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Abstract. This paper gives a short survey of our recent developments in Riesz
space-valued non-additive measure theory and contains the following topics: the
Egoroff theorem, the Lebesgue theorem, the Riesz theorem, the Lusin theorem, and
the Alexandroff theorem.

1 Introduction

In 1974, Sugeno [30] introduced the notion of fuzzy measure and integral to eval-
uate non-additive or non-linear quality in systems engineering. In the same year,
Dobrakov [3] independently introduced the notion of submeasure from mathemati-
cal point of view to refine measure theory further. Fuzzy measures and submeasures
are both special kinds of non-additive measures, and their studies have stimulated
engineers’ and mathematicians’ interest in non-additive measure theory [2, 25, 33].

The study of non-additive measures deeply depends on the order in the range
space in which the measures take values. In fact, a non-additive measure is defined
as a monotone set function which vanishes at the empty set, and not a few features of
non-additive measures, such as the order continuity and the continuity from above
and below, concern the order on the range space. The Riesz space is a real vector
space with partial ordering compatible with the structure of the vector space, and at
the same time, it is a lattice. Therefore, it is a natural attempt to discuss the existing
theory of real-valued non-additive measures in a Riesz space. Typical examples of
Riesz spaces are the n-dimensional Euclidean space R

n, the functions space R
Λ

with non-empty set Λ , the Lebesgue functions spaces Lp[0,1] (0 ≤ p ≤ ∞), and
their ideals.

When we try to develop non-additive measure theory in a Riesz space, along with
the non-additivity of measures, there is a tough technical hurdle to overcome, that
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is, the ε-argument, which is useful in calculus, does not work in a general Riesz
space. Recently, it has been recognized that, as a substitute for the ε-argument, cer-
tain smoothness conditions, such as the weak σ -distributivity, the Egoroff property,
the weak asymptotic Egoroff property, and the multiple Egoroff property, should
be imposed on a Riesz space to succeed in extending fundamental and important
theorems in non-additive measure theory to Riesz space-valued measures. Thus, the
study of Riesz space-valued measures will go with some smoothness conditions on
the involved Riesz space.

This paper gives a short survey of our recent developments in Riesz space-valued
non-additive measure theory and contains the following topics: the Egoroff theorem,
the Lebesgue theorem, the Riesz theorem, the Lusin theorem, and the Alexandroff
theorem. All the results in this paper, together with their proofs and the related
problems, have been already appeared in [8, 9, 10, 11, 12, 13, 14, 15, 16], so that
herein there are no new contributions to Riesz space-valued non-additive measure
theory. The interested readers may obtain more information on the above topics and
their related problems, such as Riesz space-valued Choquet integration theory, from
the cited literatures in the reference of this paper. See [28] for some other ordering
structures on Riesz spaces and lattice ordered groups, and their relation to measure
and integration theory.

2 Notation and Preliminaries

In this section, we recall some basic definitions on Riesz spaces and Riesz space-
valued non-additive measures. Denote by R and N the set of all real numbers and
the set of all natural numbers, respectively.

2.1 Riesz Space

The real vector space V is called an ordered vector space if V is partially ordered in
such a manner that the partial ordering is compatible with the vector structure of V ,
that is, (i) u ≤ v implies u+w≤ v+w for every w ∈V , and (ii) u ≥ 0 implies cu ≥ 0
for every c ∈ R with c ≥ 0. The ordered vector space V is called a Riesz space if
for every pair u and v in V , the supremum sup(u,v) and the infimum inf(u,v) with
respect to the partial ordering exist in V .

Let V be a Riesz space. Denote by V+ the set of all positive elements of V .
Let D := {ut}t∈T be a set of elements of V and u ∈ V . We write supD = u or
supt∈T ut = u to mean that there exists a supremum of D and equal to u. The mean-
ing of infD = u or inft∈T ut = u is analogous. We say that V is Dedekind complete
(respectively, Dedekind σ -complete) if every non-empty (respectively, countable,
non-empty) subset of V which is bounded from above has a supremum.

Let {un}n∈N ⊂ V be a sequence and u ∈ V . We write un ↓ u to mean that it is
decreasing and infn∈N un = u. The meaning of un ↑ u is analogous. We say that
{un}n∈N converges in order to u and write un → u if there is a sequence {pn}n∈N ⊂V
with pn ↓ 0 such that |un − u| ≤ pn for all n ∈ N. The order convergence can be
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defined for nets {uα}α∈Γ of elements of V in an obvious way. A Riesz space V is
said to be order separable if every set in V possessing a supremum contains an at
most countable subset having the same supremum.

The following smoothness conditions on a Riesz space have been already intro-
duced in [23] and [34]. Denote by Θ the set of all mappings from N into N, which
is ordered and directed upwards by pointwise partial ordering, that is, θ1 ≤ θ2 is
defined as θ1(i) ≤ θ2(i) for all i ∈ N.

Definition 2.1. Let V be a Riesz space.

(i) A double sequence {ui, j}(i, j)∈N2 ⊂ V is called a regulator in V if it is order
bounded, and ui, j ↓ 0 for each i ∈ N, that is, ui, j ≥ ui, j+1 for each i, j ∈ N and
inf j∈N ui, j = 0 for each i ∈ N.

(ii) We say that V has the Egoroff property if, for any regulator {ui, j}(i, j)∈N2 in V ,

there is a sequence {pk}k∈N ⊂V with pk ↓ 0 such that, for each (k, i) ∈ N
2, one

can find j(k, i) ∈ N satisfying ui, j(k,i) ≤ pk [23].
(iii) Let V be Dedekind σ -complete. We say that V is weakly σ -distributive if, for

any regulator {ui, j}(i, j)∈N2 in V , it holds that infθ∈Θ supi∈N ui,θ(i) = 0 [34].

See [23] for unexplained terminology and more information on Riesz spaces.

2.2 Riesz Space-Valued Non-additive Measures

Throughout the paper, we assume that V is a Riesz space and (X ,F ) is a measurable
space, that is, F is a σ -field of subsets of a non-empty set X .

Definition 2.2. A set function μ : F →V is called a non-additive measure if μ( /0)=
0 and μ(A) ≤ μ(B) whenever A,B ∈ F and A ⊂ B.

We collect some continuity conditions of non-additive measures.

Definition 2.3. Let μ : F →V be a non-additive measure.

(i) μ is said to be continuous from above if μ(An) ↓ μ(A) whenever {An}n∈N ⊂F
and A ∈ F satisfy An ↓ A.

(ii) μ is said to be continuous from below if μ(An) ↑ μ(A) whenever {An}n∈N ⊂F
and A ∈ F satisfy An ↑ A.

(iii) μ is said to be continuous if it is continuous from above and below.
(iv) μ is said to be strongly order continuous if it is continuous from above at

measurable sets of measure zero, that is, μ(An) ↓ 0 whenever {An}n∈N ⊂ F
and A ∈ F satisfy An ↓ A and μ(A) = 0 [17].

(v) μ is said to be order continuous if it is continuous from above at the empty set,
that is, μ(An) ↓ 0 whenever {An}n∈N ⊂ F satisfies An ↓ /0.

(vi) μ is said to be strongly order totally continuous if infα∈Γ μ(Aα) = 0 whenever
a net {Aα}α∈Γ ⊂ F and A ∈ F satisfy Aα ↓ A and μ(A) = 0 [24].

The following are some quasi-additivity conditions of non-additive measures.

Definition 2.4. Let μ : F →V be a non-additive measure.
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(i) μ is said to be subadditive if μ(A∪B)≤ μ(A)+ μ(B) for all A,B ∈ F .
(ii) μ is said to be null-additive if μ(A ∪ B) = μ(A) whenever A,B ∈ F and

μ(B) = 0.
(iii) μ is said to be weakly null-additive if μ(A∪B) = 0 whenever A,B ∈ F and

μ(A) = μ(B) = 0.
(iv) μ is said to be autocontinuous from above if μ(A∪Bn) → μ(A) whenever

A ∈ F , and {Bn}n∈N ⊂ F is a sequence with μ(Bn) → 0.
(v) μ is said to be autocontinuous from below if μ(A \Bn) → μ(A) whenever

A ∈ F , and {Bn}n∈N ⊂ F is a sequence with μ(Bn) → 0.
(vi) μ is said to be autocontinuous if it is autocontinuous from above and below.

(vii) μ is said to be uniformly autocontinuous from above if, for any sequence
{Bn}n∈N ⊂ F with μ(Bn) → 0, there is a sequence {pn}n∈N ⊂V with pn ↓ 0
such that μ(A∪Bn) ≤ μ(A)+ pn for all A ∈ F and n ∈ N.

(viii) μ is said to be uniformly autocontinuous from below if, for any sequence
{Bn}n∈N ⊂ F with μ(Bn) → 0, there is a sequence {pn}n∈N ⊂V with pn ↓ 0
such that μ(A) ≤ μ(A\Bn)+ pn for all A ∈ F and n ∈ N.

(ix) μ is said to be uniformly autocontinuous if it is uniformly autocontinuous
from above and below.

3 The Egoroff Theorem

The classical theorem of Egoroff [4] is one of the most fundamental and important
theorems in measure theory. This asserts that almost everywhere convergence im-
plies almost uniform convergence (and hence convergence in measure) and gives a
key to handle a sequence of measurable functions. However, it is known that the
Egoroff theorem does not valid in general for non-additive measures.

Recently, Murofushi et al. [24] discovered a necessary and sufficient condition,
called the Egoroff condition, which assures that the Egoroff theorem is still valid for
non-additive measures, and indicated that the continuity of a non-additive measure is
one of the sufficient conditions for the Egoroff condition; see also [18, 19, 21, 22].
Those conditions can be naturally described for Riesz space-valued non-additive
measures.

Definition 3.1. Let μ : F →V be a non-additive measure.

(i) A double sequence {Am,n}(m,n)∈N2 ⊂ F is called a μ-regulator in F if it satis-
fies the following two conditions:

(i) Am,n ⊃ Am,n′ whenever m,n,n′ ∈ N and n ≤ n′.
(ii) μ (

⋃∞
m=1

⋂∞
n=1Am,n) = 0.

(ii) We say that μ satisfies the Egoroff condition if infθ∈Θ μ
(⋃∞

m=1Am,θ(m)
)
= 0 for

any μ-regulator {Am,n}(m,n)∈N2 in F .

Definition 3.2. Let μ : F → V be a non-additive measure. Let { fn}n∈N be a se-
quence of F -measurable, real-valued functions on X and f also such a function.
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(i) { fn}n∈N is said to converge μ-almost everywhere to f if there is a set E ∈ F
with μ(E) = 0 such that fn(x) converges to f (x) for all x ∈ X −E .

(ii) { fn}n∈N is said to converge μ-almost uniformly to f if there is a decreasing net
{Eα}α∈Γ ⊂ F with μ(Eα) ↓ 0 such that fn converges to f uniformly on each
set X −Eα .

(iii) { fn}n∈N is said to converge in μ-measure to f if, for any ε > 0, there is a
sequence {pn}n∈N ⊂V with pn ↓ 0 such that μ ({x ∈ X : | fn(x)− f (x)| ≥ ε})≤
pn for all n ∈ N.

(iv) We say that the Egoroff theorem holds for μ if, for any sequence { fn}n∈N of
F -measurable, real-valued functions on X converging μ-almost everywhere to
such a function f on X , it converges μ-almost uniformly to the same limit f .

The following theorem gives a Riesz space version of [24, Proposition 1].

Theorem 3.1. Let μ : F →V be a non-additive measure. Then, μ satisfies the Ego-
roff condition if and only if the Egoroff theorem holds for μ .

Li [21, Theorem 1] proved that the Egoroff theorem holds for any continuous real-
valued non-additive measure. Its proof is essentially based on the ε-argument which
does not work in a general Riesz space. Therefore, it seems that, as a substitute
for the ε-argument, some smoothness conditions should be introduced and im-
posed on a Riesz space to obtain successful analogues of the Egoroff theorem for
Riesz space-valued non-additive measures. The following is one of our new smooth-
ness conditions on a Riesz space by which we will develop Riesz space-valued
non-additive measure theory.

Definition 3.3. Consider a multiple sequence u(m) := {un1,...,nm}(n1,...,nm)∈Nm of
elements of V for each m ∈ N. Let u ∈V+.

(i) A sequence {u(m)}m∈N of the multiple sequences is called a u-multiple regula-
tor in V if, for each m ∈ N and (n1, . . . ,nm) ∈ N

m, the multiple sequence u(m)

satisfies the following two conditions:

(i) 0 ≤ un1 ≤ un1,n2 ≤ ·· · ≤ un1,...,nm ≤ u.
(ii) Letting n → ∞, then un ↓ 0, un1,n ↓ un1 , . . . , and un1,...,nm,n ↓ un1,...,nm .

(ii) A u-multiple regulator {u(m)}m∈N in V is said to be strict if, for each m ∈ N and
each (n1, . . . ,nm),(n′1, . . . ,n

′
m) ∈ N

m, it holds that un1,...,nm ≥ un′1,...,n′m whenever
ni ≤ n′i for all i = 1,2, . . . ,m.

(iii) We say that V has the weak asymptotic Egoroff property if, for each u ∈V+ and
each strict u-multiple regulator {u(m)}m∈N, the following two conditions hold:

(i) uθ := supm∈N uθ(1),...,θ(m) exists for each θ ∈Θ .
(ii) infθ∈Θ uθ = 0.

We are now ready to give a Riesz space version of [18, Theorem 1].

Theorem 3.2. Let μ : F → V be a non-additive measure. Assume that V has the
weak asymptotic Egoroff property. Then, μ satisfies the Egoroff condition whenever
it is continuous.
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In [24], Murofushi et al. gave two sufficient conditions and one necessary condition
for the validity of the Egoroff theorem for real-valued non-additive measures. One
of the two sufficient conditions is strong order total continuity, and the necessary
condition is strong order continuity. Further, they proved that, if X is countable,
the Egoroff condition, strong order continuity, and strong order total continuity are
all equivalent for any real-valued non-additive measure. These results can be eas-
ily extended to Riesz space-valued non-additive measures without assuming any
smoothness conditions on the Riesz space by almost the same proof in [24]; see [9]
for the precise statements of the above results.

To the contrary, it is not obvious to verify that another condition, that is, strong
order continuity, together with property (S), remains sufficient for the validity of
the Egoroff theorem for Riesz space-valued non-additive measures. We can give
an affirmative answer for this problem by assuming that the Riesz space has the
Egoroff property. Recall that a non-additive measure μ : F →V has property (S) if
any sequence {An}n∈N ⊂ F with μ(An) → 0 has a subsequence {Ank}k∈N such that
μ (

⋂∞
k=1

⋃∞
i=k Ani) = 0 [31].

Theorem 3.3. Let μ : F →V be a non-additive measure. Assume that V is Dedekind
σ -complete and has the Egoroff property. Then, μ has the Egoroff condition when-
ever it is strongly order continuous and has property (S).

When the Riesz space V is assumed to be weakly σ -distributive, which is a weaker
smoothness than having the Egoroff property, the following version of the Egoroff
theorem holds.

Theorem 3.4. Let μ : F →V be a non-additive measure. Assume that V is Dedekind
σ -complete and weakly σ -distributive. Then, μ satisfies the Egoroff condition when-
ever it is uniformly autocontinuous from above, strongly order continuous, and con-
tinuous from below.

4 The Lebesgue and the Riesz Theorem

Other important theorems concerning the convergence of measurable functions,
such as the Lebesgue theorem and the Riesz theorem, can be also extended to Riesz
space-valued non-additive measures.

Theorem 4.1. Let μ : F → V be a non-additive measure. Then, μ is strongly or-
der continuous if and only if the Lebesgue theorem holds for μ , that is, for any
sequence { fn}n∈N of F -measurable, real-valued functions on X converging almost
everywhere to such a function f on X, it converges in μ-measure to f .

Theorem 4.2. Let μ : F → V be a non-additive measure. Assume that V has the
Egoroff property. Then, μ has property (S) if and only if the Riesz theorem holds for
μ , that is, for any sequence { fn}n∈N of F -measurable, real-valued functions on X
converging in μ-measure to such a function f on X, it has a subsequence converging
almost everywhere to f .
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5 The Lusin Theorem

The regularity of measures on topological spaces serves as a bridge between mea-
sure theory and topology. It gives a tool to approximate general Borel sets by more
tractable sets such as closed or compact sets. The well-known Lusin theorem, which
is useful for handling the continuity and the approximation of measurable functions,
was proved by the help of the regularity of measures.

In non-additive measure theory, Li and Yasuda [20] recently proved that every
weakly null-additive, continuous Borel non-additive measure on a metric space is
regular, and the Lusin theorem is still valid for such measures. In this section, we ex-
tend those results to Riesz space-valued non-additive measures. To this end, we will
introduce another new smoothness condition on a Riesz space, called the multiple
Egoroff property, that strengthen the weak asymptotic Egoroff property.

Definition 5.1. Consider a multiple sequence u(m) := {un1,...,nm}(n1,...,nm)∈Nm of el-
ements of V for each m ∈ N. We say that V has the multiple Egoroff property if,
for each u ∈ V + and each strict u-multiple regulator {u(m)}m∈N, the following two
conditions hold:

(i) uθ := supm∈N uθ(1),...,θ(m) exists for each θ ∈Θ .
(ii) There is a sequence {θk}k∈N of elements of Θ such that uθk → 0.

The multiple Egoroff property and the weak asymptotic Egoroff property are vari-
ants of the Egoroff property that was thoroughly studied in [23, Chapter 10].

We now go back to the regularity of non-additive measures. Throughout this
section, we assume that S is a Hausdorff space. Denote by B(S) the σ -field of all
Borel subsets of S, that is, the σ -field generated by the open subsets of S. A non-
additive measure defined on B(S) is called a Borel non-additive measure on S.

Definition 5.2. Let μ be a V -valued Borel non-additive measure on S. We say that
μ is regular if, for each A ∈ B(S), there are sequences {Fn}n∈N of closed sets and
{Gn}n∈N of open sets such that Fn ⊂ A ⊂ Gn for all n ∈ N and μ(Gn \Fn) → 0 as
n → ∞.

Theorem 5.1. Let S be a metric space. Assume that V has the multiple Egoroff prop-
erty. Every weakly null-additive, continuous V-valued Borel non-additive measure
on S is regular.

The Lusin theorem in non-additive measure theory was given by [20, Theorem 4].
The following is its Riesz space-valued counterpart.

Theorem 5.2. Let S be a metric space. Let μ be a weakly null-additive, continuous
V-valued Borel non-additive measure on S. Assume that V has the multiple Egoroff
property and is order separable. Let f be a Borel measurable, real-valued function
on S. Then, there is an increasing sequence {Fn}n∈N of closed sets such that μ(S \
Fn) ↓ 0 as n → ∞ and f is continuous on each set Fn.
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6 The Alexandroff Theorem

A classical theorem of A.D. Alexandroff [1] states that every finitely additive, regu-
lar measure on a field of subsets of a compact Hausdorff space is countably additive.
This result was extended in Riečan [27] and Hrachovina [6] for Riesz space-valued
compact measures, and in Volauf [32] for lattice group-valued compact measures.
The counterpart of the Alexandroff theorem in non-additive measure theory can be
found in Wu and Ha [35, Theorem 3.2], which asserts that every uniformly auto-
continuous, Radon non-additive measure on a complete separable metric space is
continuous (unfortunately, Theorem 2.1 of [35] was proved incorrectly; see [36]).
The purpose of this section is to give successful analogues of those results for Riesz
space-valued non-additive measures. Recall that (X ,F ) is a measurable space.

Definition 6.1. Let μ : F →V be a non-additive measure.

(i) A non-empty family K of subsets of X is called a compact system if, for any
sequence {Kn}n∈N ⊂K with

⋂∞
n=1Kn = /0, there is n0 ∈N such that

⋂n0
i=1 Ki = /0.

(ii) We say that μ is compact if there is a compact system K such that, for each
A ∈ F , there are sequences {Kn}n∈N ⊂ K and {Bn}n∈N ⊂ F such that Bn ⊂
Kn ⊂ A for all n ∈ N and μ(A\Bn) → 0.

Remark 6.1. Our definition of the compactness of a measure is stronger than that
of [6, Definition 1]. In fact, they coincide if V is Dedekind σ -complete, weakly
σ -distributive, and order separable.

Theorem 6.1. Let μ : F → V be a non-additive measure. Assume that V has the
weak asymptotic Egoroff property. Then, μ is continuous whenever it is compact
and autocontinuous.

We also have the following version if we assume the weak σ -distributivity on the
Riesz space V , which is a weaker smoothness than the weak asymptotic Egoroff
property, and assume the uniform autocontinuity of the measure μ , which is a
stronger quasi-additivity than the autocontinuity.

Theorem 6.2. Let V be Dedekind σ -complete. Let μ : F → V be a non-additive
measure. Assume that V is weakly σ -distributive. Then, μ is continuous whenever it
is compact and uniformly autocontinuous.

7 Radon Non-additive Measures

In this section, we establish some properties of Radon non-additive measures and
the close connection to their continuity. Recall that S is a Hausdorff space and B(S)
is the σ -field of all Borel subsets of S.

Definition 7.1. Let μ be a V -valued Borel non-additive measure on S. We say that
μ is Radon if, for each A ∈ B(S), there are sequences {Kn}n∈N of compact sets and
{Gn}n∈N of open sets such that Kn ⊂ A ⊂ Gn for all n ∈ N and μ(Gn \Kn) → 0 as
n → ∞. We also say that μ is tight if there is a sequence {Kn}n∈N of compact sets
such that μ(S \Kn) → 0 as n → ∞.
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Proposition 7.1. Let μ be a V-valued Borel non-additive measure on S. Assume that
μ is weakly null-additive and continuous from above. Then, μ is Radon if and only
if it is regular and tight.

Since the family of all compact subsets of a Hausdorff space is a compact system,
the compactness of a non-additive measure follows from its Radonness. Thus, by
Theorems 6.1 and 6.2 we have

Theorem 7.1. Let μ be a V-valued Borel non-additive measure on S.

1. Assume that V has the weak asymptotic Egoroff property. Then, μ is continuous
whenever it is Radon and autocontinuous.

2. Assume that V is Dedekind σ -complete and weakly σ -distributive. Then, μ is
continuous whenever it is Radon and uniformly autocontinuous.

Recently, Li and Yasuda [20, Theorem 1] proved that every weakly null-additive,
continuous real-valued non-additive measure on a metric space is regular. The fol-
lowing is its Riesz space version.

Theorem 7.2. Let S be a metric space. Assume that V has the multiple Egoroff prop-
erty. Every weakly null-additive, continuous V-valued Borel non-additive measure
on S is regular.

It is known that every finite Borel measure on a complete or locally compact, sep-
arable metric space is Radon; see [26, Theorem 3.2] and [29, Theorems 6 and 9,
Chapter II, Part I]. Its counterpart in non-additive measure theory can be found
in [35, Theorem 2.3], which states that every uniformly autocontinuous, continuous
Borel non-additive measure on a complete separable metric space is Radon. The
following theorem contains those previous results; see also [7, Theorem 12].

Theorem 7.3. Let S be a complete or locally compact, separable metric space. As-
sume that V has the multiple Egoroff property. Every weakly null-additive, continu-
ous V-valued Borel non-additive measure on S is Radon.

We end this section by establishing a close connection between Radonness and con-
tinuity of a non-additive measure. The following generalizes Theorems 2.3 and 3.2
of [35].

Theorem 7.4. Let S be a complete or locally compact, separable metric space. Let
μ be an autocontinuous V-valued Borel non-additive measure on S. Assume that V
has the multiple Egoroff property. Then, μ is Radon if and only if it is continuous.

8 Examples

We first give a typical and useful example of Riesz space-valued non-additive
measures satisfying some specific properties.
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Example 8.1. Denote by L0[0,1] the Dedekind complete Riesz space of all equiv-
alence classes of Lebesgue measurable, real-valued functions on [0,1]. Let K be
a Lebesgue integrable, real-valued function on [0,1]2 with K(s,t) ≥ 0 for almost
all (s,t) ∈ [0,1]2. Define a vector-valued set function by λ (A)(s) :=

∫
A K(s, t)dt

for every Borel subset A of [0,1] and almost all s ∈ [0,1]. Then λ is an L0[0,1]-
valued order countably additive Borel measure on [0,1], that is, it holds that
∑n

k=1 λ (Ak) → λ (A) whenever {An}n∈N is a sequence of mutually disjoint Borel
subsets of [0,1] with A =

⋃∞
n=1 An. Let Φ : L0[0,1] → L0[0,1] be an increasing

mapping with Φ(0) = 0. Put μ(A) := Φ(λ (A)) for every Borel subset A of [0,1].

1. The L0[0,1]-valued Borel measure μ may be non-additive whenever Φ is not
additive. A typical example of such Φ can be defined by Φ( f ) :=

√
f + f 2 for

all f ∈ L0[0,1].
2. We say that the Φ is σ -continuous from above if Φ(un) ↓ Φ(u) whenever a se-

quence {un}n∈N and u in L0[0,1] satisfy un ↓ u. The σ -continuity of Φ from
below can be defined analogously. Then, μ is continuous from above (respec-
tively, from below) whenever Φ is σ -continuous from above (respectively, from
below). We can also give some examples of L0[0,1]-valued Borel non-additive
measures that do not have the above continuity.

Next we give some examples of Riesz spaces having our smoothness conditions.
Let (T,T ,ν) be a σ -finite measure space. Denote by L0(ν) the Riesz space of all
equivalence classes of ν-measurable, real-valued functions on T . Let 0 < p < ∞.
Denote by Lp(ν) the ideal of all elements f ∈ L0(ν) such that

∫
T | f |pdν < ∞, and

by L∞(ν) the ideal of all elements f ∈ L0(ν) that are ν-essentially bounded.

Example 8.2

(i) The following Riesz spaces have the multiple Egoroff property, so that they
have the weak asymptotic Egoroff property, the Egoroff property, and are
weakly σ -distributive.

(i) Every Banach lattice having order continuous norm.
(ii) The Dedekind complete Riesz space s of all real sequences with coordinate

wise ordering and its ideals �p (0 < p ≤ ∞).
(iii) The Dedekind complete Riesz spaces Lp(ν) (0 ≤ p ≤ ∞).

(ii) Let Λ be a non-empty set. The Dedekind complete Riesz space R
Λ of all real-

valued functions on Λ has the weak asymptotic Egoroff property. However,
there is an uncountable set Λ such that R

Λ does not have the Egoroff prop-
erty [5, Example 4.2], and hence does not have the multiple Egoroff property.

(iii) Let V and W be Riesz spaces with W Dedekind complete. Assume that W has
the weak asymptotic Egoroff property. The Dedekind complete Riesz space
Lb(V,W ) of all order bounded, linear operators from V into W has the weak
asymptotic Egoroff property.

(iv) The Riesz space C[0,1] of all continuous, real-valued functions on [0,1] has
neither the weak asymptotic Egoroff property nor the Egoroff property. On the
other hand, the Riesz space R

2 with lexicographical order does not have the
weak asymptotic Egoroff property, but has the Egoroff property.
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9 Conclusion

A short survey of our recent developments in Riesz space-valued non-additive mea-
sure theory has been carried out. Such a study goes with smoothness conditions on
the involved Riesz space, because the ε-argument, which is useful in the existing
theory of real-valued non-additive measures, does not work well in a general Riesz
space. Typical examples of Riesz spaces satisfying our smoothness conditions are
the Lebesgue function spaces Lp[0,1] (0 < p ≤ ∞), so that the established results
could be instrumental when developing non-additive extension of the theory of p-th
order stochastic processes and fuzzy number-valued measure theory.
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28. Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer Academic Publish-

ers, Bratislava (1997)
29. Schwartz, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Mea-

sures. Oxford University Press, Bombay (1973)
30. Sugeno, M.: Theory of fuzzy integrals and its applications. Thesis, Tokyo Institute of

Technology (1974)
31. Sun, Q.: Property (S) of fuzzy measure and Riesz’s theorem. Fuzzy Sets and Systems 62,

117–119 (1994)
32. Volauf, P.: Alexandrov and Kolmogorov consistency theorem for measures with values

in partially ordered groups. Tatra Mt. Math. Publ. 3, 237–244 (1993)
33. Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)
34. Wright, J.D.M.: The measure extension problem for vector lattices. Ann. Inst. Fourier

(Grenoble) 21, 65–85 (1971)
35. Wu, C., Ha, M.: On the regularity of the fuzzy measure on metric fuzzy measure spaces.

Fuzzy Sets and Systems 66, 373–379 (1994)
36. Wu, J., Wu, C.: Fuzzy regular measures on topological spaces. Fuzzy Sets and Sys-

tems 119, 529–533 (2001)


	A Study of Riesz Space-Valued Non-additive Measures
	Introduction
	Notation and Preliminaries
	Riesz Space
	Riesz Space-Valued Non-additive Measures

	The Egoroff Theorem
	The Lebesgue and the Riesz Theorem
	The Lusin Theorem
	The Alexandroff Theorem
	Radon Non-additive Measures
	Examples
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




