
Aggregation of Quasiconcave Functions∗

Jaroslav Ramı́k and Milan Vlach

Abstract. Aggregation of information is important in many fields, ranging from
engineering and economics to artificial intelligence and decision making processes.
Aggregation refers to the process of combining a number of values into a single
value so that the final result of aggregation takes into account, in a given form, all
individual values under consideration. In decision making processes the values to be
aggregated are typically preference or satisfaction degrees. This paper could serve
as a theoretical background for applications mainly in the area of decision analysis,
decision making or decision support.

1 Introduction

Aggregation refers to the process of combining values into a single value so that
the final result of aggregation takes into account, in a given form, all individual val-
ues under consideration. In decision making, values to be aggregated are typically
preference or satisfaction degrees. A preference degree, for example v(A,B), tells
to what extent an alternative A is preferred to an alternative B. This way, however,
will not be followed here. In this paper the values are understood and interpreted
as satisfaction degrees which express to what extent a given alternative is satisfac-
tory with respect to a given criterion - a given real-valued function, or as a kind of
distance to a prototype which may represent the ideal alternative for the decision
maker. Depending on concrete applications, values to be aggregated can be also in-
terpreted as degrees of confidence in the fact that a given alternative is true, or as
experts’ opinions, similarity degrees, etc.; see, for example, [1].
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Once some values on a scale (for example, on the unit interval [0,1]) are given,
we can aggregate them and obtain a new value defined on the same scale. This can
be done in many different ways according to what is expected from such mappings.
They are usually called aggregation operators, and they can be roughly divided into
three classes, each possessing very distinct behavior and semantics, see [5].

Operators of the first class, conjunctive type operators, combine values as if they
were related by a logical “and” operation. In other words, the result of combination
is high if all individual values are high. Triangular norms are typical examples of
conjunctive type aggregations.

On the other hand, disjunctive type operators combine values as an “or” oper-
ation, so that the result of aggregation is high if some of the values are high. The
most common examples of disjunctive type operators are triangular conorms.

Between conjunctive and disjunctive type operators, there is room for the third
class of aggregation operators, which are often called averaging type operators.
They are usually located between minimum and maximum, which are the bounds
of the t-norms and t-conorms. Averaging type operators have the property that low
values of some criteria can be compensated by high values of the other criteria
functions.

There are of course other operators which do not fit into any of these classes.

2 Definition and Basic Properties

When aggregating data in applications, we assign uniquely to each tuple of elements
a real number. For this purpose, both t-norms and t-conorms are rather special oper-
ators on the unit interval [0,1].

Definition 2.1. A function T : [0,1]2 → [0,1] that is commutative, associative,
nondecreasing in every variable and satisfies the boundary condition T (a,1) =
a for all a ∈ [0,1], is called the triangular norm or t-norm. The most popular t-
norms are defined as follows:

TM(a,b) = min{a,b}, (1)

TP(a,b) = a.b, (2)

TL(a,b) = max{0,a + b−1}. (3)

TD(a,b) =

{
min{a,b} if max{a,b} = 1,

0 otherwise.
(4)

They are called Minimum t-norm TM , Product t-norm TP, Lukasiewicz t-norm TL

and Drastic product TD.

A class of functions closely related to the class of t-norms is the class of functions
S : [0,1]2 → [0,1] defined as follows.

Definition 2.2. A function S : [0,1]2 → [0,1] that is commutative, associative, non-
decreasing in every variable and satisfies the boundary condition S(a,0) = a for all
a ∈ [0,1], is called the triangular conorm or t-conorm.
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The functions SM, SP, SL and SD defined for a,b ∈ [0,1] by

SM(a,b) = max{a,b}, (5)

SP(a,b) = a + b−a ·b, (6)

SL(a,b) = min{1,a + b}, (7)

SD(a,b) =

{
max{a,b} if min{a,b}= 0

1 otherwise.
(8)

are typical t-conorms. Often, SM, SP, SL and SD are called the maximum, probabilis-
tic sum, bounded sum and drastic sum, respectively.

It can easily be verified that for each t-norm T , the function T ∗ : [0,1]2 → [0,1]
defined for all a,b ∈ [0,1] by T ∗(a,b) = 1 − T (1 − a,1− b) is a t-conorm. The
converse statement is also true. Namely, if S is a t-conorm, then the function S∗ :
[0,1]2 → [0,1] defined for all a,b ∈ [0,1] by S∗(a,b) = 1− S(1− a,1− b) is a t-
norm. The t-conorm T ∗ and t-norm S∗ are called dual to the t-norm T and t-conorm
S, respectively. It can easily be verified that

T ∗
M = SM, T ∗

P = SP, T ∗
L = SL, T ∗

D = SD. (9)

Using the commutativity and associativity of t-norms, we extend them (and analo-
gously t-conorms) to more than two arguments by the following formula

T n−1(x1,x2, . . . ,xn) = T (T n−2(x1,x2, . . . ,xn−1),xn), (10)

where T 1(x1,x2) = T (x1,x2).
A triangular norm T is said to be strict if it is continuous and strictly monotone.

It is said to be Archimedian if for all x,y ∈ (0,1) there exists a positive integer n
such that T n−1(x, . . . ,x) < y. Notice that if T is strict, then T is Archimedian.

There exist other useful operations related to or generalizing t-norms or t-
conorms, either on the unit interval or on an arbitrary closed subinterval [a,b] of
the extended real line. Because of the natural correspondence between [a,b] and
[0,1], each result for operations on the interval [a,b] can be transformed into a result
for operators on [0,1], and vice versa. Therefore, the discussion about aggregation
operators on [0,1] is sufficiently general, at least from the theoretical point of view.

Definition 2.3. An aggregation operator A is a sequence {An}∞
n=1 of map-

pings (called aggregating mappings) An : [0,1]n → [0,1] satisfying the following
properties:

(i) A1(x) = x for each x ∈ [0,1];
(ii) An(x1,x2, . . . ,xn)≤An(y1,y2, . . . ,yn) whenever xi ≤ yi for every i = 1,2, . . . ,n,

and every n = 2,3, . . . ;
(iii) An(0,0, . . . ,0) = 0 and An(1,1, . . . ,1) = 1 for every n = 2,3, . . . .

Condition (i) means that A1 is an identity unary operation, condition (ii) says that ag-
gregating mapping An is nondecreasing in all of its arguments xi, and condition (iii)
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represents natural boundary requirements. Some other mathematical properties can
be requested from an aggregation operators, we list some of them in the following
definition.

Definition 2.4. Let A = {An}∞
n=1 be an aggregation operator.

(i) The aggregation operator A is called commutative, idempotent, nilpotent,
strictly monotone or continuous if, for each n ≥ 2, the aggregating mapping An

is commutative, idempotent, nilpotent, strictly monotone or continuous, respec-
tively. The aggregation operator A is called strict if An is strictly monotone and
continuous for all n ≥ 2.

(ii) The aggregation operator A is called associative if, for all m,n ≥ 2 and all
tuples (x1,x2, . . . ,xm) ∈ [0,1]m and (y1,y2, . . . ,yn) ∈ [0,1]n, we have

Am+n(x1,x2, . . . ,xm,y1,y2, . . . ,yn)
= A2(Am(x1,x2, . . . ,xm),An(y1,y2, . . . ,yn)).

(iii) The aggregation operator A is called decomposable if, for all m,n ≥ 2 and all
tuples (x1, . . . ,xm) ∈ [0,1]m and (y1, . . . ,yn) ∈ [0,1]n, we have

Am+n(x1, . . . ,xm,y1, . . . ,yn)
= Am+n(Am(x1, . . . ,xm), . . . ,Am(x1, . . . ,xm),y1, . . . ,yn)

(11)

where, in the right side, the term Am(x1,x2, . . . ,xm) occurs m times.
(iv) The aggregation operator A is called compensative if, for n ≥ 2 and for all

tuples (x1,x2, . . . ,xn) ∈ [0,1]n, the following inequalities hold:

TM(x1,x2, . . . ,xn) ≤ An(x1,x2, . . . ,xn) ≤ SM(x1,x2, . . . ,xn). (12)

We have already seen that the commutativity and associativity make it possible to
extend t-norms and t-conorms to n-ary operations, with n > 2. Therefore, a sequence
{T n}∞

n=1, where T 1 is the identity mapping, defines an aggregation operator, and T n

are its aggregating mappings. For the sake of simplicity, when there is no danger of a
confusion, we call this aggregation operator also a t-norm and denote it by the orig-
inal symbol T . In other words, when speaking about a t-norm T or t-conorm S as an
aggregation operator, we always have in mind the corresponding sequence {T n}∞

n=1
or {Sn}∞

n=1, respectively. Recall also that, for the same reason, we shall sometimes
omit the index n in the aggregating mappings An. Considering this convention in the
following propositions, we obtain some characterizations of the previously defined
properties. Each t-norm and each t-conorm is a commutative and associative aggre-
gation operator. The minimum TM is the only idempotent t-norm, but it is not strict.
The product norm TP is strict, but not nilpotent. Lukasiewicz t-norm TL is both strict
and nilpotent. The drastic product TD is nilpotent, but not continuous, see [3].

Analogous properties hold for t-conorms SM, SP, SL and SD. A transformation of
an aggregation operator by means of a monotone bijection from [0,1] to [0,1] yields
again an aggregation operator. We have the following proposition the proof of which
is elementary.
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Proposition 2.1. Let A = {An}∞
n=1 be an aggregation operator and let ψ : [0,1] →

[0,1] be a strictly increasing or strictly decreasing bijection. Then Aψ = {Aψ
n }∞

n=1
defined by Aψ

n (x1,x2, . . . ,xn) = ψ−1(An(ψ(x1), . . . ,ψ(xn))) for all n = 1,2, . . . and
all tuples (x1,x2, . . . ,xn) ∈ [0,1]n, is an aggregation operator.

Continuity of aggregation operators play an important role in applications. The fol-
lowing proposition shows that for continuity of commutative aggregation operators
it is sufficient that they are continuous in a single variable only. The proof of the
following two propositions can be found in [4].

Proposition 2.2. Let A = {An}∞
n=1 be a commutative aggregation operator. The op-

erator A is continuous if and only if, for each n = 1,2, . . . , the mapping An is contin-
uous in its first variable x1; that is, if, for each n and x2, . . . ,xn ∈ [0,1], the function
A(·,x2, . . . ,xn) of single variable is continuous on [0,1].

Notice that a completely analogous proposition holds for the upper and lower semi-
continuity. Also notice that, by monotonicity of an aggregation operator A, the left
(right) continuity of A is equivalent to the LSC (USC) of A, and that the left and
right continuity mean exactly the interchangeability of the supremum and infimum,
respectively, with the application of the aggregation operator.

3 Averaging Aggregation Operators

Between conjunctive and disjunctive type operators, t-norms and t-conorms, there
is a room for another class of aggregation operators of averaging type. They are
located between minimum and maximum satisfying inequalities (12). Averaging
type operators have the property that low values of some criteria can be compensated
by high values of the other criteria.

Perhaps, even more popular aggregation operators than t-norms and t-conorms
are the means: the arithmetic mean M = {Mn}∞

n=1, the geometric mean G =
{Gn}∞

n=1, the harmonic mean H = {Hn}∞
n=1 and the root-power mean M(α) =

{M(α)
n }∞

n=1, given by, respectively,

Mn(x1,x2, . . . ,xn) =
1
n

n

∑
i=1

xi, (13)

Gn(x1,x2, . . . ,xn) =

(
n

∏
i=1

xi

)1/n

, (14)

Hn(x1,x2, . . . ,xn) =
n

n

∑
i=1

1
xi

, (15)

M(α)
n (x1,x2, . . . ,xn) =

(
1
n

n

∑
i=1

xα
i

)1/α

, α �= 0. (16)
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All these operators are commutative, idempotent and continuous, none of them is
associative. The root-power mean operators M(α), α ≥ 0, are strict, whereas G and
H are not strict. Notice that M = M(1) and H = M(−1).

The next proposition says that the operators (13) - (16) are all compensative. It
says even more, namely, that the class of idempotent aggregation operators is exactly
the same as the class of compensative ones. The proof of this result is elementary
and can be found in [2].

Proposition 3.1. An aggregation operator is idempotent if and only if it is
compensative.

The following proposition clarifies the relationships between some other properties
introduced in Definition 2.4. The proof can be found also in [2].

Proposition 3.2. Let A = {An}∞
n=1 be a continuous and commutative aggregation

operator. Then A is compensative, strict and decomposable, if and only if for all
x1,x2, . . . ,xn ∈ [0,1]

An(x1,x2, . . . ,xn) = ψ−1

(
1
n

n

∑
i=1

ψ(xi)

)
, (17)

with a continuous strictly monotone function ψ : [0,1] → [0,1].

The aggregation operator (17) is called the generalized mean. It covers a wide
range of popular means including those of (13) - (16). The minimum TM and the
maximum SM are the only associative and decomposable compensative aggregation
operators.

4 Concave, Quasiconcave and Starshaped Functions

In this section and the following sections we shall deal with our main problem,
that is, the aggregation of generalized quasiconcave functions. First, we will look
for sufficient conditions that secure some properties of quasiconcavity. For a more
detailed treatment of concavity and some of its generalizations, see [4].

The concepts of concavity, convexity, quasiconcavity, quasiconvexity and quasi-
monotonicity of a function f : Rn → R can be introduced in several ways. The
following definitions will be most suitable for our purpose.

Definition 4.1. Let X be a nonempty subset of Rn. A function f : X → R is called

(i) concave on X (CA) if

f (λ x +(1−λ )y)≥ λ f (x)+ (1−λ ) f (y) (18)

for every x,y ∈ X and every λ ∈ (0,1) with λ x +(1−λ )y∈ X
(resp. convex on X if − f is concave on X);
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(ii) strictly concave on X if

f (λ x +(1−λ )y) > λ f (x)+ (1−λ ) f (y) (19)

for every x,y ∈ X , x �= y and every λ ∈ (0,1) with λ x +(1−λ )y∈ X
(resp. strictly convex on X if − f is strictly concave on X);

(iii) semistrictly concave on X if f is concave on X and (19) holds for every
x,y ∈ X and every λ ∈ (0,1) with λ x +(1−λ )y∈ X such that f (x) �= f (y)
(resp. semistrictly convex on X if − f is semistrictly concave on X).

Definition 4.2. Let X be a nonempty subset of Rn. A function f : X → R is called

(i) quasiconcave on X (QCA) if

f (λ x +(1−λ )y)≥ min{ f (x), f (y)}

for every x,y ∈ X and every λ ∈ (0,1) with λ x +(1−λ )y∈ X
(resp. quasiconvex on X if − f is quasiconcave on X);

(ii) strictly quasiconcave on X if

f (λ x +(1−λ )y) > min{ f (x), f (y)} (20)

for every x,y ∈ X , x �= y and every λ ∈ (0,1) with λ x +(1−λ )y∈ X
(resp. strictly quasiconvex on X if − f is strictly quasiconcave on X);

(iii) semistrictly quasiconcave on X if f is quasiconcave on X and (20) holds for
every x,y ∈ X and every λ ∈ (0,1) with λ x+(1−λ )y ∈ X such that f (x) �= f (y)
(resp. semistrictly quasiconvex on X if − f is semistrictly quasiconcave on X).

Notice that in Definitions 4.1 and 4.2 the set X is not required to be convex. If in
the above definitions the set X is convex, then we obtain the usual definition of
(strictly) quasiconcave and (strictly) quasiconvex functions. Observe that if a func-
tion is (strictly) concave and (strictly) convex on X , then it is (strictly) quasiconcave
and (strictly) quasiconvex on X , respectively, but not vice-versa.

In Definitions 4.1 and 4.2 we introduced concepts of semistrictly CA functions
and semistrictly QCA functions, respectively. The former (the latter) is stronger
than the concept of a CA function (QCA function), and weaker than the concept of
a strictly CA function (strictly QCA function).

We shall need the following generalization of convexity of sets and functions.

Definition 4.3. Let X be a subset of Rn, y ∈ X . The set X is starshaped from y if, for
every x ∈ X , the convex hull of the set {x,y} is included in X . The set of all points
y ∈ X such that X is starshaped from y is called the kernel of X and it is denoted
by Ker(X). The set X is said to be a starshaped set if Ker(X) is nonempty, or X is
empty.

Clearly, X is starshaped if there is a point y ∈ X such that X is starshaped from y.
From the geometric viewpoint, if there exists a point y in X such that for every other
point x from X the whole linear segment connecting the points x and y belongs to X ,
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then X is starshaped. Evidently, every convex set is starshaped. For a convex set
X , we have Ker(X) = X . Moreover, in the 1-dimensional space R, convex sets and
starshaped sets coincide.

To introduce starshaped functions, we begin with the following, well known,
characterization of quasiconcave and quasiconvex functions.

Proposition 4.1. Let X be a convex subset of Rn. A function f : X → R is quasicon-
cave on X if and only if all its upper-level sets are convex subsets of Rn. Likewise, f
is quasiconvex on X if and only if all its lower-level sets are convex subsets of Rn.

Proposition 4.1 suggests a way of generalization of quasiconcave and quasiconvex
functions. Replacing all convex upper-level sets U( f ,α) and convex lower-level sets
L( f ,α) in Proposition 4.1 by starshaped sets, we obtain the following generalization
of quasiconcave and quasiconvex functions.

Definition 4.4. Let X be a starshaped subset of Rn. A function f : X → R is called

(i) upper-starshaped on X (US) if its upper-level sets U( f ,α) are starshaped
subsets of Rn for all α ∈ R;

(ii) lower-starshaped on X (LS) if its lower-level sets L( f ,α) are starshaped
subsets of Rn for all α ∈ R;

(iii) monotone-starshaped on X (MS) if it is both lower-starshaped and
upper-starshaped on X .

It is obvious that if a function f : X → Rn is upper-starshaped on X , then the
function − f is lower-starshaped on X , and vice-versa. From the fact that each
convex set is starshaped it follows that each quasiconcave (quasiconvex) function
is upper-starshaped (lower-starshaped). Moreover, each quasimonotone function is
monotone-starshaped. Evidently, the classes of quasiconcave (quasiconvex) func-
tions and upper-starshaped (lower-starshaped) functions coincide on R. In more
dimensions it is not true, see [4].

5 T -Quasiconcave Functions

In contrast to the previous section, we now restrict our attention to functions defined
on Rn with range in the unit interval [0,1] of real numbers. Such functions can
be interpreted as membership functions of fuzzy subsets of Rn. We therefore use
several terms and some notation of fuzzy set theory. However, it should be pointed
out that such functions arise in more contexts. In what follows, the Greek letter
μ , sometimes with an index, denotes a function that maps Rn into the closed unit
interval [0,1] in R.

We have introduced quasiconcave (semi)strictly quasiconcave, quasiconvex
and (semi)strictly quasiconvex functions in Definition 4.1. First, we generalize
Definition 4.1 by using triangular norms and conorms.

Definition 5.1. Let X be a nonempty convex subset of Rn, T be a triangular norm,
and S be a triangular conorm. A function μ : Rn → [0,1] is called
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(i) T -quasiconcave on X if

μ(λ x +(1−λ y))≥ T (μ(x),μ(y)) (21)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(ii) strictly T -quasiconcave on X if

μ(λ x +(1−λ )y) > T (μ(x),μ(y)) (22)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(iii) semistrictly T -quasiconcave on X if (21) holds for every x,y ∈ X , x �= y and

λ ∈ (0,1) and (22) holds for every x,y ∈ X and λ ∈ (0,1) such that μ(x) �= μ(y);
(iv) S-quasiconvex on X if

μ(λ x +(1−λ y))≤ S(μ(x),μ(y)) (23)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(v) strictly S-quasiconvex on X if

μ(λ x +(1−λ )y) < S(μ(x),μ(y)) (24)

for every x,y ∈ X , x �= y and λ ∈ (0,1);
(vi) semistrictly S-quasiconvex on X if (23) holds for every x,y ∈ X , x �= y and

λ ∈ (0,1) and (24) holds for every x,y ∈ X and λ ∈ (0,1) such that μ(x) �= μ(y);
(vii) (strictly, semistrictly) (T,S)-quasimonotone on X , provided μ is (strictly,

semistrictly) T -quasiconcave and (strictly) S-quasiconvex on X , respectively;
(viii) (strictly, semistrictly) T -quasimonotone on X if μ is (strictly, semistrictly)

T -quasiconcave and (strictly, semistrictly) T ∗-quasiconvex on X , where T ∗ is the
dual t-conorm to T .

6 Aggregation of Functions

Obviously, the class of quasiconcave functions that map Rn into [0,1] is exactly the
class of TM-quasiconcave functions and the class of quasiconvex functions that map
Rn into [0,1] is exactly the class of SM-quasiconvex functions. Similarly, the class
of quasimonotone functions that map Rn into [0,1] is exactly the class of (TM,SM)-
quasimonotone functions. As SM = T ∗

M, we have, by (viii) in Definition 5.1, that
this is the class of TM-quasimonotone functions. Moreover, since the minimum tri-
angular norm TM is the maximal t-norm, and the drastic product TD is the minimal
t-norm, we have the following consequence of Definition 5.1.

Proposition 6.1. Let X be a nonempty convex subset of Rn, μ be a function, μ :
Rn → [0,1], and T be a triangular norm.

(i) If μ is (strictly, semistrictly) quasiconcave on X, then μ is (strictly,
semistrictly) T -quasiconcave on X , respectively.
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(ii) If μ is (strictly, semistrictly) T -quasiconcave on X, then μ is also (strictly,
semistrictly) TD-quasiconcave on X, respectively.

Analogously, the maximum triangular conorm SM is the minimal conorm and the
drastic sum SD is the maximal conorm, hence Proposition 6.1 can be reformulated
for S-quasiconvex functions.

It is easy to show that there exist T -quasiconcave functions that are not quasicon-
cave (see [4]), and there exist strictly or semistrictly T -quasiconcave functions that
are not strictly or semistrictly quasiconcave. Nevertheless, in the one-dimensional
Euclidean space R, the following proposition is of some interest.

Proposition 6.2. Let X be a nonempty convex subset of R, let T be a triangular
norm, and let μ : R → [0,1] be upper-normalized in the sense that μ(x̄) = 1 for
some x̄ ∈ X. If μ is (strictly, semistrictly) T -quasiconcave on X, then μ is (strictly,
semistrictly) quasiconcave on X.

Analogous propositions are valid for S-quasiconvex functions and for T -quasi-
monotone functions.

Proposition 6.3. Let X be a nonempty convex subset of R, let S be a triangular
conorm, and let μ : R → [0,1] be lower-normalized in the sense that μ(x̂) = 0 for
some x̂ ∈ X. If μ is (strictly, semistrictly) S-quasiconvex on X, then μ is (strictly,
semistrictly) quasiconvex on X.

To prove Proposition 6.3 we shall use the following relationship between
T -quasiconcave and S-quasiconvex functions.

Proposition 6.4. Let X be a nonempty convex subset of Rn, let T be a triangular
norm and let μ : Rn → [0,1] be (strictly, semistrictly) T -quasiconcave on X. Then
μ∗ = 1−μ is (strictly, semistrictly) T ∗-quasiconvex on X, where T ∗ is the t-conorm
dual to T .

Proof. The proof follows directly from Definition 5.1 and the relation T ∗(a,b) =
1−T(1−a,1−b).

The following proposition is a consequence of Propositions 6.2 and 6.3.

Proposition 6.5. Let X be a nonempty convex subset of R, let T and S be a t-norm
and t-conorm, respectively, and let μ : R → [0,1] be normalized. If μ is (strictly,
semistrictly) (T,S)-quasimonotone on X, then μ is (strictly, semistrictly) quasi-
monotone on X.

In what follows we shall use the above relationship between T -quasiconcave
and T ∗-quasiconvex functions restricting ourselves only to T -quasiconcave func-
tions. Usually, with some exceptions, the dual formulation for S-quasiconvex func-
tions will not be explicitly mentioned. It turns out that the assumption of (upper,
lower)-normality of μ is essential for the validity of Propositions 6.2 and 6.3.

Proposition 6.6. Let X be a nonempty convex subset of Rn, let T and T ′ be t-norms
and let μi : Rn → [0,1], i = 1,2, be T -quasiconcave on X. If T ′ dominates T , then
ϕ : Rn → [0,1] defined by ϕ(x) = T ′(μ1(x),μ2(x)), is T -quasiconcave on X.
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Proof. As μi, i = 1,2, are T -quasiconcave on X , we have μi(λ x + (1 − λ )y) ≥
T (μi(x),μi(y)) for every λ ∈ [0,1] and x,y ∈ X . By monotonicity of T ′, we obtain

ϕ(λ x +(1−λ )y) = T ′(μ1(λ x +(1−λ )y),μ2(λ x +(1−λ )y))
≥ T ′(T (μ1(x),μ1(y)),T (μ2(x),μ2(y))).

(25)

Using the fact that T ′ dominates T , we obtain

T ′(T (μ1(x),μ1(y)),T (μ2(x),μ2(y)))
≥ T (T ′(μ1(x),μ2(x)),T ′(μ1(y),μ2(y))) = T (ϕ(x),ϕ(y)).

(26)

Combining (25) and (26), we obtain the required result.

Corollary 6.1. Let X be a convex subset of Rn, let T be a t-norm, and let μi : Rn →
[0,1], i = 1,2, be T -quasiconcave on X. Then ϕi : Rn → [0,1], i = 1,2, defined by
ϕ1(x) = T (μ1(x),μ2(x)) and ϕ2(x) = TM(μ1(x),μ2(x)), are also T-quasiconcave
on X.

Proof. The proof follows from the preceding proposition and the evident fact that
T dominates T and TM dominates every t-norm T .

The following results of this type are also of some interest, for proofs, see [4].

Proposition 6.7. Let X be a convex subset of Rn, and let μi : Rn → [0,1], i =
1,2, . . . ,m, be upper normalized TD-quasiconcave on X such that Core(μ1)∩ ·· · ∩
Core(μm) �= /0. Let Am : [0,1]m → [0,1] be an aggregating mapping. Then ψ : Rn →
[0,1] defined by ψ(x) = Am

(
μ1(x), . . . ,μm(x)

)
is upper-starshaped on X.

Proposition 6.8. Let X be a convex subset of Rn, and let μi : Rn → [0,1], i =
1,2, . . . ,m, be upper normalized TD-quasiconcave on X such that Core(μ1) = · · · =
Core(μm) �= /0. Let Am : [0,1]m → [0,1] be a strictly monotone aggregating map-
ping. Then ψ : Rn → [0,1] defined for x ∈ Rn by ψ(x) = Am(μ1(x), . . . ,μm(x)) is
TD-quasiconcave on X.

The above proposition allows for constructing new TD-quasiconcave function on
X ⊂ Rn from the original TD-quasiconcave functions on X ⊂ Rn by using a strictly
monotone aggregating operator, e.g., the t-conorm SM. It is of interest to note that
the condition Core(μ1) = · · · = Core(μm) �= /0 is essential for TD-quasiconcavity of
ψ in Proposition 6.8.

The following definition extends the concept of domination between two
triangular norms to aggregation operators.

Definition 6.1. An aggregation operator A = {An}∞
n=1 dominates an aggregation op-

erator A′ = {A′
n}∞

n=1, if, for all m ≥ 2 and all tuples (x1,x2, . . . ,xm) ∈ [0,1]m and
(y1,y2, . . . ,ym) ∈ [0,1]m, the following inequality holds

Am(A′
2(x1,y1), . . . ,A′

2(xm,ym))
≥ A′

2(Am(x1,x2, . . . ,xm),Am(y1,y2, . . . ,ym)).
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The following proposition generalizes Proposition 6.6.

Proposition 6.9. Let X be a convex subset of Rn, let A = {An}∞
n=1 be an ag-

gregation operator, T be a t-norm and let μi : Rn → [0,1], i = 1,2, . . . ,m, be
T -quasiconcave on X, and let A dominates T . Then ϕ : Rn → [0,1] defined by
ϕ(x) = Am(μ1(x), . . . ,μm(x)) is T -quasiconcave on X.

Proof. As μi , i = 1,2, . . . ,m, are T -quasiconcave on X , we have μi(λ x + (1 −
λ )y) ≥ T (μi(x),μi(y)) for every λ ∈ (0,1) and each x,y ∈ X . By monotonicity of
aggregating mapping Am, we obtain

ϕ(λ x +(1−λ )y)
= Am(μ1(λ x +(1−λ )y), . . . ,μm(λ x +(1−λ )y))
≥ Am(T (μ1(x),μ1(y)), . . . ,T (μm(x),μm(y))).

(27)

Using the fact that A dominates T , we obtain

Am(T (μ1(x),μ1(y)), . . . ,T (μm(x),μm(y)))
≥ T (Am(μ1(x), . . . ,μm(x)),Am(μ1(y), . . . ,μm(y)))
= T (ϕ(x),ϕ(y)),

(28)

where T = T (2). Combining (27) and (28), we obtain the required result.
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