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Abstract. Parsing is an important problem in computer science and
yet surprisingly little attention has been devoted to its formal verifica-
tion. In this paper, we present TRX: a parser interpreter formally devel-
oped in the proof assistant Coq, capable of producing formally correct
parsers. We are using parsing expression grammars (PEGs), a formalism
essentially representing recursive descent parsing, which we consider an
attractive alternative to context-free grammars (CFGs). From this for-
malization we can extract a parser for an arbitrary PEG grammar with
the warranty of total correctness, i.e., the resulting parser is terminating
and correct with respect to its grammar and the semantics of PEGs;
both properties formally proven in Coq.

1 Introduction

Parsing is of major interest in computer science. Classically discovered by stu-
dents as the first step in compilation, parsing is present in almost every program
which performs data-manipulation.

For instance, the Web is built on parsers. The HyperText Transfer Proto-
col (HTTP) is a parsed dialog between the client, or browser, and the server.
This protocol transfers pages in HyperText Markup Language (HTML), which is
also parsed by the browser. When running web-applications, browsers interpret
JavaScript programs which, again, begins with parsing. Data exchange between
browser(s) and server(s) uses languages or formats like XML and JSON. Even
inside the server, several components (for instance the trio made of the HTTP
server Apache, the PHP interpreter and the MySQL database) often manipulate
programs and data dynamically; all require parsers.

Parsing is not limited to compilation or the Web: securing data flow enter-
ing a network, signaling mobile communications, manipulating domain specific
languages (DSL) all require a variety of parsers.

The most common approach to parsing is by means of parser generators, which
take as input a grammar of some language and generate the source code of a
parser for that language. They are usually based on regular expressions (REs)
and context-free grammars (CFGs), the latter expressed in Backus-Naur Form
(BNF) syntax. They typically are able to deal with some subclass of context-
free languages, the popular subclasses including LL(k), LR(k) and LALR(k)
grammars. Such grammars are usually augmented with semantic actions that
are used to produce a parse tree or an abstract syntax tree (AST) of the input.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 345–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



346 A. Koprowski and H. Binsztok

What about correctness of such parsers? Yacc is the most widely used parser
generator and a mature program and yet [20] devotes a whole section (“Bugs
in Yacc”) to discuss common bugs in its distributions. Furthermore, the code
generated by such tools often contains huge parsing tables making it near impos-
sible for manual inspection and/or verification. In the recent article [17] about
CompCert, an impressive project formally verifying a compiler for a large subset
of C, the introduction starts with a question “Can you trust your compiler?”.
Nevertheless, the formal verification starts on the level of the AST and does not
concern the parser [17, Figure 1]. Can you trust your parser?

Parsing expression grammars (PEGs) [14] are an alternative to CFGs, that
have recently been gaining popularity. In contrast to CFGs they are unambigu-
ous and allow easy integration of lexical analysis into the parsing phase. Their
implementation is easy, as PEGs are essentially a declarative way of specifying
recursive descent parsers [5]. With their backtracking and unlimited look-ahead
capabilities they are expressive enough to cover all LL(k) and LR(k) languages
as well as some non-context-free ones. However, recursive descent parsing of
grammars that are not LL(k) may require exponential time. A solution to that
problem is to use memoization giving rise to packrat parsing and ensuring lin-
ear time complexity at the price of higher memory consumption [2,13,12]. It
is not easy to support (indirect) left-recursive rules in PEGs, as they lead to
non-terminating parsers [29].

In this paper we present TRX: a PEG-based parser interpreter formally devel-
oped in the proof assistant Coq [28,4]. As a result, expressing a grammar in Coq
allows one, via its extraction capabilities [19], to obtain a parser for this gram-
mar with total correctness guarantees. That means that the resulting parser is
terminating and correct with respect to its grammar and the semantics of PEGs;
both of those properties formally proved in Coq. Moreover every definition and
theorem presented in this paper has been expressed and verified in Coq.

The contributions of this paper are:

– extension of PEGs with semantic actions,
– a Coq formalization of the theory of PEGs and
– a Coq development of TRX: a PEG interpreter allowing to obtain a parser

with total correctness guarantees for an arbitrary PEG grammar.

The remainder of this paper is organized as follows. We introduce PEGs in
Section 2 and in Section 3 we extend them with semantic actions. Section 4

Δ ::= ε empty expr. | e1/e2 a prioritized choice (e1, e2 ∈ Δ)
| [·] any character | e∗ a ≥ 0 greedy repetition (e ∈ Δ)
| [a] a terminal (a ∈ VT ) | e+ a ≥ 1 greedy repetition (e ∈ Δ)
| [“s”] a literal (s ∈ S) | e? an optional expression (e ∈ Δ)
| [a−z] a range (a, z ∈ VT ) | !e a not-predicate (e ∈ Δ)
| A a non-terminal (A ∈ VN ) | &e an and-predicate (e ∈ Δ)
| e1; e2 a sequence (e1, e2 ∈ Δ)

Fig. 1. Parsing expressions
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describes a method for checking that there is no (indirect) left recursion in a
grammar, a result ensuring that parsing will terminate. Section 5 reports on
our experience with putting the ideas of preceding sections into practice and
implementing a formally correct parser interpreter in Coq. Section 6 is devoted
to a practical evaluation of this interpreter and contains a small case study of
extracting an XML parser from it, presenting a benchmark of TRX against other
parser generators and giving an account of our experience with extraction. We
discuss related work in Section 7 and conclude in Section 8.

2 Parsing Expression Grammars (PEGs)

The content of this section is a different presentation of the ideas from [14]. For
more details we refer to the original article. For a general overview of parsing we
refer to, for instance, [1].

PEGs are a formalism for parsing that is an interesting alternative to CFGs.
We will formally introduce them along with their semantics in Section 2.1. PEGs
are gaining popularity recently due to their ease of implementation and some
general desirable properties that we will sketch in Section 2.2, while comparing
them to CFGs.

2.1 Definition of PEGs

Definition 1 (Parsing expressions). We introduce a set of parsing expres-
sions, Δ, over a finite set of terminals VT and a finite set of non-terminals VN .
We denote the set of strings as S and a string s ∈ S is a list of terminals VT .
The inductive definition of Δ is given in Figure 1. �

Later on we will present the formal semantics but for now we informally describe
the language expressed by all types of parsing expressions.

– Empty expression ε always succeeds without consuming any input.
– Any-character [·], a terminal [a] and a range [a − z] all consume a single

terminal from the input but they expect it to be, respectively: an arbitrary
terminal, precisely a and in the range between a and z.

– Literal [“s”] reads a string (i.e., a sequence of terminals) s from the input.
– Parsing a non-terminal A amounts to parsing the expression defining A.
– A sequence e1; e2 expects an input conforming to e1 followed by an input

conforming to e2.
– A choice e1/e2 expresses a prioritized choice between e1 and e2. This means

that e2 will be tried only if e1 fails.
– A zero-or-more (resp. one-or-more) repetition e∗ (resp. e+) consumes zero-

or-more (resp. one-or-more) repetitions of e from the input. Those operators
are greedy, i.e., the longest match in the input, conforming to e will be
consumed.

– An and-predicate (resp. not-predicate) &e (resp. !e) succeeds only if the input
conforms to e (resp. does not conform to e) but does not consume any input.
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We now define PEGs, which are essentially a finite set of non-terminals, also
referred to as productions, with their corresponding parsing expressions.

Definition 2 (Parsing Expressions Grammar (PEG)). A parsing expres-
sions grammar (PEG), G, is a tuple (VT ,VN , Pexp, vstart), where:

– VT is a finite set of terminals,
– VN is a finite set of non-terminals,
– Pexp is the interpretation of the productions, i.e., Pexp : VN → Δ and
– vstart is the start production, vstart ∈ VN . �

We will now present the formal semantics of PEGs. The semantics is given by
means of tuples (e, s) m� r, which indicate that parsing expression e ∈ Δ applied
on a string s ∈ S gives, in m steps, the result r, where r is either ⊥, denoting that
parsing failed, or

√
s′ , indicating that parsing succeeded and s′ is what remains

to be parsed. We will drop the m annotation whenever irrelevant.

(ε, s)
1� √

s

(Pexp(A), s)
n� r

(A, s)
n+1� r ([·], x :: xs)

1� √
xs

([·], []) 1� ⊥ ([x], x :: xs)
1� √

xs ([x], [])
1� ⊥

x �= y

([y], x :: xs)
1� ⊥

(e, s)
m� ⊥

(!e, s)
m+1� √

s

(e, s)
m� √

s′

(!e, s)
m+1� ⊥

(e1, s)
m� ⊥

(e1; e2, s)
m+1� ⊥

(e1, s)
m� √

s′ (e2, s
′) n� r

(e1; e2, s)
m+n+1� r

(e1, s)
m� ⊥ (e2, s)

n� r

(e1/e2, s)
m+n+1� r

(e1, s)
m� √

s′

(e1/e2, s)
m+1� √

s′

(e, s)
m� √

s′ (e∗, s′) n� √
s′′

(e∗, s) m+n+1� √
s′′

(e, s)
m� ⊥

(e∗, s) m+1� √
s

Fig. 2. Formal semantics of PEGs

The complete semantics is presented in Figure 2. Please note that the following
operators from Definition 1 can be derived and therefore are not included in the
semantics:

[a−z] ::= [a] / . . . / [z] e+ ::= e; e∗ &e ::= !!e
[“s”] ::= [s0] ; . . . ; [sn] e? ::= e/ε

2.2 CFGs vs PEGs

The main differences between PEGs and CFGs are the following:

– the choice operator, e1/e2, is prioritized, i.e., e2 is tried only if e1 fails;
– the repetition operators, e∗ and e+, are greedy, which allows to easily express

“longest-match” parsing, which is almost always desired;
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– syntactic predicates [22], &e and !e, both of which consume no input and suc-
ceed if e, respectively, succeeds or fails. This effectively provides an unlimited
look-ahead and, in combination with choice, limited backtracking capabilities.

An important consequence of the choice and repetition operators being deter-
ministic (choice being prioritized and repetition greedy) is the fact that PEGs
are unambiguous. We will see a formal proof of that in Theorem 32. This makes
them unfit for processing natural languages, but is a much desired property when
it comes to grammars for programming languages.

Another important consequence is ease of implementation. Efficient algo-
rithms are known only for certain subclasses of CFGs and they tend to be rather
complicated. PEGs are essentially a declarative way of specifying recursive de-
scent parsers [5] and performing this type of parsing for PEGs is straightforward
(more on that in Section 5). By using the technique of packrat parsing [2,13],
i.e., essentially adding memoization to the recursive descent parser, one obtains
parsers with linear time complexity guarantees. The downside of this approach
is high memory requirements: the worst-time space complexity of PEG parsing
is linear in the size of the input, but with packrat parsing the constant of this
correlation can be very high. For instance Ford reports on a factor of around 700
for a parser of Java [13].

CFGs work hand-in-hand with REs. The lexical analysis, breaking up the
input into tokens, is performed with REs. Such tokens are subject to syntactical
analysis, which is executed with CFGs. This split into two phases is not necessary
with PEGs, as they make it possible to easily express both lexical and syntactical
rules with a single formalism. We will see that in the following example.

Example 3 (PEG for simple mathematical expressions). Consider a PEG for sim-
ple mathematical expressions over 5 non-terminals: VN ::= {ws, number, term,
factor, expr} with the following productions (Pexp function from Definition 2):

ws ::= ([ ] / [\t])∗
number ::= [0−9]+
term ::= ws number ws / ws [(] expr [)] ws

factor ::= term [∗] factor / term
expr ::= factor [+] expr / factor

Please note that in this and all the following examples we write the sequence
operator e1; e2 implicitly as e1 e2. The starting production is vstart ::= expr.

First, let us note that lexical analysis is incorporated into this grammar by
means of the ws production which consumes all white-space from the beginning
of the input. Allowing white-space between “tokens” of the grammar comes down
to placing the call to this production around the terminals of the grammar. If
one does not like to clutter the grammar with those additional calls then a simple
solution is to re-factor all terminals into separate productions, which consume
not only the terminal itself but also all white-space around it.

Another important observation is that we made addition (and also multi-
plication) right-associative. If we were to make it, as usual, left-associative, by
replacing the rule for expr with:
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expr ::= expr [+] factor / factor

then we get a grammar that is left-recursive. Left-recursion (also indirect or
mutual) is problematic as it leads to non-terminating parsers. We will come
back to this issue in Section 4. �

PEGs can also easily deal with some common idioms often encountered in practi-
cal grammars of programming languages, which pose a lot of difficulty for CFGs,
such as modular way of handling reserved words of a language and a “dangling”
else problem — for more details we refer to [12, Chapter 2.4].

3 Extending PEGs with Semantic Actions

3.1 XPEGs: Extended PEGs

In the previous section we introduced parsing expressions, which can be used to
specify which strings belong to the grammar under consideration. However the
role of a parser is not merely to recognize whether an input is correct or not
but also, given a correct input, to compute its representation in some structured
form. This is typically done by extending grammar expressions with semantic
values, which are a representation of the result of parsing this expression on
(some) input and by extending a grammar with semantic actions, which are
functions used to produce and manipulate the semantic values. Typically a se-
mantic value associated with an expression will be its parse tree so that parsing
a correct input will give a parse tree of this input. For programming languages
such parse tree would represent the AST of the language.

In order to deal with this extension we will replace the simple type of parsing
expressions Δ with a family of types Δα, where the index α is a type of the
semantic value associated with the expression. We also compositionally define
default semantic values for all types of expressions and introduce a new construct:
coercion, e[�→]f , which converts a semantic value v associated with e to f(v).

Borrowing notations from Coq we will use the following types:

– Type is the universe of types.
– True is the singleton type with a single value I.
– char is the type of machine characters. It corresponds to the type of terminals

VT , which in concrete parsers will always be instantiated to char.
– listα is the type of lists of elements of α for any type α. Also string ::=

list char.
– α1 ∗ . . . ∗ αn is the type of n-tuples of elements (a1, . . . , an) with a1 ∈

α1, . . . , an ∈ αn for any types α1, . . . , αn. If v is an n-tuple then vi is its
i’th projection.

– optionα is the type optionally holding a value of type α, with two construc-
tors None and Some v with v : α.
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ε : ΔTrue [·] : Δchar

a ∈ VT

[a] : Δchar

A ∈ VN

A : ΔPtype(A)

e1 : Δα e2 : Δβ

e1; e2 : Δα∗β

e1 : Δα e2 : Δα

e1/e2 : Δα

e : Δα

e∗ : Δlist α

e : Δα

!e : ΔTrue

e : Δα f : α → β

e[	→]f : Δβ

Fig. 3. Typing rules for parsing expressions with semantic actions

Definition 4 (Parsing expressions with semantic values). We introduce
a set of parsing expressions with semantic values, Δα, as an inductive family
indexed by the type α of semantic values of an expression. The typing rules for
Δα are given in Figure 3. �

Note that for the choice operator e1/e2 the types of semantic values of e1 and e2

must match, which will sometimes require use of the coercion operator e[�→]f .
Let us again see the derived operators and their types, as we need to insert

few coercions:

[a−z] : Δchar ::= [a] / . . . / [z]
[“s”] : Δstring ::= [s0] ; . . . ; [sn] [�→] tuple2str

e+ : Δlist α ::= e; e ∗ [�→] λx . x1 :: x2

e? : Δoption α ::= e [�→] λx . Some x
/ε [�→] λx . None

&e : ΔTrue ::= !!e

where tuple2str(c1, . . . , cn) = [c1; . . . ; cn].
The definition of an extended parsing expression grammar (XPEG) is as ex-

pected (compare with Definition 1).

Definition 5 (Extended Parsing Expressions Grammar (XPEG)). An
extended parsing expressions grammar (XPEG), G, is a tuple (VT ,VN , Ptype,
Pexp, vstart), where:

– VT is a finite set of terminals,
– VN is a finite set of non-terminals,
– Ptype : VN → Type is a function that gives types of semantic values of all

productions.
– Pexp is the interpretation of the productions of the grammar, i.e., Pexp :

∀A:VN ΔPtype(A) and
– vstart is the start production, vstart ∈ VN . �

We extended the semantics of PEGs from Figure 2 to semantics of XPEGs in
Figure 4.
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(ε, s)
1� √ I

s

(Pexp(A), s)
m� r

(A, s)
m+1� r ([·], x :: xs)

1� √ x
xs

([·], []) 1� ⊥
(e1, s)

m� ⊥ (e2, s)
n� r

(e1/e2, s)
m+n+1� r

(e1, s)
m� √ v

s′

(e1/e2, s)
m+1� √ v

s′

([x], x :: xs)
1� √ x

xs ([x], [])
1� ⊥

x �= y

([y], x :: xs)
1� ⊥

(e1, s)
m� √ v1

s′ (e2, s
′) n� ⊥

(e1; e2, s)
m+n+1� ⊥

(e1, s)
m� √ v1

s′ (e2, s
′) n� √ v2

s′′

(e1; e2, s)
m+n+1� √ (v1,v2)

s′′

(e1, s)
m� ⊥

(e1; e2, s)
m+1� ⊥

(e, s)
m� ⊥

(e∗, s) m+1� √ []
s

(e, s)
m� √ v

s′ (e∗, s′) n� √ vs
s′′

(e∗, s) m+n+1� √ v::vs
s′′

(e, s)
m� ⊥

(!e, s)
m+1� √ I

s

(e, s)
m� √ v

s′

(!e, s)
m+1� ⊥

(e, s)
m� √ v

s′

(e[	→]f, s)
m+1� √ f(v)

s′

(e, s)
m� ⊥

(e[	→]f, s)
m+1� ⊥

Fig. 4. Formal semantics of XPEGs with semantic actions

Example 6 (Simple mathematical expressions ctd.). Let us extend the grammar
from Example 3 with semantic actions. The grammar expressed mathematical
expressions and we attach semantic actions evaluating those expressions, hence
obtaining a very simple calculator.

It often happens that we want to ignore the semantic value attached to an
expression. This can be accomplished by coercing this value to I, which we will
abbreviate by e[�] ::= e [�→] λx . I.

ws ::= ([ ] / [\t])∗ [�]
number ::= [0−9]+ [�→] digListToNat
term ::= ws number ws [�→] λx . x2

/ ws [(] expr [)] ws [�→] λx . x3

factor ::= term [∗] factor [�→] λx . x1 ∗ x3

/ term
expr ::= factor [+] expr [�→] λx . x1 + x3

/ factor

where digListToNat converts a list of digits to their decimal representation.
This grammar will associate, as expected, the semantical value 36 with the

string “(1+2) * (3 * 4)”. Of course in practice instead of evaluating the ex-
pression we would usually write semantic actions to build a parse tree of the
expression for later processing. �

3.2 Meta-properties of (X)PEGs

Now we will present some results concerning semantics of (X)PEGs. They are
all variants of results obtained by Ford [14], only now we extend them to XPEGs.
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First we prove that, as expected, the parsing only consumes a prefix of a
string.

Theorem 31 If (e, s) m� √ v
s′ then s′ is a suffix of s.

Proof. Induction on the derivation of (e, s) m� √ v
s′ using transitivity of the prefix

property for sequence and repetition cases. 
�
As mentioned earlier, (X)PEGs are unambiguous:

Theorem 32 If (e, s)
m1� r1 and (e, s)

m2� r2 then m1 = m2 and r1 = r2.

Proof. By complete induction on m1. All cases immediate from the semantics of
XPEGs. 
�
We wrap up this section with a simple property about the repetition operator,
that we will need later on. It states that the semantics of a repetition expression
e∗ is not defined if e succeeds without consuming any input.

Lemma 33 If (e, s) m� √ v
s then (e∗, s) �� r for all r.

Proof. Assume (e, s) m� √ v
s and (e∗, s) n� √ vs

s′ for some n, vs and s′ (we cannot
have (e∗, s) n� ⊥ as e∗ never fails). By the first rule for repetition (e∗, s) m+n+1�√ v::vs

s′ , which contradicts the second assumption by Theorem 32. 
�

4 Well-Formedness of PEGs

We want to guarantee total correctness for generated parsers, meaning they must
be correct (with respect to PEGs semantics) and terminating. In this section we
focus on the latter problem. Throughout this section we assume a fixed PEG G.

4.1 Termination Problem for XPEGs

Ensuring termination of a PEG parser essentially comes down to two problems:

– termination of all semantic actions in G and
– completeness of G with respect to PEGs semantics.

As for the first problem it means that all f functions used in coercion operators
e[�→]f in G, must be terminating. We are going to express PEGs completely in
Coq (more on that in Section 5) so for our application we get this property for
free, as all Coq functions are total (hence terminating).

Concerning the latter problem, we must ensure that the grammar G under con-
sideration is complete, i.e., whether it either succeeds or fails on all input strings.
The only potential source of incompleteness of G is (mutual) left-recursion in the
grammar.

We already hinted at this problem in Example 3 with the rule:
expr ::= expr [+] factor / factor.
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Recursive descent parsing of expressions with this rule would start with recur-
sively calling a function to parse expression on the same input, obviously leading
to an infinite loop. But not only direct left recursion must be avoided. In the
following rule:

A ::= B / C !D A

a similar problem occurs provided that B may fail and C and D may succeed, the
former without consuming any input.

While some techniques to deal with left-recursive PEGs have been developed
recently [29], we choose to simply reject such grammars. In general it is unde-
cidable whether a PEG grammar is complete, as it is undecidable whether the
language generated by G is empty [14].

While in general checking grammar completeness is undecidable, we follow
[14] to develop a simple syntactical check for well-formedness of a grammar,
which implies its completeness. This check will reject left-recursive grammars
even if the part with left-recursion is unreachable in the grammar, but from a
practical point of view this is hardly a limitation.

4.2 PEG Analysis

We define the expression set of G as:

E(G) = {e′ | e′ 
 e, e ∈ Pexp(A), A ∈ VN}

where 
 is a (non-strict) sub-expression relation on parsing expressions.
We define three groups of properties over parsing expressions:

– “0”: parsing expression can succeed without consuming any input,
– “> 0”: parsing expression can succeed after consuming some input and
– “⊥”: parsing expression can fail.

ε ∈ P0 [·] ∈ P>0 [·] ∈ P⊥

a ∈ VT

[a] ∈ P>0

a ∈ VT

[a] ∈ P⊥

e ∈ P⊥
e∗ ∈ P0

e ∈ P>0

e∗ ∈ P>0

� ∈ {0, > 0,⊥} A ∈ VN Pexp(A) ∈ P�

A ∈ P�

e1 ∈ P⊥ ∨ (e1 ∈ P≥0 ∧ e2 ∈ P⊥)

e1; e2 ∈ P⊥

(e1 ∈ P>0 ∧ e2 ∈ P≥0) ∨ (e1 ∈ P≥0 ∧ e2 ∈ P>0)

e1; e2 ∈ P>0

e1 ∈ P0 e2 ∈ P0

e1; e2 ∈ P0

e1 ∈ P0 ∨ (e1 ∈ P⊥ ∧ e2 ∈ P0)

e1/e2 ∈ P0

e1 ∈ P⊥ e2 ∈ P⊥
e1/e2 ∈ P⊥

e1 ∈ P>0 ∨ (e1 ∈ P⊥ ∧ e2 ∈ P>0)

e1/e2 ∈ P>0

e ∈ P⊥
!e ∈ P0

e ∈ P≥0

!e ∈ P⊥

Fig. 5. Deriving grammar properties
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We will write e ∈ P0 to indicate that the expression e has property “0”
(similarly for P>0 and P⊥). We will also write e ∈ P≥0 to denote e ∈ P0∨e ∈ P>0.
We define inference rules for deriving those properties in Figure 5.

We start with empty sets of properties and apply those inference rules over
E(G) until reaching a fix-point. The existence of the fix-point is ensured by the
fact that we extend those property sets monotonically and they are bounded
by the finite set E(G). We summarize the semantics of those properties in the
following lemma:

Lemma 41 ([14]) For arbitrary e ∈ Δ and s ∈ S:

– if (e, s) n� √
s then e ∈ P0,

– if (e, s) n� √
s′ and |s′| < |s| then e ∈ P>0 and

– if (e, s) n� ⊥ then e ∈ P⊥.

Proof. Induction over n. All cases easy by the induction hypothesis and seman-
tical rules of XPEGs, except for e∗ which requires use of Lemma 33. 
�

4.3 PEG Well-Formedness

Using the semantics of those properties of parsing expression we can perform
the completeness analysis of G. We introduce a set of well-formed expressions
WF and again iterate from an empty set by using derivation rules from Figure 6
over E(G) until reaching a fix-point.

We say that G is well-formed if E(G) = WF. We have the following result:

Theorem 42 ([14]) If G is well-formed then it is complete.

Proof. We will say that (e, s) is complete iff ∃n,r (e, s) n� r. So we have to
prove that (e, s) is complete for all e ∈ E(G) and all strings s. We proceed by
induction over the length of the string s (IHout), followed by induction on the
depth of the derivation tree of e ∈ WF (IHin). So we have to prove correctness of
a one step derivation of the well-formedness property (Figure 6) assuming that
all expressions are total on shorter strings. The interesting cases are:

– For a sequence e1; e2 if e1; e2 ∈ WF then e1 ∈ WF, so (e1, s) is complete
by IHin. If e1 fails then e1; e2 fails. Otherwise (e1, s)

n� √ v
s′ . If s = s′ then

e1 ∈ P0 (Lemma 41) and hence e2 ∈ WF and (e2, s
′) is complete by IHin. If

s �= s′ then |s′| < |s| (Theorem 31) and (e2, s
′) is complete by IHout. Either

way (e2, s
′) is complete and we conclude by semantical rules for sequence.

– For a repetition e∗, e ∈ WF gives us completeness of (e, s) by IHin. If e fails
then we conclude by the base rule for repetition. Otherwise (e∗, s) n� s′ with
|s′| < |s| as e /∈ P0. Hence we get completeness of (e∗, s′) by IHout and we
conclude with the inductive rule for repetition. 
�
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A ∈ VN Pexp(A) ∈ WF

A ∈ WF ε ∈ WF [·] ∈ WF

a ∈ VT

[a] ∈ WF

e ∈ WF

!e ∈ WF

e1 ∈ WF e1 ∈ P0 ⇒ e2 ∈ WF

e1; e2 ∈ WF

e1 ∈ WF e2 ∈ WF

e1/e2 ∈ WF

e ∈ WF, e /∈ P0

e∗ ∈ WF

Fig. 6. Deriving well-formedness property for a PEG

5 Formally Verified XPEG Interpreter

In this Section we will present a Coq implementation of a parser interpreter.
This task consists of formalizing the theory of the preceding sections and, based
on this, writing an interpreter for well-formed XPEGs along with its correctness
proofs. The development is too big to present it in detail here, but we will try
to comment on its most interesting aspects.

We will describe how PEGs are expressed in Coq in Section 5.1, comment on
the procedure for checking their well-formedness in Section 5.2 and describe the
formal development of an XPEG interpreter in Section 5.3.

5.1 Specifying XPEGs in Coq

XPEGs in Coq are a simple reflection of Definition 5. They are specified over
a finite enumeration of non-terminals (corresponding to VN ) with their types
(Ptype):

Parameter prods : Enumeration .
Parameter prods type : prods → Type.

We do not parameterize XPEGs by the set of terminals, as for that we simply use
the existing ascii type of Coq, encoding standard ASCII characters. Building on
that we define parsing expressions Δα, with the typing discipline from Figure 3 in
an expected way. Finally the definitions of non-terminals (Pexp) and the starting
production (vstart) become:

Parameter production : ∀ p : prods ,PExp (prods type p).
Parameter start : prods .

There are two observations that we would like to make at this point. First, by
means of the above embedding of XPEGs in the logic of Coq, every such XPEG is
well-defined (though not necessarily well-formed). In particular there can be no
calls to undefined non-terminals and the conformance with the typing discipline
from Figure 3 is taken care of by the type-checker of Coq.

Secondly, thanks to the use of Coq’s mechanisms, such as notations and co-
ercions, expressing an XPEG in Coq is still relatively easy as we will see in the
following example.
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Program Definition production p :=
match p return PExp (prod type p) with
| ws ⇒ (" " / "\t") [∗ ] [#]
| number ⇒ ["0"−−"9"] [+] [→] digListToRat
| term ⇒ ws ;number ;ws [→] (λv ⇒ P2 3 v)

/ ws; "("; expr ; ")"; ws [→] (λv ⇒ P3 5 v)
| factor ⇒ term ; "*"; factor [→] (λv ⇒ P1 3 v ∗ P3 3 v)

/ term
| expr ⇒ factor ; "+"; expr [→] (λv ⇒ P1 3 v + P3 3 v)

/ factor
end.

Fig. 7. A Coq version of the XPEG for mathematical expressions from Example 6

Example 7. Figure 7 presents a precise Coq rendering of the productions of the
XPEG grammar from Example 6. It is not much more verbose than the original
example. The most awkward part are the projections for tuples for which we use
a family of functions Pi n(v1, . . . , vi, . . . , vn) ::= vi �

5.2 Checking Well-Formedness of an XPEG

To check well-formedness of XPEGs we implement the procedure from Section 4.
The main difficulty is that the function to compute XPEG properties, by iterat-
ing the derivation rules of Figure 5 until reaching a fix-point, is not structurally
recursive. Similarly for the well-formedness check with rules from Figure 6. For-
tunately the new Program feature of Coq makes specifying such functions much
easier. We illustrate it on the well-formedness check (computing properties is
analogous), which is realized with the following procedure:

Program Fixpoint wf compute (wf : WFset)
{measure (wf measure wf )} : WFset :=
let wf ′ := wf derive wf in
if PES .equal wf wf ′ then wf else wf compute wf ′.

where WFset is a set of well-formed expressions and wf derive performs one-
step derivation with the rules of Figure 6 over E(G). The measure (into N) is
defined as:

wf measure ::= |E(G)| − |wf |
We can prove this procedure terminating, as the set of well-formed expressions
is growing monotononically and is limited by E(G):

wf ⊆ wf derive wf
wf ⊆ E(G) =⇒ wf derive wf ⊆ E(G)

Please note that our formalized interpreter (more about it in the following sec-
tion), and hence the analysis sketched above, is based on XPEGs, not on PEGs.
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However, we still formalized simple parsing expressions, Definition 1 (though
not their semantics, Figure 2), and the projection, defined as expected, from Δα

to Δ.
This is because the well-formedness procedure needs to maintain a set of

parsing expressions (WFset above) and for that we need a decidable equality
over parsing expressions. Equality over Δα is not decidable, as, within coercion
operator e[�→]f they contain arbitrary functions f , for which we cannot decide
equality.

An alternative approach would be to consider WFset modulo an equivalence
relation on parsing expressions coarser than the syntactic equality, which would
ignore f components in e[�→]f coercions. We chose the former approach as de-
veloping the PEG analysis and well-formedness check over a non-dependently
typed expressions Δ seemed to be easier than over Δα and the results carry over
to this richer structure immediately.

5.3 A Formal Interpreter for XPEGs

For the development of a formal interpreter for XPEGs we used the ascii type
of Coq for the set of terminals VT . The string type from the standard library
of Coq is isomorphic to lists of characters. In its place we just used a list of
characters, in order to be able to re-use a rich set of available functions over
lists.

The only difference in comparison with the theory presented in the preceding
sections is that we implemented the range operator [a−z] as a primitive (so we had
to extend the semantics of Figure 4 with this operator), as in practice it occurs
frequently in parsers and implementing it with a choice over all the characters
in the range is inefficient.

The interpreter is defined as a function with the following header:

Program Fixpoint parse (T : Type) (e : PExp T | is gr exp e) (s : string)
{measure (e, s)(�)} : {r : ParsingResult T | ∃ n, [e, s ] ⇒ [n, r ]}

So this function takes three arguments (the first one implicit):

– T : a type of the result of parsing (α),
– e: a parsing expression of type T (Δα), which belongs to the grammar G

(which in turn is checked beforehand to be well-formed) and
– s : a string to be parsed.

The last line in the above header describes the type of the result of this
function, where [e, s ] ⇒ [n, r ] is the expected encoding of the semantics from
Figure 4 and corresponds to (e, s) n� r. So the parse function produces the
parsing result r (either ⊥ or

√ v
s , with v : T ), such that (e, s) n� r for some n,

i.e., it is correct with respect to the semantic of XPEGs.
The body of the parse function performs pattern matching on expression e

and interprets it according to the semantics from Figure 2.
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This function is again not structurally recursive, but the recursive calls are
decreasing with respect to the following � relation on pairs of parsing expressions
and strings:

(e1, s1) � (e2, s2) ⇐⇒ ∃n1,r1,n2,r2(e1, s1)
n1� r1 ∧ (e2, s2)

n2� r2 ∧ n1 > n2

So (e1, s1) is bigger than (e2, s2) in the order if its step-count in the semantics is
bigger. The relation � is clearly well-founded, due to the last conjunct with >,
the well-founded order on N. Since the semantics of G is complete (due to The-
orem 42 and the check for well-formedness of G as described in Section 5.2) we
can prove that all recursive calls are indeed decreasing with respect to �.

6 Extracting a Parser: Practical Evaluation

In the previous section we described a formal development of an XPEG inter-
preter in the proof assistant Coq. This should allow us for an arbitrary, well-
formed XPEG G, to specify it in Coq and, using Coq’s extraction capabilities
[19], to obtain a certified parser for G. We are interested in code extraction from
Coq, to ease practical use of TRX and to improve its performance. At the mo-
ment target languages for extraction from Coq are OCaml [18], Haskell [23] and
Scheme [26]. We use the FSets [11] library, developed using Coq’s modules and
functors [7], which are not yet supported by extraction to Haskell or Scheme.
However, there is an ongoing work on porting FSets to type classes [25], which
are supported by extraction. In this section we will describe our experience with
OCaml extraction on the example of an XML parser.

A well-known issue with extraction is the performance of obtained programs
[8,19]. Often the root of this problem is the fact that many formalizations are not
developed with extraction in mind and trying to extract a computational part
of the proof can easily lead to disastrous performance [8]. On the other hand the
CompCert project [17] is a well-known example of extracting a certified compiler
with satisfactory performance from a Coq formalization.
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Fig. 8. Performance of certified TRX compared to a number of other tools
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As most of TRX’s formalization deals with grammar well-formedness, which
should be discarded in the extracted code, we aimed at comparable performance
for certified TRX and its non-certified counterpart. We found however that the
first version’s performance was unacceptable and required several improvements.
In the remainder of this section, we will describe those improvements and com-
pare certified TRX’s performance with a few other tools.

For our benchmarking experiment, see Figure 8 on the following page, we used
the following parsers, all of them OCaml-based to avoid differences coming from
the use of different programming languages:

– TRX-cert: the certified TRX interpreter, which is the subject of this paper
and is described in more detail in Section 5.

– TRX-int: a simple prototype with comparable functionality to TRX-cert,
though developed manually. It does not produce a parse tree (just checks
whether the input conforms to the grammar).

– TRX-gen: MLstate’s own production-used PEG-based parser generator (for
experiments we used its simple version without memoization).

– Aurochs [10]: the only PEG-based parser generator (apart from TRX) we
are aware of that supports OCaml as the target language. It uses packrat
parsing.

– xml-light [6]: a popular XML parser and printer for OCaml, internally using
ocamllex for lexical analysis and ocamlyacc for syntactical analysis (based
on LALR(1) parsing).

6.1 Improving Performance of Certified TRX

The first extracted version of TRX-cert (not shown on Figure 8) parsed 32kB of
XML in more than one minute. To our big surprise, performance was somewhere
between quadratic and cubic with rather large constants. To our even bigger sur-
prise, inspection of the code revealed that the rev function from Coq’s standard
library (from the module Coq.Lists.List) that reverses a list was the heart of the
problem. The rev function is implemented using append to concatenate lists at
every step, hence yielding quadratic time complexity.

We used this function to convert the input from OCaml strings to the ex-
tracted type of Coq strings. This is another difficulty of working with extracted
programs: all the data-types in the extracted program are defined from scratch
and combining such programs with un-certified code, even just to add a minimal
front-end, as in our case, sometimes requires translating back and forth between
OCaml’s primitive types and the extracted types of Coq.

Fixing the problem with rev resulted in a linear complexity but the constant
was still unsatisfactory. We quickly realized that implementing the range op-
erator by means of repeated choice is suboptimal as a common class of letters
[a−z] would lead to a composition of 26 choices. Hence we extended the seman-
tics of XPEGs with semantics of the range operator and instead of deriving it
implemented it “natively”.

Yet another surprise was in store for us as the performance instead of improv-
ing got worse by approximately 30%. This time the problem was the fact that
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in Coq there is no predefined polymorphic comparison operator (as in OCaml)
so for the range operation we had to implement comparison on characters. We
did that by using the predefined function from the standard library converting a
character to its ASCII code. And yet again we encountered a problem that the
standard library is much better suited for reasoning than computing: this conver-
sion function uses natural numbers in Peano representation. By re-implementing
this function using natural numbers in binary notation (available in the standard
library) we decreased the running time by a factor of 2.

Further profiling the OCaml program revealed that it spends 85% of its time
performing garbage collection (GC). By tweaking the parameters of OCaml’s
GC, we obtained an important 3x gain, leading to TRX-cert’s current perfor-
mance shown in Figure 8. We believe a more careful inspection will reveal more
potential sources of improvements, as there is still a gap between the performance
that we reached now and the one of our prototype written by hand.

6.2 Performance Comparison

Figure 8 plots performance of the 5 aforementioned tools on a number of XML
files (the biggest one of more than 4MB). For all PEG-based parsers, that is
all tools except xml-light, we used the same PEG grammar (with minor tweaks
due to differences in the tools). Few missing values for Aurochs are due to stack
overflow errors.

The most interesting comparison is between TRX-cert and TRX-int. The
latter was essentially a prototype of the former but developed manually, whereas
TRX-cert is extracted from a formal Coq development. At the moment the
certified version is approximately 2.5x slower, mso certainly there is room for
improvement, especially given the fact that for the development of TRX-int we
put emphasis on its simplicity (the actual interpreter is around 100 lines long)
and not on efficiency.

The two main directions for improving performance seem to be:

– Memoization (packrat parsing): it does not help for simple grammars, as
that of XML (TRX-gen with memoization is actually slower than without,
due to the overhead of keeping the memoization table), but it does pay off
for more complex grammars.

– Code generation: as witnessed by the difference between TRX-int and TRX-
gen turning from interpretation to code generation can have a substantial
impact on performance.

Admittedly XML is not the best test-case for TRX, due to its simple format,
for which the expressive power offered by PEGs is an overkill. Parsing Java seems
to be an established benchmark for PEGs [24,13,12,29]. One difficulty with the
grammar of Java [15] is that it naturally contains left-recursive rules, most of
which can be easily replaced with iteration, with the exception of a single defini-
tion [24], and for the moment TRX lacks the ability to handle left-recursive rules.
Also obtaining reasonable (linear) performance for such a complicated grammar
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would require either packrat parsing or very careful crafting of the grammar.
It is reported by Redziejowski [24] that “the resulting primitive parser shows
an acceptable behavior, indicating that packrat parsing might be an overkill for
practical languages”, but is very sparse on details of what a reasonable perfor-
mance is.

We would like to conclude this section with the observation that even though
making such benchmarks is important it is often just one of many factors for
choosing a proper tool for a given task. There are many applications which will
never parse files exceeding 100kB and it is often irrelevant whether that will
take 0.1s. or 0.01s. For some of those applications it may be much more relevant
that the parsing is formally guaranteed to be correct. And at the moment TRX
is the only tool that comes with such guarantees.

7 Related Work

Parsing is a well-studied and well-understood topic and the software for parsing,
parser generators or libraries of parser combinators, is abundant. And yet there
does seem to be hardly any work on formally verified parsing.

In Danielsson and Norell [9] a library of parser combinators (see Hutton [16])
with termination guarantees has been developed in the dependently typed func-
tional programming language Agda [27]. The main difference in comparison with
our work is that they provide a library of combinators, whereas we aim at parser
generator for PEG grammars (though at the moment we only have an inter-
preter). The problem of termination is also handled differently: “[we] use depen-
dent types to add information in the form of type indices to the parser type, and
use these indices to ensure that left recursion is not possible” [9]. In many cases
those type indices can be automatically inferred by Agda, however, if this is not
possible they have to be provided by the user of the library, which requires some
expertise and understanding of the underlying formal model. In our approach
we proved correct a well-formedness checker for PEG grammars, making the
termination analysis completely transparent to the user of TRX.

Ideas similar to Danielsson and Norell [9] were previously put forward, though
just as a proof of concept, by McBride and McKinna [21].

Probably the closest work to ours is that of Barthwal and Norrish [3], where
the authors developed an SLR parser in HOL. The main differences with our
work are:

– PEGs are more expressive that SLR grammars, which are usually not ade-
quate for real-world computer languages,

– as a consequence of using PEGs we can deal with lexical analysis, while it
would have to be formalized and verified in a separate stage for the SLR
approach.

– our parser is proven to be totally correct, i.e., correct with respect to its
specification and terminating on all possible inputs (which was actually far
more difficult to establish than correctness), while the latter property does
not hold for the work of Barthwal and Norrish.
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– performance comparison with this work is not possible as the paper does
not present any case-studies, benchmarks or examples, but the fact that
“the DFA states are computed on the fly” [3] suggests that the performance
was not the utmost goal of that work.

Finally there is the recent development of a packrat PEG parser in Coq by
Wisnesky et al. [30], where the given PEG grammar is compiled into an im-
perative computation within the Ynot framework, that run over an arbitrary
imperative character stream, returns a parsing result conforming with the spec-
ification of PEGs. Termination of such generated parsers is not guaranteed.

8 Conclusions and Future Work

In this paper we described a Coq formalization of the theory of PEGs and,
based on it, a formal development of TRX: a formally verified parser interpreter
for PEGs. This allows us to write a PEG, together with its semantic actions,
in Coq and then to extract from it a parser with total correctness guarantees.
That means that the parser will terminate on all inputs and produce parsing
results correct with respect to the semantics of PEGs. Although TRX can still
be improved (see future work discussion below), it is the first tool capable of
generating provably correct parsers. Considering the importance of parsing, this
result appears as a first step towards a general way to bring added quality and
security to all kinds of software.

To extend our research, we identify the following subjects for future work:

1. A realistic case study of a practical language, such as Java, should be con-
ducted to ensure scalability of this methodology and acceptable performance.
This would also allow us to compare directly with other experiments of pars-
ing Java with PEGs (see for instance Redziejowski [24] or Ford [12]). This
would undoubtedly lead to some improvements to TRX making it easier to
use.

2. In connection with the aforementioned case study the performance of our
parser interpreter should be better understood and improved upon. One pos-
sibility here is implementation of packrat parsing, by means of implementing
memoization in our interpreter [13].

3. Support for error messages, for instance following that of the PEG-based
parser generator Puppy [12], should be added.

4. Another important aspect is that of left-recursive grammars, which occur
naturally in practice. At the moment it is the responsibility of the user to
eliminate left-recursion from a grammar. In the future, we plan to address
this problem either by means of left-recursion elimination [12], i.e., trans-
forming a left-recursive grammar to an equivalent one where left-recursion
does not occur (this is not an easy problem in presence of semantic actions,
especially if one also wants to allow mutually left-recursive rules). Another
possible approach is an extension to the memoization technique that allows
dealing with left-recursive rules [29].
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