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Abstract. In this paper, we shall survey some connections between the theory of
set-valued random variables and Choquet theory. We shall focus on investigating
some results of the relationships between the distributions of set-valued random
variables and capacities, and also some connections between the Aumann integral
and the Choquet integral. Then we shall review some results on laws of large num-
bers (LLN’s) for set-valued random variables and for capacities, and point out some
relations between these two kinds of LLN’s. Finally we shall give a new strong LLN
of exchangeable random variables for capacities.

1 Introduction

It is well known that classical probability measures and linear mathematical expec-
tations are powerful tools for dealing with stochastic phenomena. However, there
are uncertain phenomena which can not be easily modeled by using additive mea-
sure and linear mathematical expectations in many applied areas. For example,
economists have found the Allais paradox and the Ellsberg paradox (cf. [1, 15])
of the expected utility theory based on classical probability theory in financial
economics. So it is necessary to examine non-additive measures and nonlinear
expectations with their applications.

In 1953, Choquet [10] introduced concepts of capacities and the Choquet inte-
gral. Capacities are non-additive measures and the Choquet integral can be consid-
ered as one kind of nonlinear expectations with respect to capacities. Many papers
developed the Choquet theory and its applications, for examples, see [9, 14, 18, 34,
37, 38, 45, 46]. In 1973, Sugeno [41] defined another nonlinear expectation with re-
spect to non-additive measures, called Sugeno integral in literature. For more results
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about Sugeno integral, including connections between Choquet integral and Sugeno
integral, one may refer to [19].

There is also another way to deal with uncertain phenomena, i.e., set-valued ran-
dom variables (also called random sets, multifunctions, correspondences in litera-
ture) and the Aumann integral (cf. [4]). The start of the theory of random sets may be
when Aumann used it to discuss the competitive equilibria problem [5]. The theory
of set-valued random variables and set-valued stochastic processes and its applica-
tions were developed very deeply and extensively in the past 40 years. For instance,
see [3, 7, 23, 24, 28, 30, 44, 48].

It is necessary to investigate further the connections between the theory of set-
valued random variables and Choquet theory. In 1967, Dempster [13] introduced
the concepts of upper and lower probabilities induced by a random set. Both of
upper and lower probabilities are special capacities with good properties. The lower
probability was called belief function by Nguyen in [33, 34]. Actually the lower
and upper probabilities can be considered as lower and upper distributions of the
random set. And also lower and upper distributions can be axiomatized as that we
have done in classical probabilities. On the other hand, if given a capacity satisfying
the axioms of lower or upper distribution, we can find a set-valued random variable
such that its distribution is just equal to the given capacity. This result is called
Choquet Theorem. It is one of bridges between the theory of random sets and the
theory of Choquet theory (see Section 3, for details).

In this paper we focus on surveying some results of the relationships between the
distributions of set-valued random variables and capacities, and also some connec-
tions between the Aumann integral and the Choquet integral. More interpretation of
our motivation about why should we do such work can be seen at the beginning of
Section 3.

The organization of the paper is as follows. In Section 2, we shall recall some
basic concepts and results of capacities and the Choquet integral. In Section 3,
we shall give definitions about set-valued random variables and the Aumann inte-
gral, discuss the relationships between totally monotone capacities and random sets,
and then survey some connections between the Aumann integral and the Choquet
integral.

On the other hand, as we know, laws of large numbers are the foundation for sta-
tistical inferences. In Section 4, we shall review some literature about laws of large
numbers for random sets and also for capacities, and we shall point out their some
connection. Finally we give a new strong law of large numbers of exchangeable
random variable for capacities.

2 Preliminaries for Capacities and Choquet Integral

Assume that (X,d) is a Polish space, B is its Borel σ -algebra and P is the set of all
probabilities on B, R is the set of all natural numbers.

Definition 2.1. A set function ν : B → [0,1] is called a (Choquet) capacity if it
satisfies the following two conditions
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(c1) ν( /0) = 0, ν(X) = 1;
(c2) ν(A) ≤ ν(B) whenever A ⊆ B and A,B ∈ B.

The conjugate ν : B → [0,1] of ν is defined by ν(A) = 1−ν(Ac).

A capacity ν is convex if ν(A
⋃

B) ≥ ν(A)+ ν(B)− ν(A
⋂

B) for all A,B ∈ B. A
capacity ν on B is totally monotone if for any n ≥ 2, and any {A1, · · · ,An} ⊆ B,

ν
( n⋃

i=1

Ai

)
≥ ∑

/0 �=I⊆{1,··· ,n}
(−1)|I|+1ν

(⋂

i∈I

Ai

)
, (1)

where |I| is the cardinality of the set I. Obviously, a totally monotone capacity is
convex.

A capacity ν on B is infinitely alternating if for any n ≥ 2, and any {A1, · · · ,An}
⊆ B,

ν
( n⋂

i=1

Ai

)
≤ ∑

/0 �=I⊆{1,··· ,n}
(−1)|I|+1ν

(⋃

i∈I

Ai

)
, (2)

It is easy to show that a capacity ν is infinitely alternating if and only if its conjugate
ν is totally monotone. Any probability on B are both totally monotone and infinitely
alternating.

A capacity ν on B is continuous from below if ν(Bn) ↑ ν(B) for all sequences
Bn ∈ B, Bn ↑ B. ν is continuous from above if ν(Bn) ↓ ν(B) for all sequences Bn ∈
B, Bn ↓ B. A capacity with both below and above continuous is called continuous.

A capacity ν is a mass if ν(A
⋃

B) = ν(A)+ν(B) for any A,B∈B with A
⋂

B = /0.
A capacity ν is null-additive if ν(A

⋃
B) = ν(A) for any A,B ∈ B such that

A
⋂

B = /0 and ν(B) = 0. Notice that a convex capacity is null-additive if and only if
ν(A) = 0 implies ν(Ac) = 1 for every A ∈ B.

The core C(ν) of the capacity ν is defined as

C(ν) = {μ ∈ P : μ(A) ≥ ν(A) for all A ∈ B};

and the anti-core AC(ν) of ν is given by

AC(ν) = {μ ∈ P : μ(A) ≤ ν(A) for all A ∈ B}.

We have the following properties:

1) If ν is a convex capacity, we always have C(ν) �= /0;
2) AC(ν) = C(ν).

In some literature (e.g. [36]), a capacity ν is called a balanced game if C(ν) �= /0.
A random variable X on Ω is a (Borel) measurable function X : (Ω ,B) →

(R,B(R)), where B(R) is the Borel σ -field of R.
The Choquet integral of a bounded random variable X with respect to the capacity

ν is defined by

(C)
∫

Xdν =
∫ +∞

0
ν(X > t)dt +

∫ 0

−∞
[ν(X > t)−1]dt.
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If ν is a probability measure, (C)
∫

Xdν coincides with standard notion of inte-
gral. Notice that the Choquet integral is an asymmetric integral since the inte-
gral (C)

∫
Xdν is not equal to −(C)

∫ −Xdν , so they are called lower and upper
Choquet integrals respectively. In general, (C)

∫
Xdν ≤−(C)

∫ −Xdν .
If C(ν) �= /0, we can introduce the upper and lower integrals of a random variable

X given by

Jν (X) = sup
P∈C(ν)

∫

XdP, Iν(X) = inf
P∈C(ν)

∫

XdP.

Then we have
(C)

∫

Xdν ≤ Iν(X) ≤ Jν (X) ≤ (C)
∫

Xdν,

since Jν(X) = −Iν(−X) and (C)
∫

Xdν = −(C)
∫ −Xdν .

Sugeno introduced the concepts of fuzzy measure and fuzzy integral in [41].
Concerning the relationship between the Sugeno fuzzy integral and the Choquet
integral, refer to [19]. Fuzzy measures and Choquet capacities are also called non-
additive measures. For more general concepts and results, readers may refer to [14].

3 Some Connections between Theory of Set-Valued Random
Variables and Choquet Theory

In this section, we shall discuss the relationships between the distributions of set-
valued random variables and capacities. We shall also survey some connections be-
tween the Aumann integral and the Choquet integral. Assume that (Ω ,A ,P) is a
complete probability space. Firstly let us explain our motivation.

In classical statistics, all possible outcomes of a random experiment can be de-
scribed by some random variable X or its probability distribution PX . In practice,
however, we often face the situation that we can not measure exactly the values of
X , we can only get coarse data, that is, a multi-valued random variable F (we call it
random set or set-valued random variable) such that P(X ∈ F) = 1 (X is an almost
surely selection of F).

Let A ⊆ Ω be an event. A is said to occur if X(ω) ∈ A. But if we can not observe
X(ω), but only F(ω) is observed, then clearly we are even uncertainty about the
occurrence of A. If F(ω) ⊆ A, then clearly A occurs. So we quantify our degree
of belief in occurrence of A by PF(A) = P(F ⊆ A), which is less than the actual
probability that A occurs, i.e. PF(A) ≤ P(X ∈ A), since X is an almost sure selec-
tion of F . This fact is a starting point of well-known Dempster-Shafer theory of evi-
dence (cf. [13], [39]). PF is also related with another concept called a belief function
(cf. [33]), which is popular in the field of artificial intelligence.

On the other hand, if F(ω)∩A �= /0, then it is possible that A occurs. Since P(X ∈
F) = 1, we have almost sure {X ∈ A} ⊆ {F ∩A �= /0} and hence P(X ∈ A) ≤ P(F ∩
A �= /0). Thus, to quantify this possibility is to take PF(A) = P(F ∩A �= /0). It seems
to be consistent with the common sense that the possibilities are always larger than
the probabilities since the possibilities tend to represent the optimistic assessments
as opposed to beliefs.
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From mathematical point of view, it relates to the lower distribution PF and up-
per distribution PF of the set-valued random variable F . For each B ∈ B, we have
PF(B) = 1−PF(Bc). Thus we only need to consider one of both upper and lower
distributions. We notice that PF is a special totally monotone capacity and PF is a
special infinitely alternating capacity. Thus, the Choquet integral with respect to PF
and PF have some connection with the theory of set-valued random variables. Now
we discuss this problem in details. We first review some notations and basic results
about set-valued random variables and the Aumann integral.

3.1 Set-Valued Random Variables and the Aumann Integral

Assume that P0(X) is the family of all nonempty subsets of X, G (X) is the class
of all open sets of X, K(X) (reps., Kb(X),Kk(X), Kkc(X)) is the family of all
nonempty closed (reps., bounded closed, compact, compact convex) subsets of X,
The Hausdorff metric on K(X) is defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

‖a−b‖, sup
b∈B

inf
a∈A

‖a−b‖}. (3)

The metric space (Kb(X),dH) is complete but not separable in general. However,
Kk(X) and Kkc(X) are complete and separable with respect to dH (cf. [30]). For an A
in Kb(X), let ‖A‖K = dH({0},A), BdH (Kk(X)) be the Borel σ -field of (Kk(X),dH)
and similar notation for BdH (Kb(X)), and so on.

On the other hand, let F L = {I∗(G)∩Kk(X) : G ∈ G (X)} and FU = {I∗(G)∩
Kk(X) : G ∈ G (X)}, where I∗(G) = {A ∈ P0(X) : A ⊆ G}, I∗(G) = {A ∈ P0(X) :
A ∩ G �= /0}. And let σ(F L),σ(FU) be the σ -fields induced by F L,FU

respectively. We have the following result (cf. [48]).

Theorem 3.1. BdH (Kk(X)) = σ(F L) = σ(FU).

Let F : Ω → K(X). For any A ∈ B, write

F−1(A) = {ω ∈ Ω : F(ω)∩A �= /0},

F−1(A) = {ω ∈ Ω : F(ω) ⊆ A},
and the graph of F

G(F) = {(ω ,x) ∈ Ω ×X : x ∈ F(ω)}.

A set-valued mapping F : Ω → K(X) is called a set-valued random variable (or ran-
dom set) if, for each open subset O of X, F−1(O) ∈A . In [30], authors summarized
the following equivalent definitions of random sets.

Theorem 3.2. The following statements are equivalent:

(i) F is a set-valued random variable;
(ii) for each C ∈ K(X), F−1(C) ∈ A ;
(iii) for each B ∈ B, F−1(B) ∈ A ;



132 S. Li and W. Yang

(iv) ω → d(x,F(ω)) is a measurable function for each x ∈ X, where d(x,C) =
inf{d(x,y) : y ∈C} for C ⊆ X;

(v) G(F) is A ×B-measurable.

Furthermore, if F takes values in Kk(X), then F is a set-valued random variable if
and only if F is A -BdH (Kk(X)) measurable.

Now we give the concepts of selections of set-valued random variables.

Definition 3.1. An X-valued measurable function f : Ω →X is called a selection of
a set-valued mapping F : Ω → K(X) if f (ω) ∈ F(ω) for all ω ∈ Ω . A measurable
function f : Ω → X is called an almost surely selection of F if P{ω ∈ Ω : f (ω) ∈
F(ω)} = 1.

Let L1[Ω ;X] be the class of integrable X-valued random variables, S(F) be the class
of all selections of F and S1

F the class of almost surely and integrable selections of
F , i.e.

S1
F = { f ∈ L1[Ω ;X] : f (ω) ∈ F(ω),a.e.}.

Then we have the following result.

Theorem 3.3. Under our assumptions in this paper, S(F) �= /0 for any set-valued
random variable; S1

F �= /0 if and only if d(0,F(ω)) ∈ L1[Ω ; [0,∞)].

For a set-valued random variable F , the expectation of F , denoted by (A)
∫

FdP, is
defined by

(A)
∫

FdP =
{∫

Ω
f dP : f ∈ S1

F

}
, (4)

This integral was first introduced by Aumann [4], called the Aumann integral in
literature.

Remark 1. (1) In general, (A)
∫

FdP is not closed when F takes closed set values.
But if X= R

d , the d-dimensional Euclidean space and F takes compact set values,
(A)

∫
FdP is compact.

(2) If P is nonatomic, then cl((A)
∫

FdP) is convex.
The above results can be found in [23, 30].

3.2 Capacities, Upper and Lower Distributions of Set-Valued
Random Variables

In the classical probability, an X-valued random variable (or X-valued element) f :
Ω → X induces a probability distribution Pf on B defined by

Pf (B) = P( f−1(B)), B ∈ B.

In a similar way, for a random set F , we have the concepts of upper distribution PF

and lower distribution PF , defined as

PF(B) = P(F−1(B)), PF(B) = P(F−1(B)), B ∈ B. (5)
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In the special case of a random variable, i.e. F = f : Ω → X, we have that PF(B) =
PF(B) for each B ∈ B. Thus, PF reduces to the standard probability distribution Pf .
Dempster called PF ,PF upper probability, lower probability respectively in [13].
Nguyen called PF the distribution function of F in [34].

Obviously, PF and PF , in general, are non-additive, they are capacities, and PF

is the conjugate of PF . Thus we only need to state the properties of PF . We have the
following theorems (cf. [7, 8, 34]).

Theorem 3.4. PF have the following properties

(i) PF( /0) = 0, PF(X) = 1;
(ii) If Bn ↓ B with Bn,B ∈ B, then PF(Bn) ↓ PF(B);
(iii) PF is totally monotone.
If, in addition, F takes values in Kk(X), then
(iv) PF is regular, i.e.

PF(B) = sup{PF(C) : C ⊆ B,C ∈ K(X)}

= inf{PF(G) : B ⊆ G,G ∈ G (X)}
for any B ∈ B.

(v) PF is tight, i.e.

PF(B) = sup{PF(K) : K ⊆ B,K ∈ Kk(X)}

for any B ∈ B.

From the above discussion, we know that for any given random set F , the lower dis-
tribution PF induced by F is a totally monotone and continuous from above capacity.
On the other hand, for any given totally monotone and continuous from above ca-
pacity ν on (X,B), dose there exist a probability space (Ω ,A ,P) and a set-valued
random variable F on Ω such that ν = PF ? The answer is positive and it is called
the Choquet Theorem.

Theorem 3.5. If ν is a totally monotone and continuous from above capacity on B,
there exists a set-valued random variable F : [0,1]→K(X) such that ν = PF, where
[0,1] is endowed with the Lebesgue σ -algebra and the Lebesgue measure.

3.3 Some Connections between Aumann Integral and Choquet
Integral

For any given set-valued random variable F , its selection set S(F) is a family of X-
valued random variables. For each f ∈ S(F), we can get the probability distribution
Pf . Thus, we obtain a set of probabilities PF =: {Pf : f ∈ S(F)} and PF ⊆ P.

Theorem 3.6. [12] If F is A -BdH (K(X))-measurable set-valued random
variable, then PF is attainable on G (X)∪K(X), i.e.
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PF(A) = min{Pf (A) : f ∈ S(F)}, A ∈ G (X)∪K(X). (6)

Next we have the connection theorem between the selection set PF and core of PF
(cf. [8]).

Theorem 3.7. If F is a compact set-valued random variable, then

C(PF) = co(PF) (7)

where co means the weak∗-closed convex hull in P.
Furthermore, if P is nonatomic, then

C(PF) = cl(PF) (8)

Theorem 3.8. Assume that X : X→ R is Borel measurable and bounded, F : Ω →
Kk(X) is a set-valued random variable, the composition X ◦F is given by (X ◦F) =
X(F(ω)) for any ω ∈ Ω . Then

(A)
∫

(X ◦F)dP =
{∫

XdPf : f ∈ S(F)
}
. (9)

In particular,

inf(A)
∫

(X ◦F)dP = (C)
∫

XdPF , sup(A)
∫

(X ◦F)dP = (C)
∫

XdPF , (10)

and moreover the inf ( resp., sup) is attained if X is lower (resp., upper) Weierstrass.

Remark 2. (1) A Borel function X : X→ R is lower (resp., upper) Weierstrass if
it attains infimum (resp., supermum) on each K ∈ Kk(X). All simple Borel func-
tions and all lower (resp., upper) semicontinuous functions are lower (resp., upper)
Weierstrass.

(2) If P is nonatomic, from Remark 1 and the above theorem, we have

(A)
∫

(X ◦F)dP =
[
(C)

∫

XdPF ,(C)
∫

XdPF

]
, (11)

when X is both lower and upper Weierstrass.

4 Laws of Large Numbers for Random Sets and for
Capacities

In this Section, we shall firstly survey some results on laws of large numbers (LLN’s)
for set-valued random variables and for capacities, and point out some connections
between these two kinds of LLN’s. Then we shall give a new strong law of large
numbers of exchangeable random variables for capacities.

There are many different kinds of LLN’s for random sets. Here we only list some
of them. The first LLN was proved in [3] for independent identically distributed
(i.i.d.) compact random variables in the sense of Hausdorff metric dH , where the
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basic space is the d-dimensional Euclidean space R
d . After this work, LLN’s were

obtained for i.i.d. compact random sets in a separable Banach space in [26, 35].
Taylor and his coauthors contributed a lot in the area of LLN’s. We mention here
that in 1985, Taylor and Inoue proved Chung’s type LLN’s and weighted sums type
LLN’s for compact set-valued random sets in [42, 43]. For more results, refer to
their summary paper in [44].

For general closed set-valued random variables, Artstein and Hart [2] proved
LLN’s in R

d and Hiai obtained LLN’s in a separable Banach space in Kuratowski-
Mosco sense. In some papers, Kuratowski-Mosco convergence is called Painlevé-
Kuratowsk convergence in the special case of R

d . Fu and Zhang [17] obtained
LLN’s for set-valued random variables with slowly varying weights in the sense
of dH . There are also some extension results of LLN’s from set-valued to fuzzy
set-valued random variables [11, 17, 20, 21, 25, 27, 29].

Now we cite some results of LLN’s for real-valued random variables X : X→ R

with respect to capacities. In [32], Marinacci proved a strong LLN for i.i.d. contin-
uous random sequences with respect to a totally monotone and continuous capac-
ity, and a weak LLN but with respect to a convex and continuous capacity under
the assumption that X is a compact space. In his proofs, he mainly used some very
good properties and techniques of capacities and the Choquet integral. In [31], Mac-
cheroni and Marinacci obtained a strong LLN for under weaker conditions in a sep-
arable Banach space X. The proof is quite short by using the Choquet Theorem and
the result of strong LLN for set-valued random variables. In [36], Rebille obtained
a Markov type LLN and a Bienayme-Tchebichev type LLN for a balanced game
under some other conditions of variances, where he used the core of ν to define
variance and covariance of random variables.

Now we state a new strong LLN of exchangeable random variables for capacities.
To do it, we firstly introduce the concept of exchangeable random variables.

Definition 4.1. Random variables Xi : X→ R, i = 1,2, · · · ,n, are called exchange-
able with respect to a capacity ν if (Xπ1 , · · · ,Xπn) has the same joint distribution as
(X1, · · · ,Xn) for every permutation π = (π1, · · · ,πn) of (1, · · · ,n), i.e.,

ν(X1 ∈ B1, · · · ,Xn ∈ Bn) = ν(Xπ1 ∈ B1, · · · ,Xπn ∈ Bn)

for any B1, · · · ,Bn ⊆ B. An infinite sequence of random variables {Xn : n ≥ 1} is
said to be exchangeable if every finite subset of {Xn : n≥ 1} consists of exchangeable
random variables.

Theorem 4.1. Assume that ν is a totally monotone and continuous capacity on B,
and {Xn : n ≥ 1} a sequence of bounded, exchangeable and identically distributed
random variables, it is parwise incorrected, and for each random variable Xi is
either continuous or simple, then

ν
({

ω ∈ Ω : E[X1]≤ liminf
n→∞

1
n

n

∑
j=1

Xj(ω)≤ limsup
n→∞

1
n

n

∑
j=1

Xj(ω) ≤−E[−X1]
})

= 1,

where E[X1] = (C)
∫

X1dν .



136 S. Li and W. Yang

Remark 3. (1) If ν is null-additive, under the assumptions of theorem we also have

ν
({

ω ∈ Ω : liminf
n→∞

1
n

n

∑
j=1

Xj(ω) < E[X1]
})

= 0,

and

ν
({

ω ∈ Ω : limsup
n→∞

1
n

n

∑
j=1

Xj(ω) > −E[−X1]
})

= 0

(2) When ν is a probability measure we have E[X ] = −E[−X ] = E[X ]. Thus, in this
case our result reduces to the classical LLN for exchangeable real-valued random
variables

ν
({

ω ∈ Ω : lim
n→∞

1
n

n

∑
j=1

Xj(ω) = E[X ]
})

= 1.
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