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

synchronize across the parallel units has to be placed at each iteration of the sequential
loop. Handling the placement of synchronization calls is discussed later in the Section.

Pluto generates parallel code for general purpose multi-core architectures; it gener-
ates multi-level tiled code with parallelism only at the outer level. However for multi-
level parallel architectures like GPGPUs, parallelism has to be extracted at multiple
levels (two levels for CUDA - thread block level and thread level). Algorithm 1 pro-
vides details on the approach to generate multi-level tiled transformed statement do-
mains (which are later fed to CLooG for code generation) along with the identification
of parallel loops at thread block level and thread level.

Using CLooG for Multi-level Tiled Code Generation. As described earlier, CLooG
scans a union of statement (iteration space) polyhedra using an optionally provided
global lexicographic ordering specified through statement-wise scheduling functions or
scattering functions, and generates loop nests in the target program that execute the
statement instances in the new lexicographic order. CLooG does not include any data
dependence information and hence the legality of scanning the statement polyhedra
should be guaranteed by the user specifying the scattering functions. In our framework,
the statement-wise affine transforms provided as scattering functions to CLooG ensure
effective and correct execution of the transformed program. Tiled code is generated
using CLooG by specifying a modified higher dimensional statement domain for each
statement and also specifying the scheduling or scattering functions (using the affine
statement-wise transforms) to generate the correct ordering of inter-tile and intra-tile
loops.

Algorithm 1. Multi-level Parallel Tiled Code Generation
Input Set of statements - S, Iteration Space Polytopes of all statements Ds,s∈ S, Statement-wise

affine transforms for each level k: φk1
s ,φk2

s , . . . ,φkn
s ,s ∈ S, Tile sizes t1,t2, . . . ,tn for each level

1. for each level do
2. for each statement s ∈ S do
3. for each transform φs = Cs(is) do
4. Increase the statement domain’s dimensionality so that the domain includes the su-

pernode iterators
5. Add constraints involving supernode iterators (φTs) and tile sizes that represent a

statement instance in a supernode t ×φTs ≤Cs(is) ≤ t ×φTs + t −1
6. end for
7. Add scattering functions corresponding to supernodes. (The scattering functions are

identity functions involving the supernode iterators)
8. if level to be parallelized then
9. if there exists doall loops then

10. Mark them as parallel
11. else
12. Transform the first non-sequential loop φi as follows: φi ← φi +φi+1 + · · ·+φn

13. Mark φi as sequential and remaining subsequent loops in the band as parallel
14. end if
15. end if
16. end for
17. end for
Output Transformed computation statement domains and scattering functions

Automatic C-to-CUDA Code Generation for Affine Programs 253

4.2 Data Movement between Off-Chip and On-Chip Memories

As discussed in Section 3, it is very important to reduce the accesses to off-chip memory
and utilize the on-chip memories. Array references that have sufficient data reuse are
good candidates to be copied to shared memory since the repeated accesses would be
made in low-latency on-chip memory instead of off-chip memory. Array references, for
which there exists no suitable affine scheduling that supports coalesced memory access,
are also treated as candidates to be copied to shared memory. This is because of the fact
that non-coalesced accesses incur very high memory access cost.

Given a program block or tile (having one or more statements), the data spaces ac-
cessed by array references within the block are determined using the iteration space of
each statement and the array access function of each reference in each statement (as
mentioned in Section 2). The data spaces accessed by the read and write references of
each array are represented as separate polytopes and are then used to determine the size
of storage buffer needed to host the required data. The code for data movement is then
generated by scanning the data space polytopes using CLooG. The loop structure of the
data movement code (copy code) is a perfect nest of n loops, where n is the dimension-
ality of the accessed data space. By using a cyclic distribution of the innermost loop
across threads of a warp, we enable interleaved access of global memory by threads.
The data movement statements are of two types: (1) those that move data in to shared
memory (further referred to as copy-in statements) and (2) those that move data out of
shared memory (further referred to as copy-out statements).

The target code should encompass the data movement statements and computation
statements in proper order so that the parallel code results in correct program execution.
At the level of thread blocks, the data movement statements are placed such that they
respect the following order: copy-in, computation, copy-out. We utilize the scattering
functions in CLooG to achieve the proper placement of data movement and computation
statements. The scattering functions provide a multi-level multi-dimensional schedule.
The basic idea is to introduce an additional ‘constant’ dimension in the original sched-
ule at the level of thread blocks to define the order of statements. Suppose that in the
transformed program, the computation and data movement statements are defined at
the outer level by a schedule using the iterators (c1,c2, . . . ,cn). We modify the schedule
of the copy-in, computation, copy-out statements as (c1,c2, . . . ,cn,0), (c1,c2, . . . ,cn,1),
and (c1,c2, . . . ,cn,2), respectively, to achieve the required order.

The algorithm to generate data movement statement domains and scattering func-
tions to properly place data movement code in the target CUDA code structure is out-
lined in Algorithm 2.

Exploiting constant memory and registers. In addition to handling data movement
to the on-chip shared memory, we handle on-chip constant memory and registers. Con-
stant memory has an on-chip portion in the form of cache which can be effectively
utilized to reduce global memory access. Access to constant memory is useful when a
small portion of data is accessed by threads in such a fashion that all threads in a warp
access the same value simultaneously. If threads in a warp access different values in
constant memory, the requests get serialized. We determine arrays that are read-only
and whose access function does not vary with respect to the loop iterators correspond-
ing to the parallel loops used for distributing computation across threads. Such arrays

254 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

Algorithm 2. Generation and Placement of Data Movement Code
Input Set of statements - S , Transformed Statement Domains of all statements Ds,s ∈ S from

Algorithm 1, Affine array access functions
1. for each array A do
2. for all references of the array do
3. Find the data space accessed by the references
4. end for
5. Partition the set of all data spaces into maximal disjoint sets such that each partition has

a subset of data spaces each of which is non-overlapping with any data space in other
partitions

6. For each partition, find the convex union of its data spaces and the bounding box of the
convex union gives the storage buffer needed for the partition

7. for each statement s ∈ S do
8. for all read references of the array do
9. Find the data space accessed by the references and use them as domains of copy-in

statements
10. Use “identity” scattering functions
11. end for
12. for all write references of the array do
13. Find the data space accessed by the references and use them as domains of copy-out

statements
14. Use “identity” scattering functions
15. end for
16. end for
17. end for
18. Let the number of copy-in and copy-out statements be c and d, respectively
19. Add a new dimension in all scattering functions (those of copy-in, computation, and copy-out

statements) with just a constant value; the constant being 0 to c−1 for copy-in statements, c
for computation statements, c+1 to c+d for copy-out statements

Output Data movement statement domains and updated scattering functions

are candidates for storing in constant memory. Similarly, arrays whose access func-
tions vary only with respect to the loop iterators corresponding to the parallel loops are
considered as candidates for storing in registers in each thread.

4.3 Syntactic Post-processing

The transformed multi-level tiled computation statement domains and data movement
statement domains along with the scattering functions (generated by Algorithms 1
and 2) are fed to CLooG to generate multi-level tiled code. Syntactic post processing of
the multi-level tiled code generated by CLooG is needed to generate a final compilable
CUDA code. The primary tasks of the post processing are (1) to generate thread-centric
code and (2) to place synchronization calls for correct parallel execution.

An important aspect of CUDA code generation is thread-centric code generation,
i.e. generation of code where the computation is distributed across the threads in the
system. A thread in the system is uniquely identified by a combination of its “thread
block identifier” and “thread identifier” within the thread block. We take a syntactic
approach to introduce thread-centricity in the parallel code generated using the above
technique. The CLooG tool has its own AST representation called the CLAST. The

Automatic C-to-CUDA Code Generation for Affine Programs 255

CLAST generated for the parallel tiled code is parsed to introduce “thread block and
thread identifiers” in the parallel loops (identified in Algorithm 1) such that the parallel
tiles at the outer level are cyclically distributed across the thread blocks and that at the
inner level are cyclically distributed across the threads. The data movement code is also
parsed to place “thread identifier” in the data movement loops.

CUDA offers a synchronization primitive to synchronize across threads within a
thread block, but no built-in synchronization primitives to synchronize across thread
blocks. We introduce a primitive through a code segment that uses a “single-writer
multiple-reader” technique to achieve synchronization across thread blocks using the
global memory space. It is necessary to place barrier synchronizations at each iteration
of a sequential loop (if any) that precedes parallel loops, and at the end of data move-
ment loops. It is done syntactically by modifying the CLAST. Algorithm 3 summarizes
the CUDA code generation steps after applying Algorithms 1 and 2.

It should be noted that the tile sizes used for tiling are fixed at compile time and
provided by the user. The code generated by our framework represents the number of
threads and thread blocks as symbolic constants, which the user sets before the actual
execution. Our framework also syntactically inserts an “unroll” pragma - #pragma un-
roll unroll f actor - which enables the CUDA compiler to perform inner loop unrolling.

Algorithm 3. Parallel CUDA Code Generation
Input Computation statement domains, Data movement statement domains, Scattering functions
1. Feed the computation and data movement statement domains and scattering functions to

CLooG to generate CLAST
2. Parse CLAST to change the lower bounds and loop increments of (outer and inner level)

parallel loops to make them thread-centric
3. Parse CLAST to change the lower bounds and loop increments of data movement loops to

make them thread-centric
4. Place barrier synchronization at each iteration of sequential loop (if any) that precedes paral-

lel loops, and at the end of data movement loops
5. Print the modified CLAST to generate CUDA code

Output Multi-level parallel tiled CUDA code with data movement

5 Experimental Results

In this section, we present experimental results to assess the effectiveness of the CUDA
code generated by the implemented C-to-CUDA transformation system. We present
results on seven benchmarks. Where available, we compare the performance of the
automatically generated CUDA code with hand-tuned CUDA code. We also compare
the performance of the generated CUDA code on the GPU with the performance of
input C code (optimized by the Intel icc compiler), on a multi-core CPU.

The GPU device used in our experiments was an NVIDIA GeForce 8800 GTX GPU.
The device has 768 MB of DRAM and has 16 multiprocessors (MIMD units) clocked at
675 MHz. Each multiprocessor has 8 processor cores (SIMD units) running at twice the
clock frequency of the multiprocessor and has 16 KB of shared memory. The CUDA
code was compiled using the NVIDIA CUDA Compiler (NVCC) to generate the device
code that is launched from the CPU (host). The CPU was a 2.13 GHz Intel Core2 Duo

256 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

for (t1=0; t1<VOLY; t1++) {
for (t2=0; t2<VOLX; t2++) {

for (t3=0;t3<NATOMS;t3++) {
energy[zDim*VOLX*VOLY + t1*VOLX + t2] =
atoms[3+4*t3]/ ... atoms[2+4*t3] ...
atoms[1+4*t3] ... atoms[4*t3];

}
}

}

Fig. 3. Original code structure for Coulombic Potential (cp) benchmark

processor with 2 MB L2 cache. The GPU device was connected to the CPU through a
16-x PCI Express bus. We used CUDA version 2.1 for our experiments.

The multi-core system used for our experiments was a quad-core Intel Core 2 Quad
Q6600 CPU clocked at 2.4 GHz (1066 MHz FSB) with a 32 KB L1 D cache, 8MB of
L2 cache (4MB shared per core pair), and 2 GB of DDR2-667 RAM, running Linux
kernel version 2.6.22 (x86-64). ICC 10.x was the primary compiler used to compile
the code on the multi-core system; it was run with -fast -funroll-loops (-openmp for
parallelized code); the -fast option turns on -O3, -ipo, -static, -no-prec-div on x86-64
processors; these options also enable auto-vectorization in icc.

5.1 Coulombic Potential (cp)

This benchmark is used for the computation of electric potential in a volume containing
point charges. It is one of the codes in the parboil benchmark suite from UIUC [21].
Fig. 4 presents the performance data - performance of the generated CUDA code with
different optimizations is compared with the hand-tuned code from the parboil bench-
mark suite and icc optimized C code. The CUDA code generated by our framework
performs better than the optimized version on general-purpose multi-core system. The

 0

 20

 40

 60

 80

 100

 120

512x512256x512256x256128x128

G
F

LO
P

S

Problem Size

Automatic(no unroll, shared mem)
Automatic(no unroll, constant mem)

Automatic(inner loop unrolling)
Hand-tuned

icc fast parallel (4 cores)

Fig. 4. Performance of cp benchmark

Automatic C-to-CUDA Code Generation for Affine Programs 257

performance of the code generated by turning on all optimizations is very close to that
of the hand-tuned code. In addition to extracting “doall’ parallelism across threads and
thread blocks, the code has optimized off-chip access in one of the two ways - (1) uti-
lizing shared memory or (2) utilizing constant memory. Fig. 4 shows the performance
measurements for both the cases and it can be seen that the performance when constant
memory is used is significantly higher than that when shared memory is used. This is
because the use of constant memory significantly reduces global memory traffic in com-
parison to accessing data after moving from global memory to shared memory. Inner
loop unrolling was performed using NVIDIA’s #pragma unroll option.

Figures 3 and 9 illustrate the CUDA code generation. Fig. 3 shows the structure of
sequential code (along with the array accesses) for Coulombic Potential (cp) bench-
mark. Fig. 9 shows the structure of two-level tiled parallel code that is thread-centric
where the parallelism is across thread blocks at the outer level and across threads at
the inner level (Note the modified lower bounds and loop increments of parallel loops).
Fig. 9 also shows the proper placement of data movement and computation statements.

5.2 N-Body Simulation (nbody)

N-body simulation is an important computation that arises in many computational sci-
ence applications. It approximates the evolution of a system of bodies in which each

 0

 50

 100

 150

 200

 250

32k16k8k4k2k

G
F

LO
P

S

Problem Size

Opt1: Two-level parallel
Opt2: Opt1 + Shared memory

Opt3: Opt2 + Inner loop unrolling

Fig. 5. Performance variation of nbody benchmark w.r.t Optimizations

Table 1. Performance of nbody benchmark (in GFLOPS)

N Auto-CUDA Hand-tuned icc

2048 129.67 157.34 1.00
4096 187.41 182.31 1.10
8192 191.81 188.78 1.42
16384 192.45 198.43 1.47
32768 192.91 200.35 1.50

258 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

body continuously interacts with every other body. The CUDA code generated by our
framework performs much better than the optimized version on general-purpose multi-
core system and performs very comparably to the hand-tuned CUDA code, as illustrated
in Table 1. The code generated by our framework exploited “doall” parallelism across
threads and thread blocks. It effectively moved data from arrays that exhibited data
reuse from global memory to shared memory, thereby enabling coalesced global mem-
ory access and also reduction in off-chip memory access latency, by exploiting data
reuse in on-chip shared memory. Further, inner loop unrolling was performed using
NVIDIA’s #pragma unroll option. Fig. 5 depicts incremental performance improvement
when different optimizations are applied. The importance of shared memory utilization
and inner loop unrolling (to reduce loop overhead and dynamic loop instruction count)
are illustrated by this benchmark.

Table 2. Performance of MRI-Q (in GFLOPS)

N Auto CUDA (2) Auto CUDA (1) Hand icc
no unroll unroll no unroll unroll tuned

32768 87.11 122.19 137.1 176.50 178.98 0.91
65536 88.27 121.87 141.7 179.32 179.12 1.14
131072 88.53 123.11 142.3 181.23 179.32 1.14
262144 89.16 122.12 142.6 183.32 180.91 1.15

Table 3. Performance of MRI-FHD (in GFLOPS)

N Auto CUDA (2) Auto CUDA (1) Hand icc
no unroll unroll no unroll unroll tuned

32768 57.91 90.91 112.52 142.52 143.11 1.37
65536 61.27 91.2 116.12 143.15 142.27 1.68
131072 62.13 91.6 116.22 144.21 144.39 2.19
262144 62.67 91.52 116.67 142.61 144.43 2.21

 0

 5

 10

 15

 20

 25

 30

8k7k6k5k4k2k1k

G
F

LO
P

S

Problem Size

Auto CUDA
icc fast parallel (4 cores)

Fig. 6. Performance of 2D Jacobi

Automatic C-to-CUDA Code Generation for Affine Programs 259

 0

 5

 10

 15

 20

 25

 30

8k7k6k5k4k2k1k

G
F

LO
P

S

Problem Size

Auto CUDA
icc fast parallel (4 cores)

Fig. 7. Performance of 2D FDTD

 0

 2

 4

 6

 8

 10

 12

 14

8k7k6k5k4k2k1k

G
F

LO
P

S

Problem Size

Auto CUDA
icc fast parallel (4 cores)

Fig. 8. Performance of Gauss Seidel

The hand-tuned version was taken from the NVIDIA CUDA SDK, the code being
based on the article in [16]. The code generated by our framework represents the number
of threads and thread blocks as symbolic constants, which the user sets before the actual
execution.

5.3 MRI Kernels

We employed our framework to generate code for two kernels used in Magnetic
Resonance Imaging, MRI-Q and MRI-FHD [21]. Both the kernels involve two com-
putational blocks such that data computed in the first computation block is used as
“read-only” data in the second computational block. The hand-tuned code from parboil
optimizes the two computational blocks independently and executes them as separate
GPU kernels. We used our framework to generate two versions of code for each of the
two MRI kernels - version (1) in which CUDA code is generated independently for the

260 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

two computational blocks (first block pre-computes data for second block) and version
(2) in which unified CUDA code is generated for both blocks.

Tables 2 and 3 summarize the performance measures of the code versions of MRI-
Q and MRI-FHD, respectively. The code version (1) generated as two separate GPU
kernels outperforms the code version (2) generated as single GPU kernel because of the
fact that in version (1) the data precomputed in the first GPU kernel is stored in constant
memory and accessed in the second kernel. However both the versions identified various
data arrays as candidates for constant memory and thereby optimized off-chip memory

int by = blockIdx.y;
int bx = blockIdx.x;
int ty = threadIdx.y;
int tx = threadIdx.x;

int t1,t2,t3,t4,t5,t6;
// Parallel loops distributed across thread blocks
// Loops modified syntactically for thread block identifiers
for (t1=by; t1<=floord(VOLY-1,16); t1+=NBLKSY) {
for (t2=bx; t2<=floord(VOLX-1,16); t2+=NBLKSX) {
for (t3=0;t3<=NATOMS-1;t3+=256) {
// Data movement code
__shared__ float atomsS[1024];
for (t6=4*t3+THREADY*NTHRDSX+THREADX;

t6<=min(4*NATOMS-1,4*t3+1023);
t6+=NTHRDSX*NTHRDSY)

atomsS[t6-4*t3] = atoms[t6];
__syncthreads();
// Parallel loops distributed across threads
// Loops modified syntactically for thread identifiers
for (t4=max(0,16*t1)+ty;

t4<=min(VOLY-1,16*t1+15);t4+=NTHRDSY) {
for (t5=max(0,16*t2)+tx;

t5<=min(VOLX-1,16*t2+15);t5+=NTHRDSX) {
...

// Computation code
for (t6=t3; t6<=min(NATOMS-1,t3+255);

t6++) {
energy[zDim*VOLX*VOLY + t4*VOLX + t5] =
atomsS[3+4*t6-4*t3]/ ... atomsS[2+4*t6-4*t3] ...
atomsS[1+4*t6-4*t3] ... atomsS[4*t6-4*t3];

}
}

}
}

}
}

Fig. 9. Parallel tiled code structure (with data movement) for cp benchmark

Automatic C-to-CUDA Code Generation for Affine Programs 261

access. The code version (1) generated by our framework performs as well as the hand-
tuned version.

5.4 Stencil Computation Kernels

We used two stencil computation kernels, 2D Jacobi and 2D Finite Difference Time
Domain (FDTD). The code generated using our framework performs better than the
optimized version on the Intel multi-core system, as illustrated in Figures 6 and 7. For
these two kernels, we were unable to find any hand-tuned CUDA code to compare
against. The code generated by our framework exploits parallelism across threads and
thread blocks and effectively utilizes shared memory and exploits data reuse. The par-
allel execution of stencil computations is characterized by synchronization overhead
at every time step across the processors. This overhead is particularly costly in GPUs
where the thread blocks have to synchronize using the slow off-chip memory. This is
the reason for the lower absolute performance of these kernels on GPUs, relative to the
previous benchmarks. The performance of the stencil kernels is very low for smaller
problem sizes for the same reason.

5.5 Gauss Seidel Successive over Relaxation

The Gauss Seidel benchmark illustrates the effect of exploiting wavefront or pipelined
parallelism on GPUs. We achieve better performance than the optimized version on
multi-core system, as illustrated in Fig. 8. However, the absolute performance is rather
low because of (1) low processor utilization during the starting and draining of pipeline
and (2) synchronization overhead across thread blocks at every time step.

6 Related Work

In this Section, we review prior work on optimizations and code generation for GPUs.
Ryoo et al. [27,26] presented experimental studies of program performance on NVIDIA

GPUs using CUDA; they do not use or develop a compiler framework for optimizing
applications, but rather perform the optimizations manually. Ryoo et al. [28] presented
performance metrics such as efficiency and utilization to prune the optimization search
space on a pareto-optimality basis. However, they manually generate the performance
metrics data for each application they have studied. The end-to-end system described in
this paper builds on our prior work [2,3] that developed some of the compiler optimiza-
tions - optimizing global memory and shared memory access, and utilizing and manag-
ing on-chip shared memory. Recently, Lee et al. [17] developed a compiler framework
for automatic translation from OpenMP to CUDA. The system handles both regular and
irregular programs parallelized using OpenMP primitives. Work sharing constructs in
OpenMP are translated into distribution of work across threads in CUDA. However the
system does not optimize data access costs for access in global memory and also does not
make use on-chip shared memory. Thus the optimizations implemented in our system
can complement and enhance the effectiveness of their system.

Recently, Liu et al. [19] developed a GPU adaptive optimization framework (G-
ADAPT) for automatic prediction of near-optimal configuration of parameters that af-
fect GPU performance. They take unoptimized CUDA code as input and traverse an

262 M.M. Baskaran, J. Ramanujam, and P. Sadayappan

optimization space search to determine optimal parameters to transform the unopti-
mized input CUDA code into an optimized CUDA code. Using our framework, a user
can automatically generate CUDA code for any arbitrary input affine C code, hand-
parallelization of which is very cumbersome in many cases. The user may then use
G-ADAPT to further tune the CUDA code generated from our system.

7 Conclusions

In this paper, we have described an automatic source-to-source transformation frame-
work that can take an arbitrarily nested affine input C program and generate an efficient
CUDA program. Experimental results demonstrated the performance improvements
achieved using the framework. We are in the process of creating a publicly available
release of the C-to-CUDA transformation software.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation through awards 0403342, 0508245, 0509442, 0509467, 0541409, 0811457,
0811781, 0926687 and 0926688, and by the Department of the Army through contract
W911NF-10-1-0004.

References

1. Ancourt, C., Irigoin, F.: Scanning polyhedra with do loops. In: PPoPP 1991, pp. 39–50 (1991)
2. Baskaran, M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayap-

pan, P.: A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In:
ACM ICS (June 2008)

3. Baskaran, M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayap-
pan, P.: Automatic Data Movement and Computation Mapping for Multi-level Parallel Ar-
chitectures with Explicitly Managed Memories. In: ACM SIGPLAN PPoPP (February 2008)

4. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT
2004, pp. 7–16 (2004)

5. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sadayap-
pan, P.: Automatic transformations for communication-minimized parallelization and local-
ity optimization in the polyhedral model. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959,
pp. 132–146. Springer, Heidelberg (2008)

6. Bondhugula, U., Hartono, A., Ramanujan, J., Sadayappan, P.: A practical automatic polyhe-
dral parallelizer and locality optimizer. In: ACM SIGPLAN Programming Languages Design
and Implementation, PLDI 2008 (2008)

7. CLooG: The Chunky Loop Generator, http://www.cloog.org
8. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU algorithms

for matrix-matrix multiplication. In: ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pp. 133–137 (2004)

9. Feautrier, P.: Dataflow analysis of array and scalar references. IJPP 20(1), 23–53 (1991)
10. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part I: one-

dimensional time. IJPP 21(5), 313–348 (1992)
11. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R., Darte, A.

(eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 79–103. Springer, Hei-
delberg (1996)

12. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for scientific algo-
rithms on graphics processors. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089.
Springer, Heidelberg (2006)

http://www.cloog.org

Automatic C-to-CUDA Code Generation for Affine Programs 263

13. General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org/
14. Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory Architec-

tures. Habilitation Thesis. FMI, University of Passau (2004)
15. Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of POPL 1988, pp. 319–329

(1988)
16. Nyland, L., Harris, M., Prins, J.F.: Fast N-body Simulation with CUDA. GPU Gems 3 article

(August 2007)
17. Lee, S., Min, S.-J., Eigenmann, R.: Openmp to gpgpu: A compiler framework for automatic

translation and optimization. In: PPoPP 2009, pp. 101–110 (2009)
18. Lim, A.: Improving Parallelism And Data Locality With Affine Partitioning. PhD thesis,

Stanford University (August 2001)
19. Liu, Y., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for gpu programs opti-

mizations. In: IPDPS (May 2009)
20. NVIDIA CUDA, http://developer.nvidia.com/object/cuda.html
21. Parboil Benchmark Suite, http://impact.crhc.illinois.edu/parboil.php
22. Pluto: A polyhedral automatic parallelizer and locality optimizer for multicores

http://pluto-compiler.sourceforge.net
23. Pouchet, L.-N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the polyhedral

model: Part I, one-dimensional time. In: CGO 2007, pp. 144–156 (2007)
24. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. Communications of the ACM 8, 102–114 (1992)
25. Quilleré, F., Rajopadhye, S.V., Wilde, D.: Generation of efficient nested loops from polyhe-

dra. IJPP 28(5), 469–498 (2000)
26. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu, W.: Optimization princi-

ples and application performance evaluation of a multithreaded GPU using CUDA. In: ACM
SIGPLAN PPoPP 2008 (February 2008)

27. Ryoo, S., Rodrigues, C., Stone, S., Baghsorkhi, S., Ueng, S., Hwu, W.: Program optimiza-
tion study on a 128-core GPU. In: The First Workshop on General Purpose Processing on
Graphics Processing Units (October 2007)

28. Ryoo, S., Rodrigues, C., Stone, S., Baghsorkhi, S., Ueng, S., Stratton, J., Hwu, W.: Program
optimization space pruning for a multithreaded GPU. In: CGO (2008)

29. Vasilache, N., Bastoul, C., Girbal, S., Cohen, A.: Violated dependence analysis. In: ACM
ICS (June 2006)

http://www.gpgpu.org/
http://developer.nvidia.com/object/cuda.html
http://impact.crhc.illinois.edu/parboil.php
http://pluto-compiler.sourceforge.net

Is Reuse Distance Applicable to Data Locality Analysis
on Chip Multiprocessors?

Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen

Computer Science Department
The College of William and Mary, Williamsburg, VA, USA

{jiang,eddy,ktian,xshen}@cs.wm.edu

Abstract. On Chip Multiprocessors (CMP), it is common that multiple cores
share certain levels of cache. The sharing increases the contention in cache and
memory-to-chip bandwidth, further highlighting the importance of data locality
analysis.

As a rigorous and hardware-independent locality metric, reuse distance has
served for a variety of locality analysis, program transformations, and perfor-
mance prediction. However, previous studies have concentrated on sequential
programs running on unicore processors. On CMP, accesses by different threads
(or jobs) interact in the shared cache. How reuse distance applies to the new ar-
chitecture remains an open question—particularly, how the interactions in shared
cache affect the collection and application of reuse distance, and how reuse-
distance–based locality analysis should adapt to such architecture changes.

This paper presents our explorations towards answering those questions. It
first introduces the concept of concurrent reuse distance, a direct extension of
the traditional concept of reuse distance with data references by all co-running
threads (or jobs) considered. It then discusses the properties of concurrent reuse
distance, revealing the special challenges facing the collection and application of
concurrent reuse distance on CMP platforms. Finally, it presents the solutions to
those challenges for a class of multithreading applications. The solutions center
on a probabilistic model that connects concurrent reuse distance with the data
locality of each individual thread. Experiments demonstrate the effectiveness of
the proposed techniques in facilitating the uses of concurrent reuse distance for
CMP computing.

1 Introduction

Because of the well-known memory wall problem, on traditional architecture, data lo-
cality has been one of the most prominent factors that determine the performance of a
program. Its importance becomes even more pronounced on modern Chip Multiproces-
sors (CMP), where cache and memory bandwidth are shared by a growing number of
cores.

In decades of locality research on uni-core architecture, two classes of metrics have
been used. One is on the hardware level; an example is cache miss rates. The other is on
the program level; reuse distance is a representative. Reuse distance is also called LRU
stack distance [19], referring to the number of distinct data elements referenced between

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 264–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 265

this and the previous accesses to the same data element [9]. Unlike hardware-level met-
rics, reuse distance is inherent to a program, independent to hardware configurations
but applicable for the performance prediction of various hardware. It is accurate, and
from point to point (from one access to another). In contrast, a cache miss rate is an
average value over an interval. Furthermore, reuse distance appears to be cross-input
predictable for many programs [9,36]. These features make it appealing for a wide
range of uses in software refactoring [3], data reorganization [34,36], performance pre-
diction [32,33,17], memory disambiguation [10,11], software-controlled object-level
partitioning [16], and so forth.

The rise of multicore has complicated the characterization of data locality. With
cache being shared among multiple cores, accesses to memory by a process are not
solely determined by that process itself, but also affected by the other processes run-
ning on the same chip. The processes (or threads) that co-run on a chip equipped with
shared cache are called the cache sharers or co-runners of one another.

Many recent studies [14,20,21,12] in the architecture area have started to explore the
implications of such architectural changes to the application of hardware-level locality
metrics. But we are not aware of any such systematic studies on reuse distance.

In this work, we initiate an exploration in that direction. The exploration reveals that
in CMP environments, reuse distance loses some of its appealing properties, and that
loss impairs many of its uses. However, for a large class of multithreading programs,
the loss is remediable through a probabilistic model that connects co-run locality with
the memory behaviors of individual cache sharers.

Specifically, our exploration includes three components. First, we analyze the com-
plexities in extending the traditional reuse distance model to CMP environments (Sec-
tion 2). The analysis is based on a straightforward extension of the concept of reuse
distance. In the measurement of a reuse distance, the extended concept counts the num-
ber of distinct data elements of all cache sharers that are accessed between two con-
secutive references to the same data element. For clarity, we call such a reuse distance
concurrent reuse distance and the traditional one standalone reuse distance. By com-
paring these two types of reuse distance, we uncover the loss of hardware-independence
by concurrent reuse distance and the special challenges in its measurement. We show
that the loss of hardware-independence causes a chicken-egg dilemma for performance
prediction. Furthermore, the dilemma is hard to resolve through the standard iterative
approach.

Second, by drawing on the observations exposed in a recent study, we find that the
hardware dependence of concurrent reuse distance can be relaxed for a class of mul-
tithreading applications (Section 3). Based on the relaxation, we develop a probabilis-
tic model to capture the statistical connections between concurrent reuse distance and
standalone data locality for multithreading applications. The model simplifies the at-
tainment of concurrent reuse distance, laying the foundation for many of its uses.

Finally, we evaluate the accuracy of the probabilistic model on both synthetic and
real traces (Section 4). The results demonstrate that with the probabilistic model, con-
current reuse distance can be obtained in a reasonable accuracy, suggesting its poten-
tial for locality enhancement in CMP environments. We conclude the paper with some

266 Y. Jiang et al.

discussions on the potential uses and limitations of concurrent reuse distance, some
related work, and a short summary.

2 Concept and Properties of Concurrent Reuse Distance

Concurrent reuse distance is a direct extension of the traditional concept of reuse dis-
tance (standalone reuse distance). This section discusses the distinctive complexities of
concurrent reuse distance and the implications by comparing it with standalone reuse
distance. As a preparation, we first review the properties and uses of standalone reuse
distance.

2.1 Review of Standalone Reuse Distance and Its Properties

Standalone reuse distance is a widely used locality model on traditional architecture
without cache sharing. It is also called LRU stack distance [19], defined as the number
of distinct data elements accessed between the current and the previous references to
the same element [9]. Its appealing properties include the following.

– Rigorousness: Standalone reuse distance is point-to-point, offering a rigorous mea-
surement of locality. In contrast, a cache miss rate is an average value over an
interval, and its value depends on the length of the interval.

– Value: The value of standalone reuse distance is bounded—no greater than the num-
ber of distinct data elements in the program. This property has simplified the search
for patterns between standalone reuse distance and program data size [9].

– Cross-Input Predictability: A number of studies have shown that the standalone
reuse distance histograms of many programs are predictable across program in-
puts [9,36,24,17]. This property is essential for its uses in program performance
prediction.

– Independence on Hardware: Standalone reuse distance is a program-level attribute,
determined by the program and input data sets, independent to the hardware con-
figurations. But on the other hand, it is strongly related to hardware performance.
As shown in Figure 1, from the histogram of reuse distance, it is easy to estimate
the cache miss rate of the execution on an arbitrary cache.

Different levels of standalone reuse distance suit different uses. The first class of uses
are for cross-architecture prediction of cache miss rates (as illustrated in Figure 1) and
program performance [17,33,32]. The used reuse distance histograms are typically on
the whole-program level, with the accesses of all data in the execution considered.

The second class of uses is for program refactoring [3], data reorganization [34,36],
and software-controlled object-level partitioning [16]. For these uses, the reuse distance
is typically on the object level; each reuse distance histogram corresponds to an impor-
tant data object (e.g., an array) in the program. Such a histogram reflects the match or
mismatch of cache and the accesses to the object, offering hints for data transformations
or cache partition.

The third class of uses is on the instruction level. From the distance of data store in-
structions, Fang and others [11] accurately determine on which specific store instruction
a load depends, and use that information for memory disambiguation.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 267

Cache size

Reuse distance (cache blocks)

5%Pe
rc

en
t o

f
re

fe
re

nc
es

10%

15%

20%

Fig. 1. The histogram of the standalone reuse distance of an execution. Every memory reference
on the right side of the cache-size line is considered a cache miss because too many other data
have been brought into cache since its previous reference.

2.2 Concurrent Reuse Distance

Concurrent reuse distance is a straightforward extension of standalone reuse distance
for programs running on shared cache. It is defined as the number of distinct data ele-
ments that all sharers of a cache access between the current and the previous references
to the same data element. In this section, we consider the general case, where cache
sharers can be independent programs, or threads of parallel applications that share the
same address space.

Properties. As a straightforward extension, concurrent reuse distance keeps some prop-
erties that standalone reuse distance has. It is point-to-point, and its value is bounded, no
greater than the sum of the numbers of total distinct data elements of all cache sharers.

However, concurrent reuse distance has a distinctive property:

Its value depends on the relative execution speeds of cache sharers.

Consider two processes, P1 and P2, running on a chip with shared cache. The process
P1 conducts a sequence of memory references as abcba (each letter for one data el-
ement) during a time interval T (called a reuse internal). Without loss of generality,
suppose P1 and P2 access different sets of data in that interval. The concurrent reuse
distance of the second access to a is 2 + x, where 2 is the number of distinct data ele-
ments (b and c) accessed by P1 in that time interval, and x is the number of distinct data
elements accessed by P2 in that time interval. The value of x depends on the relative
speeds of the two processes, r = Speed(P2)/Speed(P1). The larger r is, the more data
are likely to be accessed by P2 in that time interval, and hence the greater x tends to be.

Challenges. This property results in some implications important for the measurement
and application of concurrent reuse distance.

Challenges to Measurement. Traditional approaches are insufficient for measuring con-
current reuse distance. A typical way to obtain standalone reuse distance is through pro-
gram instrumentation, which inserts memory monitoring and other relevant instructions

268 Y. Jiang et al.

into the program code so that when the program runs, the inserted instructions would
collect the memory reference trace and compute the standalone reuse distance.

The instrumented program typically runs hundreds of times slower than the original
program does. This slowdown causes inconveniences but no errors to the collection of
standalone reuse. However, for concurrent reuse distance, the slowdown would change
the relative running speed r among cache sharers, hence causing measurement errors.

To examine the seriousness of this problem, we measure how much the relative speed
r changes because of the instrumentation. We use a set of randomly chosen SPEC
CPU2000 programs and a dual-core Xeon 7120M with 4MB shared L3 cache. For ev-
ery pair of the programs, say program i and j, we first run them on two sibling cores
and record their respective average IPCs (instructions per cycle), denoted as IPCi and
IPCj , by reading the hardware performance counters through PAPI [5]. We then use
PIN [37] to instrument the programs with the code for the collection of standalone reuse
distance. We run the instrumented version on the two sibling cores and record the new
IPCs as IPC′

i and IPC′
j . The relative running speeds before and after the instrumen-

tation are r = IPCi/IPCj , and r′ = IPC′
i/IPC′

j . We compute the changes of the
relative running speed as follows:

change of relative speeds = |r − r′|/r. (1)

Table 1 reports the results. After instrumentation, the differences of the speeds of those
programs become smaller than before. This phenomenon is intuitive considering that
the instrumented code dominates the running time of all programs. (The instrumented
code is similar for all programs.) The 31–248% changes of the relative speeds caused
by the instrumentation suggest the large departure of the measured concurrent distance
from the real. This large departure hurts many uses of concurrent reuse distance as most
typical uses of reuse distance—such as program refactoring, data reorganization, object-
level partitioning, memory disambiguation—have relied on an accurate measurement of
the reuse distances.

Deprivation of Hardware-Independence. The reliance on relative execution speeds of
cache sharers deprives concurrent reuse distance of hardware-independence. That inde-
pendence has been a property important for many uses of standalone reuse distance. The
deprivation is because the variance in running environments—such as the cache size,
the number of cores per chip, the operating systems—often affects the running speeds
of different programs in different degrees, and hence changes the relative speeds.

Table 1. Changes of Relative Running Speeds Caused by Program Instrumentation

sharers 1 & 4 2 & 4 3 & 4 1 & 5 2 & 5 3 & 5 1 & 6 2 & 6 3 & 6
r 0.40 0.59 0.25 0.44 0.55 0.43 0.37 0.48 0.30
r’ 0.77 0.77 0.87 0.93 0.89 0.93 0.99 1.11 0.88
changes (%) 92.5 30.5 248 111 61.8 116 168 131 193

* programs: 1-ammp; 2-art; 3-mcf; 4-bzip2; 5-gzip; 6-mesa.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 269

Table 2. Changes of Relative Running Speeds Due to Architectural Differences

sharers 1 & 4 2 & 4 3 & 4 1 & 5 2 & 5 3 & 5 1 & 6 2 & 6 3 & 6
r 0.40 0.59 0.25 0.44 0.55 0.43 0.37 0.48 0.30
r’ 0.40 0.48 0.3 0.57 0.72 0.54 0.37 0.48 0.31
changes (%) 0 18.6 20.0 29.5 30.9 25.6 0 0 3.3

* r: on Xeon E5310; r’: on Xeon 7120M.
* programs: 1-ammp; 2-art; 3-mcf; 4-bzip2; 5-gzip; 6-mesa.

Table 2 shows the changes of the relative speeds when the co-runs happen on a quad-
core Intel Xeon E5310 processor with two 4MB L2 cache on each chip, compared to
their co-runs on the dual-core Xeon 7120M. Four of the co-runs show negligible changes.
Examination shows that the IPC of each of the programs does change considerably in
the two architectures. For instance, in the co-runs of ammp and bzip2 (i.e., 1&4) , the
IPCs of ammp are respectively 0.34 and 0.79 on the two machines. But the IPC of bzip2
changes proportionally from 0.72 to 1.97. Their relative speeds hence remain the same.
However, the relative speeds of the other five co-runs do change substantially, from 19%
to 31%, reflecting the hardware-dependence of concurrent reuse distance.

Chicken-Egg Dilemma. As a consequence of the hardware-dependence, one of the main
uses of standalone reuse distance—cross-architecture performance prediction
[9,36,24,17]—becomes difficult if not impossible for concurrent reuse distance. The
difficulty is a chicken-egg dilemma as illustrated in Figure 2. The ultimate target of
the performance prediction is the IPC on the new platform, which is supposed to be
predicted from the reuse distance collected on a training platform. This prediction is
possible for standalone reuse distance because the distance is inherent to the program
(and input data sets) and do not change across architecture. However, the prediction be-
comes difficult for concurrent reuse distance because of its dependence of architecture.
To solve this issue, we need first predict the concurrent reuse distance on the new archi-
tecture. This prediction however depends on exactly what the concurrent reuse distance
is used to predict—the IPC. This inter-dependence forms a chicken-egg dilemma, as
showed by the circular flow in Figure 2.

A typical way to solve such kind of dilemmas is through iterative processes. For this
particular problem, the process may start with guessing some initial values for the IPCs
of co-running jobs. Suppose we have two co-running jobs, I and J and their IPCs are
initially guessed to be IPC0(I) and IPC0(J). The concurrent reuse distances can then

training
CRD

CRD IPC

training platform testing platform

: predictor

Fig. 2. The difficulty in applying concurrent reuse distance (CRD) to cross-platform performance
prediction. The inter-dependence between CRD and IPC forms a chicken-egg dilemma.

270 Y. Jiang et al.

IPC(J)
IPC(I)

IPC(J)
IPC(I)

CRD(J)
CRD(I)

CacheMiss(J)
CacheMiss(I)

Fig. 3. Analysis showing that the iterative approach cannot solve the chicken-egg dilemma in
performance prediction based on concurrent reuse distance

be approximated, denoted as CRD0(I) and CRD0(J), from which, the IPCs can be
updated accordingly to IPC1(I) and IPC1(J). This process continues until reaching
a stable point, where the distances or the IPCs remain constant across iterations.

Further analysis however shows that this iterative process does not work for concur-
rent reuse distance as illustrated in Figure 3. Without loss of generality, assume

IPC1(J)
IPC1(I)

<
IPC0(J)
IPC0(I)

.

It means that the relative speed of J (with the speed of I in the respective iteration
as the baseline) becomes lower in iteration 1 than in iteration 0. So more data of I
would be likely to be accessed in a reuse interval of J in iteration 1 than in iteration 0.
The result is that the distances in CRD1(J) would be larger than those in CRD0(J).
For the opposite reason, the distances in CRD1(I) would be smaller than those in
CRD0(I). Consequently, the number of cache misses predicted from CRD1(J) would
be higher than from CRD0(J), leading to a further decrease of IPC(J) and a further
increase of IPC(I). Hence, (IPC2(J)/IPC2(I)) would become even smaller than
(IPC1(J)/IPC1(I)). This decreasing trend would continue for more iterations until
the ratio becomes 0 (unless it stops in a local trap).

In summary, this section shows that despite being a direct extension of standalone
reuse distance, concurrent reuse distance is both hard to measure and difficult to use in
multicore environment. These conclusions are obtained through an analysis of general
co-runs. Fortunately, the next section will show that these difficulties can be overcome
for a class of important multithreading programs.

3 Concurrent Reuse Distance for Multithreading Programs

The previous section shows the difficulties in applying concurrent reuse distance to
independent programs co-running on a multicore platform. This section shows that for
co-running threads of a multithreading program, those obstacles are circumventive.

The solution is based on some recently uncovered features of the execution of mul-
tithreading programs on multicore processors. At the kernel of the solution is a prob-
abilistic model that connects concurrent reuse distance with the data locality of each
individual thread. We first examine the features of the multithreading programs and
then present the probabilistic model.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 271

Table 3. Relative Speeds of Co-Running Threads in Multithreading Applications and the Changes
Due to Architecture and Input Variations

input machine IPC(thread 0)/IPC(thread 1) for programs
blackscholes bodytrack canneal facesim fluidanimate streamcluster swaptions

simlarge 7120M 1.00 0.96 1.00 1.00 1.00 1.00 1.00
E5310 1.00 1.00 1.00 1.00 0.99 1.00 1.00

native 7120M 1.00 0.92 1.00 1.00 0.99 1.00 1.00
E5310 1.00 0.99 1.00 1.01 0.99 1.00 1.00

changes by arch. (%) 0 5.9 0 0 0.5 0 0
changes by input (%) 0 2.6 0 0.5 0.5 0 0

3.1 Independence to Architecture and Inputs

A recent study [30] on PARSEC [4], a suite of contemporary multithreading bench-
marks, exhibits two phenomena. First, for most of those programs (except pipelin-
ing programs), all parallel threads conduct similar computations. Second, the relations
among threads, in terms of the amount of shared data and communications, are quite
uniform across different thread groups. These phenomena hold across architectures,
numbers of threads, assignment of threads to cores, input data sets, and program phases.

The implication to concurrent reuse distance is that contrary to those of the co-runs
of independent programs, the relative speeds among threads tend to remain the same
across architectures and program inputs. For confirmation, we run all the non-pipelining
pthread programs in PARSEC on two types of architectures. One is quad-core Intel
Xeon E5310 processors with two 4MB L2 cache on each chip. The other is dual-core
Xeon 7120M with 4MB shared L3 cache. We employ two inputs for each program, a
small one (simlarge) and a large one (native). The running times on the two inputs differ
by a factor of 43 to 180. In every run, 8 threads are created and are bound to cores such
that adjacent threads (e.g., threads 0 and 1) are ensured to run on two sibling cores with
cache shared.

Table 3 reports the relative running speeds between two co-running threads (e.g.,
IPC(thread 0)/IPC(thread 1)). The numbers are the average of five repetitive runs (neg-
ligible variation appears among the five runs). The bottom two rows are the average
changes in the relative speeds— computed in a similar way as Formula 1 in Sec-
tion 2.2—caused respectively by the variation of architecture and program inputs. The
unanimous close-to-1 relative speeds indicate that two co-running threads have virtually
the same speeds, no matter on what machine they run or what inputs they use.

We note that the absolute speeds of two co-running threads do change across archi-
tectures and inputs. But they change in the same rate so that their relative speed remains
the same. As it is the relative speed that matters to the concurrent reuse distance, the
results confirm the independence of the concurrent reuse distance of those programs to
architecture and input data sets.

3.2 Probabilistic Model for Approximating Concurrent Reuse Distance

The previous section suggests that concurrent reuse distance is potentially useful for a
class of multithreading applications. To realize the potential, it is important to explore

272 Y. Jiang et al.

the connections between concurrent reuse distance and the memory behaviors of indi-
vidual threads. The rationale is that if concurrent reuse distance can be derived from the
locality information of each individual cache sharer, the appealing properties of stan-
dalone locality would directly benefit the prediction and application of concurrent reuse
distance.

Overview. We propose a probabilistic model to derive concurrent reuse distance his-
togram from locality information of each individual thread. The model starts with the
locality of individual threads, characterized with time distance histograms. Time dis-
tance is defined as the number of memory references in a reuse interval1. In the refer-
ence sequence “a b b c a”, the time distance of the final access is 4 (while the reuse
distance is 2.) Time distance histogram is similar to the reuse distance histogram shown
in Figure 1 except that the X-axis is replaced by time distance.

The probabilistic model includes two parts. The first computes the number of distinct
data elements accessed by each cache sharer in an arbitrary time interval. The second
handles the effects that data sharing among threads imposes on concurrent reuse dis-
tance. The next two sub-sections explain the two parts respectively.

Part I: From Time to Data Accesses. Let M (j)(Δ) represent the statistical expecta-
tion of the number of distinct data accessed by process j in an arbitrary Δ-long time
interval. The goal of this part of the model is to compute M (j)(Δ) from the time dis-
tance histogram of the process j.

The computation includes three steps. Step 1: From the time distance histogram of
each data object, we calculate the probability for a data object, say Oi, of process j to ap-
pear in a Δ-long time interval, denoted by Pi(Δ). Step 2: From Pi(Δ) (i = 0, 1, · · · , N−
1; N is the total number of distinct data objects ever accessed by process j in its entire
execution), we obtain the probability for that interval to contain k (k = 0, 1, · · · , N)
distinct objects of process j, denoted by P (k, Δ). Step 3: From P (k, Δ), we compute
the expected number of distinct objects that process j accesses in the interval, which is
the value of M (j)(Δ). We explain each of the three steps as follows.

Compute Pi(Δ)
For the object Oi to be accessed in a Δ-long interval, it can be either accessed in the
first Δ-1 time points, or, not until the end of the interval. With qi(Δ) representing the
probability for the data to be not accessed until the end of the interval, Pi(Δ) can be
expressed as Pi(Δ) = Pi(Δ − 1) + qi(Δ).

Hence the following equations:

Pi(Δ − 1) = Pi(Δ − 2) + qi(Δ − 1);
Pi(Δ − 2) = Pi(Δ − 3) + qi(Δ − 2);

· · · · · ·
Pi(1) = Pi(0) + qi(1).

1 We use logical time—that is, the number of data references—for the length of an interval.

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 273

Apparently Pi(0) is 0 (no objects can be accessed in a 0-long interval.) Deduction from
these equations produces the following formula:

Pi(Δ) =
Δ∑

τ=1

qi(τ). (2)

Notice that qi(τ) equals the probability for Oi to 1) be the final data reference in an
interval of length τ , and meanwhile, 2) have a time distance larger than τ at that data
reference (otherwise, it would be also accessed at other points in that interval.) With p

(1)
i

and p
(2)
i respectively denoting the probabilities for the two conditions to hold, qi(τ) can

be computed as qi(τ) = p
(1)
i p

(2)
i .

The probability p
(2)
i comes directly from the time distance histogram (denoted as

Hi) of object Oi as
∑T

δ=τ+1 Hi(δ). With p
(1)
i = ni/T (ni is the total references to Oi

in all the T data references in the execution), qi(τ) can be computed as

qi(τ) =
ni

T

T∑
δ=τ+1

Hi(δ). (3)

Together, Equations 2 and 3 lead to the following computation of Pi(Δ) from the time
distance histogram:

Pi(Δ) =
ni

T

Δ∑
τ=1

T∑
δ=τ+1

Hi(δ). (4)

Compute P (k, Δ) and M (j)(Δ)
With Pi(Δ) (i = 0, 1, · · · , N − 1), we can compute the probability for an interval to
contain k distinct data, denoted as P (k, Δ) as follows:

P (k, Δ) =
∑

S (the probability for the interval to contain and only contain all
the members of S),

where, S is a k-member subset of A = {O1, O2, · · · , ON−1}. Using Pi(Δ), P (k, Δ)
can be computed as follows2:

P (k, Δ) =
∑

S:|S|=k;S⊆A

((
∏
i∈S

Pi(Δ)) (
∏

j∈A−S

(1 − Pj(Δ)))). (5)

2 This computation, as most trace-based locality analyses (e.g., [8,25,23]), assumes data dis-
tribute independently from one another. Results of those previous studies have shown minor
influence of the assumption on locality characterization when the program contains a large
number of data.

274 Y. Jiang et al.

Recall that M (j)(Δ) is the statistical expectation of the number of distinct data accessed
by process j in an arbitrary time interval of length Δ. According to the definition of
statistical expectation, we can compute M (j)(Δ) from P (k, Δ) as follows:

M (j)(Δ) =
min(Δ−1,N)∑

k=0

k · P (k, Δ) (6)

Discussion. When there are no data sharing among cache sharers, a combination of
their M (j)(δ)s (j = 1, 2, . . . ,# of sharers) is enough to approximate their concurrent
reuse distance histograms. Let d be the time distance of a data reuse by process j.
Suppose di is the number of memory references by one of its cache sharers, process i,
during the same (physical) time period. The concurrent reuse distance of process j can
be computed as M (j)(d) +

∑
i∈j′s co−runners M (i)(di). (Note, the values of d and dis

may be different, depending on the relative speeds of cache sharers.)
This combination, however, is not sufficient for co-running threads in multithreading

applications because of the effects of inter-thread data sharing.

Part II: Handling Data Sharing. In this section, we use the following example for
explanation. There are two co-running threads T1 and T2. Suppose in a certain time
period, the memory reference sequence is

a b X X b X c d X a

where, an X represents some reference conducted by T2, and the other letters represent
the references by T1. Clearly, this time period corresponds to a reuse interval of refer-
ence to “a” in the standalone execution of T1 with standalone reuse distance of 3 (for
accesses to b, c, and d). We now examine its corresponding concurrent reuse distance
for element “a” in three scenarios.

– Scenario 1: All Xs are something different from the data accessed by T1. Let the
four Xs be “p q p q”. Apparently, the concurrent reuse distance of the reuse inter-
val is just the sum of the numbers of distinct data in each of the two standalone
reference sequences: 3 + 2 = 5.

– Scenario 2: The four Xs are “p a p q”. This scenario illustrates the first effect of data
sharing. The reference to “a” breaks the reuse interval into two: “a b p a” and “a b p
c d q a”. The consequence is that the original reuse interval becomes meaningless.
The approximation of the ultimate concurrent reuse distances of T1 has to include
a reuse distance of 2 (for “a b p a”) and a reuse distance of 5 (for “a b p c d q a”).

– Scenario 3: The four Xs are “p c p c”. This scenario illustrates the second effect
of data sharing. Because “c” is referenced by T1 in that interval, the references to
it by T2 should not be counted in the concurrent reuse distance. So the resulting
concurrent reuse distance is 3 + 1 = 4 (rather than 5 as in Scenario 1).

The last two scenarios show the two effects of data sharing on concurrent reuse distance
approximation.

To approximate the concurrent reuse distance of co-running threads, we first assume
no data shared across the threads, and apply the model described in Part I to compute a

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 275

concurrent reuse distance histogram, R′ for each thread. We then revise R′ by consid-
ering the two effects of data sharing. The revision tries to find the statistical expectation
of the correct concurrent reuse distance for each reuse interval contained in R′.

To explain the revision step, we first introduce some notations. For simplicity, we as-
sume there are only two co-running threads. Let N1 and N2 represent the total numbers
of distinct data accessed by thread 1 and thread 2 (in their entire execution), S represent
the set of data shared by the two threads. Suppose that there is a reuse interval V with
ending elements as e accessed by thread 1 and its reuse distance in R′ is d′ (which needs
to be revised in this revision process). Let n1 and n2 be the numbers of distinct data
among the data accessed respectively by the two threads in V ; both can be computed
by Equation 6.

Treating the First Effect. The revision step first treats the interval-breaking effect that
data sharing may impose to the concurrent reuse distance (the second effect is tem-
porarily ignored). It computes the probability for the reuse interval V to be broken.
That event happens only when the following two events both occur. The first is that e
is a shared data element; clearly the probability is |S|/N1. The second is that e ever
appears in the references by thread 2 in the interval V ; as any of the n2 data ele-
ments could be e, the probability is n2/N2. So the probability for the reuse interval
to be broken is (|S|/N1) ∗ (n2/N2). Because e may appear anywhere in V , assume
the broken effect distributes to all sub-intervals of V uniformly. The probability for the
resulting reuse intervals to have reuse distance of α (α = 0, 1, . . . , d′) is the same,
(|S|/N1) ∗ (n2/N2)/(d′ + 1). Hence the number of reuse intervals of distance α in R′

should increase by (|S|/N1)∗(n2/N2)/(d′+1). Meanwhile, because the original reuse
interval is broken, the number of reuse intervals of distance d′ in R′ should decrease by
(|S|/N1) ∗ (n2/N2). We use R′′ to denote the resulting histogram after this treatment.

Treating the Second Effect. In the treatment to the second effect of data sharing on
concurrent reuse distance, each interval is not breakable as the interval-breaking effect
has already been considered. For a reuse interval V in R′′, let S1 denote the set of
distinct data among all references conducted by thread 1 in that interval, and S2 for
thread 2. In R′′, the reuse distance of that interval would be n1 + n2. In this step,
we want to correct this distance value by considering that there may be some overlap
between S1 and S2. Let C represent the overlap set. Apparently, C ⊆ S. The probability
for |C| = c is

1(
N1
n1

) ∗ (N2
n2

) |S|∑
d=c

(|S|
d

)(
N1 − |S|
n1 − d

)(
d

c

)(
N2 − d

n2 − c

)
,

where,
(
N1
n1

) ∗ (N2
n2

)
is the possible ways to have a reuse interval like V ,

(|S|
d

)(
N1−|S|
n1−d

)
is the number of ways for d shared data to appear in S1, and

(
d
c

)(
N2−d
n2−c

)
is the number

of ways for thread 2 to access c data in the d shared data accessed by thread 1.
Those probabilities are enough to compute the statistical expectation of the concur-

rent reuse distance for every reuse distance in R′. Although our explanation uses two
threads as the example, the model supports an arbitrary number of co-running threads.

276 Y. Jiang et al.

4 Evaluation

This section reports the accuracy of the concurrent reuse distance produced by the prob-
abilistic model. We use both the traces from real programs and some synthetic traces
for the evaluation. The synthetic traces allow us to test memory reference patterns that
are not covered by the selected programs.

4.1 Synthetic Traces

In order to test the model on traces with various data reuse patterns, we develop a trace
generator that produces data reference traces according to users’ specifications. The
parameters that control the generated trace include the following:

– n1, n2, . . . , nk: the number of unique data blocks (in the unit of cache lines) in the
co-running programs.

– s: the data sharing rate. It is the total number of shared data blocks divided by n1.
– distribution: the distribution of standalone reuse distances. We test the follow-

ing typical distributions: the random, the exponential (λ = −0.97), the Normal
(mean = 100, std. = 33). Choosing these distributions is because they have
been widely used as the primitive distributions in statistical mixture models [13];
the reuse patterns in many real traces can be regarded as the combination of those
distributions [23].

The underlying scheme of the trace generator is a stochastic process similar to the one
used in standalone reuse distance studies [22].

Table 4 presents the accuracies on a set of traces. The bottom three groups above the
average row are the results when there are four co-runners, among which, the first pair
both have n1 unique data items, and the second pair both have n2.

Following previous work [9], we define accuracy as (1 − E/2), where E is the
sum of the absolute differences between the predicted and the real reuse histograms at
every reuse distance. Division by 2 normalizes the accuracy to [0, 100%]. To completely
expose prediction errors, we use the finest granularity: The width of each bar in all the
histograms used in this experiment is 1.

The overall average accuracy is 87.9%. For larger-grained histograms (e.g., 1K-wide
bars in many real uses), the accuracy would be higher as errors inside a bar would be
smoothed out. The results also show that the effectiveness of the prediction approach
is not significantly sensitive to reuse patterns, indicated by the similar accuracy across
distributions. The presence of data sharing reduces the prediction accuracy by 5–7%,
reflecting the extra complications caused by the sharing to concurrent reuse distance
approximation. For most cases, the prediction accuracy is above 80%, verifying the ex-
istence of the statistical connections between concurrent reuse distance and the memory
behaviors of individual threads, and demonstrating the capability of the probabilistic
model in capturing such connections.

4.2 Traces from Real Programs

Because instrumentation changes the relative speeds of cache sharers, the real memory
traces of co-running threads are difficult to collect on real machines. For our evalua-
tion purpose, we employ a simulator to record the traces. The simulator is constructed

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 277

based on SIMICS [38] with GEMS [18], a cycle-accurate multiprocessor simulator. The
simulated system is a dual-core UltraSPARC architecture with 1MB shared L2 cache.

We simulate three representative PARSEC programs [4]. For each program, we use
the fast mode of the simulator to move into the region of interest (the labels to those
regions come with the original benchmarks) and then collect memory references in
one-million-cycle-long detailed simulation.

Program swaptions is an Intel RMS workload which uses the Heath-Jarrow-Morton
(HJM) framework to price a portfolio of swaptions. The program uses few (23) locks.
There are 27% data that are shared between two threads in the collected memory refer-
ence trace. The prediction accuracy by the probabilistic model is 74%. The accuracy is
relatively lower than those on synthetic traces. The reason is that this program accesses
distinct data elements more frequently than the synthetic traces. The reuse distance
tends to span a broader range.

Program vips is based on the VASARI Image Processing System (VIPS). It includes
fundamental image operations such as an affine transformation and a convolution. The
program uses locks intensively. There are totally over 33,000 locks. But there are neg-
ligible portion of data that are shared between threads. The probabilistic model is able
to predict the concurrent reuse distance by 76% accuracy.

The last program is streamcluster. It is an RMS kernel developed by Princeton Uni-
versity that solves the online clustering problem. It is a data-level parallel program. This
program uses modest number of locks, but many barriers (129,600). There are 3% data

Table 4. Accuracy of the Prediction of Concurrent Reuse Distance Histograms

distr. s=0 s=10% s=20% average
n1=200 n1=200 n1=200 n1=200 n1=200 n1=200
n2=100 n2=200 n2=100 n2=200 n2=100 n2=200

random 94.9 93.3 91.3 90.0 89.7 79.8 89.8
expon. 93.2 92.3 91.1 92.2 93.4 90.1 92.1
normal 95.9 94.6 94.4 80.8 93.4 91.6 91.8
random+
expon. 94.0 93.3 88.5 87.2 84.0 79.0 87.7
random+
normal 93.9 93.5 87.4 90.9 91.6 89.1 91.1
expon.+
normal 93.6 94.2 92.5 79.9 92.2 89.9 90.4
2random+
expon.+
normal 88.2 88.5 83.3 82.0 82.5 81.6 84.4
random+
2expon.+
normal 89.0 84.8 70.1 72.8 85.3 83.5 80.9
random+
expon.+
2normal 85.0 85.9 84.1 80.0 81.2 81.2 82.9
average 92.0 91.2 87.0 84.0 88.1 85.1 87.9

s: the sharing ratio. n1, n2: the number of distinct data of the co-running programs.

278 Y. Jiang et al.

shared between two threads in the generated memory reference trace. The approximated
concurrent reuse distance histogram has the highest error, 28%. It is mainly due to its
irregular data references.

4.3 Discussions

The significance of the model is that it shows the possibility of deriving concurrent
reuse distance from the memory behaviors of individual threads, opening the door to
many potential uses of concurrent reuse distance. Some of these uses are similar to how
standalone reuse distance is applied to sequential programs running on uni-core proces-
sors. Examples include cross-architecture performance prediction [32,33,17], software
refactoring [3], locality enhancement [34,36,10,11,16]. With the statistical model and
the discoveries in Section 3, all these uses become possible for multithreading applica-
tions running on CMP.

Some other potential uses of concurrent reuse distance are specific to multithreading
applications. An example is thread scheduling [28,30]. It is well known that using hy-
perthreads may both increase and decrease the performance of applications [15]. From
the predicted concurrent reuse distance histograms, one can estimate the cache miss
rates of a variety of numbers of threads co-running on a chip. On a CMP processor
with hyperthreads enabled (such as Intel Nehalem), that prediction will help determine
whether to use hyperthreads or not and how many threads to spawn would yield the best
performance.

In our experiments, the longest run of the model takes about 20 seconds. There are
many ways to reduce the overhead, such as memory reference sampling [35],
employment of coarse-grained histograms, and use of mathematical approximation
formulas [23]. Recall that the goal of this work is to reveal the inherent properties
of concurrent reuse distance, including its connections with standalone reuse
distance—what the probabilistic model captures. Creating a lightweight tool for con-
current reuse distance approximation is orthogonal to the main goal of this work. So
sophisticated overhead reduction remains our future work.

5 Related Work

Since the early days in computing [8,19], decades of efforts have contributed a solid
foundation for understanding the behavior of dedicated cache systems. Standalone reuse
distance has been one of the most influential locality metric [19,2,17,11,36].

However, reuse distance has not been systematically studied in the environment of
multicore with cache sharing. The studies close to this work include the following sev-
eral explorations in predicting miss rates on shared cache.

Ding and Chilimbi [31] have proposed an approach to all-window profiling for con-
current executions, through which, they found that memory accesses by multiple threads
of a server application typically show non-uniform interleaving patterns. Chandra et
al. [6] have developed three statistical models to predict cache miss rates of co-running
processes from the circular stack distance histograms of individual process. Chen and
Aamodt [7] extend the models to predict cache contention on Simultaneous Multi-
threading architecture. Our work differs from these studies in three aspects. First, their

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 279

models predict cache miss rates rather than concurrent reuse distance. As a program-
level locality characterization, reuse distance has a variety of uses besides performance
prediction, such as software refactoring [3], guiding data transformations [34,36], mem-
ory disambiguation [10,11]. It is not clear how the previous models apply to these uses.
Second, the previous models are for independent jobs, while our model allows data
sharing among cache sharers. Finally, because of the use of circular stack distance his-
tograms, the previous models have certain but limited cross-architecture predictive ca-
pability. They require that the number of cache sets must remain the same, and the
cache associativity of the new machine must be smaller than the cache associativity of
the training architecture.

Berg et al. [1] propose a statistical model to estimate the miss rate of shared cache
for multithreading programs. Unlike the previously mentioned two studies, their model
starts directly from concurrent reuse distance. They assume that the concurrent reuse
distance of the interleaved memory reference traces is already available somehow (they
obtain it through a simulator), and use it as one of the inputs to their statistical model.
The authors collect the traces using simulator for their experiment. It is not clear how
such traces can be obtained on real machines. Our model concentrates on the attainment
of concurrent reuse distance.

In addition, there has been some work on analyzing the interactions among different
threads on dedicated cache in a time-sharing environment [29,27]. These studies mainly
focus on predicting the footprint size of a thread as the interactions on cache mainly
occur at context switch time; while with shared cache, the interactions happen at almost
every cache access—footprint size prediction becomes insufficient.

There have been a wealth of research trying to optimize shared cache performance
through either hardware extensions[14,20,21], or operating system scheduling [12,26,28].
They mainly rely on hardware-level locality information collected by hardware per-
formance monitors or special hardware extensions. As mentioned in Section 1, reuse
distance differs from hardware-level metrics. It is hardware-independent and captures
program-level locality characterizations, important for a variety of locality analysis and
program optimizations.

6 Conclusions

The explorations described in this paper lead to the following conclusions. First, de-
spite the wide applicability of reuse distance on traditional architectures, applying it to
CMP environments is challenging. The obstacles stem from the reliance of concurrent
reuse distance on the relative running speeds among cache sharers. The reliance makes
the measurement of reuse distance difficult as instrumentation would change the rel-
ative speeds. It also deprives reuse distance of its hardware-independence, impairing
many of its uses. Second, experimental evidences show that the relative speeds of many
non-pipelining multithreading applications remain unchanged across architectures and
inputs because of the uniformity among threads. That observation grants reuse distance
the potential applicability for multithreading applications running on CMP environ-
ments. Finally, a probabilistic model shows the promise of facilitating the realization of
such potential by offering a mechanism to derive concurrent reuse distance histograms
from the memory behaviors of individual threads.

280 Y. Jiang et al.

Despite the findings and revealed potential, there is no doubt that much further stud-
ies are needed before concurrent reuse distance can be practically applied. This work
hopefully can help stimulate such studies to systematically extend the commonly used
locality model, reuse distance, to modern CMP environments.

Acknowledgments

We owe the anonymous reviewers our gratitude for their helpful comments on the paper.
The discussions with Chen Ding’s group at University of Rochester helped the refine-
ment of the final version of this paper. This material is based upon work supported by
the National Science Foundation under Grant No. 0720499 and 0811791 and IBM CAS
Fellowship. Any opinions, findings, and conclusions or recommendations ex- pressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation or IBM.

References

1. Berg, E., Hagersten, E.: Fast data-locality profiling of native execution. ACM SIGMETRICS
Performance Review 33, 169–180 (2005)

2. Beyls, K., D’Hollander, E.H.: Reuse Distance as a Metric for Cache Behavior. In: Proceed-
ings of the IASTED Conference on Parallel and Distributed Computing and Systems (2001)

3. Beyls, K., D’Hollander, E.: Discovery of locality-improving refactoring by reuse path anal-
ysis. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 220–229.
Springer, Heidelberg (2006)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization
and architectural implications. In: Proceedings of International Conference on Parallel Ar-
chitectures and Compilation Techniques, Toronto, pp. 72–81 (2008)

5. Browne, S., Deane, C., Ho, G., Mucci, P.: PAPI: A portable interface to hardware perfor-
mance counters. In: Proceedings of Department of Defense HPCMP Users Group Confer-
ence (1999)

6. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting inter-thread cache contention on a
chip multi-processor architecture. In: Proceedings of the International Symposium on High
Performance Computer Architecture (2005)

7. Chen, X.E., Aamodt, T.M.: A First-Order Fine-Grained Multithreaded Throughput Model.
In: Proceedings of the International Symposium on High-Performance Computer Architec-
ture, Raleigh, pp. 329–340 (2009)

8. Denning, P.: Thrashing: Its causes and prevention. In: Proceedings of the AFIPS 1968 Fall
Joint Computer Conference (1968)

9. Ding, C., Zhong, Y.: Predicting Whole-Program Locality with Reuse Distance Analysis. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Diego, pp. 245–257 (2003)

10. Fang, C., Carr, S., Onder, S., Wang, Z.: Instruction Based Memory Distance Analysis and its
Application to Optimization. In: Proceedings of International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 27–37 (2005)

11. Fang, C., Carr, S., Onder, S., Wang, Z.: Feedback-directed Memory Disambiguation Through
Store Distance Analysis. In: Proceedings of the 20th ACM International Conference on Su-
percomputing, Cairns, Queensland, Australia, pp. 278–287 (2006)

Is Reuse Distance Applicable to Data Locality Analysis on CMPs? 281

12. Fedorova, A., Seltzer, M., Smith, M.D.: Improving Performance Isolation on Chip Multipro-
cessors via an Operating System Scheduler. In: Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques, pp. 25–38 (2007)

13. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Hei-
delberg (2001)

14. Hsu, L.R., Reinhardt, S.K., Lyer, R., Makineni, S.: Communist, utilitarian, and capitalist
cache policies on CMPs: caches as a shared resource. In: Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques, Seattle, pp. 13–22 (2006)

15. Liao, C., Liu, Z., Huang, L., Chapman, B.: Evaluating OpenMP on Chip Multithreading
Platforms. In: Proceedings of International Workshop on OpenMP (2005)

16. Lu, Q., Lin, J., Ding, X., Zhang, Z., Zhang, X., Sadayappan, P.: Soft-OLP: improving hard-
ware cache performance through software-controlled object-level partitioning. In: Proceed-
ings of the International Conference on Parallel Architecture and Compilation Techniques,
pp. 246–257 (2009)

17. Marin, G., Mellor-Crummey, J.: Cross architecture performance predictions for scientific
applications using parameterized models. In: Proceedings of Joint International Conference
on Measurement and Modeling of Computer Systems, New York, pp. 2–13 (2004)

18. Martin, M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore,
K.E., Hill, M.D., Wood, D.A.: Multifacet’s General Execution-driven Multiprocessor Simu-
lator (GEMS) Toolset. Computer Architecture News, 92–99 (2005)

19. Mattson, R.L., Gecsei, J., Slutz, D., Traiger, I.L.: Evaluation techniques for storage hierar-
chies. IBM System Journal 9(2), 78–117 (1970)

20. Rafique, N., Lim, W., Thottethodi, M.: Architectural support for operating system-driven
CMP cache management. In: Proceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniques, pp. 2–12 (2006)

21. Settle, A., Kihm, J.L., Janiszewski, A., Connors, D.A.: Architectural Support for Enhanced
SMT job scheduling. In: Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques, pp. 63–73 (2004)

22. Shen, X., Shaw, J.: Scalable Implementation of Efficient Locality Approximation. In: Ama-
ral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 202–216. Springer, Heidelberg (2008)

23. Shen, X., Shaw, J., Meeker, B., Ding, C.: Locality approximation using time. In: Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages (2007)

24. Shen, X., Zhong, Y., Ding, C.: Regression-based multi-model prediction of data reuse sig-
nature. In: Proceedings of the 4th Annual Symposium of the Las Alamos Computer Science
Institute, Sante Fe, New Mexico (2003)

25. Smith, A.J.: On the Effectiveness of Set Associative Page Mapping and Its Applications in
Main Memory Management. In: Proceedings of the 2nd International Conference on Soft-
ware Engineering, pp. 286–292 (1976)

26. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multithreading pro-
cessor. In: Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 66–76 (2000)

27. Suh, G.E., Devadas, S., Rudolph, L.: Analytical Cache Models with Applications to Cache
Partitioning. In: Proceedings of the 15th international conference on Supercomputing, Sor-
rento, Italy, pp. 1–12 (2001)

28. Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on SMP-CMP-
SMT multiprocessors. SIGOPS Oper. Syst. Rev. 41(3), 47–58 (2007)

29. Thiebaut, D., Stone, H.S.: Footprints in the Cache. ACM Transactions on Computer Sys-
tems 5(4) (1987)

30. Zhang, E.Z., Jiang, Y., Shen, X.: Does Cache Sharing on Modern CMP Matter to the Per-
formance of Contemporary Multithreaded Programs? In: Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (2010)

282 Y. Jiang et al.

31. Ding, C., Chilimbi, T.: All-Window Profiling of Concurrent Executions. In: Proceedings of
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 265–
266 (2008)

32. Zhong, Y., Dropsho, S.G., Ding, C.: Miss Rate Prediction Across All Program Inputs. In:
Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques (2003)

33. Zhong, Y., Dropsho, S.G., Shen, X., Studer, A., Ding, C.: Miss rate prediction across program
inputs and cache configurations. IEEE Transactions on Computers 56(3), 328–343 (2007)

34. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array Regrouping and Structure Splitting us-
ing Whole-Program Reference Affinity. In: Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 255–266 (2004)

35. Zhong, Y., Chang, W.: Sampling-based Program Locality Approximation. In: Proceedings of
the International Symposium on Memory Management (2008)

36. Zhong, Y., Shen, X., Ding, C.: Program Locality Analysis Using Reuse Distance. ACM
Transactions on Programming Languages and Systems 31(6) (2009)

37. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (2005)

38. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation Platform. Computer,
50–58 (2002)

The Polyhedral Model Is More Widely
Applicable Than You Think

Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet,
Albert Cohen, and Cédric Bastoul

ALCHEMY Group, INRIA Saclay Île-de-France and University of Paris-Sud 11
{firstname.lastname}@inria.fr

Abstract. The polyhedral model is a powerful framework for automatic
optimization and parallelization. It is based on an algebraic representa-
tion of programs, allowing to construct and search for complex sequences
of optimizations. This model is now mature and reaches production com-
pilers. The main limitation of the polyhedral model is known to be its re-
striction to statically predictable, loop-based program parts. This paper
removes this limitation, allowing to operate on general data-dependent
control-flow. We embed control and exit predicates as first-class citizens
of the algebraic representation, from program analysis to code genera-
tion. Complementing previous (partial) attempts in this direction, our
work concentrates on extending the code generation step and does not
compromise the expressiveness of the model. We present experimental
evidence that our extension is relevant for program optimization and
parallelization, showing performance improvements on benchmarks that
were thought to be out of reach of the polyhedral model.

1 Introduction

The ability to perform complex loop nest restructuring is required for optimiz-
ing and parallelizing tools, to cope with the complexity of modern architectures.
The widespread adoption of multicore processors and massively parallel hard-
ware accelerators (GPUs) urge production compilers to provide such capability.
The polyhedral model has demonstrated its potential to achieve portability of
performance over a variety of targets. So far, these successes have been limited
to static-control, regular loop nests. Time has come to address these challenges
on a much wider class of programs.

Since the very first compilers, the internal representation of programs has
been in direct correspondance with their operational semantics. In such abstract
syntaxes, each statement appears only once even if it is executed many times.
This representation has severe limitations. First of all, it may limit the accu-
racy of program analysis. For instance, if a statement in a loop has some data
dependence relation with another statement, it will consider both of them as
single entities while the dependence relation may involve only very few of the
dynamic iterations of these statements. This is particularly common in loop-
based programs accessing arrays. Next, it may limit program transformation

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 283–303, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

284 M.-W. Benabderrahmane et al.

applicability. For instance, loop transformations operate on individual statement
iterations. Lastly, it limits the expressiveness of program transformations: the
most impactful loop nest transformations cannot be expressed as structural,
incremental updates of the loop tree structure [19].

The polyhedral model is a semantical, algebraic representation which com-
bines analysis power, transformation expressiveness and flexibility to design so-
phisticated optimization heuristics. It was born with the seminal work of Karp,
Miller and Winograd on systems of uniform recurrence equations [23]. The poly-
hedral model is closer to the program execution than operational/syntactic rep-
resentations because it operates on individual statement iterations, or statement
instances. It has been the basis for major advances in automatic optimization
and parallelization of programs [15,6,26,20,5]. After decades of research, produc-
tion compilers are getting closer to making effective use of the polyhedral model
to compile for multicore architectures, including GCC 4.4 and IBM XL.

Compilers based on the Polyhedral model — including recent research tools
like PoCC [29] or CHiLL [8] — target code parts that exactly fit the affine
constraints of the model. Only loop nests with affine bounds and conditional
expressions can be translated to a polyhedral representation. The reason behind
this limitation is not that exact dependence analysis is required to make use
of the polyhedral model, but rather that there is no general scheme to support
dynamic control flow in the program transformation and code generation algo-
rithms. To fight a common misunderstanding, the power of the polyhedral model
is not to achieve exact data dependence analysis, but to implement compositions
of complex transformations as a single algebraic operation, and to model these
transformations in a convex optimization space [15,26,19,5,28].

In this paper, we expand the application domain of the polyhedral model.
We present slight extensions to the representation itself, based on the notions
of exit and control predicates that allow to consider general while loops and if
conditions. We revisit the whole framework, from input code analysis to output
code generation, while taking care of preserving expressiveness and flexibility.
We present experimental evidence that this extended framework offers new opti-
mization opportunities for existing optimization algorithms, and opens the door
to novel techniques targetting full functions.

The paper is organized as follows. Section 2 introduces the classical polyhedral
representation of programs and extensions to support irregular control flow.
Section 3 revisits the polyhedral model to target full functions, from analysis
to code generation. Section 4 discusses control overhead and some solutions.
Section 5 presents experimental results in the extended framework. Section 6
discusses related work, before the conclusion in Section 7.

2 Polyhedral Representation of Programs

Static Control Parts (SCoP) are a subclass of general loops nests that can be
represented in the polyhedral model.

The Polyhedral Model Is More Widely Applicable Than You Think 285

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

if (i <= n + 2 - j)

S(i,j);

DS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

i
j

) ∣∣∣∣∣∣∣∣∣
(

i
j

)
∈ Z

2,

⎡⎢⎢⎢⎣
1 0

−1 0
0 1
0−1

−1−1

⎤⎥⎥⎥⎦
(

i
j

)
+

⎛⎜⎜⎜⎝
−1

n
−1

n
n + 2

⎞⎟⎟⎟⎠ ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(a) Surrounding Control of S (b) Iteration Domain of S

Fig. 1. Static control and iteration domain

2.1 Static Control Parts

A SCoP is defined as a maximal set of consecutive statements, where loop bounds
and conditionals are affine functions of the surrounding loop iterators and the
parameters (constants whose values are unknown at compilation time). The it-
eration domain of these loops can always be specified thanks to a set of linear
inequalities defining a polyhedron. The term polyhedron will be used to denote
a set of points in a Z

n vector space bounded by affine inequalities:

D = {x | x ∈ Z
n, Ax + a ≥ 0}

where x is the iteration vector (the vector of the loop counter values), A is a
constant matrix and a is a constant vector, possibly parametric. The iteration
domain is a subset of the full possible iteration space: D ⊆ Z

n. Figure 1 illus-
trates the matching between surrounding control and polyhedral domain: the
iteration domain in Figure 1(b) can be defined using affine inequalities that are
extracted directly from the program in Figure 1(a) (e.g, the first row i − 1 ≥ 0
corresponds to the lower bound of the first loop). To the best of our knowledge,
all previous works using the polyhedral model used a similar representation.
However, because of its strong mathematical constraints, any irregularity in the
code splits the program into several smaller SCoPs. Furthermore, irregularities
inside a loop nest will result in SCoPs with lower dimensionality (only the inner
regular loops may be considered) [19]. For instance, let us consider the Outer
Product Kernel shown in Figure 4(a): because of the irregular conditional, exist-
ing polyhedral frameworks can only consider the two innermost loops separately,
or, to the contrary, consider the whole if-else statements as an atomic block,
hence with a significantly reduced potential impact.

2.2 Relaxing the Constraints

The program model we target in this paper is general functions where the only
control statements are for loops, while loops and if conditionals. This means
function calls have to be inlined and goto, continue and break statements
have been removed thanks to some preprocessing. To move from static control
parts to such general control flow we need to address two issues: (1) modeling
loop structures with arbitrary bounds (typically while loops); and (2) modeling

286 M.-W. Benabderrahmane et al.

arbitrary conditionals (typically data-dependent ones). In both cases, it implies
to not be anymore able to exactly characterize statically the iteration domain of
statements, which remains the privilege of Static Control Parts.

First, we demonstrate that it is possible to express safe over-approximations
of the iteration domains to allow the construction of a polyhedral representation
in the case of arbitrary control-flow.

Modeling Arbitrary Loop Structure. Any arbitrarily iterative structure
such as for loops with non-affine bounds or while loops is actually amenable to
polyhedral representation. As explained in Section 2.1 the iteration domain of
a statement is a subset of Z

n. The convex hull of all executed instances of any
statement, even with a non-polyhedral iteration domain, is a subset of Z

n. Thus,
an over-approximation that fits the polyhedral model for the iteration domain
of any statement enclosed in a non-static loop is Z

n itself. We actually choose
to over-approximate it as N

n to match the standard loop normalization scheme,
represented by the non-negative half-space polyhedron. This translates to over-
approximate any non-static loop with a static loop iterating from 0 to infinity.
Such over-estimate have been used in the same way by Griebl and Collard for
while loop parallelization [21].

To guarantee that the program semantics will be preserved, we introduce an
exit predication statement which bears the loop bound check. This statement
is executed at the beginning of any iteration of the infinite loop, and exits the
loop thanks to a break instruction if the loop conditional is no longer satisfied.
This is summarized in Figure 2: we consider the original code in Figure 2(a)
as the equivalent code in Figure 2(b) with the exit predicate ep. In the case of
arbitrary for loops, initialization statements are inserted just before the loop
and at the end of the loop body for the increment. Note that all statements
in the body of the loop depends on the exit predication statement. Each state-
ment S has a set of exit predicates, ES . The exit predicate is attached to the
iteration domain of the predicated statements as illustrated in the example in
Figure 2(c).

while (condition)

S;

for (i=0;; i++)

ep = condition;

if (ep)

S(i);

else

break;

(a) Original Code (b) Equivalent Code

DS = {(i) |(i) ∈ Z, ep ∈ ES, [1] (i) + (0) ≥ 0 ∧ ep}

(c) Iteration Domain of S

Fig. 2. Exit predication

The Polyhedral Model Is More Widely Applicable Than You Think 287

for (i=0; i<N; i++)

if (condition(i))

S(i);

for (i=0; i<N; i++)

cp(i) = condition(i);

if (cp(i))

S(i);

(a) Original Code (b) Equivalent Code

DS =
{
(i)

∣∣∣(i) ∈ Z, cp(i) ∈ CS,
[1
−1

]
(i) +

(0
N − 1

)
≥ 0 ∧ cp(i)

}
(c) Iteration Domain of S

Fig. 3. Control predication

Modeling Arbitrary Conditionals. We apply a similar reasoning to represent
non-affine conditionals. To model such a conditionally executed statement in the
polyhedral representation we decouple the regular part of the iteration domain
and the irregular conditional. Again, the polyhedral iteration domain is over-
approximated and we need to ensure the semantics is preserved. To do so we
introduce a control predication which consists in predicating individually each
statement dominated by the non-static conditional by its condition (similar to
if-conversion). Each statement S has a set of control predicates, CS . This is
summarized in Figure 3: we consider the code in Figure 3(a) as the equivalent
code in Figure 3(b) with the control predicate cp(i). This predicate is attached
to the iteration domain of the predicated statements as shown in Figure 3(c).

Being able to safely describe (from the iteration domain point of view) the
convex hull of the dynamic control flow is only the first step towards supporting
full functions. The following section presents necessary and sufficient modifica-
tions of the framework that allow to transform general codes with polyhedral
techniques. Our goal is to show that, provided a suitable dependence analysis
(static, dynamic or both), only the code generation step needs to be altered to
enable any polyhedral optimization technique on full functions.

3 Revisiting the Polyhedral Framework

Restructuring programs using the polyhedral model is a three steps framework.
First, the Program Analysis phase aims at translating high level codes to their
polyhedral representation and to provide data dependence analysis based on
this representation. Second, some optimizing or parallelizing algorithm use the
analysis to restructure the programs in the polyhedral model. This is the Pro-
gram Transformation step. Lastly, the Code Generation step returns back from
the polyhedral representation to a high level program. Targeting full functions
requires revisiting the whole framework, from analysis to code generation.

288 M.-W. Benabderrahmane et al.

3.1 Program Analysis

Once a function has been translated to the polyhedral model with the predicate
extensions described in Section 2.2, data dependence analysis must be performed.
Two statements are said to be in dependence if they access the same memory
reference, and at least one of these accesses is a write. When restricting the study
to SCoPs and to array references with affine subscripts — we talk about static
references — it is possible to compute on which instance (iteration) of a given
statement any other instance depends [13,14].

As we broaden the set of handled programs, we have to deal with dynamic be-
havior (e.g., while loops) and structural complexity (e.g. subscript of subscript,
as in A[B[i]]). As a result, an exact analysis is no more possible statically.
Instead, we rely on a conservative policy, over-estimating data dependences,
preventing some optimizations when semantics safety is unsure.

Conservative policies are widely used in compilation to achieve an approxi-
mate analysis of programs without slowing down the compiler. GCD-test [2] or
I-test [25] are popular examples of such analysis for array references: they can
state thanks to a fast GCD computation that two references do not depend on
each other, then safely consider a dependence relation exists otherwise (for in-
stance, GCC 4.4 relies on a multi-dimensional GCD-test for production and on
a more costly but exact Omega-test [30] for testing). When dedicated prepro-
cessing techniques fail to simplify complex array references (typically subscript
of subscript or linearized subscripts) it is usual to consider the reference as an
access to a single variable, i.e., to suppose that the whole array is read or written.
In the same way, when array recovery fails to translate pointer-based accesses to
explicit array references [16], it is usual to consider a dependence between the
pointer access and every previously accessed references. Overall, it is possible to
handle any kind of data access in a conservative way.

A conservative approach for irregular data dependence analysis is adding new
statements or new statement iterations because the only effect is adding extra
data dependences. Hence, as long as the additional statements do not modify
directly the control flow (as break, continue or goto statements), we can add
them with regard to the analysis. Therefore for data dependence analysis, it is
safe to consider irregular conditions (from while loops as well as if condition-
als) are always true. A convenient data dependence analysis for our purpose is
described by Feautrier [14,15]. This approach does not generalize to all analyses
because considering predicates are always true may not be conservative. For in-
stance, it is not convenient for dead code analysis: in the example in Figure 4(a),
if both branches are considered to be executed, the first branch would be con-
sidered dead (data are totally over-written by the second branch). In the same
way, Feautrier’s data-flow analysis [13] that relies on last writer computation is
not directly suitable for our conservative approach.

In this paper, we translate the program control structures in such a way we
only have to deal with regular for loops, regular if conditionals and infinite for
loops. Irregularity has been spread thanks to control and exit predicates to the
iteration domains of irregular-control-surrounded statements. One can achieve a

The Polyhedral Model Is More Widely Applicable Than You Think 289

naive but simple conservative analysis by considering an altered representation of
the input irregular program called abstract program. We build this representation
from the original program in this way:

1. Introduce control and exit predicates as described in Section 2.2.
2. Predicate evaluations are considered as statements that write the predicate,

and read the necessary data to compute the predicate.
3. Irregular data accesses are modeled conservatively (an array with a complex

subscript is considered as a single variable).
4. Predicated statements are considered to read their predicates.

Writing and reading predicates ensure the semantics is preserved when a state-
ment modifies an element necessary for the predicate evaluation. Ultimately we
may perform on this representation usual data dependence elimination tech-
niques like array privatization [1] then exact data dependence analysis [14].

We illustrate the construction of the abstract program for conservative data
dependence analysis in Figure 4. The considered program in Figure 4(a) is an
optimized version of the Outer Product Kernel in the case one vector contains
some zeros. The conditional introduces irregular control flow that usually pre-
vents considering such kernel in the polyhedral model. The first step is to in-
troduce a control predicate and to attach it to the predicated statements. The
predicate evaluation is considered as a new statement as shown in Figure 4(b).
Lastly, we consider the value of the predicate is read by each predicated state-
ment and that the predicate is always true for conservative data dependence
analysis as shown in Figure 4(c). Figure 4(c) presents the information sent to
the data dependence algorithm (everything is regular): for each statement, its
iteration domain and the sets of written and read references. We may use well
known techniques to remove some dependences. In this example we can privatize
p to remove loop-carried dependence and parallelize the code or even interchange
the loops using existing polyhedral techniques.

Discussion. Many previous works aim at providing less naive and conserva-
tive solutions to avoid, as much as possible, to consider additional dependences.
Griebl and Collard proposed a solution in the context of while loops paral-
lelization, focusing on control flow [21]. Collard et al. extended this approach to
support complex data references [11]. Other techniques aim at removing some
dependences as, e.g., Value-based Array Data Dependence Analysis [31], Array
Region Analysis [12] Array SSA [24] or Maximal Static Expansion [3]. These tech-
niques would expose their full potential in the context of manipulating full func-
tions in the polyhedral model to minimize the unavoidable conservative aspects.
Combining these static analyses with dynamic dependence tests [34,37,36,35] into
hybrid polyhedral/dynamic analyses remains to be investigated.

3.2 Program Transformation

A (sequence of) program transformation(s) in the polyhedral model is repre-
sented by a set of affine functions, one for each statement, called scheduling,

290 M.-W. Benabderrahmane et al.

for (i = 0; i < N; i++)

if (x[i] == 0)

for (j=0; j < M; j++)

A[i][j] = 0;

else

for (j=0; j < M; j++)

A[i][j] = x[i] * y[j];

for (i = 0; i < N; i++)

p = (x[i] == 0);

for (j=0; j < M; j++)

if (p)

A[i][j] = 0;

for (j=0; j < M; j++)

if (!p)

A[i][j] = x[i] * y[j];

(a) Outer product kernel (b) Using a control predicate

for (i = 0; i < N; i++)

S0: Written = p, Read = x[i]

for (j=0; j < M; j++)

S1: Written = A[i][j], Read = p

for (j=0; j < M; j++)

S2: Written = A[i][j], Read = x[i],y[j],p

(c) Abstract program for conservative data dependence analysis

Fig. 4. Abstract program representation for the irregular outer product

allocation, chunking, etc. depending on the technique. In this paper we will
use the generic term scattering functions. Scattering functions depend on the
counters of the loops surrounding their corresponding statement; they map each
run-time statement instance to a logical execution date. The literature is full
of algorithms to find such functions dedicated to parallelization, data locality
or global performance improvement [15,26,20,5]. Our approach allows to reuse
most existing techniques based on the polyhedral model and multi-dimensional
scattering directly.

However, managing while loops, that are translated into unbounded for loops
requires a slight adaptation to preserve the expressiveness of affine scattering
functions. This is particularly important in the context of one-dimensional affine
functions, where it is necessary to know the upper bounds of the loops to be
able to reorder them. For instance let us consider the pseudo-code in Figure 5(a)
composed of two loops enclosing two statements, S1 and S2. To implement a
transformation such that the loop enclosing S2 will be executed before the loop
enclosing S1, we need the logical dates of the instances of S1 to be higher than
those of the instances of S2. Such transformation may be implemented by the
scattering functions θS1(i) = i + Up2 and θS2(i) = i. In these functions, the i
part ensures the instances of a given statement are executed in the same order
as in the original code, and the upper bound Up2 of the second loop is used to
ensure the loop of S1 starts after the end of the loop of S2. The target code is
shown in Figure 5(b), where variable t represents logical time.

In this work, we may consider for loops with no upper bounds. It is not pos-
sible in this way to reorder those loops respectively to other loops (bounded or

The Polyhedral Model Is More Widely Applicable Than You Think 291

for (i = 0; i < Up1; i++)

S1;

for (i = 0; i < Up2; i++)

S2;

for (t = 0; t < Up2; t++)

i = t;

S2;

for (t = Up2; i < Up2 + Up1; i++)

i = t - Up2;

S1;

(a) Original program (b) Loop reordering with scattering
θS1(i) = i + Up2 and θS2(i) = i

Fig. 5. Loop reordering using one-dimensional scattering

unbounded) using one-dimensional schedules only.1 We thus introduce a virtual
parametric upper bound w, the same for all unbounded for loops with the con-
straint that w is strictly greater than all upper bounds of bounded for loops.
The w-parameter will be considered during the program transformation and code
generation steps. It will be removed during a dedicated stage of code generation
as detailed in Section 3.3. This parameter has to be chosen strictly greater than
other loop bounds to ensure a fusion between a bounded and an unbounded loop
will always be partial (hence the code generation step will always be able to re-
create the unbounded part). A single w-parameter for multiple unbounded loops
is enough to be able to reorder them relatively to each other by using coefficients
of this parameter (e.g., to reorder three unbounded loops, we can use scattering
functions like θS1(i) = i, θS2(i) = i + w and θS3(i) = i + 2w). The w-parameter
allows to reuse any of the existing algorithms supporting parameters to compute
scattering functions in our irregular context.

3.3 Code Generation

Once a transformation (i.e., a scattering function) has been computed by an
optimization heuristic, applying it in the polyhedral model is straightforward
and leads to a new coordinate system for each iteration domain [4]. The last
step consists in translating the transformed program from its polyhedral repre-
sentation back to a syntactic representation. This phase amounts to finding a
set of nested loops visiting each integral point of each polyhedron once and only
once. This is a critical step in the polyhedral framework since the final program
effectiveness highly depends on the target code quality. In particular, we must
ensure that a bad control management does not spoil performance, for instance
by producing redundant conditions, complex loop bounds or under-used itera-
tions. On the other hand, we have to avoid code explosion typically because a
large code may pollute the instruction cache.

Among existing methods to scan polyhedra and generate code, the extended
Quilleré et al. algorithm is considered now as the most efficient algorithm [32,4].

1 It is easy to remove the limitation using more dimensions, but several algorithms
to compute scattering functions are based on one-dimensional scattering only, and
some others rely on the full expressiveness of each dimension.

292 M.-W. Benabderrahmane et al.

CodeGeneration: build a polyhedron scanning code AST without redundant control.

Input: a polyhedron list, a context C, the current dimension d.
Output: the AST of the code scanning the input polyhedra.

1. Intersect each polyhedron in the list with the context C;
2. Project the polyhedra onto the outermost d dimensions;
3. Separate these projections into disjoint polyhedra (this generates loops for dimen-

sion d and new lists for dimension d + 1);
4. Sort the loops to respect the lexicographic order;
5. Recursively generate loop nests that scan each new list with dimension d+1, under

the context of the dimension d;
6. Return the AST for dimension d.

Fig. 6. Quilleré et al. algorithm

This algorithm is not able in its original form to generate semantically cor-
rect code for our extended polyhedral representation, as special care is needed
to handle properly predicates and their impact on the generated control-flow.
Nevertheless, it is possible to extend this algorithm to scan and generate regu-
lar codes corresponding to the over-estimates of the iteration domains then to
post-process its output to guarantee semantically correct code generation.

We first provide a short description of the Quilleré et al. algorithm, then we
present a new extension to this algorithm to support irregular code generation.

Quilleré et al. Algorithm. Quilleré, Rajopadhye and Wilde proposed the first
code generation algorithm to directly eliminate redundant control in the target
code, in contrast of other approaches starting from a naive code and trying to
improve it [32]. The main part of the algorithm is a recursive generation of
the scanning code, maintaining a list of polyhedra from the outermost to the
innermost loops. Figure 6 describes briefly this algorithm. Its input is a list
of polyhedra that need to be scanned in lexicographical order of their points
(iterations), the context (constraints on the global parameters), and the first
dimension to scan.

Extension for Irregular Programs. Previous approaches to model irregular
codes (see Section 6) were based on complex representations that did not allow
any easy modification of the extended Quilleré et al. algorithm to generate the
code. Instead they rely on ad-hoc, mostly syntactic, code generation schemes.
By relaxing the static constraints thanks to exit and control predication, we
make possible, and even natural, the adjustment of the Quilleré et al. code
generation algorithm. This adaptation takes into account the additional data
dependences on control predicates. The price to pay is displacing the problem of
modeling data dependent non-affine conditions into legality constraints. There is
no alteration of the core Quilleré et al. algorithm: we apply it on the polyhedral
over-estimated iteration domains, leaving predicates attached to each statement.
Then we post-process the result to handle the predicates. There are two tasks to

The Polyhedral Model Is More Widely Applicable Than You Think 293

perform: (1) to achieve a semantically-correct generation of control predicates
and exit predicates, and (2) to reconstruct while loops in the generated code.

Generation of Arbitrary Conditionals. Generating arbitrary conditionals is
straightforward: the control predicate is available as a statement information,
attached to the polyhedral iteration domain. The only task is to generate the if
instruction containing the predicate around the convenient statement.

Generation of while Loop Structure. The task of generating while loops starts
by identifying loops with the w parameter introduced in Section 3.2 as an upper
bound. Next, we have to identify exit predicates corresponding to each while
loop. Again, this information can be easily extracted because it is attached to
the polyhedral iteration domain of each statement that belongs to a while loop
in the original program.

However, due to the separation step of the extended Quilleré et al. algorithm,
several statements with different exit predicates could be found in the same it-
eration domain without corresponding to the same while loop. So we need to
separate these statements and generate the appropriate while loops. we distin-
guish three main cases of separation that involve exit predicates:

1. If all statements of the loop have the same exit predicate, no case distinction
is needed during the separation phase. The predicate is therefore considered
as the exit predicate of the generated while loop. Figure 7(a) is an example
of such a case.

2. If statements or block of statements have different exit predicates, this means
(1) they belong to different while loops; and (2) these statements can be
executed in any order (the semantics of while loops transformations is par-
ticular, as discussed in Section 3.3). For this second case, we can proceed
to a separation quite similar to the separation of polyhedra in the regular
case. More exactly, it consists in scanning the domain where both predicates
are true at the same time, thanks to the intersection of two polyhedra, i.e.,
the space of common points. Then, we scan domains where only one of the
two predicates is true, thanks to the differences between polyhedra. Fig-
ure 7(b) shows separation of while loops based on exit predicates attached
to statements s1 and s2.

3. If some statements have exit predicates while some others do not have any,
this means a regular for loop has been fused with a part of a while loop.
In such a case, we find a statement with an exit predicate attached to it
without identifying the while loop (by identifying the w parameter). The exit
predicate is transformed here into a control predicate plus an exit Boolean
(false at the start of the program). Figure 7(c) illustrates this case.

Re-injecting irregular control inside the generated code is likely to bring high
control overhead as it is inserted close to the statement, at the innermost level.

Discussion. The semantics of transformations involving while loops is partic-
ular: fusion of such loops should be performed only if the loops can be executed

294 M.-W. Benabderrahmane et al.

for (i=0; i<w; i++)

s1;{ep1}
s2;{ep1} ⇒

while(ep1)

s1;

s2;

for (i=0; i<w; i++)

s1;{ep1}
s2;{ep2} ⇒

while(ep1 && ep2)

s1;

s2;

while(ep1)

s1;

while(ep2)

s2;

(a) Same Exit Predicates (b) Different Exit Predicates

for (i=0; i<N; i++)

s1;

s2;{ep1} ⇒

for (i=0; i<N; i++)

s1;

if (cp1 && !exit)

s2;

else

exit = true

(c) An Exit Predicate Inside A Regular Loop

Fig. 7. Separation of while loops

in any order (in Figure 7(b), the order of the last two while loops is arbitrary)
and while loop reversal is clearly not supported by our extended framework.
Also, when the transformation states the loop may be run in parallel (e.g., no
scattering functions means all loops are parallel) it means that, except what
is necessary for the predicate evaluation, iterations of the loop may be run in
parallel (this allows basic parallelization, e.g., a process devoted to the predicate
computation that spread bundles of full iterations to different processors).

4 Reducing Control Overhead

The underlying principle of converting programs to the extended polyhedral
representation is to conditionally execute statements depending on the value of
a given predicate, which is not necessarily statically computable. To put the
program into the model, we extensively predicate statements regardless of the
control overhead we introduce. We rely on post-pass optimizations to limit this
overhead for the generation of efficient code.

We discuss two main optimizations, namely the computation of the predicate
value and the placement of control predicates. A preliminary for those optimiza-
tions to be performed is the gathering of the set of read and written variables, for
each statement and each predicate. Obviously, the optimality of our optimization
processes is constrained by the accuracy of this analysis.

4.1 Computing the Value of Predicates

The main overhead induced by predication is the re-computation of the p predi-
cate when its value has not been modified. To address this problem we decouple
the computation stages of the predicate from its evaluation. We first define the

The Polyhedral Model Is More Widely Applicable Than You Think 295

set of variables used to compute the predicate value. Let p be a predicate used
to guard a statement, Vp is the set of variables used to compute p. For instance,
if we consider the predicate p = x + 2 * y + b[i] (where i is the generated
iterator name), then Vp = {x, y, b, i}.

The algorithm operates on the generated abstract syntax tree (AST), in a
two-step process. The first step consists in identifying the statements in the AST
which compute the value of p, for each predicated statement. To guarantee the
optimality of the predicate computation placement, we ensure it is not possible
to execute p less frequently while preserving the program semantics. This is
done by putting the statement p at the highest tree level such that no statement
dominated by p modifies any of the variables in Vp. The second step consists in
eliminating duplicated predicate computations when a given predicate is used
from multiple calling sites. We proceed by inspecting the AST for all p statements
(involving the same predicate p), and checking if any of the variables in Vp is
ever assigned in any execution path between two occurrences of p. If not, then
the second occurrence can be safely removed.

As a result of this optimization, the computation of the value of each predicate
is minimized in terms of number of executions — again given the accuracy of Vp

computation. The check of the predicate value before each executed instance of
a predicated statement is reduced to a simple test instruction over a scalar, as
shown in Figure 3(b).

4.2 Predicate Placement

The second critical optimization is to reduce the number of executed checks on
the value of a predicate. To do so, we hoist the conditional if (p) to the highest
possible level in the AST, provided the location of the computation of p. A typical
example is the case of all reachable instances of a given loop being predicated by
the same p, which is never modified during the loop execution. The instruction
if (p) can then be hoisted outside the loop, dramatically reducing the control
overhead. We proceed by merging under a common conditional all consecutive
statements (under the same loop) which involve the same predicate, such that
none of the statements modify the predicate value. Then, if all statements inside
a loop are under the same conditional and this conditional does not depend on
neither the loop iterator nor any of the statements under it, then the conditional
can be safely moved around the loop instead. This optimization is reminiscent of
classical if-hoisting compiler techniques, and it is efficiently performed as a code
generation optimization pass. We extended the code generation tool CLooG [4]
to support these extensions.

5 Experimental Results

The extension and the associated algorithms presented in this paper have been
implemented in the Polyhedral Compiler Collection framework PoCC. It is a
complete source-to-source polyhedral compiler based on available free software

296 M.-W. Benabderrahmane et al.

such as Clan (polyhedral representation extraction), Candl (data dependence
analysis), LetSee and PLuTo (optimization, parallelization) CLooG (code
generation), PIPLib (parametric integer programming) and PolyLib (polyhe-
dral operations).2

Specifically, the implementation consisted in upgrading two modules: the ex-
tension of the polyhedral model has been implemented in irClan — an extended
version of the Clan tool to extract the polyhedral representation — and in ir-

CLooG built on the code generator CLooG
3.

To show the impact of our approach, we illustrate it with two of the state-of-
the-art polyhedral optimizers.

– LetSee
4 is a complete platform for iterative compilation in the polyhedral

model [28]. It leverages the algebraic properties of the polyhedral model
to build an expressive search space of affine schedules, encompassing only
legal and distinct program versions. It uses multiple heuristics to prune and
search for a best program version within this space. Its optimization goal is
fine-grain parallelism for vectorization and locality enhancement.

– Pluto
5 is an automatic parallelization tool based on the polyhedral model

[5]. It optimizes for coarse-grain parallelism and locality simultaneously, look-
ing for complex affine transformations based on rectangular time-tiling [20]
and fusion. OpenMP parallel code can be automatically generated from se-
quential C, together with finer grain register tiling and transformations to
enable automatic vectorization.

Our goal is to experiment these existing optimization tools without any modi-
fication, demonstrating the effectiveness of our extended approach on a set of
irregular benchmarks. We also compare the performance improvements consid-
ering only the regular parts of these programs, when applicable. Notice that
because it is out of the scope of this paper, we did not implement a sophisti-
cated analysis of the predicates themselves or a dynamic parallelization scheme;
this may significantly recuce conservativeness and allow to find better trans-
formations. Hence, we consider the following results as a lower bound of the
extended framework’s potential.

Our experimental setup is a 2-socket Intel Quad-Core E5430 at 2.66 GHz with
16 GB of RAM, running Linux. We used the ICC compiler version 11.0, the best
performing compiler on the benchmarks considered. All programs were compiled
with icc -fast -parallel -openmp (i.e., the baseline includes automatic par-
allelization in ICC).

We studied typical kernels solving real computational problems that are not
(partially or totally) amenable to standard polyhedral representation because of
control flow irregularities. 2strings is a program counting the occurrences of two
different strings in another string. It features a very data-dependent while-loop

2 http://pocc.sourceforge.net
3 http://www.cloog.org
4 http://letsee.sourceforge.net
5 http://pluto.sourceforge.net

The Polyhedral Model Is More Widely Applicable Than You Think 297

#loops #refs Max Depth SCoP Depth Data Size
2strings 4 15 2 0 1M
Sat-add 6 27 2 2 1920x1080
QR 6 29 3 2 1024x1024
ShortPath 3 6 3 0 1000 nodes
TransClos 3 3 3 0 1000 nodes
Givens 5 64 3 1 1024x1024
Dither 2 12 2 0 1024x1024
Svdvar 4 10 3 3 1024x1024
Svdksb 5 10 2 2 1024x1024
Gauss-J 4 14 2 1 1024x1024
PtIncluded 3 19 3 1 350 vars, 15000 csts

Fig. 8. Kernel description

typical of search and pattern-matching programs. sat-add is a saturated addi-
tion of two images deblurred thanks to two stencil-based filters. It represents
an example of saturated arithmetic, a very common source of irregularity in
numerical or image processing programs. QR is a QR decomposition computed
by Householder reflections on real data, featuring dynamic control flow in outer
loops like the outer product example in Figure 4. Other forms of outer loop ir-
regularity are exhibited in two additional benchmarks: ShortPath and TransClos,
respectively a shortest-path and a transitive closure kernel based on adjacency
matrices. We also provide larger loop nests to exercise search space construction
and code generation scalability: the Givens benchmark computes the R matrix
of the QR decomposition using Givens rotations on complex numbers; Dither is
a kernel for error-distribution dithering; Svdvar computes a covariance matrix;
Svbksb solves Ax = B for a vector x where A is on a singular value decomposi-
tion; Gauss-J is a Gauss-Jordan elimination finding a maximum pivot, pivoting
being a relevant source of data-dependent control flow; and PtIncluded checks
if an integer point is included in a polyhedron, involving a linked list traversal,
another usual source of control-flow irregularity.

Figure 8 lists the main properties of these programs: their number of loops,
their number of array references, the maximum loop depth, the maximum loop
depth of strictly affine SCoPs in the program (to quantify the extra expressive-
ness offered by our extension), and the data-set size.

Our results are summarized in Figure 9. For each kernel, we provide the
speedup achieved by LetSee and Pluto

6 when considering only the regular
parts of the program, then when using the extended representation. We also
provide the compilation time penalty when considering the extended represen-
tation. N/A means that the benchmark cannot be handled in the specific context.

The results show that for the programs we considered — spanning repre-
sentative sources of irregularity in loop-based computations — we are able to
significantly improve performance.

6 With or without tiling, whatever performs best.

298 M.-W. Benabderrahmane et al.

Speedup regular Speedup extended Compilation time penalty
LetSee Pluto LetSee Pluto LetSee Pluto

2strings N/A N/A 1.18× 1× N/A N/A
Sat-add 1× 1.08× 1.51× 1.61× 1.22× 1.35×
QR 1.04× 1.09× 1.04× 8.66× 9.56× 2.10×
ShortPath N/A N/A 1.53× 5.88× N/A N/A
TransClos N/A N/A 1.43× 2.27× N/A N/A
Givens 1× 1× 1.03× 7.02× 21.23× 15.39×
Dither N/A N/A 1× 5.42× N/A N/A
Svdvar 1× 3.54× 1× 3.82× 1.93× 1.33×
Svbksb 1× 1× 1× 1.96× 2× 1.66×
Gauss-J 1× 1.46× 1× 1.77× 2.51× 1.22×
PtIncluded 1× 1× 1× 1.44× 10.12× 1.44×

Fig. 9. Performance and compilation time

On our target platform, applying existing polyhedral optimizers with the help
of the proposed extension allows to achieve up to a 1.53× speedup for ShortPath
when applying LetSee (single-threaded), and up to a 8.66× speedup for QR
when applying Pluto (multithreaded, on 8 cores). We were also able to signif-
icantly improve performance for codes that were already partially regular.7 For
those programs, we obtained speedup reaching 1.51× using LetSee and from
1.09× to 8.66× using Pluto.

Typically, the performance achieved using the LetSee algorithm comes from
a better locality of the memory accesses (with carefully crafted loop fusions) and
compiler optimizations that have been enabled (e.g. vectorization). On the other
hand, our approach also exposes parallelization opportunities which are exploited
by Pluto (with efficient tiling and coarse-grain parallelization), which combines
both parallelization and locality improvement.

We summarize our findings with more detailed insight about the transforma-
tions obtained by LetSee and Pluto for our benchmark suite:

– 2Strings is composed of two distinct non-dependent while loops. Using our
approach, LetSee is able to fuse them leading to performance improve-
ments. Pluto did not manage to parallelize the benchmark.

– Sat-add could be divided into two parts, a static control part and a non-
static control part. Both these parts are parallel. Without our approach,
Pluto is able to detect parallelism in the static control part only, yielding a
performance improvement of 1.08× compared to the original code. Note that
this parallelism was already found by ICC. However, through our extension,
Pluto can handle and parallelize the whole code, with a speedup of 1.61×.

– QR is a code where most of the inner loops are guarded by non-affine if
conditionals. All these loops are regular, hence LetSee and Pluto are

7 We call a program partially regular if it contains a SCoP depth of at least 1, i.e., if
it has at least one purely static loop.

The Polyhedral Model Is More Widely Applicable Than You Think 299

able to optimize and parallelize some of them, leading to 1.04× and 1.09×
speedup respectively. Nevertheless, the best performance is achieved when
relying on our extension, as Pluto may now parallelize and to tile the full
code. The super-linear speedup is a consequence of SIMDization that has
been enabled by the transformation.

– ShortPath is composed by a perfectly nested loop of depth 3 without any
SCoP, dealing with 2-dimensional matrices. Using our approach, Pluto is
able to parallelize the outer loop, hence a significant 5.88× speedup; Let-

See applies a loop interchange transformation on the original code. These
two optimizations were performed as well on TransClos providing 1.43× and
2.27× speedup on LetSee and Pluto respectively.

– Givens features at depth 2 a sequence of data-dependent conditions to sepa-
rate different cases of complex sine/cosine computations for Givens rotations.
These conditions may prevent optimization. Using the extensions discussed
in this paper, Pluto is able to parallelize the code. We show in the ap-
pendix the result of the optimization achieved by Pluto with the help of
our extended framework. The result may be understood as a sequence of ba-
sic transformations such as skewing, tiling or index-set-splitting to extract
coarse grain parallelism and to improve data locality [5]. The parallelism
has been made explicit through OpenMP pragmas. The target code shows
a 7.02× speedup over the original code.

– Dither is a code composed of a perfectly nested loop of depth 2 and with all
the statements guarded with various non-affine if conditionals. Relying on
the extension, Pluto is able to identify parallelism and to tile the loops,
achieving a 5.42× speedup over the original code.

– On Svbksb, on the extended framework, Pluto is able to parallelize the
outermost loop, leading to a speedup of 1.85× over the original code.

– Svdvar is a code composed of two perfectly nested loops, one of them is a
SCoP. With the regular framework, Pluto is able to parallelize this SCoP
only. Using the extended framework, Pluto performs a parallelization on
both loops. Nevertheless, the same performance is achieved. This is due
to the amount of calculations the SCoP carries out in this code. Gauss-J
is another code where parallelization and tiling of non SCoP part become
possible on Pluto with our approach, but where the SCoP part holds most
of the computation time.

These results were achieved without modifying either LetSee or Pluto and
using a conservative dependence analysis. They demonstrate the power of this
approach, finding new or better opportunities for deep optimizations in the poly-
hedral model.

The price to pay for these improvements is a longer compilation time as we
consider larger kernels, up to a factor 20 for LetSee due to its iterative nature.
This remains practical in our experiments as the compilation time is at worse a
matter of seconds. As the applicability of the polyhedral grows with our extended
framework, so is the problem size for the optimizations. Our extended model
raises the question of designing novel, highly scalable polyhedral optimization
algorithms, while its answer is out of the scope of the paper.

300 M.-W. Benabderrahmane et al.

6 Related Work

Much work aims at optimizing irregular codes, but only few of them are based
on the polyhedral model. Most irregular polyhedral techniques were developed
in the context of while loop parallelization. Collard explored a speculative ap-
proach to parallelize loops nests with while loops [10,9]. The idea is to allow a
speculative execution of iterations which are not in the iteration domain of the
original program. This method leads to more potential parallelism than with tra-
ditional polyhedral methods, at the expense of an invalid space-time mapping
which is fixed thanks to a backtracking policy. In contrast to the speculative
approach, Griebl et al. explore a conservative one. They try to enumerate a su-
perset of the target execution space, and propose solutions to eliminate iterations
that are not in the target execution space and to take care of the termination
condition. For the first problem, they define what they call execution determi-
nation where they introduce a predicate to determine if a point in the iteration
space can be executed or not. For the second point, they define and compute
termination detection. Griebl and Lengauer [22] propose another solution using
a communication scheme in a distributed-memory model to determine the up-
per bounds of the target loops, but this solution increases the execution time
of the scanning. For the same problem but on shared-memory models, Griebl
and Collard [21] describe a so-called counter scheme. Griebl et al. [17,18] present
another one called maximum scheme.

Other authors concentrated on extending the expressiveness of the polyhedral
model in special cases; these efforts are complementary to our conservative yet
general approach. Palkovič wrote the most comprehensive monograph on the
topic [27]. In contrast, our approach handles any function body and transparently
inherits all existing optimization and parallelization techniques based on the
polyhedral model.

In addition, our extended model opens the door to important loop transforma-
tions targeted to data-dependent control flow. For example, Decoupled Software
Pipelining (DSWP) [33] extracts and exploits pipeline parallelism from irregular
codes involving complex control flow and data structures. Full automation of
DSWP remains a challenge, due to the intricacy of the transformations involved
and their interplay with other optimizations. Another example is Deep Jam [7],
a generalization of loop fusion and unroll-and-jam to dynamic control flow, tar-
geted at instruction-level and vector parallelism. Deep Jam is at least as complex
as DSWP to automate.

7 Conclusion

This paper completely and definitely overcomes the control-flow limitations of
the polyhedral model in an intraprocedural setting. The solution comes from a
sleek and natural modeling of control-flow predicates at all stages of a polyhe-
dral compilation framework. This extension goes far beyond the state-of-the-art
which only addresses special non-affine cases. The main difficulty resides in the

The Polyhedral Model Is More Widely Applicable Than You Think 301

design of an extended code generation algorithm supporting those extensions
while limiting control-flow overhead. Several subtle difficulties also trickle down
to the extraction of the polyheral representation and the storage mapping of
control predicates (privatization). We experimentally validated our approach,
demonstrating new optimization opportunities for irregular programs as well as
improving previous results on partially-regular applications.

The static control limitations of the polyhedral model are now history. Re-
search may now concentrate on accurate static/dynamic analysis, and comple-
menting speculative optimization and parallelization techniques with aggressive
program transformations. The only important limitation left is the high complex-
ity of the algorithms supporting polyhedral operations — typically exponential
in the number of statements and/or the number of array references and/or the
loop nesting depth. Enlarging its application domain stresses the scalability of
these algorithms even further. In this context, we are working on macro-block
and region formation heuristics, as well as novel polyhedral optimizations that
scale to full functions.

References

1. Allen, J., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2002)

2. Banerjee, U.: Data dependence in ordinary programs. Master’s thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign (November 1976)

3. Barthou, D., Cohen, A., Collard, J.-F.: Maximal static expansion. In: ACM Symp.
on Principles of Programming Languages (POPL 1998), San Diego, California
(1998)

4. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT
2004), Juan-les-Pins, September 2004, pp. 7–16 (2004)

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proc. of the 2008 ACM
Conf. on Programming language design and implementation (PLDI 2008), Tucson,
AZ, USA (June 2008)

6. Boulet, P., Darte, A., Silber, G.-A., Vivien, F.: Loop parallelization algorithms:
From parallelism extraction to code generation. Parallel Computing (1998)

7. Carribault, P., Cohen, A., Jalby, W.: Deep Jam: Conversion of coarse-grain par-
allelism to instruction-level and vector parallelism for irregular applications. In:
Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT 2005),
pp. 291–300 (2005)

8. Chen, C., Chame, J., Hall, M.: A framework for composing high-level loop trans-
formations. Technical Report 08-897, USC Computer Science (June 2008)

9. Collard, J.-F.: Space-time transformation of while-loops using speculative execu-
tion. In: Proc. of the 1994 Scalable High Performance Computing Conf. (1994)

10. Collard, J.-F.: Automatic parallelization of while-loops using speculative execution.
Int. J. Parallel Program. 23(2), 191–219 (1995)

11. Collard, J.-F., Barthou, D., Feautrier, P.: Fuzzy array dataflow analysis. In: ACM
Symp. on Principles and practice of parallel programming (PPOPP 1995), Santa
Barbara, California, pp. 92–101 (1995)

302 M.-W. Benabderrahmane et al.

12. Creusillet, B., Irigoin, F.: Exact versus approximate array region analyses. In: Sehr,
D., Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC 1996. LNCS,
vol. 1239, pp. 86–100. Springer, Heidelberg (1997)

13. Feautrier, P.: Dataflow analysis of scalar and array references. Intl. Journal of
Parallel Programming 20(1), 23–53 (1991)

14. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part I: one
dimensional time. Intl. J. of Parallel Programming 21(5), 313–348 (1992)

15. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Intl. J. of Parallel Programming 21(6), 389–420 (1992)

16. Franke, B., O’Boyle, M.: Array recovery and high level transformations for dsp
applications. In: CPC 10 Intl. Workshop on Compilers for Parallel Computers,
Amsterdam, January 2003, pp. 29–38 (2003)

17. Geigl, M., Griebl, M., Lengauer, C.: A scheme for detecting the termination of a
parallel loop nest. In: Proc. GI/ITG FG PARS 1998 (1998)

18. Geigl, M., Griebl, M., Lengauer, C.: Termination detection in parallel loop nests
with while loops. Parallel Comput. 25(12), 1489–1510 (1999)

19. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Intl. J. of Parallel Programming 34(3) (2006)

20. Griebl, M.: Automatic parallelization of loop programs for distributed memory
architectures. Habilitation thesis. FMI, universität Passau (2004)

21. Griebl, M., Collard, J.-F.: Generation of synchronous code for automatic paral-
lelization of while loops. In: Haridi, S., Ali, K., Magnusson, P. (eds.) Euro-Par
1995. LNCS, vol. 966, pp. 315–326. Springer, Heidelberg (1995)

22. Griebl, M., Lengauer, C.: On scanning space-time mapped while loops. In: Buch-
berger, B., Volkert, J. (eds.) CONPAR 1994 and VAPP 1994. LNCS, vol. 854, pp.
677–688. Springer, Heidelberg (1994)

23. Karp, R., Miller, R., Winograd, S.: The organization of computations for uniform
recurrence equations. J. ACM 14(3), 563–590 (1967)

24. Knobe, K., Sarkar, V.: Array ssa form and its use in parallelization. In: ACM Symp.
on Principles of Programming Languages (POPL 1998), California (1998)

25. Kong, X., Klappholz, D., Psarris, K.: The i test: A new test for subscript data
dependence. In: ICPP 1990 Intl. Conf. on Parallel Processing (August 1990)

26. Lim, A.: Improving Parallelism and Data Locality with Affine Partitioning. PhD
thesis, Stanford University (2001)

27. Palkovič, M.: Enhanced Applicability of Loop Transformations. PhD thesis, T. U.
Eindhoven, The Netherlands (September 2007)

28. Pouchet, L.-N., Bastoul, C., Cohen, A., Cavazos, S.: Iterative optimization in the
polyhedral model: Part II, multidimensional time. In: ACM Conf. on Programming
Language Design and Implementation (PLDI 2008), Tucson, Arizona (June 2008)

29. Pouchet, L.-N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P.: Hybrid iterative and model-driven optimization in the polyhedral model.
Technical Report 6962, INRIA Research Report (June 2009)

30. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Proc. of the ACM/IEEE Conf. on Supercomputing (SC
1991), pp. 4–13 (1991)

31. Pugh, W., Wonnacott, D.: An exact method for analysis of value-based array data
dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC
1993. LNCS, vol. 768, pp. 546–566. Springer, Heidelberg (1994)

32. Quilleré, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops from
polyhedra. Intl. Journal of Parallel Programming 28(5), 469–498 (2000)

The Polyhedral Model Is More Widely Applicable Than You Think 303

33. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled software
pipelining with the synchronization array. In: Intl. Conf. on Parallel Architectures
and Compilation Techniques (PACT 2004) (September 2004)

34. Rauchwerger, L., Padua, D.A.: The LRPD test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. In: ACM Conf. on
Programming Language Design and Implementation (PLDI 1995) (June 1995)

35. Rus, S., Pennings, M., Rauchwerger, L.: Sensitivity analysis for automatic paral-
lelization on multi-cores. In: ACM Intl. Conf. Supercomputing, ICS 2007 (2007)

36. Rus, S., Rauchwerger, L.: Hybrid dependence analysis for automatic parallelization.
Technical report, Parasol Laboratory, Texas A&M University (2003)

37. Rus, S., Rauchwerger, L., Hoeflinger, J.: Hybrid analysis: Static & dynamic memory
reference analysis. Intl. J. of Parallel Programming 31(4) (2003)

The Hot Path SSA Form: Extending the Static
Single Assignment Form for Speculative

Optimizations

Subhajit Roy and Y.N. Srikant

Computer Science and Automation Department,
Indian Institute of Science

{subhajit,srikant}@csa.iisc.ernet.in

Abstract. The Static Single Assignment (SSA) form has been an em-
inent contribution towards analyzing programs for compiler optimiza-
tions. It has been affable to the design of simpler algorithms for existing
optimizations, and has facilitated the development of new ones. However,
speculative optimizations — optimizations targeted towards speeding-up
the “common cases” of a program — have not been fortunate enough to
savor an SSA-like intermediate form. We extend the SSA form for spec-
ulative analyses and optimizations by allowing only hot reaching defini-
tions — definitions along frequent acyclic paths in the program profile
— to reach its respective uses; we call this representation the Hot Path
SSA form. We propose an algorithm for constructing such a form, and
demonstrate its effectiveness by designing the analysis phase of a novel
optimization — Speculative Sparse Conditional Constant Propagation:
an almost obvious extension of Wegman and Zadeck’s Sparse Conditional
Constant Propagation algorithm. Our experiments on some SPEC2000
programs proves the potency of such an optimization.

1 Introduction

Program analyses and optimizations have benefited immensely from the SSA
form as an intermediate representation. An extremely simple idea — allow only
a single definition of a variable to reach the statements using it — prunes out
false dependencies, and factors long use-def chains into a web of short, simple
ones. A multitude of optimizations were either made possible, or were heavily
empowered by the SSA form — sparse conditional constant propagation, global
value numbering, and strength reduction to name a few.

However, speculative optimizations — optimizations biased towards frequently
executed paths — have not been fortunate enough to enjoy an SSA-like inter-
mediate representation. These optimizations have recently attracted a lot of at-
tention, and are now recognised as a major vehicle towards improving program
performance.

Modern compilation systems, acknowledging the importance of such uncon-
ventional optimizations, have started providing support for speculative analy-
sis and transformation. However, in most of the intermediate representations,

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 304–323, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Hot Path SSA Form 305

the profiling information is not integrated into the static program representa-
tion. This makes implementing speculative optimizations cumbersome, having
to handle too many data-structures. Additionally, the absence of an SSA-like
sparse representation has hindered the development of efficient algorithms for
speculative optimizations.

We propose to extend the power of the SSA form to speculative optimiza-
tions by separating the hot use-def chains from the cold ones, thus allowing a
speculative optimizer to “see” only the most-likely dataflow facts. However, the
“non-speculative” SSA form is not lost: a traditional optimizer can still choose
to constrain itself to the non-speculative form by ignoring the speculative infor-
mation. The SSA form is not erased — just suitably extended with speculative
information — obviating the necessity of constructing and maintaining the non-
speculative SSA form separately; at the same time, this SSA-like intermediate
form is much more amenable to speculative analyses and optimizations.

We call this extension to the SSA form as the “Hot Path SSA (HPSSA) form”.
As the HPSSA form honours the constraint imposed by the SSA form (that of
a single reaching definition for every use), many of the SSA-based algorithms
for traditional optimizations developed over the last couple of decades (almost)
immediately become available to speculative optimizers.

Following are our contributions in this paper:

– We propose a novel program representation — the Hot Path SSA (HPSSA)
form — that allows a use to witness only the “more-likely” reaching defini-
tions (section 4);

– We present an algorithm for constructing the HPSSA form (section 5);
– We demonstrate the potency of the HPSSA form by designing the analysis

phase of a novel speculative optimization — Speculative Sparse Conditional
Constant Propagation (SSCP) — that identifies both “safe” (expressions that
are sure to be constants) and “speculative” (expressions that are more-likely
to be constants) constants in a given program. An almost trivial extension of
Wegman and Zadeck’s SCP algorithm [21], SSCP exhibits the possibilities of
developing new speculative optimizations using the HPSSA form by tailoring
of existing SSA-based traditional optimizations (section 6).

2 Background

2.1 The Static Single Assignment Form

A program is said to be in Static Single Assignment (SSA) form if each use of a
variable has exactly one reaching definition. A special operator, the φ-function,
merges multiple definitions from different paths into a single definition, forcing
any subsequent use to see exactly one definition.

Figure 1 shows the SSA form of a program. Notice how the definitions of x
at b1, d1 and e1 are “merged” into a single definition at the statement f1, thus
making x9 the only definition reaching the uses g3, h3 and i1. Understandably,
the use-def structure of a program in SSA form is extremely simple — allowing
the design of cleaner and faster algorithms.

306 S. Roy and Y.N. Srikant

2.2 Acyclic Path Profiling

a

b c

d
e

f

g h

i

a1 : x3 = 0
a2 : y4 = 0

b1 : x7 = 1 · · ·

d1 : x17 = 2
e1 : x18 = 3
e2 : y19 = 2

f1 : x9 = φ(x18, x17, x7)
f2 : y8 = φ(y19, y4, y4)
f3 : · · · = x9
f4 : · · · = y8

g1 : · · ·
g2 : · · ·
g3 : . . . = x9
g4 : . . . = y8

h1 : · · ·
h2 : · · ·
h3 : . . . = x9
h4 : . . . = y8

i1 : . . . = x9
i2 : . . . = y8

p1 p2 p3

Fig. 1. A program in the SSA form. (Hot acyclic
paths: p1:abfgi; p2:acdfgi; p3:acefhi).

Ball and Larus [2] pro-
posed an efficient algo-
rithm for profiling acyclic
paths — paths that ter-
minate either at loop-
backedges or at proce-
dure exits. Essentially,
an acyclic path profiler
“chops-off” paths at a
backedge, erasing the se-
quence in which the acyclic
paths in the loop were
actually executed. The
Ball-Larus algorithm is
widely used for specula-
tive analyses and opti-
mizations. We use acyclic
path profiles to expose
frequent use-def chains in
the HPSSA form.

2.3 A Peek at the Hot Path SSA Form

In this paper, we propose to tie the run-time behaviour of a program — as indi-
cated by the frequently executed acyclic paths — directly to its static program
representation, thus providing a convenient data-structure for the speculative
optimizers. In the proposed representation, which we call the Hot Path SSA
(HPSSA) form, an additional construct — the τ -function — is introduced to
capture information relevant for speculative analyses and optimizations. The
τ -functions act as “filters”, separating the more-likely use-def chains from the
lesser-likely ones. The first argument of the τ -function is the traditional meet-
over-all-paths reaching definition; the rest of the arguments are the “hot” reach-
ing definitions: definitions that are more-likely to reach the respective program
point.

Figure 2 shows the HPSSA form of the program in Figure 1. Consider the
basic-block g: the τ -function at g1 indicates that x9 is the “safe” meet-of-all-
paths reaching definition, though the definitions of x7 and x17 are more likely to
reach this program point (via the φ-statement at f1). Similarly, for g4, h3 and h4,
the hot reaching definitions are from definitions of y4, x18 and x19 respectively
— all of which are definitions to constants. Hence, the HPSSA form exposes
the fact that the variables y12, x14 and y15 are more likely to be constants with
values 0, 3 and 2 respectively — enabling a speculative optimizer to speculatively
“predict” the value of these variables.

Though the HPSSA form uses acyclic path profiles, it is still adept at prop-
agating hot reaching definitions across loop-boundaries. Figure 3 shows the

The Hot Path SSA Form 307

a

b c

d
e

f

g h

i

a1 : x3 = 0
a2 : y4 = 0

b1 : x7 = 1 · · ·

d1 : x17 = 2
e1 : x18 = 3
e2 : y19 = 2

f1 : x9 = φ(x18, x17, x7)
f2 : y8 = φ(y19, y4, y4)
f3 : · · · = x9
f4 : · · · = y8

g1 : x11 = τ(x9, x7, x17)
g2 : y12 = τ(y8, y4)
g3 : . . . = x11
g4 : . . . = y12

h1 : x14 = τ(x9, x18)
h2 : y15 = τ(y8, y19)
h3 : . . . = x14
h4 : . . . = y15

i1 : . . . = x9
i2 : . . . = y8

p1 p2 p3

Fig. 2. The program in Figure 1 translated to
the Hot Path SSA (HPSSA) form (Hot paths:
p1:abfgi; p2:acdfgi; p3:acefhi)

a

e

d

c

b

h

g

f

a1 : i1 = 0

a2 : k1 = 0

a3 : n1 = 0

b1 : i2 = φ(i1, i3)

c1 : i3 = i2 + 1

· · ·

e1 : i4 = τ(i2, i3)

f1 : i5 = τ(i2, i1)
f2 : n2 = n1 + 1

g1 : n3 = φ(n1, n2)

g2 : n4 = τ(n3, n1)

· · ·

p1

p2

p3

Fig. 3. HPSSA form for a pro-
gram with loops (Hot paths:
p1:bc; p2:bdegh; p3:abdfh)

HPSSA form of a program with a loop. Notice how the variable i3 becomes
the hot reaching definition at the basic block e, even though i3 reaches the node
e along a path that contains a backedge (as c-b is a backedge, c-b-d-e is not a
segment of any acyclic path).

In this paper, we only assume reducible flow-graphs; we also assume the exis-
tence of a loop-preheader node (leading to the loop-header) for each loop in the
program.

3 Thermal Properties of a Program

In this section, we establish a few terms and notations that we use in the rest of
the paper.

3.1 Thermal States of Program Entities

Definition 1. Hot/Cold Paths: A program path p : n1 � n2 is said to be hot
(cold) if the sequence of edges from node n1 to n2 appears (does not appear) in
any profiled path that occurs frequently in the program profile.

The above definition has been intentionally left slightly ambiguous to make it
general enough to encompass various profiling and hot path selection schemes.
The phrase “profiled path” implies any sequence of basic-blocks that is collected

308 S. Roy and Y.N. Srikant

by a control-flow profiler; for instance, the “profiled path” is an edge for an edge
profiler, an acyclic path for a Ball-Larus path profiler, and a path spanning
multiple loop iterations for a k-iteration profiler [17,20]. In this paper (and our
implementation), a “profiled path” refers to intraprocedural acyclic paths, pro-
filed using a Ball-Larus profiler. The qualifier “frequently” in the above definition
depends on the hot path selection scheme: we may select hot paths by a thresh-
old frequency, or pick a finite number of the most commonly executed paths
from each procedure.

Definition 2. Temperature (θ) of a node (edge) is defined as:

– hot: if the node (edge) is present on a hot path;
– cold: if the node (edge) is not present on any hot path.

A backedge b in a flow-graph is marked hot if, either of the dummy edges, δstart to
a loop-header h or δend from a loop-tail t, is hot1; this is understandable, as any
control-flow through a dummy edge reported by the Ball-Larus profiler indicates
a control-flow through the corresponding backedge in the program flow-graph.

We will use the notation θ(n) to denote the temperature (hot/cold) of a
program entity (nodes, edges or paths). The predicates θh(n) /θc(n) denote that
the entity n is hot/cold.

For example, in Figure 1, all the nodes and edges are hot; the path c → d →
f → g is hot (through the path p2) while the path e → f → g is cold.

Definition 3. Hot/Cold Reaching Definitions and Definition Chains
A definition δ at a basic-block n1 is said to reach a respective use at a basic-block
n2 hot if there exists a hot path from n1 to n2, and δ is not killed along that path.
A definition δ at a basic-block n1 is said to reach a respective use at a basic-block
n2 cold if there does not exist a hot path from n1 to n2, and δ is not killed at
least along one cold path from n1 to n2.

Consider Figure 1: treating a φ-function not as a definition, but as a label to the
set of definitions in its argument set, we can see that though the meet-over-all-
paths reaching definition set at g3 is {x18, x17, x7}, the definition x18 does not
reach it via any hot path. So, x18 is a cold reaching definition at g3, while x7
and x17 are the hot reaching definitions (reaching the node g via the paths p1
and p2). In the SSA form, the φ-functions can be seen as creating a definition
chain, that is broken only by a non-φ definition: x7 → x9 and x17 → x9 are the
hot reaching definition chains at g3 , while x18 → x9 is a cold reaching definition
chain. In the HPSSA form, the τ-functions “kill” the cold definition chains: for
example, in Figure 2, x18 → x9 no longer reaches g3 as it is killed by g1.

1 The Ball-Larus profiler converts a flow-graph with cycles into a directed acyclic graph
(DAG) by adding dummy edges, δstart/δend, to and from the backedge source/target
(respectively) for each loop in the program [2].

The Hot Path SSA Form 309

3.2 The Structure of Profiled Acyclic Paths

The set of acyclic paths can be grouped by the node they initiate from — the
program entry or a loop header; we refer to this node as the incubation node for
the acyclic paths originating from it. In Figure 3, node a is the incubation node
for p3, while b is the incubation node for p1 and p2.

A set of profiled acyclic paths {p1, p2, . . . pn} entering a node u are said to be
buddies at u if the paths p1, p2, . . . , pn have seen exactly the same sequence of
edges from their incubation node; the group of all buddies are said to form the
BuddySet at a node. Consider Figure 1 with the following set of hot paths:

p1 : a-b-f -g-i; p2: a-c-d-f -g-i; p3: a-c-e-f -h-i; p4: a-c-e-f -g-i; p5: a-b-f -h-i.

BuddySeta(f) = {{p1, p5}, {p2}, {p3, p4}}; i.e. p1 and p5 are buddies, so are
p3 and p4, while p2 has no buddy at f .

Notations. Let us define a few notations to ease the following discussion:

– Paths(u): The set of all profiled “hot” acyclic paths reaching the node u.
– Pathss(u): The set of all profiled “hot” acyclic paths reaching the node u

that initiate from the incubation node s.
– Pathss(u → v): The set of all profiled “hot” acyclic paths reaching the node

u that initiate from the incubation node s and progress along the edge u → v
from u; without the subscript s, it denotes paths from all incubation nodes
that progress along u → v.

– S(u): Set of all incubation nodes in the set of all profiled “hot” acyclic paths
reaching node u.

– N(α)/E(α): Set of all nodes/edges in the path α.

4 The Hot Path SSA (HPSSA) Form

A speculative optimizer needs to identify “highly likely facts” — facts propagated
along frequently executed paths — to perform optimizations that, though not
legal on all static paths, “mostly” benefits the program. The HPSSA form uses a
novel construct — the τ -function — to “filter” definitions along cold paths, thus
allowing only hot definitions to propagate further. The form of a τ -statement is
shown below:

xout = τ(x0, x1, . . . , xn)

The τ -function argument list contains two types of arguments:

– Safe (or non-speculative) argument: The first argument, x0, is the safe ar-
gument. It carries the variable version that needs to be assigned to xout to
perform safe analyses and optimizations over the program.

– Speculative arguments: The rest of the arguments, x1 . . . xn, are the specu-
lative arguments, carrying the variable versions that reach the current node
along the frequently executed paths; a speculative optimizer can treat the
definition of xout as the union of these speculative arguments to perform
speculative analyses and optimizations over the heavily executed paths.

310 S. Roy and Y.N. Srikant

The τ -function can be seen as a conditional φ-function:

τ(x0, x1, . . . , xn) =
{

φ(x0) safe interpretation
φ(x1, . . . , xn) speculative interpretation

If a program is in the Hot Path SSA form, then,

– each use of a variable is reachable by a single definition;
– if the safe interpretation of the τ -function is used, each use of a variable is

reachable by the meet-over-all-paths reaching definition chains;
– if the speculative interpretation of the τ -function is used, each use of a vari-

able in a hot basic-block is reachable only by the meet-over-hot-paths
reaching definition chains (or the meet-over-all-paths reaching definition
chains, if the use is not reachable from any meet-over-hot-paths reaching
definition chain).

With the speculative interpretation, the set of reaching definition chains at
even a cold basic-block might be smaller than that corresponding to the meet-
over-all-paths, as some of the definition chains may be “killed” by τ -functions on
their way to the cold node.

Each speculative argument xi in a τ-function is mapped to the set of hot profile
paths along which the definition corresponding to xi is reached. In Figure 2, for
the variable x in g1, the τ -function allocates the parameter x7 corresponding to
the path p1, and the parameter x17 for the path p2. However, for the variable y
at g2, it allocates only one parameter, y4, corresponding to both p1 and p2 as
the same definition (from statement a2) reaches it along both the paths.

The HPSSA form honours the constraint imposed by the SSA form: each use
is reachable by a single definition — encouraging the development of speculative
extensions of existing SSA-based algorithms on the HPSSA form.

Exiting the HPSSA form
Exiting the HPSSA form is extremely simple — a τ -statement is replaced by a
copy statement from the safe-argument to the defined variable:

xout = τ(x0, x1, . . . , xn) � xout = x0

This puts the program in the SSA form; one can then use a standard out-of-SSA
algorithm to exit the SSA form.

5 Constructing the HPSSA Form

In this this section, we discuss the construction of the HPSSA form. The original
program (not in SSA form) is transformed into HPSSA form in four steps:

– Insert φ-statements: The classic algorithm for construction of the minimal
SSA form [8] places φ-statements at the iterated dominance frontier of each
definition in the program. A node v is said to be in the dominance frontier
of another node u iff u does not dominate v while a predecessor of v is
dominated by u.

The Hot Path SSA Form 311

– Insert τ -statements: For each variable x, we identify program points that
necessitate a τ -function, and, at all such points, insert a definition of the
form x = τ(x) (discussed in detail in section 5.1).

– Variable renaming: The definitive variable renaming algorithm [8] uses a vari-
able stack to propagate reaching definitions by traversing the basic-blocks
over the dominator tree. The correctness of our algorithm requires a depth-
first traversal over the dominator tree. Note that this phase also renames
the sole argument in the inserted τ -functions to the variable version corre-
sponding to the meet-over-all-paths “safe” reaching definition.

– Allocation of the τ -function arguments: Finally, we allocate the speculative
arguments to the τ -functions in correspondence to the hot reaching definition
chains (discussed in detail in section 5.2).

Note that after step 3, the program is in SSA form, and after step 4, it is
in HPSSA form. We have intentionally kept the phases for building the SSA
form (steps 1 and 3) clearly distinct from the steps required for constructing the
HPSSA form (steps 2 and 4) to apprise the essentials of the HPSSA construction
algorithm. It will be apparent that the phases need not be separate — some of
them can be combined in an efficient implementation.

5.1 Thermal Frontiers: Placing τ -functions

We call definitions due to φ and τ - functions as pseudo definitions, differentiating
them from other concrete definitions; the corresponding statements are called
pseudo/concrete statements. We define the set of visible definitions in the basic-
block u as the last definition of each variable in the block: these definitions
are the only ones that are “seen” by the basic-blocks reachable from u. In the
following discussion, a reaching definition would refer to only concrete definitions;
pseudo reaching definitions can be seen as the set of concrete definitions that
were “merged” due to a φ- or a τ -function.

Each definition x := . . . in the program can potentially lead to the insertion
of a τ -statement for variable x. In a basic-block, a τ -statement is inserted after
all the φ-statements (if any), before any of the concrete statements.

The φ-functions act as definition mergers — “merging” multiple definitions
into a single one. Comparably, the τ -functions act as definition filters — sepa-
rating hot definitions from cold ones, which were merged by previously occurring
φ-functions. Hence, a node n will need a τ-function for a variable v if, and only
if, both a hot and a cold reaching definition for the variable v arrive at n.

The minimal SSA construction algorithm uses an exquisite structure — the
Dominance Frontier — to insert the φ-statements. To build the HPSSA form, we
identified a similar structure to place the τ -statements: the Thermal Frontier.

Definition 4. Thermal Frontier: A node v is said to be in the Thermal Frontier
(TF) of a reaching definition d, where d is defined at a node u, (v ∈ TF (u, d)),
iff the node v is also exposed to a reaching definition d′, defined at a node w (w
not dominated by u), such that θ(u � v) �= θ(w � v). Also, v must be the first
node in the paths u � v and w � v that satisfies the above properties.

312 S. Roy and Y.N. Srikant

Stated informally, a node v is in the thermal frontier of a hot/cold reaching defi-
nition d (defined at u), if v is also reachable by a different cold/hot (respectively)
definition d′ (defined at w), while being the first node along u � v and w � v
to satisfy the conditions.

Unlike Dominance Frontiers, Thermal Frontiers need not be join nodes. For
example, in Figure 2, node g ∈ TF (b, x7) as x7 is a hot reaching definition (along
p1) and g is also reachable by the cold reaching definition x18.

It is apparent that τ -functions for a definition d at a node u will be needed
at the iterated TF(u,d). We define the Iterated Thermal Frontier in exactly
the same way as iterated join and iterated dominance frontier were defined by
Cytron et al.[8].

Definition 5. Let γx(u) return the visible definition of the variable x in the
basic-block u; then, for a set of nodes κ, the Iterated Thermal Frontier (ITF) is
the limit of the increasing sequence of sets of basic-blocks:

TF x(κ) =
⋃

u∈κ TF (u, γx(u))
TF x

1 = TF x(κ)
TF x

i+1 = TF x(κ ∪ TF x
i)

ITF x = TF x
∞, where TF x

∞ refers to the fixpoint, i.e. when TF x
i = TF x

i+1

However, as the φ-statements are inserted by a prior phase, placing the τ -
functions does not require fixpoint computation: a simple topological traver-
sal over the CFG nodes suffices. Fixpoint computation is generally required if
dataflow information can change after propagating through a backedge. While
placing the τ -functions, if a τ -statement for a variable x is inserted in the header
h of a loop due to a definition in the loop body (the only case that requires fix-
point computation), then, the loop-header h is sure to contain a φ-statement
(as no node in the loop-body can dominate h). Hence, if the CFG nodes are
processed in the topologial order, insertion of τ -functions at the required nodes
due to the definition of the variable x at h would have already happened.

Theorem 1. For a set of visible definitions of a variable x at a set of nodes
κ, τ -statements would be required at the Iterated Thermal Frontier ITF x for
variable x.

The following lemma states the necessary condition for computing the set of
Thermal Frontiers.

Lemma 1. A node n ∈ TF (u, dx) for a definition dx (of a variable x) if

– Condition I: n is the junction of a hot and a cold path, i.e., paths at different
temperatures meet at this node;

– Condition II: n is reachable by at least two different definitions of the
variable x.

Proof. If condition I fails, a τ -function is unnecessary as n can then be reachable
by only hot or only cold definitions of x. If condition II fails, a τ -function is again
unnecessary as the node is then dominated by a definition of x.

The Hot Path SSA Form 313

However, note that the above lemma is not a sufficient condition: a node v /∈
TF (u, dx) if the same definition dx reaches v via both a hot and cold path (satis-
fying condition I), while v is also reachable by a different hot definition (of x), d′,
along a separate hot path (satisfying condition II). Hence, the above lemma may
identify spurious Thermal Frontiers: our HPSSA algorithm inserts τ -function
templates at all points identified by the lemma, leaving the task of weeding out
unnecessary τ -statements to the τ -argument allocation phase (section 5.2). In
the rest of the discussion, we denote the set of Thermal Frontiers computed ac-
cording to Lemma 1 as TF (u, d), and denote the ideal set of Thermal Frontiers
(as defined in Definition 4) as TFideal(u, d).

Let us now sketch an algorithm for computing the Thermal Frontier of a node:
we first identify certain nodes that are “junctions” of hot and cold paths (we call
them Caloric Connectors), and thus, satisfy the first condition of Lemma 1; we
then identify a scheme for satisfying the second condition.

Caloric Connector

Definition 6. Caloric Connector (CC): A node ncc ∈ CC if, for distinct nodes
n and n′ (n �= n′), there exist paths n � ncc, n′ � ncc such that θ(n � ncc) �=
θ(n′ � ncc), and for all nodes n′′ ∈ (N(n � ncc) ∩ N(n′ � ncc)) − {ncc},
n′′ /∈ CC.

In other words, a node ncc is a Caloric Connector in a given graph (for a given set
of hot paths) if there exist distinct nodes n and n′, such that n and n′ can reach
ncc through paths having different temperatures, and ncc is the first common
node in n � ncc and n′ � ncc satisfying these properties.

Consider Figure 1: the node g is a Caloric Connector as the path d → f → g
is hot while e → f → g is cold, while both the “predecessor” paths (d → f and
e → f) are hot.

Lemma 2. A hot acyclic path t � u extended by a forward edge u → v forms a
cold path t � u → v if, for some incubation node s, there exists a set of buddy
paths B ∈ BuddySets(u) among the paths at u, such that none of the buddies
σ ∈ B traverse the edge u → v.

Lemma 3. If an acyclic path t � u → v is cold, then, either

– t � u is cold, or
– s � t � u is hot, and ∃B ∈ BuddySets(u), such that none of the buddies

σ ∈ B traverses u → v (where s is the incubation node for s � t � u).

The intuition for the above lemmas is as follows: Each set of buddies at u,
Bi ∈ BuddySets(u), correspond to a unique sequence of edges (s � u)i from s
to u, distinct from that of any other buddy set Bj ∈ BuddySets(u), Bi �= Bj .
If no hot path p ∈ Bi selects the edge u → v, that particular sequence of edges
(s � u)i → v is surely missing among the hot paths reaching v. This implies
that the path (s � u)i → v is cold. We omit the formal proofs for want of space.

314 S. Roy and Y.N. Srikant

Algorithm 1. Computing the set of Caloric Connectors
Traverse each node v in the graph (in the topological order) in the following manner:

1. Initialize hasAColdPath and hasAHotPath to false.
2. For all edges e : u → v,

– if θc(u → v), set hasAColdPath = true;
– if θh(u → v),

(a) Set hasAHotPath = true;
(b) If e is not a backedge, and if, ∃B ∈ BuddySets(u) (for some incu-

bation node s) such that B does not intersect Paths(u → v), set
hasAColdPath = true.

3. If both hasAColdPath and hasAHotPath are true, add v to the set of Caloric
Connectors.

The algorithm for computing the set of Caloric Connectors (Algorithm 1) is
targeted at identifying if both a hot and a cold path can reach a node. Iterating
through all nodes in the CFG in topological order, for each node u, the algo-
rithm examines the temperature of each outgoing edge u → v. It decides on the
existence of a hot and/or a cold path at v in accordance to Lemma 2 and 3, and
sets the flags hasHotPath and hasColdPath accordingly. A node v is marked
as a Caloric Connector if it has both a hot and a cold path reaching it.

Computing Thermal Frontiers. For a concrete definition d and a basic-block
v ∈ TF (u, d), the second condition of Lemma 1 is satisfied if v is in the dominance
frontier of u (the node v is then also exposed to a different definition d′ at a node
w that is not dominated by u).

u

v

w

d1 : x = φ(. . .)

d2 : x = 1

Fig. 4. Violation
of condition II of
Lemma 1

The case for pseudo definitions is slightly different: We
ideate a φ-statement x3 = φ(x1, x2) not as a single definition,
but as a set of concrete definitions {x3 = x1, x3 = x2} being
propagated to all the outgoing paths from the definition-
site; we also envision the τ -statements similarly, but with
only the speculative arguments2. As all paths from a pseudo
definition d, defined at a node u, are now ideated as carry-
ing this set of definitions (instead of just d), the first Caloric
Connector (ncc) on each outgoing path from u, called the
Closest Caloric Connectors of u (CCC(u)), satisfies Lemma 1
— provided the pseudo-definition d actually reaches ncc. Fig-
ure 4 illustrates this case when d does not reach ncc: Let

w ∈ CCC(u); however, w /∈ TF (u, d1) as the pseudo-definition d1 is “killed” by
the concrete definition d2 at v, making d2 the dominating definition for w —
violating condition II of Lemma 1.

Algorithm 2 outlines our algorithm for inserting τ -nodes.

2 In the HPSSA construction algorithm, the hot definitions are “percolated” through
the φ and τ statements as the percolated definitions may appear as arguments to
future τ -statements.

The Hot Path SSA Form 315

Algorithm 2. Inserting τ -statements
Process each control-flow graph node v in the topological order as follows:

1. For all visible definitions “d : x = . . .” in the basic-block v,
– if d is a pseudo definition: if the pseudo definition d is a reaching definition at

v (d is not killed by concrete definitions along some path to v), add the set of
the Closest Caloric Connectors for v to TF (v, d);

– if d is a concrete definition: TF (v, d) = DF (v) ∩ CC.
2. For all u ∈ TF (v, d), for all visible definitions “d : x = . . .” in the basic-block v:

if u does not already have a τ -function for x, insert a τ -statement: x = τ (x) just
after all φ-statements (if any) at u, before any concrete statement.

5.2 Allocating τ -function Arguments

Before delving into the details of the algorithm, we take a slight digression into a
deeper understanding of the φ and τ statements. We view a pseudo definition —
not as a new definition — but as a label to an existing set of definitions, namely,
the definitions corresponding to its argument set. So, when we talk of reaching
definitions in this section, we would refer to all definitions (pseudo and concrete)
that are not killed by a concrete definition; we do not allow pseudo definitions to
kill an existing set of definitions. For example, in Figure 2, we would say that the
definitions for x9, x17, and x7 are the set of hot definitions that reach g; we call
this set as the set of active definitions at g. In the SSA form, as each definition
corresponds to a unique version of the variable, we use the terms definition and
variable version interchangeably.

The algorithm, in essence, computes the path-sensitive active reaching def-
initions at each node u containing a τ -function. The hot reaching definitions
(variable versions) stand as arguments in the τ -functions at u, each definition
mapped to the set of hot paths along which it reaches u. A definition xi that
reaches u along the set of hot-paths ξi can be used as a parameter for a τ -function
only if the following conditions are satisfied:

– if xi is a concrete reaching definition: xi can only be used as a parameter if
ξi �= ∅, i.e., it does reach u along a hot path;

– if xi is a pseudo reaching definition: As discussed above, pseudo definitions
are just labels to a set of concrete definitions. Even if ξi �= ∅, not all concrete
definitions contained3 in xi may be reaching u: In Figure 2, the pseudo-
definition x9 reaches g1 along the hot paths ξi = {p1, p2}, i.e. ξi �= ∅. How-
ever, if x9 is used as parameter for the τ -function at g1, it would invariably
mean the inclusion of the definition x18, which is not a hot reaching defini-
tion at g. Hence, a pseudo-definition can be used as an argument for some
set of hot paths ξ if, and only if, all the concrete reaching definitions that it
merges reaches u along ξ. This condition can be ensured by checking if all

3 A definition for xi is contained in a φ-definition if the φ-function argument-list
either includes xi, or includes a variable-version xj such that xi is contained in the
definition for xj ; for the τ -functions, we only consider the speculative argument-list.

316 S. Roy and Y.N. Srikant

the contained concrete definitions for xi are available as active definitions at
u for the set of paths ξ.

Allowing definitions corresponding to pseudo-definitions in the τ -function argu-
ment list requires tracking of both pseudo and concrete definitions (which might
appear along intersecting set of paths), while ensuring that a pseudo definition
never kills a concrete definition, even along the same path. For the sake of sim-
plicity, we abandon any further discussion on the same: in the following discus-
sion, we ignore all pseudo definitions and maintain only the concrete definitions
as active definitions (except if a pseudo-definition occurs as the only available
reaching definition, or if a pseudo-definition is propagated along a backedge). As
pseudo-definition “labels” to a set of merged definitions can no longer appear in
the τ -function argument lists, the implication of ignoring the pseudo definitions
is a larger argument list for the τ -functions.

Instead of performing an expensive classical path-sensitive dataflow analysis,
we designed an algorithm very similar to the variable renaming phase of SSA
construction [8] — using a variable stack to maintain the active definitions (or
renamed variables) reaching each node. Our algorithm is defined as a recursive
procedure running over the dominator tree of the control-flow graph. The vari-
able stack maintains the set of active reaching definitions (xi), along with the
set of hot paths (ξi) that carry the definitions to the current node 4. Our al-
gorithm is more efficient than context-tupled classical path-sensitive dataflow
analysis as it does not require storing of path-sensitive dataflow information at
each basic-block.

Let P be the set of profiled acyclic path identifiers, and DefPaths be the
set of P . A frame in the variable stack is a map [DefPaths 	→ V ersion], where
V ersion is the renamed version of a variable; a frame can be seen as a set
containing pairs {[ξ1, x1], [ξ2, x2], . . . , [ξn, xn]}, where ξi ∈ DefPaths. A variable
stack V arStackx is a stack of frames for the base variable x.

V arStack supports the following operations: push(ξi:DefPaths,xi:Version,
u:Basic-block) pushes a new frame with the association [ξi, xi] on V arStackx;
pop(u:Basic-block) pops off all frames that were pushed in the basic-block u;
and top() returns the topmost frame on the stack.

A Frame in V arStack supports the following operations: get(ξ:DefPaths)
returns the version associated with ξ in the map; accumulate(ξi:DefPaths,
xi:Version) accumulates definitions: if a pair [ξj , xi] ∈ Frame, replace [ξj , xi]
by [ξj ∪ ξi, xi], else add a new association [ξi, xi] to the frame.

The top of the variable stack contains the set of active definitions — definitions
that can be used to allocate arguments to the τ -functions in the current basic-
block. The algorithm traverses the control-flow graph recursively in a depth-first
order over the dominator tree (as does the variable renaming phase for SSA
construction); the set of dominatees5 are traversed in the topological order of

4 The updates to ξi is done lazily; so a certain points, they may contain more paths
than the actual set of hot reaching paths.

5 The children of a node n in the dominator tree are the dominatees of n.

The Hot Path SSA Form 317

the nodes in the control-flow graph: the order is important to ensure that when a
basic-block is processed, the definitions from all its incoming paths reach it. The
active definitions are propagated via V arStack from a parent node to its children
in the dominator tree; for a join node u, the active definitions are accumulated
(by a similar operation as accumulate(ξi:DefPaths, xi:Version) for a frame)
in a Definition Accumulator Ωx(u) from its predecessors in the CFG — it is
loaded up on V arStack when the node u is processed.

The τ -allocation algorithm is sketched in Algorithm 3. Let us describe the
algorithm via an example (Figure 5) for the flow-graph in Figure 2:

Let the basic-blocks be processed in the order a, b, c, d, e, f , g, h, i.
The basic-block a is processed foremost: the algorithm (Step 3(c)) pushes the

definition x3 on V arStackx (Figure (a)), and then recurses on the children of a
in the dominator tree, namely b, c and f (Step 5). At the node b, the algorithm
(Step 3(c)) pushes the definition x7 on the stack; its successor node, f , turns out
to be a join node: hence, the algorithm (Step 4) accumulates the definitions in
the topmost frame of the stack into the (currently empty) definition accumulator
Ωx(f) (Figure (b)). As b has no children in the dominator tree, the algorithm
(Step 6) retraces the recursive path to node a, popping off the definition pushed
by b in the process. The variable stack and the recursion stack (SR) now again
resemble that in Figure (a).

a

SR V arStackx

[p1p2p3, x3]

a

a

b

SR V arStackx

Ωx(f)

[p1p2p3, x3]

[p1, x7]

[p1, x7]

b

a

c

e

SR V arStackx

Ωx(f)

[p1p2p3, x3]

[p3, x18]

[p1, x7] [p2, x17] [p3, x18]

e

a

f

SR V arStackx

Ωx(f)

[p1p2p3, x3]

[p1, x7] [p2, x17]

[p3, x18]

[p1, x7] [p2, x17] [p3, x18]

f

a

f

g

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7] [p2, x17]

[p3, x18]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]

g

a

i

SR V arStackx

Ωx(f)

Ωx(i)

[p1p2p3, x3]

[p1, x7] [p2, x17]

[p3, x18]

[p1, x7] [p2, x17] [p3, x18]

[p1, x7] [p2, x17] [p3, x18]

i

Fig. 5. Steps in the execution of the τ -argument allocation algorithm

318 S. Roy and Y.N. Srikant

Algorithm 3. A sketch of the τ -function argument allocation algorithm
Process a basic-block u in the following manner:

1. Push the Definition Accumulator Ω(u) on V arStack (if Ω(u) exists).
2. If u is the incubation node for a set of hot paths, for all base-variables x which do

not have a φ-definition appearing in the basic-block u, push a frame 〈ξi, xi〉, where
ξi is the set of all paths that incubate from u, and xi is the meet-over-all paths
reaching definition (variable-version) for x at u.

3. Process each statement stm in the basic-block:
(a) If stm is a φ-statement: if u is a loop-header and the dummy profile edge t →

δend is hot (where δend denotes the dummy-end node for a Ball-Larus profiler,
and t is the corresponding loop-tail), accumulate 〈ξi, xi〉 at the topmost frame
of V arStackx, where

i. ξi is the set of all paths that incubate from u, and
ii. xi is the φ-statement argument corresponding to the backedge t → u.

(b) If stm is a τ -statement:
i. Create a set C of candidate definitions from the definitions in

V arStack.top() for each incubation node s: add 〈ξi, xi〉 to C iff
(Pathss(u) ∩ ξi) 	= ∅;

ii. If there exists at least one xi ∈ C such that its variable-version differs
from the safe argument x0, add arguments to the τ -function for each xi,
mapping the respective variable position to ξi; otherwise, replace the τ -
function with a simple copy statement: xout = x0.

(c) Update VarStack to include new definitions in the basic-block u:
– Concrete definition: Push the definition as a new frame associating it with

Paths(u);
– Pseudo definition: Ignore.

4. Save the active definitions in Ω of the (forward) successors (if successor is a join
node): for each forward (ignore backedges) successor edge u → v, if v is a join node,
for each 〈ξi, xi〉 ∈ V arStack.top() such that (ξi ∩ Paths(u → v)) 	= ∅, accumulate
〈ξi ∩ Paths(u → v), xi〉 in Ωx.

5. Recurse on the children of u in the dominator tree in accordance to their topological
order in the control flow graph.

6. Pop off all frames pushed by u from VarStack.

The nodes c, d, and e are processed similarly; Figure (c) shows the state of
the data-structures just after node e is processed. After handling e, the recursion
is unwound to node a.

The algorithm then picks the node f : it first pushes the definition accumulator
of f , Ωx(f), on the variable stack (Step 1); on encountering the φ-definition for
x9, it simply ignores the same (Step 3(c)). Finally, it recurses on the immediate
dominatees of f , viz. g and h (Step 5).

The node g is processed next: on encountering the τ -definition for x11, the
algorithm (Step 3(b)) attempts to allocate arguments for the same: Examining
the active definitions (top of the variable stack), the algorithm attempts to as-
semble the candidate set C — a subset of definitions from the topmost frame
of V arStackx that, together, can map to all the hot paths passing through g.

The Hot Path SSA Form 319

The set of active definitions at g turn out to be {[p1, x7], [p2, x17], [p3, x18]}. To
be added to C, the path-component in the definition pairs must intersect with
Paths(g) = {p1, p2}; [p1, x7] and [p2, x17] satisfy the condition, while [p3, x18]
does not. Notice how the cold definitions are pruned are from the possible set of
definitions to be added as arguments to the τ -function.

As the variable versions in the set C differ from that of the safe argument, we
allocate arguments to the τ -function from C.

x11 = τ(x9, x7 〈p1〉 , x17 〈p2〉)

The algorithm then accumulates the active definitions in Ωx(i) (Figure (e)).
The nodes h, and then i are processed in order in a similar manner.

Note that the set of candidate definitions C for a τ -function at a node v
contains the exact set of hot definitions that reach v. Additionally, for each pair
〈ξi, xi〉 ∈ C, xi reaches u along the paths in ξi, and along no other hot path.

Now consider the control-flow graph with loops (Figure 3): Let us illustrate
as to how the the hot reaching definition of i3 in the block c is identified as
a hot reaching definition at the τ -function in the node e even though we use
acyclic path-profiles. As the loop-path p1 is hot, when the node b is processed,
the definition-pair 〈p1p2, i3〉 is added to the top of the variable stack (being
the parameter to the φ-function corresponding to the backedge) by Step 3(a).
When the algorithm recurses on the children of d in the dominator tree, the
variable stack carries the definition to the basic-block e where it is recognised as
an argument for the τ -function along the path p2. The Step 2 in the algorithm
is required to carry the meet-over-all-paths definition n1 from the node a to the
node g, as there does not exist any acyclic hot path from a to g.

6 Speculative Sparse Conditional Constant Propagation

We have implemented the analysis phase of a novel optimization — the Spec-
ulative Sparse Conditional Constant Propagation (SSCP) on the HPSSA form.
This optimization expands the scope of the SCP [21] algorithm — allowing it to
identify speculative constants (expressions that are highly likely to be constants)
— along with the conventional “safe” constants (expressions that are guaranteed
to be constants).

This section is more than a description of a new analysis — through this novel
analysis, we essentially aim to demonstrate how new speculative optimizations
can be developed on the HPSSA form by simple extensions of existing “safe”
SSA-based optimizations.

The SSCP algorithm operates on a four level lattice (Figure 6 shows the SSCP
lattice for integers): the conventional constant propagation lattice is extended
by another layer — that of speculative constants (indicated by the constants
superscripted with ’s’). The speculative constants can be seen as constant values
with exactly the same properties as that of ordinary constants — just marked
“speculative” — indicating that they are predicted values, not guaranteed to hold
under all executions.

320 S. Roy and Y.N. Srikant

... ...

1s 2s 3s 4s 5s · · ·

1 2 3 4 5 · · ·

�

⊥

Fig. 6. The SSCP Lat-
tice (the constants super-
scripted by ’s’ are the
speculative constants)

i0=0;
while(...) {

i1=φ(i0, i3);
i2=τ (i1, i3);
i3=i2 + 1;

}

Fig. 7. A case
that requires
meet with its
old value in
the τ -statement
transfer function
for SSCP

The transfer functions of all ex-
isting operations (including that
of the φ-function) hold as in SCP,
except for the fact that if any
operand in an expression turns
out to be a speculative constant,
the result of the operation, if a
constant, would be a speculative
constant carrying the respective
constant value. For example, 2 +
3s would render the speculative
constant 5s.

The transfer function for the
τ -functions is defined as follows
(where � is the meet operator):
If the meet of all the arguments
does not produce ⊥ (not-constant), the transfer function resembles the transfer
function for the φ-functions. Even if the meet of all the arguments turns out
to be ⊥, there might still be the chance of the expression being identified as a
speculative constant: let β = x1 � x2 . . . � xn. The transfer function attempts
to return β, if β is ⊥, � or a speculative constant; if β is a “safe” constant, β
moves in the lattice to (β)s, the corresponding speculative constant. Formally,
the transfer function for τ(x0, x1, . . . , xn) is given by the following (where each
expression refers its abstract value in the lattice, and β = x1 � x2 . . . � xn):

τ(x0, x1, . . . , xn) �
⎧⎨⎩x0 � β if x0 � β �= ⊥

β if x0 � β = ⊥ and β is not a safe constant
(β)s otherwise

The meet with the current value of the τ -function is added to ensure termi-
nation by ensuring monotonicity; otherwise, code fragments resembling that in
Figure 7 will never reach a fixpoint due to i3 increasing its value in the spec-
ulative domain, and the τ -function feeding the same value back to it. We omit
detailed discussions on this analysis for want of space.

7 Implementation and Experiments

We implemented our HPSSA construction algorithm, as well as the analysis
phase of the SSCP algorithm on the Scale compiler [18]; we were also aided
by the CIL [7] tool. We only cast scaler variables whose address has not been
taken in the HPSSA form; τ -functions are not introduced for the remaining
variables. The SSCP algorithm implementation handles only integer variables;
the implementation is interprocedural but context-insensitive; function pointers
are ignored (it flags a warning, computing a possibly unsafe solution).

We tested our implementation on some programs from the SPEC2000 bench-
mark suite. We used a naive hot path selection criteria: all the acyclic paths
executed on the train input set was considered “hot” for building the HPSSA

The Hot Path SSA Form 321

Table 1. Speculative Constants discovered by the SSCP algorithm. (’~’ indicates
almost ; grp, prg, & src refer to inputs graphic, program & source respectively).

Variable Uses Expression Uses Total
Program Inpt Uses HitRt Uses HitRt Hits Misses HitRt
181.mcf - 33110 100.00 49665 100.00 82775 0 100.00
175.vpr - 6938074 100.00 8110837 100.00 15048911 0 100.00

grp 26592 100.00 5 100.00 26597 0 100.00
164.gzip prg 17412 100.00 5 100.00 17417 0 100.00

src 4721 99.98 5 100.00 4725 1 99.98
197.parser - 165970964 ~100.00 340 97.94 165970861 443 ~100.00

grp 132106650 ~100.00 938 76.97 132107372 216 ~100.00
256.bzip2 prg 100819492 ~100.00 6576416 15.67 101849942 5545966 94.84

src 108134316 ~100.00 5256006 17.94 109077366 4312956 96.20

form. Table 1 exhibits our findings for programs run on the ref input set. The
programs were run with the default parameters, i.e., no parameters were set on
the command line, either for training, or for the actual run (on the ref set).
We collected statistics for dynamic uses (use of a variable/expression during the
actual run) for variables (Variable Uses), and for sub-expressions that could be
constant-folded speculatively (Expression Uses). The uses are tabulated only for
the speculative constants — uses that are likely (but not guaranteed) to be con-
stants. We have not shown the number of “sure” constants as it would be same
as that for the original SCP algorithm. We also indicate the Hit Rate (HitRt):
the percentage of uses where the use of variable/expression actually agrees with
the “predicted” speculative constant value.

The programs seem to enshroud plenitude opportunities for an optimizer
adept at performing speculative program transformations. Most of the programs
show a large number of dynamic speculative usages with good hit rates (except
256.bzip2 for the sub-expression uses; still the overall hit rate turns out high,
courtesy the variable usages). A more intelligent hot path selection scheme may
be able to reap more constants, though it may also have an effect on the hit-rate;
we are interested in experimenting with alternative schemes in the future.

8 Related Work

Multitude of interesting extensions and modifications have been proposed on the
SSA form. The Hashed SSA (HSSA) form [6] extends the traditional SSA form to
accommodate pointer variables by introducing an explicit may modify operator
(χ) and may reference operator (μ). The Array SSA [13] form captures element-
level data flow information of array variables. The ψ-SSA form [19] simplifies
the use of SSA-based optimizations on predicated code. Though we have not
addressed aliasing and arrays in this paper, it does not seem difficult to address
these issues in the HPSSA form; we may investigate such extensions via concrete
implementations in the future.

322 S. Roy and Y.N. Srikant

Lin et al. [14] proposed a speculative SSA form by extending speculative
versions of the HSSA operators — speculative update (χs) and speculative use
(μs). The speculative flag, either by use of profiling information and/or a set of
heuristic rules, is turned on these operators if it is highly likely that an update
or reference will be substantiated at runtime. Lin et al.’s work is orthogonal to
our work as we target exposing the hot use-def chains rather than likely alias
relations; both these techniques can be seamlessly combined for a more powerful
speculative optimization framework.

Towards path-sensitive program optimizations, Ammons and Larus [1] pro-
posed performing flow-analysis on a hot path graph that isolates the frequent
paths. Das et al. [10] proposed a polynomial-time path-sensitive algorithm for
verifying a given temporal safety property, and proved it effective by verifying
the file I/O behaviour of a version of the GNU C Compiler.

Researchers have also been interested in inferring likely data-flow facts, com-
puted over control-flow profiles. Ramalingam [16] used edge-profiles to infer the
probability with which a fact holds true for the class of finite bi-distributive sub-
set problems. Probabilistic pointer analyses [4,9] assign probabilities with which
a points-to relation might hold at a program point. Contributions to speculative
partial redundancy elimination have been made by [15,22]. Path profile based
speculative PRE and PDE have been proposed by [11,12]. Most of these tech-
niques use edge and node profiles which are much weaker than path-profiles used
by HPSSA. Also, the HPSSA form provides a common ground for writing effi-
cient optimizations on a sparse program representation; it scores over flow-based
speculative optimizations due to the exact reason that the SSA-based algorithms
score over the flow-based safe optimizations.

9 Conclusions

We propose a novel extension to the highly successful SSA form, and demonstrate
— by an analysis algorithm for Speculative Sparse Conditional Constant Prop-
agation — that novel speculative optimizations can be enabled on the HPSSA
form by almost obvious modifications of existing SSA-based traditional optimiza-
tions. We are pondering over the design of speculative versions of other existing
SSA-based traditional optimizations — Global Value Numbering [3] and Partial
Redundancy Elimination [5] being our foremost targets. We are also interested
in extending the HPSSA form for richer profiles like the k-iteration [17] profiles.

Acknowledgements. Subhajit Roy was supported by Doctoral Fellowship from
Philips Research, India.

References

1. Ammons, G., Larus, J.R.: Improving data-flow analysis with path profiles.
SIGPLAN Not. 39(4), 568–582 (2004)

2. Ball, T., Larus, J.R.: Efficient path profiling. In: International Symposium on Mi-
croarchitecture (MICRO), pp. 46–57 (1996)

The Hot Path SSA Form 323

3. Briggs, P., Cooper, K.D., Taylor Simpson, L.: Value Numbering. Software: Practice
and Experience (1997)

4. Chen, P.-S., Hwang, Y.-S., Ju, R.D.-C., Lee, J.K.: Interprocedural Probabilistic
Pointer Analysis. IEEE Transactions on Parallel and Distributed Systems 15(10),
893–907 (2004)

5. Chow, F., Chan, S., Kennedy, R., Liu, S.-M., Lo, R., Tu, P.: A new algorithm for
partial redundancy elimination based on SSA form. In: Programming Language
Design and Implementation (PLDI), pp. 273–286 (1997)

6. Chow, F.C., Chan, S., Liu, S.-M., Lo, R., Streich, M.: Effective Representation of
Aliases and Indirect Memory Operations in SSA Form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

7. CIL - Infrastructure for C Program Analysis and Transformation,
http://hal.cs.berkeley.edu/cil/

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

9. Da Silva, J., Gregory Steffan, J.: A probabilistic pointer analysis for speculative
optimizations. SIGARCH Comput. Archit. News 34(5), 416–425 (2006)

10. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-
nomial time. In: Programming Language Design and Implementation (PLDI), pp.
57–68 (2002)

11. Gupta, R., Berson, D.A., Fang, J.Z.: Path Profile Guided Partial Dead Code Elim-
ination Using Predication. In: Parallel Architectures and Compilation Techniques
(PACT), p. 102. IEEE Computer Society, Washington, DC (1997)

12. Gupta, R., Berson, D.A., Fang, J.Z.: Path Profile Guided Partial Redundancy Elim-
ination Using Speculation. In: International Conference on Computer Languages
(ICCL), p. 230 (1998)

13. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Principles
of Programming Languages (POPL), pp. 107–120 (1998)

14. Lin, J., Chen, T., Hsu, W.-C., Yew, P.-C., Ju, R.D.-C., Ngai, T.-F., Chan, S.: A
compiler framework for speculative analysis and optimizations. In: Programming
Language Design and Implementation (PLDI), pp. 289–299 (2003)

15. Horspool, R.N., Pereira, D.J., Scholz, B.: Fast Profile-Based Partial Redundancy
Elimination. In: Lightfoot, D.E., Szyperski, C. (eds.) JMLC 2006. LNCS, vol. 4228,
pp. 362–376. Springer, Heidelberg (2006)

16. Ramalingam, G.: Data flow frequency analysis. In: Programming Language Design
and Implementation (PLDI), pp. 267–277 (1996)

17. Roy, S., Srikant, Y.N.: Profiling k-Iteration Paths: A Generalization of the Ball-
Larus Profiling Algorithm. In: International Symposium on Code Generation and
Optimization (CGO), pp. 70–80. IEEE Computer Society, Washington, DC (2009)

18. Scale: A Scalable Compiler for Analytical Experiments,
http://www-ali.cs.umass.edu/Scale/

19. Stoutchinin, A., de Ferriere, F.: Efficient static single assignment form for predi-
cation. In: International Symposium on Microarchitecture (MICRO), pp. 172–181
(2001)

20. Tallam, S., Zhang, X., Gupta, R.: Extending path profiling across loop backedges
and procedure boundaries. In: International Symposium on Code Generation and
Optimization (CGO), pp. 251–264 (2004)

21. Wegman, M.N., Kenneth Zadeck, F.: Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991)

22. Xue, J., Cai, Q.: A lifetime optimal algorithm for speculative PRE. ACM Trans.
Archit. Code Optim. 3(2), 115–155 (2006)

http://hal.cs.berkeley.edu/cil/
http://www-ali.cs.umass.edu/Scale/

Author Index

Amaral, José Nelson 10

Baskaran, Muthu Manikandan 244
Bastoul, Cédric 283
Benabderrahmane,

Mohamed-Walid 283
Braun, Matthias 205
Burckhardt, Sebastian 104

Cecchet, Emmanuel 84
Chevalier-Boisvert, Maxime 46
Cohen, Albert 283
Craik, Andrew 145

Ding, Shuhan 26

Grcevski, Nikola 10

Hack, Sebastian 205
Hendren, Laurie 46
Hoflehner, Gerolf F. 185

Iu, Ming-Yee 84

Jiang, Yunlian 264
Jocksch, Adam 10

Kelly, Wayne 145

Larus, James 1
Leroy, Xavier 224
Lhoták, Ondřej 124
Logozzo, Francesco 66

Mallon, Christoph 205
Mitran, Marcel 10
Musuvathi, Madanlal 104

Naeem, Nomair A. 124

Önder, Soner 26

Palsberg, Jens 165
Pereira, Fernando Magno Quintão 165
Pouchet, Louis-Noël 283

Ramanujam, J. 244
Rideau, Silvain 224
Rodriguez, Jonathan 124
Roy, Subhajit 304

Sadayappan, P. 244
Shen, Xipeng 264
Singh, Vasu 104
Siu, Joran 10
Srikant, Y.N. 304

Tian, Kai 264

Venter, Herman 66
Verbrugge, Clark 46

Zhang, Eddy Z. 264
Zwaenepoel, Willy 84

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talk
	Programming Clouds
	Introduction
	Orleans
	Design Philosophy
	Centrality of Failure
	Orleans Programming Model
	Orleans Data Model

	Conclusion
	References

	Optimization Techniques
	Mining Opportunities for Code Improvement in a Just-In-Time Compiler
	Introduction
	Motivating Case Study
	The Mining Tool
	Preparation of Data for Mining
	Operation of the Mining Algorithm
	Support Thresholds for Mining

	Opportunities Discovered
	Experimental Data on the Usage of the Mining Tool
	Profiling and Storage Requirements
	Time Needed to Mine
	Sequences Reported by Mining

	Related Work
	Conclusion
	References

	Unrestricted Code Motion: A Program Representation and Transformation Algorithms Based on Future Values
	Introduction
	The Concept of Future Values
	Code Motion in Acyclic Code
	Future Predicated Form
	Elimination of -Nodes
	Merging of Instructions

	Instruction-Level Recursion
	Code Motion in Cyclic Code and Recursive Future Predicated Form
	ϕ-Nodes in Loop Header
	Conversion of Loops into Instruction-Level Recursion

	Code Motion Involving Memory Dependencies and Function Calls
	Optimizations Using RFPF
	Algorithms for Converting RFPF Back to CFG
	Related Work
	Conclusion
	References

	Optimizing {\sc Matlab} through Just-In-Time Specialization
	Introduction
	Optimization Challenges
	Design Overview
	Just-In-Time Specialization
	Function Versioning
	Additional Optimizations

	Type and Shape Inference System
	Abstract Domain
	Merge Operator
	Inference Rules
	Inference Process

	Evaluation
	Baseline Performance
	Type Inference Efficiency
	JIT Specialization

	Related Work
	Conclusions and Future Work
	References

	RATA: Rapid Atomic Type Analysis by Abstract Interpretation – Application to {\tt JavaScript} Optimization
	Introduction
	The {\tt JavaScript}= Language
	Background
	IEEE754 Standard
	Abstract Interpretation

	Numerical Abstract Domains
	Extended Intervals
	Kinds
	K-Intervals

	Rapid Atomic Type Analysis
	Numerical Analysis
	Variation Analysis
	Atomic Types

	Experiments
	Related Work
	Conclusions
	References

	Program Transformations
	JReq: Database Queries in Imperative Languages
	Introduction
	Background
	JReq Query Syntax
	General Approach and Syntax Examples

	Translating JQS Using JReq
	Preprocessing
	Transformation of Loops
	Query Identification and Generation
	Implementation Expressiveness and Limitations

	Evaluation
	TPC-W
	TPC-H

	Conclusions
	References

	Verifying Local Transformations on Relaxed Memory Models
	Introduction
	Related Work
	Semantic Foundation
	A Simple Imperative Language for Shared Memory
	Denotational Semantics

	Verifying Local Program Transformations
	Invisible Rewrite Rules

	Application
	Conclusion and Future Work
	References

	Program Analysis
	Practical Extensions to the IFDS Algorithm
	Introduction
	Background: The Original IFDS Algorithm
	Running Example: Type Analysis
	Demand Construction of the Supergraph
	Return Flow Functions
	Static Single Assignment (SSA) Form
	Example of Precision Loss

	Exploiting Structure in the Set D
	Empirical Evaluation
	Related Work
	Conclusions
	References

	Using Ownership to Reason about Inherent Parallelism in Object-Oriented Programs
	Introduction
	Background
	Introduction to Ownership Types
	Ownership Syntax
	Side-Effects
	Separating Ownership from Encapsulation

	Ownerships and Data Dependencies
	The Runtime Representation
	Context Testing
	Static Test Minimization

	Task Parallelism
	Loop Parallelism
	Loop Parallelism
	Pipelining
	Data Parallel for Loops
	Proof of Correctness

	Worked Example
	Related Work
	Conclusions and Future Work
	References

	Register Allocation
	Punctual Coalescing
	Introduction
	Background
	An Efficient Punctual Coalescing Algorithm
	ILP Formulation
	Example

	Experimental Results
	Limitations of Punctual Coalescing
	Conclusion
	References

	Strategies for Predicate-Aware Register Allocation
	Introduction
	Predication
	Overview

	Background
	Chaitin-Style Register Allocation
	Itanium® 2 Processor Architecture

	Register Allocation for Predicated Code
	Impact of Predicated Code
	Predicate Partition Graph (PPG) and Query System (PQS)
	A Family of Predicate-Aware Register Allocators

	Results
	Related Work
	Conclusions
	References

	Preference-Guided Register Assignment
	Introduction
	Contributions

	SSA-Based Register Allocation
	Register Assignment
	Register Constraints
	Implementing Parallel Moves

	Coalescing with Register Preferences
	Register Preferences
	Preference Analysis
	Affinity Chunks
	Optimistic Move Insertion

	Block Coloring Order
	Experimental Evaluation
	Compile Time
	Code Quality

	Related Work
	Conclusions
	References

	Validating Register Allocation and Spilling
	Introduction
	A Bird's Eye View of Register Allocation and Spilling
	Source Language
	Target Language
	The Effect of Register Allocation on the Code

	The Validation Algorithm
	Structural Checks
	Dataflow Analysis
	The Validation Algorithm

	Soundness Proof
	Dynamic Semantics
	Equation Satisfaction
	Forward Simulation

	Implementation and Experimental Results
	Related Work
	Conclusions and Future Work
	References

	High-Performance Systems
	Automatic C-to-CUDA Code Generation for Affine Programs
	Introduction
	Background
	GPU Architecture and the CUDA Programming Model
	GPU Computing Architecture
	CUDA Programming Model
	GPU Execution Model

	Design of C-to-CUDA Generator
	Multi-level Parallel Tiled Code Generation
	Data Movement between Off-Chip and On-Chip Memories
	Syntactic Post-processing

	Experimental Results
	Coulombic Potential (cp)
	N-Body Simulation (nbody)
	MRI Kernels
	Stencil Computation Kernels
	Gauss Seidel Successive over Relaxation

	Related Work
	Conclusions
	References

	Is Reuse Distance Applicable to Data Locality Analysis on Chip Multiprocessors?
	Introduction
	Concept and Properties of Concurrent Reuse Distance
	Review of Standalone Reuse Distance and Its Properties
	Concurrent Reuse Distance

	Concurrent Reuse Distance for Multithreading Programs
	Independence to Architecture and Inputs
	Probabilistic Model for Approximating Concurrent Reuse Distance

	Evaluation
	Synthetic Traces
	Traces from Real Programs
	Discussions

	Related Work
	Conclusions
	References

	The Polyhedral Model Is More Widely Applicable Than You Think
	Introduction
	Polyhedral Representation of Programs
	Static Control Parts
	Relaxing the Constraints

	Revisiting the Polyhedral Framework
	Program Analysis
	Program Transformation
	Code Generation

	Reducing Control Overhead
	Computing the Value of Predicates
	Predicate Placement

	Experimental Results
	Related Work
	Conclusion
	References

	The Hot Path SSA Form: Extending the Static Single Assignment Form for Speculative Optimizations
	Introduction
	Background
	The Static Single Assignment Form
	Acyclic Path Profiling
	A Peek at the Hot Path SSA Form

	Thermal Properties of a Program
	Thermal States of Program Entities
	The Structure of Profiled Acyclic Paths

	The Hot Path SSA (HPSSA) Form
	Constructing the HPSSA Form
	Thermal Frontiers: Placing -functions
	Allocating τ-function Arguments

	Speculative Sparse Conditional Constant Propagation
	Implementation and Experiments
	Related Work
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

