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Abstract. In 2003, Hofmann and Jost introduced a type system that
uses a potential-based amortized analysis to infer bounds on the re-
source consumption of (first-order) functional programs. This analysis
has been successfully applied to many standard algorithms but is lim-
ited to bounds that are linear in the size of the input.

Here we extend this system to polynomial resource bounds. An au-
tomatic amortized analysis is used to infer these bounds for functional
programs without further annotations if a maximal degree for the bound-
ing polynomials is given. The analysis is generic in the resource and can
obtain good bounds on heap-space, stack-space and time usage.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Amortized Analysis.

1 Introduction

In this paper we study the problem of statically determining an upper bound on
the resource usage of a given first-order functional program as a function of the
size of its input.

As in an earlier work by Hofmann and Jost [I] we rely on the potential method
of amortized analysis to take into account the interaction between the steps of a
computation and thus obtain tighter bounds than by a mere addition of the worst
case resource bounds of the individual steps. Furthermore, the use of potentials
relieves one of the burden of having to manipulate symbolic expressions during
the analysis by a priori fixing their format.

The main limitation of the system of Hofmann and Jost [1] is its restriction to
linear resource bounds. While this restriction is often acceptable when account-
ing heap space, it is rather limiting when accounting time and other resources.
This raises the question whether it is possible to effectively utilize the poten-
tial method to compute super-linear resource bounds. We address the problem
in this work by using a potential-based amortized analysis to infer polynomial
resource bounds.
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The analysis system we present applies to functional first-order programs with
integers, lists and recursion. It can also be extended to programs with tree-like
data structures.

Our analysis of the programs is fully automatic and does not require type
annotations. It is furthermore generic in the resource and provides good bounds
on heap space, stack space, clock cycles (time) or other resources that might be
of interest to a user.

The linear system [II2] has been successfully applied in the domain of em-
bedded systems [3]. We envisage that the present extension will also have ap-
plications there, in particular in situations where only a few functions exhibit
super-linear resource consumption. For this, it is important that the system de-
scribed here properly extends the linear one so that no expressive power is lost
when moving to polynomials.

We give examples of typical programs with a polynomial resource behavior to
which our extended system successfully applies. The examples have been imple-
mented in a prototype of the system that is available onlindT. It can be directly
used in a web browser to analyze and to evaluate user generated programs. We
experimented with a variety of example programs such as

quicksort, mergesort, insertionsort

multiplication and division for bit-vectors of arbitrary length
longest common subsequence via dynamic programming
breadth-first traversal of a tree using a functional queue
sieve of Eratosthenes

A comparison of the computed bounds with the actual resource costs showed
that many bounds exactly match the measured worst-case time and heap-space
behaviors of the functions (this is for instance the case for quicksort, insertion-
sort, pairs and triples). Plots of our experiments are available online and in the
extended version of this article.

The main conceptual contribution of this paper lies in the transfer of the anal-
ysis method of Hofmann and Jost from linear to polynomial bounds. They used
an automatic amortized analysis to infer first-order types that are annotated
with information on the resource consumption. The analysis works basically like
a standard type inference instrumented with linear constraints for the type an-
notations that can then be solved by linear programming. For this method to
work it is essential that the occurring constraints are linear. Since one would ex-
pect an analysis for non-linear bounds to result in non-linear constraints it has
been often assumed that amortized analysis is limited to linear bounds. That is
maybe why the problem of an extension of amortized analysis to super-linear
bounds has remained open for several years. The amortized analysis with polyno-
mial potential we present is an elegant and powerful extension of the amortized
analysis to polynomial bounds that naturally results in linear constraints.

The paper is organized as follows. In §2l we introduce the concept of amortized
analysis and informally describe the novel technique that we introduce here. We

!http://raml.tcs.ifi.lmu.de
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then, in §3], define the functional programming language RAML (Resource Aware
ML) that is used to describe our system and give, in 4 the operational big-
step semantics that define the resource consumption of RAML programs. In the
sections [l and [6 we define the type system for the resource aware types that
are used in the analysis. §7] shows the analysis of example functions. §8 outlines
how the typing of an sub-expressions can be improved in order to type complex
expressions. The inference algorithm is presented in §9 and §I0 gives an overview
of the related work.

An extended version of this paper is available on the first authors web page.
In addition, we show there how our system can be extended to trees and how
it can be applied to infer sized types. Furthermore, it contains a compilation of
the experimental results and more detailed versions of §7, §8 and §9

2 Amortized Analysis: Examples and Intuition

Amortized analysis was initially introduced by Sleator and Tarjan [4] to analyze
the efficiency of data structures. For a given data structure one is often interested
in the costs of a sequence of operations whose costs vary depending on the state
of the data structure. A method to analyze the cost of such a sequence is to
introduce a non-negative potential of the data structure that can be used to pay
(costly) operations. More precisely one defines the amortized cost of an operation
as the sum of its actual cost and the (possibly negative) net gain of potential
incurred by its invocation. The sum of the amortized costs taken over a sequence
of operations plus the potential of the initial data structure then furnishes an
upper bound on the actual cost of that sequence.

In 2003, Hofmann and Jost [I] applied amortized analysis to type systems
in order to derive linear bounds on the heap-space usage of functional pro-
grams. The idea is to assign a linear potential to all data structures of variable
length. This potential can then be used to “pay” for the resource consumption
of functions that are applied to that data. Consider for example the function
attach:(int, L(int))— L(int, int) that takes an integer and a list of integers and
returns a list of pairs of integers such that the first argument is attached to
every element of the list. The expression attach(1,[1,2,3,4]) thus evaluates to
[(1,1),(1,2),(1,3),(1,4)]. The function attach can be implemented as follows.

attach(x,l) = match 1 with | nil — nil | (y::ys) — (x,y):(attach (x,ys))

To analyze the heap-space usage of attach we suppose that we need one memory
cell for both creating a new list element, and creating a new pair. The heap-space
usage of an execution of attach(x,l) is then 2n memory cells if n is the length of
[. This fact can be expressed by the resource-annotated type

attach: (int, L® (int))-2£% L) (int, int).

The intuitive meaning of this typing is the following: To evaluate attach(x,l)
one needs 0 memory cells and 2 memory cells per element in the list. After the
execution there are 0 memory cells and 0 cells per element of the returned list



290 J. Hoffmann and M. Hofmann

left. We say that the list I has the potential @(I,2) = 2 - |I| and that attach(x,l)
has the potential 0. Another possible typing of attach would be

attach: (int, L*) (int))-2£8 L(?) (int, int).

This typing could be used for the inner occurrence of attach to type an expression
like attach(x,attach(z,ys)).

Surprisingly, it turned out that such resource-annotated types can be auto-
matically inferred without requiring any type annotations [I]. Essentially, the
inference is done by a conventional type checking that produces linear inequal-
ities which can be solved with linear programming. Furthermore, it has been
shown [2] that the same potential-based approach can be similarly applied to a
wide range of resources such as time and stack space [5] as well as to polymor-
phic, higher-order programs [6].

Now consider the function pairs:L(int)— L(int, int) that computes the two-
element sets of a given set (if one views the input list as a set). The expression
pairs([1,2,3,4]) thus evaluates to the list [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]. Below
is an implementation of pairs.

pairs 1 = match 1 with | nil — nil
| (x::xs) — append(attach(x,xs),pairs xs)

Since the size of pairs(l) is quadratic in the size of [ it is impossible to assign
pairs a type with linear potential analogous to attach. In the next sections we
show how to extend the linear potential annotation in a way that allows us to
type functions with a polynomial resource consumption while still being able to
perform automatic type inference. The function pairs could then be assigned the
typing

pairs: L (int)-2% () (int, int).

This means that a list [ in an expression pairs(l) has the potential @(l,(0,4)) =
0-[1]+4- (") and thus the linear potential 4|I'| for every sub-list (suffix) I’ of .
The function append could get the type

append: (L3 (int, int), L™ (int, int)) -2 LM (int, int)

since the function consumes one heap-cell for every element in the first argument.
That is why pairs(l) consumes 3 heap-cells per element of every sub-list of I and
we can attach the potential 1 to every element of the list pairs(l).

In a nutshell, our approach is as follows. We start from an as yet unknown
potential-function of the form »_ p;(n;) with polynomials p; of a given maximal
degree k and n; referring to the sizes of the parameters. We then derive lin-
ear constraints on the coefficients of the p; by type-checking the program. We
choose, and this is an important contribution, a representation of polynomials
of degree k as sums Zi:o,...,k a; (T;) with a; > 0. Compared with the traditional
representation Y a; - n’, a; > 0, this has the following advantages.

1. Some naturally arising resource bounds such as > ._ 1...n % cannot be ex-

pressed as a polynomial with non-negative coefficients in the traditional rep-
resentation. On the other hand it is true that (2) = Zi:l,...,n i.
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2. It is the largest class C of non-negative, monotone polynomials such that
p € C implies f(n) = p(n+ 1) — p(n) € C (see §hl). All three properties
are clearly desirable. The latter one, in particular, expresses that the “spill”
arising upon shortening a list by one falls itself into C.

3. The identity 2, @ (") =a+ ict k1 @it (5) + Ximy g ai(7)
gives rise to a local typing rule for cons match which very naturally allows
the typing of both recursive calls and other calls to subordinate functions.

4. The linear constraints arising from the type inference have a very simple
form due to the above equation. In particular each constraint involves at
most three variables.

A key notion in the polynomial system is the additive shift < of a type an-
notation which is defined through <i(q1,...,qx) = (@1 + g2, -, @e—1 + Qr, Q)
to reflect the identity from item [Bl It is for instance present in the typing
tail: L9(int)-9/a [<9(D (int) of the function tail that removes the first element
from a list.

The idea behind the additive shift is that the potential resulting from the
contraction xs:L <D (int) of a list (x::xs):L9(int) (usually in a pattern match) is
used for three purposes: i) to pay the constant costs after and before the recursive
calls (¢1), ii) to fund calls to auxiliary functions ((ge,...,q,)), and iii) to pay
for the recursive calls ((¢q1,...,qn)). For instance, this pattern is present in the
definition of the function pairs: In the pattern match, the type xs:L(*% (int)
is assigned to the variable xs. The potential is then shared between the two
occurrences of xs in the following expression by using xs:L(4’O)(1'nt) to pay for
append and attach (i) and using xs:L(%% (int) to pay for the recursive call of
pairs (iii); the constant costs (i) are zero in this example.

In this paper we restrict ourselves to bounds that are sums of univariate poly-
nomials. Mixed bounds such as m-n must be over-approximated by polynomials
like m? +n?. This results in a particularly efficient inference algorithm since the
number of constraints grows only linear in the maximal degree of the polynomi-
als (see §0). We are nevertheless currently investigating an extension to arbitrary
multivariate polynomials.

3 RAML — A Functional Programing Language

In this section we define the functional first-order language RAML (Resource
Aware ML). RAML is similar to LF (linear functional language) from [I]. Tt
enjoys an ML-style syntax, Booleans, integers, pairs, lists, recursion and pattern
matching.

The differences between LF and RAML are irrelevant for the resource aware
type analysis. On the one hand, we have added integers to formulate more real-
istic examples. On the other hand, we have abandoned the sum type since it is
not used in the examples that are presented here. Additionally, for the sake of
simplicity, we do not have a destructive match operation in RAML. The inte-
gration of both features into the system is straightforward and analogous to the
method used in LF.
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Below is the EBNF grammar for the ezpressions of RAML. We skip the stan-
dard definitions of integer constants n € Z and variable identifiers x € VID.

ex= ()| True| False | n | x
| z1 binop xo | fa1,...,Tn)
| let © = e in ey
| if  then e, else ey
| (x1,x2) | match x with (z1,z2) — €
| nil | cons(xp,x¢) | match x with | nil — ey | cons(zp,xt) — ez

binop := + | — | x| mod | div| and | or

For the resource analysis it is unimportant which ground operations are used
in the definition of binop. In fact one can use here every function that has a
constant worst-case resource consumption. In our case we assume that we have
integers of a fixed length, say 32 bits, in our system to ensure this property of
the integer operations.

In the examples we often write (x::y) instead of cons(x,y).

We restrict our attention mainly to list types in this paper. However, we
discuss extensions to other algebraic data types in an extended version of this
article that is available on the web.

The expressions of RAML are in let normal form. This means that term
formers are applied to variables only whenever possible. This simplifies typing
rules and semantics considerably without hampering expressivity in any way.

Below we define the well-typed expressions of RAML by assigning a simple
type, i.e. a usual ML type without resource annotations, to every well-typed
expression. Simple types are zero-order and first-order types as given by the
following grammars.

A ::= unit | bool | int | L(A) | (4, A) F:=(4,...,A) — A

Let Ag be the set of simple zero-order types (A in the grammar) and let Fg be
the set of simple first-order types (F' in the grammar).

The typing rules for RAML expressions are given as an affine linear type
system with a sharing rule that explicitly tracks multiple occurrences of variables.
The type system thus imposes no linearity restrictions but gives finer information
on occurrences of variables than a simple type system does.

A typing context is a partial, finite function I : VID — Ag from variable
identifiers to zero-order types. As usual I, I'> denotes the union of the contexts
I and I provided that dom(I1) Ndom(I%) = (). We thus have the implicit side
condition dom(7}) Ndom(I%) = () whenever I'1, I'» occurs in a typing rule.

Let FID be a set of function identifiers. A signature X' : FID — Fg is a finite,
partial mapping of function identifiers to first-order types.

The typing judgment I' k5 e : A states that the expression e has type A
under the signature X' in the context I'. Due to space restrictions we omit the
typing rules that define the typing judgment. They are standard and identical
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with the resource-annotated typing rules T:CONST - T:SHARE from @ if the
resource annotations are omitted.

A RAML program is a tuple that consists of a signature X' and a fam-
ily of expressions with specified variable identifiers (e ﬁg’f ) fedom(x) such that

yl:Ar oyl Ap bs ep AE D(f) = (Ar,. .., Ag) — A

In the example programs we write f(y{7 .. .,y,{) = ey to indicate that the

expression ey and the variables y{ e 7y}: are associated with the function f.

4 Operational Semantics for RAML

In this section we define a big-step operational semantics for RAML which is
instrumented with resource counters. It is parametric in the particular resource
of interest and can be instantiated for different resources including time, heap
space and stack size.

Preliminaries: Let Loc be an infinite set of locations modeling memory ad-
dresses on a heap. The set of RAML walues Val is given by

vu=1]|b|n|NuLL]| (v,v)

Thus a value v € Val is either a location [ € Loc, a Boolean constant b, an
integer n, a null value NULL or a pair of values (v1,v2).

A heap is a finite partial function H : Loc — Val that maps locations to
values. A stack is a finite partial mapping V : VID — Val from variables to
values.

The rules below define an evaluation judgment of the form V, H Z/ e~ v, H
expressing the following. If ¢ € Q7 is the value of the resource counter and if
the stack V and the initial heap H are given then the expression e evaluates
to the value v and the new heap H’. Furthermore the resource counter is never
negative during the evaluation and ¢’ € Q% is the value of the resource counter
after the evaluation. The actual resource consumption is then § = ¢ — ¢’. Note
that ¢ could be negative if resources become available during the execution of e.

There can exist two different evaluation judgments V, H Z/ e ~ v, H" and

V. H Z/ e ~ v,’H" for an expression e under the same heap H and stack V.

But then the resource consumption ¢ of e is identical in both cases and thus
d=q—q =p—p'.Since q,¢,p,p’ € QT it follows also that ¢,p > . Moreover it
is an invariant of the rules that if V, H Z/ e ~ v,’H' then also V, H Zij €~
v, H' for every a > 0. The execution steps below are formulated with respect
to constants K € Q that depend on the resource the user is interested in. For
example one could set KP¥" = K" — 1 and K = 0 for all other constants
K to analyze the number of heap-cells that are used during the execution. The
constants might also be negative if resources are restituted during an execution
step. This is the case for stack space and also heap space if one were to include
destructive pattern matching as in LF [I] which is omitted here for simplicity.
b € {True, False}

(E:ConsT-U) ool (E:ConsT-B)

()~ NULL, H VH T e H

q

q+Kunit
q

V. H
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S/
+:L(““ (E:ConsT-I) f;iom(v) (E:VAR)
A N VH T ae V() H
op € {+, —, %, mod, div, and, or}
, T € dom(V =op(V(z1),V
1, Ty OIZI(+ 2@? v =op(V(z1),V(z2)) (E:BixOP)
VH =, miopz2~uv,H
Z(f):(A1,7Ak)—>A V].SZS’H,V(‘TZ):’UZ
f f = K" '
Y] — U1, YL — U, H L e €f v 0, H
b I; | @K Jj (E:FUNAPP)
V,H q, f(xl,...,xk) ~ U,H
_ Klet _ K]et
vH " o e~ vy V]z — v], Ha Zz+K§et e1 ~ v, Ho (BLen)
:LET
V. H Z; let x = e in eg ~ vg, Ho
_ geeonT
V(x) = True V.H +I(1;onT et~ v, H'
E:ConD-T
V,H Z/ if x then e, else ef ~ v, H’ ( )
conF
V(z)=False  V,H % leowr e~ v, H'
q . ¢t , (E:ConD-F)
V,H  ifx then e else ey ~ v, H
x1,x2 € dom(V) v=V(x1),V(x2)) I ¢ dom(H)
o+ KO (E:PAIR)
V,H g (x1,22) ~ [, H[l — v]
V(z) =1 H(l) = (v1,v2)
q- K:rlnatchP y
7‘[7]/[301 = V1,T2 'UQ} q + K;jatchp €~ 'U,H
E:Marcu-P
V., H Z/ match x with (x1,22) — e ~ v, H’ ( )
snil (E:NiL)
VoH ‘TS nil v Nuin,H
xp, x¢ € dom(V) v=V(x1),V(z2)) I ¢ dom(H)
4 feons (E:Cons)
V,H ! q cons(xp, xt) ~ 1, H[l — ]
q — KmatehN
V(ac) = NULL H,Y + KlmatchN ep ~ 'U,HI
. . T . (E:MATCH-N)
V,H  match z with | nil — eq | cons(zp,z¢) — ez ~ v,’H
V(z)=1 H(1) = (v, ve)
_ gmatehC
V]zy — vp, x4 — v, H ,+K3natchc es ~ v, H
TR (E:MaTtcH-C)

V. ’H

q . .
o match x with | nil — ey | cons(wp, ) — ez ~ v, H

Actual constants for stack-space, heap-space and clock-cycle consumption have
been determined for the abstract machine of the language Hume [7] on the
Renesas M32C/85U architecture. A list can be found in the literature [2].
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5 Resource Annotations for Polynomial Bounds

Resource-annotated types are simple types where lists are annotated with non-
negative vectors p € Q™. These vectors associate a potential with the list that
can be used to pay for resource consumptions during an execution.

Recall the example functions attach and pairs that have been introduced in
g2l We assigned the annotated type attach: (int, L(®) (int))-2% L) (int, int) to
the function to indicate that the evaluation of attach(x,l) consumes 2-|I| resource
units.

The function pairs calls the function attach for every sub-list (suffix) of the
input which leads to a quadratic resource consumption. This corresponds to
a general pattern in the sense that many typical quadratic functions consume
a linear amount of resources for every sub-lists (suffix) of an input just like a
typical linear function that consumes a constant amount of resources per element
in its input list. We reflect this resource behavior by assigning a type like pairs:
L5 (int)-29, 1) (int, int). Informally, this type says: To evaluate pairs(l) one
needs 0 resource units per element of [ and 5 resource units per element of each
sub-list of [. The result of the computation is a list of pairs of integers that has
a potential of 2 resource units per element.

In general we define resource-annotated zero-order types A as follows.

A = unit | bool | int | LF(A) | (A, A)

Here p'is a resource annotation for a list type which is defined as a k-tuple
7= (p1,...,px) € QF with p; > 0 and k > 0. Let A be the set of resource-
annotated zero-order types.

For two resource annotations p = (p1,...,px) and ¢ = (q1,...,q) we write
p<qgifk<landp, <gqg foralll <i <k If] >k then we define p+ ¢ =
(P14 a1, Pk + Qhs Q15 -+ -5 Q1)-

Let p'= (p1,...,pr) be an annotation for a list type. The additive shift of
is 4(@ = (pl +Dp2,p2 +P3, .- Pl—1 +pk7pk:)

Let H be a heap and A be a resource-annotated type and let v be a value
matching type A in H . The potential P3(v:A) is then defined as follows.

P (NULL:A) =0

If A € {unit, int, bool} then ®$p(v:A) = 0.

If A= (A1, A7) and v = (v1,v2) is a pair then Py (v:A) = Py (v1:41) +
@H(’UQIAQ).

If A= LPPe)(A') s a list type and v = [ is a location with H(l) = (v/,1')
then @y (1:A) = p1 + Py (v A") + Doy (I LIP1PE) (A')),

In the following sections we will sometimes explain an idea by talking about the
potential @(z:A) of a variable x with respect to an annotated type A. In such a
case we mean in fact the potential @y (V(x):A) with respect to a stack V and a
heap H that we do not want to specify precisely.

If [; is a location that points to a list then we write H(l1) = [v1,...,v,] if
H(l;) = (viyligq) fori=1,...,n and [,,41 = NULL. If [; = NULL then we write
H(l) =[]
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Let for example H be a heap and H(v) = [v1 ..., v,] an integer list. Then

° @H(Z:L(pl)(int)) =p1-n
o By (ILLOP)(int)) = Y1 py i = pp Y

° @HU:L(O,O,pg)(jnt)) _ Z?:—ll D3 1(22—1) = ps n'(n—lﬁ)'(n—2)

The next lemma shows how to express the potential @ (v:A) of a value v with
respect the heap H and a matching annotated type A in terms of polynomials
in the lengths of the lists that are reachable from v. For a list annotation p’and

an integer n we define
k
n
o =3 ().
1=

Lemma 1. Let H be a heap such that H(l) = [v1...,v,] is a list of length n
and let p = (p1,...,pr) be an annotation for a list type. Then ®y(1:LP(A)) =

¢(n,9) + 225y Pr(vizA).

The proof of Lemma [I] as well as the proofs of the following lemmas are given
in the extended version of this article.

It is essential for the type system that ¢ is linear in the sense of the following
lemma that follows directly from the definition of ¢.

Lemma 2. Let n € N, a« € Q and let p,q be resource annotations. Then
o(n,p) + ¢(n,q) = ¢(n, P+ q) and o - ¢(n,p) = ¢(n, a - p).

As mentioned before it is a general pattern in functional programs to compute
a task on a list recursively for the tail of the list and to use the result of the
recursive call to compute the result of the function. In such a recursive function it
is natural to assign a uniform potential to each sub-list (depending on its length)
that occurs in a recursive call. In other words: one wants to use the potential
of the input list to assign a uniform potential to every suffix of the list. With
this view, the list potential & = ¢(n, (p1,p2, -+ ,pr)) can be read as follows: a
recursive function on a list [ of length n that has the potential a can use the
potential ¢(i, (pa,- -+, px) for the suffixes of [ of length 1 <14 < n that occurs in
the recursion. This intuition is proved by the following lemma.

Lemma 3. Let p= (p1,...,pk) be a resource annotation, let n € N and define
dj(n’ ()) = 0. Then ¢(n7 (pla s 7pk)) =n-p1+ Z?;]l ¢(Z’ (p27 s apk))

Note that the binomial coefficients are a basis of the vector space of the polynomi-
als. Here, however, we are only interested in non-negative linear combinations of
binomial coefficients. These admit a natural characterization in terms of growth:
for f : N — Ndefine (Af)(n) = f(n+1)— f(n). Call f hereditarily non-negative if
Al f > 0foralli > 0. One can show that a polynomial p is hereditarily non-negative
if and only if it can be written as a non-negative linear combination of binomial co-
efficients. To wit, the coefficient of (7)) in the representation of p is (A’p)(0). The
hereditarily non-negative polynomials are scalar multiples of unary resource poly-
nomials [§] and thus are closed under sum, product, and composition. Note that

they include all non-negative linear combinations of the polynomials (z*);en.
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6 Type System

This section presents typing rules for the resource-annotated zero-order types A
that have been defined in §5] and establishes their semantic soundness. Later in
g8 we add another rule.

As in the case of the simple types, a typing context is a partial finite func-
tion I' : VID — A from variable identifiers to annotated zero-order types. The
potential of a typing context I" with respect to a heap H and a stack V is

Syn(l)= > Pu(V(2):I(x))

xzedom(I")

Sometimes we write just ¢(I") leaving stack and heap implicit.
The resource-annotated first-order types F are defined by

Fu= (A,... AL 4.

Here ¢, ¢’ are rational numbers and A ranges over the resource-annotated zero-
order types. Let F denote the set of resource-annotated first-order types.

A resource-annotated signature X : FID — F is a finite, partial mapping of
function identifiers to resource-annotated first-order types. A resource-annotated
typing judgment has the form X; I Z/ e:A where e is a RAML expression, ¢, ¢’ €
QT are non-negative rational numbers, X is a resource-annotated signature, I’
is a resource-annotated context and A is a resource-annotated zero-order type.
The intended meaning of this judgment is that if there are more than ¢+ ®(I")
resource units available then this is sufficient to evaluate e and then there are
more than ¢’ + @(v:A) resource units left after the evaluation of e to a value v.

Similarly as for simple types, a RAML program with resource-annotated types
is a tuple that consists of a resource-annotated signature X and a family of
expressions with specified variable identifiers (ey, i) fedom(x) such that for each
ey we have Xyl Ar, ...yl Ar b epAif D(f)=(Ay,. .., Ap) LD A,

The following type rules are used to derive a resource-annotated type judg-
ment for RAML expressions. Therein, we write e[z/z] to denote the expression

e with all free occurrences of the variable = replaced with the variable z.

ez
sumit (T:Const-U) ?{‘“t (T:ConsT-I)
20 o (:unit X0 o n:int
b € {True, False}
Kebool (T:Const-U) Fovar (T:VAR)
20 , b:bool YiwA o, x:A

op € {+, —, x, mod, div
p e {+, Con } (T:BINOP-I)

X xyint, wo:int  x1 op T2 @ int
op € {or, and
P et eop } (T:BINOP-B)
2 x1:bool, x9:bool ,  x1 op x2 : bool
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2(f):(A17 Ak)—q‘qu_’A I'=ux1:Aq, ..., 21 Ag

T:FUNAPP)
+Kapp (
>r Y e flag, ..o xg) A
_ Klet _ K]et
E;Fl a pl 61:A Z;Fg,xlA p+Klet €9 B
q ) (T:LET)

I, Iy qd letx =e1 iney: B

KconT KconF
. r . +KconT er: A . r . +Kconp ef A (T:ConD)

X, I, x:bool Z' if x then e; else ey : A .
(T:PAIR)

FPair
2;.7311141,.7321142 0 (Ihxg) : (Al,AQ)

matchP

A= (Al,AQ) Z; F7$12A17$22A2 qi‘r[;(m'ltchp e: B
q / (T:MATCH-P)
Xila:A p match x with (z1,72) —e: B
Ac A
(T:N1L)
X0y nik:L(A)
P=(p1-..pk) (T:Cons)

Ziap: A,z L) (A) p1+é{ cons(zp,, x):LP(A)

KmatchN
ﬁ: (pla e 7pk‘) 2 r q +KmatchN [ B
q(ﬁ) q+p1— K;n'xtchc
XDy A xy: LYW (A) g Kpenc €2 B

a match x with | nil — e; B (T:MaTcn-L)

’
a | cons(xp, ) — €2

SiTwAnydy Y e B Al A, A
i LixAn,yiAa e V(A A, 4r) (T:SHARE)

2Tz A Z' elz/x,z/y]: B

2T a:LP(A)

XiLaA Z/ e: B A< A . r Z/ e: B B<: B
q (T:SUPER) q
»:IaxA [ e:B »r oy oe:B

q

(T:SuB)

p ! /
r e B > —-—p>q —
r 1 q P i=pr=a-r (T:RELAX)
. e:B

q

I g e:B xeVID AecA
(T:AUGMENT)

I x:A Z' e: B

The definitions of the relations Y (. | .,.) and <: are given below.

We describe the idea behind the type rules exemplary for T:CONS and
T:MATCH. The rule T:CoNs formalizes the fact that one has to pay for the
resource consumption of the evaluation of cons(xy,x;), i.e., basically the allo-
cation of a new heap-cell that points to z; and x;. This is represented by the
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constant K™ that depends on the resource that is studied. In addition one has
to pay for the potential that is assigned to the new list of type LP(A). We do so
by requiring z; to have the type L9 (A) and to have p; resource units avail-
able. It corresponds exactly to the recursive definition of the potential function
@ and ensures that potential is neither gained nor lost.

Complementarily, the rule T:MATCH-L defines how to use the potential of a
list to pay for resource consumptions. First, it matches the corresponding rules
from the operational semantics E:MATCH-* in terms of resource consumption.
It incorporates the fact that either e; or es is evaluated. More interestingly, the
“cons case” is inverse to the rule T:CoNs and allows one to use the potential
associated with a list. For one thing, p; resource units become available directly,
for another the tail of the list is annotated with <1(p) rather than p, permitting
e.g. a recursive call (requiring annotation p) and an additional use of the tail
with annotation (ps2,ps, ... ).

It is important that all the numerical constraints that result from rules
T:Cons, T:MATCH-L and the other rules are linear. This is the reason why
it is easy to verify the constraints and why one can use linear programming to
infer type annotations that match the constraints.

The Subtyping Relation. Intuitively it is true that a zero-order type A is a
subtype of a zero-order type B if and only if A and B have the same set of
values, and for every value v the potential of v:A is greater or equal than the
potential of v:B. More formal, we define <: to be the smallest relation such that

C <: C if C € {unit, bool, int}
(Al,AQ) < (317.82) if Ay <: By and Ay <: By
LP(A) <: LYB)if A<: Band > ¢

The Sharing Relation. The sharing relation Y (. | .,.) defines how the potential
of a zero-order variable can be shared by multiple occurrences of that variable.
We will have Y (A | A, Az) if and only if A, A; and Ay are structural identical,
i.e. have the same set of values, and for every value v the potential ¢(v:A) of v:A
is identical to the sum ®(v:Ay) + P(v:Az) of the potentials of v:A; and v:As. So
Y(.].,.) is the smallest relation such that

Y(C | C,C) if C € {unit, bool, int}
Y(LP(A) | LU(Ay), L7(A2)) if Y(A| A1, A2) and p'= G+ 7
Y((A,B) | (A1,B1), (A2,B2)) if Y (A | Ay, As) and Y (B | By, Bz)

Soundness of the Analysis. The soundness theorem below states that a resource
annotated type statement guarantees that an expression can be evaluated in
the stated resource bounds and that at least the stated amount of resources is
available after the evaluation.

Such a statement is only meaningful with respect to a well-formed stack and
a well-formed heap. A stack V and a heap H are well-formed with respect to a
context I" if V(z) is a value matching the type I'(z) for every « € dom(I"). We
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then write 7 F V:I'. It is not hard to show that if 7 F V:I" and V,H o e~
v, H then also H' EV : I'.

Theorem 1 (Soundness). Let X be the signature of a given RAML program
and let e be an expression. Let H E V:I" and let there exist some u,u’ € QT such
that V, H Z: e~v,H.If ;T Z/ e:A and q > Dy () +p+7 for ar € QT

then there is a ¢' > @y (v:A) +p' + 1 such that V, H 9 e v, H.

q

Theorem[Ilis proved in the same way as the corresponding theorem in the system
of [1]. The key ingredients that are used are the lemmas from §Bl

7 Examples

We developed a prototype implementation and implemented a number of well-
known, non-trivial algorithms that exhibit a super-linear resource consumption.
These examples, as well as the prototype itself, are available onlindd and can be
directly tested and modified in a web-browser. The prototype implementation
can analyze the heap-space consumption and the number of evaluation steps. It
is adequately documented easy to use. One can use it not only compute resource
bounds but also to measure the actual resource consumption of a program. We
invite everybody to experiment with it to explore the frontiers of our system.
The algorithms that we implemented include

quicksort, mergesort, insertionsort

multiplication and division for bit-vectors of arbitrary length
longest common subsequence via dynamic programming
breadth-first traversal of a tree using a functional queue
sieve of Eratosthenes

A comparison of the measured resource costs with the computed bounds showed
that the bounds match exactly the measured worst-case costs for many functions
(e.g. quicksort, insertionsort, pairs and triples). The plots of the experiments can
be found on the website and in the extended version of this article. Therein, we
also present a somewhat artificial example (a version of dyadic vector product)
that explores some boundaries of our system.

For simplicity we only provide examples for heap-space consumption in this
section. We assume that one heap-cell is allocated whenever new data is created.
Thus we set KP¥'=K"=] and K =0 for all other constants K.

For each function we give its annotated type and the type of the potential-
carrying variables that appear in its definition. We distinguish different occur-
rences of the same variable by adding superscripts. To save space we omit some
less interesting types and sometimes waive the let-normal form.

The types contain meta-variables p1, ¢, d, ¢3 ranging over non-negative rational
numbers. Any instantiation of the former yields a correct typing.

2 http://raml.tcs.ifi.lmu.de
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7.1 Subsets of Size k

Our canonical example for polynomial heap-space consumption is the following
problem: view a given list as a set and compute the subsets of size k for a given
k. The size of the output is a polynomial of degree k.

Below we define the subset functions for k = 2 and k£ = 3 but one can also see
how it works for & > 3. The function attach(x,l) computes a list of pairs so that
x is paired with every element in the list I. The function pairs(I) computes a list
of all (unordered) pairs that can be built from the elements of I and similarly
the function triples(I) computes a list of all (unordered) triples.

attach(x,l) = match | with | nil — nil | (y:ys)— let I’ = attach(x,ys) in (x,y) ::1’
attach: (int, L\**? (int))-<L% L®) (int, int), 1:LP*?) (int), ys:LP+?) (int), :LP) (int, int)
append(l,ys) = match 1 with | nil — ys | (x::xs) — let I’ = append(xs,ys) in x::1’

append: (LPF1(A), L) (A)) << LW (A)
LLPTY(A), ys: L) (A), xs: LPHD (A), 1:LP) (A)
pairs(l) = match 1 with | nil  — nil
| (x::xs) — let nps = attach(x,xs') in
let rps = pairs(xs?) in append(nps,rps)

pairs: L(OP2F3) (int) <L, [,(P2) (int, int)
1 :LOP2+3 (int),  xs':LP2+3(int), rps:LP2) (int, int)
xs: LP2H3P243) (ing) xs?: L(OP2+3) (int) nps: LP2*+Y (int, int)

triples(1) = match 1 with | nil — nil
| (x::xs) — let tps = pairs(xs') in
let nts = attach(x,tps) in
let rts = triples(xs?) in append(nts,rts)

triples: L(®:9P3%0) (int)ele, [(3) (int, int, int)
xs (LOPs+O6P3H6) (jng) xs2: [ (00P3+6) (int), nts:LP3TY (int, int, int)
xst: L(OP3H6) (ing), rts :LP3) (int, int, int), tps: LP3+3) (int, int)

In the above functions it is the case that the type used for recursive calls is the
same as the type of the function itself (monomorphic recursion). For example in
the function pairs the type of append(nps,rps) and rps is identical. That is not
the case in general. Suppose for example that one would swap the arguments of
append in the last line of pairs:

pairs’(1) = match 1 with | nil  — nil

| (x::xs) — let nps = attach(x,xs') in
let rps = pairs’(xs?) in append(rps,nps)

pairs’: L(OP2+2D) (in)-ele, 1,(P2) (int, int)

1 :LOP2F20 (int) - rps:LP2HY (int, int), nps: L P2 (int, int)

xs: LP2F2P243 D) (ing) xg?: [ OP23: D (int) xs' :LP2+2) (int)

The function pairs’ is used resource polymorphically in its recursive call. That
means that the resource annotation of the argument of pairs’ differs from the
annotation of the original argument. The soundness of polymorphic recursion is
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unproblematic and covered by our results; the inference of resource polymorphic
is restricted to special cases. See §§ and §9 which cover the present example.

At a first glance it might be surprising that the heap-space consumption of
pairs’ is not quadratic but cubic. The reason is that the heap-space consumption
of append is linear in the length of the first argument and append is called |{|
times. In the case of pairs the length of the first argument is about the length
|I] but in the case of pairs’ the first argument is rps which is quadratic in |].

Note that a run-time analysis of pairs and pairs’ would result in analogous
types as above with different constants. That is to say the analysis of pairs would
result in a quadratic bound while we would get a cubic bound for pairs’. But
in contrast to the heap-space use, the run-time of pairs’ would be cubic even
in the presence of garbage collection or in an extended system that enjoys a
destructive pattern matching. So this is a nice example where our system might
help a programmer to produce more efficient code.

7.2 Longest Common Subsequence

A standard example of dynamic programming that can be found in many text-
books is the computation of the longest common subsequence (LCS) of two given
lists (sequences). Given two sequences aq, ..., a, and by, ..., b,,, one successively
fills an n X m matrix (here a list of lists) A such that A(4, j) contains the length
of the LCS of a1, ...,a; and by,...,b;. It is the case that

0 ifi=0o0rj=0
Al j)=¢ Ati—1,j—1)+1 if 7,5>0 and a;=b;
max(A(i, j—1), A(i—1, 7)) if ¢,7>0 and a;#b;

This algorithm can be analyzed in our system and is exemplary for similar
algorithms that use dynamic programming.

tail’(1) = match 1 with | nil — nil | (x::xs) — xs
firstline(m) = match m with | nil — nil | (I: ) — 1

lastvals (1) = match 1 with | nil — (0,0)
| (al::1’) — match !’ with | nil — (al,0)
| (a2:: ) — (al,a2)

tail’  : LP(int) —C& LP(int) firstline: LP (L9 (int))-2L% L9 (int)
lastvals: LP(int)-<% (int, int)

addcolumn(m,x,c) = match ¢ with | nil — nil
| (y::ys) — let m’ = addcolumn(tail’(m),x,ys) in
let (above,updiag) = lastvals( firstline (m’)) in
let 11 = firstline (m) in
let (left, ) = lastvals(ll) in
let elem = if x = y then updiag+1 else max(above,left)
in ((elem:11)::m’)
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newline (y, lastline ,1) = match | with | nil — nil
| (x::xs) — let nl = newline(y,tail’( lastline ),xs) in
let (left, ) = lastvals(nl) in
let (above,updiag) = lastvals( lastline ) in
let elem = if x = y then updiag+1 else max(above,left)
in elem::nl

addline(m,y,xs) = let nl = newline(y, firstline (m),xs) in nl::m

addcolumn: (LP(L%(int)), int, LP*9+2(int)) -, LP (L (int))
newline: (int, L9(int), L9 (int))-<£% L9 (int)
addline: (LP(L4(int)), int, L9 (int))—<*e¥l/e 1P(L4(int))

lestable(11,12) = match 11 with | nil — nil
| (x::xs') — match 12! with | nil — nil
| (y:ys) — let m = Icstable(xs?,ys) in
let m’ = addline(m,y,xs?) in addcolumn(m’ x,12%)

lestable: (L4 (int), [(?PTat3:pHat2) (jnt))cle, [P(L9(int))
ys (LEPHatpratd) (ing) xo3. [@+H10) (int), m’:LP(L9(int)),  12':LPTLPFTa+2) (jing)
xs': LUFTLaHD) (ing), xs2: LD (int), m :LP (L9(int)),  122:LPT9+2) (int)

les(11,12) = let m = Icstable(11,12) in
match m with | nil — 0| ((len:: ):: ) — len

les: (LY (int), L (int))-<L% int

8 Passing Non-linear Potential

An unsatisfying limitation of the type rules that have been presented in §lis that
they fail to assign super-linear potential to the output of some basic functions
that can be typed with a linear output type. To overcome is limitation one can
use linear algebra to compute linear constraints that state how a super-linear
potential can be assigned to the output of a function, provided that a function
type with a linear output is given.

Due to the limited space we can only describe this idea by way of example. A
formal description and a type rule is given is the extended version of this paper.

Consider the function append. With the rules from 6 we are able to derive
a type of the form append: (L) (int), L™ (int))-2£% L) (int) if we use the cost-
free resource metric in which all constants equal 0. Then it follows that the
length of the output is bounded by n + m if n and m are the lengths of the
inputs of append. This information suffices to compute (once and for all) con-
straints for a super-linear output via linear algebra. In the (cost-free) quadratic
case we obtain for example append: (L®1P2) (int), L(91:92) (int))-2L9, [,(0:72) (int)
if 4py > ro,4q1 > ro,p2 > 712 and g2 > ro. Such a cost-free type can then
be additively combined with a typing of the function that was inferred with
respect to another resource-metric by adding the numbers in the type annota-

tions. For example, for the heap metric from 7 we obtain the typing append:
(LA12) (int), LG312) (int)) 2L LO3) (int).
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9 Inference of Annotated Types

The type-inference algorithm for RAML works similar to the algorithm of Hof-
mann and Jost that has been developed for the linear system [I].

The basic algorithm does a classic type inference generating linear constraints
for the annotations that are collected during the inference, and that can be solved
later by linear programming. The only difference to the method of Hofmann and
Jost is that we have to provide a maximal degree of the resource bounds in order
to obtain a finite set of equations. If the degree is too low then the generated
linear program is unsolvable. It can either be specified by the user or can be
incremented successively after an unsuccessful analysis. In most cases it should
be sufficient to run the analysis for instance twice, first with a maximal degree
of, say, 5 and a second time with maximal degree 10.

In order to apply the technique that has been outlined in §8 we have to run
the basic algorithm multiple times since we have to consider strongly connected
components in the call graph one after another. More details are given in the
extended version of this work.

The inference algorithm finds types for most example programs that we con-
sidered, including all programs in this paper. Nevertheless, it is not complete
with respect to the declarative rules in the earlier sections. The reason is that it
sometimes fails to infer a resource-polymorphic typing of a function, i.e., a typing
in which the annotations of a recursive call differ from the annotations of the
top-level function type. We are working on a more involved inference algorithm
that is complete. However, we find that this algorithm exhibits some interesting
ideas that should be explained in detail in separate work.

10 Conclusion and Related Work

We have extended amortized resource analysis for first-order functional programs
from linear bounds to polynomial bounds. The main technical innovations of our
paper are as follows: 1) the representations of resource bounds as non-negative
linear combinations of binomial coeflicients enabling a simple and local typing
rule for pattern matching; 2) the derivation of constraints solvable by linear
programming in spite of the super-linear bounds.

Most closely related is of course [I] which we extend with polynomial bounds.
Other resource analyses that can in principle obtain polynomial bounds are
approaches based on recurrences pioneered by Grobauer [9] and Flajolet [10]. In
those systems, an a priori unknown resource bounding function is introduced for
each function in the code; by a straightforward intraprocedural analysis a set of
recurrence equations or inequations for these functions is then derived. A type-
based extraction of such recurrences has been given in [I1]. Even for relatively
simple programs the resulting recurrences are quite complicated and difficult
to solve with standard methods. In the COSTA project [12] progress has been
made with the solution of those recurrences. Still, we find that amortization
yields better results in cases where resource usage of intermediate functions
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depends on factors other than input size, e.g., sizes of partitions in QuickSort.
Also compositions of functions seem to be better dealt with by amortization.

A successful method to estimate time bounds for C++ procedures with loops
and recursion was recently developed by Gulwani et al. [I3/14] in the SPEED
project. They annotate programs with counters and use automatic invariant dis-
covery between their values using off-the-shelf program analysis tools which are
based on abstract interpretation. If the loops iterate over data-structures then the
user needs to define numerical “quantitative functions” for the data-structures.
In contrast our method is fully automatic. A methodological difference is that
we infer (using linear programming) an abstract potential function which indi-
rectly yields a resource-bounding function. As explained in the introduction the
potential-based approach may be favorable in the presence of compositions and
data scattered over different locations (partitions in QuickSort). Indeed, the ex-
amples from loc. cit. suggest that the two approaches are complementary in the
sense that the method of Gulwani et al. works well for programs with little or no
recursion but intricate interaction of linear arithmetic with loops. Our method, on
the other hand, does not model the interaction of integer arithmetic with resource
usage, but is particularly good for analyzing recursive programs involving induc-
tive data types. As any type system, our approach is naturally compositional and
lends itself to the smooth integration of components whose implementation is not
available. Moreover, type derivations can be seen as certificates and can be au-
tomatically translated into formalized proofs in program logic [I5]. However, we
find the possibility of incorporating existing program analyses to be a particularly
attractive feature of the SPEED approach. It would be interesting to investigate
to what extent such analyses could also be harnessed for our method. Another
pragmatic but interesting aspect is the use of slicing techniques to eliminate large
code portions that do not contribute to the resource being analyzed.

Another related approach is the use of sized types [TO/I7ISITI] which provide
a general framework to represent the size of the data in its type. Sized types
are a very important concept and we also employ them indirectly. Our method
adds a certain amount of data dependency and dispenses with the explicit ma-
nipulation of symbolic expressions in favour of numerical potential annotations.
As we have demonstrated, there is a fruitful interaction between sized types and
amortization.

Polynomial resource bounds have also been studied in [20]. Interestingly, the
motivation of that paper is to extend amortized analysis to super-linear bounds;
however loc. cit. only addresses the derivation of polynomial size bounds which
is identified there as a necessary precursor to amortized analysis. Moreover, the
analysis is restricted to functions whose exact growth rate is polynomial, and
efficiency of inference remains unclear.
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