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Abstract. We propose to use symmetries as a general approach to maintaining dif-
ferent types of uncertainty, and we show how the symmetry approach can help,
especially in economics-related applications.

1 Why Symmetries

Formulation of the Problem. Our knowledge is rarely complete, we rarely have
absolutely certainty. Uncertainty is present in different areas of knowledge. As a re-
sult, in many different areas of knowledge, different techniques and approaches have
been developed to describe and process uncertainty. For example, in logical-type
descriptions of knowledge typical for expert systems and Artificial Intelligence, for-
malisms like probabilistic logic and fuzzy logic have been developed to process un-
certainty. In engineering-oriented probability-type descriptions, probability-related
approaches have been developed such as the Dempster-Shafer approach, imprecise
probabilities approach, etc.
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To solve complex real-life problems, we must takes into account knowledge form
different areas. Since these different pieces of knowledge come with uncertainty, we
must therefore jointly manage different types of uncertainty. We therefore need a
general approach that would take care of different types of uncertainty.

Symmetry: A Fundamental Property of the Physical World. The reason why we
are gaining and processing knowledge is that we want to predict the processes of the
physical world, predict the results of different possible actions – and thus, select the
action whose results are most beneficial.

On the fundamental level, the very possibility to predict the processes and the
results of different actions comes from the fact that we have observed similar situa-
tions, we remember the outcomes of these similar situations, and we expect that the
outcomes will be similar.

For example, if in the past, we dropped a ball several times and every time, it fell
down, then in a new situation we expect the ball to fall down as well. In the past,
we may have been at different locations, at different moments of time, oriented
differently, but the results were the same. Thus, we conclude that the outcome of
this simple drop-the-ball experiment will be the same.

In mathematical terms, the similarity between different situations corresponds to
symmetry, and the fact that the result is the same for similar situations is usually
described as invariance.

In these terms, we can say, e.g., that the results of the “drop-the-ball” gravita-
tional experiment are invariant relative to shifting the location, rotating (= changing
orientation), and shifting in time.

The notion of symmetry is not only methodologically fundamental: symmetries
are one of the main tools of modern physics; see, e.g., [4].

Because of the fundamental nature of symmetries in describing the physical
world, it is reasonable to try to use symmetries for describing uncertainty as well.

In this paper, we describe the basic symmetries, explain how they explain the
basic uncertainty-related formulas, and show they symmetries also help in explain-
ing and designing uncertainty-related algorithms – thus providing a reasonable
foundation for integrated uncertainty measurement.

Basic Symmetries: Scaling and Shift. In applied computations, we deal with the
numerical values of a physical quantity. For most quantity, however, the numeri-
cal values depend not only on the quantity itself, but also on the unit in which we
measure this quantity. For example, we can measure length in feet or in cm.

Since the choice of a measuring unit is usually an arbitrary convention, it is rea-
sonable to require that all the formulas remain invariant when we change these ar-
bitrary units. How can we describe this invariance in precise terms? If we replace
a measuring unit by another unit which is λ times smaller, then the corresponding
numerical values are multiplied by λ : x → λ · x. For example, when we replace a
meter with a 100 times smaller unit (cm), all numerical values are multiplied by
100: 1.7 m becomes 170 cm. This transformation is called scaling.

For many units such as time (and temperature), there is another arbitrariness: in
selecting the starting point. It is well known that in different calendars, the starting
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date is different. If we replace the original starting point with a new one which is
s units smaller, then the original numerical value increases by s: x → x + s. This
transformation is called shift.

Together, scaling and shifts form linear transformations x → a · x + b.

Basic Nonlinear Symmetries. Sometimes, in addition to linear symmetries, a sys-
tem also has nonlinear symmetries. In this case, the class of all possible symmetries
contains all linear functions and some nonlinear functions as well.

If a system is invariant under transformations f and g, then we can conclude
that it is invariant also under their composition f ◦ g, and also invariant under the
inverse transformation f−1. In mathematical terms, this means that symmetries form
a group.

To describe a generic linear transformation, we need 2 parameters: a and b. To
describe a more general nonlinear transformation, we may need more parameters. In
practice, at any given moment of time, we can only store and describe finitely many
parameters. Thus, it is reasonable to restrict ourselves to finite-dimensional groups,
i.e., groups all elements of which can be characterized by finitely many parameters.
It is also reasonable to assume that the group is connected (i.e., there is a continu-
ous transition between every two transformations) and that the dependence on the
parameters is smooth (differentiable) – i.e., in mathematical terms, that we have a
Lie group. How can we describe all finite-dimensional Lie groups of transforma-
tions of the set of real numbers R onto itself that contain all linear transformations?
Norbert Wiener asked [19] to classify such groups for an n-dimensional space with
arbitrary n, and this classification was obtained in [16]. In our case (when n = 1)
the only possible groups are the group of all linear transformations and the group of
all fractionally-linear transformations x → (a · x + b)/(c · x + d). In both cases the
group consists only of fractionally linear transformations.

Symmetries Explain the Basic Formulas of Different Uncertainty Formalisms.
Let us show that the above basic symmetries provide a unified basis for explaining
many uncertainty-related heuristic formulas. These results are described, in detail,
in [11].

Let us start with neural networks, in which the main heuristic (empirically justi-
fied) formula is the formula for the nonlinear activation function f (x) = 1/(1+e−x).
As we have mentioned, a change in the starting point of a measuring scale replaces
the numerical value x with a new value x+ s. It is reasonable to require that the new
output f (x + s) be equivalent to the original one f (x) modulo an appropriate trans-
formation. Since, as we mentioned, all appropriate transformations are fractionally
linear, we thus conclude that f (x+ s) must be related to f (x) by a fractionally linear
transformation, i.e., that f (x+ s) = (a(s) · f (x)+b(s))/(c(s) · f (x)+d(s)) for some
values a(s), . . . , d(s). Differentiating both sides by s and equating s to 0, we get
a differential equation for the unknown function f (x) whose solution is the above
activation function – which can thus be explained by symmetries.

If, instead of a shift, we consider scaling of x, we get a different activation
function – which has also been successfully used in neural networks.
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Similarly, symmetries can help explain heuristic formulas of fuzzy logic. Indeed,
in fuzzy logic, the main quantity is the certainty (membership) degree a. One way
to define the certainty degree a of a statement S is by polling n experts and taking,
as a = m/n, the fraction of those who believe S to be true. To make this estimate
more accurate, we can go beyond top experts and ask n′ other experts as well. In
the presence of top experts, however, other experts may either remain shyly silent
or shyly confirm the majority’s opinion. In the first case, the degree reduces from
a = m/n to a′ = m/(n + n′), i.e., to a′ = λ ·a, where λ = n/(n + n′). In the second
case, a changes to a′ = (m+ m′)/(n + m′) – a linear transformation. In general, we
get all linear transformations.

We can describe the degree of certainty d(S) in a statement S by its own de-
gree of certainty, or, alternatively, by a degree of certainty in, say, S &S0 for some
statement S0. It is reasonable to require that the corresponding transformation
d(S) → d(S &S0) belong to the finite-dimensional transformation group that con-
tains all linear transformations – thus, that it is fractionally linear. This requirement
explains many empirically efficient t-norms and t-conorms.

Other uncertainty-related formulas can also be similarly explained [11].

What We Do in This Paper. In this paper, on two detailed examples, we show that
not only the basic formulas, but many other aspects of uncertainty can be explained
in terms of symmetries: heuristic and semi-heuristic approaches can be justified
by appropriate natural symmetries, and symmetries can help in designing optimal
algorithms.

2 Symmetries Help in Explaining Existing Algorithms: Case
Study

Practical Need for Uncertainty Propagation. In many practical situations, we are
interested in the value of a quantity y which is difficult or even impossible to mea-
sure directly. To estimate this difficult-to-measure quantity y, we measure or esti-
mate related easier-to-measure quantities x1, . . . ,xn which are related to the desired
quantity y by a known relation y = f (x1, . . . ,xn). Then, we apply the relation f to the
estimates x̃1, . . . , x̃n for xi and produce an estimate ỹ = f (x̃1, . . . , x̃n) for the desired
quantity y.

In the simplest cases, the relation f (x1, . . . ,xn) may be an explicit expression:
e.g., if we know the current x1 and the resistance x2, then we can measure the voltage
y by using Ohm’s law y = x1 ·x2. In many practical situations, the relation between xi

and y is much more complicated: the corresponding algorithm f (x1, . . . ,xn) is not an
explicit expression, but a complex algorithm for solving an appropriate non-linear
equation (or system of equations).

Estimates are never absolutely accurate:

• measurements are never absolutely precise, and
• expert estimates can only provide approximate values of the directly measured

quantities x1, . . . ,xn.
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In both cases, the resulting estimates x̃i are, in general, different from the actual

(unknown) values xi. Due to these estimation errors Δxi
def= x̃i−xi, even if the relation

f (x1, . . . ,xn) is exact, the estimate ỹ = f (x̃1, . . . , x̃n) is different from the actual value

y = f (x1, . . . ,xn): Δy
def= ỹ− y �= 0.

(In many situations, when the relation f (x1, . . . ,xn) is only known approxi-
mately, there is an additional source of the approximation error in y caused by the
uncertainty in knowing this relation.)

It is therefore desirable to find out how the uncertainty Δxi in estimating xi affects
the uncertainty Δy in the desired quantity, i.e., how the uncertainties Δxi propagate
via the algorithm f (x1, . . . ,xn).

Propagation of Probabilistic Uncertainty. Often, we know the probabilities of
different values of Δxi. For example, in many cases, we know that the approximation
errors Δxi are independent normally distributed with zero mean and known standard
deviations σi; see, e.g., [14].

In this case, we can use known statistical techniques to estimate the resulting
uncertainty Δy in y. For example, since we know the probability distributions, we
can simulate them in the computer, i.e., use the Monte-Carlo simulation techniques
to get a sample population Δy(1), . . . ,Δy(N) of the corresponding errors Δy. Based
on this sample, we can then estimate the desired statistical characteristics of the
desired approximation error Δy.

Propagation of Interval Uncertainty. In many other practical situations, we do not
know these probabilities, we only know the upper bounds Δi on the (absolute values
of) the corresponding measurement errors Δxi: |Δxi| ≤ Δ .

In this case, based on the known approximation x̃i, we can conclude that the
actual (unknown) value of i-th auxiliary quantity xi can take any value from the
interval

xi = [x̃i −Δi, x̃i + Δi]. (1)

To find the resulting uncertainty in y, we must therefore find the range y = [y,y] of
possible values of y when xi ∈ xi:

y = f (x1, . . . ,xn)
def= { f (x1, . . . ,xn) |x1 ∈ x1, . . . ,xn ∈ xn}.

Computations of this range under interval uncertainty is called interval computa-
tions; see, e.g., [6].

Comment. It is well known that processing fuzzy uncertainty can be reduced to
processing interval uncertainty: namely, the α-cut y(α) for y = f (x1, . . . ,xn) is equal
to the range f (x1(α), . . . ,xn(α)); see, e.g., [13].

Linearization. In many practical situations, the approximation errors Δxi = x̃i − xi

are small. In such situations, we can expand the expression for Δy = ỹ− y in Taylor
series in Δxi and keep only the linear terms in this expansion. In this case, we get

Δy = c1 · Δx1 + . . . + cn · Δxn, where ci
def=

∂ f
∂xi

(x̃1, . . . , x̃n). So if |Δxi| ≤ Δ , then

|Δy| ≤ Δ , where
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Δ = |c1| ·Δ1 + . . .+ |cn| ·Δn. (2)

For complex f , we can find ci by numerical differentiation. To estimate n par-
tial derivatives, we need n calls to f . For large n and complex f , this is too
time-consuming.

Cauchy Deviate Method. For large n, we can further reduce the number of calls to
f if we use a special technique of Cauchy-based Monte-Carlo simulations, which
enables us to use a fixed number of calls to f (≈ 200) for all possible values n;
see, e.g., [7]. This method uses Cauchy distribution – i.e., probability distributions

with the probability density ρ(z) =
Δ

π · (z2 + Δ 2)
; the value Δ is called the (scale)

parameter of this distribution.
Cauchy distribution has the following property that we will use: if z1, . . . ,zn are

independent random variables, and each of zi is distributed according to the Cauchy
law with parameter Δi, then their linear combination

z = c1 · z1 + . . .+ cn · zn (3)

is also distributed according to a Cauchy law, with a scale parameter Δ = |c1| ·Δ1 +
. . .+ |cn| ·Δn.

Therefore, if we take random variables δi which are Cauchy distributed with
parameters Δi, then the value

δ def= f (x̃1, . . . , x̃n)− f (x̃1 − δ1, . . . , x̃n − δn) =

c1 ·δ1 + . . .+ cn ·δn (4)

is Cauchy distributed with the desired parameter Δ =
n
∑

i=1
|ci| ·Δi.

Need for Intuitive Explanation. The Cauchy deviate method is one of the most
efficient techniques for processing interval and fuzzy data. However, this method
has a serious drawback: while the corresponding technique is mathematically valid,
it is somewhat counterintuitive – we want to analyze errors which are located instead
a given interval [−Δ ,Δ ], but this analysis use Cauchy simulated errors which are
located, with a high probability, outside this interval.

It is therefore desirable to come up with an intuitive explanation for this
technique.

Our Main Idea: Use Neurons. Our explanation comes from the idea promoted
by Paul Werbos, the author of the backpropagation algorithm for training neural
networks. Traditionally, neural networks are used to simulate a deterministic depen-
dence; Paul Werbos suggested that the same neural networks can be used to describe
stochastic dependencies as well – if as one of the inputs, we take a standard random
number r uniformly distributed on the interval [0,1]; see, e.g., [18] and references
therein.
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In view of this idea, as a natural probability distribution, we can take the result
of applying a neural network to this random number. The simplest case is when we
have a single neuron. In this case, we apply the activation (input-output) function
f (y) corresponding to this neuron to the random number r.

Using Appropriate Symmetries. In [11], we described all activation functions f (x)
which are optimal with respect to reasonable symmetry-based criteria. It turns out
that all such functions have the form a + b · f0(K · y + l), where f0(y) is either a
linear function, or a fractional-linear function, or f0(y) = exp(y), or the logistic
(sigmoid) function f0(y)= 1/(1+exp(−y)), or f0(y)= tan(y). The logistic function
is indeed the most popular activation function for actual neural networks, but others
are also used. For our purpose, we will use the tangent function: its application of
the tangent function to the standard random number r indeed leads to the desired
Cauchy distribution.

3 Symmetries Help in Designing Optimal Algorithms: Case
Study

Symmetries not only help to find the appropriate representations of uncertainty and
appropriate formulas for processing uncertainty: symmetries also help to select the
optimal algorithms for implementing the corresponding mathematical formulas.

Fixed Points: A Practical Problem. In many real-life situations, we have dynami-
cal situations which eventually reach an equilibrium.

For example, in economics, when a situation changes, prices start changing (often
fluctuating) until they reach an equilibrium between supply and demand.

In transportation, when a new road is built, some traffic moves to this road to
avoid congestion on the other roads; this causes congestion on the new road, which,
in its turn, leads drivers to go back to their previous routes, etc. [15].

To describe the problem of finding the equilibrium state(s), we must first be able
to describe all possible states. In this paper, we assume that we already have such a
description, i.e., that we know the set X of all possible states.

We must also be able to describe the fact that many states x ∈ X are not equilib-
rium states. For example, if the price of some commodity (like oil) is set up too high,
it will become profitable to explore difficult-to-extract oil fields; as a new result, the
supply of oil will increase, and the prices will drop.

Similarly, as we have mentioned in the main text, if too many cars move to a new
road, this road may become even more congested than the old roads initially were,
and so the traffic situation will actually decrease – prompting people to abandon this
new road.

To describe this instability, we must be able to describe how, due to this instabil-
ity, the original state x gets transformed in the next moment of time. In other words,
we assume that for every state x ∈ X , we know the corresponding state f (x) at the
next moment of time.

For non-equilibrium states x, the change is inevitable, so we have f (x) �= x. The
equilibrium state x is the state which does not change, i.e., for which f (x) = x. Thus,
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we arrive at the following problem: We are given a set X and a function f : X → X ;
we need to find an element x for which f (x) = x.

In mathematical terms, an element x for which f (x) = x is called a fixed point of
the mapping f . So, there is a practical need to find fixed points.

The Problem of Computing Fixed Points. Since there is a practical need to com-
pute the fixed points, let us give a brief description of the existing algorithms for
computing these fixed points; see, e.g., [1].

Straightforward Algorithm: Picard Iterations. At first glance, the situation seems
very simple and straightforward. We know that if we start with a state x at some
moment of time, then in the next moment of time, we will get a state f (x). We
also know that eventually, we will get an equilibrium. So, a natural thing to do is to
simulate how the actual equilibrium will be reached.

In other words, we start with an arbitrary (reasonable) state x0. After we know
the state xk at the moment k, we predict the state xk+1 at the next moment of time as
xk+1 = f (xk). This algorithm is called Picard iterations after a mathematician who
started efficiently using it in the 19 century.

If the equilibrium is eventually achieved, i.e., if in real life the process converges
to an equilibrium point x, then Picard’s iterations are guaranteed to converge. Their
convergence may be somewhat slow – since they simulate all the fluctuations of the
actual convergence – but eventually, we get convergence.

Situations When Picard’s Iterations do not Converge: Economics. In some
important practical situations, Picard iterations do not converge.

The main reason is that in practice, we can have panicky fluctuations which pre-
vent convergence. Of course, one expects fluctuations. For example, if the price
of oil is high, then it will become profitable for companies to explore and exploit
new oil fields. As a result, the supply of oil will drastically increase, and the price
of oil will go down. Since this is all done in a unplanned way, with different compa-
nies making very rough predictions, it is highly probable that the resulting oil supply
will exceed the demand. As a result, prices will go down, oil production in
difficult-to-produce oil areas will become unprofitable, supply will go down, etc.

Such fluctuations have happened in economics in the past, and sometimes, not
only they did not lead to an equilibrium, they actually led to deep economic crises.

How Can We Handle these Situation: A Natural Practical Solution. If the natural
Picard iterations do not converge, this means that in practice, there is too much of a
fluctuation. When at some moment k, the state xk is not an equilibrium, then at the
next moment of time, we have a state xk+1 = f (xk) �= xk. However, this new state
xk+1 is an not necessarily closer to the equilibrium: it “over-compensates” by going
too far to the other side of the desired equilibrium.

For example, we started with a price xk which was too high. At the next mo-
ment of time, instead of having a price which is closer to the equilibrium, we may
get a new price xk+1 which is too low – and may even be further away from the
equilibrium than the previous price.

In practical situations, such things do happen. In this case, to avoid such weird
fluctuations and to guarantee that we eventually converge to the equilibrium point,
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a natural thing is to “dampen” these fluctuations: we know that a transition from xk

to xk+1 has gone too far, so we should only go “halfway” (or even smaller piece of
the way) towards xk+1.

How can we describe it in natural terms? In many practical situations, there is a
reasonable linear structure on the set X on all the states, i.e., X is a linear space. In
this case, going from xk to f (xk) means adding, to the original state xk, a displace-
ment f (xk)− xk. Going halfway would then mean that we are only adding a half of

this displacement, i.e., that we go from xk to xk+1 = xk +
1
2
· ( f (xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f (xk). (5)

The corresponding iteration process is called Krasnoselskii iterations. In general,
we can use a different portions α �= 1/2, and we can also use different portions αk

on different moments of time. In general, we thus go from xk to xk+1 = xk + αk ·
( f (xk)− xk), i.e., to

xk+1 = (1−αk) · xk + αk · f (xk). (6)

These iterations are called Krasnoselski-Mann iterations.

Practical Problem: The Rate of Convergence Drastically Depends on αi. The
above convergence results show that under certain conditions on the parameters αi,
there is a convergence. From the viewpoint of guaranteeing this convergence, we
can select any sequence αi which satisfies these conditions. However, in practice,
different choice of αi often result in drastically different rate of convergence.

To illustrate this difference, let us consider the simplest situation when already
Picard iterations xn+1 = f (xn) converge, and converge monotonically. Then, in prin-
ciple, we can have the same convergence if instead we use Krasnoselski-Mann iter-
ations with αn = 0.01. Crudely speaking, this means that we replace each original
step xn → xn+1 = f (xn), which bring xn directly into xn+1, by a hundred new smaller
steps. Thus, while we still have convergence, we will need 100 times more iterations
than before – and thus, we require a hundred times more computation time.

Since different values αi lead to different rates of convergence, ranging from
reasonably efficient to very inefficient, it is important to make sure that we select
optimal values of the parameters αi, values which guarantee the fastest convergence.

Idea: From the Discrete Iterations to the Continuous Dynamical System. In this
section, we will describe the values αi which are optimal in some reasonable sense.
To describe this sense, let us go back to our description of the dynamical situation.
In the above text, we considered observations made at discrete moments of time;
this is why we talked about current moment of time, next moment of time, etc. In
precise terms, we considered moments t0, t1 = t0 + Δ t, t2 = t0 + 2Δ t, etc.

In principle, the selection of Δ t is rather arbitrary. For example, in terms of prices,
we can consider weekly prices (for which Δ t is one week), monthly prices, yearly
prices, etc. Similarly, for transportation, we can consider daily, hourly, etc. descrip-
tions. The above discrete-time description is, in effect, a discrete approximation to
an actual continuous-time system.
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Similarly, Krasnoselski-Mann iterations xk+1 − xk = αk · ( f (xk) − xk) can be
viewed as a discrete-time approximations to a continuous dynamical system which
leads to the desired equilibrium. Specifically, the difference xk+1 − xk is a natural

discrete analogue of the derivative
dx
dt

, the values αk can be viewed as discretized

values of an unknown function α(t), and so the corresponding continuous system
takes the form

dx
dt

= α(t) · ( f (x)− x). (7)

A discrete-time system is usually a good approximation to the corresponding
continuous-time system. Thus, we can assume that, vice versa, the above contin-
uous system is a good approximation for Krasnoselski-Mann iterations.

In view of this fact, in the following text, we will look for an appropriate (optimal)
continuous-time system (7).

Scale Invariance: Natural Requirement on a Continuous-Time System. In de-
riving the continuous system (7) from the formula for Krasnoselski-Mann iterations,
we assumed that the original time interval Δ t between the two consecutive iterations
is 1. This means, in effect, that to measure time, we use a scale in which this interval
Δ t is a unit interval.

As we have mentioned earlier, the choice of the time interval Δ t is rather arbitrary.
If we make a different choice of this discretization time interval Δ t ′ �= Δ t, then we
would get a similar dynamical system, but described in a different time scale, with a
different time interval Δ t ′ taken as a measuring unit. As a result of “de-discretizing”
this new system, we would get a different continuous system of type (7) – a system
which differs from the original one by a change in scale.

In the original scale, we identified the time interval Δ t with 1. Thus, the time
t in the original scale means physical time T = t ·Δ t. In the new scale, this same

physical time corresponds to the time t ′ =
T

Δ t ′
= t · Δ t

Δ t ′
.

If we denote by λ =
Δ t ′

Δ t
the ratio of the corresponding units, then we conclude

that the time t in the original scale corresponds to the time t ′ = t/λ in the new scale.
Let us describe the system (7) in terms of this new time coordinate t ′. From the
above formula, we conclude that t = λ · t ′; substituting t = λ · t ′ and dt = λ ·dt ′ into

the formula (7), we conclude that
1
λ
· dx

dt ′
= α(λ · t ′) · ( f (x)− x), i.e., that

dx
dt ′

= (λ ·α(λ · t ′)) · ( f (x)− x). (8)

It is reasonable to require that the optimal system of type (7) should not
depend on what exactly time interval Δ t we used for discretization.

Conclusion: Optimal Krasnoselski-Mann Iterations Correspond to αk = c/k.
Since a change of the time interval corresponds to re-scaling, this means the
system (7) must be scale-invariant, i.e., to be more precise, the system (8) must have
exactly the same form as the system (7) but with t ′ instead of t, i.e., the form
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dx
dt ′

= α(t ′) · ( f (x)− x). (9)

By comparing the systems (8) and (9), we conclude that we must have λ ·α(λ ·t ′) =

a(t ′) for all t ′ and λ . In particular, if we take λ = 1/t ′, then we get α(t ′) =
α(1)

t ′
,

i.e., α(t ′) = c/t ′ for some constant c (= α(1)).
With respect to the corresponding discretized system, this means that we take

αk = α(k) = c/k.

This Selection Works Well. Our experiments on transportation problems confirmed
that this procedure converges [2, 3].

The choice ak = 1/k have been successfully used in other applications as well;
see, e.g., [17] and references therein.

4 Other Economics-Related Examples: In Brief

In economics, scale-invariance explains empirical formulas for economic fluctua-
tions [9] and for risk analysis [12], and the use of Choquet integrals [10]. A com-
bination of scale- and shift-invariance explains Hurwicz’s empirical formula for
decision making under interval uncertainty [5].

Nonlinear transformation groups explain heuristic formulas describing volatility
and financial risk [12].

5 Conclusion

One of the main objectives of science is to predict future events, in particular, the
results of different actions. Many such predictions are based on the notion of invari-
ance: we already know how similar situations evolved, so we can conclude that the
current situation will evolve in a similar way. As a result, the ideas based on invari-
ance and symmetry are among the main tools of modern physics: these ideas provide
a precise justification for empirically justified heuristic formulas, these ideas lead to
efficient algorithms for solving physical problems.

In this paper, we show that similar invariance ideas can explain heuristic for-
mulas and algorithms related to processing different types of uncertainty, and that
these ideas lead to efficient algorithms for solving problems under uncertainty. The
efficiency of invariance ideas is illustrated on two detailed examples; several other
applications of these ideas are overviewed. The variety of these applications make
us conjecture that the symmetry ideas can form a basis for integrated uncertainty
management.
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