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Foreword

ETAPS 2010 was the 13th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised the usual five sister conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 19 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, CMCS,
COCV, DCC, DICE, FBTC, FESCA, FOSS-AMA, GaLoP, GT-VMT, LDTA,
MBT, PLACES, QAPL, SafeCert, WGT, and WRLA) and seven invited lec-
tures (excluding those that were specific to the satellite events). The five main
conferences this year received 497 submissions (including 31 tool demonstration
papers), 130 of which were accepted (10 tool demos), giving an overall accep-
tance rate of 26%, with most of the conferences at around 24%. Congratulations
therefore to all the authors who made it to the final programme! I hope that most
of the other authors will still have found a way of participating in this exciting
event, and that you will all continue submitting to ETAPS and contributing to
make of it the best conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination toward theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2010 was organised by the University of Cyprus in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the Cyprus Tourism Organisation.



VI Foreword

The organising team comprised:

General Chairs: Tiziana Margaria and Anna Philippou
Local Chair: George Papadopoulos
Secretariat: Maria Kittira
Administration: Petros Stratis
Satellite Events: Anna Philippou
Website: Konstantinos Kakousis.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Luca
de Alfaro (Santa Cruz), Gilles Barthe (IMDEA-Software), Giuseppe Castagna
(CNRS Paris), Marsha Chechik (Toronto), Sophia Drossopoulou (Imperial
College London), Javier Esparza (TU Munich), Dimitra Giannakopoulou
(CMU/NASA Ames), Andrew D. Gordon (MSR Cambridge), Rajiv Gupta
(UC Riverside), Chris Hankin (Imperial College London), Holger Hermanns
(Saarbrücken), Mike Hinchey (Lero, the Irish Software Engineering Research
Centre), Martin Hofmann (LM Munich), Joost-Pieter Katoen (Aachen), Paul
Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald Luettgen
(Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Potsdam),
Ugo Montanari (Pisa), Oege de Moor (Oxford), Luke Ong (Oxford), Fer-
nando Orejas (Barcelona) Catuscia Palamidessi (INRIA Paris), George Pa-
padopoulos (Cyprus), David Rosenblum (UCL), Don Sannella (Edinburgh), João
Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), and Martin Wirsing (LM Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2010, George
Papadopoulos, for arranging for us to have ETAPS in the most beautiful sur-
roundings of Paphos.

January 2010 Vladimiro Sassone



Preface

This volume contains the papers presented at ESOP 2010, the 19th European
Symposium on Programming held March 22–24, 2010 in Paphos (Cyprus).

ESOP is an annual conference devoted to fundamental issues in the spec-
ification, design, analysis, and implementation of programming languages and
systems. The Programme Committee invited papers on all aspects of program-
ming language research including, but not limited to, the following areas:

– Programming paradigms and styles: functional programming, object-oriented
programming, aspect-oriented programming, logic programming, constraint
programming, extensible programming languages, domain-specific languages,
synchronous and real-time programming languages.

– Methods and tools to write and specify programs and languages: program-
ming techniques, logical foundations, denotational semantics, operational se-
mantics, meta programming, module systems, language-based security.

– Methods and tools for reasoning about programs: type systems, abstract
interpretation, program verification, testing.

– Methods and tools for implementation: program transformations, rewriting
systems, partial evaluation, experimental evaluations, virtual machines, in-
termediate languages, run-time environments.

– Concurrency and distribution: process algebras, concurrency theory, parallel
programming, service-oriented computing, distributed and mobile languages.

After consultations within the programming language research community,
we raised the page limit for ESOP 2010 to be 20 pages in LNCS format. We did
so because research papers in programming languages tend to be longer than
the 15 pages taken as the limit in previous editions of ESOP. This appears to be
a successful change, and probably contributes to the healthy interest in ESOP
as a publication venue; submissions to ESOP are up 20% year-on-year while the
total of submissions to ETAPS conferences remains steady.

As for ESOP 2009, we included a rebuttal period as part of the selection
procedure, when authors had the opportunity to respond to reviews. During that
time, we obtained additional reviews on controversial papers, and on papers with
only low-confidence reviews.

We received 149 abstracts and in the end got 121 full submissions, but one
of these was rejected because it exceeded the page limit. Of the remaining 120
papers, each submission received at least 3, and on average 4, reviews from
the Programme Committee members and their subreviewers. During a week-
long electronic discussion, moderated by the wonderful EasyChair system, the
committee selected 30 for publication. These proceedings consist of the 30 papers
together with papers to accompany the invited lectures of Philip Wadler (ETAPS
Unifying Speaker) and David Naumann (ESOP Invited Speaker).



VIII Preface

I would like to thank the Programme Committee and our subreviewers for
their hard work selecting papers for publication, and the authors of both accepted
and rejected papers for their labours in research leading to submissions and to
final papers. To those who were rejected I send our commiserations, with the
hope that the reviews may be useful.

Finally, I would like to thank the local organizers, led by George Papadopou-
los, without whom ETAPS would not take place, and last but not least Vladi
Sassone, who does a superb job of herding the ETAPS cats.

January 2010 Andrew D. Gordon
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A Semantic Framework for Declassification and Endorsement . . . . . . . . . . 64
Aslan Askarov and Andrew Myers

Amortised Resource Analysis with Separation Logic . . . . . . . . . . . . . . . . . . 85
Robert Atkey

A PolyTime Functional Language from Light Linear Logic . . . . . . . . . . . . 104
Patrick Baillot, Marco Gaboardi, and Virgile Mogbil

Testing Polymorphic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen

Formal Verification of Coalescing Graph-Coloring Register Allocation . . . 145
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The Audacity of Hope:
Thoughts on Reclaiming the Database Dream�

Sam Lindley and Philip Wadler

University of Edinburgh

Abstract. A venerable line of research aims to provide a general-purpose
programming language with a well-defined subset that compiles into ef-
ficient queries, perhaps by translation into SQL or some other suitable
query language. This talk discusses some older and more recent advances
in this direction, including the languages Kleisli, LINQ, Ferry, M, and
Links.

Twenty-five years ago, Copeland and Maier decried the “impedance mismatch”
between databases and progamming languages, and Atkinson and Buneman ob-
served “Databases and programming languages have developed almost indepen-
dently of one another for the past twenty years”, a situation that has not greatly
changed in the intervening time, and spoke of “The need for a uniform language”
(their emphasis).

The problem is simple: two languages are more than twice as difficult to use
as one language. Most programming languages support data abstraction and
nested data, while most relational databases support tables over a few fixed
scalar types. Any task involving both requires that the programmer keep in
mind two representations of the same underlying data, converting between them
and synchronizing updates to either. This persistent bookkeeping adds to the
mental burden on the programmer and adds to the complexity of the code.

The solution is equally simple: provide a single language with a well-defined
subset that compiles into efficient queries, perhaps by translation into SQL or
some other suitable query language. It is important that the subset support the
abstraction mechanisms of the language, for example allowing one to lambda
abstract over a predicate used in a query, where instantiating the abstraction
with a specific predicate should result in an efficient query. In the simplest case,
only flat data (such as bags of records) can be translated into the database.
In a more sophisticated system, nested data (such as records of bags) can be
represented in the database via a suitable encoding, the details of which need
not concern the programmer. While easy to envision, practical implementation
of such languages has proved elusive in practice.

This talk discusses some older and more recent advances in this direction,
including the languages Kleisli, LINQ, Ferry, M, and Links.

� With apologies to Barack Obama and David August.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Dynamic Boundaries: Information Hiding by
Second Order Framing with First Order Assertions

David A. Naumann1,� and Anindya Banerjee2,��

1 Stevens Institute of Technology, Hoboken NJ, USA
2 IMDEA Software, Madrid, Spain

Abstract. The hiding of internal invariants creates a mismatch between proce-
dure specifications in an interface and proof obligations on the implementations
of those procedures. The mismatch is sound if the invariants depend only on en-
capsulated state, but encapsulation is problematic in contemporary software due
to the many uses of shared mutable objects. The mismatch is formalized here
in a proof rule that achieves flexibility via explicit restrictions on client effects,
expressed using ghost state and ordinary first order assertions.

1 Introduction

From the simplest collection class to the most complex application framework, software
modules provide useful abstractions by hiding the complexity of efficient implementa-
tions. Many abstractions and most representations involve state, so the information to
be hidden includes invariants on internal data structures. Hoare described the hiding of
invariants as a mismatch between the procedure specifications in a module interface,
used for reasoning about client code, and the specifications with respect to which im-
plementations of those procedures are verified. The latter assume the invariant and are
obliged to maintain it [17]. The justification is simple: A hidden invariant should de-
pend only on encapsulated state, in which case it is necessarily maintained by client
code. Hoare’s formalization was set in a high level object-oriented language (Simula
67), which is remarkable because for such languages the encapsulation problem has far
too many recent published solutions to be considered definitively solved.

For reasoning about shared, dynamically allocated objects, the last decade has seen
major advances, especially the emergence of Separation Logic, which helped reduce
what O’Hearn et al. aptly called a “mismatch between the simple intuitions about the
way pointer operations work and the complexity of their axiomatic treatments” [29,
Sect. 1]. For encapsulation, there remains a gap between the simple idea of hiding an
invariant and the profusion of complex encapsulation techniques and methodologies.
The profusion is a result of tensions between

– The need to prevent violations of encapsulation due to misuse of shared references.
– The need to encompass useful designs including overlapping and non-regular data

structures, callbacks, and the deliberate use of shared references that cross encap-
sulation boundaries. Illustrative examples are the topic of Sect. 2.

� Partially supported by US NSF awards CNS-0627338, CRI-0708330, CCF-0915611.
�� Partially supported by US NSF awards CNS-0627748.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 2–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Dynamic Boundaries 3

– The need for effective, modular reasoning on both sides of an interface: for clients
and for the module implementation.

– The hope to achieve high automation through mature techniques including types
and static analyses as well as theorem proving.

– The need to encompass language features such as parametric polymorphism and
code pointers for which semantics is difficult.

This paper seeks to reconcile all but the last of these and to bridge the gap using a simple
but flexible idea that complements scope-based encapsulation. The idea is to include in
an interface specification an explicit description of the key intuition, the internal state
or “heap footprint” on which an invariant rests. This set of locations, called the dynamic
boundary, is designated by an expression that may depend on ordinary and ghost state.

We formalize the idea using first order assertions in a Hoare logic for object based
programs called Region Logic (Sect. 3); it is adapted from a previous paper in which we
briefly sketched the idea and approach [2]. Our approach is based on correctness judge-
ments with hypotheses, to account for linking of client code to the modules used, and a
frame rule to capture hiding. These two ingredients data back to the 1970’s (e.g., [15])
but we build directly on their novel combination in the second order frame rule of sep-
aration logic [30]. Our version of the rule is the topic of Sect. 4.

Owing to the explicit expression of footprints, region logic for first order programs
and specifications has an elementary semantics and is amenable to automation with
SMT solvers [21]. One price to pay is verbosity, but the foundation explored in this
paper supports syntactic sugars for common cases while avoiding the need to hard-code
those cases. Another price is an additional proof obligation on clients, to respect the
dynamic boundaries of modules used. In many cases this can be discharged by type
checking. But our main goal is to account for hiding in a way that is sufficiently flexible
to encompass ad hoc disciplines for encapsulation; even more, to let the formalization
of such a discipline be a matter of program annotation, with its adequacy checked by a
verification tool, rather than being fodder for research papers.

The main result is soundness of our second order frame and boundary introduction
rules, whose range of applicability is indicated by application, in Sect. 5, to the exam-
ples in Sect. 2. For lack of space, technical details are only skimmed, as is related work
(Sect. 6). An appendix with the soundness proof can be found online.

2 The Challenge of Hiding Invariants on Shared Mutable Objects

2.1 A Collection Implemented by a List

We begin with a textbook example of encapsulation and information hiding, the toy
program in Fig. 1.1 Annotations include method postconditions that refer to a global
variable, pool , marked as ghost state. Ghost variables and fields are auxiliary state used

1 The programming notation is similar to sequential Java. A value of a class type like Node is
either null or a reference to an allocated object with the fields declared in its class. Methods
have an implicit parameter, self , which may be elided in field updates; e.g., the assignment
lst := null in the body of the Set constructor is short for self .lst := null.
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ghost pool : rgn;

class Set { lst :Node; ghost rep : rgn;
model elements = elts(lst)

where elts(n :Node) = (if n = null then ∅ else {n.val}∪ elts(n.nxt))

Set() ensures elements = ∅ ∧ pool = old(pool)∪{self}
{ lst := null; rep := ∅; pool := pool ∪{self}; }
add(i : int) ensures elements = old(elements)∪{i}
{ if ¬contains(i) then var n :Node := new Node; n.val := i ; n.nxt := lst ; lst := n;

n.own := self ; rep := rep ∪{n}; endif }
contains(i : int) :boolean ensures result = (i ∈ elements) { “linear search for i” }
remove(i : int) ensures elements = old(elements)−{i} { “remove first i , if any” } }

class Node { val : int; nxt :Node; ghost own :Object; } //library code, not part of SET

Fig. 1. Module SET , together with class Node . Variable result is the returned result.

in reasoning, but not mentioned in branch conditions or expressions assigned to ordi-
nary state. Assignments to ghost state can be removed from a program without altering
its observable behavior, so ghosts support reasoning about that behavior. A region is
a set of object references (which may include the improper reference, null). Type rgn,
which denotes regions, is used only for ghost state.

The specifications are expressed in terms of an integer set, elements . Abstraction
of this sort is commonplace and plays a role in Hoare’s paper [17], but it is included
here only to flesh out the example. Our concern is with other aspects so we content
ourselves with a recursive definition (of elts) that may seem naı̈ve in not addressing the
possibility of cyclic references.

Suppose the implementation of remove only removes the first occurrence of i , if
any. That is, it relies on the invariant that no integer value is duplicated in the singly
linked list rooted at lst . To cater for effective automated verification, especially using
SMT solvers, we want to avoid using reachability or other recursively defined notions
in the invariant. The ghost field rep is intended to refer to the set of nodes reachable
from field lst via nxt . The invariant is expressed using elementary set theoretic notions
including the image of a region under a field. The expression s .rep‘nxt denotes the
region consisting of nxt values of objects in region s .rep. It is used in this definition:2

SetI (s :Set) : (∀n,m :Node ∈ s .rep | n = m ∨n.val �= m.val)
∧ s .lst ∈ s .rep ∧ s .rep‘nxt ⊆ s .rep ∧ s .rep‘own ⊆ {s}

The first conjunct says there are no duplicates among elements of s .rep. The next says
that s .rep contains the first node, if any (or else null). The inclusion s .rep‘nxt ⊆ s .rep

2 The range condition “n ∈ s.rep” is false in case s is null, because n ∈ s.rep is shorthand for
n ∈ {s}‘rep and {null}‘rep is empty. Our assertion logic is 2-valued and avoids undefined
expressions. We do not use sets of regions. The image operator flattens, for region fields: For
any region expression G , the image region G‘rep is the union of rep images whereas G‘nxt
is the set of nxt images, because rep has type rgn and nxt has class type.
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says that s .rep is nxt -closed; this is equivalent to ∀o | o ∈ s .rep ⇒ o.nxt ∈ s .rep.3

One can show by induction that these conditions imply there are no duplicates; so the
invariant says what we want, though not itself using induction. However, s .rep could
be nxt -closed even if s .rep contained extraneous objects, in particular nodes reached
from other instances of Set . This is prevented by the inclusion s .rep‘own ⊆ {s}; or
rather, by requiring the inclusion for every instance of Set . So we adopt an invariant to
be associated with module SET :

Iset : null /∈ pool ∧∀s :Set ∈ pool | SetI (s)

As used here, variable pool is superfluous, but we are hinting at examples where an
invariant is not maintained for all instances of a class but, e.g., only those created by a
factory method. The need for null /∈ pool is minor and discussed later. A bigger concern
is the global nature of Iset , which is addressed in Sect. 3.2.

Consider this client code, acting on boolean variable b, under precondition true:

var s :Set := new Set ; var n :Node := new Node;
s .add(1); s .add(2); n.val := 1; s .remove(1); b := s .contains(1); (1)

The implementation of remove relies on the invariant SetI (s), but this is not included
as a precondition in Fig. 1 and the client is thus not responsible to establish it before the
invocation of remove. As articulated by Hoare [17], the justification is that the invariant
appears as both pre- and post-condition for verification of the methods add , remove,
contains , and should be established by the Set constructor. And the invariant should
depend only on state that is encapsulated. So it is not falsified by the initialization of
n and still holds following s .add(2); again by encapsulation it is not falsified by the
update n.val := 1 so it holds as assumed by s .remove.

We call this Hoare’s mismatch: the specifications used in reasoning about invocations
in client code, i.e. code outside the encapsulation boundary, differ from those used to
verify the implementations of the invoked methods. By contrast, ordinary procedure call
rules in program logic use the same specification at the call site and to verify the proce-
dure implementation. Automated, modular verifiers are often based on an intermediate
language using assert and assume statements: At a call site the method precondition is
asserted and this same precondition is assumed for the method’s implementation; so the
assumption is justified by the semantics of assert and assume. Hoare’s mismatch asserts
the public precondition but assumes an added conjunct, the invariant.

The mismatch is unsound if encapsulation is faulty, which can easily happen due
to shared references, e.g., if in place of n.val := 1 the client code had s .lst .val := 1.
Lexical scope and typing can provide encapsulation, e.g., field lst should have module
scope. (We gloss over scope in the examples.) However, scope does not prevent that
references can be leaked to clients, e.g., via a global variable of type Object. Moreover,
code within the module, acting on one instance of Set , could violate the invariant of
another instance. Besides scope and typing, a popular technique to deal with encap-
sulation in the presence of pointers is “ownership” (e.g., [9,11]). Ownership systems
restrict the form of invariants and the use of references, to support modular reasoning

3 Quantified variables range over non-null, allocated references.
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ghost freed : rgn;
var flist :Node; count : int;

alloc() :Node
ensures result �= null∧ freed = old(freed)−{result}∧ (result ∈ old(freed)∨ fresh(result))
{ if count = 0 then result := new Node;

else result :=flist ; flist := flist .nxt ; count :=count −1; freed := freed −{result}; endif}
free(n :Node) requires n �= null ∧ n /∈ freed ensures freed = old(freed)∪{n}
{ n.nxt := flist ; flist := n; count := count −1; freed := freed ∪{n}; }

Fig. 2. Module MM

at the granularity of a single instance and its representation. Ownership works well for
SetI and indeed for invariants in many programs.

2.2 A Toy Memory Manager

It is difficult to find a single notion of ownership that is sufficiently flexible yet sound
for invariant hiding. Fig. 2 presents a module that is static in the sense that there is
a single memory manager, not a class of them. Instances of class Node (from Fig. 1)
are treated as a resource. The instances currently “owned” by the module are tracked
using variable freed . The hidden invariant, Imm , is defined to be FC (flist , freed ,count)
where FC (f :Node,r : rgn,c : int) is defined, by induction on the size of r , as

(f = null⇒ r = ∅∧ c = 0)∧ (f �= null⇒ f ∈ r ∧ c > 0∧FC (f .nxt ,r −{f },c−1))

The invariant says freed is the nodes reached from flist and count is the size. The
implementation of alloc relies on accuracy of count . It relies directly on count �= 0⇒
flist �= null, as otherwise the dereference flist .nxt could fault, but for this to hold on
subsequent calls the stronger condition Imm needs to be maintained as invariant.

Consider this strange client that both reads and writes data in the free list —but not
in a way that interferes with the module.

var x ,y :Node; x := new Node; y := alloc(); free(x ); free(y);
while y �= null do y.val := 7; y := y.nxt ; od

The loop updates val fields of freed objects, but it does not write the nxt fields, on
which the invariant depends; the client never causes a fault. Suppose we replaced the
loop by the assignment y.nxt := null. This falsifies the invariant Imm , if initially count
is sufficiently high, and then subsequent invocations of alloc break.

The strange client is rejected by most ownership systems. But there is an encapsu-
lation boundary here: clients must not write the nxt field of objects in freed (nor write
variables flist and count ). The strange client respects this boundary.

Sharing of references across encapsulation boundaries is common in system code, at
the C level of abstraction. But it also occurs with notional resources such as database
connections in programs at the level of abstraction we consider here, where references
are abstract values susceptible only to equality test and field dereference.
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class Subject { obs :Observer ; val : int; ghost O : rgn;

Subject() { obs := null; val := 0; O := ∅; }
update(n : int) ensures ∀b :Observer ∈O |Obs(b,self ,n)
{ val := n; var b :Observer := obs; while b �= null do b.notify(); b := b.nxto; od }
get() : int { result := val ; }
register(b :Observer) { b.nxto := obs;obs := b;O := O ∪{b};b.notify(); } }

class Observer { sub :Subject ; cache : int; nxto :Observer ;

Observer(s :Subject) requires ∀b :Observer ∈ s.O |Obs(b,s,s.val)
ensures self ∈ s.O ∧∀b :Observer ∈ s.O |Obs(b,s,s.val)

{ sub := s; s.register(self); }
notify() { cache := sub.get(); } }

Fig. 3. Module OB . We define Obs(b,s,v) as b.sub = s ∧b.cache = v .

2.3 Observer Pattern: Cluster Invariants

Fig. 3 is a simple version of the Observer design pattern in which an observer only tracks
a single subject. Parkinson [31] used the example to argue against instance-oriented
notions of invariant. We address that issue using a single invariant predicate that in
effect quantifies over clusters of client-visible objects. Classes Subject and Observer
are together in a module, in which methods register and notify should have module
scope. The implementation maintains the elements of O in the nxto-linked list threaded
through the observers themselves, and it relies on the hidden invariant

Iob : (∀s :Subject | List(s .obs ,s .O))∧(∀o :Observer | o.sub �= null⇒ o ∈ o.sub.O)

where List(o,r) says the list beginning at o lies in region r (compare FC in Sect. 2.2).
The second conjunct of Iob says that any observer tracking a subject lies in that subject’s
O region. As with Iset , the instantiations of Iob are local in that they depend on nearby
objects, but here a subject and its observers form a cooperating cluster of objects not in
an ownership relation. Clients may rely on separation between clusters. As an example,
consider a state in which there are two subjects s , t with s .val = 0 and t .val = 5. Con-
sider this client: o := new Observer(s);p := new Observer(t);s .update(2). Owing to
separation, t .val = 5 holds in the final state.

2.4 Overlapping Data Structures and Nested Modules

One feature of the preceding example is that there is an overlapping data structure be-
cause a list structure is threaded through observer objects that are client visible. We
now consider another example which further illustrates overlapping data structures and
also hiding in the presence of nested modules. The module in Fig. 4 consists of a class,
ObsSet , that extends Observer . Instances of ObsSet are in two overlapping data struc-
tures. First, these objects are arranged in a cyclic doubly-linked list, traversed using
next and prev pointers, whose elements may be observing the same or different sub-
jects. Second, each ObsSet is in the nxto-linked list of observers of its subject.
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class ObsSet extends Observer { next :ObsSet ; prev :ObsSet ;

ObsSet(s :Subject ,os :ObsSet)
requires ∀b :Observer ∈ s.O |Obs(b,s,s.val)
ensures self ∈ s.O ∧∀b :Observer ∈ s.O |Obs(b,s,s.val)

{ super(s);
if os = null then prev := self; next := self ;
else next := os; prev := os.prev ; os.prev .next := self ; os.prev := self ; endif } }

Fig. 4. Module OS

The constructor of ObsSet first calls the superclass constructor, Observer , with sub-
ject s . This call adds the newly allocated object to the front of the list of observers of s .
The newly allocated object is then added to the cyclic doubly-linked list by manipulat-
ing next and prev pointers.

Module OS is defined in the context of module OB , because ObsSet is a subclass
of Observer . The verification of the implementation of ObsSet will require its module
invariant, but not Iob . The invariant Ios expresses a simple property of cyclic doubly-
linked lists: os .prev .next = os∧os .next .prev = os for all allocated os of type ObsSet .
Despite the overlapping structure, there is no interference between the code and invari-
ants of modules OB and OS because different locations are involved.

Interesting variations on the example include observers that track multiple subjects,
and observers that are also in the role of subject (cf. [19]). Of particular interest are
callbacks between modules (as opposed to the notify/get callback within module OB ),
which are within reach of our approach but not formalized in this paper.

3 Region Logic Background: Effects and First Order Framing

3.1 Preliminaries: Programming Language, States, Assertions

Our formal results are given for an idealized object-based language with syntax
sketched in Fig. 5. Programs are considered in the context of a fixed collection of class
declarations, of the form class K { f :T }, where field types may make mutually re-
cursive reference to other classes. We write Fields(K ) for f :T and for simplicity let
names in the list f have global scope. Ordinary expressions do not depend on the heap:
y.f is not an expression but rather part of the command x := y.f for reading a field,
as in separation logic. Instead of methods associated with classes, we formalize simple

T ::= int |K | rgn where K is in DeclaredClassName data types
E ::= x | c | null | E ⊕E where c is in Z, ⊕ in {=,+,>, . . .} ordinary expressions
G ::= x | {E} |∅ |G‘f |G⊗G where ⊗ is in {∪,∩,−} region expressions
F ::= E |G expressions
C ::= m(x) | x := F | x := new K | x := x .f | x .f := F primitive commands

| let m(x :T ) be C in C | var x :T in C end |C ;C | . . . binding, control struct.

Fig. 5. Program syntax, where x ∈VarName , f ∈ FieldName , m ∈ ProcName
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procedures without an implicit self parameter. The typing judgement for commands is
written as Π Γ C where Γ is a variable context and Π is a list of procedure signatures
of the form m(x :T ). The form “ let m(x :T ) be B in C ” is typable in context Π and
Γ if Π ,m :(x :T ) Γ ,x :T B and Π ,m :(x :T ) Γ C . The generalization to multiple
parameters and mutually recursive procedures is straightforward and left to the reader.
Typing rules enforce that type int is separated from reference types: there is no pointer
arithmetic, but pointers can be tested for equality. The variable alloc, being of type rgn,
cannot occur in non-ghost code.

The semantics is based on conventional program states. We assume given a set Ref of
reference values including a distinguished value, null. A Γ -state has a global heap and a
store. The store assigns values to the variables in Γ and to the variable alloc : rgn which
is special in that its updates are built in to the semantics of the language: newly allocated
references are added and there are no other updates, so it holds the set of allocated
references. The heap maps each allocated reference to its type (which is immutable)
and field values. The values of a class type K are null and allocated references of type
K . We assume the usual operations are available for a state σ . For example, σ(x ) is
the value of variable x , σ(F ) is the value of expression F , Type(o,σ) is the type of
an allocated reference o, Update(σ ,o.f ,v) overrides σ to map field f of o to v (for
o ∈ σ(alloc)), Extend(σ ,x ,v) extends σ to map x to value v (for x �∈Dom(σ)). Heaps
have no dangling references; we do not model garbage collection or deallocation.

In a given state the region expression G‘f (read “G’s image under f ”) denotes one
of two things. If f has class type then G‘f is the set of values o.f where o ranges over
(non-null) elements of G that have field f . If f has region type, like rep in our example,
then G‘f is the union of the values of f .

Assertions are interpreted with respect to a single state, e.g., the semantics of the
primitive x .f = E that reads a field is defined: σ |= x .f = E iff σ(x ) �= null and
σ(x .f ) = σ(E ). The operator “old” used in specifications can be desugared using aux-
iliaries quantified over specifications (omitted from this version of the paper). We do not
use quantified variables of type rgn. Quantified variables of class type range over non-
null, currently allocated references: σ |=Γ (∀x :K | P) iff Extend(σ ,x ,o) |=Γ ,x :K P
for all o ∈ σ(alloc) such that Type(o,σ) = K . In a richer language with subclassing,
this would be ≤K .

3.2 Effect Specifications and the Framing of Commands and Formulas

Let us augment the specifications in Fig. 1 with the effect specifications in Fig. 6. Effects
are given by the grammar ε ::=wrx | rdx | wrG‘f | rdG‘f | frG . We omit tags wr and
rd in lists of effects of the same kind. In this paper, read effects are used for formulas and
write effects as frame conditions for commands and methods; commands are allowed to
read anything. Freshness effect frG is used for commands; it says that the value of G in

Set() wrpool

add(i : int) wralloc, self .any, self .rep‘any

remove(i : int) wrself .any, self .rep‘any

Fig. 6. Effect specifications for methods in Fig. 1. For contains the specification has no effects.
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the final state contains only (but not necessarily all) references that were not allocated
in the initial state.

The effect specification for the constructor method, Set(), says variable pool may
be updated. For add , the effect wralloc means that new objects may be allocated. The
effect wrself.any says that any fields of self may be written. The effect wrself.rep‘any
says that any field of any object in self.rep may be written; in fact none are written in our
implementation, but this caters for other implementations. The effect wrself.rep‘any is
state dependent, because rep is a mutable field.

In general, let G be a region expression and f be a field name. The effect wrG‘f
refers to l-values: the locations of the f fields of objects in G —where G is interpreted
in the initial state. A location is merely a reference paired with a field name.

An effect of the form wrx .f abbreviates wr{x}‘f . In case x is null, this is well de-
fined and designates the empty set of locations. We also allow f to be a data group [26],
e.g., the built-in data group “any” that stands for all fields of an object.

We say effect list ε allows transition from σ to σ ′, written σ � σ ′ |= ε , if and only
if σ ′ succeeds4 σ and

(a) for every y in Dom(Γ )∪{alloc}, either σ(y) = σ ′(y) or wry is in ε
(b) for every o in σ(alloc) and every f in Fields(Type(o,σ)), either σ(o.f ) = σ ′(o.f )

or there is G such that wrG‘f is in ε and o is in σ(G)
(c) for each frG in ε , we have σ ′(G) ⊆ σ ′(alloc)−σ(alloc).

Formulas are framed by read effects. We aim to make explicit the footprint of Iset ,
which will serve as a dynamic boundary expressing the state-dependent aspect of the
encapsulation that will allow Iset to be hidden from clients. First we frame the object
invariant SetI (s), which will be used for “local reasoning” [29] at the granularity of a
single instance of Set . We choose to frame5 it by

δ 0 : rd s , s .(rep, lst), s .rep‘(nxt ,val ,own) (abbreviating s .rep, s .lst , etc.)

A read effect designates l-values. Here, δ 0 allows to read variable s , fields rep and lst
of the object currently referenced by s if any, and the fields nxt , val , and own of any
objects in the current value of s .rep.

We use a judgement for framing of formulas, e.g., true  δ 0 frames SetI (s) says
that if two states agree on the locations designated by δ 0 then they agree on the value
of SetI (s). The judgement involves a formula, here true, because framing by state-
dependent effects may hold only under some conditions on that state. For example we
have s ∈ pool  rdpool‘(rep, lst) frames s .lst ∈ s .rep.

The semantics of judgement P  δ frames P ′ is specified by the following: If σ |= P
and Agree(σ ,σ ′,δ ) then σ |= P ′ implies σ ′ |= P ′. Here Agree(σ ,σ ′,δ ) is defined to
mean: σ ′ succeeds σ , σ(x ) = σ ′(x ) for all rdx in δ , and σ(o.f ) = σ ′(o.f ) for all
rdG‘f in δ and all o ∈ σ(G) with f ∈ Fields(o,σ).

There are two ways to establish a framing judgement. One is to directly check the
semantics, which is straightforward but incomplete using an SMT prover, provided the

4 σ ′ succeeds σ iff σ(alloc)⊆ σ ′(alloc) and Type(o,σ) = Type(o,σ ′) for all o ∈ σ(alloc).
5 The term “frame” traditionally refers to that which does not change, but frame conditions

specify what may change. To avoid confusion we refrain from using “frame” as a noun.
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heap model admits quantification over field names (to express agreement). The other
way is to use inference rules for the judgement [2]. These include syntax-directed rules
together with first-order provability and subsumption. As an example, the rule for P 
η frames (∀x :K | x ∈G ⇒ P ′) has antecedent of the form P ∧ x ∈G  η ′ frames P ′

and requires η to subsume the footprint of G . Our rules are proved to yield a stronger
property than the specification: σ |= P ′ iff σ ′ |= P ′ when σ |= P and Agree(σ ,σ ′,η).

For Iset , we can use the specific judgements above to derive true  δ set frames Iset ,
where δ set is rd pool , pool‘(rep, lst), pool‘rep‘(nxt ,val ,own). This is subsumed by

θ set : rd pool , pool‘any, pool‘rep‘any

A frame rule. To verify the implementations in Fig. 1 we would like to reason in terms
of a single instance of Set . Let Badd be the body of method add . By ordinary means
we can verify that Badd satisfies the frame conditions wralloc,self.any and thus those
for add in Fig. 6. Moreover we can verify the following Hoare triple:

{SetI (self)} Badd {SetI (self)∧ elements = old(elements)∪{i}} (2)

From this local property we aim to derive that Badd preserves the global invariant Iset . It
is for this reason that SetI (s) includes ownership conditions. These yield a confinement
property: Iset ⇒ (∀s , t :Set ∈ pool | s = t ∨ s .rep # t .rep), because if n �= null, and
n is in s .rep∩t .rep then n.own = s and n.own = t . Here # denotes disjointness of
sets; more precisely, G #G ′ means G∩G ′ ⊆ {null}. Now Iset is logically equivalent to
SetI (self)∧ Iexcept , with δ x framing Iexcept , defined as

Iexcept : null /∈ pool ∧∀s ∈ pool −{self} | SetI (s)

δ x : rd self, pool , (pool −{self})‘(rep, lst), (pool −{self})‘rep‘(nxt ,val ,own)

We aim to conjoin Iexcept to the pre and post conditions of (2). To make this precise
we use an operator �, called the separator. If δ is a set of read effects and ε is a set
of write effects then δ � ε is a conjunction of disjointness formulas, describing states in
which writes allowed by ε cannot affect the value of a formula with footprint δ . The
formula δ � ε can be defined by induction on the syntax of effects [2]. Its meaning is
specified by this property: If σ � σ ′ |= ε and σ |= δ � ε then Agree(σ ,σ ′,δ ).

It happens that δ x � (wrself.any,wralloc) is true. So, to complete the proof of
{Iset}Badd{elements = old(elements)∪{i}∧ Iset} we can take Q to be Iexcept and
δ to be δ x in this rule which uses notations explained in Sect. 3.3:

FRAME
Δ  {P } C {P ′ } [ε] P  δ frames Q P ⇒ δ � ε

Δ  {P ∧Q } C {P ′ ∧Q } [ε]

Similar reasoning verifies the implementation of remove. Note that its effects include
wrself.rep‘any. Moreover δ x � wrself.rep‘any yields nontrivial disjointnesses:
self.rep # (pool −{self})∧ self.rep # (pool −{self})‘rep. The first conjunct holds be-
cause elements of self.rep have type Node and those of pool −{self} have type Set
(details left to reader). The second conjunct is a consequence of the ownership con-
finement property mentioned earlier, which follows from Iset . For verifying remove,
the precondition P in FRAME will be true ∧ Iset because true is the precondition of
remove in Fig. 1.
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〈let m(x :T ) be B in C , σ , μ〉 �−→ 〈(C ;end(m)), σ , Extend(μ,m,(λx :T .B)〉

μ(m) = λx :T .B x ′ /∈Dom(σ) x ′ /∈ params(Δ ) B ′ = Bx
x ′

〈m(z), σ , μ〉 �−→ 〈(B ′;end(x ′)), Extend(σ ,x ′,σ(z)), μ〉

Δ contains {P}m(x :T ){P ′}[ε]
σ � σ ′ |= ε Extend(σ ,x ,σ(z)) |= P Extend(σ ′,x ,σ(z)) |= P ′

〈m(z), σ , μ〉 �−→ 〈skip, σ ′, μ〉

Δ contains {P}m(x :T ){P ′}[ε] Extend(σ ,x ,σ(z)) �|= P

〈m(z), σ , μ〉 �−→ 〈skip, σ ′, μ〉 and also 〈m(z), σ , μ〉 �−→ fault

Fig. 7. The transition relation
Δ�−→. Here Δ is the same throughout and omitted.

3.3 Correctness Judgements and Program Semantics

A procedure context, Δ , is a comma-separated list of specifications, each of the form
{Q}m(x :T ){Q ′}[ε]. For the specification to be well formed in a variable context Γ , all
of Q ,Q ′,ε should be well formed in Γ ,x :T . Moreover the frame condition ε must not
contain wrx , so the use of x in Q ′ and ε refers to its initial value. A correctness judge-
ment takes roughly the form Δ Γ {P } C {P ′ } [ε] and is well formed if Δ ,P ,P ′,ε
are well formed in Γ and signatures(Δ) Γ C . In Sect. 4 we partition Δ into mod-
ules (see Def. 1). A correctness judgement is intended to mean that from any initial
state that satisfies P , C does not fault (due to null dereference) and if it terminates
then the final state satisfies P ′. Moreover, any transition from initial state to final is
allowed by ε .

The hypothesis Δ is taken into account as well. One semantics would quantify over
all implementations of Δ . Instead, we use a mixed-step semantics in which a call m(z )
for m in Δ takes a single step to an arbitrary outcome allowed by the specification of
m.6 A configuration has the form 〈C , σ , μ〉 where C is a command, σ is a state, and
the procedure environment μ is a partial function from procedure names to parameter-
ized commands of the form (λx :T .C ). By assuming that in a well formed program
no procedure names are shadowed, we can use this simple representation, together with
a special command end(m) to mark the end of the scope of a let-bound procedure m.
Renaming is used for a parameter or local variable x , together with end marker end(x ).
The transition relation

Δ�−→ is defined in Fig. 7. The procedures in Δ are to be distinct
from those in the procedure environment. A terminating computation ends in a config-
uration of the form 〈skip, σ , μ〉, or else “fault” which results from null dereference.
The cases omitted from Fig. 7 are quite standard. We note only that the semantics of
new K , which updates alloc, is parameterized on a function which, given a state, re-
turns a non-empty set of fresh references. Thus our results encompass deterministic
allocators as well as the maximally nondeterministic one on which some separation
logics rely.

6 Such semantics is popular in work on program refinement; see also O’Hearn et al [30].
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4 Dynamic Boundaries and Second Order Framing

Rule FRAME is useful for reasoning about a predicate that a command is explicitly
responsible for preserving, like Iexcept and Badd in Sect. 3.2. For the client (1), we want
Iset to be preserved; semantically, the rationale amounts to framing, but rule FRAME is
not helpful because our goal is to hide Iset from clients. A client command in a context
Δ is second order in that the behavior of the command is a function of the procedures
provided by Δ , as is evident in the transition semantics (Fig. 7). Second order framing
is about a rely-guarantee relationship: the module relies on good behavior by the client,
such that the client unwittingly preserves the hidden invariant, and in return the module
guarantees the behavior specified in Δ .

Our rely condition is list of read effects, called the dynamic boundary, that must be
respected by the client in the sense that it does not write the locations designated by
those effects. A dynamic boundary δ is associated with a list Δ of procedure specifi-
cations using notation Δ〈δ 〉. The general form for correctness judgement would have a
sequence Δ1〈δ 1〉 ; . . . ; Δn〈δn〉 of hypotheses, for n modules, n ≥ 0. In an attempt to
improve readability, we will state the rules for the case of just two modules, typically
using name Θ for Δn . So a correctness judgement has the form

Δ〈δ 〉 ; Θ〈θ 〉 Γ {P } C {P ′ } [ε] (3)

where δ and θ are lists of read effects that are well formed in Γ . The order of modules
is significant: the implementation of Θ may use procedures from Δ and is obliged to
respect dynamic boundary δ . For a dynamic boundary to be useful it should frame the
invariant to be hidden, e.g., θ set frames Iset . That proof obligation is on the module.

The following derived rule embodies Hoare’s mismatch in the case where module Θ
is a single procedure specification {Q}m(x :T ){Q ′}[η ].

MISMATCH

Δ〈δ 〉 ; Θ〈θ 〉  {P } C {P ′ } [ε] I  θ frames I
Δ〈δ 〉 ; (Θ � I )〈〉  {Q ∧ I } B {Q ′ ∧ I } [η] Init ⇒ I

Δ〈δ 〉  {P ∧ Init } let m be B in C {P ′ } [ε]

The client C is obliged to respect θ (and also δ ) but does not see the hidden invariant.
The implementation B is verified under additional precondition I and has additional
obligation to reestablish I . (In the general case there is a list of bodies Bi , each ver-
ified in the same context against the specification for mi .) The context Δ is another
module that may be used both by C and by the implementation B of m. So B must
respect δ , but note that it is not required (or likely) to respect θ . The obligation on
B refers to context Θ � I , not Θ ; this is only relevant if B recursively invokes m
(or, in general, other methods of the same module). The operation �I conjoins a for-
mula I to pre- and post-conditions of specifications: ({Q}m(x :T ){Q ′}[η ] ) � I =
{Q ∧ I }m(x :T ){Q ′ ∧ I }[η].

Typical formalizations of data abstraction include a command for initialization, so a
closed client program takes the form let m be B in (init ;C ). With dynamic allocation,
it is constructors that do much of the work to establish invariants. In order to avoid the
need to formalize constructors, we use an initial condition. For the Set example, take
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Initset to be the condition pool = ∅ which is suitable to be declared in the module
interface. Note that Initset ⇒ Iset is valid.

Remarkably, there is a simple interpretation of judgement (3) that captures the idea
that C respects the boundaries δ and θ : No step of C ’s execution may write locations
designated by δ —interpreted in the pre-state of that step— unless it is a step of a
procedure of Δ ; mutatis mutandis for θ and Θ . Before turning to the formal details, we
discuss this proof obligation.

Verifying a client of SET . Using the public specifications of the four methods of Set ,
it is straightforward to prove that the client (1) establishes b = false. But there is an
additional obligation, that every step respects the dynamic boundary θ set . Consider the
assignment n.val := 1 in (1), which is critical because Iset depends on field val . The
effect of n.val := 1 is wrn.val and it must be shown to be outside the boundary θ set .
By definition of �, we have that θ set � wrn.val is {n} #pool ∧{n} #pool‘rep, which
simplifies to n /∈ pool ∧n /∈ pool‘rep. We have n /∈ pool because n is fresh and variable
pool is not updated by the client. The condition n /∈ pool‘rep is more interesting. Note
that Iset implies

R : pool‘rep‘own ⊆ pool ∧null /∈ pool

Unlike Iset , this is suitable to appear in the module interface, as a public invariant [23] or
explicitly conjoined to the procedure specifications of SET . The client does not update
the default value, null, of n.own . Together, R and n.own = null imply n /∈ pool‘rep.

One point of this example is that “package confinement” [14] applies here: references
to the instances of Node used by the Set implementation are never made available to
client code. Thus a lightweight, type-based confinement analysis of the module could
be used together with simple syntactic checks on the client to verify that the boundary
is respected. The results of an analysis could be expressed in first order assertions like
R and thus be checked rather than trusted by a verifier.

As in rule FRAME, the separator can be used to express that a primitive command
respects a dynamic boundary, allowing precise reasoning in cases like module MM
(Sect. 5) that are not amenable to general purpose static analyses. A dynamic bound-
ary is expressed in terms of state potentially mutated by the module implementation,
e.g., the effect of add in Fig. 1 allows writing state on which θ set depends.7 So inter-
face specifications need to provide clients with sufficient information to reason about
the boundary. For MM , it is not an invariant like R but rather the individual method
specifications that facilitate such reasoning (see Sect. 5).

Formalization. The beauty of the second order frame rule, the form of which is due to
O’Hearn et al [29], is that it distills the essence of Hoare’s mismatch. Rule MISMATCH

is derived in Fig.8 from our rule SOF together with two unsurprising rules which are
among those given in Fig. 9. Before turning to the rules we define the semantics.

The current command in a configuration can always be written as a sequence of one
or more commands that are not themselves sequences; the first is the active command,
the one that is rewritten in the next step. We define Active(C1;C2) = Active(C1) and
Active(C ) = C if there are no C1,C2 such that C is C1;C2.

7 State-dependent effects may interfere, which is handled by the sequence rule [2].
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Δ 〈δ〉;(Θ � I )〈〉  {Q · I } B {Q ′ · I } [η]

Δ 〈δ 〉;Θ〈θ〉  {P} C {P ′} [ε]

Δ 〈δ〉;(Θ � I )〈θ〉  {P · I } C {P ′ · I } [ε]
SOF

Δ 〈δ〉  {P · I } let m be B in C {P ′ · I } [ε]

Δ 〈δ〉  {P · Init} let m be B in C {P ′} [ε]

Fig. 8. Derivation of rule MISMATCH, where Θ is a single specification {Q}m(x :T ){Q ′}[η]
and we write · for ∧ to save space. The side condition for SOF is I  (θ , rdalloc) frames I . The
next step is by rule LINK, followed by CONSEQ with side condition Init ⇒ I .

SOF
Δ 〈δ 〉 ; Θ〈θ 〉  {P } C {P ′ } [ε] I  (θ , rdalloc) frames I Admiss(I ,Θ)

Δ 〈δ〉 ; (Θ � I )〈θ〉  {P ∧ I } C {P ′ ∧ I } [ε]

CTXINTRO
Δ 〈δ〉  {P } C {P ′ } [ε] C is primitive P ⇒ θ �ε

Δ 〈δ〉 ; Θ〈θ〉  {P } C {P ′ } [ε ]

CALL
{P}m(x :T ){P ′}[ε] is in Θ Px

z ⇒ δ �εx
z

Δ 〈δ〉 ; Θ〈θ 〉  {Px
z }m(z) {P ′xz } [εx

z ]

LINK

Θ is {Q}m(x :T ){Q ′}[η ]
Δ 〈δ〉 ; Θ〈θ〉 Γ {P } C {P ′ } [ε] Δ 〈δ〉 ; Θ〈〉 Γ ,x :T {Q } B {Q ′ } [η ]

Δ 〈δ〉 Γ {P } let m(x :T ) be B in C {P ′ } [ε ]

Fig. 9. Selected proof rules

Definition 1. A correctness judgement Δ〈δ 〉 ; Θ〈θ 〉 Γ {P } C {P ′ } [ε] is valid iff
the following holds. Let Δ ′ be the catenated list (Δ ,Θ), let C0 be C , and let μ0 be
an arbitrary procedure environment disjoint from the procedures bound within C or
present in Δ ,Θ . Then for all Γ -states σ0 such that σ0 |= P

(i) It is not the case that 〈C0, σ0, μ0〉
Δ ′�−→∗ fault.

(ii) Every terminating computation 〈C0, σ0, μ0〉
Δ ′�−→∗〈skip, σn , μn〉 satisfies σn |= P ′

and σ0� σn |= ε .

(iii) For any reachable computation step, i.e. 〈C0, σ0, μ0〉
Δ ′�−→∗〈Ci−1, σi−1, μi−1〉

Δ ′�−→
〈Ci , σi , μi〉, either Active(Ci−1) is a call to some m in Δ (respectively, in Θ ) or
else Agree(σi−1,σi ,δ ) (respectively, Agree(σi−1,σi ,θ ) ).

Let us paraphrase (iii) in a way that makes clear the generalization to contexts with
more modules: Every dynamic encapsulation bound must be respected by every step of
computation (terminating or not), with the exception that a call of a context procedure
is exempt from the bound of its module.

Selected proof rules are given in Fig. 9. An implicit side condition on all proof rules
is that both the consequent and the antecedents are well formed. We omit standard
rules for control structures, and structural rules like consequence, which do not manip-
ulate the procedure context. Rule FRAME also leaves its context unchanged. For the
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assignment commands we can use “small axioms” inspired by [29]. The axioms have
empty context; rule CTXINTRO is used to add hypotheses.

Rule CTXINTRO is restricted to primitive commands (Fig. 5), because the side con-
dition P ⇒ θ � ε only enforces the dynamic encapsulation boundary θ for the initial
and final states —there are no intermediate steps in the semantics of these commands.
Note that CTXINTRO introduces a dynamic boundary θ that will not be imposed on the
implementations of the procedures of the outer module Δ . This works because, due to
nesting, those implementations cannot invoke procedures of Θ at all. The implemen-
tation of a procedure m in Θ may invoke a procedure p of enclosing module Δ . The
effect of that invocation might even violate the dynamic boundary θ , but there is no
harm —indeed, the implementation of m is likely to temporarily falsify the invariant
for Θ but is explicitly obliged to restore it.

The implementation of an inner module is required (by rule LINK) to respect the en-
capsulation boundaries of enclosing modules. That is why it is sound for procedure m
in rule CALL to be in the scope of the dynamic effect bound δ with only the obligation
that the end-to-end effect εx

z is separate from δ . The general form of CALL has n con-
texts and the called procedure is in the innermost. Additional context can subsequently
be introduced on the inside, e.g., CALL can be used for a procedure of Θ and then the
context extended to Δ〈δ 〉 ; Θ〈θ 〉 ; ϒ 〈υ〉 using rule CTXINTRO. In case there is only a
single module, rule CALL can be used with Δ and δ empty.

Rule SOF imposes an admissibility condition on I . In this paper, Admiss is defined
to say I must not be falsifiable by allocation (i.e. σ |= I implies σ ′ |= I , if σ ′ is just
σ extended with a new object). The issue is that some useful invariants include alloc
in their footprint, especially if the footprint is derived using our rules for framing [2].8

Typical clients do allocation, and thus write alloc, which would conflict with a dynamic
boundary containing rdalloc (cf. [33]). The rule explicitly allows this conflict: by con-
dition P  (δ , rdalloc) frames Q , it appears that Q depends on alloc, but by condition
Admiss(Q ,Θ) it does not. We include Θ in the notation, even though it is not used in
the definition, because in a richer language with constructor methods there is a more
practical definition of Admiss that allows the conflict. We can allow a module invariant
I to have subformulas ∀x :K ∈ alloc |P(x ) that do depend on alloc, and yet not include
alloc in the dynamic bound, because the constructor will be obliged to maintain I .

Theorem 1. Each of the rules is sound. Hence any derivable correctness judgement is
valid.

5 Specification and Verification of the Examples

For the toy memory manager of Sect. 2.2, we specify the effects for procedure alloc
to be wrresult, freed ,flist ,count ,alloc, freed‘nxt . For free(n :Node) the effects are
wr freed ,flist ,count , freed‘nxt . Ordinary scoping could be used to hide effects on the
module variables flist and count , and the ghost freed could be “spec-public”, i.e.

8 An example such I is ∀x :K ∈ alloc | x .init ⇒ P(x) with init a boolean field, initially false.
Such a formula would be suitable as an invariant in a program where x .init only gets truthified
by procedures that also establish P(x).



Dynamic Boundaries 17

not writeable outside module MM . To frame Imm we choose as dynamic boundary
rd freed ,flist ,count , freed‘nxt . The interesting part is freed‘nxt , as flist and count
should be scoped within the module and freed should be spec-public. Using the spec-
ifications in Sect. 2.2 together with these effect specifications, it is straightforward to
verify the client given there. The client writes freed‘val but it does not write freed‘nxt ,
nor variable freed itself, and thus it respects the dynamic boundary. So it can be linked
with alloc and free using rule MISMATCH. By contrast with the use of an invariant, R,
to verify that client (1) respects the dynamic boundary θ set , here it is the procedure
specifications themselves that support reasoning about the dynamic boundary. Suppose
we add the assignment y.nxt := null just after y := alloc(); although this writes a nxt
field, the object is outside freed according to the specification of alloc.

Recall the example of Sect. 2.3. For method update we choose effects
wrself.val ,self.O‘cache. The effects for Observer(u) are wru.O‘nxto,u.(O ,dg).
Here dg is a data group that abstracts the private field obs . These suffice to ver-
ify the client in Sect. 2.3 which relies on separation between subjects. The dynamic
boundary, δob , is rdalloc‘(O ,dg),alloc‘O‘nxto. Region alloc is very coarse, but fields
O ,dg,nxto could be protected from clients by scoping; indeed, we might simply use
alloc‘nxto.9 Verification of the implementations uses rule FRAME to exploit per-subject
separation, similar to the Set example in Sect. 4. Then rule MISMATCH links the client.

Finally, recall the example of nested modules and overlapping data structures in
Sect. 2.4. Let the dynamic boundary be rdalloc,alloc‘(next ,prev), which frames Ios .
Consider a client that constructs a new ObsSet . The implementation of the ObsSet
constructor can be verified, assuming and maintaining Ios , including the obligation to
respect the dynamic boundary δ ob of module OB . The client can be linked to OS using
rule MISMATCH and then that rule is used again to link with module OB .

6 Related Work

It is notoriously difficult to achieve encapsulation in the presence of shared, dynamically
allocated mutable objects [22,30]. Current tools for automated software verification
either do not support hiding of invariants (e.g., Jahob [39], jStar [10], Krakatoa [12]),
do not treat object invariants soundly (e.g., ESC/Java [13]) or at best offer soundness
for restricted situations where a hierarchical structure can be imposed on the heap (e.g.
Spec# [3]). Some of these tools do achieve significant automation, especially by using
SMT solvers [21].

The use of ghost state to encode inductive properties without induction has been
fruitful in verifications using SMT solvers (e.g., [8,16,39]). Our use of ghost state for
frame conditions and separation reasoning was directly inspired by the state-dependent
effects of Kassios [18] (who calls them dynamic frames, whence our term “dynamic
boundary”). Variations on state-dependent effects have been explored in SMT-based
verifiers, e.g., Smans et al implemented a verifier that abstracts footprints using location
sets and pure method calls in assertions and in frame conditions [37]. Another verifier
uses novel assertions for an implicit encoding (inspired by separation logic) of frame

9 In fact nxto should be abstracted by a data group, but we report here on the version for which
we did a detailed proof.
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conditions by preconditions [36]. Leino’s Dafny tool [24] features effects in the form
we write as G‘any. The Boogie tool [3] has been used for experiments with region logic
specifications of the Observer [1] and Composite [34] patterns.

Hiding is easy to encode in an axiomatic semantics —it is just Hoare’s mismatch,
phrased in terms of assert and assume statements. The verifiers above which provide
hiding enforce specific encapsulation disciplines through some combination of type
checking and extra verification conditions. For example, the Boogie methodology [25]
used by Spec# stipulates intermediate assertions (in all code) that guarantees an all-
states ownership invariant. Another version of Spec# [37] generates verification con-
ditions at intermediate steps to approximate read footprints, in addition to the usual
end-to-end check for modifies specifications of methed bodies. One way to enforce our
requirement for respecting dynamic boundaries would be to generate verification con-
ditions for writes at intermediate steps, which could be optimized away in cases where
their validity is ensured by a static analysis.

A number of methodologies have been proposed for ownership-based hiding of in-
variants (e.g., [28]). Drossopoulou et al. [11] introduce a general framework to describe
verification techniques for invariants. A number of ownership disciplines from the liter-
ature are studied as instances of the framework. The framework encompasses variations
on the idea that invariants hold exactly when control crosses module boundaries, e.g.,
visible state semantics requires all invariants to hold on all public method call/return
boundaries; other proposals require invariants to hold more often [25] or less [38]. The
difficulty of generalizing ownership to fit important design patterns led Parkinson and
Bierman [5,31] to pursue abstraction instead of hiding, via second order assertions in
separation logic; this has been implemented [10].

Separation logic (SL) is a major influence on our work. Our SOF rule is adapted
from [30], as is the example in Sect. 2.2. The SOF rule of SL relies on two critical
features: the separating conjunction and the tight interpretation of a correctness judge-
ment {P}C{Q} which requires that C neither reads nor writes outside the footprint
of P . These features yield great economy of expression, but conflating read and write
has consequences. To get shared reads, the semantics of separating conjunction can
embody some notion of permissions [7] which adds complication but is useful for con-
current programs (and to our knowledge has not been combined with SOF). The SOF
rule of SL also hides effects on encapsulated state whereas our SOF rule hides only
the invariant. By disentangling the footprint from the state condition we enable shared
reads (retaining a simple semantics), but that means we cannot hide effects within the
dynamic encapsulation boundary —the effects can be visible to clients.

Both our FRAME rule and our SOF rule use ordinary conjunction to introduce an
invariant, together with side conditions that designate a footprint of the invariant which
is separated from the write effect of a command. In SL these rules use the separating
conjunction which expresses the existence of such footprints for the command’s precon-
dition and for the invariant. Reynolds gave a derivation using the rule of conjunction10

that shows the SOF rule of SL is not sound without restriction to predicates that are

10 From {P}C{P ′} and {Q}C{Q ′} infer {P ∧Q}C{P ′ ∧Q ′}.
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“precise” in the sense of determining a unique footprint [30].11 The semantic analy-
sis in [30] shows that the need for a unique footprint applies to region logic as well.
However, region logic separates the footprint from the formula, allowing the invariant
formula to denote an imprecise predicate while framing the formula by effects that in a
given state determines a unique set of locations.

The restriction to precise predicates for SOF in SL can be dropped using a semantics
that does not validate the rule of conjunction [6]. This was eschewed by the authors
of [30] because the rule is patently sound in ordinary readings of Hoare triples. Drop-
ping the rule facilitates the modeling of higher order framing rules that capture visible
state semantics for invariants even in programs using code pointers (e.g., [35]). The
metatheory underlying the Ynot tool for interactive verification [27] uses a model that
does not validate the conjunction rule [32]. Higher order separation logics offer elegant
means to achieve data abstraction and strong functional specifications of interesting de-
sign patterns [20,19,27]. The ability to explicitly quantify over invariants would seem to
lessen the importance of hiding, but it requires considerable sophistication on the part
of the user and their reasoning tools.

7 Conclusion

In this paper we explore a novel interface specification feature: the dynamic boundary
which must be respected by clients. The dynamic boundary is designated by read ef-
fects that approximate, in a way suitable to appear in the interface, the footprint of an
invariant which is hidden, i.e. does not appear in the interface specifications. Explicit de-
scription of footprints is complementary to syntactic mechanisms that encapsulate state
named by identifiers. The expressions whose l-values constitute the dynamic boundary
are state-dependent and thus denote different sets of locations over time.

Hiding is formalized in a second order frame rule that is proved sound for a sim-
ple operational semantics of sequential programs. We show by examples that our SOF
handles not only invariants that pertain to several objects with a single owner but also
design patterns in which several client-reachable peers cooperate and in which data
structures may be overlapping or irregular. These are incompatible with ownership and
remain as challenge problems in the current literature [4,22,27]. A program may link
together multiple modules, each with its own hidden invariant and dynamic bound-
ary. Our approach encompasses alias confinement disciplines that are enforceable by
static analysis [9] as well as less restrictive disciplines that impose proof obligations on
clients, e.g., ownership transfers that are “in the eye of the asserter” [30].

One of our aims is to provide a logical foundation that can justify the axiomatic se-
mantics used in automated verifiers. Even more, we want a framework in which encap-
sulation disciplines, both specialized and general-purpose, can be specified in program
annotations and perhaps “specification schemas” or aspects —so that soundness for hid-
ing becomes a verification condition rather than a meta-theorem. This could improve
usability and applicability of verifiers, e.g., by deploying disciplines on a per-module

11 A predicate I is precise iff (I ∗ ) distributes over ∧. In this paper our invariants are all precise,
but not all useful ones are, e.g., “there exists a non-full queue”.
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basis. It could also facilitate foundational program proofs, by factoring methodolog-
ical considerations apart from the underlying program model embodied in axiomatic
semantics. Our approach does not rely on inductive predicates, much less higher order
ones, but on the other hand it does not preclude the use of more expressive assertions
(such as the inductive FC in the example in Sect. 2.2).

It remains to be seen how the approach explored here extends to more advanced
programming features such as code pointers and concurrency. There are a number of
more immediate issues such as integration with a proper module system, inference of
ghost annotations based on static analysis, and full encapsulation for representation
independence and for hiding of effects.
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12. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification (tool paper). In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 173–177. Springer, Heidelberg (2007)

13. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI, pp. 234–245 (2002)

14. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types. ACM
TOPLAS 29(6) (2007)

15. Harel, D., Pnueli, A., Stavi, J.: A complete axiomatic system for proving deductions about
recursive programs. In: STOC, pp. 249–260 (1977)

16. Hawblitzel, C., Petrank, E.: Automated verification of practical garbage collectors. In: POPL,
pp. 441–453 (2009)

17. Hoare, C.A.R.: Proofs of correctness of data representations. Acta Inf. 1, 271–281 (1972)
18. Kassios, I.T.: Dynamic framing: Support for framing, dependencies and sharing without re-

striction. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268–283. Springer, Heidelberg (2006)

19. Krishnaswami, N.R., Aldrich, J., Birkedal, L.: Verifying event-driven programs using rami-
fied frame properties. In: TLDI (2010)

20. Krishnaswami, N.R., Aldrich, J., Birkedal, L., Svendsen, K., Buisse, A.: Design patterns in
separation logic. In: TLDI (2009)

21. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer,
Heidelberg (2008)

22. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Aspects of Computing 19(2), 159–189 (2007)

23. Leavens, G.T., Müller, P.: Information hiding and visibility in interface specifications. In:
ICSE, pp. 385–395 (2007)

24. Leino, K.R.M.: Specification and verification in object-oriented software. Marktoberdorf lec-
ture notes (2008)

25. Rustan, K., Leino, M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

26. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and check side
effects. In: PLDI, pp. 246–257 (2002)

27. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: POPL (2010)

28. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-
tures. Sci. Comput. Programming 62(3), 253–286 (2006)

29. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

30. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
TOPLAS 31(3), 1–50 (2009); Extended version of POPL 2004

31. Parkinson, M.: Class invariants: The end of the road. In: IWACO (2007)
32. Petersen, R.L., Birkedal, L., Nanevski, A., Morrisett, G.: A realizability model for impred-

icative Hoare type theory. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
337–352. Springer, Heidelberg (2008)

33. Pierik, C., Clarke, D., de Boer, F.S.: Controlling object allocation using creation guards.
In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 59–74.
Springer, Heidelberg (2005)

34. Rosenberg, S., Banerjee, A., Naumann, D.A.: Local reasoning and dynamic framing for the
composite pattern and its clients (submitted, 2009)



22 D.A. Naumann and A. Banerjee

35. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foundation
for hidden state. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 2–17. Springer,
Heidelberg (2010)

36. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and
separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148–172.
Springer, Heidelberg (2009)

37. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for Java-like programs
based on dynamic frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 261–275. Springer, Heidelberg (2008)

38. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.
In: Barthe, G., Hermenegildo (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 328–344. Springer,
Heidelberg (2010)

39. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
PLDI, pp. 349–361 (2008)



Coupling Policy Iteration with Semi-definite
Relaxation to Compute Accurate Numerical

Invariants in Static Analysis�
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Abstract. We introduce a new domain for finding precise numerical
invariants of programs by abstract interpretation. This domain, which
consists of level sets of non-linear functions, generalizes the domain of
linear “templates” introduced by Manna, Sankaranarayanan, and Sipma.
In the case of quadratic templates, we use Shor’s semi-definite relaxation
to derive computable yet precise abstractions of semantic functionals,
and we show that the abstract fixpoint equation can be solved accu-
rately by coupling policy iteration and semi-definite programming. We
demonstrate the interest of our approach on a series of examples (filters,
integration schemes) including a degenerate one (symplectic scheme).

1 Introduction

We introduce a complete lattice consisting of level sets of (possibly non-convex)
functions, which we use as an abstract domain in the sense of abstract interpreta-
tion [CC77] for precisely over-approximating numerical program invariants. This
abstract domain is parametrized by a basis of functions, akin to the approach
set forward by Manna, Sankaranarayanan, and Sipma (the template abstract do-
main [SSM05, SCSM06]), except that the basis functions or “templates” which
we use here need not be linear. The domains obtained in this way encompass
the classical abstract domains of intervals, octagons and (linear) templates.

To illustrate the interest of this generalization, let us consider an harmonic
oscillator: ẍ + cẋ + x = 0. By taking an explicit Euler scheme, and for c = 1 we
get the program shown at the left of Figure 1.

The invariant found with our method is shown right of Figure 1. For this, we
have considered the “template” based on functions {x,−x, v,−v, 2x2+3v2+2xv},
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x = [ 0 , 1 ] ;
v : = [ 0 , 1 ] ;
h = 0 . 0 1 ;
whi le ( t rue ) { [ 2 ]

w = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗w; [ 3 ] } {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

Fig. 1. An harmonic oscillator, its Euler integration scheme and the loop invariant
found at control point 2

i.e. we consider a domain where we are looking for upper bounds of these quanti-
ties. This means that we consider the linear templates based on {x,−x, v,−v}, i.e.
intervals for each variable of the program, together with the non-linear template
2x2 + 3v2 + 2xv. The last template comes from the Lyapunov function that the
designer of the algorithm may have considered to prove the stability of his scheme,
before it has been implemented. In view of proving the implementation correct, one is
naturally led to considering such templates1. Lastbutnot least, it is tobenoted that
the loop invariant using intervals, zones, octagons or even polyhedra (hence with
any linear template) is the very disappointing invariant h = 0.01 (the variables
v and x cannot be bounded.) However, the main interest of the present method
is to carry over to the non-linear setting. For instance, we include in our bench-
marks a computation of invariants (of the same quality) for an implementation of
the Arrow-Hurwicz algorithm, which is essentially an harmonic oscillator limited
by a non-linear saturation term (a projection on the positive cone), or a highly de-
generate example (a symplectic integration scheme, for which alternative methods
fail due to the absence of stability margin).

Contributions of the paper. We describe the lattice theoretical operations in
terms of Galois connections and generalized convexity in Section 2. We also
show that in the case of a basis of quadratic functions, good over-approximations
FR of abstractions F � of semantic functionals can be computed in polynomial
time (Section 3). Such over-approximations are obtained using Shor’s relaxation,
which is based on semi-definite programming. Moreover, we show in Subsec-
tion 4.3 that the multipliers produced by this relaxation are naturally “poli-
cies”, in a policy iteration technique for finding the fixpoints of FR, precisely
over-approximating the fixpoints of F �. Finally, we illustrate on examples (lin-
ear recursive filters, numerical integration schemes) that policy iteration on such
quadratic templates is extremely efficient and precise in practice, compared with
Kleene iteration with widenings/narrowings. The fact that quadratic templates
are efficient on such algorithms is generally due to the existence of (quadratic)

1 Of course, as for the templates of [SSM05, SCSM06], we can be interested in automat-
ically finding or refining the set of templates considered to achieve a good precision of
the abstract analysis, but this is outside the scope of this article.
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Lyapunov functions that prove their stability. The method has been implemented
as a set of Matlab programs.

Related work. This work is to be considered as a generalization of [SSM05],
[SCSM06] because it extends the notion of template to non-linear functions,
and of [CGG+05], [GGTZ07], [AGG08], [GS07a] and [GS07b] since it also gen-
eralizes the use of policy iteration for better and faster resolution of abstract
semantic equations. Polynomial inequalities (of bounded degree) were used in
[BRCZ05] in the abstract interpretation framework but the method relies on a
reduction to linear inequalities (the polyhedra domain), hence is more abstract
than our domain. Particular quadratic inequalities (involving two variables - i.e.
ellipsoidal methods) were used for order 2 linear recursive filters invariant gener-
ation in [Fer05]2. Polynomial equalities (and not general functional inequalities
as we consider here) were considered in [MOS04, RCK07]. The use of optimiza-
tion techniques and relaxation for program analysis has also been proposed in
[Cou05], mostly for synthetizing variants for proving termination, but invariant
synthesis was also briefly sketched, with different methods than ours (concerning
the abstract semantics and the fixpoint algorithm). Finally, the interest of using
quadratic invariants and in particular Lyapunov functions for proving control
programs correct (mostly in the context of Hoare-like program proofs) has also
been advocated very recently by E. Féron et al. in [FF08, FA08].

2 Lattices of Level Sets and Abstract Support Functions

We introduce a new abstract domain, parametrized by a basis of functions (P
below). The idea is that an abstract value will be a vector of bounds for each
of these functions, hence the name of “level sets”, with some abstract convexity
condition, Definition 3.

2.1 P -Level Sets, and Their Galois Connection with P(Rd)

Let P denote a set of functions from Rd to R, which is going to be the basis
of our templates. We denote F(P, R) the set of functions v from P to R =
R∪ {±∞}. We define a Galois connection (Proposition 1) between F(P, R) and
the set of subsets of Rd (made of a concretization operator v �→ v�, Definition
1 and an abstraction operator C �→ C†, Definition 2). This will give the formal
background for constructing abstract semantics using P -level sets using abstract
interpretation [CC77], in Section 3.

Definition 1 (P -level sets). To a function v ∈ F(P, R), we associate the P -
level set denoted by v� and defined as:

v� = {x ∈ Rd | p(x) ≤ v(p), ∀p ∈ P}
2 A generalization to order n linear recursive filters is also sketched in this article.
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When P is a set of convex functions, the P -level sets are the intersection of
classical level sets known in convex analysis. In our case, P can contain non-
convex functions so P -level sets are not necessarily convex in the usual sense.

Example 1. We come back to the first example and we are focusing on its repre-
sentation in term of P -level set. Let us write, for (x, v) ∈ R2, p1 : (x, v) �→
x, p2 : (x, v) �→ v and p3 : (x, v) �→ 2x2 + 3v2 + 2xv. Let us take P =
{p1,−p1, p2,−p2, p3}, v(p1) = 1.8708, v(−p1) = 1.8708, v(p2) = 1.5275, v(−p2)
= 1.5275, and v(p3) = 7. The set v� is precisely the one shown right of Figure 1.

Example 2. We next show some P -level sets which are not convex in the usual
sense. Let us write, for (x, y) ∈ R2, p1 : (x, y) �→ −y2 − (x + 2)2, p2 : (x, y) �→
−y2 − (x − 2)2 and p3 : (x, y) �→ −(y − 2)2 − x2, p4 : (x, y) �→ −(y + 2)2 − x2.
Let us take P = {p1, p2, p3, p4} and v(p1) = v(p2) = v(p3) = v(p4) = −2. The
set v� is shown Figure 2.

Fig. 2. A P -level set arising from non-
convex quadratic functions

{y − x ≤ 3, y + x ≤ 3, −y ≤ 0}

Fig. 3. A P -level set arising from linear
forms

In our case, P is a set of functions from Rd to R not necessarily linear, so we
generalize the concept of support functions (e.g see Section 13 of [Roc96]).

Definition 2 (Abstract support functions). To X ⊂ Rd, we associate the
abstract support function denoted by X† and defined as:

X†(p) = sup
x∈X

p(x)

Proposition 1. The pair of maps v �→ v� and X �→ X† defines a Galois con-
nection between F(P, R) and the set of subsets of Rd.

In the terminology of abstract interpretation, (.)† is the abstraction function,
and (.)� is the concretization function.

2.2 The Lattices of P -Convex Sets and P -Convex Functions

The sets of points in Rd which are exactly represented by their corresponding
P -level sets are called P -convex sets, as in the definition below. These can be
identified to the set of abstract elements we are considering3. We show in Theo-
rem 1 that they constitute a complete lattice.
3 Formally, this is the upper-closure in P(Rd) of the set of abstract elements.
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Definition 3 (P-convexity). Let v ∈ F(P, R), we say that v is a P -convex
function if v = (v�)†. A set X ⊂ Rd is a P -convex set if X = (X†)�.

Example 3. Let us consider a triangle, depicted in Figure 3. If P is the set of
linear forms defined by the faces of this triangle i.e P consists of the maps
(x, y) :�→ y − x, (x, y) :�→ y + x and (x, y) :�→ −y, then it is an abstract convex
set. But if P is, for example, linear forms defined by orthogonal vectors to the
faces of the triangle, the previous triangle is no longer an abstract convex set.

Definition 4. We respectively denote by VexP(P �→ R) and VexP(Rd) the set
of P -convex function of F(P, R) and the set of P -convex sets of Rd.

Definition 5 (The meet and join). Let v and w be in F(P, R). We denote by
inf(v, w) and sup(v, w) the functions defined respectively by, p �→ inf(v(p), w(p))
and p �→ sup(v(p), w(p)). We equip VexP(P �→ R) with the meet (respectively
join) operator:

v ∨ w = sup(v, w) (1)

v ∧ w = (inf(v, w)�)† (2)

Similarly, we equip VexP(Rd) with the two following operators: X � Y = ((X ∪
Y )†)�, X � Y = X ∩ Y .

The family of functions VexP(P �→ R) is ordered by the partial order of real-
valued functions i.e v ≤ w ⇐⇒ v(p) ≤ w(p) ∀p ∈ P . The family of set VexP(Rd)
is ordered by the inclusion order denoted by ⊆.

Theorem 1. (VexP(P �→ R),∧,∨) and (VexP(Rd),�,�) are isomorphic com-
plete lattices.

Definition 6. For v ∈ F(P, R), we denote by vexP(v) the P -convex hull of v
which is the greatest P -convex function smaller than v.

Similarly, we denote by the set vexP(X) the P -convex hull of a subset X which
is the smallest P -convex set greater than X.

Example 4. Let us come back to the Example 3. Let us take P = {(x, y) :�→
y + x, (x, y) :�→ x − y, (x, y) :�→ −x}. Its P -convex hull is the one depicted
Figure 4. If we take instead P = {(x, y) :�→ y2− x2, (x, y) :�→ x, (x, y) :�→ −x},
its P -convex hull is shown in Figure 5.

Proposition 2 (P-convex hull characterization). Let v be in F(P, R) and
X be a subset of Rd.

1. For p ∈ P , (vexP(v))(p) = sup{p(x) | x ∈ Rd, q(x) ≤ v(q), ∀q ∈ P}
2. vexP(X) =

⋂
{Y | Y ∈ VexP(Rd), X ⊆ Y }
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{x− y ≤ 3, y + x ≤ 3, −x ≤ 3}

Fig. 4. A convex hull of the triangle

{y2 − x2 ≤ 9, x ≤ 3, −x ≤ 3}

Fig. 5. Another convex hull of the same
triangle, with a different set of templates

2.3 Intervals, Zones, Octagons and Manna et al’s Templates

The interval domain is naturally subsumed by our abstract convex sets: take
as basis P = {x1,−x1, . . . , xn,−xn} where xi (i = 1, . . . , n) are the program
variables. And abstract value v in our domain thus naturally corresponds to the
supremum of the interval for xi: v(xi) and its infimum: −v(−xi).

Zones and octagons are treated in a similar manner. For instance, for zones,
take P = {xi − xj | i, j = 0, . . . , n, i �= j}, adding a slack variable x0 (always
equal to 0), as customary, to subsume intervals. Of course, (linear) templates as
defined in [SSM05] are particular abstract convex sets, for which P is given by
a set of linear functionals.

We remark that in the case of zones, v(xi − xj) is exactly the entry i, j
of the DBM (Difference Bound Matrix) representing the corresponding zone.
Also, elements of VexP(P �→ R) corresponding naturally to closed DBMs, that
is, canonical forms of DBMs. As well known [Min04b], the union of two zones
preserves closure whereas the intersection does not necessarily preserve closure.
This is reflected in our domain by (1) and (2).

3 Quadratic Zones

In this section, we instantiate the set P to linear and quadratic functions. This
allows us to give a systematic way to derive the abstract semantics of a program.
The main result is that the abstract semantics for an assignment for instance,
can be approximated precisely in polynomial time by Shor’s relaxation scheme,
Fact 1.

Definition 7. We say that P is a quadratic zone if every element (template)
p ∈ P can be written as:

x �→ p(x) = xT Apx + bT
p x + cp,
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where Ap is a d× d symmetric matrix (so A can be a zero matrix), xT denotes
the transpose of a vector x, bp is a Rd vector and cp a scalar.

Now, we suppose that P is finite and we suppose that for all q, v(q) > −∞.
We denote by F(P, R ∪ {+∞}) the set of functions from P to R ∪ {+∞} and
F(P, R+), the set of functions from P to R+.

Suppose now we are given a program with d variables (x1, . . . , xd) and n
control points numbered from 1 to n. We suppose this program is written in
a simple toy version of a C-like imperative language, comprising global vari-
ables, no procedures, assignments of variables using only parallel affine assign-
ments4 (x1, . . . , xd) = T (x1, . . . , xd) (i.e. T is an affine map), tests of the form
(x1, . . . , xd) ∈ C, where C is some shape in P(Rd), and while loops with similar
entry tests. We do not recap the standard collecting semantics that associates
to this program a monotone map F : (P(Rd))n → (P(Rd))n whose least fixed
points lfp F has as ith component (i = 1, . . . , n) the subset of Rd of values that
the d variables x1, . . . , xd can take at control point i.

The aim of this section is to compute, inductively on the syntax, the abstrac-
tion (or a good over-approximation of it) F � of F from F(P, R ∪ {+∞})n to
itself defined as usual as:

F �(v) = (F (v�)†) (3)

The notation v� is in fact the vector of sets (v�
1 , · · · , v�

n) and (F (v�)†) is also inter-
preted component-wise. The notation vexP(v) will be also understood
component-wise.

3.1 Shor’s Semi-definite Relaxation Scheme

Shor’s relaxation scheme (see Section 4.3.1 of [TN01] or Shor’s original arti-
cle [Sho87] for details) consists of over-approximating the value of a general
quadratic optimization problem by the optimal value of a semi-definite pro-
gramming (SDP) problem. We know, if a dual feasibility condition holds, that
the SDP problems are solvable in polynomial time by an interior point method,
see e.g [Ali95].

Let p, {qi}i=1,...,m be quadratic functions on Rd. Let us consider the following
constrained maximization problem:

sup{p(x) | qi(x) ≤ 0, ∀i = 1, . . . , m} (4)

The first step is to relax the latter optimization problem by Lagrange duality
techniques see e.g Section 5.3 of [AT03]. The relaxed problem is:

inf
λ∈Rm

+

sup
x∈Rd

p(x) +
m∑

i=1

λiqi(x)

4 The abstraction of non-linear assignments is outside the scope of this article. Easy
ways to deal with them from the material given in this paper include: getting back,
locally, to an interval semantics in case of non-linear assignments, or using the lin-
earization methods of [Min04a].
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where λ ∈ Rm
+ are called Lagrange multipliers. Its optimal value is always greater

or equal than the optimal value of the problem (4) and is, even, in well-known
cases equal (this will be used Proposition 3).

Then, we introduce the matrix M(p), for a quadratic function as in Defini-
tion 7 p and the matrix N(y) for a real y defined as:

M(p) =
(

cp
1
2bT

p
1
2bp Ap

)
, and N1,1(y) = y, Ni,j(y) = 0 if (i, j) �= (1, 1) (5)

Let � denotes the Loewner ordering of symmetric matrices, so that A � B if all
eigenvalues of B −A are non-negative.

Shor’s relaxation scheme consists of solving the following SDP problem:

inf
λ∈R

m
+

η∈R

{η s.t M(p) + ηN(−1)−
m∑

i=1

λiM(q)] � 0}

which is the optimal value of the relaxed problem, hence an over-approximation
of the optimal value of the problem (4).

3.2 Abstraction of Assignments

In this subsection, we focus on assignments (x1, . . . , xd) = T (x1, . . . , xd) at con-
trol point i. Equation 3 translates in that case to (given that vi−1 defines the
abstract value at control point i− 1, i.e. immediately before the assignment):

(F �
i (v))(p) = sup{p ◦ T (x) | q(x) ≤ vi−1(q), ∀q ∈ P} (6)

We recognize the constrained optimization problem 4 and we use Lagrange dual-
ity as in the first step of Subsection 3.1. In our case, the Lagrange multipliers are
some non-negative functions λ from P to R. We thus consider the transformed
optimization problem:

inf
λ∈F(P,R+)

sup
x∈Rd

p ◦ T (x) +
∑
q∈P

λ(q)[vi−1(q)− q(x)] (7)

We write FRi (v)(p) for the value of Equation 7. It is called the relaxed function
of F �

i . In general, FRi is more abstract than F �
i , in other words:

Theorem 2. For all v ∈ F(P, R ∪ {+∞})n, for all p ∈ P ,

(F �
i (v))(p) ≤ (FRi (v))(p)

Moreover, if a constraint qualification, called Slater condition, is satisfied, there
exists some λ which achieves the minimum in (7); and the over-approximation
we make is not in general that big; in some cases even, the inequality above is
an equality:
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Proposition 3 (Selection Property). If the set {x ∈ Rd | q(x) − vi−1(q) <
0, ∀ q ∈ P} is nonempty, there exists λ∗ ∈ F(P, R+) such that:

FRi (v)(p) = sup
x∈Rd

p ◦ T (x) +
∑
q∈P

λ∗(q)[vi−1(q)− q(x)]

Furthermore, if p is a concave quadratic form and if vi−1(q) < ∞ only when q

is a convex quadratic form, then, we get: (FRi (v))(p) = (F �
i (v))(p).

The second part of Proposition 3 follows from the strong duality theorem for
convex optimization problems, see e.g. Proposition 5.3.2 of [AT03].

From now on, we write, for a map w from P to R ∪ {+∞},

w◦ = {x ∈ Rd | q(x) − w(q) < 0, ∀q ∈ P}.

Let us suppose that v◦i−1 �= ∅, let us fix λ ∈ F(P, R+), and observe that the
sum

∑
q∈P λ(q)vi−1(q) does not depend on the variable x in (7). We now define

Fλ
i (v) by :

(Fλ
i (v))(p) =

∑
q∈P

λ(q)vi−1(q) + V λ
i (p) (8)

where V λ
i (p) = sup

x∈Rd

p ◦ T (x)−
∑
q∈P

λ(q)q(x) (9)

So that, (FRi (v))(p) = infλ∈F(P,R+)(Fλ(v))(p).
By applying the so-called “Simple Lemma” of Section 4.3.1 of [TN01], we can

write (9) as the following SDP problem:

V λ
i (p) = inf{η ∈ R |M(p ◦ T ) + ηN(−1)−

∑
q∈P

λ(q)M(q) � 0}

where M(p ◦ T ), N(−1) and M(q) are the matrices defined in (5).
So, by applying Shor’s relaxation scheme of Subsection 3.1, we get:

(FRi (v))(p)= inf
λ∈F(P,R+)

η∈R

η s.t M(p◦T )+ηN(−1)+
∑
q∈P

λ(q)[N(vi−1(q))−M(q)]�0

(10)
which can be solved by a SDP solver.

To get a safe optimal value of (10), we can use a verified SDP solver as
VSDP [JCK07].

We remark that we can apply the Shor’s relaxation scheme for over-approxi-
mating the P -convex hull of a given function w ∈ F(P, R), which will be useful
in the next section.

Corollary 1. Let w be in F(P, R) and p in P we have:

(vexP(w))(p) ≤ inf
λ∈F(P,R+)

η∈R

η s.t M(p)+ηN(−1)+
∑
q∈P

λ(q)[N(w(q))−M(q)] � 0



32 A. Adjé, S. Gaubert, and E. Goubault

Finally, we conclude that we can compute over-approximations of (6) as well as
over-approximations of the P -convex hull of an element of F(P, R) by solving a
SDP problem, which can be done in polynomial time [TN01]. We sum up what
we achieved in the following fact:

Fact 1. In the case of quadratic templates, the relaxed functional FR and a
sound over-approximation of the P -convex hull operation can be evaluated using
Shor’s semi-definite relaxation.

Example 5. We analyze the following parallel affine assignment T that imple-
ments a rotation of angle φ on the unit sphere S1 of R2:

T

(
x
y

)
=
(

cosφ − sinφ
sin φ cosφ

)(
x
y

)
where x2 + y2 = 1.

Let us take P = {p1(x, y) �→ x2 + y2, p2(x, y) �→ −(x2 + y2)} and we set
v1(p1) = 1 and v1(p2) = −1. Equation (10) translates into:

v2(p1) = T (v�
1)†(p1) = sup{p1(T (x, y)) | p1(x, y) ≤ 1, p2(x, y) ≤ −1}

v2(p2) = T (v�
1)†(p2) = sup{p2(T (x, y)) | p1(x, y) ≤ 1, p2(x, y) ≤ −1}

v2(p1) =

inf
λ(p1)≥0
λ(p2)≥0

η∈R

η s.t

⎛⎝−η + λ(p1)− λ(p2) 0 0
0 1− λ(p1) + λ(p2) 0
0 0 1− λ(p1) + λ(p2)

⎞⎠ � 0

and
v2(p2) =

inf
λ(p1)≥0
λ(p2)≥0

η∈R

η s.t

⎛⎝−η + λ(p1)− λ(p2) 0 0
0 −1− λ(p1) + λ(p2) 0
0 0 −1− λ(p1) + λ(p2)

⎞⎠ � 0

To solve these optimization problems, we could call an SDP solver, but in this
case, it suffices to solve a system of inequalities: all the diagonal elements must
be non-positive, for example, for the first problem, this implies that η ≥ 1 and
since we minimize η we get η = 1.

Hence, we find v2(p1) = 1 and v2(p2) = −1. This simple analysis finds auto-
matically that the circle is invariant by a rotation.

3.3 Abstraction of Simple Tests

We assume here that a test (x1, . . . , xd) ∈ C is translated on three control points
j− 2, j− 1, j and j + 1 as follows: Fj−1(X) = C, Fj(X) = Xj−2 ∩Xj−1, for the
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“then” branch. For the “else” branch, beginning at control point k, we have
similarly Fk(X) = Xj−2 ∩ ¬Xj−1. As we deal with arbitrary C ∈ P(Rd), it is
sufficient to show here how to deal with the equations on control points j − 2,
j − 1 and j.

By using Equation (3), we get, for v ∈ F(P, R ∪ {+∞})n, and p ∈ P ,
(F �

j (v))(p) = ((v�
j−2 � v�

j−1)
†(p) then, by a simple calculus,

(F �
j (v))(p) = (vj−2 ∧ vj−1)(p).

As for the abstraction of assignments, we calculate FRj instead of F �
j . We can

compute FRj in two ways. The first one consists in using the fact that (vj−2 ∧
vj−1)(p) = vexP(inf(vj−2, vj−1))(p). Hence we can apply Proposition 1 to
inf(vj−2, vj−1) as a practical means to compute FRj , using a SDP solver. This
method can be used during Kleene iteration, since at any iteration, we know the
values taken by vj−2 and vj−1. Unfortunately, this method cannot be used in
policy iteration, hence we use the following method in that case.

The second method consists in noticing that x ∈ v�
j−2�v�

j−1 ⇒ ∀ q ∈ P, q(x) ≤
vj−2(q) and q(x) ≤ vj−1(q) so:

(F �
j (v))(p) = sup{p(x) | q(x) ≤ vj−2(q), q(x) ≤ vj−1(q) ∀q ∈ P}

Then, supposing the Slater condition is satisfied, it suffices to apply the same
techniques as for the abstraction of assignments. The only difference is that
we have now a couple (λ, μ) of F(P, R+) as Lagrange multipliers, the first one
is associated to vj−1 and the second one to vj−2. The function (9) becomes
a function which depends on the two parameters (λ, μ), this new function is
written V

(λ,μ)
j , its evaluation is reduced once again to a SDP problem.

Thus, as for (8), we have the following affine form F
(λ,μ)
j on F(P, R∪{+∞}):

(F (λ,μ)
j (v))(p) =

∑
q∈P

λ(q)vj−1(q) +
∑
q∈P

μ(q)vj−2(q) + V
(λ,μ)
j (p) (11)

The latter affine form is used for computing by linear programming the small-
est fixpoint of a map associated to a policy (that, we will see in Section 4.3
corresponds to the Lagrange multipliers (λ, μ)).

Then, the relaxed function of F �
j is evaluated by solving the same kind of SDP

problem as in Equation (10).

3.4 Abstraction of Loops

The only thing that we do not know yet how to interpret in the collecting
semantics equations is the equation at control point i where we collect the values
of the variables before the entry in the body of the loop, at control point i− 1,
with the values of the variables at the end of the body of the loop, at control point
j: Fi(X) = Xi−1 ∪Xj , since we know now how to deal with the interpretation
of tests.



34 A. Adjé, S. Gaubert, and E. Goubault

By using Equation (3), for v ∈ F(P, R ∪ {+∞})n and p ∈ P , (F �
i (v))(p) =

(v�
i−1 � v�

j )†(p), by a simple calculus, the latter equality becomes:

(F �
i (v))(p) = vexP(sup(vi−1, vj))(p).

Hence, the calculus of the union can be reduced to a P -convex hull computation,
see Proposition 1.

During a fixpoint iteration (as in Section 4), we only have to deal with “closed”
abstract values, that is, elements v in VexP(P �→ R)n. As for zones, we notice
that the union of two such “closed” abstract values vi−1 and vj is directly given
by taking their maximum on each element of the basis of quadratic functions P ,
without having to take its closure.

4 Solving the Semantic Equation

4.1 Fixpoint Equations in Quadratic Zones

We recall that P is a finite set of quadratic templates and F is a monotone
map which interprets a program with d variables and n labels in (P(Rd))n. We
want to find the smallest vector in (P(Rd))n such that F (X) = X . This fixpoint
equation is generally unsolvable algorithmically. So as customary in abstract
interpretation, we solve instead the abstract equation:

inf{v ∈ VexP(P �→ R)n | v = FR(v)} (12)

where v belongs to VexP(P �→ R)n.
We recall that v� denotes the vector of sets ((v1)�, · · · , (vn)�) and F �(v) =

(F (v�))† i.e ∀ i, F �
i (v) = (Fi(v�))† and FR is the map, the components of which

are the relaxed functions of F �.
We define and compare two ways of solving the fixpoint equation: Kleene

iteration in Section 4.2, and policy iteration in Section 4.3.

4.2 Kleene Iteration

We note by ⊥ the smallest element of VexP(P �→ R)n i.e for all i = 1, · · · , n and
for all p ∈ P , ⊥i (p) = −∞. The Kleene iteration sequence in VexP(P �→ R)n is
thus as follows:

1. v0 =⊥
2. for k ≥ 0, vk+1 = vexP(sup(vk, FR(vk)))

This sequence converges to the smallest fixpoint of vexP(FR). But, the compu-
tation of it can be very slow or can never end so we use an acceleration technique
to over-approximate it rapidly. After a certain number of iterations and during
some iterations, we round bounds outwards with a decreasing precision (akin to
the widening used in [GPBG08]). The closure we use, after each widening step
during Kleene iteration, might end up not being a widening (as is the case in
zones). So we extrapolate the result to � (�i(p) = ∞ for all i = 1, · · · , n and
all p ∈ P ) after a fixed number of steps.
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4.3 Policy Iteration Algorithm

Selection property and policy iteration algorithm. To define a policy
iteration algorithm, we need policies. Here, our policies are given by the Lagrange
multipliers introduced by the relaxation in the interpretation of assignments,
Section 3.2, and in the interpretation of tests, Section 3.3. Hence the set of
policies is the union of the sets of Lagrange multipliers for each assignment of
the program and couple of Lagrange multipliers for each test of the program.

To define a policy iteration algorithm, we also need a selection property, as
in e.g [GGTZ07]. We saw in Proposition 3 that the selection property is given
by a constraint qualification argument. We thus introduce FS(P, R)n, the set of
elements of F(P, R) which satisfy the Slater condition:

– when the component Fi of F corresponds to an assignment, the set of policies
at i is the union of the sets of Lagrange multipliers,

– when the component Fj of F corresponds to a test, the set of policies at j
is the union of the sets of couple of Lagrange multipliers.

We saw that for other coordinates, the set of policy is a singleton. We denote by
Π the set of all policies π and by πi a policy at i.

Algorithm 1. Policy Iteration in Quadratic Templates

1 Choose π0 ∈ Π such that V π0
< +∞, k = 0.

2 Compute V πk
i = {V πk

i (q)}q∈P .
3 Compute the smallest fixpoint vk in F(P, R)n of F πk

.
4 Compute wk = vexP(vk).
5 If wk ∈ FS(P, R)n continue otherwise return wk.
6 Evaluate FR(wk), if FR(wk) = wk return wk otherwise take πk+1 s.t FR(wk) =

F πk+1
(wk) and go to 2.

Remark 1. The initial policy is given after few Kleene iterations: this gives us a
vector v ∈ VexP(P �→ R)n, then we compute, by solving Equation (10) and its
equivalent for the abstraction of tests, a policy π0.

For the third step of Algorithm 1, since P is finite and using (8) and (11), Fπl

is monotone and affine F(P, R)n, we compute the smallest fixpoint of Fπl

by
solving the following linear program see Section 4 of [GGTZ07]:

min
n∑

i=1

∑
q∈P

vi(q) s.t (Fπl

k (v))(q) ≤ vk(q), ∀k = 1, · · · , n, ∀q ∈ P (13)

Remark 2. To ensure the feasibility of the solution of (13) computed by the LP
solver, we replace, when possible, the constraint set by Fπl

(v) + ε ≤ v, where ε
is a small constant (typically of the order of several ulp(v)).
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To obtain safe bounds even though we run our algorithm on machine which
uses finite-precision arithmetic, we should use a guaranteed LP solver (e.g LU-
RUPA see [Kei05]) to check that the solution obtained verifies Fπl

(v) ≤ v.

We can only prove that policy iteration on quadratic templates converges (maybe
in infinite time) towards a post-fixed point of our abstract functional and that
under some technical conditions, it converges towards a fixed point. One interest
in policy iteration for static analysis is that we can always terminate the iteration
after a finite time, and ends up with a post-fixed point.

Theorem 3. The sequence vl computed by Algorithm 1 is non-increasing.

Remark 3. In the case of intervals, zones and templates, at least for programs
containing only linear or concave quadratic expressions in assignments, Propo-
sition 3 implies that F � = FR. Therefore, we are giving a policy iteration algo-
rithm in this paper, computing the same least fixpoints as the policy iteration
algorithms described in papers [CGG+05, AGG08, GGTZ07].

4.4 A Detailed Calculation on the Running Example

Now we give details on the harmonic oscillator of Example 1. The program of
this example implements an Euler explicit scheme with a small step h, that is,

which simulates the linear system (x, v)T ← T (x, v)T with T =
(

1 h
−h 1− h

)
.

The function (x, v) :�→ (x, v)L(x, v)T is a Lyapunov function of the new linear

system with L =
(

2 1
1 3

)
.

We write x : (x, v) �→ x, v : (x, v) �→ v, L : (x, v) �→ (x, v)L(x, v)T and finally
P = {x,−x, v,−v, L}. For p = x, −x, v, −v, L and w ∈ F(P, R), we get the
semantic equations described below the corresponding C code, at Figure 6, for
all three control points.

Now we are going to focus on the third coordinate of (FR(v))(p). Let us
consider, for example, p = x, we get: (FR3 (v))(x) =

inf
λ∈F(P,R+)

∑
q∈P

λ(q)v2(q)+ sup
(x,v)

(x, v)(λ(L)(x, v)T +
(

1 + λ(−x)− λ(x)
h + λ(−v)− λ(v)

)
(x, v)T +0.

(14)
By introducing the following symmetric matrices, we can rewrite (14) as (8):

M(x)(1, 2) = M(x)(2, 1) = 1
2 and 0 otherwise. M(v)(1, 3) = M(−v)(3, 1) = 1

2
and 0 otherwise. M(L)(2, 2) = 2, M(L)(3, 3) = 3, M(L)(2, 3) = M(L)(3, 2) = 1
and 0 otherwise. Furthermore, M(−x) = M(x) and M(−v) = M(v).

M(x ◦ T ) =

⎛⎝0 1
2

h
2

1
2 0 0
h
2 0 0

⎞⎠
To initialize Algorithm 1, we choose a policy π0. For the third coordinate of

FR, we have to choose a policy π0
3 such that V

π0
3

3 (p) is finite. We can start,
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x = [ 0 , 1 ] ;
v = [ 0 , 1 ] ; [ 1 ]
h = 0 . 0 1 ;
whi le ( t rue ) { [ 2 ]

u = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗u ; [ 3 ] }

F �
1 (w)(p) = {x(x, v) ≤ 1, −x(x, v) ≤ 0, v(x, v) ≤ 1, −v(x, v) ≤ 0, L(x, v) ≤ 7}

F �
2 (w)(p) = sup{w1(p), w3(p)}

F �
3 (w)(p) = sup

(x,v)∈(w2)�
(p ◦ T )(x, v)

Fig. 6. Implementation of the harmonic oscillator and its semantics in F(P, R)3

for example, by π0
3(p) = (0, 0, 0, 0, 1) for all p ∈ P . This consists, for p = x, in

taking λ(x) = λ(−x) = λ(v) = λ(−v) = 0 and λ(L) = 1 in (14). By a Matlab5

implementation, using Yalmip [L04] and SeDuMi [Stu99], we find:
V

π0
3

3 (x ◦ F ) = V
π0
3

3 (−x) = 0.149, V
π0
3

3 (v) = V
π0
3

3 (−v) = 0.099 and V
π0
3

3 (L) = 0.
We solve the following linear program (see (13)):

min
3∑

i=1

∑
p∈P

βi(p)

β2(L)+V π0
3 (p◦F )≤β3(p) ∀p

β3(p)≤β2(p), ∀p
1≤β2(x), 0≤β2(−x),1≤β2(v), 0≤β2(−v), 7≤β2(L)
1≤β1(x), 0≤β1(−x),1≤β1(v), 0≤β1(−v), 7≤β1(L)

Using solver Linprog, we find:

w0
1(x) = 1.0000 w0

2(x) = 7.1490 w0
3(x) = 7.1490

w0
1(−x) = 0 w0

2(−x) = 7.1490 w0
3(−x) = 7.1490

w0
1(v) = 1.0000 w0

2(v) = 7.0990 w0
3(v) = 7.0990

w0
1(−v) = 0 w0

2(−v) = 7.0990 w0
3(−v) = 7.0990

w0
1(L) = 7.0000 w0

2(L) = 7.0000 w0
3(L) = 7.0000

The calculus of u = vexP(w1) returns:

u0
1(x) = 1.0000 u0

2(x) = 2.0493 u0
3(x) = 2.0493

u0
1(−x) = 0 u0

2(−x) = 2.0493 u0
3(−x) = 2.0493

u0
1(v) = 1.0000 u0

2(v) = 1.6733 u0
3(v) = 1.6733

u0
1(−v) = 0 u0

2(−v) = 1.6733 u0
3(−v) = 1.6733

u0
1(L) = 7.0000 u0

2(L) = 7.0000 u0
3(L) = 7.0000

Using again Yalmip with the solver SeDuMi, the vector u is not a fixpoint of
FR, so we get the new following new policy: π1

3(x) = (0.9035, 0, 0, 0, 0.0134),
5 Matlab is a registered trademark of the MathWorks,Inc.



38 A. Adjé, S. Gaubert, and E. Goubault

{−2.0493 ≤ x ≤ 2.0493, −1.6733 ≤ v ≤ 1.6733, 2x2 + 3v2 + 2xv ≤ 7}
{−2.0462 ≤ x ≤ 2.0426, −1.665 ≤ v ≤ 1.665, 2x2 + 3v2 + 2xv ≤ 7}

{−1.9838 ≤ x ≤ 1.9838, −1.6097 ≤ v ≤ 1.6097, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8971 ≤ x ≤ 1.8971, −1.5435 ≤ v ≤ 1.5435, 2x2 + 3v2 + 2xv ≤ 7}
{−1.8718 ≤ x ≤ 1.8718, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

Fig. 7. Successive templates along policy iteration, at control point 2, for the harmonic
oscillator

π1
3(−x) = (0, 0.9035, 0, 0, 0.0134), π1

3(v) = (0, 0, 0.8830, 0, 0.0135), π1
3(−v) =

(0, 0, 0, 0.8830, 0.0135), π1
3(L) = (0, 0, 0, 0, 0.9946). The invariant of the loop i.e.

w�
2 at control point 2 is {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 +

3v2 + 2xv ≤ 7} and is computed in 14 seconds. We draw w�
2 at each iteration of

Algorithm 1 in Figure 7.
This method is to be compared with the classical Kleene iteration with widen-

ing. On this example, we find without widening x ∈ [−1.87078, 1.87083], v ∈
[−1.52753, 1.52752] and 2x2 + 3v2 + 2xv ≤ 7 in 1360 iterations (for an overall
time, under Matlab of 69 minutes).

4.5 Benchmarks

We implemented an analyzer for the quadratic template domain we presented,
written in Matlab version 7.7(R2008b). This analyzer takes a text file in argu-
ment, this text file corresponds to the abstract equation v = F �(v) where F � is
defined by Equation (2). The quadratic template can be loaded from a dat file
by the analyzer. The affine maps are treated in the same manner.

In this analyzer, we can choose to use the Kleene iteration method or policy
iteration. For the Kleene iteration method, the user gives as an argument a
maximal number of iteration and the iteration number at which the acceleration
method is applied. For the policy iteration method, the user gives the dat file
defining the initial policy or chooses to make Kleene iterations before determining
the initial policy.
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Table 1. Benchmarks results

Programs Method #P #lines #var #loops #Iter. Inv. quality Time
Rotation2 Policy 2 2 2 0 0 Fixpoint 0.72
Rotation2 Kleene 2 2 2 0 1 Fixpoint 1.07
Rotation10 Policy 2 2 10 0 0 Fixpoint 1.17
Rotation10 Kleene 2 2 10 0 1 Fixpoint 1.82

Filter Policy 5 3 2 1 2 Fixpoint 9.35
Filter Kleene 5 3 2 1 2 Fixpoint 19.7

Oscillator Policy 5 3 2 1 5 Fixpoint 12
Oscillator Kleene 5 3 2 1 15 Fixpoint 18.8
Symplectic Policy 5 3 2 1 0 Fixpoint 3
Symplectic Kleene 5 3 2 1 15 Fixpoint 18.3

SymplecticSeu Policy 5 5 2 1 30 Postfixpoint 125.3
SymplecticSeu Kleene 5 5 2 1 30 Postfixpoint 78.9
Arrow-Hurwicz Policy 2 14 4 3 10 Postfixpoint 44.6
Arrow-Hurwicz Kleene 2 14 4 3 26 Postfixpoint 81.7

Each ten steps during policy iteration, the user can decide to stop the analy-
sis and so a postfixpoint is reached (as in policy iteration the least fixed point is
always reached from above). Similarly, the Kleene iteration with acceleration pro-
vides a postfixpoint after acceleration and widening to top, if the iteration does
not converge after a given number of iterations. The analyzer writes, in a text file,
information about time, quality of the invariants found and number of iterations.

For the benchmarks, we used a PC equipped with a quad core AMD Phe-
nom(tm) II X4 920 Processor at 2.8 Ghz and a memory of 4 Gb. We indicate in
the Table 1, the name of the program analyzed, the method used (policy itera-
tion or Kleene iteration) for solving the fixpoint equation, the cardinality of the
basis of quadratic templates used, the number of lines of C code the program
has, the number of variables it manipulates, the number of loops. Then we indi-
cate the number of iterations made, whether it reaches a fixpoint or (strictly) a
postfixpoint, and the time it took with our Matlab prototype.

The file Rotation10 is the problem of Example 5 in dimension 10. By the
fixpoint computation, we prove automatically that the unit sphere in dimension
10 is invariant by rotation. Both Kleene iteration and policy iteration find the
unit sphere as invariant.

The program Oscillator is the problem 1. The invariant depicted Figure 1 in
Section 1 is found by policy iteration whereas Kleene iteration after applying
acceleration techniques from the iteration 5 to iteration 15 finds the less precise
invariant {−2.44949 ≤ x ≤ 2.44949, −2 ≤ v ≤ 2, 2x2 + 3v2 + 2xv ≤ 10}, in
more time.

Symplectic is the implementation of a discretization of ẍ + cẋ + x = 0 with
c = 0 by a symplectic method. In the case of c = 0, the dynamical system
has imaginary eigenvalues (its orbits are circle), and the Euler scheme diverges,
so we use a symplectic discretization scheme (preserving the symplectic form,
see [HLW03]), which is an interesting highly degenerate numerical example from
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the point of view of static analysis (because there is no “stability margin”, meth-
ods not exploiting the Lyapunov function are likely to produce trivial invariants
when c = 0). As in Oscillator, we start from a position x ∈ [0, 1] and a speed
v ∈ [0, 1]. The discretization of ẍ + x = 0 with the symplectic method and a
step τ = 0.1 gives us the matrix T such that T1,1 = 1 − τ

2 , T1,2 = τ − τ3

4 ,
T2,1 = −τ and T2,2 = 1 − τ

2 . We use the Lyapunov function L such that

L(x, v) = (x, v)Q(x, v)T with Q =
(

1 0
0 1− τ2

4

)
. The symplectic method en-

sures that L(T (x, v)) = L(x, v). Our method takes advantage of this conser-
vation law, since L is embedded as a template. The policy iteration returns:
{−1.41333 ≤ x ≤ 1.41333, −1.4151 ≤ v ≤ 1.4151, x2 + 0.9975v2 ≤ 1.9975}.
The Kleene iteration returns: {−3.16624 ≤ x ≤ 3.16624, −3.16628 ≤ v ≤
3.16628, x2 + 0.9975v2 ≤ 10}, which is less precise. In particular, the Kleene
algorithm misses the invariance of the Lyapunov function.

SymplecticSeu is a symplectic method with a threshold on v = ẋ. We iterate
the Symplectic method while v ≥ 1

2 , which gives the following code:

x = [ 0 , 1 ] ;
v = [ 0 , 1 ] ;
tau = 0 .1 [ 1 ]
wh i le [ 2 ] ( ( v>=1/2) [ 3 ] ) { [ 4 ]

x = (1−tau /2)∗x+(tau−(tau ˆ3)/4 )∗v ;
v = −tau∗x+(1−tau /2)∗v ; [ 5 ]

} ;

Arrow-Hurwicz is an algorithm to compute both primal and dual solutions for
convex constrained optimization problems. Arrow-Hurwicz ends when a fixpoint
for the algorithm is reached, by our techniques, we prove that, if the last line
of the program which implements the Arrow-Hurwicz method is attained, a
fixpoint is reached. Our analysis also permits to find bounds at each control
points. As pointed out in the introduction, the interest of the analysis resides
in the appearance of saturations (non-linear projections) in the scheme. For
both Kleene iteration and policy iteration, the invariant set of last line is {0 ≤
11
16 (u− x)2 + (v − y)2 ≤ 1e− 9}. The difference between the two final invariants
comes from other lines where the invariant found by policy iteration is always
smaller than the set found by Kleene, for example, when policy iteration returns,
for example at line 11, {0 ≤ 11

16 (u − x)2 + (v − y)2 ≤ 3.18292}, Kleene returns
{0 ≤ 11

16 (u− x)2 + (v − y)2 ≤ 10}.
The example files are available at:
http://www.lix.polytechnique.fr/~adje/publi-presentations.html.

5 Conclusion and Future Work

We have presented in this paper a generalization of the linear templates of Manna
et al. [SSM05, SCSM06] that can also deal with non-linear templates. We showed
that in the case of quadratic templates, we could efficiently abstract the semantic

http://www.lix.polytechnique.fr/~adje/publi-presentations.html
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functionals usingShor’s relaxation, and compute the resulting fixpoint using policy
iteration. Future work include the use of more tight relaxations for quadratic prob-
lems. The use of SOS relaxation (see for instance [Las07] and [Par03]) for dealing
with more general polynomial templates will be also considered. An other problem
is to extend of the minimality result of [AGG08] which is currently only available
for the interval domain, to our template domain. Finally, we wish to study more
in-depth the complexity issues raised by our general policy iteration algorithm.
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42 A. Adjé, S. Gaubert, and E. Goubault

[GPBG08] Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of
the accuracy in control systems: Principles and experiments. In: Leue,
S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer,
Heidelberg (2008)

[GS07a] Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy
iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–
315. Springer, Heidelberg (2007)

[GS07b] Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iter-
ation. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646,
pp. 23–40. Springer, Heidelberg (2007)

[HLW03] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illus-
trated by the Störmer/Verlet method. Acta Numerica 12, 399–450 (2003)

[JCK07] Jansson, C., Chaykin, D., Keil, C.: Rigorous error bounds for the optimal
value in semidefinite programming. SIAM J. Numer. Anal. 46(1), 180–200
(2007)

[Kei05] Keil, C.: Lurupa - rigorous error bounds in linear programming. Alge-
braic and Numerical Algorithms and Computer-assisted Proofs (2005),
http://drops.dagstuhl.de/opus/volltexte/2006/445

[Las07] Lasserre, J.-B.: A sum of squares approximations of nonnegative polyno-
mials. SIAM Review 49(4), 651–669 (2007)

[L04] Lfberg, J.: Yalmip: A toolbox for modeling and optimization in MAT-
LAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004),
http://control.ee.ethz.ch/~joloef/yalmip.php
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Abstract. Embedded information assurance applications that are critical to na-
tional and international infrastructures, must often adhere to certification regimes
that require information flow properties to be specified and verified. SPARK, a
subset of Ada for engineering safety critical systems, is being used to develop
multiple certified information assurance systems. While SPARK provides infor-
mation flow annotations and associated automated checking mechanisms, indus-
trial experience has revealed that these annotations are not precise enough to
specify many desired information flow policies. One key problem is that arrays
are treated as indivisible entities – flows that involve only particular locations of
an array have to be abstracted into flows on the whole array. This has substantial
practical impact since SPARK does not allow dynamic allocation of memory, and
hence makes heavy use of arrays to implement complex data structures.

In this paper, we present a Hoare logic for information flow that enables pre-
cise compositional specification of information flow in programs with arrays, and
automated deduction algorithms for checking and inferring contracts in an en-
hanced SPARK information flow contract language. We demonstrate the expres-
siveness of the enhanced contracts and effectiveness of the automated verification
algorithm on realistic embedded applications.

1 Introduction

Much effort has been spent on developing techniques to analyze information flow in
computer programs [27] – leading to several languages such as Myers’ JFlow [21],
and FlowCaml [28], that include language-level specifications (often in the form of
“security types”) and automated checking mechanisms that establish that a program’s
information flow conforms to supplied specifications. SPARK, a safety-critical sub-
set of Ada, is being used by various organizations, including Rockwell Collins [23]
and the US National Security Agency (NSA) [7], to engineer information assurance
systems including cryptographic controllers, network guards, and key management sys-
tems. SPARK provides automatically checked procedure annotations that specify infor-
mation flows between procedure inputs and outputs. In the certification process, these
annotations play a key role justifying conformance to information flow requirements
and separation policies relevant to architectures such as MILS (Multiple Independent
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Levels of Security) [10]. However, experience in these industrial/government devel-
opment efforts has shown that the annotations of SPARK, as well as those of other
language-based information flow specification frameworks, are not precise enough to
specify many important information flow policies. In such situations, policy adherence
arguments are often reduced to informal claims substantiated by manual inspections
that are time-consuming, tedious, and error-prone.

Inability to specify desired information flow policies in realistic applications, us-
ing existing language annotation frameworks, often stems from two issues: a) Coarse
treatment of information channels, where information flowing between two variables
is regarded as creating a channel without regard to the conditions under which that
channel is active; and b) Coarse treatment of structured data, such as arrays, where in-
formation can only be specified as flowing into/from an array as a whole, instead of its
constituent cells. Our previous work [5] gives one approach for addressing the first issue
by providing inference and checking of conditional information flow contracts, allow-
ing the specification of conditions that determine when the information flow channels
are active, using a precondition generation algorithm and an extension to the logic pre-
viously developed by Amtoft and Banerjee [2,3]. This paper builds on this earlier work
to address the second problem: precise information flow analysis for arrays.

Support for precise reasoning about information flow in arrays is especially impor-
tant in resource-bounded embedded high-assurance security applications, because stor-
age for data structures such as buffers, rule tables, etc., must often be statically allocated
and accessed via offset calculations. Motivated by the need to guarantee analyzability
and conformance to resource bounds, SPARK does not include pointers and heap-based
data. Thus, complex data structures must be implemented in terms of arrays whose size
is fixed at compile time.

This paper presents a novel approach for automated contract-based reasoning about
information flow within arrays – targeted to applications that require high assurance and
certification. The specific contributions of this work are as follows:

– A language-independent Hoare-like logic for secure information flow that can be
used to reason precisely about information flow between array components,

– An extension of the SPARK information flow contract language (with semantics
provided by the Hoare logic) that supports specification of information flow policies
about array components,

– An algorithm for automatically checking and inferring enhanced SPARK contracts
against code,

– A novel approach for computing universally-quantified information flow properties
for arrays,

– The study of an information assurance application that shows the importance of
precise information flow analysis for arrays, based on the MILS Message Router
specification given in [25], and

– An empirical evaluation of the performance and verification effectiveness of our
approach against a collection of SPARK programs.

The logical/algorithmic foundations of our work are language independent, and could be
applied to array-based data structures in other languages. However, our implementation
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in the context of SPARK is especially relevant because SPARK is the only commercially
supported framework that we know of for specifying and checking information flows.
Indeed, this work has been inspired by challenge problems provided by our industrial
collaborators at Rockwell Collins who are using SPARK on multiple information as-
surance development projects.

2 Information Flow Contracts in SPARK

SPARK is a safety critical subset of Ada developed and supported by Praxis High In-
tegrity Systems that provides (a) an annotation language for writing both functional
and information flow software contracts, and (b) automated static analyses and semi-
automated proof assistants for proving absence of run-time exceptions, and confor-
mance of code to contracts. SPARK has been used to build a number of high-assurance
systems including the UK’s iFACTS next generation air traffic control system.

Figure 1 (a) shows a collection of very simple procedures with SPARK information
flow annotations. SPARK demands that all procedures explicitly declare all the global
variables that they read and/or write. As illustrated in the SinglePositionAssign

procedure, this is done via a global annotation that lists global variables with each
variable prefixed by a modifier that indicates the mode of the variable, i.e., whether
the variable is read (in), written (out), or both (in out). Parameters to the proce-
dures must also be annotated with in and out modifiers indicating their mode. In ad-
dition, all out variables (i.e., all variables that are modified by the procedures) must
declare a derives clause. A derives clause for out variable X specifies the in pa-
rameters/globals whose initial values were used to derive the final value of variable X.
In SinglePositionAssign, the derives clause states that the out variable Flags

is derived from itself (*), Flag and Value. SPARK also provides other annotation

procedure S i n g l e P o s i t i o n A s s i g n
( F l ag : i n I n t ; Value : i n Types . F l a g v a l u e )

−−# g l o b a l i n o u t Fl a g s ;
−−# d e r i v e s Fl a g s from ∗ , Flag , Va l u e ;

i s
beg i n

F l a g s ( F l ag ) : = Value ;
end S i n g l e P o s i t i o n A s s i g n ;

procedure Scru b C ach e ( cach e : i n out Sen so r C ach e Ty p e )
−−# d e r i v e s ca ch e from ∗;

i s
beg i n

f o r I i n S e n s o r I d s l o o p
cach e ( I ) : = 0 ;

end l o o p ;
end Scru b C ach e ;

procedure Copy Keys ( i n k e y s : i n Key Table Type ,
o u t k e y s : i n out Key Tab l e Ty p e )

−−# d e r i v e s o u t k e y s from ∗ , i n k e y s ;
i s

beg i n
f o r I i n K e y T a b l e E n t r i e s l o o p

o u t k e y s ( I ) : = i n k e y s ( I ) ;
end l o o p ;

end Scru b C ach e ;

(a)

procedure S i n g l e P o s i t i o n A s s i g n
( F l ag : i n I n t ; Value : i n Types . F l a g v a l u e )

−−# g l o b a l o u t Fl a g s ( Flag ) ;
−−# d e r i v e s Fl a g s ( Flag ) from Va l u e ;

i s
beg i n

F l a g s ( F l ag ) : = Value ;
end S i n g l e P o s i t i o n A s s i g n ;

procedure Scru b C ach e ( cach e : out Sen so r C ach e Ty p e )
−−# d e r i v e s f o r a l l J i n S e n s o r I d s => ( ca ch e ( J ) from {});

i s
beg i n

f o r I i n S e n s o r I d s l o o p
cach e ( I ) : = 0 ;

end l o o p ;
end Scru b C ach e ;

procedure Copy Keys ( i n k e y s : i n Key Table Type ,
o u t k e y s : out Key Tab l e Ty p e )

−−# d e r i v e s f o r a l l J i n K e y T a b l e E n t r i e s
−−# => ( o u t k e y s ( J ) f rom i n k e y s ( J ) ) ;

i s
beg i n

f o r I i n K e y T a b l e E n t r i e s l o o p
o u t k e y s ( I ) : = i n k e y s ( I ) ;

end l o o p ;
end Copy Keys ;

(b)

Fig. 1. (a) Limitations of SPARK annotations and (b) proposed enhancements
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mechanisms to specify pre- and postconditions, but for this discussion we will focus on
those directly related to information flow analysis.

While the semantics of existing SPARK contracts, as presented in Figure 1 (a), can
be captured using conventional slicing and data/control-dependence, we have devel-
oped a more powerful and flexible theory of information flow contracts backed by a
Hoare-style logic, and a precondition generation algorithm [5] that is able to provide
additional analysis precision and contract expressiveness not found in conventional
static-analysis-based approaches. Moreover, in the context of embedded applications
and languages like SPARK, which eschew complicated language features, we have
been able to achieve this power while maintaining a very high degree of automation
and low computational costs. In our previous work [5], we demonstrated how this log-
ical framework could support extensions to SPARK contracts that allow developers to
specify that information flows from inputs to an output only under certain conditions,
i.e., conditional information flow. This provides the ability to state information flow
policies that are typical of network guard applications, where a message on an input
port may flow to a certain output in one state, but may flow to a different output in
another state.

In this paper, we overcome other limitations of conventional dependence/information
flow frameworks by adding additional capabilities to the logic, and associated auto-
mated deduction algorithms that enable precise reasoning about array-based data struc-
tures. Figure 1 (a) presents a series of micro-examples that illustrate the deficiencies
of current SPARK annotations for arrays, and Fig. 1 (b) shows our proposed enhance-
ments. These examples are concise representations of common idioms that occur in the
embedded information assurance applications of our industrial partners.

Procedure SinglePositionAssign assigns a value to a particular index position
(the value of Flag) in the array Flags. However, the SPARK information flow contract
states that (a) the whole array is modified (i.e., global out flags), and (b) the new
value of the array is derived from its old value, the Value parameter, and the Flag index
parameter. This is an over-approximation of the true frame-condition and information
flow, but the contract cannot be made more precise in the current SPARK annotation
language. To remedy this, Figure 1 (b) illustrates that our enhanced language provides
the ability to specify properties of particular array cells. The global out declaration
now indicates that the only array cell modified is Flags(Flag) (which currently is
a disallowed global expression in SPARK) while the contents of other cells remain
unchanged. The enhanced derives indicates that the modified cell derives its value
only from the parameter Value. To support this more precise reasoning, the underlying
analysis algorithm must be able to reason symbolically about array index values.

Scrub Cache in Fig. 1 (a) presents a code idiom often used when initializing an
array or scrubbing the contents of a message buffer; all positions of the array are ini-
tialized to a constant value. The SPARK annotations required for this example exhibit
several forms of imprecision. First, the cache array parameter must be declared with
mode in even though no array element value is read during execution of the procedure.
Second, the information flow specification captured in the derives clause is the an-
tithesis of what we desire: it states that the final value of cache depends on the initial
value of cache, whereas we desire a specification that captures the fact that the final
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value of cache does not depend on the initial value of cache, i.e., all values in the
input cache have been erased.

This imprecision stems from the fact that on each iteration of the loop, the entire
array is treated as a single entity in the information flow analysis: the updated value of
the array depends on a constant value at position I and on its previous value at all posi-
tions other than I. Since flow from constants is not indicated in SPARK contracts, the
information flow analysis indicates that the new value of the array depends on the old
value at every iteration. There is no way to indicate that the loop has carried out an ex-
haustive processing of each position of the array in which the old value at each position
is overwritten with a new value not based on the array’s previous contents. Figure 1 (b)
illustrates that we address this problem by extending the specification language with
a notion of universal quantification (using syntax based on SPARK’s universal quan-
tification allowed in assertions) to specify schematically the information flow for each
array cell. We also add the capability to indicate that the source of the information flow
is some constant (represented by {}). Together, these additions allow us to formalize
the higher level security policy: the array contents are indeed scrubbed – cache’s final
value does not depend in any way on its initial value, nor does information from any
other piece of the program state flows into it.

To support this more precise reasoning, the underlying analysis algorithm must be
able to perform a logical universal generalization step to introduce the quantified flow
specification. In general, this is quite difficult to do, but we have found that loops that
manipulate arrays often follow a structure that admits an automated solution. When
an automated solution is not possible, the developer may supply an information flow
loop invariant (which are simpler than functional invariants) that enables the rest of the
checking to be completed automatically.

The Copy Keys example of Fig. 1 (a) illustrates a common idiom in which the con-
tents of a table are copied, or where a portion of a database is moved from a central
database to a copy for a client. In essence, this creates multiple channels of informa-
tion flow – one channel for each index position of the arrays. In such cases, one often
seeks to verify a separation policy that states that information flow between the differ-
ent channels is not confused or merged. The SPARK derives clause for Copy Keys

simply states that information flows from the inkeys array to the outkeys array and
cannot capture the separation property that information only flows between correspond-
ing entries of the arrays. Fig. 1 (b) illustrates that, using the universal quantification
introduced in the previous paragraph, one formalizes the policy that information only
flows between entries at the same index position. Notice also that this enables us to
specify flow between different regions of the array, by having the quantified variables
take values from more restricted ranges of the possible index values.

3 Syntax and Semantics Background

We now present the foundations of our approach using a simple imperative language
that can be considered an “idealized core language” for SPARK. Since SPARK omits
constructs that are difficult to reason about, such as dynamically allocated data, pointers,
and exceptions, its semantics is very close to that of this language.
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Expressions:

arithmetic

A ::= x | u | c | A op A | H [A]
array

H ::= h | Z | H{A : A}
boolean

φ,B ::= A bop A | φ ∧ φ | φ ∨ φ | ¬φ

Commands:

S ::= skip | S ; S | x := A | assert(φ)
| call p
| if B then S else S
| for q ← 1 to y do S
| while B do S od
| h := new | h[A] := A

Fig. 2. Syntax of a simple imperative language

In Fig. 2, we present the syntax of the simple imperative language. For commands,
procedures are parameterless; this simplifies our exposition but our implementation sup-
ports procedures with parameters (there are no conceptual challenges in this extended
functionality). In for loops, following similar restrictions in SPARK, we require that
the index variable q is not modified by S, and does not occur anywhere except in S.
Arrays are restricted to a single dimension with integer contents. Array assignment has
two forms: h := new creates an array with all elements set to 0, and h[A0] := A1
assigns the integer value of A1 to array h at the index position given by A0. For con-
venience of presentation, we omit some SPARK features such as records and package
structure since these do not present conceptual challenges.

We use E to range over expressions which include arithmetic, boolean, and array
expressions. Boolean expressions are also used as assertions. We use x to range over
integer (scalar) variables (but q to range over such when used as counters in for loops),
h to range over array variables, u to range over universally quantified variables; we
shall use w, z to range over all kind of variables. We use c to range over integer con-
stants, op to range over arithmetic operators in {+,×, mod, . . .}, and bop to range over
comparison operators in {=, <, . . .}.

To enable convenient reasoning about individual array elements, in particular the
computation of preconditions, we follow Gries [18] and allow, in intermediate forms of
assertions manipulated by the automated reasoning engine, the construct H{A0 : A1},
which represents the value of array H except that index A0 now has value A1. We also
use Z to denote an initial array as created by the command h := new. We require a
program (command) submitted for verification to be pure in the sense that it does not
contain these additional array constructs. Thus, in a pure entity, all array accesses are
of the form h[A] with h a variable. Similarly, universal variables u are used only in
specifications; programs submitted for verification cannot contain universal variables.

The use of programmer assertions is optional, but often helps to improve the preci-
sion of our analysis. We refer to the assertions of Fig. 2 as 1-assertions since they repre-
sent predicates on a single program state; they can be contrasted with 2-assertions that
we introduce later for reasoning about information flow in terms of a pair of program
states. For an expression E, we write fv(E) for the variables in E and write E[A/x] for
the result of substituting in E all occurrences of x by A (similarly for E[H/h]).
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Expressions:
[[x]]s = s(x) similarly for u

[[H[A]]]s = [[H]]s([[A]]s)

[[h]]s = s(h)
[[Z]]s = λn.0

[[H{A0 : A}]]s = [[[H]]s | [[A0]]s 	→ [[A]]s]

Commands:
s [[x := A]] s′ iff ∃v : v = [[A]]s and s′ = [s | x 	→v]

s [[assert(φ)]] s′ iff s |= φ and s′ = s

s [[call p]] s′ iff s P(p) s′

s [[for q ← 1 to y do S]] s′ iff ∃n ≥ 1 : n = s(y) and ∀i ∈ {0 . . . n} ∃si : s0 = s and
s′ = [sn | q 	→n + 1] and ∀j ∈ {1 . . . n} : [sj−1 | q 	→j] [[S]] sj

s [[h[A0] := A]] s′ iff ∃n, v : n = [[A0]]s, v = [[A]]s and s′ = [s | h(n) 	→v]

s [[h := new]] s′ iff s′ = [s | h 	→λn.0]

Fig. 3. Semantics of the Simple Programming Language (excerpts)

Fig. 3 gives excerpts of the language semantics definition (the definitions for con-
ditionals and while loops are standard and omitted). In the expression semantics, we
model an array as a mapping (a ∈ Array) from integers to values, where a value
(v ∈ Val) is an integer n; we write [a | n �→v] for the array that is like a except that it
maps n into v. We shall ignore bounds and range checks (unlike [15] where array length
may be revealed separately from array content) and assume that an array reference a(n)
is always well-defined (the typical SPARK development process will prove statically
that array-out-of-bounds exceptions cannot occur).

A store s ∈ Store (we shall also use σ to range over stores) maps scalar and universal
variables to values, and array variables to arrays; we write dom(s) for the domain of s
and write [s | x �→v] ([s | h �→a]) for the store that is like s except that it maps x into v
(maps h into a), and write [s | h(n) �→v] for [s | h �→ [s(h) | n �→v]]. We write s |= φ
for [[φ]]s = True. We define φ and φ′ to be 1-equivalent, written φ ≡1 φ′, if for all s it
holds that s |= φ iff s |= φ′. Similarly, we write φ �1 φ′ if whenever s |= φ then also
s |= φ′.

In the definition of the call command, we assume a global procedure environment
P that for each p returns a relation between input and output stores; we expect that if
s P(p) s′ then, with Sp the body of p, we have s [[Sp]] s′. For some S and s, there may
not exist any s′ such that s [[S]] s′; this can happen if a while loop does not terminate,
a for loop has a non-positive upper bound, or an assert fails.

4 Information Flow Contracts for Arrays

To motivate our treatment of information flow, consider the code

procedure p begin x := a +1 ; y := b ∗ 2 ; end p ;

where there are two “channels” of information flow associated with x and y: (1) from
a to x, and (2) from b to y Using SPARK to specify these flows, we would write:
derives x from a & y from b;

We may express the “non-interference” [16] of the assignment to y with channel (1)
via the following semantic property: for any pair of states s1 and s2, if s1(a) = s2(a)
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then s′1(x) = s′2(x) where s′1, s′2 are the states that result from executing the proce-
dure body on s1 and s2, respectively. Thus x depends on a but on no other variables,
cf. Cohen[12]. We desire to state such properties (which would provide a semantic foun-
dation for derives contracts), using program level assertions. However, the property
requires reasoning about two states at method pre/postcondition (cf. s1 and s2). Thus,
it cannot be stated using traditional assertions, because such assertions are interpreted
in terms of one state at a particular program point.

The innovation of the logic developed in [1,2] lies in the introduction of a novel
agreement assertion x� that is satisfied by a pair of states, s1 and s2, if s1(x) = s2(x).
Using this assertion, the non-interference property above is phrased {a�} S {x�}.
In general, triples are of the form {x1�, . . . , xn�} P {y1�, . . . , ym�} which is in-
terpreted as follows: given two runs of P that initially agree on variables x1 . . .xn,
at the end of both runs, they agree on variables y1 . . . ym. Such a specification says
that the variables yj may depend only on the variables xi, and not on any other vari-
ables. In situations as above where we want to reason about multiple separated chan-
nels of information flow simultaneously (e.g., a to x and b to y), we would not write
{a�, b�} S {x�, y�} since this would imply that y may depend on a and x depend on
b. Instead, channel-indexed agreement assertions would be used to distinguish the sep-
arate channels for x and y: {a�x, b�y} S {x�x, y�y}. This is equivalent to requiring
both {a�} S {x�} and {b�} S {y�} to hold in the unindexed version of the logic.
Our implementation uses the indexed assertions to deal with multiple channels, but to
simplify the formalization, in this document we shall deal with one channel at a time.

One advantage of this logical approach over traditional data/control-flow based ap-
proaches to reasoning about information flow and program dependencies, is that the
assertion primitive can be enhanced to reason about additional properties of the state –
leading to greater precision and flexibility. For example, to capture conditional informa-
tion flow, we use conditional agreement assertions φ ⇒ E�, also called 2-assertions,
introduced by Banerjee and the first author [3]. Such assertions are satisfied by a pair
of stores if either at least one of them does not satisfy φ, or they agree on the value of
E: s & σ |= φ⇒ E� iff whenever s |= φ and σ |= φ then [[E]]s = [[E]]σ .

We use θ ∈ 2Assert to range over 2-assertions. For θ = (φ ⇒ E�), we call
φ the antecedent of θ and write φ = ant(θ), and we call E the consequent of θ and
write E = con(θ). We often write E� for true ⇒ E�. We use Θ ∈ P(2Assert) to
range over sets of 2-assertions (where we often write θ for the singleton set {θ}), with
conjunction implicit. Thus, s&σ |= Θ iff ∀θ ∈ Θ : s&σ |= θ.

For the semantics of command triples, we write {Θ}S{Θ′} iff for all s, s′, σ, σ′, if
s [[S]] s′ and σ [[S]] σ′, and also s&σ |= Θ, then s′&σ′ |= Θ′.

We define Θ �2 Θ′, pronounced “Θ 2-implies Θ′”, to hold iff for all s, σ: whenever
s&σ |= Θ then also s&σ |= Θ′. In development terms, when Θ �2 Θ′ holds we
can think of Θ as a refinement of of Θ′, and Θ′ an abstraction of Θ. Intuitively, Θ
requires agreement in more cases than Θ′ (Θ is a strengthening of Θ′). For example,
{x� , y�} refines x� by adding an (unconditional) agreement requirement on y, and
y < 10 ⇒ x� refines y < 7 ⇒ x� by weakening the antecedent of a 2-assertion so
that agreement on x is required for more values of y.
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{Θ}⇐= skip {Θ′} iff Θ = Θ′ {Θ}⇐= x := A {Θ′} iff Θ = Θ′[A/x]

{Θ}⇐= h := new {Θ′} iff Θ = Θ′[Z/h] {Θ}⇐= h[A0] := A1 {Θ′} iff Θ = Θ′[h{A0 : A1}/h]

{Θ}⇐= assert(φ0) {Θ′} iff Θ={(φ ∧ φ0)⇒ E� | φ⇒ E�∈Θ′}

{Θ}⇐= S1 ; S2 {Θ′} iff {Θ′′}⇐= S2 {Θ′} and {Θ}⇐= S1 {Θ′′}

{Θ}⇐= if B then S1 else S2 {Θ′} iff Θ =
⋃

θ∈Θ′ Preif (θ) where
Preif (φ′ ⇒ E�) =

let {Θi}⇐= Si {φ′ ⇒ E�} for i = 1, 2
in if S1 preserves E and S2 preserves E

then {(φ1 ∧ B) ∨ (φ2 ∧ ¬B)⇒ E� | φi ⇒ � ∈ Θi (i = 1, 2)}
else {φ1 ∧ B ⇒ E1� | φ1 ⇒ E1� ∈ Θ1} ∪ {φ2 ∧ ¬B ⇒ E2� | φ2 ⇒ E2� ∈ Θ2} ∪
{(φ1 ∧ B) ∨ (φ2 ∧ ¬B)⇒ B� | φi ⇒ � ∈ Θi (i = 1, 2)}

{Θ}⇐= call p (= S) {Θ′} iff Θ = R ∪
⋃

θ∈T Precall(θ) where
(R, T ) = PreProc(S, Θ′) and
Precall(φ′ ⇒ E�) = let φ0 = NPC (S, φ′) in case E of

w : {φ0 ∧ φw ⇒ Ew� | φw ⇒ Ew� ∈ 2PCp
w}

h[A] : let 2PCp
h[ ] = ∀u.Θh // S preserves A

in {φ0 ⇒ A�} ∪ {φ0 ∧ φh[A/u]⇒ Eh[A/u]� | φh ⇒ Eh� ∈ Θh}

{Θ}⇐= while B do S0 od (= S) {Θ′} iff Θ = R ∪ΘA ∪ ΘW where
(R, T ) = PreProc(S, Θ′) ΘA = {NPC (S, φ)⇒ A� | φ⇒ h[A]� ∈ T}
ΘW = Prewhile(S0, B, TW ) Tw = {φ⇒ w� ∈ T} ∪ {φ⇒ h� | φ⇒ h[A]� ∈ T}

{Θ}⇐= for q ← 1 to m do S0 (= S) {Θ′} iff Θ = R ∪ΘA ∪ ΘW ∪ ΘF where
(R, T ) = PreProc(S, Θ′) u is fresh ΘA = {NPC (S, φ)⇒ A� | φ⇒ h[A]� ∈ T}
ΘW = Prewhile((S0 ; q := q + 1), q ≤ m, TW )[1/q]
ΘF = {NPC (S, φ) ∧ φ1[A/u]⇒ E1[A/u]� | φ1 ⇒ E1� ∈ Θh, φ⇒ h[A]� ∈ T, Θh �= fail}
Tw = {φ⇒ w� ∈ T} ∪ {φ⇒ h� | φ⇒ h[A]� ∈ T, Θh = fail}
Θh = Prefor(S0, q, m, h[u]�) (for all h)

Fig. 4. The Precondition Generator

5 Computing Preconditions

Figure 4, selected parts of which will be explained later, presents a rule-based precondi-
tion generation algorithm inductively defined over the language syntax. The definition
uses rules of the form {Θ}⇐= S {Θ′} to specify that, given command S and postcon-
dition Θ′, the algorithm computes precondition Θ. The algorithm uses some auxiliary
functions, defined in Fig. 5, as well as some other functions that will be sketched below
but for whose complete definitions we refer to [4].

The algorithm does not always compute the weakest precondition; main sources of
imprecision are: on loops, approximations have to be made to ensure termination of
the analysis; on procedure calls, the analysis (for the sake of modularity) uses the pro-
cedure’s specification rather than its actual code. As a result, antecedents may be too
weak, yielding too strong 2-assertions.

This algorithm extends our earlier work [5] by adding the notion of universal quan-
tification for reasoning about arrays, and a method for inferring universally quantified
preconditions for certain for-loop structures. The following theorem summarizes the
correctness of the algorithm:

Theorem 1. For all S, Θ, Θ′, if {Θ}⇐= S {Θ′} holds, then {Θ}S{Θ′} holds.

For a detailed proof of this theorem, we refer the reader to [4]. The main structure of
the proof is quite similar to our earlier work [3,5] though a main difference is that we
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PreProc(S, Θ′) =
P ← Purify(Θ′); R← ∅; T ← ∅
while P �= ∅ do: remove (φ⇒ E�) from P , and

if S preserves E then R← R ∪ {NPC (S, φ)⇒ E�}
else case E of

E1 op E2 or E1 bop E2 or E1 ∧E2 or E1 ∨ E2 or ¬E1: P ← P ∪ {φ⇒ E1�, φ⇒ E2�}
w : T ← T ∪ {φ⇒ w�}
h[A] : if S preserves A and not S preserves h then T ← T ∪ {φ⇒ h[A]�}

else if S preserves h and not (S preserves A)
then P ← P ∪ {φ⇒ A�}; R← R ∪ {NPC (S, φ)⇒ h�}
else if not (S preserves h) and not (S preserves A)
then T ← T ∪ {φ⇒ h�}; P ← P ∪ {φ⇒ A�}

return (R, T )

Prefor(S0, q, m, h[u]�) =
let {Aj | j ∈ J} be all occurrences such that h[Aj ] := is a subcommand of S0
let {Θj}⇐= S0 {h[Aj]�} (for all j ∈ J)
in if 1. call p preserves h for all call p occurring in S0, and for all j ∈ J it holds that

2. S0 preserves Aj

3. there exists A′
j with fv(A′

j) ⊆ {u} ∪ fv(Aj) \ {q} where for all s,n with dom(s) ⊆ fv(Aj),
[[n = Aj ]]s = [[q = A′

j [n/u]]]s
4. there exists φj with fv(φj) ⊆ {u} ∪ fv(Aj) \ {q} where for all s,n with dom(s) ⊆ fv(Aj),

n ∈ {[[Aj]][s|q�→i] | 1 ≤ i ≤ s(m)} iff s |= φj [n/u]
5. if w ∈ fv(Θj) with w �= h then S0 preserves w
6. if h occurs in Θj it is in the context h[A] where for all j1 ∈ J , all s, all i, i′ ∈ {1 . . . s(m)}:

if [[A]][s|q�→i′] = [[Aj1 ]][s|q�→i] then i′ ≤ i

then succeed and return {φj ⇒ Θj [A′
j/q]� | j ∈ J} ∪

{∧j∈J¬φj ⇒ h[u]�} ∪ {x� | ∃j ∈ J : x ∈ fv(Aj) \ {q}} ∪ {m�}
else fail

Prewhile(S0, B, Θ′) =
ψw ← ∅ for all variables w (including a dummy variable d)
for φ⇒ w� ∈ Θ′ do

ψw ← ψw ∨ (φ ∧ ¬B); if w /∈ fv(B) and not (S0 preserves w) then ψd ← ψd ∨ (φ ∧ ¬B)
repeat

for each variable w do {Θw}⇐= S0 {ψw ⇒ w�} ;
for each φ⇒ E� ∈ Θw do

for each z ∈ fv(E) do ψz ← ψz ∨ (φ ∧ B);
if w ∈ fv(B) or S0 preserves w then ψw ← ψw ∨ (φ ∧ B)

for all w ∈ fv(B), for all z with not (S0 preserves z) do ψw ← ψw ∨ ψz

until each ψw stabilizes (through widening) into Ψw

return Θ = {Ψw ⇒ w� | w is variable}

Fig. 5. The Precondition Generator, Helper functions

have disposed with the “R-component”; this allows for a more streamlined presentation.
Quite similar to those earlier works, we need the following lemma:

Lemma 1. Assume that {Θ} ⇐= S {Θ′} . For all φ′ ⇒ � ∈ Θ′, there exists φ ⇒
� ∈ Θ such that whenever s [[S]] s′ and s′ |= φ′ then s |= φ.

Observe that it is easy to modify Fig. 4 so that Lemma 1 trivially holds, for example
by adding true⇒ 0� to all preconditions, but the analysis of a command may become
less precise if the analysis of a subcommand is augmented in that way.

The algorithm can be applied to automatically check or infer information flow con-
tracts. For implementing checking, the algorithm would be used to compute a candidate
precondition from the stated postcondition, and then a supplementary algorithm would
check that the stated precondition entails the computed precondition (this functional-
ity is present in our implementation using theorem-prover technology). We focus on
contract inference in the remainder of our discussion.
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As with conventional forms of compositional contract-based reasoning, when pro-
cessing the body of some procedure p, our algorithm assumes that any procedure called
by p already has an associated contract: for each w that may be modified by p, the
contract contains a precondition 2PC p

w (at least one assertion in which must be uncon-
ditional) such that {2PC p

w}p{w�}; for each h that may be modified by p, the contract
contains a precondition 2PC p

h[ ] which is a quantified set of 2-assertions of the form
∀u.Θ where we demand that {Θ}p{h[u]�}. Since SPARK does not include recursion,
contract inference for all procedures in the program can be carried out via a bottom up
traversal of the call graph.

Concerning the roles of universal variables, they are introduced in two situations:
when analyzing a for loop (the output of Prefor), and when looking up 2PC p

h[ ] for
procedure calls. In both cases, they are instantiated immediately afterwards. When we
compute summaries, however, universal variables are present throughout the derivation.

For most language constructs, the corresponding rule in Fig. 4 is straightforward. As-
signments, to variables as well as array elements, are handled by syntactic replacement,
as in classical Hoare logic.

For a conditional if B then S1 else S2, if E is such that neither S1 nor S2 modifies
E, the the precondition for φ ⇒ E� does not need to involve B�. There are several
other instances where the generation of the precondition for S from its post-condition
φ ⇒ E� can be simplified if S preserves the semantics of E. Accordingly, we utilize
a predicate S preserves E such that if S preserves E holds then whenever s [[S]] s′

we have [[E]]s = [[E]]s′ . S preserves E can be computed in a straightforward manner
by detecting if S modifies variables occuring in E either directly via an assignment or
indirectly via updates in a procedure call (in which case, the procedure’s contract is
consulted).

The NPC Function: When generating a precondition for S for post-condition φ′ ⇒
E� where S preserves E holds, but S may affect the antecedent φ′, we must compute
a new antecedent φ so that {φ ⇒ E�}S{φ′ ⇒ E�}. For this to be the case, we must
ensure that if two post-states satisfy φ′ then the pre-states satisfy φ and hence E�.

Accordingly, we utilize a function NPC computing a “necessary precondition” for
φ′ to hold after S. That is, with φ = NPC (S, φ′) (we can assume φ′ to be pure) it holds
that if s [[S]] s′ and s′ |= φ′ then s |= φ. It may seem counterintuitive that we are talking
about necessary precondition instead of weakest precondition, but this stems from the
contravariant nature of the antecedent component of 2-assertions.

Note that if S preserves φ then we can pick φ0 = φ, and that we can always pick
φ0 = true, but often we can compute something stronger. Our implementation, which
assumes that each procedure p is equipped with a function that computes NPC (p, ),
contains rules such as NPC (x := A, φ) = φ[A/x] and
NPC (if B then S1 else S2, φ) = (NPC (S1, φ) ∧B) ∨ (NPC (S2, φ) ∧ ¬B).

The Purify Function: As noted earlier, the rules for array update (creation) may gen-
erate a precondition that include impure expressions of the form H0{A0 : A1} (or Z)
that we would not like to see in contracts. We therefore employ a function Purify with
the following properties:
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1. given φ, with φ0 = Purify(φ) we have φ ≡1 φ0 with φ0 pure.
2. given A, Purify returns pure φ1 . . . φk, and pure A1 . . . Ak, such that for all i ∈

1..k: if s |= φi then [[A]]s = [[Ai]]s.
3. given Θ, with Θ0 = Purify(Θ) we have Θ0 �2 Θ with Θ0 pure, and for all

φ⇒ � ∈ Θ there exists φ0 ⇒ � ∈ Θ0 with φ �1 φ0.

As an example of case 2, if A is given by h{x : y}[z] then Purify returns φ1, φ2 given
by z = x and z �= x, and A1, A2 given by y and h[z]. As an example of case 3, with A
as above then Purify(y > 0⇒ A�) is given by

{y > 0 ∧ z = x⇒ y�, y > 0 ∧ z �= x⇒ h[z]�, y > 0⇒ (z = x)�}.

The PreProc Function: The computation of preconditions for procedure calls and
loops shares certain steps that can be broken out into a preprocessing phase realized
by a common function, called PreProc and listed in Fig. 5. Preprocessing includes two
main ideas: (1) strengthening 2-assertions to a canonical form φ⇒ Econ� where Econ

must be a variable name or array access expression (but not an operation), and (2) the
immediate construction of preconditions, which is possible for 2-assertions whose con-
sequents are not modified by the command under consideration. Point (1) is required
for, e.g., the identification of dependence connections between a calling context and the
contract of the called procedure. Formally, we have: PreProc(S, Θ′) always terminates
and returns R,T such that

1. for all Θ, if {Θ}S{T } then {Θ ∪R}S{Θ′}.
2. T is pure, and if φ ⇒ E� ∈ T then either E = w where S preserves w does not

hold, or E = h[A] where S preserves A holds but S preserves h does not hold.

To prove this result, we observe that an invariant for the loop inside PreProc is: for all
Θ, if {Θ}S{T ∪ P} then {Θ ∪R}S{Θ′}.

The Prefor Function: The rule (Fig. 4) for for-loops, with associated helper function
Prefor (Fig. 5), generates universally quantified information flow assertions for arrays,
and is one of the main innovations of this paper. The idea behind this function is to iden-
tify and exploit a common pattern: for-loops are often used to traverse arrays to perform
updates or other processing on a per-location basis and the processing is often done in a
manner in which the current iteration does not depend on previous iterations, i.e., there
are no loop-carried-dependencies [20]. Consider the following procedure body

for q ← 1 to m do (t := h[q] ; h[q] := h[q + m] ; h[q + m] := t) (1)

that flips the values between the upper and lower halves of an array, resulting in in-
formation flow between the two halves. However, if we apply the approach to loop
processing from our previous work [5], we obtain a contract that merely says that the
final value of the array is derived from its original value (h from *), but nothing more
precise.

Still, this procedure possesses no loop-carried-dependencies: changes made in the
current iteration do not depend on previous ones. So, we should be able to reason
about the flows in all iterations of this loop (and analogously, flows related to all in-
dex positions of array h) using a single “schematic” iteration (and analogously, a single
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“schematic” index position h[u]). And indeed, replacing the for loop by its body (thus
being iterated once only) will result in a contract showing the flow between the two
locations on the separate halves of the array. What we want is a quantified version of
that specification.

The definition of Prefor given in Fig. 5 implements the above intuition, for a given ar-
ray h. (If multiple arrays are updated in the same loop, Prefor must be called separately
on each array.) To handle also multiple updates, none of which can happen indirectly
through procedure calls (condition 1), we let J range over all occurrences of such up-
dates. Thus each array update is of the form h[Aj ] := where (condition 2) we can not
allow Aj to be modified by the loop body (but we certainly expect Aj to contain the
loop counter). Condition 3 states that each Aj must have an “inverse” A′j . For example,
if Aj = q + 1, then A′j = u − 1. Condition 4 states that the range of each Aj can
be expressed. For example, if q ranges from 1 to 10, and Aj = q + 1, then the range
of Aj is determined by the predicate φj given by 1 + 1 ≤ u ≤ 10 + 1. Condition 5
states that nothing in the precondition is modified except possibly h; that is, there are
no loop carried dependencies between scalar variables. Condition 6 states that there are
no loop-carried dependencies between array locations. That is, an array location is not
read after it has been updated.

Thus conditions 3 and 4 ensure that contracts can be expressed, whereas the absence
of loop-carried dependencies, as formalized in conditions 5 and 6, ensures the sound-
ness of quantification: we can reason about a single run of the loop and generalize the
result, because there is no interdependence among the different iterations. If any of the
conditions is not satisfied, then the loop is treated as a while loop, in effect smashing
together all array entries without obtaining a quantified information flow precondition.

The following lemma is a key step in the proof of Theorem 1.

Lemma 2. Let S be for q ← 1 to m do S0. Assume Prefor(S0, q, m, h[u]�) succeeds,
with result Θ. Then for all integer constants c we have {Θ[c/u]}S{h[c]�}.
Example 1. Consider the for-loop from (1). With J = {1, 2} we have A1 = q , A2 =
q+m. Our algorithm then computes: A′1 = u , A′2 = u−m which satisfies Condition 3
since (n = q) ≡1 (q = n) and (n = q + m) ≡1 (q = n−m).

Next, we compute the ranges for expressions: φ1 = 1 ≤ u ≤ m , φ2 = m + 1 ≤
u ≤ m + m. This satisfies Condition 4 since for all s and for all n,

n ∈ {[[q]][s|q	→i] | 1 ≤ i ≤ s(m)} iff s |= 1 ≤ n ≤ m

n ∈ {[[q + m]][s|q	→i] | 1 ≤ i ≤ s(m)} iff s |= m + 1 ≤ n ≤ m + m.

With S0 the body of the for loop we now compute

{Θ1}⇐= S0 {h[q]�} , {Θ2}⇐= S0 {h[q + m]�}
where it is easy to see that Θ2 simplifies to h[q]�, and that Θ1 simplifies – assuming
we know that m ≥ 1 – to h[q + m]�.

The only non-trivial requirement which is left to check is condition 6 which splits
into 4 equations that each should imply i′≤ i (given s and i, i′ with i, i′∈{1 . . . s(m)}):

(1) [[q + m]][s|q	→i′] = [[q]][s|q	→i]

(2) [[q + m]][s|q	→i′] = [[q + m]][s|q	→i]

(3) [[q]][s|q	→i′ ] = [[q]][s|q	→i]

(4) [[q]][s|q	→i′ ] = [[q + m]][s|q	→i]
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Here (2) and (3) trivially imply i′ ≤ i since they reduce to i′ + s(m) = i + s(m) and
to i′ = i; (1) and (4) vacuously imply i′ ≤ i since they reduce to i′ + s(m) = i and to
i′ = i+s(m) which both are impossible given 1 ≤ i, i′ ≤ s(m). As all requirements are
fulfilled, we see that Prefor succeeds for the given program. After some simplifications,
we end up with the expected preconditions

1 ≤ u ≤ m⇒ h[u + m]�, m + 1 ≤ u ≤ (m + m)⇒ h[u−m]�,

(1 > u) ∨ (u > m + m)⇒ h[u]�, m�.

The Prewhile Function For the analysis of while loops (or for loops with loop-carried
dependencies), we employ the function Prewhile (Fig. 5) which expects a postcondition
Θ′ where each θ′ ∈ Θ′ is of the form φ⇒ w� (w a scalar or array variable).

The idea is to consider assertions of the form φw ⇒ w� and then repeatedly analyze
the loop body so as to iteratively weaken the antecedents until a fixed point is reached.

To ensure termination, we need a “widening operator” [13] on 1-assertions. A triv-
ial widening operator is the one that always returns true, in effect converting condi-
tional agreement assertions into unconditional. Our implementation uses disjunction as
a widening operator but returns true if convergence is not achieved after a certain num-
ber of iterations. Space constraints prevent us from further explaining the algorithm (a
variant of which was presented in [5]); we refer the reader to [4].

6 Experimental Assessment

To assess the ideas presented in this paper, we have developed an implementation that
checks and infers information flow contracts for SPARK using our more precise en-
hanced contract language. The algorithm extends our implementation for conditional
contracts described in [5] to support arrays, universally quantified flow contracts, and
precise processing of for loops as detailed in previous sections.

We tested this implementation on an information assurance application (a MILS
Message Router) that presents a number of challenges due to its extensive use of ar-
rays, a collection of embedded applications (an Autopilot, a Minepump, a Water Boiler
monitor, and a Missile Guidance system – all developed outside of our research group),
and a collection of small programs that we developed ourselves to highlight common
array idioms that we discovered in information assurance applications. We provide a
more detailed assessment of the MMR example after summarizing the results of the
experiments and illustrating the following array idiom examples (see Fig. 6 ).

– ArrayInit: A procedure that initializes all elements of an array to a particular value.
– ArrayScrub: A procedure that replaces the elements of an array that satisfy a pre-

determined condition, with a particular value.
– ArrayTransfer: A procedure that transfer the elements from one array to another.
– ArrayPartitionedTransfer: Similar to the previous one except that the transfer

from one array to the other is done only within certain partitions (ranges) defined
in each array.

In each of these examples, using original SPARK contracts/analysis would have allowed
us to specify only that information is flowing from one entire array to another. Fig. 6
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procedure A r r a y I n i t
−−# g l o b a l o u t A (∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range => (A ( I ) f rom {});

i s
beg i n

f o r I i n A. Range l o o p
A( I ) : = 0 ;

end l o o p ;
end A r r a y I n i t ;

procedure A r r ay Scru b
−−# g l o b a l i n S cru b C o n s t a n t ,
−−# o u t A (∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range =>
−−# (A ( I ) f rom S c r u b C o n s t a n t
−−# when s h o u l d s c r u b (A ( I ) ) ) ;

i s
beg i n

f o r I i n A. Range l o o p
i f s h o u l d s c r u b (A( I ) ) then

A( I ) : = S c r u b C o n s t a n t ;
end i f ;

end l o o p ;
end Ar r ay Scru b ;

procedure A r r a y T r a n s f e r
−−# g l o b a l i n B(∗ ) ,
−−# o u t A(∗ ) ;
−−# d e r i v e s f o r a l l I i n A . Range => (A( I ) f rom B( I ) ) ;

i s
beg i n

f o r I i n A. Range l o o p
A( I ) : = B( I ) ;

end l o o p ;
end A r r a y T r a n s f e r ;

procedure A r r a y P a r t i t i o n e d T r a n s f e r
−−# g l o b a l i n B(∗ ) , C(∗ ) , K ,
−−# o u t A(∗ ) ;
−−# d e r i v e s f o r a l l I i n ra n g e
−−# A’ F i r s t . . K => (A ( I ) f rom B ( I ) ) &
−−# f o r a l l I i n ra n g e
−−# K+1 . . A ’ L a s t => (A ( I ) f rom C( I−K ) ) ;

i s
beg i n

f o r I i n range A’ F i r s t . . K l o o p
A( I ) : = B( I ) ;

end l o o p ;

f o r I i n range k+1 . . A’ L a s t l o o p
A( I ) : = C( I−K ) ;

end l o o p ;
end A r r a y P a r t i t i o n e d T r a n s f e r ;

Fig. 6. Information flow contracts inferred by our implementation for a selection of examples

illustrates how our conditional and quantified contracts allow a much more precise ver-
ified specification of the flows.

A total of 66 procedures were analyzed, and information flow contracts were in-
ferred for all of them, taking less than two seconds for each to run on a Core 2 Duo
2.2GHz processor and 3 GB of RAM. Of these procedures, ten included array manipu-
lations that tested our new extensions to the logic. In all of these cases, our implemen-
tation generates a quantified information flow specification showing the dependence
dynamics in the arrays.

The MMR Example: The MMR (MILS Message Router) is an idealized version of a
MILS infrastructure component (first proposed by researchers at the University of Idaho
[25]) designed to mediate communication between partitions in a separation kernel [26]
– the foundation of specialized real-time platforms used in security contexts to provide
strong data and temporal separation.

Fig. 7 illustrates a set of partition processes that execute in a static round-robin sched-
ule. During each schedule cycle, each process is allowed to post up to one bounded-size
message to each of the other partitions and receive messages from partitions sent during
the previous cycle. Different partitions do not communicate directly. Instead, they post
messages to the MMR, which only propagates a message if it conforms to a static secu-
rity policy represented by a two dimensional boolean array Policy indexed by process
IDs. In Fig. 7, a shaded square (representing the value True) in the Policy array indicates
that the row process (e.g., B) is allowed to send messages to the column process (e.g.,
D). The figure illustrates that unidirectional communication can be enforced (e.g., D is
not allowed to send messages to B).

During the posting, the infrastructure attaches an unspoofable header to the message
indicating the ID of the sender process and the ID of the destination process. The MMR
places each posted message in a pool of shared Memory slots (represented as an array
of messages), and updates Pointers (represented as a two-dimensional array of indices
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Fig. 7. Diagram of the MILS Message Router

into Memory) that organizes incoming/outgoing messages. During posting, a Memory
cell indexed by row A, column B holding pointer X indicates that the memory location
pointed to by X is “owned” by process A and holds a message from process A destined
for process B. Entries in Flags (an array of boolean values with the same dimensions as
Pointers) indicate if the corresponding entry in Pointers represents a valid message or a
“place holder” default message that will not be propagated by the MMR.

Fig. 8 (a) displays the SPARK code for procedure Route that implements part of
the MMR routing phase. Conceptually, messages are routed by swapping Pointers

entries. Before Route is executed, the array of pointers points to outgoing messages,
whereas after routing it points to incoming messages. After routing, a Memory cell in-
dexed by Pointers row A, column B holding pointer X indicates that the memory
location pointed to by X is “owned” by process A and holds a message from process
B sent to process A. For any two processes A and B, the first two conditional blocks in
Route determine if messages from A and B (and vice versa) are allowed by the security
policy. If a message is not allowed, then the memory location holding it is cleared with
a default message and the corresponding Flags entry is set to false. Then, if there re-
mains a valid message flowing in either direction, Route swaps the Memory cell indices
in Pointers so that the ownership between the memory locations is exchanged among
the processes (note that if a message is allowed in one direction but not the other, the
swap will propagate a default message in the “disallowed” direction).

There are multiple reasons why it is very difficult to verify statically that the MMR
conforms to the end-to-end information flow policy as captured by the Policy matrix.
First, the examples of Section 2 illustrated the difficulties of statically reasoning about
individual cells of an array, and, in the MMR, invalid message channels are “squelched”
by clearing out (with a default message) individual cells within a large array. Second,
the information flow path between two partitions is not implemented via direct reference
to source and destination memory cells, but instead involves a level of indirection via
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procedure Route
−−# g l o b a l i n P o l i c y . Comm Pol icy ;
−−# i n o u t Flags , P o i n t e r s , Memory . Mem Space ;
−−# d e r i v e s P o i n t e r s from ∗ , P o l i c y . Comm Policy , Fl a g s &
−−# Memory . Mem Space from ∗ , P o l i c y . Comm Policy ,
−−# P o i n t e r s , F l a g s &
−−# Fl a g s from ∗ , P o l i c y . Comm Pol icy ;
i s

T : L b l t . P o i n t e r ;
beg i n

f o r I i n L b l t . P ro c ID l o o p
f o r J i n L b l t . P ro c ID range

I . . L b l t . Proc ID ’ L a s t l o o p
i f not P o l i c y . I s A l l o w e d ( I , J ) then
Memory . Wr i t e ( Msg t . Def Msg , P o i n t e r s ( I , J ) ) ;
F l a g s ( I , J ) : = FALSE;

end i f ;
i f not P o l i c y . I s A l l o w e d ( J , I ) then
Memory . Wr i t e ( Msg t . Def Msg , P o i n t e r s ( J , I ) ) ;
F l a g s ( J , I ) : = FALSE;

end i f ;
i f F l a g s ( I , J ) or F l a g s ( J , I ) then
T : = P o i n t e r s ( I , J ) ;
P o i n t e r s ( I , J ) : = P o i n t e r s ( J , I ) ;
P o i n t e r s ( J , I ) : = T ;

end i f ;
end l o o p ;

end l o o p ;
end Route ;

(a)

procedure Route
−−# g l o b a l i n P o l i c y . Comm Pol icy ;
−−# i n o u t Flags , P o i n t e r s , Memory . Mem Space ;
−−# d e r i v e s f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# P o i n t e r s ( I , J ) f rom
−−# P o i n t e r s ( J , I ) when
−−# ( P o l i c y . I s A l l o w e d ( I , J
−−# and ( Fl a g s ( I , J ) )
−−# or ( P o l i c y . I s A l l o w e d ( J , I )
−−# and Fl a g s ( J , I ) ) ,
−−# ∗ when
−−# ( n o t ( P o l i c y . I s A l l o w e d ( I , J )
−−# and Fl a g s ( I , J ) ) ) and
−−# ( n o t ( P o l i c y . I s A l l o w e d ( J , I )
−−# and Fl a g s ( J , I ) ) ) &
−−# f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# Memory . Mem Space ( P o i n t e r s ( I , J ) ) f rom
−−# {Msg t . Def Msg} when
−−# n o t P o l i c y . I s A l l o w e d ( I , J ) ,
−−# ∗ when
−−# P o l i c y . I s A l l o w e d ( I , J ) ) ) &
−−# f o r a l l I i n L b l t . Proc ID => (
−−# f o r a l l J i n L b l t . Proc ID => (
−−# Fl a g s ( I , J ) f rom
−−# {FALSE} when
−−# n o t P o l i c y . I s A l l o w e d ( I , J ) ,
−−# ∗ when
−−# P o l i c y . I s A l l o w e d ( I , J ) ) ) ;

(b)

Fig. 8. Source code and initial specification for procedure Routing of the MILS Message Router
(a), and information flow specification for the same procedure using extended specification and
analysis techniques for arrays (b)

the Pointers array. Third, the information flow path through the MMR between two
partitions is not static (e.g., as is the case for information flow between two variables of
scalar type), but it is changing – information for the same conceptual path flows through
different Memory cells whose “ownership” changes on different iterations.

As anticipated, Figure 8 (a) illustrates that the original SPARK annotations for
Route are far too imprecise to support verification of the desired end-to-end policy. For
example, the derives clause for Pointers states that the final value of the array is de-
rived from its initial value (*), from the communication policy (Policy.Comm Policy),
and from the array of flags (Flags). The problem here is that the forced abstraction of
Pointers array cells into a single atomic entity collapses the individual allowed inter-
partition information flow channels (where we needed to verify separation of channels)
and does not capture the fact that some inter-partition flows are disallowed. Furthermore,
we have lost information about the specific conditions of the Policy that enable or dis-
able corresponding flows in Pointers. Finally, without precise accounting of flows for
Pointers, it is impossible to get a handle on what we are most interested in: flows of
the actual messages through Memory.

Figure 8 (b) displays a contract in our extended contract language that is automat-
ically inferred using the precondition generation algorithm of the preceding section.
The derives clause for Pointers uses nested quantification (derived from the nested
loop structure) to capture the “swapping” action of Route. Moreover, it includes the
conditions under which the swapping occurs or under which Pointers(I,J) retains
its value. The Memory derives clause correctly captures the fact that the cell holding
an outgoing message is “cleared” with the default message when the policy disallows
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communication between the sender and destination (the derives clause for Flags has
a similar structure).

7 Related Work

The first theoretical framework for SPARK information flow is provided by Bergeretti
and Carré [9] who present a compositional method for inferring and checking depen-
dencies among variables. That approach is flow-sensitive, unlike most security type
systems [31,6] that rely on assigning a security level (“high” or “low”) to each variable.
Chapman and Hilton [11] describe how SPARK information flow contracts could be ex-
tended with lattices of security levels and how the SPARK Examiner could be enhanced
correspondingly. Rossebo et al.[25] show how the existing SPARK framework can be
applied to verify various unconditional properties of a MILS Message Router. Apart
from Spark Ada, there exists several tools for analyzing information flow, notably Jif
(Java + information flow) which is based on [21]), and FlowCaml [28].

Agreement assertions (inherently flow-sensitive) were introduced in [2] together
with an algorithm for computing (weakest) preconditions, but the approach does not in-
tegrate with programmer assertions. To address that, and to analyze heap-manipulating
languages, the logic of [1] employs three kinds of primitive assertions: agreement, pro-
grammer, and region (for a simple alias analysis). But, since those can be combined
only through conjunction, programmer assertions are not smoothly integrated, and one
cannot capture conditional information flows. This motivated Amtoft & Banerjee [3]
to introduce conditional agreement assertions (for a heap-manipulating language); in
[5] that approach was applied to the (heap-free) SPARK setting and worked out ex-
tensively, with an algorithm for computing loop invariants and with reports from an
implementation. All of these works treat arrays as indivisible entities.

Reasoning about individual array elements is desirable for the precise analysis of
a loop that traverses an array. We have established syntactic and semantic conditions
for when we can allow such fine-grained analysis; these conditions include what is es-
sentially the absence of loop-carried dependencies. This suggests a relationship to the
body of work, with [24] as a seminal paper, addressing when loops can be parallel-
lized. Our conditions are more permissive though since they allow a location to be read
before it is written, as for the loop body h[q] := h[q + 1] (whereas we do not allow
h[q + 1] := h[q]). Even though our focus is on the flow between between array ele-
ments, not their actual content, we might look into the body of work on static analysis
of array content to see if some techniques may improve the precision of our analysis.

Rather than designing a specific logic for information flow, one can employ general
logic as does the recently popular self-composition technique. Here the information
flow property which we encode as {x�} S {y�} is encoded as {x = x′} S; S′ {y =
y′} where S′ is a copy of S with all variables renamed (primed); such a property can
be checked using existing static verifiers. This is the approach by Barthe et al. [8] that
was extended by, e.g., Terauchi and Aiken [30] and Naumann [22]. The effect of self-
composition can also be obtained through dynamic logic, as done by Darvas et al [14].
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When it comes to conditional information flow, the most noteworthy existing tool is
the slicer by Snelting et al [29] which generates path conditions in program dependence
graphs for reasoning about end-to-end flows between specified program points/vari-
ables. In contrast, we provide a contract-based approach for compositional reasoning
about conditions on flows with an underlying logic representation that can provide ex-
ternal evidence for conformance to conditional flow properties. We plan to investigate
the deeper technical connections between the two approaches.

Ground-breaking efforts in certification of MILS infrastructure [17,19] have used
approaches in which source code has been hand-translated into executable models in
theorem provers such as ACL2 and PVS. While the direct theorem-proving approach
followed in these efforts enables proofs of very strong properties beyond what our
framework can currently handle, our aim is to dramatically reduce the labor required,
and the potential for error, by integrating automated techniques directly on code, mod-
els, and developer workflows to allow many information flow verification obligations
to be discharged earlier in the life cycle.

8 Conclusions and Future Work

We believe that the results of this paper provide another demonstration that informa-
tion flow logic as introduced in [2] provides a powerful and flexible framework for
precise compositional reasoning about information flow. The logic seems particularly
well-suited for SPARK because (a) it naturally provides a semantics for SPARK’s orig-
inal flow contracts, and (b) SPARK’s simplicity means that extensive use of the more
complicated aspects of the logic (e.g., object invariants required to handle the heap[3])
can be avoided while still yielding significant increases in precision compared to the
original SPARK contract language.

Several challenges remain as we transition this work into an environment that will
be used by industrial engineers. First, the contracts that we infer can be so precise that
they become large and unwieldy. The complexity of the contracts in these cases often
results when the contract makes distinctions between different conditional flows that
are unnecessary for establishing the desired end-to-end flow policy of a system or sub-
system. We are developing tool-supported methodologies that guide programmers in
writing more abstract specifications that capture distinctions required for end-to-end
policies. Second, although our treatment of arrays using quantification works well for
buffer manipulations often seen in information assurance applications, it works less
well when trying to describe flows between elements of data structures such as trees
implemented using arrays. We are investigating how separation logic might be able to
provide a solution for this.
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A Semantic Framework for Declassification and
Endorsement

Aslan Askarov and Andrew Myers

Department of Computer Science, Cornell University

Abstract. Language-based information flow methods offer a principled way to
enforce strong security properties, but enforcing noninterference is too inflexi-
ble for realistic applications. Security-typed languages have therefore introduced
declassification mechanisms for relaxing confidentiality policies, and endorse-
ment mechanisms for relaxing integrity policies. However, a continuing challenge
has been to define what security is guaranteed when such mechanisms are used.
This paper presents a new semantic framework for expressing security policies
for declassification and endorsement in a language-based setting. The key in-
sight is that security can be described in terms of the power that declassification
and endorsement give the attacker. The new framework specifies how attacker-
controlled code affects program execution and what the attacker is able to learn
from observable effects of this code. This approach yields novel security condi-
tions for checked endorsements and robust integrity. The framework is flexible
enough to recover and to improve on the previously introduced notions of robust-
ness and qualified robustness. Further, the new security conditions can be soundly
enforced by a security type system. The applicability and enforcement of the new
policies is illustrated through various examples, including data sanitization and
authentication.

1 Introduction

Many common security vulnerabilities can be seen as violations of either confidential-
ity or integrity. As a general way to prevent these information security vulnerabilities,
information flow control has become a popular subject of study, both at the language
level [17] and at the operating-system level. The language-based approach holds the ap-
peal that the security property of noninterference [11], can be provably enforced using
a type system [19]. In practice, however, noninterference is too rigid: many programs
considered secure need to violate noninterference in limited ways.

Using language-based downgrading mechanisms such as declassification [14] and
endorsement [16,21], programs can be written in which information is intentionally
released, and in which untrusted information is intentionally used to affect trusted in-
formation or decisions. Declassification relaxes confidentiality policies, and endorse-
ment relaxes integrity policies. Both endorsement and declassification have been essen-
tial for building realistic applications: for example, the various applications built with
Jif [12,15], including games [4], a voting system [10], and web applications [8].

A continuing challenge is to understand what security is obtained when code uses
downgrading. The contribution of this paper is providing a more precise and satisfactory
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answer to this question. Much prior work on declassification is usefully summarized by
Sands and Sabelfeld [18]. However, there is comparatively little work on characterizing
the security of declassification in the presence of endorsement. Because confidential-
ity and integrity are not independent, it is important to understand how endorsement
weakens confidentiality.

To see an interaction between endorsement and confidentiality, consider the follow-
ing notional code example, in which a service holds both old data (old_data) and new
data (new_data), but the new data is not to be released until time embargo_time. The
variable new_data is considered confidential, and must be declassified to be released:

i f request_t ime >= embargo_time
then r e t u r n declassi fy ( new_data )
else r e t u r n o ld_data

Because the requester is not trusted, the requester must be treated as a possible at-
tacker. Suppose the requester has control over the variable request_time, which we
can model by considering that variable to be low-integrity. Because the intended se-
curity policy depends on request_time, that means the attacker controls the policy
that is being enforced, and can obtain the confidential new data earlier than intended.
This example shows that the integrity of request_time affects the confidentiality of
new_data. Therefore, the program should be considered secure only when the guard
expression, request_time >= embargo_time, is high-integrity.

A different but reasonable security policy is that the requester may specify the re-
quest time as long as the request time is in the past. This policy could be enforced in
a language with endorsement by first checking the low-integrity request time to ensure
it is in the past; then, if the check succeeds, endorsing it to be high-integrity and pro-
ceeding with the information release. The explicit endorsement is justifiable because
the attacker’s actions are permitted to affect the release of confidential information as
long as adversarial inputs have been properly sanitized. This is a common pattern in
servers that process possibly adversarial inputs.

Robust declassification has been introduced in prior work [20,13,9] as a semantic
condition for secure interactions between integrity and confidentiality. The prior work
also develops type systems for enforcing robust declassification, which are implemented
as part of Jif [15]. However, the security conditions for robustness are not satisfactory.
First, they largely ignore the possibility of endorsement, with the exception of qualified
robustness [13], which works by giving the endorse operation a somewhat ad-hoc,
nondeterministic semantics. Second, prior conditions only characterize information se-
curity for programs that terminate. A program that does not terminate is automatically
considered to satisfy robust declassification, even if it releases information improperly
during execution. Therefore the security of programs that do not terminate (such as
servers) cannot be described.

The main contribution of this paper is a general, language-based semantic frame-
work for expressing information flow security. This semantically captures the ability of
the attacker to influence knowledge. The robust interaction of integrity and confiden-
tiality can then be captured cleanly as a constraint on attacker control. Endorsement
is naturally represented in this framework as a form of attacker control, and a more
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P, T

P, U

S, U

S, T

Fig. 1. Information flow lattice

e ::= n | x | e op e

c ::= skip | x := e | c; c
| if e then c1 else c2 | while e do c

Fig. 2. Syntax of the language

satisfactory version of qualified robustness can be defined. All these security conditions
can be formalized in both progress-sensitive and progress-insensitive variants.

We show that the progress-insensitive variants of these improved security conditions
can be enforced soundly by a simple security type system. Recent versions of Jif have
added a checked endorsement construct that is useful for expressing complex security
policies [8], but whose semantics were not precisely defined; this paper gives semantics,
typing rules and a semantic security condition for checked endorsement, and shows that
checked endorsement can be translated faithfully into simple endorsement at both the
language and the semantic level.

The rest of this paper is structured as follows. Section 2 shows how to define infor-
mation security in terms of attacker knowledge. Section 3 introduces attacker control.
Section 4 defines progress-sensitive and progress-insensitive robustness using the new
framework. Section 5 extends this to improved definitions of robustness that allow en-
dorsements, generalizing qualified robustness. A type system for enforcing these robust-
ness conditions is presented in Section 6. The checked endorsement construct appears
in Section 7, which introduces a new notion of robustness that allows checked endorse-
ments, and shows that it can be understood in terms of robustness extended with simple
endorsements. Section 8 introduces attacker power. Additional examples are presented
in Section 9, related work is discussed in Section 10, and Section 11 concludes.

2 Semantics

Information flow levels. We assume two security levels for confidentiality—public and
secret—and two security levels for integrity—trusted and untrusted. These levels are
denoted respectively P, S and T, U. We define information flow ordering " between
these two levels: P " S, and T " U. The four levels define a security lattice, as shown
on Figure 1. Every point on this lattice has two security components: one for confiden-
tiality, and one for integrity. We extend information flow ordering to elements on this
lattice: �1 " �2 if the ordering holds between the corresponding components. As stan-
dard, we define join �1 � �2 as the least upper bound of �1 and �2, and meet �1 � �2 as
the greatest upper bound of �1 and �2.

Language and semantics. We consider a simple imperative language with syntax pre-
sented on Figure 2. The semantics of the language is fairly standard. For expressions
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we define big-step evaluation of the form 〈e, m〉 ↓ v, where v is the result of evaluating
expression e in memory m.

For commands we define a small-step operational semantics. For a single transition,
we write 〈c, m〉−→t〈c′, m′〉, where c and m are the initial command and memory, c′ and
m′ are the resulting command and memory. The transitions defined by the semantics are
fully standard, and are described in detail in the associated technical report. The only
unusual feature is the annotation t on each transition, which we call an event. Events
record assignments: an assignment to variable x of value v is recorded by an event (x, v).
We write 〈c, m〉−→∗�t to mean that trace �t is produced starting from 〈c, m〉 using zero or
more transitions. Each trace �t is composed of individual events t1 . . . tk . . . , and a prefix
of �t up to the i-th event is denoted as �ti. If a transition does not affect memory, its event
is empty, which is either written as ε or is omitted, e.g.: 〈c, m〉−→〈c′, m′〉.

Finally, we assume that the security environment Γ maps program variables to their
security levels. Given a memory m we write mP for the public part of the memory.

2.1 Attacker Knowledge

This section provides background on the attacker-centric model for information flow
security [2]. We recall definitions of attacker knowledge, progress knowledge, and di-
vergence knowledge, and introduce progress-(in)sensitive release events.

Low events. Among the events that are generated during a trace, we distinguish a set
of low (or public) events. Low events correspond to observations that an attacker can
make during a run of the program. We assume that attacker may observe individual
assignments to public variables. Furthermore, if the program terminates, we assume
that a termination event ⇓ may also be observed by the attacker.

Given a trace �t, low events in that trace are denoted as �tP. A single low event is
often denoted as �, and a sequence of low events is denoted as ��. We overload the
notation for semantic transitions, writing 〈c, m〉−→∗�� if only low events produced from

configuration 〈c, m〉 are relevant, that is there is a trace �t such that 〈c, m〉−→∗�t∧�tP = ��.
Low events are the key element in the definition of attacker knowledge [2].

The knowledge of the attacker is described by the set of initial memories compat-
ible with low observations. Any reduction in this set means the attacker has learned
something about secret parts of the initial memory.

Definition 1 (Attacker knowledge). Given a sequence of low events ��, initial low
memory mP, and program c, attacker knowledge is

k(c, mP, ��) � {m′ |mP = m′P ∧ 〈c, m′〉−→∗��}

Attacker knowledge gives a handle on what information attacker learns with every low
event. The smaller the knowledge set, the more precise is the attacker’s information
about secrets. Knowledge is monotonic in the number of low events: as the program
produces low events, the attacker may learn more about secrets.

Two extensions of attacker knowledge are useful: progress knowledge [1,3] and di-
vergence knowledge [1].
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Definition 2 (Progress knowledge). Given a sequence of low events ��, initial low mem-
ory mP, and a program c, define progress knowledge k→(c, mP, ��) as

k→(c, mP, ��) � {m′ |m′P = mP ∧ 〈c, m′〉−→∗��〈c
′′, m′′〉−→∗�′}

Progress knowledge represents the information the attacker obtains by seeing public
events �� followed by one more public event. Progress knowledge and attacker knowl-
edge are related as follows: given a program c, memory m and a sequence of low events
�1 . . . �n obtained from 〈c, m〉 we have that for all i < n,

k(c, mP, ��i) ⊇ k→(c, mP, ��i) ⊇ k(c, mP, ��i+1)

To illustrate this, consider program l := 0; while h = 0 do skip; l := h with initial
memory m(h) = 7. This program produces a sequence of two low events (l, 0)(l, 7).
The knowledge after the first event k(c, mP, (l , 0)) is a set of all possible memories. Note
that no low events are possible after the first assignment unless h is non-zero. Progress
knowledge reflects this: k→(c, mP, (l , 0)) is a set of memories such that h �= 0. Finally,
the knowledge after two events k(c, mP, (l , 0)(l , 7)) is a set of memories where h = 7.

Using attacker knowledge, one can express many confidentiality policies [6,3,7]. For
example, a strong notion of progress-sensitive noninterference [11] can be expressed
by demanding that knowledge between low events does not change:

k(c, mP, ��i) = k(c, mP, ��i+1)

Progress knowledge enables expressing more permissive policies, such as progress-
insensitive noninterference (in [1] it is called termination-insensitive), which allows
leakage of information, but only via termination channels. This is expressed by re-
quiring equivalence of progress knowledge after seeing i events with the knowledge
obtained after i + 1-th event:

k→(c, mP, ��i) = k(c, mP, ��i+1)

In the example l := 0; while h = 0 do skip; l := 1, the knowledge inclusion between
the two events is strict: k(c, mP, (l, 0)) ⊃ k(c, mP, (l, 0)(l, 1)). Therefore, the example
does not satisfy progress-sensitive noninterference. On the other hand, the low event
that follows the while loop does not reveal more information than the knowledge about
the existence of that event. Formally, k→(c, mP, (l, 0)) = k(c, mP, (l, 0)(l, 1)), hence
the program satisfies progress-insensitive noninterference.

These definitions also allow us to reason about knowledge changes along parts of the
traces. We say that knowledge is preserved in a progress-(in)sensitive way along a part
of a trace, assuming that the respective knowledge equality holds for the low events that
correspond to that part.

Next, we extend possible observations to a divergence event⇑. For attackers that may
observe program divergence⇑, we define knowledge on the sequence of low events that
includes divergence (we write 〈c, m〉 ⇑ to mean configuration 〈c, m〉 diverges):

Definition 3 (Divergence knowledge)

k(c, mP, �� ⇑) � {m′ |m′P = mP ∧ 〈c, m′〉−→∗��〈c
′′, m′′〉 ∧ 〈c′′, m′′〉 ⇑}
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Note that the above definition does not require divergence immediately after �� — it
allows for more low events to be produced after ��. Divergence knowledge is used in
Section 4.

Let us consider events at which knowledge preservation is broken. We call these
events release events.

Definition 4 (Release events). Given a program c and a memory m, such that

〈c, m〉−→∗��〈c
′, m′〉−→∗r

– r is a progress-sensitive release event, if k(c, mP, ��) ⊃ k(c, mP, ��r)
– r is a progress-insensitive release event, if k→(c, mP, ��) ⊃ k(c, mP, ��r)

For example, in the program low := 1; low ′ := h, the second assignment is both a
progress-sensitive and a progress-insensitive release event. In the program while h =
0 do skip; low := 1 the assignment to low is a progress-sensitive release event, but is
not a progress-insensitive release event.

3 Attacks

To reason about security of program in the presence of active attacks, we introduce a
formal model of the attacker. Our formalization follows the one in [13], where attacker-
provided code can be injected into the program. This section provides examples of how
attacker-injected code may affect attacker knowledge, followed by a semantic charac-
terization of the attacker’s influence on knowledge.

We extend the syntax to allow execution of attacker-controlled code:

c[�•] ::= . . . | [•]

We limit attacks that can be substituted into the holes to so-called fair attacks — attacks
that do not read confidential information and do not modify trusted variables.

Definition 5 (Fair attacks). An attack is a vector of commands �a that are substituted
in place of holes in c[�•]. Fair attacks are defined by the following grammar where for
all variables y in e we have Γ (y) " (P, U) and for variable x in assignments we have
(P, U) " Γ (x).

a ::= skip | x := e | a; a | if e then a else a | while e do a

3.1 Examples of Attacker Influence

In the examples below, we use notation [(u, v)] when a low event (u, v) is generated by
attacker-injected code.

Consider program [•]; low := u > h; where h is a secret variable, and u is an
untrusted public variable. The attacker’s code is executed before the low assignment
and may change the value of u. Consider memory m, where m(h) = 7 and the two
attacks a1 = u := 0 and a2 = u := 10. These attacks result in different values being
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assigned to variable low . The first trace results in low events [(u, 0)](low , 0), while the
second trace results in low events [(u, 10)](low , 1). This also means that the knowledge
about the secret is different in each trace. We have

k(c[a1], mP, [(u, 0)](low , 0)) = {m′ |m′(h) ≥ 0}
k(c[a2], mP, [(u, 10)](low , 1)) = {m′ |m′(h) < 10}

Clearly, in this program the attacker has some control over what information about
secrets he learns. Observe that it is not necessary for the last assignment to differ in
order for the knowledge to be different. For this, consider attack a3 = u := 5. This
attack results in low events [(u, 5)](low , 0), that do the same assignment to low as a1
does. Attacker knowledge, however, is different from that obtained by a1:

k(c[a3], mP, [(u, 5)](low , 0)) = {m′ |m′(h) ≥ 5}

Next, consider program [•]; low := h. This program gives away knowledge about the
value of h independently of untrusted variables. The only way for the attacker to in-
fluence what information he learns is to prevent that assignment from happening at all,
which, as a result, will prevent him from learning that information. This can be done by
an attack such as a = while true do skip, which makes the program diverge before
the assignment is reached. We call attacks like this pure availability attacks. Another ex-
ample of a pure availability attack is in the program [•]; while u = 0 do skip; low :=
h. In this program, any attack that sets u to 0 prevents the assignment from happening.

Consider another example [•]; while u < h′ do skip; low := 1. As in the previous
example, the value of u may change the reachability of low := 1. However, this is
not a pure availability attack, because (assuming the attacker can observe divergence)
diverging before the last assignment gives the attacker additional information about
secrets, namely that u < h′. New information is also obtained if the attacker sees the
low assignment. We name attacks like this progress attacks. In general, a progress attack
is an attack that leads to program divergence in a way that observing that divergence
(i.e., detecting there is no progress) gives new knowledge to the attacker.

3.2 Attacker Control

We represent attacker control as a set of attacks that are similar in their influence on
knowledge. Intuitively, if a program leaks no information to the attacker, the control
corresponds to all possible attacks. In general, the more attacks are similar, the less
influence the attacker has. Moreover, the control is a temporal property and depends on
the trace that has been currently produced. Here, the longer a trace is, the more influence
an attack may have, and the smaller the control set is.

Similar attacks. The key element in the definition of control is specifying when two
attacks are similar. Given a program c[�•], memory m, consider two attacks �a, and�b that
produce traces �t and �q respectively:

〈c[�a], m〉−→∗�t and 〈c[�b], m〉−→∗�q
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uncertainty uncertainty

low events low events

Fig. 3. Similar attacks and traces

We compare�a and�b based on how they change attacker knowledge along their respective
traces. First, if knowledge is preserved along one of the traces, say�t, it must be preserved
along �q as well. Second, if at some point in �t there is a release event (x, v), there must be
a matching low event (x, v) in �q, and the attacks are similar along the rest of the traces.

Visually, this requirement is described by the two diagrams in Figure 3. Each dia-
gram shows the change of knowledge as more low events are produced. Here the x-axis
corresponds to low events, and the y-axis reflects the attacker’s uncertainty about initial
secrets. Whenever one of traces reaches a release event, depicted by vertical drops, there
must be a corresponding low event in the other trace, such that the two events agree.
This is depicted by the dashed lines between the two diagrams.

Formally, these requirements are stated using the following definitions.

Definition 6 (Knowledge segmentation). Given a program c, memory m, and a trace
�t, a sequence of indexes p1, . . . pN such that p1 < p2 · · · < pN and
�tP = �1...p1�p1+1...p2 . . . �pN−1+1...pN is called

– progress-sensitive knowledge segmentation of size N , if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k(c, mP, ��i) = k(c, mP, ��i+1), denoted by
Seg(c, m,�t, p1 . . . pN).

– progress-insensitive knowledge segmentation of size N if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k→(c, mP, ��i) = k(c, mP, ��i+1), denoted by
Seg→(c, m,�t, p1 . . . pN ).

Low events pi + 1 for 1 ≤ i < N are called segmentation events.

Note that given a trace there can be more than one way to segment it, and for every trace
consisting of n low events this can be trivially achieved by a segmentation of size n.

Definition 7 (Similar attacks and traces∼c[�•],m ). Given a program c[�•], memory m,
and two attacks �a and �b that produce traces �t and �q, define �a and �b as similar along �t
and �q for the progress-sensitive attacker, if there are two segmentations p1 . . . pN and
p′1 . . . p′N (for some N ) such that Seg(c[�a], m,�t, p1 . . . pN ), Seg(c[�b], m, �q, p′1 . . . p′N ),
and ∀i . 1 ≤ i < N . tPpi+1 = qPp′

i+1.
For the progress-insensitive attacker, the definition is similar except that it uses

progress-insensitive segmentation Seg→. If two attack–trace pairs are similar, we write
(�a,�t) ∼c[�•],m (�b, �q) (for progress-insensitive similarity, (�a,�t) ∼c[�•],m

→ (�b, �q)).

The construction of Definitions 6 and 7 can be exemplified by program [•]; if u then
(while h ≤ 100 do skip) else skip; low1 := 0; low2 := h > 100. Consider memory
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with m(h) = 555, and two attacks a1 = [u = 1], and a2 = [u = 0]. Both attacks reach
the assignments to low variables. However, for a2 the assignment to low2 is a progress-
insensitive release event, while for a1 the knowledge changes at an earlier assignment.

Attacker control. We define attacker control with respect to an attack �a and a trace �t as
the set of attacks that are similar to the given attack in its influence on knowledge.

Definition 8 (Attacker control (progress-sensitive))

R(c[�•], m,�a,�t) � {�b | ∃�q . (�a,�t) ∼c[�•],m (�b, �q))}

To illustrate how attacker control changes, consider example program [•]; low := u <
h; low ′ := h where u is an untrusted variable and h is a secret variable. To understand
attacker control of this program, we consider an initial memory m(h) = 7 and attack
a = u := 5. The low event (low , 1) in this trace is a release event. The attacker control
is a set of all attacks that are similar to a and trace [(u := 5)], (low , 1) in its influence
on knowledge. This corresponds to attacks that set u to values such that u < 7. The
assignment to low ′ changes attacker knowledge as well, but the information that the
attacker gets does not depend on the attack: any trace starting in m and reaching the
second assignment produces the low event (low ′, 7); hence the attacker control does
not change at that event.

Consider the same example but with the two assignments swapped: [•]; low ′ :=
h; low := u < h. The assignment to low ′ is a release event that the attacker cannot
affect. Hence the control includes all attacks that reach this assignment. The result of
the assignment to low depends on u. However, this result does not change attacker
knowledge. Indeed, in this program, the second assignment is not a release event at all.
Therefore, the attacker control is simply all attacks that reach the first assignment.

Progress-insensitive control. For progress-insensitive security, attacker control is de-
fined similarly using the progress-insensitive comparison of attacks.

Definition 9 (Attacker control (progress-insensitive))

R→(c[�•], m,�a,�t) � {�b | ∃�q . (�a,�t) ∼c[�•],m
→ (�b, �q))}

Consider program [•]; while u < h do skip; low := 1. Here, any attack produces a
trace that preserves progress-insensitive noninterference. If the loop is taken, the pro-
gram produces no low events, hence, it gives no new knowledge to the attacker. If the
loop is not taken, and the low assignment is reached, this assignment preserves attacker
knowledge in a progress-insensitive way. Therefore, the attacker control is all attacks.

4 Robustness

Release control. Next, we define release control R�, which captures the attacker’s in-
fluence on release events. Intuitively, release control expresses the extent to which an
attacker can affect the decision to produce some release event.
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Definition 10 (Release control (progress-sensitive))

R�(c[�•], m,�a,�t) � {�b | ∃�q . (�a,�t) ∼c[�•],m (�b, �q) ∧
(∃�r′ . k(c[�b], mP, �qP) ⊃ k(c[�b], mP, �qP

�r′P)

∨ k(c[�b], mP, �qP) ⊃ k(c[�b], mP, �qP ⇑)
∨ 〈c[�b], m〉 ⇓)}

The definition for release control is based on the one for attacker control with the three
additional clauses, explained below. These clauses restrict the set of attacks to those that
either terminate or produce a release event. Because the progress-sensitive attacker can
also learn new information by observing divergence, the definition contains additional
clause (on the third line) that uses divergence knowledge to reflect that.

Figure 4a depicts the relationship between release control and attacker control, where
the x-axis corresponds to low events, and the y-axis corresponds to attacks. The top line
depicts attacker control R, where vertical lines correspond to release events. The gray
area denotes release control R�. In general, for a given attack �a and a corresponding
trace �t�r, where �r contains a release event, we have the following relation between re-
lease control and attacker control:

R(c[�•], m,�a,�t) ⊇ R�(c[�•], m,�a,�t) ⊇ R(c[�•], m,�a,�t�r)

Note the white gaps and the gray release control above the dotted lines on Figure 4a.
The white gaps correspond to difference R(c[�•], m,�a,�t) \ R�(c[�•], m,�a,�t). This is a
set of attacks that do not produce further release events and diverge without giving
any new information to the attacker—pure availability attacks. The gray zones above
the dotted lines are more interesting. Every such zone corresponds to the difference
R�(c[�•], m,�a,�t) \ R(c[�•], m,�a,�t�r). In particular, when this set is non-empty, the at-
tacker can launch attacks corresponding to each of the last three lines of Definition 10:

1. either trigger a different release event �r′, or
2. cause program to diverge in a way that also releases information, or
3. prevent a release event from happening in a way that leads to program termination

Absence of such attacks constitutes the basis for our security conditions in Defini-
tions 12 and 13. Before moving on to these definitions, we introduce the progress-
insensitive variant of release control.

Definition 11 (Release control (progress-insensitive))

R�
→(c[�•], m,�a,�t) � {�b | ∃�q . (�a,�t) ∼c[�•],m

→ (�b, �q) ∧
(∃�r′ . k→(c[�b], mP, �qP) ⊃ k(c[�b], mP, �qP

�r′P) ∨ 〈c[�b], m〉 ⇓)}

This definition uses the progress-insensitive variants of similar attacks and release
events. It also does not account for knowledge obtained from divergence.

With the definition of release control at hand we can now define semantic conditions
for robustness. The intuition is that all attacks leading to release events should lead
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Fig. 4. Release control and robustness

to the same release event. Formally, this is defined as inclusion of release control into
attacker control, where release control is computed on the prefix of the trace without a
release event.

Definition 12 (Progress-sensitive robustness). Program c[�•] satisfies progress-sen-
sitive robustness if for all memories m and attacks �a, s.t. 〈c[�a], m〉−→∗�a〈c′, m′〉−→∗�r,
and �r contains a release event, i.e., k(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have

R�(c[�•], m,�a,�t) ⊆ R(c[�•], m,�a,�t�r)

Note that set inclusion in the above definition could be replaced with strict equality,
but we use ⊆ for compatibility with future definitions. Figure 4b illustrates the relation
between release control and attacker control for robust programs. Note how release
control is bounded by the attacker control at the next release event.

Examples. We illustrate the definition of robustness with a few examples.
Consider program [•]; low := u < h, and memory such that m(h) = 7. This pro-

gram is rejected by Definition 12. To see this, pick an a = u := 5, and consider the
part of the trace preceding the low assignment. Release control R�(c[�•], m, a, [(u, 5)])
is all attacks that reach the assignment to low . On the other hand, the attacker control
R(c[�•], m, a, [(u, 5)](low , 1)) is a set of all attacks where u < 7, which is smaller than
R�. Therefore this program does not satisfy the condition.

Program [•]; low := h; low ′ := u < h satisfies robustness. The only release event
here corresponds to the first assignment. However, because the knowledge given by
that assignment does not depend on untrusted variables, the release control includes all
attacks that reach the assignment.

Program [•]; if u > 0 then low := h else skip is rejected. Consider memory
m(h) = 7, and attack a = u := 1 that leads to low trace [(u, 1)], (low , 7). The attacker
control for this attack and trace is a set of all attacks such that u > 0. On the other hand,
release control R�(c[�•], m,�a, [(u, 1)]) is the set of all attacks that lead to termination,
which includes attacks such that u ≤ 0. Therefore, the release control corresponds to a
bigger set than the attacker control.

Program [•]; while u > 0 do skip; low := h is accepted. Depending on the at-
tacker controlled variable the release event is reached. However, this is an example of
availability attack, which is ignored by Definition 12.
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Program [•]; while u > h do skip; low := 1 is rejected. Any attack leading to the
low assignment restricts the control to attacks such that u ≤ h. However, release control
includes attacks u > h, because the attacker learns information from divergence.

The definition of progress-insensitive robustness is similar to Definition 12, but uses
progress-insensitive variants of release events, control, and release control. As a result,
program [•]; while u > h do skip; low := 1 is accepted: attacker control is all attacks.

Definition 13 (Progress-insensitive robustness). Program c[�•] satisfies progress-insen-
sitive robustness if for all memories m and attacks �a, s.t. 〈c[�a], m〉−→∗�a〈c′, m′〉−→∗�r,
and �r contains a release event, i.e., k→(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have

R�
→(c[�•], m,�a,�t) ⊆ R→(c[�•], m,�a,�t�r)

5 Endorsement

This section extends the semantic policies for robustness in a way that allows endorsing
attacker-provided values.

Syntax and semantics. We extend the language syntax with endorsement:

c[�•] ::= . . . | x := endorseη(e)

We assume that every endorsement in the program source has a unique endorsement
label η. Semantically, endorsements produce endorsement events which record the label
of the endorsement statement together with the value that is endorsed. Whenever the
endorsement label is unimportant we omit it from the examples.

〈e, m〉 ↓ v

〈x := endorseηi(e), m〉−→endorse(ηi,v)〈stop, m[x �→ v]〉

Note that endorse(ηi, v) events need not mention variable name x since that informa-
tion is implied by the unique label ηi.

Irrelevant attacks. Given a trace �t, we introduce irrelevant attacks Φ(�t) as the attacks
that lead to the same sequence of endorsement events as in �t, until they necessarily dis-
agree on one of the endorsements. Because the influence of these attacks is reflected
at endorsement events, we exclude them from consideration when comparing with at-
tacker control. We start by defining irrelevant traces. Given a trace �t, irrelevant traces
for �t are all traces �t′ that agree with �t on all endorsements but the last one. We define
this set as follows.

Definition 14 (Irrelevant traces). Given a trace �t, where endorsements are marked as
endorse(ηj , vj), define a set of irrelevant traces based on the number of endorsements
in �t as φi(�t): φ0(�t) = ∅, and

φi(�t) = {�t′ | �t′ = . . . endorse(ηi−1, vi−1) . . . endorse(ηi, v
′
i) . . . } s.t. vi �= v′i

Define φ(�t) �
⋃

i φi(�t) as a set of irrelevant traces w.r.t. �t.

Definition 15 (Irrelevant attacks). Φ(c[�•], m,�t) � {�a| 〈c[�a], m〉−→∗�t′ ∧ �t′ ∈ φ(�t)}
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Security. The security conditions for robustness can be adjusted now to accommodate
endorsements that happen along the trace. The idea is to exclude irrelevant attacks from
the left-hand side of Definitions 12 and 13. This security condition, which has both
progress-sensitive and progress-insensitive versions, expresses roughly the same idea
as qualified robustness [13], but in a more natural and direct way.

Definition 16 (Progress-sensitive robustness with endorsements). Program c[�•] sat-
isfies progress-sensitive robustness with endorsement if for all memories m and attacks
�a, such that 〈c[�a], m〉−→∗�t〈c′, m′〉−→∗�r, and �r contains a release event, i.e.,
k(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have

R�(c[�•], m,�a,�t) \ Φ(c[�•], m,�t�r) ⊆ R(c[�•], m,�a,�t�r)

We refer to the set R�(c[�•], m,�a,�t) \ Φ(c[�•], m,�t�r) as a set of relevant attacks.

Examples. Program [•]; low := endorseη1(u < h) is accepted. Consider initial mem-
ory m(h) = 7, and an attack u := 1; this produces a trace [(u, 1)]endorse(η1, 1). The
endorsed assignment also produces a release event. We have that

– Release control R� is a set of all attacks that reach the low assignment.
– Irrelevant traces φ([•]; low := endorseη1(u < h), m, [(u, 1)]endorse(η1, 0)) is a

set of traces that end in endorsement event endorse(η1, v) such that v �= 0. Thus,
irrelevant attacks Φ([•]; low := endorseη1(u < h), m, [(u, 1)]endorse(η1, 0))
must consist of attacks that reach the low assignment and set u to values u ≥ 7.

– The left-hand side of Definition 16 is therefore the set of attacks that reach the
endorsement and set u to u < 7.

– As for the attacker control on the right-hand side, it consists of attacks that set
u < 7. Hence, the set inclusion of Definition 16 holds and the program is accepted.

Program [•]; low := endorseη1(u); low ′ := u < h′′ is accepted. The endorsement in
the first assignment implies that all relevant attacks must agree on the value of u, and,
consequently, they agree on the value of u < h′′, which gets assigned to low ′. This also
means that relevant attacks belong to the attacker control (which contains all attacks
that agree on u < h′′).

Program [•]; low := endorseη1(u < h); low ′ := u < h′′ is rejected. Take initial
memory such that m(h) �= m(h′). The set of relevant attacks after the second assign-
ment contains attacks that agree on u < h (due to the endorsement), but not necessarily
on u < h′′. The latter, however, is the requirement for the attacks that belong to the
attacker control.

Program [•]; if u > 0 then h′ := endorse(u) else skip; low := h′ < h is
rejected. Assume initial memory where m(h) = m(h′) = 7. Consider attack a1 that
sets u := 1 and consider trace �t1 which it gives. This trace endorses u in the then
branch, overwrites the value of h′ with 1, and produces a release event (low , 1). Con-
sider another attack a2 which sets u := 0, and consider the corresponding trace �t2. This
trace contains release event (low , 0) without any endorsements. Now, attacker control
R(c[�•], m, a2,�t2) excludes a1, because of the disagreement at the release event. At the
same time, a1 is a relevant attack for a2, because no endorsements happen along �t2.
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We can also define robustness with endorsement in a progress-insensitive way:

Definition 17 (Progress-insensitive robustness with endorsement). Program c[�•]
satisfies progress-insensitive robustness with endorsement if for all memories m and
attacks �a, such that 〈c[�a], m〉−→∗�t〈c′, m′〉−→∗�r, and �r contains a release event, i.e.,
k→(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have

R�
→(c[�•], m,�a,�t) \ Φ(c[�•], m,�t�r) ⊆ R→(c[�•], m,�a,�t�r)

6 Enforcement

This section shows the enforcement of robustness using a security type system. While
this section focuses on progress-insensitive enforcement, it is possible to refine the type
system to deal with progress-sensitivity (modulo availability attacks). Figure 5 displays
type rules for expressions and commands. This type system is based on the one of [13]
and is similar to many standard security type systems.

Declassification. We extend the language with a language construct for declassification
of expressions declassify(e). Whereas in earlier examples, we considered an assign-
ment l := h to be secure if it did not violate robustness, we now require information
flows from public to secret to be mediated by declassification. While declassification
has no additional semantics and can be inferred automatically, its use has the following
motivations:

1. On the enforcement level, the type system conveniently ensures that a non-progress
release event may happen only at declassification. All other assignments preserve
progress-insensitive knowledge.

2. Much of the related work on language-based declassification policies uses similar
type systems. Showing our security policies can be enforced using such systems
makes the results more general.

Typing of expressions. Type rules for expressions have form Γ  e : �, D where �
is the level of the expression, and D is a set of variables that may be declassified.
The declassification is the most interesting rule among expressions. It downgrades the
confidentiality level of the expression by returning � � (P, U), and counts all variables
in e as declassified.

Typing of commands. Type rule for commands have form Γ, pc  c. The rules are
standard for a security type system. We highlight typing of assignments, endorsement,
and holes.

Assignments have two extra clauses for when expression contains declassification
(D �= ∅). It requires all variables that can be declassified have high integrity, and
bounds the pc-label by (P, T). This enforces that no declassification happens in un-
trusted or secret contexts. These requirements guarantee that the information released
by the declassification does not directly depend on the attacker-controlled variables.
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Γ 
 n : �, ∅ Γ 
 x : Γ (x), ∅ Γ 
 e1 : �1, D1 Γ 
 e2 : �2, D2

Γ 
 e1 op e2 : �1 � �2, D1 ∪ D2

Γ 
 e : �, D

Γ 
 declassify(e) : � � (P, U), vars(e)
Γ, pc 
 skip

Γ, pc 
 c1 Γ, pc 
 c2

Γ, pc 
 c1; c2

Γ 
 e : �, D � � pc � Γ (x) ∀y ∈ D . Γ (y) � (S, T) D �= ∅ =⇒ pc � (P, T)
Γ, pc 
 x := e

Γ 
 e : �, ∅ Γ, pc � � 
 c1 Γ, pc � � 
 c2

Γ, pc 
 if e then c1 else c2

Γ 
 e : �, ∅ Γ, pc � � 
 c

Γ, pc 
 while e do c

pc � (P, U)

Γ, pc 
 •
pc � (S, T) pc � Γ (x) Γ 
 e : � � � (S, T) � Γ (x)

Γ, pc 
 x := endorse(e)

Fig. 5. Type system: expressions and commands

Typing rule for endorsement requires that pc-label is trusted: pc " (S, T). Because
endorsed expressions preserve their confidentiality level we also check that x has the
right security level to store the result of the expression. This is done by demanding that
� � (S, T) " Γ (x), where taking meet of � and (S, T) boosts integrity, but keeps the
confidentiality level of �.

The rule for holes forbids placing attacker-provided code in high confidentiality con-
texts. For simplicity, we disallow declassification in the guards of if and while.

Soundness. Soundness of the type system is stated by the following proposition.

Proposition 1. If Γ, pc  c[�•] then for all attacks �a, memories m, and traces �t�r pro-
duced by 〈c[�a], m〉, where k→(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have that

R�
→(c[�•], m,�a,�t) \ Φ(c[�•], m,�t�r) ⊆ R→(c[�•], m,�a,�t�r)

The proof of this and following propositions are given in the associated technical report.

7 Checked Endorsement

Realistic applications endorse attacker-provided data based on certain conditions. For
instance, an SQL string that depends on user-provided input is executed if it passes
sanitization, a new password is accepted if the user can provide an old one, and a secret
key is accepted if nonces match. Because this is a recurring pattern in security-critical
applications, we argue for language support in the form of checked endorsements.

This section extends the language with checked endorsements and derives both se-
curity conditions and a typing rule for them. Moreover, we show checked endorsements
can be decomposed into a sequence of direct endorsements, and prove that for well-
typed programs the semantic conditions for robustness with checked endorsements and
with unchecked endorsements are the same.
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Syntax and semantics. In the scope of this section, we assume checked endorsements
are the only endorsement mechanism in the language. We introduce a syntax for
checked endorsements:

c[�•] ::= . . . | endorseη(x) if e then c else c

The semantics of this command is that a variable x is endorsed if the expression e
evaluates to true. If the check succeeds, the then branch is taken, and x is assumed to
have high integrity there. If the check fails, the else branch is taken. As with direct
endorsements, we assume checked endorsements in program text have unique labels η.
These labels may be omitted from the examples, but they are explicit in the semantics.

Endorsement events. Checked endorsement events checked(η, v, b), record the unique
label of the endorsement command η, the value of variable that can potentially be en-
dorsed v, and a result of the check b, which can be either 0 or 1.

m(e) ↓ v v �= 0

〈endorseη(x) if e then c1 else c2, m〉
checked(η,m(x),1)−→ 〈c1, m〉

m(e) ↓ v v = 0

〈endorseη(x) if e then c1 else c2, m〉
checked(η,m(x),0)−→ 〈c2, m〉

Irrelevant attacks. For checked endorsement we define a suitable notion of irrelevant
attacks. The reasoning behind this is the following.

1. Both �t and �t′ reach the same endorsement statement: ηi = η′i.
2. At least one of them results in the positive endorsement: bi + b′i ≥ 1. This ensures

that if both traces do not take the branch then none of the attacks are ignored.
3. The endorsed values are different: vi �= v′i. Otherwise, there should be no further

difference in what the attacker can influence along the trace.

The following definitions formalize the above construction.

Definition 18 (Irrelevant traces). Given a trace �t, where endorsements are labeled as
checked(ηj , vj , bj), define a set of irrelevant traces based on the number of checked
endorsements in �t as ψi(�t). Then ψ0(�t) = ∅, and

ψi(�t) = {�t′ | �t′ = . . . checked(ηi−1, vi−1, bi−1) . . . checked(ηi, v
′
i, b
′
i) . . . }

such that (bi + b′i ≥ 1) ∧ (vi �= v′i)

Define ψ(�t) �
⋃

i ψi(�t) as a set of irrelevant traces w.r.t. �t.

Definition 19 (Irrelevant attacks ). Ψ(c[�•], m,�t) � {�a| 〈c[�a], m〉−→∗�t′ ∧ �t′ ∈ ψ(�t)}

Using this definition, we can define security conditions for checked robustness.
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Definition 20 (Progress-sensitive robustness with checked endorsement). Program
c[�•] satisfies progress-sensitive robustness with checked endorsement if for all memo-
ries m and attacks �a, such that 〈c[�a], m〉−→∗�a〈c′, m′〉−→∗�r, and �r contains a release
event, i.e., k(c[�a], mP,�tP) ⊃ k(c[�a], mP,�tP�rP), we have

R�(c[�•], m,�a,�t) \ Ψ(c[�•], m,�t�r) ⊆ R(c[�•], m,�a,�t�r)

The progress-insensitive version is defined similarly, using progress-insensitive defini-
tion for release events and progress-insensitive versions of control and release control.

Example. In program [•]; endorseη1(u) if u = u′ then low := u < h else skip,
the attacker can modify u and u′. This program is insecure because the unendorsed,
attacker-controlled variable u′ influences the decision to declassify. To see that Def-
inition 20 rejects this program, consider running it in memory with m(h) = 7, and
two attacks: a1, where attacker sets u := 5; u′ := 0, and a2, where attacker sets
u := 5; u′ = 5. Denote the corresponding traces up to endorsement by �t1 and �t2. We
have �t1 = [(u, 5)(u′, 0)]checked(η1, 5, 0) and �t2 = [(u, 5)(u′, 5)]checked(η1, 5, 1).
Because endorsement in the second trace succeeds, this trace also continues with a low
event (low , 1). Following Definition 18 we have that t1 �∈ ψ(�t2(low , 1)), implying a1 �∈
Ψ(c[�•], m,�t2(low , 1)). Therefore, a1 ∈ R�(c[�•], m,�a2,�t2)\Ψ(c[�•], m,�t2(low , 1)). On
the other hand, a1 �∈ R(c[�•], m,�a2,�t2(low , 1)) because a1 can produce no low events
corresponding to (low , 1).

Endorsing multiple variables. The syntax for checked endorsements can be extended
to multiple variables with the following syntactic sugar, where ηi is an endorsement
label corresponding to variable xi:

endorse(x1, . . . xn) if e then c1 else c2 =⇒ endorseη1(x1) if e then

endorseη2(x2) if true then . . . c1 else skip . . . else c2

This is a semantically faithful encoding: the condition is checked as early as possible.

Typing checked endorsements To enforce programs with checked endorsements, we
extend the type system with the following general rule:

Γ ′ � Γ [xi �→ xi � (S, T)] Γ ′ 
 e : �′, D′ pc′ � pc � �′

pc′ � (S, T) Γ ′, pc′ 
 c1 Γ, pc′ 
 c2

Γ, pc 
 endorse(x1, . . . , xn) if e then c1 else c2

The expression e is type-checked in an environment Γ ′ in which endorsed variables
x1, . . .xn have trusted integrity; its label �′ is joined to form auxiliary pc-label pc′. The
level of pc′ must be trusted, ensuring that endorsements happen in a trusted context,
and that no declassification in e depends on untrusted variables other than the xi (this
effectively subsumes the need to check individual variables in D′). Each of the branches
is type-checked with the program label set to pc′; however, for c1 we use the auxiliary
typing environment Γ ′, since the xi are trusted there.

Program [•]; endorse(u) if u = u′ then low := declassify(u < h) else skip
is rejected by this type system. Because variable u′ is not endorsed, the auxiliary pc-
label has untrusted integrity.
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Relation to direct endorsements. Finally, for well-typed programs we can safely trans-
late checked endorsements to direct endorsements using a translation in which a
checked endorsement of n variables is translated to n+1 direct endorsements. First, we
unconditionally endorse the result of the check. The rest of the endorsements happen
in the then branch, before translation of c1. We save the results of the endorsements in
temporary variables t1 . . . tn and replace all occurrences of x1 . . .xn within c1 with the
temporary ones. All other commands are translated to themselves.

�endorse(x1, . . . xn) if e then c1 else c2� =⇒ t0 := endorseη0(e); if t0

then t1 := endorseη1(x1); . . . tn := endorseηn(xn); �c1[ti/xi]� else �c2�
The following proposition relates the security of the original and translated programs.

Proposition 2 (Relation of checked and direct endorsements). Given a program c[�•]
that only uses checked endorsements such that Γ, pc  c[�•], then c[�•] satisfies progress-
(in)sensitive robustness for checked endorsements if and only �c[�•]� satisfies progress-
(in)sensitive robustness for direct endorsements.

For non-typed programs, the relation does not hold. For instance, a program like [•];
endorse(u) if u = u′ then c1 else c2 satisfies Defn. 20, but not Defn. 16.

8 Attacker Power

In prior work, robustness controls the attacker’s ability to cause information release.
In the presence of endorsement, the attacker’s ability to influence trusted locations also
becomes an important security issue. To capture this influence, we introduce an integrity
dual to attacker knowledge, called attacker power. Similarly to low events, we define
trusted events as assignments to trusted variables and termination. Given a trace �t, we
denote the trusted events in the trace as �tT. We use notation t� for a single trusted event,
and �t�. for a sequence of trusted events.

Definition 21 (Attacker power ). Given a program c[�•], memory m, and trusted events
�t�, define p(c[�•], m,�t�) to be a set of attacks �a which match trusted events �t�:

p(c[�•], m,�t�) � {�a | 〈c[�a], m〉−→∗�t′ ∧ �t� = �t′T}

Attacker power is defined with respect to a given sequence of trusted events �t�, starting
in memory m, and program c[�•]. The power returns the set of all attacks that agree with
�t� in their footprint on trusted variables.

Intuitively, a smaller set for attacker power means that the attacker has greater power
to influence trusted events. Similarly to progress knowledge, we define progress power,
characterizing which attacks lead to one more trusted event. This then allows us to
define robustness conditions for integrity, which have not previously been identified.

Definition 22 (Progress power). Given a program c[�•], memory m, and sequence of
trusted �t�, define progress power p→(c[�•], m,�t�) as

p→(c[�•], m,�t�) � {�a | 〈c[�a], m〉−→∗�t′〈c′, m′〉 ∧ �t� = �t′T ∧ 〈c′, m′〉−→∗t′′� }
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Definition 23 (Progress-insensitive integrity robustness with endorsements). A pro-
gram c[�•] satisfies progress-insensitive robustness for integrity if for all memories m,
and for all traces �tt� where t� is a trusted event, we have

p→(c[�•], m,�tT) \ Φ(c[�•], m,�tt�) ⊆ p(c[�•], m,�tTt�)

Irrelevant attacks are defined precisely as in Section 5. We omit the corresponding def-
initions for programs without endorsements and with checked endorsements.

The type system of Section 6 also enforces integrity robustness with endorsements,
rejecting insecure programs such as t := u and if (u1) then t := endorse(u2),
but accepting t := endorse(u). Moreover, a connection between checked and direct
endorsements, analogous to Proposition 2, holds for integrity robustness too.

9 Examples

Password update. Figure 6 shows code for updating a password. The attacker con-
trols variables guess of level (P, U) and new_password of level (S, U). The variable
password has level (S, T) and variables nfailed and ok have level (P, T). The de-
classification on line 3 uses the untrusted variable guess. This variable, however, is
listed in the endorse clause on line 2; therefore, the declassification is accepted. The
initially untrusted variable new_password has to be endorsed to update the password
on line 5. The example also shows how other trusted variables—nfailed and ok—can
be updated in the then and else branches.

Data sanitization. Figure 7 shows an annotated version of the code from the intro-
duction, in which some information (new_data) is not allowed to be released until
time embargo_time. The attacker-controlled variable is req_time of level (P, U), and
new_data has level (S, T). The checked endorse ensures that the attacker cannot violate
the integrity of the test req_time >= embargo_time. (Variable now is high-integrity
and contains the current time). Without the checked endorse, the release of new_data
would not be permitted either semantically or by the type system.

1 [•]
2 endorse(guess, new_password)

3 if (declassify(guess==password))

4 then

5 password = new_password;

6 nfailed = 0;

7 ok = true;

8 else

9 nfailed = nfailed + 1;

10 ok = false;

Fig. 6. Password update

1 [•]
2 endorse(req_time)

3 if (req_time <= now)

4 then

5 if (req_time >= embargo_time)

6 then return declassify(new_data)

7 else return old_data

8 else

9 return old_data

Fig. 7. Accessing embargoed information
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10 Related Work

Prior robustness definitions [13,9], based on equivalence of low traces, do not differen-
tiate programs such as [•]; low := u < h; low ′ := h and [•]; low ′ := h; low := u < h;
Per dimensions of information release [18], the new security conditions cover not only
the “who” dimension, but are also sensitive to “where” information release happens.
Also, the security condition of robustness with endorsement does not suffer from the
occlusion problems of qualified robustness. Balliu and Mastroeni [5] derive sufficient
conditions for robustness using weakest precondition semantics. These conditions are
not precise enough for distinguishing the examples above, and, moreover, do not sup-
port endorsement.

Prior work on robustness semantics defines termination-insensitive security condi-
tions [13,5]. Because the new framework is powerful enough to capture the security of
programs with intermediate observable events, it can describe the robustness of nonter-
minating programs. Prior work on qualified robustness [13] uses a non-standard scram-
bling semantics in which qualified robustness unfortunately becomes a possibilistic
condition, leading to anomalies such as reachability of dead code. The new framework
avoids such artifacts because it uses a standard, deterministic semantics.

Checked endorsement was introduced informally in the Swift framework [8] as a
convenient way to implement complex security policies. The current paper is the first
to formalize and to study the properties of checked endorsement.

Our semantic framework is based on the definition of attacker knowledge, devel-
oped in prior work introducing gradual release [2]. Attacker knowledge is used for
expressing confidentiality policies in recent work [6,1,3,7]. However, none of this work
considers integrity; applying attacker-centric reasoning to integrity policies is novel.

11 Conclusion

We have introduced a new knowledge-based framework for semantic security condi-
tions for information security with declassification and endorsement. A key technical
idea is to characterize the power and control of the attacker over information in terms of
sets of similar attacks. Using this framework, we can express semantic conditions that
more precisely characterize the security offered by a security type system, and derive a
satisfactory account of new language features such as checked endorsement.
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Abstract. Type-based amortised resource analysis following Hofmann
and Jost—where resources are associated with individual elements of
data structures and doled out to the programmer under a linear typing
discipline—have been successful in providing concrete resource bounds
for functional programs, with good support for inference. In this work we
translate the idea of amortised resource analysis to imperative languages
by embedding a logic of resources, based on Bunched Implications, within
Separation Logic. The Separation Logic component allows us to assert
the presence and shape of mutable data structures on the heap, while
the resource component allows us to state the resources associated with
each member of the structure.

We present the logic on a small imperative language with procedures
and mutable heap, based on Java bytecode. We have formalised the logic
within the Coq proof assistant and extracted a certified verification con-
dition generator. We demonstrate the logic on some examples, including
proving termination of in-place list reversal on lists with cyclic tails.

1 Introduction

Tarjan, in his paper introducing the concept of amortised complexity analysis
[15], noted that the statement and proof of complexity bounds for operations on
some data structures can be simplified if we can conceptually think of the data
structure as being able to store “credits” that are used up by later operations.
By setting aside credit inside a data structure to be used by later operations we
amortise the cost of the operation over time. In this paper, we propose a way to
merge amortised complexity analysis with Separation Logic [12,14] to formalise
some of these arguments.

Separation Logic is built upon a notion of resources and their separation.
The assertion A ∗B holds for a resource if it can be split into two resources that
make A true and B true respectively. Resource separation enables local reasoning
about mutation of resources; if the program mutates the resource associated with
A, then we know that B is still true on its separate resource.

For the purposes of complexity analysis, we want to consider resource con-
sumption as well as resource mutation, e.g. the consumption of time as a program
executes. To see how Separation Logic-style reasoning about resources helps in
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this case, consider the standard inductively defined list predicate from Separa-
tion Logic, augmented with an additional proposition R denoting the presence
of a consumable resource for every element of the list:

listR(x) ≡ x = null ∧ emp

∨∃y, z. [x data�→ y] ∗ [x next�→ z] ∗R ∗ listR(z)

We will introduce the assertion logic properly in Section 4 below. We can repre-
sent a heap H and a consumable resource r that satisfy this predicate graphically:

H

r

null
a

R

b

R

c

R

d

R

So we have r, H |= listR(x), assuming x points to the head of the list. Here
r = R · R · R · R—we assume that consumable resources form a commutative
monoid—and r represents the resource that is available for the program to use
in the future. We can split H and r to separate out the head of the list with its
associated resource:

H1

r1

H2

r2

null
a

R

b

R

c

R

d

R

This heap and resource satisfy r1 ·r2, H1*H2 |= [x data�→ a]∗ [x next�→ y]∗R∗ listR(y),
where H1*H2 = H , r1 ·r2 = r and we assume that y points to the b element. Now
that we have separated out the head of the list and its associated consumable
resource, we are free to mutate the heap H1 and consume the resource r1 without
it affecting the tail of the list, so the program can move to a state:

H1 H2

r2

null
A b

R

c

R

d

R

where the head of the list has been mutated to A and the associated resource
has been consumed; we do not need to do anything special to reason that the
tail of the list and its associated consumable resource are unaffected.

The combined assertion about heap and consumable resource describes the
current shape and contents of the heap and also the available resource that
the program may consume in the future. By ensuring that, for every state in
the program’s execution, the resource consumed plus the resource available for
consumption in the future is less than or equal to a predefined bound, we can
ensure that the entire execution is resource bounded. This is the main assertion
of soundness for our program logic in Section 3.4.
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By intermixing resource assertions with Separation Logic assertions about
the shapes of data structures, as we have done with the resource carrying listR
predicate above, we can specify amounts of resource that depend on the shape of
data structures in memory. By the definition of listR, we know that the amount
of resource available to the program is proportional to the length of the list,
without having to do any arithmetic reasoning about lengths of lists.

The association of resources with parts of a data structure is exactly the
banker’s approach to amortised complexity analysis proposed by Tarjan [15].

Our original inspiration for this work came from the work of Hofmann and Jost
[9] on the automatic heap-space analysis of functional programs. Their analysis
associates with every element of a data structure a permission to use a piece
of resource (in their case, heap space). This resource is made available to the
program when the data structure is decomposed using pattern matching. When
constructing part of a data structure, the required resources must be available.
A linear type system is used to ensure that data structures carrying resources
are not duplicated: this would entail duplication of consumable resource. This
scheme was later extended to imperative object-oriented languages [10,11], but
still using a type-based analysis.

Contributions We summarise the content and contributions of this work:

– In Section 3, we define a program logic that allows mixing of assertions
about heap shapes, in the tradition of separation logic, and assertions about
future consumable resources. Tying these together allows us to easily state
resource properties in terms of the shapes of heap-based data structures,
rather than extensional properties such as their size or contents. We have
also formalised the soundness proof of our program logic in Coq, along with
a verified verification condition generator.

– In Section 5, we define a restricted subset of the assertion logic that allows
us to perform effective proof search and inference of resource annotations.
A particular feature of the way this is set up is that, given loop invariants
that talk only about the the shape of data structures, we can infer necessary
resource bounds.

– In Sections 2 and 6, we demonstrate the logic on two small examples, showing
how a mixture of amortised resource analysis and Separation Logic can be
used to simplify resource-aware specifications, and how it can be used to
prove termination in the presence of cyclic structures in the heap.

2 Motivating Example: Functional Queues

Before defining our program logic, we give another example to demonstrate how
amortised reasoning is easier than the traditional approach of keeping a global
counter for consumed resources as an auxiliary “ghost” variable in the proof. This
example is a standard one for introducing amortised complexity analysis, but
here we look at the specifications of operations on an imperative data structure
taking into account their resource consumption.
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We consider functional queues, where a queue is represented by a pair of lists:

null

a b c d

e f

The top list represents the head of the queue, while the bottom list repre-
sents the tail of the queue in reverse; thus this structure represents the queue
[a, b, c, d, f, e]. When we enqueue a new element, we add it to the head of the
bottom list. To dequeue an element, we remove it from the head of the top list. If
the top list is empty, then we reverse the bottom list and change the top pointer
to point to it, changing the bottom pointer to point to null.

When determining the complexity of these operations, it is obvious that the
enqueue operation is constant time, but the dequeue operation either takes con-
stant time if the top list is empty, or time linear in the size of the bottom list,
in order to perform the reversal. If we were to account for resource usage by
maintaining a global counter then we would have to expose the lengths of the
two lists in specification of the enqueue and dequeue instructions. So we would
need a predicate queue(x, h, t) to state that x points to a queue with a head
and tail lists of lengths h and t respectively. The operations would have the
specifications:

{queue(x, h, t) ∧ rc = r1}enqueue{queue(x, h, t + 1) ∧ rc = r1 + R}

{queue(x, 0, 0) ∧ rc = r1}dequeue{queue(x, 0, 0) ∧ rc = r1}

{queue(x, 0, t + 1) ∧ rc = r1}dequeue{queue(x, t, 0) ∧ rc = r1 + (1 + t)R}

{queue(x, h + 1, t) ∧ rc = r1}dequeue{queue(x, h, t) ∧ rc = r1 + R}

where rc is a ghost variable counting the total amount of resource (time, in this
case) consumed by the program, and R is the amount of resource required to
perform a single list node manipulation. Note that we have had to give three
specifications for dequeue for the cases when the queue is empty, when the head
list is empty and when the head list has an element. The accounting for the sizes
of the internals of the queue data structure is of no interest to clients of this
data structure, these specifications will complicate reasoning that must be done
by clients in order to use these queues.

Using amortised analysis, this specification can be drastically simplified. We
associate a single piece of resource with each element of the tail list so that when
we come to reverse the list we have the necessary resource available to reverse
each list element. The queue predicate is therefore:

queue(x) ≡ ∃y, z.[x head�→ y] ∗ [x tail�→ z] ∗ list(y) ∗ listR(z)
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where list is the standard Separation Logic list predicate, and listR is the resource-
carrying list predicate given above. The specifications of the operations now
become straightforward:

{queue(x) ∗R ∗R}enqueue{queue(x)} {queue(x) ∗R}dequeue{queue(x)}
To enqueue an element, we require two resources: one to add the new element
to the tail list, and one to “store” in the list so that we may use it for a future
reversal operation. To dequeue an element, we require a single resource to remove
an element from a list. If a list reversal is required then it is paid for by the
resources required by the enqueue operation.

Once we have set the specification of queues to store one element of resource
for every node in the tail list, we can use the resource annotation inference pro-
cedure presented in Section 5 to generate the resource parts of the specifications
for the enqueue and dequeue operations.

3 A Program Logic for Heap and Resources

We define a logic that is capable of asserting facts about both the mutable heap
and the consumable resources that a program has access to. Assertions about
resources available to a program are intimately connected to the shapes of the
data structures that it is manipulating. In this section, we introduce a simple
programming language and a resource-aware program logic for it. We define a
“shallow” program logic where we treat pre- and post-conditions and program
assertions as arbitrary predicates over heaps and consumable resources. In the
next section, we will layer on top a “deep” assertion logic where predicates are
actually Separation Logic formulae augmented with resource assertions.

3.1 Semantic Domains

Assume an infinite set A of memory addresses. We model heaps as finite partial
maps H = (A× F) ⇀fin V, where F ranges over field names and V = A⊥ + Z rep-
resents the values that programs can directly manipulate: possibly null addresses
and integers. We write dom(H) for the domain of a heap and H1#H2 for heaps
with separate domains; H1 *H2 denotes union of heaps with disjoint domains.

Consumable resources are represented as elements of an ordered monoid (R,"
, ·, e), where e is the least element. Example consumable resources include (N,≤
, +, 0) or (Q≥0,≤, +, 0) for representing a single resource that is consumed (e.g.
time or space), or multisets for representing multiple named resources that may
be consumed independently. The ordering on consumable resources is used to
allow weakening in our assertion logic: we allow the asserter to assert that more
resources are required by the program than are actually needed.

To talk about separated combinations of heaps and resources, we make use of
a ternary relation on pairs of heaps and consumable resources, as is standard in
the semantics of substructural logics [13]:

Rxyz ⇔ H1#H2 ∧H1 *H2 = H3 ∧ r1 · r2 " r3
where x = (H1, r1), y = (H2, r2), z = (H3, r3)
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We extend the order on resources to pairs of heaps and resources by (H1, r1) "
(H2, r2) iff H1 = H2 and r1 " r2.

3.2 A Little Virtual Machine

The programming language we treat is a simple stack-based virtual machine,
similar to Java bytecode without objects or virtual methods, but with mutable
heap and procedures. There are two types: int and ref, corresponding to the two
kinds of values in V. We assume a set P of procedure names, where a procedure’s
name determines its list of argument types and its return type. Programs are
organised into a finite set of procedures, indexed by their name and individually
consisting of lists of instructions from the following collection:

ι ::= iconst z | ibinop op | pop | load n | store n | aconst null

| binarycmp cmp offset | unarycmp cmp offset | ifnull offset | goto offset
| new desc | getfield fnm | putfield fnm | free desc | consume r

| return | call pname

These instructions—apart from consume—are standard, so we only briefly ex-
plain them. Inside each activation frame, the virtual machine maintains an
operand stack and a collection of local variables, both of which contain values
from the semantic domain V. Local variables are indexed by natural numbers.
The instructions in the first two lines of the list perform the standard operations
with the operand stack, local variables and program counter. The third line in-
cludes instructions that allocate, free and manipulate structures stored in the
heap. The instruction consume r consumes the resource r. The desc argument
to new and free describe the structure to be created on the heap by the fields
and their types. The fourth line has the procedure call and return instructions
that manipulate the stack of activation frames.

Individual activation frames are tuples 〈code, S, L, pc〉 ∈ Frm consisting of
the list of instructions from the procedure being executed, the operand stack
and local variables, and the program counter. The first two lines of instructions
that we gave above only operate within a single activation frame, so we give
their semantics as a small-step relation between frames:

frm−→ ⊆ Frm× Frm. This
accounts for the bulk of instructions.

The third line of instructions includes those that manipulate the heap and
consume resources. Their small-step operational semantics is modelled by a re-
lation mut−→ ⊆ Frm×H×Frm×H×R, which relates the before and after activation
frames and heaps, and states the consumable resource consumed by this step.

A state of the full virtual machine is a tuple 〈r, H, fs〉 ∈ State, where r is
the resource consumed to this point, h is the current heap, and fs is a list of
activation frames. The small-step operational semantics of the full machine for
some program prg is given by a relation−→prg ⊆ State×State which incorporates

the
frm−→ and mut−→ relations and also describes how the call and return instructions

manipulate the stack of activation frames.
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Finally, we use the predicate s ↓ H, r, v to indicate when the last activation
frame is popped and the machine halts. The H, r and v are the final heap, the
consumed resources and the return value respectively.

3.3 Program Logic

We annotate every procedure pname in the program with a pre-condition Ppname

and a post-condition Qpname . Pre-conditions are predicates over V∗×H×R: lists
of arguments to the procedure and the heap and available resource at the start
of the procedure’s execution. Post-conditions are predicates over V∗×H×R×V:
argument lists and the heap, remaining consumable resource and return value.
Intermediate assertions in our program logic are predicates over V∗ × H × R ×
V∗× (N ⇀ V): argument lists, the heap, remaining consumable resource and the
current operand stack and local variable store.

For our program logic, a proof that a given procedure’s implementation code
matches its specification (P, Q) consists of a map C from instruction offsets in
code to assertions such that:

1. Every instruction’s assertion is suitable for that instruction: for every instruc-
tion offset i in code, there exists an assertion A such that C, Q  i:code[i] : A
and C[i] implies A. Figure 1 gives the definition of C, Q  i:ι : A for a se-
lected subset of the instructions ι. The post-condition Q is used for the case
of the return instruction.

2. The precondition implies the assertion for the first instruction: for all ar-
guments args , heaps H and consumable resources r, P (args , H, r) implies
C[0](args , H, r, [], �args�), where [] denotes the empty operand stack, and
�·� maps lists of values to finite maps from naturals to values in the obvious
way.

When condition 1 holds, we write this as C  code : Q, indicating that the
procedure implementation code has a valid proof C for the post-condition Q.

3.4 Soundness

We say that an activation frame is safe if there is a proof for the code being ex-
ecuted in the frame such that the requirements of the next instruction to be ex-
ecuted are satisfied. Formally, a frame f = 〈code, S, L, pc〉 is safe for arguments
args , heap H , resource r and post-condition Q, written safeFrame(f, H, r, args , Q)
if1:

1. There exists a certificate C such that C  code : Q;
2. C[pc] exists and C[pc](args , r, H, S, L) holds.

1 In this definition, and all the later ones in this section, we have omitted necessary
assertions about well-typedness of the stack, local variables and the heap because
they would only clutter our presentation.
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C, Q 
 i:consume rc : λ(args , r, H,S, L).∃r′.rc · r′ � r ∧ C[i + 1](args , r′, H,S, L)

C, Q 
 i:ifnull n : λ(args , r, H,S, L).∀a S′.S = a :: S′ ⇒
(a �= null ⇒ C[i + 1](args , r,H, S′, L))∧
(a = null ⇒ C[n](args , r,H, S′, L))

C, Q 
 i:call pname :

λ(args , r, H,S, L).∀args ′ S ′.S = args ′@S′ ⇒
∃(H1, r1) (H2, r2).

R(H1, r1)(H2, r2)(H, r)∧
Ppname(args ′, H1, r1)∧
∀v (H ′

1, r
′
1).

H ′
1#H2 ⇒

Qpname(args ′, H ′
1, r

′
1, v) ⇒

C[i + 1](args ′, r′1 · r2, H
′
1 � H2, v :: S′, L)

Fig. 1. Program Logic Rules (Extract)

Safety of activation frames is preserved by steps in the virtual machine:

Lemma 1 (Intra-frame safety preservation)

1. If safeFrame(f, H, r, args , Q) and f
frm−→ f ′, then safeFrame(f ′, H, r, args , Q).

2. If safeFrame(f, H1, r, args , Q) and H1#H2 and H1 *H2 = H and f, H
mut−→

f ′, H ′, rc, then there exists H ′1 and r′ such that H ′1#H2 and H ′1 *H2 = H ′,
rc · r′ " r and safeFrame(f ′, H ′1, r

′, args , Q).

Remark 1. We pause for a moment to consider the relationship between our
program logic and traditional Separation Logic. The second part of the previous
lemma effectively states that execution steps for mutating instructions are local :
for any other piece of heap that is present but not mentioned in its precondition,
the execution of a mutating instruction will not affect it. This is usually expressed
in Separation Logic by the Frame rule that states if we know that {P}C{Q}
holds, then {P ∗ R}C{Q ∗ R} holds for any other resource assertion R. We do
not have an explicit Frame rule in our program logic; application of the rule is
implicit in the rule for the call instruction (so, conflatingly, the Frame rule is
applied when we create a new activation frame). We do not have access to the
Frame rule in order to modularly reason about the internals of each procedure,
e.g. local reasoning about individual loops. This is partially a consequence of
the unstructured nature of the bytecode that we are working with. It has not
been a hindrance in the small examples that we have verified so far, but may
well become so in larger procedures with multiple loops that need invariants. In
such a case it may be useful to layer a hierarchical structure, matching the loops
or other sub-program structure, on top of the unstructured bytecode that we
have considered here in order to apply Frame rules and facilitate local reasoning
inside procedures.
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We have now handled all the instructions except the call and return instruc-
tions that create and destroy activation frames. To state soundness of our pro-
gram logic for these we need to define what it means for a stack of activation
frames to be safe. Intuitively, a stack of activation frames is a bridge between the
overall arguments args top and post-condition Qtop for the program and the ar-
guments argscur and post-condition Qcur for the current activation frame, with
respect to the current heap H and available consumable resources r, such that,
when the current activation frame finishes, its calling frame on the top of the
stack is safe. We write this as safeStack (fs , H, r, argscur , Qcur , args top , Qtop).

Accordingly, we say that the empty frame stack is safe when r = e, H = emp,
argscur = args top and Qcur = Qtop . A frame stack fs = 〈code , S, L, pc〉 :: fs ′ is
safe when there exists (H1, r1), (H2, r2), args , Q and C, A such that:

1. R(H1, r1)(H2, r2)(H, r);
2. The code is certified: C, Q  code;
3. The next instruction has pre-condition A: C[pc] = A;
4. When the callee returns, the instruction’s pre-condition will be satisfied: for

all v ∈ V, H ′2, r
′
2 such that H ′2#H1 and Qcur(argscur , H

′
2, r
′
2, v) holds, then

A(args , r′2 · r1, H
′
2 *H1, v :: S, L) holds.

5. The rest of the frame stack fs is safe when this activation frame returns:
safeStack (fs , H2, r2, args , Q, args top , Qtop).

Note how the safeStack predicate divides up the heap and consumable resource
between the activation frames on the call stack; each frame hands a piece of its
heap and consumable resource off to its callees to use.

Finally, we say that a state s = 〈rc, H, fs〉 is safe for arguments args , post-
condition Q and maximum resource rmax , written safeState(s, args , Q, rmax ), if:

1. there exists an rfuture such that rc · rfuture " rmax ; and also
2. rfuture andH split into(H1, r1) and (H2, r2), i.e. R(H1, r1)(H2, r2)(H, rfuture);
3. there exists at least one activation frame: fs = f :: fs ′ and arguments argscur

and post-condition Qcur ; such that
4. safeFrame(f, H1, r1, argscur , Qcur ); and
5. safeStack (fs, H2, r2, argscur , Qcur , args , Q).

The key point in the definition of safeState is that the assertions of the pro-
gram logic talk about the resources that will be consumed in the future of the
program’s execution. Safety for a state says that when we combine the future
resource requirements with resources that have been consumed in the past, rc,
then the total is less than the total resources rmax that are allowed for the
execution.

Theorem 1 (Soundness)

1. Assume that all the procedures in prg match their specifications. Then if
safeState(s, args , Q, rmax ) and s −→prg s′ then safeState(s′, args , Q, rmax ).

2. If safeState(s, args , Q, rmax ) and s ↓ H, r, v, then there exists an r′ such that
Q(args , H, r′, v) and r " rmax .
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In the halting case in this theorem, the existentially quantified resource r′ indi-
cates the resources that the program still had available at the end of its execution.
We are also guaranteed that when the program halts, the total resource that it
has consumed will be less than the fixed maximum rmax that we have set, and
moreover, by part 1 of the theorem, this bound has been observed at every step
of the computation.

4 Deep Assertion Logic

In the previous section we described a program logic but remained agnostic as to
the exact form of the assertions save that they must be predicates over certain
domains. The shallow approach to stating makes the statement and soundness
proof easier, but inhibits discussion of actual specifications and proofs in the
logic. In this section we show that the logic of Bunched Implications, in its
Separation Logic guise, can be used as a language for assertions in the program
logic.

We defined three different types of assertion in the previous section: proce-
dure pre- and post-conditions and intermediate assertions in methods. These all
operate on heaps and consumable resources and the arguments to the current
procedure, but differ in whether they talk about return values or the operand
stack and local variables. To deal with these differences we assume that we have
a set of terms in our logic, ranged over by t, t1, t2, ..., that at least includes log-
ical variables and a constant null for representing the null reference, and also
variables for representing the current procedure arguments, the return value and
the operand stack and local variables as appropriate.

Formulae are built from at least the following constructors:

φ ::= t1 �� t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | emp | φ1 ∗ φ2 | φ1 –∗ φ2 | ∀x.φ | ∃x.φ

| [t1 f�→ t2] | Rr | . . .

Where �� ∈ {=, �=}. We can also add inductively defined predicates for lists and
list segments as needed. The only non-standard formula with respect to Separa-
tion Logic is Rr which represents the presence of some consumable resource r.
The semantics of the assertion logic is given in Figure 2 as a relation |= between
environments and heap/consumable resource pairs and formulae. We assume a
sensible semantics �·�η for terms in a given environment.

As a consequence of having an ordering on consumable resources, and our
chosen semantics of emp, ∗ and –∗ , our logic contains affine Bunched Implications
as a sub-logic for reasoning about pure consumable resources.

Proposition 1. If φ is a propositional BI formula with only Rr as atoms, then
r |=bi φ iff η, (r, h) |= φ.

We have only considered a single separating connective, φ1∗φ2, which states that
both the heap and consumable resources must be separated. Evidently, there
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η, x |= � iff always
η, x |= t1 	
 t2 iff �t1�η 	
 �t2�η

η, x |= emp iff x = (h, r) and h = {}
η, x |= [t1

f�→ t2] iff x = (h, r) and h = {(�t1�η, f) �→ �t2�η}
η, x |= Rri iff x = (h, r) and ri � r and h = {}
η, x |= φ1 ∧ φ2 iff η, x |= φ1 and η, x |= φ2

η, x |= φ1 ∨ φ2 iff η, x |= φ1 or η, x |= φ2

η, x |= φ1 ∗ φ2 iff exists y, z. st. Ryzx and η, y |= φ1 and η, z |= φ2

η, x |= φ1 → φ2 iff for all y. if x � y and η, y |= φ1 then η, y |= φ2

η, x |= φ1 –∗ φ2 iff for all y, z. if Rxyz and η, y |= φ1 then η, z |= φ2

η, x |= ∀v.φ iff for all a, η[v �→ a], x |= φ
η, x |= ∃v.φ iff exists a, η[v �→ a], x |= φ

Fig. 2. Semantics of assertions

are two other possible combinations that allow sharing of heap or resources.
Separation of resources, but sharing of heap:

η, x |= φ1 ∗R φ2 iff x = (H, r) and exists r1, r2. st.
r1 · r2 " r
and η, (H, r1) |= φ1 and η, (H, r2) |= φ2

may be useful to specify that we have a single data structure in memory, but
two resource views on it. However, we leave such investigation of alternative
assertions to future work.

5 Automated Verification

In this section we describe an verification condition generation and proof search
procedure for automated proving of programs against programs against specifi-
cations in our program logic, as long as procedures have been annotated with
loop invariants. The restricted subset of separation logic that we use in this
section is similar to the subset used by Berdine et al [3], though instead of per-
forming a forwards analysis of the program, we generate verification conditions
by backwards analysis and then attempt to solve them using proof search. As we
demonstrate below, the proof search procedure is mainly guided by the structure
of the program and the shape of the data structures that it manipulates. The
resource annotations that are required can be inferred by linear programming.

5.1 Restricted Assertion Logic

Following Berdine et al, the restricted subset of the assertion logic that we use
segregates assertions into pure data, heap and consumable resource sections.

Data: P := t1 = t2 | t1 �= t2 | �
Heap: X := [t1

f�→ t2] | lseg(Θ, t1, t2) | emp
Resource: R := Rr | �
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The terms that we allow in the data and heap assertions are either variables,
or the constant null. The list segment predicate that we use here is defined
inductively as:

lseg(Θ, x, y) ≡ (x = y ∧ emp) ∨ (∃z, z′. [x data�→ z] ∗ [x next�→ z′] ∗Θ ∗ lseg(Θ, z′, y))

We restrict the pre- and post-conditions of each procedure to be of the form∨
i(Πi ∧ (Σi ∗ Θi)) and we use S to range over such formulae. The three com-

ponents of each disjunct are lists of data, heap and resource assertions, with
interpretations as in the following table.

Data: Π := P1, ..., Pn (P1 ∧ ... ∧ Pn)
Heap: Σ := X1, ..., Xn (X1 ∗ ... ∗Xn)
Resource: Θ := R1, ..., Rn (R1 ∗ ... ∗Rn)

Note that, due to the presence of resource assertions in the lseg predicate, heap
assertions may also describe consumable resources, even if the resource part of
a disjunct is empty.

Finally, we have the set of goal formulae that the verification condition gen-
erator will produce and the proof search will solve.

G := S ∗G | S —∗G | S | G1 ∧G2 | P → G | ∀x.G | ∃x.G

Note that we only allow implications (→ and –∗) to appear in positive positions.
This means that we can interpret them in our proof search as adding extra
information to the context.

5.2 Verification Condition Generation

Verification condition generation is performed for each procedure individually by
computing weakest preconditions for each instruction, working backwards from
the last instruction in the method. To resolve loops, we require that the targets
of all backwards jumps have been annotated with loop invariants S that are of
the same form as the pre- and post-condition formulae from the previous section.
We omit the rules that we use for weakest precondition generation since they
are very similar to the rules for the shallowly embedded logic in Figure 1. The
verification condition generator will always produce a VC for the required entail-
ment of the computed pre-condition of the first instruction and the procedure’s
pre-condition, plus a VC for each annotated instruction, being the entailment
between the annotation and the computed precondition. All VCs will have a
formula of the form

∨
i(Πi ∧ (Σi ∗Θi)) as the antecedent and a goal formula as

the conclusion.

5.3 Proof Search

The output of the verification condition generation phase is a collection of prob-
lems of the form Π |Σ|Θ  G. We define a proof search procedure by a set of
rules shown in Figures 3, 4, 6 and 5. The key idea here is to use the I/O model
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of proof search as defined for intuitionistic linear logic by Cervesato, Hodas and
Pfenning [5], and also the use of heuristic rules for unfolding the inductive list
segment predicate.

As well as the main proof search judgement Π |Σ|Θ  G, we make use of
several auxiliary judgements:

Π |Σ|Θ  Σ1\Σ2, Θ
′ Heap assertion matching

Θ  Θ1\Θ2 Resource matching
Π  ⊥ Contradiction spotting
Π  Π ′ Data entailment

The backslash notation used in these rules follows the I/O model of Cervesato
et al, where in the judgement Θ  Θ1\Θ2, the proof context Θ denotes the
facts used as input and Θ2 denotes the facts that are left over (the output)
from proving Θ1. A similar interpretation is used for the heap assertion match-
ing judgement. We do not define the data entailment or contradiction spotting
judgement explicitly here; we intend that these judgements satisfy the basic
axioms of equalities and disequalities.

The rules in Figure 3 are the goal driven search rules. There is an individual
rule for each possible kind of goal formula. The first two rules are matching rules
that match a formula S against the context, altering the context to remove the
heap and resource assertions that S requires, as dictated by the semantics of
the assertion logic. We must search for a disjunct i that matches the current
context. There may be multiple such i, and in this case the search may have to
backtrack. When the goal is a formula S, then we check that the left-over heap
is empty, in order to detect memory leaks.

exists i. Π |Σ|Θ 
 Σi\Σ′, Θ′ Π 
 Πi Θ′ 
 Θi\Θ′′ Π |Σ′|Θ′′ 
 G

Π |Σ|Θ 

∨
i

(Πi ∧ (Σi ∗ Θi)) ∗ G

exists i. Π |Σ|Θ 
 Σi\emp, Θ′ Π 
 Πi Θ′ 
 Θi\Θ′′

Π |Σ|Θ 

∨
i

(Πi ∧ (Σi ∗ Θi))

forall i. Π,Πi|Σ, Σi|Θ, Θi 
 G

Π |Σ|Θ 

∨
i

(Πi ∧ (Σi ∗ Θi)) —∗G
Π, P |Σ|Θ 
 G

Π |Σ|Θ 
 P → G

Π |Σ|Θ 
 G1 Π |Σ|Θ 
 G2

Π |Σ|Θ 
 G1 ∧ G2

Π |Σ|Θ 
 G x �∈ fv(Π) ∪ fv(Σ)
Π |Σ|Θ 
 ∀x.G

Π |Σ|Θ 
 G[t/x]
Π |Σ|Θ 
 ∃x.G

Fig. 3. Goal Driven Search Rules
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Heap Matching Rules:

Π |Σ|Θ 
 emp\Σ, Θ

Π 
 t1 = t′1 Π 
 t2 = t′2

Π |Σ, [t1
f�→ t2]|Θ 
 [t′1

f�→ t′2]\Σ, Θ

Π |Σ|Θ 
 Σ1\Σ′, Θ′ Π |Σ′|Θ′ 
 Σ2\Σ′′, Θ′′

Π |Σ|Θ 
 Σ1 ∗ Σ2\Σ′′, Θ′′
Π 
 t1 = t2

Π |Σ|Θ 
 lseg(Θl, t1, t2)\Σ, Θ

Π 
 t1 = t′1 Θ 
 Θl\Θ′ Π |Σ|Θ′ 
 lseg(Θl, tn, t2)\Σ′, Θ′′

Π |Σ, [t1
n�→ tn], [t1

d�→ td]|Θ 
 lseg(Θl, t
′
1, t2)\Σ′, Θ′′

Π 
 t′1 = t1 Π |Σ|Θ 
 lseg(Θl, t2, t3)\Σ′, Θ′

Π |Σ, lseg(Θl, t1, t2)|Θ 
 lseg(Θl, t
′
1, t3)\Σ′, Θ′

Resource Matching Rules:

Θ, Rρ 
 Rρ\Θ Θ 
 �\Θ
Θ 
 Θ1\Θ′ Θ′ 
 Θ2\Θ′′

Θ 
 Θ1 ∗ Θ2\Θ′′

Fig. 4. Matching Rules

The matching rules make use of the heap and resource matching judgements
defined in Figure 4. The heap matching judgements take a data, heap and re-
source context and attempt to match a list of heap assertions against them,
returning the left over heap and resource contexts. The first three rules are
straightforward: the empty heap assertion is always matchable, points-to rela-
tions are looked up in the context directly and pairs of heap assertions are split,
threading the contexts through. For the list segment rules, there are three cases.
Either the two pointers involved in the list are equal, in which case we are im-
mediately done; or we have a single list cell in the context that matches the
start pointer of the predicate we are trying to satisfy, and we have the required
resources for an element of this list, so we can reduce the goal by one step; or we
have a whole list segment in the context and we can reduce the goal accordingly.
The resource matching rules are straightforward.

The final two sets of rules operate on the proof search context . The first set,
shown in Figure 5, describe how information flows from the heap part of the
context to the data part. If we know that two variables both have a points-to
relation involving a field f, then we know that these locations must not be equal.
Similarly, if we know that a variable does point to something, then it cannot be
null. If any contradictions are found using these rules, then the proof search can
terminate immediately for the current goal. This is provided for by the first rule
in Figure 5.

The final set of rules performs heuristic unfolding of the inductive lseg predi-
cate. These rules are shown in Figure 6. These rules take information from the
data context and use it to unfold lseg predicates that occur in the heap con-
text. The first rule is triggered when the proof search learns that there is a list
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Π 
 ⊥
Π |Σ|Θ 
 G

Σ = [t1
f�→ t], [t2

f�→ t′], Σ′ Π, t1 �= t2|Σ|Θ 
 G

Π |Σ|Θ 
 G

Σ = [t f�→ t′], Σ′ Π, t �= null|Σ|Θ 
 G

Π |Σ|Θ 
 G

Fig. 5. Contradiction Flushing

Π 
 t1 �= null

Π, t1 = t2|Σ|Θ 
 G Π |Σ, [t1
n�→ x], [t1

d�→ y], lseg(R,x, t2)|Θ, R 
 G

Π |Σ, lseg(R, t1, t2)|Θ 
 G

Π 
 t1 = null Π, t2 = null|Σ|Θ 
 G

Π |Σ, lseg(R, t1, t2)|Θ 
 G

Π 
 t1 = t2 Π |Σ|Θ 
 G

Π |Σ, lseg(R, t1, t2)|Θ 
 G

Π 
 t1 �= t2 Π |Σ, [t1
n�→ x], [t1

d�→ y], lseg(R, x, t2)|Θ, R 
 G

Π |Σ, lseg(R, t1, t2)|Θ 
 G

Fig. 6. List Unfolding Rules

segment where the head pointer of the list is not equal to null. In this case, two
proof search goals are produced, one for the case that the list segment is empty
and one for when it isn’t. The other rules are similar; taking information from
the data context and using it to refine the heap context.

The proof search strategy that we employ works by first saturating the con-
text by repeatedly applying the rules in Figures 5 and 6 to move information
from the data context into the heap context and vice versa. This process termi-
nates because there are a finite number of points-to relations and list segment
predicates to generate rule applications, and when new predicates are introduced
via list segment unfolding they either do not trigger any new inequalities or are
over fresh variables about which nothing is yet known. Once the context is fully
saturated, the proof search reduces the goal by using the goal-driven search rules
and the process begins again.

Theorem 2. The proof search procedure is sound and terminating.

5.4 Integration with Linear Programming

A key feature of Hofmann and Jost’s system for inference of resource bounds
of functional programs [9] is the use of linear programming. In this section, we
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sketch how to extend the procedure of the previous section with linear constraint
generation. Using this technique, as long as the resource bounds are linear, we
can simply state our specifications in terms of the shapes of the data structures
that the program manipulates and infer the necessary resource annotations.

For simplicity, we assume that we are dealing with resources that are positive
rational numbers, so we can replace the resource contexts Θ in the proof search
procedure of the previous section with linear expressions over the rationals. The
resource matching judgement is altered to take and output linear expressions
over rationals, while producing linear constraints over the variables mentioned
in the resource expression, and we have the single rule:

e1  e2\e1 − e2, e2 ≤ e1

The proof search judgement is altered to generate a set of constraints over the
variables mentioned in the resource expression e: Π |Σ|e  G\C. The goal driven
search rules are then modified to accumulate the generated constraints. The heap
matching rules are similarly modified.

Given a collection of verification conditions and a successful proof search over
them that has generated a set of linear constraints, we input these into a linear
solver, along with the constraint that every variable is positive and an objective
function that attempts to minimise variables appearing in the pre-condition.

6 Example: Frying Pan List Reversal

We demonstrate the use of the proof search procedure coupled with linear con-
straint generation to the standard imperative in-place list reversal algorithm on
lists with cyclic tails (also known as “frying pan” lists). This example was used
by Brotherston, Bornat and Calcagno [4] to demonstrate the use of cyclic proofs
to prove program termination. Here we show how our amortised resource logic
can be used to infer bounds on the complexity of this procedure.

a b c

d

e

f

The “handle” of the structure consists of the nodes a, b, c and the “pan” consists
of the nodes d, e and f. When the in-place list-reversal procedure is run upon
a structure of this shape, it will proceed up the handle, reversing it, around the
pan, reversing it, and then back down the handle, restoring it to its original
order. For the purposes of this example, we assume that it takes one element
of resource to handle the reversal of one node. Following Brotherston, Bornat
and Calcagno, we can specify a cyclic list in Separation Logic by the following
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formula, where v0 points to the head of the list and v1 points to the join between
the handle and the pan.

∃k.lseg(x1, v0, v1) ∗ [v1
next�→ k] ∗ lseg(x2, k, v1) ∗Rx3

We have annotated the list segments involved with resource annotation variables
x1 and x2 that we will instantiate using linear programming. The predicate Rx3

denotes any extra resource we may require. Similarly, we have annotated the
required loop invariant (adapted from Brotherston et al):

(∃k.lseg(a1, l0, v1) ∗ lseg(a2, l1, null) ∗ [v1
next�→ k] ∗ lseg(a3, k, v1) ∗Ra4)

∨ (∃k.lseg(b1, k, null) ∗ [j next�→ k] ∗ lseg(b2, l0, v1) ∗ lseg(b3, l1, j) ∗Rb4)
∨ (∃k.lseg(c1, l0, null) ∗ lseg(c2, l1, v1) ∗ [v1

next�→ k] ∗ lseg(c3, k, v1) ∗Rc4)

Each disjunct of the loop invariant corresponds to a different phase of the proce-
dure’s progress. Brotherston et al note that it is possible to infer the shape part
of this loop invariant using current Separation Logic tools. Here, we are adding
the ability to infer resource bounds. Running our tool on this example produces
the following instantiation of the variables:

Pre-condition x1 = 2 x2 = 1 x3 = 2
Loop invariant, phase 1 a1 = 2 a2 = 1 a3 = 1 a4 = 2
Loop invariant, phase 2 b1 = 1 b2 = 1 b3 = 0 b4 = 1
Loop invariant, phase 3 c1 = 1 c2 = 0 c3 = 0 c4 = 0
Post-condition x′1 = 0 x′2 = 0 x′3 = 0

Pictorially, the inference has associated the following amount of resource with
each part of the input structure:

a

2

b

2

c

2 d

1

e

1

f

1

Each node of the handle has 2 associated elements of resource, to handle the two
passes of the handle that the procedure takes, while the pan has one element
of resource for each node. The inferred annotations for the loop invariant track
how the resources on each node are consumed by the procedure, gradually all
reducing to zero. Since we have added a consume instruction to be executed
every time the procedure starts a loop, the resource inference process has also
verified the termination of this procedure, and given us a bound on the number
of times the loop will execute in terms of the shape of the input.

7 Conclusions

The main limitation of our proof search procedure is that it only supports the
statement and inference of bounds that are linear in the size of lists that are
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mentioned in a procedure’s precondition. This is a limitation shared with the
work of Hofmann and Jost [9]. We note that this is not a limitation of the program
logic that we have presented, only of the automated verification procedure that
we have layered on top. We have demonstrated that the use of mixed shape and
resource assertions can simplify the complexity of specifications that talk about
resources, and this should extend to extensions of the proof search procedure, or
to interactive systems based on this program logic. The resource aware program
logic of Aspinall et al [2] also uses the same layering: a general program logic
for resources (which is proved complete in their case) is used as a base for a
specialised logic for reasoning about the output of the Hofmann-Jost system.

A possible direction for future work is to consider different assertion logics and
their expressiveness in terms of the magnitude of resources they can express. We
conjecture that the deep assertion logic we have presented here, extended with
the lseg predicate can express resources linear in the size of the heap. It would be
interesting to consider more expressive logics and evaluate them from the point
of view of implicit computational complexity; the amount of resource that one
can express in an assertion dictates the amount of resource that is available for
the future execution of the program.

Other resource inference procedures that are able to deal with non-linear
bounds include those of Chin et al [6,7], Albert et al [1] and Gulwani et al [8].
When dealing with heap-based data structures, all of these techniques use a
method of attaching size information to assertions about data structures. As we
demonstrated in Section 2, this can lead to additional unwanted complexity in
specifications. However, all of these techniques deal with numerically bounded
loops better than our current prototype automated procedure can, and we are
currently investigating how to extend our approach to deal with non-linear and
numerically-driven resource bounds.
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Abstract. We introduce a typed functional programming language LPL (acro-
nym for Light linear Programming Language) in which all valid programs run
in polynomial time, and which is complete for polynomial time functions. LPL
is based on lambda-calculus, with constructors for algebraic data-types, pattern
matching and recursive definitions, and thus allows for a natural programming
style. The validity of LPL programs is checked through typing and a syntactic
criterion on recursive definitions. The higher order type system is designed from
the ideas of Light linear logic: stratification, to control recursive calls, and weak
exponential connectives §, !, to control duplication of arguments.

1 Introduction

Implicit computational complexity (ICC). This line of research aims at character-
izing complexity classes not by external measuring conditions on a machine model,
but instead by investigating restrictions on programming languages or calculi which
imply a complexity bound. So for instance characterizing the class PTIME in such a
framework means that all the programs of the framework considered can be evaluated
in polynomial time (soundness), and that conversely all polynomial time functions can
be represented by a program of the framework (extensional completeness).

The initial motivation was to provide new characterizations of complexity classes of
functions to bring some insight on their nature [1,2,3,4]. In a second step, e.g. [5,6],
the issue was raised of using these techniques to design some ways of statically ver-
ifying the complexity of concrete programs. Some efforts in this direction have been
done also following other approaches, e.g. [7,8,9]. For this point of view it is quite con-
venient to consider a general programming language or calculus, and to state the ICC
condition as a criterion on programs, which can be checked statically, and which en-
sures on the validated programs a time or space complexity bound. In this respect the
previous extensional completeness is of limited interest, and one is interested in design-
ing criteria which are intensionally expressive, that is to say which validate as many
interesting programs as possible. Note that for a Turing-complete language the class
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of PTIME programs is non recursively enumerable, and so an intensionally complete
criterion would not be decidable. Actually we think that three aspects should be taken
into consideration for discussing intensional expressivity:

1. what are the algorithmic schemes that can be validated by the criterion,
2. what are the features of the programming language: e.g. higher-order functional

language, polymorphism, exceptions handling . . .
3. how effective is the criterion: what is the complexity of the corresponding decision

problem.

Results and methodology. The main contribution of the present work is the definition
of LPL (acronym for Light linear Programming Language), a typed functional pro-
gramming language inspired by Light linear logic satisfying an ICC criterion ensuring
a PTIME bound. LPL improves with respect to previous PTIME linear logic inspired
languages in aspects 1 and 2 above, since it combines the advantages of a user-friendly
and expressive language and of modular programming. The distinguishing feature of
LPL is the combination of

– higher-order types by means of a typed λ-calculus,
– pattern-matching and recursive definitions by means of a LetRec construction,
– a syntactic restriction avoiding intrinsically exponential recursive definitions and a

light type system ensuring duplication control,

in such a way that all valid typed programs run in polynomial time, and all polynomial
time functions can be programmed by valid typed programs.

A difficulty in dealing with λ-calculus and recursion is that we can easily combine
apparently harmless terms to obtain exponential time programs like the following one

λx.x(λy. mul 2 y)1

where mul is the usual recursive definition for multiplication. Such a term is apparently
harmless, but for each Church numeral n = λs.λz.snz this program returns the (stan-
dard) numeral 2n. In order to prevent this kind of programs, to achieve polynomial time
soundness, a strict control over both the numbers of recursive calls and beta-reduction
steps is needed. Moreover, the extension to higher order in the context of polynomial
time bounded computations is not trivial. Consider the classical foldr higher order
function; its unrestricted use leads to exponential time programs. E.g. let ListOf2 be a
program that given a natural number n returns a list of 2 of length n. Then, the follow-
ing program is exponential in its argument:

λx.foldr mul 1 (ListOf2 x)

For these reasons, besides the syntactic restriction avoiding intrinsically exponential re-
cursive definitions, we impose a strict typing discipline inspired by the ideas of Light
linear logic. In λ-calculus, Light linear logic allows to bound the number of beta-steps,
using weak exponential connectives ! and § in order to control duplication of arguments
and term stratification in order to control the size. The syntactic restriction of function
definitions limits the number of recursive steps for one function call. But this is not
enough since function calls appear at run time and the size of values can increase dur-
ing the computation. Our type system addresses these issues, and a key point for that
is the typing rule for recursive definition. In particular, a function of type N � N can
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increase the size of its input by at most a constant, while a function of type N � §N
can increase it by a (fixed) polynomial bound. For a recursive definition of the shape
f t = M{f t′}, the typing rule ensures that the context M does not increase the size
too much, and it types the function f accordingly. In this way the type system allows
to bound both the number of beta-steps and the size of values, and together with the
syntactic restriction this results in a PTIME bound on execution.

The typing restrictions on higher order functions are not too severe. Indeed, we can
write in a natural way some interesting programs using higher order functions without
exponential blow up. For instance consider again the foldr function, we can type a
term representing one of its classical uses as

λx.foldr add 0 x

About the methodology we use, we stress that we do not aim at proving the properties
of LPL by encoding it into Light linear logic. Instead, we take inspiration from it and we
adapt the abstract structure of its PTIME soundness proof to our new setting. Moreover,
our guideline is to follow a gradual approach: we propose here a strict criterion, that has
the advantage of handling naturally higher-order. We hope that once this step has been
established we might study how the criterion can be relaxed in various ways.

Indeed, the choice of using a combined criterion, i.e. a first condition ensuring ter-
mination, and a second one dealing with controlling the size, will be an advantage for
future works. In particular, by relaxing either one of the two conditions one can explore
generalizations, as well as different criteria to characterize other complexity classes.
Finally we think that the ICC criterion we give can be effectively checked since this is
the case for λ-calculus [10], but we leave the development of this point for future work.

Related works. Higher-order calculi: linear logic and linear type systems. Linear logic
[11] was introduced to control in proof theory the operations of duplication and erasing,
thanks to specific modalities !, ?. Through the proofs-as-programscorrespondence it pro-
vided a way to analyze typedλ-calculus. The idea of designing alternative weak versions
of the modalities implying a PTIME bound on normalization was proposed in [12] and
led to Light Linear Logic (LLL) in [4] and Soft Linear Logic (SLL) in [13]. Starting from
the principles underlying these logics different PTIME term languages have been pro-
posed [14,15]. In a second step [16] type systems as criteria forλ-calculus were designed
out of these logics, like DLAL [17] and STA [18]. This approach completely fits in the
proofs-as-programs paradigm, thereby offering some advantages from the programming
language point of view (point 2 above): it encompasses higher-order and polymorphism.
The drawback is that data are represented in λ-calculus and so one is handling encodings
of data-types analogous to Church integers. Moreover the kinds of algorithms one can
represent is very limited (point 1). However testing the criterion can be done efficiently
(point 3) thanks to some polynomial time type inference algorithms [10,19].

In [20] the authors propose a language for PTIME extending to higher-order the char-
acterizations based on ramification [1,2]. The language is a ramified variant of Gödel’s
system T where higher-order arguments cannot be duplicated, which is quite a strong
restriction. Moreover, the system T style does not make it as easy to program in this
system as one would like. Another characterization of PTIME by means of a restriction
of System T in a linear setting has been studied in [21,22].
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In [5], Hofmann proposed a typed λ-calculus with recursor (essentially a variant of
system T), LFPL, overcoming the problems of ramification, which allows to represent
non-size-increasing programs and enjoys a PTIME bound. This improves on point 1 by
allowing to represent more algorithms and by featuring higher-order types. However,
the restriction on higher-order arguments similar to the one in [20] and the system T
programming style make it quite far from ordinary functional languages.

First-order calculi and interpretations. Starting from works on ramification [1,2], Mar-
ion and collaborators have generalized them progressively by first replacing primitive
recursion by termination orderings [23], and then ramification by notions of quasi-
interpretation [6,24,25] and sup-interpretation [26,27] on a first-order functional lan-
guage with recursion and pattern-matching. These latter notions are semantic, inspired
from polynomial interpretations, and essentially statically provide a bound on the size
of the values computed during the evaluation. If a program admits both a termination or-
dering and a quasi-interpretation or sup-interpretation of a certain shape, then it admits
a complexity bound. The main benefit of this method is that more algorithms are vali-
dated (point 1) than in the ramification-based frameworks. An advantage of our present
contribution however is that it handles higher-order and that type checking is easier than
checking of quasi-interpretations .

Outline. We introduce in Section 2 the language LPL, its type system and the syntac-
tic criterion required on programs, and then provide some programming examples. In
Section 3 we define an extended language, eLPL, where a stratification is explicit in the
term syntax, and which is meant for translating and executing LPL typed programs. We
then show that all PTIME functions can be computed in LPL (Section 4). Finally, Sec-
tion 5 establishes our main result, that all LPL programs can be executed in polynomial
time w.r.t. the size of the input.

2 LPL

We introduce the language LPL, an extension of λ-calculus with constructors for alge-
braic data types, pattern matching and recursive function definitions. In order to limit
the computational complexity of programs we need to impose some restrictions. To
achieve polynomial time properties two key ingredients are used: a syntactic criterion
and a type system.

The syntactic criterion imposes restrictions to recursive schemes in order to avoid the
ones which are intrinsically exponential. The type system allows through a stratification
over terms to avoid the dangerous nesting of recursive definition.

2.1 The Syntax

Let the denumerable sets Var, PVar, Cst and Fct be respectively a set of variables,
a set of pattern variables, a set of constructors and a set of function symbols. Each
constructor c ∈ Cst and each function symbol F ∈ Fct has an arity n ≥ 0: the number
of arguments that it expects. In particular a constructor c of arity 0 is a base constant.

The program syntax is given in Table 1 where x ∈ Var, X ∈ PVar, c ∈ Cst and F ∈
Fct. Among function symbols we distinguish a subset of symbols which we will call
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Table 1. LPL term language definition

p ::= M | LetRec dF in p program definition
v ::= c v1 · · · vn value definition
t ::= X | c t1 . . . tn pattern definition
dF ::= F t1 . . . tn = N | dF, dF function definition

M, N ::= x | c M1 . . . Mn | X | F M1 . . . Mn | λx.M | MM term definition

basic functions and denote as F, G, ... We use the symbol κ to denote either a variable
or a pattern variable. Observe that values and patterns are subsets of terms.

The size |M| of a term M is the number of symbols occurring in it. The size of pat-
terns and programs are defined similarly. We denote by no(κ, M) the number of occur-
rences of κ in M. Let s ∈ Cst ∪ Fct be a symbol of arity n, then we will often write
s(M1, . . . , Mn) or s(

−→
M ) instead of s M1 . . . Mn.

The set Cst includes the usual constructors s of arity one and the base constant 0
for natural numbers, the constructor : of arity two and the base constant nil for lists of
natural numbers, node of arity three and the base constant ε for binary trees with node
natural numbers.

A function definition dF for the function symbol F of arity n is a sequence of defini-
tion cases of the shape F(t1, · · · , tn) = N where F is applied to patterns t1, . . . , tn,
the free variables of N are a subset of the free variables of t1, . . . , tn (thus pattern vari-
ables), and N is normal for the reduction (which will be given in Def. 4). Besides in a
definition case:
1. if F is a basic function G, then N does not contain any function symbol,
2. if F is not a basic function, then (i) N does not contain any basic function symbol,

and (ii) every occurrence of F in N appears in subterms of the form F(t11, . . . , t
1
n),

. . . , F(tk1, . . . , t
k
n); these subterms are called the recursive calls of F in N.

Patterns are linear in the sense that a pattern variable X cannot appear several times in a
given pattern. Moreover we assume that patterns t1, . . . , tn in the l.h.s. of a definition
case have distinct sets of pattern variables. The notion of sub-term is adapted to patterns:
we denote by t′ ≺ t the fact that t′ is a strict sub-pattern of t. As usual� is the reflexive
closure of ≺. Patterns t and t′ such that t � t′ and t′ � t are incomparable.

A program is a term M without free pattern variables preceded by a sequence of func-
tion definitions dF1 , . . . , dFn defining all the function symbols occurring in M. We ask that
every function definition dFi uses only the function symbols F1, . . . , Fi. We write a pro-
gram of the shape LetRec dF1 in · · · LetRec dFn in M simply as LetRec dF1 , . . . , dFn
in M. As usual we consider programs up to renaming of bound variables.

A substitution σ is a mapping replacing variables by terms. This is used to define the
notion of matching which is essential for the reduction mechanism of our language.

Let t be a pattern. We say the term M matches t if and only if there exists a substitution
σ such that M = σ(t). Analogously, given a definition case F(t1, . . . , tn) = N, the term
M matches it if and only if there exists a substitution σ such that M = F(σ(

−→
t )).

We say a sequence d1, . . . , dn of function definition cases for the function symbol
F of arity n is exhaustive if for every sequence of values V1, . . . , Vn such that F(

−→
V ) is

typable, there exists a unique 1 ≤ i ≤ n such that F(
−→
V ) matches the l.h.s. of di.

A program p is well defined if and only if all the function definitions in it are exhaustive.
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2.2 Syntactic Criterion

As we have already stressed, the first ingredient to ensure the intended complexity prop-
erties for LPL programs is a syntactic criterion.

Consider a definition case F(t1, . . . , tn) = M. We say t is recursive if it contains some
recursive calls F(t11, . . . , t

1
n), . . . , F(t

m
1, . . . , t

m
n) (m ≥ 1) in M, and base otherwise. Note

that basic functions by definition only have base definition cases. We now need the
following notion of safe definition cases.

Definition 1 (Safe definition case). Let F(t1, . . . , tn) = M be a definition case. It is
safe if for every recursive call F(t11, . . . , t

1
n), . . . , F(t

m
1, . . . , t

m
n) of F in M, we have:

(i) ∀k, ∀i : tk
i � ti, (ii) ∀k, ∃j : tk

j ≺ tj , (iii) ∀j, ∀k �= l, tk
j � tl

j and tl
j � tk

j .

Note that this condition is trivially satisfied by base definition cases, and thus by basic
functions. The syntactic criterion for LPL program can now be defined:

Definition 2 (Syntactic Criterion). An LPL program M satisfies the syntactic criterion
if and only if every definition case in it is safe.

We now state some definitions and properties that will be useful in the sequel.

Definition 3 (Matching argument). Let F(t1, . . . , tn) = M be a definition case. Every
position of index j such that tj is not a pattern variable X is a matching position.

The set R(F) is the set of all positions j for which there exists a definition case of F
where j is in matching position. The matching arguments of a function symbol F are the
arguments in a matching position ofR(F).

Note that in Definition 1 the condition (ii) asks that for every recursive call there ex-
ists at least one recurrence argument. Every such recurrence argument is a matching
argument. Moreover conditions (iii) and (ii) imply that in safe definition cases making
recursion over integer or list there is at most one recursive call. This to avoid exponen-
tial functions like the following: exp(s X) = (exp X)+ (exp X). Nevertheless, we have
functions with more recursive calls over trees, for example:

Tadd (node X Y Z) (node X′ Y′ Z′) = node (X + X′) (Tadd Y Y′) (Tadd Z Z′).
Safe definition cases have the following remarkable property.

Lemma 1. Let F(t1, . . . , tn) = M be a safe definition case and let the recursive calls
of F in M be F(t11, .., t1n), . . . , F(tm1, .., tmn). Then

∑n
i=1 |ti| >

∑m
k=1(

∑n
i=1 |tk

i |).

2.3 Reduction

The computational mechanism of LPL will be the reduction relation obtained by ex-
tending the usual β-reduction with rewriting rules for the LetRec construct.

We denote by M{} a context, that is to say a term with a hole, and by M{N} the result
of substituting the term N for the hole.
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Definition 4. The reduction relation→L is the contextual closure of:

– the relation→β defined as: (λx.M)N→β M[N/x],
– the relation→γ defined for basic functions F by: if ∃i σ(−→ti ) =

−→
N then

LetRec F(t1) = M1, . . . , F(tn) = Mn in M{F(−→N )} →γ

LetRec F(t1) = M1, . . . , F(tn) = Mn in M{σ(Mi)}
– and of the relation→Rec defined as→γ but for non-basic functions.

We write→γFi
(resp.→RecFi

) instead of→γ (resp.→Rec) when we want to stress which
function Fi (resp. Fi) has been triggered. As usual→∗L denotes the reflexive and transi-
tive closure of→L.

We remark that the syntactic criterion alone implies that a program satisfying it cannot
have an infinite→Rec reduction sequence.

2.4 Type System

The fundamental ingredient to ensure the complexity properties of LPL is the type
system. It allows to derive different kinds of typing judgments. One assigns types to
terms, another one assigns types to programs and the last one assigns types to function
definitions. We start with a set of ground types containing Bn, N, Ln, L, T representing
respectively finite types with n ≥ 1 elements, unary integers (natural numbers), lists
over Bn, lists of unary integers and binary trees with unary integers at the nodes. Ground
types can also be constructed using products D1 × D2 whose elements are of the form
(p d1 d2) where di is an element of Di (i = {1, 2}). The constructor p has type D1 �
D2 � D1 × D2. This set of ground types could easily be extended to all the usual
standard data types. Types are defined by the following grammars:

D ::= Bn | N | Ln | L | T | D× D and A ::= D | A� B | !A� B | §A

The type !A � B is the translation of the intuitionistic implication A ⇒ B in linear
logic. It uses the modality ! to manage typing of non-linear variable in a program. In
particular, !A � B is a type for functions that can use their argument several times,
while A � B (when A is not of the form !A′) is a type of functions that use their
argument at most once. It is worth noting that the modality ! here cannot be nested,
i.e. !!A does not occur in types since ! is used only in combination with�, on its left
hand side. The other modality §A is used in Light linear logic [4] (and in DLAL) to
guarantee a PTIME bound normalization. A possible intuition is that it marks different
levels of computation, like in ramified type systems: a function defined by recursion
over an argument of type D (a data type) will produce a result at higher level, so of type
§A, for some A. A formula A is modal if it is of the form A = §B or !B. We write †
for modalities in {!, §}, and †nA = †(†n−1A), †0A = A.
Now we give types to constructors and functions:

Definition 5. To each constructor or function symbol s, of arity n, a fixed type is asso-
ciated, denoted T (s):

– If s = c or F then T (s) = D1 � · · ·� Dn � Dn+1,
– If s = F a non-basic function then T (F) =!i1§j1A1� · · ·�!in§jnAn� §jA with:
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i) j ≥ 1 and 0 ≤ ir ≤ 1 for any 1 ≤ r ≤ n,
ii) for 1 ≤ r ≤ n, if r ∈ R(F) then Ar is a ground type D and ir = jr = 0;

otherwise ir + jr ≥ 1.

Where for 1 ≤ i ≤ n + 1, the Di are ground types, and the Ai and A are non-modal.

Example 1. For the ground type N of natural numbers we have: T (0) = N, T (s) =
N� N. For the ground type L of finite lists of natural numbers we have: T (nil) = L,
T (:) = N� L� L. For the ground type T of finite binary trees with natural numbers
as node we have: T (ε) = T, T (node) = N� T� T� T.

We design a declarative type assignment system (Table 2) to favor simplicity rather than
to make type inference easy. So the typing rules will not be syntax-directed but they
could be. Contexts, denoted Γ,Δ, . . . are sets of assignments of the shape x :A or X :A
where A is a type. Note that there are no symbols of function or constructor in contexts.

The type judgments for terms and programs have the shape Γ ;Δ  M :A and Γ ;Δ 
p : A respectively, where Γ and Δ are two distinct contexts, M is a term and p is a
program, while A is a type. The context Γ is called non-linear, while Δ is linear (in
fact affine): the type system will ensure that variables from Δ occur at most once in
the term M or the program p. If Δ is κ1 : A1, . . . ,κn : An then §Δ will stand for
κ1 :§A1, . . . ,κn :§An.

The type judgments for function definitions have the shape �dF : A, where dF is a
definition of F (possibly not completed yet) and A is a type.

We now explain some rules. In binary rules, like (⇒ E), the contexts of the two
premises have disjoint sets of variables. The typing rules for terms in Table 2.2 are
essentially those of the type system DLAL [17] for λ-calculus but extended to pattern
variables. Note that the linear application (� E) is unrestricted, while in the non-linear

Table 2. LPL Typing rules

� c : T (c) � F : T (F)
1: Constructors and functions

; κ : A � κ : A
(Ax)

Γ1; Δ1 � M : B

Γ1, Γ2; Δ1, Δ2 � M : B
(W )

Γ, κ1 : A, κ2 : A; Δ � M : B

Γ, κ : A; Δ � M[κ/κ1, κ/κ2] : B
(C)

Γ ; Δ, x : A � M : B

Γ ; Δ � λx.M : A � B
(� I)

Γ1; Δ1 � M : A � B Γ2; Δ2 � N : A

Γ1, Γ2; Δ1, Δ2 � MN : B
(� E)

Γ, x : A; Δ � M : B

Γ ; Δ � λx.M :!A � B
(⇒ I)

Γ1; Δ � M :!A � B ; Γ2 � N : A Γ2 ⊆ {κ : C}
Γ1, Γ2; Δ � MN : B

(⇒ E)

; Γ, Δ � M : A

Γ ; §Δ � M : §A
(§I)

Γ1; Δ1 � N : §A Γ2; x : §A, Δ2 � M : B

Γ1, Γ2; Δ1, Δ2,� M[N/x] : B
(§E)

2: Terms

Γ ; Δ � F(−→ti ) : B Γ ; Δ � Ni : B �dF : B

�(F(−→ti ) = Ni), dF : B
(D) Γ ; Δ � p : A �dF : B

Γ ; Δ � LetRec dF in p : A
(R)

3: Recursive definitions and programs



112 P. Baillot, M. Gaboardi, and V. Mogbil

one (⇒ E): the argument N should have at most one free variable κ, which is linear; in
the conclusion, κ then has a non-linear status. This is a key to bound β-reduction steps.

The typing rules for definitions are presented in Table 2.3 and together with those
for function symbols, are the main novelty of the present system. They need some com-
ments. The rule (D) serves to add a definition case to a partial definition dF of F. The
new definition typed is then d′F = (F(−→ti) = Ni), dF. Whereas the rule (R) then serves to
form a new program from a program and a definition of a function.

By a straightforward adaptation of DLAL subject reduction we have:

Theorem 1 (Subject Reduction). Let p be a LPL program such that Γ ;Δ  p : A.
Then, p→∗L q implies Γ ;Δ  q : A.

2.5 Some Examples

We give here some hints on how to program in LPL. More information about the typing
can be found in Section 3.1. Addition can be defined by a standard definition dA as:

Add (s X) Y = s (Add X Y) , Add 0 Y = Y
the first is a matching arguments, so dA is typable for example by taking Add : N �
§N� §N. Multiplication can be given by a function definition dM as:

Mul (s X) Y = Add Y (Mul X Y) , Mul 0 Y = 0

the first is a matching argument and since Add : N� §N� §N we can type dM using
Mul : N �!N � §§N and by means of rule (§I) and (§E). We have a type coercion
program for every data type, e.g on numerals we have dC as:

Coer (s X) = s (Coer X) , Coer 0 = 0

typable with Coer : N� §N. This can be used in dP to define the usual Map program:

Map Y (X : XS) = (Y (Coer X)) : (Map Y XS) , Map Y nil = nil

typable with Map :!(N� N)� L� §L. Note that we have also a typing for non linear
function argument of Map. Using this we can write a program Map (×2) (1 : 2 : 3 : 4)
that doubles all the elements of (1 : 2 : 3 : 4) as

LetRec dA, dM, dC, dP in Map (λx.Mul x 2) (1 : 2 : 3 : 4)
typable with type §§§L using Map :!(N � §§N) � L � §§§L. Using again the
coercions we have a definition dR for the Foldr program:

Foldr Y Z (X : XS) = Y (Coer X) (Foldr Y Z XS) , Foldr Y Z nil = Z

typable with Foldr :!(N � N � N) � §N � L � §N. Note that we have also a
typing Foldr :!(N � §N � §N) � §§N � L � §§N, we can use it to write the
program Foldr (+) 0 (1 : 2 : 3) that sums the values in the list (1 : 2 : 3). We have

LetRec dA, dC, dR in Foldr (λx.λy.Add x y) 0 (1 : 2 : 3)
typable with type §§N. Finally have also some interesting programs over trees. For
example we have dT defining addition Tadd : T� T� §T as:

Tadd (node X Y Z) (node X′ Y′ Z′) = node (Add X X′) (Tadd Y Y′) (Tadd Z Z′) ,
Tadd ε X = CoerT X , Tadd X ε = CoerT X

where CoerT is a coercion for the T data type (defined analogously to the one for natural
numbers). It should be stressed that even though in LLL one can define a type for binary
trees (as in system F) there is no simple way in this system to program Tadd. Moreover,
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we here can program some more examples that would be awkward to program in LLL.
For example division by 2 on unary integers.

Div (s (s X)) = s (Div X), Div (s 0) = 0 , Div 0 = 0 ,

that gets type N� §N. The problem for typing DIV in LLL is that this kind of recursion
scheme (using the pattern s(s X)) cannot be implemented directly on Church integers,
by using their iteration scheme. Similarly functions that are defined by pattern matching
over two arguments, like for example Tadd above and the minimum function:

Min (s X) (s Y) = s (Min X Y), Min (s X) 0 = 0 , Min 0 (s Y) = 0 ,

that is typable as Min : N� N� §N cannot be programmed naturally in LLL.

3 Translating LPL in eLPL

The proof of the polynomial time complexity bound for light linear logic [4] and light λ-
calculus [14] uses a notion of stratification of the proofs or λ-terms by depths. To adapt
this methodology to LPL we need to make the stratification explicit in the programs. For
that we introduce an intermediate language called eLPL, adapted from light λ-calculus
[14], and where the stratification is managed by new constructions (corresponding to
the modality rules). Note that the user is not expected to program directly in eLPL, but
instead he will write typed LPL programs, which will then be compiled in eLPL. The
polynomial bound on execution will then be proved for a certain strategy of evaluation
of eLPL programs.

The syntax of eLPL is given in Table 3. An eLPL term λx.let x be !y in M[y/x],
where y is fresh, is abbreviated by λ!x.M. Moreover, we write let M be †nx in N to
denote terms as let M be †x1 in (let x1 be †x2 in (. . . (let xn−1 be †xn in N) · · · ).
We will give a translation of type derivations of LPL programs to type derivations of
eLPL programs, which will leave almost unchanged the typing part, and act only on the
term part of LPL programs.

The contexts of typing judgments for eLPL terms and programs can contain a new
kind of type declaration, denoted x : [A]§, where A is a type, which corresponds to
a kind of intermediary status for variables with type §A. In particular, [A]§ does not
belong to the type grammar and these variables cannot be λ-abstracted, the only possi-
bility is to bind them by means of a let. This kind of declarations is made necessary
by the fact that eLPL is handling explicitly stratification. If Δ = x1 : A1, . . . , xn : An

then [Δ]§ is x1 : [A1]§, . . . , xn : [An]§. The typing rules are given in Table 4. Note
that declarations x : [A]§ are introduced by (§ I) rules, and eliminated by (§ E) rules.
Intuitively, a variable x : [A]§ is a kind of special pattern for §x, and only a term of the

Table 3. eLPL term language definition

program definition p ::= M | LetRec dF in p
value definition v ::= c(v1, · · · , vn)
pattern definition t ::= X | c(t1, . . . , tn)
function definition dF ::= F(t1, . . . , tn) = N | dF, dF
term definition M, N ::= x | c | X | F | λx.M | MM | !M | §M | let M be !x in M | let M be §x in M
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Table 4. eLPL type system

constructors and functions rules, (Ax), (W ), (C), (� I), (� E), (D), (R) : as in Table 2

; Γ, Δ � M : A

Γ ; [Δ]§ � §M : §A
(§I)

Γ, x : A; Δ � M : B

Γ ; Δ � λ!x.M :!A � B
(⇒ I)

Γ, κ : A; Δ � M : B x fresh

Γ, κ : A; Δ � let κ be !x in M[x/κ] : B
(l!)

Γ1; Δ1 � N : §A Γ2; x : [A]§, Δ2 � M : B

Γ1, Γ2, Δ1; Δ2,� let N be §x in M : B
(§E)

Γ1; Δ � M : (!A) � B ; Γ2 � N : A Γ2 ⊆ {κ : C}
Γ1, Γ2; Δ � M!N : B

(⇒E)

shape §M will be able to trigger the reduction of the let. Observe that if λx.M is a well
typed eLPL term, then no(x, M) ≤ 1.

Note that all the rules in Table 4, but the rule (l!), are the same rules as in Table 2 but
for the terms being the subjects of each rule and for the distinction between §A and [A]§.
This suggests that we can give a translation on type derivation inducing a translation on
typable terms. From this observation we have the following:

Definition 6. Let M be an LPL term and Π be a type derivation proving Γ ;Δ  M : B.
Then, Π∗ is the type derivation in eLPL proving Γ ;Δ  M∗ : B obtained by:

– substituting to each rule (X) of LPL in Π the corresponding rule (X) in eLPL
and changing accordingly the subject,

– adding at the end: for each variable κ ∈ Γ (resp. x : [A]§ ∈ Δ) an occurrence of
the rule (l!) (resp. (§ E) with a l.h.s. premise of the form ; y : §A  y : §A).

The above translation leaves the contexts Γ and Δ and the type B, the same as in the
source derivation. The translation can be easily extended to function definitions:

Definition 7. Let F(−→ti) = Ni, dF be an LPL function definition and Π be its type
derivation in LPL ending as:

Σ1 : Γ ; Δ � F(−→ti ) : B Σ2 : Γ ; Δ � Ni : B Σ3 : �dF : B

�F(−→ti ) = Ni, dF : B
(D)

Then, Π∗ is the type derivation in eLPL ending as:

Σ1 : Γ ; Δ � F(−→ti ) : B Σ∗
2 : Γ ; Δ � N∗i : B Σ∗

3 : �dF
∗ : B

�F(−→ti ) = N∗i , dF
∗ : B

(D)

Note that in the translation we do not translate the left hand-side of a definition case, we
keep it to be exactly the same as in LPL. We can now extend the translation to programs.

Definition 8. Let p = LetRec dF1 , . . . , dFn in M be an LPL program and let Π be a
type derivation in LPL proving Γ ;Δ  LetRec dF1 , . . . , dFn in M : B. Then, Π∗ is
the derivation in eLPL proving Γ ;Δ  LetRec dF1

∗, . . . , dFn
∗ in M∗ : B obtained by

replacing every derivation Σi : �dFi : §B in Π by the derivation Σ∗i � dFi
∗ : §B and

by replacing the derivation Σ : Γ ;Δ  M : B by the derivation Σ∗ : Γ ;Δ  M∗ : B.

The above translation is not exactly syntax directed; the reason is that we want the
following remarkable property:
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Lemma 2. Let M be an LPL term and Π be a type derivation for it. Then the term M∗

obtained by the derivation Π∗ is such that no(κ, M∗) ≤ 1 for each κ ∈ FV(M∗).

Because of the new let constructions, the reduction rules are extended as follows:

Definition 9. The reduction relation→I is the contextual closure of the relations→Rec,
→γ (as in Def. 4) and of the reductions →β , →!, →§, →com1 ,→com2 and →com3 for
† ∈ {!, §} defined as:

(λx.M)N→β M[N/x], let !N be !x in M→! M[N/x], let §N be §x in M→§ M[N/x],

M(let U be †x in V)→com1 let U be †x in (MV),

(let U be †x in V)M→com2 let U be †x in (VM),

let (let U be †x in V) be †y in W→com3 let U be †x in (let V be †y in W).

As usual→∗I denotes the reflexive and transitive closure of→I.

We write→com for any one of the three commutation reductions→comi . Note that:

– in→β and→§ at most one occurrence of x is substituted in M (linear substitution),
– the reduction→!,→Rec,→γ are the only ones inducing non-linear substitutions.

In fact, a β-step in LPL corresponds in eLPL to a (linear) β step followed by a ! step.
Now, to reason about the stratification we define the notion of depth.

Definition 10. Let M be an eLPL term and N be an occurrence of a subterm in it. The
depth of N in M, denoted d(N, M) is the number of § or ! symbols encountered in the
syntax tree of M when going from the root of M to the root of N . The degree of an eLPL
term M, denoted by d(M), is the maximal depth of any subterm in it.

E.g. Take M as N!(let y be !x in§(F x)). Then d(N, M) = 0, d(y, M) = 1 and d(x, M) = 2.
In what follows we write N ∈i M to denote the fact that N is a subterm of M at depth i,
i.e. d(N, M) = i. We write ni

o(κ, M) (respectively |M|i, FV(M)i and FO(M)i) to denote
the restriction of no(κ, M) (respectively |M|, FV(M) and FO(M)) at depth i.
Now we can state some important properties of typing on eLPL terms.

Lemma 3 (Variable occurrences). Let Γ ;Δ  M : A. Then:

i) if κ ∈ dom(Δ) then no(κ, M) ≤ 1.
ii) if no(κ, M) > 1 then κ ∈ dom(Γ ) and d(κ, M) = 1.

iii) if κ ∈ dom(Γ ∪Δ) we have n0
o(κ, M) ≤ 1.

Lemma 4. Let F(t1, . . . , tn) = N and let F(t11, . . . , t
1
n), . . . , F(t

m
1, . . . , t

m
n) be the re-

cursive calls of F in N. Then, d(F(ti
1, . . . , t

i
n), N) = 0.

These properties will be useful when studying the bounds on the reductions in eLPL.
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3.1 Revisiting the Examples

We now come back to the examples of Section 2.5 in order to clarify the way such
programs can be typed by giving the translations in eLPL. The function definitions
dC, dA and dM for the programs Coer : N � §N, Add : N � §N � §N and
Mul : N�!N� §§N respectively, can be translated in eLPL as

Coer (s X) = let (Coer X) be §z in §(sz) , Coer 0 = §0
Add (s X) Y = let (Add X Y) be §z in §(sz) , Add 0 Y = Y
Mul (s X) Y = let Y be !r in let (Mul X !r) be §z in §(Add r z) , Mul 0 Y = §§0

Similarly, the definition dP for Map :!(N� §§N)� L� §§§L can be translated as:

Map Y (X : XS) = let Y be !y in let Map !y XS be §§§z in let Coer X be §x in
§(let y x be §§r in r : z) , Map Y nil = §§§nil

Then the program LetRec dA, dM, dC, dP in Map (λx.Mul x 2) (1 : 2 : 3 : 4) can be
translated in eLPL as LetRec d∗A , d

∗
M , d
∗
C, d
∗
P in Map !(λx.Mul x !2) (1 : 2 : 3 : 4). Anal-

ogously, the definition dR for Foldr :!(N � §N� §N)� §§N� L� §§N can be
translated as:

Foldr Y Z (X : XS) = let Y be !y in let Coer X be §x in let Foldr !y Z XS
be §r in §(yxr) , Foldr Y Z nil = Z

Then the program LetRec dA, dC, dR in Foldr (λx.λy.Add x y) 0 (1 : 2 : 3) can be
translated as LetRec d∗A, d

∗
C , d
∗
R in Foldr !(λx.λy.Add x y) §§0 (1 : 2 : 3).

Finally the definition dT for Tadd : T� T� §T can be translated using a coercion
CoerT for the T data type (defined analogously to the one for natural numbers) as:

Tadd (node X Y Z) (node X′ Y′ Z′) = let Add X X′ be §x in let Tadd Y Y′ be §y in
let Tadd Z Z′ be §z in §(node x y z) , Tadd X ε = CoerT X , Tadd ε X = CoerT X

4 PTIME Completeness

The proof that LPL is complete for polynomial time functions is rather standard: we
can simulate any polynomial time (one tape) Turing machine in the language. In LPL
we can represent all the polynomials in N[X ], but here it is sufficient to use:

Lemma 5. For any K, k ∈ N, there exists an integer l and an LPL program of type
N� §lN representing the polynomial K × x2k

.

We consider a polytime Turing machineM with witness time polynomial P , n states,
and a 3 symbol alphabet (0,1 and blank). We encode the configurations with the type
config= (L3 × L3) × Bn where the first L3 type corresponds to the left part of the
tape, the second one corresponds to the right part, starting from the scanned symbol.

Lemma 6. For any transition function δ, there exists an LPL basic function
conf2conf : config � config representing the corresponding action on config-
urations.

We easily check that conf2conf can be defined by a case analysis, using the pattern-
matching, and does not need recursion; so it is a basic function, hence its type. We will
also use an iterator of type N�!(A�A)� §A� §A with A=config defined by:

Iter (s X) f base = f Iter X f base , Iter 0 f base = base
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Theorem 2 (Ptime Completeness). For any polynomial time function f on {0, 1}	,
there exists an integer j and an LPL program of type L2 � §jL2, representing f .

Proof. We simulate the machineM computing f . By Lemma 5 we represent in LPL
the polynomial P , with a term t of type N� §mN, for some m. It is also easy to define
a Length : L2 � §N and a Init : L2 � config which maps a word to the corre-
sponding initial configuration. The simulation is then obtained by iterating conf2conf
for (t (Length w)) steps, starting from the base (Init w), and then extracting the result
by using projection maps. This can be suitably typed, using some coercions on L2. ��

5 Polynomial Time Soundness

We here show that well-typed LPL programs satisfying the syntactic criterion can be
evaluated in polynomial time in the size of the input (with the degree of the polynomial
given by the type derivation). For that we work on the eLPL translated programs. For
simplicity we do not consider basic functions, but the proof can be easily extended to
the whole LPL. From now on we only consider eLPL programs obtained by translation
from well-typed LPL programs satisfying the syntactic criterion.

Similarly to the polynomial soundness proof for LLL, we prove that the evaluation
of eLPL programs can be done in polynomial time using a specific depth-by-depth
stratified strategy. The polynomial bound for this strategy in LLL relies on:

1. reducing a redex at depth i does not affect the size at depth j < i
2. a reduction at depth i strictly decreases the size at depth i
3. a reduction at depth i increases the size at depth j > i at most quadratically
4. the reduction does not increase the degree of a term

Unfortunately for eLPL facts 2, 3 and 4 above do not hold due to the presence of
LetRec, hence some adaptations are needed.

In order to adapt these facts we need to impose a rigid structure on the reductions at a
fixed depth. We consider a notion of standard reduction round at a fixed depth i, denoted
⇒i and a notion of standard reduction step at a fixed depth i denoted�i

RecF
for each

function symbol F of the program. A standard reduction step �i
RecF

is an alternating
maximal sequence of→RecF and→∗com steps at depth i as represented in Figure 1.(i). It
is maximal in the sense that in the step →∗com all the possible commutations are done.
Note that, during a standard reduction step the size of the term at depth i might grow as

�→RecF
�→∗

com
� · · · �→RecF

�→∗
com

� �→∗
(β,com)

� �i
RecFn

� �i
RecFn−1

� · · · � �i
RecF1

� →∗
† �

(i) (ii)

Fig. 1. Term size variations at fixed depth i by a standard reduction step and round at same depth.
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depicted in Figure 1.(i), i.e.→∗com steps leave the size unchanged while→RecF steps can
grow the size at depth i. We introduce some new measures on matching arguments to
show that this growth is polynomial in the size of the initial term i.e. Lemma 20.

A standard reduction round ⇒i is a sequence of maximal reduction steps as repre-
sented in Figure 1.(ii). Every reduction step is maximal in the sense that it reduces all
the possible redexes of the intended kind. Note that, also during a standard reduction
round the size of the term at depth i might grow as depicted in Figure 1.(ii), i.e.→∗β,com

and →∗† steps make the size decrease while �i
RecFj

steps can make the size grow as
discussed above. So, by using the bound on a standard reduction step and by the fact
that the number of standard reduction steps depends on the shape of the program, we
adapt fact 2 above by showing that this growth is polynomial in the size of the initial
term, i.e. Theorem 3. Moreover, by similar arguments we adapt fact 3 above by showing
that a standard reduction round at depth i can increase the size at depth j > i at most
polynomially, Lemma 21.

Finally, in order to adapt fact 4 to our framework, we introduce the notion of potential
degree. This is the maximal degree a term can have during the reduction and it can be
statically determinated. We show that a standard reduction, i.e. a sequence of standard
reduction rounds of increasing depth, does not increase the potential degree, Lemma 23.
Summarizing, what we obtain can be reformulated for eLPL as:

1. reducing a redex at depth i does not affect depth j < i
2. a standard reduction round at depth i strictly decreases some measures on matching

arguments and increases the size at depth i at most polynomially
3. a standard reduction round at depth i increases the size at depth j > i at most

polynomially
4. the standard reduction does not increase the potential degree of a term

Now, from these new key facts, the polynomial soundness, Theorem 4, will follow.

5.1 Preliminary Properties

For a given a program p = LetRec dF1 , . . . , dFn in M it is convenient to introduce the
following static constants:

KFi = max{|N|j | Fi(t1, . . . , tn) = N ∈ dFi} and K = max{KFi | 1 ≤ i ≤ n}
We now show some simple properties about eLPL term depths. Recall that eLPL has
been designed in such a way to preserve the good LLL properties. Indeed, the following
lemmas can be directly adapted from the arguments in [14].

Lemma 7. 1. Let λx.M be a well typed term. Then no(x, M) ≤ 1 and d(x, M) = 0.
2. Let let M be†x in N be a well typed term. Then x ∈ FV(N) implies that for each

occurrence xi of x in N, d(xi, N) = 1.
3. Let F(t1, . . . , tn) = N be a typed definition case: if X ∈ FV(ti), then d(X, N) = 0.

Lemma 8. 1. Let M be com-normal at depth i ≥ 0. If M →∗† M′ at depth i then for
j > i we have |M′|j ≤ |M|j×|M|i and it does not create redexes at depth k ≤ i.

2. At depth i ≥ 0,→β and→† reductions strictly decrease the term size at depth i.
The number of com-reductions in M →∗com M′ is bounded by (|M|i)2. The number of
(β, †)-reductions in M→∗β,† M

′ is bounded by |M|i.
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5.2 Bound the Number of Steps at a Fixed Depth

We need to define a measure, denoted SAF
j (M), that will be used to bound the number of

rec-reduction steps at depth j. For that we will first introduce an intermediary notion:

Definition 11 (External constructor size). The external constructor size of a term M
at depth j, denoted ‖M‖j , is the number of constructors of M at depth j which are not in
an argument of a function, of a let or of a variable at depth j.

The external constructor size measure enjoys the following remarkable property.

Lemma 9. Let F(t1, . . . , tn) = N be safe and let the recursive calls of F in N be
F(t11, .., t

1
n), . . . , F(t

m
1, .., t

m
n). Then

∑
r∈R(F) ‖tr‖0 >

∑m
k=1

∑
r∈R(F) ‖tk

r‖0.

Proof. By induction on m by using Lemma 4 and Definition 1. ��

Lemma 10. 1. If Γ ;Δ  M : †A and M is (β, com)-normal at depth 0, then ‖M‖0 = 0.
2. If Γ ;Δ  M : A and M is (β, com)-normal at depth 0 and M →RecF M′ at depth 0,

then ‖M′‖0 = ‖M‖0.

Proof. 1. By induction on M. 2. By induction on M using point 1. ��

Note that the above lemma applies on each typable term. This means that for each
(β, com)-normal term M the measure ‖M‖0 is invariant under RecF function calls.

Definition 12. We call SAF
j (M) the sum of the external constructor sizes of the matching

arguments at depth j of the function F in M. It is inductively defined as:

SAF
0(†M′) = 0 SAF

j+1(†M′) = SAF
j (M
′) SAF

j+1(F(M1, . . . , Mn)) =
∑n

i=1 SAF
j+1(Mi)

SAF
0(F(M1, . . . , Mn)) =

∑n
i=1 SAF

0(Mi) +
∑

r∈R(F) ‖Mr‖0

SAF
j (sM1 · · · Mn) = SAF

j (G(M1, . . . , Mn)) =
∑n

i=1 SAF
j (Mi) if s ∈ {y, c}

SAF
j ((λx.M

′)M1 · · · Mn) = SAF
j (M
′) +

∑n
i=1 SAF

j (Mi)

SAF
j ((let N1 be †x in N2)M1 · · · Mn) = SAF

j (N1) + SAF
j (N2) +

∑n
i=1 SAF

j (Mi)

The following Lemma follows by the above definition.

Lemma 11. We have ‖M‖0 +
∑
{SAG

0(M) | G ∈ M} 	 |M|0. Moreover for i ≥ 0 we have∑
{SAG

i (M) | G ∈ M} ≤ |M|i.
We remark that the above lemma gives a bound for all the function symbols of the
program, but often we use it to give a bound only for one function symbol : SAF

i (M) 	
|M|i. The following key lemma is the reason for which we have introduced SAF

i (M):

Lemma 12. If M is (β, com)-normal and M→RecF M
′ at depth i then SAF

i (M
′) < SAF

i (M).

Proof. Let M = Q{F(σ(t1), . . . , σ(tn))} →RecF Q{σ(N)} = M′. It follows by induction
on the shape of Q{} and on the depth i by using Definition 12 and Lemma 10.2. ��

The above lemma will be useful to show that the number of Rec-reductions is bounded.
Before, we need some properties on Rec-redexes w.r.t. other redexes.
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Lemma 13. 1. Reducing a Rec-redex at depth i cannot introduce a β-redex at depth i.
2. Reducing a com-redex at depth i cannot introduce a Rec-redex at depth i.

Proof. 1. By typing constraints and since the r.h.s. of a definition case is normal.
2. Easy, by the shape of the reduct in a com-reduction. ��

Note that from the above lemma follows that if M is β-normal at depth i and M→Rec M′

at depth i then M′ is β-normal at depth i and analogously, if M is RecF-normal at depth i
and M→com M′ at depth i then M′ is RecF-normal at depth i.
In order to show that the number of Rec-reductions is bounded, we now need to consider
the behaviour of Rec-reductions on Rec-redexes of other function symbols.

Lemma 14. Consider p = LetRec dF1 , . . . , dFn in M.

1. A RecFi-reduction in M at depth d can introduce only Fj for j ≤ i function symbols
at a depth less or equal to d + max{d(Nj) | Nj body in a definition case of Fi}.

2. If M is (β, com)-normal, a RecFi-reduction in M at depth d cannot introduce a recFj-
redex for n ≥ j > i at depth d.

Proof. 1. Substitutions are done at depth d of terms with degree at most max d(Nj).
2. Easy, blocked symbols remain blocked by point 1 and Lemma 10.2. ��

From the above lemmas and Lemma 12 we have the following.

Corollary 15 (RecF-reductions bound). Let M be (β, com)-normal at depth i. If
M→k

RecF
M′ at depth i then k ≤ SAF

i (M).

Now we also need to control the term’s size increase during a Rec-reduction step.

Lemma 16 (Size lemma). If M →RecF M
′ at depth i then for all j ≥ i we have |M′|j ≤

|M|j + KF.

Proof. Let M = M1{F(σ(t1), . . . , σ(tn))} →RecF M1{σ(N)} = M′. By definition we
have |M′|j = |M1{}|j + |σ(N)|j−i and |M|j + KF = |M1{}|j + KF + |F(σ(t1),
. . . , σ(tn))|j−i.

What we need to show is that |σ(N)|j−i ≤ KF + |F(σ(t1), . . . , σ(tn))|j−i. We
consider the following two cases: j − i = 0 or j − i > 0. In the case j − i = 0
we have |σ(N)|0 = |N|0 +

∑
X∈0FO(N)(|σ(X)|0 − 1) and |F(σ(t1), . . . , σ(tn))|0 =

1 +
∑n

k=1 |tk|0 +
∑

X∈0FO(−→t )(|σ(X)|0 − 1). By definition |N|0 ≤ KF, moreover by

definition FV(N) ⊆ FV(−→t ) and by Lemma 2 every X ∈ FV(−→t ) occurs at most once
in N at depth 0. So we have

∑
X∈0FO(N)(|σ(X)|0 − 1) ≤

∑
X∈0FO(−→t )(|σ(X)|0 − 1). So

the conclusion follows for this case. In the case j − i = h > 0 we have the same by
Lemma 2: the pattern variables of −→t occur linearly in N at depth 0. ��

It remains to observe that com-reductions preserve our term measures.

Lemma 17. Let M →com M′ then we have: (i) d(M) = d(M′), (ii) |M′|i = |M|i for each
i ≤ d(M), and (iii) SAF

i (M) = SAF
i (M
′) for every F and every i ≤ d(M).

The above properties justify the next definition. We describe the reduction strategy at a
fixed depth that we will use to bound the number of reduction steps of eLPL programs.
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Definition 13 (standard reduction round). Let p = LetRec dF1 , . . . , dFn in M be a
program. Then:

– a standard reduction step at depth i, denoted R�i
RecF

R′, is a sequence of reductions
at depth i of the shape:

R→RecF T→∗com R1 →RecF T1 →∗com · · · →RecF Tk →∗com Rk ≡ R′

such that every Rj is com-normal and Rk is RecF-normal at depth i.
– a standard reduction round at depth i, denoted M ⇒i M′, is the following sequence

of reductions at depth i:
M→∗(β,com) M0 �i

RecFn
M1 �i

RecFn−1
· · ·�i

RecF1
Mn →∗† M′

such that M0 is (β, com)-normal and M′ is normal at depth i.

When we need to stress the number k of reduction steps in a standard reduction round
we simply write it as M⇒i

k M′.

In order to show that the relation�i is well defined for every term we need to prove
that all the reductions are finite. First we need the following in order to have its direct
corollary.

Lemma 18. A sequence of reductions →RecF→∗com at depth i cannot introduce a β-
redex at depth i.

Proof. By typing constraints and by cases on Definition 9. ��

Corollary 19. If M is β-normal at depth i and M →RecF→∗com M′ at depth i then M′ is
β-normal at depth i.

Now we can prove that the relation�i is well defined.

Lemma 20 (Bound on standard reduction step at depth i). Let M be (β, com)-normal
at depth i. If M �i

RecF
M′ then M′ is (β, com, RecF)-normal at depth i, the number of

reductions is bounded by

2× (|M|i)3 × (KF + 1)2 and for j ≥ i, |M′|j ≤ |M|j + |M|i ×KF.

Proof. By a detailed analysis of the standard reduction step M �i
RecF

M′ and by using
Lemma 12, Lemma 8.2, Lemma 17.ii-iii, Corollary 19, Lemma 16 and Lemma 11. ��

With this bound on standard reduction steps at fixed depth, we now state what we obtain
whenever a standard round is done at fixed depth.

Theorem 3 (Bound on standard round at depth i ). Let p=LetRec dF1 , . . . , dFn in M
be a program. Let M ⇒i

k M′ be a standard reduction round at depth i ≥ 0. Then M′ is
normal at depth i and we have

|M′|i ≤ |M|i × (K + 1)n and k ≤ 3× (|M|i)3 × (K + 1)3n+2

Proof. By analyzing the standard reduction round M⇒i
k M′ and by using Lemma 8.1-2,

Lemma 20, Lemma 14.1-2, Lemma 13.2, Lemma 12 and Lemma 17.ii ��
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Now we have a bound on a term size at fixed depth when we apply our strategy at the
same depth. In order to bound the whole program execution we need next to examine
what happens to the sizes at higher depth during the standard reduction round.

Lemma 21 (Size bound at depth greater than i, for a standard reduction round)
Let p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i

k M′ be a standard reduction
round at depth i ≥ 0. Then we have

|M′|i+1 ≤ |M|i+1|M|i × (K + 1)n + (|M|i)2 × (K + 1)2n+1

Proof. By an analysis of the shape of the standard reduction round M ⇒i
k M′ and by

using Lemma 8.1-2, Lemma 20 and Lemma 17. ��

Corollary 22. Let p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i M′ be a
standard reduction round at depth i ≥ 0. Then we have |M′| ≤ 2(|M|)2 × (K + 1)2n+1.

5.3 Bound on a Program Normalization

We apply our reduction strategy by standard rounds progressively at depths 0, 1, 2 . . .

Definition 14 (standard reduction). Let p = LetRec dF1 , . . . , dFn in M be a program.
A standard reduction, denoted M 
 M′, is a sequence of standard reduction rounds of
increasing depths of the shape:

M⇒0 M0 ⇒1 · · · ⇒d−1 Md−1 ⇒d M′

To stress the number k of total reduction steps we simply write it as M
k M′.

Every standard reduction can be summarized as follows

M →∗β,com M0
k0
�0

RecFn
M0

k1
�0

RecFn−1
· · · �0

RecF1
M0

kn
→∗† M0

M0 →∗β,com M1
0 �1

RecFn
M1
1 �1

RecFn−1
· · · �1

RecF1
M1

n →∗† M1

...
Mm−1 →∗β,com Mm

0 �m
RecFn

Mm
1 �m

RecFn−1
· · · �m

RecF1
Mm

n →∗† Mm

To give an upper bound on standard reductions we need the notion of potential depth.

Definition 15 (Potential Depth). Consider p = LetRec dF1 , . . . , dFn in M and an oc-
currence N of a subterm in M. The potential depth, ptd(N, p), of N in p, is defined as

ptd(N, p) = d(N, M) +
∑n

i=1 maxj{d(Nj
i ) | Fi(t

j
1, .., t

j
n) = Nj

i ∈ dFi}
The potential degree, ptd(p), of p is the maximal potential depth of any subterm in M.

Even if standard reductions can increase the depth of a term, we have the following:

Lemma 23. Let p = LetRec dF1 , .., dFn in M be a program and M⇒0M0⇒1 · · ·⇒mMm

be a standard reduction. Then m < ptd(p).

Proof. By double induction using Lemma 14. ��
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In the previous subsection we gave a bound on the number of program reduction steps
at fixed depth when we apply a standard reduction round. In the previous lemma we
stated that the potential depth is a bound on the possible depths to apply such standard
reduction rounds. So our standard reduction normalizes a given program as follows:

Theorem 4. Let p = LetRec dF1 , . . . , dFn in M be an eLPL translated program satis-
fying the syntactic criterion and d = ptd(p) be its potential degree. Let M 
k M′ be a
standard reduction. Then, M′ is normal, and |M′| ∈ O(|M|2d+1

) and k ∈ O(|M|3×2d

).

Proof. Looking at the shape of the standard reduction M 
k M′ and by using Theorem
3, Lemma 23, Corollary 22. ��

Corollary 24. If p is is a closed LPL program which satisfies the syntactic criterion
and with type D1 � §iD2, where i is an integer and D1, D2 are ground types, then p
represents a polynomial time function.

Proof. If v is value of type D1 we consider the translation of (p v) in eLPL, and use the
fact that its potential degree only depends on the type derivation of p. Therefore using
Theorem 4 the evaluation can be done in eLPL a polynomial number of steps, hence in
polynomial time since the cost of each step can be polynomially bounded.

6 Conclusion and Future Developments

In this work we have introduced Light linear Programming Language (LPL), a typed
functional programming language with pattern-matching, recursive definitions and
higher-order types. The main feature of LPL is to give an implicit complexity charac-
terization of PTIME where programming is more natural than in previous proposals. In
order to ensure the PTIME soundness we have given a combined criterion composed of
a syntactic restriction and a type system inspired by the one of Dual Light Affine Logic.

As future developments we consider the following directions:

– Verifying the effectiveness of our criterion and study the exact complexity of its
checking. This study should lead to an efficient type inference procedure.

– Studying different ways of relaxing our criterion in order to improve the intensional
expressiveness of LPL. One interesting direction is to include, in analogy with [5],
recursive definitions of non-size increasing functions with a special status.

– Analyzing the relation between the strategy proposed here to prove the PTIME
soundness and some standard evaluation strategies, e.g. lazy evaluation.
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Abstract. This paper is concerned with testing properties of polymor-
phic functions. The problem is that testing can only be performed on spe-
cific monomorphic instances, whereas parametrically polymorphic
functions are expected to work for any type. We present a schema for
constructing a monomorphic instance for a polymorphic property, such
that correctness of that single instance implies correctness for all other
instances. We also give a formal definition of the class of polymorphic
properties the schema can be used for. Compared to the standard method
of testing such properties, our schema leads to a significant reduction of
necessary test cases.

Keywords: polymorphism, parametricity, initiality, testing.

1 Introduction

How should one test a polymorphic function?
A modern and convenient approach to testing is to write specifications as

properties, and let a tool generate test cases. Such tools have been implemented
for many programming languages, such as Ada, C++, Curry, Erlang, Haskell,
Java, .NET and Scala [2, 3, 6, 7, 16, 20, 24, 27]. But how should one generate
test cases for polymorphic functions? Parametrically polymorphic functions, by
their very nature, work uniformly on values of any type, whereas in order to run
a concrete test, one must pick values from a specific monomorphic type.

As an example, suppose we have two different implementations of the standard
function reverse that reverses a list:

reverse1 , reverse2 : ∀a. [a ]→ [a ]
In order to test that they do the same thing, what monomorphic type should we
pick for the type variable a? Standard praxis, as for example used by QuickCheck
[7], suggests to simply use a type with a large enough domain, such as natural
numbers, resulting in the following property:
∀ xs : [N ]. reverse1 xs reverse2 xs

Intuitively, testing the functions only on the type N is “enough”; if the original
polymorphic property has a counter example (in this case a monomorphic type
T and a concrete list xs : [T ]), there also exists a counter example to the
monomorphic property (in this case a concrete list xs ′ : [N ]).

However, how do we know this is enough? And, can we do better than this?
This paper aims to provide an answer to these questions for a large class of

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 125–144, 2010.
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properties of polymorphic functions. We give a systematic way of computing the
monomorphic type that a polymorphic property should be tested on. Perhaps
surprisingly, we do this by only inspecting the type of the functions that are
being tested, not their definition. Moreover, our method significantly improves
on the standard testing praxis by making the monomorphic domains over which
we quantify even more precise. For example, to check that reverse1 and reverse2
implement the same function, it turns out to be enough to test:
∀ n : N. reverse1 [1 . .n ] reverse2 [1 . .n ]

In other words, we only need to quantify over the length of the argument list, and
not its elements! This is a big improvement over the previous property; for each
list length n, only one test suffices, whereas previously, we had an unbounded
number of lists to test for each length. This significantly increases test efficiency.

Related Work. There are a few cases in the literature where it has been shown
that, for a specific polymorphic function, testing it on a particular monomorphic
type is enough. For example, Knuth’s classical result that verifying a sorting
network only has to be done on booleans [19, sec. 5.3.4], can be cast into a
question about polymorphic testing [11]. The network can be represented as a
polymorphic function parametrised over a comparator (a 2-element sorter):

sort : ∀a. (a × a → a × a)→ [a ]→ [a ]
Knuth has shown that, in order to check whether such a function really sorts,
it is enough to show that it works for booleans; in other words checking if the
following function is a sorting function:

sort Bool : [Bool ]→ [Bool ]
sort Bool = sort (λ(x , y)→ (x ∧ y, x ∨ y))

Another example is a result by [28], which says that in order to check that a given
function is a scan function, it is enough to check it for all possible combinations
on a domain of three elements.

The result we present in this paper has the same motivation as these ear-
lier results, but the concrete details are not exactly the same. In section 4, we
compare our general result with Knuth’s and Voigtländer’s specific results.

Contributions and outlook. Our main contribution is a schema for testing poly-
morphic properties effectively and efficiently. We explain the schema both from
a theoretical and practical point of view. Our examples are aimed at giving prac-
titioners a good intuition of the method (section 2) and demonstrate some of its
applications (section 4). A more formal exposition is provided in section 3. We
cover related and future work in sections 5 and 6 and we conclude in section 7.

2 Examples

In this section, we discuss a number of examples illustrating the idea behind
our method in preparation for the more formal treatment in the next section.
We are using Haskell-like notation and QuickCheck-like properties here, but our
result can be used in the context of other languages and other property-testing
frameworks.
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Example 1. Let us first compare two implementations of the function filter :
filter1 ,filter2 : ∀a. (a → Bool )→ [a ]→ [a ]

A parametric polymorphic function knows nothing about the type it is being
used on. So, the only way an element of type a can appear in the result, is if
it was produced somehow by the argument of the function. We can analyse the
type of the arguments of the functions under test, in order to see in what way
the arguments can be used to produce an element of type a. The monomorphic
type A we are going to construct to test the functions on will represent all such
ways in which the arguments can be used to produce an a.

In the case of filter , the only way we can produce elements of type a, is by
using an element from its argument list (the predicate (a → Bool ) can only
inspect elements). So, a natural choice for A is to be the index of the element
from the argument list it used:

dataA = X N
In other words, X i stands for the ith element (of type a) from the input list. Now,
we have not only fixed a type to use for a, but also decided which elements the list
xs should be filled with, once we know the length. Thus, the final monomorphic
property becomes:
∀ n : N, p : A→ Bool . let xs = [X 1 . .X n ]

in filter1 p xs filter2 p xs
The construction we apply here can be seen as a kind of symbolic simulation:
we feed the function with symbolic variables (here represented by naturals), and
examine the output. This becomes more clear in the next example.

Example 2. Let us take a look at a typical polymorphic property, relating the
functions reverse and append (++)
∀ a: �, ∀xs , ys : [a ]. reverse (xs ++ ys) reverse ys ++ reverse xs

We can view the left- and right-hand sides of the property as two different
polymorphic functions that are supposed to deliver the same result. Where can
elements in the result list come from? Either from the list xs , or the list ys .
Thus, the monomorphic type A becomes:

dataA = X N | Y N
And in the property, we not only instantiate the type, but also the elements of
the lists:
∀ n,m : N. let xs = [X 1 . .X n ]

ys = [Y 1 . .Y m ]
in reverse (xs ++ ys) reverse ys ++ reverse xs

Finally, an example of a property that does not hold.

Example 3. Take a look at the following property which claims that map and
filter commute (which is incorrect as formulated).
∀ a: �, ∀p : a → Bool , f : a → a, xs : [a ].

map f (filter p xs) filter p (map f xs)
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A typical QuickCheck user may pick a to be N, and running QuickCheck might
produce the following counterexample1:

p = {1→ True, → False }; f = { → 1}; xs = [3]
In other words, if p is a predicate that holds only for 1, and f is the constant
function 1, and if we start with a list [3], the property does not hold.

Investigating the left- and right-hand sides as functions from p, f , and xs to
lists, we see that an element of type a may either directly come from the list xs ,
or be the result of applying f . Expressing this in terms of a datatype, we get:

dataA = X N | F A
And the property turns into:
∀ p : A→ Bool ,n : N. let xs = [X 1 . .X n ]

in map F (filter p xs) filter p (map F xs)
The only arguments we need to quantify over are the predicate p and the length
of the list xs: the function f is fixed to the constructor F . But there is one more
advantage; the counterexample that is produced is more descriptive:

p = {F (X 1)→ True, → False }; f = F ; xs = [X 1]
We clearly see that p holds only for the result of applying f to the (only) element
in the list xs.

3 Generalisation

In this section we present a systematic formulation of our schema to test poly-
morphic functions. Additionally we expose the main theoretical results that back
up the method and argue for their correctness. We assume familiarity with basic
notions of category theory, notably the interpretation of data types as initial
algebras [4, ch. 2].

3.1 Revisiting Reverse

We start by going through all the necessary steps for one particular concrete
example, namely testing two implementations of reverse against each other:

reverse1 , reverse2 : ∀a. [a ]→ [a ]
The method we use makes a clear distinction between arguments (values that
are passed to the function) and results (values which are delivered by the func-
tion, and should be compared with other results). Furthermore, the arguments
are divided up into two kinds; arguments that can be used by the function to
construct elements of type a, and arguments that can only be used to observe
arguments of type a.

The first step we take in order to compute the monomorphic instance is to
transform the function under test into a function that makes these three parts
of the function type explicit. The final type we are looking for is of the form:
∀ a. (F a → a) × (G a→ X )→ H a

for functors F ,G,H and a monomorphic type X . The argument of type F a→a
can be used to construct elements of type a, the argument of type G a→X can
1 Using a recent QuickCheck extension to show functions.
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be used to observe arguments of type a (by transforming them into a known type
X ), and H a is the result of the function. We call the type above the canonical
testing type; all polymorphic functions of the above type can be tested using our
method, if there exists an initial F -algebra.

How do we transform functions like reverse into functions with a canonical
testing type? We start by “dissecting” arguments that can produce as into func-
tions that produce exactly one a. For reverse, the one argument that contains
as is of type [a ]. We now make use of the fact that all lists can be represented
by a pair of its length and its indexing function, and we thus replace the list
argument with an argument of type N × (N→ a) (we will say more about this
transformation in section 3.5). After re-ordering the arguments the new type is:
∀ a. (N→ a) × N→ [a ]

which fits the requirement, with F a = N, G a = (), X = N, and H a = [a ].
For the original function reverse1 (and similarly for reverse2 ), we can define

a corresponding function with a canonical testing type as follows:
reverse1 ′ : ∀a. (N→ a)× N→ [a ]
reverse1 ′ = reverse1 ◦ project

This uses an auxiliary function to project the arguments of the new function to
the initial arguments:

project : (N→ a)× N→ [a ]
project (x , obs) = map x [1 . . obs ]

Observe that if the new arguments properly cover the domain (N→a)×N, then
the original arguments also properly cover the domain [a ]. It means that the
transformations that we have performed to fit the canonical testing type do not
weaken the verification procedure.

What have we gained by this rewriting? Our main result says: to test whether
two polymorphic functions with a canonical testing type are equal, it is enough
to test for equality on the monomorphic type A, where A is the least fixpoint of
the functor F , and to use the initial algebra α : F A→A as the first argument.

For the reverse example, the least fixpoint of F is simply N and the initial
algebra is the identity function. Thus, to check if reverse1 ′ and reverse2 ′ are
equal, we merely have to check
∀ obs : N. reverse1 ′ (id , obs) reverse2 ′ (id , obs)

Writing the transformation explicitly is cumbersome, and indeed we can avoid it,
by picking arguments directly from the image of the partially applied projection
function, that is, from the set {project (id , obs) | obs ∈ N}. By doing so, we
obtain the property given in the introduction.
∀ n : N. reverse1 [1 . .n ] reverse2 [1 . .n ]

3.2 Overview

In general, given a function of type ∀a. σ[a]→H a, the objective is to construct
a type A, and identify a set of arguments of type σ[a := A] to test it against. To
do so, we proceed with the following three steps.

1. Transform the function to test and its type (∀a. σ[a]→H a) into a function
with its type in the canonical form (∀a. (F a→a)×(G a→X )→H a), where
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F ,G,H are functors. This must be done through an embedding-projection
pair ((e, p) : σ[a] ⊆ (F a → a) × (G a → X )). The purpose is to identify all
the ways (for the function) to construct values of type a, and express them
as an algebra of the functor F . (Sect. 3.5).

2. Calculate the initial algebra (μF , α) of the functor F . Parametricity and
initiality implies that fixing the algebra to α and a to μF still covers all
cases. Note that the type argument has now been removed. (Sect. 3.3)

3. Re-interpret the fixing of the algebra to α in step 2 in the context of the
original type, using the projection produced in step 1. The arguments to test
the function on are picked in the set {p (α, s) | s ∈G (μF )→X }. (Sect. 3.4)

After these steps the type argument is gone, and testing can proceed as usual.
We detail the procedure and argue for its validity in the following sections.

3.3 The Initial View

In this section we expose and justify the crucial step of our approach: the re-
moval of polymorphism itself. We begin with showing that applications of (some)
polymorphic functions can be expressed in terms of a monomorphic case.

Suppose that the polymorphic function has the type (∀a. (F a→ a)× (G a→
X ) → H a), that is, its only way to construct values of type a are given by
an algebra of functor F , (X is a constant type where a cannot appear). Then,
instead of passing a given algebra to a polymorphic function, one can pass the
initial algebra, and use the catamorphism of the algebra (often called fold and
denoted ([ ]) in the sequel) to translate the results. If the function can also
observe the values of the polymorphic parameter, then the observation functions
passed as argument must be composed with the catamorphism.

By passing the initial algebra, the type parameter is fixed to μF . The appli-
cations of the catamorphism handle the polymorphism, effectively hiding it from
the function under test. The following theorem expresses the idea formally. Our
proof relies on parametricity [29] and properties of initial algebras [4, ch. 2]

Theorem 1. Let F ,G,H be functors and let f : (∀a :�.(F a→a)× (G a→X )→
H a). If there is an initial F -algebra (μF , α), then
∀ t : �, p : F t → t , r : G t → X .

ft (p, r) = H ([p]) (fμF (α, r ◦G ([p])))

Proof. We apply the parametricity theorem (restricted to functions) on the type
of f , following mechanically the rules given by [12], theorem 1. After simplifi-
cation we obtain:
∀ f : (∀a : �.(F a→ a)× (G a→ X )→ H a),

t1 , t2 : �,  : t2 → t1 ,
p1 : F t1 → t1 , p2 : F t2 → t2 . r : G t1 →X ,

p1 ◦ F  =  ◦ p2 ⇒ ft1 (p1 , r) = H  (ft2 (p2 , r ◦G ))
This equation expresses a general case (ft1 (p1 , r)) in terms of a specific case
(H  (ft2 (p2 , r ◦ G ))), under the assumption p1 ◦ F  =  ◦ p2 . Here, we hope
to find specific values for t2 , q and  which verify the assumption, and obtain a
characterisation of the polymorphic case in terms of a monomorphic case.
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Satisfying the assumption (p1 ◦F  =  ◦ p2 ) is equiv-
alent to making the diagram on the right commute.
Let us pick the following values for t2 , p2 and :

– t2 = μF , the least fixpoint of F ;
– p2 = α, the initial F -algebra;
–  = ([p1 ]), the catamorphism of p1 .

We know from properties of initial algebras and cata-
morphisms that these choices make the diagram com-
mute. Thus, the assumption is verified, and the proof
is complete.

t2F t2

t1F t1

p2

F 

p1

Theorem 1 shows that we can express a polymorphic function in terms of a par-
ticular monomorphic instance, but the expressions still involve applying (poly-
morphic) catamorphisms. In the case where we have a function to test (f ) and a
model (g) to compare against, we can apply theorem 1 to both sides and simplify
away the catamorphisms.

Theorem 2. Let F ,G,H be functors, let f , g :∀a :�.(F a→a)×(G a→X )→H a.
If there is an initial F -algebra (μF , α), then

∀ s : G (μF )→X . fμF (α, s) = gμF (α, s)
⇒ ∀ a : �, p : F a→ a, r : G a→ X . fa (p, r) = ga (p, r)

Proof. If fμF (α, s) = gμF (α, s) holds for any s , then in particular the equality
fμF (α, r ◦ G ([p])) = gμF (α, r ◦ G ([p])) holds. Applying H ([p]) to both sides of
the equality preserves it, and then we can use theorem 1 to transform both sides
and obtain that fa (p, r) = ga (p, r) holds for any choice of a, p and r .

3.4 General Form of Arguments

The results of the previous section apply only to functions of type (∀a. (F a →
a)× (G a→X )→H a). In this section we show that we can extend these results
to any argument types which can be embedded in (F a→ a) × (G a→X ).

Definition 1. An embedding-projection pair (an EP) is a pair of functions e :
A→ B, p : B → A satisfying p ◦ e = id . Because it constitutes evidence that
covering B is enough to cover A, we write (e, p) : A⊆ B to denote such a pair.

Given an EP2 (e, p) : σ[a] ⊆ (F a → a) × (G a → X ), one can transform the
arguments calculated in the previous section (α paired with any function of type
G (μF )→ X ) into σ[a] by using the projection component, p. The existence of
the embedding guarantees that the domain of the original function is properly
covered. This idea is expressed formally in the following theorem.
2 Strictly speaking, this is a polymorphic EP — one EP for each type a.
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Theorem 3. Let F ,G,H be functors and let f , g :∀a. σ[a]→H a. If there is an
initial F -algebra (μF , α) and an EP (e, p) : σ[a]⊆ (F a→ a)× (G a→X ), then

∀ s : G (μF )→ X . fμF (p (α, s)) = gμF (p (α, s))
⇒ ∀ a : �, l : σ[a]. fa l = ga l

Proof. Apply theorem 2 to f ′ = f ◦ p and g ′ = g ◦ p as follows:

∀ s : G (μF )→X . fμF (p (α, s)) = gμF (p (α, s))
⇔ {by definition of ◦, f ′ and g ′}
∀ s : G (μF )→X . f ′μF (α, s) = g ′μF (α, s)

⇒ {by theorem 2}
∀ a : �, q : (F a→ a) × (G a→X ). f ′a q = g ′a q

⇒ {by e l being a special case of q}
∀ a : �, l : σ[a]. f ′a (e l) = g ′a (e l)

⇔ {by definition of ◦, f ′ and g ′}
∀ a : �, l : σ[a]. fa ((p ◦ e) l) = ga ((p ◦ e) l)

⇔ {by the EP law: p ◦ e ≡ id}
∀ a : �, l : σ[a]. fa l = ga l

Properties used for testing are not always expressed in terms of a model, but
very often directly as a predicate: they are merely Boolean-valued functions. We
can specialise the above result to that case: given a polymorphic predicate, it is
enough to verify it for the initial algebra.

Theorem 4. Let F ,G be functors, let f : ∀a. σ [a ]→ Bool . If there is an EP
(e, p) : σ[a]⊆ (F a→ a) × (G a→X ) and an initial F -algebra (μF , α), then

∀ s : G (μF )→X . fμF (p (α, s))
⇒ ∀ a : �, l : σ[a]. fa l

Proof. Substitute const True for g in theorem 3.

One might think that theorem 3, about models, follows from theorem 4, about
properties, using f (p, r) = test (p, r) model (p, r). This is in fact invalid in
general, because one cannot assume that equality ( ) is available for arbitrary
types. Indeed, our usage of parametricity in the proof assumes the opposite.

The above results show that it is enough to test on arguments picked from
the set I = {p (α, s) | s : G (μF )→X }. This could be done by picking elements
s in G(μF )→ X and testing on p(α, s). However, for the efficiency of testing, it
is important not to proceed as such, because it can cause redundant tests to be
performed. This is because the projection can map different inputs into a single
element in I. A better way to proceed is to generate elements of I directly.
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3.5 Embedding Construction

The previous section shows that our technique can handle arguments that can be
embedded in (F a→ a)× (G a→X ). In this section we show that all first-order
polymorphic arguments can be embedded. Our proof is constructive: it is also a
method to build the EP. It is important to construct the embedding because it
is used in computing the set of arguments to test the property on.

The general form of a first order argument is a function of type C a → D a,
where C and D are functors and D is polynomial. Note that non-functional
values can be represented by adding a dummy argument. Similarly, the above
form includes n-ary functions, as long as they are written in an uncurried form.
We structure the proof as a series of embedding steps between the most general
form and the canonical form. EPs for each step are composed into the final EP.
The overall plan is to split all complex arguments into observations or construc-
tors, then group each class together. Lemmas detailing these important steps
are given after the top-level proof outline.

Theorem 5. Let Ci and Di be functors. If Di are constructed by sum, products
and fixpoints (0, 1,+,×, μ), and none of the Ci a are empty, then there exist
functors F , G and an EP (e, p):∀a : �.×i (Ci a→Di a)⊆(F a→a)×(G a→X ).

Proof. ×i (Ci a →Di a)
⊆ {by lemma 2}
×i (Ci a → (Si × (Pi→ a)))

≡ {by distributing → over ×}
×i (Ci a → Si)× (Ci a × Pi→ a)

≡ {by letting Fi a = Gi a × Pi}
×i (Ci a → Si)× (Fi a → a)

≡ {by commutativity and associativity of ×}
×i (Ci a → Si)××i (Fi a→ a)

⊆ {by lemma 1}
(G a →X )××i (Fi a → a)

≡ {by (τ1 → a)× (τ2 → a) ≡ (τ1 + τ2)→ a}
(G a →X )× (F a→ a)

where G a =×i (Ci a); X =×i Xi and F a = +i (Fi a).

Lemma 1. For all types σ1, σ2 and non-empty types τ1, τ2 (witness1 : τ1 and
witness2 :τ2 ) then there exists (e, p) : (τ1 → σ1)×(τ2 → σ2) ⊆ τ1×τ2 → σ1×σ2.

Proof. The embedding applies the embedded functions pair-wise.
e (f1 , f2 ) = λ(t1 , t2 )→ (f1 t1 , f2 t2 )

The projection can be constructed by providing dummy arguments (witness) to
missing parts of the pair. It is safe to do so, because that part of the pair is
ultimately ignored anyway.
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p h = (λt1 → fst (h (t1 ,witness2 )),
λt2 → snd (h (witness1 , t2 )))

Lemma 2. Let D be a functor constructed by sum, products and fixpoints. Then
there exist types S, P and (e, p) : D a ⊆ S × (P → a)

Proof. D represents a data structure, which can be decomposed into a shape
(S) and a function from positions inside that shape to elements (P → a). (
[1] provide a detailed explanation). The shape can be obtained by using trivial
elements (S = D 1). For testing purposes, only structures with a finite number
of elements can be generated, and therefore one can use natural numbers for
positions (P = N). The projection can traverse the data structure in pre-order
and use the second component of the pair (N → a) to look up the element to
put at each position. The corresponding embedding is easy to build.

3.6 Correctness in Practice

We have reasoned in a fast-and-loose fashion: our proofs rely on the strongest
version of parametricity, which holds only in the polymorphic lambda-calculus.

Applying them to real-world languages (like Ada, Haskell, Java, ML, etc.) is
merely “morally correct” [8]. We assume that the functions under test are well-
behaved with respect to parametricity: they should not make use of side-effects,
infinite data structures, bottoms, etc. In the context of random or exhaustive
testing, these assumptions are generally valid. Therefore, our results are readily
applicable in practice with a very high level of confidence.

Still, we could extend the result by using a more precise version of parametric-
ity, as for example [18] expose it.

4 More Examples

4.1 Multiple Type Parameters

While the theoretical development assumes a single type parameter, we can
apply our schema to functions with multiple type parameters. The basic idea
is to treat parameters one at a time, assuming the others constant. We do not
justify this formally, but merely show how to proceed on a couple of examples.

Example 4 (map). Consider the ubiquitous function map, which applies a func-
tion to each element in a list.

map : ∀a b. (a → b)→ [a ]→ [b ]
As usual, we are interested in testing a candidate map function against a known-
working model.

We first aim to remove the type parameter a. To do so, we isolate the con-
structors for a by embedding the list argument into a shape (the length of the
list) and a function giving the element at each position (see lemma 2). We obtain
the type ∀a b. (a → b) → N → (N → a) → [b ]. We see from the type that the
only constructor is an algebra of the functor F a = N. The initial F -algebra is

dataA = X N
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After substitution, we have the type ∀b. (A → b) → N → (N → A) → [b ], and
we know that the third argument is fixed to X .

We can proceed and remove the type parameter b. There is only one construc-
tor for b, which is already isolated, so the initial algebra is easy to compute:

dataB = F A
After substitution, we have the type (A→ B)→ N→ (N → A)→ [B ], and we
know that the first argument is fixed to F . The second and third arguments can
be projected back into a list, so we get the final property:
∀ n : N. let xs = [X 1 . .X n ]

in map1 F xs map2 F xs
Note that the function to pass to map is fixed: again, only testing for various
lengths is enough!

Example 5 (prefix). In Haskell, the standard function isPrefixOf tests
whether its first argument is a prefix list of its second argument. isPrefixOf
normally uses the overloaded equality (( ) : a → a → Bool) to compare el-
ements in the first list to elements in the second one. Instead we consider a
more general version that explicitly takes a comparison function as parameter.
In that case, the types of elements in input lists do not have to match. This
generalisation is captured in a type as follows:

isPrefixOf : ∀a b. (a → b → Bool )→ [a ]→ [b ]→ Bool
In this example, the type arguments are completely independent, so we can

remove both at once. Both lists can be embedded into a shape (N) and a function
from positions (N → a) in the familiar way. We get the type: ∀a b. (a → b →
Bool )→ N→ (N→ a)→ N→ (N→ b)→ Bool .

Computing the initial algebras offers no surprise. We obtain:
dataA = X N
dataB = Y N

We have to test functions of type (A→ B → Bool )→ N→ (N→ A)→ N→
(N→ B)→ Bool , with the third argument fixed to X and the fifth fixed to Y .
Again, by using the projection, we know that we can instead generate lists of
X i and Y j to pass directly to the polymorphic function.

Thus, a property to check that two implementations of isPrefixOf have the
same behaviour is written as follows:
∀ eq : A→ B → Bool ,m : N,n : N.

let xs = [X 1 . .X m ]
ys = [Y 1 . .Y n ]

in isPrefixOf1 eq xs ys isPrefixOf2 eq xs ys

What if we had used the less general type ∀a. (a → a → Bool )→ [a ] → [a ] →
Bool (which is isomorphic to the standard type ∀a. Eq a ⇒ [a ]→ [a ]→ Bool )?
In that case, the initial algebra would be

dataA = X N | Y N
and the property would look exactly the same. The difference is that the func-
tion eq would be quantified over a larger set. It would only be passed values
of the form X i for the first argument, and Y i for the second argument, but
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the generator of random values does not “know” it. Therefore, it might gener-
ate redundant test cases, where eq only differs in its results for argument-pairs
that are not in the form X i , Y i . As we have seen in the above example, this
redundancy is avoided by using the most general type. This is another example
where more polymorphism makes testing more efficient.

4.2 Assumptions on Arguments

It can be quite challenging to write properties for functions whose arguments
must satisfy non-trivial properties. For example, generating associative func-
tions or total orders is not obvious. A naive solution is to generate unrestricted
arguments and then condition the final property on the arguments being well be-
haved. This can be highly inefficient if the probability to generate a well-behaved
argument is small. Since our technique fixes some parameters, it is sometimes
easier to find (or more efficient to generate) arguments with a complex structure.
We give examples in the following sections.

Example 6 (Parallel Prefix). A parallel-prefix computation computes the list
[x1, x1 ⊕ x2, . . . , x1 ⊕ . . . ⊕ xn], given an associative operation ⊕ and a list of
inputs x1, . . . , xn. How can we test that two given parallel-prefix computations
have equivalent outputs?

We start with the type ∀a.(a→ a→ a)→ [a]→ [a]. To isolate the construc-
tors, we rewrite the list type as usual and get ∀a.(a → a → a) → N → (N →
a) → [a]. We can group the constructors to make the algebra more apparent:
∀a.((a× a + N)→ a)→ N→ [a]. The next step is to pick the initial algebra.

One might be tempted to use the following datatype and its constructors for
the initial algebra.

dataA = OPlus AA | X N
However, we must take into account that the operation passed to the prefix com-
putation must be associative. The OPlus constructor retains too much informa-
tion: one can recover how the applications of ⊕ were associated by examining
the structure of A. In order to reflect associativity, a “flat” structure is required.
Thus, one should work with lists, as follows:

typeA = [N ]
x n = [n ]
oplus = (++)

The final property is therefore:
∀ n : N. let xs = map x [1 . .n ]

in prefix1 oplus xs prefix2 oplus xs

The problem of testing parallel prefix networks has been studied before, no-
tably by Sheeran, who has presented a preliminary version of our result in an
invited talk in Hardware Design and Functional Languages [25]. [28] presents
another monomorphic instance: he shows that it is enough to test over a 3-
value type (3). At first sight, it might seem that testing over 3 is better than
over N. However, merely substituting the type-variable with 3 still requires
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testing all combinations of the other arguments, yielding 113 × 3n tests3 to
cover the lists of length n, while by our method a single test is enough for a
given length. Again, the efficiency of our method comes from the fixing of more
arguments than the type variable.

The above explanation to deal with associativity relies very much on intuition,
but it can be generalised. One must always take in account the laws restricting
the input when computing the initial algebra: that is, one must find the ini-
tial object of the category of algebras that respect those laws. We direct the
interested reader to [13] for details.

Example 7 (Insertion in sorted list). Consider testing an insertion function which
assumes that its input list is strictly ascending. That is, its type is ∀a. (a →
a → Bool ) → a → [a ] → [a ], but the list argument is restricted to lists that
are strictly ascending according to the first argument, which in turn must be
a strict total order. After breaking down the list as usual one must handle the
type ∀a. (a → a → Bool )→ a → N→ (N→ a)→ [a ].

Forcing the list to be sorted can be tricky to encode as a property of an
algebra. So, instead of constraining the lists, we put all the burden on the first
argument (an observation): it must be a strict total order that also makes the
list ascending. This change of perspective lets us calculate the initial algebra
without limitation. We obtain

dataA = Y | X N
The element to insert is Y , and as in many preceding examples, the function

receives lists of the form [X 1 . .X n ]. This makes generating suitable orders
(A→A→Bool ) easy. Indeed, for such an order (ord) to respect the order of the
list, it must satisfy the equation:

ord (X i) (X j ) = i < j
Therefore, we only need to decide on how to order Y with respect to X i . That
is, decide where to position Y in the list. For an input list of length n, there are
exactly n + 1 possible positions to insert an element. The final property shows
how to define the order given a position k for Y .
∀n : N, k : {0 . .n }. let xs = [X 1 . .X n ]

in insert1 (ord k)Y xs insert2 (ord k)Y xs
where ord k (X i) (X j ) = i < j

ord k Y Y = False
ord k (X i) Y = i � k
ord k Y (X j ) = k < j

Example 8 (Sorting network). A generator of sorting networks can be repre-
sented as a polymorphic function of type ∀a. (a × a → a × a) → [a ] → [a ].
The first argument is a two-element comparator. Note that, by parametricity,
the function cannot check whether the comparator swaps its inputs or not. It is
restricted to merely compose instances of the comparator.
3 [28] shows that only some combinations are relevant, but the number of tests is still

quadratic in the length of the input list. 113 is the number of associative functions
in 3 → 3 → 3.
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Let us apply our schema on the above type. We use the isomorphism τ →
a × b ∼= (τ → a) × (τ → b) to split the first argument, and handle the list as
usual. We obtain the following type.
∀ a. (a × a → a)→ (a × a → a)→ N→ (N→ a)→ [a ]

If we overlook the restrictions on the constructors, the initial algebra is
dataA = Min AA | Max AA | X Int

As usual, the sorting function is to be run on [X 1 . .X n ]. The comparator is
built out of Min and Max . Therefore, to fully test the sorting function, it suffices
to test the following function.

sort Lat : N→ [A ]
sort Lat n = sort (λ(x , y)→ (Min x y,Max x y)) [X 1 . .X n ]

The output is a list where each element is a comparison tree: a description of how
to compute the element by taking minimums and maximums of some elements
of the input. In order to verify that the function works, we are left with checking
that the output trees are those of a correct sorting function.

Note that this must be checked modulo the laws which restrict our initial
algebra. Min and Max must faithfully represent 2-element comparators which
can be passed to the polymorphic function. Therefore, the type A must be un-
derstood as a free distributive lattice [10] where Min and Max are meet (∧) and
join (∨) and Xi are generators.

The correctness of the function can then be expressed as checking each element
of the output (ok) against the output of a known sorting function. Formally:

ok =
∨

M⊆{1...n},#M=n−k

(∧
i∈M

Xi

)

There are (at least) two possible approaches to proceed with the verification.

1. Verify the equivalence symbolically, using the laws of the distributive lattice.
This is known as the word problem for distributive lattices. One way to do
this is to test for syntactical equivalence after transformation to normal form.

2. Check the equivalence for all possible assignments of booleans to the vari-
ables X i , meet and join being interpreted as Boolean conjunction and dis-
junction. This is valid because truth tables are a complete interpretation of
free distributive lattices. In effect, proceeding as such is equivalent to testing
the sorting function on all lists of booleans.
This second way to test equivalence shows that our technique is essentially
(at least) as efficient as that of [19], provided that properties of the distribu-
tive lattice structure are cleverly exploited.

5 Related Work

Universe-bound polymorphism. [17] have studied the testing of datatype-generic
functions: polymorphic functions where the type parameter is bound to a given
universe. This restriction allows them to proceed by case analysis on the shape of
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the type. In contrast, our method makes the assumption that type parameters
are universally quantified, taking advantage of parametricity. Since universal
quantification and shape analysis are mutually exclusive, Jansson’s method and
ours complement each other very well.

Shortcut Fusion. Shortcut deforestation [14] is a technique to remove interme-
diate lists. A pre-requisite to shortcut deforestation is that producers of lists are
written on the form g (:) [ ], or essentially, g α where α is the initial algebra of
the list functor. In general, functions that are normally written in terms of the
initial algebra must be parametrised over any algebra, thereby adding a level of
polymorphism. This is the exact opposite of the transformation we perform.

Similarity with our work does not stop here, as the correctness argument for
shortcut deforestation also relies heavily on polymorphism and parametricity.

Church Encodings. The purpose of Church encodings is to encode data types
in the pure lambda calculus. Church encodings can also target the polymorphic
lambda calculus [5], and the resulting types are polymorphic. In essence, the
Church encoding of a data type is the type of its fold (catamorphism). [15]
provides an illuminating example.

Theorem 1 describes (almost) an inverse of Church-encoding: we aim at re-
covering the datatype underlying polymorphic types. It is not exactly an inverse
though: the church-encoded type might be encapsulated in a polymorphic func-
tion, which may expose only some of its constructors. Therefore we target these
constructors instead of directly targeting the datatype.

Defunctionalisation. [22] describes defunctionalisation: a transformation tech-
nique to remove higher-order functions. Each lambda-abstraction is replaced by
a distinctive constructor, whose argument holds the free variables. Applications
are implemented via case-analysis: the tag of the constructor tells which which
abstraction is entered.

[9] have shown that defunctionalisation works as an inverse to church en-
coding. Thus, theorem 1 can be seen as a special case of defunctionalisation,
targeted at the constructors of a polymorphic type. However, our main focus
is not the removal of function parameters, but of type parameters. Indeed, our
embedding step, which introduces function parameters, is often crucial for the
removal of polymorphism. Note also that we do not transform the function un-
der test. In fact, only the arguments passed to the function are defunctionalised.
The constructing functions are transformed to constructors of a datatype, and
the observations have to perform case-analysis on this datatype.

Concretisation. [21] introduce concretisation: a generalisation of defunction-
alisation that can target any source language construct by translating its in-
troduction form into an injection, and its elimination form into case analysis.
They apply concretisation to Rémy-style polymorphic records and Haskell type
classes, but not removal of polymorphism altogether.

QuickCheck. As explained in the introduction, the standard way to test polymor-
phic functions in QuickCheck [7] is to substitute N for polymorphic parameters.
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In the first runs, QuickCheck assigns only small values to parameters of this type,
effectively testing small subsets of N. As testing progresses, the size is increased.
This strategy is already very difficult to beat! Indeed, we observe that, thanks to
parametricity, if one verifies correctness for a type of size n, the function works
for all types of size n or less. Additionally, because of the inherent nature of
testing, it is only possible to run a finite number of test cases. Therefore, the
standard QuickCheck strategy of type instantiation is already very good. We can
do better because, in addition to fixing the type, we also fix some (components
of) parameters passed to the function. In effect, meaningless tests (tests that are
isomorphic to other already run tests, or tests that are unnecessarily specific)
are avoided.

Table 1. Comparison of the traditional QuickCheck praxis to the new method

criterion traditional new
type N μF
constructors FN → N {α}
observations GN → X G(μF ) → X

The situation is summarised in table 1. By fixing the constructors, a whole
dimension is removed from the testing space. Even though the space of observa-
tions is enlarged when μF >N (from G N→X to G (μF )→X ), the trade-off is
still beneficial in most cases. We argue informally as follows: if μF > N, then F
is a “big” functor, such as F a = 1 + a × a. This means that the set F N→N is
big, and as we replace that by a singleton set, this gain dwarfs the ratio between
G (μF )→ X and G N→X , for any polynomial functor G.

Besides efficiency, another benefit to the new method is that the generated
counter examples are more informative, as seen on an example in section 2.

In Haskell, there is another pitfall to substituting the polymorphic parameter
by N: type classes. Imagine for example that the type parameter is constrained
to be an instance of the Eq typeclass. Because N is such an instance, it is possible
to use it for the type parameter, but this badly skews the distribution of inputs.
Indeed, on average, the probability that a b, for generated a and b tends to
be very small. A better strategy would be to have a different instance of Eq
for each run, each with a probability of equality close to 1/2. Our method does
not suffer from this problem: we insist that the methods of classes are explicitly
taken into account when identifying the constructors and the observations.

Exhaustive Checking. We argue in the previous section that using N for type
parameters is a sensible approach for random testing. However, as [23] remark,
this does not work as well for depth-bound exhaustive testing: the dimension of
the test space for constructors (FN→ N) grows exponentially as the depth of the
search increases. They suggest to use smaller types to test on (such as the unit
or Boolean), but the user of the library is left to guess which size is suitable. Our
method kills two birds with one stone: we conjure up a suitable type parameter
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to use, and prevent the exponential explosion of the search for constructors by
fixing them. Therefore, we believe that our method is an essential improvement
for exhaustive testing of polymorphic functions.

Symbolic execution [27] generate test cases by symbolic execution of the property
to check. As we have mentioned in section 2, our technique can be understood
as symbolic execution, therefore, generating test cases by symbolic execution
potentially subsumes our method. The advantage of our approach is that it
is purely type-based: the monomorphic instance is independent of the actual
definition of the property. Therefore, it can work with an underlying black-box
tester for monomorphic code.

6 Future Work

While the scope of this paper is the testing of polymorphic functions, our tech-
nique to remove polymorphism is not specific to testing: any kind of verification
technique can be applied on the produced monomorphic instance. This suggests
that it has applications outside the domain of testing, maybe in automated the-
orem proving. This remains to be investigated.

Automated test-case generation libraries typically address the problem of gen-
erating random values for monomorphic arguments. We have addressed the prob-
lem of calculating values for type arguments. A natural development would be
to unify both approaches in the framework of a dependently-typed programming
language. A first step towards this goal would be to give a detailed account of
parametricity in presence of dependent types.

With the exception of computing initial algebras with laws, the technique
described here is completely algorithmic. Therefore, one can assume that it is
easy to automate it and build a QuickCheck-like library to test polymorphic
properties. However, such a tool would need to analyse the type structure of
the functions it is given, and languages based on the polymorphic lambda cal-
culus typically lack such a feature. Moreover, this very feature would invalidate
the parametricity theorem, since it relies on universally quantified types being
opaque, thereby invalidating our “monomorphisation” transformation. A long
term area of research would be to design a programming language where para-
metricity and type-analysis can be specified on a case-by-case basis. As a short-
term goal, we propose to mechanise the technique as an external tool rather than
a library, or require the programmer to explicitly inform the polymorphic test
generator about the type structure.

We have shown how to get rid of polymorphism using the “initial view” of the
type parameters. As there exists a dual to shortcut fusion [26], we conjecture that
there exists a dual to our method, using the “final view”. That is, the function
should be transformed to isolate a co-algebra and fix it to the final element of
the category. Is is unclear at this point what would be the outcome of this dual
in terms of testing behaviour.

The technique that we present requires a specific form for the type of the
function to test. While our examples show that this form covers a wide range of
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polymorphic functions that are commonly tested, one can still aspire for a larger
applicability. We hope to improve this aspect, either by showing that more types
can be embedded, or by amending the core theory. In particular, we address only
rank-1 polymorphism: extending to rank-n would be useful. Also, the restriction
that F must be a functor in (F a→ a)× (G a→X ) seems too specific. Indeed,
Church-encoding some types may lead to F being a type-function that is not a
functor, and there is a-priori no reason that the encoding cannot be reverted.
An example is given by [30]: dataT = Lam (T → T ) | App T T is encoded
as ∀a. ((a → a)→ a)→ (a → a → a)→ a, and F a = (a → a) + (a × a), which
is not a functor. We hope to achieve this by fully explaining our technique in a
defunctionalisation setting.

7 Conclusion

We have presented a schema for efficient testing of polymorphic properties. The
idea is to substitute polymorphic values by a faithful symbolic representation.
This symbolic representation is obtained by type analysis, in two steps:

1. isolation of the constructors (yielding a functor F ); and
2. restriction to the initial F -algebra.

We suspect that neither of these steps is original, but we could not find them
spelt out as such, and therefore we believe that bringing them to the attention of
the programming languages community is worthwhile. Furthermore, the testing
of polymorphic properties is a novel application for these theoretical ideas.

We have shown on numerous examples, and informally argued that apply-
ing our technique not only enables testing polymorphic properties by removing
polymorphism, but yields good efficiency compared to the standard praxis of
substituting N for the polymorphic argument. In some cases, this improvement
is so dramatic that it makes the difference between testing being useful or not.
As another evidence of the value of the method, we have applied it to classical
problems and have recovered or improved on the corresponding specific results.

Giving a more polymorphic type to a given function enlarges its domain, so
one might think that this can increase the amount of testing necessary to verify
properties about that function. If our technique is applied, the opposite is true.

You love polymorphism, but you were afraid that it would complicate testing?
Fear no more! On the contrary, polymorphism can facilitate testing if approached
from the right angle.
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Abstract. Iterated Register Coalescing (IRC) is a widely used heuristic
for performing register allocation via graph coloring. Many implementa-
tions in existing compilers follow (more or less faithfully) the imperative
algorithm published in 1996. Several mistakes have been found in some
of these implementations.

In this paper, we present a formal verification (in Coq) of the whole
IRC algorithm. We detail a specification that can be used as a refer-
ence for IRC. We also define the theory of register-interference graphs;
we implement a purely functional version of the IRC algorithm, and we
prove the total correctness of our implementation. The automatic extrac-
tion of our IRC algorithm into Caml yields a program with competitive
performance. This work has been integrated into the CompCert verified
compiler.

1 Introduction: Iterated Register Coalescing

Register allocation via graph coloring was invented by Chaitin et al. [9]. The
variables of the program are treated as vertices in an interference graph. If two
program variables are live at the same time1 then they must not be assigned to
the same register: this situation is indicated by placing an edge in the interference
graph. If the target machine architecture has K registers, then a K-coloring of
the graph corresponds to a good register allocation.

Kempe’s 1879 graph-coloring algorithm works as follows. Find a vertex x of
degree < K from the graph. (Call such a vertex a low-degree vertex.) Remove x
from the graph. Recursively K-color the rest of the graph. Now put x back in the
graph, assigning it a color. Because (when x was removed) its degree was < K,
there must be an available color for x. Kempe’s algorithm is easy to implement
and has a good running time.

But some K-colorable graphs have no low-degree vertices (i.e. Kempe’s algo-
rithm is incomplete); not only that, some source programs are not K-colorable.
Chaitin augmented Kempe’s algorithm to handle spills—that is, some vertices
are not colored at all, and the corresponding program variables are kept in mem-
ory instead of in registers. Spills are costly, because memory-resident variables
1 Except in specific cases where the variables are known to contain the same value.
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must be loaded and stored. Chaitin’s algorithm also chooses the set of variables
to spill, based on interference properties of the graph and on cost heuristics.

Briggs et al. [8] improve the algorithm by adding coalescing: if the program
contains a move instruction from variable a to variable b, then these two variables
should be colored the same (assigned to the same register) if possible. Briggs’s
algorithm works by adding preference edges to the interference graph in addition
to interference edges. The problem is now, “K-color the graph subject to all
interference constraints, with the least-cost-possible set of uncolored vertices,
and with the fewest possible preference edges that connect differently colored
vertices.” Because overeager coalescing can lead to uncolorable graphs, Briggs
coalesces preference-related vertices together only when it would not change a
low-degree (< K) vertex to a vertex having more than K high-degree neighbors.

George and Appel [13] improve on Briggs’s algorithm by interleaving graph
simplification with Briggs’s coalescing heuristic, and by adding a second coa-
lescing heuristic. The result is that the coalescing is significantly better than in
Briggs’s version, and the algorithm runs no slower. George and Appel’s “Iter-
ated Register Coalescing” (IRC) algorithm is widely used in both academic and
industrial settings, and many implementations follow the imperative pseudocode
given in their paper.

Graph coloring is NP-hard; IRC (like Chaitin’s algorithm) is subquadratic,
but does not find optimal solutions. In practice IRC performs well in optimizing
compilers, especially for machines with many registers (16 or more). When there
are few registers available (8 or fewer) and when register allocation is preceded by
aggressive live-range splitting, the IRC algorithm is too conservative: it does not
coalesce enough, and spills excessively. In such cases, algorithms that use integer
linear programming [3] or the properties of chordal graphs [15] are sometimes
used to compute an optimal solution.

The CompCert compiler is a formally verified optimizing compiler for the
C language [7,17]. Almost all of CompCert is written in the purely functional
Gallina programming language within the Coq theorem prover. That part of
CompCert is formally verified with a machine-checked correctness proof, and
automatically translated to executable Caml code using Coq’s extraction facility.

As CompCert targets PowerPC, 32 registers are available. Register alloca-
tion in CompCert thus uses an imperative implementation of IRC implemented
in Caml, closely following George and Appel’s pseudocode. The result of (each
run of) the Caml register-allocator is checked for consistency by a Gallina pro-
gram, whose correctness is formally verified. This is translation validation [20,19],
meaning that CompCert will (provably) never produce an incorrect translation
of the source program, but if the Caml program produces an incorrect coloring
(or fails to terminate) then CompCert will fail to produce a result at all.

In this new work we have written Iterated Register Coalescing as a pure
functional program, expressed in Gallina (and easily expressible in pure ML or
Haskell). We have proved the total correctness of the algorithm with a machine-
checked proof in Coq, as well as its termination. Register allocation is widely
recognized as complex by compiler writers, and IRC itself has sometimes been
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incompletely or incorrectly described and implemented. In the years since pub-
lication of a description of IRC as detailed imperative pseudocode [2], the third
author has received several (correct) reports of minor errata in that presenta-
tion of the algorithm. Thus, a verified description and implementation of IRC
is valuable. One contribution of our formalization work is to provide a correct
reference description of IRC. We believe this is the first formal verification of an
optimizing register allocation algorithm that is used in industrial practice.

All results presented in this paper have been mechanically verified using
the Coq proof assistant [12,6]. The complete Coq development is available on-
line at http://www.ensiie.fr/~robillard/IRC/. A technical-report version
of this paper with extensive proofs is also available at http://www.ensiie.fr/
~robillard/IRC/techreport.pdf. Consequently, the paper only sketches the
proofs of some of its results; the reader is referred to the Coq development and
the report for the full proofs.

The remainder of this paper is organized as follows. Section 2 introduces the
IRC algorithm. Then, section 3 details this algorithm, as well as the worklists
it computes incrementally. Section 4 defines the interference graphs and their
main properties. Section 5 describes some properties that are useful for updating
incrementally the worklists. Section 6 summarizes the termination proof of the
IRC algorithm. Section 7 explains the soundness of the IRC algorithm. Section 8
is devoted to the experimental evaluation of our implementation. Related work
is discussed in section 9, followed by concluding remarks.

2 Specification of the IRC Algorithm

The input to IRC is an interference graph and a palette of colors. The vertices of
the graph are program variables. Some program variables must be assigned to
specific machine registers, because they are used in calling conventions and for
other reasons; these vertices are called precolored. The palette represents the set
of all the machine registers, which corresponds to the precolored variables. The
(undirected) edges of the graph are interference edges, which are unweighted,
and preference edges, which are weighted.

There is just one data type Vertex.t representing all of these concepts: vari-
able, graph vertex, register, color. A color is just a register; a register is simply
one of the variables from the set of precolored vertices. We require nothing of
the Vertex.t type except that it be provided with a computable total ordering
(for fast search-tree lookups). An edge is (isomorphic to) a pair of vertices with
an optional weight. The equality over edges considers the edge a → b equal to
the edge b→ a and we denote the edge by (a, b).

The output of IRC is a coloring, that is, a partial mapping from variables to
colors. The range of the coloring must be a subset of the precolored variables (i.e.
machine registers). Whenever the graph contains an interference edge between
a and b, the coloring must map a and b to different colors.

The cost of a coloring is the sum of move-cost and spill-cost. Move-cost w
occurs when there is a preference edge of weight w between a and b, and the

http://www.ensiie.fr/~robillard/IRC/
http://www.ensiie.fr/~robillard/IRC/techreport.pdf
http://www.ensiie.fr/~robillard/IRC/techreport.pdf
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coloring maps a and b to different colors. Spill-cost occurs when the coloring fails
to map a variable. IRC does not in general produce optimum-cost colorings, so
we will not reason formally about costs: we will not formalize move-cost and
spill-cost, nor specify the properties of the weight type.

The next section details a Gallina program that is equivalent to the IRC
algorithm. Informally we will see that this Gallina program is equivalent to the
IRC algorithm that performs well in the real world, formally we prove that the
algorithm always terminates with a valid coloring, and empirically we measure
the run time of the program (as extracted from Gallina to ML and compiled
with the Caml compiler).

3 Sketch of the IRC Algorithm

Recall that a low-degree vertex is incident on < K interference edges. A high-
degree vertex has ≥ K interference edges. A move-related vertex is mentioned
in at least one preference edge. To run faster, IRC uses worklists which classify
vertices according to their degree and their move-relationship. The worklists are
the following ones.

1. spillWL is defined as the set of high-degree, nonprecolored vertices.
2. freezeWL is defined as the set of low-degree, move-related, nonprecolored

vertices.
3. simplifyWL is defined as the set of low-degree, nonmove-related, nonprecol-

ored vertices.
4. movesWL is defined as the set of preference edges.

The properties of the four worklists can be seen as an invariant, that we call
WL_invariant. The efficiency of IRC and its proof rely on this invariant.

Given a graph g, the worklists can be computed straightforwardly by examin-
ing the set of edges incident on each vertex. George and Appel’s IRC algorithm
incrementally updates these worklists. Thus, there is no need to search for low-
degree vertices and move-related vertices in the whole graph after each step, but
only at their initialization.

IRC usually takes as argument the interference graph g and the palette of
colors (or K which is the cardinality of palette since palette is isomorphic to
1..K). The first step is then to initialize the worklists wl that we define as the
quadruple (spillWL, freezeWL, simplifyWL, movesWL). The only argument
we give to the IRC algorithm is a record (called irc graph) consisting of g, wl,
pal, K, a proof that (WL invariant g pal wl) is preserved, and a proof that K is
the cardinality of pal. Maintaining K in the irc graph record avoids computing
it at each recursive call to IRC. This record is defined in Fig. 1 as well as its
construction.

The IRC algorithm as we write it in Gallina2 is given in Fig. 2. Option types
are used to represent partial functions. A value of type option t is either ∅
(pronounced “none”), denoting failure, or .x/ (pronounced “some x”), denoting
success with result x : t.
2 Modulo some notation, but otherwise unchanged.
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Record irc_graph := Make_IRC_Graph {
gph : Graph . t ;
wl : WL ;
pal : VertexSet . t ;
k : nat ;
Hwl : WL_invariant gph pal wl ;
Hk : VertexSet . cardinal pal = k } .

Definition graph_to_IRC_graph g palette :=
let K := VertexSet . cardinal palette in

let wl := init_WL g K in

Make_IRC_Graph g wl palette K

( WL_invariant_init g K wl ) ( refl_equal K ) .

Definition Iterated_Register_Coalescing g palette :=
let g ’ := graph_to_IRC_graph g palette in ( IRC g ’ ) .

Fig. 1. The irc graph record and the initialization of IRC. The record is built from
an interference graph and a palette. This irc graph is given as argument to IRC.

1 : Algorithm IRC g : Coloring :=
2 : match simplify g with

3 : | �(r, g′)� => available_coloring g r ( IRC g ’ )
4 : | ∅ => match coalesce g with

5 : | �(e, g′)� => complete_coloring e ( IRC g ’ )
6 : | ∅ => match freeze g with

7 : | �g′� => IRC g ’
8 : | ∅ => match spill g with

9 : | �r, g′� => available_coloring g r ( IRC g ’ )
10 : | ∅ => precoloring g

11 : end

12 : end

13 : end

14 : end .

Fig. 2. Implementation of the IRC algorithm in Coq

The IRC algorithm is as follows. If there is a low-degree, nonmove-related
vertex, then simplify (lines 2 and 3): remove a low-degree vertex, color the rest
of the graph, put back the vertex. Otherwise, if there is a coalescible move (i.e.
vertices a and b related by a preference edge, such that the combined vertex ab
has less than K high-degree neighbors), then coalesce (lines 4 and 5). Otherwise,
if there is a low-degree vertex, then freeze (lines 6 and 7): mark the low-degree
vertex for simplification, even though it is related by a preference edge, and
even though this could cause the move-related vertices to be colored differently.
Otherwise, if there are only high-degree vertices, then spill (lines 8 and 9): remove
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a vertex, color the rest of the graph, then attempt to put this vertex back
into the graph. This attempt may succeed, but is not guaranteed to; there may
be no color available for it. Finally, if there are neither low-degree nor high-
degree nonprecolored vertices, the graph contains only precolored vertices, and
the recursion bottoms out (line 10).

Our different data structures are represented using the Coq library for finite
sets (and finite maps) of elements from a totally ordered type, implemented as
AVL trees. We take advantage of not only the library implementations (with
O(logN) operations for nondestructive insert, membership, etc.) but also the
library proofs of correctness of these operations. Thus we can write the algorithm
in a purely functional style with only an asymptotic cost penalty of logN .

Our formally verified implementation of IRC abstracts interference graphs,
so that several implementations of the graph abstraction can be plugged to the
algorithm. We have built one such graph implementation, and proved it correct.
The extraction (automatic translation into Caml) of our implementation runs
competitively with the standard IRC algorithm as implemented imperatively in
Caml.

3.1 Functions Updating the Graph

Four auxiliary functions called by IRC update the irc graph g and yield a new
irc graph. These functions are:
(simplify g) simplifies a vertex v and returns .(v, g′)/ where g′ is the result

from the removal of v from g. If no vertex is candidate for the simplification,
then ∅ is returned.

(freeze g) deletes the preference edges incident on a low-degree, nonprecolored,
move-related vertex v, and returns .g′/. If no vertex can be frozen, then ∅ is
returned.

(coalesce g) looks for a coalescible edge e of g and merges its endpoints, leading
to a graph g′, and returns .(e, g′)/. If there is no coalescible edge in the graph,
∅ is returned.

(spill g) spills a vertex v having the lowest spill cost and returns .(v, g′)/
where g′ is the result from the removal of v from g. If no nonprecolored
vertex remains in the graph, then ∅ is returned.

Each of these functions is divided into two parts : first it determines whether
the operation is possible or not (e.g. if there exists a coalescible move); then if it
is, it updates the irc graph by calling another function, postnamed with irc.
These latter functions call operations of the graph abstract data type, reuse
directly the palette (as well as K and the proof of Hk), and update the worklists.
Moreover, the proof of the worklist invariant is incrementally updated in order
to prove the invariant for the new graph.

Fig. 3 shows how the simplify irc function calls the remove vertex func-
tion. The (nontrivial) specification of the function updating the graph is defined
in the graph interface. Inv simplify wl is the lemma stating that the invariant
is preserved by the simplify wl function. Its proof is hard and needs to be done
separately for each function. It is required to build the record.
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Definition simplify_irc r ircg H :=
Make_IRC_Graph ( remove_vertex r ( gph ircg ) )

( simplify_wl r ircg (k ircg ) )
( pal ircg )
( k ircg )
( Inv_simplify_wl r ircg H )
( Hk ircg ) .

Fig. 3. Definition of the simplify_irc function. It takes a vertex r to simplify and
an irc_graph as input and calls the function remove_vertex acting on a graph. The
hypothesis called H states that r belongs to the simplify worklist of (wl ircg).

3.2 Functions Updating the Coloring

The algorithm starts from a nonempty coloring (i.e. with precolored vertices).
Then, IRC colors at most one vertex per recursive call until all the nonprecolored
vertices are colored or marked for spilling. This process uses the three following
functions.
(precoloring g) is a mapping containing just x �→ x for every x such that

x ∈ vertices (gph g) ∩ palette. When we use this function, it should be
the case that vertices (gph g) ⊆ palette, that is, g contains only precolored
nodes.

(available coloring g v m) is defined as m[v �→ c], where c is any element of
((pal g)− (forbidden v m g)). Informally, this function assigns to v a color
c such that no interference neighbor of v is colored with c, if such a color
exists (it may not be the case when a variable is spilled). The forbidden set
is the union of all the colors (in the range of m) of the interference neighbors
of v in g.

(complete coloring e m), with e = (x, y), is defined as m[y �→ m(x)] if
x ∈ dom (m), otherwise just m. It is used to assign the same color to the
endpoints of a coalesced edge.

4 Interference Graphs

The Coq standard library does not contain any general library on graphs yet.
Indeed, formalizing graph theory requires many application-specific choices. We
have defined a generic interface for interference graphs (i.e. the type called
graph), as well as an implementation of them. Our interface is voluntarily min-
imal: it consists only of definitions and properties that are needed by the IRC
algorithm. Such a minimal interface could be reused and extended in a further
development. This section presents this interface and focuses on the specifica-
tion of the functions updating the graph. The implementation of the interface
as well as the proofs of the properties are not detailed in this paper, but can be
consulted online.
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4.1 Vertices and Edges

An interference graph is a graph with two kinds of edges. Thus, we have chosen
to describe interference graphs as a set of vertices and two sets of edges, since this
representation is very expressive and is commonly used in graph theory. However,
these sets are only used for the specification. The underlying implementation of
our interface uses adjacency maps. Both vertices and edges are required to be
ordered types in order to use efficient data structures of the Coq standard library.

The type of edges generalizes interference and preference edges. The edges
are classically specified as triples (v1, v2, w) where v1 and v2 are the extremities
of the edge, and w is the optional weight of the edge. For convenience, weights
will be omitted when they do not matter. In addition, edges are provided with
accessors to their first endpoint (fst end), their second endpoint (snd end) and
their weight (get weight). We also define that an edge e is incident to a vertex
v iff v is an endpoint of e:

incident e v =def fst end e = v ∨ snd end e = v

The two kinds of edges can be discriminated by their weight : interference edges
are unweighted edges, their weight is ∅, preference edges are weighted edges,
their weight is .x/. Moreover, two predicates pref edge and interf edge are
used to specify whether an edge is a preference edge or an interference edge,
and a predicate same type which holds for two edges iff they are of the same
type. We also define an equality over edges (denoted by =) as the commutative
equality of their endpoints, and the equality of their weight.

Interference graphs are updated through accessors (to vertices and edges)
and predicates that test the belonging of a vertex or an edge to the graph. More
precisely:
– V g is the set of vertices of g.
– IE g is the set of interference edges of g.
– PE g is the set of preference edges of the g.
– v1 ∈v g holds iff the vertex v1 belongs to g.
– e1 ∈e g holds iff the edge e1 belongs to g.

From this basis we derive two other key predicates, representing neighborhood
relations.
– interfere x y g =def (x, y, ∅) ∈e g
– prefere x y g =def ∃w, (x, y, .w/) ∈e g

4.2 Properties of Interference Graphs

An interference graph g must be a simple graph, that is, there is at most one
edge between each pair of vertices. This is not restrictive and avoids conflicts
between preference and interference edges. Indeed, two edges of the same type
linking the same vertices are equivalent to one edge of this type, and two edges
of different types linking the same vertices are equivalent to an interference edge.
Formally specifying this property requires some intermediate definitions.
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We define an equivalence (denoted by 0) between edges that does not take
weights into account.

e 0 e′ =def (fst end e = fst end e′ ∧ snd end e = snd end e′) ∨
(fst end e = snd end e′ ∧ snd end e = fst end e′)

In a simple graph, this equivalence implies equality.

Theorem 1. If e1 ∈e g ∧ e2 ∈e g ∧ e1 0 e2, then e1 = e2.

An interference graph must be loop-free: no edge goes from a vertex to itself.
Theorem 2. If e1 ∈e g, then fst end e1 �= snd end e1.

The endpoints of any edge of g must belong to g.

Theorem 3. If e1 ∈e g, then (fst end e1) ∈v g ∧ (snd end e1) ∈v g.

4.3 Specification of the remove vertex Function

We characterize g′ = remove vertex v g with the three following properties.
(RM1) V g′ = (V g)− {v}
(RM2) precolored g′ = (precolored g)− {v}
(RM3) e1 ∈e g′ ⇔ (e1 ∈e g ∧ ¬incident e1 v)

4.4 Specification of the delete preference edges Function

Given g′ = delete preference edges v, all the preference edges incident to v
in g are deleted in g′. We axiomatize this function as follows.
(DP1) V g′ = V g
(DP2) precolored g′ = precolored g
(DP3) IE g′ = IE g
(DP4) PE g′ = PE g − {e | incident e v}

4.5 Specification of the merge Function

The hardest function of the interface to specify is the merge function. Given an
edge e = (x, y) of g, (merge e g) yields the graph g′ such that x and y have been
merged into a single vertex. This operation requires to define the redirection of
an edge. Intuitively, when an edge is merged, it is transformed into its redirection
in g′.

Let e′ = (a, b) be an edge. The redirection of e′ from c to d (denoted by e′[c→d])
is the edge such that each occurrence of c in the endpoints of e′ is replaced with
d. We do not consider the case where e′ = (c, c) since, interference graphs are
loop-free. e′[c→d] is defined as follows.

1. (a, b)[a→d] =def (d, b) if a �= b
2. (a, b)[b→d] =def (a, d) if a �= b
3. (a, b)[c→d] =def (a, b) if a �= c ∧ b �= c
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For g′ = merge (x, y) g, we consider that x is the merged vertex. Thus, the
vertices of g′ are those of g minus y. Any interference edge e of g is transformed
into the edge e[y→x] in g′. Any preference edge e of g is transformed into the
edge e[y→x] in g′ if the extremities of e[y→x] are not linked with an interference
edge in g′. The merge function is axiomatized as follows.

(ME1) V g′ = (V g)− {y}
(ME2) precolored g′ = (precolored g)− {y}
(ME3) If e′ ∈ (IE g), then e′[y→x] ∈ (IE g′).
(ME4) If e′ ∈ (PE g) ∧ ¬interfere (fst end e′[y→x])(snd end e′[y→x]) g

′ ∧ e �=
e′, then prefere (fst end e′[y→x]) (snd end e′[y→x]) g

′.
(ME5) If e′ ∈e g′, then ∃e′′ ∈e g such that e′ 0 e′′[y→x] ∧ (same type e′ e′′).

This specification of merge is under restrictive since there is no constraint on
weights. It simplifies both the specification and the implementation of merge. It
allows the user not to take care about possible weights of preference edges.

4.6 Basic Interference Graph Functions

The specification of IRC also requires a few other functions and predicates, that
are used for instance to determine the neighbors of a vertex.

The interference (resp. preference) neighborhood of a vertex v in a graph g,
denoted by N(v, g) (resp. Np(v, g)) is the set containing the vertices x such that
there exists an interference edge (resp. a preference edge) between v and x.

x ∈ N(v, g) =def interfere x v g

x ∈ Np(v, g) =def prefere x v g

The interference (resp. preference) degree of a vertex v in a graph g, denoted by
δ(v, g) (resp. δp(v, g)), is the cardinality of N(v, g) (resp. Np(v, g)).

δ(v, g) =def card(N(v, g))

δp(v, g) =def card(Np(v, g))

The IRC algorithm heavily relies on move-relationship and interference degrees of
the vertices. Hence, we have to define move-related and low-degree vertices. Both
of them are defined as functions yielding booleans, in order to be computable.

A vertex v is move related in a graph g iff the preference neighborhood of v
in g is not empty.

move related g v =def ¬ is empty Np(v, g)
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A vertex v is of low-degree in a graph g if its interference degree is strictly lower
than K.

has low degree gK v =def δ(v, g) < K

5 Incremental Update of Worklists

The core of the IRC algorithm is the incremental update of the worklists and the
preservation of the associated invariant. Our IRC algorithm handles the worklists
efficiently and updates, for each recursive call, the minimal sets of vertices that
must be updated. Due to a lack of space, only the main properties are given in this
paper. For each kind of update (vertex removal, coalescing of vertices, and deletion
of a preference edge), this section details the main lemmas that are required to
prove that the WL_invariant holds on the updated graph and worklists.

This section only provides the key lemmas sketching in which conditions ver-
tices have to be moved from a worklist to another one (i.e. how move-related
and low-degree vertices evolve through the updates and the way the worklists
have to be updated).

5.1 Vertex Removal

Removing a vertex generalizes both simplification and spill. Given a vertex v
and a graph g, the following properties hold for g′ = remove vertex v g.

Theorem 4. Any nonmove-related vertex x �= v of g is also nonmove-related
in g′.

Theorem 5. Any move-related vertex x �= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 6. Any low-degree vertex x �= v of g is also a low-degree vertex of g′.

Theorem 7. Any high-degree vertex x �= v of g is of low-degree in g′ iff
x ∈ N(v, g) ∧ δ(x, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by IN (v , g) the set of nonprecol-
ored interference neighbors of v in g having an interference degree equal to K.
These vertices are of high-degree in g and will be of low-degree in g′. Thus,
we need to know if they will be move-related of not in g′ to classify them in
the appropriate worklist. To that purpose, INmr (v , g) and INnmr (v , g) are re-
spectively defined as the set of move-related vertices of IN (v , g) in g and of
nonmove-related vertices of IN (v , g) in g. Similarly, we denote by PN (v , g) the
set of nonprecolored, low-degree preference neighbors of v in g having a prefer-
ence degree equal to 1 in g. These low-degree vertices will not be move-related
anymore and have to be moved from the freeze worklist to the simplify one.

Let wl ′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.
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1. Vertices of IN (v, g) are removed from spillWL, with IN (v , g) defined as
follows. IN (v, g) =def {x ∈ N(v, g) | x /∈ precolored(g) ∧ δ(x, g) = K}.

2. Vertices of IN mr are added to freezeWL, with INmr defined as follows.
INmr (v, g) =def {x ∈ IN (v, g) | move relatedg x}

3. Vertices of IN nmr are added to simplifyWL, with INnmr defined as follows.
INnmr (v, g) =def {x ∈ IN (v, g) | ¬ move relatedg x}

4. Vertices of PN (v, g) are removed from the freeze worklist resulting from 2
and added to the simplify worklist resulting from 3. PN (v , g) is defined as
follows.
PN (v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1 ∧
(has low degreegK x)}

5. Preference edges incident to v are removed from movesWL.
6. The vertex v is removed from the worklist it belongs to.

Theorem 8. WL invariant g′ palette wl′.

The accurate update of worklists for the the simplify and spill cases can be
simply derived from the general theorem about vertex removal above : a spill
is a vertex removal of a vertex belonging to spillWL and the simplify case is
a vertex removal of a vertex v belonging to simplifyWL (and hence such that
PN(v, g) is empty by definition of simplifyWL).

5.2 Coalescing Two Vertices

The coalescing case is the hardest one to deal with. We consider here a graph
g and an edge (x, y) to be coalesced. In other words, x and y are merged in
order to assign the same color to both of them. The resulting graph is called g′.
Classically, there are two coalescing criteria :

1. George’s criterion states that x and y can be coalesced if N(x, v) ⊆ N(y, v).
This criterion is not yet implemented, but represents no real difficulty.

2. Briggs’s criterion states that x and y can be coalesced if the vertex resulting
from the merge has less than K high-degree neighbors, that is card(N(x, g)∪
N(y, g)) ∩ H < K, where H is the set of high-degree vertices of g. This
criterion is simpler and performs usually as well as the previous one.

The proof of correctness of the algorithm only requires that the vertices to be
merged are not both precolored. The other conditions only ensure the conserv-
ability of the coalescing, that is g′ remains K-colorable if g is K-colorable. In-
tuitively, the vertices to be updated in the worklists are the neighbors of the
coalesced edge endpoints. Actually, only a small subset of them needs to be
updated.

Let e = (x, y) and g′ = merge e g. The key lemmas are the following.

Theorem 9. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 10. Any move-related vertex v different from x and y is nonmove-
related in g′ iff v ∈ (Np(x, g) ∩N(y, g)) ∪ (Np(y, g) ∩N(x, g)) ∧ δp(v, g) = 1.
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Theorem 11. Any low-degree vertex v different from x and y of g is also a
low-degree vertex of g′.

Theorem 12. Any high-degree vertex v different from x and y of g is of low-
degree in g′ iff v ∈ N(x, g) ∩N(y, g) ∧ δ(v, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We introduce notations that are similar to
those defined in the previous section. We denote by L(x, y, g) the set of non-
precolored interference neighbors of both x and y having an interference degree
equal to K in g. These high-degree vertices of g will be low-degree vertices of g′.
We reason as in the vertex removal case and respectively define Lmr (x , y, g) and
Lnmr (x , y, g) as the set of move-related vertices of L(x , y, g) and of nonmove-
related vertices of L(x , y, g). Last, we denote by M (x , y, g) the set of nonpre-
colored low-degree vertices of (N(x, g) ∩Np(y, g)) ∪ (Np(x, g) ∩N(y, g)) having
a preference degree equal to 1 in g. These vertices will not be move-related
anymore and have to be transfered to the simplify worklist.

Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.

1. Vertices of L(x , y, g) are removed from spillWL, with L(x , y, g) defined as
follows. L(x, y, g) =def IN (x, g) ∩ IN (y, g).

2. Vertices of M(x, y, g) are removed from freezeWL, with M (x , y, g) defined
as follows. M(x, y, g) =def {x ∈ (N(x, g) ∩Np(y, g)) ∪ (Np(x, g) ∩N(y, g)) |
x /∈ precolored(g) ∧ δp(x, g) = 1 ∧ (has low degreegK x)}.

3. Vertices of Lmr(x, y, g) are added to the freeze worklist resulting from 2,
with Lmr (x , y, g) defined as follows.
Lmr (x , y, g) =def {x ∈ L(x, y, g) | move relatedg x}.

4. Vertices of Lnmr (x , y, g) and M (x , y, g) are added to the simplify worklist
resulting from 1, where Lnmris defined as follows.
Lnmr (x , y, g) =def {x ∈ L(x, y, g) | ¬ move relatedg x}

5. For every vertex v of Np(x, g)∩N(y, g) the preference edge (v, x) is removed
from movesWL.

6. For every vertex v of Np(y, g)−N(x, g) a preference edge (v, x) is added to
the move worklist resulting from 5.

7. Every preference edge incident to y is removed from the move worklist re-
sulting from 6.

8. If x is not precolored, x is classified in the appropriate worklist, depending
on its preference and interference degrees.

9. x (and similarly y) is removed from the spill worklist resulting from 1 if it
is of high-degree in g or from the freeze worklist resulting from 3 if it is of
low-degree in g.

Theorem 13. WL invariant g′ palette wl′.

5.3 Deletion of Preference Edges

Let g′ = delete preference edges v g. The key lemmas are the following.
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Theorem 14. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 15. Any move-related vertex x �= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 16. Any vertex is of low-degree in g′ iff it is of low-degree in g.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by D the set of nonprecolored
preference neighbors of v having a degree equal to 1 in g, that are also low-
degree vertices. These vertices have to be moved from the freeze worklist to the
simplify one. D is formally defined as follows.

D(v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1

∧ has low degree gK x}
Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists that
result from the following updates of wl and g′ the updated graph.

1. The vertex v is removed from freezeWL and added to simplifyWL.
2. Vertices of D are removed from the freeze worklist resulting from 1.
3. Vertices of D are added to the simplify worklist resulting from 1.
4. Preference edges incident to v are removed from movesWL.

Theorem 17. WL invariant g′ palette wl′.

6 Termination Proof

When looking at the IRC algorithm, it is not straightforward to realize that
it terminates. Thus, we have proved the termination of IRC. As 1) IRC is not
structurally recursive (there is no argument that decreases along the recursive
calls) and 2) we aim at extracting automatically a Caml code from our IRC
algorithm, a termination proof is required by Coq.

Our termination argument is a linear measure that gives an accurate bound of
the number of recursive calls. Our bound is B(g) = (2×n(g))− p(g) where n(g)
is the number of nonprecolored vertices of the graph g, and p(g) is the number
of nonprecolored, low-degree, nonmove-related vertices of the graph g. p(g) can
also be seen as the number of candidates to the simplification in g. The proof
that B(g) decreases at each recursive call heavily relies on the theorems 4 to 17
related to the update of the worklists. The termination proof also ensures that
the number of calls to IRC is linear in the size of the graph.

Theorem 18. Let v be a nonprecolored vertex of g and g′ = remove vertex v g.
Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g) − 1. This proof is trivial, since the
vertices of g are the same as the vertices of g′, minus v (which is nonprecolored).
Second, we show that p(g) ≤ p(g′) + 1. Indeed, according to theorem 8, the
number of candidates for the simplification cannot decrease by more than 1.
Thus, 2n(g′)− p(g′) < 2n(g)− p(g).
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Theorem 19. Let e be a coalescible edge of g and g′ the graph resulting from
the coalescing of e in g. Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g) − 1. This proof is trivial, since the
vertices of g are the same as the vertices of g′, minus the second endpoint of e
(which is nonprecolored). Second, we show that p(g) ≤ p(g′). This proof is trivial
too, since, according to theorem 13, the simplify worklist can only grow during
the coalescing. Hence we obtain B(g′) < B(g).

Theorem 20. Let v be a freeze candidate to g and g′ the graph resulting from
the freeze of v in g. Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g). This proof is trivial, since the vertices
of g are the same as the vertices of g′. Second, we show that p(g) ≤ p(g′). This
proof is trivial too, since, according to theorem 17, the simplify worklist can only
grow during the freeze. Hence we obtain B(g′) < B(g).

Theorem 21. If IRC g calls recursively IRC g′, then B(g′) < B(g). Conse-
quently, the number of recursive calls of IRC g is bounded by B(g) and IRC g
terminates.

Proof. The proof is done by induction on the recursive calls. Each case is dis-
charged thanks to one of the above lemmas.

7 Soundness

A coloring, w.r.t. a palette maps vertices to colors such that 1) two vertices linked
with an interference edge have different colors, 2) any vertex to which a color is
assigned belongs to the graph, and 3) any assigned color belongs to palette. A
coloring is a partial mapping since the variables that are spilled are not colored.

A coloring of an interference graph g w.r.t a palette palette is a function f
from Vertex.t to option Vertex.t such that :

(C1). ∀e = (x, y) ∈ IE(g), f(x) �= f(y)
(C2). ∀x, f(x) = .y/ ⇒ x ∈ V (g)
(C3). ∀x ∈ V (g), f(x) = .y/ ⇒ y ∈ palette

The soundness proof of IRC states that IRC returns a valid coloring of the graph
when the precoloring of the graph (defined in section 3.2) is valid.

Theorem 22. If precoloring (g) is a coloring of g w.r.t. palette, then IRC g
returns a coloring of g w.r.t. palette.

Proof. The proof is done by induction on the recursive calls. There are five proof
obligations to consider (one for each recursive call (PO1 to PO4), and one for
the terminal call (PO5))3.

3 For convenience, we present the proof obligations once the irc graph record has
been unfolded.
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(PO1). If col = IRC (remove vertex r g) is a coloring of (remove vertex r g)
w.r.t. palette, then (available coloring g r col) is a coloring of g w.r.t.
palette.

(PO2). If col = IRC (merge e g) is a coloring of (merge e g) w.r.t. palette and
e is a coalescible edge, then (complete coloring e col) is a coloring of g
w.r.t. palette.

(PO3). If col = IRC (delete preference edges r g) is a coloring of
(delete preference edges r g) w.r.t. palette, then col is a coloring of g
w.r.t. palette.

(PO4). Same proof obligation as (PO1).
(PO5). (precoloring g) is a coloring of g w.r.t. palette.

The proof of each of the four cases is almost straightforward using the soundness
lemmas of precoloring, available coloring and complete coloring that are
not detailed in this paper. The last case is true by assumption.

8 Experimental Evaluation

The source code of IRC is 600 lines of Coq functions and definitions. 1000 lines
of Coq define generic data structures (and modules) that are not used directly
by IRC. The whole proof represents approximately 4800 lines of Coq statements
and proof scripts (excluding comments and blank lines), including 3300 lines

benchmark graphs variables interferences preferences
AES cipher 7 113 586 166
Almabench 10 53 310 22
Binary trees 6 23 42 14
Fannkuch 2 50 332 27
FFT 4 72 391 37
Fibonacci 2 17 18 9
Integral 7 12 12 5
K-nucleotide 17 24 74 14
Lists 5 18 33 11
Mandelbrot 2 45 117 17
N-body 9 28 73 10
Number sieve 2 25 53 12
Number sieve bits 3 76 58 12
Quicksort 3 28 116 16
SHA1 hash 8 34 107 15
Spectral test 9 14 35 6
Virtual machine 2 73 214 38
Arithmetic coding 37 31 85 15
Lempel-Ziv-Welch 32 32 127 16
Lempel-Ziv 33 29 92 15

Fig. 4. Benchmark characteristics
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Fig. 5. Comparison of the running times of our register allocator and the Caml one.
To improve readability, results for the third column of almabench and fft are bounded
by 100 though they are actually respectively 131 and 120.

(110 lemmas) for the properties of incremental update of worklists, 300 lines (17
lemmas) for the termination proof, 650 lines (22 lemmas) for the soundness proof
and 550 lines (55 lemmas) for the properties of interference graphs. The proof is
therefore 8 times bigger than the code it proves, which is a common ratio in the
CompCert development [17].

We have integrated our IRC in the CompCert compiler. Thus, we can compare
our Caml implementation of IRC (that is automatically generated from our
Gallina program) with the Caml imperative one of CompCert. This comparison
is done on the CompCert benchmark, whose characteristics are given in Fig. 4.
The test programs range from 50 to 3000 lines of C code. Classically, for each
program, the compiler generates at most two graphs for each function, one for
integer variables and one for float variables. IRC is applied separately to each
graph. Each line of Fig. 4 represents a program. The columns show the number of
nonempty graphs to color, as well as the average numbers of vertices, interference
edges and preference edges of these graphs.

Integrating our IRC in the CompCert compiler allows us to compare the run-
ning times of both register allocations. The results on the CompCert benchmark
are shown in Fig. 5. Measurements were performed on an Apple PowerMac work-
station with two 2.0 GHz PowerPC 970 processors and 6Gb of RAM, running
MacOS 10.4.11. The first two columns of the histogram show the running times
of both allocators in milliseconds. Our allocator does not run as fast as the im-
perative one : a logarithmic penalty arising from operations on data structures
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occurs. However, compilation times remain good (under 1
10 s. for all the programs

of the suite); the slowdown is perfectly acceptable practically.
The third column represents the virtual time obtained by adding a logarithmic

penalty to the imperative allocator. In other words, the last column is (log n)
times the running time of the imperative allocator, where n is the number of
vertices of the graph. This virtual measurement emulates the penalty due to
logarithmic-access to data structures. It enables a qualitative comparison be-
tween our functional IRC and a standard imperative implementation. The time
spent by our allocator is very close to that of the imperative implementation
with a logarithmic cost factor.

Last but not least, we have compared the quality of executable code generated
by both allocators. Actually, both allocators implement the same algorithm. We
have measured the execution times of several executions of the test suite. The
results are equivalent for each test case.

9 Related Work

Despite their wide use in computer science and the maturity of their theory,
graphs are the subject of only a few works in the theorem-proving literature.
Only a small part of graph theory has been represented in proof assistants.

A few works on graphs are devoted to the specification of graph theory basics.
In 1994, Chou formalized in HOL some usual notions of graph theory [11], e.g.
graphs, digraphs, acyclic graphs, trees. Works of Chou were followed by formal-
izations of planar graphs [21] and of graph search algorithms [22] in HOL. In
2001, Duprat formalized the same notions as Chou and directed graphs in Coq,
using inductive definitions. Unfortunately, these definitions cannot be extracted
using the Coq mechanism for extraction. Hence our work does not use this li-
brary. Mizar is probably the theorem prover in which graph theory has been
studied the most. It provides a large library on graphs including previous-cited
basics and more elaborated formalizations as the one of chordal graphs.

Other work naturally focuses on polynomial graph problems and their algo-
rithms. More precisely, the most studied problem is the (very classical) problem
of the shortest path in a positive-weighted graph. In 1998, Paulin and Filliâtre
proved Floyd’s algorithm using Coq and a tool for verifying imperative programs
that will become Caduceus later. To fit this tool, their algorithm is written in
an imperative style where graphs are simply represented as matrices. Another
algorithm for the same problem, Dijkstra’s algorithm, has been formalized and
proved correct in both Mizar [10] and ACL2 [18]. Again, Mizar is in advance
with the formalizations of other algorithms as the Ford-Fulkerson algorithm for
flows, LexBFS for chordal graph recognition, or Prim’s algorithm for minimum
spanning tree. The latter algorithm has also been proved correct using B [1].

Kempe proved the five-color theorem for planar graphs in 1879 using a vari-
ation of the simple algorithm described in the second paragraph of this paper.
Alas, he had no mechanical proof assistant; his “proof” of the four-color theorem
[16] had an error that was not caught by mathematicians for 11 years. Appel
and Haken proved the four-color theorem 97 years later [4]; this was the first
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use of a computer to prove a major open problem that was unsolved without
mechanization. But major parts of that proof were unmechanized.

Recently, the theoretical problems of reasoning about planar graph coloring
have been tackled in modern proof assistants. Bauer and Nipkow formalized
undirected planar graphs and discussed a proof of the five-color theorem in Is-
abelle/HOL [5]. Gonthier and Werner produced the first fully mechanized proof
of the four-color theorem, using a formalization of hypergraphs which are a gen-
eralization of graphs [14]. Gonthier and Werner’s proof includes graph algorithms
implemented in Gallina and reasoned about in Coq.

Our work is significant for many reasons. It constitutes the first machine-
checked proof of a nontrivial register allocation algorithm and a reference imple-
mentation of IRC. In addition, using a functional language, such as Gallina, and a
recursive definition of an algorithm, requires hard work on the termination proof.
Furthermore, the algorithm we prove is an optimizing algorithm working on inter-
ference graphs. These graphs have specific properties that must be kept in mind
along the specification of the algorithm. Finally, we took a special care of the al-
gorithmic complexity of the generated code since it deals with a real and concrete
problem, register allocation that has been integrated to the CompCert compiler.

10 Conclusion

We have presented, formalized and implemented an optimizing register alloca-
tion algorithm based on graph coloring. The specification of this algorithm raises
difficult programming issues, such as the proof of termination, the specification
of interference graphs, the care of algorithmic complexity and the functional
translation of an imperative algorithm. In particular, we provided a very accu-
rate way to adjust worklists incrementally, even better than the ones usually
implemented. We also provided a correct reference description of IRC.

Technically, this work required the use of advanced features of the Coq system:
mainly automatic generation of induction principles for non-structural recursive
functions, but also dependent types for factoring development and proofs, generic
modules, and efficient data structures.

The automatic extraction of our implementation leads to a Caml code that has
been embedded in CompCert and whose results are equivalent to the one of the
current release version of CompCert. The execution times (of the graph coloring
phase of the CompCert compiler) are competitive with the ones of the release ver-
sion of CompCert. Only a very little slowdown that cannot be avoided appears, due
to logarithmic data structures operations of purely functional programming.
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Abstract. We propose a formal definition for (valid) speculative com-
putations, which is independent of any implementation technique. By
speculative computations we mean optimization mechanisms that rely
on relaxing the flow of execution in a given program, and on guessing
the values read from pointers in the memory. Our framework for formal-
izing these computations is the standard operational one that is used
to describe the semantics of programming languages. In particular, we
introduce speculation contexts, that generalize classical evaluation con-
texts, and allow us to deal with out of order computations. Regarding
concurrent programs, we show that the standard DRF guarantee, assert-
ing that data race free programs are correctly implemented in a relaxed
semantics, fails with speculative computations, but that a similar guar-
antee holds for programs that are free of data races in the speculative
semantics.

1 Introduction

Speculative computation [8,16] is an implementation technique that aims at
speeding up the execution of programs, by computing pieces of code in ad-
vance, possibly in parallel with the rest of the program, without being sure that
these computations are actually needed. We shall actually use the terminology
“speculative computation” in a very broad sense here: we try to capture the op-
timization techniques that rely on executing the code as it is, but relaxing the
flow of control, not necessarily following the order prescribed by the reference
operational semantics. Some keywords here are: pipelining, instruction level par-
allelism, out-of-order execution, branch prediction, thread level speculation, etc.
– we shall not cite any particular paper from the huge literature on these classi-
cal topics. By considering parallel composition of speculations, we also include
relaxed memory models [1] into this picture – though not those that try to cap-
ture compiler optimizations, that transform the code on the basis of semantical
reasoning (see [4,20,24]).

Let us see some examples of speculative computations. In these examples, we
use ML’s notation ! p for dereferencing a pointer, and () to mean termination,
and we present the speculation as a sequence of transitions, each labelled by
an action to be performed. More specifically, rdp,v is the action of reading the
value v for pointer p, wrp,v means the action of writing the value v for p in the

� Work partially supported by the ANR-SETI-06-010 grant.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 165–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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memory, and ↙ is taking the first branch in a conditional branching. In our first
example, the write to pointer q is reordered with respect to the read of p, which
predicts the value tt – regardless of the actual value found in the memory, which
is ignored at this stage:

(r := ! p) ;(q := tt)
wrq,tt−−−→ (r := ! p) ;()

rdp,tt−−−→ (r := tt) ;() (1)

In our second example

(if ! p then q := tt else ())
wrq,tt−−−→ (if ! p then () else ())
rdp,tt−−−→ (if tt then () else ())

↙−→ ()

(2)

the assignment in the first branch is issued speculatively, and the value tt is
guessed for p. In both cases, the write to q could be issued to run in parallel
with the rest of the code.

The idea of optimizing by computing in parallel is quite old, but the work
that has been done so far on this topic is almost exclusively concerned with
implementation techniques, either from the hardware or the software point of
view, optimizing the execution of sequential code. These implementations are
quite often complex, as speculations are not always correct, and need to be
aborted or undone is some cases. For instance, the two speculations above are
intuitively correct, provided that the predicted values coincide with the actual
ones, but it would be wrong, in Example (2), to perform the write for q if
the value eventually read for ! p is ff . Due to the complexity of implementing
speculations perhaps, the notion of a valid speculation does not seem to have
been formally defined before, except in some particular cases that we will mention
below. Nevertheless, the various implementations of speculative techniques are
generally considered correct, as regards the semantics of sequential programs.

Our first and main aim in this work is to design a semantical framework to
formalize in a comprehensive manner the notion of a speculative computation,
and to characterize the ones that are valid for sequential programs. We adopt and
extend the approach presented in [7], that is, we define, using a pretty standard
operational style, the speculative semantics of an expressive language, namely
a call-by-value λ-calculus with mutable state and threads. Our formalization
relies on extending the usual notion of an evaluation context [9], and using value
prediction [11,19] as regards the values read from the memory. By introducing
speculation contexts, we are able to formalize out of order executions, as in
relaxed memory models, and also branch prediction [26], allowing to compute in
the alternatives of a conditional branching construct. A particular case of out
of order computation is provided by the future construct of Multilisp [14]. Our
model therefore encompasses many speculative techniques.

The central definition in this paper is the one of a valid speculative com-
putation. Roughly speaking, a thread’s speculation is valid if it can be proved
equivalent to a normal order computation. Our criterion here is that a thread’s
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speculation is only valid if it preserves the sequential semantics. The equivalence
of computations we use is the permutation of transitions equivalence introduced,
for a purely functional language, by Berry and Lévy in [5], stating that inde-
pendent steps can be performed in any order (or in parallel) without essentially
changing the computation. One can see, for instance, that the two speculations
(1) and (2) above are valid, by executing the same operations in normal order.
In an implementation setting we would say that a speculation is allowed to com-
mit in the case it is valid, but one should notice that our formulation is fully
independent from any implementation mechanism. One could therefore use our
formal model to assess the correctness of an implementation, showing that the
latter only allows valid speculations to be performed.

As we shall see, valid speculations indeed preserve the semantics of sequen-
tial programs. This is no longer the case for multithreaded applications running
on multiprocessor architectures. This is not surprising, since most optimizations
found in relaxed memory models do not preserve the standard interleaving se-
mantics – also known as “sequential consistency” [17] in the area of memory
models –, see the survey [1]. For instance, continuing with Example (1), one can
see that with the thread system

(r := ! p) ;(q := tt) ‖ (r′ := ! q) ;(p := tt)

and starting with a state where ! p = ff = ! q, one can get a state where
! r = tt = ! r′ as an outcome of a valid speculative computation, that first
issues the writes to q and p. This cannot be obtained by a standard interleav-
ing execution, but is allowed in memory models where reads can be reordered
with respect to subsequent memory operations, a property symbolically called
R→RW, according to the terminology of [1]. One could check that most of the
allowed behaviors (the so called “litmus tests”) in weak memory models can also
be obtained by speculative computations, thus stressing the generality of our
framework, which offers a very relaxed semantical model.

Since the interleaving semantics of thread systems is not preserved by opti-
mizing platforms, such as parallelized hardware, and since the latter are unlikely
to be changed for the purpose of running concurrent programs, some conditions
must be found for multithreaded applications to be executed correctly on these
platforms. For instance, most memory models support the well-known “DRF
guarantee,” that asserts that programs free of data races, with respect to the in-
terleaving semantics, are correctly executed in the optimized semantics [2,12,20].
However, with speculative computations, this guarantee fails. For instance, ex-
tending the second example given above, one can see that with the thread system

p := ff ;
(if ! p then q := tt else ())

∥∥ q := ff ;
(if ! q then p := tt else ())

one can get the outcome ! p = tt = ! q, by speculatively performing, after the
initial assignments, the two assignments q := tt and p := tt , thus justifying the
branch prediction made in the other thread (see [13] Section 17.4.8, and [6] for
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similar examples). This example, though not very interesting from a program-
ming point of view, exhibits the failure of the DRF guarantee. Let us see an-
other example, which looks more like a standard idiom, for a producer-consumer
scenario. In this example, we use a construct (with � do e) to ensure mutual
exclusion, by acquiring a lock �, computing e and, upon termination, releasing
�. Then with the two threads

data := 1 ;
(with � do flag := tt)

∥∥ while not (with � do ! flag) do skip ;
r := ! data

if initially ! data = 0 and ! flag = ff , we can speculate that ! data in the sec-
ond thread returns 0, and therefore get an unexpected value for r (the other
instructions being processed in the normal way). Since speculating ahead of
synchronization (unlock) is permitted in our model, this is, according to our
definition, a valid speculation, and this provides another example of the failure
of the DRF guarantee in the speculative semantics.

Now a question is: what kind of property should concurrent programs possess
to be “robust” against aggressive optimizations – and more precisely: specula-
tions – found in optimized execution platforms, and how to ensure such robust-
ness? In this paper we address the first part of this question1. We have seen that
data race free concurrent programs are not necessarily robust – where “robust”
means that the speculative semantics does not introduce unexpected behaviors
(w.r.t. the normal order semantics) for the program under consideration. In this
paper we show that speculatively data race free programs are robust – this is
our main technical result. Here speculatively DRF means that there is no data
race occurring in the speculative semantics, where a data race is, as usual, the
possibility of performing – according to the speculative semantics – concurrent
accesses, one of them being a write, to the same memory location. Then se-
quential programs in particular are robust, that is, speculative computation is a
correct implementation for these programs.

Related work

To the best of our knowledge, the notion of a (valid) speculation has not been
previously stated in a formal way. In this respect, the work that is the closest
to ours is the one on the mathematical semantics of Multilisp’s future construct,
starting with the work [10] of Flanagan and Felleisen. This was later extended
by Moreau in [22] to deal with mutable state and continuations (extending the
work in [15] as regards the latter). A similar work regarding Java has been done
by Jagannathan and colleagues, dealing with mutable state [27] and exceptions
[23]. However, all these works on the future construct aim at preserving the se-
quential semantics, but they are not concerned with shared memory concurrency.
Moreover, they do not include branch prediction and value prediction.

1 For an answer to the second part we refer to the forthcoming extended version of
this paper.
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2 The Language

The language supporting speculative computations is an imperative call-by-value
λ-calculus, with boolean values and conditional branching, enriched with thread
creation and a construct for ensuring mutual exclusion. The syntax is:

e ::= v | (e0e1) | (if e then e0 else e1) | (ref e) expressions

| (! e) | (e0 := e1) | (thread e) | (with � do e)

v ::= x | λxe | tt | ff | () values

where � is a lock, that is a name from a given infinite set Locks . As usual, λ is
a binder for the variable x in λxe, and we shall consider expressions up to α-
conversion, that is up to the renaming of bound variables. The capture-avoiding
substitution of e0 for the free occurrences of x in e1 is denoted {x �→e0}e1. We
shall use some standard abbreviations like (let x = e0 in e1) for (λxe1e0), which
is also denoted e0 ; e1 whenever x does not occur free in e1.

To state the operational semantics of the language, we have to extend it with
run-time constructs, in two ways. First, we introduce references (sometimes also
referred to as memory locations, memory addresses, or pointers) p, q, . . . that are
names from a given infinite set Ref . These are (run-time) values. Then we use
the construct (e\�) to hold a lock for e. As it is standard with languages involving
concurrency with shared variables, we follow a small-step style to describe the
operational semantics, where an atomic transition consists in reducing a redex
(reducible expression) within an evaluation context, while possibly performing a
side effect. The syntax is then extended and enriched as follows:

p, q . . . ∈ Ref references

v ::= · · · | p run-time values

e ::= · · · | (e\�) run-time expressions

u ::= (λxev) | (if tt then e0 else e1) | (if ff then e0 else e1) redexes

| (ref v) | (! p) | (p := v) | (thread e) | (with � do e) | (v\�)
E ::= [] | E[F] evaluation contexts

F = ([] e) | (v []) | (if [] then e0 else e1) frames

| (ref []) | (! []) | ([] := e) | (v := []) | ([]\�)
As usual, we denote by E[e] the expression resulting from filling the hole in E
by e. Every expression of the (run-time) language is either a value, or a redex in
a position to be reduced, or faulty. More precisely, let us say that an expression
is faulty if it has one of the following forms:

• (ve) where the value v is not a function λxe′;

• (if v then e0 else e1) where the value v is not a boolean value, tt or ff ;
• (! v) or v := v′ where the value v is not a reference.

Then we have:
Lemma 2.1. For any expression e of the run-time language, either e is a value,
or there is a unique evaluation context E and a unique expression e′ which either
is a redex, or is faulty, such that e = E[e′].
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To define speculative computations, we extend the class of standard evaluation
contexts by introducing speculation contexts, defined as follows:

Σ ::= [] | Σ[Φ] speculation contexts

Φ ::= F | (e []) | (λx[] e) | (if e then [] else e1) speculation frames

| (if e then e0 else []) | (e := [])

Let us comment briefly on the speculation contexts. With frames of the shape
(λx[] e), one can for instance compute e1 in the expression (λxe1e0) – hence
in (let x = e0 in e1) and e0 ; e1 in particular –, whereas in a normal order
computation one has to compute e0 first. This is similar to a future expression
(let x = future e0 in e1) [10], where e1 is computed in advance, or in parallel
with e0. With the frames (if e then [] else e1) and (if e then e0 else []), one is
allowed to compute in a branch (or in both branches) of a conditional construct,
without knowing the value of the condition, again computing in advance (or in
parallel) with respect to the normal order. This is known as “branch prediction”
[26]. Notice that, by contrast, the construct (with � do e) acts as a “speculation
barrier,” that is, (with � do []) is not a speculation frame. Indeed, the purpose
of acquiring a lock is to separate side-effecting operations. We could allow pure
(i.e. without side effect) speculations inside such a construct2, but this would
complicate the technical developments, with no added value, since, as we shall
see, we can always speculatively acquire a lock (but not speculatively release it).

To define the semantics of locking, which allows for reentrant locks, we shall
use the set, denoted 1Σ2, of locks held in the context Σ, defined as follows:

�[]� = ∅
�Σ[Φ]� = �Σ� ∪ �Φ� where �Φ� =

{ {�} if Φ = ([]\�)
∅ otherwise

Speculative computations are defined in two stages: first we define speculations,
that are abstract computations of a given thread – abstract in the sense that the
state, made of a memory, a set of busy locks, and a multiset of threads, is ignored
at this stage. We can regard these as attempts to perform some computation,
with no real side effect. Then we shall compose such speculations by interleaving
them, now taking at this stage the global state into account. In order to do so,
it is convenient to formalize speculations as labeled transitions, explicitly indi-
cating what reduction occurs, that is what is the action performed at each step.
There are several kinds of actions, namely performing a β-reduction, denoted β,
choosing a branch in a conditional construct (↙ and ↘), creating a new reference
p in the store with some initial (closed) value (νp,v), reading (rdp,v) or writing

(wrp,v) a reference, spawning a new thread (spwe), acquiring (
�

� ) or releasing

(
�

� ) a lock �. Then the syntax of actions is as follows:

a ::= β | ↙ | ↘ | νp,v | rdp,v | wrp,v | μ |
�

� | b

b := spwe |
�

�

2 By enriching the conflict relation, see below.



A Theory of Speculative Computation 171

where v and e are closed. The action μ stands for taking a lock that is already
held. We denote by Act the set of actions, and by B the subset of b actions.

In order to define valid speculations, we shall also need to explicitly indicate in
the semantics where actions are performed. To this end, we introduce the notion
of an occurrence, which is a sequence over a set of symbols, each associated with
a frame, denoting a path from the root of the expression to the redex that is
evaluated at some step. In the case of a frame (e []), it is convenient to distinguish
the case where this is a “normal” frame, that is, when e is a value, from the case
where this is a true speculation frame. Then an occurrence is a sequence o over
the set SOcc below:

Occ = {([] ), (• []), (if [] then else ), (ref []), (! []), ([] := ), (v := []), ([]\�)}
SOcc = Occ ∪ {( []), (λx[] ), (if then [] else ), (if then else []), ( := [])}

The occurrences o ∈ Occ∗ are called normal. Notice that we do not consider
λx[] as an occurrence. This corresponds to the fact that speculating inside a
value is forbidden, except in the case of a function applied to an argument,
that is (λxe1e0) where speculatively computing e1 is allowed (again we could
relax this as regards pure speculations, but this would involve heavy technical
complications). One then defines the occurrence @Σ, as the sequence of frames
that points to the hole in Σ, that is:

@[] = ε

@Σ[Φ] = @Σ · @Φ

where
@([] e) = ([] )

@(e []) =

{
(• []) if e ∈ Val

( []) otherwise

@(e := []) =

{
(v := []) if e = v ∈ Val

( := []) otherwise

and so on. We denote by o · o′ the concatenation of the two sequences o and o′,
and we say that o is a prefix of o′, denoted o ≤ o′, if o′ = o · o′′ for some o′′. If
o �≤ o′ and o′ �≤ o then we say that o and o′ are disjoint occurrences.

We can now define the “local” speculations, for a given (sequential) thread.
This is determined independently of any context (memory or other threads), and
without any real side effect. Speculations are defined as a small step semantics,
namely labeled transitions

e
a−→
o

e′

where a is the action performed at this step and o is the occurrence at which
the action is performed (in the given thread). These are defined in Figure 1.
Speculating here means not only computing “in advance” (or “out-of-order”),
but also guessing the values from the global context (the memory and the lock
context). More precisely, the speculative character of this semantics is twofold.
On the one hand, some computations are allowed to occur in speculation contexts
Σ, like with future computations or branch prediction. On the other hand, the
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Σ[(λxev)]
β−−→

@Σ
Σ[{x 
→v}e] Σ[(p := v)]

wrp,v−−−→
@Σ

Σ[()]

Σ[(if tt then e0 else e1)]
↙−−→
@Σ

Σ[e0] E[(thread e)]
spwe−−−→
@E

E[()]

Σ[(if ff then e0 else e1)]
↘−−→
@Σ

Σ[e1] Σ[(with � do e)]
μ−−→

@Σ
Σ[e] � ∈ �Σ�

Σ[(ref v)]
νp,v−−−→
@Σ

Σ[p] Σ[(with � do e)]
�

�−−→
@Σ

Σ[(e\�)] � �∈ �Σ�

Σ[(! p)]
rdp,v−−−→
@Σ

Σ[v] E[(v\�)]
�

�−−→
@E

E[v]

Fig. 1. Speculations

value resulting from a dereference operation (! p), or the status of the lock in the
case of a locking construct (with � do e), is “guessed”, or “predicted” – as regards
loads from the memory, this is known as value prediction, and was introduced in
[11,19]. These guessed values may be written by other threads, which are ignored
at this stage. One should notice that the b actions are only allowed to occur from
within an evaluation context, not a speculation context. However, one should also
observe that an evaluation context can be modified by a speculation, while still
being an evaluation context. This is typically the case of ([] e) and (λxe []) –
hence in particular (let x = [] in e) and [] ; e –, where one is allowed to speculate
the execution of e; this is also the case with (if [] then e0 else e1) where one can
speculate in a branch, that is in e0 or e1. Then for instance with an expression of
the form (e0\�) ; e1, one can speculatively compute in e1 before trying to release
the lock � and proceed with e0 (a special case of this is the so-called “roach motel
semantics,” see [3]). The following is a standard property:

Lemma 2.2. If e
a−→
o

e′ then {x �→v}e a−→
o
{x �→v}e′ for any v.

Definition (Speculations) 2.3. A speculation from an expression e to an

expression e′ is a (possibly empty) sequence σ =
(
ei

ai−→
oi

ei+1
)
0�i�n

of specula-

tion steps such that e0 = e and en = e′. This is written σ : e ∗→ e′. The empty
speculation (with e′ = e) is denoted ε. The sequence σ is normal iff for all i the

occurrence oi is normal. The concatenation σ · σ′ : e ∗→ e′ of σ and σ′ is only
defined (in the obvious way) if σ ends on the expression e′′ where σ′ originates.

Notice that a normal speculation proceeds in program order, evaluating redexes
inside evaluation contexts – not speculation contexts; still it may involve guessing
some values that have to be read from the memory. Let us see two examples of
speculations – omitting some labels, just mentioning the actions:

Example 2.4

r := ! p ; q := tt
wrq,tt−−−→ r := ! p ;()

rdp,tt−−−→ r := tt ;()
wrr,tt−−−→ () ;()

β−→ ()

Here we speculate in two ways: first, the assignment q := tt , which would nor-
mally take place after reading p and updating r, is performed, or rather, issued,
out of order; second, we guess a value read from memory location p.
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Example 2.5

(if ! p then q := tt else ())
wrq,tt−−−→ (if ! p then () else ())

rdp,tt−−−→ (if tt then () else ())
↙−→ ()

Here we speculate by predicting that we will have to compute in the first branch,
while guessing that the value pointed to by p is tt . Obviously this guessed value
may not be the correct one, and in this case the computation made in the
“then” branch has to be invalidated. We shall define valid speculations in the
next section.

The concurrent speculative semantics is again a small step semantics, con-
sisting in transitions between configurations C = (S,L, T ) where the store S,
also called here the memory, is a mapping from a finite set dom(S) of references
to values, the lock context L is a finite set of locks, those that are currently
held by some thread, and T , the thread system, is a mapping from a finite set
dom(T ) of thread names (or thread identifiers), subset of Names , to expressions.
If dom(T ) = {t1, . . . , tn} and T (ti) = ei we also write T as

(t1, e1) ‖ · · · ‖(tn, en)

As usual, we shall assume we consider only well-formed configurations, meaning
that any reference that occurs somewhere in the configuration belongs to the
domain of the store, that is, it is bound to a value in the memory – we shall
not define this property, which is preserved in the operational semantics, more
formally. For instance, if e is an expression of the source language, any initial
configuration (∅, ∅, (t, e)) is well-formed. The speculative computations are made
of transitions that have the form

C
a−−→

t,o
C′

indicating the action a that is performed, the thread t that performs it, and
the occurrence o where it is performed in the thread (these labels are just an-
notations, introduced for technical convenience, but they do not entail any con-
straint on the semantics). At each step, a speculation attempted by one thread
is recorded, provided that the global state agrees with the action that is issued.
That is, the value guessed by a thread for a pointer must be the value of that
pointer in the memory (but notice that the store itself is speculative, being spec-
ulatively updated), and similarly acquiring a lock can only be done if the lock is
free. We distinguish two cases, depending on whether the action spawns a new
thread or not. The corresponding two rules are given in Figure 2, where

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = β, ↙, ↘, μ ⇒ S′ = S & L′ = L

a = νp,v ⇒ p �∈ dom(S) & S′ = S ∪ {p 
→v}
& L′ = L

a = rdp,v ⇒ v = S(p) & S′ = S & L′ = L

a = wrp,v ⇒ S′ = S[p := v] & L′ = L

a =
�

� ⇒ S′ = S & � �∈ L & L′ = L ∪ {�}
a =

�

� ⇒ S′ = S & L′ = L − {�}
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e
a−→
o

e′ a �= spwe′′

(S, L, (t, e) ‖T ) a−−→
t,o

(S′, L′, (t, e′) ‖T )
(∗)

e
spwe′−−−→

o
e′′

(S, L, (t, e) ‖T )
spwe′−−−→
t,o

(S, L, (t, e′′) ‖(t′, e′) ‖ T )
t′ �∈ dom(T ) ∪ {t}

Fig. 2. Speculative Computations

Definition (Computations) 2.6. A speculative computation from a con-
figuration C to a configuration C′ is a (possibly empty) sequence γ of steps(
Ci

ai−−−→
ti,oi

Ci+1
)
0�i�n

in the speculative operational semantics such that C0 = C

and Cn = C′. This is written γ : C ∗→ C′. The empty computation is denoted
ε. The concatenation γ · γ′ : C

∗→ C′ is only defined (in the obvious way) if

γ ends on the configuration C′′ where γ′ originates, that is γ : C
∗→ C′′ and

γ′ : C′′ ∗→ C′. The computation γ =
(
Ci

ai−−−→
ti,oi

Ci+1
)
0�i�n

is normal if for all i

the occurrence oi is normal.

One can see that normal computations correspond to computations in the stan-
dard interleaving semantics, that we regard as the reference semantics from the
programmer’s point of view. Even though our definition of speculative computa-
tions ensures that the values read from the memory are correctly guessed, some
speculation sequences are still wrong, like – omitting the occurrences

({p 
→ ff }, ∅, (t, (if ! p then p := tt else ())))
wrp,tt−−−→ ({p 
→ tt}, ∅, (t,(if ! p then () else ())))
rdp,tt−−−→ ({p 
→ tt}, ∅, (t, (if tt then () else ())))

Here the normal data dependency between the read and write on p is broken,
and the branch prediction is therefore wrong. Similarly, the computation

({p 
→ ff }, ∅, (t, (if ff then p := tt else ())))
wrp,tt−−−→ ({p 
→ tt}, ∅, (t, (if ff then () else ())))
rdp,tt−−−→ ({p 
→ tt}, ∅, (t, ()))

is wrong because it violates the normal control dependency between the predicate
and the branches of the conditional branching. In the next section we shall define
which are the correct speculative computations. To this end, we shall need the
following technical definition, which formalizes the contribution of each thread
to a speculative computation:

Definition (Projection) 2.7. Given a thread identifier t, the projection γ|t of
a speculative computation γ on thread t is defined as follows, by induction on γ:
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ε|t = ε

(C a−−→
t′,o

C′ · γ)|t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e

a−→
o

e′ · (γ|t) if t′ = t &

C = (S, L, (t, e) ‖T ) &
C′ = (S′, L′, (t, e′) ‖T )

γ|t otherwise

It is easy to check that this is indeed well-defined, that is:

Remark 2.8. For any speculative computation γ and name t, the projection
γ|t is a speculation.

3 Valid Speculations

We shall qualify a speculative computation as valid in the case where each of its
projections is equivalent in some sense to a normal evaluation. That is, a specu-
lative computation is valid if it only involves thread speculations that correctly
guess the values read from the memory, and preserves, up to some equivalence,
the normal program order. In other words, the validity criterion is local to the
threads, namely, each thread’s speculation should be equivalent to a sequential
execution.3 The equivalence we use is the permutation of transitions equivalence
introduced by Berry and Lévy [5,18], that we also used in our previous work
on memory models [7]. Intuitively, this equivalence says that permuting inde-
pendent steps in a speculation results in “the same” speculation, and that such
independent steps could actually be performed in parallel. It is clear, for in-
stance, that actions performed at disjoint occurrences can be done in any order,
provided that they are not conflicting accesses to the same memory location (the
conflict relation will be defined below). This applies for instance to

r := ! p ; q := tt
wrq,tt−−−→ r := ! p ;()

rdp,tt−−−→ r := tt ;()

from Example 2.4. Similarly, we can commute two steps such as

(if tt then q := tt else ())
wrq,tt−−−→ (if tt then () else ())

↙−→ ()

(see Example 2.5), although in this case we first need to say that the first step
in this sequence is indeed “the same” as the second one in

(if tt then q := tt else ())
↙−→ q := tt

wrq,tt−−−→ ()

To this end, given a speculation step e
a−→
o

e′ and an occurrence o′ in e, we define

the residual of o′ after this step, that is the occurrence, if any, that points to the
same subterm (if any) as o′ pointed to in e. For instance, if the step is

(if tt then e0 else e1)
↙−→
ε

e0

then for o′ = ε or o′ = (if [] then else ) there is not residual, because the
occurrence has been consumed in reducing the expression. The residual of any
3 This appears to be the standard – though implicit – validity criterion in the literature

on speculative execution of sequential programs.
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occurrence pointing into e0, i.e. of the form (if then [] else ) · o′, is o′, whereas
an occurrence of the form (if then else []) · o′, pointing into e1, has no resid-
ual, since the subexpression e1 is discarded by reducing to the first branch of the
conditional expression. This is the way we deal with control dependencies. The
notion of a residual here is much simpler than in the λ-calculus (see [18]), because
an occurrence is never duplicated, since we do not compute inside a value (except
in a function applied to an argument). Here the residual of an occurrence after
a speculation step will be either undefined, whenever it is discarded by a condi-
tional branching, or a single occurrence. We actually only need to know the action
a that is performed and the occurrence o where it is performed in order to define
the residual of o′ after such a step. We therefore define o′/(a, o) as follows:

o′/(a, o) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

o′ if o �≤ o′

o · o′′ if o′ = o · (λx[] ) · o′′ & a = β

or o′ = o · (if then [] else ) · o′′ & a = ↙

or o′ = o · (if then else []) · o′′ & a = ↘

undefined otherwise

In the following we write o′/(a, o) ≡ o′′ to mean that the residual of o′ after (a, o)
is defined, and is o′′. Notice that if o′/(a, o) ≡ o′′ with o′ ∈ Occ∗ then o′′ = o′

and o �≤ o′.
Speculation enjoys a partial confluence property, namely that if an occurrence

of an action has a residual after another one, then one can still perform the action
from the resulting expression. This property is known as the Diamond Lemma.
For lack of space, the proof of this Lemma is omitted (as well as the proofs of
other statements below).

Lemma (Diamond Lemma) 3.1. If e
a0−→
o0

e0 and e
a1−→
o1

e1 with o1/(a0, o0) ≡ o′1

and o0/(a1, o1) ≡ o′0 then there exists e′ such that e0
a1−→
o′
1

e′ and e1
a0−→
o′

o

e′.

One should notice that the e′, the existence of which is asserted in this lemma, is
actually unique, up to α-conversion. Let us see an example: with the expression
of Example 2.4, we have – recall that e0 ; e1 stands for (λxe1e0) where x is not
free in e1:

r := ! p ; q := tt
wrq,tt−−−−→

(λx[] )
r := ! p ;()

and
r := ! p ; q := tt

rdp,tt−−−−−−−−→
(•,[])·(r:=[])

r := tt ; q := tt

Then we can close the diagram, ending up with the expression r := tt ;(). This
confluence property is the basis for the definition of the equivalence by permuta-
tion of computing steps: with the hypotheses of the Diamond Lemma, we shall
regard the two speculations

e
a0−→
o0

e0
a1−→
o′
1

e′ and e
a1−→
o1

e1
a0−→
o′
0

e′

as equivalent. However, this cannot be so simple, because we have to ensure
that the program order is preserved as regards accesses to a given memory
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location (unless these accesses are all reads). For instance, the speculation –
again, omitting the occurrences:

p := tt ; r := ! p
rdp,ff−−−→ p := tt ; r := ff

wrp,tt−−−→ () ; r := ff

should not be considered as valid, because it breaks the data dependency between
the write and the read on p. To take this into account, we introduce the conflict
relation between actions, as follows4:
Definition (Conflicting Actions) 3.2. The conflict relation # between
actions is given by

# =
⋃

p∈Ref ,v,w∈Val

{
(wrp,v,wrp,w), (wrp,v, rdp,w), (rdp,v,wrp,w)

}
We can now define the permutation equivalence, which is the congruence (with
respect to concatenation) on speculations generated by the conflict-free Diamond
property.
Definition (Permutation Equivalence) 3.3. The equivalence by permuta-
tion of transitions is the least equivalence 0 on speculations such that if e

a0−→
o0

e0

and e
a1−→
o1

e1 with o1/(a0, o0) ≡ o′1 and o0/(a1, o1) ≡ o′0 and ¬(a0 # a1) then

σ0 · e a0−→
o0

e0
a1−→
o′
1

e′ · σ1 � σ0 · e a1−→
o1

e1
a0−→
o′
0

e′ · σ1

where e′ is determined as in the Diamond Lemma.

Notice that two equivalent speculations have the same length. Let us see some
examples. The speculation given in Example 2.4 is equivalent to the normal
speculation

r := ! p ; q := tt
rdp,tt−−−→ r := tt ; q := tt
wrr,tt−−−→ () ; q := tt

β−→ q := tt
wrq,tt−−−→ ()

Similarly, the speculation given in Example 2.5 is equivalent to the normal spec-
ulation

(if ! p then q := tt else ())
rdp,tt−−−→ (if tt then q := tt else ())
↙−→ q := tt

wrq,tt−−−→ ()

We are now ready to give the definition that is central to our work, characterizing
what is a valid speculative computation.
Definition (Valid Speculative Computation) 3.4. A speculation is valid
if it is equivalent by permutation to a normal speculation. A speculative com-
putation γ is valid if all its thread projections γ|t are valid speculations.

4 We notice that in some (extremely, or even excessively) relaxed memory model (such
as the one of the Alpha architecture, see [21]) the data dependencies are not main-
tained. To deal with such models, we would adopt an empty conflict relation, and a
different notion of data race free program (see below).
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It is clear for instance that the speculations given above that do not preserve
the normal data dependencies are not valid. Similarly, regarding control depen-
dencies, one can see that the following speculation

(if ! p then () else q := tt)
wrq,tt−−−→ (if ! p then () else ())

rdp,tt−−−→ (if tt then () else ())
↙−→ ()

which is an example of wrong branch prediction, is invalid, since the occurrence
of the first action has no residual after the last one, and cannot therefore by
permuted with it. We have already seen that the speculations from Examples
2.4 and 2.5 are valid. (Notice that, obviously, any normal computation is valid.)
Then the reader can observe that from the thread system – where we omit the
thread identifiers

r := ! p ; q := tt ‖ r′ := ! q ; p := tt

and an initial memory S such that S(p) = ff = S(q), we can, by a valid specu-
lative computation, get as an outcome a state where the memory S′ is such that
S′(r) = tt = S′(r′), something that cannot be obtained with the standard, non-
speculative interleaving semantics. This is typical of a memory model where the
reads can be reordered with respect to subsequent memory operations – a prop-
erty symbolically called R→RW, according to the terminology of [1], that was not
captured in our previous work [7] on write-buffering memory models. We conjec-
ture that our operational model of speculative computations is more general (for
static thread systems) than the weak memory model of [7], in the sense that for any
configuration, there are more outcomes following (valid) speculative computations
than with write buffering. We also believe, although this would have to be more for-
mally stated, that speculative computations are more general than most hardware
memory models, which deal with access memory, but do not transform programs
using some semantical reasoning as optimizing compilers do. For instance, let us
examine the case of the amd6 example (see [25]), that is

p := tt ‖ q := tt ‖ r0 := ! p ;
r1 := ! q

‖ r2 := ! q ;
r3 := ! p

If we start from a configuration where the memory S is such that S(p) = ff =
S(q), we may speculate in the third thread that ! q returns ff (which is indeed
the initial value of q), and similarly in the fourth thread that ! p returns ff , and
then proceed with the assignments p := tt and q := tt , and so on. Then we can
reach, by a valid speculative computation, a state where the memory S′ is such
that S′(r0) = tt = S′(r2) and S′(r1) = ff = S′(r3), an outcome which cannot
be obtained with the interleaving semantics.

Another unusual example is based on Example 2.5. Let us consider the fol-
lowing system made of two threads

p := ff ;
(if ! p then q := tt else ())

∥∥ q := ff ;
(if ! q then p := tt else ())

Then by a valid speculative computation we can reach, after having performed the
two initial assignments, a state where S(p) = tt = S(q). What is unusual with this
example, with respect to what is generally expected from relaxed memory models
for instance [2,12], is that this is, with respect to the interleaving semantics, a data



A Theory of Speculative Computation 179

race free thread system, which still has an “unwanted” outcome in the optimizing
framework of speculative computations (see [6] for a similar example). This indi-
cates that we have to assume a stronger property than DRF (data-race freeness)
to ensure that a program is “robust” with respect to speculations.

Definition (Robust Programs) 3.5. A closed expression e is robust iff for

any t and γ such that γ : (∅, ∅, (t, e)) ∗→ (S,L, T ) there exists a normal compu-

tation γ̄ such that γ̄ : (∅, ∅, (t, e)) ∗→ (S,L, T ).

In other words, for a robust expression the speculative and interleaving semantics
coincide, or: the robust programs are the ones for which the speculative semantics
is correct (with respect to the interleaving semantics).

4 Robustness

Our main result is that speculatively data-race free programs are robust.

Definition (Speculatively DRF Program) 4.1. A configuration C has a
speculative data race iff there exist ti, oi, ai and Ci (i = 0, 1) such that

C′
a0−−−→

t0,o0
C0 and C′

a1−−−→
t1,o1

C1 with t0 �= t1 & a0 # a1. A valid speculative

computation
(
Ci

ai−−−→
ti,oi

Ci+1
)
0�i�n

is speculatively date race free iff for all i, Ci

has no speculative data race. A configuration C is speculatively date race free
(speculatively DRF, or SDRF) iff any valid speculative computation originating
in C is data race free. An expression e is speculatively DRF iff for any t the
configuration (∅, ∅, (t, e)) is speculatively DRF.

It is obvious that this is a safety property, in the sense that if C is speculatively
DRF and C′ is reachable from C by a normal computation, then C′ is specula-
tively DRF. We could have formulated this property directly, without resorting
to the conflict relation, saying that there are no reachable concurrent accesses
to the same location in the memory. In this way we could deal with optimizing
architectures (such as the Alpha memory model, see [21]) that allow to reorder
such accesses, by including the case where these concurrent accesses can occur
(in the speculative semantics) from within the same thread, like for instance in
p := ff ; r := ! p. We do not follow this way here, since such a model requires
unnatural synchronizations from the programmer.

In order to establish our main result, we need a number of preliminary lemmas,
regarding both speculations and speculative computations. First, we extend the
notion of residual by defining o/σ where o is an occurrence and σ a speculation.
This is defined by induction on the length of σ, where the notation o′ ≡ o/σ
means that o/σ is defined and is o′.

o/ε ≡ o

o/(e a−→
o′ e′) · σ ≡ (o/(a, o′))/σ

In the following we shall often omit the expressions in a speculation, writing
σ0 · a−→

o
· σ1 instead of σ0 · (e0

a−→
o

e1) · σ1. Indeed, e0 is determined by σ0, and,
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given e0, the expression e1 is determined by the pair (a, o). Now we introduce
the notion of a step, called “redex-with-history” in [5,18], and of steps being in
the same family, a property introduced in [5].

Definition (Steps) 4.2. A step is a pair [σ, (a, o)] of a speculation σ : e ∗→ e′

and an action a at occurrence o such that e′
a−→
o

e′′ for some expression e′′. Given

a speculation σ, the set Step(σ) is the set of steps [ς, (a, o)] such that ς · a−→
o
≤ σ.

The binary relation ∼ on steps, meaning that two steps are in the same family,
is the equivalence relation generated by the rule

∃σ′′. σ′ 0 σ · σ′′ & o′ ≡ o/σ′′

[σ, (a, o)] ∼ [σ′, (a, o′)]

Equivalent speculations have similar steps:

Lemma 4.3. If [ς, (a, o)] ∈ Step(σ) and σ′ 0 σ then there exists [ς ′, (a, o′)] ∈
Step(σ′) such that [ς, (a, o)] ∼ [ς ′, (a, o′)].

Proof: by induction on the definition of σ′ 0 σ.

A property that should be intuitively clear is that if a step in a speculation is in
the same family as the initial step of an equivalent speculation, then it can be
commuted with all the steps that precede it:

Lemma 4.4. Let σ = σ0 · a−→
o
· σ1 be such that σ 0 a−→

o′
· ς with [ε, (a, o′)] ∼

[σ0, (a, o)]. If σ0 = ς0 · (e ā−→̄
o

e′) · ς1 then there exist o′′, e′′, ō′ and σ′1 such that

ς0 · (e a−→
o′′

e′′
ā−→̄
o′

ē) · σ′1 0 σ where o ≡ o′′/
ā−→̄
o′
· σ′1 and ō′ ≡ ō/(a, o′′).

Next, we can show that, in a speculation, the unlock actions, and also spawning
a new thread, act as barriers with respect to other actions that occur in an
evaluation context: these actions cannot be permuted with unlock (or spawn)
actions. This is expressed by the following lemma:

Lemma 4.5. Let σ = σ0·
a−→
o
·σ1 where a ∈ B, and σ 0 σ′ with σ′ = σ′0·

a−→
o
·σ′1

where [σ0, (a, o)] ∼ [σ′0, (a, o)]. If [ς, (a′, o′)] ∈ Step(σ0) with o′ ∈ Occ∗ then there
exist ς ′ and o′′ such that [ς ′, (a′, o′′)] ∈ Step(σ′0) and [ς, (a′, o′)] ∼ [ς ′, (a′, o′′)].

An immediate consequence of this property is:

Corollary 4.6. If σ is a valid speculation, that is σ 0 σ̄ for some normal
speculation σ̄, and if σ̄ = σ̄0 · a−→

o
· σ̄1 with a ∈ B, then σ = σ0 · a−→

o
· σ1 with

[σ0, (a, o)] ∼ [σ̄0, (a, o)], such that for any step [ς̄ , (a′, o′)] of σ̄0 there exists a
step [ς, (a′, o′′)] in the same family which is in σ0.

This is to say that, in order for a speculation to be valid, all the operations that
normally precede a B action, and in particular an unlocking action, must be
performed before this action in the speculation.
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From now on, we shall consider regular configurations, where at most one
thread can hold a given lock, and where a lock held by some thread is indeed in
the lock context. This is defined as follows:

Definition (Regular Configuration) 4.7. A configuration C = (S,L, T )
is regular if and only if it satisfies

(i) if T = (ti,Σi[(ei\�)]) ‖Ti for i = 0, 1 then t0 = t1 & Σ0 = Σ1 & e0 =
e1 & T0 = T1

(ii) T = (t,Σ[(e\�)]) ‖T ′ ⇒ � ∈ L

For instance, any configuration of the form (∅, ∅, (t, e)) where e is an expression
is regular. The following should be obvious:

Remark 4.8. If C is regular and C
a−−→

t,o
C′ then C′ is regular.

The following lemma (for a different notion of computation) was called the
“Asynchrony Lemma” in [7]. There it was used as the basis to define the equiv-
alence by permutation of computations. We could also introduce such an equiva-
lence here, generalizing the one for speculations, but this is actually not
necessary.

Lemma 4.9. Let C be a (well-formed) regular configuration. If C
a0−−−→

t0,o0
C0

a1−−−→
t1,o1

C′ with t0 �= t1, ¬(a0 # a1) and a0 =
�

� ⇒ a1 �=
�

� , then there exists C1 such

that C
a1−−−→

t1,o1
C1

a0−−−→
t0,o0

C′.

We have a similar property regarding “local” computations, that occur in the
same thread:

Lemma 4.10. Let C be a (well-formed) regular configuration. If C
a0−−→

t,o0
C0

a1−−→
t,o′

1

C′ with C=(S,L, (t, e) ‖T ), C0 =(S0, L0, (t, e0) ‖T0)=, C′ = (S′, L′, (t, e′) ‖T ′)
and

e
a0−→
o0

e0
a1−→
o′
1

e′ 0 e
a1−→
o1

e1
a0−→
o′

o

e′

then C
a1−−→

t,o1
(S1, L1, (t, e1) ‖T1)

a0−−→
t,o′

0

C′ for some S1, L1 and T1.

Proposition 4.11. Let C be a well-formed, closed, regular configuration. If
γ : C ∗→ C′ is a valid data race free speculative computation, then there exists
a normal computation γ̄ from C to C′.

Proof: by induction on the length of γ. This is trivial if γ = ε. Otherwise, let
γ =

(
Ci

ai−−−→
ti,oi

Ci+1
)
0�i�n

with n > 0. Notice that for any i, the configuration

Ci is well-formed, regular and has no data race. The set { t | γ|t �= ε } is non-
empty. For any t there exists a normal speculation σt such that σt 0 γ|t. Let j

be the first index (0 � j < n) such that γ|tj = σ0 ·
aj−→
oj

· σ1 and σtj =
aj−→
o
· σ′

with [ε, (o, aj)] ∼ [σ0, (aj , oj)]. Now we proceed by induction on j. If j = 0
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then o = oj ∈ Occ∗, and we use the induction hypothesis (on the length n) to
conclude. Otherwise, we have Cj−1

aj−1−−−−−−→
tj−1,oj−1

Cj
aj−−−→

tj ,oj

Cj+1. We distinguish two
cases.

• If tj−1 �= tj then we have ¬(aj−1 # aj) since γ is speculatively data-race free.
We show that i < j ⇒ ai �∈ B. Assume the contrary, that is ai ∈ B for some
i < j. Then γ|ti = ς0 ·

ai−→
oi

· ς1, and by Lemma 4.3 we have σti = ς̄0 ·
ai−→
o′
· ς̄1 with

[ς0, (oi, ai)] ∼ [ς̄0, (o′, ai)]. Then by Corollary 4.6 the first step of ς̄0 ·
ai−→
o′

is in the

family of a step in ς0 ·
ai−→
oi

, contradicting the minimality of j. We therefore have

aj−1 �=
�

� in particular. By Lemma 4.9 we can commute the two steps
aj−1−−−→
oj−1

and
aj−→
oj

, and we conclude using the induction hypothesis (on j).

• If tj−1 = tj , we have σ0 = ς0 ·
aj−1−−−→
oj−1

, and by Lemma 4.4 there exist o′, o′′ and

σ′1 such that γ|tj 0 ς0 ·
aj−→
o′
· aj−1−−−→

o′′
· σ′1 with o ≡ o′/(aj−1, oj−1). We conclude

using Lemma 4.10 and the induction hypothesis (on j).

Notice that we proved a property that is actually more precise than stated in
the proposition, since the γ̄ that is constructed is equivalent, by permutations,
to γ – but we decided not to introduce explicitly this equivalence as regards
speculative computations. An immediate consequence of this property is the
announced robustness result:

Theorem (Robustness) 4.12. Any speculatively data race free closed expres-
sion is robust.

We observe that if an expression is purely sequential, that is, it does not spawn
any thread, then it is speculatively data race free, and therefore robust, that is,
all the valid speculations for it are correct with respect to its standard semantics.

Our result holds with synchronization mechanisms other than acquiring and
releasing locks. We could have considered simpler memory barrier operations
than the mutual exclusion construct (with � do e), such as fence. This is a pro-
gramming constant (but not a value), the semantics of which is given by

E[fence]→ E[()]

with no side effect. Performing a fence should be categorized as a B action, so
that the Corollary 4.6 holds for such an action, since it is only performed from
within a normal evaluation context. Then our Theorem 4.12, which, as far as
the B actions are concerned, relies on this property 4.6, still holds with this
construct. However when speculation is allowed this construct is rather weak,
and in particular it does not help very much in preventing data races, or even
to separate the accesses to the memory from a given thread. We let the reader
check for instance that with the IRIW example (see [6]), that is
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p := tt ‖ q := tt ‖ r0 := ! p ; ‖ r2 := ! q ;
fence ; fence ;
r1 := ! q r3 := ! p

starting from a configuration where the memory S is such that S(p) = ff = S(q)
we may, as with the amd6 example above, get by a valid speculative computation
a state where the memory S′ is such that S′(r0) = tt = S′(r2) and S′(r1) =
ff = S′(r3). This is because the assignments to r1 and r3 can be speculatively
performed first (after having read pointers p and q), and, in the projections over
their respective threads, be commuted with the assignments to r0 and r2 (since
there is no data dependency), and the fence, thus checking that local normal
order evaluations with the same actions is possible.

5 Conclusion

We have given a formal definition for speculative computations which, we be-
lieve, is quite general. We have, in particular, checked the classical “litmus tests”
that are considered when dealing with memory models, and we have seen that
most of these are correctly described in our setting (except in the cases relying
on code transformations, which are beyond the scope of our theory of specula-
tions). This means that our semantics is quite permissive as regards the allowed
optimizations, while being correct for sequential programs, but also that it is
very easy to use for justifying that a particular outcome is allowed or forbidden.
This is clearly a benefit from using a standard operational style. We think that
our model of speculative computation could be used to justify implementation
techniques, and to design formal analysis and verification methods for checking
concurrent programs, as well as developing programming styles for safe multi-
threading. Our model could also be made less permissive, either by resticting
the class of speculation contexts, or by extending the conflict relation, to forbid
some commutations (regarding synchronization actions in particular), in order
to capture more precisely actual optimized execution platforms. Obviously, our
robustness result still holds, but in some cases one could hope to get a more
liberal robustness property, like the DRF guarantee for instance. We plan to
explore the variety of such speculation scenarios in future work.
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Abstract. Algorithms for computing Craig interpolants have several
applications in program verification. Though different algorithms exist,
the relationship between them and the properties of the interpolants they
generate are not well understood. This paper is a study of interpolation
algorithms for propositional resolution proofs. We show that existing in-
terpolation algorithms are abstractions of a more general, parametrised
algorithm. Further, existing algorithms reside in the coarsest abstrac-
tion that admits correct interpolation algorithms. The strength of inter-
polants constructed by existing interpolation algorithms and the
variables they eliminate are analysed. The algorithms and their prop-
erties are formulated and analysed using abstract interpretation.

1 Introduction

Interpolation theorems provide insights about what can be expressed in a logic
or derived in a proof system. An interpolation theorem states that if A and B are
logical formulae such that A implies B, there is a formula I defined only over the
symbols occurring in both A and B such that A implies I and I implies B. This
statement was proved by Craig [8] for first order logic and has since been shown
to hold for several other logics and logical theories. Consult [18] for a survey of
the history and consequences of this theorem in mathematical logic. This paper
is concerned with constructing interpolants from propositional resolution proofs.

An interpolation system is an algorithm for computing interpolants from
proofs. We briefly review the use of interpolation systems for propositional
resolution proofs in verification. Consider the formulae S(x) encoding a set of
states S, T (x, x′) encoding a transition relation T and ϕ(x′) encoding a correct-
ness property ϕ. The image of S under the relation T is given by the formula
∃x.S(x) ∧ T (x, x′). The standard approach to determine if the states reachable
from S satisfy the property ϕ is to iteratively compute images until a fixed point
is reached. However, image computation and fixed point detection both involve
quantifier elimination and are computationally expensive.

Consider the formula S(x) ∧ T (x, x′) ⇒ ϕ(x′). If this formula is valid, the
states reachable from S by a transition in T satisfy ϕ. Let A be the formula
S(x) ∧ T (x, x′) and let B be the formula ϕ(x′) and I be an interpolant for
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A ⇒ B. The formula I represents a set of states that contains the image of S
and satisfies the property ϕ. Thus, as shown by McMillan [19], one can imple-
ment a property-preserving, approximate image operator with an interpolation
system. Contemporary SAT solvers are capable of generating resolution proofs,
so an interpolation system for such proofs yields a verification algorithm for
finite-state systems that uses only a SAT solver. The efficiency and precision
of such a verification algorithm is contingent on the size and logical strength
of the interpolants used. Hence, it is important to understand the properties of
interpolants generated by different interpolation systems.

We are aware of three interpolation systems for propositional resolution proofs.
The first, which we call the HKP-system, was discovered independently by
Huang [14], Kra j́ıček [16] and Pudlák [21]. Another was proposed by McMillan [19]
and a third parametrised system was proposed by the author and his collabora-
tors [10] as a generalisation of the other systems. One may however ask if the HKP-
algorithm and McMillan’s algorithm have properties that distinguish them from
other instances of the parametrised algorithm. We answer this question in this
paper and study other properties of these systems.

Contents and Organisation. In this paper, we study the family of proposi-
tional interpolation systems proposed in [10]. We ask two questions about these
systems: (1) What is the structure of this space of interpolation systems and
how does it relate to the HKP-system and McMillan’s system? (2) How are
the strength and size of interpolants generated by these systems related? Our
contributions to answering these questions are the following results.

– The set of interpolation systems forms a lattice. Interpolation systems that
partition variables are abstractions of this lattice. The HKP-system and
McMillan’s system are two of three systems in the coarsest abstraction that
admits correct interpolation systems.

– The set of clauses equipped with interpolants (called extended clauses or e-
clauses) is a complete lattice. An interpolation system Int defines a concrete
interpretation on this lattice. The lattice of CNF formulae is an abstraction
of the lattice of e-clauses and the resolution proof system is a complete
abstract interpretation of Int.

– Interpolation systems and e-clauses are ordered by logical strength of inter-
polants giving rise to a precision order on the lattice of interpolation systems
and the lattice of e-clauses. Interpolation systems that eliminate the largest
and smallest set of variables from a formula are identified and shown to be
different from the most abstract interpolation systems.

The paper is organised as follows: The background on propositional logic and
resolution is covered in § 2. Existing interpolation systems are formalised and
illustrated with examples in § 3. Some background on abstract interpretation is
introduced in § 4 and applied to study the space of interpolation systems and
its abstractions in § 4.1 and § 4.2. The logical strength of interpolants and the
variables they contain are analysed in § 5. We discuss related work in § 6 and
conclude in § 7.
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2 Propositional Logic and Interpolation

Propositional logic, resolution and interpolation are introduced in this section.

Sets and functions. Let ℘(X) denote the powerset of X , X → Y be the set of
functions from X to Y and f ◦g denote functional composition. Given f : X → Y
and S ⊆ X , we write f(S) for the set {f(x) ∈ Y |x ∈ S}.

Propositional Logic. Fix a finite set Prop of variables (propositions) for this
paper. Let T and F denote true and false, respectively. The set of propositional
formulae, B, is defined as usual over the basis {¬,∧,∨,⇒}. The set of variables
occurring in a formula F ∈ B is denoted Var(F ). An assignment σ : Prop →
{T,F} is a function that maps variables to truth values. Let F be a formula. The
evaluation of F under an assignment σ, written eval(F, σ), is defined as usual.
F is a tautology if eval (F, σ) = T for every assignment σ and F is unsatisfiable
if eval (F, σ) = F for every assignment σ.

Resolution. A literal is a variable x ∈ Prop or its negation, denoted ¬x or
x. For a literal t being x or x, we write var(t) for x. A clause is a disjunction
of literals t1 ∨ · · · tk represented as a set {t1, . . . , tk}. Let C be the set of all
clauses. The disjunction of two clauses is denoted C ∨D, further simplified to
C ∨ t if D is the singleton {t}. The restriction of a clause C by a formula F ,
C|F

def= C ∩ {x, x|x ∈ Var(F )} is the set of literals in C over variables in F .
A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses, also
represented as a set of clauses. A clause containing t and t is a tautology as is
the empty formula ∅. The empty clause, denoted �, is unsatisfiable.

The resolution principle states that an assignment satisfying the clauses C∨x
and D ∨ x also satisfies C ∨D. It is given by the inference rule below.

C ∨ x D ∨ x

C ∨D
[Res]

The clauses C ∨ x and D ∨ x are the antecedents, x is the pivot, and C ∨ D is
the resolvent. A clause C is derived from a CNF formula F by resolution if it is
the resolvent of two clauses that either occur in F or have been derived from F
by resolution. The resolvent of C and D with a pivot x is denoted Res(x,C,D).
A proof is a sequence of resolution deductions. A refutation is a proof of �.

Interpolation. Consider two formulae A and B such that A implies B. Take
for example x∧y ⇒ y∨ z. Since B does not involve x, whatever A asserts about
y should be enough to imply B. Theorem 1 codifies this intuition and the proof
(from [1]) gives a simple but infeasible method for interpolant construction.

Theorem 1. For propositional formulae A and B, if A ⇒ B is a tautology,
there exists a propositional formula I, called an interpolant, such that (a) A⇒ I
and (b) I ⇒ B and (c) Var(I) ⊆ Var(A) ∩Var(B).
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Proof. We proceed in two steps. We first construct a formula I from A and then
show that I has the requisite properties. For any set X ⊆ Prop and assignment
σ, let Pos(X,σ) = {x ∈ X |σ(x) = T} be the set of variables in X assigned T
and let Neg(X,σ) be X \ Pos(X,σ). Let Y be Var(A) ∩Var(B). Define:

I
def=

∨
σ∈Mod(A)

⎛⎝ ∧
x∈Pos(Y,σ)

x ∧
∧

z∈Neg(Y,σ)

¬z

⎞⎠
We show that I is an interpolant.

(a) By construction, if σ |= A, then σ |= I, so A⇒ I is a tautology.
(b) If σ |= I, there exists an assignment σ′ such that σ′ |= A and for all
x ∈ Var(B), σ(x) = σ′(x). As σ and σ′ agree on Var(B), eval (B, σ) = T iff
eval(B, σ′) = T. From the assumption that A ⇒ B, we have that σ |= B. It
follows that I ⇒ B.
(c) Var(I) ⊆ Var(A) ∩Var(B) by construction.

The interpolant in the proof above is constructed by existentially eliminating
some variables in A. Another possibility is to universally eliminate some vari-
ables in B. A tautology A ⇒ B can have several interpolants and the set of all
interpolants forms a complete lattice [11]. The construction above examines the
models of A, hence it requires time exponential in |Y | and can produce exponen-
tially large interpolants. Complexity issues aside, the design of an interpolation
algorithm follows the same steps. One must provide a procedure for constructing
a formula and then prove that the formula is an interpolant. In this paper, we
generalise these two steps in the context of resolution.

3 Interpolation Systems

Interpolation systems are introduced in this section. No new results are presented
but existing systems are formally defined and explained with examples.

A CNF pair 〈A,B〉 is a pair of disjoint CNF formulae (that is, A ∩ B =
∅). A CNF pair 〈A,B〉 is unsatisfiable if A ∧ B is unsatisfiable. Given 〈A,B〉,
let VA denote Var(A) \ Var(B), VB denote Var(B) \ Var(A) and V〈A,B〉 denote
Var(A)∩Var(B). An interpolant for an unsatisfiable CNF pair is defined below.

Definition 1 (Interpolant). An interpolant for an unsatisfiable CNF pair
〈A,B〉, is a formula I such that A⇒ I, I ⇒ ¬B, and Var(I) ⊆ Var(A)∩Var(B).

An interpolant is not necessarily symmetric with respect to 〈A,B〉. If I is an
interpolant for 〈A,B〉, then, ¬I is an interpolant for 〈B,A〉. Interpolants are
constructed inductively over the structure of a refutation. Figure 1 illustrates
interpolant construction for the CNF pair 〈A,B〉, where A = (a1 ∨ a2) ∧ (a1 ∨
a3)∧a2 and B = (a2∨a3)∧ (a2 ∨a4)∧a4. McMillan’s construction [19] is shown
on the left and that of Huang [14], Kra j́ıček [16] and Pudlák [21] is on the right.
The formula labelling the empty clause is the interpolant for 〈A,B〉. Observe
that the two methods produce different interpolants.



Propositional Interpolation and Abstract Interpretation 189

a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 ∨ a3]

a3 [a3 ∧ a2]

a2a3 [�] a2a4 [�] a4 [�]

a2 [�]

a3 [�]

� [a3 ∧ a2]

(a) McMillan [19]

a1a2 [⊥] a1a3 [⊥]

a2 [⊥]a2a3 [⊥]

a3 [⊥]

a2a3 [�] a2a4 [�] a4 [�]

a2 [�]

a3 [�]

� [a3]

(b) Huang [14], Kraj́ıček [16] and
Pudlák [21]

Fig. 1. Interpolant construction using systems in the literature

We formalise these constructions as interpolation systems. Recall that B is the
set of all formulae and C is the set of all clauses. Let S def= ℘({a,b}) be a set of
symbols. To reduce notation, we write a for {a}, b for {b} and ab for {a,b}.
A distinction function is an element of D def= Prop → S. An extended clause
(e-clause) is an element of C× D× B. In an e-clause E = 〈C,Δ, I〉, cl(E) = C
is a clause, df (E) = Δ is a distinction function and int(E) = I is a partial
interpolant. An interpolation system extends resolution to e-clauses.

Definition 2 (Interpolation System). Let E = C×D×B be a set of extended
clauses. An interpolation system for E is a tuple Int = 〈T,ERes〉, where T :
℘(C) × ℘(C) → ℘(E) is a translation function and ERes is an inference rule.
The function T satisfies that for all disjoint A,B ∈ ℘(C), a clause C ∈ A ∪ B
iff there exists a unique Δ ∈ D and I ∈ B such that 〈C,Δ, I〉 ∈ T (A,B). The
inference rule is of the form:

〈C1 ∨ x,Δ1, I1〉 〈C2 ∨ x,Δ2, I1〉
〈C1 ∨C2, Δ, I〉 [ERes]

The variable x is called the pivot.

An e-clause derived from E1 and E2 by applying ERes with a pivot x is an
e-resolvent and is denoted ERes(x,E1, E2). For C derived from 〈A,B〉 by reso-
lution, the corresponding e-clause E is defined as:

– If C ∈ A∪B, then E is the unique e-clause in T (A,B) such that cl(E) = C.
– If C = Res(x,C1, C2), then E = ERes(x,E1, E2), where E1 and E2 are the

corresponding e-clauses for C1 and C2 respectively.

Given a derivation of a clause C, the corresponding e-clause is uniquely defined.
In general, there may be multiple derivations of C, and consequently, multiple
e-clauses E with cl(E) = C. An interpolation system Int is correct if for every
derivation of the empty clause �, the corresponding e-clause E� satisfies that
int(E�) is an interpolant for 〈A,B〉. We introduce existing interpolation systems
next. The first two systems do not modify the inference rule but the parametrised
system does. This difference leads to the abstraction we identify in § 4.2.
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Definition 3 (HKP System [14,16,21]). The Huang-Kraj́ıček-Pudlák inter-
polation system IntHKP = 〈THKP ,HKPRes〉 is defined below.

THKP (A,B) def= {〈C,Δ,F〉|C ∈ A} ∪ {〈C,Δ,T〉|C ∈ B}

〈C ∨ x,Δ, I1〉 〈D ∨ x,Δ, I2〉
〈C ∨D,Δ, I〉 [HKPRes]

Δ(x) def=
a if x ∈ VA

ab if x ∈ V〈A,B〉
b if x ∈ VB

and I
def=

I1 ∨ I2 if Δ(x) = a

(x ∨ I1) ∧ (x ∨ I2) if Δ(x) = ab

I1 ∧ I2 if Δ(x) = b

The system above distinguishes between variables appearing only in A, vari-
ables appearing in A and B and variables appearing only in B. McMillan’s
system, defined below, has a different translation function and ERes rule.

Definition 4 (McMillan’s System [19]). McMillan’s interpolation system
IntM = 〈TM ,MRes〉 is defined below with Δ as in Definition 3.

TM (A,B) def= {〈C,Δ,C|B〉|C ∈ A} ∪ {〈C,Δ,T〉|C ∈ B}

〈C ∨ x,Δ, I1〉 〈D ∨ x,Δ, I2〉
〈C ∨D,Δ, I〉 [MRes]

I
def=

I1 ∨ I2 if Δ(x) = a

I1 ∧ I2 if Δ(x) = ab

I1 ∧ I2 if Δ(x) = b

Note that the ab and b cases above are identical. Example 1 below shows that
the two systems produce different interpolants and that different interpolants
can be obtained by interchanging A and B. Example 2 shows that there are
interpolants not obtained in either system.

Example 1. Let A be (a1∨a2)∧ (a1∨a3)∧a2 and B be (a2∨a3)∧ (a2∨a4)∧a4.
The e-clauses in McMillan’s system are shown on the left of Figure 1 and those
in the other system are on the right. The partial interpolants in both systems
are shown in square brackets. The interpolants are different. The interpolant
for 〈B,A〉 in McMillan’s system is a2 ∧ a3. By negating it, we obtain a2 ∨ a3,
which is also an interpolant for 〈A,B〉 but is not the interpolant obtained from
McMillan’s system. In contrast, the interpolant for 〈B,A〉 in the HKP system is
a3, which when negated yields the same interpolant as before. �
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Example 2. Let A be the formula a1∧ (a1 ∨a2) and B be the formula (a1∨a2)∧
a1. A refutation for A ∧ B is shown alongside. The inter-
polant obtained in both systems is a1 ∧ a2. The interpolant
for 〈B,A〉 obtained from IntHKP is a1 ∨ a2 and that ob-
tained from IntM is a1 ∧ a2. By negating these, we get the
additional interpolant a1∨a2. The pair 〈A,B〉 has two more
interpolants, namely a1 and a2. These interpolants can be

a1

a1a2 a1a2 a1

a2

a1

�
obtained with IntHKP and IntM from different proofs. �
A third, parametrised interpolation system that generalises the other two systems
was defined in [10]. Unlike IntHKP and IntM , this system manipulates distinction
functions. A parameter to this system associates a distinction function with each
clause in a pair 〈A,B〉. Formally, a parameter is a function D : C → D. For
simplicity, we write D(C)(t) for D(C)(var(t)), where C is a clause and t ∈ C.
The resolution of two distinction functions Δ1, Δ2 ∈ D with respect to a pivot
x is the distinction function Δ, denoted DRes(x,Δ1, Δ2), defined as follows:
for y ∈ Prop, Δ(y) def= ∅ if y = x and Δ(y) def= Δ1(y) ∪ Δ2(y), if y �= x. The
parametrised interpolation system is defined below.

Definition 5 (Parametrised Interpolation System [10]). Let D be a pa-
rameter. The interpolation system IntD

def= 〈TD,PRes〉 is defined below.

TD(A,B) def= {〈C,D(C), I〉|C ∈ A ∪B},
where I is defined below.

For C ∈ A For C ∈ B

I
def= {t ∈ C|D(C)(t) = b} I

def= ¬{t ∈ C|D(C)(t) = a}

〈C ∨ x,Δ1, I1〉 〈D ∨ x,Δ2, I2〉
〈C ∨D,DRes(x,Δ1, Δ2), I〉

[PRes]

The partial interpolant I in the e-resolvent is defined below.

I
def=

I1 ∨ I2 if Δ1(x) ∪Δ2(x) = a

(x ∨ I1) ∧ (x ∨ I2) if Δ1(x) ∪Δ2(x) = ab

I1 ∧ I2 if Δ1(x) ∪Δ2(x) = b

Example 3. Recall the CNF pair 〈A,B〉 from Example 2. Written as sets, A
is {{a1}, {a1, a2}} and B is {{a1, a2}, {a1}}. Define two distinction functions
Δa

def= {a1 �→ a, a2 �→ a} and Δb

def= {a1 �→ b, a2 �→ b}. Three parameters are
defined below (all mappings not shown go to the empty set):

– D1(C) def= Δa for all C ∈ A ∪B.
– D2(C) def= Δa for all C ∈ A and is Δb for C ∈ B.
– D3(C) def= Δb for all C ∈ A ∪B.
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We apply the parametrised interpolation system to the refutation in Example 2.
From the systems IntD1 , IntD2 and IntD3 , we obtain the interpolants a1 ∨ a2, a2
and a1 ∧ a2, respectively. Recall that the interpolant a2 could not be obtained
from IntM and IntHKP for the given refutation. The pair 〈A,B〉 has one more
interpolant a1. We show in § 5 that this interpolant cannot be obtained from
the parametrised system. �
The set of parameters defines a set of interpolation systems. However, not all of
these interpolation systems are correct. An interpolant I for 〈A,B〉 must satisfy
that Var(I) ⊆ V〈A,B〉. Specifically, if x /∈ V〈A,B〉, x must not be added to the
interpolant by TD or the PRes rule. Observe that if for every clause C ∈ A
and literal t ∈ C with var(t) ∈ VA, it holds that D(C)(t) = a, then t will not
appear in the interpolant. The same applies for C ∈ B and var(t) ∈ VB . Locality
preserving parameters make this intuition precise and yield correct interpolation
systems. Let Λ〈A,B〉 be the set of locality preserving parameters for 〈A,B〉.

Definition 6 (Locality [10]). A parameter D is locality preserving for a CNF
pair 〈A,B〉 if it satisfies the following conditions.

– For all C ∈ A ∪B and x ∈ Var(C), D(C)(x) �= ∅.
– For any C ∈ C and x ∈ VA, D(C)(x) ⊆ a.
– For any C ∈ C and x ∈ VB, D(C)(x) ⊆ b.

Theorem 2 ([10]). Let D be locality preserving for a CNF pair 〈A,B〉. If � is
derived from 〈A,B〉 by resolution and E� is the corresponding e-clause derived
with IntD, then int(E�) is an interpolant for 〈A,B〉.

The theorem is proved by showing that for every clause C derived by resolution,
the corresponding e-clause E = 〈C,Δ, I〉 satisfies the following conditions:

– A ∧ ¬{t ∈ C|{a} ⊆ Δ(var(t))} ⇒ I
– B ∧ ¬{t ∈ C|{b} ⊆ Δ(var(t))} ⇒ ¬I
– Var(I) ⊆ Var(A) ∩Var(B).

4 Interpolation Systems and Abstract Interpretation

In this section, the parametrised interpolation system is related to the other
systems and the resolution proof system by abstract interpretation.

Lattices. A lattice, 〈S,",�,�〉 (abbreviated to 〈S,"〉), is a set S equipped with
a partial order " and two binary operators; a least upper bound, �, called the
join, and a greatest lower bound, �, called the meet. A lattice is complete if for
every X ⊆ S, the join

⊔
X and meet

�
X are defined and exist in S. A function

F : S → S is monotone if for any x, y ∈ S, x " y implies that F (x) " F (y). It
follows from the Knaster-Tarski theorem that a monotone function on a complete
lattice has unique least fixed point, denoted μx.F (x).

Consider a set P . A powerset lattice is the complete lattice 〈℘(P ),⊆,∪,∩〉.
Given the set P → S, where S is the lattice above, the structure of S can be
lifted pointwise to obtain the lattice 〈P → S, "̇, �̇, �̇〉 defined below.
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– For f, g ∈ P → S, f"̇g iff for all x ∈ S, f(x) " g(x).
– For f, g ∈ P → S, f �̇g is the function that maps x ∈ S to f(x) � g(x). The

pointwise meet operation is similarly defined.

Consult [9] for more details on lattice theory.

Abstract Interpretation. Abstract interpretation is a framework for reason-
ing about approximation. Only limited aspects of the framework required for the
paper are covered here. See [3,4] for an in-depth treatment.

Elements in one lattice, 〈C,"C〉 called the concrete domain, are approxi-
mated by elements in another 〈A,"A〉, called the abstract domain. The notion
of approximation is formalised by an abstraction function α : C → A and a con-
cretisation function γ : A → C which form a Galois connection. The functions
satisfy that for all c ∈ C, a ∈ A, c "C γ(α(c)) and α(γ(a)) "A a. If in addition
α ◦ γ is the identity map on A, the pair is called a Galois insertion. A monotone
function F : C → C is approximated in A by the function FA : A → A, de-
fined as (α ◦ F ◦ γ) and called the best approximation. The structure 〈C,"C , F 〉
is the concrete interpretation and 〈A,"A, F

A〉 is the abstract interpretation. In
general, the concrete and abstract interpretations may involve several functions.

The approximation FA is sound, meaning that for any c ∈ C and a ∈ A,
F (γ(a)) "C γ(FA(a)) and α(F (c)) "A FA(α(c)). Soundness further implies
fixed point soundness. That is, μX.F (X) "C γ(μY.FA(Y )) and α(μX.F (X)) "A

μY.FA(Y ). Thus, to compute sound approximations of concrete fixed points
it suffices to compute abstract fixed points. The approximation is complete if
α(F (c)) = FA(α(C). An abstract interpretation is not necessarily complete [12].

Domains connected by Galois insertions can be formalised in several other
ways, in particular by closure operators [5]. An upper closure operator is a func-
tion ρ : C → C that is (a) extensive: c "C ρ(c), (b) idempotent : ρ(c) = ρ(ρ(c)),
and (c) monotone: if c1 "C c2, then ρ(c1) "C ρ(c2). To show that an operator on
a lattice defines an abstraction, it suffices to show that it is a closure operator.
Closure operators are convenient because one can deal with abstractions without
introducing two different lattices. Both Galois insertions and closure operators
are used in this paper, as per convenience.

4.1 The Concrete Domain of Parameters

We introduce the lattice of parameters and show that locality preserving param-
eters are closed under certain operations on this lattice. Recall from § 3 that S is
the powerset lattice 〈℘({a,b}),⊆,∪,∩〉. Further, define the dual of an element
of S as follows: â def= b, b̂ def= a, âb

def= ab and ∅̂ def= ∅. That is, the dual of a is b and
vice versa, but ab and ∅ are self-duals. The term dual is due to Huang [14] who
defined the dual of IntHKP . The lattice of distinction functions, 〈D,"D,�D,�D〉,
where D = Prop → S, is derived from S by pointwise lifting. The lattice of
parameters, 〈C → D,",�,�〉, is derived from D, also by pointwise lifting. The
dual of a distinction function and a parameter are similarly defined by pointwise
lifting. In addition, define the function δ〈A,B〉 that maps a parameter D to one
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that agrees with D on x ∈ VA ∪ VB but maps all other variables to their duals.
Formally, δ〈A,B〉(D) def= D′, where for C ∈ C and x ∈ Prop, D′(C)(x) is D(C)(x)
if x ∈ VA ∪ VB and is D̂(C)(x) if x ∈ V〈A,B〉.

Locality preserving parameters define correct interpolation systems, so op-
erations on parameters that preserve locality are of particular interest. Such
operations are illustrated in Example 4 and formally identified in Lemma 1.

Example 4. Consider again the CNF pair 〈A,B〉 in Example 1, where A =
{{a1, a2}, {a1, a3}, {a2}} and B = {{a2, a3}, {a2, a4}, {a4}}. Define the D4,D5
and D6 as below. Let C ∈ C be a clause.

– D4(C)(x) is a for x ∈ VA, and is b for x /∈ VA.
– D5(C)(x) is a for x /∈ VB, and is b for x ∈ VB .
– D6(C)(x) is a for x ∈ VA, is ab for x ∈ V〈A,B〉, and is b for x ∈ VB.

These parameters are locality preserving for 〈A,B〉 and that their duals are
locality preserving for 〈B,A〉. Further, we have that δ〈A,B〉(D4) = D5 and D4 �
D5 = D6, so δ〈A,B〉 and � preserve locality. In contrast, D4 � D5 is not locality
preserving for 〈A,B〉. �

Lemma 1. Let 〈A,B〉 be a CNF pair.

1. If D1 and D2 are locality preserving for 〈A,B〉, then so is D1 � D2.
2. If D is locality preserving for 〈A,B〉, then D̂ is locality preserving for 〈B,A〉.

Further, if C is derived by resolution and E and F are the corresponding
clauses in IntD and IntD̂ respectively, then int(E) = ¬int(F ).

3. If D is locality preserving for 〈A,B〉, so is δ〈A,B〉(D).

Proof. (1) Consider each condition in Definition 6. Observe that D1 � D2 is
the pointwise join of the two parameters. It follows that for any C ∈ C and
x ∈ Var(C), if D1(C)(t) �= ∅ and D2(C)(t) �= ∅, then (D1 � D2)(C)(t) �= ∅. The
same argument applies for the other two locality conditions.
(2) The sets Var(A) \ Var(B) and Var(B) \Var(A) are identical in both 〈A,B〉
and 〈B,A〉. To preserve locality, any x ∈ Var(A) \Var(B) must be labelled b by
D̂. As D is locality preserving, these variables are labelled a and by the definition
of D̂, will be labelled b. A symmetric argument applies for x ∈ Var(B) \Var(A)

The second property is shown by structural induction.

Base case. Consider C ∈ A ∪B, and the corresponding e-clauses E ∈ TD(A,B)
and F ∈ TD̂(B,A). For any t ∈ C, if D(C)(x) = a, then D̂(C)(x) = b. It follows
from the definition of TD and TD̂ that int(E) = ¬int(F ). Observe in addition

that df (E) = d̂f (F ).

Induction step. For a derived clause C = Res(x,C1, C2) and consider the cor-
responding e-clauses E = ERes(x,E1, E2) and F = ERes(x, F1, F2) derived in
IntD and IntD̂, respectively. For the induction hypothesis, assume that int(E1) =

¬int(F1) and df (E1) = d̂f (F1) and likewise for E2 and F2. For the induction
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step, consider the PRes rule in Definition 5. There are three cases for defining
int(E). If case a applies in IntD, then, by the induction hypothesis, case b applies
for IntD̂. That is, int(E) = I1∨I2 and int(F ) = ¬I1∧¬I2, so int(E) = ¬(int(F ))
as required. The other cases are similar.

(3) Holds as D(C)(x) = (δ〈A,B〉(D))(C)(x) for C ∈ A ∪B and x ∈ VA ∪ VB.

4.2 Abstract Domains of Parameters

Algorithms derived from IntHKP , IntM and the parametrised system have a run-
ning time that is linear in proof size, however IntHKP and IntM are more space
efficient because they do not modify the distinction function. Intuitively, an in-
terpolation system is space efficient if the value of the distinction function at a
pivot variable does not change in a proof. Formally, a parameter D is derivation
invariant with respect to 〈A,B〉 if for any e-clause E derived from 〈A,B〉 in IntD
and any C ∈ A ∪B, if x ∈ Var(cl(E)) ∩Var(C), then df (E)(x) = D(C)(x).

Example 5. Consider the pair 〈A,B〉 and the parameters D1 and D3 in Exam-
ple 2. For any clause C derived from 〈A,B〉 and corresponding e-clause E in the
example, df (E)(x) is the same as D(C′)(x), where C′ ∈ 〈A,B〉. The parameters
in Example 4 are also derivation invariant. In contrast, the parameter D2 in Ex-
ample 2 is not derivation invariant because the value of the distinction function
at a2 changes in the proof. �
We identify a family of abstractions that give rise to derivation invariant pa-
rameters. These abstractions are defined over partitions of Prop. A partition
π of a set S is a set of disjoint subsets of S, called blocks, that are pairwise
disjoint and whose disjoint union is S. Let [x]π denote the block containing
x ∈ S. A partition π is coarser than a partition π′, denoted π � π′, if for
every block β ∈ π, there is a block β′ ∈ π′ such that β ⊆ β′. It is known
that the set of partitions forms a complete lattice. Let 〈Part(Prop),�,�,�〉 be
the lattice of partitions of Prop. For a CNF pair 〈A,B〉, define the partition
π〈A,B〉 def= {{x|x ∈ VA}, {x|x ∈ V〈A,B〉}, {x|x ∈ VB}, {x|x /∈ Var(A) ∪ Var(B)}}.
Given a partition π ∈ Part(Prop) we define a function Υπ that maps a parameter
to another one, assigning the same symbol in S to variables in the same block.

Υπ(D) def= D′ where D′(C)(x) def=
⋃

C′∈C

⋃
y∈[x]π

D(C′)(y) for C ∈ C and x ∈ Prop.

A parameter D is partitioning if Υπ(D) = D for some π ∈ Part(Prop). In Theo-
rem 3, we show that each function Υπ defines an abstract domain of parameters
and relate such parameters to derivation invariance and locality preservation.

Example 6. Consider the CNF pair 〈A,B〉 in Example 4 and the partitions πA =
{{x|x ∈ VA}, {x|x /∈ VA}}, πB = {{x|x ∈ VB}, {x|x /∈ VB}}, and π〈A,B〉. Assume
that Var(A ∪ B) = Prop. The parameters D4,D5 and D6 are partitioning, as
witnessed by the partitions πA, πB and π〈A,B〉 respectively.
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Consider the CNF pair 〈A,B〉, the parameters D1,D2 and D3 in Example 3
and the partition π = {Prop}. Observe that VA = VB = ∅, so D1 and D3 are
partitioning with respect to π. However, D2 is not partitioning. �

Theorem 3. 1. The function Υπ is a closure operator.
2. A partitioning parameter is derivation invariant.
3. If D1 and D2 are partitioning, so are D1 � D2, D̂1 and δ〈A,B〉(D1)
4. If D is locality preserving and π � π〈A,B〉, then Υπ(D) is locality preserving.
5. The coarsest π for which Υπ(Λ〈A,B〉) ⊆ Λ〈A,B〉, for any 〈A,B〉, is π = π〈A,B〉.

Proof. (1) We show that Υπ is a closure operator. The function is extensive
because for all C ∈ C and x ∈ Prop, D(C)(x) ⊆ Υπ(D)(C)(x). For any C ∈ C
and y ∈ [x]π, Υπ(D)(C)(x) = Υπ(D)(C)(y), so the function is idempotent. If
D1 " D2, then for all C ∈ C and x ∈ Prop, D1(C)(x) ⊆ D2(C)(x). The values
Υπ(D1)(C)(x) and Υπ(D2)(C)(x) are defined as the union over a set of variables
of D1 and D2 respectively. Monotonicity follows because union is monotone.
(2) Let E be an e-clause derived with IntD from 〈A,B〉. We show that D is
derivation invariant by induction on the structure of the derivation.

Base Case. If E ∈ TD(A,B), as D is partitioning, D(C)(x) = df (E)(x) for any
clause C ∈ C and variable x ∈ Prop.

Induction Step. Consider E = ERes(x,E1, E2) for e-clauses E1 and E2. For the
induction hypothesis, assume that for any C ∈ A ∪ B and x ∈ Var(cl(E1)) ∩
Var(C), df (E1)(x) = D(C)(x) and the same for E2. Consider C ∈ A ∪ B and
x ∈ Var(cl(E)) ∩Var(C). Now, x must be in Var(cl(E1)) only, Var(cl(E2)) only
or both. If x ∈ Var(cl(E1)) only, df (E)(x) = df (E1)(x) and by the induction
hypothesis, df (E)(x) = D(C)(x). The remaining cases are similar.

(3) Consider D1 and D2 which are partitioning. That is, there exist π1 and π2
such that Υπ1(D1) = D1 and Υπ2(D2) = D2. Let D = D1 � D2 and π = π1 � π2.
and D = D1 � D2. Because D1 and D2 are partitioning, it follows that for all x
and y ∈ [x]π , D(C)(x) = D(C)(y). Thus, Υπ(D) = D and D is partitioning. The
other cases hold because the dual and δ〈A,B〉 are defined pointwise on variables,
so the partition for D1 is the partition for D̂1 and δ〈A,B〉(D).
(4) If π � π〈A,B〉, for any x ∈ VA, if y ∈ [x]π , then y ∈ VA. For a locality preserv-
ingD and C ∈ A∪B, it holds thatD(C)(y) ⊆ a. Hence,

⋃
C∈C

⋃
y∈[x]π D(C)(y) ⊆

a. The same applies for x ∈ VB , so Υπ(D) is locality preserving.
(5) It follows from the previous part that Υπ〈A,B〉(Λ〈A,B〉) ⊆ Λ〈A,B〉. It suffices to
show that there is no π〈A,B〉 ≺ π such that Υπ(Λ〈A,B〉) ⊆ Λ〈A,B〉 for all 〈A,B〉.
We prove it by contradiction. It suffices to find a pair 〈A,B〉 and D ∈ Λ〈A,B〉
such that Υπ(D) /∈ Λ〈A,B〉. Consider 〈A,B〉 with VA, V〈A,B〉 and VB being non-
empty. Let D map x ∈ VA to a, x ∈ VB to b and x ∈ V〈A,B〉 to ab. Consider
variables x ∈ VA, y ∈ V〈A,B〉 and z ∈ VB . As π〈A,B〉 ≺ π, either [x]π = [y]π,
or [y]π = [z]π, or [x]π = [z]π. If [x]π = [y]π, then D(C)(x) = ab, violating the
condition D(C)(x) ⊆ a in Definition 6. Thus, Υπ(Λ〈A,B〉) �⊆ Λ〈A,B〉. The other
two cases are similar, leading to a contradiction as required.
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We highlight that part 5 of Theorem 3 applies to all 〈A,B〉 and all parameters
D ∈ Λ〈A,B〉. For a specific parameter D ∈ Λ〈A,B〉 and a specific pair 〈A,B〉,
there may exist π〈A,B〉 ≺ π such that Υπ(D) is locality preserving.

4.3 Existing Systems as Abstractions

The setting of the previous section is now applied to study existing systems.
We define two parameters that were shown in [10] to correspond to McMillan’s
system and the HKP system. Let 〈A,B〉 be a CNF pair. Define the value of the
parameters DM and DHKP for C ∈ C and x ∈ Prop as below.

– DM (C)(x) is a if x ∈ VA and is b otherwise.
– DHKP (C)(x) is a if x ∈ VA b if x ∈ VB and is ab for x ∈ V〈A,B〉.

Lemma 2 shows that the parameters above are two of three that exist in the
coarsest partitioning abstraction defined by π〈A,B〉. The third system, δ〈A,B〉
(DM ), was also identified in [10] but the connections presented here were not.

Lemma 2. Let 〈A,B〉 be a CNF pair. The image of Λ〈A,B〉 under Υπ〈A,B〉 is
{DM ,DHKP , δ〈A,B〉(DM )}.

Proof. There are two steps. The first step is to show that each parameter in the
lemma is a fixed point of Υπ〈A,B〉 . We skip this step. The second is to show that no
other such fixed points exist. As only elements of Λ〈A,B〉 are considered, assume
that D is locality preserving. By definition of the closure operator we have that
Υπ〈A,B〉(D) = D only if for any C1, C2 ∈ C and x, y ∈ V〈A,B〉, D(C1)(x) =
D(C2)(y). It follows that for all C and x ∈ V〈A,B〉, D(C)(x) must be either a,
ab or b. Thus, the only three possible parameters are the ones above.

The parameter DHKP has several properties. It is the greatest locality preserving
parameter with respect to ", is symmetric in the sense that δ〈A,B〉(DHKP ) =
DHKP and can be derived from McMillan’s system. These properties, sum-
marised below, may explain why IntHKP has been repeatedly discovered.

DHKP =
⊔

D∈Λ〈A,B〉

D and DM � δ〈A,B〉(DM ) = DHKP

4.4 The Domains of E-Clauses and Clauses

We remarked earlier that an interpolation system is an extension of resolution.
This intuition is now made precise using the method in [7]. E-clauses constitute
a concrete domain and interpolation systems define concrete interpretations. We
show that sets of clauses form an abstract domain and that the resolution rule
defines a complete abstract interpretation of an interpolation system.

Recall that E is the set of e-clauses and that for E = 〈C,Δ, I〉, cl(E) = C. The
powerset of e-clauses forms the concrete domain 〈℘(E),⊆,∪,∩〉. A parameter D
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defines an interpolation system IntD = 〈TD,PRes〉, which gives rise to a concrete
interpretation consisting of two functions. The translation function TD : ℘(C)×
℘(C) → ℘(E) and a function PRes : ℘(E) → ℘(E) encoding the effect of the
PRes rule. The function PRes is defined in a sequence of steps.

– PRes : Prop× E× E→ E is defined as follows. If E1, E2 ∈ E with cl(E1) =
x∨C and cl(E2) = D∨ x, then PRes(x,E1, E2) is given by the PRes rule in
Definition 5. PRes(x,E1, E2) is defined as 〈∅, ∅,F〉 otherwise.

– Let PRes : E× E→ E be PRes(E1, E2)
def= {PRes(x,E1, E2)|x ∈ Prop}.

– Finally, PRes : ℘(E)→ ℘(E) maps X ∈ ℘(E) to
⋃

E1,E2∈X PRes(E1, E2).

The concrete semantic object of interest is the set of e-clauses that can be derived
in an interpolation system IntD and the interpolants obtained from these e-
clauses. These sets are defined below.

ED def= μX.(TD(A,B) ∪ PRes(X)) and ID def= {int(E)|E ∈ ED and cl(E) = �} .
The set ID contains all interpolants that can be derived with IntD from 〈A,B〉.
Observe that each interpolation system IntD defines a different concrete inter-
pretation and a different set of interpolants ID. Note also that the definition of
PRes is independent of the parameter D. Hence, to analyse the properties of the
set ID, we only have to analyse TD. We exploit this observation in § 5.1.

We now relate resolution with interpolation systems. Define the domain
〈℘(C),⊆,∪,∩〉 of CNF formulae. The function Res corresponding to the res-
olution rule is first defined as Res : Prop × C × C → C and then lifted to a
function Res : ℘(C)→ ℘(C), in a manner similar to PRes .

Abstraction and concretisation functions between 〈℘E,⊆〉 and 〈℘C,⊆〉 are
defined next. Let α : ℘(E) → ℘(C) be a function that maps X ∈ ℘(E) to the
set of clauses cl(X). The concretisation function γ : ℘(C) → ℘(E) maps a set
of clauses Y ∈ ℘(C) to the set of e-clauses {〈C,Δ, I〉|C ∈ Y,Δ ∈ D, I ∈ B}.
Lemma 3 states that α and γ define a Galois insertion and that Res is the best
approximation of PRes .

What do soundness and completeness mean in this setting? If α(PRes(X)) ⊆
Res(α(X)), every clause that can be derived with the inference rule PRes can
also be derived with Res. However, we also want that the interpolation system
can derive all clauses that can be derived by resolution. That is, as an inference
rule, PRes should be as powerful as Res. In abstract interpretation terms, the
function Res should be a complete abstraction of PRes.

Lemma 3. The functions α and γ define a Galois insertion between ℘(E) and
℘(C). Further, Res = (α ◦ PRes ◦ γ), and (Res ◦ α) = (α ◦ PRes).

The best approximation of TD is union: (α ◦TD ◦ γ) = ∪. The abstract semantic
object corresponding to ED is the set of clauses that can be derived by resolution
from 〈A,B〉. The viewpoint presented here is summarised below.

C def= μX.((A ∪B) ∪ Res(X)) = α(ED)

〈℘(C),⊆,∪,Res〉 is a complete abstract interpretation of 〈℘(E),⊆, TD,PRes〉.
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5 Logical Strength and Variable Elimination

Interpolation systems are used in verification tools. The performance of such a
tool depends on the logical strength and size of the interpolants obtained. The
influence of interpolant strength on the termination of a verification tool is dis-
cussed in [10]. Interpolant size affects the memory requirements of a verification
tool. The set of variables in an interpolant gives an upper bound on its size, so we
study the smallest and largest sets of variables that can occur in an interpolant.
We now analyse the logical strength of and variables occurring in interpolants.

5.1 Logical Strength as a Precision Order

The subset ordering on the domain ℘(E) is a computational order. Meaning, it
is the order with respect to which fixed points are defined. The elements of ℘(E)
can moreover be ordered by precision, where the notion of precision is application
dependent. Cousot and Cousot have emphasised that though the computational
and precision orders often coincide, this is not necessary [6]. To understand the
logical strength of interpolants, we use a precision order based on implication.

Given X and Y in ℘(E), the set X is more precise than Y if for every in-
terpolant in Y , there is a logically stronger interpolant in X . Formally, define
the relation �E on ℘(E) × ℘(E) as X �E Y iff for all E1 ∈ Y with cl(E1) = �,
there exists E2 ∈ X with cl(E2) = � and int(E2) ⇒ int(E1). Let 〈A,B〉 be a
CNF pair, D1 and D2 be two parameters and E1 and E2 be the sets of e-clauses
derived in these two systems. The system IntD1 is more precise or stronger than
IntD2 if E1 �E E2. If PRes is monotone with respect to �E, the problem of
computing logically stronger interpolants can be reduced to that of ordering
translation functions by precision. However, PRes is not monotone with respect
to �E because �E does not take distinction functions into account.

We now derive an order for ℘(E) that is stronger than �E and with respect
to which PRes is monotone. The order from [10] is adapted to our setting. We
define an order on S and lift it pointwise. Define the order �S on S as b �S
ab �S a �S ∅. The set S with this order forms the lattice 〈S,�S ,max,min〉.
By pointwise lifting, we obtain the lattice 〈D,�D,⇑D,⇓D〉. We use the symbols
⇑D and ⇓D to distinguish them from the computational meet and join, �D and
�D, and to emphasise the connection to logical implication.

Recall from § 2 that C|A is the restriction of C to variables in A. Define a
relation"E on ℘(E)×℘(E) as: X "E Y if for each E1 ∈ Y there is an E2 ∈ X such
that cl(E1) = cl(E2), df (E1) �D df (E2) and int(E2) ⇒ int(E1) ∨ (cl(E1)|A ∩
cl(E1)|B). Intuitively, in a strong interpolant, literals are added to the partial
interpolant by the translation function whereas in a weaker interpolant, literals
are added in the resolution step. The partial interpolant int(E1) in the definition
of "E is weakened with (cl(E1)|A ∩ cl(E1)|B) to account for this difference.
Nonetheless, if X "E Y and cl(E1) = � for E1 ∈ Y , there exists E2 ∈ X
such that cl(E2) = � and int(E2) ⇒ int(E1). Thus, X "E Y implies that
X �E Y . Theorem 4 shows that PRes is monotone with respect to "E. To order
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interpolation systems by precision, the precision order on distinction functions
is lifted pointwise to parameters to obtain the lattice 〈C→ D,�,⇑,⇓〉.

Example 7. Revisit the functions D1,D2 and D3 in Example 3. It holds that
D3 � D2 � D1 and the corresponding interpolants imply each other. �

Theorem 4. Let 〈A,B〉 be a CNF pair, and D1 and D2 be locality preserving
parameters for 〈A,B〉.

1. If D1 � D2, then TD1(A,B) "E TD2(A,B).
2. If X "E Y for X,Y ∈ ℘(E), then PRes(X) "E PRes(Y ).
3. The structure 〈Λ〈A,B〉,�,⇑,⇓〉 is a complete lattice [10].

Proof. (1) Consider TD1(A,B), TD2(A,B), and F ∈ TD2(A,B). It follows from
the definition of a translation function that there exists E ∈ TD1(A,B) such
that cl(E) = cl(F ). If C ∈ A, we further have that int(E) ⊆ (cl(F )|A∩cl(F )|B),
and so int(E) ⇒ int(F ) ∨ (cl(F )|A ∩ cl(F )|B). If C ∈ B, then by definition,
¬int(F ) = {t ∈ cl(F )|D2(cl(F ))(t) = a}. Because D2 is locality preserving,
¬int(F ) ⊆ (cl(F )|A∩ cl(F )|B) and we can conclude that ¬int(F ) ⊆ ¬(int(E))∨
(cl(F )|A ∩ cl(F )|B) and so int(E) ⊆ int(F ) ∨ (cl(F )|A ∩ cl(F )|B).
(2) Consider X "E Y and F ∈ PRes(Y ). There exists x ∈ Prop and F1, F2 ∈ X
such that F = PRes(x, F1, F2). By the monotony hypothesis, there exist E1
and E2 in X such that E1 "E F1 and E2 "E F2. From the definition of "E

we conclude that E = PRes(x,E1, E2) satisfies that cl(E) = cl(F ). It remains
to show that int(E) ⇒ int(F ) ∨ (cl(E)|A ∩ cl(E)|B). This can be shown by a
straightforward case analysis.

The following corollary of Theorem 4 formally states that if D1 � D2, then the
interpolants obtained from IntD1 imply the interpolants obtained from IntD2 .

Corollary 1. If D1 and D2 are locality preserving parameters for the CNF pair
〈A,B〉, then μX.(TD1(A,B) ∪ PRes(X)) �E μX.(TD2(A,B) ∪ PRes(X)).

5.2 Variable Elimination

Any interpolant I for an unsatisfiable CNF pair 〈A,B〉 satisfies that Var(I) ⊆
V〈A,B〉. We ask what the largest and smallest possible sets V are such that
Var(I) ⊆ V . To develop some intuition for this question, we visualise the flow of
literals in a proof. Flow graphs have been used by Carbone to study interpolant
size in the sequent calculus [2]. We only use them informally.

Example 8. The flow of literals in the refutation from Example 2 is shown in
Figure 2. Dashed edges connect antecedents with resolvents and solid edges de-
pict flows. Each literal is a vertex in the flow graph. Positive literals flow upwards
and negative literals flow downwards. Observe that a1 appears in multiple cycles
connecting literals in A, literals in B and literals in A and B. In contrast, a2
appears in only cycle which connects an A and a B literal. Recall that every
interpolant constructed from this refutation contained a2. �
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a1 a1 a2 a2 a1 a1

a2
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�

Fig. 2. A resolution proof and its logical flow graph. Dashed edges represent resolution
and solid edges represent flows. Every occurrence of a literal is in a cycle.

Informally, a refutation defines a set of may and must variables. Any literal
flowing from the A to the B part, like a1 above, may be added to the interpolant.
A literal that only flows from an A literal to a B literal, like a2, must be added
to the interpolant. To obtain the interpolant with the smallest set of variables,
we need a parameter that adds only those literals to the interpolant that flow
between A and B. We define two parameters for 〈A,B〉 as follows.

– Dmin(C)(x) is a for C ∈ A and x ∈ Prop and is b for C ∈ B and x ∈ Prop.
– Dmax

def= δ〈A,B〉(Dmin).

Observe that both these parameters are locality preserving. Lemma 4 states that
the parameters above determine the smallest and largest sets of variables that
occur syntactically in an interpolant.

Lemma 4. Let � be derived from 〈A,B〉 and Emin and Emax be the corre-
sponding e-clauses derived in IntDmin and IntDmax respectively. Let E be the cor-
responding e-clause in IntD for a locality preserving parameter D. It holds that
Var(int(Emin)) ⊆ Var(int(E)) ⊆ Var(int(Emax)).

Proof. We first show that if x ∈ Var(int(E)), then x ∈ Var(int(Emax)). Observe
that if x ∈ Var(int(E)), then x ∈ V〈A,B〉 and either x or x must occur in some
C ∈ A ∪ B. Let F be the clause corresponding to C in IntDmax . If C ∈ A,
Dmax(C)(x) = b and if C ∈ B, Dmax(C)(x) = a. In both cases, by the definition
of TDmax it holds that x ∈ Var(int(F )).

We show that if x ∈ Var(int(Emin)), then x ∈ Var(int(E)). We proceed by
induction on the structure of the derivation and consider the step in which x was
added to the partial interpolant. Let F be the e-clause derived by the PRes rule
in IntDmin , given as F = PRes(x, F1, F2) where F1 and F2 are antecedents. It
must be that df (F1)(x)∪df (F2)(x) = ab. Further, it must be that x ∈ cl(F1) and
x ∈ cl(F2) originated in A and B respectively, or vice versa, or are derived from
two literals that originated from these two parts of the formulae. Let G,G1, G2
be the corresponding e-clauses derived in IntD. There are three possibilities for
df (G1)(x) ∪ df (G2)(x). If the value is ab, then x is added to the interpolant in
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this derivation step. If the value is a, then the literal that originated from B was
added to the interpolant by the translation function. If the value is b, the literal
originating from A was added to the interpolant by the translation function. In
all cases, x ∈ Var(int(G)) as required.

We draw two further insights from Lemma 4. Observe that Dmin and Dmax are
distinct from DM and DHKP . A consequence is that McMillan’s system and
the HKP-system do not necessarily yield the interpolant with the smallest set
of variables in an interpolant. This was demonstrated in Example 2, where the
interpolants in these systems contained the variables {a1, a2}, but an interpolant
over {a2} could be obtained.

A more general insight is a way to determine if specific interpolants cannot
be obtained from a refutation. To revisit Example 2 (for the last time), observe
that Var(int(Emin)) = {a2} and that Var(int(Emax)) = {a1, a2}. It follows that
the interpolant a1 for this pair cannot be obtained by any interpolation system
IntD in the family we consider.

6 Related Work

Though Craig’s interpolation theorem was published in 1957 [8], the independent
study of interpolation systems is relatively recent. Constructive proofs of Craig’s
theorem implicitly define interpolation systems. The first such proof is due to
Maehara who introduced split sequents to capture the contribution of the A and
B formulae in a sequent calculus proof [17]. Carbone generalised this construction
to flow graphs to study the effect of cut-elimination on interpolant size [2].

Interpolant size was first studied by Mundici [20], Kra j́ıček observed that
lower bounds on interpolation systems for propositional proofs have implica-
tions for separating complexity classes and gave an interpolation system for
resolution [16]. Pudlák published the same system simultaneously [21].

Huang gave an interpolation system for resolution and its dual [14] but his
work appears to have gone unnoticed. McMillan proposed an propositional in-
terpolation system and applied it to obtain a purely SAT-based finite-state
model checker [19]. These systems were generalised in [10] and the system in
that paper was studied here. Yorsh and Musuvathi [24] study interpolation for
first-order theories, but also gave a new and elaborate correctness proof for the
HKP-system. The invariant for proving Theorem 2 is generalises the induction
hypothesis in their proof. The precision order "E is a modification of their in-
duction hypothesis to relate interpolants by strength rather than correctness.

The study of variables that can be eliminated from a formula is an issue of
gaining interest [13,15]. Several researchers have noticed that an interpolant can
contain fewer variables than V〈A,B〉. Related observations have been made by
Simmonds and others [23] and have often featured in personal communication.
We have shown that studying variables that cannot be eliminated from a proof
can provide insights into the limitations of a family of interpolation systems.

Abstract interpretation, due to Cousot and Cousot [4] is a standard frame-
work for reasoning about abstractions of a program’s semantics. They have also
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applied the framework to inference rules in [7]. In program verification, the
framework is typically applied to design abstract domains. In contrast, our ap-
plication of abstract interpretation has been concerned with identifying concrete
interpretations corresponding to existing interpolation systems and resolution.
Our work was in part inspired by that Ranzato and Tapparo’s application of
abstract interpretation to analyse state minimisation algorithms [22].

7 Conclusion

Interpolation algorithms have several applications in program verification and
several interpolation algorithms exist. In this paper, we applied abstract inter-
pretation to study a family of interpolation algorithms for propositional resolu-
tion proofs. We showed that existing interpolation algorithms can be derived by
abstraction from a general, parametrised algorithm. In abstract interpretation
terms, sets of clauses and the resolution proof system define an abstract domain
and an abstract interpretation. The set of clauses annotated with interpolants
and an interpolation system define a concrete domain and a concrete interpreta-
tion. We have also shown analysed these domains gain insights about interpolant
strength and about variables that are eliminated by an interpolation system.

However, the analysis in this paper has focused on propositional interpolation
systems. Software verification methods based on interpolation require interpo-
lation systems for first order theories. The design and analysis of interpolation
algorithms for such theories is the topic of much current research. An open ques-
tion is whether the kind of analysis in this paper is applicable to these settings.
Another question is whether the approach here extends to a comparative anal-
ysis of interpolation in different propositional proof systems. Answering these
questions is left as future work.
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Abstract. We consider the problem of functional programming with data in ex-
ternal memory, in particular as it appears in sublinear space computation. Writing
programs with sublinear space usage often requires one to use special implemen-
tation techniques for otherwise easy tasks, e.g. one cannot compose functions
directly for lack of space for the intermediate result, but must instead compute
and recompute small parts of the intermediate result on demand. In this paper, we
study how the implementation of such techniques can be supported by functional
programming languages.

Our approach is based on modeling computation by interaction using the Int
construction of Joyal, Street & Verity. We derive functional programming con-
structs from the structure obtained by applying the Int construction to a term
model of a given functional language. The thus derived functional language is
formulated by means of a type system inspired by Baillot & Terui’s Dual Light
Affine Logic. We assess its expressiveness by showing that it captures LOGSPACE.

1 Introduction

A central goal in programming language theory is to design programming languages
that allow a programmer to express efficient algorithms in a convenient way. The pro-
grammer should be able to focus on algorithmic issues as much as possible and the
programming language should give him the means to delegate inessential implementa-
tion details to the computer.

In this paper we study programming language constructs that are useful for express-
ing sublinear space algorithms. Sublinear space algorithms use less memory space than
would be needed to store their input. They are useful for computing with large inputs
that do not fit into memory.

When writing programs with sublinear space usage, one must often use special tech-
niques for tasks that would normally be simple. A typical example is the composition
of two algorithms. In order to remain in sublinear space, one cannot run them one after
the other, as there may not be enough space to store the intermediate result. Instead, one
can implement composition by storing at any time only a small part of the intermediate
value and by (re)computing small parts only as they are needed.

Since it is easy to make mistakes in the implementation of such on-demand recom-
putation of intermediate values, we believe that programming language support should
be very useful for such tasks. Instead of implementing composition with on-demand
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recomputation by hand, the programmer should be able to write function composition
in the usual way and have a compiler generate the complicated program.

The possibilities of doing this have been explored in work on implicit characterisa-
tions of LOGSPACE. A number of characterisations of this complexity class have been
explored in terms of function algebras [14] and linear logics [15] (there is more work
for LOGSPACE-predicates, e.g. [10,5], but we focus on functions here). However, these
characterisations are still far away from being real programming languages.

Here we work towards the goal of making the abstractions explored in this line of
work usable in programming. In contrast to previous work [14,15], we aim to enrich
the language with constructs for working with on-demand recomputation conveniently,
rather than hiding it completely. This is in line with the fact that sublinear space al-
gorithms are usually not used in isolation and will generally appear within larger pro-
grams. Language support for writing sublinear space algorithms should not become a
hindrance in other parts of the program that do not operate on large data.

In this paper we present the functional programming language INTML for
programming with sublinear space. This language is derived from an instance of the
Int construction [7]. Our thesis is that the Int construction naturally captures space
bounded computation and thus exposes mathematical structure that is useful for writ-
ing space bounded programs. Even though the type system of INTML is quite simple
when compared to earlier higher-order type systems for LOGSPACE [15], INTML allows
LOGSPACE algorithms to be written in a natural way, as is discussed in Sec. 3.2.

2 Space-Bounded Computation

Our approach to representing sublinear space computation in a functional programming
language is best explained by analysing the definition of space complexity classes.

In the definition of space complexity classes, in particular sublinear space complexity
classes, one uses Offline Turing Machines (OTMs) instead of standard Turing Machines.
Offline Turing Machines are multi-tape Turing Machines that differ from the standard
ones in that the input tape is read-only, the output tape is write-only and the output head
may be moved in one direction only; finally the input and output tapes do not count
towards the space usage of an Offline Turing Machine.

The definition of Offline Turing Machine captures a special class of Turing Machines
that do not store their input or output in memory, but instead have (random) access to
some externally stored input, and that give their output as a stream of characters. Since
neither input nor output must be stored in memory, it is justified to count only the work
tape towards the space usage of an Offline Turing Machine.

More formally, while a normal Turing Machine computes a function Σ∗ → Σ∗ on
words over an alphabet Σ, an Offline Turing Machine may be seen as a function of type

(State ×Σ) + N −→ (State × N) + Σ ,

where A+B denotes the (tagged) disjoint union {inl(x) | x ∈ A}∪{inr(y) | y ∈ B}.
An inputn ∈ N stands for the request to compute then-th character on the OTM’s output
tape. An output in Σ is a response to this request. Whenever the OTM wants to read a
character from its input tape, it outputs a pair 〈s, n〉 ∈ State×N, where n is the number
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of the input character it wants to read and s is its machine state, comprising finite control
state, work tape contents, etc. Receiving this request, the environment looks up the n-th
input character in and restarts the machine with input 〈s, in〉 ∈ State ×Σ. It supplies
the machine state s that was part of the input request, so that the machine can resume
its computation from the point where it requested an input.

In this way, we can consider each Offline Turing Machine as a normal Turing Ma-
chine with the special input/output interface given by the type above. This special ma-
chine needs space only to store the work tape(s) of the OTM and the positions of the
OTM’s input and output heads. This view justifies the exclusion of the input and out-
put tapes in the definition of the space usage of OTMs, as long as the space usage is at
least logarithmic. We will not consider OTMs with sublogarithmic space usage here and
indeed ‘Classes of languages accepted within sublogarithmic space depend heavily on
the machine models and the mode of space complexity’ [16].

While at first sight, the step from Turing Machines to Offline Turing Machines ap-
pears to be just a technicality, it is a step from unidirectional to bidirectional computa-
tion. For example, while standard Turing Machines are composed just by running them
one after the other, composition of Offline Turing Machines involves bidirectional data
flow. This composition is implemented as a dialogue between the machines: one starts
by requesting an output character from the second machine and every time this machine
queries a character of its input, the first machine is started to compute this character.

Bidirectional computation is thus an integral feature of space-bounded computation,
which must be accounted for in a programming language for space-bounded functions.
We argue that a good way of accounting for this bidirectionality is to study space-
bounded computation in terms of the Int construction of Joyal, Street & Verity [7,6]. The
Int construction is a general algebraic method of constructing a bidirectional universe
from a unidirectional one. It appears in categorical formulations of the Geometry of
Interaction [1,2] and has many applications, e.g. to Attribute Grammars [8].

2.1 Structuring Space Bounded Computation

In this section we observe that the step from Turing Machines to Offline Turing Ma-
chines can be understood in terms of the Int construction. This simple observation gives
us guidance for structuring space-bounded computation, since it allows us to draw on
existing work on the structure obtained by the Int construction.

The idea is to start from a computational model, e.g. the partial computable functions
as formalised by Turing Machines, and then apply the Int construction to this model.
The result is a model that still contains the original one, but in addition also captures
bidirectional (or interactive) computation in the style of Offline Turing Machines.

In general, the Int construction starts with a traced monoidal category B and yields
a category Int(B) that represents bidirectional computation in B. For the argument in
this paper, it suffices to describe just one particular instance of Int(B), that where B is
the category Pfn of sets and partial functions. In this example we drop computability
for the sake of simplicity and assume that our ‘computational’ model consists just of
partial functions between arbitrary sets.

If we apply the Int construction to Pfn with respect to tagged disjoint union as
monoidal structure, then we obtain the following category Int(Pfn). Its objects are
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pairs (X−, X+) of sets X− and X+. A morphism f from X = (X−, X+) to Y =
(Y −, Y +) is a partial function f : X+ + Y − → Y + + X−.

Morphisms capture bidirectional computation. Let us think of the par-
tial function f as a message-passing node with two input wires and two
output wires as drawn on the right. When an input value arrives on an
input wire then the function f is applied to it and the resulting value is
passed along the corresponding output wire.

f

X+

Y +

X−

Y −

We will combine the two edges for X− and X+ into a single edge in which
messages may be passed both ways (and likewise for Y ). Thus we obtain the
node on the right, whose edges are bidirectional in the sense that an edge with
label X allows any message from X+ to be passed in the forward direction and
any message from X− to be passed in the backwards direction.

f

X

Y

Composition in Int(Pfn) allows one to build message passing networks out of such
nodes. The composition g ◦ f : X → Z of f : X → Y and g : Y → Z is obtained
simply by connecting the two nodes. The underlying partial function
g ◦ f : X+ + Z− → Z+ + X− is most easily described in terms of
message passing. An input in X+ is given to f and one in Z− to g.
If either f or g give an output in X− or Z+ then this is the output of
g ◦ f . If, however, f (resp. g) outputs a message on Y + (resp. Y −), this
message is given as an input to g (resp. f ). This may lead to a looping
computation and g ◦ f may be partial even if g and f are both total.

f

X+

Y +

X−

Y −

g

Z+Z−

Offline Turing Machines appear as morphisms of type (State × N, State × Σ) →
(N, Σ) in Int(Pfn). This follows immediately from the definition of morphisms and
the discussion in Sec. 2. What we gain from viewing OTMs as morphisms in Int(Pfn)
is that we can use the well-known structure of this category for constructing and ma-
nipulating them. For example, Int(Pfn) is compact closed and therefore allows us to
use linear lambda calculus and higher-order functions for the manipulation of OTMs.

We list the structure in Int(Pfn) that we use in the definition of INTML.

Partial Functions. First we note that inside Int(Pfn) we still find Pfn. For any set A
we have an object IA = (∅, A). A morphism from IA to IB is a partial function
of type A + ∅ → ∅ + B, so that the morphisms of that type are in one-to-one
correspondence with the partial functions from A to B.

Thunks. Also useful is the object [A] = ({∗}, A), where a singleton replaces the empty
set. We will use ∗ as question that signals an explicit request for a value of type A.
Thus, one may think of [A] as a type of thunks that are evaluated on demand.

Higher-order Functions. Int(Pfn) has a monoidal structure ⊗ that on objects is de-
fined by X ⊗Y = (X− + Y −, X+ + Y +). In addition, there is a dualising opera-
tion (−)∗ that exchanges question and answer sets, i.e. (X−, X+)∗ = (X+, X−).
Together, ⊗ and (−)∗ make Int(Pfn) a compact closed category. As a conse-
quence, we obtain a linear function space by letting X � Y = X∗ ⊗ Y .

Indexed Tensor. Of further use is an indexed tensor product
⊗

A X . The object
⊗

A X
is isomorphic to X ⊗ · · · ⊗ X (|A| times). It is defined by (

⊗
A X)− = A ×X−

and (
⊗

A X)+ = A × X+. The first component in the messages indicates which
component of the tensor product we are communicating with.
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To see how this structure is useful for working with OTMs, consider a morphism of type⊗
State

(IN� IΣ) −→ (IN� IΣ) (1)

in Int(Pfn). By definition, it is a partial function from (State × (∅ + Σ)) + (N + ∅) to
(State × (N + ∅)) + (∅ + Σ), which, if we remove the superfluous empty sets, is the
same as the type of an Offline Turing Machine, as described in Sec. 2.

As a morphism of type (1), an Offline Turing Machine is modelled simply as a map
from inputs to outputs, which are both modelled as (linear) functions IN� IΣ. This
encoding of words as functions reflects the fact that Offline Turing Machines do not
have access to the whole input at once, but rather can read only a single character
at a time. Reading the n-th character just corresponds to applying the input function
of type IN � IΣ to the natural number n. In Int(Pfn) we may therefore use the
input as if it were a single function from natural numbers to characters, even though
in reality the input can only be queried character by character. We argue that this is
more convenient than the access to the input by means of explicit questions as in the
direct implementation of Offline Turing Machines. For example we can use λ-calculus
to manipulate the input functions.

3 A Functional Language for Logarithmic Space

In the rest of this paper we develop a functional programming language INTML that
is based on understanding space-bounded computation in terms of the Int construction.
For the definition of INTML we start with a standard functional programming language.
In order to program sublinear space algorithms in this language, we would like to imple-
ment message passing networks in it and we would like to manipulate these networks
using the structure that we have found in the Int construction. We obtain INTML by
extending the original programming language with primitives for constructing and ma-
nipulating such message passing networks.

INTML provides a syntax for the structure that one obtains from applying the Int
construction to a term model of the standard functional programming that we start with.
In terms of the outline above, one should replace all the partial functions in Pfn with
terms in the functional programming language. That means that the message passing
networks caputred by the Int construction are now not just partial functions but partial
functions implemented in the functional programming language.

INTML is thus a typed functional programming language with two classes of terms
and types: one for the functional language that we start with and one for the structure
that we obtain by applying the Int construction to a term model of this language. We
call the former the working class and the latter the upper class. The upper class part
can be seen as a definitional extension of the working class part. Upper class terms
do not compute themselves, but rather represent message passing networks that are
implemented by working class terms.

In this paper, we choose for the working class part of INTML a simple first order
functional language with finite types. We have chosen such a simple language because
the main novelty of INTML is the upper class calculus. We stress that the working class
calculus may be replaced by a more expressive language, like PCF for example.



210 U.D. Lago and U. Schöpp

The upper class provides constructs for space-bounded programming. It is a linear
type system inspired by Dual Light Affine Logic (DLAL) [4]. INTML treats the indexed
tensor

⊗
A much like exponential modality ! is treated in DLAL. Just as the exponential

modality may only appear in negative positions in DLAL, i.e. one can have !X � Y
but not X � !Y , INTML only accounts for types of the form

⊗
A X � Y . In the

syntax we write A · X � Y for them. The restriction to negative occurrences of
⊗

A

simplifies the type system without being too limiting in applications. In fact, we do not
know of an example where

⊗
A in a positive position would be useful.

3.1 Type System

Working class types are first-order types with type variables. They may appear in the
upper class types, which represent structure obtained from the Int construction.

Working class A,B ::= α | 1 | A×B | A + B

Upper class X,Y ::= [A] | X ⊗ Y | A ·X � Y

Instead of 1·X � Y we write just X � Y . For working class types we define coherent
type isomorphism to be the least congruence generated by 1 × A ∼= A × 1 ∼= A and
A× (B + C) ∼= (A×B) + (A× C) and (B + C) ×A ∼= (B ×A) + (C ×A).

The terms of INTML are formed by the grammars below. We write c, d for working
class variables and use f , g, h to range over working class terms. Upper class variables
are ranged over by x, y and upper class terms by s, t. The terms loop(c.f)(g) and
hack(c.f) bind the variable c in f .

Working class f, g, h ::= c | minA | succA(f) | eqA(f, g)
| inl(f) | inr(f) | case f of inl(c) ⇒ g | inr(d) ⇒ h
| ∗ | 〈f, g〉 | fst(f) | snd(f) | loop(c.f)(g) | unbox(t)

Upper class s, t ::= x | 〈t, t〉 | let s be 〈x, y〉 in t | λx. t | s t
| [f ] | let s be [c] in t | case f of inl(c) ⇒ s | inr(d) ⇒ t
| copy t as x, y in t | hack(c.f)

The working class terms include the standard terms for 1, × and +. In addition there are
constants minA, succA and eqA for any type A. These constants provide a total ordering
and decidable equality on any type. For example, the values of the type (1+1)×(1+1)
can be ordered as 〈inl(∗), inl(∗)〉, 〈inr(∗), inl(∗)〉, 〈inl (∗), inr(∗)〉, 〈inr(∗), inr(∗)〉
and with min and succ we can access such an ordering generically for any type without
having to define it by hand. Finally, there is a term loop(c.f) for iteration. It is a simple
syntax for a trace operator with respect to +. The intendet operational semantics of loop
is loop(c.f)(inl(v)) −→ loop(c.f)(f [inl(v)/c]) and loop(c.f)(inr(v)) −→ v, where in
both cases v has already been reduced to a value (see Section 4.1).

The typing rules for working class terms appear in Fig. 1. They derive working class
sequents of the form Σ � f : A asserting that f has type A in context Σ. The context Σ
assigns working class types to a finite number of working class variables. As usual,
the comma in contexts corresponds to ×, even though loop corresponds to a trace with
respect to +. The typing rules should be unsurprising, except perhaps that for unbox.
One may think of a term t:[A] as a thunk that can be evaluated with unbox.
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Σ, c:A � c : A Σ � minA : A

Σ � f : A

Σ � succA(f) : A

Σ � f : A Σ � g : A

Σ � eqA(f, g) : 1 + 1

Σ � ∗ : 1
Σ � f : A Σ � g : B

Σ � 〈f, g〉 : A × B

Σ � f : A × B

Σ � fst(f) : A

Σ � f : A × B

Σ � snd(g) : B

Σ � f : A

Σ � inl(f) : A + B

Σ � f : A + B Σ, c:A � g : C Σ, d:B � h : C

Σ � case f of inl(c) ⇒ g | inr(d) ⇒ h : C

Σ � f : B

Σ � inr(f) : A + B

Σ, c:A + B � f : C + B Σ � g : A + B

Σ � loop(c. f)(g) : C

Σ | � t : [A]
Σ � unbox(t) : A

Fig. 1. Working Class Typing Rules

Upper class terms denote message passing networks that will be implemented by
working class terms. An upper class typing sequent has the form Σ | Γ � t : X ,
where Σ is a working class context. The context Γ is a finite list of declarations of
the form x1 :A1·X1, . . . , xk :Ak·Xk. As usual, we assume that no variable is declared
more than once in Γ . The term t denotes a network with a single (bidirectional) out-
put edge of type X and (bidirectional) input edges of types

⊗
A1

X1, . . . ,
⊗

Ak
Xk.

Informally, one may think of a declaration x :A·X as a declaration of A-many copies
of a value in X , i.e. one copy for each value v:A. Having multiple copies is useful
because our message passing networks are stateless. When we send a query to X and
later receive an answer, then we may not know what to do with that answer, since we
have forgotten all that was computed earlier. However, we can use A ·X instead of X
in order to remember a value of type A. If we want to remember a value v:A then we
simply query the v-th copy of X .

For any upper class context Γ and any working class type A, we define an upper
class context A · Γ by A · 〈〉 = 〈〉 and A · (Δ, x :B·X) = (A ·Δ), x : (A×B)·X .

The upper class typing rules appear in Fig. 2. While upper class terms denote
message passing networks, at a first reading they may be understood without know-
ing precisely the networks they denote. In particular, the reader may wish to look at the
reduction rules in Fig. 5, which are soundly implemented by the translation of terms to
message passing networks. In Sec. 4 we describe which networks the terms denote.

The upper class rules represent a choice of the structure that the Int construction adds
to the working class calculus. It does not capture this rich structure completely, how-
ever. Therefore we add the ‘hacking’ rule below that allows one to implement message
passing nodes directly, much like one can use inline assembler in C.

Σ, c:X− � f : X+

(HACK)
Σ | Γ � hack(c.f) : X

In this rule, X− and X+ denote the negative and positive parts of X defined by:

[A]− = 1 [A]+ = A
(X ⊗ Y )− = X− + Y − (X ⊗ Y )+ = X+ + Y +

(A · X � Y )− = A × X+ + Y − (A · X � Y )+ = A × X− + Y +
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Σ | Γ � s : Y
(WEAK)

Σ | Γ, x : A·X � s : Y

Σ | Γ, x : A·X, y : B·Y, Δ � s : Z
(EXCH)

Σ | Γ, y : B·Y, x : A·X, Δ � s : Z

Σ | Γ, x : A·X � s : Y
(LWEAK)

Σ | Γ, x : (B × A)·X � s : Y

Σ | Γ, x : A·X � s : Y
(CONGR) A ∼= B

Σ | Γ, x : B·X � s : Y

(VAR)
Σ | Γ, x : A·X � x : X

Σ | Γ � s : X Σ | Δ � t : Y
(⊗I)

Σ | Γ, Δ � 〈s, t〉 : X ⊗ Y

Σ | Γ � s : X ⊗ Y Σ | Δ, x : A·X, y : A·Y � t : Z
(⊗E)

Σ | Δ, A · Γ � let s be 〈x, y〉 in t : Z

Σ | Γ, x : A·X � s : Y
(�I)

Σ | Γ � λx. s : A · X � Y

Σ | Γ � s : A · X � Y Σ | Δ � t : X
(�E)

Σ | Γ, A · Δ � s t : Y

Σ | Γ � s : X Σ | Δ, x : A·X, y : B·X � t : Y
(CONTR)

Σ | Δ, (A + B) · Γ � copy s as x, y in t : Y

Σ � f : A + B Σ, c:A | Γ � s : X Σ, d:B | Γ � t : X
(CASE)

Σ | Γ � case f of inl(c) ⇒ s | inr(d) ⇒ t : X

Σ � f : A
([ ]I)

Σ | Γ � [f ] : [A]
Σ | Γ � s : [A] Σ, c:A | Δ � t : [B]

([ ]E)
Σ | Γ, A · Δ � let s be [c] in t : [B]

Fig. 2. Upper Class Typing Rules

Examples. We give an example derivation to illustrate that while the upper class type
system is linear, working-class variables can be copied arbitrarily:

| x : 1·[α] � x : [α]

...
c:α | f : 1·([α]� [α]� [β]) � f [c] : [α]� [β]

c:α � c : α
c:α | � [c] : [α]

c:α | f : 1·([α]� [α]� [β]) � f [c] [c] : [β]
([ ]E)

f : (α × 1)·([α]� [α]� [β]), x : 1·[α] � let x be [c] in f [c] [c] : [β]
(CONGR), (�I)

f : α·([α]� [α]� [β]) � λx. let x be [c] in f [c] [c] : [α]� [β]
(�I)� λf. λx. let x be [c] in f [c] [c] : α · ([α]� [α]� [β])� [α]� [β]

Even though upper class terms can be understood as if they were implemented by the
reduction rules in Fig. 5, it is important to understand that they will be (in Sec. 4)
compiled down to (large) working class terms that implement certain message passing
networks. The network for the upper class term in the conclusion of the above deriva-
tion, for example, represents a message passing network with a single (bidirectional)
output wire. It behaves as follows: if it receives a request for the value of the result
in [β], it first requests the value of x. Upon receipt of this value, the network will then
ask the function f for its return value. Since f has a type of the form α ·X , the network
has access to α-many copies of f . It chooses the copy indexed by the value of x, so that,
even though the network is stateless, the value of x will be available once an answer
from f arrives. If f answers with a value in [β], then this answer is forwarded as the
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final answer of the whole network. If f answers with a request for one of its arguments,
then the network gives the value of x as reply to f .

That being able to copy working class variables does not make copy superfluous can
be seen in the following terms for conversion between [α× β] and [α] ⊗ [β].

λy. copy y as y1, y2 in
〈let y1 be [c] in [fst(c)], let y2 be [c] in [snd(c)]〉 : (γ + δ) · [α × β]� [α] ⊗ [β]

λz. let z be 〈x, y〉 in let x be [c] in let y be [d] in [〈c, d〉] : α · ([α] ⊗ [β])� [α × β]

Useful Combinators. The upper class calculus is a simple linear lambda calculus for
constructing message passing networks. It appears to be missing many constructs, such
as loops, that are required to make it an expressive programming language. Such con-
structs can be defined as higher-order combinators using hack.

The most important example of such a combinator is a loop iterator that informally
satisfies loop f v = w if f v = inr(w) and loop f v = loop f w if f v = inl(w).

loop : α · (γ · [α]� [α + β])� [α]� [β]

Before we define loop, we give a typical example for its use. We define foldα, such
that foldα f y computes f xn (. . . (f x1 (f x0 y))), where x0 = minα and xi+1 =
succα(xi) and xn is the maximum element of α, i.e. the element with xn = succα(xn).

foldα : (α × β × α × β) · ([α]� [β]� [β])� [β]� [β]

foldα = λf. λy.loop (λw. let w be [e] in let f [fst(e)] [snd(e)] be [z] in

case eqα(fst(e), succα(fst(e))) of inl(true) ⇒ [inr(z)]

| inr(false) ⇒ [inl(〈succα(fst(e)), z〉)])
(let y be [z] in [〈minα, z〉])

The definition of loop uses hack and therefore makes explicit reference to the transla-
tion of upper class terms to message passing networks, which we describe in detail in
Sec 4. The loop-combinator is defined by loop = hack(c.l), where l is a working class
term of type c:α× (γ × 1 + (α + β)) + (α + 1) � l : α× (γ × α + 1) + (1 + β) that
implements the following mappings using a nested case expression: (i) inr(inr(∗)) �→
inl(inr(∗)); (ii) inr(inl (a)) �→ inl(a, inr (∗)); (iii) inl(a, inr(inr(b)) �→ inr(inr(b));
(iv) inl(a, inr(inl (a′)) �→ inl(a′, inr(∗)); and (v) inl(a, inl(g, ∗)) �→ inl(a, inl(g, a)).
These assignments can be interpreted as follows: Mapping (i) says that when we get
a request for the final value, we start by asking the base case for its value. When an
answer from the base cases arrives, we put it in a memory cell (corresponding to α · −
in the type) and ask the step function for its result (ii). Whenever the step function asks
for its argument, we supply the value from the memory cell (v). If the step function
answers inr(b), then we are done and give b as output (iii). If the step function answers
inl(a′), then we overwrite the memory cell content with a′ and restart the step function
by asking for its result (iv).

A second useful combinator is a simple version of callcc. It can be given the fol-
lowing type for any upper class type X .

callcc :
(
γ · ([α]� X)� [α]

)
� [α]
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This combinator is defined by callcc = hack(c.l), where l is a working-class term
of type c:(γ × (α + X−) + α) + 1 � l : (γ × (1 + X+) + 1) + α that imple-
ments the following mappings: (i) inr(∗) �→ inl(inr(∗)); (ii) inl(inr(a)) �→ inr(a);
(iii) inl(inl (g, inr(x))) �→ inl(inl(g, inl(∗))); and (iv) inl(inl(g, inl(a))) �→ inr (a).
These assignments implement callcc as follows: a request for the result becomes a re-
quest for the result of the argument function (i); When the argument function produces
a result value, we forward it as the final result (ii). If the argument function ever uses its
argument, i.e. calls the continuation, then the value passed to the continuation should
be returned as the final result. This is done by assignments (iii) and (iv). Whenever the
result of the continuation is requested, this request is turned into a request for the ar-
gument of the continuation (iii). Upon supply of the argument to the continuation, the
computation is aborted and this argument is returned as the end result (iv).

3.2 Programming in INTML

We have introduced the upper class in INTML with the intention of helping the pro-
grammer to implement functions with sublinear space usage. Let us give a few examples
of how we think the upper class features will be useful.

Consider for example binary words. For sublinear space computation, they are suit-
ably modelled as functions of type A · [B]� [3]. With the constants min and succ, we
can regard B as a type of numbers. We interpret 3 as a type containing characters ‘0’,
‘1’ and a blank symbol. Then, A · [B]� [3] can represent words by functions that map
the n-th element of B to the n-th character of the word (see Sec. 5 for a precise defi-
nition). Being a higher-order language, INTML allows the programmer both to define
such words directly, but also to write higher-order combinators to manipulate them.

When working with A · X � Y , we have found that often we are not interested in
the particular type A, only that some such type exists. Let us therefore in the following
hide all such annotations and write just X → Y to mean A ·X � Y for some A.

Useful combinators for words encoded as functions are, e.g. zero : ([α] → [3]) for
the empty word, succ0 : ([α] → [3]) → ([α] → [3]) for appending the character 0 or
if : ([α] → [3]) → ([α] → [3]) → ([α] → [3]) → ([α] → [3]) for case distinction on
the last character of a word. They allow one to work with words encoded as functions
as if they were normal strings, even though these words do not even necessarily fit into
memory. The combinators themselves can be implemented easily in INTML.

succ0 := λw. λi. let i be [c] in case eq(c,min) of inl(true) ⇒ [min]
| inr(false) ⇒ w [pred c]

Here pred denotes a working class predecessor term, which is easy to define.

if := λw. λw0. λw1. λi. let w [min] be [c] in
case c of inl(blank) ⇒ w0 i

| inr(z ) ⇒ case z of inl(zero) ⇒ w0 i
| inr(one) ⇒ w1 i

These are simple examples, of course. We believe that nontrivial combinators can also
be implemented. For example, Møller-Neergaard gives a LOGSPACE implementation of
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safe recursion on notation by computational amnesia [14]. We believe that using loop
and callcc a similar program can be implemented in INTML as a combinator saferec
taking as arguments a base case g : [α] → [3], two step functions h0, h1 : ([α] → [3]) →
([α] → [3]) and a word w : [α] → [3] to recurse on and giving a word as output.

In this way the higher-order features of INTML can be used to abstract away details
of a message-passing implementation of functions on words and to write LOGSPACE

functions just like in BC−ε [14]. Moreover, INTML gives access to the implementa-
tion details, should the abstraction not be expressive enough. For instance, the proof
of LOGSPACE completeness in Thm. 3 below goes by a straightforward encoding of a
OTM. It is much simpler than the corresponding encoding in BC−ε [14] because INTML
allows us to manipulate working class values directly.

The higher order approach also works for data types other than strings. For example,
graphs can be represented by a type of the form ([α] → [2]) ⊗ ([α × α] → [2]), where
the first component is a predicate that indicates which elements of α count as graph
nodes and the second component is the edge relation.

4 Evaluation

In this section we present the evaluation mechanism for INTML. Evaluation of upper
class terms is closely related to evaluation in [15], but also to Mackie’s Interaction Ab-
stract Machine [11] and to read-back from optimal reduction [12,3]. Indeed, in his 1995
paper [11] Mackie speculates that this form of evaluation could have applications where
space usage is important. With INTML we present a calculus that makes space usage
analysis possible. INTML differs from the work in loc. cit. in that one can mix working
class and upper class terms. Previously only the upper class part was considered.

4.1 Reduction of Working-Class Terms

The evaluation of INTML programs is done by reduction of working class terms. Before
evaluation of an INTML program, all upper class terms are compiled into working class
terms. Since, in particular, any occurrence of unbox will be removed, it suffices to define
reduction only for unbox-free working class terms.

Working class values are defined by:

v, w := c | ∗ | 〈v, w〉 | inl(v) | inr(v)

The reduction of working class terms is explained by a small step reduction relation −→
between closed unbox-free terms. Closedness here means the absence of both term
variables and type variables (which could appear in the type annotations of constants
like minA). The relation −→ formalises standard eager reduction, see e.g. [17]. We
omit standard reduction rules and just explain here how loop and the constants minA

and succA are treated. Loops are unfolded by the rules loop(c.f)(inr(v)) −→ v and
loop(c.f)(inl(v)) −→ loop(c.f)(f [inl(v)/c]), in both of which v must be a value. Con-
stants are unfolded on demand, guided by their type annotation. The minimum elements
of all closed types are defined by:

min1 −→ ∗ minA+B −→ inl(minA) minA×B −→ 〈minA,minB〉
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In the implementation of succA, we must be a little careful that reducts do not become
too large. We implement succ using a new constant succmin that informally denotes a
function succminA : A → A + A with the following meaning: succminA(x) = inl(y)
means that y is the successor of x; succminA(x) = inr(y) means that x has no successor
and y is the minimum element of A. We use the following rules for succmin.

succmin1(∗) −→ inr(∗)
succminA+B(inl(v)) −→ case succminA(v) of inl(x) ⇒ inl(inl(x))

| inr(y) ⇒ inl(inr(minB))
succminA+B(inr(v)) −→ case succminB(v) of inl(x) ⇒ inl(inr(x))

| inr(y) ⇒ inr(inl(minA))
succminA×B(〈v, w〉) −→ case succminA(v) of inl(x) ⇒ inl(〈x,w〉)

| inr(x) ⇒ case succminB(w) of inl(y) ⇒ inl(〈x, y〉)
| inr(y) ⇒ inr(〈x, y〉)

We use these rules instead of the evident rules for succ because they are linear in v, w,
A and B, which is important for the proof of Prop. 1 below.

Because of the simplicity of the working class calculus, it is possible to give useful
upper bounds on how large a term can become during the course of eager reduction
directly by induction on the term structure. Essentially, we can bound the size of values
in terms of their types and use this to derive a bound on the potential size of a term
under reduction by looking at its variables and their types. We state this result in the
following proposition, in which |g| and |C| denote the size of the abstract syntax trees
of g and C respectively.

Proposition 1. If c:A � f : B is derivable then there are constants n and m such that
(f [C/α])[v/c] −→∗ g implies |g| ≤ n + m · |C| for every closed type C and every
closed value v of type A[C/α].

We will use for C types of the form 2 × · · · × 2 (k times), where 2 denotes 1 + 1. This
type represents the numbers from 0 to 2k − 1 in binary and we have |C| ∈ O(k). A
unary encoding is also possible with C = 1 + · · ·+ 1 (2k times), but we have |C| ≥ 2k

and values can indeed become as large as this.

4.2 Reducing Upper Class to Working Class

Now we explain how closed upper class terms are compiled down to working class
terms, so that they can be reduced with the relation −→ from the previous section. The
compilation works by interpreting upper class terms as message passing circuits as in
Sec. 2 and then implementing these circuits by working class terms.

We start by defining the message passing circuits we use in the compilation. These
circuits may be understood as a particular instance of string diagrams for monoidal
categories [13]. The are also related to proof nets, see [13] for a discussion. Circuits are
directed graphs that represent networks in which messages are passed along edges. A
node labelling allows us to use nodes with different message passing behaviour. Edges
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are labelled with types that tell which kind of messages can be passed along them. Edge
labels are formed by the grammar below, in which A ranges over working class types.

X,Y ::= [A] | [A]∗ | X ⊗ Y |
⊗

A
X

We define an operation (−)∗ on edge labels as follows. It maps [A] to [A]∗ and [A]∗ to
[A] and is defined on compound expressions by (X⊗Y )∗ = X∗⊗Y ∗ and (

⊗
A X)∗ =⊗

A X∗. Note in particular that we have X∗∗ = X for any type label X .
Circuits are labelled directed graphs that are in addition equipped with a two-way

local ordering. A two-way local ordering for a graph G = (V,E) specifies for each
node v ∈ V a total ordering on both the set ({v} × V ) ∩ E of outgoing edges from v
and on the set (V × {v}) ∩ E of incoming edges to v. The need for a local ordering
arises in the treatment of nodes such as ⊗E below. This node has an incoming edge
labelled with X ⊗ Y and two outgoing edges labelled with X and Y and we want to
distinguish the two outgoing edges even if X and Y are the same.

Furthermore, circuits have a number of input and output ports. We capture input and
output edges by means of two distinguished nodes: a source and a sink. Edges from the
distinguished source are input edges and edges to the sink are output edges. We write
D : (X1, . . . , Xn) → (Y1, . . . , Ym) for such a graph D with input edges
of type X1, . . . , Xn and output edges of type Y1, . . . , Ym (note that they
are ordered because of the local ordering for source and sink). We usually
draw D as shown on the right.

D

X1 . . . Xn

Y1 Ym
. . .

Given two graphs D : (X) → (Y ) and E : (Y ) → (Z), their sequential composi-
tion E ◦D : (X) → (Z) is defined as depicted below: the i-th incoming edge to the
sink of D and the i-th outgoing edge from the source of E are joined to a single edge.
The sink of D and the source of E are removed. Furthermore, given F : (X) → (Y )
and G : (U) → (V ), we write F⊗G for the graph of type (X ,U) → (Y ,V ) obtained
by putting F and G in parallel.

D

X1 . . . Xn

Y1 Ym
. . .

E

Z1 Zk
. . .

E ◦D = F ⊗G = F

X1 . . . Xn

Y1 Ym
. . .

G

V1 Vl
. . .

U1 . . . Uk

Notice that in a composition the local ordering on the edges labelled with Y dis-
appears. For example, if we let swapX,Y : (X,Y ) → (Y,X) be the graph
on the right, then swapY,X ◦ swapX,Y is idX ⊗ idY : (X,Y ) → (X,Y ),
where idX : (X) → (X) is a single edge labelled X from input to output.

YX

Definition 1 (Circuit on Σ). For any working class context Σ, we define the set of
circuits on Σ to be the smallest set of two-way locally ordered graphs with input and
output edges that satisfies the following conditions.
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– For all X and Y both idX and swapX,Y are are circuits on Σ.
– Each of the following single-node graphs is a circuit on Σ, where X and Y may

be arbitrary type labels, A and B may be arbitrary working class types and f and g
may be arbitrary terms with Σ � f : A and Σ, c:X− � g : X+.

X ⊗ Y

X Y

⊗E

X ⊗ Y

X Y

⊗I w

X

X X∗
η

X∗X

ε

c

⊗
A+B X

⊗
A X

⊗
B X

⊗
A+B X

⊗
A X

⊗
B X

c−1
d⊗

A

⊗
B X

⊗
A×B X

j⊗
B X

⊗
A X

if A ∼= B

πf

X

⊗
A X

inf

X

⊗
A X

[f ]

[A]

hack(c.g)

X

– If D : (X) → (Y ) and E : (Y ) → (Z) are circuits on Σ then so is E ◦D.
– If D : (X) → (Y ) and E : (U) → (V ) are circuits on Σ then so is D ⊗ E.
– If D : (X1, . . . , Xn) → (Y1, . . . , Ym) is a circuit on Σ, c:A then the graph⊗

c:A D : (
⊗

AX1, . . . ,
⊗

AXn) → (
⊗

AY1, . . . ,
⊗

AYm)
constructed as follows is a circuit on Σ: each incoming edge
of D is prepended with a node ↓c

Xi
: (
⊗

A Xi) → (Xi) and
to each outgoing edge of D a node ↑c

Yi
: (Yi) → (

⊗
A Yi) is

appended. For better readability, we do not draw these nodes
explicitly and draw a box around D instead, as depicted on
the right.

D

X1 . . .

⊗
A X1 . . .

c

Xn

⊗
A Xn

Y1 Ym
. . .

⊗
A Y1 . . .

⊗
A Ym

Given a circuit D on (Σ, c:A) and a term Σ � f : A, we can form a circuit D[f/c]
on Σ by replacing each node πg with πg[f/c], each node ing with ing[f/c], each node [g]
with [g[f/c]], and each node hack(d.g) with hack(d.g[f/c]).

To each edge in a circuit D on Σ we assign a level, which is a working class context,
by the following requirements. Input and output edges have level Σ. Any two edges
incident to the same node have the same level, except if the node is ↓c

X : (
⊗

A X) →
(X) or ↑c

X : (X) → (
⊗

A X). If the incoming edge of ↓c
X (resp. the outgoing edge of

↑c
X) has level Σ′ then the outgoing edge (resp. incoming edge) has level Σ′, c:A.

Message Passing. Write VA for the set of all closed working class values of type A.
Write EΣ for the set of Σ-environments consisting of all functions that map the vari-
ables in Σ to closed values of their declared types. The set MΣ,X of messages that
can be passed along an edge labelled with X at level Σ is then defined by MΣ,X =
EΣ × (VX+ × {+} ∪ VX− × {−}). A message m ∈ MΣ,X is either a question or
an answer depending on whether its third component is ‘−’ or ‘+’. Answers travel in
the direction of the edge while questions travel in the opposite direction. Messages are
essentially the same as the contexts in context semantics [12].

To define message passing for a circuit D : (X) → (Y ) on Σ, let the set MD of
messages on D consist of all pairs (e,m) of an edge e in D and a message
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m ∈ MΣ(e),X(e), where Σ(e) is the level of e and X(e) is its label. Now we define
how each node in D locally reacts to arriving messages. To this end we define for each
node v a partial function ϕv by the assignments in Fig. 3. For example ϕπ implements
the behaviour of the term in ([ ]E), as sketched in Sec. 3.1. An initial question on edge o
becomes a request for the value of type [A] on edge i1. Upon receipt of an answer w:A
from there, this answer is put into the memory cell provided by

⊗
A and the value of

type [B] is queried on edge i2. An answer to this request is then passed as final answer
along edge o. In Fig. 3 we have omitted the cases for ϕε and ϕc−1 , which are just like
those for ϕη and ϕc. Notice that for different nodes v and w in D, the domains of ϕv

and ϕw do not overlap.
The message passing behaviour of the whole circuit is then the partial function

ϕD : MD → MD defined by repeatedly applying the local functions ϕv:

ϕD = Tr

(⋃
v∈V (D)

ϕv

)
Tr(f)(m) =

{
Tr(f)(f(m)) if f(m) defined

m if f(m) undefined

It is not hard to see that messages cannot get stuck inside the circuit, i.e. ϕD(e,m) =
(e′,m′) implies that e′ is an input or an output edge. In fact, we will forget about the
internal structure of D and consider just the restriction of ϕD to messages on input
or output edges of D. This restriction corresponds to a partial function ΦD of type(
X+

1 + · · · + X+
n + Y −1 + · · · + Y −m

)
×EΣ −→ Y +

1 + · · ·+Y +
m +X−1 + · · ·+X−n .

We call ΦD the behaviour of D and consider circuits with the same behaviour to be
equal. We write D ∼ E if D and E are circuits with the same interface and ΦD = ΦE .

Upper Class to Circuits. We now interpret upper class terms by circuits. To each deriva-
tion δ ending with sequent Σ | x1 :A1·X1, . . . , xn :An·Xn � s : Y we assign �δ�, a
circuit on Σ with one output wire of type Y and n input wires of type (

⊗
A1

X1, . . . ,⊗
An

Xn), where we identify A · X � Y with (
⊗

A X)∗ ⊗ Y . That is, each vari-
able declaration in Γ becomes an input wire of the translated circuit. Abusing notation
slightly, we will write Γ also for the list of input types of this circuit.

The definition goes by induction on derivations and is given in the table in Fig. 4. In
this table we denote the premises of δ by δs and δt depending on the term in the premise.
We write just

⊗
A for

⊗
c:A if c does not appear anywhere. Given an upper class con-

text Γ we write wΓ for w ⊗ · · · ⊗ w : (Γ ) → (). Similarly, we write idΓ : (Γ ) → (Γ ),
dA·Γ : (A · Γ ) → (

⊗
A Γ ), (inf )Γ : (Γ ) → (

⊗
A Γ ) and cΓ : (Γ ) → (Γ, Γ ) for the

analogous tensorings of id , d, inf and c (the definition of cΓ involves evident permuta-
tions of the outputs to arrive at the indicated type).

Implementing Message Passing. The compilation of upper class terms to message pass-
ing circuits almost completes the translation from upper class to working class. It just
remains to implement message passing in the working class calculus.

That is, for any circuit D we construct a closed working class term that implements
its behaviour ΦD. In essence, the construction works in the same way as the definition
of ΦD above. First note that we can represent the set of messages MΣ,X by the working
class type (A1 × · · · × An) × (X− + X+), where Σ = x1:A1, . . . , xn:An. With this
we can represent MD in the working class calculus in the form of a big sum type. Then,
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ϕη(o1, (S, w,−)) = (o2, (S, w, +))
ϕη(o2, (S, w,−)) = (o1, (S, w, +))

ϕ⊗I(i1, (S, w, +)) = (o, (S, inl(w), +))
ϕ⊗I(i2, (S, w, +)) = (o, (S, inr(w), +))

ϕ⊗I(o, (S, inl(w),−)) = (i1, (S, w,−))
ϕ⊗I(o, (S, inr(w),−)) = (i2, (S, w,−))

o

i1 i2

X ⊗ Y

X Y

⊗I

ϕc(i, (S, (inl(v), w), +)) = (o1, (S, (v, w), +))
ϕc(i, (S, (inr(v), w), +)) = (o2, (S, (v, w), +))

ϕc(o1, (S, (v, w),−)) = (i, (S, (inl(v), w),−))
ϕc(o2, (S, (v, w),−)) = (i, (S, (inr(v), w),−))

c

N
A+B X

N
A X

N
B X

o1

i

o2

ϕd(i, (S, (w, (v, u)), +)) = (o, (S, ((w, v), u), +))
ϕd(o, (S, ((w, v), u),−)) = (i, (S, (w, (v, u)),−))

dN
A

N
B X

N
A×B X

o

i

ϕ[f ](o, (S, ∗,−)) = (o, (S, v, +))
if fS −→∗ v

[f ]

[A]
o

ϕhack(c.f)(o, (S, v,−)) = (o, (S, w, +))
if fS[v/c] −→∗ w

o

hack(c.f)

X

ϕπ(o, (S, ∗,−)) = (i1, (S, ∗,−))
ϕπ(i1, (S, w, +)) = (i2, (S, (w, ∗),−)

ϕπ(i2, (S, (w, v), +)) = (o, (S, v, +))

[B]

[A]
N

A[B]

π

o

i1 i2

X X∗
η

o2o1

ϕπf (i, (S, (v, w), +)) = (o, (S, w, +))
ϕπf (o, (S, w,−)) = (i, (S, (v, w),−) if fS −→∗ v

ϕinf (o, (S, (v, w), +)) = (i, (S, w, +))
ϕinf (i, (S, w,−)) = (o, (S, (v, w),−) if fS −→∗ v

o

i

infN
A X

X

πf

X

N
A X

o

i

ϕj(i, (S, (w, v)), +)) = (o, (S, (u, v), +)) if f(w) −→∗ u
ϕj(o, (S, ((w, v),−)) = (i, (S, (u, v),−)) if f−1(w) −→∗ u

where f and f−1 are canonical terms implementing A ∼= B.

ϕ↓(i, (S[c �→ v], w, +)) = (o, (S, (v, w), +))
ϕ↓(o, (S, (v, w),−)) = (i, (S[c �→ v], w,−))

c XN
A X

o

i

ϕ↑(o, (S[c �→ v], w,−)) = (i, (S, (v, w),−))
ϕ↑(i, (S, (v, w), +)) = (o, (S[c �→ v], w, +))

o

i

c X

N
A X

o

i

jN
B X

N
A X

A ∼= B

For an environment S ∈ EΣ and a term
Σ � f :B, we write fS for the term ob-
tained by simulaneous subtitution using S.

Fig. 3. Local message passing
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(WEAK) �δ� = �δs� ◦ (idΓ ⊗ w)
(EXCH) �δ� = �δs� ◦ (idΓ ⊗ swap ⊗ idΔ)

(CONGR) �δ� = �δs� ◦ (idΓ ⊗ j)
(VAR) �δ� = wΓ ⊗ πminA

(⊗I) �δ� = ⊗I ◦ (�δs� ⊗ �δt�)
(⊗E) �δ� = �δt� ◦ (idΔ ⊗ ((

⊗
c:A�δs�) ◦ dA·Γ )

)
(�I) �δ� = ⊗I ◦ swap ◦ (�δs� ⊗ id) ◦ (idΔ ⊗ η)

(�E) �δ� = (idY ⊗ ε) ◦ ((swap ◦ ⊗E ◦ �δs�) ⊗ ((
⊗

c:A�δt�) ◦ dA·Γ )
)

(CONTR) �δ� = �δt� ◦ (idΔ ⊗ ((
⊗

c:A+B�δs�) ◦ d))
(CASE) �δ� = πf ◦ c−1 ◦ (⊗A�δs� ⊗⊗A�δt�) ◦ cΓ ◦ (inf )Γ

([ ]I) �δ� = [f ] ⊗ wΓ

([ ]E) �δ� = π ◦ (�δs� ⊗ (
⊗

A�δt� ◦ dA·Δ))
(HACK) �δ� = hack(c.f)

(�E)

. . .
Γ

�δs�

⊗
A X

X

�δt�

. . .

A · Δ

dd

ε

⊗E

(
⊗

A X)∗

Y

Δ

(�I)

. . .
Δ ⊗

A X

�δs�
Y

(
⊗

A X)∗ ⊗ Y

⊗I

η

(
⊗

A X)∗

Fig. 4. Compilation to Circuits

⋃
v∈V (D) ϕv : MD → MD can be implemented easily by a big case distinction and it

is easy to obtain ϕD from this using a single loop. From this, finally, we obtain ΦD .
We have thus explained how each upper class term can be translated to a working

class term. It remains to say how we deal with terms of the form Σ � unbox(s) : A
where Σ | � s : [A]. Note that s is translated to a circuit �δs� whose behaviour is
a function of type Φ�δs� : 1 × EΣ → A. The working class term implementing this
function is just what we need to interpret the term unbox.

4.3 Soundness

We have defined the evaluation of INTML by translation of upper class to working
class, since this allows us to obtain sublinear space bounds (cf. Sec. 5). However, the
translation is somewhat complicated and it is does not make it obvious just what it is
that the upper class terms compute. In this section, we show that one may also consider
the upper class as a functional programming language with standard reduction rules,
which are then soundly implemented by the translation.

A notion of reduction can be formulated by the rules in Fig. 5. We include a rule for
loop but note that we cannot give rules for hack in general. When we write s −→ t we
assume � s : X and � t : X for some X . We close these rules under evaluation contexts.

E,F ::=[·] | 〈E, t〉 | 〈t, E〉 | let E be 〈x, y〉 in t |
E t | t E | let E be [c] in t | copy E as x, y in t

As usual, E[s] is the term obtained by substituting s for the only occurrence of [·] in E.
The translation to working class terms is invariant under reduction:

Theorem 1 (Soundness). If δ derives � s : X and s −→ t, then there exists a deriva-
tion ρ of � t : X that satisfies �δ� ∼ �ρ�.
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(λx.s)t −→ s[t/x]

let 〈s, t〉 be 〈x, y〉 in u −→ u[s/x][t/y]

case inl(v) of inl(c) ⇒ s | inr(d) ⇒ t −→ s[v/c] if v is a value

case inr(v) of inl(c) ⇒ s | inr(d) ⇒ t −→ t[v/d] if v is a value

let [v] be [c] in t −→ t[v/c] if v is a value

copy s as x, y in t −→ t[s/x][s/y]

[f ] −→ [g] if f −→ g

case f of inl(c) ⇒ s | inr(d) ⇒ t −→ case g of inl(c) ⇒ s | inr(d) ⇒ t if f −→ g

loop s t −→ let t be [c] in let s [c] be [d] in

case d of inl(d) ⇒ loop s [d] | inr(d) ⇒ [d]

Fig. 5. Upper Class Reduction

For the proof we need substitution lemmas, which are proved by induction on ρ.

Lemma 1. If v ∈ VA and ρ derives Σ, c:A | Γ � t : X , then there is a derivation
ρ[v/c] of Σ | Γ � t[v/c] : X such that �ρ[v/c]� ∼ �ρ�[v/c] holds.

Lemma 2. If δ derives Σ | � s : X and ρ derives Σ | Γ, x :A·X, Δ � t : Y , then
there exists a derivation ρ[δ/x] of Σ | Γ, Δ � t[s/x] : Y that satisfies �ρ[δ/x]� ∼
�ρ� ◦ (idΓ ⊗

⊗
A�δ� ⊗ idΔ).

Proof (of Theorem 1). For any reduction s −→ t there exist decompositions s = E[s′]
and t = E[t′] such that s′ −→ t′ is an instance of one of the reductions in Fig 5.

The proof then goes by induction on the structure of E. The base case where E is
empty, amounts to showing the assertion for the basic reductions. For lack of space, we
just spell out the first case where s −→ t has the form (λx. q) p −→ q[p/x].

Since δ ends in a sequent with empty context, it cannot end with a structural rule.
Hence, the last two rules in δ must be (�E) after (�I). Let σ and τ be the derivations
of x:B · Z � q : Y and � p : Z that derive the premises of these rules. Then we can use
⊗E ◦⊗I ∼ id and (id ⊗ ε) ◦ (η ⊗ id) ∼ id , which are both easy to show directly, and
the substitution lemma to calculate:

�δ� = (idY ⊗ ε) ◦ ((swap ◦ ⊗E ◦ ⊗I ◦ swap ◦ (�σ� ⊗ id⊗
BZ) ◦ η) ⊗

⊗
B

�τ�)
∼ (idY ⊗ ε) ◦ (((�σ� ⊗ id⊗

BZ) ◦ η) ⊗
⊗

B
�τ�)

∼ �σ� ◦ ((id⊗
BZ ⊗ ε) ◦ (η ⊗ id⊗

BZ)) ◦
⊗

B
�τ�

∼ �σ� ◦⊗
B

�τ� ∼ �σ[τ/y]�
Since σ[τ/y] derives � q[p/x] : Y , this concludes this case.

The induction step follows straightforwardly from the induction hypothesis. If, for
example, E is 〈F, u〉, then δ must end in rule (⊗I) with two premises � F [s′] : Y and
� u : Z , derived by σ and τ . We apply the induction hypothesis to σ to obtain σ′. Then
we note that replacing σ with σ′ in δ gives us a derivation ρ of the required term. The
assertion then follows: �δ� = ⊗I ◦ (�σ� ⊗ �τ�) ∼ ⊗I ◦ (�σ′� ⊗ �τ�) = �ρ�. ��
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We can conclude that the compilation in the previous section computes the same results
as the standard reduction introduced here.

Corollary 1. If δ derives � s : [A] and s −→∗ [v] for some v ∈ VA, then Φ�δ� is the
function of type V1 × 1 → VA that maps the unique element of its domain to v.

This corollary follows by observing that � [v] : [A] must be derived by some ρ with ([ ]I)
as last rule, that Φ�ρ� is by definition the function in the corollary and that Φ�ρ� ∼ Φ�δ�

follows from the theorem.

5 Logarithmic Space

In this section we describe a precise correspondence between the class of functions
representable in INTML and the class of functions computable in logarithmic space.

First we must define how to represent functions from binary strings to binary strings
in INTML. In principle, such functions can be programmed directly as terms of type
A · [B]� [B], where B is a working class type of binary strings. However, this would
lead to linear space usage, so we use a more interactive type as discussed in Sec. 2.

With the constants min and succ, we can view any closed type [A] as a type of natural
numbers that can represent the numbers from 0 to |VA|− 1: the number i is encoded by
the normal form of [succi

A(minA)], for which we write 〈i〉A.
Then, for every closed type B, binary strings of length at most |VB| can be rep-

resented as terms of type BA(B) = A · [B] � [3]: a binary string s is encoded by
a function that when applied to 〈i〉B returns: b if the i-th symbol in s is b and 2 if i
exceeds the length of s. Write 〈s〉A,B for the encoding of s ∈ {0, 1}≤|VB| in BA(B).

Functions that take as inputs strings of arbitrary length can be represented using type
variables. Let X be the upper class type A · BB(α) � BC(D), where α is a type
variable and where A, B, C and D are arbitrary types that may also contain α, but
not other type variables. If E is a closed type then X [E/α] is a type of functions from
strings of length at most |VE | to strings of length at most |VD[E/α]|. We say that a term
� t : X represents a function φ : {0, 1}∗ → {0, 1}∗ if and only if:

– For every n and every x ∈ {0, 1}n, |φ(x)| ≤ |VD[n/α]|;
– For every n, every x ∈ {0, 1}n and every E with |VE | ≥ n, if φ(x) = b1 . . . bm

then for every i ≤ |VD[n/α]|, the term t[E/α]〈s〉B[E/α],E〈i〉D[E/α] reduces to 〈bi〉3
if i ≤ m and to 〈2〉3 if i > m.

We remark that one may also use an alternate definition, for which the following theo-
rems are also valid, but which does not refer to upper class reduction: instead of requir-
ing t[E/α]〈s〉B[E/α],E〈i〉D[E/α] to reduce to one of 〈bi〉3 or 〈2〉3, one may ask that the
circuit for this term have the same behaviour as either 〈bi〉3 or 〈2〉3, depending on i.

Theorem 2 (Logspace Soundness). If φ : {0, 1}∗→{0, 1}∗ is represented by t, then φ
is computable in logarithmic space. Moreover, a LOGSPACE algorithm computing φ is
given by INTML-evaluation of t.

Proof. Compiling t to a working class term yields a term x:X− � f : X+. We now
choose En = 2�log n� to substitute for α. Clearly, |VEn | ≥ n, but |En| ≤ 2(logn + 1).
By Prop. 1, evaluation of f [En/α] (i.e. computation of φ on strings of length up to n)
can be implemented using space linear in |2�log n�|, thus logarithmic in n.
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Theorem 3 (Logspace Completeness). Any functionφ : {0, 1}∗→{0, 1}∗ computable
in logarithmic space is represented by some upper class term tφ.

The proof goes by an easy encoding of Offline Turing Machines in INTML. The step
function of a given LOGSPACE OTM M can be mimicked by an upper class term
| x:[α] � [3] � stepM : [S(α)] � [S(α) + S(α)], where x represents the input
string and where S(α) is a type with free variable α that can encode the state of M . The
term tM can be obtained by passing stepM to the loop combinator.

6 Conclusion

We have found that the Int construction is a good way of structuring space bounded
computation that can help us to understand the principles of space bounded functional
programming. This view has guided the design of INTML, a simple language capturing
LOGSPACE. Initial experience with an experimental implementation of INTML suggests
that, with suitable type inference, INTML can be made to be quite usable.

We hope that our systematic approach will be helpful for developing INTML further.
For instance, recent results on capturing non-deterministic token machines by the Int
construction [9] may perhaps be used to develop a NLOGSPACE-version of INTML.
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Abstract. We are interested in identifying and enforcing the isolation
requirements of a concurrent program, i.e., concurrency control that en-
sures that the program meets its specification. The thesis of this paper is
that this can be done systematically starting from a sequential proof, i.e.,
a proof of correctness of the program in the absence of concurrent inter-
leavings. We illustrate our thesis by presenting a solution to the problem
of making a sequential library thread-safe for concurrent clients. We con-
sider a sequential library annotated with assertions along with a proof
that these assertions hold in a sequential execution. We show how we
can use the proof to derive concurrency control that ensures that any
execution of the library methods, when invoked by concurrent clients,
satisfies the same assertions. We also present an extension to guarantee
that the library is linearizable with respect to its sequential specification.

1 Introduction

A key challenge in concurrent programming is identifying and enforcing the
isolation requirements of a program: determining what constitutes undesirable
interference between different threads and implementing concurrency control
mechanisms that prevent this. In this paper, we show how a solution to this
problem can be obtained systematically from a sequential proof : a proof that
the program satisfies a specification in the absence of concurrent interleaving.

Problem Setting. We illustrate our thesis by considering the concrete problem
of making a sequential library safe for concurrent clients. Informally, given a
sequential library that works correctly when invoked by any sequential client,
we show how to synthesize concurrency control code for the library that ensures
that it will work correctly when invoked by any concurrent client.

Consider the example in Fig. 1(a). The library consists of one procedure
Compute, which applies an expensive function f to an input variable num. As
a performance optimization, the implementation caches the last input and re-
sult. If the current input matches the last input, the last computed result is
returned.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 226–245, 2010.
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1: int lastNum = 0;

2: int lastRes = f(0);

3: /* @returns f (num) */

4: Compute(num) {
5: /* acquire (l); */

6: if(lastNum==num) {
7: res = lastRes;

8: } else {
9: /* release (l); */

10: res = f(num);

11: /* acquire (l); */

12: lastNum = num;

13: lastRes = res;

14: }
15: /* release (l); */

16: return res;

17: }

(a) (b)

Fig. 1. (a) (excluding Lines 5,9,11,15) shows a procedure Compute that applies a (side-
effect free) function f to a parameter num and caches the result for later invocations.
Lines 5,9,11,15 contain a lock-based concurrency control generated by our technique.
(b) shows the control-flow graph of Compute, its edges labeled by statements of Compute
and nodes labeled by proof assertions.

This procedure works correctly when used by a sequential client, but not in
the presence of concurrent procedure invocations. E.g., consider an invocation of
Compute(5) followed by concurrent invocations of Compute(5) and Compute(7).
Assume that the second invocation of Compute(5) evaluates the condition in
Line 6, and proceeds to Line 7. Assume a context switch occurs at this point,
and the invocation of Compute(7) executes completely, overwriting lastRes in
Line 13. Now, when the invocation of Compute(5) resumes, it will erroneously
return the (changed) value of lastRes.

In this paper, we present a technique that can detect the potential for such
interference and synthesize concurrency control to prevent the same. The (lock-
based) solution synthesized by our technique for the above example is shown (as
comments) in Lines 5, 9, 11, and 15 in Fig. 1(a). With this concurrency control,
the example works correctly even for concurrent procedure invocations while
permitting threads to perform the expensive function f concurrently.

The Formal Problem. Formally, we assume that the correctness criterion for
the library is specified as a set of assertions and that the library satisfies these
assertions in any execution of any sequential client. Our goal is to ensure that
any execution of the library with any concurrent client also satisfies the given
assertions. For our running example in Fig. 1(a), Line 3 specifies the desired
functionality for procedure Compute: Compute returns the value f (num).
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Logical Concurrency Control From Proofs. A key challenge in coming up with
concurrency control is determining what interleavings between threads are safe.
A conservative solution may reduce concurrency by preventing correct interleav-
ings. An aggressive solution may enable more concurrency but introduce bugs.

The fundamental thesis we explore is the following: a proof that a code frag-
ment satisfies certain assertions in a sequential execution precisely identifies the
properties relied on by the code at different points in execution; hence, such a
sequential proof clearly identifies what concurrent interference can be permitted;
thus, a correct concurrency control can be systematically (and even automati-
cally) derived from such a proof.

We now provide an informal overview of our approach by illustrating it for
our running example. Fig. 1(b) presents a proof of correctness for our running
example (in a sequential setting). The program is presented as a control-flow
graph, with its edges representing program statements. (The statement “num =
*” at the entry edge indicates that the initial value of parameter num is unknown.)
A proof consists of an invariant μ(u) attached to every vertex u in the control-
flow graph (as illustrated in the figure) such that: (a) for every edge u → v
labelled with a statement s, execution of s in a state satisfying μ(u) is guaranteed
to produce a state satisfying μ(v), (b) The invariant μ(entry) attached to the
entry vertex is satisfied by the initial state and is implied by the invariant μ(exit)
attached to the exit vertex, and (c) for every edge u → v annotated with an
assertion ϕ, we have μ(u) ⇒ ϕ. Condition (b) ensures that the proof is valid
over any sequence of executions of the procedure.

The invariant μ(u) at vertex u indicates the property required (by the proof)
to hold at u to ensure that a sequential execution satisfies all assertions of the
library. We can reinterpret this in a concurrent setting as follows: when a thread
t1 is at point u, it can tolerate changes to the state by another thread t2 as long
as the invariant μ(u) continues to hold from t1’s perspective; however, if another
thread t2 were to change the state such that t1’s invariant μ(u) is broken, then
the continued execution by t1 may fail to satisfy the desired assertions.

Consider the proof in Fig. 1(b). The vertex labeled x in the figure corresponds
to the point before the execution of Line 7. The invariant attached to x indi-
cates that the proof of correctness depends on the condition lastRes==f(num)
being true at x. The execution of Line 10 by another thread will not invalidate
this condition. But, the execution of Line 13 by another thread can potentially
invalidate this condition. Thus, we infer that, when one thread is at point x, an
execution of Line 13 by another thread should be avoided.

We prevent the execution of a statement s by one thread when another thread
is at a program point u (if s might invalidate a predicate p that is required at
u) as follows. We introduce a lock �p corresponding to p, and ensure that every
thread holds �p at u and ensure that every thread holds �p when executing s.

Our algorithm does this as follows. From the invariant μ(u) at vertex u, we
compute a set of predicates pm(u). (For now, think of μ(u) as the conjunction
of predicates in pm(u).) pm(u) represents the set of predicates required at u.
For any edge u → v, any predicate p that is in pm(v) \ pm(u) is required at v
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but not at u. Hence, we acquire the lock for p along this edge. Dually, for any
predicate that is required at u but not at v, we release the lock along the edge.
As a special case, we acquire (release) the locks for all predicates in pm(u) at
procedure entry (exit) when u is the procedure entry (exit) vertex. Finally, if
the execution of the statement on edge u → v can invalidate a predicate p that
is required at some vertex, we acquire and release the corresponding lock before
and after the statement (unless it is already a required predicate at u or v).

Our algorithm ensures that the locking scheme does not lead to deadlocks
by merging locks when necessary, as described later. Finally, we optimize the
synthesized solution using a few simple techniques. E.g., in our example whenever
the lock corresponding to lastRes == res is held, the lock for lastNum == num
is also held. Hence, the first lock is redundant and can be eliminated.

Fig. 1 shows the resulting library with the concurrency control we synthesize.
This implementation satisfies its specification even in a concurrrent setting. The
synthesized solution permits a high degree to concurrency since it allows multiple
threads to compute f concurrently. A more conservative but correct locking
scheme would hold the lock during the entire procedure execution.

A distinguishing aspect of our algorithm is that it requires only local reason-
ing and not reasoning about interleaved executions, as is common with many
analyses of concurrent programs. Note that the synthesized solution depends
on the proof used. Different proofs can potentially yield different concurrency
control solutions (all correct, but with potentially different performance).

Linearizability. The above approach can be used to ensure that concurrent ex-
ecutions guarantee desired safety properties, preserve data-structure invariants,
and meet specifications (e.g., given as a precondition/postcondition pair). Li-
brary implementors may, however, wish to provide the stronger guarantee of
linearizability with respect to the sequential specification: any concurrent exe-
cution of a procedure is guaranteed to satisfy its specification and appears to take
effect instantaneously at some point during its execution. In this paper, we show
how the techniques sketched above can be extended to guarantee linearizability.

Implementation. We have implemented our algorithm, using an existing software
model checker to generate the sequential proofs. We used the tool to success-
fully synthesize concurrency control for several small examples. The synthesized
solutions are equivalent to those an expert programmer would use.

Contributions

We present a technique for synthesizing concurrency control for a library (e.g.,
developed for use by a single-threaded client) to make it safe for use by concurrent
clients. However, we believe that the key idea we present – a technique for
identifying and realizing isolation requirements from a sequential proof – can be
used in other contexts as well (e.g., in the context of a whole program consisting
of multiple threads, each with its own assertions and sequential proofs).

Sometimes, a library designer may choose to delegate the responsibility for
concurrency control to the clients of the library and not make the library



230 J. Deshmukh et al.

thread-safe1. Alternatively, library implementers could choose to make the exe-
cution of a library method appear atomic by wrapping it in a transaction and
executing it in an STM (assuming this is feasible). These are valid options but
orthogonal to the point of this paper. Typically, a program is a software stack,
with each level serving as a library. Passing the buck, with regards to concur-
rency control, has to stop somewhere. Somewhere in the stack, the developer
needs to decide what degree of isolation is required by the program; otherwise,
we would end up with a program consisting of multiple threads where we re-
quire every thread’s execution to appear atomic, which could be rather severe
and restrict concurrency needlessly. The ideas in this paper provide a systematic
method for determining the isolation requirements. While we illustrate the idea
in a simplified setting, it should ideally be used at the appropriate level of the
software stack.

In practice, full specifications are rarely available. We believe that our tech-
nique can be used even with lightweight specifications or in the absence of spec-
ifications. Consider our example in Fig. 1. A symbolic analysis of this library,
with a harness representing a sequential client making an arbitrary sequence of
calls to the library, can, in principle, infer that the returned value equals f(num).
As the returned value is the only observable value, this is the strongest func-
tional specification a user can write. Our tool can be used with such an inferred
specification as well.

Logical interference. Existing concurrency control mechanisms (both pessimistic
as well as optimistic) rely on a data-access based notion of interference: concur-
rent accesses to the same data, where at least one access is a write, is conserva-
tively treated as interfence. A contribution of this paper is that it introduces a
more logical/semantic notion of interference that can be used to achieve more
permissive, yet safe, concurrency control. Specifically, concurrency control based
on this approach permits interleavings that existing schemes based on stricter
notion of interference will disallow. Hand-crafted concurrent code often permits
“benign interference” for performance reasons, suggesting that programmers do
rely on such a logical notion of interference.

2 The Problem

In this section, we introduce required terminology and formally define the prob-
lem. Rather than restrict ourselves to a specific syntax for programs and as-
sertions, we will treat them abstractly, assuming only that they can be given a
semantics as indicated below, which is fairly standard.

2.1 The Sequential Setting

Sequential Libraries. A library L is a pair (P , VG), where P is a set of procedures
(defined below), and VG is a set of variables, termed global variables, accessible
1 This may be a valid design option in some cases. However, in examples such as our

running example, this could be a bad idea.
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to all and only procedures in P . A procedure P is a pair (GP, VP), where GP is a
control-flow graph with each edge labeled by a primitive statement, and VP is a
set of variables, referred to as local variables, restricted to the scope of P. (Note
that VP includes the formal parameters of P as well.) To simplify the semantics,
we will assume that the set VP is the same for all procedures and denote it VL.

Every control-flow graph has a unique entry vertex NP (with no predecessors)
and a unique exit vertex XP (with no successors). Primitive statements are either
skip statements, assignment statements, assume statements, return statements,
or assert statements. An assume statement is used to implement conditional
control flow as usual. Given control-flow graph nodes u and v, we denote an edge
from u to v, labeled with a primitive statement s, by u

s−→ v.
To reason about all possible sequences of invocations of the library’s proce-

dures, we define the control graph of a library to be the union of the control-flow
graphs of all the procedures, augmented by a new vertex w, as well as an edge
from every procedure exit vertex to w and an edge from w to every procedure
entry vertex. We refer to w as the quiescent vertex. Note that a one-to-one corre-
spondence exists between a path in the control graph of the library, starting from
w, and the execution of a sequence of procedure calls. The edge w → NP from
the quiescent vertex to the entry vertex of a procedure P models an arbitrary
call to procedure P. We refer to these as call edges.

Sequential States. A procedure-local state σ� ∈ Σs
� is a pair (pc, σd) where pc,

the program counter, is a vertex in the control graph and σd is a map from the
local variables VL to their values. A global state σg ∈ Σs

g is a map from global
variables VG to their values. A library state σ is a pair (σ�, σg) ∈ Σs

� ×Σs
g . We

say that a state is a quiescent state if its pc value is w and that it is a entry state
if its pc value equals the entry vertex of some procedure.

Sequential Executions. We assume a standard semantics for primitive statements
that can be captured as a transition relation �s ⊆ Σs × Σs as follows. Every
control-flow edge e induces a transition relation e�s, where σ

e�sσ
′ iff the ex-

ecution of (the statement labeling) edge e transforms state σ to σ′. The edge
w → NP from the quiescent vertex to the entry vertex of a procedure P models
an arbitrary call to procedure P. Hence, in defining the transition relation, such
edges are treated as statements that assign a non-deterministically chosen value
to every formal parameter of P and the default initial value to every local vari-
able of P. Similarly, the edge XP → w is treated as a skip statement. We say
σ �s σ

′ if there exists some edge e such that σ
e�sσ

′.
A sequential execution is a sequence of states σ0σ1 · · ·σk where σ0 is the ini-

tial state of the library and we have σi �s σi+1 for 0 ≤ i < k. A sequential
execution represents the execution of a sequence of calls to the library’s proce-
dures (where the last call’s execution may be incomplete). Given a sequential
execution σ0σ1 · · ·σk, we say that σi is the corresponding entry state of σj if σi

is an entry state and no state σh is an entry state for i < h ≤ j.

Sequential Assertions. We use assert statements to specify desired correctness
properties of the library. Assert statements have no effect on the execution
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semantics and are equivalent to skip statements in the semantics. Assertions
are used only to define the notion of well-behaved executions as follows.

An assert statement is of the form assert θ where, θ is a 1-state assertion ϕ
or a 2-state assertion Φ. A 1-state assertion, which we also refer to as a predicate,
makes an assertion about a single library state. Rather than define a specific
syntax for assertions, we assume that the semantics of assertions are defined by
a relation σ |=s ϕ denoting that a state σ satisfies the assertion ϕ.

1-state assertions can be used to specify the invariants expected at certain
program points. In general, specifications for procedures take the form of two-
state assertions, which relate the input state to output state. We use 2-state
assertions for this purpose. The semantics of a 2-state assertion Φ is assumed
to be defined by a relation (σin, σout) |=s Φ (meaning that state σout satisfies
assertion Φ with respect to state σin). In our examples, we use special input
variables vin to refer to the value of the variable v in the first state. E.g., the
specification “x == xin + 1” asserts that the value of x in the second state is
one more than its value in the first state.

Definition 1. A sequential execution is said to satisfy the library’s assertions if
for any transition σi

assert θ�s σi+1 in the execution, we have (a) σi |=s θ if θ is a 1-
state assertion, and (b) (σin, σi) |=s θ where σin is the corresponding entry state
of σi, otherwise. A sequential library satisfies its specifications if every execution
of the library satisfies its specifications.

2.2 The Concurrent Setting

Concurrent Libraries. A concurrent library L is a triple (P , VG, Lk), where P is
a set of concurrent procedures, VG is a set of global variables, and Lk is a set
of global locks. A concurrent procedure is like a sequential procedure, with the
extension that a primitive statement is either a sequential primitive statement
or a locking statement of the form acquire(�) or release(�) where � is a lock.

Concurrent States. A concurrent library permits concurrent invocations of pro-
cedures. We associate each procedure invocation with a thread (representing the
client thread that invoked the procedure). Let T denote an infinite set of thread-
ids, which are used as unique identifiers for threads. In a concurrent execution,
every thread has a private copy of local variables, but all threads share a single
copy of the global variables. Hence, the local-state in a concurrent execution is
represented by a map from T to Σs

� . (A thread whose local-state’s pc value is
the quiescent point represents an idle thread, i.e., a thread not processing any
procedure invocation.) Let Σc

� = T → Σs
� denote the set of all local states.

At any point during execution, a lock lk is either free or held by one thread.
We represent the state of locks by a partial function from Lk to T indicating
which thread, if any, holds any given lock. Let Σc

lk = Lk ↪→ T represent the set
of all lock-states. Let Σc

g = Σs
g ×Σc

lk denote the set of all global states. Let Σc =
Σc

� ×Σc
g denote the set of all states. Given a concurrent state σ = (σ�, (σg , σlk))

and thread t, we define σ[t] to be the sequential state (σ�(t), σg).
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Concurrent Executions. The concurrent semantics is induced by the sequential
semantics as follows. Let e be any control-flow edge labelled with a sequen-

tial primitive statement, and t be any thread. We say that (σ�, (σg , σlk))
(t,e)� c

(σ′�, (σ
′
g, σlk)) iff (σt, σg)

e�s(σ′t, σ′g) where σt = σ�(t) and σ′� = σ�[t �→ σ′t]. The
transitions corresponding to lock acquire/release are defined in the obvious way.

We say that σ �c σ′ iff there exists some (t, e) such that σ
(t,e)� cσ

′.
A concurrent execution is a sequence σ0σ1 · · ·σk, where σ0 is the initial state

of the library and σi
�i�cσi+1 for 0 ≤ i < k. We say that �0 · · · �k−1 is the schedule

of this execution. A sequence �0 · · · �m is a feasible schedule if it is the schedule
of some concurrent execution. Consider a concurrent execution σ0σ1 · · ·σk. We
say that a state σi is a t-entry-state if it is generated from a quiescent state by
thread t executing a call edge. We say that σi is the corresponding t-entry state
of σj if σi is a t-entry-state and no state σh is a t-entry-state for i < h ≤ j.

We note that our semantics uses sequential consistency. Extending our results
to support weaker memory models is future work.

Interpreting Assertions In Concurrent Executions. In a concurrent setting, as-
sertions are evaluated in the context of the thread that executes the correspond-
ing assert statement. We say that state σ satisfies a 1-state assertion ϕ in the
context of thread ti (denoted by (σ, ti) |=c ϕ) iff σ[ti] |=s ϕ. For any 2-state as-
sertion Φ, we say that a given pair of states (σin, σout) satisfies Φ in the context
of thread t (denoted by ((σin, σout), t) |=c Φ) iff (σin[t], σout[t]) |=s Φ.

Definition 2. A concurrent execution π is said to satisfy the library’s assertions

if for any transition σi
(t,assert θ)�c σi+1 in the execution we have (a) (σi, t) |=c θ, if

θ is a 1-state assertion, and (b) ((σin, σi), t) |=c θ where σin is the corresponding
t-entry state of σi, otherwise. A concurrent library satisfies its specifications if
every execution of the library satisfies its specifications.

Frame Conditions. Consider a library with two global variables x and y and
a procedure IncX that increments x by 1. A possible specification for IncX is
(x == xin + 1) && (y == yin). The condition y == yin is IncX’s frame condi-
tion, which says that it will not modify y. Explicitly stating such frame conditions
is unnecessarily restrictive, as a concurrent update to y by another procedure,
when IncX is executing, would be considered a violation of IncX’s specification.
Frame conditions can be handled better by treating a specification as a pair
(S, Φ) where S is the set of all global variables referenced by the procedure, and
Φ is a specification that does not refer to any global variables outside S. For
our above example, the specification will be ({x}, x == xin + 1)). In the sequel,
however, we will restrict ourselves to the simpler setting and ignore this issue.

2.3 Goals

Our goal is: Given a sequential library L with assertions satisfied in every sequen-
tial execution, construct L̂, by augmenting L with concurrency control, such that
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every concurrent execution of L̂ satisfies all assertions. In Section 5, we extend
this goal to construct L̂ such that every concurrent execution of L̂ is linearizable.

3 Preserving Single-State Assertions

In this section we describe our algorithm for synthesizing concurrency control,
but restrict our attention to single-state assertions.

3.1 Algorithm Overview

A sequential proof is a mapping μ from vertices of the control graph to predicates
such that (a) for every edge e = u

t−→ v, {μ(u)}t{μ(v)} is a valid Hoare triple
(i.e., σ1 |=s μ(u) and σ1

e�sσ2 implies σ2 |=s μ(v) ), and (b) for every edge
u

assert ϕ−−−−−→ v, we have μ(u) ⇒ ϕ.
Note that the invariant μ(u) attached to a vertex u by a proof indicates

two things: (i) any sequential execution reaching point u will produce a state
satisfying μ(u), and (ii) any sequential execution from point u, starting from a
state satisfying μ(u) will satisfy the invariants labelling other program points
(and satisfy all assertions encountered during the execution).

A procedure that satisfies its assertions in a sequential execution may fail to
do so in a concurrent execution due to interference. The preceding paragraph,
however, hints at the interference we must avoid to ensure correctness: when a
thread t1 is at point u, we should ensure that no other thread t2 changes the state
to one where t1’s invariant μ(u) fails to hold. Any change to the state by another
thread t2 can be tolerated by t1 as long as the invariant μ(u) continues to hold.
We can achieve this by associating a lock with the invariant μ(u), ensuring that
t1 holds this lock when it is at program point u, and ensuring that any thread
t2 acquires this lock before executing a statement that may break this invariant.
An invariant μ(u), in general, may be a boolean formula over simpler predicates.
We could potentially get different locking solutions by associating different locks
with different sub-formulae of the invariant. We elaborate on this idea below.

A predicate mapping is a mapping pm from the vertices of the control graph
to a set of predicates. A predicate mapping pm is said to be a basis for a proof
μ if every μ(u) can be expressed as a boolean formula (involving conjunctions,
disjunctions, and negation) over pm(u). A basis pm for proof μ is positive if
every μ(u) can be expressed as a boolean formula involving only conjunctions
and disjunctions over pm(u).

Given a proof μ, we say that an edge u
s−→ v sequentially positively preserves

a predicate ϕ if {μ(u) ∧ ϕ}s{ϕ} is a valid Hoare triple. Otherwise, we say that
the edge may sequentially falsify the predicate ϕ. Note that the above definition
is in terms of the Hoare logic for our sequential language. However, we want to
formalize the notion of a thread t2’s execution of an edge falsifying a predicate ϕ
in a thread t1’s scope. Given a predicate ϕ, let ϕ̂ denote the predicate obtained
by replacing every local variable x with a new unique variable x̂. We say that an
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edge u
s−→ v may falsify ϕ iff the edge may sequentially falsify ϕ̂. (Note that this

reasoning requires working with formulas with free variables, such as x̂. This is
straightforward as these can be handled just like extra program variables.)

E.g., consider Line 13 in Fig. 1. Consider predicate lastRes==f(num). By re-
naming local variable num to avoid naming conflicts, we obtain predicate lastRes
==f( ˆnum). We say that Line 13 may falsify this predicate because the triple
{res == f(num) ∧ lastNum == num ∧ lastRes == f( ˆnum)} lastRes = res
{lastRes == f( ˆnum)} is not a valid Hoare triple.

Let pm be a positive basis for a proof μ and R = ∪upm(u). If a predicate
ϕ is in pm(u), we say that ϕ is relevant at program point u. In a concurrent
execution, we say that a predicate ϕ is relevant to a thread t in a given state if
t is at a program point u in the given state and ϕ ∈ pm(u). Our locking scheme
associates a lock with every predicate ϕ in R. The invariant it establishes is
that a thread, in any state, will hold the locks corresponding to precisely the
predicates that are relevant to it. We will simplify the initial description of our
algorithm by assuming that distinct predicates are associated with distinct locks
and later relax this requirement.

Consider any control-flow edge e = u
s−→ v. Consider any predicate ϕ in

pm(v) \ pm(u). We say that predicate ϕ becomes relevant at edge e. In the
motivating example, the predicate lastNum == num becomes relevant at Line 12

We ensure the desired invariant by acquiring the locks corresponding to every
predicate that becomes relevant at edge e prior to statement s in the edge.
(Acquiring the lock after s may be too late, as some other thread could intervene
between s and the acquire and falsify predicate ϕ.)

Now consider any predicate ϕ in pm(u) \ pm(v). We say that ϕ becomes ir-
relevant at edge e. E.g., predicate lastres == f(lastNum) becomes irrelevant
once the false branch at Line 8 is taken. For every p that becomes irrelevant at
edge e, we release the lock corresponding to p after statement s.

The above steps ensure that in a concurrent execution a thread will hold a
lock on all predicates relevant to it. The second component of the concurrency
control mechanism is to ensure that any thread that acquires a lock on any
predicate before it falsifies the predicate. Consider an edge e = u

s−→ v in the
control-flow graph. Consider any predicate ϕ ∈ R that may be falsified by edge
e. We add an acquire of the lock corrresponding to this predicate before s (unless
ϕ ∈ pm(u)), and add a release of the same lock after s (unless ϕ ∈ pm(v)).

Managing locks at procedure entry/exit. We will need to acquire/release locks at
procedure entry and exit differently from the scheme above. Our algorithm works
with the control graph defined in Section 2. Recall that we use a quiescent vertex
w in the control graph. The invariant μ(w) attached to this quiescent vertex
describes invariants maintained by the library (in between procedure calls). Any
return edge u return−−−−→ v must be augmented to release all locks corresponding to
predicates in pm(u) before returning. Dually, any procedure entry edge w → u
must be augmented to acquire all locks corresponding to predicates in pm(u).

However, this is not enough. Let w → u be a procedure p’s entry edge. The
invariant μ(u) is part of the library invariant that procedure p depends upon.
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It is important to ensure that when p executes the entry edge (and acquires
locks corresponding to the basis of μ(u)) the invariant μ(u) holds. We achieve
this by ensuring that any procedure that invalidates the invariant μ(u) holds
the locks on the corresponding basis predicates until it reestablishes μ(u). We
now describe how this can be done in a simplified setting where the invariant
μ(u) can be expressed as the conjunction of the predicates in the basis pm(u)
for every procedure entry vertex u. (Disjunction can be handled at the cost of
extra notational complexity.) We will refer to the predicates that occur in the
basis pm(u) of some procedure entry vertex u as library invariant predicates.

We use an obligation mapping om(v) that maps each vertex v to a set of
library invariant predicates to track the invariant predicates that may be invalid
at v and need to be reestablished before the procedure exit. We say a function
om is a valid obligation mapping if it satisfies the following constraints for any
edge e = u → v: (a) if e may falsify a library invariant ϕ, then ϕ must be in
om(v), and (b) if ϕ ∈ om(u), then ϕ must be in om(v) unless e establishes ϕ.
Here, we say that an edge u

s−→ v establishes a predicate ϕ if {μ(u)}s{ϕ} is a
valid Hoare triple. Define m(u) to be pm(u)∪ om(u). Now, the scheme described
earlier can be used, except that we use m in place of pm.

Locking along assume edges. Any lock to be acquired along an assume edge will
need to be acquired before the condition is evaluated. If the lock is not required
along all assume edges out of a vertex, then we will have to release the lock along
the edges where it is not required.

Deadlock Prevention. The locking scheme synthesized above may potentially
lead to a deadlock. We now show how to modify the locking scheme to avoid
this possibility. For any edge e, let mbf(e) be (a conservative approximation
of) the set of all predicates that may be falsified by the execution of edge e.
We first define a binary relation � on the predicates used (i.e., the set R) as
follows: we say that p� r iff there exists a control-flow edge u

s−→ v such that
p ∈ m(u) ∧ r ∈ (m(v) ∪ mbf(u s−→ v)) \ m(u). Note that p � r holds iff it is
possible for some thread to try to acquire a lock on r while it holds a lock on p.
Let �∗ denote the transitive closure of�.

We define an equivalence relation� on R as follows: p� r iff p�∗ r∧r�∗ p.
Note that any possible deadlock must involve an equivalence class of this relation.
We map all predicates in an equivalence class to the same lock to avoid deadlocks.
In addition to the above, we establish a total ordering on all the locks, and ensure
that all lock acquisitions we add to a single edge are done in an order consistent
with the established ordering.

Optimizations. Our scheme can sometimes introduce redundant locking. E.g.,
assume that in the generated solution a lock �1 is always held whenever a lock
�2 is acquired. Then, the lock �2 is redundant and can be eliminated. Similarly,
if we have a predicate ϕ that is never falsified by any statement in the library,
then we do not need to acquire a lock for this predicate. We can eliminate such
redundant locks as a final optimization pass over the generated solution.
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Note that it is safe for multiple threads to simultaneously hold a lock on
the same predicate ϕ if they want to “preserve” it, but a thread that wants
to “break” ϕ needs an exclusive lock. Thus, reader-writer locks can be used to
improve concurrency, but space constraints prevent a discussion of this extension.

Generating Proofs. The sequential proof required by our scheme can be generated
using verification tools such as SLAM [2], BLAST [10,11] and Yogi [9]. Since a
minimal proof can lead to better concurrency control, approaches that produce
a “parsimonious proof” (e.g., see [11]) are preferable. A parsimonious proof is
one that avoids the use of unnecessary predicates at any program point.

3.2 Complete Schema

We now present a complete outline of our schema for synthesizing concurrency
control.

1. Construct a sequential proof μ that the library satisfies the given assertions
in any sequential execution.

2. Construct positive basis pm and an obligation mapping om for the proof μ.
3. Compute a map mbf from the edges of the control graph to R, the range of

pm, such that mbf(e) (conservatively) includes all predicates in R that may
be falsified by the execution of e.

4. Compute the equivalence relation � on R.
5. Generate a predicate lock allocation map lm : R → L such that for any

ϕ1 � ϕ2, we have lm(ϕ1) = lm(ϕ2).
6. Compute the following quantities for every edge e = u

s−→ v, where we use
lm(X) as shorthand for { lm(p) | p ∈ X } and m(u) = pm(u) ∪ om(u):

BasisLocksAcq(e) = lm(m(v)) \ lm(m(u))
BasisLocksRel(e) = lm(m(u)) \ lm(m(v))
BreakLocks(e) = lm(mbf(e)) \ lm(m(u)) \ lm(m(v))

7. We obtain the concurrency-safe library L̂ by transforming every edge u
s−→ v

in the library L as follows:
(a) ∀ p ∈ BasisLocksAcq(u s−→ v), add an acquire(lm(p)) before s;
(b) ∀ p ∈ BasisLocksRel(u s−→ v), add a release(lm(p)) after s;
(c) ∀ p ∈ BreakLocks(u s−→ v), add an acquire(lm(p)) before s and a

release(lm(p)) after s.
All lock acquisitions along a given edge are added in an order consistent with
a total order established on all locks.

3.3 Correctness

Let L be a given library with a set of embedded assertions satisfied by all se-
quential executions of L. Let L̂ be the library obtained by augmenting L with
concurrency control using the algorithm presented in Section 3.2.

Theorem 1. (a) Any concurrent execution of L̂ satisfies every assertion of L.
(b) The library L̂ is deadlock-free.

See [5] for all proofs.
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4 Extensions for 2-State Assertions

The algorithm presented in the previous section can be extended to handle 2-
state assertions via a simple program transformation that allows us to treat
2-state assertions (in the original program) as single-state assertions (in the
transformed program). We augment the set of local variables with a new variable
ṽ for every (local or shared) variable v in the original program and add a primitive
statement LP at the entry of every procedure, whose execution essentially copies
the value of every original variable v to the corresponding new variable ṽ.

Let σ′ denote the projection of a transformed program state σ′ to a state of the
original program obtained by forgetting the values of the new variables. Given a
2-state assertion Φ, let Φ̃ denote the single-state assertion obtained by replacing
every vin by ṽ. As formalized by the claim below, the satisfaction of a 2-state
assertion Φ by executions in the original program corresponds to satisfaction of
the single-state assertion Φ̃ in the transformed program.

Lemma 1. (a) A schedule ξ is feasible in the transformed program iff it is feasi-
ble in the original program. (b) Let σ′ and σ be the states produced by a particular
schedule with the transformed and original programs, respectively. Then, σ = σ′.
(c) Let π′ and π be the executions produced by a particular schedule with the
transformed and original program, respectively. Then, π satisfies a single-state
assertion ϕ iff π′ satisfies it. Furthermore, π satisfies a 2-state assertion Φ iff
π′ satisfies the corresponding one-state assertion Φ̃.

Synthesizing concurrency control. We now apply the technique discussed in Sec-
tion 3 to the transformed program to synthesize concurrency control that pre-
serves the assertions transformed as discussed above. It follows from the above
Lemma that this concurrency control, used with the original program, preserves
both single-state and two-state assertions.

5 Guaranteeing Linearizability

In the previous section, we showed how to derive concurrency control to ensure
that each procedure satisfies its sequential specification even in a concurrent exe-
cution. However, this may still be too permissive, allowing interleaved executions
that produce counter-intuitive results and preventing compositional reasoning in
clients of the library. E.g., consider the procedure Increment shown in Fig. 2,
which increments a shared variable x by 1. The figure shows the concurrency con-
trol derived using our approach to ensure specification correctness. Now consider
a multi-threaded client that initializes x to 0 and invokes Increment concurrently
in two threads. It would be natural to expect that the value of x would be 2 at
the end of any execution of this client. However, this implementation permits an
interleaving in which the value of x at the end of the execution is 1: the problem
is that both invocations of Increment individually meet their specifications, but
the cumulative effect is unexpected. (We note that such concerns do not arise
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1 int x = 0;

2 //@ensures x == xin + 1 ∧ returns x
3 Increment () {

4 int tmp;

5 acquire(l(x==xin)); tmp = x; release(l(x==xin));

6 tmp = tmp + 1;

7 acquire(l(x==xin)); x = tmp; release(l(x==xin));

8 return tmp;

9 }

Fig. 2. A non-linearizable implementation of the procedure Increment

when the specification does not refer to shared variables. For instance, the speci-
fication for our example in Fig. 1 does not refer to shared variables, even though
the implementation uses shared variables.)

One solution to this problem is to apply concurrency control synthesis to the
code (library) that calls Increment. The synthesis can then detect the potential
for interference between the calls to Increment and prevent them from happen-
ing concurrently. Another possible solution, which we explore in this section,
is for the library to guarantee a stronger correctness criteria called linearizabil-
ity [12]. Linearizability gives the illusion that in any concurrent execution, (the
sequential specification of) every procedure of the library appears to execute
instantaneously at some point between its call and return. This illusion allows
clients to reason about the behavior of concurrent library compositionally using
its sequential specifications.

In this section, we extend our approach to derive concurrency control that
guarantees linearizability. Due to space constraints, we show how to ensure that
every procedure appears to execute instantaneously along its entry edge, while
satisfying its sequential specification. The technique can be generalized to permit
linearization points (i.e., the point at which the procedure’appears to execute
instantaneously) other than the procedure entry, subject to some constraints
(see [5]). Recall that we adapt the control-flow graph representation of each
procedure by labelling the procedure entry edge with the statement LP defined
in Section 4 to handle 2-state assertions. Without loss of generality, we assume
that each procedure Pj returns the value of a special local variable retj .

We start by characterizing non-linearizable interleavings permitted by our ear-
lier approach. We classify the interleavings based on the nature of linearizability
violations they cause. For each class of interleavings, we describe an extension
to our approach to generate additional concurrency control to prohibit these
interleavings.

Delayed Falsification. Informally, the problem with the Increment example can
be characterized as “dirty reads” and “lost updates”: the second procedure invo-
cation executes its linearization point later than the first procedure invocation
but reads the original value of x, instead of the value produced by the the first
invocation. Dually, the update done by the first procedure invocation is lost,
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when the second procedure invocation updates x. From a logical perspective,
the second invocation relies on the invariant x == xin early on, and the first
invocation breaks this invariant later on when it assigns to x (at a point when
the second invocation no longer relies on the invariant). This prevents us from
reordering the execution to construct an equivalent sequential execution (while
preserving the proof).

The extension we now describe prevents such interference by ensuring that
instructions that may falsify predicates and occur after the linearization point
appear to execute atomically at the linearization point. We achieve this by mod-
ifying the strategy to acquire locks as follows.

– We generalize the earlier notion of may-falsify. We say that a path may-
falsify a predicate ϕ if some edge in the path may-falsify ϕ. We say that a
predicate ϕ may-be-falsified-after vertex u if there exists some path from u
to the exit vertex of the procedure that does not contain any linearization
point and may-falsify ϕ.

– Let mf be a predicate map such that for any vertex u, mf(u) includes any
predicate that may-be-falsified-after u.

– We generalize the original scheme for acquiring locks. We augment every
edge e = u

S−→ v as follows:
1. ∀ � ∈ lm(mf(v))\lm(mf(u)), add an “acquire(�)” before S
2. ∀ � ∈ lm(mf(u))\lm(mf(v)), add an “release(�)” after S

This extension suffices to produce a linearizable implementation of the example
in Fig. 2.

Return Value Interference. We now focus on interference that can affect the
actual value returned by a procedure invocation, leading to non-linearizable exe-
cutions.

Consider procedures IncX and IncY in Fig. 5, which increment variables x
and y respectively. Both procedures return the values of x and y. However, the
postconditions of IncX (and IncY) do not specify anything about the final value of
y (and x respectively). Let us assume that the linearization points of the proce-
dures are their entry points. Initially, we have x = y = 0. Consider the following
interleaving of a concurrent execution of the two procedures. The two procedures
execute the increments in some order, producing the state with x = y = 1. Then,
both procedures return (1, 1). This execution is non-linearizable because in any
legal sequential execution, the procedure executing second is obliged to return a
value that differs from the value returned by the procedure executing first. The
left column in Fig. 5 shows the concurrency control derived using our approach
with previously described extensions. This is insufficient to prevent the above
interleaving. This interference is allowed because the specification for IncX al-
lows it to change the value of y arbitrarily; hence, a concurrent modification to
y by any other procedure is not seen as a hindrance to IncX.

To prohibit such interferences within our framework, we need to determine
whether the execution of a statement s can potentially affect the return-value of
another procedure invocation. We do this by computing a predicate φ(ret ′) at
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int x, y;

IncX() {
acquire(lx==xin);

x = x + 1;

(ret11,ret12)=(x,y);
release(lx==xin);

}
IncY() {
acquire(ly==yin);

y = y + 1;

(ret21,ret22)=(x,y);
release(ly==yin);

}

(a)

int x, y;

@ensures x = xin + 1

@returns (x, y)

IncX() {
[ret′11==x+1 ∧ ret′12==y]
LP : x = xin

[x==xin ∧ ret′11==x+1 ∧ ret′12=y]
x = x + 1;

[x==xin+1 ∧ ret′11==x ∧ ret′12= y]

(ret11,ret12)=(x,y);
[x==xin+1 ∧ ret11==ret

′
11

∧ ret12==ret
′
12]

}

(b)

int x, y;

IncX() {
acquire(lmerged);
x = x+1;

(ret11,ret12)=(x,y);
release(lmerged);

}
IncY() {
acquire(lmerged);
y = y+1;

(ret21,ret22)=(x,y);
release(lmerged);

}

(c)

Fig. 3. An example illustrating return value interference. Both procedures return
(x,y). retij refers to the jth return variable of the ith procedure. Figure 3(a) is a
non-linearizable implementation synthesized using the approach described in Section 3.
Figure 3(b) shows the extended proof of correctness of the procedure IncX and Fig-
ure 3(c) shows the linearizable implementation.

every program point u that captures the relation between the program state at
point u and the value returned by the procedure invocation eventually (denoted
by ret ′). We then check if the execution of a statement s will break predicate
φ(ret ′), treating ret ′ as a free variable, to determine if the statement could affect
the return value of some other procedure invocation.

Formally, we assume that each procedure returns the value of a special variable
ret . (Thus, “return exp” is shorthand for “ret = exp”.) We introduce a special
primed variable ret ′. We compute a predicate φ(u) at every program point u
such that (a) φ(u) = ret ′== ret for the exit vertex u, and (b) for every edge
u

s−→ v, {φ(u)}s{φ(v)} is a valid Hoare triple. In this computation, ret ′ is treated
as a free variable. In effect, this is a weakest-precondition computation of the
predicate ret ′== ret from the exit vertex.

Next, we augment the basis at every vertex u so that it includes a basis for
φ(u) as well. We now apply our earlier algorithm using this enriched basis set.

The middle column in Fig. 5 shows the augmented sequential proof of cor-
rectness of IncX. The concurrency control derived using our approach starting
with this proof is shown in the third column of Fig. 5. The lock lmerged denotes a
lock obtained by merging locks corresponding to multiple predicates simultane-
ously acquired/released. It is easy to see that this implementation is linearizable.
Also note that if the shared variables y and x were not returned by procedures
IncX and IncY respectively, we will derive a locking scheme in which accesses
to x and y are protected by different locks, allowing these procedures to execute
concurrently.

Control Flow Interference. An interesting aspect of our scheme is that it permits
interference that alters the control flow of a procedure invocation if it does not
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1 int x, y;

2 //@ensures y = yin + 1
3 IncY () {

4 [true] LP : yin = y

5 [y == yin] y = y + 1;

6 [y == yin + 1]
7 }

1 //@ensures x < y
2 ReduceX () {

3 [true] LP
4 [true] if (x ≥ y) {

5 [true] x = y - 1;

6 }

7 [x < y]
8 }

Fig. 4. An example illustrating interference in control flow. Each line is annotated (in
square braces) with a predicate the holds at that program point.

cause the invocation to violate its specification. Consider procedures ReduceX
and IncY shown in Fig. 4. The specification of ReduceX is that it will produce a
final state where x < y, while the specification of IncY is that it will increment
the value of y by 1. ReduceX meets its specification by setting x to be y− 1, but
does so only if x ≥ y.

Now consider a client that invokes ReduceX and IncY concurrently from a
state where x = y = 0. Assume that the ReduceX invocation enters the proce-
dure. Then, the invocation of IncY executes completely. The ReduceX invocation
continues, and does nothing since x < y at this point.

Fig. 4 shows a sequential proof and the concurrency control derived by the
scheme so far, assuming that the linearization points are at the procedure entry.
A key point to note is that ReduceX’s proof needs only the single predicate
x < y. The statement y = y + 1 in IncY does not falsify the predicate x < y;
hence, IncY does not acquire the lock for this predicate. This locking scheme
permits IncY to execute concurrently with ReduceX and affect its control flow.
While our approach guarantees that this control flow interference will not cause
assertion violations, proving linearizability in the presence of such control flow
interference, in the general case, is challenging (and an open problem). Therefore,
we conservatively extend our scheme to prevent control flow interference, which
suffices to guarantee linearizability.

We ensure that interference by one thread does not affect the execution path
another thread takes. We achieve this by strengthening the notion of positive
basis as follows: (a) The set of basis predicates at a branch node must be suf-
ficient to express the assume conditions on outgoing edges using disjunctions
and conjunctions over the basis predicates, and (b) The set of basis predicates
at neighbouring vertices must be positively consistent with each other: for any
edge u

s−→ v, and any predicate ϕ in the basis at v, the weakest-pre-condition of
ϕ with respect to s must be expressible using disjunctions and conjunctions of
the basis predicates at u.

In the current example, this requires predicate x ≥ y to be added to the basis
for ReduceX. As a result, ReduceX will acquire lock lx≥y at entry, while IncY
will acquire the same lock at its linearization point and release the lock after the
statement y = y + 1. It is easy to see that this implementation is linearizable.
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Correctness. The extensions described above to the algorithm of Sections 3
and 4 for synthesizing concurrency control are sufficient to guarantee lineariz-
ability, as stated in the theorem below.

Theorem 2. Given a library L that is totally correct with respect to a given
sequential specification, the library L̂ generated by our algorithm is linearizable
with respect to the given specification.

6 Implementation

We have built a prototype implementation of our algorithm that uses a predicate-
abstraction based software verification tool [9] to generate the required proofs.
Our implementation takes a sequential library and its assertions as input. It uses
a pre-processing phase to combine the library with a harness (that simulates the
execution of any possible sequence of library calls) to get a valid C program. It
then use the verification tool to generate a proof of correctness for this program.
It then uses the algorithm presented in this paper to synthesize concurrency
control for the library.

We used a set of benchmark programs to evaluate our approach. The programs
include examples shown in Figure 1, 5 and 4. We also used two real world
libraries, a device cache library [6] that reads data from a device and caches the
data for subsequent reads, and a C implementation of the Simple Authentication
and Security Layer (SASL). This library is a generic server side library that
manages security context objects for user sessions. We applied our technique
manually to the device cache library and the SASL library because the model
checker we used does not permit quantifiers in specifications. For these libraries,
we wrote full specifications (which required using quantified predicates) and
manually generated proofs of correctness.

Starting with these (manually and automatically generated) proofs, the con-
currency control scheme we synthesized was identical to what an experienced
programmer would generate (in terms of the number and scope of locks). Our
solutions permit more concurrency as compared to naive solutions that use one
global lock or an atomic section around the body of each procedure. In all cases,
the concurrency control scheme we synthesize are the same or better than the
concurrency control defined by developers of the library. For example, in case
of the server store library, our scheme generates smaller critical sections and
identifies a larger number of critical sections that acquire different locks as com-
pared to the default implementation. The source code for all our examples and
their concurrent versions are available online at [1]. We leave a more detailed
evaluation of our approach as future work.

7 Related Work

Synthesizing Concurrency Control. Most existing work [8,3,7,15,13,19] on
synthesizing concurrency control focuses on inferring lock-based synchronization
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for atomic sections to guarantee atomicity. Our work differs in expoiting a (se-
quential) specification to derive concurrency control. We also present an extension
to guarantee linearizability with respect to a sequential specification, which is a
weaker requirement that permits greater concurrency than the notion of atomic
sections. Furthermore, existing lock inference schemes identify potential conflicts
between atomic sections at the granularity of data items and acquire locks to pre-
vent these conflicts, either all at once or using a two-phase locking approach. Our
approach is novel in using a logical notion of interference (based on predicates),
which can permit more concurrency. Finally, the locking disciplines we infer do not
necessarily follow two-phase locking, yet guarantee linearizability.

[18] describes a sketching technique to add missing synchronization by iter-
atively exploring the space of candidate programs for a given thread schedule,
and pruning the search space based on counterexample candidates. [14] uses
model-checking to repair errors in a concurrent program by pruning erroneous
paths from the control-flow graph of the interleaved program execution. In [21],
the key goal is to obtain a maximally concurrent program for a given cost. This
is achieved by deleting transitions from the state-space based on observational
equivalence between states, and inspecting if the resulting program satisfies the
specification and is implementable. [4] allows users to specify synchronization
patterns for critical sections, which are used to infer appropriate synchroniza-
tion for each of the user-identified region. Vechev et al. [20] address the problem
of automatically deriving linearizable objects with fine-grained concurrency, us-
ing hardware primitives to achieve atomicity. The approach is semi-automated,
and requires the developer to provide algorithm schema and insightful manual
transformations. Our approach differs from all of these techniques in exploiting
a proof of correctness (for a sequential computation) to synthesize concurrency
control that guarantees thread-safety.

Verifying Concurrent Programs. Our proposed style of reasoning is closely
related to the axiomatic approach for proving concurrent programs of Owicki &
Gries [17]. While they focus on proving a concurrent program correct, we focus
on synthesizing concurrency control. They observe that if two statements do not
interfere, the Hoare triple for their parallel composition can be obtained from the
sequential Hoare triples. Our approach identifies statements that may interfere
and violate the sequential Hoare triples, and then synthesizes concurrency control
to ensure that sequential assertions are preserved by parallel composition.

Prior work on verifying concurrent programs [16] has also shown that attach-
ing invariants to resources (such as locks and semaphores) can enable modu-
lar reasoning about concurrent programs. Our paper turns this around: we use
sequential proofs (which are modular proofs, but valid only for sequential ex-
ecutions) to identify critical invariants and create locks corresponding to such
invariants and augment the program with concurrency control that enables us
to lift the sequential proof into a valid proof for the concurrent program.
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Abstract. We describe a symbolic heap abstraction that unifies reason-
ing about arrays, pointers, and scalars, and we define a fluid update
operation on this symbolic heap that relaxes the dichotomy between
strong and weak updates. Our technique is fully automatic, does not
suffer from the kind of state-space explosion problem partition-based
approaches are prone to, and can naturally express properties that hold
for non-contiguous array elements. We demonstrate the effectiveness of
this technique by evaluating it on challenging array benchmarks and
by automatically verifying buffer accesses and dereferences in five Unix
Coreutils applications with no annotations or false alarms.

1 Introduction

In existing work on pointer and shape analysis, there is a fundamental distinction
between two kinds of updates to memory locations: weak updates and strong
updates [1–4]. A strong update overwrites the old content of an abstract memory
location l with a new value, whereas a weak update adds new values to the
existing set of values associated with l. Whenever safe, it is preferable to apply
strong updates to achieve better precision.

Applying strong updates to abstract location l requires that l correspond to ex-
actly one concrete location. This requirement poses a difficulty for applying strong
updates to (potentially) unbounded data structures, such as arrays and lists, since
the number of elements may be unknown at analysis time. Many techniques com-
bine all elements of an unbounded data structure into a single summary location
and only allow weak updates [2, 5, 6]. More sophisticated techniques, such as anal-
yses based on 3-valued logic [3], first isolate individual elements of an unbounded
data structure via a focus operation to apply a strong update, and the isolated el-
ement is folded back into the summary location via a dual blur operation to avoid
creating an unbounded number of locations. While such an approach allows pre-
cise reasoning about unbounded data structures, finding the right focus and blur
strategies can be challenging and hard to automate [3].
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In this paper, we propose a way of relaxing the dichotomy between applying
weak vs. strong updates to a particular kind of unbounded data structure, arrays,
by introducing fluid updates. Fluid updates can always be safely applied regard-
less of whether a given abstract memory location represents a single concrete
location or an array. Three key ideas underpin fluid updates:

1. Arrays are modeled as abstract locations qualified by index variables ; con-
straints on index variables specify which concrete elements are referred to
by a points-to edge.

2. In general, we may not know the exact subset of concrete elements updated
by a statement. To deal with this uncertainty, each points-to edge is qualified
by a pair of constraints 〈φNC, φSC〉, called bracketing constraints, over- and
underapproximating the subset of concrete elements selected by this edge.

3. To apply a fluid update, we compute a bracketing constraint 〈φNC, φSC〉 repre-
senting over- and underapproximations for the set of concrete elements
updated by a statement. A fluid update preserves all existing points-to edges
under the negation of the update condition, i.e.,¬〈φNC, φSC〉=〈¬φSC,¬φNC〉,
while applying the update under 〈φNC, φSC〉.

An important property of bracketing constraints is that the intersection of a
bracketing constraint B and its negation ¬B is not necessarily empty (see Section
2.1). For array elements in the intersection, both the new value is added and the
old values are retained—i.e., a weak update is performed. Because fluid updates
rely on negation, having both over- and underapproximations (or equivalently,
necessary and sufficient conditions) is crucial for the correctness of our approach.

If the concrete elements updated by a statement s are known exactly, i.e.,
φNC and φSC are the same, the fluid update represents a strong update to some
set of elements in the array. On the other hand, if nothing is known about the
update condition, i.e., 〈φNC, φSC〉 = 〈true, false〉, the fluid update is equivalent to
a weak update to all elements in the array. Otherwise, if only partial information
is available about the concrete elements modified by s, the fluid update encodes
this partial information soundly and precisely. Consider the following example:

void send_packets(struct packet** buf, int c, int size) {

assert(2*c <= size);

for(int j=0; j< 2*c; j+=2)

if(transmit_packet(buf[j]) == SUCCESS) {free(buf[j]); buf[j] = NULL;}

}

The function send packets takes an array buf of packet∗’s, an integer c rep-
resenting the number of high-priority packets to be sent, and an integer size,
denoting the number of elements in buf. All even indices in buf correspond to
high-priority packets whereas all odd indices are low-priority.1 This function sub-
mits one high-priority packet at a time; if the transfer is successful (which may
1 The distinction between even and odd-numbered elements in a network buffer arises

in many real network applications, for example in packet scheduling [7] and p2p
video streaming [8] .
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depend on network traffic), it sets the corresponding element in buf to NULL to
indicate the packet has been processed.

The figure above shows the symbolic heap abstraction at the entry of send packets.
Here, nodes represent abstract locations named by access paths [9], and edges de-
note points-to relations. Because either the source or target of an edge may be a
set, we write constraints on edges to indicate which elements of the source point
to which elements of the target. In the figure, the dereference of buf is an array,
hence, it is qualified by an index variable i; the location named 〈∗buf〉i represents
all elements of array ∗buf. By convention, primed index variables on an edge qual-
ify the edge’s target, and unprimed index variables qualify the source. If the over-
and underapproximations on an edge are the same, we write a single constraint
instead of a pair. In this graph, the edge from buf to 〈∗buf〉i is qualified by i′ = 0
because buf points to the first element of array 〈∗buf〉i. The constraint i = i′ on
the edge from 〈∗buf〉i to ∗〈∗buf〉i indicates that the i’th element of array ∗buf
points to some corresponding target called ∗〈∗buf〉i.

The concrete elements modified by the statement buf[j] = NULL cannot be
specified exactly at analysis time since the success of transmit packet depends
on an environment choice (i.e., network state). The loop may, but does not
have to, set all even elements between 0 and 2c to NULL. Hence, the best over-
approximation of the indices of ∗buf modified by this statement is 0 ≤ i <

2c ∧ i%2 = 0. On the other hand, the best underapproximation of the set of
indices updated in the loop is the empty set (indicated by the constraint false)
since no element is guaranteed to be updated by the statement buf[j] = NULL.

Figure 1 shows the symbolic heap abstraction at the end of send packets. Since
the set of concrete elements that may be updated by buf[j] = NULL is given by
〈0 ≤ i < 2c ∧ i%2 = 0, false〉, the fluid update adds an edge from 〈∗buf〉i to ∗NULL
under this bracketing constraint. The existing edge from 〈∗buf〉i to ∗〈∗buf〉i is
preserved under ¬〈0 ≤ i < 2c ∧ i%2 = 0, false〉. Now, the complement (negation)
of an overapproximation is an underapproximation of the complement; similarly
the complement of an underapproximation is an overapproximation of the com-
plement. Thus, assuming i ≥ 0, this is equivalent to 〈true, i ≥ 2c∨ i%2 �= 0〉. Since
the initial constraint on the edge stipulates i = i′, the edge constraint after the
fluid update becomes 〈i = i′, (i ≥ 2c ∨ i%2 �= 0) ∧ i = i′〉. The new edge condi-
tion correctly and precisely states that any element of ∗buf may still point to
its original target when the function exits, but only those elements whose index
satisfies the constraint i ≥ 2c or i%2 �= 0 must point to their original target. As
this example illustrates, fluid updates have the following characteristics:

– Fluid updates do not require concretizing individual elements of an array to
perform updates, making operations such as focus and blur unnecessary.

– Fluid updates never construct explicit partitions of an array, making this
approach less vulnerable to the kind of state space explosion problem that
partition-based approaches, such as [3], are prone to.
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Fig. 1. The points-to graph at the end of function send packets

– Fluid updates preserve partial information despite imprecision and uncer-
tainty. In the above example, although the result of transmit packet is un-
known, the analysis can still determine that no odd packet is set to NULL.

– Fluid updates separate the problem of determining which concrete elements
are updated from how the update is performed. Fluid updates are oblivious
to the precision of the over- and underapproximations, and retain the best
possible information with respect to these approximations. In the above ex-
ample, a less precise overapproximation, such as 0 ≤ i < 2c, would not affect
the way updates are performed.

This paper is organized as follows: Section 2 defines a simple language and in-
troduces basic concepts. Section 3 formalizes the symbolic heap abstraction,
Section 4 presents the basic pointer and value analysis based on fluid updates,
and Section 5 discusses treatment of loops. Section 6 discusses a prototype im-
plementation, Section 7 presents our experimental results, and Section 8 surveys
related work. To summarize, this paper makes the following key contributions:

– We introduce fluid updates as a viable alternative to the dichotomy be-
tween weak vs. strong updates, and we describe an expressive memory anal-
ysis based on symbolic heap abstraction that unifies reasoning about arrays,
pointers, and scalars. (We do not, however, address recursive pointer-based
data structures in this paper.)

– We propose bracketing constraints to allow a sound negation operation when
performing updates in the presence of imprecision and uncertainty.

– We demonstrate our technique is precise and efficient for reasoning about
values and points-to targets of array elements. Furthermore, our technique
is fully automatic, requiring no annotations or user-provided predicates.

– We show the effectiveness of our approach by verifying the safety of buffer
accesses and dereferences fully automatically in five Unix Coreutils applica-
tions that manipulate arrays and pointers in intricate ways.

2 Language and Preliminaries

We first define a small imperative language in which we formalize our technique:
Program P := F+

Function F := define f(v1, . . . , vn) = S
Statement S := S1; S2 | v1 = v2 |v1 = c | v1 = alloc(v2) |v1 = v2[v3] | v2[v3] = v1

| v1 = v2 ⊕ v3 |v1 = v2 intop v3 | v1 = v2 predop v3 |
if v �= 0 then S1 else S2 | while v �= 0 do S end
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In this grammar, v is a variable, and c is an integer constant. Types are defined by
the grammar τ := int | pointer(array(τ )). Load (v1 = v2[v3]) and store (v2[v3] = v1)
statements are defined on pointers v2 and integers v3, and we assume programs
are well-typed. v[i] first dereferences v and then selects the i’th element of the
array pointed to by v. Pointer arithmetic v1 = v2 ⊕ v3 makes v1 point to offset
v3 in the array pointed to by v2. Integer operations (intop) include +,−, and
×. Predicate operators (predop) are =, �= and <, and predicates evaluate to 0
(false) or 1 (true). The alloc(v2) statement allocates an array with v2 elements.

An operational semantics for this language is given in the extended version
of this paper [30]. In the concrete semantics, a concrete location lc is a pair
(s, i) where s is a start address for a block of memory and i is an offset from s.
An environment E maps program variables to concrete locations, and a store S
maps locations to other locations or integer values. Due to space limitations, we
omit function calls from our formal discussion; Section 6 discusses how we treat
function calls in the implementation.

2.1 Constraint Language

The constraints used in the analysis are defined by:

Term T := c | v | T1 intop T2 |select(T1, T2) | deref(T )
Literal L := true | false |T1 predop T2 | T%c = 0
Atom A := L | ¬A | A1 ∧ A2 | A1 ∨A2

Constraint C := 〈ANC, ASC〉

Terms are constants, variables, arithmetic terms, and the uninterpreted function
terms select(T1, T2), and deref(T ). Terms are used to represent scalars, pointers,
and arrays; the uninterpreted function term select(T1, T2) represents the result
of selecting element at index T2 of array T1, and the term deref(T ) represents
the result of dereferencing T .

Literals are true, false, comparisons (=, �=, <) between two terms, and divisi-
bility checks on terms. Atomic constraints A are arbitrary boolean combinations
of literals. Satisfiability and validity of atomic constraints are decided over the
combined theory of uninterpreted functions and linear integer arithmetic ex-
tended with divisibility (mod) predicates. Bracketing constraints C are pairs of
atomic constraints of the form 〈ANC, ASC〉 representing necessary and sufficient
conditions for some fact. A bracketing constraint is well-formed if and only if
ASC ⇒ ANC. We write �φ� to denote the necessary condition of a bracketing
constraint φ and �φ to denote the sufficient condition of φ.

Example 1. Consider an edge from location 〈∗a〉i to ∗NULL qualified by 〈0 ≤ i <
size, 0 ≤ i < size〉.This constraint expresses that all elements of the array with
indices between 0 and size are NULL. Since it is sufficient that i is between 0 and
size for 〈∗a〉i to point to ∗NULL, it follows that all elements in this range are NULL.
On the other hand, if the constraint on the edge is 〈0 ≤ i < size, false〉, any
element in the array may be NULL, but no element must be NULL.
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Boolean operators ¬,∧, and ∨ on bracketing constraints are defined as:

¬〈ANC, ASC〉 = 〈¬ASC,¬ANC〉
〈ANC1, ASC1〉 � 〈ANC2, ASC2〉 = 〈ANC1 � ANC2, ASC1 � ASC2〉 (� ∈ {∧,∨})

Since the negation of the overapproximation for some set S is an underapproxi-
mation for the complement of S, necessary and sufficient conditions are swapped
under negation. The following lemma is easy to show:

Lemma 1. Bracketing constraints preserve the well-formedness property ASC ⇒
ANC under boolean operations.

Satisfiability and validity are defined in the following natural way:

SAT(〈ANC, ASC〉) ≡ SAT(ANC) VALID(〈ANC, ASC〉) ≡ VALID(ASC)

Lemma 2. Bracketing constraints do not obey the law of the excluded middle
and non-contradiction, but they satisfy the following weaker properties:

VALID(�〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉�) UNSAT(�〈ANC, ASC〉 ∧ ¬〈ANC, ASC〉�)

Proof. �〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉� is (ANC ∨ ¬ASC)⇔ (ASC ⇒ ANC) ⇔ true, where
the last equivalence follows from well-formedness. Similarly, �〈ANC, ASC〉∧¬〈ANC, ASC〉�
is (ASC∧¬ANC) ⇔ false, where the last step follows from the well-formedness property.

3 Symbolic Heap Abstraction

Abstract locations are named by access paths [9] and defined by the grammar:

Access Path π := Lv | allocid | 〈π〉i | ∗ π | c | π1 intop π2 | �

Here, Lv denotes the abstract location corresponding to variable v, and allocid

denotes locations allocated at program point id. Any array location is represented
by an access path 〈π〉i, where π represents the array and i is an index variable
ranging over the indices of π (similar to [22]). The location ∗π represents the
dereference of π. The access path c denotes constants, π1 intop π2 represents the
result of performing intop on π1 and π2, and � denotes any possible value.

A memory access path, denoted πmem, is any access path that does not in-
volve c, π1 intop π2, and �. We differentiate memory access paths because only
locations that are identified by memory access paths may be written to; other
kinds of access paths are only used for encoding values of scalars.

Given a concrete store S and an environment E mapping program variables
to concrete locations, a function γ maps abstract memory locations to a set of
concrete locations (s1, i1) . . . (sk, ik):

γ(E,S, Lv) = {E(v)}
γ(E,S, allocid) = {(l, 0) | l is the result of allocation at program point id }
γ(E,S, 〈π〉i) = {(l, indexj)| (l, indexj) ∈ S ∧ (l, 0) ∈ γ(E, S, π))}
γ(E,S, ∗π) =

⋃
li∈γ(E,S,π) S(li)
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Since we will concretize abstract memory locations under a certain assumption
about their index variables, we define another function γc, similar to γ but
qualified by constraint φ. The only interesting modification is for 〈π〉i:

γc(E,S, 〈π〉i, φ)={(l, indexj)| (l, indexj)∈S∧(l, 0) ∈ γc(E, S, π, φ) ∧ SAT(φ[indexj/i])}
As is standard in points-to graphs, we enforce that for any two memory access
paths, either πmem = π′mem or γ(E, S, πmem) ∩ γ(E,S, π′

mem) = ∅.
A symbolic heap abstraction is a directed graph where nodes denote abstract

locations identified by access paths and edges qualified by bracketing constraints
denote points-to relations. Since we want to uniformly encode points-to and value
information, we extend the notion of points-to relations to scalars. For example,
if an integer a has value 3, the symbolic heap abstraction contains a “points-to”
edge from a’s location to some location named *3, thereby encoding that the
value of a is 3. Hence, the symbolic heap encodes the value of each scalar.

Formally, a symbolic heap abstraction is defined by

Γ : πmem → 2(π,φ)

mapping a source location to a set of (target location, constraint) pairs. The
edge constraint φ may constrain program variables to encode the condition un-
der which this points-to relation holds. More interestingly, φ may also qualify
the source and the target location’s index variables, thereby specifying which
elements of the source may (and must) point to which elements of the target.

The combination of indexed locations and edge constraints parametric over
these index variables makes the symbolic heap abstraction both very expressive
but also non-trivial to interpret. In particular, if the source location is an array,
we might want to determine the points-to targets of a specific element (or some
of the elements) in this array. However, the symbolic heap abstraction does not
directly provide this information since edge constraints are parametric over the
source and the target’s index variables. Consider the following points-to relation:

Suppose we want to know which location(s) the fourth element of array 〈∗a〉i1
points to. Intuitively, we can determine the target of the fourth element of 〈∗a〉i1
by substituting the index variable i1 by value 3 in the edge constraint 0 ≤ i1 <
5 ∧ i′2 = i1 + 1. This would yield i′2 = 4, indicating that the fourth element of
〈∗a〉i points to the target of the fifth element of 〈∗b〉i2 .

While a simple substitution allows us to determine the target of a specific
array element as in the above example, in general, we need to determine the
targets of those array elements whose indices satisfy a certain constraint. Since
this constraint may not limit the index variable to a single value, determining
points-to targets from an indexed symbolic heap abstraction requires existential
quantifier elimination in general. In the above example, we can determine the
possible targets of elements of 〈∗a〉i1 whose indices are in the range [0, 3] (i.e.,
satisfy the constraint 0 ≤ i1 ≤ 3) by eliminating i1 from the following formula:

∃i1.(0 ≤ i1 ≤ 3 ∧ (0 ≤ i1 < 5 ∧ i′2 = i1 + 1))
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This yields 1 ≤ i′2 ≤ 4, indicating that the target’s index must lie in the range
[1, 4]. To formalize this intuition, we define an operation φ1 ↓I φ2, which yields
the result of restricting constraint φ1 to only those values of the index variables
I that are consistent with φ2.

Definition 1. (φ1 ↓I φ2) Let φ1 be a constraint qualifying a points-to edge and
let φ2 be a constraint restricting the values of index variables I. Then,

φ1 ↓I φ2 ≡ Eliminate(∃I. φ1 ∧ φ2)

where the function Eliminate performs existential quantifier elimination.

The quantifier elimination performed in this definition is exact because index
variables qualifying the source or the target never appear in uninterpreted func-
tions in a valid symbolic heap abstraction; thus the elimination can be performed
using [10].

4 Pointer and Value Analysis Using Fluid Updates

In this section, we give deductive rules describing the basic pointer and value
analysis using fluid updates. An invariant mapping Σ : Var → πmem maps
program variables to abstract locations, and the environment Γ defining the
symbolic heap abstraction maps memory access paths to a set of (access path,
constraint) pairs. Judgments Σ � a : La indicate that variable a has abstract
location La, and judgments Γ �j πs : 〈πtj ,φj 〉 state that 〈πtj , φj〉 ∈ Γ (πs). Note
that there may be many 〈πtj , φj〉 pairs in Γ (πs), and this form of judgment is
used in the rules to refer to each of them without needing to use sets.

We first explain some notation used in Figure 2. The function U(φ) replaces
the primed index variables in constraint φ with their unprimed counterparts, e.g.,
U(i′1 = 2) is (i1 = 2); this is necessary when traversing the points-to graph because
the target location of an incoming edge becomes the source of the outgoing edge
from this location. We use the notation Γ ∧ φ as shorthand for:

Γ ′(π) = {〈πl, φl ∧ φ〉 | 〈πl, φl〉 ∈ Γ (π)}

A union operation Γ = Γ ′ ∪ Γ ′′ on symbolic heap abstractions is defined as:
〈π′, φ′ ∨ φ′′〉 ∈ Γ (π) ⇔ 〈π′, φ′〉 ∈ Γ ′(π) ∧ 〈π′, φ′′〉 ∈ Γ ′′(π).

We write I(π) to denote the set of all index variables used in π, and we say “i
is index of π” if i is the outermost index variable in π.

The basic rules of the pointer and value analysis using fluid updates are pre-
sented in Figure 2. We focus mainly on the inference rules involving arrays,
since these rules either directly perform fluid updates (Array Store) or rely on
the constraint and index-based representation that is key for fluid updates.

We start by explaining the Array Load rule. In this inference rule, each π2j

represents one possible points-to target of v2 under constraint φ2j . Because π2j

is an array, the constraint φ2j qualifies π2j ’s index variables. Each π3k
repre-

sents one possible (scalar) value of v3. Since we want to access the element
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Assign

Σ � v1 : Lv1 , v2 : Lv2
Γ ′ = Γ [Lv1 ← Γ (Lv2 )]

Σ, Γ � v1 = v2 : Γ ′

Alloc

Σ � v1 : Lv1
Γ ′ = Γ [Lv1 ← 〈allocid〉i] ∧ i′ = 0 (i fresh)

Σ, Γ � v1 = alloc(v2) : Γ ′

Array Load

Σ � v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ �j Lv2 : 〈π2j

, φ2j
〉 (i index of π2j

)

Γ �k Lv3 : 〈∗π3k
, φ3k

〉
Γ �l π2j

: 〈πtjl
, φtjl

〉
φ′

2jk
= U(φ2j

[i′ − π3k
/i′])

φ′
tjkl

= φtjl
↓I(π2j

) φ′
2jk

Γ ′ = Γ [Lv1 ← (
S

jkl〈πtjl
, φ′

tjkl
∧ φ3k

〉)]

Σ, Γ � v1 = v2[v3] : Γ ′

Array Store (Fluid Update)

Σ � v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ �j Lv1 : 〈π1j

, φ1j
〉

Γ � Lv2 : {〈π21 , φ21 〉 . . . 〈π2n , φ2n 〉} (ik index of π2k
)

Γ �l Lv3 : 〈∗π3l
, φ3l
〉

Γ ′ =

8><
>:

π ← Γ (π) if π �∈ {π21 , . . . π2n}
π ← {〈π′

k, φ′
k ∧ ¬

W
kl(U(φ2k

[i′k − π3l
/i′k]) ∧ φ3l

)〉
| 〈π′

k, φ′
k〉 ∈ Γ (π2k

)} if π = π2k
∈ {π21 , . . . π2n}

Γ ′′ =

8<
:

π21 ← (
S

jl〈π1j
, U(φ21 [i′1 − π3l

/i′1]) ∧ φ3l
∧ φ1j

〉)
. . .
π2n ← (

S
jl〈π1j

, U(φ2n [i′n − π3l
/i′n]) ∧ φ3l

∧ φ1j
〉)

Σ, Γ � v2[v3] = v1 : Γ ′ ∪ Γ ′′

Pointer Arithmetic

Σ � v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ �j Lv2 : 〈π2j

, φ2j
〉

Γ �k Lv3 : 〈∗π3k
, φ3k

〉
φ′

2jk
= φ2j

[(i′ − π3k
)/i′] (i index of π2j

)

Γ ′ = Γ [Lv1 ← (
S

jk 〈π2j
, φ′

2jk
∧ φ3k

〉)]

Σ, Γ � v1 = v2 ⊕ v3 : Γ ′

Predop

Σ � v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ �j Lv2 : 〈∗π2j

, φ2k
〉 (rename all index variables to fresh f2)

Γ �k Lv3 : 〈∗π3k
, φ3k

〉 (rename all index variables to fresh f3)

φjk = (π2j
predop π3k

) ∧ φ2j
∧ φ3k

φtrue
jk = Eliminate(∃f2, f3. φjk)

Γ ′ = Γ [Lv1 ← (
S

jk〈∗1, φtrue
jk 〉 ∪ 〈∗0,¬φtrue

jk 〉)]
Σ, Γ � v1 = v2 predop v3 : Γ ′

If Statement

Σ � v : Lv

Γ � Lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ, Γ � S1 : Γ ′

Σ, Γ � S2 : Γ ′′

ΓT = Γ ′ ∧ φtrue

ΓF = Γ ′′ ∧ φfalse

Σ, Γ � if v �= 0 then S1 else S2 : ΓT ∪ ΓF

While Loop

ΓP = Parametrize(Γ )
Σ � v : Lv

ΓP � Lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ, ΓP � S : Γ ′′ Γ ′′′ = Γ ′′ ∧ φtrue

Δ = Γ ′′′ − ΓP Δn = fix(Δ)
Δgen = Generalize(Δn)
Γfinal = Γ ◦Δgen (Generalized Fluid Update)

Σ, Γ � while v �= 0 do S end : Γfinal

Fig. 2. Rules describing the basic analysis

at offset v3 of v2’s target, we select the element at offset v3 by substituting i′

with i′ − π3k
in the constraint φ2j , which effectively increments the value of i′

by π3k
. Now, we need to determine the targets of those elements of π2j whose

indices are consistent with φ′2jk
; hence, we compute φtjl

↓I(π2j
) φ
′
2jk

(recall Sec-
tion 3) for each target πtjl

of π2j . The following example illustrates this rule.

Fig. 3. Here, a points to the third element of an
array of size 10, whose first three elements have the
value 3 or 5, and the remaining elements are 0

Example 2. Consider perform-
ing t = a[1] on the symbolic heap
abstraction shown in Figure 3.
Here, Lv2 is the memory loca-
tion labeled a, the only target
π2j of Lv2 is 〈∗b〉i, and the only
π3k

is 1. The constraint φ′2jk
is

U((i′ = 2)[i′/i′ − 1]), which is
i = 3. Thus, we need to deter-
mine the target(s) of the fourth
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element in array 〈∗b〉i. There are three targets πtjl
of 〈∗b〉i: ∗3, ∗5, ∗0; hence,

we compute φ′tjkl
once for each πtjkl

. The only satisfiable edge under constraint
i = 3 is the edge to *0 and we compute Eliminate(∃i. 3 ≤ i < 10∧ i = 3), which is
true. Thus, the value of t is guaranteed to be 0 after this statement.

The Array Store rule performs a fluid update on an abstract memory location
associated with an array. In this rule, each π2k

∈ {π21 . . . π2n} represents an
array location, a subset of whose elements may be written to as a result of this
store. Γ ′ represents the symbolic heap abstraction after removing the points-to
edges from array elements that are written to by this store while preserving all
other edges, and Γ ′′ represents all edges added by this store. Hence, Γ ′ and
Γ ′′ are unioned to obtain the symbolic heap abstraction after the store. Note
that Γ ′ preserves the existing targets of any access path π �∈ {π21 . . . π2n}. The
points-to targets of those elements of π21 , . . . π2n that are not affected by this
store are also preserved in Γ ′ while elements that are written to by the store are
killed in Γ ′. This is because elements that are updated by the store must satisfy
U(φ2k [i′k − π3l/i′k])∧ φ3l for some k, l such that the edge to π′k is effectively killed
for those elements updated by the store. On the other hand, elements that are
not affected by the store are guaranteed not to satisfy U(φ2k [i′k − π3l/i′k])∧φ3l for
any k, l, i.e., ¬∨kl(U(φ2k [i′k − π3l/i′k]) ∧ φ3l) = false, and the existing edge to π′k
is therefore preserved. Note that negation is only used in the Fluid Update rule;
the soundness of negation, and therefore the correctness of fluid updates, relies
on using bracketing constraints.

Example 3. Consider the effect of the following store instructions
a[k] = 7; a[m] = 3;

on Figure 3. Suppose k and m are symbolic, i.e., their values are unknown. When
processing the statement a[k] = 7, the only location stored into, i.e., π2k

, is 〈∗b〉i.
The only π3l

is k under true, and the only π1j is ∗7 under true. The elements of
〈∗b〉i updated by the store are determined from U((i′ = 2)[i′ − k/i′]) = (i = k+2).
Thus, a new edge is added from 〈∗b〉i to ∗7 under i = k + 2 but all outgoing
edges from 〈∗b〉i are preserved under the constraint i �= k + 2. Thus, after this
statement, the edge from 〈∗b〉i to ∗3 and ∗5 are qualified by the constraint 〈0 ≤
i < 3∧ i �= k+2, false〉, and the edge to ∗0 is qualified by 3 ≤ i < 10∧ i �= k+2.
The instruction a[m] = 3 is processed similarly; Figure 4 shows the resulting

Fig. 4. Graph after processing the
statements in Example 3

Fig. 5. Colored rectangles illustrates the
partitions in Example 3; equations on the
left describe the ordering between variables
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symbolic heap abstraction after these store instructions. Note that if k = m, the
graph correctly reflects a[k] must be 3. This is because if k = m, the constraint
on the edge from 〈∗b〉i to ∗7 is unsatisfiable. Since the only other feasible edge
under the constraint i = k + 2 is the one to ∗3, k = m implies a[k] must be 3.

As Example 3 illustrates, fluid updates do not construct explicit partitions of the
heap when different symbolic values are used to store into an array. Instead, all
“partitions” are implicitly encoded in the constraints, and while the constraint
solver may eventually need to analyze all of the cases, in many cases it will not
because a query is more easily shown satisfiable or unsatisfiable for other rea-
sons. As a comparison, in Example 3, approaches that eagerly construct explicit
partitions may be forced to enumerate all partitions created due to stores using
symbolic indices. Figure 5 shows that eight different heap configurations arise
after performing the updates in Example 3. In fact, only one more store using a
symbolic index could create over 50 different heap configurations.

In the Pointer Arithmetic rule, the index variable i′ is replaced by i′ − π3k
in

the index constraint φ2j , effectively incrementing the value of i′ by v3. We also
discuss the Predop rule, since some complications arise when array elements are
used in predicates. In this rule, we make use of an operation π which converts
an access path to a term in the constraint language:

πR = πR if πR ∈ {c, Lv, allocid} ∗π = deref(π)
〈π〉i = select(π, i) π1 intop π2 = π1 intop π2

In this rule, notice that index variables used in the targets of Lv2 and Lv3

are first renamed to fresh variables f2 and f3 to avoid naming conflicts and
are then existentially quantified and eliminated similar to computing φ1 ↓I φ2.
The renaming of index variables is necessary since naming conflicts arise when
〈∗π2j , φ2j 〉 and 〈∗π3k

, φ3k
〉 refer to different elements of the same array.2

In the If Statement rule, observe that the constraint under which v �= 0
evaluates to true (resp. false) is conjoined with all the edge constraints in Γ ′

(resp. Γ ′′); hence, the analysis is path-sensitive. We defer discussion of the While
Loop rule until Section 5.

4.1 Soundness of the Memory Abstraction

We now state the soundness theorem for our memory abstraction. For a concrete
store S, we use the notation S(ls, lt) = true if S(ls) = lt and S(ls, lt) = false
otherwise. Similarly, we write Γ (πs, πt) = φ to denote that the bracketing con-
straint associated with the edge from πs to πt is φ, and φ is false if there is no
edge between πs and πt. Recall that I(π) denotes the set of index variables in
π, and we write σI(π) to denote some concrete assignment to the index variables

2 Quantifier elimination performed here may not be exact; but since we use brack-
eting constraints, we compute quantifier-free over- and underapproximations. For
instance, [11] presents a technique for computing covers of existentially quantified
formulas in combined theories involving uninterpreted functions. Another alterna-
tive is to allow quantification in our constraint language.
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in I(π); σ′I(π) is an assignment to I(π) with all index variables primed. The no-
tation σ(φ) applies substitution σ to φ. Finally, we use a function eval�(φ,E, S)
for � ∈ {+,−} which evaluates the truth value of the necessary and sufficient
conditions of constraint φ for some concrete environment E and concrete store
S; this function is precisely defined in [30].

Definition 2 (Agreement). We say a concrete environment and concrete store
(E,S) agrees with abstract environment and abstract store (Σ,Γ ) (written
(E,S) ∼ (Σ,Γ )) if and only if the following conditions hold:

1. E and Σ have the same domain
2. If S(ls, lt) = b and Γ (πs, πt) = 〈φ+, φ−〉, then for all substitutions σI(πs),

σ′I(πt) such that ls ∈ γc(E,S, πs, σI(πs)) and lt ∈ γc(E,S, πt, σ
′
I(πt)), we have:

eval−(σ′(σ(φ−)), E, S) ⇒ b ⇒ eval+(σ′(σ(φ+)), E, S)

Theorem 1 (Soundness). Let P be any program. If (E,S) ∼ (Σ,Γ ), then

E,S � P : S′ ⇒ (Σ,Γ � P : Γ ′ ∧ (E,S′) ∼ (Σ,Γ ′))

We sketch the proof of Theorem 1 in the extended version [30].

5 Fluid Updates in Loops

In loop-free code, a store modifies one array element, but stores inside a loop
often update many elements. In this section, we describe a technique to over-
and underapproximate the set of concrete elements updated in loops. The main
idea of our approach is to analyze the loop body and perform a fixed-point
computation parametric over an iteration counter. Once a fixed-point is reached,
we use quantifier elimination to infer elements that may and must be modified
by the loop.3

5.1 Parametrizing the Symbolic Heap Abstraction

When analyzing loops, our analysis first identifies the set of scalars modified by
the loop; we call such values loop-dependent scalars. We then infer equalities
relating each loop-dependent scalar to the unique iteration counter k for that
loop. The iteration counter k is assumed to be initialized to 0 at loop entry
and is incremented by one along the back edge of the loop. We say that a loop-
dependent value i is linear with respect to the loop if i − i0 = c ∗ k for some
constant c �= 0. We compute a set of equalities relating loop-dependent scalars
to the iteration counter using standard linear invariant generation techniques
[12, 13]. At loop entry, we use these linear equalities to modify Γ as follows:

3 In this section, we assume no pointer arithmetic occurs in loops; our implementation,
however, does not make this restriction.
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– Let π be a linear loop-dependent scalar with the linear relation π = π0+c∗k,
and let 〈∗πt, ct〉 ∈ Γ (π). Then, replace πt by πt + c ∗ k.

– Let π be a loop-dependent value not linear in k. Then, Γ (π) ← {〈�, true〉}.

Thus, all loop-dependent scalars are expressed in terms of their value at iteration
k or �; analysis of the loop body proceeds as described in Section 4.

Example 4. Consider the send packets function from Section 1. Here, we infer
the equality j = j0 + 2k, and Γ initially contains an edge from j to ∗(j0 + 2k).

5.2 Fixed-Point Computation

Next, we perform a fixed-point computation (parametric on k) over the loop’s
net effect on the symbolic heap abstraction. This is necessary because there may
be loop carried dependencies through heap reads and writes. We define the net
effect of the loop on the symbolic heap abstraction during some iteration k as
the effect set :

Definition 3. (Effect Set Δ) Let Γ ′ be a symbolic heap obtained by perform-
ing fluid updates on Γ . Let Δ = Γ ′−Γ be the set of edges such that if φ qualifies
edge e in Γ and φ′ qualifies e in Γ ′, then Δ includes e under constraint φ′ ∧ ¬φ
(where φ = false if e �∈ Γ ). We call Δ the effect set of Γ ′ with respect to Γ .

Example 5. Figure 6 shows the effect set of the loop in send packets after an-
alyzing its body once. (Edges with false constraints are not shown.) Note that
the constraints qualifying edges in this figure are parametric over k.

We define Γ ◦Δ as the generalized fluid update that applies Δ to Γ :

Definition 4. (Γ ◦ Δ) Let π be a location in Γ and let Sπ denote the edges in
Δ whose source is π. Let δ(Sπ) be the disjunction of constraints qualifying edges
in Sπ, and let I be the set of index variables used in the target locations in Sπ

but not the source. Let Update(π) = Eliminate(∃I.δ(Sπ)). Then, for each π ∈ Γ :

(Γ ◦Δ)[π] = (Γ (π) ∧ ¬Update(π)) ∪ Sπ

The above definition is a straightforward generalization of the fluid update op-
eration given in the Store rule of Figure 2. Instead of processing a single store,
it reflects the overall effect on Γ of a set of updates defined by Δ. The fixed-
point computation is performed on Δ. We denote an edge from location πs to
πt qualified by constraint φ as 〈πs, πt〉\φ. Since we compute a least fixed point,
〈πs, πt〉\〈false, true〉 ∈⊥ for all legal combinations (i.e., obeying type restrictions)

Fig. 6. The effect set after analyzing the loop body once in function send packets
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of all 〈πs, πt〉 pairs. Note that the edge constraints in ⊥ are the inconsistent
bounds 〈false, true〉 representing the strongest over- and underapproximations.
We define a � and $ on effect sets as follows:

〈πs, πt〉\〈(φnc1 ∨ φnc2), (φsc1 ∧ φsc2)〉 ∈ Δ1 �Δ2

⇐⇒
(〈πs, πt〉\〈φnc1, φsc1〉 ∈ Δ1 ∧
〈πs, πt〉\〈φnc2, φsc2〉 ∈ Δ2)

Δ1  Δ2

⇐⇒
((φnc1 ⇒ φnc2 ∧ φsc2 ⇒ φsc1)
∀〈πs, πt〉\〈φnc1, φsc1〉 ∈ Δ1 ∧
∀〈πs, πt〉\〈φnc2, φsc2〉 ∈ Δ2)

Let Γ0 be the initial symbolic heap abstraction before the loop. We compute
Γn

entry representing the symbolic heap on entry to the n’th iteration of the loop:

Γ n
entry =

{
Γ0 if n = 1
Γ0 ◦ (Δn−1[k − 1/k]) if n > 1

Γn
exit is obtained by analyzing the body of the loop using Γn

entry at the entry point
of the loop. In the definition of Γn

entry, the substitution [k− 1/k] normalizes the
effect set with respect to the iteration counter so that values of loop-dependent
scalars always remain in terms of their value at iteration k. We define Δn rep-
resenting the total effect of the loop in n iterations as follows:

Δn =
{⊥ if n = 0

(Γ n
exit − Γ n

entry) �Δn−1 if n > 0

First, observe that Δn−1 $ Δn by construction (monotonicity). Second, observe
the analysis cannot create an infinite number of abstract locations because (i)
arrays are represented as indexed locations, (ii) pointers can be dereferenced
only as many times as their types permit, (iii) all allocations are named by their
allocation site, and (iv) scalars are represented in terms of their linear relation to
k. However, our constraint domain does not have finite ascending chains, hence,
we define a widening operator on bracketing constraints (although widening was
never required in our experiments). Let β denote the unshared literals between
any constraint φ1 and φ2. Then, we widen bracketing constraints as follows:

φ1 # φ2 =
〈(�φ1� ∨ �φ2�)[true/β] ∨ (�φ1� ∨ �φ2�)[false/β],
(�φ1� ∧ �φ2�)[true/β] ∧ (�φ1� ∧ �φ2�)[false/β]〉

Example 6. The effect set obtained in Example 5 does not change in the second
iteration; therefore the fixed-point computation terminates after two iterations.

5.3 Generalization

In this section, we describe how to generalize the final effect set after a fixed-point
is reached. This last step allows the analysis to extrapolate from the elements
modified in the k’th iteration to the set of elements modified across all iterations
and is based on existential quantifier elimination.

Definition 5. (Generalizable Location) We say a location identified by π is
generalizable in a loop if (i) π is an array, (ii) if πi is used as an index in a store
to π, then πi must be a linear function of the iteration counter, and (iii) if two
distinct indices πi and πj may be used to store into π, then either only πi, or
only πj (or neither) is used to index π across all iterations.
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Intuitively, if a location π is generalizable, then all writes to π at different itera-
tions of the loop must refer to distinct concrete elements. Clearly, if π is not an
array, different iterations of the loop cannot refer to distinct concrete elements.
If an index used to store into π is not a linear function of k, then the loop may
update the same concrete element in different iterations. Furthermore, if two
values that do not have the same relation with respect to k are used to store
into π, then they may update the same element in different iterations.

In order to generalize the effect set, we make use of a variable N unique
for each loop that represents the number of times the loop body executes. If
the value of N can be determined precisely, we use this exact value instead of
introducing N . For instance, if a loop increments i by 1 until i ≥ size, then it is
easy to determine that N = size− i0, assuming the loop executes at least once.4

Finally, we generalize the effect set as follows:

– If an edge qualified by φ has a generalizable source whose target does not
mention k, the generalized constraint is φ′ = Eliminate(∃k. (φ ∧ 0 ≤ k < N)).

– If an edge qualified by φ does not have a generalizable source, the generalized
constraint is φ′ = Eliminate〈∃k. φ ∧ 0 ≤ k < N, ∀k. 0 ≤ k < N ⇒ φ〉5.

– If π is a loop-dependent scalar, then Δ[π] ← Δ[π][N/k].

We now briefly explain these generalization rules. If the source of an edge is gen-
eralizable, for each iteration of the loop, there exists a corresponding concrete el-
ement of the array that is updated during this iteration; thus, k is existentially
quantified in both the over- and underapproximation. The constraint after the ex-
istential quantifier elimination specifies the set of concrete elements updated by
the loop. If the source is not generalizable, it is unsafe to existentially quantify k
in the underapproximation since the same concrete element may be overwritten
in future iterations. One way to obtain an underapproximation is to universally
quantify k because if the update happens in all iterations, then the update must
happen after the loop terminates. According to the last rule, loop-dependent scalar
values are assigned to their value on termination. Once the effect set is generalized,
we apply it to Γ0 to obtain the final symbolic heap abstraction after the loop.

Example 7. Consider the effect set given in Figure 6. In the send packets func-
tion, 〈∗buf〉i is generalizable since j is linear in k and no other value is used
to index 〈∗buf〉i. Furthermore, if the loop executes, it executes exactly c times;
thus N = c. To generalize the edge from 〈∗buf〉i to ∗NULL, we perform quantifier
elimination on 〈∃k.i = j0 + 2k ∧ 0 ≤ j0 + 2k < 2c ∧ 0 ≤ k < c, false〉, which yields
〈j0 ≤ i∧i < j0 +2c∧(i−j0)%2 = 0, false〉. Since j0 is 0 at loop entry, after applying
the generalized effect set to Γ0 , we obtain the graph from Figure 1.
4 Even though it is often not possible to determine the exact value of N , our analysis

utilizes the constraint (∀k.0 ≤ k < N ⇒ ¬φterm(k)) ∧ φterm(N) stating that
the termination condition φterm does not hold on iterations before N but holds at
the N ’th iteration. Our analysis takes this “background axiom” into account when
determining satisfiability and validity.

5 We can eliminate a universally quantified variable k from ∀k.φ by eliminating exis-
tentially quantified k in the formula ¬∃k.¬φ.
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6 Implementation and Extensions

We have implemented the ideas presented in this paper in the Compass pro-
gram verification framework for analyzing C programs. For solving constraints,
Compass utilizes a custom SMT solver called Mistral [14], which also provides
support for simplifying constraints. Compass does not assume type safety and
handles casts soundly using a technique based on physical subtyping [15]. Com-
pass supports most features of the C language, including structs, unions, multi-
dimensional arrays, dynamic memory allocation, and pointer arithmetic. To
check buffer overruns, Compass also tracks buffer and allocation sizes. For inter-
procedural analysis, Compass performs a path- and context-sensitive summary-
based analysis. Loop bodies are analyzed in isolation before the function or loop
in which they are defined; thus techniques from Section 5 extend to nested loops.

While the language defined in Section 2 only allows loops with a single exit
point, techniques described in this paper can be extended to loops with multiple
break points by introducing different iteration counters for each backedge, similar
to the technique used in [16] for complexity analysis.

Compass allows checking arbitrary assertions using a static assert(. . .) prim-
itive, which can be either manually or automatically inserted (e.g., for memory
safety properties). The static assert primitive also allows for checking quanti-
fied properties, such as “all elements of arrays a and b are equal” by writing:
static_assert(buffer_size(b) == buffer_size(a));

for(i=0; i<buffer_size(a); i++) static_assert(a[i] == b[i]);

7 Experiments

7.1 Case Study on Example Benchmarks

To demonstrate the expressiveness of our technique, we evaluate it on 28 chal-
lenging array benchmarks available at http://www.stanford.edu/~tdillig/array.tar.gz

and shown in Figure 7. The functions init and init noncost initialize all el-
ements of an array to a constant and an iteration-dependent value respectively.
init partial initializes part of the array, and init even initializes even positions.
2D array init initializes a 2-dimensional array using a nested loop. The programs
labeled buggy exhibit subtle bugs, such as off-by-one errors. Various versions of
copy copy all, some, or odd elements of an array to another array. reverse re-
verses elements, while swap (shown in Figure 8) swaps the contents of two arrays.
double swap invokes swap twice and checks that both arrays are back in their ini-
tial state. strcpy, strlen, and memcpy implement the functionality of the standard
C library functions and assert their correctness. find (resp. find first nonnull)
looks for a specified (resp. non-null) element and returns its index (or -1 if el-
ement is not found). append appends the contents of one array to another, and
merge interleave interleaves odd and even-numbered elements of two arrays into
a result array. The function alloc fixed size initializes all elements of a dou-
ble array to a freshly allocated array of fixed size, and then checks that buffer
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Program Time Memory #Sat Solve
queries time

init 0.01s < 1 MB 172 0s
init nonconst 0.02s < 1 MB 184 0.01s
init partial 0.01s < 1MB 166 0.01s
init partial buggy 0.02s < 1 MB 168 0s
init even 0.04s < 1 MB 146 0.04s
init even buggy 0.04s < 1 MB 166 0.03s
2D array init 0.04s < 1 MB 311 0.04s
copy 0.01s < 1 MB 209 0.01s
copy partial 0.01s < 1 MB 220 0.01s
copy odd 0.04s < 1 MB 243 0.02s
copy odd buggy 0.05s < 1 MB 246 0.05s
reverse 0.03s < 1 MB 273 0.01s
reverse buggy 0.04s < 1 MB 281 0.02s
swap 0.12s 2 MB 590 0.11s
swap buggy 0.11s 2 MB 557 0.06s
double swap 0.16s 2 MB 601 0.1s
strcpy 0.07s < 1 MB 355 0.04s
strlen 0.02s < 1 MB 165 0.01s
strlen buggy 0.01s < 1 MB 89 0.01s
memcpy 0.04s < 1 MB 225 0.04s
find 0.02s < 1 MB 119 0.02s
find first nonnull 0.02s < 1 MB 183 0.02s
append 0.02s < 1 MB 183 0.01s
merge interleave 0.09s < 1 MB 296 0.07s
merge interleave
buggy 0.11s < 1 MB 305 0.09s

alloc fixed size 0.02s < 1 MB 176 0.02s
alloc fixed size buggy 0.02s < 1 MB 172 0.02s
alloc nonfixed size 0.03s < 1 MB 214 0.02

Fig. 7. Case Study

void swap(int* a, int* b, int size) {
for(int i=0; i<size; i++) {
int t = a[i]; a[i] = b[i]; b[i] = t; }

}
void check_swap(int size, int* a, int* b) {

int* a_copy = malloc(sizeof(int)*size);
int* b_copy = malloc(sizeof(int)*size);
for(int i=0; i<size; i++) a_copy[i] = a[i];
for(int i=0; i<size; i++) b_copy[i] = b[i];
swap(a, b, size);
for(i=0; i<size; i++) {
static_assert(a[i] == b_copy[i]);
static_assert(b[i] == a_copy[i]);

}
free(a_copy); free(b_copy);

}

Fig. 8. Swap Function from Figure 7. The
static assertions check that all elements of
a and b are indeed swapped after the call
to the swap function. Compass verifies these
assertions automatically in 0.12 seconds.

accesses to the element arrays are safe. The function alloc nonfixed size initial-
izes elements of the double array a to freshly allocated arrays of different size,
encoded by the elements of another array b and checks that accessing indices
[0, b[i− 1]] of array a[i] is safe. Compass can automatically verify the full func-
tional correctness of all of the correct programs without any annotations and
reports all errors present in buggy programs. To check functional correctness,
we add static assertions as described in Section 6 and as shown in Figure 8.

Figure 7 reports for each program the total running time, memory usage
(including the constraint solver), number of queries to the SMT solver, and
constraint solving time. All experiments were performed on a 2.66 GHz Xeon
workstation. We believe these experiments demonstrate that Compass reasons
precisely and efficiently about array contents despite being fully automatic. As
a comparison, while Compass takes 0.01 seconds to verify the full correctness of
copy, the approach described in [4] reports a running time of 338.1 seconds, and
the counterexample-guided abstraction refinement based approach described in
[17] takes 3.65 seconds. Furthermore, our technique is naturally able to verify
the correctness of programs that manipulate non-contiguous array elements (e.g.,
copy odd), as well as programs that require reasoning about arrays inside other
arrays (e.g., alloc nonfixed size). Figure 7 also shows that the analysis is mem-
ory efficient since none of the programs require more than 2 MB. We believe this
to be the case because fluid updates do not create explicit partitions.

Observe that the choice of benchmarks in Figure 7 sheds light on both what
our technique is good at and what it is not meant for. In particular, notice these
benchmarks do not include sorting routines. While sorting is an interesting prob-
lem for invariant generation techniques, the focus of this work is improving static
analysis of updates to aggregate data structures, such as arrays, through fluid
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Program Lines Total Time Memory #Sat queries Solve Time
hostname 304 0.13s 5 MB 1533 0.12s
chroot 371 0.13s 3 MB 1821 0.10s
rmdir 483 1.05s 12 MB 3461 1.02s
su 1047 1.86s 32 MB 6088 1.69s
mv 1151 0.70s 21 MB 7427 0.68s
Total 3356 3.87s 73 MB 20330 3.61

Fig. 9. Experimental results on Unix Coreutils applications

updates. As shown in Section 5, fluid updates can be combined with invariant
generation techniques to analyze loops, but we do not claim that this particular
invariant generation approach is the best possible. We leave as future work the
combination of fluid updates and more powerful invariant generation techniques.

7.2 Checking Memory Safety on Unix Coreutils Applications

To evaluate the usefulness of our technique on real programs, we also check for
memory safety errors on five Unix Coreutils applications [20] that manipulate ar-
rays and pointers in complex ways. In particular, we verify the safety of buffer
accesses (both buffer overruns and underruns) and pointer dereferences. However,
since Compass treats integers as mathematical integers, the soundness of the
buffer analysis assumes lack of integer overflow errors, which can be verified by a
separate analysis. In the experiments, Compass reports zero false positives, only
requiring two annotations describing inputs to main: assume(buffer size(argv) ==
argc) and assume(argv! = NULL)). Compass is even able to discharge some arbitrary
assertions inserted by the original programmers. Some of the buffer accesses that
Compass can discharge rely on complex dependencies that are difficult even for
experienced programmers to track; an interesting example is given in [30].

The chosen benchmarks are challenging for static analysis tools for multiple
reasons: First, these applications heavily use arrays and string buffers, mak-
ing them difficult for techniques that do not track array contents. Second, they
heavily rely on path conditions and correlations between scalars used to in-
dex buffers. Finally, the behavior of these applications depends on environment
choice, such as user input. Our technique is powerful enough to deal with these
challenges because it is capable of reasoning about array elements, is path-
sensitive, and uses bracketing constraints to capture uncertainty. To give the
reader some idea about the importance of these components, 85.4% of the as-
sertions fail if array contents are smashed and 98.2% fail if path-sensitivity is
disabled.

As Figure 9 illustrates, Compass is able to analyze all applications in under 2
seconds, and the maximum memory used both for the program verification and
constraint solving combined is less than 35 MB. We believe these running times
and memory requirements demonstrate that the current state of Compass is use-
ful and practical for verifying memory safety in real modest-sized C applications
manipulating arrays, pointers, and scalars in complex ways.
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8 Related Work

Reasoning about unbounded data structures has a long history. Jones et al.
first propose summary nodes to finitely represent lists in LISP [21], and [1]
extends this work to languages with updates and introduces strong and weak
updates. Representation of access paths qualified by indices is first introduced
in Deutsch [22], which uses a combination of symbolic access paths and numeric
abstract domains to represent may-alias pairs for recursive data structures. This
technique does not address arrays, and since it does not reason about updates,
negation is not a consideration. Deutsch’s technique does not allow disjunctive
constraints, is not path-sensitive, and does not address underapproximations.

The most basic technique for reasoning about array contents is array smash-
ing, which represents all elements with one summary node and only allows weak
updates [2]. Gopan et al. propose a 3-valued logic based framework to discover
relationships about values of array elements [4]. This technique isolates individ-
ual elements to perform strong updates and places elements that share a common
property into a partition (usually a contiguous range), and relevant partitions
are heuristically inferred. In contrast, our approach does not need to distin-
guish between strong and weak updates or concretize individual elements; it can
also naturally express invariants about non-contiguous array elements. Further-
more, our approach obviates the need for explicit partitioning, and effectively
delays decisions about partitions until constraint solving. While many factors
contribute to the overall performance of program analysis systems, we believe
our tool’s significantly better performance over [4] is largely due to avoiding
the construction of explicit partitions. Jhala and McMillan propose a technique
similar to [4] for reasoning about arrays, but their technique is based on coun-
terexample guided abstraction refinement and interpolation [17]. This approach
also only reasons about contiguous ranges and constructs explicit partitions.
Furthermore, the predicates used in the abstraction belong to a finite language
to guarantee convergence.

Many techniques have been proposed for generating invariants about elements
of unbounded data structures [18, 19, 23–26]. Some of these techniques can reason
about complex data invariants, such as sortedness, which is orthogonal to the
ability to perform fluid updates. Unlike these approaches whose goal is to discover
complex invariants about array elements, our goal is to design an expressive
pointer and value analysis that unifies reasoning about pointers, scalars, and
arrays. However, we believe these techniques can be gainfully combined.

Concepts similar to the iteration counter from Section 5 have been previ-
ously proposed. For example, Gulwani et al. [16] use an iteration counter for
performing complexity analysis. The invariant generation technique described
in [19] also uses a combination of an iteration counter combined with quantifier
elimination.

Our technique uses bracketing constraints to represent both over- and under-
approximations to naturally handle imprecision and uncertainty. Furthermore,
bracketing constraints allow for a sound negation operation in the presence of
approximations. The idea of over- and underapproximations has been proposed
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previously in the context of abstract interpretation by Schmidt [27]; however,
the techniques presented there are not concerned with negation. In this paper,
we share the goal of gracefully handling imprecision when analyzing unbounded
data structures with [28], which presents a compositional shape analysis based
on separation logic. In contrast to [28] which focuses exclusively on recursive
pointer data structures, such as linked lists, this paper focuses on arrays. We
believe our approach can be extended to at least some useful recursive data
structures, such as lists, and we leave this extension as future work.
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Abstract. In this paper, we formalize relaxed memory models by giving
a parameterized operational semantics to a concurrent programming lan-
guage. Behaviors of a program under a relaxed memory model are defined
as behaviors of a set of related programs under the sequentially consis-
tent model. This semantics is parameterized in the sense that different
memory models can be obtained by using different relations between pro-
grams. We present one particular relation that is weaker than many mem-
ory models and accounts for the majority of sequential optimizations. We
then show that the derived semantics has the DRF-guarantee, using a
notion of race-freedom captured by an operational grainless semantics.
Our grainless semantics bridges concurrent separation logic (CSL) and
relaxed memory models naturally, which allows us to finally prove the
folklore theorem that CSL is sound with relaxed memory models.

1 Introduction

For many years, optimizations of sequential code — by both compilers and ar-
chitectures — have been the major source of performance improvement for com-
puting systems. However, they were designed to preserve only the sequential
semantics of the code. When placed in a concurrent context, many of them vio-
late the so-called sequential consistency [19], which requires that the instructions
in each thread be executed following the program order.

A classic example to demonstrate this problem is Dekker’s mutual exclusion
algorithm [12] as shown below:

Initially [x]=[y]=0 and x �= y
[x]:= 1;
v1:= [y];
if v1 = 0 then critical section

‖
[y]:= 1;
v2:= [x];
if v2 = 0 then critical section

where [e] refers to the memory cell at the location e. Its correctness in the
sequentially consistent memory model is ensured by the invariant that we would
never have v1 = v2 = 0 when the conditional statements are reached. However,
memory models in reality often relax the ordering of memory accesses and their
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visibility to other threads to create room for optimizations. Many of them allow
reordering of the first two statements in each thread above, thus breaking the
invariant. Other synchronization algorithms are susceptible to failure in a similar
fashion, which is a well-known problem [5, 1].

The semantics of concurrent programming languages rely on a formal mem-
ory model to rigorously define how threads interact through a shared memory
system. Many relaxed memory models have been proposed in the computer ar-
chitecture community. A tutorial about the subject is given by Adve and Ghara-
chorloo [1], and a detailed survey is given by Mosberger [22]. Formalization of
memory models for languages such as Java [21, 11], C++ [4] and x86 multipro-
cessor machine code [24] were also developed recently. These models typically
allow some relaxation of the program order and provide mechanisms for enforc-
ing ordering when necessary. These mechanisms are commonly referred to as
barriers, fences, or strong/ordered operations at the machine level, and locks,
synchronization blocks and volatile operations at the high level. The majority
of the models provide the so-called DRF-guarantee [2], in which data-race-free
programs (i.e. well-synchronized programs) behave in a sequentially consistent
manner. The DRF-guarantee is also known as the fundamental property [26] of
a memory model. It is desirable because it frees the programmer from reasoning
about idiosyncrasies of memory models when the program is well-synchronized.

However, as Boudol and Petri [7] pointed out, most memory models are de-
fined axiomatically by giving partial orders of events in the execution traces of
programs. These are more abstract than operational semantics of languages that
are normally used to model the execution of programs and also to reason about
them. Also, they “only establish a very abstract version of the DRF-guarantee,
from which the notion of a program, in the sense of programming languages, is
actually absent” [7]. This gap, we believe, partly explains why most program log-
ics for concurrency verification are proved sound only in a sequentially consistent
model, and their soundness in relaxed memory models is rarely discussed.

For instance, the soundness of concurrent separation logic (CSL) [23] in se-
quentially consistent models has been proved in various ways [9, 10, 14, 18],
which all show directly or indirectly that CSL-verified programs are race-free.
So it seems quite obvious that CSL is sound with any memory model that gives
the DRF-guarantee, as Hobor et al. [18] argued that it “permits only well-
synchronized programs to execute, so we can [. . . ] execute in an interleaving
semantics or even a weakly consistent memory model”. However, to our best
knowledge, this folklore theorem has never been formally proved. Actually prov-
ing it is non-trivial, and is especially difficult in an operational setting, because
the two sides (CSL and memory models) use different semantics of languages
and different notions of data-race-freedom (as shown in Fig. 1 (a)).

In this paper, we propose a new approach to formalizing relaxed memory
models by giving a parameterized operational semantics to a concurrent pro-
gramming language. Behaviors of a program under a relaxed memory model are
defined as behaviors of a set of related programs under the sequentially consis-
tent model. This semantics is parameterized in that different relations between
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CSL
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DRFY

DRFX

Sound
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?

CSL
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& DRF

DRFDRF

(a) (b)

Fig. 1. (a) the gap between the language-side (above the dashed line) and the memory-
model-side (below the line); we use subscripts x and y to represent the different for-
mulations in the two sides; (b) our solution: a new RMM and a grainless semantics.
Here single arrows represent (informally) logical implications. Double arrows represent
logical equivalence, with premises annotated on top. The single arrow and the double
arrows on the left and right in (b) correspond to Lemmas 6.2, 5.3 and 5.4 respectively.

programs yield different memory models. We present one particular relation that
is weaker than many memory models and accounts for the majority of sequential
optimizations. We then give an operational grainless semantics to the language,
which gives us an operational notion of data-race-freedom. We show that our
derived relaxed semantics has the DRF-guarantee. Our grainless semantics also
bridges CSL and relaxed memory models naturally and allows us to prove the
soundness of CSL in relaxed memory models. Our paper makes the following
new contributions.

First, we propose a simple, operational and parameterized approach to for-
malizing memory models. We model the behaviors of a program as the behaviors
of a set of related programs in the interleaving semantics. The idea is shown by
the prototype rule.

(c, c′′)∈Λ 〈c′′, σ〉 �−→〈c′, σ′〉
[Λ] 〈c, σ〉 �−→〈c′, σ′〉

Our relaxed semantics is parameterized over the relation Λ. At each step, the
original program c is substituted with a related program c′′, and then c′′ executes
one step following the normal interleaving semantics. Definition of the semantics
is simple: the only difference between it and the standard interleaving semantics
is this rule and a corresponding rule that handles the case that a program aborts.

Second, we give a particular instantiation of Λ — called program subsump-
tion ( & ) — which can relate a sequential segment of a thread between barriers
with any other sequential segments that have the same or fewer observational
behaviors. This gives programmers a simple and extensional view of relaxed
memory models. The derived semantics is weaker than many existing memory
models. It allows behaviors such as reordering of any two data-independent mem-
ory operations, write buffering with read bypassing, and those caused by the lack
of cache coherence and store atomicity.

Third, our semantics gives us a simple way to prove the soundness of se-
quential program transformations in a relaxed memory model: now we only
need to prove that the transformations preserve the subsumption relation used
to instantiate Λ. Then the DRF-guarantee of our relaxed semantics gives us
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their soundness in concurrent settings for data-race-free programs. Furthermore,
existing works on verification of sequential program transformations [3, 20, 30]
have developed techniques to prove observational equivalence or simulation rela-
tions, which may be used to further derive the subsumption relation. Therefore
our work makes it possible to incorporate these techniques into this framework
and reuse the existing verification results.

Fourth, we give a grainless semantics to concurrent programs. The seman-
tics is inspired by previous work on grainless trace semantics [25, 8], but it is
operational instead of denotational. Since it permits only race-free programs to
execute, the semantics gives us an operational formulation of data-race-freedom.
As shown in Fig. 1 (b), it also bridges the sequential consistency semantics and
our relaxed semantics, which greatly simplifies the proofs of the DRF-guarantee.

Last but not least, we finally give a formal proof of the folklore theorem that
CSL is sound in relaxed memory models. As Fig. 1 (b) shows, we first prove that
CSL guarantees the data-race-freedom and partial correctness of programs in
our grainless semantics. This, combined with the DRF-guarantee of our relaxed
semantics, gives us the soundness of CSL in the relaxed model.

2 The Language and Interleaving Semantics

(Expr) e ::= n | x | e1 + e2 | - e | . . .

(BExpr) b ::= true | false | e1 = e2 | e1 < e2 | . . .

(Comm) c ::= x:= e | x:=[e] | [e]:= e′ | skip | x:= cons(e1, . . . , en)
| dispose(e) | c1; c2 | if b then c1 else c2 | while b do c
| atomic c | c1 ‖ c2

The syntax of the language is shown above. Arithmetic expressions (e) and
boolean expressions (b) are pure: they do not access memory. To simplify the
presentation, we assume in this paper that parallel threads only share read-only
variables, therefore evaluation of expressions would not be interfered by other
threads. This allows us to focus on studying memory reads (x:= [e]) and writes
([e]:= e′). cons and dispose allocate and free memory respectively.

atomic c ensures that the execution of c is not interrupted by other threads.
It can be viewed as a synchronization block in high-level languages. On the other
hand, we can take a very low-level view and treat atomic as an annotation for
hardware supported atomic operations with memory barriers. For instance, we
can simulate a low-level compare-and-swap (CAS(�, x, y)) operation:

atomic { v:= [�]; if v =x then [�]:= y else skip; y:= v }

Higher-level synchronization primitives such as semaphores and mutexes can be
implemented using this primitive construct. Also in this paper we only consider
non-nested atomic blocks and we do not have parallel compositions in the block.

Before presenting the operational semantics of the language, we first define
the runtime constructs in Fig. 2. Program states (σ) consist of heaps and stores.
A heap (h) is a partial mapping from memory locations to integers. A store (s)
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(Location) � ::= n (natural number)

(Heap) h ∈ Location ⇀fin Integer (State) σ ::= (h, s)

(Store) s ∈ Variable → Integer (ThrdTree) T ::= c | 〈〈T, T 〉〉c

(LocSet) rs,ws ∈ P(Location) (Footprint) δ ::= (rs,ws)

emp
def= (∅, ∅) δ ∪ δ′ def= (δ.rs∪ δ′.rs, δ.ws∪ δ′.ws)

δ⊆δ′ def= (δ.rs ⊆ (δ′.rs∪ δ′.ws)) ∧ (δ.ws ⊆ δ′.ws) δ⊂δ′ def= (δ ⊆ δ′) ∧ (δ �= δ′)

Fig. 2. Runtime constructs and footprints

maps variables to integers. A thread tree (T ) is either a command c, which can
be viewed as a single thread; or two sub-trees running in parallel, with the parent
node c to be executed after the two sub-trees both terminate.

(SeqContext) E ::= [ ] | E; c

(ThrdContext) T ::= [ ] | 〈〈T, T 〉〉c | 〈〈T,T〉〉c

We give a contextual operational semantics for the language. The sequential
context (E) and thread context (T) defined above show the places where the ex-
ecution of primitive commands occurs. Sequential execution of threads is shown
in Fig. 3. We use �e�s to represent the evaluation of e with the store s. The
definition is standard and is omitted here. The execution of a normal primitive
command is modeled by the labeled transition ( u−−→

δ
). Here the footprint δ

is defined in Fig. 2 as a pair (rs,ws), which records the memory locations that
are read and written in this step. Recording the footprint allows us to discuss
races between threads in the following sections. Since we assume threads only
share read-only variables, accesses of variables do not cause races and we do not
record variables in footprints. A step aborts if it accesses memory locations that
are not in the domain of the heap.

The transition ( o−−→
δ

) models the execution of cons and dispose. We use

the label o instead of u to distinguish them from other commands. They are at
higher abstraction levels than other primitive commands that may have direct
hardware implementations, but we decide to support them in our language be-
cause they are important high-level language constructs. Their implementations
usually require synchronizations to be thread-safe, so we model them as built-in
synchronized operations and they cannot be reordered in our relaxed semantics.
In this paper we call them (along with atomic blocks and fork/join of threads)
ordered operations. Remaining operations are called unordered.

We may omit the footprint δ and the labels u and o when they are not relevant.
We also use R∗ to represent the reflexive transitive closure of the relation R. For
instance, we use ( −−→

δ
) to represent the union of ordered and unordered

transitions, and use ( −−→ ) to ignore the footprint, whose reflexive transitive
closure is represented by ( −−→∗ ).



272 R. Ferreira, X. Feng, and Z. Shao

〈E[ x:= [e] ], (h, s)〉 u−−−−→
({�},∅)

〈E[ skip ], (h, s′)〉 if �e�s =�, h(�)=n, s′ =s[x�n]

〈E[ x:= [e] ], (h, s)〉 u−−→
emp

abort otherwise

〈E[ [e]:= e′ ], (h, s)〉 u−−−−→
(∅,{�})

〈E[ skip ], (h′, s)〉 if �e�s =�, �e′�s =n, � ∈ dom(h),

and h′ = h[��n]

〈E[ [e]:= e′ ], (h, s)〉 u−−→
emp

abort otherwise

〈E[ x:= e ], (h, s)〉 u−−→
emp

〈E[ skip ], (h, s′)〉 if �e�s = n and s′ = s[x�n]

〈E[ skip; c ], σ〉 u−−→
emp

〈E[ c ], σ〉 always

. . . . . .

〈E[dispose(e) ], (h, s)〉 o−−−−→
(∅,{�})

〈E[ skip ], (h′, s)〉 if �e�s =�, �∈dom(h), h′ =h\{�}

〈E[dispose(e) ], (h, s)〉 o−−→
emp

abort otherwise

〈E[ x:=cons(e1, . . . , ek) ], (h, s)〉 o−−−−→
(∅,ws)

〈E[ skip ], (h′, s′)〉
if ws = {�, . . . , �+k−1}, ws∩dom(h) = ∅, �ei�s = ni,

s′ = s[x� �] and h′ = h[��n1, . . . , �+k−1�nk]

〈c, σ〉 −−→
δ
〈c′, σ′〉 if 〈c, σ〉 u−−→

δ
〈c′, σ′〉 or 〈c, σ〉 o−−→

δ
〈c′, σ′〉

〈c, σ〉 −−→
δ

abort if 〈c, σ〉 u−−→
δ

abort or 〈c, σ〉 o−−→
δ

abort

Fig. 3. Sequential footprint semantics

〈T[ c ], σ〉 �−→ 〈T[ c′ ], σ′〉 if 〈c, σ〉 −−→ 〈c′, σ′〉
〈T[ c ], σ〉 �−→ abort if 〈c, σ〉 −−→ abort

〈T[E[atomic c ] ], σ〉 �−→ 〈T[E[ skip ] ], σ′〉 if 〈c, σ〉 −−→∗ 〈skip, σ′〉
〈T[E[atomic c ] ], σ〉 �−→ abort if 〈c, σ〉 −−→∗ abort

〈T[E[ c1 ‖c2 ] ], σ〉 �−→ 〈T[ 〈〈c1, c2〉〉E[ skip ] ], σ〉 always

〈T[ 〈〈skip, skip〉〉c ], σ〉 �−→ 〈T[ c ], σ〉 always

Fig. 4. Interleaving semantics of concurrent programs

Figure 4 defines the interleaving semantics of concurrent programs. Following
Vafeiadis and Parkinson [29], the execution of c in atomic c does not interleave
with the environment. If c does not terminate, the thread gets stuck. Again, we
assume there are no atomic blocks or parallel compositions in c.

Next we give a simple example to show the use of contexts and thread trees.

Example 1. Suppose c = (c1 ‖ c2); c′. Then we know c = T[E[ c1 ‖ c2 ] ], where
T = [ ] and E = [ ]; c′. After one step, we reach the thread tree 〈〈c1, c2〉〉(skip; c′).
Then the T′ for the next step can be either 〈〈[ ], c2〉〉(skip; c′) or 〈〈c1, [ ]〉〉(skip; c′).
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[Λ] 〈T, σ〉 �−→ 〈T ′, σ′〉 if ∃T ′′. (T, T ′′)∈Λ ∧ 〈T ′′, σ〉 �−→〈T ′, σ′〉

[Λ] 〈T, σ〉 �−→ abort if ∃T ′. (T, T ′)∈Λ ∧ 〈T ′, σ〉 �−→ abort

Fig. 5. Semantics parameterized over Λ

3 Parameterized Relaxed Semantics

In this section, we present our parameterized operational semantics. Then we
instantiate it with a relation between sequential programs to capture relaxed
memory models and compiler optimizations.

3.1 Parameterized Semantics

Figure 5 shows the two new rules of our parameterized semantics. The stepping
relation takes Λ as a parameter, which is a binary relation between thread trees:

Λ ∈ P(ThrdTree × ThrdTree)

The semantics follows the interleaving semantics in Fig. 4, except that the cur-
rent thread tree can be replaced at any given step by another thread tree related
through the Λ relation. Λ is supposed to provide a set of thread trees that are
equivalent to the current thread tree with some notion of equivalence. This Λ-
based semantics chooses nondeterministically which command will execute.

Naturally, different instantiations of Λ yield different semantics. As one can
see, this semantics is trivially equivalent to the interleaving semantics shown
in Fig. 4 once Λ is instantiated with an identity relation. A more interesting
relation to be used as an instantiation of Λ is presented in the following sections.

3.2 Command Subsumption

We define a command subsumption relation that

1. preserves synchronized operations of the code;
2. but permits the rewriting of non-synchronized sequential portions while pre-

serving their sequential semantics.

The intuition is that programs should be well-synchronized to avoid unexpected
behaviors in relaxed memory models. That is, accesses to shared memory should
be performed through synchronized operations (cons, dispose and atomic c in
our language), and non-synchronized (unordered) operations should only access
thread-local or read-only memory (but note that the term “shared” and “local”
are dynamic notions and their boundary does not have to be fixed). Therefore,
the effect of a thread’s non-synchronized code is not visible to other threads
until the next synchronized point is reached. On the other hand, the behavior
of the non-synchronized code will not be affected by other threads either since
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〈c, σ〉 u−−→
emp

0 〈c, σ〉 always

〈c, σ〉 u−−→
δ

k+1 〈c′, σ′〉 if there exist c′′, σ′′, δ′, and δ′′ such that δ = δ′ ∪ δ′′,

〈c, σ〉 u−−→
δ′

〈c′′, σ′′〉 and 〈c′′, σ′′〉 u−−→
δ′′

k〈c′, σ′〉
〈c, σ〉 ⇓δ 〈c′, σ′〉 if 〈c, σ〉 u−−→

δ

∗〈c′, σ′〉, ¬(〈c′, σ′〉 u−−→ abort),

and ¬∃c′′, σ′′.(〈c′, σ′〉 u−−→ 〈c′′, σ′′〉)
〈c, σ〉 ⇓ 〈c′, σ′〉 if there exists δ such that 〈c, σ〉 ⇓δ 〈c′, σ′〉

〈c, σ〉 −−→
emp

0 〈c, σ〉 always

〈c, σ〉 −−→
δ

k+1 〈c′, σ′〉 if there exist c′′, σ′′, δ′, and δ′′ such that δ = δ′ ∪ δ′′,

〈c, σ〉 −−→
δ′

〈c′′, σ′′〉 and 〈c′′, σ′′〉−−→
δ′′

k〈c′, σ′〉

Fig. 6. Multi-step sequential transitions

the data it uses would not be updated by others. So we do not need to consider
its interleaving with other threads.

The subsumption of c1 by c2 (c1 & c2) is defined below. Here ( u−−→
δ

∗ ) rep-

resents zero or multiple steps of unordered transitions, where δ is the union of
the footprints of individual steps. 〈c, σ〉 ⇓ 〈c′, σ′〉 is a big-step transition of un-
ordered operations. From the definition shown in Fig. 6, we know c′ must be
either skip, or a command starting with an ordered operation.

Definition 3.1. c1 &0 c2 always holds; c1 &k+1 c2 holds if and only if, for all
j ≤ k, the following are true:

1. If 〈c1, σ〉 u−−→∗ abort, then 〈c2, σ〉 u−−→∗ abort;
2. If 〈c1, σ〉 ⇓ 〈c′1, σ′〉, then either 〈c2, σ〉 u−−→∗ abort, or there exists c′2 such

that 〈c2, σ〉 ⇓ 〈c′2, σ′〉 and the following constraints hold:
(a) if c′1 = skip, then c′2 = skip;
(b) if c′1 = E1[ c′′1 ‖c′′′1 ], there exist E2, c′′2 and c′′′2 such that

i. c′2 = E2[ c′′2 ‖c′′′2 ];
ii. c′′1 &j c′′2 and c′′′1 &j c′′′2 ;
iii. E1[ skip ] &j E2[ skip ];

(c) if c′1 = E1[atomic c′′1 ], there exist E2 and c′′2 such that
i. c′2 = E2[atomic c′′2 ];
ii. c′′1 &j c′′2 ;
iii. E1[ skip ] &j E2[ skip ];

(d) if c′1 = E1[ c′′1 ], where c′′1 is a cons or dispose command, there exist E2
and c′′2 such that
i. for all σ, if 〈c′′1 , σ〉

o−−→ abort, then 〈c′′2 , σ〉
o−−→ abort;

ii. for all σ and σ′, if 〈c′′1 , σ〉
o−−→ 〈skip, σ′〉, then〈c′′2 , σ〉

o−−→〈skip, σ′〉;
iii. E1[ skip ] &j E2[ skip ].
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3. If 〈c1, σ〉 u−−→
δ1

∗〈c′1, σ′〉, then either 〈c2, σ〉 u−−→∗ abort, or there exist δ2, c′2

and σ′′ such that 〈c2, σ〉 u−−→
δ2

∗〈c′2, σ′′〉 and δ1 ⊆ δ2;

We define c1 & c2 as ∀k. c1 &k c2; and c1 ( c2 as c2 & c1. �

Informally, we say c1 is subsumed by c2 if for all input states — after performing
a sequential big step — c1 aborts only if c2 aborts; or, if c1 completes, then c2
either aborts or takes a big step that ends in the same state. Also, if c1 at the
end of the big step terminates (skip case) or reaches a synchronization point
(cases for thread fork and join, atomic blocks, cons and dispose), there must be
a corresponding termination or synchronization point at the end of the big step
taken by c2 and the remaining parts (if any) of c1 and c2 still satisfy the relation.
We use indices in the definition since E1[ skip ] in the cases 2(b), 2(c) and 2(d)
might be “larger” than c1. The last condition requires that the footprint of c1
is not larger than that of c2 if c2 does not abort. The subset relation between
footprints is defined in Fig. 2.

Properties of subsumption. Suppose c1 and c2 are sequential programs consisting
of unordered operations only, and c1 & c2. For any input state we have the
following possibilities:

1. c2 aborts and c1 may have any behaviors;
2. c1 and c2 complete a big step and reach the same state;
3. c1 diverges and c2 may have any behaviors.

Here we intend to use c2 to represent the original program and c1 the one after
optimizations (by compilers or hardware). By the three cases above we know c1
preserves the partial correctness of c2 [10] (to handle total correctness, an extra
condition must be added to Definition 3.1 to ensure that normal termination is
preserved by subsumption). The last condition in Definition 3.1 is also necessary
to ensure the transformation from c2 to c1 does not introduce new races. We give
examples in Sect. 4 to show the expressiveness of the subsumption relation and
how it models behaviors of programs in relaxed memory models. More properties
about the relation are shown by the following two lemmas.

Lemma 3.2. The relation & is reflexive and transitive.

Lemma 3.3. If c1 & c2, then, for all contexts C, C[ c1 ] & C[ c2 ].

Here C can be any context, i.e. a program with a hole in it. It does not have to
be E or T.

3.3 Relaxed Semantics

The subsumption relation can be lifted for thread trees.
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Definition 3.4. We define the binary relation &t for thread trees.

T1 &t T2
def=

⎧⎨⎩
c1 & c2 if T1 = c1 and T2 = c2

c1 & c2 ∧ T ′1 &t T
′
2 if T1 = 〈〈T ′1, T ′′1 〉〉c1

∧T ′′1 &t T
′′
2 and T2 = 〈〈T ′2, T ′′2 〉〉c2

We use T1 (t T2 to represent T2 &t T1. �

We obtain a relaxed operational semantics by instantiating Λ of our parameter-
ized semantics with this relation. The resulting stepping relation becomes

[(t] 〈T, σ〉 �−→ 〈T ′, σ′〉 .

At each step, this semantics performs a program transformation following the
subsumption relation. This resembles a dynamic compiler that modifies the pro-
gram as it executes.

On the other hand, as we show in Lemma 3.5, the execution according to
this semantics is equivalent to performing one single initial program transfor-
mation and then executing the target program using the interleaving semantics.
This resembles a static compiler that modifies the program prior to execution.
Similarly, Lemma 3.6 shows the abort case.

Lemma 3.5. [(t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff there exists a T ′ such that T (t T
′

and 〈T ′, σ〉 �−→∗ 〈skip, σ′〉.

Lemma 3.6. [(t] 〈T, σ〉 �−→∗ abort iff there exists a T ′ such that T (t T
′ and

〈T ′, σ〉 �−→∗ abort.

We will formulate and prove the DRF-guarantee of this relaxed semantics in
Sect. 5, after we formally define data-race-freedom.

4 Examples

There are different aspects that characterize a particular memory model. In this
section, we show how they are reflected in our semantics. The examples are shown
with the following naming convention: v1, v2, v3, etc, are thread-local variables
that hold values; x, y, z, etc, are variables that hold memory addresses.

Data dependencies. At first glance, the definition of ( is too restrictive since it
quantifies over all input states. It does not allow

([x]:= 1; v1:= [y]) ( (v1:= [y]; [x]:= 1) ,

where the data dependency of the two statements depends on the runtime values
of x and y. However, the ( relation allows the following transformation:

[x]:= 1; v1:= [y] ( if x = y then ([x]:= 1; v1:= [x]) else (v1:= [y]; [x]:= 1),

where we insert a dynamic test to see if x is an alias of y. So we do allow
reordering of memory accesses that do not have data dependencies at runtime.
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Memory reordering. It is easy to see that the ( relation supports all four types
of memory reordering (R,W → R,W). In the example below,

(v1:= [x]; [y]:= 1) ‖ (v2:= [y]; [x]:= 1) ,

we can get v1 =v2 =1 if x �=y. This can be achieved by reordering the commands
in the second thread (not supported by Boudol and Petri [7]),

v2:= [y]; [x]:= 1 ( if x = y then (v2:= [x]; [x]:= 1) else ([x]:= 1; v2:= [y]) .

Write atomicity. Write atomicity is not preserved by the ( relation. In the
classic cross-over example below,

([x]:= 1; v1:= [x]) ‖ ([x]:= 2; v2:= [x]) ,

we can get v1 = 2 and v2 = 1. This is achieved by adding a redundant write
in the right hand side thread: [x]:= 2; v2:= [x] ( [x]:= 2; v2:= [x]; [x]:= 2 .
This simulates the duration between the beginning and the end of the write. We
may also store arbitrary values to memory before completing. For instance, the
program below allows v1 = 33 at the end.

v1:= [x] ‖ [x]:= 1

It happens with the following transformation of the right hand side thread:

[x]:= 1 ( [x]:= 33; [x]:= 1 ,

which means the memory value is undefined until the write completes. This is
commonly referred to as “out-of-thin-air” behavior. A similar behavior shows up
when we have simultaneous writes to the same location:

(v1:= 1; [x]:= v1) ‖ [x]:= 2 .

In this case, the final value of [x] could be arbitrary. It could be 3 if we do the
following transformation of the left hand side thread:

v1:= 1; [x]:= v1 ( [x]:= 0; v1:= [x]; v1:= v1 + 1; [x]:= v1 .

Strong barrier. In the relaxed semantics, we can enforce both atomicity and order-
ing by using atomic c. A memory fence MF can be implemented by atomic skip.
The following examples show that MF is not sufficient to enforce program orders
when there is no cache coherence. In the example below,

[x]:= 1 ‖ [x]:= 2 ‖
⎛⎝v1:= [x];

MF;
v2:= [x]

⎞⎠ ‖
⎛⎝v3:= [x];

MF;
v4:= [x]

⎞⎠
We can get the outcome v1 = v4 = 1 and v2 = v3 = 2 by rewriting the leftmost
thread: [x]:= 1 ( [x]:= 1; [x]:= 1.
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See also the independent-reads-independent-writes (IRIW) example:

[x]:= 1 ‖ [y]:= 1 ‖
⎛⎝v1:= [x];

MF;
v2:= [y]

⎞⎠ ‖
⎛⎝v3:= [y];

MF;
v4:= [x]

⎞⎠
where the behavior v1 = v3 = 1 and v2 = v4 = 0 is permissible if we rewrite the
leftmost thread through [x]:= 1 ( [x]:= 1; [x]:= 0; [x]:= 1.

Race-free programs. Race-free programs do not have unexpected behaviors in
our semantics (see the DRF-guarantee in Sect. 5). In the example below:(

v1:= [x];
if v1 = 1 then [y]:= 1

)
‖
(
v2:= [y];
if v2 = 1 then [x]:= 1

)
the only behavior allowed is v1 = v2 = 0. Because the two conditional statements
cannot be reached (assuming [x] = [y] = 0 and x �= y initially), the program
never issues a memory write. So the program is race-free. Also, transformations
allowed by the ( relation cannot introduce races by inserting redundant writes.
This is guaranteed by the fact that the footprints of both threads are disjoint,
and they cannot increase after transformations.

Compiler optimizations (and obfuscations). Redundant memory reads and writes
can be introduced and eliminated, as shown by the following examples:

v1:= [x]; v2:= 1 ( v1:= [x]; v2:= [x]; v2:= 1
v1:= [x]; v2:= [x] ( v1:= [x]; v2:= v1

[x]:= v1 ( [x]:= 1; [x]:= v1
[x]:= 1; [x]:= v1 ( [x]:= v1

Furthermore, we can eliminate dead memory operations and reduce the memory
footprint: v1:= [x]; v1:= 1 ( v1:= 1. Note that the reverse is not true: ¬(v1:= 1 (
v1:= [x]; v1:= 1). A transformation cannot increase the footprint.

Now we can reproduce the prescient-write example:

(v1:= [x]; [x]:= 1) ‖ (v2:= [x]; [x]:= v2)

where we could have v1 = v2 = 1 by rewriting the left hand side thread:

v1:= [x]; [x]:= 1 ( v1:= [x]; [x]:= 1; [x]:= v1; v1:= [x]; [x]:= 1 .

Other optimizations, including instruction scheduling, register allocation, alge-
braic transformations and control transformations, can also be supported. More
examples can be found in the technical report [15].

Total store ordering. We give another non-trivial instantiation of Λ in our param-
eterized semantics, which yields the Total Store Ordering (TSO) model imple-
mented by the SPARCv8 architecture [28]. TSO allows write-to-read reordering.
It enforces cache-coherence, but allows a thread to read its own writes earlier.
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E[ [e1]:= e′; x:= [e2] ] (tso E[

⎛⎝ if (e1 = e2)
then (x:= e′; [e1]:=x)
else (x:= [e2]; [e1]:= e′)

⎞⎠ ]

if x �∈ fv(e1)∪fv(e′)

E[ [e]:= e′1; x:= e′2 ] (tso E[ x:= e′2; [e]:= e′1 ] if x �∈ fv(e)∪fv(e′1)

E[ [e]:= e′; skip ] (tso E[ skip; [e]:= e′ ] always

E[ [e1]:= e′1; [e2]:= e′2 ] (tso c′ if ∃c′′. E[ [e2]:= e′2 ] (tso c′′

∧ ([e1]:= e′1; c′′) (tso c′

E[
(
[e]:= e′;
if b then c1 else c2

)
] (tso E[

(
if b then ([e]:= e′; c1)

else ([e]:= e′; c2)

)
] always

E[ [e]:= e′;while b do c ] (tso E[

⎛⎝ if b
then ([e]:= e′; c;while b do c)
else [e]:= e′

⎞⎠ ] always

c (tso c always

Fig. 7. TSO

We define (tso, an instantiation of Λ, in Fig. 7. The first rule shows the
reordering of a write with a subsequent read. The else branch shows the re-
ordering when there is no data dependency. The then branch allows a thread to
read its own write earlier. Here fv(e) is the set of free variables in e. The other
rules (except the last one) show how to propagate the reordering to the subse-
quent code. Remember that the transformation may occur at any step during
the execution in our parameterized semantics, so we only need to consider the
statements starting with a write operation, and the write might be postponed
indefinitely until an ordered operation is reached.

In real architectures, the reordering is caused by write buffering instead of
swapping the two instructions. We do not model the write buffer here since our
goal is not to faithfully model what happens in hardware. Instead, we just want
to give an extensional model for programmers. To see the adequacy of our rules,
we can view the right hand side of the first rule as a simplification of the following
code, which simulates the write buffering [24] more directly:

local tmp, buf
in tmp:= e1; buf:= e′;(if tmp = e2 then x:= buf else x:= [e2]); [tmp]:= buf end

Here the local variable buf can be viewed as a write buffer. Also note that the
side condition of this rule can be eliminated if we also simulate the hardware
support of register renaming (like our use of tmp above).

Remark 1. (tso is a subset of ( .

Partial Store Ordering (PSO). In our technical report [15], we define (pso,
another instantiation of Λ that yields the PSO model [28]. It is defined by simply
adding a couple of rules to (tso to support write-to-write reordering.
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5 Grainless Semantics and DRF Guarantee

Following Reynolds [25] and Brookes [8], here we give a grainless semantics to
our language, which is operational instead of being a trace-based denotational
semantics. The semantics permits only data-race-free programs to execute, there-
fore it gives us a simple and operational formulation of data-race-freedom and
allows us to prove the DRF-guarantee of our relaxed semantics.

5.1 Grainless Semantics

Below we first instrument thread trees with footprints for threads. Execution
contexts T̃ in the instrumented trees are defined similarly to T in Sect. 2.

(ThrdTree) T̃ ::= (c, δ) | 〈〈T̃ , T̃ 〉〉c
(ThrdCtxt) T̃ ::= [ ] | 〈〈T̃, T̃ 〉〉c | 〈〈T̃ , T̃〉〉c

The footprint δ associated with each leaf node on T̃ records the memory locations
that are being accessed by this thread. To ensure the data-race-freedom, the
footprint δ of the active thread at the context T̃ must be disjoint with the
footprints of other threads. This requirement is defined in Fig. 8 as the wft
(well-formed tree) condition. We also define �T  to convert T to an instrumented
thread tree with an initial footprint emp for each thread.

The grainless semantics is shown in Fig. 9, which refers to the sequential
transitions defined in Figs. 3 and 6. In this semantics we execute unordered
commands in a big step, as shown in the first rule (see Fig. 6 for the definition
of 〈c, σ〉 ⇓δ 〈c′, σ′〉). It cannot be interrupted by other threads, therefore the
environment cannot observe transitions of the smallest granularity. The footprint
δ of this big step is recorded on the thread tree at the end, which means the
transition has duration and the memory locations in δ are still in use (even
though the state is changed to σ′). So when other threads execute, they cannot
assume this step has finished and cannot issue conflicting memory operations.

cons and dispose (the third rule), atomic blocks (the sixth rule) and thread
fork/join (the last two rules) are all atomic instead of being grainless. Comparing
with the first rule, we can see the footprint at the end of the step is emp, showing
that this step finishes and the memory locations in δ are no longer in use. Note
the emp footprint also clears the footprint of the preceding unordered transition
of this thread, therefore these atomic operations also serve as memory barriers
that mark the end of the preceding unordered commands. The footprint on the
left hand side is not used in these rules, so we use to omit it.

δ � δ′ def= (δ.ws ∩ (δ′.rs ∪ δ′.ws) = ∅) ∧ (δ.rs ∩ δ′.ws = ∅)
wft(T̃, δ) def= ∀c, c′, δ′, T̃′. (T̃[ (c, δ) ]= T̃′[ (c′, δ′) ]) ∧ (T̃ �= T̃′)→ δ�δ′

�T � def=
{

(c, emp) if T = c
〈〈�T1�, �T2�〉〉c if T = 〈〈T1, T2〉〉c

Fig. 8. Auxiliary definitions
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〈T̃[ (c, ) ], σ〉=⇒〈T̃[ (c′, δ) ], σ′〉 if 〈c, σ〉 ⇓δ 〈c′, σ′〉 and wft(T̃, δ)

〈T̃[ (c, δ) ], σ〉=⇒〈T̃[ (c, δ′) ], σ〉 if 〈c, σ〉 u−−→
δ′

∗〈c′, σ′〉, δ ⊂ δ′, wft(T̃, δ′)

〈T̃[ (c, ) ], σ〉=⇒〈T̃[ (c′, emp) ], σ′〉 if 〈c, σ〉 o−−→
δ
〈c′, σ′〉 and wft(T̃, δ)

〈T̃[ (c, ) ], σ〉=⇒ race if 〈c, σ〉 u−−→
δ

∗〈c′, σ′〉 or 〈c, σ〉 o−−→
δ
〈c′, σ′〉,

and ¬wft(T̃, δ)

〈T̃[ (c, ) ], σ〉=⇒ abort if 〈c, σ〉 u−−→∗ abort or 〈c, σ〉 o−−→ abort

〈T̃[ (E[atomic c ], ) ], σ〉=⇒〈T̃[ (E[ skip ], emp) ], σ′〉 if 〈c, σ〉−−→
δ

∗〈skip, σ′〉
and wft(T̃, δ)

〈T̃[ (E[atomic c ], ) ], σ〉=⇒ race if 〈c, σ〉−−→
δ

∗〈c′, σ′〉
and ¬wft(T̃, δ)

〈T̃[ (E[atomic c ], ) ], σ〉=⇒ abort if 〈c, σ〉 −−→∗ abort

〈T̃[ (E[ c1 ‖c2 ], ) ], σ〉 =⇒ 〈T̃[ 〈〈(c1, emp), (c2, emp)〉〉E[ skip ] ], σ〉 always

〈T̃[ 〈〈(skip, ), (skip, )〉〉c ], σ〉 =⇒ 〈T̃[ (c, emp) ], σ〉 always

Fig. 9. Grainless semantics

In all these rules, we check the wft condition to ensure that each step does
not issue memory operations that are in conflict with those ongoing ones made
by other threads. If the check fails, we reach the special race configuration and
the execution stops (the fourth and seventh rules).

The second rule, which has not been explained yet, allows an intermediate
footprint δ′ to be recorded on the thread tree before the big step transition of
unordered commands finishes. This is necessary to characterize the following
program as one with data-races:

(while true do [x]:= 3) ‖ (while true do [x]:= 4)

The first rule does not apply here because both threads diverge, but we can
apply the second rule to record the write set {x} on the thread tree and then
apply the fourth rule to detect the race. Note that this rule does not change the
command c or the state σ. If we ignore the footprint, it simply adds stuttering
steps in the semantics. The side condition δ ⊂ δ′ (defined in Fig. 2) ensures
the stuttering steps are not inserted arbitrarily. Here δ is either an intermediate
footprint accessed earlier during this big-step transition, or the footprint accessed
by the preceding transition of this thread. In the second case, the last step must
be an atomic operation and δ must be emp.

Following Reynolds’ principles for grainless semantics [25], both abort and
race are viewed as bad program configurations. We distinguish race from abort
to define data-race-freedom. A thread tree T is race-free if its execution never
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leads to race. By this definition, programs that abort may still be race-free. This
allows us to talk about race-free but unsafe programs, as shown in Theorem 5.2.

Definition 5.1. 〈T, σ〉 racefree iff ¬(〈�T  , σ〉 =⇒∗ race); T racefree iff, for all
σ, 〈T, σ〉 racefree.

Example 2. Given the following programs,

(1) [x]:= 3 ‖ [x]:= 4
(2) [x]:= 3 ‖ atomic {[x]:= 4}
(3) [x]:= 3 ‖ atomic {while true do [x]:= 4}
(4) atomic {[x]:= 3} ‖ atomic {[x]:= 4}
we know (4) is race-free, but (1), (2) and (3) are not.

5.2 DRF-Guarantee of the Relaxed Semantics

Theorem 5.2 formulates the DRF-guarantee of the relaxed semantics. It says a
race-free program configuration has the same observable behaviors in both the
relaxed semantics and the interleaving semantics: if it aborts in one semantics,
it aborts in the other; if it never aborts (which means it is “safe”), it reaches the
same set of final states in both settings. We need the premise in the second case
because the subsumption relation allows us to transform an unsafe program into
a safe one. Therefore a program that reaches 〈skip, σ′〉 in the relaxed semantics
may abort and never terminate at σ′ in the interleaving semantics.

Theorem 5.2 (DRF-guarantee). If 〈T, σ〉 racefree, then

1. [(t] 〈T, σ〉 �−→∗ abort iff 〈T, σ〉 �−→∗ abort.
2. If ¬(〈T, σ〉 �−→∗ abort), then

[(t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈T, σ〉 �−→∗ 〈skip, σ′〉.

The proof trivially follows from two important lemmas. Lemma 5.3 shows the
equivalence between the interleaving semantics and the grainless semantics for
race-free programs. Lemma 5.4 shows the equivalence between the grainless se-
mantics and the relaxed semantics. Therefore, we can derive the DRF-guarantee
using the grainless semantics as a bridge (see Fig. 1 (b)).

Lemma 5.3. If 〈T, σ〉 racefree, then

1. 〈T, σ〉 �−→∗ abort iff 〈�T  , σ〉 =⇒∗ abort.
2. 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈�T  , σ〉 =⇒∗ 〈(skip, ), σ′〉.

Lemma 5.4. If 〈T, σ〉 racefree, then

1. [(t] 〈T, σ〉 �−→∗ abort iff 〈�T  , σ〉 =⇒∗ abort.
2. if ¬(〈T, σ〉 �−→∗ abort), then

[(t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈�T  , σ〉 =⇒∗ 〈(skip, ), σ′〉.

Details about the proofs can be found in the technical report [15].
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� {p ∗ I} c {q ∗ I}
I � {p}atomic c {q} (atom)

I � {p1} c1 {q1} I � {p2} c2 {q2}
I � {p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2} (par)

c2 does not update free var. in p1, c1 and q1, and conversely.

Fig. 10. Selected CSL Rules

6 Soundness of CSL

We prove the soundness of CSL in our relaxed semantics by first proving it is
sound in the grainless semantics. The CSL we use here is mostly standard [23, 9].
It consists of sequential and concurrent rules. The sequential part (� {p} c {q})
is standard sequential separation logic rules. The concurrent rules allow us to
derive a judgment of the form I � {p} c {q}. It informally says that the state
can be split implicitly into a shared part and a local part; the local part can be
accessed only by c; p and q are pre- and post-conditions for the local state; the
shared part can be accessed by both c and its environment, but only in atomic
blocks; accesses of the shared state must preserve its invariant I. Figure 10 shows
two of the most important rules of CSL.

We define semantics of the judgment I |= {p}c{q} below, based on the grain-
less semantics. The soundness of CSL rules is shown by Lemma 6.2.

Definition 6.1. I |= {p}c{q} iff, for all σ and δ such that σ |= I ∗ p and
σ |= δ * I, we have (1) ¬ (〈(c, δ), σ〉 =⇒∗ abort) and ¬ (〈(c, δ), σ〉 =⇒∗ race),
and, (2) if 〈(c, δ), σ〉 =⇒∗ 〈(skip, ), σ′〉, then σ′ |=I ∗ q.

Here σ |=I ∗ p means σ satisfies the assertion I ∗ p, and σ |= δ * I means the set
of memory locations in δ is disjoint with the domain of the sub-heap (in σ) that
satisfies I. The formal definitions are given in the technical report [15].

Lemma 6.2. If I � {p} c {q}, then I |= {p}c{q}.

The proof of this lemma follows standard techniques, i.e. we need to first prove
the locality [31, 10] of each primitive commands. We show details of the proofs
in our technical report [15]. Next we give semantics to I � {p} c {q} based on
our relaxed semantics, and show the soundness in Theorem 6.4.

Definition 6.3. I |=[Λ] {p}c{q} iff, for all σ such that σ |= I ∗ p, we have
(1) ¬ ([Λ] 〈c, σ〉 �−→∗ abort), and, (2) if [Λ] 〈c, σ〉 �−→∗ 〈skip, σ′〉, then σ′ |=I ∗ q.

Theorem 6.4. If I � {p} c {q}, then I |=[�t] {p}c{q}.

Proof. Trivial by applying Lemmas 5.4 and 6.2. �

Extensions of CSL. Bornat et al. [6] extended CSL with fractional permissions
to distinguish exclusive total accesses and shared read-only accesses. We can
prove CSL with fractional permissions is also sound with respect to the grainless
semantics, but the model of heaps needs to be changed to a partial mapping
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from locations to a pair of values and permissions. The proof should be similar
to the proof for standard CSL. We believe other extensions of CSL, such as CSL
with storable locks [17, 18] and the combination of CSL with Rely-Guarantee
reasoning [29, 13], can also be proved sound with respect to the grainless seman-
tics. Then their soundness in our relaxed semantics can be derived easily from
Lemma 5.4. We would like to verify our hypothesis in our future work.

7 Related Work and Conclusions

The literature on memory models is vast. We cannot give a detailed overview
due to space constraints. Below we just discuss some closely related work.

The RAO model by Saraswat et al. [26] consists of a family of transformations
(IM, CO, AU, LI, PR and DX). Unlike our subsumption relation which gives only
an abstract and extensional formulation of semantics preservation between se-
quential threads, each of them defines a very specific class of transformations. We
suspect that our model is weaker (not necessarily strictly weaker) than the RAO
model. IM, CO and DX are obvious specializations of our subsumption relation
with extra constraints. Although we only support intra-thread local transfor-
mations, we can define a more relaxed version of PR: c ( if q then c′ else c ,
assuming c′ has the same behaviors with c if q holds over the initial state. AU
enforces a specific scheduling. We allow all possible scheduling in our relaxed
semantics. LI is an inter-thread transformation. It is unclear how it relates to
our subsumption relation, but the examples [26] involving LI (e.g., the cross-over
example) can be supported following the pattern with which we reproduce the
prescient-write example in Sect. 4.

In this paper, we do not investigate the precise connection to the Java Mem-
ory Model (JMM [21]). Our semantics is operational and not based upon the
happens-before model. We believe it provides a weaker memory model with the
DRF-guarantee, and supports compiler optimizations that JMM does not, such
as the one described by Cenciarelli et al. [11]. However, there are two key issues if
we want to apply our model to Java, i.e. preventing the “out-of-thin-air” behav-
iors and supporting partial barriers. The first one can be addressed by adding
constraints similar to Saraswat’s DX-family transformations in our subsumption
relation. The second one can be solved by allowing transformations to go beyond
partial barriers. We will show the solution in an upcoming paper.

Boudol and Petri [7] presented an operational approach to relaxed memory
models. Their weak semantics made explicit use of write buffers to simulate the
effects of memory caching during execution, which was more concrete and con-
structive than most memory model descriptions. However, only a restricted set of
reordering was observable in their semantics, while our semantics is much weaker
and supports all four types of memory reordering. Also, since our formalization
of memory models is based on program transformations, our semantics has bet-
ter support of compiler optimizations. The connection between their semantics
and program logics such as CSL is unclear either.

Sevcik [27] analyzed the impact of common optimizations in two relaxed mem-
ory models, establishing their validity and showing counter examples; some of
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our examples were inspired by his work. Gao and Sarkar [16] introduced Loca-
tion Consistency (LC), probably the weakest memory model described in the
literature; we stand by their view that memory models should be more relaxed
and not based necessarily on cache consistence.

Conclusions. We present a simple operational semantics to formalize memory
models. The semantics is parameterized on a binary relation over programs. By
instantiating the parameter with a specific relation (t, we have obtained a mem-
ory model that is weaker than many existing ones. Since the relation is weaker
than observational equivalence of sequential programs, this memory model also
captures many sequential optimizations that usually preserve semantic equiva-
lence. We then propose an operational grainless semantics, which allows us to
define data-race-freedom and prove the DRF-guarantee of our relaxed memory
model. We also proved the soundness of CSL in relaxed memory models, using
the grainless semantics as a bridge between CSL and the relaxed semantics.

In our future work, we would like to extend our framework to support partial
barriers. This can be achieved by extend the ( relation with transformations
that go beyond partial barriers. It is also interesting to formally verify the cor-
rectness of sequential optimization algorithms in a concurrent setting. Given this
framework, it is sufficient to prove that the algorithms implement a subset of
the ( relation.
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Abstract. In 2003, Hofmann and Jost introduced a type system that
uses a potential-based amortized analysis to infer bounds on the re-
source consumption of (first-order) functional programs. This analysis
has been successfully applied to many standard algorithms but is lim-
ited to bounds that are linear in the size of the input.

Here we extend this system to polynomial resource bounds. An au-
tomatic amortized analysis is used to infer these bounds for functional
programs without further annotations if a maximal degree for the bound-
ing polynomials is given. The analysis is generic in the resource and can
obtain good bounds on heap-space, stack-space and time usage.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Amortized Analysis.

1 Introduction

In this paper we study the problem of statically determining an upper bound on
the resource usage of a given first-order functional program as a function of the
size of its input.

As in an earlier work by Hofmann and Jost [1] we rely on the potential method
of amortized analysis to take into account the interaction between the steps of a
computation and thus obtain tighter bounds than by a mere addition of the worst
case resource bounds of the individual steps. Furthermore, the use of potentials
relieves one of the burden of having to manipulate symbolic expressions during
the analysis by a priori fixing their format.

The main limitation of the system of Hofmann and Jost [1] is its restriction to
linear resource bounds. While this restriction is often acceptable when account-
ing heap space, it is rather limiting when accounting time and other resources.
This raises the question whether it is possible to effectively utilize the poten-
tial method to compute super-linear resource bounds. We address the problem
in this work by using a potential-based amortized analysis to infer polynomial
resource bounds.
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The analysis system we present applies to functional first-order programs with
integers, lists and recursion. It can also be extended to programs with tree-like
data structures.

Our analysis of the programs is fully automatic and does not require type
annotations. It is furthermore generic in the resource and provides good bounds
on heap space, stack space, clock cycles (time) or other resources that might be
of interest to a user.

The linear system [1,2] has been successfully applied in the domain of em-
bedded systems [3]. We envisage that the present extension will also have ap-
plications there, in particular in situations where only a few functions exhibit
super-linear resource consumption. For this, it is important that the system de-
scribed here properly extends the linear one so that no expressive power is lost
when moving to polynomials.

We give examples of typical programs with a polynomial resource behavior to
which our extended system successfully applies. The examples have been imple-
mented in a prototype of the system that is available online1. It can be directly
used in a web browser to analyze and to evaluate user generated programs. We
experimented with a variety of example programs such as

• quicksort, mergesort, insertionsort
• multiplication and division for bit-vectors of arbitrary length
• longest common subsequence via dynamic programming
• breadth-first traversal of a tree using a functional queue
• sieve of Eratosthenes

A comparison of the computed bounds with the actual resource costs showed
that many bounds exactly match the measured worst-case time and heap-space
behaviors of the functions (this is for instance the case for quicksort, insertion-
sort, pairs and triples). Plots of our experiments are available online and in the
extended version of this article.

The main conceptual contribution of this paper lies in the transfer of the anal-
ysis method of Hofmann and Jost from linear to polynomial bounds. They used
an automatic amortized analysis to infer first-order types that are annotated
with information on the resource consumption. The analysis works basically like
a standard type inference instrumented with linear constraints for the type an-
notations that can then be solved by linear programming. For this method to
work it is essential that the occurring constraints are linear. Since one would ex-
pect an analysis for non-linear bounds to result in non-linear constraints it has
been often assumed that amortized analysis is limited to linear bounds. That is
maybe why the problem of an extension of amortized analysis to super-linear
bounds has remained open for several years. The amortized analysis with polyno-
mial potential we present is an elegant and powerful extension of the amortized
analysis to polynomial bounds that naturally results in linear constraints.

The paper is organized as follows. In §2 we introduce the concept of amortized
analysis and informally describe the novel technique that we introduce here. We
1 http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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then, in §3, define the functional programming language RAML (Resource Aware
ML) that is used to describe our system and give, in §4, the operational big-
step semantics that define the resource consumption of RAML programs. In the
sections 5 and 6 we define the type system for the resource aware types that
are used in the analysis. §7 shows the analysis of example functions. §8 outlines
how the typing of an sub-expressions can be improved in order to type complex
expressions. The inference algorithm is presented in §9 and §10 gives an overview
of the related work.

An extended version of this paper is available on the first authors web page.
In addition, we show there how our system can be extended to trees and how
it can be applied to infer sized types. Furthermore, it contains a compilation of
the experimental results and more detailed versions of §7, §8 and §9.

2 Amortized Analysis: Examples and Intuition

Amortized analysis was initially introduced by Sleator and Tarjan [4] to analyze
the efficiency of data structures. For a given data structure one is often interested
in the costs of a sequence of operations whose costs vary depending on the state
of the data structure. A method to analyze the cost of such a sequence is to
introduce a non-negative potential of the data structure that can be used to pay
(costly) operations. More precisely one defines the amortized cost of an operation
as the sum of its actual cost and the (possibly negative) net gain of potential
incurred by its invocation. The sum of the amortized costs taken over a sequence
of operations plus the potential of the initial data structure then furnishes an
upper bound on the actual cost of that sequence.

In 2003, Hofmann and Jost [1] applied amortized analysis to type systems
in order to derive linear bounds on the heap-space usage of functional pro-
grams. The idea is to assign a linear potential to all data structures of variable
length. This potential can then be used to “pay” for the resource consumption
of functions that are applied to that data. Consider for example the function
attach:(int, L(int))→L(int, int) that takes an integer and a list of integers and
returns a list of pairs of integers such that the first argument is attached to
every element of the list. The expression attach(1,[1,2,3,4]) thus evaluates to
[(1,1),(1,2),(1,3),(1,4)]. The function attach can be implemented as follows.

attach(x, l ) = match l with | nil → nil | (y::ys) → (x,y)::(attach (x,ys))

To analyze the heap-space usage of attach we suppose that we need one memory
cell for both creating a new list element, and creating a new pair. The heap-space
usage of an execution of attach(x,l) is then 2n memory cells if n is the length of
l. This fact can be expressed by the resource-annotated type

attach: (int, L(2)(int))−−−→0/0 L(0)(int, int).

The intuitive meaning of this typing is the following: To evaluate attach(x,l)
one needs 0 memory cells and 2 memory cells per element in the list. After the
execution there are 0 memory cells and 0 cells per element of the returned list
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left. We say that the list l has the potential Φ(l, 2) = 2 · |l| and that attach(x,l)
has the potential 0. Another possible typing of attach would be

attach: (int, L(4)(int))−−−→8/8 L(2)(int, int).

This typing could be used for the inner occurrence of attach to type an expression
like attach(x,attach(z,ys)).

Surprisingly, it turned out that such resource-annotated types can be auto-
matically inferred without requiring any type annotations [1]. Essentially, the
inference is done by a conventional type checking that produces linear inequal-
ities which can be solved with linear programming. Furthermore, it has been
shown [2] that the same potential-based approach can be similarly applied to a
wide range of resources such as time and stack space [5] as well as to polymor-
phic, higher-order programs [6].

Now consider the function pairs:L(int)→L(int, int) that computes the two-
element sets of a given set (if one views the input list as a set). The expression
pairs([1,2,3,4]) thus evaluates to the list [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]. Below
is an implementation of pairs.

pairs l = match l with | nil → nil
| (x :: xs) → append(attach(x,xs),pairs xs)

Since the size of pairs(l) is quadratic in the size of l it is impossible to assign
pairs a type with linear potential analogous to attach. In the next sections we
show how to extend the linear potential annotation in a way that allows us to
type functions with a polynomial resource consumption while still being able to
perform automatic type inference. The function pairs could then be assigned the
typing

pairs: L(0,4)(int)−−−→0/0 L(1)(int, int).

This means that a list l in an expression pairs(l) has the potential Φ(l, (0, 4)) =
0 · |l|+ 4 ·

(|l|
2

)
and thus the linear potential 4|l′| for every sub-list (suffix) l′ of l.

The function append could get the type

append: (L(2)(int, int), L(1)(int, int))−−−→0/0 L(1)(int, int)

since the function consumes one heap-cell for every element in the first argument.
That is why pairs(l) consumes 3 heap-cells per element of every sub-list of l and
we can attach the potential 1 to every element of the list pairs(l).

In a nutshell, our approach is as follows. We start from an as yet unknown
potential-function of the form

∑
pi(ni) with polynomials pi of a given maximal

degree k and ni referring to the sizes of the parameters. We then derive lin-
ear constraints on the coefficients of the pi by type-checking the program. We
choose, and this is an important contribution, a representation of polynomials
of degree k as sums

∑
i=0,...,k ai

(
n
i

)
with ai ≥ 0. Compared with the traditional

representation
∑

ai · ni, ai ≥ 0, this has the following advantages.

1. Some naturally arising resource bounds such as
∑

i=1,...,n i cannot be ex-
pressed as a polynomial with non-negative coefficients in the traditional rep-
resentation. On the other hand it is true that

(
n
2

)
=
∑

i=1,...,n i.
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2. It is the largest class C of non-negative, monotone polynomials such that
p ∈ C implies f(n) = p(n + 1) − p(n) ∈ C (see §5). All three properties
are clearly desirable. The latter one, in particular, expresses that the “spill”
arising upon shortening a list by one falls itself into C.

3. The identity
∑

i=1,...,k ai

(
n+1

i

)
= a1 +

∑
i=1,...,k−1 ai+1

(
n
i

)
+
∑

i=1,...,k ai

(
n
i

)
gives rise to a local typing rule for cons match which very naturally allows
the typing of both recursive calls and other calls to subordinate functions.

4. The linear constraints arising from the type inference have a very simple
form due to the above equation. In particular each constraint involves at
most three variables.

A key notion in the polynomial system is the additive shift � of a type an-
notation which is defined through �(q1, . . . , qk) = (q1 + q2, . . . , qk−1 + qk, qk)
to reflect the identity from item 3. It is for instance present in the typing
tail:Lq(int)−−−→0/q1 L�(q)(int) of the function tail that removes the first element
from a list.

The idea behind the additive shift is that the potential resulting from the
contraction xs:L�(q)(int) of a list (x::xs):Lq(int) (usually in a pattern match) is
used for three purposes: i) to pay the constant costs after and before the recursive
calls (q1), ii) to fund calls to auxiliary functions ((q2, . . . , qn)), and iii) to pay
for the recursive calls ((q1, . . . , qn)). For instance, this pattern is present in the
definition of the function pairs: In the pattern match, the type xs:L(4,4)(int)
is assigned to the variable xs. The potential is then shared between the two
occurrences of xs in the following expression by using xs:L(4,0)(int) to pay for
append and attach (ii) and using xs:L(0,4)(int) to pay for the recursive call of
pairs (iii); the constant costs (i) are zero in this example.

In this paper we restrict ourselves to bounds that are sums of univariate poly-
nomials. Mixed bounds such as m ·n must be over-approximated by polynomials
like m2 +n2. This results in a particularly efficient inference algorithm since the
number of constraints grows only linear in the maximal degree of the polynomi-
als (see §9). We are nevertheless currently investigating an extension to arbitrary
multivariate polynomials.

3 RAML – A Functional Programing Language

In this section we define the functional first-order language RAML (Resource
Aware ML). RAML is similar to LF (linear functional language) from [1]. It
enjoys an ML-style syntax, Booleans, integers, pairs, lists, recursion and pattern
matching.

The differences between LF and RAML are irrelevant for the resource aware
type analysis. On the one hand, we have added integers to formulate more real-
istic examples. On the other hand, we have abandoned the sum type since it is
not used in the examples that are presented here. Additionally, for the sake of
simplicity, we do not have a destructive match operation in RAML. The inte-
gration of both features into the system is straightforward and analogous to the
method used in LF.
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Below is the EBNF grammar for the expressions of RAML. We skip the stan-
dard definitions of integer constants n ∈ Z and variable identifiers x ∈ VID.

e ::= () | True | False | n | x
| x1 binop x2 | f(x1, . . . , xn)
| let x = e1 in e2

| if x then et else ef

| (x1, x2) | match x with (x1, x2) → e

| nil | cons(xh, xt) | match x with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2

binop ::= + | − | ∗ | mod | div | and | or

For the resource analysis it is unimportant which ground operations are used
in the definition of binop. In fact one can use here every function that has a
constant worst-case resource consumption. In our case we assume that we have
integers of a fixed length, say 32 bits, in our system to ensure this property of
the integer operations.

In the examples we often write (x::y) instead of cons(x,y).
We restrict our attention mainly to list types in this paper. However, we

discuss extensions to other algebraic data types in an extended version of this
article that is available on the web.

The expressions of RAML are in let normal form. This means that term
formers are applied to variables only whenever possible. This simplifies typing
rules and semantics considerably without hampering expressivity in any way.

Below we define the well-typed expressions of RAML by assigning a simple
type, i.e. a usual ML type without resource annotations, to every well-typed
expression. Simple types are zero-order and first-order types as given by the
following grammars.

A ::= unit | bool | int | L(A) | (A,A) F ::= (A, . . . , A) → A

Let AS be the set of simple zero-order types (A in the grammar) and let FS be
the set of simple first-order types (F in the grammar).

The typing rules for RAML expressions are given as an affine linear type
system with a sharing rule that explicitly tracks multiple occurrences of variables.
The type system thus imposes no linearity restrictions but gives finer information
on occurrences of variables than a simple type system does.

A typing context is a partial, finite function Γ : VID → AS from variable
identifiers to zero-order types. As usual Γ1, Γ2 denotes the union of the contexts
Γ1 and Γ2 provided that dom(Γ1)∩dom(Γ2) = ∅. We thus have the implicit side
condition dom(Γ1) ∩ dom(Γ2) = ∅ whenever Γ1, Γ2 occurs in a typing rule.

Let FID be a set of function identifiers. A signature Σ : FID → FS is a finite,
partial mapping of function identifiers to first-order types.

The typing judgment Γ �Σ e : A states that the expression e has type A
under the signature Σ in the context Γ . Due to space restrictions we omit the
typing rules that define the typing judgment. They are standard and identical
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with the resource-annotated typing rules T:Const - T:Share from §6 if the
resource annotations are omitted.

A RAML program is a tuple that consists of a signature Σ and a fam-
ily of expressions with specified variable identifiers (ef ,  y

f)f∈dom(Σ) such that
yf
1 :A1, . . . , y

f
k :Ak �Σ ef :A if Σ(f) = (A1, . . . , Ak) → A.

In the example programs we write f(yf
1 , . . . , y

f
k ) = ef to indicate that the

expression ef and the variables yf
1 , . . . , y

f
k are associated with the function f .

4 Operational Semantics for RAML

In this section we define a big-step operational semantics for RAML which is
instrumented with resource counters. It is parametric in the particular resource
of interest and can be instantiated for different resources including time, heap
space and stack size.

Preliminaries: Let Loc be an infinite set of locations modeling memory ad-
dresses on a heap. The set of RAML values Val is given by

v ::= l | b | n | Null | (v, v)

Thus a value v ∈ Val is either a location l ∈ Loc, a Boolean constant b, an
integer n, a null value Null or a pair of values (v1, v2).

A heap is a finite partial function H : Loc → Val that maps locations to
values. A stack is a finite partial mapping V : VID → Val from variables to
values.

The rules below define an evaluation judgment of the form V ,H q

q′ e� v,H′
expressing the following. If q ∈ Q+ is the value of the resource counter and if
the stack V and the initial heap H are given then the expression e evaluates
to the value v and the new heap H′. Furthermore the resource counter is never
negative during the evaluation and q′ ∈ Q+ is the value of the resource counter
after the evaluation. The actual resource consumption is then δ = q − q′. Note
that δ could be negative if resources become available during the execution of e.

There can exist two different evaluation judgments V ,H q
q′ e � v,H′ and

V ,H p

p′ e � v,H′ for an expression e under the same heap H and stack V .
But then the resource consumption δ of e is identical in both cases and thus
δ = q−q′ = p−p′. Since q, q′, p, p′ ∈ Q+ it follows also that q, p ≥ δ. Moreover it
is an invariant of the rules that if V ,H q

q′ e� v,H′ then also V ,H q + a
q′+a e�

v,H′ for every a ≥ 0. The execution steps below are formulated with respect
to constants K ∈ Q that depend on the resource the user is interested in. For
example one could set Kpair = Kcons = 1 and K = 0 for all other constants
K to analyze the number of heap-cells that are used during the execution. The
constants might also be negative if resources are restituted during an execution
step. This is the case for stack space and also heap space if one were to include
destructive pattern matching as in LF [1] which is omitted here for simplicity.

V ,H q+Kunit

q ()�Null,H
(E:Const-U)

b ∈ {True,False}

V ,H q+Kbool

q b�b,H
(E:Const-B)
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n ∈ Z

V ,H q + Kint

q n� n,H
(E:Const-I)

x ∈ dom(V)

V ,H q + Kvar

q x� V(x),H
(E:Var)

op ∈ {+,−, ∗,mod, div, and, or}
x1, x2 ∈ dom(V) v = op(V(x1),V(x2))

V ,H q + Kop

q x1 op x2 � v,H
(E:BinOp)

Σ(f) = (A1, . . . , Ak) → A ∀1 ≤ i ≤ n : V(xi) = vi

[yf
1 �→ v1, . . . , y

f
k �→ vk],H q −Kapp

1

q′ + Kapp
2

ef � v,H′

V ,H q

q′ f(x1, . . . , xk)� v,H′
(E:FunApp)

V ,H q1 −Klet
1

q2
e1 � v1,H1 V [x �→ v1],H1

q2 −Klet
2

q3 + Klet
3

e1 � v2,H2

V ,H q1

q3
let x = e1 in e2 � v2,H2

(E:Let)

V(x) = True V ,H q −KconT
1

q′ + KconT
2

et � v,H′

V ,H q

q′ if x then et else ef � v,H′
(E:Cond-T)

V(x) = False V ,H q −KconF
1

q′ + KconF
2

ef � v,H′

V ,H q

q′ if x then et else ef � v,H′
(E:Cond-F)

x1, x2 ∈ dom(V) v = (V(x1),V(x2)) l �∈ dom(H)

V ,H q + Kpair

q (x1, x2)� l,H[l �→ v]
(E:Pair)

V(x) = l H(l) = (v1, v2)

H,V [x1 �→ v1, x2 �→ v2]
q −KmatchP

1

q′ + KmatchP
2

e� v,H′

V ,H q

q′ match x with (x1, x2) → e� v,H′
(E:Match-P)

V ,H q + Knil

q nil� Null,H
(E:Nil)

xh, xt ∈ dom(V) v = (V(x1),V(x2)) l �∈ dom(H)

V ,H q + Kcons

q cons(xh, xt)� l,H[l �→ v]
(E:Cons)

V(x) = Null H,V q −KmatchN
1

q′ + KmatchN
2

e1 � v,H′

V ,H q

q′ match x with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2 � v,H′
(E:Match-N)

V(x) = l H(l) = (vh, vt)

V [xh �→ vh, xt �→ vt],H
q −KmatchC

1

q′+KmatchC
2

e2 � v,H′

V ,H q

q′ match x with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2 � v,H′
(E:Match-C)

Actual constants for stack-space, heap-space and clock-cycle consumption have
been determined for the abstract machine of the language Hume [7] on the
Renesas M32C/85U architecture. A list can be found in the literature [2].
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5 Resource Annotations for Polynomial Bounds

Resource-annotated types are simple types where lists are annotated with non-
negative vectors  p ∈ Qn. These vectors associate a potential with the list that
can be used to pay for resource consumptions during an execution.

Recall the example functions attach and pairs that have been introduced in
§2. We assigned the annotated type attach: (int, L(2)(int))−−−→0/0 L(0)(int, int) to
the function to indicate that the evaluation of attach(x,l) consumes 2·|l| resource
units.

The function pairs calls the function attach for every sub-list (suffix) of the
input which leads to a quadratic resource consumption. This corresponds to
a general pattern in the sense that many typical quadratic functions consume
a linear amount of resources for every sub-lists (suffix) of an input just like a
typical linear function that consumes a constant amount of resources per element
in its input list. We reflect this resource behavior by assigning a type like pairs:
L(0,5)(int)−−−→0/0 L(2)(int, int). Informally, this type says: To evaluate pairs(l) one
needs 0 resource units per element of l and 5 resource units per element of each
sub-list of l. The result of the computation is a list of pairs of integers that has
a potential of 2 resource units per element.

In general we define resource-annotated zero-order types A as follows.

A ::= unit | bool | int | Lp(A) | (A,A)

Here  p is a resource annotation for a list type which is defined as a k-tuple
 p = (p1, . . . , pk) ∈ Qk with pi ≥ 0 and k > 0. Let A be the set of resource-
annotated zero-order types.

For two resource annotations  p = (p1, . . . , pk) and  q = (q1, . . . , ql) we write
 p ≤  q if k ≤ l and pi ≤ qi for all 1 ≤ i ≤ k. If l ≥ k then we define  p +  q =
(p1 + q1, . . . , pk + qk, qk+1, . . . , ql).

Let  p = (p1, . . . , pk) be an annotation for a list type. The additive shift of  p
is �( p) = (p1 + p2, p2 + p3, . . . , pk−1 + pk, pk).

Let H be a heap and A be a resource-annotated type and let v be a value
matching type A in H . The potential ΦH(v:A) is then defined as follows.

• ΦH(Null:A) = 0
• If A ∈ {unit, int, bool} then ΦH(v:A) = 0.
• If A = (A1, A2) and v = (v1, v2) is a pair then ΦH(v:A) = ΦH(v1:A1) +
ΦH(v2:A2).

• If A = L(p1,...,pk)(A′) is a list type and v = l is a location with H(l) = (v′, l′)
then ΦH(l:A) = p1 + ΦH(v′:A′) + ΦH(l′: L�(p1,...,pk)(A′)).

In the following sections we will sometimes explain an idea by talking about the
potential Φ(x:A) of a variable x with respect to an annotated type A. In such a
case we mean in fact the potential ΦH(V(x):A) with respect to a stack V and a
heap H that we do not want to specify precisely.

If l1 is a location that points to a list then we write H(l1) = [v1, . . . , vn] if
H(li) = (vi, li+1) for i = 1, . . . , n and ln+1 = Null. If l1 = Null then we write
H(l1) = [].
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Let for example H be a heap and H(v) = [v1 . . . , vn] an integer list. Then

• ΦH(l:L(p1)(int)) = p1 · n
• ΦH(l:L(0,p2)(int)) =

∑n−1
i=1 p2 · i = p2

n·(n−1)
2

• ΦH(l:L(0,0,p3)(int)) =
∑n−1

i=1 p3
i·(i−1)

2 = p3
n·(n−1)·(n−2)

6

The next lemma shows how to express the potential ΦH(v:A) of a value v with
respect the heap H and a matching annotated type A in terms of polynomials
in the lengths of the lists that are reachable from v. For a list annotation  p and
an integer n we define

φ(n,  p) =
k∑

i=1

(
n

i

)
pi.

Lemma 1. Let H be a heap such that H(l) = [v1 . . . , vn] is a list of length n
and let  p = (p1, . . . , pk) be an annotation for a list type. Then ΦH(l:Lp(A)) =
φ(n,  p) +

∑n
i=1 ΦH(vi:A).

The proof of Lemma 1 as well as the proofs of the following lemmas are given
in the extended version of this article.

It is essential for the type system that φ is linear in the sense of the following
lemma that follows directly from the definition of φ.

Lemma 2. Let n ∈ N, α ∈ Q and let  p,  q be resource annotations. Then
φ(n,  p) + φ(n,  q) = φ(n,  p +  q) and α · φ(n,  p) = φ(n, α ·  p).

As mentioned before it is a general pattern in functional programs to compute
a task on a list recursively for the tail of the list and to use the result of the
recursive call to compute the result of the function. In such a recursive function it
is natural to assign a uniform potential to each sub-list (depending on its length)
that occurs in a recursive call. In other words: one wants to use the potential
of the input list to assign a uniform potential to every suffix of the list. With
this view, the list potential α = φ(n, (p1, p2, · · · , pk)) can be read as follows: a
recursive function on a list l of length n that has the potential α can use the
potential φ(i, (p2, · · · , pk) for the suffixes of l of length 1 ≤ i < n that occurs in
the recursion. This intuition is proved by the following lemma.

Lemma 3. Let  p = (p1, . . . , pk) be a resource annotation, let n ∈ N and define
φ(n, ()) = 0. Then φ(n, (p1, . . . , pk)) = n · p1 +

∑n−1
i=1 φ(i, (p2, . . . , pk)).

Note that the binomial coefficients are a basis of the vector space of the polynomi-
als. Here, however, we are only interested in non-negative linear combinations of
binomial coefficients. These admit a natural characterization in terms of growth:
for f : N → N define (Δf)(n) = f(n+1)−f(n).Call f hereditarily non-negative if
Δif ≥ 0 for all i ≥ 0.One can show that a polynomial p is hereditarily non-negative
if and only if it can be written as a non-negative linear combination of binomial co-
efficients. To wit, the coefficient of

(
n
i

)
in the representation of p is (Δip)(0). The

hereditarily non-negative polynomials are scalar multiples of unary resource poly-
nomials [8] and thus are closed under sum, product, and composition. Note that
they include all non-negative linear combinations of the polynomials (xi)i∈N.



Amortized Resource Analysis with Polynomial Potential 297

6 Type System

This section presents typing rules for the resource-annotated zero-order types A
that have been defined in §5 and establishes their semantic soundness. Later in
§8 we add another rule.

As in the case of the simple types, a typing context is a partial finite func-
tion Γ : VID → A from variable identifiers to annotated zero-order types. The
potential of a typing context Γ with respect to a heap H and a stack V is

ΦV,H(Γ ) =
∑

x∈dom(Γ )

ΦH(V(x):Γ (x))

Sometimes we write just Φ(Γ ) leaving stack and heap implicit.
The resource-annotated first-order types F are defined by

F ::= (A, . . . , A)−−−→q/q′
A.

Here q, q′ are rational numbers and A ranges over the resource-annotated zero-
order types. Let F denote the set of resource-annotated first-order types.

A resource-annotated signature Σ : FID → F is a finite, partial mapping of
function identifiers to resource-annotated first-order types. A resource-annotated
typing judgment has the form Σ;Γ

q
q′ e:A where e is a RAML expression, q, q′ ∈

Q+ are non-negative rational numbers, Σ is a resource-annotated signature, Γ
is a resource-annotated context and A is a resource-annotated zero-order type.
The intended meaning of this judgment is that if there are more than q + Φ(Γ )
resource units available then this is sufficient to evaluate e and then there are
more than q′ + Φ(v:A) resource units left after the evaluation of e to a value v.

Similarly as for simple types, a RAML program with resource-annotated types
is a tuple that consists of a resource-annotated signature Σ and a family of
expressions with specified variable identifiers (ef ,  y

f)f∈dom(Σ) such that for each
ef we have Σ; yf

1 :A1, . . . , y
f
k :Ak

q
q′ ef :A if Σ(f)=(A1, . . ., Ak)−−−→q/q′

A.
The following type rules are used to derive a resource-annotated type judg-

ment for RAML expressions. Therein, we write e[z/x] to denote the expression
e with all free occurrences of the variable x replaced with the variable z.

Σ; ∅ Kunit

0 ():unit

(T:Const-U)

n ∈ Z

Σ; ∅ Kint

0 n : int

(T:Const-I)

b ∈ {True,False}

Σ; ∅ Kbool

0 b:bool

(T:Const-U)

Σ;x:A
Kvar

0 x : A
(T:Var)

op ∈ {+,−, ∗,mod, div}

Σ;x1:int, x2:int
Kop

0 x1 op x2 : int
(T:BinOp-I)

op ∈ {or, and}

Σ;x1:bool, x2:bool
Kop

0 x1 op x2 : bool
(T:BinOp-B)
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Σ(f) = (A1, . . . , Ak)−−−→q/q′
A Γ = x1:A1, . . . , xk:Ak

Σ;Γ
q + Kapp

1

q′ −Kapp
2

f(x1, . . . , xk) : A
(T:FunApp)

Σ;Γ1
q −Klet

1
p e1 : A Σ;Γ2, x:A

p−Klet
2

q′ + Klet
3

e2 : B

Σ;Γ1, Γ2
q

q′ let x = e1 in e2 : B
(T:Let)

Σ;Γ
q −KconT

1

q′ + KconT
2

et : A Σ;Γ
q −KconF

1

q′ + KconF
2

ef : A

Σ;Γ, x:bool
q

q′ if x then et else ef : A
(T:Cond)

Σ;x1:A1, x2:A2
Kpair

0 (x1, x2) : (A1, A2)
(T:Pair)

A = (A1, A2) Σ;Γ, x1:A1, x2:A2
q −KmatchP

1

q′ + KmatchP
2

e : B

Σ;Γ, x:A
q

q′ match x with (x1, x2) → e : B
(T:Match-P)

A ∈ A

Σ; ∅ Knil

0 nil:L(A)
(T:Nil)

 p = (p1 . . . pk)

Σ;xh:A, xt:L�(p)(A)
p1+Kcons

0 cons(xh, xt):Lp(A)
(T:Cons)

 p = (p1, . . . , pk) Σ;Γ
q −KmatchN

1

q′ + KmatchN
2

e1 : B

Σ;Γ, xh:A, xt:L�(p)(A)
q + p1 −KmatchC

1

q′ + KmatchC
2

e2 : B

Σ;Γ, x:Lp(A)
q

q′ match x with
⎪⎪nil → e1⎪⎪ cons(xh, xt) → e2

: B
(T:Match-L)

Σ;Γ, x:A1, y:A2
q

q′ e : B �(A | A1, A2)

Σ;Γ, z:A
q

q′ e[z/x, z/y] : B
(T:Share)

Σ;Γ, x:A
q

q′ e : B A′ <: A

Σ;Γ, x:A′
q

q′ e : B
(T:Super)

Σ;Γ
q

q′ e : B B <: B′

Σ;Γ
q

q′ e : B′
(T:Sub)

Σ;Γ
p

p′ e : B q ≥ p q − p ≥ q′ − p′

Σ;Γ
q

q′ e : B
(T:Relax)

Σ;Γ
q

q′ e : B x ∈ VID A ∈ A
Σ;Γ, x:A

q

q′ e : B
(T:Augment)

The definitions of the relations �(. | ., .) and <: are given below.
We describe the idea behind the type rules exemplary for T:Cons and

T:Match. The rule T:Cons formalizes the fact that one has to pay for the
resource consumption of the evaluation of cons(xh, xt), i.e., basically the allo-
cation of a new heap-cell that points to xh and xt. This is represented by the
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constant Kcons that depends on the resource that is studied. In addition one has
to pay for the potential that is assigned to the new list of type Lp(A). We do so
by requiring xt to have the type L�(p)(A) and to have p1 resource units avail-
able. It corresponds exactly to the recursive definition of the potential function
Φ and ensures that potential is neither gained nor lost.

Complementarily, the rule T:Match-L defines how to use the potential of a
list to pay for resource consumptions. First, it matches the corresponding rules
from the operational semantics E:Match-* in terms of resource consumption.
It incorporates the fact that either e1 or e2 is evaluated. More interestingly, the
“cons case” is inverse to the rule T:Cons and allows one to use the potential
associated with a list. For one thing, p1 resource units become available directly,
for another the tail of the list is annotated with �( p) rather than  p, permitting
e.g. a recursive call (requiring annotation  p) and an additional use of the tail
with annotation (p2, p3, . . . ).

It is important that all the numerical constraints that result from rules
T:Cons, T:Match-L and the other rules are linear. This is the reason why
it is easy to verify the constraints and why one can use linear programming to
infer type annotations that match the constraints.

The Subtyping Relation. Intuitively it is true that a zero-order type A is a
subtype of a zero-order type B if and only if A and B have the same set of
values, and for every value v the potential of v:A is greater or equal than the
potential of v:B. More formal, we define <: to be the smallest relation such that

C <: C if C ∈ {unit, bool, int}
(A1, A2) <: (B1, B2) if A1 <: B1 and A2 <: B2

Lp(A) <: Lq(B) if A <: B and  p ≥  q

The Sharing Relation. The sharing relation � (. | ., .) defines how the potential
of a zero-order variable can be shared by multiple occurrences of that variable.
We will have �(A | A1, A2) if and only if A, A1 and A2 are structural identical,
i.e. have the same set of values, and for every value v the potential Φ(v:A) of v:A
is identical to the sum Φ(v:A1) +Φ(v:A2) of the potentials of v:A1 and v:A2. So
�(. | ., .) is the smallest relation such that

�(C | C,C) if C ∈ {unit, bool, int}
�(Lp(A) | Lq(A1), Lr(A2)) if �(A | A1, A2) and  p =  q +  r

�((A,B) | (A1,B1), (A2,B2)) if �(A | A1, A2) and �(B | B1, B2)

Soundness of the Analysis. The soundness theorem below states that a resource
annotated type statement guarantees that an expression can be evaluated in
the stated resource bounds and that at least the stated amount of resources is
available after the evaluation.

Such a statement is only meaningful with respect to a well-formed stack and
a well-formed heap. A stack V and a heap H are well-formed with respect to a
context Γ if V(x) is a value matching the type Γ (x) for every x ∈ dom(Γ ). We
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then write H � V :Γ . It is not hard to show that if H � V :Γ and V ,H q

q′ e �
v,H′ then also H′ � V : Γ .

Theorem 1 (Soundness). Let Σ be the signature of a given RAML program
and let e be an expression. Let H � V :Γ and let there exist some u, u′ ∈ Q+ such
that V ,H u

u′ e� v,H′. If Σ;Γ
p
p′ e:A and q ≥ ΦV,H(Γ )+p+ r for a r ∈ Q+

then there is a q′ ≥ ΦH′(v:A) + p′ + r such that V ,H q

q′ e� v,H′.

Theorem 1 is proved in the same way as the corresponding theorem in the system
of [1]. The key ingredients that are used are the lemmas from §5.

7 Examples

We developed a prototype implementation and implemented a number of well-
known, non-trivial algorithms that exhibit a super-linear resource consumption.
These examples, as well as the prototype itself, are available online2 and can be
directly tested and modified in a web-browser. The prototype implementation
can analyze the heap-space consumption and the number of evaluation steps. It
is adequately documented easy to use. One can use it not only compute resource
bounds but also to measure the actual resource consumption of a program. We
invite everybody to experiment with it to explore the frontiers of our system.

The algorithms that we implemented include

• quicksort, mergesort, insertionsort
• multiplication and division for bit-vectors of arbitrary length
• longest common subsequence via dynamic programming
• breadth-first traversal of a tree using a functional queue
• sieve of Eratosthenes

A comparison of the measured resource costs with the computed bounds showed
that the bounds match exactly the measured worst-case costs for many functions
(e.g. quicksort, insertionsort, pairs and triples). The plots of the experiments can
be found on the website and in the extended version of this article. Therein, we
also present a somewhat artificial example (a version of dyadic vector product)
that explores some boundaries of our system.

For simplicity we only provide examples for heap-space consumption in this
section. We assume that one heap-cell is allocated whenever new data is created.
Thus we set Kpair=Kcons=1 and K=0 for all other constants K.

For each function we give its annotated type and the type of the potential-
carrying variables that appear in its definition. We distinguish different occur-
rences of the same variable by adding superscripts. To save space we omit some
less interesting types and sometimes waive the let-normal form.

The types contain meta-variables p1, c, d, q3 ranging over non-negative rational
numbers. Any instantiation of the former yields a correct typing.

2 http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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7.1 Subsets of Size k

Our canonical example for polynomial heap-space consumption is the following
problem: view a given list as a set and compute the subsets of size k for a given
k. The size of the output is a polynomial of degree k.

Below we define the subset functions for k = 2 and k = 3 but one can also see
how it works for k > 3. The function attach(x,l) computes a list of pairs so that
x is paired with every element in the list l. The function pairs(l) computes a list
of all (unordered) pairs that can be built from the elements of l and similarly
the function triples(l) computes a list of all (unordered) triples.

attach(x, l ) = match l with | nil → nil | (y::ys)→ let l’ = attach(x,ys) in (x,y) ::l ’

attach: (int, L(p+2)(int))−−→c/c L(p)(int, int), l:L(p+2)(int), ys:L(p+2)(int), l’:L(p)(int, int)

append(l,ys) = match l with | nil → ys | (x::xs) → let l’ = append(xs,ys) in x::l ’

append: (L(p+1)(A), L(p)(A))−−→c/c L(p)(A)
l:L(p+1)(A), ys:L(p)(A), xs:L(p+1)(A), l’:L(p)(A)

pairs( l ) = match l with | nil → nil
| (x :: xs) → let nps = attach(x,xs1) in

let rps = pairs(xs2) in append(nps,rps)

pairs: L(0,p2+3)(int)−−→c/c L(p2)(int, int)
l :L(0,p2+3)(int), xs1:L(p2+3)(int), rps :L(p2)(int, int)
xs:L(p2+3,p2+3)(int), xs2:L(0,p2+3)(int), nps:L(p2+1)(int, int)

triples( l ) = match l with | nil → nil
| (x :: xs) → let tps = pairs(xs1) in

let nts = attach(x,tps) in
let rts = triples (xs2) in append(nts,rts)

triples: L(0,0,p3+6)(int)−−→c/c L(p3)(int, int, int)
xs :L(0,p3+6,p3+6)(int), xs2:L(0,0,p3+6)(int), nts:L(p3+1)(int, int, int)
xs1:L(0,p3+6)(int), rts :L(p3)(int, int, int), tps:L(p3+3)(int, int)

In the above functions it is the case that the type used for recursive calls is the
same as the type of the function itself (monomorphic recursion). For example in
the function pairs the type of append(nps,rps) and rps is identical. That is not
the case in general. Suppose for example that one would swap the arguments of
append in the last line of pairs:

pairs ’( l ) = match l with | nil → nil
| (x :: xs) → let nps = attach(x,xs1) in

let rps = pairs’(xs2) in append(rps,nps)

pairs’: L(0,p2+2,1)(int)−−→c/c L(p2)(int, int)
l :L(0,p2+2,1)(int), rps:L(p2+1)(int, int), nps:L(p2)(int, int)
xs:L(p2+2,p2+3,1)(int), xs2:L(0,p2+3,1)(int), xs1 :L(p2+2)(int)

The function pairs’ is used resource polymorphically in its recursive call. That
means that the resource annotation of the argument of pairs’ differs from the
annotation of the original argument. The soundness of polymorphic recursion is
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unproblematic and covered by our results; the inference of resource polymorphic
is restricted to special cases. See §8 and §9 which cover the present example.

At a first glance it might be surprising that the heap-space consumption of
pairs’ is not quadratic but cubic. The reason is that the heap-space consumption
of append is linear in the length of the first argument and append is called |l|
times. In the case of pairs the length of the first argument is about the length
|l| but in the case of pairs’ the first argument is rps which is quadratic in |l|.

Note that a run-time analysis of pairs and pairs’ would result in analogous
types as above with different constants. That is to say the analysis of pairs would
result in a quadratic bound while we would get a cubic bound for pairs’. But
in contrast to the heap-space use, the run-time of pairs’ would be cubic even
in the presence of garbage collection or in an extended system that enjoys a
destructive pattern matching. So this is a nice example where our system might
help a programmer to produce more efficient code.

7.2 Longest Common Subsequence

A standard example of dynamic programming that can be found in many text-
books is the computation of the longest common subsequence (LCS) of two given
lists (sequences). Given two sequences a1, . . . , an and b1, . . . , bm, one successively
fills an n×m matrix (here a list of lists) A such that A(i, j) contains the length
of the LCS of a1, . . . , ai and b1, . . . , bj . It is the case that

A(i, j)=

⎧⎨⎩0 if i = 0 or j = 0
A(i− 1, j − 1) + 1 if i, j>0 and ai=bj

max(A(i, j−1), A(i−1, j)) if i, j>0 and ai �=bj

This algorithm can be analyzed in our system and is exemplary for similar
algorithms that use dynamic programming.

tail’( l ) = match l with | nil → nil | (x::xs) → xs

firstline(m) = match m with | nil → nil | (l:: ) → l

lastvals ( l ) = match l with | nil → (0,0)
| (a1 :: l ’) → match l’ with | nil → (a1,0)

| (a2 :: ) → (a1,a2)

tail’ : Lp(int)−−→c/c Lp(int) firstline: Lp(Lq(int))−−→c/c Lq(int)
lastvals: Lp(int)−−→c/c (int, int)

addcolumn(m,x,c) = match c with | nil → nil
| (y ::ys) → let m’ = addcolumn(tail’(m),x,ys) in

let (above,updiag) = lastvals( firstline (m’)) in
let l1 = firstline (m) in
let ( left , ) = lastvals (l1) in
let elem = if x = y then updiag+1 else max(above,left)
in ((elem:: l1 ):: m’)
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newline (y, lastline , l ) = match l with | nil → nil
| (x ::xs) → let nl = newline(y,tail’( lastline ),xs) in

let ( left , ) = lastvals (nl) in
let (above,updiag) = lastvals( lastline ) in
let elem = if x = y then updiag+1 else max(above,left)
in elem::nl

addline(m,y,xs) = let nl = newline(y, firstline (m),xs) in nl :: m

addcolumn: (Lp(Lq(int)), int, Lp+q+2(int))−−→c/c Lp(Lq(int))
newline: (int, Lq(int), Lq+1(int))−−→c/c Lq(int)
addline: (Lp(Lq(int)), int, Lq+1(int))−−−−−−−−−→c+p+1/c Lp(Lq(int))

lcstable( l1 , l2) = match l1 with | nil → nil
| (x ::xs1) → match l21 with | nil → nil

| (y :: ys) → let m = lcstable(xs2,ys) in
let m’ = addline(m,y,xs3) in addcolumn(m’,x,l22)

lcstable: (L(0,q+1)(int), L(2p+q+3,p+q+2)(int))−−→c/c Lp(Lq(int))
ys :L(2p+q+3,p+q+2)(int), xs3:L(q+1,0)(int), m’:Lp(Lq(int)), l21:L(p+1,p+q+2)(int)
xs1:L(q+1,q+1)(int), xs2:L(0,q+1)(int), m :Lp(Lq(int)), l22:L(p+q+2)(int)

lcs( l1 , l2) = let m = lcstable(l1, l2) in
match m with | nil → 0 | ((len:: ):: ) → len

lcs: (L(0,1)(int), L(3,2)(int))−−→c/c int

8 Passing Non-linear Potential

An unsatisfying limitation of the type rules that have been presented in §6 is that
they fail to assign super-linear potential to the output of some basic functions
that can be typed with a linear output type. To overcome is limitation one can
use linear algebra to compute linear constraints that state how a super-linear
potential can be assigned to the output of a function, provided that a function
type with a linear output is given.

Due to the limited space we can only describe this idea by way of example. A
formal description and a type rule is given is the extended version of this paper.

Consider the function append. With the rules from §6 we are able to derive
a type of the form append: (L(1)(int), L(1)(int))−−−→0/0 L(1)(int) if we use the cost-
free resource metric in which all constants equal 0. Then it follows that the
length of the output is bounded by n + m if n and m are the lengths of the
inputs of append. This information suffices to compute (once and for all) con-
straints for a super-linear output via linear algebra. In the (cost-free) quadratic
case we obtain for example append: (L(p1,p2)(int), L(q1,q2)(int))−−−→0/0 L(0,r2)(int)
if 4p1 ≥ r2, 4q1 ≥ r2, p2 ≥ r2 and q2 ≥ r2. Such a cost-free type can then
be additively combined with a typing of the function that was inferred with
respect to another resource-metric by adding the numbers in the type annota-
tions. For example, for the heap metric from §7 we obtain the typing append:
(L(4,12)(int), L(3,12)(int))−−−→0/0 L(0,3)(int).
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9 Inference of Annotated Types

The type-inference algorithm for RAML works similar to the algorithm of Hof-
mann and Jost that has been developed for the linear system [1].

The basic algorithm does a classic type inference generating linear constraints
for the annotations that are collected during the inference, and that can be solved
later by linear programming. The only difference to the method of Hofmann and
Jost is that we have to provide a maximal degree of the resource bounds in order
to obtain a finite set of equations. If the degree is too low then the generated
linear program is unsolvable. It can either be specified by the user or can be
incremented successively after an unsuccessful analysis. In most cases it should
be sufficient to run the analysis for instance twice, first with a maximal degree
of, say, 5 and a second time with maximal degree 10.

In order to apply the technique that has been outlined in §8 we have to run
the basic algorithm multiple times since we have to consider strongly connected
components in the call graph one after another. More details are given in the
extended version of this work.

The inference algorithm finds types for most example programs that we con-
sidered, including all programs in this paper. Nevertheless, it is not complete
with respect to the declarative rules in the earlier sections. The reason is that it
sometimes fails to infer a resource-polymorphic typing of a function, i.e., a typing
in which the annotations of a recursive call differ from the annotations of the
top-level function type. We are working on a more involved inference algorithm
that is complete. However, we find that this algorithm exhibits some interesting
ideas that should be explained in detail in separate work.

10 Conclusion and Related Work

We have extended amortized resource analysis for first-order functional programs
from linear bounds to polynomial bounds. The main technical innovations of our
paper are as follows: 1) the representations of resource bounds as non-negative
linear combinations of binomial coefficients enabling a simple and local typing
rule for pattern matching; 2) the derivation of constraints solvable by linear
programming in spite of the super-linear bounds.

Most closely related is of course [1] which we extend with polynomial bounds.
Other resource analyses that can in principle obtain polynomial bounds are
approaches based on recurrences pioneered by Grobauer [9] and Flajolet [10]. In
those systems, an a priori unknown resource bounding function is introduced for
each function in the code; by a straightforward intraprocedural analysis a set of
recurrence equations or inequations for these functions is then derived. A type-
based extraction of such recurrences has been given in [11]. Even for relatively
simple programs the resulting recurrences are quite complicated and difficult
to solve with standard methods. In the COSTA project [12] progress has been
made with the solution of those recurrences. Still, we find that amortization
yields better results in cases where resource usage of intermediate functions
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depends on factors other than input size, e.g., sizes of partitions in QuickSort.
Also compositions of functions seem to be better dealt with by amortization.

A successful method to estimate time bounds for C++ procedures with loops
and recursion was recently developed by Gulwani et al. [13,14] in the SPEED
project. They annotate programs with counters and use automatic invariant dis-
covery between their values using off-the-shelf program analysis tools which are
based on abstract interpretation. If the loops iterate over data-structures then the
user needs to define numerical “quantitative functions” for the data-structures.
In contrast our method is fully automatic. A methodological difference is that
we infer (using linear programming) an abstract potential function which indi-
rectly yields a resource-bounding function. As explained in the introduction the
potential-based approach may be favorable in the presence of compositions and
data scattered over different locations (partitions in QuickSort). Indeed, the ex-
amples from loc. cit. suggest that the two approaches are complementary in the
sense that the method of Gulwani et al. works well for programs with little or no
recursion but intricate interaction of linear arithmetic with loops. Our method, on
the other hand, does not model the interaction of integer arithmetic with resource
usage, but is particularly good for analyzing recursive programs involving induc-
tive data types. As any type system, our approach is naturally compositional and
lends itself to the smooth integration of components whose implementation is not
available. Moreover, type derivations can be seen as certificates and can be au-
tomatically translated into formalized proofs in program logic [15]. However, we
find the possibility of incorporating existing program analyses to be a particularly
attractive feature of the SPEED approach. It would be interesting to investigate
to what extent such analyses could also be harnessed for our method. Another
pragmatic but interesting aspect is the use of slicing techniques to eliminate large
code portions that do not contribute to the resource being analyzed.

Another related approach is the use of sized types [16,17,18,19] which provide
a general framework to represent the size of the data in its type. Sized types
are a very important concept and we also employ them indirectly. Our method
adds a certain amount of data dependency and dispenses with the explicit ma-
nipulation of symbolic expressions in favour of numerical potential annotations.
As we have demonstrated, there is a fruitful interaction between sized types and
amortization.

Polynomial resource bounds have also been studied in [20]. Interestingly, the
motivation of that paper is to extend amortized analysis to super-linear bounds;
however loc. cit. only addresses the derivation of polynomial size bounds which
is identified there as a necessary precursor to amortized analysis. Moreover, the
analysis is restricted to functions whose exact growth rate is polynomial, and
efficiency of inference remains unclear.
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Abstract. The specification of the Java Memory Model (JMM) is phrased in
terms of acceptors of execution sequences rather than the standard generative
view of operational semantics. This creates a mismatch with language-based tech-
niques, such as simulation arguments and proofs of type safety.

We describe a semantics for the JMM using standard programming language
techniques that captures its full expressivity. For data-race-free programs, our
model coincides with the JMM. For lockless programs, our model is more expres-
sive than the JMM. The stratification properties required to avoid causality cycles
are derived, rather than mandated in the style of the JMM.

The JMM is arguably non-canonical in its treatment of the interaction of data
races and locks as it fails to validate roach-motel reorderings and various peep-
hole optimizations. Our model differs from the JMM in these cases. We develop a
theory of simulation and use it to validate the legality of the above optimizations
in any program context.

1 Introduction

In the context of shared memory imperative programs, Sequential Consistency (SC)
(Lamport 1979) enforces a global total order on memory operations that includes the
program order of each individual thread in the program. SC may be realized by a tra-
ditional interleaving semantics where shared memory is represented as a map from
locations to values. It has been observed that SC disables compiler optimizations such
as reordering of independent statements. Despite arguments that SC does not impair ef-
ficiency (Kamil et al. 2005), this observation and others have motivated a body of work
on relaxed memory models; Adve and Gharachorloo (1996) provide a tutorial introduc-
tion with detailed bibliography.

A first (conceptual, if not chronological) step in generalizing SC is to consider the
Data Race Free (DRF) models. Informally, a program is DRF if no execution of the pro-
gram leads to a state in which a write happens concurrently with another operation on
the same location. A DRF model requires that the programmer view of computation co-
incides with SC for programs that are DRF. The DRF viewpoint is most strongly reflected
in languages such as C++, where any program with data races is deemed erroneous, with
undefined semantics (Boehm and Adve 2008).
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Such an approach is at odds with the safety requirements of strongly typed languages
that permit data races in well defined programs. Conceptually, this motivates the in-
vestigation of the Java Memory Model (JMM); see (Manson et al. 2005) for a detailed
history. The JMM provides two key guarantees. First, it is a DRF model. Second, it dis-
allows Thin Air Reads (no-TAR). In a configuration with multiple data races the JMM

enforces a partial order on the resolution of these data races. Values that are written are
justified by an execution of the program, and thus acyclicity of causality is maintained.

The formalization of the JMM is a technical tour-de-force. However, two criticisms
are leveled at the JMM. First, the JMM is too complex. While simplicity is admittedly
in the eyes of the beholder, some of the technical content of this criticism is that the
JMM approach does not generate executions in the sense of traditional (structured) op-
erational semantics (Saraswat 2004). Rather, it provides a means to test whether a given
execution sequence is valid by providing criteria to establish the absence of causality
cycles in the resolution of data races.

This is particularly problematic for standard tools-of-the-trade that often rely on a
generative operational semantics. For example, proofs of type safety usually proceed by
showing that each step of the execution of a program maintains the invariants provided
in the type system. Similarly, (bi)simulation arguments proceed by showing that if two
configurations are related by the candidate relation, and each takes an execution step(s),
the resulting configurations are again related by the relation.

Second, the JMM impedes efficiency. As currently formalized, the JMM invalidates
a variety of natural optimizations, such as reordering of independent statements
(Cenciarelli et al. 2007). Sevcík and Aspinall (2008) show the incompatibility of JMM

with roach-motel reordering (moving a read into the scope of a lock), redundant read
after read elimination (reusing the results of a valid prior read) and some other peep-
hole optimizations (such as eliminating a write that precedes another write to the same
variable). As a result, the hotspot JVM has been non-compliant with the JMM (Sevcík
2008).

To address these issues, we describe a generative structured operational semantics for
a concurrent object oriented language with a relaxed memory model. For DRF programs,
our model coincides with the JMM. For lockless programs, our model allows every
execution permitted by the JMM. Our model also allows executions that are forbidden
by the JMM, but which are necessary to validate the peephole optimizations described
above, such as redundant read after read elimination. For programs with both locks and
data races, our model is better behaved than the JMM, for example, validating roach
motel reorderings. Our model coincides with the JMM on the entire suite of causality
test cases associated with the JMM (Pugh 2004).

We validate the utility of our operational semantics by establishing a theory of simu-
lation. We use our study of simulation to validate several optimizations, including those
mentioned above. Since simulation is a precongruence, our results show the legality of
the transformations in any program context.

The rest of the paper is organized as follows. First, we discuss related work, then
Section 3 provides an informal introduction to the basic ideas of the paper. The formal-
ism follows in Section 4, with detailed examples in Section 5. We prove the DRF and
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lockless properties in Section 6. Section 7 defines simulation for a sub-language and
shows the validity of some transformations.

2 Related Work

There is extensive research on memory models for hardware architectures,
see (Steinke and Nutt 2004), (Luchangco 2001) and (Adve and Gharachorloo 1996) for
surveys. This has led to research on (automated) verification of properties of memory
models, e.g., see (Sarkar et al. 2009) for x86 and (Hangal et al. 2004) for Sparc TSO.

Our focus in this paper is on specifying the operational semantics for concurrent pro-
gramming languages. The memory models for OpenMP (Bronevetsky and de Supinski
2007) and UPC (Yelick et al. 2004) deal with languages with weaker typing and pointer
arithmetic and focus on synchronization primitives. These models may permit behav-
iors violating no-TAR (Boehm 2005). Saraswat (2004) provides a framework for op-
erational semantics with relaxed memory models for typed languages. Saraswat et al.
(2007) builds on this research and describes a collection of program transformations
that are permitted in a relaxed memory model. In contrast to these papers, we capture
the full expressiveness of the JMM for lockless programs, even while retaining DRF˜
and no-TAR.

Our program of generative operational semantics using “true-concurrency” methods
follows Cenciarelli et al. (2007) and Boudol and Petri (2009). While Cenciarelli et al.
(2007) show that all their generated executions are permitted by the JMM, they do not
discuss whether their theory is as expressive as the JMM. Boudol and Petri (2009) pro-
vide an operational model for write buffers and the ability for concurrent threads to
snoop on the values in these buffers; causality test case 16 (Pugh 2004), discussed in
Example 5, exemplifies the expressivity that is not captured.

In addition to eloquently articulating a collection of incisive examples,
Aspinall and Sevcík (2007, 2008) formalize the Java DRF guarantee using theorem-
provers and analyze several natural program transformations. Burckhardt et al. (2008)
undertake the ambitious task of verifying concurrent programs in the presence of re-
laxed memory models, especially those associated with the CLR.

3 An Informal Introduction to Our Approach

We illustrate the key ideas underlying our approach using informal examples. We adopt
the following notational conventions. Let x, y and z be thread-local variables. Let f and
g be locations on the shared heap. Let l be a shared lock. Assume all heap locations
and locks are initialized to 0. Locks are initially free and a lock’s state increments on
every action; thus even states are free and odd states are locked. Let s, t and u be thread
identifiers. Write s[M] for the thread with identifier s, executing statement M, and
write the parallel composition of threads A and B as A|B.

In the SC view, each location in memory remembers only the last write to each loca-
tion. Therefore an SC execution makes it impossible for t to read 2 and then 1 from f
in the following program.

s[f=1; f=2; x=f;] | t[y=f; z=f;]. (Program A)
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A relaxed memory model, such as the JMM, allows t to read 2 then 1 from f, even
though the values are written by s in the reverse order. Rather than viewing memory as
a map from locations to values, as in the SC model, we view memory as a sequence of
actions which denote write and lock events; there are no read actions in our model. The
action sequence generated by Program A is s[f=1] s[f=2]. A read can be assigned any
value that is visible. In this case both values written by s are visible to the reads in t.

The order of statements in a program encodes the program order between actions
of a single thread. A read can not see all of the values written by its own thread. In
Program A, the read of f by s can only see 2, since 2 is written after 1 in s.

To model compiler and memory hierarchy effects, one may permit dynamic trans-
formations to the action sequence generated by a single thread, as long as this does
not introduce new behaviors. For example, it is permitted to rewrite s[f=1]s[f=2] to
s[f=2], removing the value 1, which may be visible to concurrent threads. The converse
transformation is not sound, however, since it introduces the value 1 out of thin-air.

Due to nondeterminism, the program s[f=1;]|t[g=1;] may result in either the se-
quence s[f=1]t[g=1] or the sequence t[g=1]s[f=1]. The program s[f=1;]|t[x=f;
g=x;] may produce s[f=1]t[g=0] or s[f=1]t[g=1] or t[g=0]s[f=1]. However, it can
not produce t[g=1]s[f=1] due to the data dependency between the two threads.

Synchronization makes the program order of a thread visible to other threads, poten-
tially hiding previously visible values. For example, in any execution of the program

s[l.acquire(); f=1; f=2; l.release();] |
t[l.acquire(); x=f; y=f; l.release();]

the two reads of f in t must see the same value, and therefore x = y.
Lock actions must be recorded in the memory, since they affect visibility. We write

lock actions as s[l:j], where j is an integer indicating the number of previous oper-
ations that have been performed on the lock. Thus, an even action corresponds to an
acquire and an odd action to a release. In the example, if s executes first, we get
the action sequence s[l:0]s[f=1]s[f=2]s[l:1]t[l:2]t[l:3]. Lock events in a memory
induce a global synchronization order, which is used to define visibility.

Speculation. The approach sketched above can mimic the effects of write-buffers,
cache-snooping and other non-SC executions. However it is insufficient to validate ev-
ery behavior allowed by the JMM, such as the following (Manson et al. 2005, Fig 1).

s[x=g; f=1;] | t[y=f; g=2;] (Program B)

In any SC execution, at least one of the threads must read 0. The JMM allows the execu-
tion in which s reads 2 from g and t reads 1 from f, which can result from reordering
independent statements in the two threads due to cache effects or optimization.

To accommodate such executions, we allow the execution to introduce speculation.
Let A be the original pair of threads in Program B. Speculative execution reduces A
to (�⇒A) � ((s〈f=1〉t〈g=2〉)⇒A), The reduction creates two copies of the original
process, which are executed in separate universes with separate copies of the state.
The left copy is called the initial process; the right, the final process. As indicated by
the notation, the initial process may assume nothing, �, whereas the final branch may
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assume the speculated writes, s〈f=1〉t〈g=2〉. A valid execution is one in which every
speculation can be finalized, and therefore removed. When the speculation is removed,
only the final process remains. The initial process is used only to justify the speculation.
We rely on angelic nondeterminism to achieve a valid speculation, if possible.

The initial copy of Program B reads 0 in at least one of the threads and generates
both writes. The final copy reads the speculative values and also generates both writes.
Since the justifying writes are generated in both copies, the speculation can be finalized.

Unconstrained speculation can break both no-TAR and DRF. We constrain specula-
tion so that it is not self justifying, but is initial, consistent and timely.

Self justifying computation allows a thread to see its own speculation, violating no-
TAR. Consider the program s[x=f; if(x==1){g=1;} f=1;]. To produce the write
s[g=1], one might speculate s〈f=1〉. There is a later write which can justify the specu-
lation. Our semantics forbids s from seeing its own speculation, however, thus ensuring
that the conditional is false and g is not written.

Initiality requires that there is a computation that justifies the speculation without
depending on the speculation. Consider the program s[x=f; g=x;] | t[y=g; f=y;]
(Pugh 2004, §4). By speculating s〈g=1〉t〈f=1〉, both threads can read 1, violating no-
TAR. The final process can produce the necessary writes s[g=1]t[f=1], but the initial
process can only write 0. Our semantics prevents the speculation from being finalized.

Consistency requires that the initial and final computations agree on certain actions.
It is necessary for DRF. Consider the following program.

s[l.acquire(); x=f; if(x==0){f=1;} l.release();] |
t[l.acquire(); y=f; if(y==0){f=2;} l.release();] |
u[l.acquire(); z=f; g=z; l.release();]

(Program C)

The program is DRF. In an SC execution, it is not possible that f is 1 and g is 2 after
execution. Using speculation t〈f=2〉, however, the final process can achieve this result
by scheduling order u, s, t, violating DRF. The initial process can produce the necessary
write, but to do so it must schedule t before s. The inconsistent use of locks makes
it impossible to finalize the speculation. Following the terminology of Manson et al.
(2005), consistency prevents “bait” (in the initial process) and “switch” (in the final
process), an intuition made precise in Example 6. Timeliness ensures that a speculation
and its justifying write are in the same synchronization context. It is also necessary for
DRF. Consider the following program.

s[l.acquire(); x=f; f=x+1; g=1; l.release();] |
t[l.acquire(); x=f; f=x+1; g=2; l.release();] |
u[l.acquire(); x=f; f=x+1; y=g; l.release();]

(Program D)

Again, the program is DRF. If s reads 0 from f, t reads 1 and u reads 2, then the order
of the threads is determined. Clearly it is unacceptable in this case for u to read 1 from
g. In the execution which runs s, then speculates s〈g=1〉, then runs t and u, the memory
after t runs is as follows.

s[l:0]s[f=1]s[g=1]s[l:1]s〈g=1〉t[l:2]t[f=2]t[g=2]t[l:3]
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The speculation s〈g=1〉 is “too late” with respect to its justifying write s[g=1] since
the intervening release s[l:1] alters the synchronization context. In Section 5 we also
discuss speculations which are “too early”.

4 The Language

We develop the ideas of the previous section for an object oriented language with lock
objects and thread parallelism. We do not explicitly treat volatile variables, final fields
and several other features of the JMM. (From the synchronization perspective, a volatile
write is similar to a lock release, a volatile read is similar to a lock acquire).

User Language. Let bt range over base type names, d over class names (including the
reserved class Lock), f and g over field names, and m over method names (including
the reserved method start). Types, T , include base types and classes (T ::= bt | d).
Let  T  x abbreviate T1 x1, . . . ,Tn xn. Class declarations, D , are then given as usual
(D ::= class d{ T  f;  M } where M ::= T m( T  x){M}). Fix a set of class decla-
rations satisfying the well-formedness criteria of Igarashi et al. (2001). We assume, as
there, an implicit constructor with arguments  T  f for each class d{ T  f;  M}. Define
the partial functions fields and mbody so that fields(d) =  T f ; if the field declarations of
d are  T f ; and mbody(d.m) = λ x.M if class d contains method T m( T  x){M} for some
T and  T . The abstraction λ x.M is written λ .M when x is the empty sequence. A class d
is runnable if mbody(d.run) = λ .M for some M. Both fields and mbody are undefined
on the reserved class Lock.

We assume disjoint sets of base values, bv ∈ BV , variables, x, y, and object names,
p, q, s, t, �. Base values include integers and the constants unit, true and false, with
operators (such as ==, +, &&) ranged over by op. Variables include the reserved variable
this. Each object name p is associated with a unique class p.class; a countable
number of object names are associated with each class. By convention, we use name
metavariables s, t for runnable objects and � for lock objects. For any syntax category,
let fv return the set of free variables and let fn return the set of free names.

A ground value is either an object name or a base value (v,w,u ::= p | bv). An open
value may additionally be a variable (V,W,U ::= p | bv | x). The statement language
is given in administrative normal form (Flanagan et al. 1993).

M,N ::= val x = {M} N (Stack frame statement)
| val x = new d( V); M (Creation statement)
| val x = W.m( V); M (Method statement)
| val x = op( V); M (Operator statement)
| val x = V.f; M (Field read statement)
| V.f = W; M (Field write statement)
| if (V) {M} else {N} (Conditional statement)
| return V; (Return statement)

As in Scala (Odersky et al. 2008), we use val to introduce local variables without re-
quiring explicit type annotations. To make the examples shorter, we usually drop the
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val. We write ↑V for “return V;” and ↑(V,W) for “val x = new Pair(V,W);
return x;”, where x is fresh. In examples, we also use complex expressions, use infix
notation for operators and drop occurrences of “return unit;”. Thus, “y = a+b+c;”
should is sugar for “val x = +(a,b); val y = +(x,c); return unit;”, where x is
fresh. We write “val x = · · ·; M” as “· · ·; M” if x does not occur free in M. We write
“if(V){val x = · · ·; M} else {M}” as “if (V) {val x = · · ·;} M” if x does not oc-
cur free in M; this notation extends to field write statements, conditional statements and
sequences of statements in the obvious way.

We expect that stack frame statements do not occur in the user language; they are
introduced by the dynamics. The variable x is bound with scope M in all statements of
the form “val x = · · ·; M”. We identify syntax up to renaming of bound variables and
names and write M{x := v} for the capture avoiding substitution of v for x in M. We
assume similar notation for substitution of names for names and for substitution over
other syntax categories.

Actions and processes. Shared locations are assigned values via actions. Write, ac-
quire and release actions are committable and so may be made visible at top-level.
Speculative actions are introduced by the dynamics to explore possible future execu-
tions; they are not visible at top-level. The general class of actions include the evalua-
tion context action s�–�, belonging to thread s; this is used later to define justified reads
and speculations.

α,β ::= s[p.f=v] | s[�: j] (Committable action)

φ ,ψ ::= s〈p.f=v〉 (Speculative action)

σ ,τ ::= α | φ | s�–� (Actions)

Write and speculative actions identify the writing thread. The write action s[p.f=v]
indicates a write by s to location p.f with value v. The speculative write s〈p.f=v〉
allows threads other than s to subsequently read v from location p.f .

The meaning of a lock action s[�: j ] depends on the parity of the natural number j.
When j is even, the lock is free and the corresponding action is an acquire. When j is
odd, the lock is busy and the corresponding action is a release. We write s[acq �: j] to
indicate that j is even, and s[rel �: j] to indicate that j is odd.

Let thrd(σ) return the unique thread associated with an action. For all actions other
than the evaluation context action, define loc to return the location of the action as
loc(s[p.f=v]) = loc(s〈p.f=v〉) = p.f and loc(s[�: j ]) = �. Similarly, define val as
val(s[p.f=v]) = val(s〈p.f=v〉) = v : and val(s[�: j]) = j. Write actions σ and τ conflict
if loc(σ) = loc(τ); only two write actions can conflict.

The dynamics is defined using processes.

A,B ::= free p (Free object process)
| runnable p (Runnable object process)
| lock �: j (Lock process)
| s[M] (Thread process)
| A|B (Parallel process)
| (ν p)A (Scope restriction process)
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| α A (Action process)
| φ A (Guarded process)
| �⇒A�φ ⇒B (Speculation process)

The name p is bound with scope A in the process (ν p)A. We identify processes up to
renaming of bound names.

A top-level process contains no subterms that are guarded processes, φ A, but may
contain speculations. In speculation �⇒A�φ ⇒B, we refer to A as the initial process
and to B as the final process. We write �⇒A�φ1 · · ·φn ⇒B as shorthand for

�⇒A�φ1 ⇒(�⇒A�φ2 ⇒ ···(�⇒A�φn ⇒B) · · · ).

An initial process has no free names or variables and contains a single thread. Initial
processes have the form (νs)s[M].

We assume several well-formedness criteria, which are true of initial processes and
preserved by structural order and reduction. Let def return the defined names of a pro-
cess; for example def (free p) = def (runnable p) = def (p[M]) = def (lock p: j) =
{p}. Let lockact(A) return the lock actions in A with thread identifiers removed; for
example lockact(s[�:i]A) = {[� : i]}∪ lockact(A). A process is well-formed if (1) in
any subprocess A|B, def (A)∩ def (B) = /0, (2) in any subprocess A|B, lockact(A)∩
lockact(B) = /0, (3) in any action s[�:i], �.class= Lock, (4) in any action s〈p.f=v〉
or s[p.f=v], p.class �= Lock, and (5) in any subprocess �⇒A�φ ⇒B, thrd(φ) ∈
def (A). For the remainder of the paper, we consider only well-formed processes.

Evaluation contexts and justified reads. Evaluation contexts are defined as follows.

C ::= �–� | A|C | C|A | (ν p)C | α C | φ C

The name p is not bound in evaluation context (ν p)C. There is no evaluation context
for speculation processes; these are treated specially in the semantics.

We define the notion C justifies read p.f=v by s to mean that context C contains a
visible write t [p.f=v] or speculation t ′〈p.f=v〉, where t ′ �= s). The notion C justifies
speculation φ is defined similarly.

To begin, define acts(C) to return the sequence of labeled actions occurring before
the hole in C.

acts(�–�) = s�–� acts(A|C) = acts(C) acts(α C) = α acts(C)
acts((νq)C) = acts(C) acts(C|A) = acts(C) acts(φ C) = φ acts(C)

Note that it is not possible for the hole to happen before any action. Given action se-
quence  σ define program order (< σ

po) and synchronizes-with (< σ
sw) as follows.

i < σ
po j iff i < j and thrd(σi) = thrd(σ j)

i < σ
sw j iff σi = s[rel �:k] and σ j = t [acq �:k+1]for some s, t, � and odd k

Note that (< σ
sw) = /0 if  σ contains no lock actions. Define happens-before order (< σ

hb)
to be the transitive closure of the union of program order and synchronizes-with.
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Definition 1 (Intervening write and justified read). We say that there is no interven-
ing write between i and k in σ if for every j such that σ j is a write action and i< σ

hb j < σ
hb

k, we have that loc(σ j) �= loc(σi).
Let  σ = acts(C). Let k be the index of s�–� in  σ . We say that C justifies read p.f=v

(by s) if there exists some i, with no intervening write between i and k in  σ , such that
σi = t [p.f=v], for some t (possibly equal to s), or σi = t ′〈p.f=v〉, for some t ′ �= s. �

For the purpose of reading, speculations are “transparent” in the sense that they do not
obscure the prior writes. Both writes and speculations (of other threads) can be used to
justify reads. Only writes can be used to justify speculations.

Definition 2 (Intervening release and justified speculation). We say that there is no
intervening release between i and k in  σ if for every j such that σ j is a release action
and i < σ

hb j < σ
hb k, we have that thrd(σ j) �= thrd(σi).

Let  σ = acts(C). Let k be the index of s�–� in  σ . We say that C justifies specula-
tion s〈p.f=v〉 if there exists some i, with no intervening write nor intervening release
between i and k in  σ , such that σi = s[p.f=v]. �

The requirement that there be no intervening release between a write and the specula-
tion that it justifies is motivated by Program D (Section 3). Since any synchronization
edge originates from a release action, the absence of intervening releases ensures that a
speculation and the write justifying it occupy the same position in the synchronization
order and the happens-before relation.

Single-threaded action reordering and structural order. We define ! as a relation on
single-threaded action sequences. That is  σ ! τ is defined only if thrd( σ) = thrd( τ) =
{s}, for some s.

Definition 3. Let ! be the least precongruence ( σ τ !  σ ′ τ ′ whenever  σ !  σ ′ and τ ! τ ′)
on single-threaded action sequences that satisfies all instances of the following axiom
schemata, where  σ

.
!" τ abbreviates the axiom schemata  σ ! τ and τ !  σ .

(A-NONLOCK) If σ and τ are nonlock actions that do not conflict then στ
.
!" τσ .

(A-ACQUIRE) If σ is a write and τ is an acquire then στ ! τσ .
(A-RELEASE) If σ is a release and τ is a write then στ ! τσ .
(A-ABSORPTION1) If σ is a write then σ ! σσ .
(A-ABSORPTION2) If σ and τ are conflicting writes then τσ ! σ .
(A-ABSORPTION3) If σ , τ and τ ′ are conflicting writes then ττ ′σ

.
!" τ ′τσ . �

If  σ ! τ then  σ “simulates” τ; that is, all reads permitted by τ are also permitted by  σ .
This can be viewed as an adaptation of Lea’s (2008) cookbook to our memory actions.

A-NONLOCK allows write actions and speculative actions in the same thread to com-
mute. A-ACQUIRE and A-RELEASE permit enlarging the scope of locks. These rules
are necessary to validate roach motel (Example 10). Were we to allow speculations to
commute with lock actions, DRF would fail (Example 8).

In an SC model, later writes completely overwrite earlier writes to the same location.
The absorption laws reflect approximations that are available in our relaxed memory
model. The first rule allows identical writes to be copied. The second rule allows any
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(S-PAR)

A|A′ .≡ A′|A
(S-FREE)

A
.≡ A|(ν p) (free p)

(S-NU-NU)

(ν p) (ν p′)A
.≡ (ν p′)(ν p)A

(S-PAR-PAR)

B|(A|A′)
.≡ (B|A)|A′

(S-PAR-PREFIX)

B|(σA)	 σ(B|A)

(S-PAR-NU)

p /∈ fn(B)
B|((ν p)A)

.≡ (ν p) (B|A)

(S-PAR-SPECULATION)

thrd(φ) /∈ def (B)
B|(�⇒A�φ ⇒A′)	�⇒(B|A)�φ ⇒(B|A′)

(S-NU-PREFIX)

p /∈ fn(σ)
(ν p)σA

.≡ σ(ν p)A

(S-NU-SPECULATION)

p /∈ fn(φ)
(ν p)(�⇒A�φ ⇒A′)

.≡�⇒((ν p)A)�φ ⇒((ν p)A′)

(S-PREFIX-PREFIX)

στ ! τσ
στA	 τσA

(S-SPECULATION-PREFIX)

(thrd(σ) �= thrd(φ))∨ (φσ ! σφ)
�⇒(σ A)�φ ⇒(σ A′) 	 σ (�⇒A�φ ⇒A′)

Fig. 1. Structural order (A	 B)

write to be eliminated when there is a subsequent “protecting” write to the same loca-
tion. The third rule allows reordering behind a protecting write. Thus, we get:

Lemma 4. If  σ is a single-threaded sequence of write actions then  σ !  σ σ .
PROOF. Use the first absorption law to make multiple adjacent copies of each action.
Use the remaining laws to rearrange them into the required order. �

We define A	 B to be the smallest precongruence on processes that satisfies the axioms
in Figure 1 (where A

.≡ B abbreviates the two axioms A 	 B and B 	 A). Many of the
rules follow Milner (1991). We discuss the exceptions.

In order to allow speculation about objects that are not yet initialized, we separate
object allocation and initialization. The structural rule S-FREE allows object names to
be in scope before the corresponding call to the constructor.

The prefix and speculation rules are ordered so that parallel components can go under
action prefixes and speculations, but can not come out. S-PAR-PREFIX effectively fixes
the order of operations between threads once those operations become visible to other
threads. The S-PREFIX-PREFIX and S-SPECULATION-PREFIX rules are induced by the
single-threaded commutation rules. In the S-SPECULATION-PREFIX rule, the required
order condition on actions holds for all the branches of speculation; so, it is appropriate
to think of this as a “forall” speculation rule, in contrast to the “exists” speculation rule
in the forthcoming reduction semantics.

The rules do not allow speculations to commute with each other; adding this rule
would not affect contextual equivalence, but would affect the (finer) simulation relation
introduced later, which is sensitive to the order of speculations.

In the remainder of the paper, let ≡ denote the kernel of 	.

Reduction. Process reduction is defined as the least relation satisfying the rules and
axioms given in Figure 2.
 is the reflexive and transitive closure of (	)∪ (→).

Again, many of the rules are standard. The built-in operators R-OPERATOR and the
conditionals, R-IF-TRUE and R-IF-FALSE, carry no surprises. Method calls are imple-
mented as usual by R-METHOD, R-FRAME and R-RETURN. The assumption of well-
formedness guarantees that there is at most one thread for each object s, and therefore
R-FRAME introduces no nondeterminism. Frames are deleted when a function returns.
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(R-FRAME)

C
�

s[N]
�
→ C′�s[N′]

�
C

�
s[val x = {N}M]

�
→ C′�s[val x = {N′}M]

�
(R-RETURN)

C
�

s[val x = {return v;}M]
�

→ C
�

s[M{x:=v}]
�

(R-IF-TRUE)

C
�

s[if (true) {M} else {N}]
�

→ C
�

s[M]
�

(R-IF-FALSE)

C
�

s[if (false) {M} else {N}]
�

→ C
�

s[N]
�

(R-NEW)

p.class = d fields(d) =  T f
C

�
free p | s[val x = new d( v); M]

�
→ C

�
runnable p | s[p. f= v] s[M{x:=p}]

�

(R-NEW-LOCK)

C
�
free � | s[val x = new Lock(); M]

�
→ C

�
lock �:0 | s[M{x:=�}]

�

(R-METHOD)

p.class = d mbody(d.m) = λ y.N
C

�
s[val x = p.m( v); M]

�
→ C

�
s[val x = {N{this:=p}{ y:= v}}M]

�

(R-OPERATOR)

w is the result of applying op to v
C

�
s[val x = op( v); M]

�
→ C

�
s[M{x:=w}]

�

(R-METHOD-START)

p.class = d mbody(d.run) = λ y.N
C

�
free � | runnable t | s[val x = t.start(); M]

�
→ C

�
t [�:1] t[N{this:=t}] | s[�:0] s[M{x:=unit}]

�

(R-METHOD-ACQUIRE)

j is even
C

�
lock �: j | s[val x = �.acquire(); M]

�
→ C

�
lock �: j+1 | s[�: j] s[M{x:=unit}]

�

(R-METHOD-RELEASE)

j is odd
C

�
lock �: j | s[val x = �.release(); M]

�
→ C

�
lock �: j+1 | s[�: j] s[M{x:=unit}]

�

(R-FIELD-WRITE)

C
�

s[p.f = v; M]
�

→ C
�

s[p.f=v] s[M]
�

(R-SPECULATION-BEGIN)

thrd(φ) ∈ def (A)
C

�
A
�

→ C
�
�⇒A�φ ⇒A

�

(R-SPECULATION-END)

C justifies speculation φ
C

�
�⇒A�φ ⇒B

�
→ C

�
B
�

(R-FIELD-READ)

C justifies read p.f=v by s
C

�
s[val x = p.f; M]

�
→ C

�
s[M{x:=v}]

�

(R-SPECULATION-CONTEXT1)

C
�

A
�
→ C

�
A′�

C
�
�⇒A�φ ⇒B

�
→ C

�
�⇒A′ �φ ⇒B

�

(R-SPECULATION-CONTEXT2)

C
�

φB
�
→ C

�
φB′�

C
�
�⇒A�φ ⇒B

�
→ C

�
�⇒A�φ ⇒B′�

Fig. 2. Reduction (A → B)

The reserved methods acquire and release update the shared global counter as-
sociated with the appropriate lock object. As in Java, the reserved method start starts
method run under the thread identity of the receiving object. As per Java semantics,
this is a synchronization event, which we enforce using a fresh “dummy” lock.
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Non-locks are initialized via R-NEW, consuming a free name of the appropriate class
and initializing the fields using write actions by the initializing thread. We ignore types
as much as possible, therefore all non-locks are runnable once initialized.

New lock creation is addressed separately in rule R-NEW-LOCK. The state of the lock
is stored as an integer counter, which enforces sequential consistency on lock actions.
Locks with even state may be acquired, and those with odd state released. (Both fields
and mbody are undefined on the reserved class Lock.)

R-FIELD-WRITE describes field writes. This is a relaxed memory model, so the field
writes become actions that float into the evaluation context, rather than updating a
shared location. Field reads, as described in rule R-FIELD-READ, may take any value
that is justified by the evaluation context. In a program with data races or locks, this
could be nondeterministic.

Speculation can occur at any point, using R-SPECULATION-BEGIN. The initial
branch has guard �, indicating that this branch may make no additional assumptions.
The final branch has a speculative action as its guard. The final branch may use the
speculation to justify reads. R-SPECULATION-CONTEXT lets each branch of speculation
evolve independently. This typically happens by using the structural rules of Figure 1 to
bring parallel threads and locks into the speculation to enable computation. Results from
an active speculation can only leak to the outside world via S-SPECULATION-PREFIX.
If all branches produce an action, it can potentially float out into the surrounding en-
vironment. This is significant, since only actions that manage to make it outside of a
speculation may be used to finalize it R-SPECULATION-END.

5 Examples

In the following examples, we assume an initialization thread which sets the initial state
and starts the threads. We assume a single object p, with four fields, f, g, h, and e. To
make the examples shorter, we elide the object name from field references, writing p.f
as f. All fields are initially set to 0. (Further examples may be found in the extended
version of this paper.)

Example 5 (Pugh (2004) §16). Consider the following variation of Program B from
Section 3, which uses a single field: s[x=f;f=1;↑x] | t[y=f;f=2;↑y]. As in the
JMM, the outcome s[↑2]|t[↑1] is possible. In our semantics, one may speculate
s〈f=1〉 and t〈f=2〉 , resulting in the following reduction.


 �⇒ (s[x=f;f=1;↑x] | t[y=f;f=2;↑y])
� s〈f=1〉t〈f=2〉⇒(s[x=f;f=1;↑x] | t[y=f;f=2;↑y])

The read actions from each thread may now read any justifiable value. In the final
branch, the value read may come from the speculation, as below.


 �⇒ (s[f=1;↑0] | t[f=2;↑0])
� s〈f=1〉t〈f=2〉⇒(s[f=1;↑2] | t[f=2;↑1])

The write actions can then be performed. Because the same writes actions are performed
in each branch, the write actions may leave the speculation using the structural order
(S-PAR-PREFIX and S-SPECULATION-PREFIX).
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 �⇒ (s [f=1 ]s[↑0] | t [f=2 ]t[↑0])
� s〈f=1〉t〈f=2〉⇒(s [f=1 ]s[↑2] | t [f=2 ]t[↑1])

	 s [f=1 ]t [f=2 ](�⇒ (s[↑0] | t[↑0])
� s〈f=1〉t〈f=2〉⇒(s[↑2] | t[↑1]) )

→ s [f=1 ]t [f=2 ](s[↑2] | t[↑1])

The speculation is justified, allowing us to use R-SPECULATION-END. �

Most of the examples deal with integer fields because this is the typical style in the
literature. Given that our semantics separates name binding from object initialization,
as runtime systems do, dealing with object fields is no more complicated. For exam-
ple, in s[x=f;f=new d();↑x] | t[y=f;f=new d();↑y] | free q | free r, re-
duction can proceed as above. In this case we speculate s〈f=q〉 and t〈f=r〉, resulting
in s [f=q ]t [f=r ] (s[↑r] | t[↑q] | runnable q | runnable r)

Before getting negative, we present two more “positive” examples, which are con-
sistent with the JMM. Example 6 discusses inlining. Example 7 discusses nested spec-
ulation. Inlining can reduce the number of concurrent reads available, but can also add
flexibility in reordering writes if there are data or control dependencies between threads
that prevent reordering.

Example 6 (Manson et al. (2005) figures 11 and 12). Consider the following.

s[x=f; if(x==0){f=1;} y=f; g=y; ↑(x,y)] |
u[z=g; f=z; ↑z]

The outcome s[↑(1,1)]|u[↑1] is possible. Speculate s〈g=1〉 u〈f=1〉 . The initial
branch can produce s [f=1 ] s [g=1 ] u [f=1 ] in that order. Note that the write by u
must follow the s’s write to g, but is not dependent on the s’s write to f. The semantics
can therefore reorder the writes by s before making them visible to u, resulting in the
sequence s [g=1 ] u [f=1 ] s [f=1 ] . The final branch can produce s [g=1 ] and u [f=1 ] ,
in any order, but can not produce s [f=1 ] . We can therefore reach the following state.

�⇒ s [g=1 ]u [f=1 ]s [f=1 ](s[↑(0,1)]|u[↑1])
� s〈g=1〉u〈f=1〉⇒(s [g=1 ]u [f=1 ](s[↑(1,1)]|u[↑1]))


 s [g=1 ]u [f=1 ](�⇒ s [f=1 ](s[↑(0,1)]|u[↑1])
� s〈g=1〉u〈f=1〉⇒(s[↑(1,1)]|u[↑1]))


 s [g=1 ]u [f=1 ](s[↑(1,1)]|u[↑1])

Thus, the result is possible.
The situation changes, however, if we split thread s as follows. In this case, the result

s[↑1]|t[↑1]|u[↑1] is impossible.

s[x=f; if(x==0){f=1;} ↑x] | t[y=f; g=y; ↑y] |
u[z=g; f=z; ↑z]

The dependency between s [f=1 ] and t [g=1 ] now crosses two threads, and therefore
s [f=1 ] must be ordered before any subsequent actions. We reach the following state.

�⇒ s [f=1 ](s[↑0]|(t [g=1 ](t[↑1]|u [f=1 ]u[↑1])))
� · · ·
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	 �⇒ s [f=1 ]t [g=1 ]u [f=1 ](s[↑0]|t[↑1]|u[↑1])
� · · · ⇒ t [g=1 ]u [f=1 ](s[↑1]|t[↑1]|u[↑1])

In this case, however, we can not move the writes by t or u through to justify the
speculation since they are blocked by s [f=1 ] in the initial branch and this write can
not be matched by the final branch. �

Example 7 (Pugh (2004) §11). Consider s[x=h;e=x;y=f;g=y;↑(x,y)] | t[w=e;
z=g;h=z;f=1;↑(w,z)]. To get the result s[↑(1,1)]|t[↑(1,1)],we first speculate
t〈f=1〉s〈g=1〉 , then t〈h=1〉 , and then s〈e=1〉 . These speculations result in a four-
hole context.

�⇒ �–�1

� t〈f=1〉s〈g=1〉⇒�⇒ �–�2

� t〈h=1〉⇒�⇒ �–�3

� s〈e=1〉⇒�–�4

Placing the term into this context creates four copies of the initial process, which we
will refer to by number. Process 1 justifies the outer speculation, each subsequent pro-
cess justifies the next speculation, and process 4 is the final process. To succeed, all
processes must generate t [f=1 ] and s [g=1 ] , processes 2–4 must generate t [h=1 ] ,
and processes 3 and 4 must generate s [e=1 ] .

Process 1 can perform the writes t [h=0 ]t [f=1 ] and s [e=0 ]s [g=1 ] . The second
write of s is only possible after the second write of t. The semantics can reorder the
writes of t, keeping the first write private, and likewise for s. The other processes can
reduce without any dependencies between threads and can therefore perform the same
reordering. Thus we can get the following processes.

1: t [f=1 ]s [g=1 ](t [h=0 ]t[↑(0,0)]|s [e=0 ]s[↑(0,1)])
2: t [f=1 ]s [g=1 ]t [h=1 ](t[↑(0,1)]|s [e=0 ]s[↑(0,1)])
3: t [f=1 ]s [g=1 ]t [h=1 ]s [e=1 ](t[↑(0,1)]|s[↑(1,1)])
4: t [f=1 ]s [g=1 ]t [h=1 ]s [e=1 ](t[↑(1,1)]|s[↑(1,1)])

Using this stratification, the speculations can be discharged and the result is allowed.
The multiple nesting of speculations is necessary. While the write s [e=1 ] is already

possible in process 2, this write can only happen after the write to h in t. This de-
pendency makes it impossible for process 2 to publish s [g=1 ] without the necessarily
preceding t [h=1 ] . This in turn prohibits the outer speculation from finalizing because
process 1 can not match t [h=1 ] . �

The examples above demonstrate out-of-order reads, a hallmark of relaxed memory
models. These examples argue informally that the model is “relaxed enough”. We now
revisit the examples given in Section 3, to argue that it is not “too relaxed”.

The program s[x=f; if(x==1){g=1;} f=1; y=g; ↑y] should not be allowed to
produce s[↑1]. Such self justifying executions are prevented by our semantics. Since
only s can produce writes, only speculations by s can be finalized (via R-SPECULA-
TION-END and Definition 2); yet reads by s can not be justified by its own speculations
(Definition 1). Speculation is useless in single-threaded programs, as it should be.
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Initiality prevents the program s[x=f;g=x;↑x] | t[y=g;f=y;↑y] from producing
the outcome t[↑1]. The initial branch can not write anything but 0; therefore no useful
speculations can be finalized via R-SPECULATION-END.

Consistency prevents Program C (Section 3) from producing the illegal execution
reported there. S-SPECULATION-PREFIX prevents such executions by requiring that the
initial and final branch of a speculation must execute the same actions in the same order.
The actual requirement is slightly weaker, since S-SPECULATION-PAR and Definition 3
allow some reordering; but no reordering is allowed on lock actions.

Timeliness prevents Program D (Section 3) from producing the illegal execution re-
ported there. This example motivates the “no intervening release” clause of Definition 2,
which ensures that the speculation can not be finalized. Whereas Program D describes a
speculation that occurs too late with respect to its justifying write, Example 8 discusses
one that occurs too early.

Example 8. Consider the following program.

s[l.acquire(); x=f; f=x+1; g=1; l.release(); ↑x] |
u[l.acquire(); x=f; f=x+1; y=g; l.release(); ↑(x,y)]

Clearly s[↑1]|u[↑(0,1)] is unacceptable. If we attempt to get this result by first
allowing u to acquire the lock, then speculating s〈g=1〉, we arrive at

u [l:0 ]
�⇒ u[f=1]u[l:1]s[l:2]s[f=2]s[g=1]s[l:3](s[↑1]|u[↑(0,0)])
� s〈g=1〉⇒u[f=1]u[l:1]s[l:2]s[f=2]s[g=1]s[l:3](s[↑1]|u[↑(0,1)]).

The actions of u can commute with the speculation since they belong to a different
thread, but the actions of s can not, since s〈g=1〉s[l:2] � ! s[l:2]s〈g=1〉; clause A-
ACQUIRE of Definition 3 applies to write actions, but not speculations. Thus the specu-
lation can not be finalized. �

The final two examples demonstrate areas where our model differs from the JMM.
Example 9 shows that our model allows executions of lockless programs that are not
allowed by the JMM. Example 10 shows that our model is incomparable to the JMM for
programs with both locks and data races. In both cases, our model validates optimiza-
tions that are disallowed by the JMM. See Section 7 for more general results.

Example 9 (Sevcík (2008) §5.3.2). This example discusses redundant read after read
elimination. Consider the following program.

s[x=f; g=x;] |
t[y=g; if(y==1){z=g; f=z;} else {f=1;}; ↑y]

The outcome t[↑1] is allowed using the speculation s〈g=1〉. Both initial and final
branches produce the actions t[f=1]s[g=1]. The same behavior is allowed, with the
same speculation, if the boxed statement pair is replaced by “f=y;”. Our semantics
validates the transformation. The JMM disallows the behavior for the original program,
but allows it for the transformed one (Sevcík 2008), thus invalidating the transformation.

Conversely, Sevcík (2008, §5.3.4) demonstrates a behavior that is allowed by the
JMM, but invalidated by an irrelevant read introduction. Again, our semantics allows
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the behavior both before and after the transformation. (See the extended version of this
paper. ) �

Example 10 (Sevcík (2008) §5.3.3). (Roach motel optimization). Consider whether
the following program.

s[l.acquire(); f=2; l.release();] |
t[l.acquire(); f=1; l.release();] |
u[x=f; l.acquire();

y=h; if(x==2){g=1;} else {g=y;}
l.release(); ↑(x,y)] |

v[z=g; h=z; ↑z]

The outcome u[↑(1,1)]|v[↑1] is possible using the speculation v〈h=1〉. The initial
branch schedules as follows: s, u’s initial read, t, u’s acquire and write, v, then u’s
release. This allows the initial branch to reduce to the following.

s[l:0]s[f=2]s[l:1]t[l:2]t[f=1]t[l:3]
u[l:4]u[g=1]v[h=1]u[l:5](u[↑(2,0)]|v[↑1])

The final branch performs the same schedule, except that t executes before u’s ini-
tial read, with the speculation occurring after u’s acquire. Using the false case of the
conditional, it produces the same action sequence, but with the desired result.

This execution become impossible after reversing the order of the statements in the
boxed term so that the lock is acquired before the read: “l.acquire(); x=f;”. Now
the actions of threads s, t and u are now totally ordered and therefore the relation of
t and u’s initial read must be consistent in the initial and final branches. If the initial
branch reads 1 from f, then it must write v[h=0]. If the initial branch reads 2 from f,
then the final branch must also read 2 and therefore can not produce the desired result.

Our semantics validates the transformation; the JMM does not. In a reversal of our
results, the JMM disallows the first execution, but allows the second (Sevcík 2008). �

6 Analysis

Informally, one can see that the speculation construct can not create thin air reads be-
cause it enjoys initiality (there is a computation justifying the speculation that does not
use the speculation) and consistency (the only way in which results from an active spec-
ulation can leak to the outside world is via the S-SPECULATION-PREFIX rules). Thus,
any speculation is validated by an execution consistent with the final execution.

Every valid JMM execution of a lockless program can be mimicked by the system in
this paper. See the extended version of this paper for proof sketch. We now show that
our semantics coincides with SC (and therefore with the JMM) for DRF programs. As
shown by Example 10, our semantics is incomparable to the JMM for programs with
both data-races and locks.

Our model does not record read actions. In order to define read-write data races,
we use a modified reduction relation, which introduces a read actions into the process,
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notation s�p.f=v�. A read write data race occurs whenever there is a race between a read
and a write. Define �→ as in Figure 2, but for the rule R-FIELD-READ, which becomes

C justifies s〈p.f=v〉
C

�
s[val x = p.f; M]

	
�→ C

�
s�p.f=v� s[M{x:=v}]

	 .

Define the partial function acts(A) = acts(C), if A = C�s[M]� for some C and M. We
say that A has a read-write data race if  σ = acts(C) and there exists i and j such that
σi = t �p.f=v� and σ j = s[p.f=w] such that i �< σ

hb j and j �< σ
hb i. Define a write-write

data race similarly.
A process A is speculation-free if it has no subterm that is a speculation process.

Write A0 → ··· → An to abbreviate A0 (→ ∪	) · · · (→ ∪	) An, and similarly for �→.
A reduction sequence A0 → ··· → An is top-level if A0 and An are speculation-free.

The speculation-free assumption on top-level processes is reasonable because user
programs do not have speculations; speculations are only created by the operational
semantics. Speculation transitions are redundant in read-write data race free reduction
sequences.

Definition 11. Let A′
i be derived from Ai by replacing each speculation (�⇒A�φ ⇒B)

by the final branch (B). By induction on n, such an A′
i exists for each Ai. A top-level

reduction sequence A0 �→ · · · �→ An is read-write data race free, if none of the A′
i, so

defined, has a read-write data race. �

Lemma 12. Let the top-level reduction sequence A0 → ··· → An be read-write data
race free. Then, there is a reduction sequence A0 = B0 → ··· → Bn = An, such that for
all j ∈ {1, . . . ,n}, B j is speculation-free.
PROOF. See the extended version of this paper. �

For processes that are also write-write data race free, each read is matched by a unique
write. Thus, the memory may be treated as a map from locations to values without
any change to the possible reductions, ensuring that DRF programs can be executed in
standard SC fashion.

7 Simulation

The goal of this section is to define a simulation relation that is a precongruence and
that validates interesting examples. We are not concerned if the relation is finer than
orders based on testing or contextual equivalence. For simplicity, we restrict our atten-
tion in this section to processes that do not contain name binders, object initialization or
method calls other than acquire and release. For this class of processes, we impose
the following additional well-formedness criterion: in any subprocess �⇒A�φ ⇒B,
def (A) = def (B).

Intuitively, A simulates B if A and B have the same memory and whenever B reduces,
then A can reduce to a matching process. The definition is complicated by the possible
interleaving of actions and speculations, and the various ways that a context can interact
with an environment. Rather than comparing memories, we compare environment con-
texts: E ::= �–� | α E | φ E | s[↑v]|E. The environment context s[↑v]|E contains
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a placeholder for environment actions performed by thread s, in parallel with the rest of
the context.

For a set of thread names S, the context E is complete iff for every σ ∈ E such that
s = thrd(σ) /∈ S, it is the case that s[↑v] occurs in E after σ .

In the remainder of this section, we use S to refer to the set of non-environment
threads. Threads not in S can be used by the environment.

Definition 13. Given a set S of thread names and a binary relation R on well-formed
processes, we define S � A F (R) B to hold iff the following conditions are satisfied.

(Threads) def (A) = def (B) and S ⊆ thrds(A) and for all s ∈ thrds(A)\S, if s[M] occurs
in A or B then M =↑ unit.

(Well-formed) For all C, C�A� is well-formed iff C�B� is well-formed.
(Reduction) For all B′, if B → B′ then there exists A′ such that A
 A′ and S � A′ R B′.
(Structural order) For all B′ if B 	 B′ then there exists A′ such that A
 A′ and S �

A′ R B′.
(Equivalent top-level choices) For all B′, φ , B′′, if B = E��⇒B′ �φ ⇒B′′� then there

exists A′, ψ , A′′ such that (1) A = E��⇒A′ �ψ ⇒A′′�, (2) S � E�A′� R E�B′�, and
(3) S � E�φA′′� R E�ψB′′�.

(Equivalent actions/guards/returns) For all E, B′ if B = E�B′� then there exists A′ such
that A = E�A′�.

(Environment writes) For each s ∈ thrds(A) \ S if B′ is obtained from B by replacing
every occurrence of s[↑unit] with s[p.f=v]s[↑unit] and similarly for A′ obtained
from A, then S � A′ R B′.

(Top-level lock removal) For all  σ , B′ and for all � in the fixed set of lock names if
B =  σ(lock �: j|B′) then there exists A′ such that A =  σ(lock �: j|A′) and S �
 σA′ R  σB′.

(Top-level lock addition) For all � in the fixed set of lock names if (lock �: j|B) is
well-formed then S � (lock �: j|A)R (lock �: j|B).

(Environment locks) For each s in thrds(A)\ S if
– the occurrences of lock �: j|s[↑unit] in B account for all occurrences of

s[↑unit] in B, and
– B′ is obtained from B by replacing all occurrences of lock �: j|s[↑unit] with
lock �: j+1|s[�: j]s[↑unit],

then
– the occurrences of lock �: j|s[↑unit] in A account for all occurrences of

s[↑unit] in A,
– A′ is obtained from A by replacing all occurrences of lock �: j|s[↑unit] with
lock �: j+1|s[�: j]s[↑unit], and

– S � A′ R B′.

Define S � A B to be the largest relation such that S � A B implies S � A F () B.
Define the order A B iff for all complete E such that E�A� and E�B� are well-formed,
we have thrds(A) � E�A�  E�B�.

Consider terms M and N with no free variables but perhaps free names. Define the
order M  N iff there exists t such that t[M]  t[N] The choice of t is irrelevant in this
definition. �
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Proposition 14.  is a precongruence on processes and on terms. �

We now use the theory of simulation to validate several optimizations. The first inequal-
ity shows that writes can be reordered. The second demonstrates roach motel reorder-
ing. The third demonstrates redundant read after read elimination. Since simulation is a
precongruence, the transformations are valid in any program context.

Proposition 15. The following inequivalences hold.

p.f=1;p.g=1;↑unit  p.g=1;p.f=1;↑unit
p.f=1;�.acquire();↑unit  �.acquire();p.f=1;↑unit

val x=p.f;val y=p.f;M  val x=p.f;M{y:=x}

PROOF. See the extended version of this paper. �

8 Conclusion

This paper follows the research program of Cenciarelli et al. (2007) and Boudol and Petri
(2009) in attempting to fit relaxed memory models into generative structured opera-
tional semantics. The technical novelty is manifest in the “speculation” construct. We
show that the basic properties of the JMM hold in our setting. Our contributions advance
the state-of-the-art in two ways. (1) We expand the expressivity of these methods to in-
clude full JMM behaviors for lockless programs and general object-oriented programs.
(2) We describe simulation methods and precongruence results for the sublanguage that
corresponds to the first-order imperative shared-memory computing.

Our treatment of programs with both data races and locks provides a technically
robust variation on JMM ideas. For example, our methods validate expected roach-motel
reordering laws and related peephole optimizations.
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Abstract. We present a framework that automatically produces sugges-
tions to resolve type errors in security-typed programs, enabling legacy
code to be retrofit with comprehensive security policy mediation. Re-
solving such type errors requires selecting a placement of mediation
statements that implement runtime security decisions, such as declas-
sifiers and authorization checks. Manually placing mediation statements
in legacy code can be difficult, as there may be several, interacting type
errors. In this paper, we solve this problem by constructing a graph that
has the property that a vertex cut is equivalent to the points at which
mediation statements can be inserted to allow the program to satisfy the
type system. We build a framework that produces suggestions that are
minimum cuts of this graph, and the framework can be customized to
find suggestions that satisfy programmer requirements. Our framework
implementation for Java programs computes suggestions for 20,000 line
programs in less than 100 seconds, reduces the number of locations a
programmer must consider by 90%, and selects suggestions similar to
those proposed by expert programmers 80% of the time.

1 Introduction

Security-typed languages [20,22] use type systems that augment the types of
data with security labels to statically verify that a program satisfies a security
property based on a relationship among those labels. However, many programs
exhibit behavior that is not compatible with a static type system. For example,
we do not know whether a user accessing patient data in a medical data system
is assigned a doctor label or another label until runtime, requiring a runtime
authorization check.

To resolve these conflicts within the type system, programmers insert medi-
ation statements, such as declassifiers or authorization checks, that ensure that
the runtime behavior of the program remains consistent with the security labels
expressed by the type system. Currently, the addition of mediation statements
is a manual task that requires examining a large amount of code and careful
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consideration to avoid errors. Automatic tools can identify missing mediation
statements [8,20,32], but even after the errors have been identified, reaching a
consensus on manual placement often takes a long time (e.g., for Jif programs [12]
and the X Window Server [28]). Given a set of candidate mediation statements,
they may not actually resolve all labeling conflicts, they may contain redundant
statements, may significantly degrade performance, and they may violate the
program’s coding style.

In this paper, we present a method for automatic identification of mediation
points in legacy programs that is based on a graph cut approach. A mediation
point is a location where a mediation statement can be placed. We were inspired
to investigate mediation point placement as a cut problem due to recent work
assigning a quantitative measure of leaked information in a program by solving
a maximum-flow graph problem [17]. By solving a cut problem, the dual of
the maximum-flow problem, we present the programmer with options to insert
mediation statements into the program. Our method outputs a set of suggestions:
each suggestion is a set of locations for placing mediation statements that resolve
a program’s type system conflicts. We outline the properties required of the type
system such that a cut of any information flow graph generated from a program
using that type system is equivalent to a placement of mediation statements in
the program. We use existing graph algorithms to output each equivalent cut of
the graph, thereby providing the user with a set of legal placement suggestions
to assess, reducing their effort significantly. We make the following contributions
in this paper:
• We define a transformation from a set of information-flow constraints for

a program into an information-flow graph, such that the corresponding
information-flow graph has the property that every source-sink cut of the
graph corresponds to a set of mediation points that completely resolve the
program’s illegal information flows.

• We develop a framework that computes suggestions for mediation points based
on finding cuts of the information-flow graph. We describe how we modified
the security-typed language Jif to output label constraints that could be con-
verted into such an information-flow graph. We also describe how to cluster
expressions to prevent many redundant suggestions from being output to the
programmer.

• Our framework implementation computes suggestions for Java programs of
more than 20K SLOC in less than 100 seconds. In addition, our results show
that our suggestions reduce the number of locations that would be required
for a programmer to examine given current tools for finding security-typed
language errors by approximately 90%, and in programs originally written in
a security-typed language, more than 80% of the selected mediation points
were classified as similar to those placed by human programmers.

The graph-cut approach presented in this paper provides a framework for pro-
grammers to solve practical placement concerns, ensure that solutions resolve
all conflicts, contain no redundant mediators, and can account for performance
and style considerations.
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Related Work: McCamant and Ernst [17] dynamically measure the quantita-
tive information flow that a program leaks by solving a maximum flow problem.
However, the corresponding minimum cut of the program’s flow may not be the
only suitable location to use as a mediation statement. Our work is aimed at pro-
viding a static mechanism for determining the mediation points that resolve the
type system conflicts for a program. Programmers are currently using security-
typed languages to build secure systems [2,13], but these systems have not been
used to retrofit existing programs for security. There has also been a recent line
of work in manually adding authorization checks to code in applications, such as
Linux Security Modules [31], X Windows server [28] and dbus [29]. A variety of
research aims to enforce type safety guarantees for C code [3,21], but we aim to
resolve type errors. Program slicing [26] and type-based analyses [5] have been
used to find information-flow errors. The principal advantage of our framework
is that viewing the problem as graph cut enables us to find placements that
achieve complete mediation that accounts for all of the errors in a single com-
putation. However, the scope of work presented here applies to security types.
Generalization is future work.

The remainder of the paper is structured as follows: In Section 2, we survey
some problems related to placing mediation statements in code. We provide
background about security type-checking in Section 3. In Section 4, we describe
how to transform information-flow constraints into a graph that has the property
that a cut of the graph is equivalent to a set of statements that mediate the
corresponding program’s illegal flows. In Section 5, we outline the design of our
framework, which outputs mediation suggestions from this graph. In Section 6,
we give the results of experiments, where we apply our tool to place mediators
in eight different programs.

2 Overview

In this section, we introduce some of the challenges in placing mediation state-
ments in program code. In security-typed languages, programmers specify secu-
rity properties in code by annotating various security-relevant sources and sinks
in the program with security labels from a lattice L. These languages enforce
noninterference [9]: a program satisfies noninterference if, at runtime, the com-
putation of data with security label l is independent of data with security label
l′ if l �≤ l′ in L. Noninterference can be used to model both secrecy and integrity
requirements, depending on the semantics of the labels in L. A program satis-
fying noninterference is also said to satisfy information-flow security. Statically
checking noninterference has two problems: (1) without a notion of declassifica-
tion [24], programs can never violate L, even when properly releasing data (e.g.,
releasing patient records to new doctors), and (2) without runtime authorization
checks, we have no way to enforce L over labels whose security values may be
instantiated at runtime, causing the program to unnecessarily violate noninter-
ference. Mediation statements allow programs to execute flows between label l
and incomparable labels l′.
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To investigate issues in placing mediation statements in code, we introduce
the example of logrotate, a program that rotates system logs into backup
files. logrotate is trusted to maintain the security properties of the operating
system: if the user configuring logrotate is not allowed to perform an action,
then logrotate should not be allowed to perform that same action. In recent
work [13], a version of logrotate has been written in the security-typed language
Jif [20], a variant of Java. The Jif version of logrotate guarantees that the
program satisfies information flow security. However, it also requires that the
programmer insert mediation statements to allow information to flow from the
logrotate configuration files to the logs being rotated. Without a mediation
check, it is not clear whether or not logrotate violates the secrecy and integrity
guarantees of the system: it is possible that it reveals configuration data through
viewing the results of log rotation or that it compromises log data by allowing a
user of logrotate to modify log file data that she does not have access to. We
highlight three individual flows from the configuration file to the rotated logs in
Figure 1. Each flow requires mediation.
• The number of logs to rotate before deleting the final log (rotateCount) is

equal to the number of file rename operations performed.
• The filename specified by the configuration file is used to get a handle to

the system file that logrotate renames through oldName. If an attacker can
control this variable, then she can rotate logs containing evidence of attacks
on the system.

• The filename specified by the configuration file is used to create the new name
that a log file is renamed to, newName. If an attacker can control this variable,
then she could cause a file to be overwritten.

The code in Figure 1 shows the logrotate code with mediation statements in-
serted. Each of the above flows has been mediated by adding a mediate(e,lbl)
expression: if the label on the expression e is allowed to flow to lbl, then the
expression has the value of e with the security label of lbl. Otherwise, the pro-
gram throws a security exception and terminates. The placement given in the
figure is not the only possible placement: for example, it would have also been
possible to mediate the loop guard i >= 0, which would have disconnected the
number of times the loop was executed from data labeled as {config}.

To place mediation statements that resolve these information flows, a pro-
grammer must first annotate the sources and sinks in the program with their
security labels. Next, the programmer must examine each line of code contribut-
ing to errors that result. She can use automated methods to identify possible
causes of information-flow errors [15]. Resolving these errors is currently a man-
ual process and requires the error explanation analysis to be run multiple times
to resolve each of the possible causes of an information-flow error. An auto-
mated solution would free the programmer from having to examine all the error
explanations, requiring them only to determine whether the selected mediation
points were suitable or not. Our method uses the results of a whole-program
information-flow analysis to suggest a set of mediation points, locations in code
where mediation statements can be inserted to resolve a program’s labeling



Automating Security Mediation Placement 331

1 label config, log_lbl, LogInfo[{config}]{config} log;
2 String{config} filename = log.getFilename(logNum);
3 int{config} rotateCount = log.getRotateCount();
4 File[{log_lbl}]{log_lbl} disposeFile =
5 Runtime.getFile(filename+"."+(rotateCount+1),log_lbl);
6 File[{log_lbl}]{log_lbl} newlogfile, oldlogfile = null;
7 // rename messages.n to messages.n + 1

8 for (int i = mediate(rotateCount,log lbl) ; i >= 0; i−−) {
9 String newName = filename + "." + i;

10 String oldName = filename + "." + (i−1);

11 newlogfile = Runtime.getFile( mediate(newName,log lbl) ,

12 log_lbl);

13 oldlogfile = Runtime.getFile( mediate(oldName,log lbl) ,

14 log_lbl);
15 if (oldlogfile != null)
16 oldlogfile.renameTo(newlogfile);
17 }

Fig. 1. Example from logrotate that performs rotation of log files shown with medi-
ation statements inserted

conflicts. The particular mediation mechanism required is application-specific,
and so ultimately the programmer must decide for each selected mediation point
what type of mediation statement should be inserted.

Often programmers have certain placement constraints with regards to where
mediation statements should not be placed [24]. For example, class A is used
for string formatting, while class B implements cryptographic operations on the
contents of a string. Programmers might therefore prefer to perform a media-
tion statement in class B rather than class A so that security operations are
performed in classes already used for security. Any automated system should be
customizable, as requirements of this type for declassifier placement differ across
applications and programmers.

3 Background on Information-Flow Checking

Security-typed languages [20,22] augment traditional compilers to allow program-
mers to specify the security properties of program data. Generally, these lan-
guages enforce noninterference in code by augmenting the type system with
security types. There are two different categories of illegal information flow that
noninterference disallows. Explicit information flows occur when high security
data is written to a low output, such as writing a secret key to a socket. Implicit
information flows occur when high security data otherwise affects a low observ-
able result. For example, a password check that compares the hash of a guess
against the hash of a password and reveals that information is an implicit flow
of information. If h and l are high and low variables respectively, then the assign-
ment l := h is an explicit flow of information, while the conditional if h then l := 1

is an implicit flow of information.
To prevent the programs from releasing secure information through an explicit

information flow, types τ are annotated with labels l, and the type system forbids
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subtyping of the form τ{l} & τ{l′} if l �& l′. To prevent information from leaking
through implicit flows, the type system maintains a label containing the security
level of the program counter. This security label is equal to the join of all of the
security labels that the execution of the current expression depends on. When
an assignment is performed, the type system verifies that the variable being
assigned to is greater than or equal to the program counter.

To enforce these security guarantees, type systems generate information-flow
constraints from the program. Information-flow constraints contain both secu-
rity labels l from the lattice L as well as label variables α representing the
security level of program elements that have not been explicitly labeled. A secu-
rity type system generates a set C of information-flow constraints corresponding
to the information flows that a program permits [19]. If there exists a mapping
ρ from label variables to security labels such that for each constraint ξ ∈ C,
the substituted ρ(ξ) holds, then C is satisfiable. A program with a satisfiable
information-flow constraint set satisfies noninterference.

4 Constraint Methodology

In this section, we show how to generate information-flow constraints so that
finding a set of mediation statements can be solved as a graph-cut problem.
We introduce sIMP, a constraint-based type system for IMP, a simple impera-
tive language [30]. The IMP language contains conditionals, variable assignment,
and while loops, and is presented as a simple foundational language. The main
technical distinction between the constraint-based type system presented here
and standard type systems for information-flow security, such as the one pre-
sented by Volpano et al. [27], is that sIMP does not assume a total mapping from
each variable to its security level. In the case where every variable is assigned
a security level, there is no ambiguity as to where to place a mediation state-
ment. In legacy code, it is unreasonable for the programmer to assign security
semantics to each variable, meaning that the security level of an expression e
is equal to the security level of every expression affecting e. A constraint-based
type system models language expressions that have an undetermined security
semantics: in sIMP, the security label of an expression e is associated with a
unique label variable αe.

In sIMP, a command c is information-flow secure if the set of information-flow
constraints C that the type system assigns to c is satisfiable. Using a standard
technique from the literature [6,7,11,25], we view the information-flow constraints
C as a directed graph GC , which we refer to as information-flow graph. If C con-
tains the constraint τ ≤ a (where a is an atom: either a label variable or lattice
element and τ is a join of atoms, see the formal definitions in the next section),
then there is an edge from each atom in τ to a. The information-flow graph there-
fore contains a path between two nodes n1, n2 ∈ GC if the value of the program
element associated with n1 can affect the value of the program element associated
with n2. We first show that for a two-point lattice consisting of � and ⊥, the con-
straints generated by sIMP have the cut-mediation equivalence property, meaning
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that a set of mediation statements that resolve the illegal (�,⊥) flows in a sIMP
program is equivalent to a (�,⊥) cut of the information-flow graph. We show how
to generalize this approach for arbitrary lattices in Section 4.4.

4.1 A Constraint-Based Type System for Information Flow

We now introduce sIMP, a constraint-based type system for enforcing secure
information flow in IMP. We begin by introducing the IMP language. IMP con-
tains two distinct syntactic elements: commands and expressions. A command
c can modify a global program state σ, while an expression e evaluates to an
integer value n using variable bindings from σ. An example of an IMP command
is x := x + 1: this updates the variable x to be equal to the current value of x
added to 1. Commands c and expressions e in IMP have the following grammar1:

Integers n ::= 0, 1, . . .
Variables v ::= x, y, . . .
Expressions e ::= n | v | e1 + e2

Commands c ::= skip | c1 ; c2 | v := e |
if e then c1 else c2 | while e do c

Let σ be a memory, mapping variables to integer values. Evaluation in IMP has
the judgment 〈σ, c〉 → σ′: under memory σ, command c produces memory σ′.
Evaluating the above command under a memory that maps x to the integer 4
returns a memory mapping x to the integer 5. This is written 〈{x �→ 4}, x :=
x + 1〉 → {x �→ 5}. The evaluation semantics for IMP are standard big-step
semantics: as our focus is on static checking of the security properties of IMP
commands, we omit its presentation.

Label Constraints: To enforce information-flow security on IMP, we define a
constraint-based type system that determines label constraints from a command c
and describes the flows that c enables in a security lattice L. If a command c has
a set of label constraints that is satisfiable, then for all flows that c enables from
l1 to l2, l1 ≤ l2 in the lattice L. If l1 �≤ l2, then this flow will require mediation
before the program can be used as a component of a secure system. We now give
the syntax of label expressions and constraints.

Label Variables α ::= α, β, . . . ∈ V Security Labels l ::= l ∈ L
Atoms a ::= α | l Label Joins τ ::= a | a � τ
Constraints ξ ::= τ ≤ a

An atom ai is a label expression that is either a label variable α or a label l ∈ L.
Label joins have the form a1 � · · · � an ≤ a0. A label variable α states that an
expression has not been explicitly been labeled by the programmer. A label l
represents an expression that has a predefined security semantics defined by the
lattice L: for example, a key used for encryption that has been read from a file
would be given a Secret security label that would prevent it from being leaked to
security labels in the lattice that it dominates, including Secret.

1 For simplicity, we omit presenting the semantics for handling Boolean values. This
modification does not affect the security properties of sIMP.
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We now give a security type system for IMP (sIMP) that enforces noninter-
ference of high and low security data. Let Γ be a context assigning a security
level to seed variables, which is a subset of the set of all program variables, and
Δ be a context assigning to each program variable x a unique security variable
αx. To track implicit flows, the type system also keeps track of the current label
of the program counter with the pc label. The constraint generation rules are as
follows:

Expressions

αn,p fresh
Γ ; Δ � (n)p : αn,p, ∅

x ∈ dom(Γ ) αx,p fresh

Γ ; Δ � (x)p : αx,p, { αx,p ≤ Δ(x), Δ(x) ≤ αx,p,
Γ (x) ≤ Δ(x),Δ(x) ≤ Γ (x) }

x �∈ dom(Γ ) αx,p fresh
Γ ;Δ � (x)p : αx,p, {αx,p ≤ Δ(x),Δ(x) ≤ αx,p}

Γ ; Δ � e1 : α1, C1 Γ ; Δ � e2 : α2, C2 α3,p fresh
Γ ; Δ � (e1 + e2)p : α3,p, C1 ∪ C2 ∪ {α1 � α2 ≤ α3,p}

Γ ; Δ � e : α0, C α1,p fresh
Γ ; Δ � (mediate(e))p : α1,p, C

Commands

Γ ; Δ; pc � skip : ∅
Γ ; Δ; pc � c1 : C1 Γ ;Δ; pc � c2 : C2

Γ ; Δ; pc � c1 ; c2 : C1 ∪ C2
Γ ; Δ; pc � v : α0, C0 Γ ;Δ � e : α1, C1

Γ ;Δ; pc � v := e : C0 ∪ C1 ∪ {α1 � pc ≤ Δ(v)}
Γ ; Δ � e : α0, C0

αpc fresh
Γ ; Δ; αpc � c1 : C1

Γ ;αpc � c2 : C2

Γ ; Δ; pc � if e then c1 else c2 :
C0 ∪ C1 ∪ C2 ∪
{pc � α0 ≤ αpc}

Γ ;Δ � e : α0, C0 Γ ; Δ; αpc � c1 : C1 αpc fresh
Γ ; Δ; pc � while e do c : C0 ∪ C1 ∪ {pc � α0 ≤ αpc}

If the generated constraint set C for a command c is satisfiable, then when
run, c will not cause any high-security data to affect low-security data. The type
judgments presented in this figure are for both expressions e and commands c.
An expression is assigned information-flow constraints C and a security vari-
able α with the judgment Γ ;Δ; pc � e : α,C, while a command c is assigned
information-flow constraints C with the judgment Γ ;Δ; pc � c : C. We associate
expressions e with a unique security variable αe so that the vertices correspond-
ing to a cut of the graph are uniquely identified with mediation points. In the
type checking rules, we add a unique position tag p to refer to expressions e,
allowing us to uniquely refer to subexpressions. We write (e)p to indicate that
expression e has the position p (assumed to be taken from a unique set of po-
sitions). This is similar to converting a program to SSA form [4]. We refer to
the label variable αe,p as the expression variable for the expression-position pair
(e, p). In the case where there is no loss of ambiguity, we refer to αe as the
expression variable for e.
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Constraint Example: We now investigate the information-flow constraints
associated with the main loop in Figure 1 by building the information-flow con-
straint set C. The constraints generated by this program represent the informa-
tion flows through the program. Later in the section, we will show how these
constraints induce an information-flow graph on the label variables and lattice
elements.

Let αrc, αfn, αnn, αon, αi, αnlf , αolf be the expression variables associated
with the variables rotateCount, filename, newName, oldName, i, newlogfile, and oldlogfile,
respectively. For a variable x, the label variable αx,n represents the occurrence
of x on line n. For all n such that x appears on line n, the constraint set contains
the constraints αx ≤ αx,n and αx,n ≤ αx (the expression x on line n has the
same security level as the variable αx).

From the definitions at the beginning of the code, the constraint set C con-
tains the constraints config ≤ αrc and config ≤ αfn. The for loop introduces
a new program counter variable αpc1 and the constraints αrc,8 ≤ αi (from
int i = rotateCount), αi,8 ≤ αi (from the i−− statement), and αi ≤ αpc1 (from
the loop being executed until a condition on i is satisfied). The next two state-
ments generate the constraints αi,9 �αfn,9 ≤ αnn and αi,10 �αfn,10 ≤ αon. The
call to Runtime.getFile requires that both the first argument passed and the value
returned have the label of the second argument passed in. Therefore, the two
calls to getFile generate the constraint set

{ αnn,11 ≤ log_lbl, log_lbl ≤ αnlf ,
αon,13 ≤ log_lbl, log_lbl ≤ αolf }

The if statement comparing oldlogfile to null creates a new program counter
variable αpc2, the constraint αpc1 � αolf ≤ αpc2. Finally, the call to renameTo

generates the constraints αolf ≤ αnlf , as the old log file must be able to flow to
the new log file, and αpc2 ≤ αolf , αpc2 ≤ αnlf , as observing if one file has been
renamed to another is an observable action that reveals information about the
program counter.

4.2 Constraints as an Information-Flow Graph

We now define the information-flow graph as an alternative representation of
an information-flow constraint set and show that a cut of the information-flow
graph formed from a set of sIMP constraints C corresponds to a set of mediation
points that make C satisfiable.

For the rest of this section, we assume that the lattice L has only two labels:
� and ⊥ with ⊥ ≤ �. We describe how to extend the cut-based approach to
place declassifiers in a general security lattice in Section 4.4.

We now define a translation of an information-flow constraint set C into an
information flow constraint graph GC , which contains dependency information
for the label variables and labels that are described by C. Every label variable
and lattice element that occurs in C is a vertex in GC . There is an edge between
two vertices in G if the program permits a flow of information between the
program elements that those vertices represent in the graph. For example, if
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α ≤ β ∈ C, there are vertices for α and β in GC and an edge between them, as
the security level of α is constrained to be less than or equal to that of β.

Definition 1 (Information Flow Graph). Let C be an information-flow con-
straint set. Let GC be the graph with vertex set V (GC) = V ∪ L and, for atoms
a, a′, (a, a′) ∈ E(GC) if τ0 � · · · � a � · · · τn ≤ a′ ∈ C.

4.3 Correspondence of Graph Cuts and Mediation Points

We now show that a vertex cut of the information-flow graph containing only ex-
pression variables corresponds to a set of expressions that needs to be mediated.
We will show that sIMP constraints have the property that a (�,⊥) cut of the
information-flow graph GC corresponds to a placement of mediation statements
that fully resolves errors caused by the flows in the command c. We use the
Rehof-Mogensen constraint solver [23], introduced in Section 3, in proving these
claims.

The following lemma connects paths in the information-flow graph to the
unsatisfiability of the constraints set C.

Lemma 2. Let Γ ;Δ � c : C. The set C is satisfiable if and only if there is no
(�,⊥)-path in GC .

Proof. Please refer to the tech report [16] for the proof.

We define an expression cut as a (�,⊥) vertex cut of the information flow graph
that only includes label variables of the form αe,p.

Definition 3. Suppose Γ ; pc � c : C. An expression cut of (c, Γ ) is a
set of expression-position pairs T = {(e0, p0), . . . , (en, pn)} such that the set
{αe0,p0 , . . . , αen,pn} is a vertex (�,⊥) cut set of the graph GC .

We now define the command T (c), which is the command c with each expression
e in the expression cut T replaced by mediate(e).

Definition 4. Let T be a set of expression-position pairs (ei, pi). Let T (c) rep-
resent the command with each ei at position pi replaced with mediate(ei) at
position pi.

We now show that expression cuts are exactly those sets of expressions which,
when mediated, make the generated set of information-flow constraints C
satisfiable.

Theorem 5 (Cut-Mediation Equivalence). Let T be a set of expression-
position pairs, Γ � c : C, and Γ � T (c) : C′. Suppose also that C is unsatisfi-
able. Then T is an expression cut of (c, Γ ) if and only if C′ is satisfiable.

Proof. Please refer to the tech report [16] for the proof.
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Cut Example: The logrotate program permits several flows between lattice
labels config and log_lbl. To determine a set of mediation points from a cut of the
graph, we allow vertices that correspond to the security values of expressions
to be part of the cut. Every vertex cut of the graph that separates config from
log_lbl and contains only vertices that correspond to expressions induces a set
of mediation points placed in the code. For example, the vertices correspond-
ing to rotateCount in line 8, oldName in line 13, and newName line 11 separates config

from log_lbl, and corresponds to placing mediation statements mediating those
expression in those lines.

4.4 Finding Mediation Points for General Lattices

We now describe the more general problem of finding a set of mediation points for
an arbitrary lattice. We call this problem, general lattice cut-mediation (GLC).
We will show that the GLC problem is an instance of the graph problem of cut-
conjunction for directed graphs (DCC), which currently has unknown complex-
ity [14]. Thus, we adopt an approximation strategy to solve GLC that employs
the hitting set problem, which is known to be an NP-complete problem, but for
which several good approximation algorithms exist.

Comparison to the cut-conjunction Problem: We first introduce the DCC
problem. Let G = (V,E) be a directed graph on vertex set V and edge set E. Let
P ⊆ V ×V be an arbitrary family of pairs of vertices in G. A set of edges E′ ⊆ E
is called a P-cut if and only if none of the pairs of vertices in P are connected
in G′ = (V,E \E′). The cut-conjunction (CC) problem is the following: given a
graph G = (V,E) and P ⊆ V ×V find a subset of edges E′ ⊆ E that is a minimal
P-cut. The cut-conjunction enumeration problem is to enumerate all minimal
P-cuts in a graph G = (V,E). The weighted cut-conjunction (WCC) problem is
the cut-conjunction problem, except that a function f : E → N specifies edge
weights, and the enumerated P-cuts in G are required to have minimum weight.

Given an 0 security lattice L for a GLC problem, let PL be the set of all pairs
of labels (l1, l2) such that l1 �≤ l2. The following lemma generalizes Lemma 2 to
PL-cuts.

Lemma 6. Let C be an unsatisfiable constraint set over a lattice L and GC =
(V,E) be the information-flow graph for C. Let E′ ⊆ E be a PL-cut for GC

and CE′ be the constraint set generated by the program where the expressions
corresponding to the edges in E′ have been mediated to ⊥. The constraint set
CE′ is satisfiable.

The solution to the cut-conjunction problem for our constructed information-
flow graph for a GLC problem then corresponds to the expressions that mediate
all illegal flows through the program associated with the information-flow graph.
However, the complexity of DCC is unknown [14], so we use an approximation
in order to solve GLC.

Placement Algorithm for General Lattices: The algorithm we use to solve
GLC consists of two steps: first, we solve the min-cut problem on a per-source



338 D. King et al.

MediationPoints(GC ,PL)
1 Labels ← {l | (l, l′) ∈ PL}, X ← ∅
2 for each l ∈ Labels
3 Tl ← {l′ | (l, l′) ∈ PL}
4 Xl ← AllMinimumCuts(GC , l, Tl)
5 S ←MinGHS(Xl0 , . . . ,Xl|Labels|)
6 return ExpressionsFromEdgeCut(S)

Fig. 2. An algorithm for choosing a set of mediation points for a general lattice based
on the generalized hitting set problem

basis, and then we use an algorithm that solves the hitting set problem to combine
the results. This is an approximation of an optimal solution for the GLC problem,
as the per-source cuts are local minima solutions. The hitting set problem is NP-
complete, but there are known approximations [1,10].

An instance of the hitting set (HS) problem consists of a collection
{S1, S2, . . . , Sn}, where each Si is a subset of T , and a positive integer k ≤ |T |.
The problem is to determine whether there is some subset H of T such that
|H | ≤ k ∧ ∀i (H ∩ Si) �= ∅. We consider a generalized version of this problem
where each of the elements in Si is in turn a subset of T , i.e., Si is a collection
of sets. An instance of the generalized hitting set (GHS) problem consists of a
set of collections {C1, · · · , Cn} where each Ci is a collection of subsets of T (i.e.,
each Ci = {Si,1, · · · , Si,ki} where Si,j is a subset of T ) and a positive integer
k ≤ |T |. The problem is to determine whether there is a subset H of T such that
|H | ≤ k and for all i such that 1 ≤ i ≤ n there exists a j such that Si,j ⊆ H
(a set in the collection Ci is a subset of H . Let MinGHS(C1, . . . , Cn) be a
procedure that solves the hitting set problem. Figure 2 contains an algorithm
for placing security mediators for a general lattice that relies on an external
procedure for MinGHS to solve the hitting set problem. It is easy to see that
if MediationPoints(GC ,PL) = X , for all (l, l′) ∈ PL, there is no path from
l to l′ in GC \ X . Assume there is such a path from l to l′: by the definition
of a minimum vertex cut, this path intersects at least one vertex in Sl chosen
from Xl. This path cannot exist as each vertex in Sl was removed from GC . By
Lemma 6, mediating the expressions specified in a PL-cut results in a satisfiable
constraint set.

The running time of this algorithm is primarily dependent on the size
of the problem given to MinGHS. The number of cuts generated by
AllMinimumCuts depends on the size of the lattice, and the size of the cuts
depends on the complexity of the program.

5 Suggestion Framework

The information-flow graph construction in Section 4 constructs, from program
code, a graph for which a cut is equivalent to a placement of mediation points. In
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this section, we discuss how to deploy this method in a framework that outputs
sets of mediation points (i.e., placement suggestions) for Java programs.

Our tool outputs a set of suggestions, each of which is a set of points in the
code that completely mediates the illegal information flows from a program. We
built a framework that uses minimum graph cuts to select mediation points.
The minimum cut of a graph corresponds to the minimum number of mediation
points that need to be inserted into the program. While a minimum sized set of
mediation points may not necessarily agree with programmer intent, we believe
that a set of minimum size provides a good starting point for understanding
how best to mediate the illegal flows in a program. If the programmer wishes to
give incentive or decentive to select certain mediation points, then this can be
accomplished by modifying the graph cut model.

The framework can be applied to any Java program whose language features
are supported by the Jif compiler. The main feature of sIMP constraints is that
mediating an expression e at position p removes any of the security information
affecting the expression label variable αe,p. However, the unmodified constraints
generated by the Jif compiler do not satisfy cut-mediation equivalence because
the security labels that the compiler associates with an expression e are affected
by both explicit and implicit security information. To make the Jif constraints
satisfy cut-mediation equivalence, we modified the constraint generation proce-
dure for every class of expression that could have a visible side effect, so that
extra constraints to check implicit flows were included. These additional con-
straints ensure that information associated with an implicit flow is maintained
if αe is selected as part of a graph cut.

There may be many suggestions of minimum size that resolve the informa-
tion flows for a given program, as a graph might have several minimum cuts.
Therefore, most applications admit an infeasibly large number of minimum sets
of mediation points, most of which are very similar. For example, let h be a high
security integer variable. For the expression if h == 0 then l := 0, the expressions h

and h == 0 are both part of the minimum set of mediation points. If our frame-
work considers multiple expressions with equivalent security semantics as valid
mediation points, the number of minimum cuts quickly becomes exponential in
the number of vertices of the information-flow graph GC . To avoid enumerat-
ing an exponential number of mediation points to the programmer, we consider
an expression e redundant if its value only flows to another expression e′ in
the information-flow graph. Suppose αe, α

′
e ∈ GC and let l be a lattice label.

If αe′ postdominates2 αe at exit node Tl = {l′ | l �≤ l′}, do not consider αe

as a mediation point for l [18]. Because the definition of postdomination relies
on the exit node, this must be done for each l ∈ L. The process of removing
postdominated expressions from the set of possible declassifiers is done before
computing the maximum network flow between l and its associated super-sink Tl

(Figure 2).

2 Given a graph G = (V, E), let n, m ∈ V , then m postdominates n if m is different
from n and m is on every path from n to the end node.
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Table 1. Runtime performance of our mediation placement algorithm. We separate
Java programs (top) from Jif programs (bottom). Per application, we report the lines
of code in the files analyzed, give the number of constraints solved, the number of mini-
mum cut problems that our tool needed to solve, the average size of the information-flow
graph for each label l, and the average number of mediation points from the minimum
cut. We give the performance of our algorithm by reporting the two factors that had the
most effect on running time: total time required to cluster the graphs before performing
a minimum cut, and total time required to solve minimum cut problems. Finally, we
give the total running time of the analysis.

Application
Code
Lines

# of Con-
straints

Min Cut
Probs.

Avg. Graph
Vertices

Avg. Vertices
per Min Cut

Cluster
Time (s)

Cut
Time (s)

Total
Time (s)

JES 2,407 22,151 1 6,021.00 3.00 0.57 1.06 4.30
Java Card Purse 13,981 48,728 1 8,312.00 8.00 0.64 0.50 6.46
tinySQL 12,632 60,909 1 20,683.00 10.00 1.50 2.16 11.83
weirdx 22,308 239,521 2 92,802.00 88.00 15.54 21.61 83.74
logrotate 911 6,063 2 1,654.00 3.50 0.11 0.006 1.34
JPMail (reader) 3,934 8,438 59 3,151.29 3.31 3.88 0.46 13.37
JPMail (sender) 3,932 14,495 32 3,844.69 4.28 4.95 0.12 14.84
Mental Poker 1,578 13,344 1 3,553.00 4.00 0.25 0.24 2.21
Civitas (voter) 13,828 67,135 5 17,658.00 1.4 7.11 0.62 28.71

6 Experimental Results

In this section, we present the results of running our mediation point placement
tool on program code on a variety of Java and Jif applications.

Experimental Setup: Our mediation placement algorithm is written in 1,001
lines of C++ code3, and our experiments were run on a machine with a 2.3
GHz AMD Operton processor with 3 GB of memory. We used the Lemon graph
libraries developed for scientific computing to calculate the minimum cut of a
graph, but implemented our own dominator computation. We ran our analysis on
eight separate applications as shown in Table 1: four Java applications for which
mediation is added from scratch and four Jif applications in which the manually
placed mediators are removed. The labeling and policy were determined per
application. To generate the information-flow constraints, we used a context-
insensitive, interprocedural label analysis. The mediation placement technique
described in this paper is independent of the specific kind of label analysis, so long
as that analysis has the cut-mediation equivalence in Theorem 5. An issue with
every static analysis is the presence of false positives but our current analysis was
sufficient for our examples; while we encountered some false positives, these were
easily detected and removed. However, an improved analysis will be necessary
in general.

Performance: Table 1 contains metrics about the performance of our system.
We allow a programmer to specify a function as the starting point of the anal-
ysis. For example, the analysis of Civitas focused on six vote tallying methods.
3 Our constraint-generation and mincut tools are available for download at
http://siis.cse.psu.edu/jlift/jlift.html

http://siis.cse.psu.edu/jlift/jlift.html
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Since code contains whitespace and comments, total number of constraints gen-
erated by the analysis (column 3) is a more accurate metric for the difficulty
of the graph problem than file sizes (column 2). Two major factors affected the
running time of our tool: Number of minimum-cut problems to be solved per
program (column 4) and the number of mediation points returned as a solution
to each minimum cut problem (column 6). The number of minimum cut prob-
lems is a multiplicative factor: because domination is a source-sink computation
and different minimum-cut problems have different sources and sinks, clustering
is performed once for each minimum-cut. Also, it took a longer time for the
minimum cut algorithm to run for programs whose cuts had a higher number of
vertices, as the Ford-Fulkerson method depends on finding augmenting paths to
an existing cut. Our largest code example was an X Server written in Java that
contained over 22,000 lines of code, corresponding to over 230,000 information
flow constraints. It took 83 seconds for our suggestion method to complete when
run on these constraints, returning 176 mediation points. A pattern in all of our
experiments was the small size of the minimum cut relative to the size of the
overall graph indicating that our suggestion algorithm should scale well on even
larger programs.

Comparison To Previous Work: To evaluate how well our approach reduces
the space of placement options, we compared our mediation placement algorithm
to an existing mechanism for resolving information-flow errors for previously
unmediated Java programs (JES, Java Card Purse, tinySQL and an X Server
implementation called WeirdX). Recent work [15] proposed a tool to display
complete and minimal error traces that show how an information-flow constraint
becomes unsatisfiable, enabling a programmer to find suitable mediation sites.
While this approach narrows down the points in the program that need to be
examined, it only reports one error trace per failed information-flow constraint,
requiring the programmer to run the analysis multiple times to resolve all of the
errors per constraint. The results of comparing our tool to such error traces are
given in Table 2. These results show that our tool reduces the number of locations
by 90% or more for all but one case (Java Card Purse), which is nearly 90%.

Table 2. Comparison of selected mediation points to information-flow errors for each
Java application. The second column gives the total number of candidate mediation
points after clustering. The third column gives the number of mediation points high-
lighted by error traces in a prior work [15], while the fourth column gives the number
of mediation points selected by our tool in all suggestions. Only tinySQL has multiple
suggested min-cuts of the same size (48 of them).

Application
Mediation Points

Candidate Error Trace Min-Cut
JES 5,492 89 3
Java Card Purse 11,540 62 8
tinySQL 14,735 553 10
weirdx 133,356 1868 176
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Quality of Placed Mediators: To investigate the quality of placed mediation
points, we ran our tool on a number of applications (logrotate, JPMail, Mental
Poker and Civitas) originally written in the security-typed language Jif. We de-
fine a similarity metric to compare automatically placed mediation points with
the mediation points placed by the original application programmers. We clas-
sified each selected mediation point as either being similar or not similar and
those classified as similar belonged to one of three categories: Mediation point
that mediates the exact same data in the exact same location as the original
(Exact), is in the same block of code as the original mediation point (Same-
Block) and mediates the exact same value as the original (SameData). Our
results in Table 3 show that in all the Jif applications, over 80% of the selected
mediation points were placed in locations that matched one of our similarity
metrics. The remaining 20% of mediation points that were placed by our tool
generally were selected in a way to reduce the total number of mediation points,
whereas the programmer had chose to insert more expressive mediation state-
ments. This means that there are other factors used by expert programmers that
need to be assessed in placement. Our framework supports programmer control
through the adjustment of weights on the graph edges. We currently use this to
enable programmers to prohibit locations (e.g., increase edge weights to ∞) or
select locations (i.e., require them in every cut). A key issue appears to be if a
programmer has a specific mediator in mind. Ensuring that a location is chosen
only if it satisfies the functional requirements of a mediator or other programmer
requirements are future work.

Table 3. Similarity Results. For each application, we give the number of mediation
points that occur in at least one suggestion and the classification of these mediation
points into one of four similarity categories. Additionally, we report the number of
suggestion sets returned.

Application Candidate Total Mediation Similarity Suggestions
Mediation Points Points Suggested Exact Block Data Not (# of Sets)

logrotate 1,540 9 1 7 1 0 3
Mental Poker 3,569 7 3 0 1 3 4
JPMail (reader) 2,434 37 1 15 14 7 25
JPMail (sender) 3,976 74 2 52 19 1 23
Civitas (voter) 19,977 9 6 0 2 1 6

7 Conclusion

In this paper we have presented a framework to assist programmers in placing
security mediation points. Our framework implements a method that constructs
a graph G such that a minimum cut of G corresponds to a minimum placement
of mediation points in the program. This framework reduced the number of
expressions that need to be examined to resolve information-flow errors in four
Java programs and placed mediation statements in locations similar to those
placed by the original application programmers for four Jif programs. In the
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future, we plan to provide support for extracting functional requirements from
programs that influence placements to improve accuracy.
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Abstract. Parsing is an important problem in computer science and
yet surprisingly little attention has been devoted to its formal verifica-
tion. In this paper, we present TRX: a parser interpreter formally devel-
oped in the proof assistant Coq, capable of producing formally correct
parsers. We are using parsing expression grammars (PEGs), a formalism
essentially representing recursive descent parsing, which we consider an
attractive alternative to context-free grammars (CFGs). From this for-
malization we can extract a parser for an arbitrary PEG grammar with
the warranty of total correctness, i.e., the resulting parser is terminating
and correct with respect to its grammar and the semantics of PEGs;
both properties formally proven in Coq.

1 Introduction

Parsing is of major interest in computer science. Classically discovered by stu-
dents as the first step in compilation, parsing is present in almost every program
which performs data-manipulation.

For instance, the Web is built on parsers. The HyperText Transfer Proto-
col (HTTP) is a parsed dialog between the client, or browser, and the server.
This protocol transfers pages in HyperText Markup Language (HTML), which is
also parsed by the browser. When running web-applications, browsers interpret
JavaScript programs which, again, begins with parsing. Data exchange between
browser(s) and server(s) uses languages or formats like XML and JSON. Even
inside the server, several components (for instance the trio made of the HTTP
server Apache, the PHP interpreter and the MySQL database) often manipulate
programs and data dynamically; all require parsers.

Parsing is not limited to compilation or the Web: securing data flow enter-
ing a network, signaling mobile communications, manipulating domain specific
languages (DSL) all require a variety of parsers.

The most common approach to parsing is by means of parser generators, which
take as input a grammar of some language and generate the source code of a
parser for that language. They are usually based on regular expressions (REs)
and context-free grammars (CFGs), the latter expressed in Backus-Naur Form
(BNF) syntax. They typically are able to deal with some subclass of context-
free languages, the popular subclasses including LL(k), LR(k) and LALR(k)
grammars. Such grammars are usually augmented with semantic actions that
are used to produce a parse tree or an abstract syntax tree (AST) of the input.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 345–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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What about correctness of such parsers? Yacc is the most widely used parser
generator and a mature program and yet [20] devotes a whole section (“Bugs
in Yacc”) to discuss common bugs in its distributions. Furthermore, the code
generated by such tools often contains huge parsing tables making it near impos-
sible for manual inspection and/or verification. In the recent article [17] about
CompCert, an impressive project formally verifying a compiler for a large subset
of C, the introduction starts with a question “Can you trust your compiler?”.
Nevertheless, the formal verification starts on the level of the AST and does not
concern the parser [17, Figure 1]. Can you trust your parser?

Parsing expression grammars (PEGs) [14] are an alternative to CFGs, that
have recently been gaining popularity. In contrast to CFGs they are unambigu-
ous and allow easy integration of lexical analysis into the parsing phase. Their
implementation is easy, as PEGs are essentially a declarative way of specifying
recursive descent parsers [5]. With their backtracking and unlimited look-ahead
capabilities they are expressive enough to cover all LL(k) and LR(k) languages
as well as some non-context-free ones. However, recursive descent parsing of
grammars that are not LL(k) may require exponential time. A solution to that
problem is to use memoization giving rise to packrat parsing and ensuring lin-
ear time complexity at the price of higher memory consumption [2,13,12]. It
is not easy to support (indirect) left-recursive rules in PEGs, as they lead to
non-terminating parsers [29].

In this paper we present TRX: a PEG-based parser interpreter formally devel-
oped in the proof assistant Coq [28,4]. As a result, expressing a grammar in Coq
allows one, via its extraction capabilities [19], to obtain a parser for this gram-
mar with total correctness guarantees. That means that the resulting parser is
terminating and correct with respect to its grammar and the semantics of PEGs;
both of those properties formally proved in Coq. Moreover every definition and
theorem presented in this paper has been expressed and verified in Coq.

The contributions of this paper are:

– extension of PEGs with semantic actions,
– a Coq formalization of the theory of PEGs and
– a Coq development of TRX: a PEG interpreter allowing to obtain a parser

with total correctness guarantees for an arbitrary PEG grammar.

The remainder of this paper is organized as follows. We introduce PEGs in
Section 2 and in Section 3 we extend them with semantic actions. Section 4

Δ ::= ε empty expr. | e1/e2 a prioritized choice (e1, e2 ∈ Δ)
| [·] any character | e∗ a ≥ 0 greedy repetition (e ∈ Δ)
| [a] a terminal (a ∈ VT ) | e+ a ≥ 1 greedy repetition (e ∈ Δ)
| [“s”] a literal (s ∈ S) | e? an optional expression (e ∈ Δ)
| [a−z] a range (a, z ∈ VT ) | !e a not-predicate (e ∈ Δ)
| A a non-terminal (A ∈ VN ) | &e an and-predicate (e ∈ Δ)
| e1; e2 a sequence (e1, e2 ∈ Δ)

Fig. 1. Parsing expressions
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describes a method for checking that there is no (indirect) left recursion in a
grammar, a result ensuring that parsing will terminate. Section 5 reports on
our experience with putting the ideas of preceding sections into practice and
implementing a formally correct parser interpreter in Coq. Section 6 is devoted
to a practical evaluation of this interpreter and contains a small case study of
extracting an XML parser from it, presenting a benchmark of TRX against other
parser generators and giving an account of our experience with extraction. We
discuss related work in Section 7 and conclude in Section 8.

2 Parsing Expression Grammars (PEGs)

The content of this section is a different presentation of the ideas from [14]. For
more details we refer to the original article. For a general overview of parsing we
refer to, for instance, [1].

PEGs are a formalism for parsing that is an interesting alternative to CFGs.
We will formally introduce them along with their semantics in Section 2.1. PEGs
are gaining popularity recently due to their ease of implementation and some
general desirable properties that we will sketch in Section 2.2, while comparing
them to CFGs.

2.1 Definition of PEGs

Definition 1 (Parsing expressions). We introduce a set of parsing expres-
sions, Δ, over a finite set of terminals VT and a finite set of non-terminals VN .
We denote the set of strings as S and a string s ∈ S is a list of terminals VT .
The inductive definition of Δ is given in Figure 1. .

Later on we will present the formal semantics but for now we informally describe
the language expressed by all types of parsing expressions.

– Empty expression ε always succeeds without consuming any input.
– Any-character [·], a terminal [a] and a range [a − z] all consume a single

terminal from the input but they expect it to be, respectively: an arbitrary
terminal, precisely a and in the range between a and z.

– Literal [“s”] reads a string (i.e., a sequence of terminals) s from the input.
– Parsing a non-terminal A amounts to parsing the expression defining A.
– A sequence e1; e2 expects an input conforming to e1 followed by an input

conforming to e2.
– A choice e1/e2 expresses a prioritized choice between e1 and e2. This means

that e2 will be tried only if e1 fails.
– A zero-or-more (resp. one-or-more) repetition e∗ (resp. e+) consumes zero-

or-more (resp. one-or-more) repetitions of e from the input. Those operators
are greedy, i.e., the longest match in the input, conforming to e will be
consumed.

– An and-predicate (resp. not-predicate) &e (resp. !e) succeeds only if the input
conforms to e (resp. does not conform to e) but does not consume any input.
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We now define PEGs, which are essentially a finite set of non-terminals, also
referred to as productions, with their corresponding parsing expressions.

Definition 2 (Parsing Expressions Grammar (PEG)). A parsing expres-
sions grammar (PEG), G, is a tuple (VT ,VN ,Pexp, vstart), where:

– VT is a finite set of terminals,
– VN is a finite set of non-terminals,
– Pexp is the interpretation of the productions, i.e., Pexp : VN → Δ and
– vstart is the start production, vstart ∈ VN . .

We will now present the formal semantics of PEGs. The semantics is given by
means of tuples (e, s) m� r, which indicate that parsing expression e ∈ Δ applied
on a string s ∈ S gives, in m steps, the result r, where r is either ⊥, denoting that
parsing failed, or

√
s′ , indicating that parsing succeeded and s′ is what remains

to be parsed. We will drop the m annotation whenever irrelevant.

(ε, s) 1� √
s

(Pexp(A), s) n� r

(A, s) n+1� r ([·], x :: xs) 1� √
xs

([·], []) 1� ⊥ ([x], x :: xs) 1� √
xs ([x], []) 1� ⊥

x �= y

([y], x :: xs) 1� ⊥
(e, s) m� ⊥

(!e, s) m+1� √
s

(e, s) m� √
s′

(!e, s) m+1� ⊥
(e1, s)

m� ⊥
(e1; e2, s)

m+1� ⊥
(e1, s)

m� √
s′ (e2, s

′) n� r

(e1; e2, s)
m+n+1� r

(e1, s)
m� ⊥ (e2, s)

n� r

(e1/e2, s)
m+n+1� r

(e1, s)
m� √

s′

(e1/e2, s)
m+1� √

s′

(e, s) m� √
s′ (e∗, s′) n� √

s′′

(e∗, s) m+n+1� √
s′′

(e, s) m� ⊥
(e∗, s) m+1� √

s

Fig. 2. Formal semantics of PEGs

The complete semantics is presented in Figure 2. Please note that the following
operators from Definition 1 can be derived and therefore are not included in the
semantics:

[a−z] ::= [a] / . . . / [z] e+ ::= e; e∗ &e ::= !!e
[“s”] ::= [s0] ; . . . ; [sn] e? ::= e/ε

2.2 CFGs vs PEGs

The main differences between PEGs and CFGs are the following:

– the choice operator, e1/e2, is prioritized, i.e., e2 is tried only if e1 fails;
– the repetition operators, e∗ and e+, are greedy, which allows to easily express

“longest-match” parsing, which is almost always desired;
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– syntactic predicates [22], &e and !e, both of which consume no input and suc-
ceed if e, respectively, succeeds or fails. This effectively provides an unlimited
look-ahead and, in combination with choice, limited backtracking capabilities.

An important consequence of the choice and repetition operators being deter-
ministic (choice being prioritized and repetition greedy) is the fact that PEGs
are unambiguous. We will see a formal proof of that in Theorem 32. This makes
them unfit for processing natural languages, but is a much desired property when
it comes to grammars for programming languages.

Another important consequence is ease of implementation. Efficient algo-
rithms are known only for certain subclasses of CFGs and they tend to be rather
complicated. PEGs are essentially a declarative way of specifying recursive de-
scent parsers [5] and performing this type of parsing for PEGs is straightforward
(more on that in Section 5). By using the technique of packrat parsing [2,13],
i.e., essentially adding memoization to the recursive descent parser, one obtains
parsers with linear time complexity guarantees. The downside of this approach
is high memory requirements: the worst-time space complexity of PEG parsing
is linear in the size of the input, but with packrat parsing the constant of this
correlation can be very high. For instance Ford reports on a factor of around 700
for a parser of Java [13].

CFGs work hand-in-hand with REs. The lexical analysis, breaking up the
input into tokens, is performed with REs. Such tokens are subject to syntactical
analysis, which is executed with CFGs. This split into two phases is not necessary
with PEGs, as they make it possible to easily express both lexical and syntactical
rules with a single formalism. We will see that in the following example.

Example 3 (PEG for simple mathematical expressions). Consider a PEG for sim-
ple mathematical expressions over 5 non-terminals: VN ::= {ws, number, term,
factor, expr} with the following productions (Pexp function from Definition 2):

ws ::= ([ ] / [\t])∗
number ::= [0−9]+
term ::= ws number ws / ws [(] expr [)] ws

factor ::= term [∗] factor / term
expr ::= factor [+] expr / factor

Please note that in this and all the following examples we write the sequence
operator e1; e2 implicitly as e1 e2. The starting production is vstart ::= expr.

First, let us note that lexical analysis is incorporated into this grammar by
means of the ws production which consumes all white-space from the beginning
of the input. Allowing white-space between “tokens” of the grammar comes down
to placing the call to this production around the terminals of the grammar. If
one does not like to clutter the grammar with those additional calls then a simple
solution is to re-factor all terminals into separate productions, which consume
not only the terminal itself but also all white-space around it.

Another important observation is that we made addition (and also multi-
plication) right-associative. If we were to make it, as usual, left-associative, by
replacing the rule for expr with:
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expr ::= expr [+] factor / factor

then we get a grammar that is left-recursive. Left-recursion (also indirect or
mutual) is problematic as it leads to non-terminating parsers. We will come
back to this issue in Section 4. �

PEGs can also easily deal with some common idioms often encountered in practi-
cal grammars of programming languages, which pose a lot of difficulty for CFGs,
such as modular way of handling reserved words of a language and a “dangling”
else problem — for more details we refer to [12, Chapter 2.4].

3 Extending PEGs with Semantic Actions

3.1 XPEGs: Extended PEGs

In the previous section we introduced parsing expressions, which can be used to
specify which strings belong to the grammar under consideration. However the
role of a parser is not merely to recognize whether an input is correct or not
but also, given a correct input, to compute its representation in some structured
form. This is typically done by extending grammar expressions with semantic
values, which are a representation of the result of parsing this expression on
(some) input and by extending a grammar with semantic actions, which are
functions used to produce and manipulate the semantic values. Typically a se-
mantic value associated with an expression will be its parse tree so that parsing
a correct input will give a parse tree of this input. For programming languages
such parse tree would represent the AST of the language.

In order to deal with this extension we will replace the simple type of parsing
expressions Δ with a family of types Δα, where the index α is a type of the
semantic value associated with the expression. We also compositionally define
default semantic values for all types of expressions and introduce a new construct:
coercion, e[�→]f , which converts a semantic value v associated with e to f(v).

Borrowing notations from Coq we will use the following types:

– Type is the universe of types.
– True is the singleton type with a single value I.
– char is the type of machine characters. It corresponds to the type of terminals

VT , which in concrete parsers will always be instantiated to char.
– listα is the type of lists of elements of α for any type α. Also string ::=

list char.
– α1 ∗ . . . ∗ αn is the type of n-tuples of elements (a1, . . . , an) with a1 ∈

α1, . . . , an ∈ αn for any types α1, . . . , αn. If v is an n-tuple then vi is its
i’th projection.

– optionα is the type optionally holding a value of type α, with two construc-
tors None and Some v with v : α.
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ε : ΔTrue [·] : Δchar

a ∈ VT

[a] : Δchar

A ∈ VN

A : ΔPtype(A)

e1 : Δα e2 : Δβ

e1; e2 : Δα∗β

e1 : Δα e2 : Δα

e1/e2 : Δα

e : Δα

e∗ : Δlist α

e : Δα

!e : ΔTrue

e : Δα f : α→ β

e[�→]f : Δβ

Fig. 3. Typing rules for parsing expressions with semantic actions

Definition 4 (Parsing expressions with semantic values). We introduce
a set of parsing expressions with semantic values, Δα, as an inductive family
indexed by the type α of semantic values of an expression. The typing rules for
Δα are given in Figure 3. .

Note that for the choice operator e1/e2 the types of semantic values of e1 and e2
must match, which will sometimes require use of the coercion operator e[�→]f .

Let us again see the derived operators and their types, as we need to insert
few coercions:

[a−z] : Δchar ::= [a] / . . . / [z]
[“s”] : Δstring ::= [s0] ; . . . ; [sn] [�→] tuple2str
e+ : Δlist α ::= e; e ∗ [�→] λx . x1 :: x2
e? : Δoption α ::= e [�→] λx . Some x

/ε [�→] λx .None
&e : ΔTrue ::= !!e

where tuple2str(c1, . . . , cn) = [c1; . . . ; cn].
The definition of an extended parsing expression grammar (XPEG) is as ex-

pected (compare with Definition 1).

Definition 5 (Extended Parsing Expressions Grammar (XPEG)). An
extended parsing expressions grammar (XPEG), G, is a tuple (VT ,VN ,Ptype,
Pexp, vstart), where:

– VT is a finite set of terminals,
– VN is a finite set of non-terminals,
– Ptype : VN → Type is a function that gives types of semantic values of all

productions.
– Pexp is the interpretation of the productions of the grammar, i.e., Pexp :

∀A:VNΔPtype(A) and
– vstart is the start production, vstart ∈ VN . .

We extended the semantics of PEGs from Figure 2 to semantics of XPEGs in
Figure 4.
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(ε, s) 1� √ I
s

(Pexp(A), s) m� r

(A, s) m+1� r ([·], x :: xs) 1� √ x
xs

([·], []) 1� ⊥
(e1, s)

m� ⊥ (e2, s)
n� r

(e1/e2, s)
m+n+1� r

(e1, s)
m� √ v

s′

(e1/e2, s)
m+1� √ v

s′

([x], x :: xs) 1� √ x
xs ([x], []) 1� ⊥

x �= y

([y], x :: xs) 1� ⊥
(e1, s)

m� √ v1
s′ (e2, s

′) n� ⊥
(e1; e2, s)

m+n+1� ⊥
(e1, s)

m� √ v1
s′ (e2, s

′) n� √ v2
s′′

(e1; e2, s)
m+n+1� √ (v1,v2)

s′′

(e1, s)
m� ⊥

(e1; e2, s)
m+1� ⊥

(e, s) m� ⊥
(e∗, s) m+1� √ []

s

(e, s) m� √ v
s′ (e∗, s′) n� √ vs

s′′

(e∗, s) m+n+1� √ v::vs
s′′

(e, s) m� ⊥
(!e, s) m+1� √ I

s

(e, s) m� √ v
s′

(!e, s) m+1� ⊥
(e, s) m� √ v

s′

(e[�→]f, s) m+1� √ f(v)
s′

(e, s) m� ⊥
(e[�→]f, s) m+1� ⊥

Fig. 4. Formal semantics of XPEGs with semantic actions

Example 6 (Simple mathematical expressions ctd.). Let us extend the grammar
from Example 3 with semantic actions. The grammar expressed mathematical
expressions and we attach semantic actions evaluating those expressions, hence
obtaining a very simple calculator.

It often happens that we want to ignore the semantic value attached to an
expression. This can be accomplished by coercing this value to I, which we will
abbreviate by e[#] ::= e [�→] λx . I.

ws ::= ([ ] / [\t])∗ [#]
number ::= [0−9]+ [�→] digListToNat
term ::= ws number ws [�→] λx . x2

/ ws [(] expr [)] ws [�→] λx . x3
factor ::= term [∗] factor [�→] λx . x1 ∗ x3

/ term
expr ::= factor [+] expr [�→] λx . x1 + x3

/ factor

where digListToNat converts a list of digits to their decimal representation.
This grammar will associate, as expected, the semantical value 36 with the

string “(1+2) * (3 * 4)”. Of course in practice instead of evaluating the ex-
pression we would usually write semantic actions to build a parse tree of the
expression for later processing. �

3.2 Meta-properties of (X)PEGs

Now we will present some results concerning semantics of (X)PEGs. They are
all variants of results obtained by Ford [14], only now we extend them to XPEGs.
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First we prove that, as expected, the parsing only consumes a prefix of a
string.

Theorem 31 If (e, s) m� √ v
s′ then s′ is a suffix of s.

Proof. Induction on the derivation of (e, s) m� √ v
s′ using transitivity of the prefix

property for sequence and repetition cases. ��

As mentioned earlier, (X)PEGs are unambiguous:

Theorem 32 If (e, s)
m1� r1 and (e, s)

m2� r2 then m1 = m2 and r1 = r2.

Proof. By complete induction on m1. All cases immediate from the semantics of
XPEGs. ��

We wrap up this section with a simple property about the repetition operator,
that we will need later on. It states that the semantics of a repetition expression
e∗ is not defined if e succeeds without consuming any input.

Lemma 33 If (e, s) m� √ v
s then (e∗, s) �� r for all r.

Proof. Assume (e, s) m� √ v
s and (e∗, s) n� √ vs

s′ for some n, vs and s′ (we cannot
have (e∗, s) n� ⊥ as e∗ never fails). By the first rule for repetition (e∗, s) m+n+1�√ v::vs

s′ , which contradicts the second assumption by Theorem 32. ��

4 Well-Formedness of PEGs

We want to guarantee total correctness for generated parsers, meaning they must
be correct (with respect to PEGs semantics) and terminating. In this section we
focus on the latter problem. Throughout this section we assume a fixed PEG G.

4.1 Termination Problem for XPEGs

Ensuring termination of a PEG parser essentially comes down to two problems:

– termination of all semantic actions in G and
– completeness of G with respect to PEGs semantics.

As for the first problem it means that all f functions used in coercion operators
e[�→]f in G, must be terminating. We are going to express PEGs completely in
Coq (more on that in Section 5) so for our application we get this property for
free, as all Coq functions are total (hence terminating).

Concerning the latter problem, we must ensure that the grammar G under con-
sideration is complete, i.e., whether it either succeeds or fails on all input strings.
The only potential source of incompleteness of G is (mutual) left-recursion in the
grammar.

We already hinted at this problem in Example 3 with the rule:
expr ::= expr [+] factor / factor.
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Recursive descent parsing of expressions with this rule would start with recur-
sively calling a function to parse expression on the same input, obviously leading
to an infinite loop. But not only direct left recursion must be avoided. In the
following rule:

A ::= B / C !D A

a similar problem occurs provided that B may fail and C and D may succeed, the
former without consuming any input.

While some techniques to deal with left-recursive PEGs have been developed
recently [29], we choose to simply reject such grammars. In general it is unde-
cidable whether a PEG grammar is complete, as it is undecidable whether the
language generated by G is empty [14].

While in general checking grammar completeness is undecidable, we follow
[14] to develop a simple syntactical check for well-formedness of a grammar,
which implies its completeness. This check will reject left-recursive grammars
even if the part with left-recursion is unreachable in the grammar, but from a
practical point of view this is hardly a limitation.

4.2 PEG Analysis

We define the expression set of G as:

E(G) = {e′ | e′ $ e, e ∈ Pexp(A), A ∈ VN}

where $ is a (non-strict) sub-expression relation on parsing expressions.
We define three groups of properties over parsing expressions:

– “0”: parsing expression can succeed without consuming any input,
– “> 0”: parsing expression can succeed after consuming some input and
– “⊥”: parsing expression can fail.

ε ∈ P0 [·] ∈ P>0 [·] ∈ P⊥

a ∈ VT

[a] ∈ P>0

a ∈ VT

[a] ∈ P⊥

e ∈ P⊥
e∗ ∈ P0

e ∈ P>0

e∗ ∈ P>0

� ∈ {0, > 0,⊥} A ∈ VN Pexp(A) ∈ P�

A ∈ P�

e1 ∈ P⊥ ∨ (e1 ∈ P≥0 ∧ e2 ∈ P⊥)

e1; e2 ∈ P⊥

(e1 ∈ P>0 ∧ e2 ∈ P≥0) ∨ (e1 ∈ P≥0 ∧ e2 ∈ P>0)

e1; e2 ∈ P>0

e1 ∈ P0 e2 ∈ P0

e1; e2 ∈ P0

e1 ∈ P0 ∨ (e1 ∈ P⊥ ∧ e2 ∈ P0)

e1/e2 ∈ P0

e1 ∈ P⊥ e2 ∈ P⊥
e1/e2 ∈ P⊥

e1 ∈ P>0 ∨ (e1 ∈ P⊥ ∧ e2 ∈ P>0)

e1/e2 ∈ P>0

e ∈ P⊥
!e ∈ P0

e ∈ P≥0

!e ∈ P⊥

Fig. 5. Deriving grammar properties
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We will write e ∈ P0 to indicate that the expression e has property “0”
(similarly for P>0 and P⊥). We will also write e ∈ P≥0 to denote e ∈ P0∨e ∈ P>0.
We define inference rules for deriving those properties in Figure 5.

We start with empty sets of properties and apply those inference rules over
E(G) until reaching a fix-point. The existence of the fix-point is ensured by the
fact that we extend those property sets monotonically and they are bounded
by the finite set E(G). We summarize the semantics of those properties in the
following lemma:

Lemma 41 ([14]) For arbitrary e ∈ Δ and s ∈ S:

– if (e, s) n� √
s then e ∈ P0,

– if (e, s) n� √
s′ and |s′| < |s| then e ∈ P>0 and

– if (e, s) n� ⊥ then e ∈ P⊥.

Proof. Induction over n. All cases easy by the induction hypothesis and seman-
tical rules of XPEGs, except for e∗ which requires use of Lemma 33. ��

4.3 PEG Well-Formedness

Using the semantics of those properties of parsing expression we can perform
the completeness analysis of G. We introduce a set of well-formed expressions
WF and again iterate from an empty set by using derivation rules from Figure 6
over E(G) until reaching a fix-point.

We say that G is well-formed if E(G) = WF. We have the following result:

Theorem 42 ([14]) If G is well-formed then it is complete.

Proof. We will say that (e, s) is complete iff ∃n,r (e, s) n� r. So we have to
prove that (e, s) is complete for all e ∈ E(G) and all strings s. We proceed by
induction over the length of the string s (IHout), followed by induction on the
depth of the derivation tree of e ∈ WF (IHin). So we have to prove correctness of
a one step derivation of the well-formedness property (Figure 6) assuming that
all expressions are total on shorter strings. The interesting cases are:

– For a sequence e1; e2 if e1; e2 ∈ WF then e1 ∈ WF, so (e1, s) is complete
by IHin. If e1 fails then e1; e2 fails. Otherwise (e1, s)

n� √ v
s′ . If s = s′ then

e1 ∈ P0 (Lemma 41) and hence e2 ∈ WF and (e2, s
′) is complete by IHin. If

s �= s′ then |s′| < |s| (Theorem 31) and (e2, s
′) is complete by IHout. Either

way (e2, s
′) is complete and we conclude by semantical rules for sequence.

– For a repetition e∗, e ∈ WF gives us completeness of (e, s) by IHin. If e fails
then we conclude by the base rule for repetition. Otherwise (e∗, s) n� s′ with
|s′| < |s| as e /∈ P0. Hence we get completeness of (e∗, s′) by IHout and we
conclude with the inductive rule for repetition. ��
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A ∈ VN Pexp(A) ∈ WF

A ∈WF ε ∈ WF [·] ∈WF

a ∈ VT

[a] ∈ WF

e ∈ WF

!e ∈WF

e1 ∈WF e1 ∈ P0 ⇒ e2 ∈WF

e1; e2 ∈ WF

e1 ∈WF e2 ∈ WF

e1/e2 ∈ WF

e ∈WF, e /∈ P0

e∗ ∈ WF

Fig. 6. Deriving well-formedness property for a PEG

5 Formally Verified XPEG Interpreter

In this Section we will present a Coq implementation of a parser interpreter.
This task consists of formalizing the theory of the preceding sections and, based
on this, writing an interpreter for well-formed XPEGs along with its correctness
proofs. The development is too big to present it in detail here, but we will try
to comment on its most interesting aspects.

We will describe how PEGs are expressed in Coq in Section 5.1, comment on
the procedure for checking their well-formedness in Section 5.2 and describe the
formal development of an XPEG interpreter in Section 5.3.

5.1 Specifying XPEGs in Coq

XPEGs in Coq are a simple reflection of Definition 5. They are specified over
a finite enumeration of non-terminals (corresponding to VN ) with their types
(Ptype):

Parameter prods : Enumeration .
Parameter prods type : prods → Type.

We do not parameterize XPEGs by the set of terminals, as for that we simply use
the existing ascii type of Coq, encoding standard ASCII characters. Building on
that we define parsing expressions Δα, with the typing discipline from Figure 3 in
an expected way. Finally the definitions of non-terminals (Pexp) and the starting
production (vstart) become:

Parameter production : ∀ p : prods ,PExp (prods type p).
Parameter start : prods .

There are two observations that we would like to make at this point. First, by
means of the above embedding of XPEGs in the logic of Coq, every such XPEG is
well-defined (though not necessarily well-formed). In particular there can be no
calls to undefined non-terminals and the conformance with the typing discipline
from Figure 3 is taken care of by the type-checker of Coq.

Secondly, thanks to the use of Coq’s mechanisms, such as notations and co-
ercions, expressing an XPEG in Coq is still relatively easy as we will see in the
following example.
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Program Definition production p :=
match p return PExp (prod type p) with
| ws ⇒ (" " / "\t") [∗ ] [#]
| number ⇒ ["0"−−"9"] [+] [→] digListToRat
| term ⇒ ws ;number ;ws [→] (λv ⇒ P2 3 v)

/ ws; "("; expr ; ")"; ws [→] (λv ⇒ P3 5 v)
| factor ⇒ term ; "*"; factor [→] (λv ⇒ P1 3 v ∗ P3 3 v)

/ term
| expr ⇒ factor ; "+"; expr [→] (λv ⇒ P1 3 v + P3 3 v)

/ factor
end.

Fig. 7. A Coq version of the XPEG for mathematical expressions from Example 6

Example 7. Figure 7 presents a precise Coq rendering of the productions of the
XPEG grammar from Example 6. It is not much more verbose than the original
example. The most awkward part are the projections for tuples for which we use
a family of functions Pi n(v1, . . . , vi, . . . , vn) ::= vi �

5.2 Checking Well-Formedness of an XPEG

To check well-formedness of XPEGs we implement the procedure from Section 4.
The main difficulty is that the function to compute XPEG properties, by iterat-
ing the derivation rules of Figure 5 until reaching a fix-point, is not structurally
recursive. Similarly for the well-formedness check with rules from Figure 6. For-
tunately the new Program feature of Coq makes specifying such functions much
easier. We illustrate it on the well-formedness check (computing properties is
analogous), which is realized with the following procedure:

Program Fixpoint wf compute (wf : WFset)
{measure (wf measure wf )} : WFset :=
let wf ′ := wf derive wf in
if PES .equal wf wf ′ then wf else wf compute wf ′.

where WFset is a set of well-formed expressions and wf derive performs one-
step derivation with the rules of Figure 6 over E(G). The measure (into N) is
defined as:

wf measure ::= |E(G)| − |wf |
We can prove this procedure terminating, as the set of well-formed expressions
is growing monotononically and is limited by E(G):

wf ⊆ wf derive wf
wf ⊆ E(G) =⇒ wf derive wf ⊆ E(G)

Please note that our formalized interpreter (more about it in the following sec-
tion), and hence the analysis sketched above, is based on XPEGs, not on PEGs.
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However, we still formalized simple parsing expressions, Definition 1 (though
not their semantics, Figure 2), and the projection, defined as expected, from Δα

to Δ.
This is because the well-formedness procedure needs to maintain a set of

parsing expressions (WFset above) and for that we need a decidable equality
over parsing expressions. Equality over Δα is not decidable, as, within coercion
operator e[�→]f they contain arbitrary functions f , for which we cannot decide
equality.

An alternative approach would be to consider WFset modulo an equivalence
relation on parsing expressions coarser than the syntactic equality, which would
ignore f components in e[�→]f coercions. We chose the former approach as de-
veloping the PEG analysis and well-formedness check over a non-dependently
typed expressions Δ seemed to be easier than over Δα and the results carry over
to this richer structure immediately.

5.3 A Formal Interpreter for XPEGs

For the development of a formal interpreter for XPEGs we used the ascii type
of Coq for the set of terminals VT . The string type from the standard library
of Coq is isomorphic to lists of characters. In its place we just used a list of
characters, in order to be able to re-use a rich set of available functions over
lists.

The only difference in comparison with the theory presented in the preceding
sections is that we implemented the range operator [a−z] as a primitive (so we had
to extend the semantics of Figure 4 with this operator), as in practice it occurs
frequently in parsers and implementing it with a choice over all the characters
in the range is inefficient.

The interpreter is defined as a function with the following header:

Program Fixpoint parse (T : Type) (e : PExp T | is gr exp e) (s : string)
{measure (e, s)(0)} : {r : ParsingResult T | ∃ n, [e, s ] ⇒ [n, r ]}

So this function takes three arguments (the first one implicit):

– T : a type of the result of parsing (α),
– e: a parsing expression of type T (Δα), which belongs to the grammar G

(which in turn is checked beforehand to be well-formed) and
– s : a string to be parsed.

The last line in the above header describes the type of the result of this
function, where [e, s ] ⇒ [n, r ] is the expected encoding of the semantics from
Figure 4 and corresponds to (e, s) n� r. So the parse function produces the
parsing result r (either ⊥ or

√ v
s , with v : T ), such that (e, s) n� r for some n,

i.e., it is correct with respect to the semantic of XPEGs.
The body of the parse function performs pattern matching on expression e

and interprets it according to the semantics from Figure 2.
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This function is again not structurally recursive, but the recursive calls are
decreasing with respect to the following 0 relation on pairs of parsing expressions
and strings:

(e1, s1) 0 (e2, s2) ⇐⇒ ∃n1,r1,n2,r2(e1, s1)
n1� r1 ∧ (e2, s2)

n2� r2 ∧ n1 > n2

So (e1, s1) is bigger than (e2, s2) in the order if its step-count in the semantics is
bigger. The relation 0 is clearly well-founded, due to the last conjunct with >,
the well-founded order on N. Since the semantics of G is complete (due to The-
orem 42 and the check for well-formedness of G as described in Section 5.2) we
can prove that all recursive calls are indeed decreasing with respect to 0.

6 Extracting a Parser: Practical Evaluation

In the previous section we described a formal development of an XPEG inter-
preter in the proof assistant Coq. This should allow us for an arbitrary, well-
formed XPEG G, to specify it in Coq and, using Coq’s extraction capabilities
[19], to obtain a certified parser for G. We are interested in code extraction from
Coq, to ease practical use of TRX and to improve its performance. At the mo-
ment target languages for extraction from Coq are OCaml [18], Haskell [23] and
Scheme [26]. We use the FSets [11] library, developed using Coq’s modules and
functors [7], which are not yet supported by extraction to Haskell or Scheme.
However, there is an ongoing work on porting FSets to type classes [25], which
are supported by extraction. In this section we will describe our experience with
OCaml extraction on the example of an XML parser.

A well-known issue with extraction is the performance of obtained programs
[8,19]. Often the root of this problem is the fact that many formalizations are not
developed with extraction in mind and trying to extract a computational part
of the proof can easily lead to disastrous performance [8]. On the other hand the
CompCert project [17] is a well-known example of extracting a certified compiler
with satisfactory performance from a Coq formalization.
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Fig. 8. Performance of certified TRX compared to a number of other tools



360 A. Koprowski and H. Binsztok

As most of TRX’s formalization deals with grammar well-formedness, which
should be discarded in the extracted code, we aimed at comparable performance
for certified TRX and its non-certified counterpart. We found however that the
first version’s performance was unacceptable and required several improvements.
In the remainder of this section, we will describe those improvements and com-
pare certified TRX’s performance with a few other tools.

For our benchmarking experiment, see Figure 8 on the following page, we used
the following parsers, all of them OCaml-based to avoid differences coming from
the use of different programming languages:

– TRX-cert: the certified TRX interpreter, which is the subject of this paper
and is described in more detail in Section 5.

– TRX-int: a simple prototype with comparable functionality to TRX-cert,
though developed manually. It does not produce a parse tree (just checks
whether the input conforms to the grammar).

– TRX-gen: MLstate’s own production-used PEG-based parser generator (for
experiments we used its simple version without memoization).

– Aurochs [10]: the only PEG-based parser generator (apart from TRX) we
are aware of that supports OCaml as the target language. It uses packrat
parsing.

– xml-light [6]: a popular XML parser and printer for OCaml, internally using
ocamllex for lexical analysis and ocamlyacc for syntactical analysis (based
on LALR(1) parsing).

6.1 Improving Performance of Certified TRX

The first extracted version of TRX-cert (not shown on Figure 8) parsed 32kB of
XML in more than one minute. To our big surprise, performance was somewhere
between quadratic and cubic with rather large constants. To our even bigger sur-
prise, inspection of the code revealed that the rev function from Coq’s standard
library (from the module Coq.Lists.List) that reverses a list was the heart of the
problem. The rev function is implemented using append to concatenate lists at
every step, hence yielding quadratic time complexity.

We used this function to convert the input from OCaml strings to the ex-
tracted type of Coq strings. This is another difficulty of working with extracted
programs: all the data-types in the extracted program are defined from scratch
and combining such programs with un-certified code, even just to add a minimal
front-end, as in our case, sometimes requires translating back and forth between
OCaml’s primitive types and the extracted types of Coq.

Fixing the problem with rev resulted in a linear complexity but the constant
was still unsatisfactory. We quickly realized that implementing the range op-
erator by means of repeated choice is suboptimal as a common class of letters
[a−z] would lead to a composition of 26 choices. Hence we extended the seman-
tics of XPEGs with semantics of the range operator and instead of deriving it
implemented it “natively”.

Yet another surprise was in store for us as the performance instead of improv-
ing got worse by approximately 30%. This time the problem was the fact that
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in Coq there is no predefined polymorphic comparison operator (as in OCaml)
so for the range operation we had to implement comparison on characters. We
did that by using the predefined function from the standard library converting a
character to its ASCII code. And yet again we encountered a problem that the
standard library is much better suited for reasoning than computing: this conver-
sion function uses natural numbers in Peano representation. By re-implementing
this function using natural numbers in binary notation (available in the standard
library) we decreased the running time by a factor of 2.

Further profiling the OCaml program revealed that it spends 85% of its time
performing garbage collection (GC). By tweaking the parameters of OCaml’s
GC, we obtained an important 3x gain, leading to TRX-cert’s current perfor-
mance shown in Figure 8. We believe a more careful inspection will reveal more
potential sources of improvements, as there is still a gap between the performance
that we reached now and the one of our prototype written by hand.

6.2 Performance Comparison

Figure 8 plots performance of the 5 aforementioned tools on a number of XML
files (the biggest one of more than 4MB). For all PEG-based parsers, that is
all tools except xml-light, we used the same PEG grammar (with minor tweaks
due to differences in the tools). Few missing values for Aurochs are due to stack
overflow errors.

The most interesting comparison is between TRX-cert and TRX-int. The
latter was essentially a prototype of the former but developed manually, whereas
TRX-cert is extracted from a formal Coq development. At the moment the
certified version is approximately 2.5x slower, mso certainly there is room for
improvement, especially given the fact that for the development of TRX-int we
put emphasis on its simplicity (the actual interpreter is around 100 lines long)
and not on efficiency.

The two main directions for improving performance seem to be:

– Memoization (packrat parsing): it does not help for simple grammars, as
that of XML (TRX-gen with memoization is actually slower than without,
due to the overhead of keeping the memoization table), but it does pay off
for more complex grammars.

– Code generation: as witnessed by the difference between TRX-int and TRX-
gen turning from interpretation to code generation can have a substantial
impact on performance.

Admittedly XML is not the best test-case for TRX, due to its simple format,
for which the expressive power offered by PEGs is an overkill. Parsing Java seems
to be an established benchmark for PEGs [24,13,12,29]. One difficulty with the
grammar of Java [15] is that it naturally contains left-recursive rules, most of
which can be easily replaced with iteration, with the exception of a single defini-
tion [24], and for the moment TRX lacks the ability to handle left-recursive rules.
Also obtaining reasonable (linear) performance for such a complicated grammar
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would require either packrat parsing or very careful crafting of the grammar.
It is reported by Redziejowski [24] that “the resulting primitive parser shows
an acceptable behavior, indicating that packrat parsing might be an overkill for
practical languages”, but is very sparse on details of what a reasonable perfor-
mance is.

We would like to conclude this section with the observation that even though
making such benchmarks is important it is often just one of many factors for
choosing a proper tool for a given task. There are many applications which will
never parse files exceeding 100kB and it is often irrelevant whether that will
take 0.1s. or 0.01s. For some of those applications it may be much more relevant
that the parsing is formally guaranteed to be correct. And at the moment TRX
is the only tool that comes with such guarantees.

7 Related Work

Parsing is a well-studied and well-understood topic and the software for parsing,
parser generators or libraries of parser combinators, is abundant. And yet there
does seem to be hardly any work on formally verified parsing.

In Danielsson and Norell [9] a library of parser combinators (see Hutton [16])
with termination guarantees has been developed in the dependently typed func-
tional programming language Agda [27]. The main difference in comparison with
our work is that they provide a library of combinators, whereas we aim at parser
generator for PEG grammars (though at the moment we only have an inter-
preter). The problem of termination is also handled differently: “[we] use depen-
dent types to add information in the form of type indices to the parser type, and
use these indices to ensure that left recursion is not possible” [9]. In many cases
those type indices can be automatically inferred by Agda, however, if this is not
possible they have to be provided by the user of the library, which requires some
expertise and understanding of the underlying formal model. In our approach
we proved correct a well-formedness checker for PEG grammars, making the
termination analysis completely transparent to the user of TRX.

Ideas similar to Danielsson and Norell [9] were previously put forward, though
just as a proof of concept, by McBride and McKinna [21].

Probably the closest work to ours is that of Barthwal and Norrish [3], where
the authors developed an SLR parser in HOL. The main differences with our
work are:

– PEGs are more expressive that SLR grammars, which are usually not ade-
quate for real-world computer languages,

– as a consequence of using PEGs we can deal with lexical analysis, while it
would have to be formalized and verified in a separate stage for the SLR
approach.

– our parser is proven to be totally correct, i.e., correct with respect to its
specification and terminating on all possible inputs (which was actually far
more difficult to establish than correctness), while the latter property does
not hold for the work of Barthwal and Norrish.
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– performance comparison with this work is not possible as the paper does
not present any case-studies, benchmarks or examples, but the fact that
“the DFA states are computed on the fly” [3] suggests that the performance
was not the utmost goal of that work.

Finally there is the recent development of a packrat PEG parser in Coq by
Wisnesky et al. [30], where the given PEG grammar is compiled into an im-
perative computation within the Ynot framework, that run over an arbitrary
imperative character stream, returns a parsing result conforming with the spec-
ification of PEGs. Termination of such generated parsers is not guaranteed.

8 Conclusions and Future Work

In this paper we described a Coq formalization of the theory of PEGs and,
based on it, a formal development of TRX: a formally verified parser interpreter
for PEGs. This allows us to write a PEG, together with its semantic actions,
in Coq and then to extract from it a parser with total correctness guarantees.
That means that the parser will terminate on all inputs and produce parsing
results correct with respect to the semantics of PEGs. Although TRX can still
be improved (see future work discussion below), it is the first tool capable of
generating provably correct parsers. Considering the importance of parsing, this
result appears as a first step towards a general way to bring added quality and
security to all kinds of software.

To extend our research, we identify the following subjects for future work:

1. A realistic case study of a practical language, such as Java, should be con-
ducted to ensure scalability of this methodology and acceptable performance.
This would also allow us to compare directly with other experiments of pars-
ing Java with PEGs (see for instance Redziejowski [24] or Ford [12]). This
would undoubtedly lead to some improvements to TRX making it easier to
use.

2. In connection with the aforementioned case study the performance of our
parser interpreter should be better understood and improved upon. One pos-
sibility here is implementation of packrat parsing, by means of implementing
memoization in our interpreter [13].

3. Support for error messages, for instance following that of the PEG-based
parser generator Puppy [12], should be added.

4. Another important aspect is that of left-recursive grammars, which occur
naturally in practice. At the moment it is the responsibility of the user to
eliminate left-recursion from a grammar. In the future, we plan to address
this problem either by means of left-recursion elimination [12], i.e., trans-
forming a left-recursive grammar to an equivalent one where left-recursion
does not occur (this is not an easy problem in presence of semantic actions,
especially if one also wants to allow mutually left-recursive rules). Another
possible approach is an extension to the memoization technique that allows
dealing with left-recursive rules [29].
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Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008)

26. Sussman, G.J., Steele Jr., G.L.: Scheme: A interpreter for extended lambda calcu-
lus. Higher-Order and Symbolic Computation 11(4), 405–439 (1998)

27. The Agda team. The Agda wiki (2008), http://wiki.portal.chalmers.se/agda/
28. The Coq Development Team. The Coq proof assistant: Reference manual, version

8.2, 1989–2009, http://coq.inria.fr
29. Warth, A., Douglass, J.R., Millstein, T.D.: Packrat parsers can support left recur-

sion. In: PEPM 2008, pp. 103–110 (2008)
30. Wisnesky, R., Malecha, G., Morrisett, G.: Certified web services in Ynot. In: Pro-

ceedings of WWV 2009, pp. 5–19 (2009)

http://haskell.org/
http://wiki.portal.chalmers.se/agda/
http://coq.inria.fr


On the Expressive Power of Primitives for
Compensation Handling�

Ivan Lanese1, Cátia Vaz2, and Carla Ferreira3

1 Lab. Focus, Università di Bologna/INRIA, Italy
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3 CITI / Departamento de Informática, FCT, Universidade Nova de Lisboa, Portugal
carla.ferreira@di.fct.unl.pt

Abstract. Modern software systems have frequently to face unexpected
events, reacting so to reach a consistent state. In the field of concur-
rent and mobile systems (e.g., for web services) the problem is usually
tackled using long running transactions and compensations: activities
programmed to recover partial executions of long running transactions.

We compare the expressive power of different approaches to the spec-
ification of those compensations. We consider (i) static recovery, where
the compensation is statically defined together with the transaction, (ii)
parallel recovery, where the compensation is dynamically built as par-
allel composition of compensation elements and (iii) general dynamic
recovery, where more refined ways of composing compensation elements
are provided. We define an encoding of parallel recovery into static re-
covery enjoying nice compositionality properties, showing that the two
approaches have the same expressive power. We also show that no such
encoding of general dynamic recovery into static recovery is possible, i.e.
general dynamic recovery is strictly more expressive.

1 Introduction

Modern software systems are complex and composed by different interacting
components, commonly developed and managed separately. Also, they usually
rely on communication infrastructures, such as the Internet or wireless networks,
that are unreliable. Thus unexpected events can frequently arise during the exe-
cution of such applications: received data items may not have the desired struc-
ture, communication partners may disconnect, etc. In this context it is important
to use suitable error handling techniques allowing the whole system to reach a
correct state even if some of its components have failed.

In the field of concurrent and mobile systems (e.g., in the case of web services),
this problem is usually tackled using the concept of long running transaction.
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A long running transaction either succeeds, or a compensation is executed tak-
ing the system to a consistent state, possibly different from the one in which
the transaction started. This weakens the constraint of ACID transactions from
database theory, since it is difficult to guarantee ACID properties when trans-
actions can last for a long time, and when some actions cannot be undone.

In the literature there are different proposals of primitives for long running
transactions, from the Java try P catch e Q1, where Q is in charge of managing
exception e raised inside P , to the complex mechanisms of WS-BPEL [1] (the
de-facto standard for web services composition), exploiting fault, termination
and compensation handlers to deal with different error handling issues.

However, the relationships between the different proposals are not clear, and
there has been little work trying to formally compare the expressive power of the
proposed mechanisms. This problem is made hard by the fact that different prim-
itives for long running transactions are realized on top of different underlying
languages. Thus the different expressive power of the error handling primitives
is hidden because of other differences between the underlying languages. Under-
standing the expressive power of different primitives is important for language
design: primitives that do not add expressive power can be left out from the
core language and implemented as macros when needed, primitives that add
expressive power should be implemented in the core language.

This paper tackles this problem, by presenting a formal comparison of differ-
ent approaches to long running transactions in a concurrent and mobile setting.
To this end we add primitives for error handling, distilled from approaches in
the literature, to the same underlying language, so to have a more clear compar-
ison. We have chosen the simplest possible underlying language able to model
concurrent and mobile systems: the π-calculus [2]. Then further work is required
to apply the results to more complex calculi and real languages (see Section 6).

The approaches to error handling are far too many to be compared here,
thus we concentrate on a main feature: whether the compensation code for a
transaction is statically defined, or it is dynamically generated. Static recovery
is for instance the approach of Java try-catch, and is the classic approach of
interaction-based models [3–6]. For dynamic recovery we consider two different
possibilities: in parallel recovery the compensation is incrementally built as par-
allel composition of simpler compensations, while in general dynamic recovery
compensations can be both updated and replaced. Parallel recovery is commonly
used [1, 7, 8] to execute compensations of subtransactions when a transaction
fails, and it is the mechanism exploited by dcπ [9]. Most of the compensable
flow approaches [7, 8, 10], where compensations of complex activities are built
as compositions of compensations of their constituting activities, execute com-
pensations of sequential activities in backward order. Compensations are always
executed in backward order in backward recovery [11]. Backward recovery is the
main instance of general dynamic recovery, which has been proposed in [12].
Backward recovery has also been applied to Java in [13].

1 Actually, Java try-catch is designed for exception handling, but can be used also for
programming long running transactions.
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π ::= π-calculus prefixes
| a〈v〉 (Output prefix)
| a(x) (Input prefix)

P, Q ::= π-calculus processes
0 (Inaction)

| ∑
i∈I πi.Pi (Guarded choice)

| !π.P (Guarded replication)
| P |Q (Parallel composition)
| (ν x) P (Restriction)

Fig. 1. π-calculus processes

This paper compares the expressive power of static recovery, parallel recovery
and general dynamic recovery in the context of π-calculus. Our main results are:

– a compositional encoding of parallel recovery into static recovery;
– a separation result showing that no similar encoding exists from general

dynamic recovery (neither from backward recovery) to static recovery.

We also discuss how these results can be applied to other calculi in the literature.

Structure of the work: Section 2 introduces the primitives for long running
transactions. Section 3 discusses the conditions that a good encoding must sat-
isfy. Sections 4 and 5 present the main technical results: the encoding of parallel
recovery into static recovery, and the impossibility of encoding general dynamic
recovery into static recovery. Finally, Section 6 discusses how to apply the results
to calculi in the literature. Proofs can be found in [14].

2 Primitives for Compensations

2.1 Syntax

In this section we formalize in the framework of π-calculus [2] some primitives for
static, parallel and general dynamic recovery. The relationships between these
primitives and other primitives in the literature are discussed in Section 6.

To simplify the understanding and the comparisons, we define the three calculi
corresponding to static, parallel and general dynamic recovery in an incremental
way. The syntax of all our calculi relies on a countable set of names N , ranged
over by lower case letters. We use x to denote a tuple x1, · · · , xn of such names,
for some n ≥ 0, and {x} denotes the set of elements in the tuple. As already
said, our calculi are built on top of π-calculus, whose syntax is in Fig. 1.

Prefixes in π-calculus can be either outputs a〈v〉 of a tuple of values v on
channel a, or corresponding inputs a(x). The π-calculus syntax includes the
inactive process 0, guarded choice

∑
i∈I πi.Pi, guarded replication !π.P , parallel

composition P |Q of processes P and Q, and restriction (ν x)P of name x inside
P . We write a for a〈v〉 when v is empty, and a for a(x) when x is empty. We also
write (ν x) for (ν x1) · · · (ν xn) when x = x1, . . . , xn. The formal description of
the semantics will be given in Section 2.2 (see also [2]).

The first, and simpler, extension that we present corresponds to static recov-
ery. The syntax is presented in Fig. 2 (left). Static recovery can be realized by
adding just two constructs: transaction scope and protected block. A transaction
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P, Q ::= Static rec. processes P, Q ::= Compensable processes
. . . (π-calculus processes) . . . (Static rec. processes)

| t[P, Q] (Transaction scope) | X (Process variable)
| 〈P 〉 (Protected block) | inst�λX.Q�.P (Compensation update)

Fig. 2. Static recovery and compensable processes

scope t[P,Q] behaves as process P until an error is notified to it by an output t
on the name t of the transaction. When such a notification is received, the body
P of the transaction is killed and compensation Q is executed. Q is executed in a
protected block, i.e. not influenced by successive external errors. Error notifica-
tions may be generated both from the body P and from external processes. Error
notifications are simple output messages (without parameters). Thus one may
have nondeterminism, since the same output may be caught either by an input
or by a transaction scope. If such a behavior is not desired, it can be avoided by
using a simple sorting system. We will not consider this issue. Protected block
〈P 〉 behaves as P , but it is not killed in case of failure of an external transaction.

Compensable processes, which realize general dynamic recovery, extend static
recovery processes. The main difference is that in compensable processes the
body P of transaction t[P,Q] can update the compensation Q. Compensation
update is performed by a new operator inst�λX.Q′ .P ′, where function λX.Q′ is
the compensation update (X can occur inside Q′). Applying such a compensation
update to compensation Q produces a new compensation Q′{Q/X}. Note that Q
may not occur at all in the resulting compensation, and it may also occur more
than once. For instance, λX.0 deletes the current compensation. The syntax
of compensable processes extends the one of static recovery processes with the
compensation update operator and process variables (see Fig. 2 (right)).

We define for compensable processes the usual notions of free and bound
names. Names in x are bound in a(x).P , while x is bound in (ν x)P . Other
names are free. We denote with fn(•), bn(•) and n(•) the functions computing
the sets of free, bound and all the names respectively. Also, variable X is bound
in λX.Q. Bound names and variables can be α-converted as usual. We consider
only processes with no free variables. For simplicity we may drop trailing 0s.

Static recovery processes are a subcalculus of compensable processes where
compensation update is never used. Also, if a compensation update has the
form λX.Q |X where X does not occur in Q, then Q is added in parallel to the
existing compensation. Thus parallel recovery can be seen as a particular case of
compensable processes too. When speaking about parallel recovery we will write
a compensation update λX.Q |X simply as Q.

Definition 1 (Classes of processes). Compensable processes CP are defined
by the syntax in Fig. 2 (right). Parallel recovery processes PP are compensable
processes where all the compensation updates have the form λX.Q | X where Q
is a process without free variables. Static recovery processes SP are compensable
processes where the compensation update operator is never used.
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extrn(0) = 0
extrn(

∑
i∈I πi.Pi) = 0

extrn(!π.P ) = 0
extrn(inst�λX.Q�.P ) = 0

extrn(〈P 〉) = 〈P 〉
extrn(t [P, Q]) = extrn(P ) | 〈Q〉

extrn(P |Q) = extrn(P ) | extrn(Q)
extrn((ν x)P ) = (ν x) extrn(P )

Fig. 3. Extraction function with nested failure

The main question that this paper wants to answer is whether the three classes
of processes CP , PP and SP have the same expressive power or not.

2.2 Operational Semantics

To define the operational semantics of compensable processes we need an auxil-
iary definition: when a transaction scope t[P,Q] is killed, part of its body P has
to be preserved, in particular the part composed of protected blocks.

The definition of function extr(P ) computing the part to be preserved de-
pends on the meaning of transaction nesting. In the literature, two approaches
are considered: according to the nested failure approach a subtransaction has to
be killed when the transaction containing it is killed. This is for instance the ap-
proach of SAGAs calculi [8], WS-BPEL [1], and others. In the non-nested failure
approach instead, subtransactions are unaffected by external failures (however
the recovery of a transaction may include the explicit killing of its subtrans-
actions). This is for instance the approach of Webπ [5]. We consider both the
possibilities, since they just differ in the definition of function extr(•). Our re-
sults hold in both the cases. One can simulate the non-nested approach using
the nested one by protecting each transaction using a protected block, while it
is not clear whether the opposite simulation is possible. Clarifying this point is
left for future work.

Definition 2 (Extraction function). We denote the functions corresponding
to nested and non-nested failure respectively as extrn(•) and extrnn(•). The func-
tion extrn(•) is defined in Fig. 3. The definition of function extrnn(•) is the same
but for the clause for transaction scope, which becomes extrnn(t [P,Q]) = t [P,Q].

There is no need to define extrn(X) or extrnn(X) since X can occur only inside
the compensation update primitive.

We also need an auxiliary predicate noComp(P ) which is true iff P has no
pending compensation update. This is needed since a compensation update is
performed to reflect in the compensation some change in the state of the exe-
cuting process, and it should never happen that the state has changed and the
compensation update has not been performed. In other words, compensation up-
date should have priority w.r.t. other transitions (see [15] for a discussion on this
topic). Priority of compensation update is obtained by ensuring in the semantics
that when an action (different from a compensation update) is performed, no
compensation update is pending.

Definition 3 (noComp(•) predicate). The predicate noComp(P ) that verifies
the non-existence of pending compensation updates in P is defined in Fig. 4.
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noComp(0)
noComp(

∑
i∈I πi.Pi)

noComp(!π.P )

noComp(〈P 〉) if noComp(P )
noComp(t [P, Q]) if noComp(P )

noComp(P |Q) if noComp(P ) and noComp(Q)
noComp((ν x)P ) if noComp(P )

Fig. 4. No pending compensation update predicate

In particular, noComp(P ) is false if P is a compensation update primitive.
The operational semantics of compensable processes (and, implicitly, of static

recovery and parallel recovery processes) is defined below. We use a(v), (w)a〈v〉,
τ , (w)λX.Q and τc as labels. The first three forms of labels are as in π-calculus
(but outputs are also used for error notification, and inputs for receiving the
notification), while the last two labels are for compensation update. In particular,
(w)λX.Q requires a compensation update while τc is the corresponding internal
action. This has to be distinguished from τ since it has priority. We write a
for a(v) and a for a〈v〉 if v is empty. We use t instead of a to emphasize that
the name is used for error notification. Names in w are bound in (w)a〈v〉 and
(w)λX.Q. Other names are free. Functions fn(•), bn(•) and n(•) are extended
accordingly. We drop the set of bound names (w) from labels if it is empty.

Definition 4 (Operational semantics). The operational semantics with nes-
ted failure of compensable processes CP is the minimum labeled transition system
(LTS) closed under the rules in Fig. 5 (symmetric rules are considered for (L-

Par) and (L-Close)). The operational semantics with non-nested failure of
compensable processes CP is the minimum LTS closed under the rules in Fig. 5
(symmetric rules are considered for (L-Par) and (L-Close)), but where func-
tion extrn(•) is replaced by function extrnn(•).

Thefirst seven rules and theninth extend the correspondingπ-calculus rules [2], the
others define the behavior of transactions, compensations and protected blocks.

Auxiliary rules (P-Out) and (P-In) execute output and input prefixes re-
spectively. The input rule guesses the received values v in the early style. Rules
(L-Choice) and (L-Rep) deal with guarded choice and replication respectively.
Rule (L-Par) allows one of the components of parallel composition to progress.
If the performed action is not a compensation update, then the rule verifies that
no compensation update is pending in the other component (last condition).
Rule (L-Res) is the classic rule for restriction. Rule (L-Open) allows to extrude
bound names. Rule (L-Close) performs communication. If the output action
contains some extruded names, restrictions for them are reintroduced.

Rule (L-Scope-out) allows the body P of a transaction scope to progress,
provided that the performed action is not a compensation update. Rule (L-

Recover-out) allows external processes to kill a transaction scope via an out-
put t. The resulting process is composed by two parts: the first one extracted
from P , and the second one corresponding to compensation Q, which will be
executed inside a protected block. The condition ensures that there are no pend-
ing compensation updates. Rule (L-Recover-in) is similar to (L-Recover-

out), but now the error notification comes from P . In this case condition
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(P-Out)

a〈v〉.P a〈v〉−−−→ P

(P-In)

a(x).P
a(v)−−−→ P{v/x}

(L-Choice)

πj .Pj
α−→ P ′

j j ∈ I∑
i∈I

πi.Pi
α−→ P ′

j

(L-Rep)

π.P
α−→ P ′

!π.P
α−→ P ′|!π.P

(L-Par)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

α /∈ {(w)λX.R, τc} ⇒ noComp(Q)

P |Q α−→ P ′ |Q

(L-Res)

P
α−→ P ′ x /∈ n(α)

(ν x)P
α−→ (ν x)P ′

(L-Open)

P
(w)x〈v〉−−−−−→ P ′ z �= x z ∈ {v} \ {w}

(ν z)P
(zw)x〈v〉−−−−−−→ P ′

(L-Open2)

P
(w)λX.Q−−−−−−→ P ′ z ∈ fn(Q) \ {w}

(ν z) P
(zw)λX.Q−−−−−−−→ P ′

(L-Close)

P
x(v)−−−→ P ′ Q

(z)x〈v〉−−−−−→ Q′ {z} ∩ fn(P ) = ∅
P |Q τ−→ (ν z) (P ′ |Q′)

(L-Scope-close)

P
(z)λX.R−−−−−→ P ′ {z} ∩ (fn(Q) ∪ {t}) = ∅

t[P, Q] τc−→ (ν z) t[P ′, R{Q/X}]

(L-Recover-out)

noComp(P )

t[P, Q] t−→ extrn(P ) | 〈Q〉
(L-Scope-out)

P
α−→ P ′ α �= (z)λX.Q bn(α) ∩ (fn(Q) ∪ {t}) = ∅

t[P, Q] α−→ t[P ′, Q]
(L-Recover-in)

P
t−→ P ′

t[P, Q] τ−→ extrn(P ′) | 〈Q〉
(L-Inst)

inst�λX.Q�.P λX.Q−−−→ P

(L-Block)

P
α−→ P ′

〈P 〉 α−→ 〈P ′〉

Fig. 5. LTS for compensable processes

noComp(P ) is redundant since it can be deduced from the derivation. Rule (L-

Inst) requires a compensation update (note that the resulting internal action is
τc) while rule (L-Open2) allows to extrude bound names occurring in it. Rule
(L-Scope-close) updates the compensation of a transaction scope (the sub-
stitution should not capture free names). If the compensation update includes
extruded names, restrictions for these names are reintroduced (similarly to rule
(L-Close)). Finally, rule (L-Block) defines the behavior of protected blocks.

Example 1. We give here a few examples of transitions2.
– Transaction scopes can compute: a〈b〉 | t[a(x).x.0, Q] τ−→ 0 | t[b.0, Q]
– Transaction scopes can be killed: t | t[a.0, Q] τ−→ 〈Q〉
– Transaction scopes can commit suicide: t[ t.0 | a.0, Q] τ−→ 〈Q〉
– New compensations can be added in parallel:

t[inst�λX.P |X .a.0, Q] τc−→ t[a.0, P |Q]
2 To simplify the presentation we discard some garbage. This can be done using the

notion of structural congruence in Definition 14.
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– New compensations can be added at the beginning:
t[inst�λX.b.X .a.0, Q] τc−→ t[a.0, b.Q]

– Compensations can be deleted: t[inst�λX.0 .a.0, Q] τc−→ t[a.0, 0]

3 Conditions for Good Encodings

When discussing encodability/separation results, a main point is to decide which
conditions an encoding has to satisfy in order to be considered a good means
for language comparison. In the literature there are different proposals of such
conditions [16–19]. The choice of the conditions determines the level of abstrac-
tion used when comparing the different languages. Since different expressiveness
gaps are visible at different levels of abstraction, there are no universally good
sets of conditions. Also, encodability results are stronger if stated at the low
level of abstraction, i.e. with more strict conditions, while separation results are
more general when proved at the high level of abstraction. However, it is im-
portant that related results are proved under the same conditions, thus defining
a coherent picture of the expressiveness at the chosen level of abstraction. For
these reasons we discuss below the conditions that we use throughout the paper,
thus fixing our level of abstraction. We will consider stricter conditions too when
proving encodability results, thus strengthening them.

There are two kinds of conditions: (i) syntactic conditions on the form of the
translation, and (ii) conditions specifying the kind of behavior that the transla-
tion should preserve. We will base the latter on the concepts of divergence and
should testing equivalence [20] (this choice will be discussed later).

Definition 5. Process P diverges if there is an infinite sequence of actions τ
or τc starting from P .

Weak transitions are defined as follows: ==⇒ is the reflexive and transitive closure
of τ−→ ∪ τc−→, while α==⇒ is ==⇒ α−→==⇒.

Definition 6 (Should testing). Let P and O be processes and
√

a special
name occurring in O but not in P . We call O an observer. P should O iff for

each P ′ such that P | O ==⇒ P ′ we have P ′
√

==⇒. Two processes P and Q are
should testing equivalent, written P 2shd Q, if, for each observer O, P should
O iff Q should O.

We use should testing equivalence as our basic notion of process equivalence.
However, we have to restrict its applicability. In fact, we are interested in how
compensation update can be realized, but compensation update is only mean-
ingful inside transaction scopes. Thus we have to restrict our attention to well
formed processes, i.e. processes that will never feature a compensation update
outside a transaction scope.

Definition 7 (Well formed processes). Predicates wf(•) and wc(•) charac-
terizing well formed processes and processes with well formed compensations are
defined by mutual induction in Fig. 6.
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wf(0)
wf(a〈v〉.P ) if wf(P )
wf(a(x).P ) if wf(P )
wf((ν x)P ) if wf(P )

wf(P |Q) if wf(P ) ∧ wf(Q)
wf(〈P 〉) if wf(P )

wf(t[P, Q]) if wc(P ) ∧ wf(Q)
wf(X)

wc(0)
wc(a〈v〉.P ) if wc(P )
wc(a(x).P ) if wc(P )

wc(inst�λX.R�.P ) if wf(R) ∧ wc(P )
wc((ν x)P ) if wc(P )

wc(P |Q) if wc(P ) ∧ wc(Q)
wc(〈P 〉) if wf(P )

wc(t[P, Q]) if wc(P ) ∧ wf(Q)
wc(X)

Fig. 6. Well formedness predicates

Next definition introduces n-ary contexts.

Definition 8. An n-ary context C[•1, . . . , •n] is obtained by replacing in a pro-
cess n occurrences of 0 with placeholders •1, . . . , •n. Process C[P1, . . . , Pn] is
obtained by replacing inside C[•1, . . . , •n] each •i with Pi.

We describe below the conditions that we require for good encodings. Since we
always deal with subcalculi of compensable processes we can use the notion of
equivalence defined above for them, e.g. observers in should testing are compens-
able processes (not necessarily well-formed).

Definition 9 (Conditions for good encodings). An encoding from a subcal-
culus C1 of compensable processes to a subcalculus C2 of compensable processes
is a function �•� : C1 → C2. Such an encoding is compositional if:

1. �P |Q� = �P � | �Q�;
2. for each name substitution σ there is a name substitution σ′ such that �Pσ� =

�P �σ′;
3. �t [P,Q]� = Ct[�P �, �Q�], where Ct[•1, •2] is a fixed binary context with pa-

rameter t.

An encoding is correct if for each well formed process P , P is should testing
equivalent to �P �. It is divergence reflecting if �P � diverges implies P diverges.
An encoding is good if it is compositional, correct and divergence reflecting.

The properties above have been taken from [19], where a general framework for
proving encodability and separation results is presented, and then adapted to
our setting. In particular, some of the conditions have been simplified since a
few issues do not emerge in our work (e.g., since all the calculi are subcalculi of
compensable processes). Condition 3, for instance, requires the transaction scope
to be translated into a context in the target language, and such a condition is
required for each operator in [19]. We have chosen should testing equivalence
as correctness criterion. Roughly, it combines operational correspondence and
success sensitiveness from [19]. Since we require also divergence reflection, using
must testing [21] instead of should testing does not change our results [20].

As we already said, we will show that our encoding satisfies stricter conditions.
In particular, we will replace the notion of correctness based on should testing
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equivalence with one based on weak bisimilarity (we have chosen should testing
instead of must testing since weak bisimilarity implies should testing [20]).

Weak bisimilarity for compensable processes extends weak early π-calculus
bisimilarity with features from higher-order bisimilarity [22], since compensation
update is a form of higher-order communication.

Definition 10 (Weak bisimulation). A weak bisimulation is a symmetric
binary relation R such that PRQ implies:

– if P τ−→ P ′ or P
τc−→ P ′ then there is Q′ such that Q ==⇒ Q′ and P ′RQ′;

– if P
(z)λX.R−−−−−→ P ′ and {z} ∩ fn(Q) = ∅ then there are S, Q′ such that

Q
(z)λX.S

=====⇒ Q′, P ′RQ′ and R{T/X}RS{T/X} for all processes T with no
free variables;

– if P α−→ P ′ with α �= τ, (z)λX.R and bn(α)∩ fn(Q) = ∅, then there is Q′ such
that Q α==⇒ Q′ and P ′RQ′;

– extr(P )R extr(Q).

The function extr(•) in the last condition should be instantiated to extrn(•) or
extrnn(•) according to the chosen LTS semantics. Closure under the extraction
function is required for having a compositional semantics (see [23]).

Definition 11. Weak bisimilarity ≈ is the largest weak bisimulation.

We will use the notion below as stronger form of correctness.

Definition 12. An encoding is bisimilarity preserving if for each well formed
process P , P is weakly bisimilar to �P �.
The lemma below proves that a bisimilarity preserving encoding is correct.

Lemma 3.1. Let P and Q be processes. If P ≈Q then P 2shd Q.

4 Parallel Recovery Can Be Implemented Using Static
Recovery

In this section we compare the expressive power of parallel recovery and static
recovery, considering both the cases of nested failure and non-nested failure.
We present an encoding from parallel recovery to static recovery, showing that
static recovery is as expressive as parallel recovery. The encoding respects the
conditions of Definition 9 and Definition 12.

The encoding associates to each transaction scope a fresh name r. Compen-
sations to be installed are left in the body of the transaction scope, protected
by a protected block and guarded by an input on r. When the transaction scope
is killed, an output on r, included in the static compensation, becomes enabled
and can interact with the stored compensations, enabling them. Each of them
also regenerates the output on r to enable further compensation elements.
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(ν r) t
[
book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r] book−−−→
(ν r) t

[〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉, 0 | r] pay−−→
(ν r) t

[〈r.(unbook|r)〉 | 〈r.(refund|r)〉, 0 | r] t−→
(ν r) 〈r.(unbook|r)〉 | 〈r.(refund|r)〉 | 〈r〉 τ−→

(ν r) 〈r.(unbook|r)〉 | 〈(refund|r)〉 τ−→
(ν r) 〈unbook|r〉 | 〈refund〉 unbook−−−−→

(ν r) 〈r〉 | 〈refund〉 refund−−−−−→ (ν r) 〈r〉 | 〈0〉

Fig. 7. Sample execution

Definition 13 (From parallel to static recovery). Let r be a fixed fresh
name. The encoding �•�p2s from parallel recovery processes to static recovery
processes is defined as:

�t [P,Q]�p2s = (ν r) t [�P �p2s, �Q�p2s | r]
�inst�λX.Q |X .P �p2s = �P �p2s | 〈r.(�Q�p2s | r)〉

and maps all the other operators homomorphically to themselves.

Name r will be α-converted to different names inside different scopes.

Example 2. We apply here the translation to a simple example. Consider a trans-
action which books some hotel and then pays for it. In case of failure, the booking
should be undone by sending a message unbook, and the payment by sending a
message refund. For simplicity we do not consider the contents of the messages.
The transaction can be modeled using parallel recovery processes as

t[book. inst�unbook .pay. inst�refund , 0]

Its translation is:

(ν r) t[book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r]

Figure 7 shows a sample execution, where the hotel is booked and payed, then
the transaction scope is killed and the two items of compensation are executed.

It is easy to see that the encoding is compositional. Even more, it maps all the
operators but transaction scope and compensation update homomorphically to
themselves.

Remark 1. We have presented the encoding in the framework of synchronous π-
calculus. The same encoding however can be used for CCS [24] and asynchronous
π-calculus [25], extended with the primitives for transactions and compensations.
In fact the encoding does not exploit name communication nor synchrony. We
have presented it in the most general setting since it is easier to restrict the
approach to CCS than to generalize an approach from CCS to π-calculus.
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The rest of this section is devoted to prove that �•�p2s is a good, bisimilarity
preserving encoding (see Definitions 9 and 12). We describe in detail the case of
nested failure, the case of non-nested failure requires minimum changes.

Remark 2. If we drop the requirement of well formedness, bisimilarity preserva-
tion is no more satisfied, e.g. since

�inst�λX.Q |X .P �p2s = �P �p2s | 〈r.(�Q�p2s | r)〉 r−→

while inst�λX.Q |X .P has no corresponding transition. Alternatively, one may
require that actions on fresh names introduced by the translation, such as r here,
are not observed by the behavioral equivalence.

While weak bisimilarity is preserved only for well formed processes, a strict re-
lationship holds also between the behavior of a general process P and of its
translation �P �p2s, as shown by Lemma 4.2 and Lemma 4.3. Roughly, the trans-
lation P̃ of a process P such that P

α−→ P ′ evolves to some process P̃ ′ which is
the translation of P ′. However, this holds only up to some transformations delet-
ing the garbage produced by the translation. To this end we exploit a structural
congruence and an auxiliary reduction relation.

Definition 14 (Structural congruence). Structural congruence on compens-
able processes is the minimum congruence ≡ closed under the rules in Fig. 8.

0 | P ≡P P |Q≡Q | P (P |Q) | R≡P | (Q | R)

(ν x)0≡0 (ν x) (ν y) P ≡(ν y) (ν x) P 〈(ν x)P 〉≡(ν x) 〈P 〉 (ν x) x≡0

P | (ν x) Q ≡ (ν x) (P |Q) if x /∈ fn(P )

t [(ν x) P, Q] ≡ (ν x) t [P, Q] if t �= x, x /∈ fn(Q)

〈〈P 〉〉≡ 〈P 〉 〈P |Q〉≡ 〈P 〉 | 〈Q〉 〈0〉≡0

Fig. 8. Structural congruence relation

Structural congruence includes standard rules from π-calculus, scope extrusion
for the operators for transaction and compensation handling and a few rules
capturing the properties of protected block. We also consider the simple garbage
collection rule (ν x)x≡ 0, since it simplifies our proofs.

Definition 15 (Auxiliary reduction relation). The auxiliary reduction re-
lation �→ is the minimum congruence generated by the following rule:

(ν r) 〈r〉|
∏

i∈{1,...,n}〈r.(Qi|r)〉 �→ (ν r) 〈r〉 |
∏

i∈{1,...,n}〈Qi〉 if r /∈ fn(Qi) for each
i ∈ {1, . . . , n}.
The definition below introduces possible translations, which generalize the con-
cept of translation. The idea is that each process in the set of possible translations
of P behaves as P . Possible translations account for the different shapes that a
dynamically created compensation can have, according to how it has been built
as a composition of compensation items.



378 I. Lanese, C. Vaz, and C. Ferreira

Definition 16 (Possible translations). Let r be a fixed fresh name. Given a
parallel recovery process P the set of its possible translations {|P |}p2s is defined
by structural induction on P and then closed under the structural congruence
and the auxiliary reduction relation. More precisely:

– if P = t[R,Q] for each decomposition Q≡
∏

i∈{0,...,n}Qi, each R̃ ∈ {|R|}p2s

and Q̃i ∈ {|Qi|}p2s, we have that (ν r) t
[
R̃ |
∏

i∈{1,...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]
∈

{|P |}p2s;
– if P = inst�λX.Q | X .R for each Q̃ ∈ {|Q|}p2s and each R̃ ∈ {|R|}p2s, we

have that R̃ | 〈r.(Q̃ | r)〉 ∈ {|P |}p2s;
– for each other n-ary operator op, if P = op(Q1, . . . , Qn) for each Q̃i ∈

{|Qi|}p2s we have that op(Q̃1, . . . , Q̃n) ∈ {|P |}p2s.

Furthermore:

– if P̃ ∈ {|P |}p2s and P̃ ′≡ P̃ then P̃ ′ ∈ {|P |}p2s;
– if P̃ ∈ {|P |}p2s and P̃ ′ �→ P̃ then P̃ ′ ∈ {|P |}p2s.

The lemma below relates the possible translations of P and of extrn(P ).

Lemma 4.1. Let P̃ ∈ {|P |}p2s. Then extrn(P̃ ) ∈ {|extrn(P )|}p2s.

The lemmas below relate the behavior of a process with the one of its possible
translations. Namely, it will be shown that a possible translation evolves into
a possible translation (this does not hold for translations). As already said, we
write a compensation update λX.Q |X simply as Q.

Lemma 4.2. Let P be a parallel recovery process and P̃ ∈ {|P |}p2s one of its
possible translations. If P α−→ P ′ then one of the following holds:

1. α /∈ {(z)Q, τc} and P̃
α==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s;

2. α = (z)Q and P̃ ==⇒ (ν z) (P̃ ′ | 〈r.(Q̃ | r)〉) where P̃ ′ ∈ {|P ′|}p2s and Q̃ ∈
{|Q|}p2s;

3. α = τc and P̃ ==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s.

Proof. The proof is by structural induction on P , using a case analysis on the
last applied rule. ��
The following lemma discusses the reverse implication.

Lemma 4.3. Let P be a parallel recovery process such that noComp(P ) and
P̃ ∈ {|P |}p2s one of its possible translations. If P̃ α−→ P̃ ′ with α �= r then P

α==⇒ P ′

with P̃ ′ ∈ {|P ′|}p2s.

Proof. The proof is by induction on the derivation of P̃ ∈ {|P |}p2s. ��
Theorem 4.1. Let P be a well formed process. Then P ≈ �P �p2s.

Proof. First note that �P �p2s ∈ {|P |}p2s. The proof is by coinduction. We have to
show that the relation R = {(P, P̃ )|wf(P )∧P̃ ∈ {|P |}p2s} is a weak bisimulation.
The proof exploits Lemmas 4.1, 4.2 and 4.3. ��
Corollary 1. �•�p2s is a good encoding.
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5 General Dynamic Recovery Is More Expressive Than
Static Recovery

In this section we compare the expressive power of general dynamic recovery
and static recovery, showing that the former is more powerful. We also adapt
our result to show that backward recovery is more powerful than static recovery.

The main idea is that with general dynamic recovery it is possible to check
the order of execution of parallel actions by observing the compensations that
they install, while this is not possible with static recovery. For instance, process
t[a. inst�λX.a′.0 | b. inst�λX.b′.0 ,0] can perform a computation with labels a,
b, t, b′ but no computation with labels b, a, t, b′, i.e. whether b′ is available or
not depends on the order of execution of the parallel actions a and b. The proof
of the separation result in Theorem 5.1 exploits similar arguments. The proof is
based on the fact that the order of installation of compensations is not known
statically because of the nondeterminism in the scheduling of parallel processes.

Before proving the theorem we need a few auxiliary notions and results.

Definition 17 (Enabling contexts). Enabling contexts E[•1] are unary con-
texts generated by:
E[•1] ::= •1 | P |E[•1] | E[•1]|P | (ν x)E[•1] | t[E[•1], Q] | 〈E[•1]〉

Definition 18. Given a process P the maximum choice degree mcd(P ) of P
is the maximum number of alternatives in a nondeterministic choice inside P .
The maximum transaction nesting degree mtd(P ) of P is the maximum level of
nesting of transaction scopes inside P .

Next lemma shows that the maximum choice degree and the maximum transac-
tion nesting degree of a process never increase during computations.

Lemma 5.1. If P α−→ P ′ then mcd(P ′) ≤ mcd(P ) and mtd(P ′) ≤ mtd(P ).

Next lemma exploits the definition above to determine structural properties of
processes from their behavior.

Lemma 5.2. Let P be a static recovery process. Assume that P ai−→ P ′i for each
i ∈ {1, . . . , n}. Assume that n > c + t where c is the maximum choice degree
of P and t is the maximum transaction nesting degree of P . Then there are
an enabling context E[•1], processes Q1 and Q2 and indexes j and k such that
P ==⇒ Q = E[Q1|Q2] with Q1

aj−→ Q′1 and Q2
ak−→ Q′2.

Proof. The proof is by structural induction on P . ��

We can finally prove the desired separation result.

Theorem 5.1. There is no good encoding �•�g2s of compensable processes into
static recovery processes.



380 I. Lanese, C. Vaz, and C. Ferreira

Proof. Suppose by contradiction that such an encoding exists. For each i let
Pi = ai. inst�λYi.bi.0 .0. Consider the process P = t[

∏
i∈{1,...,n} Pi,0]. Because

of conditions 1 and 3 of compositional encodings, its encoding �P �g2s should be of
the form Ct[

∏
i∈{1,...,n}�Pi�g2s, �0�g2s], which we will denote as P̃ . Note that P is

well formed, thus P2shd�P �g2s. Let us consider the observersOj,k = aj .ak.t.bk.
√

and O′j,k = aj .ak.t.bj .
√

. For each j, k note that P should Oj,k, while P should
not O′j,k. Also, given Oj = aj .

√
, P should Oj for each j. Thanks to correctness,

P̃ has to pass the same tests. Test Oj can succeed only if P̃
aj==⇒. Also, no action

τ or τc should compromise the possibility of performing aj for each j, since we
are using should testing equivalence.

We show now by contradiction that P̃ ==⇒ Q for some Q such that Q
ai−→ Q′i

for each i ∈ {1, . . . , n}. We assume that such a Q does not exist and build an
infinite computation composed by transitions τ and τc, contradicting divergence
reflection. Since we assume Q does not exist, in particular, for some ai there is no
transition P̃

ai−→. Thus since P̃
ai==⇒ we have P̃

τ−→
+
Q1

ai−→ where τ−→
+

denotes a
non empty sequence of transitions τ and τc. Also, Q1 must still satisfy the tests.
Since Q does not exist, there is also some aj such that there is no transition
Q1

aj−→. Thus we can further extend the computation. By iterating the procedure
we get an infinite sequence of transitions τ and τc. Since P does not diverge,
and the encoding has to be divergence reflecting, we have a contradiction.

Now observe that thanks to condition 2 of compositional encoding all �Pi�g2s

are equal up to name substitution and thus have the same maximum choice
degree and maximum transaction nesting degree. Thus the maximum choice
degree c and maximum transaction nesting degree t of P̃ do not depend on n.
In particular, we can choose n > c + t. Thanks to Lemma 5.1 the same relation
holds also for Q. Thus we can apply Lemma 5.2 to prove that Q = E[Q1|Q2] with
Q1

aj−→ Q′1 and Q2
ak−→ Q′2 for some enabling context E[•]. We have E[Q1|Q2]

aj−→
E[Q′1|Q2]

ak−→ E[Q′1|Q′2] and E[Q1|Q2]
ak−→ E[Q1|Q′2]

aj−→ E[Q′1|Q′2]. The final
process E[Q′1|Q′2] is the same in both the cases.

These computations can be observed using observers Oj,k = aj .ak.t.bk.
√

and
O′k,j = ak.aj .t.bk.

√
above. P̃ | O ==⇒ E[Q′1|Q′2] | t.bk.

√
for both O = Oj,k and

O = O′k,j . From P̃ should Oj,k we deduce E[Q′1|Q′2] | t.bk.
√ √

==⇒, while from P̃
should not O′k,j we deduce that this computation cannot exist.

This is a contradiction, thus the encoding �•�g2s does not exist. ��

The theorem above holds for both nested and non-nested failure.

Remark 3. We have presented this separation result in the framework of syn-
chronous π-calculus. The same result however can be proved for CCS [24], ex-
tended with the primitives for transactions and compensations. In fact the used
processes and observers are all CCS processes.

It is interesting to see how the result and the proof change if conditions for good
encodings are modified, in particular as far as correctness is concerned. First note
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that requiring bisimilarity preservation instead of correctness weakens the result.
However, this weaker result can be easily extended to asynchronous compensable
processes, which are obtained by disallowing continuation after the output prefix,
as done for π-calculus [25]. In particular, no compensation update can become
enabled because of the execution of an output action.

Corollary 2. There is no good bisimilarity preserving encoding �•�g2s−a of a-
synchronous compensable processes into asynchronous static recovery processes.

We have not been able to prove the result above without the condition of bisim-
ilarity preservation, since it is difficult for asynchronous observers to force an
order of execution for parallel actions.

Many approaches in the literature, such as [19], use as observers in the target
language the encoding of the observers in the source language. In our case we
can use the same observers since the target language is a sublanguage of the
starting one. We can restate our results using the approach in [19], but we need
some more conditions on the translation (e.g., preservation of the behavior of
sequential CCS processes).

The theorem above concerns general dynamic recovery, however a similar
result can be obtained for backward recovery. Backward recovery is easily defined
in a calculus with sequential composition by requiring all the compensation
updates to have the form λX.P ;X where ; is sequential composition and X
does not occur in P . It is easy to see that just having a very constrained form of
backward recovery, where P is a single prefix, is enough to increase the expressive
power beyond static recovery. This can be easily stated in our framework by
allowing only compensation updates of the form λX.π.X where π is any prefix.

Corollary 3. There is no good encoding �•�b2s of backward recovery processes
into static recovery processes.

Proof. It is enough to consider Pi = ai. inst�λYi.bi.Yi .0 instead of the process
Pi = ai. inst�λYi.bi.0 .0 in the proof of Theorem 5.1. ��

From the results of previous section we also deduce that both general dynamic
recovery and backward recovery are more expressive than parallel recovery.

6 Applications and Related Works

We discuss here how to apply the results in sections 4 and 5 to other calculi and
languages in the literature. The calculi more related to ours are the so-called
interaction-based calculi [3–5, 9], which are obtained by adding primitives for
compensation handling on top of concurrent calculi such as π-calculus [2] or
Join [26]. These calculi differ on many design choices. The main differences are
summarized in Table 1 and their impact on our results discussed below.

Dcπ. Dcπ [9] is a calculus with parallel recovery based on asynchronous π-
calculus [25]. For this reason, compensation update is allowed only after input
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prefix. Actually, in dcπ, input prefix and compensation update are combined
in an atomic primitive a(x)%Q.P that, after receiving values v on channel a,
continues as P{v/x} and adds Q{v/x} in parallel to the current compensation.
The same behavior can be obtained in parallel recovery processes by writing
a(x). inst�λX.Q | X .P , thanks to priority of compensation update. Thus dcπ
can be seen as the asynchronous fragment of parallel recovery processes with
nested failure where compensation update can occur only after input prefix. Both
the encoding in Section 4 and the separation result for asynchronous calculi in
Corollary 2 can be easily adapted to dcπ.

Webπ and Webπ∞. Webπ [5] is a calculus with static recovery based on asyn-
chronous π-calculus [25]. It provides timed transactions, which add an orthogonal
degree of expressive power. Its untimed fragment, Webπ∞ [23] instead corre-
sponds exactly to the asynchronous fragment of static recovery with non-nested
failure where all messages are inside protected blocks. The encoding in Section 4
can be adapted to both the calculi. The main change required is to implement
protected block using a transaction scope with bound name. Also the separation
result in Corollary 2 can be easily applied to the two calculi.

πt-calculus. The πt-calculus [3] is based on asynchronous π-calculus. When
a component inside a transaction aborts, abortion or completion of parallel
components is waited for. Then the compensation of the transaction (called
failure manager) is executed, followed by the parallel composition of the com-
pensations of the already terminated subtransactions. It is difficult to adapt
our encoding to πt-calculus, since this will require to change the semantics of
abortion allowing a transaction to abort even if it contains protected blocks.
On the other hand the separation result in Corollary 2 can be applied, referred
to an extension of the πt-calculus where the failure manager can be updated
dynamically.

C-join. C-join [4] is a calculus with static recovery built on top of Join cal-
culus [26]. However here transactions can be dynamically merged, and their

Table 1. Features of interaction-based calculi and languages

underlying compens. nested vs protection encoding separation
language definition non-nested operator applicable res. applicable

dcπ asynch. π parallel nested yes yes asynch.
Webπ/Webπ∞ asynch. π static non-nested implem. yes asynch.

πt asynch. π static nested no no asynch.
C-join Join static nested no yesa no
SOCK - dynamic nested implem. yes no
COWS - static nested yes yes no
Jolie - dynamic nested implem. yes no

WS-BPEL - static nested implem. yes no

a If a protection operator is added.
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compensations are composed in parallel, thus obtaining some form of parallel
recovery. Our encoding is not directly applicable since C-join has no protected
block operator, but becomes applicable as soon as such an operator is introduced.
As far as the separation result is concerned, join patterns are more powerful than
π-calculus communication, and we conjecture that they can be used to imple-
ment general dynamic recovery.

Service oriented calculi. Many service oriented calculi have been recently
proposed [27–32]. Long running transactions are an important aspect of service
oriented computing thus many of these calculi include primitives for compensa-
tion handling. We discuss here the ones more related to our approach.

SOCK [28] is a language for composing service invocations and definitions
using primitives from sequential languages and concurrent calculi. It has been
extended with primitives for general dynamic recovery in [12]. Our encoding can
be applied to SOCK using signals for mimicking CCS communication. Actually,
in SOCK, the protected block is just used in the definition of the semantics, but
it can be implemented too. Since SOCK has no restriction operator, fresh signal
names should be statically generated, and the behavioral correspondence result
should be restated along the lines of Remark 2. The separation result instead
does not apply: SOCK services are stateful, and the state can be used to keep
track of the order of execution of parallel activities. All the observations made
for SOCK hold also for Jolie [33, 34], a service oriented language based on it.

COWS [30] communication is in the style of fusion calculus [35]. COWS has
a kill primitive and a protected block. This allows to program static recovery
(see [30]). Our encoding can be applied to program also parallel recovery. The
separation result instead cannot be easily extended, since COWS communication
and kill have priorities, thus allowing parallel processes to influence each other.

Other service oriented calculi include only mechanisms for exception han-
dling [31] or notification of session failure [27, 32].

Compensable flow calculi. Calculi based on the compensable flow approach
such as SAGAs calculi [8] or StAC [7], use backward recovery for sequential
activities and parallel recovery for parallel ones. Thus our separation result does
not apply. Also, since there is no communication, atomicity constraints are less
strong. However we are not aware of good encodings of compensable flow calculi
into static recovery calculi. For instance, the mapping in [6] of cCSP [10] into
the conversation calculus [31] is not compositional.

WS-BPEL. WS-BPEL [1] is the de-facto standard for web services composition.
Compensations are statically defined, and they are composed using backward
recovery for sequential subtransactions, and parallel recovery for parallel ones.
Our separation result does not apply because of the reasons discussed for SOCK
and for compensable flow calculi. As far as the encoding is concerned, the same
approach used for SOCK can be applied.

Future work. As we already discussed throughout the paper, many open issues
concerning the expressive power of mechanisms for long running transactions
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remain. In fact this topic, while relevant, has been neglected until now: a few
papers, such as [36, 37], study the expressive power of primitives for interrup-
tion, more than primitives for compensation as in our case. We think that the
techniques presented in this paper can be successfully applied to answer some of
the open issues. We refer in particular to the analysis of whether nested failure
can be implemented using non-nested failure, and to the encodability of BPEL-
style recovery into static recovery. We conjecture that this encoding is possible,
thus BPEL-style recovery could be defined as a macro on top of static recovery.
After those problems have been analyzed in a simple setting, additional work is
required to transfer the results to other calculi/languages. Another important
topic that deserves further investigation is the impact of communication primi-
tives more powerful than π-calculus message passing, such as join patterns, on
our separation result. It would also be interesting to generalize the techniques
of this paper to deal with languages for adaptation [38], since dynamic compen-
sations can be seen as an approach for adaptation of compensations.

Acknowledgments. We thank R. Bruni, F. Montesi, G. Zavattaro, F. Tiezzi and
the anonymous reviewers for useful suggestions and comments.
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Abstract. Detailed memory models that expose individual fields are
necessary to precisely analyze code that makes use of low-level aspects
such as, pointers to fields and untagged unions. Yet, higher-level repre-
sentations that collect fields into records are often used because they are
typically more convenient and efficient in modeling the program heap.
In this paper, we present a shape graph representation of memory that
exposes individual fields while largely retaining the convenience of an
object-level model. This representation has a close connection to partic-
ular kinds of formulas in separation logic. Then, with this representation,
we show how to extend the Xisa shape analyzer for low-level aspects,
including pointers to fields, C-style nested structures and unions, malloc
and free, and array values, with minimal changes to the core algorithms
(e.g., materialization and summarization).

1 Introduction

At the core of precise program analyzers, such as verification tools and shape
analyses, is an abstract memory model that represents the program heap. The
design of such representations for C code is particularly challenging because of a
tension between keeping it simple and supporting low-level pointer manipulation.

(a) Traditional shape graph.

(b) Informal box diagram.

Fig. 1. A shape graph for Java-
like structures

Specifically, the level of detail exposed in an
abstract memory model determines whether
the analyzer can even reason about particu-
lar low-level aspects. For example, does the
representation allow the addressing expression
&(p->f1.f2) (i.e., taking the address of a
nested structure or union field), while support-
ing basic field read expressions p->f easily?

To illustrate this tension, we show in Fig. 1,
a simple, traditional shape graph (a) that rep-
resents the concrete memory shown in (b) as an
informal box diagram. In this shape graph, each
node corresponds to an object (i.e., a record of
fields) and each edge stands for a points-to relation between objects. Histori-
cally, shape analyzers have focused on Java-like structures where memory can
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be viewed as a simple collection of objects with field reads but no complex
addressing expressions (e.g., [23,24,11]). Consequently, such a shape graph is
convenient and widely used. For example, TVLA [24] uses three-valued logical
structures to encode such shape graphs. In TVLA, the shape graph in Fig. 1a
corresponds to the two-valued formula f(u1, u2) over individuals u1 and u2.
Similarly, in separation logic [22] and separation logic-based shape analyzers,
we might represent the memory shown in Fig. 1b with the following formula:
u1 �→ {f : u2, g : null} ∗ u2 �→ {f : null, g : null} as, for example, in Berdine et
al. [1]. This formula says that there are two disjoint records pointed to by u1
and u2, each with fields f and g, and where the f field of u1 points to u2 (and
all other fields are null).

We see that something more detailed is needed to express, for example, a
pointer to a field (i.e., &(p->f)). In particular, we must expose the individual

Fig. 2. Box diagram with ex-
posed components

fields (i.e., the components of a record) as shown
informally in Fig. 2. However, if we simply take the
components as the unit memory cells, then we lose
the object-level structure. Such an object-level view
is convenient for the common case with Java-like
structures and necessary for the sound modeling of
object-level properties, such as for analyzing uses
of malloc and free.

In this paper, we make the following contributions:

– We describe a graph-based memory representation that permits reasoning at
the object level and the field level simultaneously. The key idea is to represent
abstract memory cells with edges (rather than nodes as is traditional) and
to view nodes as aggregates of their outgoing edges. This simple shift in view
allows us to cleanly separate object-level properties from field-level ones. In
particular, we show how this representation can be instantiated in different
ways to express varying degrees of detail (Sect. 3).

– We present a particular instantiation of separating shape graphs to model
low-level aspects of C, including pointer-to-field (i.e., &(p->f)), nested struc-
tures, untagged unions, C-style malloc-free, and array values (Sect. 4).

– We demonstrate the applicability of our representation by extending the
Xisa analyzer [6,5] for these low-level aspects of C, often unhandled in shape
analyzers. In particular, our extension required minimal changes to the orig-
inal object-based algorithms for materialization and summarization that are
key to shape analysis (Sect. 5).

To motivate and provide intuition for separating shape graphs, the next section
(Sect. 2) presents an example shape analysis with nested structures and unions.

2 Background and Overview

In separation logic, the record-level points-to relation is a standard abbreviation
for separated points-to relations of components:

e �→ {f1 : e1, . . . , fn : en}
def= e @f1 �→ e1 ∗ · · · ∗ e @fn �→ en (�)
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where e @f is a field offset expression (i.e., the offset corresponding to field f
from the base pointer given by expression e). By using formulas of the form on
the right side, we essentially expose individual fields (referred by Parkinson as
taking a field-splitting model of memory [21]).

null

β

null
α

null

f

g

f

g

Fig. 3. A simple separating
shape graph for the concrete
memory in Fig. 1b

For shape analysis of C code, we essentially
want a representation that minimizes the need
to convert back-and-forth between the left and
right-hand sides of definition (�). In other words,
we want a model that exposes individual fields
and permits complex addressing expressions but
maintains object-level structure. To begin, con-
sider the graph shown in Fig. 3. A node denotes
a value (e.g., a memory address, an integer, null)
labeled by a symbolic value, which is an existen-
tially quantified variable. We use lowercase Greek letters (α, β, γ, . . .) to range
over symbolic values. An edge corresponds to a unit memory cell or a points-to
relation at the component level (like on the right in definition (�) and Fig. 2);
for instance, the edge between α and β says that at field f from address α, the
contents of the cell is β. At the same time, if we ensure that all symbolic values
correspond to base pointers of objects, we have a representation that also can be
read as an object-level formula (like on the left in definition (�) and Fig. 1b) and
looks fairly similar to the traditional shape graph in Fig. 1a. It is important to
note that edges represent disjoint memory cells (like nodes in traditional shape
graphs) but that nodes may correspond to the same concrete value (unlike in
traditional shape graphs).

Thus far, we have a shape graph representation for Java-like structures as
in our prior work [6,5] and similarly used by others (e.g., [1]). In this paper, we
make the connection between such graphs and a restricted language of separation
logic formulas explicit and take this view further to capture low-level aspects of
C (see Sect. 3). In the remainder of this section, we provide intuition for our
C-level model of memory with an example shown in Fig. 4. In particular, we
consider the analysis of code for evaluating arithmetic expressions represented
by a syntax tree (using the C-type Arith). These syntax trees feature several
kinds of nodes (constants cst, unary operators uni, and binary operators bin)
that are encoded with a union type. The op field is a tag, or discriminant, that
indicates which branch of the union field node is being used.

Our shape analysis proceeds by abstract interpretation [10] computing sound
local invariants at each program point (i.e., graphs that over-approximate the set
of possible concrete memory states). In the figure, we show the local invariants
inferred by our analysis boxed and right-justified at a number of program points.
Like in our prior work [6,5], a thick edge, or a checker edge, represents a memory
region summary (i.e., a set of points-to edges abstractly). Our abstract domain
is parametric in inductive definitions that give rise to such summaries. These
user-supplied inductive definitions come in the form of invariant checkers ; that
is, they can be viewed as code that traverses a data structure to check a run-time
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typedef struct Arith {

char op; // the tag: 0 for constants, 1 for unary −, 2 for +, 3 for ∗, . . .
union {

struct { long long int value; } cst; // a constant value
struct { struct Arith* s; } uni; // a unary operator
struct { struct Arith* l; struct Arith* r; } bin; // a binary operator

} node;

} Arith;

1 int eval(Arith* a) {

2

�

�

�

�

α

a
arith

Arith* c; Arith* n;

3 while (a->op != 0) { // 0 stands for a constant
4 c = a; // initialize the cursor
5 while (1) { // traverse a branch until some

// simplification can be done
6

�

�

�

�

α β

a c
arith arith arith

if (c->op == 1) {

7 // 1 stands for unary negation
n = c->node.uni.s;

8

�

�

�

�

α β γ δ

a c n

= 1op

node@uni@s
arith arith arith

if (n->op == 0) {

9 // simplify

�

�

�

�

α β γ δ ε ζ

aa c n

= 1 = 0op

node@uni@s

op

node@cst@value
arith arith

c->op = 0; c->node.cst.value = - n->node.cst.value; free(n);

10

�

�

�

�

α β γ δη

a c n

= 0op

node@cst@value
arith arith

break;
11 }

12 else { c = n; }

13 }

14 else { . . . /∗ other cases for addition, multiplication, etc. ∗/ . . . }

15 }

16 }

17

�

�

�

�

α β γ

a

= 0op

node@cst@value

return a->node.cst.value;

18 }

Fig. 4. An example analysis of a syntax tree operation using C-style unions

invariant. The first invariant at program point 2 indicates the pre-condition that
a is a well-formed syntax tree given by the inductive checker arith. For now, we
focus on the analysis (the formal definition of the arith checker will be given in
Sect. 4.2). The loop invariant in the second loop at program point 6 expresses
the fact that c points to a subtree of the syntax tree pointed to by a; specifically,
there is a syntax tree segment between α and β described by a partial instance
of checker arith, and separately, there is a completion of the tree from β.

The condition test on field op of c causes the analyzer to unfold the definition
of arith for the syntax tree pointed to by c to produce the invariant at program
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point 8. Unfolding is a partial concretization or refinement step that materializes
points-to edges, typically by considering cases. Here, the fact that γ = 1 (given
by the guard that c->op == 1) leaves the one case where the uni branch of the
union is active. Thus, we have two points-to edges materialized: one labeled with
op for the op field of c and one labeled with node@uni@s for the subexpression
pointer of the unary operator (i.e., c->node.uni.s). Data constraints, such as
γ = 1, are captured by a base abstract domain that is also a parameter of our
analysis; in our examples, we will note such constraints as necessary and assume
that we are using a base domain that can capture them. Next, a similar unfolding
happens at the syntax tree node pointed to by n (i.e., δ) to produce the invariant
at program point 9. At this point, the structure below c is fully materialized, and
the subsequent sequence of updates is reflected by modifications and deletions
of points-to edges to produce the invariant at program point 10. The result of
the outer evaluation loop is a syntax tree node for a constant corresponding to
the inferred invariant at program point 17.

As alluded to earlier, the key challenge addressed in this paper is creating
an analysis that is capable of reasoning about low-level C features, such as
unions, while not unnecessarily complicating the analysis of higher-level, Java-
like code. This challenge is highlighted in this example analysis. Focus again on
the transition between points 9 and 10. On one hand, the view of the syntax
tree node pointed to by c changes by writing through node.cst.value in the
second statement, which is not evident in the state at point 9. Analyzing code
with unions requires careful management of several such views of the same or
overlapping memory cells (e.g., c->node) (Sect. 3.2); such views are accompanied
by fields of varying sizes and thus necessitating delicate treatment of values and
memory cells (Sect. 4). At the same time, the first statement updates the op
tag, which is an ordinary field except for its role in discriminating the union.
We want the modeling of this field to be largely independent of the complexities
introduced by the union type (Sect. 3.1).

The most intricate aspect of most program analysis algorithms is the widening
operator that extrapolates loop invariants—in our domain, it folds points-to
edges into checker edges. Our algorithm is no exception but by encapsulating
unions within a shape graph representation, our widening operator described in
great detail in earlier papers [6,5] remains essentially unchanged (Sect. 4.3)

3 Separating Shape Graphs for Modeling Memory

In this section, we gradually evolve an abstract domain for shape analysis to
model successively lower-level aspects. In particular, we want a domain that can
be instantiated differently depending on the desired level of detail. For exam-
ple, we may want to analyze code that relies on compiler implementation-specific
details such as the size and packing of fields, or we may want to be compiler inde-
pendent and reject certain low-level idioms. In Sect. 4, we formalize a particular
instantiation with the lower-level aspects.

In Fig. 5, we show such an abstract domain using separating shape graphs.
Separating shape graphs represent memories M , which consist of either an empty
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memories M ::= emp empty
| M1 ∗ M2 separate regions
| S region summary
| α �

q�→ β r memory cell
summaries S
l-exprs, r-exprs �, r
points-to properties q

variable environment E ::= · | E, x �
 α static scope
value constraints P ∈ P� base domain
analysis state A ::= ⊥ | ∃�α. 〈E, M, P 〉 | A1 ∨ A2 disjunctive domain

Fig. 5. An abstract shape domain with separating shape graphs (M)

memory emp or separate regions M1 ∗ M2 like in separation logic. Regions may
be either a summary region S or a points-to relation. Summaries S abstract some
configuration of points-to edges. They are necessary to capture an unbounded
number of configurations needed by shape analysis. For example, in Xisa [6,5],
summaries consist of instances of inductive definitions and inductive segments
derived from user-supplied checkers. However, because their exact form is unim-
portant here, we leave them unspecified. Instead, in this section, we focus on
fully unfolded separating shape graphs, or unfolded graphs for short, that consist
only of points-to edges.1

The rest of the analysis state is straightforward and mostly standard. We
have an environment E that maps variables to their addresses, which allows us
to model address-of-locals (i.e., &x), as in our prior work [6,5]. A base abstract
domain P� tracks constraints on values (e.g., α, β). Overall, an analysis state is
a finite disjunction of 〈E,M,P 〉 tuples; we simply make explicit that symbolic
values are existential variables at the analysis state-level. Recall from Sect. 2
that nodes correspond to values—typically base pointers of objects. The points-
to relation α �

q�→ β r is an edge from α to β and represents a singleton memory
cell (e.g., fields in the case of a field-splitting model for Java-like structures). The
address expression � and contents expression r allow for computing offsets from
base values α and β, respectively. Finally, we allow edges to be decorated with
properties q, which are used in the subsequent subsections. Note how memory
layout properties (e.g., field size) can be captured on edges, while value properties
(e.g., type of a value, range of an integer constant) refer to nodes. In particular,
memory cells are modeled by edges not nodes as with traditional shape graphs.

� ::= ε | @f
r ::= ε

To obtain separating shape graphs for Java-like structures (as
in our prior work [6,5]), we simply define � and r as shown in-
set. That is, we allow field offsets @f on the left but only base
pointers on the right (ε indicates empty). Pictorially, we show
an example separating shape graph (ssg) along with the corresponding separa-
tion logic formula (sl), two-valued structure (2-val), and informal box diagram
(boxes) in the following:

1 Unfolded graphs are analogous to TVLA’s two-valued structures.
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Example 1 (A Java-Like Structure with One Field).

α null
f

α @f �→ null

ssg sl 2-val boxes

Kreiker et al. in a recent paper [18] present a “fine-grained semantics” in the
context of TVLA using one node per component plus one node for the enclosing
record in order to model pointer-to-field and nested structures. In Example 1,
the two-valued structures we draw uses this one node per component model.2

While the picture looks the same as Fig. 1a, the two-valued structure above
represents an object with one field f not two objects.

In the subsequent sections, we consider low-level aspects of the C memory
model. Note that we do not directly jump to a byte-level or assembly-level model,
rather we want object-level notions like field names to coexist with lower-level
aspects like numeric offsets. We first consider lowerings that are mostly compiler
independent based solely on the semantics of C (Sect. 3.1) followed by those that
are compiler dependent, such as field sizes (Sect. 3.2).

3.1 Compiler Independent Use of Aggregates

� ::= ε | @f
r ::= �

Internal Pointers. With individual fields exposed, the exten-
sion to internal pointers becomes clear. We simply need to allow
field offset expressions on the right side of points-to in addition
to the left side, instantiating � and r as shown in the inset.

Example 2 (An Internal Pointer). A pointer to the g field of a structure is rep-
resented as follows:

α β null
f g g

α @f �→ β @g
∗ β @g �→ null

ssg sl 2-val boxes

� ::= ε | �@f
r ::= �

Nested Structures. The base pointer of a nested structure
is the field offset of its enclosing struct, so we need to allow
for a path of field offsets with � and r as defined in the inset.
With nested structures, the contents or value of a field may
be a record (i.e., another structure of subfields). Thus, in our representation,
symbolic values may now take on record values {f1 : β1 r1, . . . , fn : βn rn} in
addition to, for example, null and integers. As a consequence, we may need to
2 Note that in that paper, they also present a “coarse-grained semantics” that goes

back to the one node per record model while retaining the ability to reference field
pointers and nested structures. In addition to pointer-to-field and nested structures,
we also consider untagged unions, field sizes, and array values in this paper.



394 V. Laviron, B.-Y.E. Chang, and X. Rival

Var

(E(x) �→ β r) ∈ M

x ↓ (E(x) �→ β r)

Deref

e ⇓ β r1

∗e ↓ (β r1 �→ γ r2)

FieldDeref

e ⇓ β r1

e�f ↓ (β r1@f �→ γ r2)

RVal

e ↓ (α � �→ β r)
e ⇓ β r

AddrOf

e ↓ (α � �→ β r)
&e ⇓ α �

FieldOffset

e ↓ (α � �→ β r1)
e.f ↓ (α �@f �→ γ r2)

Fig. 6. Evaluation of program addressing expressions for structures

reduce between an edge containing a record and a set of edges of its components
(essentially using definition (�) in Sect. 2).

Example 3 (Reduction for Nested Structures). Consider the following nested
structure declaration: typedef struct { struct { int i; int j; } t; } S;.
Then, the following is an example equivalence:

α β
= {i : γ, j : δ}

t ⇐⇒ γα δ

t@i

t@j

Thus far, we have been able to view all points-to edges as word-sized cells
containing word-sized values. We now have irregularly-sized cells and values and
thus want to ensure that updates at least respect cell size. We consider this issue
further in Sect. 3.2.

Program Expression Evaluation. In an unfolded graph, pointer updates
amount to the swinging of an edge. Such a destructive update is sound because of
separation. To determine which edge to swing and how to update it, we traverse
the graph starting from variables and following dereferences to find the edges
corresponding the cell being written and the cells being read. To describe this
traversal precisely, we define two judgments e ↓E,M (α � �→ β r) and e ⇓E,M β r
that evaluate a program expression e in an environment E and graph M to yield
a cell and a value, respectively, in Fig. 6. These expressions allow dereferences of
internal pointers, access of arbitrarily nested structures, and taking the address
of any cell. To keep the rules concise, we elide the environment and graph pa-
rameters, as they are constant. Furthermore, we implicitly require that any edge
appearing in the rules exists in the graph (though we show this side-condition
explicitly in Var as an example). The cell of a variable x is the one whose left
side of points-to is the address given by the environment (Var). Dereferences ∗e
and e
f follow an edge, that is, they get the value of their subexpression and find
the edge whose left side of points-to is that value or that value plus the field off-
set, respectively (Deref and FieldDeref). To find the value of an expression,
we simply find the cell corresponding to the expression and yield the right side
(i.e., the contents) (RVal). The rule for the address-of operator &e (AddrOf)
is more interesting in that its role as converting l-values into r-values is made
evident. In particular, it makes sure the cell corresponding to e exists and then
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returns its address. Thus, l-expressions � must be contained in r-expressions r to
capture internal pointers, as addresses can be returned as values. The rule for
the field offset expression e.f (FieldOffset) captures the shift from a points-to
edge representing a record to edges for its components (see Example 3). Note
that the cell evaluation judgment e ↓ (α � �→ β r) is needed only for expressions
&e and e.f (i.e., the value evaluation judgment e ⇓ β r could be defined directly
for x, ∗e, and e
f without it). Thus, in essence, the cell evaluation judgment
captures the additional complexity of internal pointers (from &e) and nested
structures (from e.f). In fact, we include the FieldDeref rule even though the
expression e
f is a synonym for (∗e).f as in C to emphasize this point. Now,
the transfer function for an update can be captured extremely concisely with
the following forward Hoare rule:

e ↓ (α � �→ β r) e′ ⇓ β′ r′

{α � �→ β r} e := e′ {α � �→ β′ r′}

Note that this one rule captures updates to variables and fields given by arbitrary
access paths involving ‘∗’, ‘.’, and ‘&’ (but ignoring size constraints).

Analyzing C-Style Dynamic Memory Management. Intuitively, the trans-
fer function for free should simply delete the outgoing points-to edges from the
pointer being freed. However, according to C standard, free can only be called on
pointers to the base address of an allocated block previously returned by malloc.
For instance, in the code below, the pointer value &y cannot be passed to free
because it was not returned by malloc:

S* x = (S*)malloc(sizeof(S)); S y = *x;
free(x) /∗ ok ∗/; free(&y) /∗ fails ∗/;

The address-of operator &e permits the creation of pointer values that are not
necessarily returned by malloc. The analysis must therefore track the nodes
that represent the base address of an allocated block along with those edges
that make up the block. Such a “tag” for allocated blocks is an example of a
property that naturally applies to nodes.

3.2 Compiler Dependencies Induced by Union Types

Thus far, we have focused on compiler independent modeling. However, one
prevalent use of C is to access low-level features that are necessarily dependent
on the compiler implementation. For example, a program may rely on sizes (e.g.,
int being 32-bits), address arithmetic, or a particular struct/object layout. In
this section, we describe language features that are often used in a way dependent
on the compiler implementation. Others have also realized that sometimes it is
necessary to analyze code in a compiler-dependent manner (e.g., [20]).

Untagged Unions and Overlapping Cells. One such instance is dependence
on multiple access paths mapping to the same memory location, which may occur
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1 union {

2 struct { int f; int g; int h; } s;

3 long long l;

4 } x, y;

5 x.s.f = . . .;
6 x.s.h = . . .;
7 y.l = x.l;

(a) Union-manipulating code. (b) An instance of the union type.

Fig. 7. An example to illustrate compiler dependence with C-style unions

with untagged unions in C. For example, consider the C code in Fig. 7. There are
several questions that are compiler dependent. Will the write to x.s.h on line 6
modify x.l? Will the write on line 7 copy x.s.f and x.s.g to y.s.f and y.s.g?
Should the read from x.l be allowed? Strictly according to the C specification,
we might say no [16], but we might also want to analyze programs that use such
assumptions. Furthermore, regardless of layout, a suitable representation must
allow us to determine that the write to line 5 modifies x.l but not x.s.g and
x.s.h. Note that the same kind of issues arise with type conversions and pointer
arithmetic.

� ::= path | path +o/path

r ::= �
path ::= ε | path@f

For such reasoning, we must expose byte-level off-
sets and field sizes. Offset expressions � are now
access paths path as before (for compiler-independent
accesses) or a path followed by a pair of a byte-level
numeric offset o and an access path (for compiler-
dependent ones) as defined in the inset. The byte-level numeric offset is given
by the compiler to correspond to the bundled access path. To expose field sizes,
we annotate points-to edges with the size of the memory cell it represents as
a compiler-provided integer sz (where necessary). We thus have edges of the
following form: α � �→ β r or α �

sz�→ β r. Note that this size information is a
property of the memory cell and thus appears on the edge and not on the nodes.

These offset expressions allow us to express untagged unions directly. All fields
of a union will have the same numeric offset but different access paths. Concep-
tually, with additional compiler-specific information about sizes, the analyzer
can ensure that writes to any field will overwrite and remove the information
about overlapping fields. Reading from a field that was not previously written
can also be detected and either throw an error or rely on compiler dependent
behaviors to interpret the data from the other field depending on the desired
model. However, having a points-to edge for each union field would violate our
representation invariant that all edges in the graph are separately conjoined.
Union fields share the same concrete memory cells and thus are clearly not sep-
arate. What we want is some amount of local sharing (or use of non-separating
conjunction) but we want to keep this additional complexity isolated.

To address this issue, we first introduce memory region values that correspond
to memory regions on which there exists multiple views. In essence, to represent
a union, the graph contains a points-to edge for the entire union and whose
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contents are points-to edges for the substructure. We notate a memory region
value as follows: [ +o1/path1

sz1�→ γ1 r1 | · · · | +on/pathn
szn�→ γn rn ].

Example 4 (Representing a Union). With memory region values, we represent
an instance of the union type described in Fig. 7b (e.g., x) as follows:

α
12�→ β ∧ β = [ +0/@s@f

4�→ γ | +4/@s@g
4�→ δ | +8/@s@h

4�→ ε | +0/@l
8�→ η ]

Note the similarity of memory region values with record values for nested struc-
tures (Sect. 3.1). In particular, we can interpret memory region values as follows
in separation logic:

α �
sz�→ β ∧ β = [ +o1/path1

sz1�→ β1 r1 | · · · | +on/pathn
szn�→ βn rn ]

def= (α � +o1/path1
sz1�→ β1 r1 ∗ true) ∧ · · · ∧ (α � +on/pathn

szn�→ βn rn ∗ true)

We write � +o′/path
′ for the concatenation of paths and offsets as appropri-

ate (i.e., instantiating �, we have two cases: path +o′/path
′ def= path +o′/path

′ and
+o/path +o′/path

′ def= +(o + o′)/path path
′ where path path

′ is the concatenation of
paths). Observe that the memory region edge (whose contents is a memory re-
gion value) encloses the complex sharing and can coexist with edges that do
not have numeric offsets or even sizes. Also, note that with numeric offsets, it is
tempting to compile away access paths into numeric offsets. However, doing so
throws away useful object-level information.

At the same time, the above definition is not completely satisfactory from
the point of view of representing unions entirely in the separating shape graph
because of the use of non-separating conjunction (∧). Specifically, we desire a
rule to push union edges of a memory region value into the graph (like for record
values in Example 3). We observe that this use of non-separating conjunction
is local to a node (i.e., it involves only outgoing points-to edges from α in the
above). Thus, we simply need a mechanism to mark that a set of points-to edges
from a node may share the same concrete memory cells (e.g., the edges on the
right-side of the definition would be marked as such a set). The analyzer must
then consider all of the points-to edges in the set simultaneously whenever one
of them is updated. For example, the separating shape graph at program point 8
in Fig. 4 shows the edge labeled node@uni@s that is in fact one such shared edge.
In the figure, we have elided other edges in its shared set; being more explicit,
there are four edges in the set with the following addresses: β @node +0/@uni@s,
β @node +0/@cst@value, β @node +0/@bin@l, and β @node +4/@bin@r. Note that
one elegant way to keep track of which edges may share the same memory region
is to apply the idea of fractional permissions [2,3]. Intuitively, reading from a
union field requires only shared permission (0 < permission < 1) but writing to
a union field requires exclusive permission (permission = 1) to ensure all other
union fields are updated appropriately.

Compiler Independent Uses of Unions. Not all uses of unions depend on the com-
piler implementation like in Example 4. We may instead conservatively model
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that all branches of a union may overlap (e.g., x.s.h and x.l is not known to be
disjoint). To do so, observe that the size and offsets need not correspond to sizes
and offsets in bytes as long as they conservatively model overlap. For example,
consider the following that conservatively approximates Example 4:

α
1�→ β ∧ β = [ +0/@s@f

0.3�→ γ | +0.3/@s@g
0.3�→ δ | +0.6/@s@h

0.4�→ ε | +0/@l
1�→ η ]

Here, we say α �→ β is of “unit size” and where the union fields s and l occupy
the entire region; then, the structure fields within s divide up the region.

4 A C Memory Model as Separating Shape Graphs

In this section, we formalize a static analysis abstraction, instantiating the shape
graphs introduced in Sect. 3, with explicit byte-level offsets and sizes.

A classical definition for memory states Mem is a finite map from values into
values, that is, to let Mem = Val ⇀fin Val where Val denotes machine values.
However, this definition does not directly capture the properties we want to
express and abstract. First, we need a detailed description of memory with fields,
addresses, and sizes. Second, we need to account for memory management—we
need to know for each byte, in which block it was allocated. Therefore, we adopt
a lower-level and more precise definition here. Our definition is based on a notion
of contiguous regions, that is, unbroken chunks of memory. A memory state is
specified as a set of allocated regions, a subdivision of these chunks into fields,
and a value mapping for each element of this subdivision. A contiguous region
r is defined by its base address ba and its size in bytes sz. We use subscripts to
indicate the region of a particular component (e.g., bar for the base address of
region r). A region r then covers the range of addresses R = [bar, bar + szr − 1].
We say that regions r and r′ are disjoint if and only if their ranges are disjoint
(i.e., Rr ∩Rr′ = ∅). A concrete memory state σ is a tuple (m, s, c) composed of
the following:

– A table of allocated memory chunks m, which we model with a set of regions.
These chunks represent allocation with malloc or on the stack.

– A subdivision s, which is a set of regions such that for all r, r′ ∈ s, regions r
and r′ are disjoint, and for all r ∈ s, there exists an allocated memory chunk
k ∈ m such that Rr ⊆ Rk.

– A content function c, which consists of a function from s into content values
such that for all regions r = (bar, szr) ∈ s where c(r) is defined, it denotes a
value of szr bytes.

Two concrete memory states are equivalent if and only if their content functions
describe the same address to byte mapping. In the following, we reason up to
this equivalence and consider two equivalent memory states equal.

Figure 8a depicts an excerpt from a concrete store, which contains an Arith
structure from Fig. 4 that represents the expression −val . Note that the Arith
expression nodes do not have the same layout due to the union field in use. Each
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0xNa 1

0xNb

0xNb 0

val

(a) Concrete store.

α

β

pad

γ

pad

δ

pad

ε

= 1 = 0

= val

op : [0, 1[

0

[1, 4[

0

node@uni@s : [4, 8[
0

[8, 12[ 0

op : [0, 1[

0

[1, 4[

0

node@cst@value : [4, 12[
0

(b) Unfolded graph.

α
arith

(c) Folded graph.

Fig. 8. Representation of an Arith object from Fig. 4

bold block corresponds to an allocated region (of size 12) and is partitioned into
smaller regions that correspond to each field.

We can now describe the concretization of a separating shape graph M ∈ M�

as a set of concrete stores σ. Recall from Fig. 5 that the analysis state contains
an element P ∈ P� that tracks properties of values. For example, we may need
numeric information (e.g., α = 42) or to tag a value with its size (e.g., sizeof(β) =
8). To express the denotation of such an abstract element, we need to take into
account the mapping of symbolic values α ∈ Val� into values (e.g., addresses,
integers, record values). This mapping is given by valuations ν : Val� → Val,
which describes a physical mapping. Formally, the concretization is defined by

γM : M� → P(Mem × (Val� → Val))
γP : P� → P(Val� → Val)

γ : D� → P(Mem)
def= (M,P ) �→ { σ ∈ Mem | ∃ν. ν ∈ γP(P ) ∧ (σ, ν) ∈ γM(M) }

where γM and γP are the concretization functions for separating graphs and
elements of the base domain, respectively. The function γ is the concretization
for the product domain D� of separating shape graphs and the base domain; note
that the valuation ν connects the concretizations of the components M and P .
In the following, we detail the main features of γM, including how we concretize
edges, disjoint regions, contiguous region summaries, and non-contiguous region
summaries. We discuss these aspects in the context of the shape graphs in Fig. 8b
and Fig. 8c that abstract the concrete store shown in Fig. 8a.

Concretizing Points-To Edges. A points-to edge models one memory cell
with an address and contents. The address of the memory cell is represented by
a base address—it’s source node—and optionally an offset expression �. Similarly,
the contents of a memory is given by a base address—it’s target node—and an
optional offset. In the following, we use only byte-level offsets (i.e., +o), as sym-
bolic access paths simply concretize to byte-level offsets in a compiler-dependent
manner (e.g., @f lowers to + offset(f)). Similarly, we assume points-to edges have
been annotated with the size of the cell they represent (e.g., by looking at field
types in a compiler-dependent way).
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Definition 1 (Concretization of Points-To Edges). A points-to edge is
given by a source (α, o) ∈ Val� ×N, a destination (α′, o′) ∈ Val� ×N, and a size
sz ∈ N. We notate such an edge as α+o

sz�→ α′+o′. The concretization on edges
for points-to γE(α+o

sz�→ α′+o′) is defined as follows:

(σ, ν) ∈ γE(α+o
sz�→ α′+o′) if and only if

σ = (m, s, c) and
s = { (ν(α) + o, sz) } and
c(ν(α) + o, sz) = ν(α′) + o′

That is, the concrete memory is a single region with base address ν(α) + o and
size sz with contents ν(α′) + o′. Note that ν should interpret α′ as an sz-bytes
value (while we keep this implicit here, type and size information of values should
be tracked in practice).

Offsets o, o′ are integers. Hence, this presentation allows for a straightforward
handling of field-level pointer arithmetic. For instance in Fig. 8b, the edge drawn
from α to γ is annotated with the range [4, 8[ and the target offset 0: it corre-
sponds to a memory cell of size 4, with base address ν(α)+4, and with contents
ν(γ) and thus concretizes to part of the concrete store shown in Fig. 8a assuming
ν(α) = 0xNa and ν(γ) = 0xNb.

Concretizing Disjoint Memory Chunks. Recall from Sect. 2 and Sect. 3
that in a separating shape graph, distinct edges stand for disjoint chunks of
memory (assuming unions are represented as memory region values). Thus, the
concretization of a graph is the union of the concretizations of each edge with a
disjointness or separation constraint. This constraint is analogous to formulas in
separation logic conjoined with ∗; however, to treat allocated memory explicitly,
we give direct a formalization here. For the moment, assume that the graph M
is fully unfolded (i.e., contains only points-to edges), then we define γM(M) as
the set of all (σ, ν) ∈ Mem × (Val� → Val) where σ = (m, s, c) and such that

– For each node α in graph M , if α is the base address of a memory region
of size sz, then region (ν(α), sz) belongs to m. In other words, the concrete
memory state σ has an allocated region at ν(α) of size sz.

– There exists a family of memory states (σe)e∈M such that

σ = ∗{σe | e ∈ M} and σe ∈ γE (e) for all e ∈ M

where we write e ∈ M for an edge e in graph M and overload σ1 ∗ σ2 on
concrete states to mean the combining of disjoint memories σ1 and σ2. That
is, memory state σ can be partitioned into a set of memory states that are
the contributions of each of the edges of the graph.

A C struct consists of a set of contiguous cells. For instance, the concrete store
presented in Fig. 8a is abstracted by the unfolded graph of Fig. 8b where each
edge corresponds to a subregion of the concrete store. Note that to be completely
explicit, some edges correspond to padding generated as part of the compiler-
dependent lowering (no information is ever available about the content nodes).
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In the remainder of this section, we consider the concretization of memory region
values introduced in Sect. 3.2 to capture C-style unions (Sect. 4.1) and of in-
ductive summaries (Sect. 4.2). Section 4.3 sums up the analysis operations using
this instantiation of separating shape graphs.

4.1 Concretizing Contiguous Regions

Arrays and Points-To Edges over Non-Constant Ranges. Arrays correspond to
contiguous sequences of bytes in memory, so sized points-to edges can be used to
capture array values. For a fixed-length array, we can split it into a points-to edge
for each cell, but we can also choose to represent it as one large cell and abstract
its contents with a dedicated array domain (e.g., [12,13,15]) as part of P�. With
a slight extension to allow field sizes and offsets to be expressed symbolically
(i.e., in terms of symbolic values), we can also model non-fixed-length arrays as
one large region or some finite number of chunks. The base domain P� should
express range and congruence constraints about that offset, like in Miné [20].
This representation is similar in purpose to iterated separating conjunction [22],
but we generally want the entire contents to be modeled as a single value.

In certain cases, using one large cell may be desirable, as existing array ab-
stractions can be re-used together with our shape abstraction. Thus, we can
avoid a need to reason precisely about indexing expressions in the shape do-
main. At the same time, this choice potentially limits the interaction between
the domains making it more difficult to analyze code that, for example, have an
inductive structure using arrays of pointers.

Untagged Unions and Overlapping Regions. As alluded to Sect. 3.2, memory
region values are key to capturing untagged unions or in general multiple regions
for the same memory region.

Definition 2 (Concretization of Memory Region Values). A multi-view
points-to edge is a points-to to a memory region value, that is, α+o

sz�→ β and
β = [ o1

sz1�→ α′1 o′1 | · · · | on
szn�→ α′n o′n ] such that for all i such that 1 ≤ i ≤ n,

oi+szi ≤ sz. The concretization of such a family of edges is the set of pairs (σ, ν)
such that σ = (m, s, c) where s = { (ν(α)+o, sz) } and read(c, ν(α)+o+oi, szi) =
ν(α′i) + o′i (for all i). The operation read(c, v, sz) stands for the sz-bytes value
that can be read in contents c from address v. In other words, the concrete
memory is a single region given by the points-to edge α+o

sz�→ β but whose contents
are also described by each of the views of β.

4.2 Summarizing Complex Regions Using Inductive Definitions

Recall that we summarize non-contiguous regions of unbounded size with checker
edges that correspond to inductive structures. As in our prior work [6,5], we take
advantage of user-supplied inductively-defined checkers c and generate sum-
maries that correspond to complete and partial structures. In particular, a
checker edge (α+o).c(δ) is an instance of an inductive checker definition c, and
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a segment edge (α+o).c(δ) ∗= (α′+o′).c′(δ′) is a partial derivation of checker c
from α+o up to α′+o′ and expecting checker c′.

We give here an indirect definition of the concretization of graphs containing
summary edges: in a first step, we unfold shape graphs into fully unfolded shape
graphs with no summary edges; in a second step, we concretize these using
the previously defined concretization. This definition captures the same notion
of inductively-defined regions as our previous definition [6,5], yet we take this
indirect approach here since it extends more cleanly to the case where we take
allocated regions into account. As a notation, we write (M,P ) � (M ′, P ′) to
mean that the pair of graph and base domain element (M ′, P ′) can be obtained
from (M,P ) by unfolding one summary edge in M once. As inductive checkers
include data constraints, unfolding updates both the graph and the base domain
element.

Definition 3 (Concretization of a Graph with Summary Edges). The
concretization γM(M) is the set of pairs (σ, ν) such that (M,�) �∗ (M ′, P ′),
M ′ is fully unfolded, σ ∈ γM(M ′), and ν ∈ γP(P ′). Note that we write � for
the top element of the base domain (i.e., no data constraints) and �∗ for the
reflexive-transitive closure of �.

Returning to the syntax tree example from Fig. 4, a user-supplied checker for
arith may specify that op serves as the discriminator:

t.arith() :=

if (t.op = 0) then true
else if (t.op = 1) then t.node.uni.s.arith()
else if (t.op >= 2) then t.node.bin.l.arith() and t.node.bin.r.arith()

(i.e., 0 is for constants, 1 is a unary operator, and ≥ 2 are binary operators).
This checker translates to the following low-level definition with compiler-specific
offsets and sizes made explicit (which could be obtained from the C types):

π.arith() :=
〈π@op

1�→ β ∗ π@node
8�→ γ,alloc(π, 12) ∧ β = 0 ∧

γ = [+0/@cst@value
8�→ δ1 | +0/@uni@s

4�→ δ2 | +0/@bin@l
4�→ δ3 | +4/@bin@r

4�→ δ4] 〉
∨ 〈π@op

1�→ β ∗ π@node
8�→ γ ∗ δ2.arith(),alloc(π, 12) ∧ β = 1 ∧ γ = . . . 〉

∨ 〈π@op
1�→ β ∗ π@node

8�→ γ ∗ δ3.arith() ∗ δ4.arith(),alloc(π, 12) ∧ β ≥ 2 ∧ γ = . . . 〉

The predicate alloc expresses that a base address is an allocated region of a
particular size. We note that Fig. 8b is one of the unfolded versions of Fig. 8c;
that is, Fig. 8c abstracts the concrete store of Fig. 8a.

4.3 Shape Analysis for Compiler-Dependent C

Given a concrete operation Φ : Mem → Mem, the corresponding abstract
transfer function Φ� : D� → D� should be sound, that is, for all D ∈ D� and for
all σ ∈ γ(D), it is the case that Φ(σ) ∈ γ(Φ�(D)). In other words, performing
the operation at the abstract level does not lose any concrete behavior.
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Transfer Functions and Materialization. To reflect assignment statements and
conditional guards, transfer functions evaluate expressions to cells and values us-
ing the rules given in Fig. 6 to determine which edges should be modified. How-
ever, in many cases, the edges corresponding to subexpressions are not readily
available in shape graphs. They need to be materialized, that is, we need to con-
cretize part of the summarized regions so that the appropriate points-to edges are
revealed. Since materialization is a partial concretization operation, we now have
two ways to materialize: for non-contiguous regions (Sect. 4.2) and for contigu-
ous regions (Sect. 4.1). The former case corresponds to unfolding an inductive
summary and is described in detail in our previous work [5]; the latter case
corresponds to splitting a subpart of a points-to edge and is new to our frame-
work. To describe this new materialization operation, we write extract[i,j[(α)
for the operation that extracts bytes i to j from the value represented by α.
Now, if 0 ≤ sz0 < sz, then the following pair of edges and constraints can be
materialized from the edge α+o

sz�→ α′:

α+o
sz0�→ α′0 ∗ α+(o + s0)

sz−sz0�→ α′1
where α′0 = extract[0,s0[(α

′) and α′1 = extract[s0,s[(α′)

The two last constraints are represented (in a conservative way) in P�. This rule
allows, for example, to materialize a single array cell from a whole array value.

Memory Management Operators. To model a successful call to malloc, the anal-
ysis creates a fresh memory region value β tagged with the size of the allocated
area; it then creates a points-to edge of that size to β. To analyze a call to free,
we need to materialize the entire region to free based on the allocated-size pred-
icate on the node. We then check that the region to free was indeed allocated
before discarding the edges corresponding to the region. The pointer to the ad-
dress of the freed block becomes dangling (i.e., all outgoing edges are removed).
Parkinson [21] has also described this need to track allocated regions.

Widening. To enforce termination, we use a widening operator, which was ex-
tensively described in our prior work [6,5]. What is particularly interesting is
that this operator requires minimal changes to accommodate the new kinds of
edges introduced in this paper. Intuitively, the widening relies only on the graph
structure, which is conserved by our extensions in this paper. It is sound (i.e.,
computes an over-approximation of concrete joins) and terminating (there is no
infinite, non-converging sequence of widening iterates).

5 Implementation and Timing Results

We have extended the memory model of Xisa to reflect the features introduced
in Sect. 4, including support for nested structures, pointers to internal fields,
numerical offsets and sizes, memory region values, and base address of allocated
blocks (to check malloc and free in a sound manner). The overall structure of
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Table 1. Benchmark results for verifying shape preservation. We show the size of the
benchmark in lines of code (number of lines of the relevant function), the analysis
time, the maximum number of disjuncts at any program point (Peak Disj.), and the
maximum number of iterations at any point (Iter.).

Size Time Peak Disj. Iter.
Benchmark (loc) (sec) (num) (num)

traversal 20 0.036 8 2
eval 70 0.060 24 2x2
remsub 37 0.116 8 2
distribute 41 0.144 14 2
move neg up 120 0.488 38 2

unfolding and folding (widening) algorithms remained largely unchanged; there
were only small, local extensions to deal with the new annotations on points-
to edges. Code that was analyzable by the previous Xisa implementation is
analyzable with this finer model. Support for arrays does not yet exist, primarily
because it would require a more expressive numerical domain P� and extensions
to the base domain interface.

Table 1 shows some implementation results that require this refined memory
model. These examples are algorithms that traverse and/or modify in place a
syntax tree structure like the one shown in Fig. 4. They evaluate or simplify
arithmetic expressions (e.g., by distributivity) and delete or create new nodes as
needed. In the table, we show analysis times, the maximum number of disjuncts
at any program point, and the number of widening iterations needed in each loop
(in the case of the “eval” example, we give numbers for each nested loops). The
low values for number of iterations provides evidence that our widening operator
enforces quick convergence while retaining precise results. We note that the peak
number of disjuncts is rather high in the last example. This high number is due
to the presence of nested if-statements that lead to successive unfolding of several
levels of checker edges. Since we only try to collapse disjuncts at widening points,
this implementation choice results in an exponential number of disjuncts in short
code sections. Better heuristics to control the maximal number of disjuncts could
improve performance, though we leave this to future work.

6 Related Work

The use of shape graphs for approximating unbounded structures dates back to
at least Jones and Muchnick [17]. Their design and use have formed the basis
of several steps in the development of shape analysis. Sagiv et al. [23] defined
an early version of materialization with shape graphs that was subsequently
refined in TVLA [24] with the perspective of “partial concretization” and the
ability to simultaneously express both may and must relations between objects.
A line of subsequent work has looked at compacting this representation (e.g.,
by merging similar graphs [19]). Traditionally, shape graphs have been applied
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on Java-like structures using the the “object-as-node” paradigm. Very recently,
Kreiker et al. [18] have formulated an extended memory model in the TVLA
framework to reason about pointers to nested structures. They describe shape
graph models that capture nested structures and internal pointers using both
“field-as-node” and “object-as-node” paradigms. In contrast, separating shape
graphs take a “cell-as-edge” approach inspired by separation logic [22], which we
use to separate object or value-level properties on nodes from field or component-
level properties on edges.

There has also been a line of work that builds shape analyzers around formulas
in separation logic (e.g., [11,14,6]). In the last few years, significant progress
has been made in handling realistic C code. For example, Berdine et al. [1]
handle composite data structures, such as lists of lists, and Yang et al. [26] have
looked at a ≈10,000 line device driver. Nonetheless, the focus has been on Java-
like structures (i.e., limited reasoning on internal pointers or layout dependent
features). One exception is Calcagno et al. [4] that have described a low-level
analyzer with pointer arithmetic inside memory blocks.

There are also program analyzers, such as Miné [20], that address many low-
level aspects of C, including unions and pointer casts, but they are not typically
concerned with dynamic memory allocation and unbounded structures as in shape
analysis. Another class of tools focuses on being as concrete as possible potentially
trading off some automation or exhaustiveness. We take a different angle where we
want a representation that supports user-guided abstraction. The HAVOC tool [7]
combines reachability predicates with pointer arithmetic reasoning and has been
applied to verify low-level properties of system drivers [9]. Clarke et al. [8] give a
low-level encoding of C features for model checking. Xie and Aiken [25] perform
exact bit-level encoding with bounded symbolic execution.

7 Conclusion

In this paper, we propose separating shape graphs as an abstraction that can
handle typical, high-level data types and low-level aspects of C in a compositional
manner. From the analysis point of view, the main result is that existing algo-
rithms for unfolding and widening of shape abstractions are mostly unaffected
in this extended framework.

Acknowledgments. We thank Jörg Kreiker, Antoine Miné, Hongseok Yang,
Matthew Parkinson and Peter O’Hearn for stimulating discussions.
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Abstract. The combination of message passing and locking to protect shared
state is a useful concurrency pattern. However, programs that employ this pattern
are susceptible to deadlock. That is, the execution may reach a state where each
thread in a set waits for another thread in that set to release a lock or send a
message.

This paper proposes a modular verification technique that prevents deadlocks
in programs that use both message passing and locking. The approach prevents
deadlocks by enforcing two rules: (0) a blocking receive is allowed only if another
thread holds an obligation to send and (1) each thread must perform acquire and
receive operations in accordance with a global order. The approach is proven
sound and has been implemented in the Chalice program verifier.

0 Introduction

Concurrent threads of execution communicate and synchronize using various paradigms.
One paradigm is to let threads have shared access to certain memory locations, but to in-
sist that each thread accesses the shared memory only when holding a mutual-exclusion
lock. Two familiar programming errors that can occur with this paradigm are forgetting
to acquire a lock when accessing shared state and deadlocks, that is, not preventing sit-
uations where in a set of threads each is waiting to acquire a lock that some other thread
in the set is currently holding. Another paradigm is to let threads synchronize by send-
ing and receiving messages along channels. In a pure setting with channels, there are no
shared memory locations and data is instead included in the messages. Deadlocks are
possible programming errors in this setting, too. Here, a deadlock occurs when a set of
threads each is waiting to receive a message from another thread in the set.

Because each of these two paradigms is especially natural for solving certain kinds
of problems, there are also situations where one wants to use a combination of the
paradigms. For example, consider a concurrently accessed binary tree protected by
mutual-exclusion locks. An iterator of this data structure uses locks to read elements
from the tree, but may choose to provide these elements to clients via channels, which
are more suitable for that task. In the combined setting, a deadlock occurs when a set of
threads each waits for another thread in that set to release a lock or send a message.

In this paper, we consider program verification in the combined setting. In particular,
we present a technique for specifying programs in such a way that they can be verified
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to be free of deadlock. Our technique is modular, meaning that the verifier can be run on
each part of a program separately. We consider multiple-writer, multiple-reader, copy-
free channels with infinite slack, that is, with non-blocking sends. The channels are first
class, meaning they can themselves be stored as shared data or passed along channels.
We describe the work in the context of the prototype language and verifier Chalice.

This paper is structured as follows. Sec. 1 describes the existing features of the Chal-
ice program verifier that are relevant to this paper. In Sec. 2 and 3, we extend Chalice
with channels and show how deadlock can be avoided. The formal details of the verifi-
cation technique together with a soundness proof are then given in Sec. 4 and 5.

1 Background on Chalice

Chalice [21,22] is a programming language and program verifier for concurrent pro-
gramming. The language supports dynamically allocated objects and allows programs
to include contracts (specifications). The verifier detects common bugs such as data
races, null dereferences, violations of assertions and other contracts, and deadlocks. If
a program passes the verifier, it is compiled (via C#) to executable code for the .NET
platform. The executable code is free of contracts and ghost state, which the verifier
confirmed to hold and which were used only to make the verification go through. In
this section, we highlight Chalice’s features that are relevant to this paper: permissions,
locks, and deadlock prevention; see [22] for a full tutorial.

1.0 Permissions

Verification in Chalice centers around permissions and permission transfer. Conceptu-
ally, each activation record holds a set of permissions. A memory location can be read or
written by an activation record only if it has permission to do so. In this paper, we do not
distinguish between read and write permissions, but see [21]. We denote the permission
to access the field f of an object o by acc(o.f). Our implementation provides predi-
cates to abstract over permissions and to express permissions of whole object structures
[22], but we omit them here for simplicity. Permissions are part of the ghost state used
to reason about programs, but they are not represented in executable code.

The set of permissions held by an activation record can change over time. More
specifically, when a new object is created, the creating activation record gains access
to the fields of the new object. For example, when the method Main of Fig. 0 cre-
ates the object a, it gets permission to access a.balance, and thus it is allowed to
set a.balance to 10 on the next line. In a similar fashion, Main receives permission
to access b.balance when creating b. The fourth statement of Main is a method call:
call b.SetBalance(20);. Execution of a method call starts by pushing a new activa-
tion record onto the stack. What permissions does this new activation record initially
have? The answer to this question is determined by looking at the precondition (key-
word requires) of SetBalance, which indicates that the caller must hold the permis-
sion to access this.balance. This permission transfers from the caller to the callee
on entry to the method. In a similar fashion, the postcondition (keyword ensures) in-
dicates what permissions transfer from the callee to the caller when the method re-
turns. In our example, Main gives away its permission to access b.balance when it calls
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class Account {

var balance: int;

invariant acc(this.balance);

method SetBalance(a: int)
requires acc(balance);
ensures acc(balance) && balance == a;

{ balance := a; }

method Transfer(from: Account, to: Account, amount: int)
requires waitlevel << from.mu && from.mu << to.mu;

{
acquire from;

acquire to;
fork tok := to.SetBalance(to.balance + amount);
call from.SetBalance(from.balance - amount);

join tok;
release to;
release from;

}

method Main()

{
var a := new Account;
a.balance := 10;

var b := new Account;
call b.SetBalance(20);
share a above waitlevel; share b above a;

call Transfer(a, b, 5);
}

}

Fig. 0. A small Chalice program illustrating permissions, permission transfer, locks, and deadlock
prevention

b.SetBalance(20). The activation record b.SetBalance(20) uses this permission to
justify its update of b.balance, and then passes the permission back to the caller. That
is, SetBalance effectively just borrows the permission from Main; in general, however,
a method need not always return the permissions stipulated by its precondition.

If an activation record does not return the permissions that it may still hold at the end
of the method, then those permissions are lost forever. In effect, this renders some fields
inaccessible. We say that the method leaks the permissions, which is allowed.1

In addition to calls, Chalice supports fork statements. Just like an ordinary call, ex-
ecution of a fork statement leads to the creation of a new activation record. However,

1 The Chalice verifier has a -checkLeaks option that verifies the absence of leaking. An unused
object can then be returned to the system, along with the permissions to its fields.
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the new activation record is not pushed onto the current stack, but rather a new thread
with its own stack is created and the callee is executed by the new thread. A fork oper-
ation is non-blocking. That is, the forking thread does not wait for the forkee to run to
completion; instead, the forking and forked threads execute concurrently. Using a join
statement, one thread can wait for another to complete. More specifically, fork returns
a token, and a join on a token causes the joining thread to wait for the completion of
the thread corresponding to the token. A token is allowed to be joined only once. Sim-
ilarly to an ordinary call statement, the activation record that does the fork loses the
permissions entailed by the precondition of the forkee, and the activation record that
completes the corresponding join gains the permissions entailed by the postcondition.
In our example, the forked activation record for SetBalance (in the method Transfer)
obtains access permission to from.balance, and this permission is returned at the join
statement.

Note that each call statement can be considered to be syntactic sugar for a fork
statement immediately followed by a corresponding join.

Chalice enforces that when one thread holds full permission to a memory location,
then no other thread can hold any permission to that memory location. This prevents
race conditions and lets the verifier reason about data invariants in the presence of mul-
tiple threads.

1.1 Locks

The machinery introduced so far allows synchronization and permission transfer be-
tween threads only when threads are forked or joined. However, access to shared data
such as a shared buffer requires various threads to obtain and relinquish permissions
while the threads are running. Access to shared data can be synchronized using mutual-
exclusion locks. In Chalice, a lock can hold access permissions, just like an activation
record can. Therefore, a thread can pass permissions to another thread by first transfer-
ring them to a lock, which allows the other thread to obtain them from the lock.

An object in Chalice can be in one of three states: not-a-lock, available, and held.
The object transitions between these states upon execution of a share, acquire, or
release statement. A newly allocated object starts in the not-a-lock state, where it
cannot be used as a lock. The share statement initializes a not-a-lock object as a lock
and transitions the object to the available state. The acquire operation waits until the
object is in the available state and then transitions it to the held state. The release
operation transitions the object back to available.

A class can declare a lock invariant (keyword invariant), which indicates, for each
lock corresponding to an instance of the class, what permissions are held by the lock
when the lock is in the available state. For example, the invariant declaration in class
Account of Fig. 0 indicates that the lock corresponding to an Account object o holds
permission to the field o.balance. In other words, the lock o protects o.balance. When
an activation record puts an object into the available state (by a share or release
operation), it transfers the permissions entailed by the object’s invariant to the lock.
Conversely, the permissions held by the lock are transferred to an activation record
when it completes an acquire operation on the lock.
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So, when a thread wants to access a shared memory location, it uses an acquire op-
eration to compete for the lock that protects the location. Upon successful acquisition of
the lock, the permissions held by the lock are transferred to the acquiring thread. When
the thread is done accessing the location, it uses the release operation to release the
lock and transfer the permissions back into the lock. For example, the method Transfer
in Fig. 0 locks the shared Account objects from and to to gain access to their balance
fields.

Note that it is the mechanism of permissions that prevents data races. Lock acquisi-
tion is one way to obtain permissions, but the act of holding a lock does not by itself
imply any rights to access memory.

1.2 Deadlock Prevention

To ensure mutual exclusion, the acquire operation suspends the execution of the ac-
quiring thread until the requested lock can be given to that thread. A well-behaved
program makes sure that other threads will eventually make such a lock available.

Chalice prevents deadlocks by breaking cycles among acquiring threads. This is done
by letting a program associate each lock with a wait level and then checking that the
program acquires the locks in strict ascending order. The wait levels are values from a
set Mu , which is a dense partial order with a bottom element. Chalice uses << to denote
the strict partial order on Mu . A program specifies the wait level of a lock using the
share statement, which takes an optional between ... and ... clause. Alternatively,
a clause above ... or below ... may be used if only one bound is given. By default,
the share statement uses above waitlevel, where waitlevel denotes the highest lock
currently held by the thread. For example, method Main in Fig. 0 shares a and b to make
them available for locking. Since b is shared above a, a thread that holds b is not allowed
to acquire a.

The wait level of an object is recorded in a ghost field called mu. In this paper, we
assume mu to be immutable, that is, once a lock has been shared with a certain wait level,
that level cannot change. Our previous work [21] permits dynamic lock re-ordering,
which we omit here to focus on the essentials. Since mu is immutable, accesses to mu
do not require any permissions. In Fig. 0, Transfer’s precondition demands (0) that the
current thread only hold locks whose wait level is strictly below from.mu and (1) that
from’s level lie below to’s level.

2 Channels

A channel is an unbounded message buffer with two operations, send and receive. The
former operation adds a message to the buffer, while the latter blocks until a message
becomes available, removes that message from the buffer, and returns it to the receiving
thread. A channel may declare a message invariant (keyword where), which constrains
the messages sent over the channel and also specifies permissions that are transferred
over the channel along with each message.

As an example, consider the program of Fig. 1. The first two lines declare a new
channel type Ch with two parameters p0 and p1. These parameters indicate that each
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message for a Ch channel object consists of two Person objects. The where clause states
that each message in a Ch channel carries the permissions for accessing the age field of
the persons passed as parameters. In addition, it specifies that p0 must be at least 18
years old. The method Main creates two persons, cooper and dylan, sends a message
on the channel ch, and finally receives a message on that channel. When an activation
record sends a message, the permissions entailed by the where clause transfer from the
sender to the message. Similarly, when a message is received, the permissions in the
message transfer to the receiving activation record. The mechanism makes the channels
copy-less, because only the object references among the message parameters, not the
data fields accessed from those references, are sent over the channel.

channel Ch(p0: Person, p1: Person)

where acc(p0.age) && acc(p1.age) && 18 <= p0.age;

class Person {

var age: int;

method Main() {

var cooper := new Person; var dylan := new Person; cooper.age := 62;

var ch := new Ch;

send ch(cooper, dylan);

// ...

receive a, b := ch;

}

}

Fig. 1. Declaration of a channel type Ch and a Mainmethod that sends and receives

Note that, analogous to the semantics of pre- and postconditions and lock invariants,
it is an error if at a send statement the sender lacks the permissions entailed by the
message invariant or if the other constraints in the message invariant are not satisfied.
For instance, if we omitted the update cooper.age := 62;, then the verifier would
report that the last constraint in the where clause does not hold.

A program using channels can deadlock if a thread is blocked on a receive state-
ment, waiting for a message that is never sent. For example, consider the following code
snippet.

ch := new Ch;
receive a, b := ch; // deadlock

This program deadlocks, since the thread is blocked forever at the receive statement.
To avoid such deadlocks, we impose the restriction that a thread may perform a receive
statement only if there are sufficient messages in the channel or other threads hold
obligations to send. We enforce the restriction as follows.

In addition to permissions, each activation record holds a number of credits. We de-
note the right to receive n messages (0 ≤ n) on channel ch by credit(ch, n). The
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obligation to send n messages on ch is denoted by credit(ch, -n). We sometimes re-
fer to a negative credit as a debt. credit predicates can be used in specifications. Mul-
tiple occurrences of a credit predicate are equivalent to one predicate with the sum of
the credits, that is, credit(ch,i) && credit(ch,j) is the same as credit(ch,i+j).

A receive statement is allowed only if the activation record holds at least one credit
on the corresponding channel. Execution of a receive statement decreases the number
of credits by one. Conversely, a send statement increases the number of credits by one.
However, threads can always send messages without regard to the number of credits.
While positive credits (permissions to receive) can be leaked at the end of method bod-
ies, negative credits (obligations to send) must always be returned to the caller. These
rules enforce the invariant that the total sum of the number of credits for a channel Ch
never exceeds the number of items stored in the channel.

Just like permissions can be transferred between activation records (specified by
requires and ensures), so can credits. For example, in the program in Fig. 2, the
Main method transfers a debt to Producer. That is, Main decreases its balance for ch
by -1, resulting in a positive balance for Main. Consequently, Producer starts with an
obligation to send and Main has obtained permission to receive. Main then transfers a
credit to Consumer, resulting in a 0 credit balance for Main.

Also, just like permissions can be stored in lock invariants and message invariants,
so can positive credits. For example, every message with a non-negative x parameter in
Fig. 2 entails a credit. Thus, in effect, Producer puts into each such message a promise
that it will send yet another message, and this credit sent along the channel allows
Consumer to “pay” for its next receive operation.

Storing negative credits in lock or message invariants is not allowed. Since a program
need not acquire all available locks or receive all sent messages eventually, allowing
negative credits here would be a way to hide debt. We enforce this requirement by
a simple proof obligation for each lock and message invariant. Moreover, a call is
allowed only if transferring the credits entailed by the precondition does not bring the
caller into debt. This requirement is necessary to prevent a thread from creating a credit
by a simple local method call. The callee could use the credit to receive, but the caller,
which has the obligation to send and which executes in the same thread, would never
continue its execution, and the program deadlocks. This restriction does not apply to
fork, because there the forker will continue its execution and, thus, can live up to is
obligation to send.

The credit accounting introduced so far handles channels with blocking receives and
non-blocking sends. We can also support channels with finite slack (that is, blocking
sends) by distinguishing between the receive credits described above and send credits.
We omit a discussion of this extension because it does not reveal anything interesting.

In many languages, channels can be implemented using locks and condition vari-
ables. Channels have the advantage that each send operation earns a credit because it
puts a message in the buffer. In contrast, a signal operation on a condition variable is
lost when no thread is currently waiting on the condition variable. Therefore, one cannot
decide locally whether a signal operation earned a credit or not. This difference makes
it much harder to prove deadlock freedom for condition variables than for channels.
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channel Ch(x: int) where 0 <= x ==> credit(this, 1);

class ProducerConsumer {
method Produce(ch: Ch)

requires credit(ch, -1);
{

var i := 0;
while(i < 10)
invariant 0 <= i && i <= 10 && credit(ch, -1);

{ send ch(i); i := i + 1; }

send ch(-1);

}

method Consume(ch: Ch)

requires credit(ch, 1) && waitlevel << ch.mu;
{

var x: int;
receive x := ch;
while(0 <= x)
invariant waitlevel << ch.mu;

invariant 0 <= x ==> credit(ch, 1);
{ receive x := ch; }

}

method Main() {
var ch := new Ch;

fork Produce(ch);
fork Consume(ch);

}

}

Fig. 2. Producer/Consumer example illustrating the use of channels. Operator ==> denotes short-
circuit boolean implication. The loop invariant (keyword invariant) specifies what is given to
each new iteration and what must be returned by each completed iteration.

3 Global Wait Order

The rules described in the previous section enforce the invariant that, for each receiving
thread, either the corresponding channel contains a message or a thread holds the obli-
gation to send. However, this invariant does not suffice to rule out deadlocks. A dead-
lock can still occur if execution reaches a state where a subset of the running threads is
waiting for another thread in that set to send a message.

As an example, consider the program of Fig. 3. Both the main thread and the forkee
block at their respective receive statements and wait forever for the other to send. A
similar situation can occur when combining locks and channels. For example, the main
thread in Fig. 4 waits for a message on channel ch, while the forkee waits for the main
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thread to release the lock. Note that both of these programs satisfy the rules described
in the previous section. In particular, at each receive statement, the credits held by
the activation record on the corresponding channel are strictly positive and no debt is
leaked at the end of methods.

In the combined setting with locks and channels, we say a deadlock occurs if each
of a set of threads is waiting for another thread in that set to either send a message or
release a lock (or formally, if the graph corresponding to a configuration as defined in
Definition 2 contains a cycle). We break cycles and prevent deadlocks in the combined
setting by using a global wait order that includes locks and channels. Just as locks,
channels have a wait level that is stored in the ghost field mu. For channels, the ghost
field mu is set (using a between clause) when the channel is created. Receiving on a
channel ch requires ch.mu to be larger than waitlevel. We redefine waitlevel as the
larger of: the largest object whose lock is held by the thread and the largest channel for
which the thread has an obligation to send.

The additional restrictions outlined above cause verification of the programs in
Figs. 3 and 4 to fail. The first program does not verify (and cannot be made to ver-
ify by adding further specifications) because ch0.mu and ch1.mu cannot both be larger
than the other. This means that either the receive statement in the main thread or in the
forkee is disallowed, as the wait level of the corresponding channel does not lie above
waitlevel of the respective thread. The second program does not verify because either
the lock in the acquire statement in M or the channel of the receive statement in the
main thread does not lie above waitlevel of the respective thread.

Besides acquire and receive, join is the third Chalice statement that might cause
a thread to wait and is, thus, relevant for deadlock prevention. For instance, a thread
might wait to receive a message before terminating while another thread joins the first
thread before sending the awaited message. In this paper, we encode join statements
via channels: Each method receives an extra parameter, a channel, and an obligation to
send one message on that channel. Before forking, the forker must create a new channel

channel Ch() where true;

class Program {
method M(ch0: Ch, ch1: Ch)

requires ch0 != ch1;

requires credit(ch0, 1) && credit(ch1, -1);
{ receive ch0; send ch1(); }

method Main() {

var ch0 := new Ch; var ch1 := new Ch;
fork M(ch0, ch1);
receive ch1; send ch0();

}
}

Fig. 3. A program that deadlocks using just channels
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channel Ch() where true;

class Program {
method M(ch: Ch)

requires credit(ch, -1);
{ acquire this; send ch(); release this; }

method Main() {
var ch := new Ch;

acquire this;
fork M(ch);
receive ch;

release this;
}

}

Fig. 4. A program that deadlocks using channels and locks

above its wait level and pass it to the forkee. The forkee must send a message on that
channel right before it terminates. A thread can then join another thread by receiving
on the designated channel. The obligation to send on the designated channel increases
the wait level of the forkee above the wait level of the forker, which prevents cyclic
waiting. In this encoding, a call statement is encoded by a fork immediately followed
by a join. This encoding simplifies the presentation of the proof rules and the soundness
argument; programs may still contain call and join statements.

4 Verification

In this section, we make the informal rules described in previous sections precise. We
define the proof rules for the most interesting statements by translating them into a
pseudo-code language, whose weakest precondition semantics is obvious. In this trans-
lation, we use assert statements to denote proof obligations and assume statements
to state assumptions that can be used to prove the assertions. We encode the heap as
a two-dimensional array that maps object references and field names to values. The
current heap is denoted by the global variable Heap . To avoid clutter, we omit null ref-
erence checking from the formalization. A program verifier can be built from these rules
by writing the pseudo code in an intermediate verification language like Boogie [2]. In
fact, the pseudo code we use is essentially Boogie 2, and this is how we implemented
the Chalice verifier.

4.0 Encoding of Permissions and Credits

Conceptually, each activation record holds a number of permissions and credits. We
track permissions during verification via a global variable P . P is a two-dimensional
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map from object references and field names to permissions. For simplicity, we encode
permissions as boolean values in this paper, but the Chalice verifier supports fractional
permissions [21]. An activation record has access to o.f if and only if P [o, f ] equals
true .

In a similar fashion, we track credits via a global variable C , a map from channel
instances to integers. C[o] denotes the number of credits held by the current activation
record for the channel o .

4.1 Encoding of Locks and Wait Levels

Our encoding introduces a thread-local variable λ , which yields the set of all objects
whose locks are held by the thread of the current activation record.

The Chalice expression waitlevel is then encoded as the maximum of the wait lev-
els of locks held by the current activation record and of channels for which the current
activation record has an obligation to send:

waitlevel ≡ max ({ o.mu | o ∈ λ } ∪ { c.mu | C[c] < 0 })

For convenience, we will use waitlevel in the pseudo code below as an abbreviation
for this encoding.

4.2 Encoding of Permission and Credit Transfer

In Chalice, permissions and credits often transfer from and to activation records. For
each statement, the set of permissions and credits being transferred is described by an
assertion. For example, when a message is sent, the permissions and credits described
by the channel’s where clause transfer from the activation record to the message. Sim-
ilarly, when a lock is acquired, the permissions and credits described by the lock in-
variant transfer from the lock to the acquiring activation record. In our verification, we
model permission and credit transfer via two operations, Inhale and Exhale . The former
operation adds the permissions and credits described by an assertion to the activation
record’s P and C , while the latter removes them.

The definitions for Inhale and Exhale are shown in Fig. 5. When an activation
record obtains permission to access o.f by inhaling the permission, we assign an ar-
bitrary value to Heap[o.f ] (keyword havoc ) since other threads may have updated
the location while it was not accessible to the current thread. Inhaling credit(ch, n)
increases the number of credits for ch by n . Inhaling a conjunction P && Q corre-
sponds to first inhaling P and afterwards inhaling Q . If the inhaled assertion is a pure
boolean expression (that is, contains neither access nor credit predicates), we assume the
expression holds.

Exhaling permission to access o.f corresponds to removing the permission. How-
ever, exhaling permissions is allowed only if the permission is present. Exhaling credits
corresponds to decrementing the credit map. Exhaling a conjunction P && Q corre-
sponds to first exhaling P and afterwards exhaling Q . Finally, exhaling a pure assertion
corresponds to proving that the assertion holds.
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Inhale�acc(o.f)� ≡
havoc Heap[o, f ];
P [o, f ]:=true;

Inhale�credit(ch, n)� ≡
C[ch]:=C[ch] + n;

Inhale�P && Q� ≡
Inhale�P�;
Inhale�Q�;

Otherwise :
Inhale�E� ≡

assume E ;

Exhale�acc(o.f)� ≡
assert P [o, f ] = true;
P [o, f ]:=false;

Exhale�credit(ch, n)� ≡
C[ch]:=C[ch]− n;

Exhale�P && Q� ≡
Exhale�P�;
Exhale�Q�;

Otherwise :
Exhale�E� ≡

assert E ;

Fig. 5. Transfer of permissions and credits via Inhale and Exhale .

4.3 Encoding of Channel Operations

Channels support three operations: creation, sending, and receiving. The translation to
pseudo code for each of these statements is shown in Fig. 6.

x := new Ch between l and u; ≡
assert l << u;
havoc x ;
assume C[x ] = 0;
assume Heap[x , mu] << u;
assume l << Heap[x , mu];

send ch(x1,...,xn); ≡
C [ch ] := C [ch] + 1;
Exhale�W [ch/this, x1/y1, . . . , xn/yn ]�;

receive x1,...,xn := ch; ≡
assert waitlevel << ch.mu;
assert 0 < C [ch];
C [ch ] := C [ch]− 1;
Inhale�W [ch/this, x1/y1, . . . , xn/yn ]�;

Fig. 6. Translation to pseudo code for channel operations. For new, we omitted some details that
encode that the new channel is different from all previously existing channels. For send and
receive, ch is assumed to have type channel Ch(y1: t1, ..., yn: tn) where W.

A channel creation x := new Ch between l and u; creates a new channel whose
mu field lies between l and u .2 To guarantee a wait level exists that lies between l and
u , we first check that l is strictly smaller than u . Then, we assign an arbitrary channel
identifier to x , such that the current thread has no credits for that channelx and such
that l << x .mu << u .

The statement send ch(x1, ..., xn); adds a new message to the channel ch and
earns a credit, which is reflected in the credit map of the sending activation record.
The permissions and credits described by the where clause transfer from the activation
record to the message (encoded by Exhale).

2 For simplicity, we consider only a single lower and upper bound. However, our implementation
supports an arbitrary number of bounds.
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The statement receive x1, ..., xn := ch; removes a message from the channel
ch . Receiving is allowed only if waitlevel is smaller than the wait level of ch and if
the current activation record holds at least one credit for ch. Since receiving removes
a message from the channel, the number of credits is decremented by one. The per-
missions and credits described by the where clause transfer from the message to the
receiving activation record.

4.4 Encoding of Fork, Join, and Call

As described at the end of Sec. 3, we encode join statements via channels, and call
statements via fork and join. In this encoding, we make the following modifications
for each method m(p: T) returns (r: R) with precondition P and postcondition Q
in a class C: (0) We declare a channel type Chm(t: C, p: T, r: R) where Q’;. Q’
is Q with t substituted for this. (1) We add a parameter j: Chm to m. (2) We add a
precondition credit(j, -1) to m, which expresses that the method has an obligation
to send a message on the join-channel j. (3) We add a precondition j.mu << ui .mu for
each channel expression ui that occurs in a credit expression in m’s precondition P. This
precondition allows m to receive on the channels ui even though it has a debt for channel
j. (4) At the end of m’s body, we place a send statement send j(this, p, r);. This
send lives up to the obligation expressed by the precondition (2). (5) We remove the
postcondition Q from m because all information, permissions, and credits are conveyed
to the caller via the send operation (4).

We encode fork tok := x.m(y) as var tok := new Chm above waitlevel .
below u1, ..., un; fork x.m(y, tok);. That is, a fork passes a new channel in-
stance to the forkee and transfers the permissions and credits described by the forkee’s
precondition P. The wait level of the join-channel lies above waitlevel, but below each
channel ui that occurs in a credit expression in m’s precondition. This allows the forker
to join the forkee and it allows the forkee to perform receive statements on the channels
ui . To allow the forkee to acquire locks, one also has to ensure that the wait level of the
join-channel tok is below each lock that the forkee might want to acquire. Choosing
such a level is possible, but we omit the details for simplicity.

We encode join z := tok; by receiving on the channel we passed to the thread
when it was forked: var t: C; var p: T; receive t,p,z := tok;. This receive in-
hales the message invariant of Chm (that is, the joined thread’s postcondition) and trans-
fers permissions and credits accordingly.

We translate a call call z := x.m(y); into a fork immediately followed by a join:
fork tok := x.m(y); join z := tok;, which are then further encoded as described
above. This encoding automatically satisfies the rule that a call must not create a debt
in the caller (see Sec. 2).

5 Deadlock Freedom

In this section, we prove that the verification technique described in the previous sec-
tions indeed prevents deadlocks. However, we provide only the key definitions and lem-
mas. For the full proof, we refer the reader to [23].
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Note that our verification technique proves partial correctness, that is, it considers
non-terminating methods to be correct. As a consequence, we do not prevent situations
where a thread waits forever on another thread to send a message or release a lock,
and that other thread ran into an infinite loop or recursion before executing the awaited
operation. Proving termination of loops and recursion is an orthogonal issue.

5.0 Language

For the proof of deadlock freedom, we use a smaller programming language that omits
all features that are not relevant for the proof such as permissions, classes, and the heap.

We prove soundness with respect to the language of Fig. 7. A program consists of
a number of declarations and a main routine s . A declaration is either a channel or a
procedure. Each channel has a channel name, channel parameters, and a where clause.
Each procedure has a procedure name, procedure parameters, a precondition, and a
body. A statement is an object creation, a send or receive operation, a fork statement, an
acquire statement, or a release statement. Finally, an assertion is either credit (of +1 )
or debt (of −1 ). Note that we do not distinguish objects and channels, and we use both
terms interchangeably in the soundness proof.

program ::= decl s
decl ::= channel | procedure
channel ::= channel C (x) where φ;
procedure ::= procedure m(x) requires φ; { s }
s ::= x := new C ; | send x(x); | receive x := x ; |

fork m(x); | acquire x ; | release x ;
φ ::= credit(x) | debt(x)

Fig. 7. A small language with lockable channels

O is the set of object references, Mu the set of wait levels, and X the set of vari-
ables. The set Mu with the binary operator << forms a dense partial order. L is a
function that maps each object reference to its wait level. We consider only channels
whose where clause does not contain debt.

5.1 Execution Semantics

Definition 0 shows that threads can be in one of three states: running, done, and aborted.
The job of the program verifier is to ensure that threads do not perform illegal operations
and hence that no thread ends up in the aborted state. We say that a configuration is
aborting if one or more threads is in the aborted state. A configuration is final if each
thread is in the done state.

Definition 0. A thread state σ is one of the following:

– run(s , Γ ) , indicating the thread is running with remaining statement s and envi-
ronment Γ . Γ is a partial function from variable names to object references.
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– done , indicating the thread has completed.
– aborted , indicating the thread has performed an illegal operation.

Definition 1. A configuration ψ is a pair consisting of:

– Ω , a partial function from object references to environment lists. Each environment
in the list represents a message. Thus, Ω(o) denotes the list of messages inside
channel o . We say that an object is allocated if o ∈ dom(Ω) .

– T , a multiset of threads. Each thread is a triple (σ, κ, λ) . σ is a thread state, κ
is a function from object references to integers, and λ is a set of object references.
κ(o) denotes the number of credits held by the thread and λ is the set of objects
locked by the thread.

Execution of programs is defined by the small-step relation → shown in Fig. 8. The
rules of Fig. 8 contain premises marked dark gray and premises marked light gray. A
premise marked dark gray indicates that threads must block and wait for the premise to
become true. For example, a receive statement blocks until the corresponding channel
contains a message (i.e., 0 < length(Ω(o))). A premise marked light gray that does
not hold indicates that the thread has performed an illegal operation and that the thread
can transition to the aborted state. For example, a thread trying to execute a receive
statement transfers to the aborted state if the number of credits (κ(o)) is not strictly
positive.

As explained earlier, the job of the program verifier is to ensure that threads do not
abort. In other words, the verifier must ensure that the premises marked light gray hold.
As a consequence, these premises correspond to the assert statements in the pseudo
code of Sec. 4.

def(C ) denotes the definition of channel C in the program. Each object has a cor-
responding type denoted by typeof(o) . credits(φ, Γ ) returns a function from object
references to integers, where an entry for channel o indicates the credit associated with

Γ (x) = o ∀i ∈ {1, . . . ,n} • Γ (xi) = oi

typeof(o) = C def(C ) = channel C (y1, . . . , yn ) where φ;
Γ ′ = [this �→ o, y1 �→ o1, . . . , yn �→ on ]

κ′ = credits(φ, Γ ′) κ′′ = κ[o �→ κ[o] + 1]− κ′ Ω′ = Ω[o �→ Ω(o) + Γ ′]
(Ω, {(run(send x(x1, . . . , xn ); s, Γ ), κ, λ)} ∪ T )→

(Ω′, {(run(s, Γ ), κ′′, λ)} ∪ T )

Γ (x) = o

typeof(o) = C def(C ) = channel C (y1, . . . , yn ) where φ; 0 < κ(o)

∀q ∈ dom(Ω) • (κ(q) < 0 ∨ q ∈ λ)⇒ L(q) << L(o) 0 < length(Ω(o))
Γ ′ = head(Ω(o)) κ′ = credits(φ, Γ ′) κ′′ = κ[o �→ κ[o]− 1] + κ′

Ω′ = Ω[o �→ tail(Ω)] Γ ′′ = Γ [x1 �→ Γ ′(y1), . . . , xn �→ Γ ′(yn)]

(Ω, {(run(receive x1, . . . , xn := x ; s, Γ ), κ, λ)} ∪ T )→
(Ω′, {(run(s, Γ ′′), κ′′, λ)} ∪ T )

Fig. 8. Execution semantics for well-formed programs (see [23] for all rules)
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the assertion φ for o . f [a �→ b] denotes an update of the function f at a with b . If
typeof(o) = C and def(C ) = channel C (y) where φ; , then Φ(o) denotes φ .

5.2 Properties

The key property we want to prove is Theorem 2: programs written in the language
of Fig. 7 do not get stuck. The proof of this theorem relies on two other theorems, 0
and 1. Theorem 0 states that for each allocated channel c , the total number of credits
for c (in activation records and messages) is at most the sum of the amount of debt for
c and the number of messages inside c .

Theorem 0. Suppose (Ω, {(σ1, κ1, λ1), . . . , (σn , κn , λn)) is a configuration reached
by an execution of a well-formed program. Then for each channel o ∈ dom(Ω) , the
following holds:

0 ≤ length(Ω(o)) − ((Σi∈{1,...,n}κi(o)) + (Σq∈dom(Ω),Γ∈Ω(q)credits(Φ(q), Γ )(o)))

The proof runs by induction on the length of the execution and by case analysis on the
step taken.

Each configuration ψ has a corresponding graph whose nodes are the threads in ψ .
This graph contains an edge from thread f to t if f is waiting for t to send a message
or to release a lock (see Definition 2). A deadlock occurs if the graph contains a cycle.
Theorem 1 states that an edge in the graph between f and t implies that t ’s wait level
is smaller than f ’s wait level. It follows from Theorem 1 that configurations reached by
executions of well-formed programs are deadlock-free.

Definition 2. Each configuration (Ω, {(σ1, κ1, λ1), . . . , (σn , κn , λn)) has a
corresponding graph. The nodes in the graph are threads. The graph has an edge from
(σf , κf , λf ) to (σt , κt , λt ) if one of the following holds:

– Thread f waits for t to send a message, that is, σf equals run(receive x ; s , Γ ) ,
κt(Γ (x )) < 0 , and σf cannot go to the aborted state.

– Thread f waits for t to release a lock, that is, σf equals run(acquire x ; s , Γ ) ,
Γ (x ) ∈ λt , and σf cannot go to the aborted state.

Theorem 1. Suppose the graph corresponding to a configuration in which no thread is
aborted contains an edge from (σf , κf , λf ) to (σt , κt , λt ) . Then the following holds:

max{L(o)|κf (o) < 0 ∨ o ∈ λf } << max{L(o)|κt (o) < 0 ∨ o ∈ λt}

The proof runs by induction on the length of the execution and by case analysis on the
step taken.

Theorem 2. Suppose ψ is a non-final, non-aborting configuration. Then, ψ is not
stuck.
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Proof. It follows from Theorem 1 that the graph contains a non-final thread t that has
no outgoing edges. We have to consider three cases. If the first statement of t is not
an acquire or a receive, then t can make progress. If t ’s first statement is a receive
statement for channel o , then no other thread holds debt for o (otherwise t would
have an outgoing edge). If κ(o) � 0 , then the thread can make progress by aborting;
otherwise, it follows from Theorem 0 that o contains at least one message and therefore
that the thread can make progress. Finally, if the first statement is an acquire for object
o , then no other thread holds o ’s lock (otherwise t would have an outgoing edge).
Therefore, t can acquire o .

6 Related Work

Hoare’s model of Communicating Sequential Processes (CSP) influentially set the style
of languages that communicate over channels [13]. Channels in CSP have no slack, that
is, they have no buffer capacity. This means that send and receive operations are exe-
cuted in a synchronized fashion to form a rendezvous. The channels are named entities,
not dynamically created values that can be stored in variables or passed along channels.

Newsqueak is a language that features channels and shared global variables [26].
Like CSP, Newsqueak uses zero-slack channels, but the channels are first class and
can be passed around like other references to data structures in memory. After the ren-
dezvous of a sender and receiver, the sender gets a chance to compute its message before
it is communicated to the receiver. The language has support for atomic increment and
decrement operations, but does not include built-in locking primitives.

The programming language Alef [35] and its successor Limbo [28] apply ideas of
Newsqueak to larger programming-language designs. Limbo was designed and used
for writing applications for the Inferno operating system. The languages include shared
global variables, and locks are provided (Alef) or can be built from channels.

A language with channels that has had considerable success is Erlang [1], a func-
tional language (hence, locks are irrelevant) used in a variety of applications.

Language support for mutual-exclusion locks is provided in several languages, in-
cluding Modula-3, Java, and C#. Such languages may provide channels in a library,
like ConcurrentLinkedQueue in Java’s java.util.concurrent library.

The idea of using permissions to avoid data races was first formulated by Boyland [4]
and has been adopted by concurrent separation logic [25]. Several researchers extended
concurrent separation logic to handle dynamic thread creation [10,15,12], rely/guaran-
tee [31,8], reentrant locking [11], and channels [14,27]. Our encoding of permissions in
a first-order setting was inspired by implicit dynamic frames [29].

Enforcing the absence of deadlocks by checking that threads acquire locks in ac-
cordance with a global order is a well-known technique from operating systems and
databases, and has been implemented in several verifiers [6,9,16,17] and static analyz-
ers [20,3]. To the best of our knowledge, the only existing technique that prevents dead-
locks in programs that use channels is Kobayashi’s type system for the π -calculus [19].
A channel type in this type system consists of a message type and a usage. The usage
describes the order of channel operations and associates an obligation and capability
level with each of those operations. The notion of credits in our approach is similar to
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usages, while wait levels are similar to obligation and capability levels. Kobayashi’s
type system has two advantages with respect to our approach. First, fewer annotations
are required as types can be inferred. Secondly, his approach can handle some programs
that we cannot, such as encoding locks via channels. However, the type system has only
been applied in the context of the π -calculus, while we integrate deadlock prevention
into a verification system for an object-oriented language (which Kobayashi considers
to be “useful and important” [18]).

Session types [32,7] are a technique for checking that channels are used in accor-
dance with a predefined protocol. Recently, Villard et al. [34] have integrated the ideas
from session types into separation logic. However, the focus of [32,7,34] lies in check-
ing conformance of the code with the channel contract and in ensuring memory safety,
i.e., that a memory location is not accessed after sending the corresponding permission
over a channel. We do not specifically address protocol checking (though protocols can
be encoded via ghost state), but we do check memory safety and in addition show how
to enforce the absence of deadlocks.

Luecke et al. [24] and Vetter et al. [33] propose run-time deadlock detection algo-
rithms for systems that use message passing. These algorithms may miss certain dead-
locks. Moreover, run-time testing cannot guarantee the absence of deadlocks, since not
all paths, thread interleavings, and input values can be considered.

Terauchi and Megacz [30] use ideas similar to those proposed in this paper in a
static inference of channel buffer bounds. Their analysis uses a capability mapping per
thread, a function from channel identifiers to natural numbers similar to our credit map,
to track the number of messages that can be sent for each channel. Just as our credit map,
the capability mapping is updated at send and receive statements. Another idea shared
by both approaches is that capabilities can be transferred via channels. In particular,
each channel type includes a capability mapping (similar to our where annotation) that
describes what capabilities transfer along with messages on channels of that type.

The verification approach presented in this paper prevents non-termination caused
by deadlock. However, infinite recursion and loops can still lead to non-terminating
executions. For example, a thread may fail to acquire a lock because the thread holding
the lock is stuck in an infinite loop. Proving termination of loops and recursion is a
separate issue, which for instance can be solved using techniques like [5] and [0].

This paper builds on and extends our earlier work on the Chalice verifier [21]. In
particular, we extend Chalice with channels, introduce credits, and insert channels into
the wait order to prevent deadlocks involving blocking channel operations.

7 Conclusion

The key contribution of this paper is that it shows how to verify the absence of deadlocks
in programs that combine channels and locking. In particular, deadlocks are prevented
by enforcing two rules: (0) a blocking receive is allowed only if another thread holds
the obligation to send and (1) receive and acquire operations must be done in accor-
dance to a global wait order. The verification technique has been proven sound and was
implemented in the Chalice program verifier. As future work, we plan to apply the pre-
sented methodology to classical concurrency examples and case studies from programs
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written in languages that support channels such as Scala and Go. Moreover, we are
interested in combining our methodology with termination checking to guarantee that
every obligation to send will eventually be fulfilled.
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In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 199–215. Springer,
Heidelberg (2008)

13. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8) (1978)
14. Hoare, T., O’Hearn, P.: Separation logic semantics for communicating processes. Electronic

Notes on Theoretical Comput. Sci. 212 (2008)
15. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separation logic. In:

Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367. Springer, Heidelberg
(2008)



426 K.R.M. Leino, P. Müller, and J. Smans

16. Jacobs, B.: A Statically Verifiable Programming Model for Concurrent Object-Oriented Pro-
grams. PhD thesis, Katholieke Universiteit Leuven (2007)

17. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520, Depart-
ment of Computer Science, Katholieke Universiteit Leuven (2008)

18. Kobayashi, N.: Type systems for concurrent programs. In: UNU/IIST 10th Anniversary Col-
loquium (2002)

19. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)

20. Korty, J.A.: Sema: A Lint-like tool for analyzing semaphore usage in a multithreaded UNIX
kernel. In: Proceedings of the Winter 1989 USENIX Conference. USENIX Association
(1989)

21. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg (2009)

22. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with Chalice. In:
Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures.
LNCS, vol. 5705. Springer, Heidelberg (2009)

23. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-free channels and locks (extended version).
Technical Report CW573, Department of Computer Science, K.U.Leuven (2010)

24. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock detection in MPI pro-
grams. Concurrency and Computation: Practice and Experience 14(11) (2002)

25. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Comput.
Sci. 375(1-3) (2007)

26. Pike, R.: Newsqueak: A language for communicating with mice. Computing Science Tech-
nical Report 143, AT&T Bell Laboratories (1989)

27. Pym, D.J., Tofts, C.M.N.: A calculus and logic of resources and processes. Formal Aspects
of Computing 18(4) (2006)

28. Ritchie, D.M.: The Limbo programming language. In: Inferno Programmer’s Manual, vol. 2.
Vita Nuova Holdings Ltd. (2000)

29. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and
separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009 – Object-Oriented Programming.
LNCS, vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

30. Terauchi, T., Megacz, A.: Inferring channel buffer bounds via linear programming. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960. Springer, Heidelberg (2008)

31. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Hei-
delberg (2007)

32. Vasconcelos, V.T., Ravara, A., Gay, S.J.: Session types for functional multithreading. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511. Springer,
Heidelberg (2004)

33. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with umpire.
In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing. IEEE, Los Alamitos
(2000)

34. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009)

35. Winterbottom, P.: Alef language reference manual. In: Plan 9 Programmer’s Manual: Volume
Two. AT&T Bell Laboratories (1995)



Verifying a Compiler for Java Threads�

Andreas Lochbihler

Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
andreas.lochbihler@kit.edu

Abstract. A verified compiler is an integral part of every security infra-
structure. Previous work has come up with formal semantics for sequen-
tial and concurrent variants of Java and has proven the correctness of
compilers for the sequential part. This paper presents a rigorous formal-
isation (in the proof assistant Isabelle/HOL) of concurrent Java source
and byte code together with an executable compiler and its correctness
proof. It guarantees that the generated byte code shows exactly the same
observable behaviour as the semantics for the multithreaded source code.

1 Introduction

In a recent “research highlights” article in CACM [14], the CompCert C compiler
[13] by Leroy was praised as follows: “I think we are on the verge of a new
paradigm for safety-critical systems, where we rely upon formal, machine checked
verification, instead of human audits. Leroy’s compiler is an impressive step
toward this goal.” And indeed, Leroy’s work can be seen as a door opener, in
particular because his verification includes various optimisations and generates
assembler code for a real machine. However, concurrent programs call for formal
methods even louder, because many bugs show up only in some interleavings
of the threads’ executions, which makes the bugs nearly impossible to find and
reproduce. But so far, nobody has ever never included the compilation of thread
primitives and multithreaded (imperative) programs.

In this paper, we present a compiler from a substantial subset of multithreaded
Java source code to byte code and show semantic preservation w.r.t. interleav-
ing semantics in the proof assistant Isabelle/HOL [23]. To our knowledge, this
is the first verified compiler for a realistic concurrent language. The verification
addresses the fundamental challenges of concurrency: nondeterministic interleav-
ing and different granularity of atomic operations between source and byte code.
At present, we ignore the Java Memory Model (JMM) and assume sequential
consistency. Like Sun’s javac compiler, ours does not optimise. Thus, we expect
that the verification also works for the full JMM.

We show how to address nondeterminism by applying a bisimulation approach
(Sec. 3) like in [24,27] to a compiler for a realistic concurrent language. We cope
with interleaving by decomposing the correctness proof for the compiler into
a correctness proof for individual threads. To that end, we introduce a generic
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A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 427–447, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



428 A. Lochbihler

framework semantics which interleaves the individual threads and manages locks
and wait sets. Since the observable behaviour includes all accesses to shared
memory, method calls and synchronisation, we obtain a bisimulation for the
multithreaded semantics from bisimulations for single threads. Bisimulation also
solves the atomicity issue for us: unobservable steps may be decomposed into
arbitrarily many unobservable steps, observable ones into multiple unobservable
ones followed by an observable one.

We have based our work on the Jinja project [11], which contains formal se-
mantics and a verified compiler for sequential Java. Our semantics JinjaThreads
(Sec. 2) adds multithreading and concurrency primitives for arbitrary dynamic
thread creation, synchronisation on monitors, the wait-notify mechanism and
joining of threads. Our compiler (Sec. 4) may seem a straightforward extension
of Jinja’s, but its verification (Sec. 5) posed two fundamental challenges: In strik-
ing contrast to Jinja’s big-step semantics and simulation-only proof, we had to
(i) verify the compiler w.r.t. small-step interleaving semantics and (ii) show both
directions of the bisimulation. Accordingly, our verification comprises 47kL of
Isabelle code, whereas the original Jinja verification needed only 15kL. Finally,
we discuss our design decisions that enabled the verification to succeed (Sec. 6).

Using Isabelle’s code generator, we have mechanically extracted an executable
implementation of our compiler in standard ML. It compiles source code pro-
grams in abstract syntax to byte code programs in abstract syntax. The full
formalisation of JinjaThreads with all details is available online [19].

2 Jinja with Threads

In this section, we present the features of JinjaThreads that are relevant for our
compiler verification. JinjaThreads is a complex model of Java that supports a
broad spectrum of concepts, all of which must be correctly handled by the com-
piler all the way from source code to byte code: local variables, objects and fields,
inheritance, dynamic dispatch and recursion, arrays and exception handling; for
details see [11,18]. Here, we focus on Java’s concurrency language features as
specified in the Java Language Specification (JLS) [8, Ch. 17]: synchronisation
via locks, the wait-notify mechanism, thread creation and joining. The interrupt
mechanism is not modelled, but could be added at little cost to the formalisa-
tion. Fig. 1 illustrates the life cycle of a Java thread. After a thread has been
spawned by invoking its start method, it keeps running (i) until it is final. If,
however, it invokes the wait method on an object o, it temporarily releases its
locks on o’s monitor and is entered in o’s wait set (ii). If another thread calls
notify on o, a thread t is removed from o’s wait set (iii), but t must reacquire its
locks before it can continue to run.

Java source and byte code have the same thread and concurrency model, which
is captured in our multithreaded semantics (Sec. 2.1). We use it as an interleaving
semantics for all languages in JinjaThreads: source code J, (Sec. 2.3), byte code
JVM (Sec. 2.4), and one intermediate language J1 (Sec. 2.5).
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2.1 The Framework Semantics

In this section, we present the multithreaded semantics for all JinjaThreads lan-
guages. To that end, we assume a small-step semantics for single threads, written
〈x, h〉 ta� 〈x′, h′〉, which contains all atomic execution steps for the individual
threads. It takes a thread-local state x and the shared heap h: the result are a
new thread-local state x′ and heap h′, and a thread action ta which spawns a
new thread, locks a monitor, joins another thread, etc. For thread joining, we
use the predicate final to identify thread states that have terminated. Then, the
framework semantics redT takes such a semantics as a parameter to form
the set of small-step reductions for the multithreaded case. Here, we only give a
short summary of it, see [18] for full details.

A multithreaded state s consists of four components: (i) The lock state
locks s stores for every monitor how many times it is locked by a thread, if at all.
Locks are mutually exclusive. (ii) The thread state thr s stores for every thread
t in s all information that is specific to it, i.e. the thread-local state x and the
multiset ln of locks on monitors that this thread has temporarily released, e.g.
when it was suspended to a wait set. (iii) The shared memory shr s. (iv) The
wait sets wset s: a thread is in at most one wait set at a time.

A single thread t uses the thread action ta to query and update the state of the
locks, threads and wait sets. Currently, the framework semantics provides the
following basic thread actions: (i) Locking, unlocking, temporarily releasing,
and testing whether it has (not) locked a monitor. (ii) Creating a new thread,
testing whether a thread has been started, and joining a thread. (iii) Suspend-
ing to a wait set, notifying one (all) threads in a wait set. A thread action
(TA) ta consists of multiple basic thread actions, written as a list ([] denotes
the empty list). The whole list is checked and executed atomically. A call to
the wait method, e.g., issues [HasLock l, Release l, Suspend w] to test whether the
thread t has locked the monitor l, to temporarily release all locks on l, and to
suspend itself to the wait set w. By composing TAs that affect multiple aspects
of the multithreaded state from basic thread actions, we were able to keep the
framework semantics flexible and the proofs about it simple.

The framework semantics redT has reductions (written s t �ta� s′) of two
kinds. First, a reduction 〈x, h〉 ta� 〈x′, h′〉 of the thread t in s that is not in a wait
set and has not temporarily released any locks (state (i) in Fig. 1). In that case,
tests of the TA ta must hold in s. Then, redT atomically executes ta on s and
updates t’s local state to x′ and the shared heap to h′, which yields s′. Second,
redT can choose a thread t in s that is not in a wait set, but has temporarily
released some locks ln – state (iii) in Fig. 1. If t can reacquire all of them, redT

assigns them to t again and resets ln to {} in s′. In that case, everything else
remains unchanged from s to s′. A reduction s t �ta� s′ is unobservable (written
is-mτ s (t, ta) s′) iff it results from a τ -move of a thread (cf. Sec. 2.2). Note that
a thread gets from (ii) to (iii) in Fig. 1 only if an other thread notifies it.

We also lift the final predicate to a multithreaded state s: s is final iff for
all threads t in s, say thr s t = �(x, ln)� (� � denotes definedness for a
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Fig. 1. Life cycle of a Java
thread
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Fig. 2. Composition of bisimulations for the
correctness proof

partial function), t’s local state x is final and t has not temporarily released any
locks, i.e. ln = {}.

2.2 Concepts for All Languages in JinjaThreads

Each JinjaThreads language has three semantics levels, which Fig. 2 shows to-
gether with the delay bisimulations used in Sec. 5 for the verification. The ex-
pression level semantics, which is marked with e, contains all execution steps
of a single thread except for method calls and returns. The semantics for a
thread (marked t) lifts the expression level semantics to call stacks and adds
method calls and returns. The multithreaded semantics (marked m) models the
full behaviour for multithreaded programs. In all languages, this is the framework
semantics instantiated with the call-stack semantics for single threads.

There are five kinds of values: booleans Bool b, integers Intg i, addresses
Addr a, the null reference Null, and a dummy value Unit. Addresses reference
objects or arrays on the heap, which is a map from addresses to heap objects. To
avoid redundancies with the instruction for object creation in the formalisation,
all system exceptions (like NullPointer and IllegalMonitorState) are preallocated
on the heap. & denotes the address of a preallocated system exception.

In standard Java, only monitors – of which every object and array has ex-
actly one – can be locked. Hence, addresses identify monitors in the framework
instantiations. Since every monitor manages its own wait set, addresses also iden-
tify wait sets. JinjaThreads uses the same heap representation in all languages.
Hence, every instantiation need only to specify the thread-local state.

All JinjaThreads languages use the same format for class and method decla-
rations, only the method definitions depend on the language. Hence, a compiler
Comp need to be specified only for method bodies. The generic function compP

then uniformly applies Comp to all methods of all classes, i.e. the program P

is compiled to compP Comp P. This generic approach ensures that compilation
does not affect the class hierarchy and lookup functions for methods and fields.

JinjaThreads comes with standard well-formedness conditions (e.g. typeabil-
ity, acyclic class hierarchy), see [11] for details. In the following, we will assume
that all programs are well-formed.
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JinjaThreads has two kinds of method calls: First, standard calls to methods
that are implemented in the program P. Second, calls to methods that cannot be
implemented in JinjaThreads syntax, e.g. native methods such as wait, notify, or
start on Thread objects. We call them external calls and hardwire them in the
semantics. Such a call executes atomically, written P � 〈a.M(vs), h〉 ta�ext 〈va, h′〉
where a is the address of the object, M the method name and vs the list of
parameter values. It returns va, which is either a normal value v or the ad-
dress a of an exception, a thread action ta, and the new heap h′. Currently,
the following native methods are provided: wait, notify and notifyAll imple-
ment the wait set mechanism for all objects and arrays; they simply translate
the call into the TAs [HasLock a, Release a, Suspend a], [HasLock a, Notify a], and
[HasLock a, NotifyAll a], resp., where a is the address of the object or array be-
ing called. For these methods, additional reductions with the TA [HasNoLock a]
raise an IllegalMonitorState exception. The framework semantics selects the right
reduction according to its lock status. Moreover, method start in class Thread

spawns a new thread, or fails with an IllegalThreadState exception if the thread
has already been started before. Finally, join joins the called thread. Via this
mechanism, we could add more native methods and even model I/O easily.

Regarding the observable behaviour, we consider the following operations
as observable moves: calling and returning from a method, locking and unlock-
ing, creating objects and arrays and accessing data on the heap other than type
information.1 Since thread creation, joining and the wait-notify mechanism are
implemented as external calls, all of them are, in particular, observable. Con-
versely, all control flow constructs, including exception throwing and handling,
and local variable manipulation are only relevant to the thread that executes
them, so these generate only τ -moves.

2.3 The Source Code Language J

In the source language J, everything is an expression with a return value: state-
ments are treated as expressions that return Unit. An expression is final if it is
either a value Val v (normal termination) or a thrown exception throw (Addr a),
which we abbreviate as Throw a. For a program P, let P � 〈e,(h, xs)〉 ta�J 〈e′,(h′,
xs′)〉 denote that the expression e executes in a single step to e′ with TA ta,
thereby changing the heap h to h′ and the store for local variables from xs to
xs′. Je contains 84 reduction rules, but we only show those for synchronisation.
For details on the syntax and the full sequential semantics, see [11,18].

Synchronisation in Java source code is done via the synchronized statement,
which is specified in the JLS [8, Sec. 14.19]. The synchronized modifier for meth-
ods behaves as if its body was statement-synchronized on this, so we only need
1 These observable moves strictly include all JMM inter-thread actions except for

thread divergence actions. We omit the latter because the JMM is inconsistent
for infinite executions [3]. Object creation, e.g., must be observable in our ap-
proach, because it changes the heap, but it is no inter-thread action: The JMM
assumes that all objects have been preallocated, which is unrealistic for an actual
semantics.
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P � 〈e,s〉 ta�J 〈e′,s′〉
P � 〈sync(e) e2,s〉 ta�J 〈sync(e′) e2,s

′〉 JS1

P � 〈sync(Throw a) e,s〉 []�J 〈Throw a,s〉 JS2

P � 〈sync(null) e,s〉 []�J 〈Throw &NullPointer,s〉 JS3

P � 〈sync(addr a) e,s〉 [Lock a]�J 〈insync(a) e,s〉 JS4

P � 〈e,s〉 ta�J 〈e′,s′〉
P � 〈insync(a) e,s〉 ta�J 〈insync(a) e′,s′〉 JS5

P � 〈insync(a) Val v,s〉 [Unlock a]�J 〈Val v,s〉 JS6

P � 〈insync(a) Throw ad,s〉 [Unlock a]�J 〈Throw ad,s〉 JS7

Fig. 3. Source code reductions for the synchronized statement

to consider synchronized blocks in J. Fig. 3 shows the reduction rules for the
synchronized statement sync: JS1 reduces the monitor subexpression. If it raises
an exception, rule JS2 propagates it.2 If the monitor subexpression evaluates
to the null value, a NullPointer exception is thrown (JS3). If it reduces to some
monitor address a, the thread can only reduce further (JS4) by acquiring a lock
on a. To remember that the lock has been granted, the expression is rewritten
to insync(a) e, a variant of the sync expression that does not occur in programs.
Then, the synchronized block’s body is executed (JS5). If this terminates nor-
mally with a value v or with an exception at address ad, JS6 and JS7 release
the lock on a and propagate the return value or exception.

Je also includes all external calls into Je, but it has no rule for standard method
calls. It uses the predicate is-ext-call to determine, based on type information,
whether the call is external. Standard method calls are left to the semantics
Jt, which lifts Je to call stacks. The lifting is standard: as long as the frame’s
expression at the top of the call stack is not final, it is being reduced according to
Je. In case of a standard method call, Jt pushes a new call frame with the called
method’s body as expression on top of the stack. If the top frame’s expression is
final, the return value or thrown exception replaces the method call subexpression
in the frame below. A thread in Jt is final iff the call stack contains only one
expression, which is also final.

Originally, the JinjaThreads source code small-step semantics [18] did not
model a call stack and dynamically inlined method calls in the expressions in-
stead. But the compiler verification requires an explicit call stack, so we use this
alternative semantics. We have also shown that they are strongly bisimilar: The
strong bisimulation relates the call stack es to the expression e′ iff folding es with
method inlining equals e′.

2 This is a typical example of how Je handles exceptions: For every language construct,
rules propagate thrown exceptions (Throw a) from subexpressions until a matching
try-catch block is reached or there are no surrounding expressions any more.
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2.4 The Byte Code Language JVM

The byte code language and the JinjaThreads virtual machine (VM) model Java
byte code and the Java VM according to the Java Virtual Machine Specification
(JVMS) [16]. A thread-local state (xcp, frs) consists of an exception flag xcp (�a�
corresponds to Throw a in J and ⊥ denotes none), and a stack frs of frames.
A frame fr = (stk, loc, C, M, pc) consists of the stack stk, an array loc for the
parameters and local variables, the class C and method name M of the method,
and the program counter pc. A state is JVM-final iff the frame stack is empty.

A method body (msl, mxs, ins, xt) consists of an instruction list ins, an excep-
tion table xt, the maximum stack length msl and the size mxs of the array for
local variables. The exception table is a list of entries (from, to, C, pc, d) where C

is either a class name or the special value Any. The exception handler starting at
index pc in ins expects d elements on the stack and handles exceptions that are
raised by instructions in the interval [from, to). If C is a class name, it handles
only those that are a subclass of C; if C is Any, it handles all.

Regarding the JinjaThreads’ instruction set, Java byte code instructions which
only differ on their operand types (e.g. iload and aload) are combined in poly-
morphic ones (e.g. Load), but the instructions have not been simplified concep-
tually. Moreover, operations that directly manipulate the stack (e.g. dup) or the
local variables like iinc are not part of the Jinja VM. Since they are all silent
instructions, our silent instructions can easily simulate them.

The semantics of a single instruction is defined by the function exec-instr.
Given the instruction, the heap and the frame stack, it produces a list of successor
states together with the corresponding TAs. Like for J, we only explain method
invocation, synchronisation and exception handling.

Method calls are very similar to J: the Invoke instruction decides via the
predicate is-ext-call whether the call is external. If so, it uses the reductions from
P � 〈a.M(vs), h〉 ta�ext 〈va, h′〉 to determine the successor states. Otherwise, it
looks up the method in P and pushes a new call frame on top of the frame stack
with the parameters and local variables correctly initialised.

The instructions MEnter and MExit for entering and exiting a monitor im-
plement synchronisation. Both throw a NullPointer exception if the top stack
element v is null. Otherwise, they increment the program counter and issue a
Lock or Unlock action on the address a in v, resp. Additionally, MExit can also
raise an IllegalMonitorState exception with the TA [HasNoLock a]. The latter pos-
sibility is to allow for unstructured locking, where unlocking may fail.

The function exec P (xcp, h, fr·frs) incorporates exception handling in the
semantics: If no exception is flagged, this just executes the current instruction
via exec-instr. Otherwise (xcp = �a�), a is checked against the exception handlers
for the program counter of fr: If one is found, the stack is trimmed to the length
specified in the exception table, a is pushed onto the stack and the program
counter is set to the start of the handler. Otherwise, fr is popped and a is
rethrown at the Invoke statement in the previous call frame.

The VM model exec is aggressive: it assumes that there are always sufficiently
many operands of the right types on the stack. If not, the result is undefined.
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V < |xs1| xs′1 = xs1[V := Addr a]

P � 〈syncV(addr a) e1, (h, xs1)〉 [Lock a]�J1 〈insyncV(a) e1, (h, xs′1)〉
J1S4

V < |xs1| xs1[V ] = Addr a′

P � 〈insyncV(a) Throw ad, (h, xs1)〉 [Unlock a′]�J1 〈Throw ad, (h, xs1)〉
J1S7

V < |xs1| xs1[V ] = Null

P � 〈insyncV(a) Val v, (h, xs1)〉 []�J′1 〈Throw &NullPointer, (h, xs1)〉
J′

1S8

V < |xs1| xs1[V ] = Addr a′

P � 〈insyncV (a) Val v, (h, xs1)〉 [HasNoLock a′]�J′1
〈Throw &IllegalMonitorState, (h, xs1)〉

J′
1S9

Fig. 4. Example reduction rules for sync statements in J1 and J′
1

JinjaThreads also contains a defensive VM, which performs such checks and
raises a type error in case they fail. The byte code verifier, which is also part of
JinjaThreads, ensures that for verified byte code programs and conform states,
the type checks are always met and no type errors occur, i.e. aggressive and
defensive VM agree. A separate proof shows (using a type compiler) that the byte
code verifier accepts all programs generated by the JinjaThreads compiler [11].

In the compiler verification, we mostly use the defensive VM for the bisimula-
tion proof. As before, we have three levels of semantics: JVMe

d (JVMe
a) contains

all execution steps of the defensive (aggressive) VM that manipulate only the
top frame on the call stack, i.e. all instructions except for Invoke and Return,
including method-local exception handling. The single-threaded VM semantics
JVMt also includes the execution steps that JVMe

d has omitted. Then, the multi-
threaded VM JVMm is again the framework semantics instantiated with JVMt.

2.5 Local Variables in an Array: The Intermediate Language J1

Our compiler operates in two stages: The first stage allocates local variables to
array indices, the second generates the byte code instructions. The intermediate
language J1 stores local variable values in an array (like byte code does), but
the expressions from the source code have not yet been replaced by instructions.
Hence, local variables in J1 are no longer identified by their name, but by an
index in the array. A syncV(e1) e′1 block is now annotated with a variable index
V. Following the JVMS [16, Sec. 7.14], this variable will be used in the byte code
to store the monitor address between the MEnter and MExit instructions that
implement the monitor locking and unlocking. Since J1 behaves like the byte
code w.r.t. local variables, J1 already uses this local variable for sync blocks.

We define a new semantics Je
1 for expressions (written P � 〈e1, (h, xs1)〉 ta�J1

〈e′1, (h′, xs′1)〉) with new rules for the expressions that operate on the variable
array xs1. In Je

1, J1S4 and J1S7 (Fig. 4), e.g., replace JS4 and JS7. J1S4 not
only locks the monitor, but also stores its address in the variable array xs1.
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(The first premise ensures that the variable index does not exceed the size of
the array.) Accordingly, J1S7 reads the monitor address for unlocking from the
array.

Analogously to J, Jt
1 lifts Je

1 to call stacks, which are again the thread-local
states for the multithreaded semantics Jm

1 . Like Jm and JVMm, Jm
1 is the frame-

work semantics instantiated with Jt
1.

To be in line with the MExit semantics, we introduce a variant J′e
1 of the

Je
1 semantics. Apart from the reductions from Je

1, it also includes in the un-
locking for syncV blocks the cases where the entry V in xs1 (written xs1[V ])
is Null or the thread does not hold the lock on the monitor at the address
xs1[V ]. In these cases, it raises a NullPointer or IllegalMonitorState exception
resp. J

′
1S8 and J

′
1S9 in Fig. 4 show these if the block has terminated nor-

mally with a value v. J′e
1 contains analogous reductions for abnormal termination

with an exception Throw a. As above, J′t
1 lifts J′e

1 to call stacks and J′m
1 is the

framework semantics instantiated with J′t
1 .

3 Semantic Preservation via Bisimulations

We now introduce the notion of semantic preservation (Sec. 3.1) and the bisimu-
lation infrastructure (Sec. 3.2 and 3.3) for showing preservation for the compiler.

3.1 Semantic Preservation

Semantic preservation aims to show that semantic properties established on the
source code also hold for the target code and vice versa. Such properties or spec-
ifications (e.g. a safety property like no null pointer exceptions) are typically
modelled as predicates on the traces of observable behaviour, i.e. the observable
steps of a program execution, or on the sets of possible traces (for nondetermin-
istic programs). Thus, a correct compiler Comp must ensure that the (sets of)
traces of the source program P and of the compiled program Comp P are equal.

Formally, Comp preserves the semantics of P iff the following holds: Let s1
and s2 be the initial states for P and Comp P, resp. For every execution of P that
starts in s1 and terminates in s′1, there must be an execution of Comp P from s2
to s′2 such that both the executions’ traces and the observable data in s′1 and s′2
(such as the result values or exceptional termination) are the same. Conversely,
every terminating execution of Comp P from s2 must be matched that way by
one of P from s1.

As multithreaded programs are inherently nondeterministic, both directions
are essential. The compiled code must not miss any observable nondeterministic
choice, neither may it introduce additional observable behaviour. Some atomic
high-level statements are translated into a sequence of simple instructions, which
allow more interleavings. A correct compiler must ensure that these new inter-
leavings do not lead to new behaviours. Conversely, some constructs (like ex-
ception handling) are atomic in the compiled code, but require many steps in
the source code semantics. Although the compiled code has less interleavings,
no observable behaviour must be missed.
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Regarding schedulers, semantic preservation is possibilistic: The source and
compiled program may have different behaviour under a fixed scheduler whose
strategy depends on unobservable steps. Under a round-robin scheduler, e.g., the
number of unobservable steps between two observable ones influences the inter-
leaving. Since a compiler changes this number, source and byte code may have
different behaviours under this scheduler. In this sense, semantic preservation
means: If there is a scheduler for P such that s1 terminates in s′1 with trace t,
then there is also a scheduler for Comp P such that s2 ends in s′2 with trace t.

3.2 Simulation Properties

For semantic preservation, we must show trace equivalence for the source code
and the compiled code. To do this, it is standard to show bisimilarity. The lat-
ter implies trace equivalence and can be shown by inspecting individual steps
of execution instead of whole program executions. For the verification, we have
chosen delay bisimilarity [20,1], as it is easy to obtain a delay bisimulation for
multithreaded states from one for individual thread states (cf. Sec. 2.1). As it is
transitive, we can decompose the compiler into smaller transformations and ver-
ify each on its own. Transitivity ensures that the overall compiler is correct, too.

Abstractly, programs define labelled transition systems whose states are the
program states and whose labels constitute the observable behaviour. We write
s ta� s′ for a single transition (move), i.e. execution step in the small-step
semantics, from state s to state s′ with label ta. A predicate is-τ s ta s′ determines
whether the transition s ta� s′ is unobservable. Such transitions are called silent
or τ -moves. Since their labels are irrelevant, we don’t keep track of them and
write s τ� s′ instead. Moreover, τ�∗ denotes the reflexive and transitive
closure of τ� . A visible move consists of a finite sequence of τ -moves followed
by an observable transition. In this paper, we will often have states, labels,
reductions, and the like for two or more programs and semantics. We will index
variables and arrows with numbers to assign them to one of the semantics, i.e.
s1, �1, etc. for the first, s2, �2, etc. for the second and so on.

A relation ∼ on states is a (delay) bisimulation [20,1] iff (i) s1 ∼ s2 for
the initial states s1 and s2 and (ii) it satisfies the simulation diagrams in Fig. 5:
Every τ -move is simulated by a finite (possibly empty) sequence of τ -moves, and
observable moves are simulated by visible moves such that the resulting states
are again ∼-related. Two programs (transition systems) are (delay) bisimilar
iff there exists a delay bisimulation for them. A special case of delay bisimulation
is strong bisimulation [21] where every move is simulated by exactly one move.

Note that the relational composition ∼1 ◦ ∼2 of two delay bisimulations ∼1

and ∼2 is again a delay bisimulation [1], where s1 ∼1 ◦ ∼2 s3 ≡ ∃ s2. s1 ∼1 s2 ∧ s2
∼2 s3. Hence, delay bisimilarity is transitive.

A program execution s0
tas�∗ sn is a finite sequence of transitions s0

ta1�
s1

ta2� . . . tan� sn where tas is the list of all labels tai of observable steps
si−1

tai� si. To characterise complete executions for semantic preservation, we
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s1 s′1

s2 s′2

∼ ∼

τ

τ ∗

s1 s′1

s2 s′2

∼ ∼

τ

τ ∗ ∗

s1 s′1

s2 s′2 s′′2

ta

τ ta

∼ ∼

∗s1 s′1 s′′1

s2 s′2
ta

τ ta

∼ ∼

Fig. 5. Diagrams for delay bisimulation. Solid lines denote assumptions, dashed lines
conclusions.

assume a predicate final that identifies terminal states. We say that a relation ∼
preserves final states iff final states are ∼-related to final states only. Delay
bisimulations that preserve final states also preserve the semantics:

Lemma 1. Let ∼ be a delay bisimulation that preserves final states and s1 ∼ s2.
If s1

tas�∗
1 s′1 such that final1 s′1, then there exists an s′2 such that s2

tas�∗
2 s′2,

final2 s′2 and s′1 ∼ s′2. If s2
tas�∗

2 s′2 with final2 s′2, then there exists an s′1 such
that s1

tas�∗
1 s′1, final1 s′1 and s′1 ∼ s′2.

Proof. This lemma is shown by an easy induction on s1
tas�∗

1 s′1 and s2
tas�∗

2 s′2,
resp., where the simulation properties from Fig. 5 are used in the inductive step.

3.3 Lifting for Bisimulations

The delay bisimulations for showing semantic preservation always relate multi-
threaded states. As we use our framework semantics at all compilation stages,
we uniformly lift delay bisimulations for single threads to multithreaded states.
Thus, to show delay bisimilarity on the multithreaded level, it suffices to show de-
lay bisimilarity for single threads plus some constraints that the lifting imposes:

First, we lift a relation ∼ on thread-local states and the shared memories for
two instantiating semantics �1 and �2 to multithreaded states s1 and s2,
denoted by s1 ∼m s2: (i) The lock status and wait sets of s1 and s2 must be the
same. (ii) All threads in s1 also exist in s2 and vice versa. (iii) For every thread
t in s1 and s2, say thr s1 t = �(x1, ln1)� and thr s2 t = �(x2, ln2)�, the temporarily
released locks must be the same (ln1 = ln2) and the local states ∼-related: (x1,

shr s1) ∼ (x2, shr s2). ∼m preserves final states iff ∼ does so.
Next, we show that the above definitions are sensible: if ∼ is a delay bisimula-

tion, then so is ∼m. However, this holds only if τ -moves are in fact not observable
by other threads. To that end, we require that they neither execute any TAs, nor
change the shared heap: is-τ (x, h) ta (x′, h′) implies ta = [] and h = h′ for all x,
x′, h, h′, ta. Moreover, we must require that ∼ is preserved by heap changes
by other executing threads: Let y1 and y2 be two thread-local states with (y1,

h1) ∼ (y2, h2), each of which performs a visible move to (y′
1, h′

1) and (y′
2, h′

2) resp.
such that (y′

1, h′
1) ∼ (y′

2, h′
2), i.e. the visible moves simulate each other. Then,

whenever (x1, h1) ∼ (x2, h2) holds for the old heaps, (x1, h′
1) ∼ (x2, h′

2) must still
hold for the new heaps.

Theorem 1. Let ∼ be a delay bisimulation that is preserved by heap changes
and preserves final states. Then ∼m is also a delay bisimulation.
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Proof. The proof shows that the multithreaded semantics can perform the reduc-
tions of the executing thread from the simulation diagrams in Fig. 5. Preserva-
tion of final states ensures that joining succeeds either in both states or in none.
Preservation under heap changes is required to establish ∼m on the result states.

4 Compilation from Source Code to Byte Code

Jinja [11] already contains a nonoptimising compiler J2JVM from source code
to byte code via the intermediate language J1: compE1 compiles J expressions
to J1 expressions. It allocates array indices to local variables and replaces all
references to local variables in e by their indices. compE2 and compxE2 generate
instruction sequences and exception tables for J1 expressions. All of them are
recursive on the expression structure. compP1 lifts compE1 to programs using
compP, and so does compP2 with compE2 and compxE2. The overall compiler
J2JVM is the composition of compP1 with compP2. For JinjaThreads, we have
extended compE1, compE2 and compxE2 to handle sync expressions, which we
present in this section. For details on the other constructs, see [11].

compE1 assigns indices to variables in the following order: the this pointer,
method parameters, local variables in the order of block nesting level. For
sync(e) e′ statements, compE1 shifts local variables declared in e′ by 1 and anno-
tates sync with the index that it has freed this way.

The translation of a J1 syncV(e1) e′1 expression to byte code must ensure that
the monitor is unlocked even if an unhandled exception occurs in e′1. An exception
handler, which applies to all exceptions, needs to do this. Thus, the instructions
for syncV(e1) e′1 are (where @ concatenates two lists):

compE2 e1 @ [Store V, Load V, MEnter] @ compE2 e′1 @ [Load V, MExit, Goto 4] @
[Load V, MExit, Throw]

First, the monitor expression e1 is evaluated and the result (on the stack) is
stored in V. Load V pushes the monitor address back onto the stack and MEnter

locks the monitor. Then, the block is executed, the monitor address loaded again
and the monitor unlocked. Goto 4 jumps to the instruction after the exception
handler that follows. The handler also loads the monitor address, unlocks the
monitor and rethrows the caught exception whose address is still on top of the
stack. For the exception tables, compxE2 (syncV(e1) e′1) appends to the exception
tables for e1 and e′1 the entry (pc1, pc2, Any, pc2 + 3, d) such that compE2 e′1
occupies the positions [pc1, pc2) in the instruction list and the d bottom values
(of surrounding expressions) remain on the stack. Hence, this handler applies to
any exception unless it is handled inside the body e′1.

For example, consider the following method declaration, whose body is ([f],
sync(Var f) Var this.doIt([])) in abstract syntax:

int foo(Object f) { synchronized(f) { return this.doIt(); } }
This compiles to [Load 1, Store 2, Load 2, MEnter, Load 0, Invoke doIt 0, Load 2,

MExit, Goto 4, Load 2, MExit, Throw, Return] with exception table [(4, 6, Any, 9, 0)].
For realistic examples, see the formalisation online [19].
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5 Correctness Proofs

In this section, we present the correctness proof for the compiler: a delay bisimu-
lation between the source program P and the compiled program J2JVM P. Fig. 2
from Sec. 2 shows how we build it from smaller delay bisimulations: Between J

and J1 (Sec. 5.1), and between J′
1 and JVM (Sec. 5.2), we present three de-

lay bisimulations, one for each level (expressions, singlethreaded call stacks and
multithreaded). The delay bisimulations for the call stack level lift the ones on
the expression level to single threads and the multithreaded level is always ∼m

from Sec. 3.3 instantiated with the t level. Finally, we show that Jm
1 and J′m

1 are
equivalent for states of interest (Sec. 5.3). By transitivity, P and J2JVM P are
delay bisimilar, i.e. the compiler is correct (Thm. 2).

The delay bisimulation relations typically consist of two parts: (i) the actual
relation between states of the two semantics and (ii) some well-formedness con-
straints on the states of either semantics (e.g. being typeable) required by the
bisimulation proof. The latter restrict the set of “valid” states for which the
bisimulation property holds. To increase proof automation, we have similarly
split the bisimulation proofs: First, we show that simulating reductions exists
under conditions (i) and (ii), and that the resulting states are again related in
(i). Next, we show that the constraints in (ii) are preserved under reductions
and that the initial states satisfy them.

5.1 Strong Bisimulation between J and J1

J and J1 only differ in the treatment of local variables. Hence, the thread fea-
tures do not introduce anything essentially new for the verification. Still, trans-
ferring the old correctness proof (which uses the big step semantics) required
several substantial changes: (i) We adapted the small step semantics Je

1 such
that it is strongly bisimilar to Je, whereas the old semantics would only al-
low delay bisimilarity. This way, we need not distinguish observable from silent
moves, which greatly simplifies the inuctive cases in the proofs. (ii) The strong
bisimulation J

e∼1 between Je and Je
1 must now relate not only initial and final

states, but also all intermediate states. We require that both expressions are
identical in structure except for variable names, which are resolved according to
compE1’s numbering scheme. In addition to the old well-formedness constraints
(e.g. a definite assignment test), the monitor address in the local variables in
Je
1 must agree with the monitor address in the insync subexpression. (iii) We

must now also show that small-step reductions preserve the well-formedness
conditions.

Although the simulations are now much finer and must cover both directions,
the old notions for the simulation proof [11] are still sufficient, i.e. the proofs do
not pose any major difficulties. Establishing J

e∼1 for the resulting states in the
case for syncV(e) e′ relies on V, the local monitor variable, not being accessed
explicitly in the e′, which the compiler numbering scheme guarantees.
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5.2 Delay Bisimulation between J′
1 and JVM

The translation from J1 to JVM is the most complicated one. It flattens the tree
structure of expressions to a linear list of instructions. Exception handlers are
registered in exception tables. Synchronized blocks are implemented by MEnter

and MExit instructions and an exception handler. Like between J and J1, the
key to correctness is delay bisimilarity on the expression level, on which we focus
in this section. Calling and returning from methods works similarly in J′t

1 and
JVMt, the laborious proof simply lifts delay bisimilarity. The multithreaded level
is the framework semantics in both semantics. It is easy to show that the delay
bisimulation for the thread level preserves final states and is preserved by heap
changes. Thus, Thm. 1 from Sec. 3.3 yields delay bisimilarity for J′m

1 and JVMm.
For the expression level, we make with a detour via the aggressive VM JVMe

a.
We show that JVMe

a simulates J′e
1 , but that J′e

1 simulates JVMe
d. Since the byte

code verifier accepts all compiled programs, the defensive VM JVMe
d simulates

the aggressive JVMe
a step by step. This detour saves us from showing type safety

for J′e
1 . If we used JVMe

d directly, only full run-time typeability of the J′e
1 expres-

sion would ensure that the JVMe
d does not halt because of a type error where J′e

1

still continues to execute. Conversely, the aggressive VM performs fewer checks
than J′e

1 , so J′e
1 might get stuck when JVMe

a continues with undefined behaviour.
Hence, bisimilarity holds only for conformant byte code states.

Note that this detour only affects the semantics, not the delay bisimulation
relation 1

e≈jvm. P,e,h � (e1, xs1) 1
e≈jvm (stk, loc, pc, xcp) relates a Je

1 state (e1, xs1)
(expression and local variables) to a JVMe state (stk, loc, pc, xcp) (stack, local
variables, program counter, and exception flag) for a heap h that is the same for
both. P only defines the class hierarchy, whereas the J1 expression e compiles to
the instruction list compE2 e with exception table compxE2 e. The inductive def-
inition for 1

e≈jvm mirrors the J′e
1 reduction rules and relates instruction positions

and the stack in the compiled code to partially evaluated expressions.
Fig. 6 shows some representative rules from the inductive definition. The sin-

gle rule B1 for all expressions exploits that the last instruction in a compiled
expression always puts its result value on top of the stack. Unfortunately, this
does not translate to exceptions, because byte code does not propagate excep-
tions from subexpressions, but exception tables are used. Hence, 1

e≈jvm contains
separate exception propagation rules for all expressions, similar to B2. Still, it
abstracts from computed values and addresses of thrown exceptions and only
requires that they are the same in both Je

1 and JVMe. Moreover, rules like B3

for all subexpressions of all expressions embed bisimilar states for the subex-
pression into the context of the larger expression, thereby shifting the stack and
instruction pointer as necessary. Finally, the definition contains a rule for every
byte code instruction and intermediate Je

1 state. For example, B4 relates the Je
1

state which next acquires a monitor’s lock to the intermediate JVMe state after
executing the Store V instruction that saves the monitor address. Although Je

1

and JVMe operate on the local variable array in the same way, they must not
be equated in the bisimulation relation, because they differ in such intermediate
states like in B4, which J1S4 skips.
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P,e,h � (Val v, xs) 1
e≈jvm ([v], xs, |compE2 e|, ⊥) B1

P,e1,h � (Throw a, xs) 1
e≈jvm (stk, loc, pc, �a�)

P,syncV(e1) e2,h � (Throw a, xs) 1
e≈jvm (stk, loc, pc, �a�)

B2

P,e2,h � (e, xs) 1
e≈jvm (stk, loc, pc, xcp)

P,syncV(e1) e2,h � (insyncV(a) e, xs) 1
e≈jvm (stk, loc, 3 + |compE2 e1| + pc, xcp)

B3

P,syncV(e1) e2,h� (syncV(Val v) e2, xs) 1
e≈jvm ([], xs[V := v], 1+ |compE2 e1|,⊥) B4

Fig. 6. Example introduction rules for the 1
e≈jvm bisimulation relation

The simulation proofs heavily rely on this value passing scheme. The next
lemma, which is shown by induction on 1

e≈jvm, says that for related states, if
one of them denotes a result values or thrown expressions, then the other can
produce the same outcome using only τ -moves.

Lemma 2. Let P,e,h � (e1, xs1) 1
e≈jvm (stk, loc, pc, xcp). If e1 = Val v, then (stk,

loc, pc, xcp) can silently execute to ([v], xs1, |compE2 e|, ⊥). If e1 = Throw a, it
can do so to ([Addr a], xs1, pc′, �a�) for some pc′. Conversely, if stk = [v] and
pc = |compE2 e|, then (e1, xs1) can silently become (Val v, loc). If xcp = �a�, then
(e1, xs1) can silently become (Throw a, loc).

Then, the simulation proofs consist of a huge induction on 1
e≈jvm and case anal-

ysis of the execution steps. Control constructs like conditionals and loops, which
are compiled to (conditional) jumps, are verified like in sequential settings.

5.3 Correctness of the Compiler

In Sec. 5.1 and 5.2, we have shown delay bisimilarity for the individual compiler
stages, but w.r.t. two different semantics in the intermediate language J1. To
link Jm

1 and J′m
1 executions, we must show that the additional reductions in J′t

1

due to e.g. J
′
1S8 and J

′
1S9 are never executed in J′m

1 , i.e. that the monitor exit
instructions never raise IllegalMonitorState or NullPointer exceptions.

We prove that Jm
1 and J′m

1 are the same for a multithreaded state s1, in which
for every monitor a and thread t in s1, the number of insyncV(a) subexpressions
of t equals the number of times t holds a in locks s1 (written � s1

√
). In such a

state, J′m
1 never picks J

′
1S9 as the TA [HasNoLock a′] never holds. Since all Jm

1

reductions preserve � s1
√

, we add it as an additional well-formedness constraint
to J

m∼1. Similarly, J
′
1S8 is never possible because J

e∼1 (and thus J
m∼1, too) does

not allow Null being stored in the local variable for the monitor address. Thus,
the augmented relation J

m∼1 is also a delay bisimulation for Jm and J′m
1 .

We have shown all delay bisimulations from Fig. 2. By transitivity, Jm and
JVMm are delay bisimilar. In the initial state sJ in J, no monitor is locked, all
wait sets are empty and there is only a single thread t whose expression is the
body of some method M of class C in program P. For JVM , the initial state sjvm
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is the same as sJ except that t’s local state is the call frame ([], loc, C, M, 0) and
no exception is flagged. For an mfinal Jm state s, the function mxcp s extracts
the correct exception flag for every thread in s, i.e. ⊥ for normal termination and
�a� if the exception at address a caused the abrupt termination. Then, Lem. 1
from Sec. 3.2 gives the following main correctness theorem:

Theorem 2. Let sJ execute to s′J in Jm for P with trace tas such that mfinal s′J .
Then, sjvm executes to mxcp s′J in JVMm for J2JVM P with trace tas. Conversely,
if sjvm executes to s′jvm in JVMm for J2JVM P with trace tas such that mfinal s′jvm,
then s′jvm has the form mxcp s′J and sJ executes to s′J in Jm for P with trace tas.

Proof. The full proof can be found online in the formalisation [19].

6 Discussion

Challenges due to concurrency. Verifying a compiler for a concurrent language
adds three dimensions to compiler verification for sequential programs: (i) non-
deterministic interleaving, (ii) different granularity of atomic operations be-
tween source and byte code, and (iii) memory models for optimisations. In Jin-
jaThreads, we have addressed (i) and (ii).

For nondeterminism, bisimulation replaces the standard simulation approach
for sequential programs, where only the compiled program simulates the source
program. For bisimulation, it does not suffice to just show the other direction,
but some subtleties arise: First, neither the source nor the compiled program may
carry on if the other gets stuck, e.g. due to type errors. Our source code semantics
is a small-step semantics, whereas the VM is an abstract state machine. Both
naturally contain different type checks, only a full type system and type safety
proof at every stage would ensure bisimilarity. By using both the aggressive and
defensive VM in the simulation proofs, we only need a single type safety proof
for byte code which ensures that both VMs are equivalent for verified byte code.

Second, the bisimulation must relate all states that are reachable from either
initial state. Ordinary simulations do not have to relate intermediate states in the
target code, which the source code skips, to any other state. This substantially
increases the size of the bisimulation relation and consequently the number of
cases the simulation proof has to consider. For 1

e≈jvm, Lem. 2 from Sec. 5.2 solves
this problem for the numerous inductive steps in the simulation proof. For the
base cases, we use similar lemmas for each expression, if necessary.

Our correctness result only mentions terminating executions, but a com-
piler should also preserve nontermination and deadlock. However, the standard
(bi-)simulation approach with τ -moves cannot prove this because infinitely many
consecutive τ -moves might be simulated by no moves at all, which is known as
the infinite stuttering problem. Hence, our correctness result allows the byte code
program to silently diverge even if all executions of the source program terminate,
although this is not the case for our compiler. To prove this, we must strengthen
the definition of delay bisimulation with an explicit notion of divergence like in
[5], but we do not expect fundamental problems to arise from this.
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Concerning (ii), several source code statements such as sync generate multiple
byte code instructions. A single observable step in the source code program is
decomposed into a number of silent steps and one observable step in between.
Although it does not show up in the generated code, the number of atomic steps
in the different semantics differs considerably. In particular, exceptions slowly
propagate up in J whereas the VM directly jumps to the exception handler. The
framework semantics, which we use at all stages, allows to decompose the multi-
threaded case to single threaded, where shared memory accesses and synchroni-
sation must be observable. Hence, we do not have to worry about interleavings
and atomicity in the main correctness proofs themselves.

Java vs. JinjaThreads. JinjaThreads is a generalised subset of Java and Java
byte code. In terms of concurrency, it models all Java features of the JLS except
for time-dependent operations such as Thread.sleep and thread interruption.
The latter could be easily added to the framework, but we cannot model the for-
mer because we have no notion of time. Other concurrency features like thread
groups and the java.util.concurrent library are Sun’s proprietary extensions,
which we have not modelled. As to the sequential part, JinjaThreads inherits all
features from Jinja: classes and objects, inheritance, dynamic dispatch, fields,
arrays, exceptions, local variables, conditionals and loops, binary operators, etc.
JinjaThreads models neither interfaces nor static fields and methods, but these
are orthogonal to concurrency and could be added if desired. Thus, any Java
program that uses only JinjaThreads features can be directly translated to Jin-
jaThreads abstract syntax. JinjaThreads generalises Java in that it does not
distinguish between statements and expressions to keep the formalisation sim-
ple. Unlike Java, e.g., the condition of a while loop may contain a try catch block.

For byte code, the situation is similar: all byte code instructions for the above
features are modelled. The exception tables are slightly more general because for
exception handling, the stack need only be trimmed to a specified size, but not
completely cleared. For Jinja programs that respect the syntactic constraints of
Java, our compiler only produces byte code that could be directly pretty-printed
to Java byte code.

Although our formalisation completely ignores the memory model issue, it is
still a sound model for real Java. For programs without data races in the sense
of the JMM, the JMM guarantees sequential consistency [3], i.e. our interleaving
semantics can reproduce all allowed executions. Hence, our results also apply to
data race free Java programs. Moreover, our compiler is strictly nonoptimising;
it just follows the recommendations in the JVMS [16, Ch. 7]. In fact, even Sun’s
javac compiler in Java 2 SE optimises only very little, but leaves this to the JIT
compiler in the VM. Ševč́ık and Aspinall [25] showed that the JMM allows all pro-
gram transformations that do not affect the JMM-observable behaviour. Since
our compiler falls into this class, our verification will also work for the JMM.

Size of the formalisation. Currently, JinjaThreads consists of about 47k lines of
Isabelle theories (without the a data flow analysis framework for the byte code
verifer), but not everything is relevant to the compiler itself. The framework
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semantics has approx. 6k lines. About 4.3k lines provide general infrastructure
for JinjaThreads. The semantics for J, J1 and JVM , the byte code verifier and
type safety proofs are 14k lines. 1k lines show that our J semantics is bisimilar to
the original source code semantics which dynamically inlines method calls. The
translation from J to J1 is verified in about 3.4k lines, but the by far largest part
is the bisimilarity proof for J1 and JVM with more than 17k lines. Replaying all
proofs (including type safety and the byte code verifier) in Isabelle2009 takes 52
minutes on an Intel DualCore 2.33GHz processor with 2GB memory.

In comparison, Jinja [11], on which JinjaThreads was based, has only 15k lines
of Isabelle code (excluding the data flow analysis). The compiler verification in
terms of the big-step semantics is much easier: about 3.2k lines. Hence, going
from big-step to small-step and from sequential to multithreaded has blown up
the amount of proofs to be done. In particular, semantic preservation in Jinja
is only unidirectional from source code to byte code. Our proof scripts may be
not optimal yet, and we expect that some improvements can be made, but the
difference in size w.r.t. Jinja will remain immense.

7 Related Work

Formal semantics for Java. There are a lot of formal semantics for different
subsets of sequential Java source code and byte code, e.g. [2,11,22]. As for con-
current Java, AtomicJava [7] by Flanagan et al. models most Java source code
features except inheritance and exception handling. Stärk et al. [26] present a
semantics for multithreaded source code based on abstract state machines, a pen-
and-paper proof for type preservation, and a model of a sequential JVM. Liu
and Moore’s interpreter M5 [17] in ACL2 provides a monolithic multithreaded
semantics for byte code, which also models class loading and initialisation. They
aim at verifying JVM implementations w.r.t. the JVMS. Huisman and Petri’s
[10] detailed model of the JVMS in Coq features all byte code instructions, the
wait/notify mechanism and thread interruption, but they do not report on any
proofs with the semantics.

Like in our approach, Belblidia and Debabbi [4] have a semantics for threads
in isolation and a second layer which manages the threads from which it receives
thread actions, which they call labels. In contrast to ours, their single-thread
semantics already takes care of the locks, which are stored in shared memory.
Nor do they model the wait/notify mechanism or thread interruption. Also, they
only give the byte code semantics, but do not report on any proofs with it.

Formally verified compilers. Compiler verification in general has been an active
research topic for more than 40 years; see [6] for an annotated bibliography. Rittri
[24] and Wand [27] first used bisimulations for compiler verification for a simple,
parallel functional language. They showed that running the compiled code on a
virtual machine is weakly bisimilar to the source code’s denotational semantics.

Most closely related to our compiler is the one by Stärk et al. [26], but it han-
dles only sequential Java source code. Also, they lack the formal rigour required
for machine-checked proofs, as already pointed out in [11].
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As for compiler verification for concurrent Java, Ševč́ık and Aspinall [25] re-
port on verifying individual compiler optimisations w.r.t. the JMM. They show
that the JMM does not allow as many as intended by its designers for programs
with data races. However, their proofs are only on paper for a toy core language
without almost all sequential Java features.

Leroy’s CompCert project [13,14,15] has been the most remarkable landmark
in mechanised compiler verification recently. He has verified a complete compi-
lation tool chain from a subset of C source code to PowerPC assembly language
in Coq. CompCert focuses on low-level details and language features such as
memory layout, register allocation and instruction selection. Leroy also plans
to extend CompCert to concurrency [15, Sec. 17.7]. He wants to show semantic
preservation only for pseudo-sequential executions, where threads are resched-
uled only at lock operations. By contrast, our approach directly covers all inter-
leavings and all behaviours, since we use bisimulations instead of simulations.
Hence, our proof also shows that the different granularity of atomicity in source
code and byte code does not affect the possible behaviour of programs.

As part of the Verisoft project, Leinenbach [12] has verified a nonoptimising
compiler from C0, a subset of C, directly to DLX assembler in Isabelle/HOL.
Like CompCert, he focuses on low-level details and only proves a weak simulation
theorem for sequential executions, but not for the backward direction.

8 Conclusion and Future Work

In the current paper, we presented the first verification of a compiler for multi-
threaded Java to byte code. The proof technique is much more difficult than for
sequential languages: (i) one must switch from big-step to small-step semantics
in the source, target and intermediate languages, and (ii) one must show both
directions of the required bisimulation to be semantics preserving. According
to the more complex proof requirements, the verification required 47k lines of
Isabelle formalisation compared to 15k lines for the sequential predecessor.

Our verified Java compiler is part of a larger project which aims to completely
verify an infrastructure for language-based security [9,28]. Still, much remains
to be done: Without a trusted VM, the guarantee of the verified compiler is
vacuous. We are currently working together with the Isabelle team on mechani-
cally extracting an executable VM from our formalisation. Moreover, our notion
of bisimulation cannot distinguish a deadlocked program from a silently diverg-
ing one. Leroy’s simulation property [15] might be a good starting point for a
stronger notion. As the next step, we plan to add the JMM to our interleaving
semantics. Using the techniques from [25], we expect to transfer our results to
the JMM without meeting fundamental problems. This will further narrow the
formalisation gap between Java and JinjaThreads. Finally, we are going to add
the missing constructs from sequential Java to obtain a verified compiler for full
Java. To automate the conversions, we are also working on a simple parser from
Java source code to abstract syntax and a printer from byte code abstract syntax
back to Java byte code.
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Abstract. Program inversion has many applications such as in the im-
plementation of serialization/deserialization and in providing support for
redo/undo, and has been studied by many researchers. However, little
attention has been paid to two problems: how to characterize programs
that are easy or hard to invert and whether, for each class of programs,
efficient inverses can be obtained. In this paper, we propose an inver-
sion framework that we call grammar-based inversion, where a program
is associated with an unambiguous grammar describing the range of the
program. The complexity of the grammar indicates how hard it is to
invert the program, while the complexity is related to how efficient an
inverse can be obtained.

1 Introduction

The problem of program inversion — deriving a program computing f−1 from
a program computing f , has been studied over decades [1, 7, 8, 11, 15–17, 25,
27, 30] and has many applications including providing support for undo/redo,
deriving a deserializing program from a serializing program or vice versa, and
serving as an auxiliary phase in other program transformations, such as bidirec-
tionalization [21].

Every method of program inversion faces two challenges: how to handle a
wide class of programs, and how to derive efficient inverses for them. Although
it is possible to invert all the programs based on symbolic computation with
search (e.g., [1]) as in logic programs, an inverse obtained this way could per-
form much worse than a handwritten inverse. Thus, an inversion method should
restrict itself to a certain subclass of programs for which efficient inverses can be
derived. It is certainly desirable for an inverter to handle a wider class of pro-
grams. Although often overlooked, it is also desirable for the criteria under which
a program can be inverted by a particular inverter to be perspicuously specified.
This is especially important when program inversion is used by other program
transformations, and we have to convert the program into a form acceptable by
the inverter.
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Grammar Program
Production Evaluation

Production Tree
...

E →∗ v

Evaluation Tree...
θ � e ↓ v

Fig. 1. Idea underlying our inversion: Inversion problem can be rephrased as “given
expression e and value v, find environment θ under which e evaluates to v” (Sect. 2)

Two questions arise naturally: For what kind of programs, how efficient inverse
programs can be obtained, and how difficult is the inversion process? Those
who have worked on program inversion would agree that among the following
programs, double is the easiest to invert, followed by snoc, and reverse is the
most difficult of the three.

double(x) = case x of
Z → Z
S(y) → S(S(double(y))),

snoc(x, b) = case x of
[ ] → [b]
a : y → a : snoc(y, b),

reverse(x) = rev(x, [ ])
rev(x, r) = case x of

[ ] → r
a : y → rev(y, a : r).

A particular method may be able to handle some of these while it may fail on
the others. It has not been clarified, however, whether this is merely due to the
inadequacy of the method, or whether some problems are intrinsically hard. To
the best of the authors’ knowledge, there have been no formal classifications of
invertible programs so far.

We propose a framework toward solving the classification problem, that we
call grammar-based inversion in this paper, which is an adaptation of Yellin’s
inversion [30] for first-order functional programs. Our inversion is based on the
correspondence between two proofs: a proof of ∃x. f(x) = v for function f , and
a proof of v ∈ Range(f) where Range(f) is described by a grammar. More con-
cretely, as in Fig. 1, our inversion uses bijection between a proof for evaluation
of a program (an evaluation tree) and a proof for production of a grammar (a
production tree). From an output of the program (function), a production tree
is obtained by parsing with the grammar. According to the correspondence, the
production tree is then converted to an evaluation tree of the program. We also
reconstruct the environment used in the evaluation with the evaluation tree,
from which we recover the arguments to which the function was applied. The
class of programs that can be inverted by the proposed approach is characterized
by the complexity of grammars, as seen in Fig. 2. For example, to invert double
and snoc, regular tree grammars (RTG) [6] is sufficient. To invert reverse, how-
ever, we need grammar beyond regular, such as (inside-out) context-free tree
grammar [9]. While a more general grammar covers more programs, it also im-
plies higher worst-case time complexity of parsing and, therefore, a less-efficient
inverse. Grammar-based inversion has three main characteristics:

– A program is associated with a grammar, whose complexity characterizes
how difficult it is to invert the program.
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Regular Tree Grammar

(IO) Context-Free Tree Grammar

Unrestricted Tree Grammar (All of 1st-order Functions)

top-down determistic

double, . . .

snoc, . . .

reverse , . . .

...

Fig. 2. Classification includes double, snoc, and reverse

– The derived inverse is efficiently evaluated by parsing the output with respect
to the grammar.

– The correctness of the inversion is clearly expressed by bijection between
two proofs.

We present grammar-based inversion with RTG as a case study in this paper.
Invertible programs of grammar-based inversion using RTG cover double and
snoc but not reverse. However, it will be explained in Sect. 5 that grammar-based
inversion, being an extensible framework, can handle functions like reverse.

The main purpose of our work is not to invert as many programs as possible,
or to obtain the most efficient inverses for certain programs. Instead, we aim at
classifying programs by grammars that determine the worst-case time complexity
of the derived inverses. Also note that we classify programs, not problems. That
is, classification by grammar-based inversion is rather syntactic, not semantic.

This paper is organized as follows. Section 2 defines a small core language that
we base our discussion on. Section 3 explains an informal account of grammar-
based inversion using a small example. Section 4 presents a case study of grammar-
based inversion using RTG in detail. Section 5 discusses grammar-based inversion
in general. Section 6 describes an experiment that demonstrated the inverses ob-
tained with our method are sufficiently efficient. Section 7 discusses related work.
Section 8 concludes the paper and discusses some future directions.

Preliminaries. For function f , function g is called a left inverse of f if and only
if g(f(x)) = x for all x in the domain of f . For function f , function g is a right
inverse of f if and only if f(g(y)) = y for all y in the range of f . Both inverses
are discussed in this paper. We only consider left/right inverses that are defined
precisely on the range of f . Thus, the left inverse is always unique for injective
function f . Unless otherwise noted, “inverse” and “invertible” in this paper refer
to left inverses.

2 Core Language

To begin with, let us define a small core language to describe the programs to be
inverted. The language is merely a first-order functional programming language
with call-by-value semantics except for its slightly unusual evaluation rules.
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prog ::= decl1 . . . decln

decl ::= f(x1, . . . , xn) = e
e ::= x | C(e1, . . . , en) | f(e1, . . . , en) | case x of {p1 → e1; . . . ; pn → en}
p ::= x | C(p1, . . . , pn)

Fig. 3. Syntax of core language

Let Σ be a set of constructors each associated with an arity. The set of val-
ues are trees TΣ , inductively defined by: Let C ∈ Σ be an n-ary constructor,
C(t1, . . . , tn) ∈ TΣ if t1, . . . , tn ∈ TΣ . Note that the definition implies that C() for
nullary C is always in TΣ . For example, given an appropriate Σ, Z() and S(Z())
are both trees. For brevity, tree C() is written as C, and trees Cons(x, y) and Nil
are written as x : y and [ ], respectively. In the later discussion, we assume set
Σ containing all constructors in the examples.

A program is a set of definitions of first-order functions that take a tuple of
values and return a value. The syntax of the language is formally described in
Fig. 3. To simplify the presentation, the language does not have a let construct,
and case always matches a variable against patterns. The restrictions do not
affect the expressiveness of the language. The set of free variables in expression
e is denoted by vars(e). For simplicity, we assume that the variables in p of
case-alternative p → e are always fresh.

We call a program nonerasing if every variable in the LHS of a declaration
also occurs in the corresponding RHS, and every variable in pattern p of case-
alternative p → e occurs in e. If no variable in a program occurs more than once
in the RHS, we call the program affine.

Substitution θ is a mapping from a finite domain of variables to values. Given
pattern p, the value obtained by substituting variables in the domain of θ for
corresponding values is denoted by pθ. For set of variables X and substitution θ,
domain restriction operator −|− is defined by θ|X = {x �→ θ(x) | x ∈ X}. Partial
operator * merges two substitutions if their domains are disjoint.

The semantics of the language is defined by the big-step call-by-value seman-
tics given in Fig. 4. The semantics is rather standard, except that we eagerly
remove unused variables in the environment by domain restriction, which will
come in handy in our inversion later. To evaluate expression e, the rules in Fig. 4
are repeatedly applied and an evaluation tree (a derivation tree/a proof tree) is

Var:

θ(x) = v
θ � x ↓ v

Con:

{θ|vars(ei) � ei ↓ vi}i∈{1,...,n}
θ � C(e1, . . . , en) ↓ C(v1, . . . , vn)

Fun:

{θ|vars(ei) � ei ↓ vi}i∈{1,...,n}
{xi �→ vi | 1 ≤ i ≤ n}|vars(e′) � e′ ↓ v

θ � f(e1, . . . , en) ↓ v
(∃f(x1, . . . , xn) = e′)

Case:

∃σ, i. piσ = θ(x) (θ , σ)|vars(ei) � ei ↓ v
θ � case x of {p1 → e1; . . . ; pn → en} ↓ v

Fig. 4. Big-step call-by-value semantics of core language
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constructed. Evaluation tree E can be seen as a proof that e evaluates to some v
under environment θ, which we denote by E : θ � e ↓ v. For simplicity, patterns
in case are assumed to be non-overlapping, i.e., there is at most one pattern that
matches any given input. Note that, given e and θ, evaluation tree E : θ � e ↓ v
is unique if it exists.

3 Grammar-Based Inversion: An Overview

Before going into details, we briefly overview grammar-based inversion.

3.1 Basic Idea Underlying Grammar-Based Inversion

Recall that, in Sect. 2, a program defines the semantics of expressions. Therefore,
we can reduce program inversion to expression inversion as follows.

Problem (Expression Inversion). Given expression e in a program and value
v, find environment (substitution) θ such that θ � e ↓ v.

Given function f , it is reasonable to expect that any notion of a “correct” in-
version should cover the entire range of f . That is, it should be complete in
the sense that for all v, if there exists θ such that θ � f(x) ↓ v, we are able to
recover θ. This is apparently hard and inefficient for general f . Thus, we restrict
ourselves to a method that is only complete for a chosen class of programs.

The goal of grammar-based inversion is to reconstruct the evaluation tree of
θ � e ↓ v, given e and v. This is as hard as only constructing the environment θ.
Reconstruction is carried out in two steps: we first construct an approximation
of evaluation by building a production tree with respect to a grammar induced
by the program, then attempt to reconstruct environment θ from the production
tree. Note that the grammar also approximates the range of the program. There
is an overview of grammar-based inversion in Fig. 5.

3.2 Inverting snoc Step by Step

We demonstrate grammar-based inversion with the example of snoc in Sect. 1.
The first step is to construct an unambiguous grammar whose production tree
approximates an evaluation tree of snoc. One would prefer to construct a gram-
mar belonging to a lower complexity class because the complexity is related to
the efficiency of the derived inverse. It suffices to use a regular tree grammar
(RTG) [6] for snoc. From a program, we derive an RTG such that:

– Each nonterminal Ee corresponds to expression e in the program.
– If expression e evaluates to e′, we add production rule Ee → Ee′ .
– Constructors are converted to terminal symbols denoting themselves.
– Nonterminal Ex for variable-use expression x has production rule Ex → �,

where � is a special symbol that will be explained later.
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Yes
No

Fail, or try other grammarsAmbiguous?

GrammarProgram: f(x) = e, . . .

Inverse Program (Inverse Procedure)

reconst

Production Tree
.
..

Ee →∗ v

Evaluation Tree
...

θ � e ↓ v
θ(x)v

Fig. 5. An overview of grammar-based inversion

The conversion will be formalized in the next section. For example, snoc is
converted to the (unambiguous) grammar below. Here, case x of {. . .} is an
abbreviation for case x of {[ ] → b : [ ]; a : y → a : snoc(y, b)}, the unique RHS
of snoc, the function we intend to invert.

Ecase x of {...} → Eb:[ ]
Ecase x of {...} → Ea:snoc(y,b)
Eb:[ ] → Eb : E[ ]

Ea:snoc(y,b) → Ea : Esnoc(y,b)
Esnoc(y,b) → Ecase x of {...}
Ea → �

Eb → �
E[ ] → [ ]
Ey → �

For the second step, given an output supposedly produced by snoc, we first
try to parse it against the grammar, allowing � to match any value. For ex-
ample, the production tree of 1 : [ ], or the derivation/proof tree of production
Ecase x of {...} →∗ 1 : [ ], is:

� →∗ 1
Eb →∗ 1 E[ ] →∗ [ ]

Eb:[ ] →∗ 1 : [ ]
Ecase x of {...} →∗ 1 : [ ]

.

From the production tree, we can reconstruct the following evaluation tree of
θ � snoc(x, b) ↓ 1 : [ ]:

{b �→ 1}(b) = 1
{b �→ 1} � b ↓ 1 ∅ � [ ] ↓ [ ]
{b �→ 1} � [ ] → b : [ ] ↓ 1 : [ ] {b �→ 1, x �→ [ ]}(x) = [ ]

{b �→ 1, x �→ [ ]} � case x of {[ ] → b : [ ]; a : y → a : snoc(y, b)} ↓ 1 : [ ]
.

Each node of the obtained evaluation tree corresponds to a node in the produc-
tion tree. � matches 1 in the topmost leaf of the production tree; therefore, the
value of b is known to be 1 in the corresponding node in the evaluation tree. By
completing the evaluation tree we have also recovered the initial environment,
{b �→ 1, x �→ [ ]}, the result of inversion.

This reconstruction of evaluation trees from production trees is done by func-
tion reconst in Sect. 4. With reconst, our generated inverse program snoc−1 has
the form:

snoc−1(v) = (θ(x), θ(b))
where (E : θ � snoc(x, b) ↓ v) = reconst(P)

P is a production tree for Ecase x of {...} →∗ v.
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Any: � →∗ v
Unit:

E1 →∗ v
E →∗ v (E → E1 ∈ R)

Con:

{Ei →∗ vi}1≤i≤n

E →∗ C(v1, . . . , vn) (E → C(E1, . . . , En) ∈ R)

Fig. 6. Semantics of RTG (Σ, N, R)

Since the cost of parsing for RTGs is linear, the derived snoc−1 runs in time
that is linear to its input. It might seem that snoc−1 entails a large overhead. The
experiment discussed in Sect. 6 demonstrates that the overhead is acceptable.

4 Grammar-Based Inversion by Regular Tree Grammar

This section describes a case study of grammar-based inversion when we use
RTG [6], one of the simplest tree grammars, which is relatively well understood;
e.g., parsing for RTG can be efficiently performed done tree automaton and its
variations [4, 6, 13, 24].

Definition 1 (RTG). An RTG is a triple (Σ, N, R), where Σ is a set of con-
structors (terminals), N is a set of nonterminals, and R is a set of production
rules in which each rule has either of the forms E → E1 or E → C(E1, . . . , En)
with E, E1, . . . , En ∈ N and C ∈ Σ of arity n.

Unlike conventional presentation, we define the semantics of a grammar in a
“big-step” style as seen in Fig. 6. The rules in Fig. 6 are defined so that E →∗ v
means that value v is a normal form of E taking production rules to be rewriting
rules. We assume that there exists special nonterminal � that can generate any
value, and we treat � →∗ v as an axiom. Also note the above definition contains
no start symbol. We sometimes write P : E →∗ v if P is a production tree (a
derivation tree/a proof tree) for E →∗ v. We call a grammar ambiguous if, for
some E and v, there is more than one production tree for E →∗ v. Otherwise, the
grammar is unambiguous. Note that checking whether an RTG is ambiguous or
not is known to be decidable [6].

4.1 Approximation of Evaluation Structure

We construct an RTG from a program so that each production rule in the gram-
mar corresponds to an evaluation step of the program. The basic idea behind
the construction has been explained in Sect. 3, and the formal rules are given in
Fig. 7. The procedure itself is not new; it is almost the same as the type inference
of regular expression types [19], and similar techniques have been adopted in the
range inference of tree transducers (e.g., [10]).

To clarify the correspondence between a program and its derived grammar,
we define a transformation, approx, from a proof of θ � e ↓ v to a proof of Ee →∗ v
in Fig. 8. Function approx defines the node-by-node correspondence between the
two proofs. Formally, we have the following theorem.
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x −→ Ex → �
C(e1, . . . , en) −→ EC(e1,...,en) → C(Ee1 , . . . , Een)
f(e1, . . . , en) −→ Ef(e1,...,en) → Ee′ where ∃(f(. . .) = e′)

case x of {p1 → e1; . . . ; pn → en} −→

⎛⎜⎝Ecase x of {p1→e1;...;pn→en} → Ee1

...
Ecase x of {p1→e1;...;pn→en} → Een

⎞⎟⎠
Fig. 7. Construction of productions rules of RTG

approx

(
θ(x) = v
θ � x ↓ v

)
= � →∗ v

Ex →∗ v

approx

(
{Ei : θ|vars(ei) � ei ↓ vi}1≤i≤n

θ � C(e1, . . . , en) ↓ C(v1, . . . , vn)

)
=

{approx(Ei)}1≤i≤n

EC(e1,...,en) →∗ C(v1, . . . , vn)

approx

(
{ : θ|vars(ei) � ei ↓ vi}1≤i≤n

E : {xi �→ vi | 1 ≤ i ≤ n} � e ↓ v

θ � f(e1, . . . , en) ↓ v

)
=

approx(E)
Ef(e1,...,en) →∗ v where ∃(f(x1, . . . , xn) = e)

approx

(∃σ, i. piσ = θ(x) Ei : (θ , σ)|vars(ei) � ei ↓ v
θ � case x of {p1 → e1; . . . ; pn → en} ↓ v

)
=

approx(Ei)
Ecase x of {p1→e1;...;pn→en} →∗ v

Fig. 8. Definition of approx

Theorem 1 (Approximation). Given evaluation tree E : θ � e ↓ v, P =
approx(E) is a production tree for Ee →∗ v, i.e., P : Ee →∗ v. ��

Since approx discards the evaluation trees of arguments at the third branch,
approx is neither surjective nor injective: there may be production tree P :
Ee →∗ v that does not correspond to any evaluation tree, i.e., ∀E : θ � e ↓ v.
P �= approx(E), even if e evaluates to v under some environment. For example,
consider the program

h(r) = add(Z, r)
add(x, r) = case x of {Z → r; S(y) → S(add(y, r))}.

Since h is injective, there is only one evaluation tree for {r �→ S(Z)} � add(Z, r) ↓
S(Z). From h we obtain the following grammar:

Eadd(Z,r) → Ecase x of {...}
Ecase x of {...} → Er

Ecase x of {...} → S(Eadd(y,r))

Eadd(y,r) → Ecase x of {...}
EZ → Z
Er → �

Ey → �.
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The reader may have found that there are two production trees for Eadd(Z,r) →∗
S(Z), and only one of these corresponds to the evaluation tree.

To deal with this situation, we propose two sufficient conditions to guarantee
bijection between evaluation and production trees:

Condition (Suff-Left): The program is nonerasing and the derived grammar
is unambiguous.

Condition (Suff-Right): The program is affine and treeless (i.e., every argu-
ment of a function call must be a variable) [29].

Roughly speaking, (Suff-Left) guarantees the injectivity of a program, while
(Suff-Right) guarantees its surjectivity with respect to the range described by
the grammar. With (Suff-Left), for v of E : θ � e ↓ v, any P : Ee →∗ v must
equal approx(E) since the grammar is unambiguous. With (Suff-Right), every
P : Ee →∗ v must have a unique corresponding evaluation tree, E : θ � e ↓ v (a
direct consequence of [21]). As will be seen later, (Suff-Left) is used to obtain
left inverses, and (Suff-Right) is used to obtain right inverses.

4.2 Reconstructing Evaluation Trees

Our aim now is to construct an evaluation tree from a production tree, i.e., to
construct the inverse of approx. Since the RHSs of approx are disjoint, inversion
of approx is done in a straightforward way if we can recover the information lost
in approx — the evaluation trees of arguments to each function call f(e1, . . . , en).
In other words, in reconstructing the evaluation tree of f(e1, . . . , en) ↓ v where
f is defined by f(x1, . . . , xn) = e, we must recover Ei of Ei : θi � ei ↓ θ(xi)
from E : θ � e ↓ v. Luckily, this can be done. Assume that each ei respectively
evaluates to vi. The values of vi have been recovered by vi = θ(xi). Thus,
evaluation tree Ei : θi � ei ↓ vi is obtained by recursively rebuilding production
tree Pi : Eei →∗ vi.

Formally, reconst defined in Fig. 9 reconstructs an evaluation tree from a pro-
duction tree.1 Function reconst is an inverse of approx obtained by swapping LHSs
with RHSs except that invE recovers the lost information of approx, as explained
in the previous paragraph. Operator * is extended to substitutions with over-
lapping domains: {x �→ 1} * {x �→ 1} yields {x �→ 1}, while {x �→ 1} * {x �→ 2}
fails. Note that reconst is a partial function; e.g., * may fail.

Procedure invE in Fig. 9 appears to be nondeterministic since there might
be more than one production tree. With constraints (Suff-Left) and (Suff-

Right), we ensure that there is at most one production tree and thus invE is
deterministic.

1 For simplicity, we assume that there is at most one possibility to choose pi at the
definition of reconst for case; e.g., we exclude case x of {Z → Z;S(y)→ Z}. Note
that a program containing such a case-expression does not satisfy (Suff-Left). To
invert such programs under (Suff-Right), it is sufficient to construct a nonterminal
for each expression occurrence instead of the expression itself in constructing RTG.
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reconst

(
� →∗ v
Ex →∗ v

)
=
{x �→ v}(x) = v
{x �→ v} � x ↓ v

reconst

(
{Pi}1≤i≤n

EC(e1,...,en) →∗ C(v1, . . . , vn)

)
=

{Ei : θi � ei ↓ vi}1≤i≤n

θ1 , · · · , θn � C(e1, . . . , en) ↓ C(v1, . . . , vn) where (Ei : θi � ei ↓vi) = reconst(Pi)

reconst

( P : Ee →∗ v
Ef(e1,...,en) →∗ v

)
=
{Ei : θi � ei ↓ v}1≤i≤n E : θ � e ↓ v

θ1 , · · · , θn � f(e1, . . . , en) →∗ v
where

∃f(x1, . . . , xn) = e.
(E : θ � e ↓ v) = reconst(P)
(Ei : θi � ei ↓ v) = invE(ei, θ(xi))

reconst

( Pi : Eei →∗ v
Ecase x of {p1→e1;...;pn→en} →∗ v

)
=

∃σ, i. piσ = θ(x) E : η � ei ↓ v
θ � case x of {p1 → e1; . . . ; pn → en} ↓ v

where
(Ei : η � ei ↓ v) = reconst(Pi)
θ = η , {x �→ piη}
σ = η|vars(pi)

invE(e, v) = reconst(P) where P is a production tree of Ee →∗ v.

Fig. 9. Definition of reconst

The following properties relate reconst and approx:

Theorem 2. If reconst(P) = (E : θ � e ↓ v), then E is a proof of θ � e ↓ v.

Proof Sketch. Induction on P . ��

Theorem 3. If E = reconst(P), then approx(E) = P holds.

Proof Sketch. Induction on P . ��

Lemma 1 (Correctness (Left)). Assume that a program satisfies (Suff-

Left). Let e be an expression and v a value such that ∃θ. θ � e ↓ v. Then,
for production tree P : Ee →∗ v, reconst(P) = (E : θ � e ↓ v) holds.

Proof Sketch. In this case, P = approx(E : θ � e ↓ v) holds for some E because of
the unambiguity of the grammar. Then, by induction on the structure of E , we
prove reconst(approx(E)) = E , which means reconst(P) terminates and results in
E . The nonerasing property ensures that for each step of reconst, θ of θ � e ↓ v
is defined for any variable occurring in e. ��

Lemma 2 (Correctness (Right)). Under (Suff-Right), for any production
tree P : Ee →∗ v, reconst(P) = E : θ � e ↓ v holds.

Proof Sketch. In this case, since invE(e, v) is always called with e = x, the call
terminates and returns an evaluation tree of form {x �→ v} � x ↓ v. Thus,
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we conclude that under (Suff-Right), reconst always terminates. The rest of
the proof is straightforward by induction on P . Note that nonerasure does not
matter here because we can assign any value to a variable that does not affect
the output; leaving it as undefined is a correct solution. ��

From the lemmas above we can prove the following theorem.

Theorem 4 (Correctness of Grammar-based Inversion). For a program
with definition f(x1, . . . , xn) = e, the program f−1 defined by

f−1(v) = (θ(x1), . . . , θ(xn)) where (E : θ � e ↓ v) = invE(e, v)

satisfies the following two properties.

1. f−1 is a left inverse of f , if (Suff-Left) holds, and
2. f−1 is a right inverse of f , if (Suff-Right) holds. ��

Note that double and snoc satisfy both (Suff-Left) and (Suff-Right), while
reverse satisfies neither of them. Program runlength used in the experiment to
be discussed in Sect. 6 only satisfies (Suff-Left).

Recall that in Sect. 1 we stated that we classify invertible programs instead
of problems. We can give another definition of reverse, as shown in Fig. 10, from
which the derived grammar is unambiguous. More precisely, reverse′ satisfies
(Suff-Left) but not (Suff-Right). The definition of reverse′, while appearing
tricky, is nothing but a nonerasing version of IO-swapped reverse [22]. Note that
both reverse and reverse′ run in time linear to the input size.

reverse ′(xs) = extract (call(shape(xs)))
shape(xs) = case xs of {[ ]→ Pair(Z, [ ]); x : xs ′ → inc(shape(xs ′), x)}
inc(r, x) = case r of {Pair(n, xs) → Pair(S(n), x : xs)}
call(r) = case r of {Pair(n, xs)→ revTABA(n, xs)}
extract(r) = case r of {Pair(xs, [ ])→ xs}
revTABA(n, xs) = case n of {Z → Pair(xs, [ ]); S(m)→ shift(revTABA(m, xs))}
shift(r) = case r of {Pair(x : xs, ys)→ Pair(xs , x : ys)}

Fig. 10. Variant of reverse that is invertible with RTG

4.3 Properties

We discuss some properties of the inverses derived using grammar-based inver-
sion with RTG.

Correspondence to Post Condition. Post conditions play important roles in
many program inversion methods [8, 11, 16, 17]. Post condition P of e, which we
write as e{P}, is a predicate on the state (i.e., values of all free variables) that
is supposed to be true after e is executed. A simple post condition is a predicate
on the value of e. Given a program, one may assign, for each function f , a post
condition, postf . The assignment is valid if we can assign a valid post condition
to each sub-expression in the program in the way defined below:
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Definition 2 (Simple Post Conditions). Given a program and a post con-
dition assignment for each function in the program, an assignment of post con-
ditions to all sub-expressions is valid if

– every variable x is given a post condition, P ( ) = True;
– each function call f(. . .) is assigned the post condition, postf ;
– C(e1{P1}, . . . , en{Pn}){P} is valid if ∀i. Pi(vi) ⇒ P (C(v1, . . . , vn));
– case of {p1 → e1{P1}; . . . ; pn → en{Pn}}{P} is valid if ∃i. Pi(v) ⇒ P (v);
– in a definition, f(. . .) = e{P}, the right-hand side is assigned a post condi-

tion satisfying P (v) ⇒ postf (v).

Many approaches to program inversion rely on disjoint post conditions for each
case expression. The expression case x of {p1 → e1{P1}; p2 → e2{P2}}, where
P1 and P2 are disjoint, is inverted to a program that, given output v, tests which
of P1(v) or P2(v) holds and performs, respectively, the inverse of e1 or e2. For
non-simple post conditions, it is harder to check the validity of assignment and
to test P (v) in executing inverses. Human-assigned post conditions [8, 11, 17]
without validity checks may be more expressive. In contrast, the post conditions
in Glück and Kawabe [16] that support inference are basically simple. Note
that, in functional language, post conditions can be seen as types satisfying the
preservation (subject reduction) law.

The following theorem states that grammar-based inversion using RTG is
equivalent to inversion using simple post conditions:

Theorem 5. The RTG obtained from a program is unambiguous if and only if
there exists a valid assignment of simple post conditions such that every case-
expression in the program has an assignment

case x of {p1 → e1{P1}; . . . ; pn → en{Pn}}

where P1. . .Pn are disjoint. That is, for any v, there is at most one Pi such that
Pi(v) = True.

Proof Sketch. In this case, for e{P}, we can prove (θ � e ↓ v) ⇒ P (v). Then, the
“if” part is proved by showing the contraposition: if a grammar is ambiguous,
then there exists such a case-expression. For grammars obtained with Fig. 7, we
can prove that if a grammar is ambiguous, there exists E such that E → E1 →∗ v
and E → E2 →∗ v for distinct E1 and E2, and such E must correspond to
some case-expression. The “only if” part is proved by taking the P of e{P} as
P (v) ≡ (∃P . P : Ee →∗ v). ��

It is thus a corollary that to invert more functions than those with grammar-
based inversion with RTG, we must use more expressive post conditions that are
harder to check, to infer, or to invert.

Efficiency. For RTG, the construction of a production tree for E →∗ v takes
time at worst proportional to the size of v [6]. It is remarkable that, thus, if
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a program is nonerasing, affine, and treeless, the derived inverse runs in O(n),
where n is the size of an input of the inverse. As a result, we can obtain linear
time inverses for double and snoc. Being affine ensures that the domains of
environments merged by * are always disjoint; thus, we do not need to spend
time checking whether overlapping variables are equal. Being treeless means that
arguments ei of each function call f(e1, . . . , en) are merely variables. Thus, all
production tree constructions at invE(x, v) immediately match � with the given
value in O(1) time. In more general cases, the construction of production tree
P : Ee →∗ v at invE(e, v) runs in time between O(|P|) and O(|v|), where |P| and
|v| are the sizes of P and v, depending on the parsing method. For example,
using guided tree automata for parsing [4], we can obtain a linear time inverse
for reverse′ in Fig. 10 because the lower complexity bound is achieved for each
call of invE in the inverse. Generally, a derived inverse runs at worst in time that
is proportional to the total size of “intermediate data” plus “duplicated data”
in addition to the size of the output value. Note that a derived right inverse
always takes time at worst linear to the size of its input because (Suff-Right)

requires a program to be affine and treeless.

5 Grammar-Based Inversion in General

So far, we have discussed grammar-based inversion by RTG as a case study. In
this section, we will give more general study on grammar-based inversion.

5.1 More Fine-Grained Classification

Recall that double and snoc are invertible by RTG. However, the difficulties of
inversion differ in the two programs; double is easier to invert than snoc. Extra
conditions for a grammar achieve more fine-grained classification. For example,
the grammar of double is top-down deterministic (for E →∗ C(E1, . . . , En), the
tuple (E1, . . . , En) is unique to E and C) while that of snoc is not. If a top-
down deterministic grammar has no rule E → E1 for E that has more than one
production rule, swapping LHSs with RHSs results in a deterministic inverse.
Even if such production rules exist, additional checking of the root of a value at
case is sufficient to obtain a deterministic inverse.

5.2 Predefined Inverses as Axioms

Small parts of a program are sometimes very difficult to invert because they
use mathematical properties, such as multiplication of prime numbers. In this
case, treating them as language constructs with predefined inverses helps us to
invert programs that contains them. For example, consider mulPrime(x1, x2)
that multiplies two primes x1 and x2 if x1 ≤ x2. The semantics of function call
mulPrime(e1, e2) is defined by the predefined semantics [[mulPrime]] as

{θ � ei ↓ vi}i=1,2 [[mulPrime]](v1, v2) = v v1 ≤ v2

θ � mulPrime(e1, e2) ↓ v
.
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For the function, we prepare a special production rule, EmulPrime(e1,e2) → Nat ,
where Nat represents natural numbers, and then the corresponding reconst is
defined in a straightforward way by using its predefined inverse [[mulPrime]]−1.

5.3 More Expressive Grammars

Using more expressive grammars enables us to invert more programs.
Inside-out (IO) context-free tree grammar (CFTG) [9] enables us to investi-

gate accumulation parameters (parameters that are never pattern-matched in
evaluation) in parsing. For example, the following IO CFTG can be obtained for
reverse.

Erev(x,[ ]) → Ecase x of {...}([ ])
Ecase x of {...}(r) → r

Ecase x of {...}(r) → Erev(x,a:r)(r)
Erev(x,a:r)(r) → Ecase x of {...}(a : r)

In an RTG, non-terminals do not have parameters/arguments. Thus, as in Sect. 4,
when we construct an RTG approximation of a program, we discard the argu-
ments of functions. In an IO CFTG, non-terminals may have “accumulation
parameters”. Thus, we can similarly construct an IO-CFTG approximation of
a program by discarding the arguments that are not accumulation parameters.
Note that since approx changes according to the class of grammar, so does its
inverse reconst. The change in reconst is straightforward in IO CFTG; simi-
lar to reconst for RTG, we re-parse to recover discarded evaluation trees of
expressions occurring in non-accumulation parameters. Like (Suff-Left), left-
invertible programs are characterized by the unambiguity of the grammar, and
like (Suff-Right), right-invertible programs are characterized by the syntactic
condition that ensures that every production tree has a unique corresponding
evaluation tree. Note that the class of right-invertible programs by IO CFTG con-
tains the known class of tree transformations called deterministic linear macro
tree transducers [10]. IO CFTG corresponds to the post conditions that can
contain the variables of accumulation parameters.

For IO CFTG, it is known that checking whether or not E →∗ v holds takes
time polynomial to the size of v [3]. Unfortunately, there has been little dis-
cussion on “parsing” of IO CFTG because people have not found a use for the
production trees. However, we believe that a variant of the CYK parser would
yield polynomial-time parsing. Note that, similar to CFG in which a nonter-
minal generates a string and a string of length n contains n2 substrings, in IO
CFTG, a k-ary nonterminal generates a k-hole context (a value containing k
holes to be filled) and a value of size n contains nk+1 k-hole contexts. Thus, we
believe memoization as in CYK parsing should be applicable. For the example
of reverse, we can obtain a linear-time inverse by using deterministic bottom-up
push-down tree automata [28]. We also believe that it is possible to use a more
expressive grammar, e.g., supporting equality check or synchronous production
as in the tupled [20] function. For the string case, these features are adopted
without violating the polynomial-time-parisible property [5]. Note that, even if
the derived RTG is unambiguous, when a derived IO CFTG is can be parsed in
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linear time, the inverse derived by IO CFTG is sometimes more efficient than
that derived by RTG. An inverse derived by IO CFTG calls invE no more than
that derived by RTG; the inverse does not call invE for arguments occurring at
accumulation-parameter positions of a function call because the evaluation has
already been captured by the IO CFTG.

Note that ambiguity check for a grammar beyond regular, such as IO CFTG,
is usually undecidable [18]. However, some automated systems or some restricted
forms of programs can still guarantee the unambiguity of an expressive grammar
in some cases. Investigations into appropriate ways to define “some” programs
for which the ambiguity check of derived grammars are decidable would be im-
portant in future work.

6 Experiment

This section reports our automatic inversion system2 using Haskell, and ex-
plains that the overhead of the derived inversion to the handwritten inverse is
acceptable through an experiment with the implementation. The acceptably-
small overhead revealed that our method is not only theoretically feasible but
also useful for implementing a program inversion system for acceptably-efficient
inverses. Note that to derive inverses as efficient as possible is not our main issue,
but this is important because it is a general issue with program inversion.

6.1 Implementation

The prototype system implements grammar-based inversion with RTG (Sect. 4).
The system takes a program, and then generates a Haskell program of the left in-
verse if (Suff-Left) holds. Otherwise, the system generates a Haskell program,
which becomes a right inverse of the program if (Suff-Right) holds.

For parsing, the implementation uses guided tree automata [4], allowing � to
match any value. Since a guided tree automaton performs a top-down traver-
sal before a bottom-up traversal, the special case for � is easy to implement.
The derived inverse does not construct production or evaluation trees; they are
eliminated by program fusion. Recall that what we need is only θ of θ � e ↓ v
for given e and v. The implementation determinizes tree automata to reduce
the overhead caused by nondeterminism of parsing. Although determinization
costs O(2n), where n is the size of an automaton (2 the size of a program), this
cost is not severe for our purposes at least for the programs we tested in the
experiments.

6.2 Comparison with Handwritten Inverses

For several programs, we compared the execution time of automatically-derived
(left) inverses and handwritten (left) inverses for large inputs.3 Three programs
2 Available on: http://www.ipl.t.u-tokyo.ac.jp/~kztk/PaI/.
3 We used a PC with an Intel Core2 E8400 (3GHz) CPU and 2-GB memory, and used

Haskell compiler GHC 6.8.2.
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runlength(x) = case x of {[ ]→ [ ]; a : y → step(runlength(y), a)}
step(x, a) = case x of { [ ] → Pair(a, zero()) : [ ];

Pair(b, n) : y → updateRL(eq(a, b), n, y) }
updateRL(i , n, y) = case i of { Right(a) → Pair(a, inc(n)) : y;

Left(a, b) → Pair(a, zero()) : Pair(b, n) : y }
. . .

Fig. 11. runlength: eq(a, b) returns Right(a) if a = b, otherwise returns Left(a, b), and
zero() and inc(x) are 0 and +1 on binary representation of numbers, respectively. Here
Pair(a, n) means inc(n)-times successive occurrences of a.

Table 1. Results of experiment

Program Inversion (s) #Input Automatically-Derived (s) Handwritten (s)
snoc < 0.05 - 8 millions 0.95 0.67
double < 0.05 - 10 millions 0.23 0.11
runlength 0.3 - 9 millions 0.76 0.33

were investigated in the experiment: snoc and double implement snoc and
double in Sect. 1, respectively, and runlength implements run-length encod-
ing as in Fig. 11. Note that, for these three programs, the system can derive an
inverse that has the same complexity as that of a handwritten inverse because
construction of production tree P : Ee →∗ v at invE(e, v) runs in O(|P|).

All of these three programs satisfy (Suff-Left). The results of the experi-
ment are listed in Table 1. Each column represents the following: Program de-
notes the investigated program, Inversion denotes the elapsed time for inversion
including code generation, #Input denotes the number of constructors occur-
ring in the input tree, and Automatically-Derived and Handwritten denote the
elapsed time of the automatically-derived inverse and the handwritten inverse,
respectively. The size of input for each pair of automatically-derived and hand-
written inverses was chosen to enable the elapsed time to compared in seconds,
as long as there was no shortage of memory.

Inversion in Table 1 indicates that our implemented inversion runs very effi-
ciently. Even though in runlength the inversion process took about 0.3 seconds,
we found by extra profiling that more than half the time was spent for serial-
ization that makes a textual code from an abstract syntax tree. Automatically-
Derived and Handwritten in Table 1 indicate that the derived inverses run from
a half to a third of the speed of the handwritten inverses. We believe that this
small ratio would be acceptable. In addition, we expect that the ratio can scale
because the ratios of small programs such as snoc and double are almost the
same as that of a relatively involved program such as runlength.

7 Related Work

Many approaches to program inversion have been proposed [1, 7, 8, 11, 15–
17, 25, 27, 30]. These methods are based on reverting the execution order of an
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input program, unlike our method. Of these, those by Yellin [30] and Glück and
Kawabe [15] are the most closely related to ours.

Yellin [30] inverted string-to-string transformations written in a restricted
class of attribute grammars. His idea is an extension of evaluation of synchronous
grammars [2] — transformation by using two CFGs that share the same parse
tree modulo permutation of children. We borrowed his basic idea of restoring
the evaluation structure by parsing. Instead of CFG, we used tree grammars
because functional programs describe tree transformations. Regarding of the
class of invertible functions, with the restricted class of AG, one cannot de-
construct intermediate results, ruling out programs like runlength, i.e., those
programs are not handled by his approach. His framework, on the other hand, is
more suitable for programs defined using if-expressions, while we handle them
indirectly as in the eq and updateRL in Fig. 11.

Glück and Kawabe [15] constructed inverse programs by reversing programs,
before applying LR-parsing to the derived sequential programs to resolve non-
determinism. While our method and theirs are both “grammar-based”, they
place more emphasis on obtaining efficient inverses. Their method consists of
the three steps: (1) convert a program to a program in their stack-based lan-
guage, (2) apply LR-parsing to the stack-based program by taking the program
to be CFG, and (3) generate a program in which the stack in LR-parsing is
emulated by the stack of function call. Due to these three steps, they obtained
the efficient inverses because the inverses that have no parsing overhead. How-
ever, what class of programs is invertible is less clear in theirs because all three
steps affect invertibility. Steps 2 and 3 may fail, and Step 1 affects the later
steps because, for non-linear recursive functions, the result of Step 1 differs if
we choose a different evaluation order. Examples of functions discussed in this
paper can be handled with their method, while many of the programs they han-
dled would be invertible by grammar-based inversion with IO CFTG using a
deterministic bottom-up push-down tree automaton [28], which is a counterpart
of “LR-parsing” in CFTG. Theoretically, even with RTG, there exist programs
that can be handled by ours but not theirs.

Many program inversion techniques rely on proof of injectivity. In many
existing approaches, post conditions [8, 11, 16, 17] for branching statements/
expressions are used for this purpose. In Nishida and Sakai [25], completion is
used to check whether the obtained nondeterministic program is actually a func-
tion, which implies the injectivity of the original program [26]. In grammar-based
inversion, we check injectivity by checking the unambiguity of grammar.

Another way to obtain inverse programs is, similarly to combinator-based bidi-
rectional language [12], to construct programs using invertible combinators [23];
a program constructed in this way comes together with its inverse. Our method
can be incorporated into such combinator-based frameworks both for provid-
ing basic invertible combinators and for gluing combinators as in Sect. 5.2. In
their frameworks [12, 23], accumulative functions such as reverse cannot be rep-
resented directly but must be written as reverse ′ in Sect. 4. We believe that
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grammar-based inversion with grammar beyond RTG would enable us to invert
more functions that are written in more natural forms.

Abramov and Glück [1] categorized inversion methods into program inversion
and inverse computation. Program inversion takes a program and returns an
inverse program while inverse computation takes a program and an output and
computes the corresponding input. The two methods are different in two points:
A minor difference is that program inversion performs code generation, but the
main difference is the existence of partial evaluation; i.e., in program inversion
the obtained inverse is specialized to the input program. Note that the two no-
tions are not so different theoretically because generating a program that simply
calls “eval” to the pair of an inverse computation and an input program achieves
program inversion. Thus, it is important to discuss how much the inverse com-
putation is specialized to the input program. In grammar-based inversion, the
main chance of partial evaluation is when parsing the grammar. For a grammar
derived statically for an input program, we can choose an appropriate parsing
method according to the characteristics of the grammar.

The tree transducer [14] is a family of formal models of tree transformation.
Instances of tree transducers vary in terms of expressive power and difficulty of
inversion. We did not use tree transducers because, in all models of tree trans-
ducers we are aware of, a function may not perform case analysis on the output
of another function, while many programs we are interested in (e.g. runlength
in Fig. 11) are of the form g(. . .) = f(g(x)) with an invertible f that looks into
the result of g. We did, however, borrow many ideas from tree transducers, e.g.,
the grammar construction in Sect. 4.

8 Conclusion

We proposed grammar-based inversion, which is a framework for program inver-
sion. Grammar-based inversion can describe how difficult inverting a program is
through the complexity of the unambiguous grammar used for inversion. At the
same time, the complexity of parsing determines the worst-case complexity of a
derived inverse.

Grammar-based inversion gives us a new view of program inversion. With
it, we can split program inversion into two problems: finding an unambiguous
grammar that captures the evaluation structure of a program, and finding an
efficient parsing method for the grammar. For example, so far, many inversion
methods except Glück and Kawabe [15] have not handled functions containing
accumulation parameters. A solution with grammar-based inversion for such
functions is to use grammar such as IO CFTG that can capture the accumulation
structure, and to find an efficient parsing method specialized to the grammar.

Although grammar-based inversion can derive a right inverse, this is not very
useful because, in many applications, users do not want an arbitrary right inverse
but some right inverse. That is, some right inverse is more preferable than other
right inverses. For example, a right inverse achieving a high compression rate is
preferable in LZSS compression where a compression procedure is a right inverse
of decompression. Another interesting example is bidirectional transformation
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(e.g., [12]). In bidirectional transformation, function f :: S → V is coupled with
its backward semantics fB :: (S, V ) → S; if the result of f is changed from f(s)
to v, the change is put back on S as the change from s to fB(s, v). A simple
example of bidirectional transformation is component extraction from a tuple,
such as fst(s1, s2) = s1 coupled with fstB((s1, s2), v) = (v, s2). In bidirectional
transformation, backward semantics fB is a right inverse of its forward semantics
f if the first argument of fB is fixed. In such right inverses, a right inverse
that achieves as small modification as possible is often preferable. It would be
important to extend the framework to accept user-defined “preferable” measures
to make grammar-based inversion more applicable.
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Abstract. Transient faults are single-shot hardware errors caused by high energy
particles from space, manufacturing defects, overheating, and other sources. Such
faults can be devastating for security- and safety-critical systems. In order to mit-
igate these problems, software developers can add redundancy in various ways
to their software systems. However, such redundancy is hard to reason about and
corner cases are easy to miss, leaving these systems vulnerable. To solve this
problem, we have developed a logic, based on Separation Logic, for reasoning
about faults as resources. We show how to use this logic as a language of asser-
tions and incorporate it into a Hoare Logic for verifying imperative programs.
This Hoare Logic is parameterized by a formal fault model and it can be used to
prove imperative programs correct with respect to that model. In addition to de-
veloping this basic verification platform, we have designed a modal operator that
abstracts away the effects of individual faults, enabling modularization of proofs
and greatly simplifying the reasoning involved. The logic is proved sound and
studied through a number of examples, including a simplified version of the RSA
Sign/Verify algorithm.

1 Introduction

Programmers almost always implement software under the assumption that the under-
lying hardware is completely reliable. This is the right choice – implementing soft-
ware correctly is hard enough without worrying about hardware reliability. Neverthe-
less, there are a number of important situations in which a software engineer must face
the fact that hardware faults can and do occur.

One such domain involves the implementation of cryptographic algorithms. For
years, software engineers assumed that, while faults in these algorithms might occur,
they would not reveal anything important about the embedded cryptographic secrets.
However, in 1997, Boneh, DeMillo and Lipton [1] showed how a single fault in com-
mon implementations of RSA could be exploited to discover the underlying secret key.
Moreover, since that time, other researchers have uncovered problems in DES, RC5 and
AES. In related work, Govindavajhala and Appel showed how to exploit faults to break
into a commercial Java virtual machine running completely type safe code [2]. There
is currently a rich community dedicated to researching these threats and developing
solutions. Bar-El’s survey paper [3], provides an excellent overview of the area.
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In addition to worrying about faults in security-sensitive contexts, engineers must
also consider their ramifications when fully optimizing systems for power and per-
formance. For example, by decreasing hardware voltages one can save power at
the expense of occasionally incurring faults, and by overclocking one can speed up
performance, again at the expensive of the occasional erroneous result. Hedge and
Shanbhag [4] illustrate the advantages of exploiting such tradeoffs in digital signal
processing applications. Other contexts in which intermittent hardware faults have a
significant overall impact may include safety-critical applications, avionics, satellites,
supercomputers, and long-running simulations or experiments.

In situations such as these, conventional techniques for reasoning about programs are
no longer sound. Consequently, we have begun to develop a new framework that will
allow programmers to prove strong properties about their programs despite the presence
of faults. Our framework involves a relatively simple and self-contained extension to a
standard Hoare Logic for while programs. This extension allows programmers to reason
about the faults that may or may not have happened to their programs in typical Hoare
style. Transient faults appear explicitly as objects in the logic, and operators inspired by
Separation Logic are used to count, limit, and contain the faults.

In summary, the main contributions of the paper are: the development of a logic for
proving programs to be fault tolerant, the proof of soundness for this logic, parameter-
ization of the logic by one of multiple fault models, illustration of logic’s use through
examples in multiple application areas, the proof that the logic supports the frame rule,
the development of a modality that supports concise proofs, and a weakest precondition
Hoare rule for the extension of Hoare Logic.

The rest of the paper is organized as follows. Section 3 discusses the programming
language, including a new instruction, fault, which introduces the possibility of a
fault at a specific program point. Section 4 extends standard Hoare Logic with the rule
for fault. Section 5 demonstrates the complexity of dealing with fault functions ex-
plicitly in proofs and introduces a modality that abstracts away the explicit fault func-
tions. Section 6 illustrates the application of the logic in security protocols, through
a specification for a fault tolerant implementation of the RSA Sign/Verify protocol.
Section 7 describes a compilation from programs and specifications in standard Hoare
Logic into programs in our logic with fault tolerance achieved through triple modular
redundancy. Related work is discussed in Section 8, and Section 9 concludes.

2 Modeling Faults

Before we can reason about faults, and indeed before programmers or hardware design-
ers can protect against faults, there must be some kind of model for when and where
faults can occur. Typical fault models dealt with in the literature are fairly simple, lim-
iting faults to one or a few occurrences per program run. The most common models are
the Single Event Upset (SEU) and Single Word Corruption (SWC) models. The SEU
model allows a single bit flip in a single register in one run of the program, as seen
in the work of Chang, Reis, and August; Shirvani, Saxena, and McCluskey; Bar-El, et
al.; among others [3, 5, 6]. The SWC model allows arbitrary changes to a single reg-
ister to occur once in the program, as seen in Bar-El, et al. and Shirvani, Saxena, and
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McCluskey [3, 6]. The motivation behind these fault models is twofold: one, that the
incidence of faults is rare enough that programmers may ignore the negligible chance
of two occurring; and two, that the fault model defines a class of errors that is possible
to protect against without extreme performance degradation. For this reason, we mainly
focus on these two fault models. However, our logic supports other fault models, in-
cluding those allowing up to two faults to occur during a single program run. Such a
model is briefly examined in this paper.

3 The Programming Language

The programming language that we consider in this paper is the classic imperative lan-
guage of while programs extended with a single pseudo-instruction that is used to spec-
ify where faults may occur within a program. For example, consider a simple loop:

x := 0;
while x != 0 do

skip;

Here, the program variable x is assigned zero and the program loops endlessly, testing
x for inequality with zero. To reason about the execution of the program in the presence
of faults, the programmer or a static analysis inserts fault statements at appropriate
program points. For example:

x := 0; fault x;
while x != 0 do

{ skip; fault x; }

This allows faults to occur at two points in the program. Intuitively, the statement
fault x means that a fault may occur to program variable x at this point in the com-
putation. Hence, by inserting the fault x statement between every pair of lines, the
programmer considers the possibility that faults may occur at any point in the program.1

Thus, the programming language and the logic to be introduced later in the paper are
agnostic about where faults may occur in the program. This allows the programmer to
focus on protecting critical sections of code.

If there are multiple program variables, each program variable must be mentioned
separately. For example:

x := 0; fault x;
y := 0; fault y;
while (x != 0) and (y != 0) do

{ skip; fault x; fault y; }

1 The reader may note that in any fault model where any occurring fault is arbitrary (such as the
SWC model, or an n-word corruption model), it suffices to introduce a fault statement for a
variable x immediately before each time the variable’s value is read. This is also true for any
fault model allowing at most one fault (including both the SWC and SEU models).
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To abbreviate long sequences of fault statements, we normally write fault
x1,...,xn; in place of fault x1; ... fault xn;.

The observant reader will also notice that there is no syntax for faults that may occur
in the midst of a complex expression in a while loop bound, if statement, or right-hand
side of an assignment. To consider such faults, the programmer must decompose the
expressions into a series of statements:

x := 0; fault x;
y := 0; fault y;
flag1 := x != 0; fault flag1;
flag2 := y != 0; fault flag2;
flag1 := flag1 and flag2; fault flag1, flag2;
while flag1 do

{ skip; fault x, y, flag1, flag2;
flag1 := x != 0; fault flag1;
flag2 := y != 0; fault flag2;
flag1 := flag1 and flag2; fault flag1, flag2;

}
This example makes it clear that as programs get more complex, there is a proliferation
of fault instructions. On the one hand, this proliferation reveals the inherent difficulty
of reasoning about programs in a context with a rich fault model. On the other hand,
it demonstrates that a production verification system should probably manage the in-
sertion of fault instructions itself (e.g., by having the static analysis engine insert them
automatically). In this paper, we leave the fault instructions in the syntax of the pro-
gramming language because doing so makes the formal development particularly clear,
modular, and self-contained. In a production environment, this language would corre-
spond to an intermediate language or a language used with a proof assistant.

3.1 Syntax

A summary of the syntax of the language we use in the paper is presented in Figure 1.
Here and throughout the rest of the paper, we let x range over program variable names,
n range over integers and f range over computable functions from integers to integers.
The specific set of integer and boolean expressions we choose for the language is unim-
portant and hence we will freely use other expressions in our examples as they require.
Note that function variables do not appear in the source language itself. They are only
used in expressions that appear in the program logic, to be described later.

3.2 Representation of Faults and Fault Models

When a fault x statement is executed, the value of x may change. Such changes
can be represented by a function, f , on the integers. The function acts on the variable
x, causing the new value, f x, to be stored there. For example, if the third bit of x is
flipped, the function a bit flip function, written λy.y xor 22 as a lambda expression2,

2 Note that mathematical functions, not lambda expressions, are part of our logic, Lambda ex-
pressions are just used as a convenient representation.
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integer vars x integers n
function vars φ functions f
function exps G ::= φ | f
integer exps E ::= x | n | E1 + E2 | E1 mod E2 | G E | e
boolean exps B ::= E1 = E2 | not B | B1 and B2 | E1 < E2

statements S ::= skip | x := E | S1; S2 | if B then S1 else S2

| while B do S | fault x

Fig. 1. Syntax of Programs

will represent this fault. Similarly, if x is unchanged, the identity function will represent
this trivial fault.

Over the course of a program run, we record the fault functions that have occurred in
the fault state but not the variables that they applied to. This is because the effects of a
fault spread wider than the initial variable affected and we are not doing any calculations
of information flow to track the effects. Formally, fault states (F) are multi-sets and we
use the notation F1 + F2 to denote multiset union of fault states. We also write F1 ⊆ F2
when F1 is a sub-multiset of F2. As an example, the fault state {λx.x xor 23} represents
a situation in which a single fault has occurred and that fault has toggled the 4th bit of
the associated value. Over the course of a run, it is common for many trivial faults to
occur and this will lead to an accumulation of identify functions in the fault state. For
instance, the fault state {λx.x xor 23, λx.x, λx.x, λx.x} represents a situation in which
only one true fault has occurred, but three additional trivial faults have been recorded in
the fault state.3

A judgment F okm defines the fault states F that are allowed by the fault model
m. Most of the rest of our development is independent of the particular choice of fault
model except for the restrictions that the empty fault state must be valid and that validity
must be preserved by subset ordering.

Definition 1 (Fault State Validity Criterion)

– {} okm.
– If F1 okm and F2 ⊆ F1 then F2 okm.

Using multisets of functions as our fault states is elegant and easy to work with and
yet allows us to reason about several different interesting fault models. In this paper,
we will work with the following three fault models, each of which maybe characterized
according to its F okm relation, though the bulk of our work should extend to related
models. The models are characterized by their F okm relations, each of which satisfies
the Fault State Validity Criterion.

Definition 2 (SWC Fault Model). The SWC fault model demands that F okm if and
only if at most one function f drawn from F is not the identity function.

Definition 3 (SEU Fault Model). The SEU fault model demands that F okm if and only
if at most one function f drawn from F is not the identity function and that non-identity
function f has the form λx.x xor 2k for some k.

3 Allowing the fault state to accumulate many trivial faults helps simplify our operational se-
mantics slightly.
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Definition 4 (DWC Fault Model). The DWC fault model demands that F okm if and
only if at most two functions f and g drawn from F are not the identity function.

3.3 Operational Semantics

A program state is a triple (F,V,Z) where F is the current fault state, V is the current
environment and Z is either a statement S to execute or − , indicating execution is
complete. We call states with the form (F,V, − ) final states. An environment is a finite
partial map from variable names to integer values. We write V(x) to denote the contents
of the map at x and we write V[x �→ n] to denote the map created by updating V at x
with n.

The operational semantics of the language are presented in Figure 2. These rules
depend upon a conventional denotational semantics (see, for example, Winskel, Chapter
5 [7]), which, given an environment, maps integer expressions to integers and boolean
expressions to 0 (false) or 1 (true). We write the semantic functions [[E]]V and [[B]]V
respectively.

The rules governing the standard statements (skip, assignment, if, and while)
leave the fault state untouched and behave in the usual way. The operational rule for the
fault statement non-deterministically chooses a fault function f that satisfies the given
fault model, transforms the contents of the given variable, and adds f to the fault state.
Note that f may be the identity function, meaning that a fault statement indicates a
program point where a fault may occur as opposed to where a fault must occur.

Eskip
(F,V, skip) �−→ (F,V, − )

Eassign
(F,V, x := E) �−→ (F,V[x �→ [[E]]V], − )

Eseq1
(F,V,S1) �−→ (F′,V′,S′1)

(F,V,S1; S2) �−→ (F′,V′,S′1; S2)

Eseq2
(F,V,S1) �−→ (F′,V′, − )

(F,V,S1; S2) �−→ (F′,V′,S2)

Eif1
[[B]]V = 1

(F,V, if B then S1 else S2) �−→ (F,V,S1)

Eif2
[[B]]V = 0

(F,V, if B then S1 else S2) �−→ (F,V,S2)

Ewhile1
[[B]]V = 0

(F,V, while B do S) �−→ (F,V, − )

Ewhile2
[[B]]V = 1

(F,V, while B do S) �−→ (F,V,S; while B do S)

Efault
F + { f } okm

(F,V, fault x) �−→ (F + { f },V[x �→ f (V(x))], − )

Fig. 2. Operational Semantics of Programs
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4 The Program Logic

Having described our programming language, we now present the programmer with the
tools to reason about these programs. These tools consist of a basic Hoare Logic with
extensions to allow reasoning about faults in program variables.

As a reminder, a Hoare triple is written {P}S{Q}. Following the rules of partial cor-
rectness, the Hoare triple means that, if P describes the program state immediately be-
fore S is executed and the execution of S terminates, then Q will describe the resulting
program state.

Figure 3 contains inference rules and assertion language for a basic Hoare Logic,
with a subscript m added for use in our logic. The subscript refers to the fault model
considered in the Hoare triples. Note that the assignment rule works backwards. If
some assertion P describes the program state after the assignment of E to x, then the
same assertion with all occurrences of x replaced with E describes the state before the
assignment.

Hskip {P}skip{P}m
Hassign {P[E/x]}x := E{P}m

Hwhile
{B & P}S{P}m

{P}while B do S{¬B & P}m
Hif

{B & P}St{Q}m {¬B & P}Se{Q}m
{P}if B then St else Se{Q}m

Hcons
P′ �m P {P}S{Q}m Q �m Q′

{P′}S{Q′}m
Hseq

{P}S1{Q}m {Q}S2{R}m
{P}S1;S2{R}m

P ::= true | false | ¬P | E = E | ∀x.P | ∃x.P | P ∨ P | P & P

Fig. 3. Inference Rules and Assertion Language for a basic Hoare Logic

4.1 A Straw Man Logic

Before describing our actual Hoare Logic, it is instructive to consider why a naive ex-
tension of our basic Hoare Logic does not work. Taking a cue from the assignment
rule, we could generate a precondition from a postcondition by replacing the affected
variable with the value it is assigned by the statement.

Hfault − try1 {P[ f x/x]}fault x{P}m
seems to be a plausible start, as the operational semantics say that the value of x changes
to f x for some function f . In order to consider all possible faults, we quantify over all
possible functions on the integers:
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Hfault − try2 {∀φ. P[φ x/x]}fault x{P}m
Unfortunately, this rule does not integrate any properties of the fault model. This makes
the rule quite useless, as the following example4 using the SWC fault model, m, demon-
strates:

Example 1
{false}
{∀φ1, φ2. φ1 3 = 3 ∨ φ2 3 = 3}m (equivalent)

x = 3; {∀φ1, φ2. φ1 x = 3 ∨ φ2 3 = 3}m
y = 3; {∀φ1, φ2. φ1 x = 3 ∨ φ2 y = 3}m
fault x,y; {x = 3 ∨ y = 3}m
Under the SWC fault model, at least one of the variables should equal 3 at the end,
no matter what state the program begins in. However, the precondition we derive is
equivalent to false and thus not true in any state. The problem is that our candidate
Hoare rule does not allow us to apply any information about the fault model to the
assertions. We need a way to describe the fault functions that can actually occur in the
fault state.

4.2 A Useful Logic

The key insight is that we need a predicate hap f (“ f happened”) that says that a fault
function is in the current fault state. hap f is true whenever the fault function f is the
identity or is in the fault state. For example, hapλx.x describes any program state and
hap f describes any state where f is in the fault state. This will allow us to reason about
fault functions that are allowed in the current fault state.

In order to refer to the addition of fault functions to the state, rather than just their
presence, we borrow −∗ from Separation Logic [8, 9]. P −∗ Q means that, in any state
under which P holds, adding that state to the current state makes Q true. For example,
hap f −∗ Q implies that adding f to the current state makes Q true.

Using both −∗ and hap , we can limit the range of fault functions to those that are
allowed in the current fault state.

Hfault {∀φ. hapφ −∗ P[φ x/x]}fault x{P}m
This is the correct Hoare rule for fault x. Intuitively, it means that we know P after
a fault statement if P[ f x/x] was true for any allowable fault function f beforehand.

Before we can use the fault rule to reason about the example from the previous
section, we need a way to describe the values of fault functions. A simple approach

4 In our examples, the left column contains code and the right column contains the corresponding
assertions. A line of code, the precondition above and to the right, and the postcondition to the
right together form a valid Hoare triple. Assertions one on top of the other with no code to
the left indicate entailment. Using the sequence and consequence rules, a sequence of such
entailments and Hoare triples results in a valid Hoare triple for the entire example.
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suffices: we introduce predicates to say whether a function f is the identity (id f ) or not
(faulty f ). For example, idλx.x & faulty (λx.x xor 24) is always true.

Using the predicates id f , faulty f , and hap f , we can write down simple axioms
that characterize our fault models. For instance, we can characterize the SWC fault
model through the following axiom. This axiom uses Separation Logic’s separating
conjunction P ∗ Q to express the fact that both P and Q are true and that they describe
disjoint subsets of the fault state.

∀φ1, φ2. hapφ1 ∗ hapφ2 −∗ (idφ1 ∨ idφ2)

This axiom says that, of any two fault functions in the fault state, at least one is the
identity 5. The separating conjunction in hapφ1 ∗ hapφ2 guarantees that φ1 and φ2 do
not refer to the same fault function instance in the fault state.

Using the proper Hoare rule for fault and this axiom about the SWC fault model, the
example from the previous section works perfectly.

Example 2
{true}m
{∀φ2, φ1. hapφ2 ∗ hapφ1 −∗ idφ1 ∨ idφ2}m (by above property)
{∀φ2, φ1. hapφ2 ∗ hapφ1 −∗ φ1 3 = 3 ∨ φ2 3 = 3}m
{∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1 3 = 3 ∨ φ2 3 = 3}m

x = 3; y = 3; {∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1 x = 3 ∨ φ2 y = 3}m
fault x,y; {x = 3 ∨ y = 3}m

The SEU fault model allows for even more powerful properties, such as:

∀ f , x. f x � x(mod 3) iff faulty f

which says that if there is a single bit flip in a variable (the only fault allowed in the
SEU model), then difference between the changed variable and its original value is not
divisible by 3, as it is a power of 2.

We use this property to prove that a simple example using an AN code is fault tol-
erant [5]. An AN code is a fault tolerant encoding of integers. To encode an integer
encoded in base two, it is multiplied by a number that is relatively prime to two (in this
case three). This way, any legal code word is a multiple of three. Any bit single flip will
result in a number that is not a multiple of three and thus can be detected. What makes
this code so useful is that it commutes with addition:

3 · (a + b) = 3a + 3b.

This way, additions can be done efficiently on encoded numbers with regular hardware
and the results can be checked for errors.

In Figure 4, we show that when using an AN code, only two independent copies of
a computation are required to recover from a single bit flip fault, assuming no faults

5 The reader may note that the two fault functions added to the fault state in the antecedent of this
axiom are not ”used” in the consequent. This is allowed, since, as can be seen in Section 4.3,
our logic is an affine logic rather than a linear logic such as Separation Logic.
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{x = n ∗ y = n}m
y = 3*y; {x = n ∗ y = 3n}m

{∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n})
while (y=3x) {y = 3x & (∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m
do {(y = 3x & y = 3n) ∨ (y = 3x & x = n)}m

{y = 3n & x = n}
{∀g3, g4.hap g3 ∗ hap g4−∗hap g3 ∗ hap g4 ∗ g3 y= g3(3n) ∗ g4x= g4n}m
{∀g3, g4.hap g3 ∗ hap g4 −∗ ∃g1, g2.hap g1 ∗ hap g2∗

g3 y = g2(3n) ∗ g4x = g1n}m
fault x,y; {∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m

{y � 3x & (∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m
{(y mod 3 = 0 & y = 3n) ∨ (y mod 3 � 0 & x = n)}m

if (y mod 3=0) {y mod 3 = 0 & ((y mod 3 = 0 & y = 3n) ∨ (y mod 3 � 0 & x = n))}m
then {y/3 = n}m
y = y/3; {y = n}m �m {y = n ∗ y = n}m
x = y; {x = n ∗ y = n}m

else {y mod 3 � 0 & ((y mod 3 = 0 & y = 3n) ∨ (y mod 3 � 0 & x = n))}m
{x = n}m
{x = n ∗ x = n}m

y = x; {x = n ∗ y = n}m
{x = n ∗ y = n}m

Fig. 4. Proving a use of AN codes to be fault tolerant under the SEU fault model, m

during the recovery code. The example code simply sets the variable y to be three times
its initial value (while x remains at the same initial value). It then loops, waiting for a
fault. The code checks whether the fault occurred in x or y and sets the faulty variable
from the unaffected one.

Note that this example uses the standard Separation Logic frame rule

Hfaultframe
{P}fault x{Q}m x � fv(R)

{P ∗ R}fault x{Q ∗ R}m
which we will prove later. The frame rule allows modular reasoning—if an unrelated
assertion is separated from the one currently being considered, then it is unaffected.
This is very useful in proofs of many fault tolerance properties including those involving
independent redundant computations.

Our logic can also be used with a fault model allowing two arbitrary faults in a single
program run. This results in an axiom very similar to that we had for the SWC model.
The axiom appears below.

∀φ1, φ2, φ3. hapφ1 ∗ hapφ2 ∗ hapφ3 −∗ (idφ1 ∨ idφ2 ∨ idφ3)

Except for the addition of a third assignment and thus a third fault function, the example
proceeds exactly like Example 1.
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Example 3
{true}m{∀φ3, φ2, φ1. hapφ3 ∗ hapφ2 ∗ hapφ1 −∗ idφ1 ∨ idφ2 ∨ idφ3}m

(by the above axiom)
{∀φ3, φ2, φ1. hapφ3 ∗ hapφ2 ∗ hapφ1 −∗ φ11 = 1 ∨ φ21 = 1 ∨ φ31 = 1}m
{∀φ3. hapφ3 −∗ ∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ11 = 1 ∨ φ21 = 1 ∨ φ31 = 1}m

x=3;y=3;z=3 {∀φ3. hapφ3 −∗ ∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1x = 1 ∨ φ2 y = 1 ∨ φ3z = 1}m
fault x,y,z {x = 1 ∨ y = 1 ∨ z = 1}m

4.3 Formal Assertion Semantics

The assertions of our Hoare Logic are based on those of the Separation Logic of Ishtiaq,
O’Hearn, and Reynolds [8, 9] with the current fault state taking on the role that the heap
has in Separation Logic.

Assertion semantics are defined according to a judgment F; V �m P between a fault
model m, well-formed fault state, an environment, and an assertion. This judgment is
defined in Figure 5. Note that these semantics depend on the definition of the well-
formedness judgment F okm, which varies according to the fault model being consid-
ered. The novelty of these assertions lies in the interaction of the atomic assertions with
the Separation Logic connectives ∗ and −∗.

The fault state directly affects only the atomic assertion hap f , as the assertions
faulty f and id f depend only on the function f , and the equality assertion between
expressions depends on the environment but not the fault state. Furthermore, the logic is
affine: the hap f assertion uses up an occurrence of the function f in the fault state, but
the function’s appearance in the fault state does not require that it is used by a hap f .
Thus the predicates describe a subset of all elements of the fault state (and possibly
additional identity functions).

The purpose of the separating implications is to reason about adding fault functions
to states. The separating conjunctions allow reasoning about fault functions that are
distinct elements of the fault state. With −∗ we can capture the notion of adding a fault
function to the fault state. For example, F; V �m hap f −∗ P says that P holds if f is
added to the fault state (more precisely, in any fault state containing F plus a copy of f ).
Similarly, ∗ allows us to reason about multiple separate fault functions. The statement
F; V �m hap f ∗ hap g −∗ id f ∨ id g says that if two fault functions are added to the
fault state, then at least one of them is the identity. This statement holds under the SWC
fault model.

Unlike the heap contents in Separation Logic, fault functions do not refer to one
another and there is no way to modify fault functions in our logic. As such, the complex
descriptions of heap structure in Separation Logic have no analogue here. This is a
good thing, as the large number of fault functions corresponding to possible faults are
complex enough.

4.4 Properties

Let fv(P) for a proposition P represent the free variables of P. Semantic entailment,
P �m Q, holds between two formulae under the fault model m iff for all F and V such
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F; V �m P
F; V �m ∀x. P iff F okm and for all n, F; V �m P[n/x]
F; V �m ∃x. P iff F okm and there exists n such that F; V �m P[n/x]
F; V �m ∀φ. P iff F okm and for all f , F; V �m P[ f/φ]
F; V �m ∃φ. P iff F okm and there exists f such that F; V �m P[ f/φ]
F; V �m hap f iff F okm and f ∈ F or f = λx.x
F; V �m id f iff F okm and f = λx.x
F; V �m faulty f iff F okm and f � λx.x
F; V �m P1 ∗ P2 iff F okm and there exist F1 and F2 such that

F = F1 + F2, F1; V �m P1, and F2; V �m P2

F; V �m P1 −∗ P2 iff F okm and for all F′, if F + F′ okm and F′; V �m P1,
then F + F′; V �m P2

F; V �m E1 = E2 iff F okm and [[E1]]V = [[E2]]V

F; V �m P1 ∨ P2 iff F okm and F; V �m P1 or F; V �m P2

F; V �m P1 & P2 iff F okm and F; V �m P1 and F; V �m P2

F; V �m ¬P iff F okm and F; V �m P
F; V �m true iff F okm

F; V �m false iff never

Fig. 5. Assertion Semantics

that fv(Q) ∪ fv(P) ⊆ dom V, F; V �m Q whenever F; V �m P. The resulting logic has
the following useful properties:

Proposition 1

– ∗ is commutative and associative with unit true.
– If P ∗Q holds, then so does P.
– P ∨ P is equivalent to P.
– If P′ �m P and Q′ �m Q, then P′ ∗Q′ �m P ∗Q.
– In any state, if ∀φ1, φ2. hapφ1 ∗ hapφ2 −∗ P holds, then so does ∀φ1. hapφ1 −∗
∀φ2. hapφ2 −∗ P.

– faulty f , id f , and equality of expressions are independent of well-formed fault
states.

– If F1 + F2 okm and F1,V �m P, then F1 + F2,V �m P.

Proof. Immediate using the semantics of assertions.

Lemma 1. For all assertions P, fault states F, environments V, variables x, and ex-
pressions E, F; V �m P[E/x] iff F,V[x �→ E] �m P.

Proof. By induction on structure of P, simultaneously for the if and only if directions.
This is necessary to get the inductive hypothesis in both directions for the −∗ case.

Proposition 2. The Hoare Logic fault rule, Hfault, is sound with respect to the asser-
tion semantics.

Proof. By induction on the derivation of {P}fault x{Q}m. Uses the above substitu-
tion lemma for the fault rule case.
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Proposition 3. The fault rule generates the weakest precondition, in the strong sense
that for any F and V that do not entail the precondition, and any F′ and V′ such that
(F,V,fault x) �−→ (F′,V′, − ), it is the case that F′; V′ does not entail the postcon-
dition.

Proof. Easy proof from the definitions.

For every statment but the fault statement, the frame rule is standard. Here we verify
that the frame rule holds for the fault statement as well.

Proposition 4. The frame rule holds for the fault statement:

{P}fault x{Q}m
{P ∗ R}fault x{Q ∗ R}m x � fv(R)

Proof. By induction on the derivation of {P}fault x{Q}m.

5 Taming Proof Complexity

The large number of fault functions generated by the fault rule can make it difficult to
manage proofs in the program logic. Even quite simple programs can require manipu-
lation and reasoning about many fault functions. For example, the program in Figure 6
redundantly computes a single addition three times and compares the results. Even such
a simple program generates a large and unwieldy precondition that includes nine differ-
ent universally quantified variables. Fortunately, though the apparent complexity grows
quickly, the reasoning itself is relatively simple. In this section, we show how to tame
such complexity by introducing a new modal operator.

5.1 The Possibility Modality

To eliminate the need to deal with universally quantified fault functions directly, we
have hidden them inside a modal operator �P, read ”maybe P” and meaning “P is true
in the absence of faults.” More precisely, �P says that either P is true, or a fault has
occurred.

�P
def
= (∃φ. hapφ ∗ faultyφ) ∨ P

The key property of � is its relation to the fault statement in our Hoare Logic. The
modality � allows for a simple Hoare rule, as fault x preserves �P for any P.

Proposition 5. {�P}fault x{�P}m is valid for all P.

Proof. This follows by proving that the precondition obtained by applying the Hfault
rule to �P implies �P. Uses substitution lemma 1.

By combining this Hoare rule with the frame rule for fault x, we obtained

{�P ∗Q}fault x{�P ∗Q}m
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{a0 = a & a1 = a & a2 = a & b0 = b & b1 = b & b2 = b}m
... (sequence of entailments elided)
{∀φa0 , φb0 . ∀φa1 , φb1 . ∀φa2 , φb2 . ∀φ0, φ1, φ2. hap (φa1 ) ∗ hap (φb1 )
∗hap (φa2 ) ∗ hap (φb2 ) ∗ hap (φ0) ∗ hap (φ1, φ2}) −∗
(φ1(φa1 a1 + φb1 b1) = φ2(φa2 a2 + φb2 b2) & φ1(φa1a1 + φb1 b1) = a + b)∨
(φ1(φa1 a1 + φb1 b1) � φ2(φa2 a2 + φb2 b2) & φ0(φa0a0 + φb0 b0) = a + b)}m

fault a0, b0;
a0 = a0 + b0;
fault a1, b1;

a1 = a1 + b1;
... (this is the complex part)

fault a2, b2;
a2 = a2 + b2;
fault a0, a1, a2;

{(a1 = a2 & a1 = a + b) ∨ (a1 � a2 & a0 = a + b)}m
if a1=a2

then a0 = a1;
...

else skip;
{a0 = a + b}m

Fig. 6. An elided version of a complicated example with m = SWC fault model

whenever x � fv(Q). These �-based Hoare rules for the fault statement do not con-
tain any explicit fault functions, allowing us to ignore the fault functions in cases when
the new rules apply.

Under the SWC fault model an additional and quite useful property holds:

Proposition 6. Under the SEU fault model

�P ∗ �Q �m P ∨Q

and, in a generalized form:

∗ni=1 � Pi �m

n∨

j=1

&i={1,...,n}\{ j} Pi

Proof. By case analysis on whether and where a fault occurs.

This enables the easy derivation of useful postconditions to programs using modular
redundancy. Using this rule with the Hoare rule involving �, we can derive postcondi-
tions such as those of the form 〈result is correct〉 ∨ 〈other result is correct〉 where the
two results come from modular computations.

With �, the rough example from Section 5 is much simpler, as seen in Figure 7.
Though still relatively long, this proof is quite simple and regular. There is not a single
visible quantifier or fault function in the proof. What was formerly the most complex
part of the proof now only has one simple assertion per line of code.
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{a0 = a & a1 = a & a2 = a & b0 = b & b1 = b & b2 = b}m
{a0 + b0 = a + b ∗ a1 + b1 = a + b ∗ a2 + b2 = a + b}m
{�a0 + b0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m

fault a0, b0; {�a0 + b0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
a0 = a0 + b0; {�a0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
fault a1, b1; {�a0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
a1 = a1 + b1; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 + b2 = a + b}m
fault a2, b2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 + b2 = a + b}m
a2 = a2 + b2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 = a + b}m
fault a0, a1, a2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 = a + b}m

P
def
= {(a1 = a2 & a1 = a + b) ∨ (a1 � a2 & a0 = a + b)}m

if a1=a2

{a1 = a2 & P}m
{a1 = a + b}m

then a0 = a1; {a0 = a + b}m
{a1 � a2 & P}m
{a0 = a + b}m

else skip; {a0 = a + b}m
{a0 = a + b}m

Fig. 7. The previous example, but smoother, m = SWC fault model

6 RSA Sign/Verify

We now describe a more realistic example using the RSA Sign/Verify algorithm, one of
many algorithms used to authenticate messages using digital signatures. RSA is a very
widely used public key encryption system based on the difficulty of factoring a product
of two large primes, n = p · q. A public and private key, called e and d, respectively, are
generated such that e · d ≡ 1mod((p − 1) ∗ (q − 1)). When used for digital signatures,
a signature is created by starting with a hash of the message and exponentiating it by
raising it to the power given by the private key, modulo p ·q. The message and signature
are then sent out. A recipient can verify the sender of the message by raising the signa-
ture to the power of the public key, modulo p · q, and comparing this to the hash of the
received message.

A common implementation of RSA uses the Chinese remainder theorem to speed up
the exponentiation. The exponentiation is done twice, once modulo p and once modulo
q. Then the results are multiplied by precalculated constants and added together. The
same number of multiplications must be calculated, but the numbers are half the length
in bits, so each multiplication takes about a quarter of the time. Thus there is an overall
speedup of about 4.

However, Boneh and DeMilo showed that a single fault during execution of the Chi-
nese remainder theorem algorithm for RSA not only fails validation, but can also com-
promise the secret key. As such, it is important to protect the algorithm with appropriate
redundancy. One way to do so is to use a calculate-and-check form of fault tolerance
where the check is simply the verify portion of the RSA algorithm. The verify step is
also particularly fast, as the exponent used to decrypt the signature, e, is chosen so that
it has a short bit length (commonly e is 65537, 17 bits long), enabling a very quick
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{(∀x, c ∈ V : ce = x(mod n)→ c = xd(mod n)) ∗ d < 2512 ∗ e < 217 ∗ ev = e ∗ nv = p · q ∗ s2 =
1 ∗ i2 = 17 ∗ mv2 = m ∗ (∀s1, s2, x.s1 = xdp (mod p) ∗ s2 = xdq (mod q) −∗ a · s1 + b · s2 =

xd(mod p · q)) ∗ av = a ∗ bv = b ∗ dvq = dq ∗ qv1 = q ∗ mvq = m ∗ d < 217 ∗ sp = 1 ∗ dvp =
dp ∗ pv1 = p ∗ mvp = m ∗ ip := 511}

Calculate signature modulo p.
fault ip
while ip > -1
fault sp, pv1
sp := sp*sp (mod pv1)
fault dvp, ip
if dvp & (1 << ip) != 0:

fault sp, mv, pv1
sp := sp * mv (mod pv1)

else:
skip

fault ip
ip--
fault ip

Calculate signature modulo q.
fault iq
while iq > -1
fault sq, qv1
sq := sq*sq (mod qv1)
fault dvq, iq
if dvq & (1 << iq) != 0:

fault sq, mvq, qv1
sq := sq * mvq (mod qv1)

else:
skip

fault iq
iq--
fault iq

Combine results to get actual signature.
fault sp, av
tp := sp * av
fault sq, bv
tq := sq * bv
fault tp, tq
s := tp + tq

Check for errors by performing verify.
good := 1
fault s
out := s
fault i2
while i2 > -1:

fault s2, nv2
s2 := s2*s2 (mod nv2)
fault ev2, i2
fault ev2, i2
if ev & (1<<i2) != 0:

fault s2, out, nv2
s2 := s2 * out (mod nv2)

else:
skip

fault i2
i2--
fault i2 fault mv2, s2

if mv2 != s2:
good := 0

else:
skip

{good = 0 ∨ s = md(mod n)}

Fig. 8. RSA Message Signing with Chinese Remainder Theorem, Fault Tolerant, SWC Fault
Model
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exponentiation. Using our system, we have proven the version of the RSA Sign/Verify
algorithm appearing in Figure 8 fault tolerant with respect to the SWC Fault Model.

7 Certifying Compilation with Triple Modular Redundancy

In addition to being used as a standalone logic for proofs about fault tolerant programs,
our logic can be used within the context of a certifying compiler to guarantee the com-
piler outputs fault tolerant code. To demonstrate this idea, we have developed a formal
translation from ordinary, non-fault-tolerant Hoare triples, proven sound using conven-
tional Hoare rules, into fault-tolerant Hoare triples proven sound with respect to the
SWC fault model in our logic. The compiler achieves generic fault tolerance by adding
triple modular redundancy to the program. In other words, each subexpression is re-
computed three times and the results are compared to detect faults. Figure 9 presents
the translation, which is composed of independent judgements for translating expres-
sions (B � B′ for booleans and E � (E1,E2,E3) for integer expressions (there is
one translated expression for each redundant computation)), statements (S � S′), and
Hoare triples ({P}S{Q}m � {P′}S’{Q′}m). The top level translation of Hoare triples is
performed according to the rule Ttriple, the program being translated according to the
rules for translating statements and the precondition and postcondition being converted
by the convert predicate.

The most interesting aspect of the translation is the coding of triple modular redun-
dancy in our assertion logic: Given a standard assertion P(x), which refers to some

Translation of Boolean and Integer Expressions:
Tbool

B� majority-vote (B1,B2,B3)
where Bi is B with an i subscript added to each variable name.

Texpr
E� (E1,E2,E3)

where Ei is E with an i subscript added to each variable name.

Translation of Imperative Statements:
Twhile

B� B′ S� S′

while B do S� fault f v(B′) ; while B′ do (S′ ; fault fv(B′))

Tseq
S� S′ T� T′

S ; T� S′ ; T′

Tif
B� B′ S� S′ T� T′

if B then S else T� fault f v(B′) ; if B′ then S′ else T′

Tskip
skip� skip

Tasgn
E� (E1,E2,E3)

x := E� fault f v(E1); x1 := E1; fault f v(E2); x2 := E2; fault f v(E3); x3 := E3

Translation of Hoare triples:

Let convert[P] def
= ∃x′. � (x1 = x′) ∗ �(x2 = x′) ∗ �(x3 = x′) ∗ P[x′/x] where x is the vector of

program variables in P.
Ttriple

S� S′

{P}S{Q}� {convert[P]}S′ {convert[Q]}m

Fig. 9. Translation from Program and Specification in standard Hoare logic to Triple Modular
Redundant Program in our logic
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(non-fault-tolerant) program variable x, the translated assertion will have the form
∃x′. � (x1 = x′) ∗�(x2 = x′) ∗�(x3 = x′) ∗P[x′/x]. Intuitively, this assertion states that
states that P(x′) will be true and x′ may be equal to any one of three redundant versions
of the original variable x, called x1, x2, and x3. Additionally, when working in the SWC
fault model, at most one of x1, x2, or x3 will not be equal to x′, allowing us to conclude
at least two of the three assertions P(x1), P(x2) and P(x3) are true. By comparing x1, x2,
and x3 to each other, one can determine which (if any) variables are faulty and hence
which predicates are true.

Proposition 7. Given a valid standard Hoare triple as input, the translation produces
a valid logic Hoare triple in our logic as output.

8 Related Work

There are many existing methods for mitigating the effects of transient faults, using both
hardware mechanisms, software mechanisms, and combinations of the two. For exam-
ple, many solutions in software [10–13] require the compiler to duplicate computations
and to insert comparisons to ensure that the two copies remain in agreement. Such tech-
niques are usually evaluated experimentally using random fault injection, which shows
that these solutions handle large classes of faults, but gives no hard and fast semantic
guarantees about program behavior.

The SymPLFIED system [14] is a notable exception to the practice of random fault
injection. SymPLFIED uses model checking to iterate through all possible hardware
faults and to determine whether such faults can lead to catastrophic outcomes in the
application being analyzed. SymPLIFIED has a significantly richer error model than
the ones treated in this paper as it considers memory errors and control-flow errors.
On the other hand, SymPLIFIED does not come with a program logic, like the one
defined in this paper, that makes it possible to judge whether a program satisfies some
general-purpose logical specification.

Another closely related line of research involves the development of type systems for
checking fault tolerance properties. For example, the faulty lambda calculus, λzap [15],
uses a type system to ensure its programs use triple modular redundancy properly.
Elsman [16] shows how to extend that calculus with simplified error detection oper-
ations. More recent work applies these abstract, high-level ideas directly to assembly
langauge [17, 18]. The main drawback of these type-based approaches is that each new
fault tolerance scheme requires its own type system. In contrast, this paper proposes a
more general logical framework for understanding how transient faults affect software
behavior.

9 Conclusion

While development of most applications does not require reasoning about transient
hardware faults, there are several domains in which such faults can cause substantial
problems. One domain of particular interest is in the development of cryptographic
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algorithms where recent research has shown that even a single fault induced by an at-
tacker is often sufficient to break the security of well-known algorithms such as RSA
and DES.

This paper makes initial progress in the development of a framework for verifying
such programs. It shows how to extend the operational semantics of a simple language
of while programs with standard fault models and develops a variation of Separation
Logic to reason about these programs and their faults. It also shows how to define and
use a modal operator to simplify certain proofs of fault tolerance. Finally, the paper
presents two illustrative applications of the logic: one involving a fault tolerant version
of RSA and a second involving a compiler transformation that introduces triple modular
redundancy.
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Abstract. In search for a foundational framework for reasoning about
observable behavior of programs that may not terminate, we have pre-
viously devised a trace-based big-step semantics for While. In this se-
mantics, both traces and evaluation (relating initial states of program
runs to traces they produce) are defined coinductively. On terminating
runs, it agrees with the standard inductive state-based semantics. Here
we present a Hoare logic counterpart of our coinductive trace-based se-
mantics and prove it sound and complete. Our logic subsumes both the
partial correctness Hoare logic and the total correctness Hoare logic: they
are embeddable. Since we work with a constructive underlying logic, the
range of expressible program properties has a rich structure; in partic-
ular, we can distinguish between termination and nondivergence, e.g.,
unbounded total search fails to be terminating but is nonetheless non-
divergent. Our metatheory is entirely constructive as well, and we have
formalized it in Coq.

1 Introduction

Standard big-step semantics and (partial correctness) Hoare logics do not sup-
port reasoning about nonterminating runs of programs. Essentially, they ig-
nore them. But of course nonterminating runs are important. Not only need
we often program a partially recursive function whose domain of definedness
we cannot decide or is undecidable, e.g., an interpreter, but we also have to
program functions that are inherently partially recursive. In programming with
interactive input/output, for example, diverging runs are often what we really
want.

In search for a foundational framework for reasoning about possibly nonter-
minating programs and intrigued by attempts in this direction in the literature,
we have previously devised a big-step semantics for While based on traces [14].
In this semantics, traces are possibly infinite sequences of states that a program
run goes through. They are defined coinductively, as is the evaluation relation,
relating initial states of program runs to traces they produce. On terminating
runs, this nonstandard semantics agrees with the standard, inductive state-based
big-step semantics.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 488–506, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Hoare Logic for the Coinductive Trace-Based Big-Step Semantics of While 489

In this paper, we put forward a Hoare logic to match this big-step semantics.
In this new trace-based logic, program runs are reasoned about in terms of
predicates on states and traces. More precisely, our Hoare triple {U} s {P} is
given by a statement s, a state predicate U (a condition on the initial state of
a run of s) and a trace predicate P (a condition on the trace produced by the
run). The interesting question is the choice of the language of assertions, i.e., the
language in which we want to express these predicates. We would like to identify
a suite of connectives for the assertion language with whom we achieve a sound
and complete Hoare logic for a constructive underlying logic. We adopt a solution
that is reminiscent of interval temporal logic [13,7] (with a chop-connective). The
logic we propose is Spartan in terms of convenience of expression, but should well
qualify as a foundational formalism into which more specialized applied logics
can be translated.

The While language is total (as soon as we accept that traces of program runs
can be infinite) and deterministic. This allows our logic to conservatively extend
both the standard, state-based partial correctness Hoare logic as well as the
standard, state-based total correctness Hoare logic. On the level of derivability
alone this can be proved semantically by going through the soundness and com-
pleteness results. But we go one step further: we show that derivations in these
two state-based logics are directly transformable into derivations in our logic.
The transformations are relatively straightforward and do not require invention
of new invariants or variants, demonstrating that our logic incurs no undue proof
burden in comparison to the standard Hoare logics.

However, the power of our logic goes beyond that of the state-based par-
tial and total correctness Hoare logics. The assertion language has access to
traces. As suggested by its similarity to the assertion language of interval tem-
poral logic, this allows us to specify liveness properties of diverging runs. We
will demonstrate this extra expressiveness of our logic by a series of examples.
Also, interpreted into a constructive underlying logic, our assertion language
becomes quite discerning. In particular we can distinguish between termination
and nondivergence, e.g., unbounded total1 search fails to be terminating, but is
nonetheless nondivergent.

We do not discuss this in the paper, but our logic can be adjusted to deal
with exceptions and nondeterminism.

The paper is organized as follows. In Section 2, we present our trace-based big-
step semantics. In Section 3, we proceed to the question of a corresponding Hoare
logic. We explain our design considerations and then present our Hoare logic and
the soundness and completeness proofs. In Section 4, we show the embeddings
of the state-based partial and total correctness Hoare logics. In Section 5, we
consider examples. In Section 6, we discuss the related work, to conclude in
Section 7. We have formalized the development fully constructively in Coq ver-
sion 8.1pl3 using the Ssreflect syntax extension library. The Coq development is
available at http://cs.ioc.ee/~keiko/abyss.tgz.

1 We should really say “nonpartial”.

http://cs.ioc.ee/~keiko/abyss.tgz
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2 Big-Step Semantics

We start with our big-step semantics. This is defined in terms of states and
traces. The notion of a state is standard. A state σ ∈ state is an assignment of
integer values to the variables. Traces τ ∈ trace are defined coinductively by the
rules2

〈σ〉 ∈ trace
τ ∈ trace

σ :: τ ∈ trace

so a trace is a non-empty colist (possibly infinite sequence) of states. We also
define bisimilarity of two traces, τ ≈ τ ′, coinductively by

〈σ〉 ≈ 〈σ〉
τ ≈ τ ′

σ :: τ ≈ σ :: τ ′

Bisimilarity is straightforwardly seen to be an equivalence. We think of bisimilar
traces as equal, i.e., type-theoretically we treat traces as a setoid with bisimi-
larity as the equivalence relation3. Accordingly, we have to make sure that all
functions and predicates we define on traces are setoid functions and predicates
(i.e., insensitive to bisimilarity). We define the initial state hd τ of a trace τ
by case distinction by hd 〈σ〉 = σ, hd (σ :: τ) = σ. The function hd is a setoid
function. We also define finiteness of a trace (with a particular final state) and
infiniteness of a trace inductively resp. coinductively by

〈σ〉 ↓ σ

τ ↓ σ′

σ :: τ ↓ σ′
τ�

(σ :: τ)�

Finiteness and infiniteness are setoid predicates. It should be noticed that in-
finiteness is defined positively, not as negation of finiteness. Constructively, it is
not the case that ∀τ. (∃σ. τ ↓ σ) ∨ τ�, which amounts to asserting that finiteness
is decidable. In particular, ∀τ. (¬∃σ. τ ↓ σ) → τ� is constructively provable, but
∀τ. (¬ τ�) → ∃σ. τ ↓ σ is not.

Evaluation (s, σ) ⇒ τ , expressing that running a statement s from a state σ
produces a trace τ , is defined coinductively by the rules in Figure 1. The rules
for sequence and while implement the necessary sequencing with the help of
extended evaluation (s, τ) ∗⇒ τ ′, expressing that running a statement s from the
last state (if it exists) of an already accumulated trace τ results in a total trace
τ ′. Extended evaluation is also defined coinductively, as the coinductive prefix
closure of evaluation.

We look closer at the sequence rule. We want to conclude that (s0; s1, σ) ⇒ τ ′

from the premise (s0, σ) ⇒ τ . Classically, either the run of s0 terminates, i.e.,
τ ↓ σ′ for some σ′, or it diverges, i.e., τ�. In the first case, we would like to
additionally use that τ is a finite prefix of τ ′ and that (s1, σ

′) ⇒ τ ′′, where τ ′′

2 We mark coinductive definitions by double horizontal rules.
3 Classically, strong bisimilarity is equality. But we work in an intensional type theory

where strong bisimilarity of colists is weaker than equality (just as equality of two
functions on all arguments is weaker than equality of these two functions).
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(x := e, σ)⇒ σ :: 〈σ[x �→ �e�σ]〉 (skip, σ)⇒ 〈σ〉
(s0, σ)⇒ τ (s1, τ ) ∗⇒ τ ′

(s0; s1, σ)⇒ τ ′

σ |= e (st, σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ �|= e (sf , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ |= e (st, σ :: 〈σ〉) ∗⇒ τ (while e do st, τ ) ∗⇒ τ ′

(while e do st, σ)⇒ τ ′
σ �|= e

(while e do st, σ)⇒ σ :: 〈σ〉

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ ) ∗⇒ τ ′

(s, σ :: τ ) ∗⇒ σ :: τ ′

Fig. 1. Big-step semantics

is the rest of τ ′. In the second case, it should be case that τ ≈ τ ′. In both cases,
the desirable condition is equivalent to (s1, τ) ∗⇒ τ ′, which is the second premise
of our rule. The use of extended evaluation, defined as the coinductive (rather
than inductive) prefix closure of evaluation, allows us to avoid the need to decide
whether the run of s0 terminates or not.

Evaluation is a setoid predicate. Moreover, for While, it is deterministic (up
to bisimilarity, as is appropriate for our notion of trace equality).

Proposition 1. For any s, σ, τ and τ ′, if (s, σ) ⇒ τ and (s, σ) ⇒ τ ′, then
τ ≈ τ ′.

In our definition, we have made a choice as regards to what grows the trace of
a run. We have decided that assignments and testing of guards of if- and while-
statements augment the trace by a state (but skip does not). This is good for
several reasons. First, skip becomes a unit of sequential composition. Second,
we get a notion of small steps that fully agrees with a very natural coinductive
trace-based small-step semantics arising as a straightforward variation of the
textbook inductive state-based small-step semantics.

Third, we obtain that any while-loop always progresses. For instance, in
our semantics we can only derive (while true do skip, σ) ⇒ σ :: σ :: σ :: . . .
(up to bisimilarity). Giving up insisting on progress in terms of growing the
trace would introduce some semantic anomalies. For instance, we would not
like to have (while true do skip, σ) ⇒ 〈σ〉, because an intuitively clearly infi-
nite run would then be recorded in a finite trace, with the consequence that
(while true do skip; x := 17, σ) ⇒ σ :: 〈σ[x �→ 17]〉 etc. But it also ensures that
evaluation is total—as we should expect. Given that it also is deterministic, we
can thus equivalently turn our relational big-step semantics into a functional
one: the unique trace for a given statement and initial state is definable by
corecursion. (For details, see our previous paper [14].)

The coinductive trace-based semantics agrees with the inductive state-based
semantics.
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Proposition 2. For any s, σ, σ′, existence of τ such that (s, σ) ⇒ τ and τ ↓ σ′

is equivalent to (s, σ) ⇒ind σ′.

We notice that the inductive state-based semantics is not total constructively—
we cannot decide the halting problem.

3 Hoare Logic

We now proceed to the Hoare logic and its soundness and completeness proof.
As we will base our consequence rule on semantic entailment rather than deriv-
ability in some fixed proof system, we sidestep the problem of its unavoidable
incompleteness (due to the impossibility of complete axiomatization of any the-
ory containing arithmetic). Regarding the choice of level of expressiveness of
the assertion language, we deliberately keep the assertion language open, only
making sure we have enough connectives to be able to express the strongest
postcondition for any expressible precondition.

3.1 Assertion Language

Our assertions will be about states and traces, i.e., expressing state and trace
predicates. A state predicate U is simply a predicate on states. From a trace
predicate P , we require that it is a setoid predicate, i.e., it must be unable to
distinguish bisimilar traces.

We introduce a number of connectives for our assertion language. All these
connectives yield setoid predicates. The inference rules of the Hoare logic rely
on the availability of these connectives. Indeed, it was an intriguing exercise for
us to come up with connectives that would be simple but expressive enough
practically and at the same time allow us to prove the Hoare logic sound and
complete constructively. The semantic definitions of these connectives are given
in Figure 2.4

The two most primitive state (resp. trace) predicates are true and false, which
are respectively true and false for any state (resp. trace). We can also use the
standard connectives ¬,∧,∨ and quantifiers ∀, ∃ to build state and trace pred-
icates. The context disambiguates the overloaded notations for these state and
trace predicates.

For a state predicate U , the singleton 〈U〉 is a trace predicate that is true of
singleton traces given by a state satisfying U . In particular 〈true〉 is true of any
singleton trace.

For a state predicate U , the doubleton 〈U〉2 is true of a doubleton trace whose
two states are identical and satisfy U .

For a state predicate U , the update U [x �→ e] is the strongest postcondition
of the statement x := e for the precondition U . It is true of a doubleton trace
4 We use the symbol |= for visual highlighting of predicates. We are not defining a

single satisfaction relation |= for some fixed language of predicates, but a number of
individual state/trace predicates and operations on such predicates. Some of them
are defined inductively, some coinductively, some definitions are not recursive at all.
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σ |= true

¬(σ |= U)
σ |= ¬U

σ |= U σ |= V

σ |= U ∧ V . . .

τ |= true

¬(τ |= P )
τ |= ¬P

τ |= P τ |= Q

τ |= P ∧Q . . .

σ |= U

〈σ〉 |= 〈U〉
τ |= P τ ′ |=τ Q

τ ′ |= P ∗∗Q

τ |= 〈true〉
τ |= P †

τ |= P τ ′ |=τ P †

τ ′ |= P †

σ |= U

σ :: (σ[x �→ e]) |= U [x �→ e]

σ |= U

σ :: 〈σ〉 |= 〈U〉2

τ |= P τ ↓ σ

σ |= Last P

τ ↓ σ

τ |= finite
τ�

τ |= infinite

〈σ〉 |= Q

〈σ〉 |=〈σ〉 Q

σ :: τ |= Q

σ :: τ |=〈σ〉 Q

τ ′ |=τ Q

σ :: τ ′ |=σ::τ Q

∀σ (σ |= U → σ |= V )
U |= V

∀τ (τ |= P → τ |= Q)
P |= Q

Fig. 2. Semantics of assertions

whose first state σ satisfies U and second state is obtained from the first by
modifying the value of x to become �e� σ.

For trace predicates P and Q, the chop P ∗∗ Q is a trace predicate that is
true, roughly speaking, of a trace τ ′ that has a prefix τ satisfying P , with the
rest of τ ′ satisfying Q. But its definition is carefully crafted, so that Q is not
checked, if τ is infinite (in which case necessarily τ ≈ τ ′), and this happens
without case distinction on whether τ is finite. This effect is achieved with the
premise τ ′ |=τ Q. The relation τ ′ |=τ Q is defined coinductively. It traverses all
of τ , making sure that it is a prefix of τ ′, and, upon possible exhaustion of τ in
a finite number of steps, checks Q against the rest of τ ′. This way the problem
of deciding whether τ is finite is avoided, basically by postponing it, possibly
infinitely.

Our chop operator is classically equivalent to the chop operator from interval
temporal logic [13,7] (cf. also the separating conjunction of separating logic).
Indeed, classically, τ ′ |= P ∗∗ Q holds iff

– either, for some finite prefix τ of τ ′, we have τ |= P and τ ′′ |= Q, where τ ′′

is the rest of τ ′,
– or τ ′ is infinite and τ ′ |= P .

This is how the semantics of chop is defined in interval temporal logic. But it
involves upfront decision of whether P will be satisfied by a finite or an infinite
prefix of τ ′. Our definition is fine-tuned for constructive reasoning.
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For a trace predicate P , its iteration P † is a trace predicate that is true of
a trace which is a concatenation of a possibly infinite sequence of traces, each
of which satisfies P . It is reminiscent of the Kleene star operator. It is defined
by coinduction and takes into account both infiniteness of some single iteration
and infinite repetition.

For a trace predicate P , Last P is a state predicate that is true of states that
can be the last state of a finite trace satisfying P . Note that Last P is defined
inductively.

Proposition 3. For any U , 〈U〉, U [x �→ e], 〈U〉2 are setoid predicates. For any
setoid predicates P , Q, P ∗∗Q is a setoid predicate. For any setoid predicate P ,
P † is a setoid predicate.

A number of logical consequences and equivalences hold about these connectives.
We have the trivial equivalence: 〈true〉∗∗P ⇔ P ⇔ P ∗∗〈true〉. The chop operator
is associative: (P ∗∗Q)∗∗R ⇔ P ∗∗(Q∗∗R). The iterator operator P † repeats P
either zero times or once followed by further repetitions: P † ⇔ 〈true〉∨(P ∗∗P †).
A trace is infinite if and only if false holds for any last state: infinite ⇔ true ∗∗
〈false〉. We have P ∗∗Last P ⇔ P . We also have Last (P ∗∗Q) |= Last Q, but the
converse does not hold. If every trace satisfying P is infinite, i.e., if P |= infinite,
then Last P ⇔ false.

3.2 Inference Rules

The derivable judgements of the Hoare logic are given by the inductively inter-
preted inference rules in Figure 3. The proposition {U} s {P} states derivability
of the judgement. The intent is that {U} s {P} should be derivable precisely
when running a statement s from a initial state satisfying U is guaranteed to
produce a trace satisfying P .

The rules for assignment and skip are self-explanatory.
The rule for sequence is defined in terms of the chop operator. The pre-

condition V for the second statement s1 is given by those states in which a
run of the first statement s0 may terminate. In particular, if {U} s0 {P} and
P |= infinite, i.e., s0 is necessarily diverging for the precondition U , then we
have {U} s0 {P ∗∗ 〈false〉}. In this case, from the derivability of {false} s1 {Q}
for any Q, we get {U} s0; s1 {P ∗∗ Q} for any Q. But this makes sense, since
P ∗∗ Q ⇔ P as soon as P |= infinite.

The rule for if-statement uses the doubleton operator in accordance with the
operational semantics where we have chosen that testing the boolean guard grows
the trace.

The rule for while-statement is inspired by the corresponding rule of the stan-
dard, state-based partial-correctness Hoare logic. It uses a loop invariant I. This
is a state predicate that has to be true each time the boolean guard is about
to be (re-)tested in a run of the loop. Accordingly, the precondition U should
be stronger then I. Also, I must hold each time an iteration of st has finished,
as enforced by having P ∗∗ 〈I〉 as the postcondition of st. The postcondition
〈U〉2 ∗∗ (P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉 of the loop consists of three parts. 〈U〉2 accounts for
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{U} x := e {U [x �→ e]} {U} skip {〈U〉}
{U} s0 {P ∗∗ 〈V 〉} {V } s1 {Q}

{U} s0; s1 {P ∗∗Q}
{e ∧ U} st {P} {¬e ∧ U} sf {P}
{U} if e then st else sf {〈U〉2 ∗∗ P}

U |= I {e ∧ I} st {P ∗∗ 〈I〉}
{U} while e do st {〈U〉2 ∗∗ (P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉}

U |= U ′ {U ′} s {P ′} P ′ |= P

{U} s {P}
∀z. {U} s {P}
{∃z. U} s {∃z. P}

Fig. 3. Inference rules of Hoare logic

the first test of the guard; (P ∗∗ 〈I〉2)† accounts for iterations of the loop body
in alternation with re-tests of the guard (notice that that we are again using
the doubleton operator); 〈¬e〉 accounts for the state in which the last test of the
guard is finished.

We have chosen to introduce a separate rule for instantiating auxiliary vari-
ables. Alternatively, we might have stated the consequence rule in a more general
form, as suggested by Kleymann [12]; yet the separation facilitates formalization
in Coq.

The various logical consequences and equivalences about the connectives sug-
gest also further alternative and equivalent formulations. For instance, we could
replace the rule for the while-statement by

{e ∧ I} st {P ∗∗ 〈I〉}
{I} while e do st {〈I〉2 ∗∗ (P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉}

if we strengthened the consequence rule to

U |= U ′ {U ′} s {P ′} 〈U ′〉 ∗∗ P ′ |= P

{U} s {P}

With our chosen rule for while, this strengthened version of consequence is ad-
missible:

Lemma 1. For any U, s and V , {U} s {P} then {U} s {〈U〉 ∗∗ P}.
We do not attempt to argue that our formulation is the best choice; yet we
found that the present formulation is viable from the points-of-view of both the
meta-theory and applicability of the logic.

3.3 Soundness

The soundness result states that any derivable Hoare triple is semantically valid.

Proposition 4 (Soundness). For any s, U, P, σ, τ , if {U} s {P} and σ |= U
and (s, σ) ⇒ τ and then τ |= P .
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Proof. By induction on the derivation of {U} s {P}. We show the main cases of
sequence and while.

– s = s0; s1: We are given as the induction hypotheses that, for any σ, τ ,
(s0, σ) ⇒ τ and σ |= U imply τ |= P ∗∗〈V 〉, and that, for any σ, τ , (s1, σ) ⇒ τ
and σ |= V imply τ |= Q. We have to prove τ |= P ∗∗ Q, given σ |= U and
(s0, σ) ⇒ τ0 and (s1, τ0)

∗⇒ τ1. By the induction hypothesis for s0, we derive
h0 : τ0 |= P and τ0 |=τ0 〈V 〉. We prove by coinduction an auxiliary lemma:
for any τ , τ ′, τ |=τ 〈V 〉 and (s1, τ) ∗⇒ τ ′ give τ ′ |=τ Q, using the induction
hypothesis for s1. The lemma gives us h1 : τ1 |=τ0 Q. We can now close the
case by h0 and h1.

– s = while e do st: We are given as the induction hypothesis that for any σ
and τ , σ |= I ∧ e and (σ, s) ⇒ τ imply τ |= P ∗∗ 〈I〉. We have to prove τ |=
〈U〉2∗∗(P∗∗〈I〉2)†∗∗〈¬e〉, given U |= I and σ |= U and (while e do st, σ) ⇒ τ .
We do so by proving the following conditions by mutual coinduction:
• for any σ and τ , if σ |= I and (while e do s, σ) ⇒ σ :: τ , then τ |=

(P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉
• for any τ and τ ′, if τ |=τ 〈I〉 and (while e do st, τ) ∗⇒ τ ′, then τ ′ |=τ

〈I〉2 ∗∗ (P ∗∗ 〈I〉2)† ∗∗ 〈¬e〉.

3.4 Completeness

The completeness result states that any semantically valid Hoare triple is deriv-
able. Following the standard approach (see, e.g., [17]) we define, for a given
statement s and a given precondition U , a trace predicate sp(s, U)—the can-
didate strongest postcondition. Then we prove that sp(s, U) is a postcondition
according to the logic (i.e., {U} s {sp(s, U)} is derivable) and that sp(s, U)
is semantically stronger than any other trace predicate that is a postcondition
semantically. Completeness follows.

The trace predicate sp(s, U) is defined by induction on s in Figure 4. The
definition is mostly self-explanatory, as it mimics the inference rules of the logic,
except that we need the loop-invariant Inv(e, s, U). Inv(e, s, U) characterizes the
set of states that running while e do st from a state satisfying U can reach at
the boolean guard in finite steps.

For any s and U , the predicate sp(s, U) is a monotone setoid predicate.

Lemma 2. For any s, U, τ, τ ′, if τ |= sp(s, U) and τ ≈ τ ′ then τ ′ |= sp(s, U).

Lemma 3. For any s, U, U ′, if U |= U ′ then sp(s, U) |= sp(s, U ′).

The following lemma states that any trace which satisfies sp(s, U) has its first
state satisfying U .

Lemma 4. For any s, U, τ , if τ |= sp(s, U) then hd τ |= U .

The following lemma is central for the next two important lemmata, stating that
Last P and Inv(e, s, U) are adequate.
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sp(x := e, U) = U [x �→ e]
sp(skip, U) = 〈U〉
sp(s0; s1, U) = P ∗∗ sp(s1,Last P ) where P = sp(s0, U)
sp(if e then st else sf , U) = 〈U〉2 ∗∗ (sp(st, e ∧ U) ∨ sp(sf ,¬e ∧ U))
sp(while e do s,U) = 〈U〉2 ∗∗ (sp(s, e ∧ I) ∗∗ 〈I〉2)† ∗∗ 〈¬e〉

where I = Inv(e, s, U)

σ |= U

σ |= Inv(e, s, U)
V |= Inv(e, s, U) σ |= Last (〈Inv(e, s, U) ∧ e〉 ∗∗ sp(s, V ))

σ |= Inv(e, s, U)

Fig. 4. Strongest postcondition

Lemma 5. For any τ, U , if for any σ, τ ↓ σ implies σ |= U , then τ |=τ 〈U〉.

Proof. By coinduction with case analysis on τ .

Lemma 6. For any P , P ⇔ P ∗∗ 〈Last P 〉.

Proof. Suppose we are given τ |= P . By the definition of Last P , we have for
any σ, τ ↓ σ implies σ |= Last P . We then deduce τ |=τ 〈Last P 〉 by Lemma 5,
thus conclude τ |= P ∗∗ 〈Last P 〉.

Suppose we are given τ0 |= P and τ1 |=τ0 〈Last P 〉. We prove the following
condition by coinduction: for any U, τ, τ ′, τ ′ |=τ 〈U〉 implies τ ≈ τ ′. Therefore we
have τ0 ≈ τ1, from which τ1 |= P follows. (Recall that P is a setoid predicate.)

Lemma 7. For any s, e, U, τ , sp(s, Inv(e, s, U) ∧ e) ⇔ sp(s, Inv(e, s, U) ∧ e) ∗∗
〈Inv(e, s, U)〉.

Proof. Suppose we are given τ |= sp(s, Inv(e, s, U) ∧ e). It suffices to prove
τ |=τ 〈Inv(e, s, U)〉. However, we have τ |= 〈Inv(e, s, U)∧ e〉 ∗∗ sp(s, Inv(e, s, U))
by Lemma 3 and Lemma 4. By the definition of Inv, we have for any σ, τ ↓ σ
implies σ |= Inv(e, s, U). Therefore we conclude τ |=τ 〈Inv(e, s, U)〉 by Lemma 5.
sp(s, Inv(e, s, U)∧ e) ∗∗ 〈Inv(e, s, U)〉 |= sp(s, Inv(e, s, U)∧ e) is proved similarly
to Lemma 6.

We are now ready to establish that sp(s, U) is a postcondition according to the
Hoare logic.

Lemma 8. For any s, U , {U} s {sp(s, U)}.

Proof. By induction on s. We show the main case of while: s = while e do st.
We are given as induction hypothesis that, for any U0, {U0} st {sp(st, U0)}. We
have to prove {U} while e do st {〈U〉2 ∗∗ (sp(st, e ∧ I) ∗∗ 〈I〉2)† ∗∗ 〈¬e〉} where
I = Inv(e, st, U). It is sufficient to prove {e∧ I} st {(sp(st, e∧ I) ∗∗ 〈I〉)}, which
follows from the induction hypothesis and Lemma 7.
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Following the standard route, it should remain to prove the following condition:
for any s, U, P , if for all σ, τ , σ |= U and (s, σ) ⇒ τ imply τ |= P , then

sp(s, U) |= P .
This will be an immediate corollary from Lemma 4 and the following lemma,

stating that any trace which satisfies sp(s, U) is in fact produced by a run of s.

Lemma 9. For any s, U, τ , if τ |= sp(s, U) then (s, hd τ) ⇒ τ .

Proof. By induction on s. We show the main cases of sequence and while.

– s = s0; s1: We are given as the induction hypotheses that, for any U ′, τ ′, τ ′ |=
sp(s0, U

′) (resp. τ ′ |= sp(s1, U
′)) implies (s0, hd τ ′) ⇒ τ ′ (resp. (s1, hd τ ′) ⇒

τ ′). We have to prove (s0; s1, hd τ) ⇒ τ , given τ |= sp(s0; s1, U), which
unfolds into τ0 |= sp(s0, U) and τ |=τ0 sp(s1,Last (sp(s0, U))). By the
induction hypothesis for s0, we have (s0, hd τ0) ⇒ τ0. Using the induc-
tion hypothesis for s1, we prove by coinduction that, for any τ1, τ2, τ2 |=τ1

sp(s1,Last (sp(s0, U))) implies (s1, τ1)
∗⇒ τ2, thereby we close the case.

– s = while e do st: We are given as the induction hypothesis that, for any
U ′, τ ′, τ ′ |= sp(st, U

′) implies (st, hd τ ′) ⇒ τ ′. We have to prove (while e do
st, hd τ) ⇒ τ , given τ |= 〈U〉2 ∗∗ (sp(s, e ∧ I) ∗∗ 〈I〉2)† ∗∗ 〈¬e〉 where I =
Inv(e, s, U). We do so by proving the following two conditions simultaneously
by mutual coinduction:
• for any τ , τ |= (sp(s, e∧I)∗∗〈I〉2)†∗∗〈¬e〉 implies (while e do st, hd τ) ⇒

hd τ :: τ ,
• for any τ and τ ′, τ ′ |=τ 〈I〉2 ∗∗ (sp(s, e ∧ I) ∗∗ 〈I〉2)† ∗∗ 〈¬e〉 implies

(while e do st, τ) ∗⇒ τ ′.

Corollary 1. For any s, U, P , if for all σ, τ , σ |= U and (s, σ) ⇒ τ imply τ |= P ,
then sp(s, U) |= P .

Completeness is proved as a corollary of the last two lemmata.

Proposition 5 (Completeness). For any s, U, P , if for all σ, τ , σ |= U and
(s, σ) ⇒ τ imply τ |= P , then {U} s {P}.

Proof. Assume that for all σ, τ , σ |= U and (s, σ) ⇒ τ imply τ |= P . By
Corollary 1, we have that sp(s, U) |= P . By Lemma 8, we have {U} s {sp(s, U)}.
Applying consequence, we get {U} s {P}.

4 Relation to the Standard Partial and Total Correctness
Hoare Logics

It is easy to see, by going through soundness and completeness results, that
our trace-based Hoare logic is a conservative extension of the standard, state-
based partial and total correctness Hoare logics. But more can be said. The
derivations in these two logics are directly transformable into derivations in our
logic, preserving their structure, without invention of new invariants or variants.
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We formalize our claim in the next two propositions, whose direct proofs are
algorithms for the transformations. Proposition 6 states that, if {U} s {V } is
a derivable partial correctness formula, then {U} s {true ∗∗ 〈V 〉} is derivable in
our logic. The trace predicate true ∗∗ 〈V 〉 indicates that V holds of any state
that is reachable by traversing, in a finite number of steps, the whole trace τ
produced by running s. Classically, this amounts to the condition of V being
true of the last state of τ , if τ is finite and hence has one; if τ is infinite, then
nothing is required. Proposition 7 states that, if {U} s {V } is a derivable total
correctness judgement, then {U} s {finite ∗∗ 〈V 〉} is derivable in our logic. The
trace predicate finite∗∗〈V 〉 states that the trace τ produced by running s is finite
and V holds of the last state of τ ; the finiteness of τ guarantees the existence of
the last state.

(For reference, the inference rules of the state-based logics appear in the Ap-
pendix.)

Proposition 6. For any U, s and V , if {U} s {V } is derivable in the partial
correctness Hoare logic, then {U} s {true ∗∗ 〈V 〉}.
Proof. By induction on the Hoare logic derivation of {U} s {V }. We show the
main case of while: s ≡ while e do st. We are given as the induction hypothesis
{e ∧ I} s {true ∗∗ 〈I〉}. We close the case by the derivation

{e ∧ I} s {true ∗∗ 〈I〉}
{I} while e do st {〈I〉2 ∗∗ (true ∗∗ 〈I〉2)† ∗∗ 〈¬e〉}

{I} while e do st {true ∗∗ 〈I ∧ ¬e〉}

For the embedding of total correctness derivations, we prove a slightly stronger
statement to have the induction going through.

Proposition 7. For any U, s and V , if {U} s {V } is derivable in the total
correctness Hoare logic, then for any U0, {U ∧ U0} s {〈U0〉 ∗∗ finite ∗∗ 〈V 〉}.
Proof. By induction on the Hoare logic derivation of {U} s {V }. We show the
main case for while: s ≡ while e do st. We are given as the induction hypothesis
that for all n : nat and U0, {e∧ I ∧ t = n∧U0} st {〈U0〉 ∗∗ finite ∗∗ 〈I ∧ t < n〉},
Therefore we close the case by the derivation

∀n.{e ∧ I ∧ t = n} st {〈t = n〉 ∗∗ finite ∗∗ 〈I ∧ t < n〉}
{∃n.e ∧ I ∧ t = n} st {∃n.〈t = n〉 ∗∗ finite ∗∗ 〈I ∧ t < n〉}

{e ∧ I} st {(∃n.〈t = n〉 ∗∗ finite ∗∗ 〈t < n〉) ∗∗ 〈I〉}
{I ∧ U0} while e do st

{〈I ∧ U0〉2 ∗∗ ((∃n.〈t = n〉 ∗∗ finite ∗∗ 〈t < n〉) ∗∗ 〈I〉2)† ∗∗ 〈¬e〉}
{I ∧ U0} while e do st {U0 ∗∗ finite ∗∗ 〈I ∧ ¬e〉}

5 Examples

Propositions 6 and 7 show that our trace-based logic is expressive enough to
perform the same analyses that the state-based partial or total correctness Hoare
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logics can perform. However, the expressiveness of our logic goes beyond that of
the partial and the total correctness Hoare logics. In this section, we demonstrate
this by a series of examples. We adopt the usual notational convention that any
occurrence of a variable in a state predicate represents the value of the variable
in the state, e.g., a state predicate x + y = 7 abbreviates λσ. σ x + σ y = 7.

5.1 Unbounded Total Search

Since we work in a constructive underlying logic, we can distinguish between
termination of a run, finite, and nondivergence, ¬infinite. For instance, any
unbounded nonpartial search fails to be terminating but is nonetheless nondi-
vergent.

This example is inspired by Markov’s principle: ¬∀n.¬B n → ∃x.B n for any
decidable predicate B on natural numbers, i.e., a predicate satisfying ∀n. B n ∨
¬B n. Markov’s principle is a classical tautology, but is not valid constructively.
This implies we cannot constructively prove a statement s that searches a natural
number n satisfying B by successively checking whether B 0, B 1, B 2, . . . to be
terminating. In other words, we cannot constructively derive a total correctness
judgement for s. The assumption ¬∀n. ¬B n only guarantees that B is not false
everywhere, therefore the search cannot diverge; indeed, we can constructively
prove that s is nondivergent in our logic.

We assume given a decidable predicate B on natural numbers and an axiom
B noncontradictory: ¬∀n.¬B n stating that B is not false everywhere. Therefore
running the statement

Search ≡ x := 0; while ¬B x do x := x + 1

cannot diverge: this would contradict B noncontradictory. In Proposition 8 we
prove that any trace produced by running s is nondivergent and B x holds of
the last state.

We define a predicate cofinally : nat → trace → Prop coinductively as follows:

σ x = n B n

σ :: 〈σ〉 |= cofinally n

σ x = n ¬B n τ |= cofinally (n + 1)

σ :: σ :: τ |= cofinally n

cofinally is a setoid predicate.
A crucial observation is that, in the presence of B noncontradictory, cofinally 0

is stronger than nondivergent:

Lemma 10. cofinally 0 |= ¬infinite.

Proof. It is sufficient to prove that, for any τ , τ |= cofinally 0 and τ |= infinite
are contradictory. Suppose there is a trace τ such that τ |= cofinally 0 and
τ |= infinite. Then by induction on n we can show that, for any n there is a
trace τ ′ such that τ ′ |= cofinally n and τ ′ |= infinite. But whenever the latter
condition holds for some τ ′ and n, then ¬B n. Hence we also have ∀n.¬B n. But
this contradicts B noncontradictory .
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{true} x := 0 {true[x �→ 0]}

{¬B x} x := x + 1 {(¬B x)[x �→ x + 1]}
{x = 0} while ¬B x do x := x + 1
{〈x = 0〉2 ∗∗ ((¬B x)[x �→ x + 1] ∗∗ 〈true〉2)† ∗∗ 〈B x〉}

��
{x = 0} while ¬B x do x := x + 1 {cofinally 0}

{true} x := 0; while ¬B x do x := x + 1 {true[x �→ 0] ∗∗ cofinally 0}
{true} x := 0; while ¬B x do x := x + 1 {(true ∗∗ 〈B x〉) ∧ ¬infinite}

Fig. 5. Derivation of {true} Search {(true ∗∗ 〈B x〉) ∧ ¬infinite}

{true} x := 0 {true[x �→ 0]}

{true} x := x + 1 {true[x �→ x + 1]}
{x = 0} while true do x := x + 1
{〈x = 0〉2 ∗∗ (true[x �→ x + 1] ∗∗ 〈true〉2)† ∗∗ 〈false〉}

��
{x = 0} while true do x := x + 1 {eventually n}

{true} x := 0; while true do x := x + 1 {true[x �→ 0] ∗∗ eventually n}
{true} x := 0; while true do x := x + 1 {finite ∗∗ 〈x = n〉 ∗∗ true}

Fig. 6. Derivation of {true} s {finite ∗∗ 〈x = n〉 ∗∗ true}

Proposition 8. {true} Search {(true ∗∗ 〈B x〉) ∧ ¬infinite}.

Proof. The derivation is given in Figure 5, with trivial applications of the con-
sequence rule being omitted.

5.2 Liveness

As the similarity of our assertion language to the interval temporal logic suggests,
we can specify and prove liveness properties. In Proposition 9, we prove that the
statement

x := 0; while true do x := x + 1

eventually sets the value of x to n for any n : nat at some point.
The example is simple but sufficient to demonstrate core techniques used to

prove liveness properties of more practical examples. For instance, imagine that
assignment to x involves a system call, with the assigned value as the argument.
It is straightforward to enrich traces to record such special events, and we can
then apply the same proof technique to prove the statement eventually performs
the system call with n as the argument for any n.

We define inductively a predicate eventually : nat → trace → Prop stating a
state σ in which the value of x is n is eventually reachable by finitely traversing τ :

σ x = n
〈σ〉 |= eventually n

σ x = n
σ :: τ |= eventually n

τ |= eventually n

σ :: τ |= eventually n
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Proposition 9. For any n : nat, {true} s {finite ∗∗ 〈x = n〉 ∗∗ true} where
s ≡ x := 0; while true do x := x + 1.

Proof. The derivation is given in Figure 6, with trivial applications of the con-
sequence rule being omitted.

5.3 Weak Trace Equivalence

The last example is inspired by a notion of weak trace equivalence: two traces
are weakly equivalent if they are bisimilar by identifying a finite number of
consecutive identical states with a single state. It is conceivable that (strong)
bisimilarity is too strong for some applications and one needs weak bisimilarity.
For instance, we may want to prove that the observable behavior, such as the
colist i/o events of a potentially diverging run, is bisimilar to a particular colist
of i/o events. Then we must be able to collapse a finite number of non-observable
internal steps. We definitely should not collapse an infinite number of internal
steps, otherwise we would end up concluding that a statement performing an i/o
operation after a diverging run, e.g., while true do skip; print “hello”, is observably
equivalent to a statement immediately performing the same i/o operation, e.g.,
print “hello”.

In this subsection, we prove that the trace produced by running the statement

while true do (y := x; (while y �= 0 do y := y − 1); x := x + 1)

is weakly bisimilar to the ascending sequence of natural numbers 0 :: 1 :: 2 :: 3 ::
. . ., by projecting the value of x. The statement differs from that of the previous
subsection in that it “stutters” for a finite but unbounded number of steps, i.e.,
while y �= 0 do y := y − 1, before the next assignment to x happens.

This exercise is instructive in that we need to formalize weak trace equiva-
lence in our constructive underlying logic. We do so by supplying an inductive
predicate τ

∗� τ ′ stating that τ ′ is obtained from τ by dropping finitely many
elements from the beginning, until the first state with a different value of x is
encountered, and a coinductive predicate up (n : nat) : trace → Prop, stating
that τ is weakly bisimilar to the ascending sequence of natural numbers starting
at n, by projecting the value of x. Formally:

σ x = hd τ x τ
∗� τ ′

σ :: τ
∗� τ ′

σ x �= hd τ x τ ≈ τ ′

σ :: τ
∗� τ ′

σ x = n σ :: τ
∗� τ ′ τ ′ |= up (n + 1)

σ :: τ |= up n

These definitions are tailored to our example. But a more general weak trace
equivalence can be defined similarly. We note that our formulation is not the
only one possible nor the most elegant. In particular, with a logic permitting
mixing induction and coinduction [5], there is no need to separate the definition
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{x ≥ 0} y := x {(x ≥ 0)[y �→ x]}

{y �= 0} y := y − 1 {(y �= 0)[y �→ y − 1]}
{y ≥ 0} while y �= 0 do y := y − 1
{〈y ≥ 0〉2 ∗∗ ((y �= 0)[y �→ y − 1] ∗∗ 〈true〉2)† ∗∗ 〈y = 0〉}

{y ≥ 0} while y �= 0 do y := y − 1 {〈x〉∗}
�� {true} x := x + 1 {true[x �→ x + 1]}

{y ≥ 0} (while y �= 0 do y := y − 1); x := x + 1
{〈x〉∗ ∗∗ true[x �→ x + 1]}

{x ≥ 0} y := x; (while y �= 0 do y := y − 1); x := x + 1 {〈x〉∗ ∗∗ true[x �→ x + 1]}
{x = 0} while true do (y := x; (while y �= 0 do y := y − 1); x := x + 1)
{〈x = 0〉2 ∗∗ (〈x〉∗ ∗∗ true[x �→ x + 1] ∗∗ 〈true〉2)† ∗∗ 〈false〉}

{x = 0} while true do (y := x; (while y �= 0 do y := y − 1); x := x + 1) {up 0}

Fig. 7. Derivation of {true} s {up 0}

into an inductive part, τ
∗� τ ′, and a coinductive part, up n. Yet our formulation

is amenable in our underlying logic, Coq.
We also use an auxiliary trace predicate 〈x〉∗ that is true of a finite trace in

which the value of x does not change. It is defined inductively as follows:

〈σ〉 |= 〈x〉∗
σ x = hd τ x τ |= 〈x〉∗

σ :: τ |= 〈x〉∗

Proposition 10. {x = 0} s {up 0} where s ≡ while true do (y := x; (while y �=
0 do y := y − 1); x := x + 1).

Proof. The derivation is given in Figure 7, with trivial applications of the con-
sequence rule being omitted.

6 Related Work

Coinductive big-step semantics for nontermination have been considered by
Leroy and Grall [10,11] (in the context of the CompCert project, which is a ma-
jor demonstration of feasibility of certified compilation) and Cousot and Cousot
[4]. Leroy and Grall investigate two approaches. The first, based on Cousot and
Cousot [3], has different evaluation relations for terminating and diverges runs,
one inductive (with finite traces), the other coinductive (with infinite traces). To
conclude that any program either terminates or diverges, one needs the law of
excluded middle (amounting to decidability of the halting problem), and, as a
result, the small-step semantics cannot be proved sound wrt. the big-step seman-
tics constructively. The other approach [1] uses a coinductively defined evaluation
relation with possibly infinite traces, where while-loops are not ensured to be
progressive in terms of growing traces (an infinite number of consecutive silent
small steps may be collapsed).

Some other works on coinductive big-step semantics include Glesner [6] and
Nestra [15,16]. In these it is accepted that a program evaluation can somehow
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continue after an infinite number of small steps. With Glesner, this seems to have
been a curious unintended side-effect of the design, which she was experimenting
with just for the interest of it. Nestra developed a nonstandard semantics with
transfinite traces on purpose in order to obtain a soundness result for a widely
used slicing transformation that is unsound standardly (can turn nonterminating
runs into terminating runs).

Our trace-based coinductive big-step semantics [14] was heavily inspired by
Capretta’s [2] modelling of nontermination in a constructive setting similar to
ours. Rather than using coinductive possibly infinite traces, he works with a
coinductive notion of a possibly infinitely delayed (final) state. The categorical
basis appears in Rutten’s work [18]. But Rutten only studied the classical setting
(any program terminates or not), where a delayed state collapses to a choice of
between a state or a designated token signifying nontermination.

While Hoare logics for big-step semantics based on inductive, finite traces have
been considered earlier (to reason about traces of terminating runs), Hoare or
VDM-style logics for reasoning about properties of nonterminating runs seem not
have been studied before, with one very interesting exception, see below. Neither
do we in fact know about dynamic logic or KAT (Kleene algebra with tests)
approaches that would have assertions about possibly infinite traces. Rather,
nonterminating runs have been typically reasoned about in temporal logics like
LTL and CTL∗ or in interval temporal logic [13,7]. These are however essentially
different in spirit by their “exogeneity”: assertions are made about traces in a
transition system rather than traces of runs of a particular program. Notably,
however, interval temporal logic has connectives similar to ours—in fact they
were a source of inspiration for our design.

Hofmann and Pavlova [9] consider a VDM-style logic with finite trace asser-
tions that are applied to all finite prefixes of the trace of a possibly nonterminat-
ing run of a program. This logic allows reasoning about safety, but not liveness.
We expect that we should be able to embed a logic like this in ours.

7 Conclusions

We have presented a sound and complete Hoare logic for the coinductive trace-
based big-step semantics of While. The logic naturally extends both the partial
and total correctness Hoare logics. Its design may be exploratory at this stage—
in the sense that one might wish to consider alternative choices of primitive
connectives. But at any rate we would see our logic as a viable unifying founda-
tional framework facilitating translations from more applied logics.
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A State-Based Partial Correctness and Total Correctness
Hoare Logics

The figures below give the rules of the standard, state-based partial correctness
and total correctness logics in the form used in Section 4.

{U} skip {U} {U [e/x]} x := e {U}
{e ∧ U} st {V } {¬e ∧ U} sf {V }
{U} if e then st else sf {V }

{e ∧ I} st {I}
{I} while e do st {I ∧ ¬e}

U |= U ′ {U ′} s {V ′} V ′ |= V

{U} s {V }

Fig. 8. Inference rules of partial correctness Hoare logic

{U} skip {U} {U [e/x]} x := e {U}
{e ∧ U} st {V } {¬e ∧ U} sf {V }
{U} if e then st else sf {V }

∀n : nat {e ∧ I ∧ t = n} st {I ∧ t < n}
{I} while e do st {I ∧ ¬e}

U |= U ′ {U ′} s {V ′} V ′ |= V

{U} s {V }

Fig. 9. Inference rules of total correctness Hoare logic
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Abstract. Stream processing applications such as algorithmic trading,
MPEG processing, and web content analysis are ubiquitous and essen-
tial to business and entertainment. Language designers have developed
numerous domain-specific languages that are both tailored to the needs
of their applications, and optimized for performance on their particular
target platforms. Unfortunately, the goals of generality and performance
are frequently at odds, and prior work on the formal semantics of stream
processing languages does not capture the details necessary for reasoning
about implementations. This paper presents Brooklet, a core calculus for
stream processing that allows us to reason about how to map languages
to platforms and how to optimize stream programs. We translate from
three representative languages, CQL, StreamIt, and Sawzall, to Brooklet,
and show that the translations are correct. We formalize three popular
and vital optimizations, data-parallel computation, operator fusion, and
operator re-ordering, and show under which conditions they are correct.
Language designers can use Brooklet to specify exactly how new features
or languages behave. Language implementors can use Brooklet to show
exactly under which circumstances new optimizations are correct. In on-
going work, we are developing an intermediate language for streaming
that is based on Brooklet. We are implementing our intermediate lan-
guage on System S, IBM’s high-performance streaming middleware.

1 Introduction

Stream processing applications are everywhere. In finance, algorithmic trading
programs federate live data feeds from independent exchanges to execute trade
orders. Media players decode fixed-rate, MPEG-formatted byte streams, when
viewers watch video streamed over the internet and digital television networks,
or from DVD and Blu-ray discs. Search engines use large compute clusters to
analyze snapshots of the web streamed from disk to construct the indices that
enable fast information retrieval.

Informally, all such streaming applications are similar in that they require
moving large amounts of data through several computational steps. These three

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 507–528, 2010.
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examples illustrate the diversity of requirements for stream processing with re-
spect to, among other things, program topology, data rate, and distributed ex-
ecution. This diversity has led language designers to develop numerous domain-
specific languages [1,3,4,9,18,20,24,26,28] that are both tailored to the needs of
their particular applications, and optimized for performance on their particular
target runtimes. Three prominent examples are CQL, StreamIt, and Sawzall:

– CQL [1] and other StreamSQL dialects [24] are popularly used for algorith-
mic trading. CQL extends SQL’s well studied relational operators with a
notion of windows over infinite streams of data, and relies on classic query
optimizations [1], such as moving a selection before a join.

– StreamIt [26], a synchronous data-flow language with stream abstractions,
has been used for MPEG encoding and decoding [6]. The StreamIt compiler
enforces static data transfer rates between user-defined operators with fixed
topologies, and improves performance through operator fusion, fission, and
pipelining [26].

– Sawzall [20], a scripting language for Google’s MapReduce [5] platform, is
used for web-related analysis. The MapReduce framework streams data items
through multiple copies of user-defined map operators and then aggregates
the results through reduce operators on a cluster of workstations. We view
Sawzall as a streaming language in the broader sense, and address it in this
paper to showcase the generality of our work.

These three examples by no means comprise an exhaustive list of stream pro-
gramming languages, but they are representative of the design space. In each
case, language designers made difficult choices when considering the trade-offs
between performance, usability, and generality. For example, StreamIt sacrifices
generality for performance by restricting data transfer to fixed rates.

When considering these trade-offs, it is essential that language designers un-
derstand both how a language maps to its target platform, and how to optimize
stream programs with respect to that mapping. Unfortunately, while stream-
ing systems are well studied [2,14,15,16], prior work on the formal semantics of
stream processing languages does not capture the details necessary for reasoning
about implementation techniques. This paper presents Brooklet, a core calculus
for stream programming languages that universally models any streaming lan-
guage, and facilitates reasoning about program implementation1.

The challenge in defining a calculus is deciding what parts of a language consti-
tute the core concepts that need to be modeled in the formal semantics, and what
details can be abstracted away. The two goals of understanding how a language
maps to a platform, and how to optimize stream programs with respect to that
mapping, dictate the requirements. First, to understand how a language maps to
an execution environment, we need to understand how the state embodied in its
operational building blocks is implemented on a distributed platform. Therefore,
Brooklet makes state explicit as a core concept. Second, to understand how to

1 Brooklet is so named because it is the essence of a stream, and is unrelated to the
Brook language [3].
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optimize stream programs, we need to understand how to enable language-level
determinism on top of the inherent implementation-level non-determinism of a
distributed system. Therefore, Brooklet exposes non-determinism as another core
concept. Exposing non-determinism makes the machinery for achieving global
determinism explicit, such as when implementing synchronous data flow. On the
other hand, modeling local deterministic computations is well-understood, so
our semantics treat local computations as opaque functions. Since our semantics
are small-step, this abstraction loses none of the fine-grained interleaving effects
of the distributed computation.

In this paper we make the following contributions:

– We define a core calculus for stream processing that is universal, and fa-
cilitates reasoning about program implementation by modeling state and
non-determinism as core concepts.

– We translate CQL, StreamIt, and Sawzall to Brooklet, demonstrating the
comprehensiveness of our calculus. This translation also defines the first
formal semantics for Sawzall.

– We use our calculus to show the conditions that enable three vital optimiza-
tions data-parallel computation, operator fusion, and operator re-ordering.

This sets a foundation for an implementation of Brooklet, which can serve as a
common intermediate language for stream processing with a rigorous formal se-
mantics. We are in the process of exploring this implementation on System S [9],
IBM’s high-performance streaming middleware.

2 Notation

Throughout the paper, an over-bar, as in q, denotes a finite sequence q1, . . . , qn,
and the i-th element in that sequence is written qi, where 1 ≤ i ≤ n. The lower-
case letter b is reserved for lists, and • is an empty list. A comma indicates cons or
append, depending on the context; for example d, b is a list consed from the first
item d and the remaining items b. A bag is a set with duplicates. The notation
{e : condition} denotes a bag comprehension: it specifies the bag of all e’s where
the condition is true. The symbol ∅ stands for both an empty set and an empty
bag. If E is a store, then the substitution [v �→ d]E denotes the store that maps
name v to value d and is otherwise identical to E. Angle brackets identify a tuple.
For example, 〈σ, τ〉 is a tuple that contains the elements σ and τ . In inference
rules, an expression of the form d, b = b′ performs pattern matching; it succeeds
if the list b′ is non-empty, in which case it binds d to the first element of b′

and b to the remainder of b′. Pattern-matching also works on other meta-syntax,
such as tuple construction. An underscore character _ indicates a wildcard, and
matches anything. Semantics brackets such as [[ Pb ]]pz indicate translation. The
subscripts b,c,s,z stand for Brooklet, CQL, StreamIt, and Sawzall, respectively.

3 Brooklet

A stream processing language is a language that hides the mechanics of stream
processing; it notably has built-in support for moving data through computations
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Brooklet syntax:
Pb ::= out in op Brooklet program
out ::= output q ; Output declaration
in ::= input q ; Input declaration
op ::= ( q, v ) ← f ( q, v ); Operator
q ::= id Queue identifier
v ::= $ id Variable identifier
f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) ← SelectIBM(bids);
(ibmAsks) ← SelectIBM(asks);
($lastAsk)← Window(ibmAsks);
(ibmSales)← SaleJoin(ibmBids,$lastAsk);
(result,$cnt) ← Count(ibmSales,$cnt);

Brooklet semantics: Fb � 〈V, Q〉 −→ 〈V ′, Q′〉
d, b = Q(qi)

op = (_, _) ← f(q, v);

(b′, d
′) = Fb(f)(d, i, V (v))

V ′ =updateV (op, V, d
′)

Q′ =updateQ(op, Q, qi, b
′)

Fb � 〈V, Q〉 −→ 〈V ′, Q′〉
(E-FireQueue)

op = (_, v) ← f(_, _);

updateV (op, V, d) = [v �→ d]V
(E-UpdateV)

op = (q, _) ← f(_, _);
df , bf = Q(qf )

Q′ = [qf �→ bf ]Q
Q′′ = [∀qi ∈q : qi �→ Q(qi), bi]Q′

updateQ(op, Q, qf , b) = Q′′ (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics

and for composing the computations with each other. Brooklet is a core calculus
for such stream processing languages. It is designed to model any streaming
language, and to facilitate reasoning about language implementation. To achieve
these goals, Brooklet models state and non-determinism as core concepts, and
abstracts away local deterministic computations.

3.1 Brooklet Program Example: IBM Market Maker

As an example of a streaming program, we consider a hypothetical application
that trades IBM stock. Data arrives on two input streams, bids(symbol,price)
and asks(symbol,price), and leaves on the result(cnt,symbol,price) output
stream. Since the application is only interested in trading IBM stock, it filters
out all other stock symbols from the input. The application then matches bid
and ask prices from the filtered streams to make trades. To keep the example
simple, we assume that each sale is for exactly one share. The Brooklet program
in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,
along with a count of the number of trades.

3.2 Brooklet Syntax

A Brooklet program defines a directed, possibly cyclic, graph of operators con-
taining pure functions connected by FIFO queues. It uses variables to explicitly
thread state through operators. Data items on a queue model network packets
in transit. Data items in variables model stored state; since data items may be
lists, a variable may store arbitrary amounts of historical data. The following
line from the market maker application defines an operator:

(ibmSales) ← SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It
passes that data as parameters to the pure function SaleJoin, and writes the
result to the output queue ibmSales. Brooklet does not define the semantics of
SaleJoin. Modeling local deterministic computations is well-understood [17,19],
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so Brooklet abstracts them away by encapsulating them in opaque functions.
On the other hand, a Brooklet program does define explicit uses of state. In the
example, the following line defines a window over the stream ibmAsks:

($lastAsk) ← Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an
IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and
SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored
in the variable in its internal computations. Operators that incrementally update
state must both read and write the same variable, such as in the Count operator:

(result, $cnt) ← Count(ibmSales, $cnt);

Queues that appear only as operator input, such as bids and asks, are program
inputs, and queues that appear only as operator output, such as result, are pro-
gram outputs. Brooklet’s syntax uses the keywords input and output to declare
a program’s input and output queues. We say that a queue is defined if it is an
operator output or a program input. We say that a queue is used if it is an op-
erator input or a program output. Variables may be defined and used in several
clauses, since they are intended to thread state through a streaming application.
In contrast, each queue must be defined once and used once. This restriction fa-
cilitates using our semantics for proofs and optimizations. The complete Brooklet
grammar appears in Fig. 1.

3.3 Brooklet Semantics

A program operates on data items from a domain D, where a data item is a
general term for anything that can be stored in queues or variables, including
tuples, bags of tuples, lists, or entire relations from persistent storage. Queue
contents are represented by lists of data items. We assume that the transport
network is lossless and order-preserving but may have arbitrary delays, so queues
support only push-to-back and pop-from-front operations.

3.3.1 Brooklet Execution Configuration
The function environment Fb maps function names to function implementations.
This environment allows us to treat operator functions as opaque. For example,
Fb(SelectIBM) would return a function that filters out data items whose stock
symbol differs from IBM.

At any given time during program execution, the configuration of the Brooklet
program is defined as a pair 〈V, Q〉, where V is a store that maps variable names
to data items (in the market maker example, $cnt is initialized to zero and
$lastAsk is initialized to the tuple 〈‘IBM’,∞〉), and Q is a store that maps
queue names to lists of data items (initially, all queues except the input queues
are empty).
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3.3.2 Brooklet Execution Semantics
Computation proceeds in small steps. Each step fires Rule E-FireQueue from
Fig. 1. To explain this rule, we illustrate each line rule one by one, starting with
the following intermediate configuration of the market maker example:

V =
[
$lastAsk �→ 〈‘IBM’, 119〉, $cnt �→ 0

]
Q =

[
bids �→ •, ibmBids �→ (〈‘IBM’, 119〉, 〈‘IBM’, 124〉),
asks �→ •, ibmAsks �→ •,

ibmSales �→ •, result �→ •

]

d, b = Q(qi) : Non-deterministically select a firing queue qi. For a queue to be
eligible as a firing queue, it must satisfy two conditions: it must be non-
empty (because we are binding d, b to its head and tail), and it must appear
as an input to some operator (because we are executing that operator’s firing
function). This step can select any queue satisfying these two conditions.
E.g., qi = ibmBids, d = 〈‘IBM’, 119〉, b =

(
〈‘IBM’, 124〉

)
.

op = (_, _) ← f(q, v); : Because of the single-use restriction, qi uniquely iden-
tifies an operator.
E.g., op = (ibmSales) ← SaleJoin(ibmBids, $lastAsk);.

(b
′
, d

′
) = Fb(f)(d, i, V (v)) : Use the function name to look up the corresponding

function from the environment. The function parameters are the data item
popped from qi; the index i relative to the operator’s input list; and the
current values of the variables in the operator’s input list. For each output
queue, the function returns a list b′j of data items to append, and for each
output variable, the function returns a single data item d′j to store.

E.g., b
′
=
((

〈‘IBM’, 119, 119〉
))

, d
′
= •,

d = 〈‘IBM’, 119〉, i = 1, V (v) = 〈‘IBM’,119〉.
V ′ = updateV (op, V, d

′
) : Update the variables using the output d

′
.

E.g., in this example, d
′
= •, so V ′ = V .

Q′ = updateQ(op, Q, qi, b
′
) : Update the queues: remove the popped data item

from the firing queue, and for each output queue, push the corresponding list
of output data items. The example has only one output queue and datum.

E.g., Q′ =

⎡⎣ bids �→ •, ibmBids �→ (〈‘IBM’, 124〉),
asks �→ •, ibmAsks �→ •,

ibmSales �→ (〈‘IBM’, 119, 119〉), result �→ •

⎤⎦

3.4 Brooklet Execution Function

We denote a program’s input 〈V, Q〉 as Ib and an output 〈V ′, Q′〉 as Ob. Given a
function environment Fb, program Pb, and input Ib, the function →∗

b (Fb, Pb, Ib)
yields the set of all final outputs. An execution yields a final output when no
queue is eligible to fire. Due to non-determinism, the set may have more than
one element. One possible output Ob of our running example is:

V =
[
$lastAsk �→ 〈‘IBM’, 119〉, $cnt �→ 1

]
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Q =
[

bids �→ •, asks �→ •, ibmSales �→ •,
ibmBids �→ •, ibmAsks �→ •, result �→ (〈1, ‘IBM’, 119〉)

]
The example illustrates the finite case. But in some application domains, streams
are conceptually infinite. To use our semantics in that case, we use a theoretical
result from prior work: if a stream program is computable, then one can gen-
eralize from all finite prefixes of an infinite stream to the infinite case [11]. If
→∗

b yields the same result for all finite inputs to two programs, then we consider
these two programs equivalent even on infinite inputs.

3.5 Brooklet Summary

Brooklet is a core calculus for stream processing. We designed it to universally
model any streaming language, and to facilitate reasoning about program imple-
mentation. Brooklet models state through explicit variables, thus making it clear
where an implementation needs to store data. Brooklet captures inherent non-
determinism by not specifying which queue to fire for each step, thus permitting
all interleavings possible in a distributed implementation.

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

4.1.1 CQL Program Example: Bargain Finder
A CQL program Pc is a query that computes a stream or relation from other
streams or relations. The following hypothetical example uses CQL for algorith-
mic trading:

select IStream(*) from quotes[Now], history

where quotes.ask <= history.low and quotes.ticker == history.ticker

This program finds bargain quotes, whose ask price is lower than the historic
low. The program has two inputs, a stream quotes and a time-varying re-
lation history. A stream in CQL is a bag of time-tagged tuples. The same
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CQL syntax:
Pc ::= Pcr | Pcs CQL program

Pcr ::= (Relation query)
RName Relation name
| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation
Pcs ::= (Stream query)

SName Stream name
| R2S(Pcr) Relation to stream

RName | SName ::= id Input name
S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[ Fc, Pc ]]pc = 〈Fb, Pb〉
[[ Fc, SName ]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[ Fc, RName ]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[ Fc, Pcs ]]pc
q′

o = freshId() v = freshId()
F ′

b = [S2R 	→ wrapS2R(Fc(S2R))]Fb

op′ = op, (q′
o, v)← S2R(qo, v);

[[ Fc, S2R(Pcs) ]]pc = F ′
b, output q′

o; input q; op′

(Tp
c -S2R)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
q′

o = freshId() v = freshId()
F ′

b = [R2S 	→ wrapR2S(Fc(R2S))]Fb

op′ = op, (q′
o, v)← R2S(qo, v);

[[ Fc, R2S(Pcr) ]]pc = F ′
b, output q′

o; input q; op′

(Tp
c -R2S)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
n = |Pcr| q′

o = freshId() q′ = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op′ = op1, . . . , opn

F ′
b = [R2R 	→ wrapR2R(Fc(R2R))](∪Fb)

op′′ = op′, (q′
o, v)← R2R(qo, v);

[[ Fc, R2R(Pcr) ]]pc = F ′
b, output q′

o;input q′;op′′

(Tp
c -R2R)

CQL domains:

τ∈T Time
e∈T P Tuple
σ∈Σ = bag(T P) Instantaneous relation
r∈R = T → Σ Time-varying relation
s∈S = bag(T P×T ) Time-varying stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CQL operator wrapper signatures:

S2R : (Σ × T )× {1} × S → (Σ × T )× S
R2S : (Σ × T )× {1} ×Σ → (Σ × T )×Σ

R2R : (Σ × T )× {1 . . . n} × (2Σ×T )n

→ (Σ × T )× (2Σ×T )n

CQL operator wrappers:
σ, τ = dq s = dv

s′ = s ∪ {〈e, τ〉 : e ∈ σ} σ′ = f(s′, τ)
wrapS2R(f)(dq, _, dv) = 〈σ′, τ〉, s′

(Wc-S2R)

σ, τ = dq σ′ = dv σ′′ = f(σ, σ′)
wrapR2S(f)(dq, _, dv) = 〈σ′′, τ〉, σ

(Wc-R2S)

σ, τ = dq d′
i = di ∪ {〈σ, τ〉}

∀j �= i ∈ 1 . . . n : d′
j = dj

∃j ∈ 1 . . . n : �σ : 〈σ, τ〉 ∈ dj

wrapR2R(f)(dq, i, d) = •, d
′

(Wc-R2R-Wait)

σ, τ = dq d′
i = di ∪ {〈σ, τ〉}

∀j �= i ∈ 1 . . . n : d′
j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = 〈f(σ), τ〉, d
′

(Wc-R2R-Ready)

〈σ, τ〉 ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet

information can be more conveniently represented as a mapping from time
stamps to bags of tuples. CQL calls such a mapping a time-varying relation,
and each individual bag of tuples an instantaneous relation. In the example,
input history(ticker,low) is the time-varying relation rh:

rh =
[
1 �→

{
〈‘IBM’, 119〉, 〈‘XYZ’, 38〉

}
, 2 �→

{
〈‘IBM’, 119〉, 〈‘XYZ’, 35〉

}]
The instantaneous relation rh(1) is {〈‘IBM’, 119〉, 〈‘XYZ’, 38〉}. The CQL stream
sq represents the input quotes(ticker,ask):

sq =
{
〈〈‘IBM’, 119〉, 1〉, 〈〈‘IBM’, 124〉, 1〉, 〈〈‘XYZ’, 35〉, 2〉, 〈〈‘IBM’, 119〉, 2〉

}
The subquery quotes[Now] uses the window [Now] to turn the quotes stream into
a time-varying relation rq:

rq =
[
1 �→

{
〈‘IBM’, 119〉, 〈‘IBM’, 124〉

}
, 2 �→

{
〈‘XYZ’, 35〉, 〈‘IBM’, 119〉

}]
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The next step of the query joins the quote relation rq with the history relation
rh into a bargains relation rb:

rb =
[
1 �→

{
〈‘IBM’, 119, 119〉

}
, 2 �→ {〈‘XYZ’, 35, 35〉, 〈‘IBM’, 119, 119〉

}]
Finally, the IStream operator monitors insertions into relation rb and emits them
as output stream so of time-tagged tuples:

so =
{
〈〈‘IBM’, 119, 119〉, 1〉, 〈〈‘XYZ’, 35, 35〉, 2〉

}
While CQL uses select-from-where syntax, the CQL semantics use an equivalent
stream-relational algebra syntax (similar to relational algebra in databases):

IStream(BargainJoin(Now(quotes), history))

This algebraic notation makes the operator tree clearer. The leaves are stream
name quotes and relation name history. CQL has three categories of opera-
tors. S2R operators turn a stream into a relation; e.g., Now(quotes) turns stream
quotes into relation rq . R2R operators turn one or more relations into a new
relation; e.g., BargainJoin(rq, rh) turns relations rq and rh into the bargain re-
lation rb. Finally, R2S operators turn a relation into a stream; e.g., IStream(rb)

turns relation rb into the stream of its insertions. CQL has no S2S operators, be-
cause they would be redundant. CQL’s R2R operators coincide with traditional
database relational algebra.

The CQL grammar is in Fig. 2. A CQL program Pc can be either a relation
query Pcr or a stream query Pcs, and queries are either simple identifiers RName
or SName, or composed using operators from the categories S2R, R2R, or R2S.

4.1.2 CQL Implementation Issues
Before we translate CQL to Brooklet, let us discuss the two issues of state and
non-determinism in CQL.

CQL state. CQL represents global state explicitly as named relations, such as
the history relation from our running example. But in addition, all three kinds of
CQL operators implicitly maintain local state, referred to as “synopses” in [1].
An S2R operator maintains the state of a window on a stream to produce a
relation. An R2S operator stores the previous state of the relation to compute
the stream of differences. Finally, an R2R operator uses state to buffer data from
whichever relation is available first, so it can be retrieved later to compute an
output when data with matching time stamps is available for all relations.

CQL non-determinism. CQL is deterministic in the sense that the output of a
program is fully determined by the times and values of its inputs [2]. Although
a program can have independent inputs, for example, from a customer and from
a stock exchange, any timing ambiguities outside the language are resolved by
adding unambiguous time stamps. A CQL implementation might either assign
time stamps upon receiving data, or use time stamps that are an inherent part of
the input data, such as trading times. However, CQL implementations can permit
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non-determinism to exploit parallelism. For example, the implementation need
not fully determine the order in which operators Now and BargainJoin process
their data in BargainJoin(Now(quotes), history). They can run in parallel as
long as BargainJoin always waits for its two inputs to have the same time stamp.

Translation to Brooklet will make all state explicit, and will clarify how the
implementation enforces determinism.

4.1.3 CQL Translation Example
Given the CQL example program from Fig. 2, the translation to Brooklet is the
program Pb:

output qo;

input quotes, history;

(qq, $vn) ← wrapNow(quotes, $vn);

(qb, $vq, $vh) ← wrapBargainJoin(qq, history, $vq, $vh);

(qo, $vo) ← wrapIStream(qb, $vo)

The leaves of the query tree serve as input queues; each subquery produces
an intermediate queue, which the enclosing operator consumes; and the outer-
most query operator produces the program output queue. The translation to
Brooklet makes the state of the operators explicit. The most interesting state is
that of the wrapBargainJoin operator. Like each R2R operator, it has a function
Fc(BargainJoin) that transforms one or more input instantaneous relations of
the same time stamp to one output instantaneous relation. Brooklet models the
choice of interleavings by allowing either queue qq or history to fire indepen-
dently. Hence, the Brooklet operator processes one data item each time either
queue fires. Assume a data item arrives on the first queue qq. If there is already
a data item with the same time stamp in the variable vh associated with the
second queue, Brooklet performs the join, which may yield data items for the
output queue qb. Otherwise, it simply stores the data item in vq for later.

4.1.4 CQL Translation
Fig. 2 shows the translation from CQL to Brooklet by recursion over the input
program. Besides building up a program, the translation also builds up a function
environment, which it populates with wrappers for the original functions. The
translation introduces state, which the Brooklet wrappers maintain and consult
to hand the right input to the wrapped CQL functions. Working in concert, the
rules enforce a global convention: the execution sends exactly one instantaneous
relation on every queue at every time stamp. Operators retain historical data in
variables, e.g., to implement windows.

4.1.5 CQL Discussion
CQL is an SQL dialect for streaming [1]. Arasu and Widom specify big-step
denotational semantics for CQL [2]. We show how to translate CQL to Brooklet,
thus giving an alternative semantics. As we will show below, both semantics
define equivalent input/output behavior for CQL programs. Translations from
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other languages can use similar techniques, i.e., make state explicit as variables;
wrap computation in small-step firing functions; and define a global convention
for how to achieve determinism.

4.2 StreamIt and Synchronous Data Flow

StreamIt [27,26] is a streaming language tailored for parallel implementations of
applications such as MPEG decoding [6]. At its core, StreamIt is a synchronous
data flow (SDF) language [16], which means that each time an operator fires,
it consumes a fixed number of data items and produces a fixed number of data
items. In the MPEG example, data items are pictures. StreamIt distinguishes be-
tween primitive and composite operators. A primitive operator (filter in StreamIt
terminology) has optional local state. A composite operator is either a pipeline,
a split-join, or a feedback loop. A pipeline puts operators in sequence, a split-join
puts them in parallel, and a feedback loop puts them in a cycle. The topology
of a StreamIt program is restricted to well-nested compositions of these. All
StreamIt operators and programs have exactly one input and one output. We
only focus on StreamIt’s SDF core here, and encapsulate the local deterministic
part of the computation in opaque pure functions, while keeping the parts of the
computation that are relevant to streaming. We omit non-core features such as
teleport messaging [6], which delivers control messages between operators and
which could be modeled in Brooklet through shared variables.

4.2.1 StreamIt Program Example: MPEG Decoder
The following example StreamIt program Ps is based on a similar example by
Drake et al. [6].

pipeline {

splitjoin {

split roundrobin;

filter { work { tf ← FrequencyDecode(peek(1)); push(tf); pop(); }}

filter { work { tm ← MotionVecDecode(peek(1)); push(tm); pop(); }}

join roundrobin;

}

filter { s; work { s,tc ← MotionComp(s,peek(1)); push(tc); pop(); }}

}

It illustrates how the StreamIt language can be used to decode MPEG video. The
example uses a pipeline and a split-join to compose three filters. Each filter has
a work function, which peeks and pops from its predecessor stream, computes a
temporary value, and pushes to its successor stream. In addition, the MotionComp

filter also has an explicit state variable s for storing a reference picture between
iterations. We omit the full syntax of Streamit for space reasons; the interested
reader can find it in Appendix B of the extended technical report[22].

4.2.2 StreamIt Implementation Issues
As before, we first discuss the intuition for the implementation before giving the
details of the translation.
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StreamIt state. Filters can have explicit state, such as s in the example. Fur-
thermore, since Brooklet queues support only push and pop but not peek, the
translation of StreamIt will have to buffer data items in a state variable un-
til enough are available to satisfy the maximum peek() argument in the work
function. Round-robin splitters also need a state variable with a cursor that
determines where to send the next data item. A cursor is simply an index rela-
tive to the splitter. It keeps track of which queue is next in round-robin order.
Round-robin joiners also need a cursor, plus a buffer for any data items that
arrive out of turn.

StreamIt non-determinism. StreamIt, at the language level, is deterministic. Fur-
thermore, since it is an SDF language, the number of data items peeked, popped,
and pushed by each operator is constant. At the same time, StreamIt permits
pipeline-, task-, and data-parallelism. This gives an implementation different
scheduling choices, which Brooklet models by non-deterministically selecting a
firing queue. Despite these non-deterministic choices, an implementation must
ensure deterministic end-to-end behavior, which our translation makes explicit
with buffering and synchronization.

4.2.3 StreamIt Translation Example
StreamIt program translation turns the StreamIt MPEG decoder Ps from earlier
into a Brooklet program Pb:

output qout;

input qin;

(qf, qm, $sc) ← wrapRRSplit-2(qin, $sc);

(qfd, $f) ← wrapFilter-FrequencyDecode(qf, $f);

(qmd, $m) ← wrapFilter-MotionVecDecode(qm, $m);

(qd, $fd, $md, $jc) ← wrapRRJoin-2(qfd, qmd, $fd, $md, $jc);

(qout, $s, $mc) ← wrapFilter-MotionComp(qd, $s, $mc);

Each StreamIt filter becomes a Brooklet operator. StreamIt composite operators
are reflected in Brooklet’s operator topology. StreamIt’s SplitJoin yields separate
Brooklet split and join operators. The stateful filter MotionComp has two variables:
$s models its explicit state s, and $mc models its implicit buffer.

4.2.4 StreamIt Translation
For space reasons, we give only a high-level overview of the StreamIt transla-
tion here (the details are in Appendix B of the extended technical report[22]).
Similarly to CQL, there are recursive translation rules, one for each language
construct. The base case is the translation of filters, and the recursive cases
compose larger topologies for pipelines, split-joins, and feedback loops. Feed-
back loops turn into cyclic Brooklet topologies. The most interesting aspect are
the helper rules for split and join, because they use explicit Brooklet state to
achieve StreamIt determinism. Fig. 3 shows the rules. The input to the splitter
is a queue qa, and the output is a list of queues q; conversely, the input to the
joiner is a list of queues q′, and the output is a single queue qz. Both the splitter
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StreamIt program xlation excerpt:

f = freshId()
v = freshId()

Fb = [f 	→ wrapRRSplit(|q|)]
op = (q, v)← f(qa, v);

[[ Fs, split roundrobin;, q, qa ]]ps = Fb, op
(Tp

s -RR-Split)

f = freshId()
∀i ∈ 0 . . . |q′| : vi = freshId()
Fb = [f 	→ wrapRRJoin(|q′|)]

op = (qz, v)← f(q′, v);

[[ Fs, join roundrobin;, qz, q′ ]]ps = Fb, op
(Tp

s -RR-Join)

StreamIt operator wrappers excerpt:

c′ = c + 1 mod N bv = din

∀i ∈ 1 . . . N, i �= c : bi = •
wrapRRSplit(N)(din, _, c) = b, c′

(Ws-RR-Split)

d′
i = din, di ∀j �= i ∈ 1 . . . N : d′

j = dj

d′′
c , dout = d′

c ∀j �= c ∈ 1 . . . N : d′′
j = d′

j

bout , c′, d
′′′ = wrapRRJoin(N)(•, i, c + 1 mod N, d

′′)

wrapRRJoin(N)(din , i, c, d) = (bout , dout ), c′, d
′′′

(Ws-RR-Join-Ready)

∀j �= i ∈ 1 . . . N : d′
j = dj d′

i = din, di dc = •
wrapRRJoin(N)(din , i, c, d) = •, c, d

′

(Ws-RR-Join-Wait)

Fig. 3. StreamIt round-robin split and join semantics on Brooklet

and the joiner maintain a cursor to keep track of the next queue in round-robin
order. The joiner also stores one variable for each queue, to buffer data that
arrives out-of-turn.

4.2.5 StreamIt Discussion
Our translation from StreamIt to Brooklet yields a program with maximum
scheduling flexibility, allowing any interleavings as long as the end-to-end be-
havior matches the language semantics. This makes it amenable to distributed
implementation. In contrast, StreamIt compilers [26] statically fix one schedule,
which also determines where intermediate results are buffered. The buffering is
implicit state, and StreamIt also has explicit state in filters. As we will see in
Section 5, state affects the applicability of optimizations. Prior work on formal
semantics for StreamIt does not model state [27]. By modeling state, our Brooklet
translation facilitates reasoning about optimizations.

4.3 Sawzall and MapReduce

Sawzall [20] is a scripting language for MapReduce [5], which exploits cluster of
workstations to analyze a massive but finite sequence of key/value pairs streamed
from disk. In Sawzall, a stateless map operator transforms data one key/value
pair at a time, feeding into a stateful reduce operator. The reduce operator
works on separate keys separately, incrementally aggregating all values for a
key into a single value. Although Sawzall programs are batch jobs, they use
incremental operators to process large quantities of data in a single pass, and
we therefore consider it a streaming language. Our translation provides the first
formal semantics for Sawzall.

4.3.1 Sawzall Program Example: Query Log Analyzer
The example Sawzall program in Fig. 4 is based on a similar example in [20]. The
program analyzes a query log to count queries per latitude and longitude, which
can then be plotted on a world map. This program specifies one invocation of
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Sawzall syntax:

Pz ::= out in emit Sawzall program
out ::= t : table f; Output aggregator
in ::= q : input; Input declaration
emit ::= emit t[f(q)] ← f(q); Emit statement
q ::= id Queue name
f ::= id Function name
t ::= id Table name

Sawzall example: Query log analyzer.
queryOrigins : table sum;
queryTargets : table sum;
logRecord : input;
emit queryOrigins[getOrigin(logRecord)]←1;
emit queryTargets[getTarget(logRecord)]←1;

Sawzall program xlation: [[ Fz, Pz, R ]]pz =〈Fb, Pb〉

out, qin: input;, emit = Pz

∀i ∈ 1 . . . R : qi = freshId()
∀i ∈ 1 . . . R : vi = freshId()

fMap = wrapMap(Fz, emit, R)
fReduce = wrapReduce(Fz, out)

Fb = [Map 	→ fMap, Reduce 	→ fReduce]
opm = (q)← Map(qin);

∀i ∈ 1 . . . R : opi = (vi)← Reduce(qi,vi);

op′ = opm, op

[[ Fz, Pz, R ]]pz = Fb, output • ;input qin;op
′ (Tp

z)

Sawzall domains:
k1 ∈K1 Input key k2 ∈K2 Output key
x1 ∈X1 Input value x2 ∈X2 Output value
t ∈T Aggregate name Oz ∈K2→X2 Output table

Sawzall operator signatures:

fk : K1 × X1 → K2 fx : K1 × X1 → X∗
2

fa : X2 × X2 → X2

Sawzall operator wrapper signatures:

Map : (K1 × X1)× {1} → (T × K2 × X2)∗

Reduce: (T × K2 × X2)× {1} × Oz → Oz

Sawzall operator wrappers:

emit t[fk(_)]← fx(_); = emit

b = wrapMap(Fz, emit, R)(d, 1)
k1, x1 = d k2 = Fz(fk)(k1, x1)

x2 = Fz(fx)(k1, x1) i = hash(k2) mod R
b′i = bi, 〈t, k2, x21 〉, . . . , 〈t, k2, x2n 〉

∀j �= i ∈ 1 . . . R : b′j = bj

wrapMap(Fz, (emit, emit), R)(d, _) = b
′

(Wz-Map)

∀i ∈ 1 . . . R : bi = •
wrapMap(Fz, •, R)(_, _) = b

(Wz-Map-•)

t, k2, x2 = dq t : table fa[]; ∈ out
k2 ∈ dv x′

2 = Fz(fa)(x2, dv(k2))
d′

v = [k2 	→ x′
2]dv

wrapReduce(Fz, out)(dq, _, dv) = d′
v

(Wz-Reduce)

t, k2, x2 = dq t : table fa[]; ∈ out
k2 �∈ dv d′

v = [k2 	→ x2]dv

wrapReduce(Fz, out)(dq, _, dv) = d′
v

(Wz-Reduce-∅)

Fig. 4. Sawzall semantics on Brooklet

the map operator, and uses table clauses to specify sum as the reduce operator.
The map operator transforms its input logRecord into two key/value pairs:

〈k, x〉 = 〈getOrigin(logRecord), 1〉
〈k′, x′〉= 〈getTarget(logRecord), 1〉

Here, getOrigin and getTarget are pure functions that compute the latitude and
longitude of the host issuing the query and the host serving the result, respec-
tively. The latitude and longitude together serve as the key into the tables. Since
the number 1 serves as the value associated with the key, the sum aggregators
end up counting query log entries by key. Fig. 4 shows the Sawzall grammar.

4.3.2 Sawzall Implementation Issues
Sawzall has stateful and non-deterministic implementations.

Sawzall state. The map operator is stateless, whereas the reduce operator is
stateful, using state to incrementalize its aggregation. The implementation in
Pike et al.’s paper [20] partitions the reducer key space into R parts, where R is
a command-line argument upon job submission. There are multiple instances of
the reduce operator, one per partition. Because reduction works independently
per key, each instance of the reduce operator can maintain the state for its
assigned part of the key space independently.
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Sawzall non-determinism. At the language level, Sawzall is deterministic. Sawzall
is designed for MapReduce, and the strength of MapReduce is that at the im-
plementation level, it runs on a cluster of workstations for scalability. To exploit
the parallelism of the cluster, at the implementation level, MapReduce makes
non-deterministic dynamic scheduling decisions. Reducers can start while map
is still in process, and different reducers can work in parallel with each other.
Different mappers can also work in parallel; we will use Brooklet to address this
optimization later in the paper, and describe a translation with a single map
operator for now.

4.3.3 Sawzall Translation Example
Given the Sawzall program Pz from earlier, assuming R = 4 partitions, the
Brooklet version Pb is:

output; /*no output queue, outputs are in variables*/

input qlog;

(q1, q2, q3, q4) ← Map(qlog); /*getOrigin/getTarget*/

($v1) ← Reduce(q1, $v1);

($v2) ← Reduce(q2, $v2);

($v3) ← Reduce(q3, $v3);

($v4) ← Reduce(q4, $v4);

There is one reduce operator for each of the R partitions. Each reducer performs
the work for both aggregators (queryOrigins and queryTargets) from the original
Sawzall program. The final reduction results are in variables $v1. . .$v4.

4.3.4 Sawzall Translation
Fig. 4 specifies the program translation, domains, and operator wrappers. There
is only one program translation rule Tp

z. The translation [[ Fz , Pz, R ]]pz takes the
Sawzall function environment, the Sawzall program, and the number of reducer
partitions as arguments. All the emit statements become part of the single map
operator. The map operator wrapper uses a hash function to scatter its output
over the reducer key space for load balancing. All the out declarations become
part of each of the reduce operators. Each reducer’s variable stores the mapping
from each key in that reducer’s partition to the latest reduction result for that
key. If the key is new, rule Wz-Reduce-∅ fires and registers x2 as the initial
value. At the end of the run, the results in the variables are deterministic, because
aggregators are associative and reducers work on disjoint parts of the key space.

4.3.5 Sawzall Discussion
The Sawzall translation is simpler than that of CQL or StreamIt, because each
translated program uses the same simple topology. The translation hard-codes
the data parallelism for the reducers, but generates only one mapper, thus defer-
ring data parallelism for mappers to a separate optimization step. There was no
prior formal semantics for Sawzall, but Lämmel studies MapReduce and Sawzall
by implementing an emulation in Haskell [15]. Now that we have seen how to
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translate three languages, it is clear that it is possible to model additional stream-
ing languages or language features on Brooklet. For example, Brooklet can serve
as a basis for modeling teleport messaging [6].

4.4 Translation Correctness

We formulate correctness theorems for CQL and StreamIt with respect to their
formal semantics [2,27]. The proofs are in an extended technical report [22]. We
do not formulate a theorem for Sawzall, because it lacks formal semantics; our
mapping to Brooklet provides the first formal semantics for Sawzall.

Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[ Fc, Pc ]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[ Fs, Ps ]]ps .

5 Optimizations

The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].

5.1 Data Parallelism

If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes2, and all state in Brooklet is explicit in an operator’s
signature, a sufficient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet

2 At least in the mathematical sense; in systems, floating point operations do not
always commute.
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can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)←wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:

(q1, q2, q3, $sc) ← Split(q, $sc);

(q4) ← wrapMap-LatLong(q1);

(q5) ← wrapMap-LatLong(q2);

(q6) ← wrapMap-LatLong(q3);

(out, $v4, $v5, $v6, $jc) ← Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout)← f(qin);

∀i ∈ 1 . . . n : qi = freshId() ∀i ∈ 1 . . . n : q′i = freshId()
F ′

b, ops = [[ ∅, split roundrobin, q, qin ]]ps
∀i ∈ 1 . . . n : opi = (q′i)← f(qi);

F ′′
b , opj = [[ ∅, join roundrobin, qout , q

′ ]]ps
〈Fb, op〉 −→N

split 〈Fb ∪ F ′
b ∪ F ′′

b , ops op opj〉
(Ob-Split)

The precondition is that op does not refer to any state variables. The data
parallelism optimization illustrates that Brooklet facilitates reasoning over shared
state. The rules for round-robin split and join are in Fig. 3.

Making multiplexers explicit and fixing the degree of parallelism are important
to faithfully model and reason about real-world systems. Possible implementa-
tion strategies for avoiding the limitation of a fixed degree of parallelism include
using just-in-time compilation to do splitting online, or putting code on a larger
number of machines and then in practice using only a subset as needed.

Theorem 3 (Correctness of Ob-Split). For all function environments Fb,
Brooklet programs Pb, and degrees of parallelism N , if rule Ob-Split yields
〈Fb, Pb〉 −→N

split 〈F ′
b, P

′
b〉, then →∗

b (Fb, Pb, Ib) =→∗
b (F ′

b, P
′
b, Ib) for all Brooklet

inputs Ib.

5.2 Operator Fusion

In practice, transmitting data between two operators can incur significant over-
head. Data needs to be marshalled/unmarshalled, transferred over a network or
written to a mutually accessible location, and buffered by the receiver, not to
mention the expense of context switching. This overhead can be offset by fus-
ing two operators into one. StreamIt applies this optimization to operators in
a pipelined topology [26]. Operators may be fused if they meet two conditions.
First, they appear in a simple pipeline. Brooklet makes this topology easy to val-
idate because queues are defined and used exactly once. Second, the state used
by the operators must not be modifiable anywhere else in the program. Again,
because Brooklet requires an explicit declaration of all state, this condition can
be verified with a simple code inspection. The following Brooklet program shows
two steps in an MPEG decoder:
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(q1,$v1) ← ZigZag(qin,$v1);

(qout,$v2) ← IQuantization(q1,$v2);

The fused equivalent of the program is:

(qout,$v1,$v2) ←
Fused-ZigZag-IQuant(qin,$v1,$v2);

The following rule formalizes this optimization:

op1 = (q1, v1)←f1(qin, v1); (∃op′ = (_, v1)←f ′(_, _))⇒ op ′ = op1

op2 = (qout , v2)←f2(q1, v2); (∃op′ = (_, v2)←f ′(_, _))⇒ op′ = op2

f = freshId() F ′
b = [f �→ fusedOperator (Fb, f1, f2)]Fb

Fb, op1 op2 −→ F ′
b, (qout , v1, v2)← f(qin , v1, v2);

(Ob-Fuse)

The preconditions guard against other operators writing variables v1 or v2. The
following rule defines the new internal function:

(dtemp , d′
1) = Fb(f1)(din , 1, d1) (dout , d

′
2) = Fb(f2)(dtemp, 1, d2)

fusedOperator (Fb, f1, f2)(din , _, d1, d2) = (dout , d
′
1, d

′
2)

(Wb-Fuse)

In our example, this combines Fb(ZigZag) and Fb(IQuantization) into function
F ′

b(Fused-ZigZag-IQuant). The fusion optimization illustrates that Brooklet facil-
itates reasoning over topologies.

Theorem 4 (Correctness of Ob-Fuse). For all function environments Fb

and Brooklet programs Pb, if rule Ob-Fuse yields 〈Fb, Pb〉 −→Fuse 〈F ′
b, P

′
b〉, then

→∗
b (Fb, Pb, Ib) =→∗

b (F ′
b, P

′
b, Ib) for all Brooklet inputs Ib.

5.3 Reordering of Operators

A general rule of thumb for database query optimizations is that it is better to
remove more tuples early in order to reduce downstream computations. The most
popular example for this is hoisting a select operator, because a select reduces
the tuple volume for operators it feeds into [1]. A select is said to commute with
another operator if their output result is the same regardless of their execution
order. The following program computes the commission on sales of IBM stock.
The input is sale(ticker, price) and the output is commission(ticker, cost).
The commission is 2%.

output commission;

input sale;

(qt) ← BrokerCommission(sale);

(commission) ← Select-IBM(qt);

The functions for the two operators are:

Fb(BrokerCommission)(d,_)= let 〈ticker, price〉 = d in 〈ticker, 0.02 · price〉
Fb(Select-IBM)(d,_)= let 〈ticker, cost〉 = d in if ticker=‘IBM’ then d else•

We can reorder the two operators for two reasons. First, the BrokerCommission

operator is stateless, and therefore operates on each data item independently, so



A Universal Calculus for Stream Processing Languages 525

its semantics do not change when it sees a filtered stream of data item. Second,
the Select-IBM operator only reads the ticker, and BrokerCommission forwards
the ticker unmodified. In other words, Select-IBM does not rely on any data
modified by BrokerCommission and vice versa. The optimized program is:
output commission;

input sale;

(qt) ← Select-IBM(sale);

(commission) ← BrokerCommission(qt);

The following rule encodes the optimization:

op1 = (qt)← f1(q); op2 = (qout)← f2(qt);

Fb(f1)(d, i) = let 〈r, w〉 = d in 〈r, f1(w, i)〉
Fb(f2)(d, _) = let 〈r, _〉 = d in if f2(r) then d else •

∀i ∈ 1 . . . |q| : q′i = freshId()
op′

1 = (qout)← f1(q′); ∀i ∈ 1 . . . |q| : opi = (q′i)← f2(qi);

Fb, op1 op2 −→ Fb, op op ′
1

(Ob-HoistSelect)

The first two preconditions restrict op1 and op2 to be stateless operators. The
third precondition specifies that f1 forwards a part r of the data item unmodi-
fied, and the fourth precondition specifies that f2 is a select that only reads r,
and forwards the entire data item unmodified. We have chosen in Brooklet to
abstract away local deterministic computations into opaque functions, because
their semantics are well-studied (e.g., [8,10,21]). We leverage this prior work by
assuming that a static program analysis can determine the restrictions on the
read and write sets of operator functions used for select hoisting.

Theorem 5 (Correctness of Ob-HoistSelect). For all function environ-
ments Fb and Brooklet programs Pb, if 〈Fb, Pb〉 −→HoistSelect 〈F ′

b, P
′
b〉 by rule

Ob-HoistSelect, then →∗
b (Fb, Pb, Ib)=→∗

b (F ′
b, P

′
b, Ib) for all Brooklet inputs Ib.

5.4 Optimizations Summary

We have used our calculus to understand how a language can apply three vital op-
timizations. The concise and straightforward formalization of the optimizations
validates the design of Brooklet. There are many other streaming optimizations,
including, to name just a few, sharing redundant subqueries in CQL [1]; pre-
aggregating data on the workers performing the map phase of MapReduce [5];
or eliminating spurious synchronization in StreamIt [26]. Furthermore, there are
stronger variants of the optimizations we sketched; for example, it is sometimes
possible to introduce data parallelism even for stateful operators. We believe
that the examples in this section are a useful first step towards formalizing op-
timizations for stream processing languages.

6 Related Work

Our approach to defining a core minimal language that allows us to reason about
correctness is inspired by Featherweight Java [13].
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There has been extensive prior work in the semantics of stream processing.
Stephens [23] provides a comprehensive survey, but it does not address recent
language developments. Brooklet differs from prior work on streaming semantics
because it models state and non-determinism as explicit core concepts. Kahn
process networks [14], such as Unix pipes, assume deterministic execution. Syn-
chronous data flow [16] models, such as StreamIt, assume fixed buffer sizes and
static communication patterns. Hoare’s communicating sequential process [12]
assumes no buffering, and synchronous communication. Gurevich et al. [11] re-
cently studied streaming systems, but focused on their more theoretical aspects.

The database literature often refers to streaming applications as “continuous
queries” [4,25]. Surprisingly, there is little work from the database community on
optimizations of queries with side effects. Two exceptions are a study of XQuery
with side effects [10] and a study of object-oriented databases [7].

This paper uses CQL, Sawzall, and StreamIt as representative examples of
streaming languages, but there are many more. Spade [9] is a streaming language
for composing parallel and distributed flow graphs for System S, IBM’s scalable
data processing middleware. Pig Latin [18] is one of the languages designed to
compose MapReduce or Hadoop jobs. DryadLinq [28] runs imperative code on
local machines and uses integrated SQL to generate distributed queries.

7 Conclusion and Outlook

This paper presents Brooklet, a core calculus for stream processing. It repre-
sents stream processing applications as a graph of operators. Operators con-
tain pure functions, thread all state through explicit variables, and trigger non-
deterministically. Explicit state and non-deterministic execution are central
concepts, capturing the reality of distributed implementations. We translate
three representative languages, CQL, Sawzall, and StreamIt, to Brooklet, thus
demonstrating its generality for language designers. We formalize three vital op-
timizations, data parallelism, operator fusion, and operator reordering, in Brook-
let, thus demonstrating its usefulness for language implementors. Brooklet lays
the ground work for a variety of future work, including formalization of additional
languages, invention of new abstractions to expose and exploit parallelism, al-
ternative translations for the languages we formalized, reverse translations from
Brooklet back into source languages, type systems work, exploration of time or
space resource constraints, investigations of progress, fairness, and dead-lock,
static analyses for establishing optimization preconditions, and specifications of
additional optimizations. Brooklet also provides the foundation for a common
intermediate language for stream processing. In ongoing work, we are imple-
menting the translations from CQL, Sawzall, and StreamIt to Brooklet, the op-
timizations from Brooklet to Brooklet, and a translation from Brooklet to C++.
The implementation uses System S [9] as a high-performance streaming run-
time, which manages all processes across a cluster and their communications.
The long-term goal of our work is to establish Brooklet as both a formal and
practical foundation for stream processing.
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Abstract. Proving software free of security bugs is hard. Languages that ensure
that programs correctly enforce their security policies would help, but, to date,
no security-typed language has the ability to verify the enforcement of the kinds
of policies used in practice—dynamic, stateful policies which address a range of
concerns including forms of access control and information flow tracking.

This paper presents FINE, a new source-level security-typed language that,
through the use of a simple module system and dependent, refinement, and affine
types, checks the enforcement of dynamic security policies applied to real soft-
ware. FINE is proven sound. A prototype implementation of the compiler and sev-
eral example programs are available from http://research.microsoft.com/fine.

1 Introduction

The security of a well-designed software system often revolves around the concept of
a reference monitor, a security-critical kernel that mediates access to resources while
enforcing a suitable policy. Reference monitors are expected to be compact and imple-
mented in a form amenable to review. However, increasingly, reference monitors are
tasked with enforcing complex policies that simultaneously address various aspects of
security, mixing, for example, role- and history-based access control with information
flow tracking. Policies are authored separately from the programs they govern, they are
composed in non-trivial ways, and, as policies change over time, authorization deci-
sions require reasoning about state. This makes it difficult to establish that a reference
monitor enforces a policy correctly.

To illustrate the kinds of security concerns that arise in practice, consider the policy
used by CONTINUE [14], a widely used program for managing academic conferences.
CONTINUE’s security policy is defined using Datalog-like rules in XACML. This pol-
icy stands separately from the implementation of the server program, making it hard
to connect the policy to the program objects it governs. The policy is also particularly
complex in that it makes extensive use of stateful features. For example, the conference
management process is staged into a number of phases—in each phase, different policy
rules apply. During the submission phase of a conference, authors may submit papers,
but this right is revoked after the submission deadline is passed. In the bidding phase,
papers are assigned to reviewers after accounting for conflicts of interest. During the
rebuttal phase, reviews are disclosed to authors, but care must be taken to ensure that
PC-confidential remarks and scores are not revealed. With such a complex policy to
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enforce, it is not surprising that the developers of CONTINUE report that almost all the
interesting bugs they encountered were related to authorization in some form [7]. Poli-
cies used with other kinds of software, such as systems that manage medical records,
applications that control the outsourcing of software development, and military systems,
arguably have even more complex authorization requirements. Formally verifying that
the reference monitors of such systems correctly enforce their policies would help alle-
viate concerns of security vulnerabilities.

This paper presents FINE, a new source-level security-typed programming language
that can be used to implement programs like reference monitors and to check that these
programs correctly enforce their security policies. FINE distinguishes itself from prior
languages in this line, including FlowCaml [18], Jif [5], Fable [21], Aura [13], and
RCF [1], primarily in its ability to express a combination of stateful authorization (none
of the prior languages model state) and information flow (which is the focus of Flow-
Caml and Jif, and can be encoded in Fable and Aura, but not, as far as we are aware, in
RCF). The technical contribution of FINE is a new type system (§3) that uses dependent
and refinement types to express authorization policies by including first-order logical
formulas in the types of program expressions. FINE uses affine types, a weakening of
linear types [24], to model changes to the state of an authorization policy. (Variables
with an affine type can be used at most once.) The combination of affine and dependent
types is subtle and can require tracking uses of affine assumptions in both types and
terms. Our formulation keeps the metatheory simple by ensuring that affine variables
never appear in types, while still allowing the state of a program to be refined by logical
formulas. We also formalize a module system for FINE that provides a simple but strong
information-hiding property—we exploit this property to model information flow.

Programming with these advanced typing constructs can impose a significant burden
on the programmer. For this reason, languages like Fable and Aura position themselves
as intermediate languages because verification depends on intricate security proofs too
cumbersome for programmers to write down. Indeed, checking the 2000 lines of code
in our benchmark programs produces nearly 200 proof obligations, a proof burden that
would overwhelm most programmers. To alleviate this concern, FINE draws on the ex-
perience of languages like F7 (an implementation of RCF) and uses Z3 [6], an SMT
solver, to automatically discharge proof obligations. The careful combination of re-
finement and affine types in FINE allows us to use a mature classical prover like Z3.
Refinement formulas in FINE only involve the standard logical connectives, avoiding
the need for still-experimental linear-logic provers.

We describe our experience using FINE to build several example programs (§4), in-
cluding a model of the reference monitor of CONTINUE. The complete semantics of
FINE, proofs of theorems, and additional examples appear in a technical report [20].

2 FINE, by Example

We begin by presenting FINE using several examples. Our first example is a simple
form of password-based authentication. Next, we discuss permission-based access con-
trol enriched with information flow tracking. Finally, we show how to enforce stateful
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authorization policies by presenting code examples from our main case-study, a model
of the CONTINUE conference management server.

2.1 Authentication, Access Control, and Information Flow

FINE’s syntax is similar to languages in the ML family. In order to specify and enforce
security policies, FINE programmers define modules that provide mediated access to
security-sensitive resources. The module Authentication shown below mediates access
to authentication routines.

Simple password authentication

1 module Authentication
2 type prin = U: string→ prin | Admin: prin
3 private type cred :: prin→ � = Auth: p:prin→ cred p
4 val login: p:prin→ string→ option (cred p)
5 let login p pw = if (check pwd db p pw) then Some (Auth p) else None

The type prin is a standard variant type that represents principal names as either a
string for the user’s name, or the distinguished constant Admin. The type cred (line 3)
is a dependent-type constructor with kind prin→ � , e.g., (cred Admin) is a legal type of
kind � (the kind of normal types, distinguished from the kind of affine types, intro-
duced in §2.2) and represents a credential for the Admin user. Values of the cred p type
are constructed using the Auth data constructor. This constructor is given a dependent
function type—the argument p is the name of the principal and is in scope to the right of
the function arrow. By declaring cred private, the Authentication module indicates that its
clients cannot directly use the Auth constructor. Instead, the only way a client module
can obtain a credential is by calling the login function (given a dependent function type
on line 4). The implementation of login (line 5) calls an external function (not shown)
to check the password, and, if the password check succeeds, returns a credential for the
user p. By indexing cred with the name of the principal which it authenticates, we can
statically detect common security errors. For example, a client cannot use login to obtain
a credential for U ‘‘Alice’’ and later pass it off as a credential for Admin—the type of the
former, cred (U ‘‘Alice’’), distinguishes it from the latter, which has type cred Admin.

We use Authentication to implement the FileRM module (shown on the next page), a
reference monitor that mediates access to a file system. The policies implemented by
reference monitors in FINE have two components: the types given to values exposed in
the module’s interface (e.g., the type of fread on line 7), and policy axioms introduced
by the assume construct (e.g., assume AdminRW on line 6). A security review of a FINE

module must confirm that the types and assumptions adequately capture the intent of
a high-level policy. Importantly, client code need not be reviewed—typing ensures that
clients comply with the reference monitor’s security policy.

The FileRM module aims to provide a basic level of access protection on files by
ensuring that principals that read and write to files have the requisite permissions. This
basic protection is implemented by lines 1-7 of FileRM. The remainder of the module
enriches the access control mechanism to track information flows so that, for example,
users cannot reveal secrets by copying data from a secret file into a public file.
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Permission-based access control and information flow on files

1 module FileRM
2 open Authentication (∗ Use non -private symbols from Authentication’s namespace ∗)
3 (∗ Propositions and assumptions for file permissions ∗)
4 type CanRead:: prin→ Sys.file→ �
5 type CanWrite:: prin →Sys.file→ �
6 assume AdminRW: forall f:Sys.file. CanRead Admin f && CanWrite Admin f
7 val fread simple: p:prin→ cred p→{f:Sys.file | CanRead p f} → string
8 (∗ Types and operators to track information flow ∗)
9 type label = F : Sys.file→ label | J : label→ label→ label

10 private type tracked :: ∗ → label→∗ = L : α→ p:label→ tracked α p
11 val fmap: (α → β )→ l:label→ tracked α l→ tracked β l
12 val tensor: l:label→m:label→ tracked (α →β ) l→ tracked α m→ tracked β (J l m)
13 (∗ Types and axioms for a partial order on labels ∗)
14 type CanFlow:: label→ label→ �
15 assume Lattice: forall l:label, m1:label, m2:label. (CanFlow l l) &&
16 ((CanFlow l m1 && CanFlow l m2)⇒ CanFlow l (J m1 m2)) &&
17 ((CanFlow m1 l && CanFlow m2 l)⇒ CanFlow (J m1 m2) l)
18 assume Atomicflow: forall f:Sys.file, g:Sys.file.
19 (forall p:prin. CanRead p g⇒ CanRead p f)⇒ CanFlow (F f) (F g)
20 (∗ Secure wrappers for system calls ∗)
21 val fread: p:prin→ cred p→ f:{x:Sys.file | CanRead p x}→ tracked string (F f)
22 let fread p c f = L (Sys.fread f) (F f)
23 val fwrite: p:prin→ cred p→ f:{x:Sys.file | CanWrite p x}→
24 l:{y:label | CanFlow y (F f)} → tracked string l→ unit
25 let fwrite p c f l (L s x) = Sys.fwrite f s

FileRM defines dependent-type constructors CanRead and CanWrite to describe access
permissions. Permissions are granted using assumptions like AdminRW, which states
that the Admin user has read- and write-permissions on all files. Client programs can use
axioms like AdminRW to produce evidence of the propositions required to call functions
like fread simple, which wrap the underlying system calls. Client programs are assumed
to not have direct access to these system calls—this can be established using standard
systems techniques like sandboxing [25]. The type of fread simple is used to enforce an
access control policy. A caller of fread simple is required to pass in a credential for a user
p and a file handle f, where f has the refined type {x:Sys.file | CanRead p x} indicating that
p has permission to read f.

We used fread simple mainly to illustrate how refinement types can express simple au-
thorization policies. When leaks due to information flows are a concern, FileRM would
not include fread simple in the API exposed to client programs. Clients would have to
use fread instead, which augments fread simple with information flow controls.

The encoding of information flow shown in FileRM is based on a model developed
with the Fable calculus [21]. Information flow policies are specified and enforced by
tagging sensitive data with security labels that record provenance. The type label (line
9) represents the provenance of data derived from one or more files, F x for data from
file x, and J l1 l2 for data derived from the files in both l1 and l2. The dependent-
type constructor tracked associates labels with data. For example, tracked string (F x)
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represents a string that originated from the file x. Importantly, tracked is defined as a
private type. Client programs can only manipulate tracked values using functions that
appear in the interface of FileRM, e.g., fmap, a functor that allows functions to be lifted
into the tracked type and tensor, a combinator that treats the tracked type as an indexed
applicative functor. Prior work on Fable showed that encodings of this style can be
proved to correctly enforce security properties like noninterference.

Next, we define a type CanFlow and assumptions to describe a partial order on labels.
The Lattice assumption states that the J constructor behaves as the least-upper-bound
relation on a join semi-lattice and that flows are permissible from lower labels to higher
ones. The Atomicflow assumption states that data can flow from a file f to a file g only if
all principals that can read g can also read f. The types of fread and fwrite use these con-
structs to track information flow. The type of fread shows that the content of f is returned
as a string tagged with its provenance, i.e., tracked string (F f). The type of fwrite requires
that the string written to a file f has provenance l, where the refinement CanFlow y (F f)
on the type of l requires it to only contain data visible to the readers of f.

Specific file permissions and a client program

1 open Authentication, FileRM
2 assume R a: CanRead (U ‘‘Alice’’) ‘‘a.txt’’ &&
3 (forall p:prin.CanRead p ‘‘a.txt’’⇒ p=U ‘‘Alice’’ || p=Admin)
4 assume R ab: CanRead (U ‘‘Alice’’) ‘‘ab.txt’’ && CanRead (U ‘‘Bob’’) ‘‘ab.txt’’ &&
5 (forall p:prin.CanRead p ‘‘ab.txt’’⇒ p=U ‘‘Alice’’ || p=U ‘‘Bob’’ || p=Admin)
6 val strcat: string→ string→ string
7 let sudo (c:cred Admin) =
8 let a, ab = fread Admin c ‘‘a.txt’’, fread Admin c ‘‘ab.txt’’ in
9 let a ab = tensor (F ‘‘a.txt’’) (F ‘‘ab.txt’’) (fmap strcat (F ‘‘a.txt’’) a) ab in

10 fwrite Admin c ‘‘a.txt’’ (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) a ab

Additional policy assumptions and client code. The code sample above includes ax-
ioms R a and R ab to define access permissions for some files. (We assume here that
Sys.file and string are synonyms.) We also show a client program,sudo, which runs with
the credentials of Admin, concatenates data from files a.txt and ab.txt, and writes the re-
sult to the file a.txt. In addition to Admin, the file a.txt is readable only by the user Alice
and ab.txt only by Alice and Bob. Thus, sudo is secure since it writes to a.txt data that
can be read by Alice and Admin. In contrast, if sudo were to write the result to ab.txt, the
contents of a.txt are leaked to Bob, and this program should be detected as insecure.

At each call to fread, the solver appeals to AdminRW to show that Admin has read per-
mission on the files. To concatenate tracked strings, we use the fmap and tensor operators
from the FileRM API.1 The type of a ab is tracked string (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)). At line
10, we need to prove CanFlow (J (F ‘‘a.txt’’) (F ‘‘ab.txt’’)) (F ‘‘a.txt’’), which is discharged
automatically by Z3. Trying to write a ab to ab.txt instead results in a type error.

1 Our implementation currently lacks support for implicit parameters in function calls. Defining
all label parameters to be implicit would produce more terse programs. For example, concate-
nation of tracked strings would read tensor (fmap strcat a) ab.
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2.2 Stateful Authorization in the CONTINUE Conference Manager

We now present a more substantial example in FINE: a model of the CONTINUE confer-
ence management server. We first present a reference monitor ConfRM which mediates
access to a database of paper submissions and reviews. Next, we show ConfPolicy, a set
of policy axioms used to configure the reference monitor. Finally, we discuss ConfWeb,
a web server processing requests and accessing the database via the reference monitor.

A model of stateful authorization. The design of the ConfRM reference monitor is
based on a framework due to Dougherty et al. [7] for reasoning about the correctness
of Datalog-style dynamic policies. This model specifies policies as inference rules that
derive permissions from basic authorization attributes. For example, attributes may in-
clude assertions about a principal’s role membership or the phase of the conference, and
inference rules could grant permissions to principals depending on the current phase
and role activations. Over time, whether due to a program’s actions or due to external
events, the set of authorization attributes can change. For example, to access a resource,
a principal may alter the state of the authorization policy by activating a role; or, the PC
chair can change the phase of the conference. In this state, the policy may grant a spe-
cific privilege to the principal, but a subsequent role deactivation revokes the privilege.
Dougherty et al. show that this model captures many common policies and can be used
to reason about policy correctness.

This model of stateful authorization can be represented directly in FINE. The type
st represents the set of basic authorization attributes (line 10 in the listing on the next
page). Attributes include values like Role (U ‘‘Alice’’) Author to represent a role activa-
tion, or values like Assigned r p to indicate that a paper p has been assigned to a reviewer
r. The type perm represents permissions (the relations derived using inference rules from
the basic authorization attributes). For example, Permit (U ‘‘Alice’’) (Submit p) represents
a permission granted to an author. ConfRM also defines two propositions for stating in-
variants about the current state of the policy. Line 12 shows the type In, a proposition
about list membership, e.g., In a s states that a is a member of the list s. We elide stan-
dard assumptions that axiomatize list membership, but show a simple recursive function
check that decides list membership (line 13-15). The proposition Derivable s p (line 16)
asserts that a permission p is derivable from the collection of authorization attributes s.
We define two type abbreviations for refinements of the st type: rst<p> are those states
in which p is derivable, and inst<a> are those states that include a.

For a flavor of refinement type checking, consider the check function. The essence
of typing this function is proving that the true sub-expression can be given the type
{b:bool | In a l}. We accomplish this by typing the value true in a context that records
equalities between l and hd::tl (induced by the pattern match); an assumption that the
expression (equals a hd) has the type {b:bool | b=true⇔ a=hd} (by a type given to the built-
in equals operator); an assumption that (equals a hd) evaluates to true (since we are typing
the then-branch); and the axioms for list membership. We determine if the goal (In a l)
is deducible from the assumptions by including the negation of the goal among the
assumptions and requiring the solver to prove the resulting theory unsatisfiable.

Modeling state updates with affine types. The type constructor StateIs (line 19) ad-
dresses two concerns. A value of type StateIs s represents an assertion that s contains the
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current state of authorization facts. ConfRM uses this assertion to ensure the integrity
of its authorization facts. StateIs is declared private, so untrusted clients cannot use the
Sign constructor to forge StateIs assertions. Moreover, since the authorization state can
change over time, FINE’s type system provides a way to revoke StateIs assertions about
stale states. For example, after a reviewer r has submitted a review for a paper p, we may
add the fact Reviewed r p to the set of authorization facts s, revoke the assertion StateIs s,
and use StateIs ((Reviewed r p)::s) instead.

A fragment of a reference monitor for a conference management server

1 module ConfRM
2 open Authentication
3 type role = Author | Reviewer | Chair
4 type phase = Submission | Reviewing |Meeting
5 type paper = {id:int; title:string; author:prin; contents:string}
6 type attr = Role : prin→ role→ attr | Assigned : prin→ paper → attr
7 | Phase : phase → attr | Reviewed : prin→ paper → attr
8 type action = Submit: paper → action | Review: paper→ action
9 | ReadScore: paper→ action | CloseSub: action

10 type st = list attr
11 type perm = Permit : prin→ action→ perm
12 type In :: attr→ st→ �
13 val check: a:attr→ l:st→{b:bool | b=true⇒ In a l}
14 let rec check a l = match l with []→ false
15 | hd::tl→ if equals a hd then true else check a tl
16 type Derivable :: st→ perm→ �
17 type rst<p:perm> = {s:st | Derivable s p}
18 type inst<a:attr> = {s:st | In a s}
19 private type StateIs:: st→ A = Sign: s:st→StateIs s
20 val submit: q:prin→ cred q→ p:paper→ s:rst<Permit q (Submit p)>→ StateIs s→StateIs s
21 val review: r:prin→ cred r→ p:paper → q:string→ s:rst<Permit r (Review p)>→
22 StateIs s→ (s’:inst<Reviewed r p> ∗ StateIs s’)
23 val close sub: c:prin→ cred c→ s:rst<Permit c CloseSub>→
24 StateIs s→ (s’:inst<Phase Reviewing> ∗ StateIs s’)

FINE types are classified into two basic kinds: � , the kind of normal types, and A, the
kind of affine types. By declaring StateIs :: st→ A we indicate that StateIs constructs an
affine type from a value of type st. When the state of the authorization policy changes
from s to t, ConfRM constructs a value Sign t to assert StateIs t, while destructing a
StateIs s value to ensure that the assertion about the stale state s can never be used again.

An external API to the conference DB. Lines 20-24 show the types of functions ex-
posed by ConfRM to clients. Using the refined state type rst<p>, the API ensures that
each function is only called in states where the permission p is derivable. The submit
function requires Permit q (Submit p) to be derivable in the state s. By returning StateIs s,
the type of submit indicates that it does not change the authorization state. The review
function allows a reviewer r to submit a review and then changes the authorization state
to record the submission. The return type of review is a dependent pair consisting of a
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new list of authorization attributes s’, and an assertion of type StateIs s’ to indicate that
s’ is the new authorization state. The close sub function has a similar type and allows the
program chair to change the phase of the conference.

An example policy and a main event loop for the server

1 module ConfPolicy : ConfRM
2 let init:(s:st ∗ StateIs s) = let a = [Role (U ‘‘Andy’’) Chair; ...] in (a, Sign a)
3 assume C1: forall (q:prin), (p:paper), (s:st).
4 In (Phase Submission) s && In (Role q Author) s⇒ Derivable s (Permit q (Submit p))
5 assume C2: forall (r:prin), (p:paper), (s:st).
6 In (Phase Reviewing) s && In (Assigned r p) s⇒ Derivable s (Permit r (Review p))
7 assume ...
8 (∗Main event loop ∗)
9 module ConfWeb

10 open Authentication, ConfRM, ConfPolicy
11 let rec loop s = match get request() with
12 | Submit paper q credq paper → let (a,tok) = s in
13 if (check (Phase Submission) a) and (check (Role q Author) a) then
14 let s1 = submit q credq paper a tok in
15 let = resp ‘‘Thanks for your submission!’’ in loop (a, s1)
16 else let = resp ‘‘Submissions are closed, or you are not an author.’’ in loop (a,tok)
17 | Submit review r credr paper review→ ...
18 let = loop ConfPolicy.init

A sample policy. The module ConfPolicy above configures the ConfRM reference moni-
tor with policy assumptions. At line 2, we show init, an initial collection of authorization
attributes a, signed to attest that a is the authorization state. The Sign data construc-
tor requires the privilege of ConfRM—FINE’s module system grants this privilege to
ConfPolicy using the notation module ConfPolicy : ConfRM, which allows ConfPolicy to
use the private constructors of ConfRM. The assumptions C1-C2 show how permissions
can be derived from authorization attributes—different conferences can use the same
ConfRM but get different enforcement semantics by using different policy files.

An event loop to handle web requests. Finally, we show fragments from ConfWeb,
a program that handles web requests to the conference management site. The main
event loop of ConfWeb waits for a request (type elided). If principal q wishes to sub-
mit a paper, we check that the conference is in the Submission phase, and that q is
registered in the role of an Author. We give the built-in boolean operator and the type
x:bool → y:bool →{z:bool | z=true⇔ x=true && y=true}. We can use this type, the type of
check, and assumption C1, to refine the type of the current state a in the then-branch to
rst<Permit q (Submit paper)>.

2.3 Elements of FINE that Enable Stateful Programming

Before proceeding to a formal semantics for FINE, we discuss a number of elements in
the design of FINE that facilitate, and in some cases simplify, stateful programming.
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Non-affine state simplifies programming. Programming with affine types can be dif-
ficult, since affine variables can never be used more than once. Our approach of using
an affine assertion StateIs s to track the current authorization state minimizes the diffi-
culty. Importantly, the collection of authorization facts s is itself not affine and can be
freely used several times, e.g., s is used in several calls to check. Non-affine state also
enables writing functions like check, which, if s was affine, would destroy the state of the
program. Only the affine token, tok:StateIs s, must be used with care, to ensure that it is
not duplicated.

Non-affine refinements simplify automated proofs. Even ignoring the inability of
prior languages to handle stateful policies, the proof terms required for our examples in
languages like Fable or Aura would be extremely unwieldy. By ensuring that refinement
formulas always apply to non-affine values, our proof system is kept tractable, allow-
ing us to use Z3 to automatically discharge proof obligations. A naı̈ve combination of
dependent and affine types would allow refinements to apply to affine values, necessi-
tating an embedding of linear logic in Z3. Our approach avoids this complication, while
retaining the ability to refine the changing state of a program with logical formulas.

Affine types enable flexible mixing of stateful and pure code. Another approach to
working with stateful policies could be to use an abstract monad. FINE’s module system
certainly supports programming in this style. However, affine types afford greater flex-
ibility. For example, rather than monadically threading a monolithic store through the
program, FINE programs can partition the state and pass only the relevant parts of the
store to functions that need it. We use this idiom to good effect in one of our benchmark
programs (FileAutomaton in §4), in which a bit of state representing the current state of
a file is associated with the file handle rather than using a monolithic store to maintain
the state of all file handles. Another benchmark, a model of an email client, uses affine
types to model capabilities [15] that grant programs restricted access to certain sensitive
stateful operations, such as sending emails.

3 Formalizing FINE

Our compiler translates FINE programs in type-preserving manner to .NET bytecode
(CIL) [8]. Although we do not report on our type-preservation results in this paper, this
design plays a significant role in various aspects of FINE’s type system. This section
formalizes FINE, presents a soundness result for the type system, and an information-
hiding property for the module system. We begin by presenting a core syntax for FINE.

3.1 Core Syntax

Our formulation of FINE’s module system is based on Grossman et al’s [11] syntactic
approach to type abstraction. In this formulation, module names correspond to “prin-
cipals” and are ranged over by the meta-variables p, q, and r. Source expressions are
annotated with the names of the modules to which they belong—in the form 〈e〉p, the
expression e delimited within brackets is privileged to use p’s private types concretely.
A principal constant is denoted p, and we include two distinguished principals: � in-
cludes the privileges of all other principals, and ⊥ has no privileges. Values are parti-
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tioned into families corresponding to principals. A pre-value for code with p-privilege,
up, is a variable or a fully-applied data constructor D. Values for p are either its pre-
values, abstractions, or pre-values uq for some other principal q, enclosed within brack-
ets to denote that uq carries q-privilege. The dynamic semantics of FINE (§3.3) tracks
the privilege associated with an expression using these brackets and allows us to prove
(§3.4) that programs without p-privilege treat p-values abstractly.

Core syntax of FINE

p, q, r ::= p | � | ⊥ principals
up ::= x | D τ̄ v̄p pre p-values
vp ::= up | λx:τ.e | Λα::κ.e | 〈uq〉q p-values
e ::= vp | let x = e1 in e2 | fix f :τ.e | vp vq | vp τ | 〈e〉p terms

match vp with D τ̄ x̄ → e1 else e2
τ, φ ::= α | x:τ → τ ′ | ∀α::κ.τ | {x:τ |φ} | !τ | T | τ τ ′ | τ vp types
κ ::= � | A | � → κ | A → κ | τ → κ kinds
S ::= T ::κ | D:(p, τ) | p $ q | S, S′ | · signature
Γ ::= α::κ | x:(p, τ) | vp

.= v′p | Γ, Γ ′ | · type env.

Expressions e are standard for a polymorphic lambda calculus. Types τ include depen-
dent function types x:τ → τ ′, where x names the formal parameter and is bound in
τ ′. Polymorphic types ∀α::κ.τ decorate the abstracted type variable α with its kind κ.
Refinement types are written {x:τ |φ}, where φ is a type in which x is bound. An affine
qualifier can be attached to a type using !τ . Type constructors T can be applied to other
types using τ τ ′ or terms using τ vp. Note that type-level terms are always values, not
expressions—this restriction explains our use of A-normal form [10] for the expression
language. This form allows every intermediate result to be named and for these names
to appear, potentially, as type indices. Types are partitioned into normal types (kind �)
and affine types (kind A). Type constructors T construct types of kind κ from normal
types (� → κ), affine types (A → κ), or τ -typed terms (τ → κ). Although included in
our implementation, for simplicity, our formalization omits dependent pairs.

Desugaring FINE modules. The type and data constructor declarations in a FINE mod-
ule are desugared to a signature S. The type constructors of the Authentication module of
§2.1, for example, are desugared to prin::� and cred::prin → �. Data constructors D are
associated their type, as well as the privilege p required for their use. For example, the
constructors of the prin type are U:(⊥, string → prin) and Admin:(⊥, prin), indicating that
these may be used freely in unprivileged code. In contrast, being declared private, the
constructor of the cred type is desugared to Auth : (Authentication, p:prin → cred p), in-
dicating that it may only be used in code marked with the privilege of the Authentication
module. Additionally, signatures use p $ q to record a partial order among principals,
with ⊥ $ p $ �, for all p. We use this to represent sharing between modules, as
achieved by the ConfPolicy : ConfRM declaration from §2.2. This is translated to the re-
lation ConfRM $ ConfPolicy, to indicate that ConfPolicy holds the privileges of ConfRM
(and, in particular, can use ConfRM’s private data constructors).

Desugaring formulas and assumptions. Refinement formulas and assumptions are
represented using type and data constructors, respectively. For example, we use type



Enforcing Stateful Authorization and Information Flow Policies in FINE 539

constructors like And::�→ �→ � to represent the logical connectives. We model
equality by specializing it to each type, e.g., Eq bool::bool → bool → � . A polymorphic
treatment of equality poses no fundamental difficulty, but we use a monomorphic treat-
ment here for simplicity. Quantification is represented using the binders in dependent
functions and pairs. For example, the AdminRW assumption from §2.1 is desugared to
AdminRW : (⊥, f:file→And (CanRead Admin f) (CanWrite Admin f)). Note that assump-
tions are always public—we leave an exploration of private assumptions to future work.

Well-formedness conditions on data constructors. The soundness of FINE’s type sys-
tem relies on some restrictions on the use of data constructors D. We mention these
restrictions briefly here, but space constraints leave their formalization and further dis-
cussion to a technical report [20]. First, we disallow partial application of data con-
structors as this complicates our translation to CIL. Next, we require the type of each
data constructor to be of the form: ∀ᾱ::κ̄.x1:τ1 → . . . → xn:τn → τ , i.e., we require
any type arguments to precede any term arguments, although each term argument xi:τi

may itself contain quantifiers. This restriction is merely a convenience—it simplifies the
shape of our pattern matching constructs. Finally, for each data constructor D with a
type as shown above, we require ᾱ ⊆ Free-type-variables(τ), i.e., every type argument
must appear as an index on the constructed type τ . This is a more significant restriction
and is necessary for showing that well-typed programs enjoy a type-erasure property.

3.2 Static Semantics

The static semantics makes use of a typing environment Γ , which binds type and term
variables, and records the results of pattern matching tests using vp

.= v′p. Variables
x, like data constructors, are associated with a principal p representing the privilege
required for their use.

Well-formedness of kinds: S �i k, and kinding of types: S; Γ � τ :: κ
Where, i ::= · | 1, and � ≤ �, A ≤ A, � ≤ A

S �· � S �i A

S �i κ

S �i � → κ

S �1 κ

S �i A→ κ

S; · � τ :: � S �i κ

S �i τ → κ

S; Γ � α :: Γ (α)
(K1)

S; Γ � T :: S(T )
(K2)

S; Γ � τ :: �

S; Γ �!τ :: A
(K3)

S; Γ, α:κ � τ :: κ′

κ, κ′ ∈ {�, A}
S; Γ � ∀α::κ.τ :: �

(K4)

S; Γ � τ1 :: κ κ ≤ κ′

S; Γ, x:(p, τ1) � τ2 :: κ′

S; Γ � x:τ1 → τ2 :: �
(K5)

S; Γ � τ1 :: κ′ → κ
S; Γ � τ2 :: κ′

S; Γ � τ1 τ2 :: κ
(K6)

S; Γ � τ1 :: τ → κ S; Γ ; · �� vp : τ

S; Γ � τ1 vp :: κ
(K7)

S; Γ � τ :: � S; Γ, x:(p, τ ) � φ :: �

S; Γ � {x:τ |φ} :: �
(K8)

The first judgment S �i κ, shown above, defines a well-formedness relation on kinds.
This judgment establishes two properties. First, types constructed from affine types
must themselves be affine—this is standard [24]. Without this restriction, an affine value
can be stored in a non-affine value and be used more than once. To enforce this property,
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we index the judgment using i ::= · | 1, and when checking a kind A → κ, we require
κ to finally produce an A-kinded type. The second restriction, enforced by the first
premise (S; · � τ :: �) of the last rule, ensures that only non-affine values appear in a
dependent type. Note that we omit higher kinds (e.g., (� → �) → �) as these are not
easily translated to CIL.

The judgment S; Γ � τ :: κ states that τ has kind κ. Types inhabited by terms always
have kind � or A. (K3) rules out “doubly-affine” types (!!τ ). (K4) allows abstraction only
over � and A-kinded types. (K5) requires that the type τ1 of a function’s parameter always
have kind � or A and that functions with affine arguments produce affine results, both
captured by an auxiliary relation on kinds, κ ≤ κ′. (K7) checks the well-formedness
of dependent types. As in Aura and RCF, we restrict type-level terms to values e.g.,
Eq bool (true && false) false is not a well-formed type. This restriction reduces expres-
siveness by ruling out type-level computations, but greatly simplifies the compilation to
CIL. The second premise of (K7) uses the typing judgment—we describe it shortly. (K8)

only allows non-affine types τ to be refined by non-affine formulas φ.

Expression typing: S; Γ ; X �p e : τ
Where, X ::= · | x, X ; Q(X, τ) =!τ , Q(·, τ) = τ ; and ?τ denotes τ or !τ

S(D) = (p, τ )
S; Γ ; · �p D : τ

(T1)
Γ (x) = (p, τ ) S; Γ � τ :: �

S; Γ ; · �p x : τ
(T2)

Γ (x) = (p, τ )
S; Γ ; x �p x : τ

(T3)

q  p ∈ S S; Γ ;X �q e : τ

S; Γ ;X, X ′ �p e : τ
(T4)

S; Γ � τ :: � S; Γ, f :(p, τ ); · �p vp : τ

S; Γ ; · �p fix f :τ.vp : τ
(T5)

S; Γ � τ1 :: κ κ ∈ {�, A}
S; Γ, x:(p, τ1); X, x �p e : τ2

S; Γ ; X �p λx:τ1.e : Q(X,x:τ1 → τ2)
(T6)

κ ∈ {�, A}
S; Γ, α::κ; X �p e : τ ′

S; Γ ;X �p Λα::κ.e : Q(X,∀α::κ.τ ′)
(T7)

S; Γ ; X �p e1 : τ1 S; Γ � τ2 :: κ
S; Γ, x:(p, τ1); X ′, x �p e2 : τ2

S; Γ ; X, X ′ �p let x = e1 in e2 : τ2

(T8)

S; Γ ; X �p vq :?x:τ1 → τ2

S; Γ ;X ′ �p vr : τ1

S; Γ ;X, X ′ �p vq vr : τ2[vr/x]
(T9)

S; Γ ;X �p vq :?∀α::κ.τ S; Γ � τ ′ :: κ

S; Γ ; X �p vq τ ′ : τ [τ ′/α]
(T10)

S; Γ ; X �q e : τ

S; Γ ; X �p 〈e〉q : τ
(T11)

S; Γ ; X �p vq : τ ′ S; Γ, x̄:(p̄, τ̄x); x̄ �p D τ̄ x̄ : τ ′′ S; Γ � unify(τ ′, τ ′′) : x̄
.= v̄

S; Γ, x̄:(p̄, τ̄x), x̄ .= v̄, vq
.= D τ̄ x̄; X ′, x̄ �p e1 : τ S; Γ ;X ′ �p e2 : τ

S; Γ ; X, X ′ �p match vq with D τ̄ x̄→ e1 else e2 : τ
(T12)

S; Γ ; X �p vq : τ S; Γ � τ :: �

S; Γ ; X �p vq : {x:τ |x = vq} (T13)
S; Γ ;X �q e : τ ′ S; Γ � τ ′ <: τ

S; Γ ;X, X ′ �p e : τ
(T14)

The typing judgment S; Γ ; X �p e : τ above states that an expression e, when
typed with the privilege of principal p in an environment Γ and signature S, has type
τ . The set X records a subset of the variables in Γ , and each element of X represents a
capability to use an assumption in Γ . The rule (T1) requires data constructors to be used
only in code granted the appropriate privilege. In the second premise of (T12), we type
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check a pattern D τ̄ x̄ to ensure that data constructors are also destructed in a context
with the appropriate privilege.

In (T2) we type a non-affine variable x by looking up its type in the environment and
checking that the privilege of the context matches that of the variable. (T3) is similar, but
additionally allows an affine variable to be used only when a capability for its use ap-
pears in X . Unlike linear typing, affine assumptions need not always be used. (T4) allows
an arbitrary number of assumptions X ′ to be forgotten, and for e to be checked with a
privilege q that is not greater than privilege p that it has been granted. An expression is
granted privilege by enclosing it in angle brackets, as shown in (T11).

Returning to the second premise of (K7), we check a type-level term vp with the
privilege of �. The intuition is that in well-typed programs, type-level terms have no
operational significance and, as such, cannot violate information-hiding. We also check
vp in (K7) with an empty set of capabilities X . According to the well-formedness rule
of kind τ → κ, no well-formed type constructors can be applied to an affine value, so a
type-level term like vp never uses an affine assumption.

In (T5), we require fixed variables f to be given a non-affine type, and for the recur-
sive expression to not capture any affine assumptions. In (T6), we check that the type of
the formal parameter is well-formed, and type check the body in an extended context.
We record the privilege p of the program point at which the variable x was introduced
to ensure that x is not destructed in unprivileged code in the function-body e. In the
conclusion of (T6), we use the auxiliary function Q(X, τ), which attaches an affine qual-
ifier to τ if the function captures any affine assumptions from its environment. (T7) is
similar. Typing let-expressions is standard, with the addition that the second premise of
(T8) ensures that the let-bound variable x does not escape its scope in the type τ2. When
typing an application vq vr in (T9), we split the affine assumptions among the sub-terms.
We allow vq to be a possibly affine function type—the shorthand ?τ captures this, and
we use the same notation in (T10).

We illustrate pattern-matching using an example from FileRM. Consider matching
a value vq of type tracked string (F file) against a pattern L string x y. When checking
the true-branch, we record several term equalities that capture the runtime behavior of
pattern matching. These assumptions will be used by our theorem prover in discharging
proofs of refinement formulas (via the type conversion relation, discussed shortly). In
our example, one such equality assumption is, clearly, vq

.= L string x y. However, with
FINE’s value-indexed types, we can also infer equalities for some of the pattern-bound
variables. In particular, by unifying the type of the scrutinee, tracked string (F file), with
the type of the pattern, tracked string y, we can infer y

.= F file.
In (T12), we split the affine assumptions between vq and the branches. In the second

premise, we type the pattern and in the third premise, unify the type of the scrutinee with
the type of the pattern to compute equalities among the term indices—the definition of
the unification judgment is standard and we omit it from our presentation. The fourth
premise checks e1 with the computed equality assumptions. The last premise checks e2
with no additional assumptions. A variation in which e2 is checked with a disequality
forall x̄.vq �= D τ̄ x̄ is also feasible. However, in practice, we use n-way exhaustive
pattern matching (match x with P1→ e1 ... Pn→ en) and derive disequalities by relying
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on axioms that discriminate data constructors, e.g., forall D1, D2, x̄1, x̄2, τ̄1, τ̄2.D1 �=
D2 ⇒ D1τ̄1x̄1 �= D2τ̄2x̄2.

We use (T13) to give values a precise singleton type using an equality refinement.
This is useful in bootstrapping the type conversion relation, used in the second premise
of (T14), and defined below. Type conversion S; Γ � τ <: τ ′ is a reflexive, transitive
relation without any structural rules, e.g., contra- and co-variant subtyping in function
types. The type system of CIL uses nominal subtyping, and structural rules of this form
are not easily translated. The rule (S3) is our interface to the solver—we discuss this with
an example shortly. The rule (S4) treats a refined type as a subtype of the underlying
type. Type conversion includes an equivalence relation on types S; Γ � τ ∼= τ ′. In this
judgment, (E5) allows a type-level term vp to be equated with v′p when an assumption
vp

.= v′p appears in the context.

Type conversion: S; Γ � τ <: τ ′, S; Γ � τ ∼= τ ′ and S; Γ � e ∼= e′

Where S; Γ |= φ is the first-order logic entailment relation

S; Γ � τ1
∼= τ2

S; Γ � τ1 <: τ2
(S1)

S; Γ � τ1 <: τ2

S; Γ � τ2 <: τ3

S; Γ � τ1 <: τ3
(S2)

S; Γ � τ <: τ ′

S; Γ, x:(p, τ ) |= φ

S; Γ � τ <: {x:τ ′ |φ} (S3)

S; Γ � {x:τ |φ} <: τ
(S4)

S; Γ � τ ∼= τ
(E1)

S; Γ � vp
∼= vp

(E2)

S; Γ � τ1
∼= τ ′

1 S; Γ � τ2
∼= τ ′

2

S; Γ � τ1 τ2
∼= τ ′

1 τ ′
2

(E3)
S; Γ � τ1

∼= τ ′
1 S; Γ � vp

∼= v′
p

S; Γ � τ1 vp
∼= τ ′

1 v′
p

(E4)

vp
.= v′

p ∈ Γ ∨ v′
p

.= vp ∈ Γ

S; Γ � vp
∼= v′

p

(E5)
∀i, j S; Γ � τi

∼= τ ′
i S; Γ � vj

∼= v′
j

S; Γ � D τ̄ v̄ ∼= D τ̄ ′ v̄′ (E6)

The key rule in type conversion related to refinement typing is (S3). This rule allows
a type τ to be promoted to a refined type {x:τ ′ |φ} when τ is a subtype of τ ′, and
when our solver can deduce the formula φ from the typing context. The entailment re-
lation S; Γ |= φ is standard—we illustrate its behavior using an example from §2.2.
When typing the main loop of ConfWeb, we are required to construct a derivation
of the form S; Γ � s : {x:st | In a x}, where (dropping principals for clarity) Γ =
s:st, a:attr, b:{x:bool | x=true⇒ In a s}, b

.= true. We construct this derivation by using
(T14) with (T13) in the first premise to derive S; Γ � s : {x:st | x=s}, and a derivation
of S; Γ � {x:st | x=s} <: {x:st | In a x} in the second premise. This latter derivation
proceeds by using (S3), where we deduce S; Γ, x:{x:st | x=s} |= In a x by using Z3 to
show that the theory (s:st, a:attr, b:bool, b=true⇒ In a s, b=true, x:st, x=s, not(In a x)) is un-
satisfiable. Importantly, FINE’s type system ensures that the theories we generate never
contain any affine assumptions, thus eliminating the need for a linear logic prover.

3.3 Dynamic Semantics

The operational semantics of FINE is instrumented to account for two program proper-
ties. First, our semantics places affinely typed values in a memory M . Reads from the
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memory are destructive—this allows us to prove that in well-typed programs, affine val-
ues are never used more than once. The semantics also tracks the privilege of expressions
by propagating brackets through reductions, which is useful in showing an information-
hiding property for our module system. The main judgment is written (M, e)

p� (M ′, e′),
and states that given an initial memory M an expression e steps to e′ and updates the
memory to M ′. The p-superscript indicates that e steps while using the privilege of
the principal p. The omitted rules include reductions for let-bindings, standard beta-
reduction for type and term applications, unrolling of fixed points, and pattern matching.

Dynamic semantics (selected rules)
Where a memory M ::= (x, vp), M | ·

〈vp〉p p� vp (R1) 〈〈vq〉q〉r p� 〈vq〉q (R2) 〈λx:τ.e〉q p� λy:τ.〈e[〈y〉p/x]〉q (R3)

e
q� e′

〈e〉q p� 〈e′〉q
(R4)

S; ·; · � vp : τ S; · � τ :: A
M ′ = M, (x, vq) x fresh

M, vp
p� M ′, x

(R5)
M = M1, (x, vq), M2

M, x
p� (M1, M2), vq

(R6)

Reduction rules that do not involve reading from or writing to memory are written
e

p� e′. All the interesting rules that manage privileges and brackets fall into this frag-
ment. Redundant brackets around p-values can be removed using (R1). However, not all
nested brackets can be removed, as (R2) shows. In (R3), a λ-binder is extruded from a
function with q-privilege so that it can be applied to a p-value. We have to be careful
to enclose occurrences of the bound variable in e within p-brackets, to ensure that e
treats its argument abstractly. Finally, (R4) allows evaluation to proceed under a bracket
〈·〉q with q-privilege. The rules (R5) and (R6) model memory operations. The rule (R5) is
applicable non-deterministically. It allocates a new location x for an affine value vp into
the memory M and replaces vp with x. When a location x is in destruct position, (R6)

reads a value vp from M and deletes x.
Theorem 1 establishes the soundness of FINE through the standard progress and

preservation lemmas. In the statement below, all free variables are implicitly universally
quantified. Additionally, we say that a memory M is typeable with an environment
S; Γ , if S; ·; · �p M(x) : Γ (x), for each location x ∈ dom(M). In addition to showing
that well-typed programs do not go wrong, our soundness result guarantees that affine
values are destructed at most once—a result that shows that state changes are modeled
accurately. The proof appears in our technical report [20].

Theorem 1 (Soundness): For all well-formed signatures S; environments Γ ; non-
values e; and memories M typeable with S; Γ , the following statements are true:

1) If S; Γ ; dom(M) �p e : τ then there exists M ′, e′ such that M, e
p�M ′, e′.

2) If S; Γ ; X �p e : τ and M, e
p�M ′, e′ for some p, M ′, e′, and X ⊆ dom(M);

then, there exists Γ ′, X ′such that S; Γ ′; X ′ �p e′ : τ and M ′ is typeable with
S; Γ ′. Furthermore, for ΔX = (dom(M) ∪ dom(M ′)) \ (dom(M) ∩ dom(M ′))
if dom(M ′) ⊇ dom(M) then X ′ = X ∪ ΔX ; otherwise X ′ = X \ ΔX .
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3.4 Reasoning about the Security of FINE Programs

FINE allows programmers to specify conditions for correct policy enforcement and
the type system checks that these conditions are satisfied. But, the onus is on the
programmer to get these specifications right. For example, in the FileRM module of
§2.1, wrongly assuming (forall p:prin. CanRead p f⇒ CanRead p g)⇒ CanFlow (F f) (F g)
(instead of the Atomicflow assumption) would destroy any meaningful confidentiality
property intended for FileRM to enforce. Similarly, in the Authentication module, for-
getting to declare the cred type private would allow adversaries to forge credentials. In
neither case would FINE’s type checker complain. However, the metatheory of FINE

provides a useful set of primitives using which an expert can prove high-level secu-
rity properties. In prior work on the Fable calculus, we adopted a similar approach and
showed how the metatheory of Fable could be used to prove high-level security prop-
erties (e.g., noninterference) for encodings of information flow, provenance tracking,
and role-based access control. We anticipate a similar strategy being effective for FINE.
Additionally, in §4, we discuss how tools like model checkers can complement FINE

and be used to establish that FINE programs correctly enforce high-level security goals.
In addition to type soundness, the metatheory of FINE yields two general purpose

security properties—proofs appear in our technical report. The first, corresponding to
a secrecy property, is value abstraction. The theorem below states that a program e
without p-privilege cannot distinguish p-values. As a corollary, we can also derive an
integrity property, namely that a program without p-privilege cannot manufacture a p-
value to influence the behavior of code with p-privilege. Note that this theorem appeals
only to the pure fragment of our reduction rules—affine typing plays no special role in
value abstraction. Additionally, observe that this result applies to selective information
sharing/hiding between multiple principals, as FINE’s module system includes a lattice
of principals ordered by the p $ q relation. Finally, although this theorem applies to the
abstraction of a single value from the p module exported at type τ , the program e can
contain code from several principals.

Theorem 2 (Value abstraction): For well-formed signatures S and non-values e, if e
uses a p-value x but is well-typed without p-privilege, (i.e., S; x:(p, τ); x �q e : τ ′ and
p $ q �∈ S) and, except for 〈x〉p, e is free of r-brackets 〈·〉r , for any r where p $ r ∈ S;
then, for any pair of τ -typed values v1

p and v2
p, (i.e., S; ·; · �p vi

p : τ , i ∈ {1, 2}) such

that e[v1
p/x]

q� e1, there exists e′ such that e1 = e′[v1
p/x] and e[v2

p/x]
q� e′[v2

p/x].

4 Compiler Implementation and Application Experience

We have implemented a prototype compiler, currently approximately 20,000 lines of
F# code extending a front-end and IL generation libraries derived from the F# com-
piler [23]. The type-preserving translation of FINE to CIL accounts for a significant
fraction of the complexity. Our compiler currently generates .NET assemblies that al-
low FINE programs to easily interface with modules defined in F#. Interoperability with
the rest of .NET allows us to write only security critical parts of an application in FINE,
leaving the rest to other, more commonly used languages.

The table below shows several small reference monitors in FINE, their size, the num-
ber of proof obligations generated during type checking, and parsing and type checking
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time (on 3.2 GHz Pentium Core Duo desktop running Windows Vista). Most bench-
marks contain dense security critical code, where nearly every function call demands
proving refinement formulas. Our results show that using an external solver to discharge
these proofs (as opposed to constructing them by hand as in Fable or Aura) is critical
for practical programming. We expect the checking time to improve significantly as we
move from naı̈ve representations of typing environments (currently association lists) to
more efficient data structures.

Name LOC # pf. obl. parsing/type checker time (s)
AuthAC 34 1 0.28
FileRM 120 36 1.64
FileAutomaton 121 3 0.45
IFlow 127 22 0.84
HealthWeb 318 19 6.41
DynDKAL 336 34 1.26
Lookout 519 23 2.73
ConfRM and ConfWeb 647 57 4.01
ProofLib 9943 0 19.28
Total 2222 (+ 9943) 195 17.62 (+ 19.28)

4.1 Modeling CONTINUE

Our most substantial example is the modeling of the security policy of CONTINUE.
CONTINUE’s authors provided us with a specification of its policy, partly in natural lan-
guage and partly as specification in the Alloy modeling language [12]. Starting from this
specification, we implemented ConfRM to enforce a policy that contains 9 phases and
12 actions. Policy assumptions in ConfPolicy describe when each action is permissible,
and a function exposed in the external interface of ConfRM (with a suitable refinement
type on the state) mediates access to this action. In addition, each action corresponds to
a particular web request handled by ConfWeb.

A significant fragment of the Alloy specification for CONTINUE is devoted to spec-
ifying validity conditions on the authorization state. For example, in any given state,
validity requires the assignment of papers to reviewers to respect the conflict of in-
terest constraints. We found it relatively straightforward to express several of these
validity constraints, although our implementation has yet to cover all the features of
CONTINUE’s specification. One simplifying assumption we make is that there is a
unique phase for the entire conference. In contrast, the Alloy specification associates
a phase with each paper, and different papers can be in different phases at any given
time. Extending our attr type to account for this complexity is possible, though we have
yet to implement this.

Our experience with CONTINUE illustrates an important aspect of FINE. Tools like
Alloy are useful for reasoning abstractly about policies and establishing that these cor-
rectly specify high-level security goals. However, the abstract analysis of policies in
Alloy is disconnected from system implementations that are expected to enforce these
policies. FINE, in contrast, does not attempt to validate policies, but provides assurance
that system implementations properly enforce their policy specifications. We view these
two approaches as complementary and expect their combination to be a potent tool for
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security analysis of system implementations. For example, the Alloy specification in-
cludes assertions to check that no sequence of actions allows a principal to read or write
a review when there is a conflict of interest. We plan to investigate using the metatheory
of FINE and the types of ConfRM, in conjunction with a tool like Alloy, to prove such
facts of our implementation.

4.2 Other Benchmarks

The benchmark FileRM extends the example from §2.1 to account for confidentiality
and integrity concerns when tracking information flow. Recall that in FileRM the lattice
of security labels was derived from a specification of access control permissions using
the Atomicflow assumption. To type check FileRM using Z3, we needed to rewrite the
AtomicFlow assumption to the form shown below. To reason about formulas that use
nested quantifiers, Z3 relies on a pattern-based instantiation mechanism that requires all
bound variables (p in Atomicflow) to be guarded by non-equality predicates. Note that
this is not a fundamental limitation of FINE. We are currently investigating the use of
first-order solvers to reason directly about quantified formulas without this restriction.
For example, a customized version of Coq’s firstorder tactic can discharge proofs
of the CanFlow proposition using the assumption AtomicFlow as shown in §2.1.

assume CW:IsPrin Admin && IsPrin (U ‘‘Alice’’) && IsPrin (U ‘‘Bob’’) && ...
assume AtomicFlow: forall f:file, g:file.

(forall p:prin. (IsPrin p && CanRead p g)⇒ CanRead p f)⇒ CanFlow (F f) (F g)

Of the other benchmarks, AuthAC is a small purely permission-based access control
monitor for files combined with password-based authentication. FileAutomaton is a ref-
erence monitor that implements an automaton-like policy on files, where, through the
use of dependent and affine types, a file handle is indexed with a value indicating its
current state, e.g., Open, Closed etc. A similar idiom could be used in ConfRM to asso-
ciate phases with papers, instead of a global phase for the entire conference. IFlow is
an implementation of a traditional information flow policy using a three-point lattice of
labels which does not require the nested quantifiers of FileRM. HealthWeb is a reference
monitor for an application that manages a database of electronic medical records. It
enforces a stateful authorization policy. DynDKAL is an interpreter for an authorization
logic; it uses refinement types to ensure that instantiations of quantified assumptions in
policies is performed correctly. Lookout is the core reference monitor of a plugin-based
email client we have started to build. This program mixes stateful authorization in the
style of ConfRM with information flow tracking in the style of FileRM.

Finally, ProofLib is an automatically generated program, our largest test case by far.
This program makes no use of refinement types and is used as a utility by our type-
preserving compiler to represent proof terms. We include it here to give the reader a
sense of the cost of dependent type checking for larger programs.

5 Related Work and Conclusions

Several programming languages and proof assistants use dependent types, including
Agda [17], Coq [2], and Epigram [16]. All of these systems can be used to verify
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full functional correctness of programs. However, to ensure logical consistency of the
type system, these languages exclude arbitrary recursion, making them less applicable
for general-purpose programming. Projects like YNot [4] and Guru [19] aim to mix
effects like non-termination with dependently typed functional programming; YNot
also supports programming with state in an imperative style. Restrictions in both lan-
guages ensure that proofs are pure, ensuring that logical consistency is preserved. All of
these systems include automation and tactic languages, but programmers still need to
construct interactive proofs for their code. In contrast, FINE targets weaker, security
properties; forgoes logical consistency in favor of practical programming by including
recursion; and automatically synthesizes proof terms using an SMT solver. FINE also
provides affine types to allow the enforcement of state-modifying policies, which could
be expressed in YNot, but not easily in the other languages.

Dependent types have also been used for security verification. Jif [5] uses a limited
form of dependent typing to express dynamic information flow policies. Aura [13] is
specialized for the enforcement of policies specified in a policy language based on an
intuitionistic modal logic. This makes Aura less applicable to policies specified in other
logics, e.g., the Datalog-based policy language of Dougherty et al. [7], and Aura can-
not model stateful policies. Aura provides logical consistency by separating types from
propositions and excluding arbitrary recursion in proof terms. However, proof terms in
Aura are always programmer-provided. As such, Aura is positioned as an intermedi-
ate language, rather than a source-level language. Fable [21], is another intermediate
language for security verification that uses dependent types. Fable uses a two-principal
module system. FINE’s module system generalizes Fable’s, with support for a lattice of
multiple principals. FINE is also related to λAIR [22], a calculus that targets the enforce-
ment of declassification policies. λAIR’s combination of affine and dependent types does
not lend itself to integration with a solver and it was never implemented.

Refinement types in FINE are related to a similar construct in RCF [1]. Refinement
formulas in RCF are drawn from an unsorted logic, rather than using dependent-type
constructors, as we do. The lack of dependent type constructors in RCF makes it dif-
ficult to derive typeable proof terms, crucial to our goal of a type-preserving compiler
for FINE. Additionally, without dependent type constructors, it appears impossible to
enforce information flow policies in RCF, although RCF’s implementation, F7, does
include dependent type constructors. RCF also lacks support for stateful authorization
policies, although recent work shows how stateful policies can be modeled in F7 using
a refined state monad [3]. However, the soundness of this encoding relies on a trusted
compilation of the program in a linear, store-passing style. FINE’s type system also al-
lows the use of refined state monads, but, as discussed in §2.3, affine types in FINE also
admit other stateful programming idioms.

FINE is also related to hybrid-typed languages that use refinement types, like Sage [9].
Sage uses a trusted external solver to discharge proofs; we extract typeable proof terms
from Z3 rather than trusting it. Another difference is that Sage automatically insert run-
time checks when the solver fails to discharge a proof obligation. Failed runtime checks
can cause subtle leaks of information, so automatic insertion of runtime checks is not
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yet a feature of FINE, where security is the primary concern—we plan to investigate
adding support for automatic policy checking in the future.

Conclusions. This paper has presented FINE, a language for enforcing rich, stateful
authorization and information flow policies. Our experience constructing several refer-
ence monitors provides initial evidence that programming in FINE is practical, due in
part to the use of an automated solver to ease the proof burden, and that FINE can be
used to check the enforcement of security policies commonly applied to software.

Acknowledgments. Thanks to Shriram Krishnamurthi for providing us with a specifi-
cation of CONTINUE’s policy; to Nikolaj Bjørner and Leonardo de Moura for help with
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Abstract. Affine type systems manage resources by preventing some
values from being used more than once. This offers expressiveness and
performance benefits, but difficulty arises in interacting with components
written in a conventional language whose type system provides no way
to maintain the affine type system’s aliasing invariants. We propose and
implement a technique that uses behavioral contracts to mediate between
code written in an affine language and code in a conventional typed
language. We formalize our approach via a typed calculus with both
affine-typed and conventionally-typed modules. We show how to preserve
the guarantees of both type systems despite both languages being able
to call into each other and exchange higher-order values.

1 Introduction

Substructural type systems augment conventional type systems with the ability
to control the number and order of uses of a data structure or operation [20].
Linear type systems [1, 3, 11, 19], for example, ensure that values with linear
type cannot be duplicated or dropped, but must be eliminated exactly once.
Other substructural type systems refine these constraints. Affine type systems,
which we consider here, prevent values from being duplicated but allow them to
be dropped: a value of affine type may be used once or not at all.

Affine types are useful to support language features that rely on avoidance of
aliasing. One example is session types [6], which are a method to represent and
statically check communication protocols. Suppose that the type declared by

typeA prot = (int send → string recv → unit) chan (1)

represents a channel whose protocol allows us to to send an integer, then receive a
string, and finally end the session. Further, suppose that send and recv consume
a channel whose type allows sending or receiving, as appropriate, and return a
channel whose type is advanced to the next step in the protocol. Then we might
write a function that takes two such channels and runs their protocols in parallel:

letA twice (c1 : prot, c2 : prot, z: int): string ⊗ string =
let once (c : prot) ( : unit) =

let c = send c z in
let (s, ) = recv c in s

in (once c1 ) ||| (once c2 ) (2)
∗ Our prototype implementation and the full details of our soundness theorem may

be found at http://www.ccs.neu.edu/~tov/pubs/affine-contracts/.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 550–569, 2010.
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The protocol is followed correctly provided that c1 and c2 are different channels.
Calling twice(c, c, 5), for instance, would violate the protocol. An affine type
system can prevent this.

In addition to session types and other forms of typestate [15], substructural
types have been used for memory management [8], for optimization of lazy lan-
guages [18], and to handle effects in pure languages [2]. Given this range of
features, a programmer may wish to take advantage of substructural types in
real-world programs. Writing real systems, however, often requires access to com-
prehensive libraries, which mainstream programming languages usually provide
but experimental implementations often do not. The prospect of rewriting a large
library to work in a substructural language strikes these authors as unappealing.

It is therefore compelling to allow conventional and substructural languages
to interoperate. We envision complementary scenarios:

– A programmer wishes to import legacy code for use by affine-typed client
code. Unfortunately, legacy code unaware of the substructural conditions
may duplicate values received from the substructural language.

– A programmer wishes to export substructural library code for access from
a conventional language. A client may duplicate values received from the li-
brary and resubmit them, causing aliasing that the library could not produce
on its own and bypassing the substructural type system’s guarantees.

Our Contributions. We present a novel approach to regulating the interaction
between an affine language and a conventionally-typed language and implement
a multi-language system having several notable features:

– The non-affine language may gain access to affine values and may apply
affine-language functions.

– The non-affine type system is utterly standard, making no concessions to
the affine type system.

– And yet, the composite system preserves the affine language’s invariants.

We model the principal features of our implementation in a multi-language cal-
culus that enjoys type soundness. In particular, the conventional language, al-
though it has access to the affine language’s functions and values, cannot be
used to subvert the affine type system.

Our solution is to wrap each exchanged value in a software contract [4], which
uses one bit of state to track when an affine value has been used. While this idea
is simple, the details can be subtle.

Design Rationale and Background. Our multi-language system combines
two sublanguages with different type systems. The C (“conventional”) language
is based on the call-by-value, polymorphic λ calculus [7, 12] with algebraic
datatypes and SML-style abstype [10]. The A (“affine”) language adds affine
types and the ability to declare new abstract affine types, allowing us to imple-
ment affine abstractions such as session types and static read-write locks.
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A program in our language consists of top-level module, value, and type def-
initions, each of which may be written in either of the two sublanguages. (In
the example above (2), the subscripts on typeA and letA indicate the A lan-
guage.) Each language has access to modules written in the other language,
although they view foreign types through a translation into the native type sys-
tem. Affine modules are checked by an affine type system, and non-affine modules
are checked by a conventional type system. Notably, non-functional affine types
appear as abstract types to the conventional type system, which requires no
special knowledge about affine types other than comparing them for equality.

In our introductory example, a protocol violation occurs only if the two argu-
ments to twice are aliases for the same session-typed channel, which the A lan-
guage type system prevents. Problems would arise if we could use the C language
to subvert A language’s type system non-aliasing invariants. To preserve the
safety properties guaranteed by each individual type system and allow the two
sublanguages to invoke one another and exchange values, we need to perform
run-time checks in cases where the non-affine type system is too weak to express
the affine type system’s invariants. Because the affine type system can enforce
all of the conventional type system’s invariants, we may dispense with checks in
the other direction.

For instance, the affine type system guarantees that an affine value created in
an affine module will not be duplicated within the affine sublanguage. If, however,
the value flows into a non-affine module, then static bets are off. In that case,
we resort to a dynamic check that prevents the value from flowing back into an
affine context more than once. Since our language is higher-order, we use a form
of higher-order contract [4] to keep track of each module’s obligations toward
maintaining the affine invariants.

Our approach to integrating affine and conventional types borrows heavily
from recent literature on multi-language interoperability [5, 13]. Our approach
borrows from that of Typed Scheme [16, 17] and of Matthews and Findler [9],
both of which use contracts to mediate between an untyped, Scheme-like lan-
guage and a typed language.

2 Example: Taming the Berkeley Sockets API

The key feature of our system is the ability to write programs that safely mix
code written in an affine-typed language and a conventionally-typed language.
As an example, we develop a small networking library and application, using
both of our sublanguages where appropriate.

The Berkeley sockets API is the standard C language interface to network
communication [14]. Transmission Control Protocol (TCP), which provides re-
liable byte streams, is the standard transport layer protocol used by most in-
ternet applications (e.g., SMTP, HTTP, and SSH). Setting up a TCP session
using Berkeley sockets is a multi-step process (Fig. 1). A client must first create
a communication end-point, called a socket, via the socket system call. It may
optionally select a port to use with bind, and then it establishes a connection
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Fig. 1. States and transitions for TCP (simplified)

moduleCSocket : sig
type socket
val socket : unit → socket (* ∅ ⇒ initial *)
val bind : socket → port → unit (* initial ⇒ bound *)
val listen : socket → unit (* bound ⇒ listening *)
val accept : socket → socket (* listening ⇒ connected ⊗ listening *)
val send : socket → string → bool (* connected ⇒ connected ⊕ closed *)

· · · end

Fig. 2. Selected C language socket operations, annotated with state transitions

with connect. Once a connection is established, the client may send and recv
until either the client or the other side closes the connection.

For a server, the process is more involved: it begins with socket and bind as
the client does, and then it calls listen to allow connection requests to begin
queuing. The server calls accept to accept a connection request. When accept
succeeds, it returns a new socket that is connected to a client, and the old,
listening socket is available for further accept calls. (For simplicity, we omit
error transitions, except for failure of send and recv.)

Our C sublanguage provides the interface to sockets shown in Fig. 2. The
socket operations are annotated with their pre- and post-conditions, but the
implementation detects and signals state errors dynamically. For example, calling
listen on a socket in state initial or calling connect on a socket that is already
connected will raise an exception. If the other side hangs up, send and recv
raise exceptions, but nothing in this interface prevents further communication
attempts that are bound to fail.1

By reimplementing the sockets API in language A , we can use language A ’s
type system to move the state transition information from comments into the
type system itself. For example, we give listen in sublanguage A the type

∀α. α socket → α bound → α listening , (3)

which means that given a socket and evidence that the socket is bound, listen
changes the state to listening and returns evidence to that effect. These evidence
1 This simplifies the Berkeley sockets API by omitting address families, protocols,

half-closed sockets, non-blocking IO, etc., but the stateful essence remains.



554 J.A. Tov and R. Pucella

val socket : unit → ∃α. α socket ⊗ α initial
val bind : ∀α. α socket → port → α initial → α bound
val listen : ∀α. α socket → α bound → α listening
val accept : ∀α. α socket → α listening → (α listening ⊗ ∃β. β socket ⊗ β initial)
val connect : ∀α. α socket → host → port → (α initial ⊕ α bound) → α connected
val send : ∀α. α socket → string → α connected → α connected
val recv : ∀α. α socket → int → α connected → string ⊗ α connected
val close : ∀α. α socket → α connected → unit

Fig. 3. The A language sockets API

tokens are capabilities, and the type parameter on each capability ties it to the
particular socket whose state it describes. These capabilities have affine type so
that when listen consumes the bound capability, we cannot call listen again on
the same socket.

We reimplement the sockets API in language A in terms of the language C
operations. From the vantage of language A , C function types are mapped to
A function types, but the C type Socket.socket is mapped to an opaque type
{Socket.socket}. Type constructor {·} delimits foreign types referenced from the
other sublanguage.

We declare a new abstract type for sockets in language A , along with a type
to represent each of the states:

abstypeA α socket = Sock of {Socket.socket}
and α initial qualifier A = Initial
and α bound qualifier A = Bound
and α listening qualifier A = Listening
and α connected qualifier A = Connected

with · · · (* operations detailed below *) · · · end (4)

Several aspects of this abstype declaration bear further explanation:

– Each type has a phantom parameter α, which is used to associate a socket
with the type witnessing its state.

– The syntax qualifier A on each the state type declares that outside the
abstraction boundary, values of those types will appear as affine. Code inside
the abstype declaration sees that they are ordinary, non-affine data types.

– Because each of the capabilities has only one constructor with no values,
they need not be represented at run time.

The A language sockets interface appears in Fig. 3. The A sockets implemen-
tation relies on delegating to C language functions. From within A , C types
are viewed through a simple translation: function types, quantified types, and a
few base types such as int pass through transparently, whereas other types are
wrapped opaquely as Socket.socket was above. Thus, the type of Socket.socketC
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letA clientLoop[α] (sock : α socket) (f : string → string) (cap: α connected) =
let rec loop (cap: α connected): unit =

let (str, cap) = recv sock 1024 cap in
let cap = send sock (f str) cap in
loop cap

in try loop cap with SocketError → ()

let interface threadFork :> (unit �a unit) → {thread}C = threadForkC

let recA acceptLoop[α] (sock : α socket) (f : string → string) (cap: α listening): unit =
let (cap, Pack(β, (clientsock, clientcap))) = accept sock cap in

threadFork (fun () → clientLoop clientsock f clientcap);
acceptLoop sock f cap

letA echoServe (port: int) (f : string → string) =
let Pack(α, (sock, cap)) = socket () in
let cap = bind sock port cap in
let cap = listen sock cap in

acceptLoop sock f cap

Fig. 4. An echo server in language A

becomes unit → {Socket.socket} when viewed from A . Each A function is a
minimal wrapper around its C counterpart:

letA socket () =
let sock = Socket.socketC () in

in Pack(unit, (Sock[unit] sock, Initial[unit])) as ∃β. β socket ⊗ β initial

letA listen[α] (Sock sock as s: α socket) ( : α bound) =
try Socket.listenC sock ;

Listening[α]
with IOError msg → raise (StillBound (freezeBound s cap, msg)) (5)

For socketA , we call Socket.socketC to create the new socket, which we wrap in
the Sock constructor and pack into an existential with a new initial capability.
(The type abstracted by the existential is immaterial; unit will do.) Function
listenA calls its C counterpart on the socket and returns a listening capabil-
ity tied by α to the socket. On failure, the socket is still in state bound, so it
raises an exception containing the bound capability. The remaining functions
are equally straightforward, but when we’re done, provided we got this trusted
kernel correct, we have an A library that enforces the correct ordering of socket
operations.

Calling the various C socket operations from A is safe because none has a
type that enables it to gain access to an A language value. Other situations are
not as simple. Figure 4 shows an implementation of an echo server in language
A . (The working code is included with our prototype implementation on our web
site.) The server sends back the data it receives from each client after passing it
through an unspecified string → string function f . The main function echoServe
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creates a socket, binds it to the requested port, and begins to listen. The type
system ensures that echoServe performs these operations in the right order, and
because the capabilities have affine types, it disallows referring to any one of them
more then once. Function echoServe calls acceptLoop, which blocks in accept
waiting for clients. For each client, it spawns a thread to handle that client and
continues waiting for another client. Spawning the thread is where the multi-
language interaction becomes tricky.

As in other substructural type systems, A requires that a function be given
a type whose usage (unlimited or affine) is at least as restrictive as any variable
that it closes over. Thus far, we have seen only unlimited function types (→),
also written �u . Language A also has affine function types, written �a .

The new client capability clientcap, returned by accept, has affine type β con-
nected. Because the thunk for the new thread, (fun () → clientLoop clientsock f
clientcap), closes over clientcap, it has affine type as well: unit�a unit. This causes
a problem: To create a new thread, we must pass the thunk to the C function
threadForkC , whose type as viewed from A is (unit → unit) → {thread}C . Such
a type makes no guarantee about how many times threadForkC applies its argu-
ment. In order to pass the affine thunk to it, we assert that threadForkC has the
desired behavior:

let interface threadFork :> (unit �a unit) → {thread}C = threadForkC (6)

This constitutes a checked assertion that the C value actually behaves accord-
ing to the given A type. This gets the program past A ’s type checker, and if
threadForkC attempts to apply its argument twice at run time, a dynamic check
prevents it from doing so and signals an error.

The two sublanguages can interact in other ways:

– We may call echoServeA from the C language, passing it a C function for f .
This is safe because function f has type string → string, and thus can never
gain access to an affine value.

– We may use the A language sockets library from a C program:

letC sneaky () =
let Pack(α, (sock, cap1)) = socketA () in
let cap2 = connectA sock "sneaky.example.org" 25 cap1 in
let cap3 = connectA sock "sneaky2.example.org" 25 cap1 in

· · · (7)

This program passes C ’s type checker but is caught when it attempts to
reuse the initial capability cap1 at run time. This misbehavior is detected
because sneaky ’s interaction with A is mediated by a behavioral contract.

3 Implementing Stateful Contracts

In Findler and Felleisen’s formulation [4], a contract is an agreement between two
software components, or parties, about some property of a value. The positive
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party produces a value, which must satisfy the specified property. The negative
party consumes the value and is held responsible for treating it appropriately.
Contracts are concerned with catching violations of the property and blaming
the guilty party, which may help locate the source of a bug. For first-order
values the contract may be immediately checkable, but for functional values
nontrivial properties are undecidable, so the check must wait until the negative
party applies the function, at which point the negative party is responsible for
providing a suitable argument and the positive party for producing a suitable
result. Thus, for higher-order functions, checks are delayed until first-order values
are reached.

In our language, the parties to contracts are modules, which must be in en-
tirely one language or the other, and top-level functions, which we consider as
singleton modules.

Contracts on first-order values check assertions about their arguments, and
either return the argument or signal an error. Contracts on functions return
functions that defer checking until first-order values are reached. The result of
applying a contract should contextually approximate the argument. We represent
a contract for a type α as a function taking two parties and a value of type α,
and returning a value of the same type α:

type α contract = party × party → α → α (8)

A simple contract might assert something about a first-order value:

let evenContract (neg : party, pos: party) (x : int) =
if isEven x then x else blame pos (9)

The contract is instantiated with the identities of the contracted parties, and
then may be applied to a value. We may also construct contracts for functional
values, given contracts for the domain and codomain:

let makeFunctionContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α → β) =

fun (x : α) → codom (neg, pos) (f (dom (pos, neg) x)) (10)

When this contract is applied to a function, it can perform no checks immedi-
ately. Instead, it wraps the function so that, when the resulting function is ap-
plied, the domain contract is applied to the actual parameter and the codomain
contract to the actual result.

We follow this approach closely, but with one small change—contracts for
affine functions are stateful:

let makeAffineFunContract[α, β] (dom: α contract, codom: β contract)
(neg : party, pos: party) (f : α → β) =

let stillGood = ref true in
fun (x : α) →

if ! stillGood
then stillGood ← false;

codom (neg, pos) (f (dom (pos, neg) x))
else blame neg (11)
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This approach works for functions because we can wrap a function to modify its
behavior. But what about for other affine values such as the socket capabilities
in Sect. 2? We must consider how non-functional values move between the two
sublanguages.

In order to understand the solution, we need to show in greater detail how
types are mapped between the two sublanguages. (The rest of the type system
appears in the next section.) We define mappings (·)A and (·)C from C types
to A types and A types to C types, respectively. Base types such as int and
bool, which may be duplicated without restriction in both languages, map to
themselves:

(B)A = B (B)C = B (12)

Function types convert to function types. C function types go to unlimited func-
tions in A , and both unlimited and affine A functions collapse to ordinary (→)
functions in C (where q ranges over a and u):

(τ1 → τ2)A = (τ2)A �u (τ2)A (σ1 �q σ2)C = (σ1)C → (σ2)C (13)

Quantified types map to quantified types, but they require renaming because
we distinguish type variables between the two languages. In particular, A lan-
guage type variables carry usage qualifiers, which indicate whether they may be
instantiated to any type or only to unlimited types. (All type variables in Sect. 2
were of the u kind.)

(∀α. τ)A = ∀βu. (τ1[{βu}/α])A (∀αq. σ)C = ∀β. (σ1[{β}/αq])C (14)

Finally, the remaining types are uninterpreted by the mapping, and merely en-
closed in {·}:

(τo)A = {τo}, otherwise (σo)C = {σo}, otherwise (15)

Values in this class of types are inert: they have no available operations other
than passing them back to their native sublanguage, which removes the {·}. (We
take {{τ}} to be equivalent to τ .)

This mapping implies that all non-functional, affine types in A map to opaque
types in C .2 Since all that the C language can do with values of opaque type
is pass them back to A , we are free to wrap such values when they flow into
C and unwrap them when they return to A . Specifically, when an affine value
v passes into C , we wrap it in a λ abstraction, fun ( : unit) → v , and wrap
that thunk with an affine function contract. If the wrapped value flows back into

2 Opaque types may seem limiting, but Matthews and Findler [9] have shown that it is
possible, in what they call the “lump embedding,” for each sublanguage to marshal
its opaque values for the other sublanguage as desired. In practice, this amounts to
exporting a fold to the other sublanguage.
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CA �int�(n, p) = id

CA �σ1 �u σ2�(n, p) = makeFunctionContract (A C �σ1�, CA �σ2�) (n, p)

CA �σ1 �a σ2�(n, p) = makeAffineFunContract (A C �σ1�, CA �σ2�) (n, p)

CA �σo�(n, p) = fun (v : σo) → makeAffineFunContract (if σo is

(id, id) (n, p) (fun () → v) affine)

A C �int�(n, p) = id

A C �σ1�q σ2�(n, p) = makeFunctionContract (CA �σ1�, A C �σ2�) (n, p)

A C �σo�(n, p) = fun (v : unit → σo) → v () (if σo is affine)

Fig. 5. Type-directed generation of coercions

A , we unwrap it by applying the thunk, which produces a contract error if we
attempt unwrapping it more than once.

After type checking, our implementation translates A modules to C and
wraps all interlanguage variable references with contracts that enforce the A
language’s view of the variable. In Fig. 5, we show several cases from a pair of
metafunctions A C �·� and CA �·�, which perform this wrapping. Metafunction
A C �·� produces the coercion for references to C values from A , and CA �·� is for
references to A values from C . Our formalization does not use this translation,
but gives a semantics to the multi-language system directly.

4 Formalization

We model our language with a pair of calculi corresponding to the two sublan-
guages in the implementation. In this section, we first describe the two calculi
independently, and then move on to explain how they interact.

To distinguish the two calculi, we typeset our affine calculus λA in a sans-serif
font and our non-affine calculus λC in a bold serif font.

4.1 The Calculi λA and λC

We model sublanguage C with calculus λC , which is merely call-by-value Sys-
tem F [7] equipped with singleton modules, each of which for simplicity declares
only one name bound to one value. The syntax of λC appears in Fig. 6, including
module names, which are disjoint from variable names. We include integer liter-
als, which serve as first-order values that should pass transparently into the affine
subcalculus. A program comprises a mutually recursive collection of modules M
and a main expression e. We give only the semantics relevant to modules, as the
rest is standard. The expression typing judgment has the form Δ;Γ �M

C e : ττττ ,
and it carries a module context M , which rule TC-Mod uses to type module
expressions. To type a program, we must type each module with rule TM-C;
note that the whole module context is available to each module, allowing for



560 J.A. Tov and R. Pucella

variables x,y ∈ VarC

type variables αααα, ββββ ∈ TVarC

module names f , g ∈ MVarC

programs P ::= M e
module contexts M ::= m1 . . .mk

modules m ::= module f : ττττ = v

types ττττ ::= ∀αααα. ττττ | αααα
| ττττ → ττττ | int

expressions e ::= x | f | e[ττττ ] | e e
| Λαααα.v | ����z���� | · · ·

TC-Mod

module f : ττττ = v ∈M · �C ττττ

Δ;Γ �M
C f : ττττ

TM-C

·; · �M
C v : ττττ

�M module f : ττττ = v okay

C-Mod

(module f : ττττ = v) ∈ M

f �−→
M

v

Fig. 6. Selected syntax and semantics of λC

recursion. Finally, C-Mod shows that module names reduce to the value of the
module.

We model sublanguage A with calculus λA , which extends λC with affine
types. While λA includes all of λC , we choose not to embed λC in λA to empha-
size the generality of our approach, anticipating conventional language features
that we do not know how to type in an affine language. The syntax of λA may be
found in Fig. 7. Expressions are mostly conventional: values, which include λ and
Λ abstractions, constants, and pairs; variables; application and type application;
if expressions; pair construction; and pair elimination. Less conventionally, ex-
pressions also include module names (f), which reduce to the value of the named
module. We define the free variables of an expression in the usual way, but note
that this includes only regular variables (e.g., y), not module names (e.g., g),
which we assume are distinguished syntactically.

Types include integers, function types with qualifier q, universals, and the
syntactically distinguished opaque types, which include type variables, products,
and reference cells. Figure 8 defines a lattice on qualifiers, of which there are
only two: u is bottom and a is top. A qualifier is assigned to each type, with the
notation |σ| = q. Integers are always assigned the unlimited qualifier u, whereas
references always have the affine qualifier a. Function types and type variables
are annotated with their qualifiers, and products get the stronger qualifier of
either of their components. We define the qualifier of a value context Γ as well,
to be the maximum qualifier of any type bound in it; in other words, Γ is affine
if any variable is affine, but if none is then it is unlimited.

The subtyping relation appears in Fig. 8. It is reflexive and transitive, co-
variant on both pair components and function codomains, and contravariant on
function domains, as usual. Subtyping arises from the qualifier lattice in two
ways: an unlimited function may be used where an affine function is expected
(but not vice versa), and a universal type whose bound variable has qualifier a
may be instantiated by a type with qualifier u (but not vice versa).

Figure 8 defines context splitting, which is used by expression typing to dis-
tribute affine assumptions to only one use in a term, but unlimited variables to
an unlimited number of mentions. When a value context must be split to type
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variables x, y ∈ VarA

qualifiers q ∈ {a, u}
type variables αq, βq ∈ TVarA

module names f, g ∈ MVarA

modules m ::= module f : σ = v
types σ ::= int | σ �q σ | ∀αq. σ | σo

opaque types σo ::= α | σ ⊗ σ | σ ref
expressions e ::= v | x | f | e e | e[σ] | if0 e e e

| 〈e, e〉 | let 〈x, x〉 = e in e
values v ::= c | λx:σ.e | Λαq. v | 〈v, v〉

constants c ::= new[σ] | swap[σ][σ] | �z� | − | (z−) | · · ·
value contexts Γ ::= · | Γ, x:σ
type contexts Δ ::= · | Δ, αq

Fig. 7. Syntax of λA

q  q , |τ | = q , |Γ| = q

u  q q  a |int| = u |σ1 �q σ2| = q |∀αq. σ| = |σ| |αq| = q

|σ1 ⊗ σ2| = |σ1| � |σ2| |σ ref | = a |Γ| =
⊔

x∈dom(Γ)

|Γ(x)|

σ <: σ

S-Refl

σ <: σ

S-Trans

σ1 <: σ2 σ2 <: σ3

σ1 <: σ3

S-Prod

σ1 <: σ′
1 σ2 <: σ′

2

σ1 ⊗ σ2 <: σ′
1 ⊗ σ′

2

S-Arrow

σ′
1 <: σ1 σ2 <: σ′

2 q  q′

σ1 �q σ2 <: σ′
1 �q

′
σ′

2

S-Forall

q2  q1 σ1[βq2/αq1 ] <: σ2

∀αq1 . σ1 <: ∀βq2 . σ2

Γ � Γ = Γ

·� · = ·
Γ1 � Γ2 = Γ3 |σ| = a

Γ1 � Γ2, x:σ = Γ3, x:σ
Γ1 � Γ2 = Γ3 |σ| = a

Γ1, x:σ � Γ2 = Γ3, x:σ

Γ1 � Γ2 = Γ3 |σ| = u

Γ1, x:σ � Γ2, x:σ = Γ3, x:σ

Fig. 8. Statics of λA (qualifiers, subtyping, contexts)
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Δ; Γ �M
A e : σ

TA-Subsume

Δ; Γ �M
A e : σ σ <: σ′

Δ; Γ �M
A e : σ′

TA-Lam

Δ; Γ, x : σ �M
A e : σ′ Δ �A σ

∣∣Γ|FV(λx:σ. e)

∣∣ = q

Δ; Γ �M
A λx:σ. e : σ �q σ′

TA-TApp

Δ; Γ �M
A e : ∀αq. σ′ Δ �A σ |σ|  q

Δ; Γ �M
A e[σ] : σ′[σ/αq]

TA-App

Δ; Γ1 �M
A e1 : σ′ �q σ Δ; Γ2 �M

A e2 : σ′

Δ; Γ1 � Γ2 �M
A e1 e2 : σ

TA-Mod

module f : σ = v ∈M · �A σ

Δ; Γ �M
A f : σ

TA-New

Δ; Γ �M
A new[σ] : σ �u σ ref

TA-Swap

Δ; Γ �M
A swap[σ1][σ2] : (σ1 ref ⊗ σ2) �u (σ1 ⊗ σ2 ref)

Fig. 9. Statics of λA (selected expressions)

locations � ∈ Loc
values v ::= · · · | �
stores s ::= {� �→ v, . . . , � �→ v}

configurations C ::= (s, e)
evaluation contexts E ::= [ ]A | E[σ] | E e | v E | 〈E, e〉 | 〈v, E〉 | · · ·

C �−→M C

(A-New) (s, new[σ] v) �−→
M

(s , {� �→ v}, �)
(A-Swap) (s , {� �→ v1}, swap[σ1][σ2] 〈�, v2〉) �−→

M
(s , {� �→ v2}, 〈v1, �〉)

Fig. 10. Dynamics of λA (selected rules)

two subexpressions, in an application expression, for example (Fig. 9), variables
of affine type are made available to either the operator or operand, but not both.

Selected expression typing rules appear in Fig. 9. Rules TA-Lam and TA-

App are the usual substructural rules for typing λ expressions and applications:
for λ expressions, the qualifier q given to the resulting�q type is the qualifier of
the context Γ limited to the free variables of the expression; thus, the function
is at least as restricted as any values it closes over. The type application rule
TA-TApp requires that a type variable be at least as restrictive as any type
with which it is instantiated.

Finally, rule TA-Swap takes a pair of a σ1 reference and a σ2, and returns a
σ1 and a σ2 reference. From the operational semantics, a small selection of which
appears in Fig. 10, it should be clear that swap swaps the σ2 argument into the
location and returns the value previously in the location. Since TA-Swap does
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programs P ::= M e
module contexts M ::= m1 . . . mk

modules m ::= m | m
| interface f :> σ = g

λC expressions e ::= · · · | fg

λC types ττττ ::= · · · | {σ}
λA expressions e ::= · · · | f g

λA types σ ::= · · · | {ττττ}

Fig. 11. New syntax for λA
C

� P : ττττ , �M m okay

Prog

∀m ∈ M,�M m okay ·; · �M
C e : ττττ

� M e : ττττ

TM-I

(module g : (σ)C = v) ∈ M |σ| = u

�M interface f :> σ = g okay

Δ;Γ �M
C e : ττττ , Δ; Γ �M

A e : σ

TA-ModC

(module f : ττττ = v) ∈ M · �C ττττ

Δ; Γ �M
A f : (ττττ)A

TC-ModA

(module f : σ = v) ∈ M · �A σ

Δ;Γ �M
C f : (σ)C

TA-ModI

(interface f :> σ = g) ∈M · �A σ

Δ; Γ �M
A f : σ

Fig. 12. New statics for λA
C

not require these two types to be the same, swap performs a strong update—
that is, it may change the type of the value residing in a reference cell. This is
why the qualifier given to references must be a: if a reference is aliased, then it
becomes possible to observe the type change in a way the destroys type safety.
This feature of the calculus is a stand-in for the variety of invariants that an
affine type system might enforce. In the mixed calculus, λC may gain access to
λA references. It has no operations available to read or write them, but it must
be prevented from passing an aliased reference cell back into λA where it can
cause trouble.

4.2 Mixing It up with λA
C

The primary aim of this work is to construct (type-safe) programs by mixing
modules written in an affine language and modules written in a non-affine lan-
guage, and to have them interoperate as seamlessly as possible. We can then
model an affine program calling into a library written in a legacy language, or
a conventional program calling into code written in an affine language. In ei-
ther case, we must ensure that the non-affine portions of the program do not
break the affine portions’ invariants. As noted in Sect. 3, we accomplish this via
run-time checks in the style of higher-order contracts [4].
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The additional syntax for mixed programs is in Fig. 11. The main expression
in a mixed program is in subcalculus λC . Modules now include λA modules, λC

modules, and interface modules, which are used to assert a λA type about a λC

module as we saw in Sect. 2.
We add to each subcalculus’s expressions a production referring to modules

from the other subcalculus. We decorate each such module name with the name
of the module in which it appears (e.g., fg for a reference to λC module f from
λA module g) and use this name as the negative party in contracts regulating
the intercalculus boundary, in order to assign blame.

Static Semantics. The type system for the mixed calculus is the union of the
type systems for λA and λC (Figs. 6, 8, and 9), along with additional typing
rules (Fig. 12) for λA module invocations in λC expressions and λC module
invocations in λA expressions.

Rule TC-ModA (Fig. 12) types occurrences of λA module names in λC expres-
sions. The rule uses the type conversion function (·)C , defined in Sect. 3 (p. 558) to
give a λC type to the λA module invocation. Because λA types are richer than λC

types—λA function types carry extra information in the qualifier—the conversion
loses information, which may need to be recovered through dynamic checks. For
example, given a λA module g with type int�u int�a int, the conversion rule as-
signs it the λC type int → int → int. Calculus λC ’s type system cannot enforce
that the result of applying g be applied at most once, which will need to be checked
at run time.

For a λC module with type ττττ invoked from a λA expression, we use the module
at type (ττττ)A . It would be reasonable for TA-ModC to give it any λA type in
the pre-image of the λA -to-λC mapping, but (·)A makes the most permissive,
statically safe choice, which is to map all λC arrows (→) to the unlimited λA

arrow (�u ). Consider:

– If f : int → int in λC , then int �u int is the right type in λA . There is no
reason to limit f to an affine function type, because λC does not impose that
requirement, and subtyping allows us to use it at int�a int, if necessary.

– If f : (int → int) → int in λC , then (int �u int) �u int will allow the
imported function to be passed unlimited functions but not affine functions.
This is a safe choice, because λC ’s type system does not tell us whether f
may call its argument more than once.

In the latter case, what if the programmer somehow knows that function f applies
its argument at most once, as in the example of threadForkC (p. 556)? It should
not violate λA ’s invariants to pass an affine function to threadForkC , but λA

cannot know this. Therefore, rule TA-ModC gives λC modules a conservative
λA type that requires no run-time checks. We can use an interface module to
coerce a λC module’s type ττττ to a more permissive λA type in the pre-image of
ττττ , and this, too, requires a dynamic check.

Operational Semantics. We extend the syntax of our mixed language with
several new forms (Fig. 13). Whereas our source syntax segregates the two sub-
calculi into separate modules, module invocation reduces to the body of the
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module, which leads expressions of both subcalculi to nest at run time. Rather
than allow λA terms to appear directly in λC , and vice versa, we need a way
to cordon off terms from one calculus embedded in the other and to ensure that
the interaction is well-behaved. We call these new expression forms boundaries.

The new run-time syntax includes both boundary expressions σ
f ACg(e) for em-

bedding λC expressions in λA and boundary expressions fCAσ
g (e) for embedding

λA expressions in λC . Each of these forms has a superscript σ, written on the
λA side, which represents a contract between the two modules that gave rise
to the nested expression. Some contracts, for example int, are fully enforced by
both type systems. Other contracts, such as int�a int, require dynamic checks.
The type system guarantees that such a function receives and returns only in-
tegers, but this type also imposes an obligation on the negative party to apply
the function at most once, which the λC type system alone does not enforce.

The right subscript of a boundary is a module name in the inner subcalculus,
representing the positive party to the contract: It promises that if the enclosed
subexpression reduces to a value, then the value will obey contract σ. The left
subscript is the negative party, which promises to treat the resulting value prop-
erly. In particular, if the contract is affine, then the negative party promises to
use the resulting value at most once.

Boundaries first arise when a module in one calculus refers to a module in
the other calculus. When the name of a λC module appears in a λA term, A-

ModC wraps the module name with an AC boundary, using the λA -conversion
of the module’s type ττττ as the contract. For interface modules, the contract is as
declared by the interface, and the name of the interface is the positive party (A-

ModI). From the other direction, a λA module invoked from a λC expression
is wrapped in a CA boundary by rule C-ModA.

We add evaluation contexts for reduction under boundaries, which means it
is now possible to construct a λC evaluation context with a λA hole, and vice
versa. If the expression under a boundary reduces to a value, it is time to apply
the boundary’s contract to the value. There are three possibilities:

– Some values, such as integers, always satisfy the contract, so the boundary
is discarded.

– Functional values and opaque affine values must have their checks deferred:
functions until application time, and opaque values until they pass back
into their original subcalculus. For deferred checks, we leave the value in a
“sealed” boundary, fCA[�]σg (v) or σ

f AC[ ]g(v), which is itself a value form.
– When a previously sealed opaque value reaches a boundary back to its origi-

nal subcalculus, both that boundary and the sealed boundary are discarded.

Rule C-Wrap implements contract application for λA values embedded in λC

expressions, as indicated by metafunction coerceC . The first case of coerceC han-
dles immediate checks, and its second case unseals previously sealed λC values
that have returned home. The second case of coerceC seals and blesses a λA

value, by allocating a location �, to which it stores a distinguished value blssd;
it adds this location to the boundary, which marks the sealed value as not yet
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λC terms e ::= · · · | CA
f f

σ(e)

λC values v ::= · · · | CA
f f

[�]σ(v)

λC eval. cxts. E ::= · · · | CA
f f

σ(E)

λA terms e ::= · · · | σ AC
f f

(e)

λA values v ::= · · · | σ AC
f f

[ ](v)

λA eval. cxts. E ::= · · · | σ AC
f f

(E)

configurations C ::= (s, e) | blame f

answers A ::= (s,v) | blame f

stores s ::= {} | s , {� �→ v} | s , {� �→ v}

(C-ModA) (s, fg) �−→
M

(s, CA
g f

σ(f)) (module f : σ = v) ∈ M

(A-ModC) (s, f g) �−→
M

(s, (ττττ)A

AC
g f

(f)) (module f : ττττ = v) ∈ M

(A-ModI) (s, f g) �−→
M

(s, σ AC
g f

`
f ′

´
) (interface f :> σ = f ′) ∈ M

(C-Wrap) (s, CA
f g

σ(v)) �−→
M

coerceC (s, σ, v, f , g)

(A-Wrap) (s, σ AC
f g

(v)) �−→
M

coerceA (s, σ,v, f,g)

(C-B-A) (s, CA
f g

[�]∀αq.σ(v)[ττττ ]) �−→
M

check(s, �, |σ|, CA
f g

σ[(ττττ)A /αq]
“
v[(ττττ)A ]

”
, f)

(C-β-A) (s, CA
f g

[�]σ1�q σ2(v1) v2) �−→
M

check(s, �, q, CA
f g

σ2

„
v1

σ1 AC
g f

(v2)
«

, f)

(A-B-C) (s, ∀αq.σ AC
f g

[ ](v)[σa]) �−→
M

(s, σ[σa/αq] AC
f g

“
v[(σa)C ]

”
)

(A-β-C) (s, σ1�q σ2 AC
f g

[ ](v1) v2) �−→
M

(s, σ2 AC
f g

„
v1 CA

g f

σ1(v2)
«

)

coerceC (s, σ, v, f , g) =

8>><>>:
(s, ����z����) if v = �z�
(s,v′) if v = {ττττo}

g′ AC[ ]f ′(v
′)

(s , {� �→ blssd}, CA
f g

[�]σ(v)) otherwise

coerceA (s, σ,v, f,g) =

8>><>>:
(s, �z�) if v = ����z����
check(s, �, |σo|, v′,g′) if v = g′CA[�]σ

o

f′ (v′)
(s, σ AC

f g
[ ](v)) otherwise

check(s, �, q, e, f) =

8><>:
(s, e) if q = u

(s′ , {� �→ dfnct}, e) if s = s′ , {� �→ blssd}
(s,blame f) otherwise

Fig. 13. Dynamics of λA
C (run-time syntax and reduction rules)
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used. This corresponds directly to the reference cell allocated by makeAffineFun-
Contract in Sect. 3.

Rule A-Wrap implements contracts for λC values in λA expressions. Meta-
function coerceA ’s first case is the same as coerceC ’s, and the third case seals a
value for deferred checking; it need not allocate a location to track the usage of a
λC value. The third case unseals a previously sealed λA value on its way back to
λA , and this requires checking that an affine value has not been previously un-
sealed. This step is specified by metafunction check , which also has three cases.
Unlimited values are unsealed with no check. If an affine value remains blessed,
check updates the store to mark it “defunct” and returns the unsealed value. If,
on the other hand, there is an attempt to unseal a defunct affine value, check
blames the negative party. This is the key dynamic check that enforces the affine
invariant for non-functional values.

Rules C-B-A, C-β-A, A-B-C, and A-β-C all handle sealed abstractions,
which are unsealed when they are applied. For sealed λA abstractions, the seal
location � must be checked, to ensure that an affine function or type abstraction
is not unsealed and applied more than once. This is the dynamic check that
enforces the affine invariant for functions.

Type Soundness. The presence of strong updates means that aliasing a loca-
tion can result in a program getting “stuck”: if an aliased location is updated
at a different type, reading from the alias produces a value of unexpected type.
Calculus λA ’s type system prevents this, but adding λC means that a λA value
may be aliased outside λA . Our soundness criterion is that no program that
gets stuck is assigned a type. In particular, all aliasing of affine values is either
prevented by λA ’s type system or detected by a contract at run time.

In order to prove a Wright-Felleisen–style type soundness theorem [21], we
identify precisely what property is preserved by subject reduction. We use an
internal type system to track which portions of the store are reachable from
λA values that have flowed into λC . Under this type system, configurations
enjoy standard progress and preservation, which allows us to state and prove a
syntactic type soundness theorem using the internal type system’s configuration
typing judgment �M C : ττττ :

Theorem (Type Soundness). If � M e : ττττ and ({}, e) �−→M
∗ C such that

configuration C cannot take another step, then C is an answer with �M C : ττττ .

Our full formalization, including complete definitions of the calculi and proofs,
is available at http://www.ccs.neu.edu/~tov/pubs/affine-contracts/.

5 Conclusion

Our work is part of an ongoing program to investigate practical aspects of sub-
structural type systems, and this paper describes one step in that program.
Here, we have focused on the problem of interaction between substructural and
non-substructural code, each governed by its own type system, and explored the

http://www.ccs.neu.edu/~tov/pubs/affine-contracts/
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use of higher-order contracts to prevent the conventional language from break-
ing the substructural language’s invariants. Our answer to the problem at hand
naturally raises more questions.

Exceptions. In a production language with a contract system, contract vio-
lations should not always terminate the program. Real programs may catch an
exception and either try to mitigate the condition that caused it, try something
easier instead, or report an error and go on with some other task. To ensure
soundness, it suffices to prevent the questionable actions from occurring.

On one hand, we believe that ML-style exceptions should not provide too
much difficulty in an affine setting. In our prototype, try-with expressions are
multiplicative, in the sense that the type environment needs to be split between
an expression and its exception handler, not given in whole to both.

On the other hand, we do not know how exceptions or any sort of blame might
work in a linear setting—this is one reason why we chose an affine calculus.
Terminating the program is problematic because of the implicit discarding of
linear values, but catching an exception once part of a continuation containing
linear values has been discarded seems even worse. Exceptions in linear languages
remain an open question.

Linearity. Our work emphasizes contract-based interaction with affine type sys-
tems rather than linear type systems because it remains unclear to us what linear
contracts ought to mean. We may want a conventional language to interoperate
with a language that (at least sometimes) prohibits discarding values. However,
unlike affine guarantees, which are safety properties, relevance guarantees—that
a value is used at some point in the future—are a form of liveness property.

One approximation is to consider a contract representing a relevance guar-
antee to be violated if at any point we can determine that the contract nec-
essarily will be violated. Detecting the violation of such a liveness property is
undecidable in general, but tracing garbage collection approximates a liveness
property very close to the one we desire. In an idealized semantics, we might
garbage collect the store after each reduction step and signal a violation if the
seal location of a not-yet-used linear value has become unreachable. In a real im-
plementation, finalizers on linear values could detect discarding. If we detect a
violation, we probably could do nothing to prevent it, but at worst we could file a
bug report.

Our work suggests that adding substructural libraries to a conventional pro-
gramming language such as ML does not require a particularly complicated
implementation, and our results yield a realistic contract-based design.
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8. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A safe dialect of C. In: Proc. USENIX Annual Technical Conference (2002)

9. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: POPL 2007, vol. 42, pp. 3–10. ACM, New York (2007)

10. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML,
revised edn. MIT, Cambridge (1997)

11. Plotkin, G.: Type theory and recursion. In: LICS 1993, p. 374. IEEE Computer
Society, Los Alamitos (1993)

12. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Program-
ming Symposium. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)

13. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Workshop on
Scheme and Functional Programming, pp. 81–92. ACM, New York (2006)

14. Stevens, W.R.: UNIX Network programming. Prentice-Hall, New Jersey (1990)
15. Strom, R., Yemini, S.: Typestate: A programming language concept for enhancing

software reliability. IEEE Transactions on Software Engineering 12(1) (1986)
16. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to pro-

grams. In: OOPSLA 2006, pp. 964–974. ACM, New York (2006)
17. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed

Scheme. In: POPL 2007, pp. 395–406. ACM, New York (2008)
18. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: FPCA 1995, pp. 1–11.

ACM, New York (1995)
19. Wadler, P.: Linear types can change the world. In: Programming Concepts and

Methods. In: Programming Concepts and Methods, pp. 347–359. North Holland,
Amsterdam (1990)

20. Walker, D.: Substructural type systems. In: Pierce, B.C. (ed.) Advanced Topics in
Types and Programming Languages, ch. 1, pp. 3–44. MIT, Cambridge (2005)

21. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (1994)
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to Control-Flow Analysis
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Abstract. In a functional language, the dominant control-flow mecha-
nism is function call and return. Most higher-order flow analyses, includ-
ing k -CFA, do not handle call and return well: they remember only a
bounded number of pending calls because they approximate programs
with control-flow graphs. Call/return mismatch introduces precision-
degrading spurious control-flow paths and increases the analysis time.

We describe CFA2, the first flow analysis with precise call/return
matching in the presence of higher-order functions and tail calls. We for-
mulate CFA2 as an abstract interpretation of programs in continuation-
passing style and describe a sound and complete summarization
algorithm for our abstract semantics. A preliminary evaluation shows
that CFA2 gives more accurate data-flow information than 0CFA and
1CFA.

1 Introduction

Higher-order functional programs can be analyzed using analyses such as the
k -CFA family [1]. These algorithms approximate the valid control-flow paths
through the program as the set of all paths through a finite graph of abstract
machine states, where each state represents a program point plus some amount
of abstracted environment and control context.

In fact, this is not a particularly tight approximation. The set of paths through
a finite graph is a regular language. However, the execution traces produced by
recursive function calls are strings in a context-free language. Approximating
this control flow with regular-language techniques permits execution paths that
do not properly match calls with returns. This is particularly harmful when
analyzing higher-order languages, since flowing functional values down these
spurious paths can give rise to further “phantom” control-flow structure, along
which functional values can then flow, and so forth, in a destructive spiral that
not only degrades precision but drives up the cost of the analysis.

Pushdown models of programs can match an unbounded number of calls and
returns, tightening up the set of possible executions to strings in a context-free
language. Such models have long been used for first-order languages. The func-
tional approach of Sharir and Pnueli [2] computes transfer-functions for whole
procedures by composing transfer-functions of their basic blocks. Then, at a call-
node these functions are used to compute the data-flow value of the correspond-
ing return-node directly. This “summary-based” technique has seen widespread

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 570–589, 2010.
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use [3, 4]. Other pushdown models include Recursive State Machines [5] and
Pushdown Systems [6].

In this paper, we propose CFA2, a pushdown model of higher-order programs.
Our contributions can be summarized as follows:

– CFA2 is a flow analysis with precise call/return matching that can be used in
the compilation of both typed and untyped languages. No existing analysis
for functional languages enjoys all of these properties. k -CFA and its variants
do not provide call/return matching (section 3.1). Rehof and Fähndrich’s
analysis [7] supports limited call/return matching and applies to typed lan-
guages only (section 7).

– CFA2 uses a stack and a heap for variable binding. Variable references are
looked up in one or the other, depending on where they appear in the source
code. As it turns out, most references in typical programs are read from
the stack, which results in significant precision gains. Also, CFA2 can filter
certain bindings off the stack to sharpen precision (section 4). k -CFA with
abstract garbage collection [8] cannot infer that it is safe to remove these
bindings. Last, the stack makes CFA2 resilient to syntax changes like η-
expansion. It is well known that k -CFA is sensitive to such changes [9, 10].

– We formulate CFA2 as an abstract interpretation of programs in continuation-
passing style (CPS). The abstract semantics uses a stack of unbounded height.
Hence, the abstract state space is infinite, unlike k -CFA. To analyze the state
space, we extend the tabulation algorithm of Reps et al. [3]. The resulting
algorithm is a search-based variant of summarization that can handle higher-
order functions and tail recursion. Currently, CFA2 does not handle first-class-
control operators such as call/cc (section 5).

– We have implemented 0CFA, 1CFA and CFA2 in the Twobit Scheme com-
piler [11]. Our experimental results show that CFA2 is more precise than
0CFA and 1CFA. Also, CFA2 usually visits a smaller state space (section 6).

2 Preliminary Definitions and Notational Conventions

We begin with a description of our CPS language and its small-step semantics.
For brevity, we develop the theory of CFA2 in the untyped λ-calculus. Primi-
tive data, explicit recursion and side-effects can be easily added using standard
techniques [1, ch. 3] [12, ch. 9]. Compilers that use CPS [13,14] usually partition
the terms in a program in two disjoint sets, the user and the continuation set,
and treat user terms differently from continuation terms.

We adopt this partitioning for our language (Fig. 1). Variables, lambdas and
calls are given labels from ULab or CLab. Labels are pairwise distinct. User
lambdas take a user argument and the current continuation; continuation lamb-
das take only a user argument. We apply an additional syntactic constraint: the
only continuation variable that can appear free in the body of a user lambda
(λl(u k) call) is k. This simple constraint forbids first-class control [15]. Intu-
itively, we get such a program by CPS-converting a direct-style program without
call/cc. We refer to this variant of CPS as “Restricted CPS” (RCPS).
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v ∈ Var = UVar + CVar
u ∈ UVar = a set of identifiers
k ∈ CVar = a set of identifiers
ψ ∈ Lab = ULab + CLab

l ∈ ULab = a set of labels
γ ∈ CLab = a set of labels

lam ∈ Lam = ULam + CLam
ulam ∈ ULam ::= (λl(u k) call)

clam ∈ CLam ::= (λγ(u) call)
call ∈ Call = UCall + CCall

ucall ∈ UCall ::= (f e q)l

ccall ∈ CCall ::= (q e)γ

g ∈ Exp = UExp + CExp
f, e ∈ UExp = ULam + UVar

q ∈ CExp = CLam + CVar
pr ∈ Program ::= ULam

Fig. 1. Partitioned CPS

We assume that all variables in a program have distinct names. Concrete
syntax enclosed in [[·]] denotes an item of abstract syntax. Functions with a ‘?’
subscript are predicates, e.g., Var?(e) returns true if e is a variable and false
otherwise. Labels can be split into disjoint sets according to the innermost user
lambda that contains them. For example, in the following program, which has
three user lambdas, these sets are {1, 6, 4, 8}, {2, 9, 5, 10} and {3, 7}.

(λ1(u1 k1) 6((λ2(u2 k2) 9((λ5(u5) 10(k2 u1)) u2))
(λ3(u3 k3) 7(k3 u3))
(λ4(u4) 8(k1 u4))))

The “label to variable” map LV (ψ) returns all the variables bound by any
lambdas that belong in the same set as ψ, e.g., LV (8) = {u1, k1, u4} and
LV (5) = {u2, k2, u5}. We use this map to model stack behavior, because all
the continuation lambdas that “belong” to a given user lambda λl get closed by
extending λl’s stack frame (cf. section 4). Notice that, for any ψ, LV (ψ) contains
exactly one continuation variable.

We use two notations for tuples, (e1, . . . , en) and 〈e1, . . . , en〉, to avoid confu-
sion when tuples are deeply nested. We use the latter for lists as well; ambiguities
will be resolved by the context. Lists are also described by a head-tail notation,
e.g., 3 :: 〈1, 3,−47〉.

The semantics of RCPS appears in Fig. 2. Execution traces alternate between
Eval and Apply states. At an Eval state, we evaluate the subexpressions of a
call site before performing a call. At an Apply state, we perform the call.

The last component of each state is a time, which is a sequence of call sites.
Eval to Apply transitions increment the time by recording the label of the cor-
responding call site. Apply to Eval transitions leave the time unchanged. Thus,
the time t of a state reveals the call sites along the execution path to that state.

Times indicate points in the execution when variables are bound. The binding
environment β is a partial function that maps variables to their binding times.
The variable environment ve maps variable-time pairs to values. To find the
value of a variable v, we look up the time v was put in β, and use that to search
for the actual value in ve.

Let’s look at the transitions more closely. At a UEval state with call site
(f e q)l, we evaluate f , e and q using the function Acs . Lambdas are paired up



CFA2: A Context-Free Approach to Control-Flow Analysis 573

ς ∈ State = Eval + Apply

ς ∈ Eval = UEval + CEval

ς ∈ UEval = UCall × BEnv × VEnv × Time

ς ∈ CEval = CCall × BEnv × VEnv × Time

ς ∈ Apply = UApply + CApply

ς ∈ UApply = UClos × UClos × CClos×
VEnv × Time

ς ∈ CApply = CClos × UClos × VEnv × Time

Clos = UClos + CClos

d ∈ UClos = ULam × BEnv

c ∈ CClos = (CLam × BEnv) + halt

β ∈ BEnv = Var ⇀ Time

ve ∈ VEnv = Var × Time ⇀ Clos

t ∈ Time = Lab∗

Acs(g, β, ve) �
(

(g, β) Lam?(g)
ve(g, β(g)) Var?(g)

UEval to UApply :
([[(f e q)l]], β, ve, t) → (proc, d, c, ve, l :: t)
proc = Acs(f, β, ve)
d = Acs(e, β, ve)
c = Acs(q, β, ve)

CEval to CApply :
([[(q e)γ ]], β, ve, t) → (proc, d, ve, γ :: t)
proc = Acs(q, β, ve)
d = Acs(e, β, ve)

UApply to Eval :
(proc, d, c, ve, t) → (call , β′, ve ′, t)
proc = 〈[[(λl(u k) call)]], β〉
β′ = β[u �→ t][k �→ t]
ve ′ = ve[(u, t) �→ d][(k, t) �→ c]

CApply to Eval :
(proc, d, ve, t) → (call , β′, ve ′, t)
proc = 〈[[(λγ(u) call)]], β〉
β′ = β[u �→ t]
ve ′ = ve[(u, t) �→ d]

Fig. 2. Concrete semantics and domains for Restricted CPS

with β to become closures, while variables are looked up in ve using β. We add
the label l in front of the current time and transition to a UApply state.

From UApply to Eval , we bind the formals of a procedure 〈[[(λl(u k) call)]], β〉
to the arguments and jump to its body. The new binding environment β′ is an
extension of the procedure’s environment, with u and k mapped to the current
time. The new variable environment ve ′ maps (u, t) to the user argument d, and
(k, t) to the continuation argument c.

The remaining two transitions are similar. We use halt to denote the top-level
continuation of a program pr . The initial state I(pr ) is ((pr , ∅), input, halt , ∅, 〈〉),
where input is a closure of the form 〈[[(λl(u k) call)]], ∅〉. Note that the initial
time is the empty sequence of call sites.

In the terminology of abstract interpretation, this semantics is called the
concrete semantics. In order to find properties of a program at compile time, one
needs to derive a computable approximation of the concrete semantics, called
the abstract semantics. CFA2 and k -CFA are such approximations.

CPS-based compilers may or may not use a control stack for the final code.
Steele’s view, illustrated in the Rabbit compiler [13], is that argument evaluation
pushes stack and function calls are GOTOs. Since arguments in CPS are not calls,
argument evaluation is always trivial and Rabbit never needs to push stack. By
this approach, every call in CPS is a tail call.

An alternative style was used in the Orbit compiler [14]. At every function call,
Orbit pushes a frame for the arguments. By this approach, tail calls are only the
calls where the continuation argument is a variable. These CPS call sites were in
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E 1 A len h A 11

A len 9 E 2 E 12

E 8 A 3 A 9

A 7 E 4 A h

E 6 A 5 E 10

(define (len l k)

2(pair? l

(λ3(test)

4(if test

(λ5()

6(cdr l

(λ7(rest)

8(len rest

(λ9(ans) 10(+ 1 ans k))))))

(λ11() 12(k 0))

1(len ’(3) halt)

Fig. 3. 0CFA on len

tail position in the initial direct-style program. CEval states where the operator
is a variable are calls to the current continuation with a return value. Orbit pops
the stack at tail calls and before calling the current continuation.

We will see later that the abstract semantics of CFA2 uses a stack, like
Orbit. However, CFA2 computes safe flow information which can be used by
both aforementioned approaches. The workings of the abstract interpretation
are independent of what style an implementor chooses for the final code.

3 Limitations of k-CFA

In this section, we discuss the main causes of imprecision and inefficiency in k -
CFA. Our motivation in developing CFA2 is to create a higher-order flow analysis
that overcomes these limitations.

We assume some familiarity with k -CFA, and abstract interpretation in gen-
eral. Detailed descriptions on these topics can be found in [1,12]. We use Scheme
syntax for our example programs.

3.1 k-CFA Does Not Match Calls and Returns

In order to make the state space of k -CFA finite, Shivers chose a mechanism
similar to the call-strings of Sharir and Pnueli [2]. Thus, recursive programs
introduce approximation by folding an unbounded number of recursive calls
down to a fixed-size call-string. In effect, by applying k -CFA on a higher-order
program, we turn it into a finite-state machine. Taken to the extreme, when k
is zero, a function can return to any of its callers, not just to the last one.

For example, consider the function that computes the length of a list, written
in CPS (Fig. 3). 0CFA on len produces the graph in Fig. 3. Eval states (marked
with “E”) mention the corresponding call site. Apply states are marked with
“A”. UApply states mention the callee and the continuation argument. The
continuation variable k is bound to either halt or λ9. The cycle on the left is
taken when the test is true, and it leads to a recursive call. The cycle on the right
is taken by returning to λ9 after a recursive call. Every path from the start to the
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end node is a valid 0CFA execution. In particular, we cannot exclude the path
that recurs four times but applies λ9 twice. By following such a path, the program
will terminate with a non-empty stack. It is clear that k -CFA cannot help much
with optimizations that require accurate calculation of the stack change between
program states, such as stack allocation of closure environments.

Spurious flows caused by call/return mismatch affect traditional data-flow
information as well. For instance, 0CFA-constant-propagation for the program
below cannot spot that n2 is the constant 2, because 1 also flows to x and
is mistakenly passed to the continuation λ2. 1CFA helps in this example, but
repeated η-expansion of the identity function can trick k -CFA for any k.

(let ((id (λ(x k) (k x))))
(id 1 (λ1(n1) (id 2 (λ2(n2) (+ n1 n2 halt))))))

In a non-recursive program, a large enough k can provide accurate call/return
matching, but this is not desirable because the analysis becomes intractably
slow even when k is 1 [10]. Moreover, the ubiquity of recursion in higher-order
programs calls for a static analysis that can match an unbounded number of
calls and returns. This can be done if we approximate programs using pushdown
models instead of finite-state machines.

3.2 The Environment Problem and Fake Rebinding

In higher-order languages, many bindings of the same variable can be simultane-
ously live. Determining at compile time whether two references to some variable
will be bound in the same run-time environment is referred to as the environ-
ment problem [1]. For example, trace through the execution of the following
direct-style code:

(let ((f (λ(x thunk) (if (integer? x) (thunk) (λ1() x)))))
(f 0 (f "foo" "bar")))

In the inner call to f, x is bound to "foo" and λ1 is returned. We call f again; this
time, x is an integer, so we jump through (thunk) to (λ1() x), and reference
x, which, despite the just-completed test, is not an integer: it is the earlier-
bound string "foo". Thus, during abstract interpretation, it is generally unsafe
to assume that a variable reference has some property just because an earlier
reference had that property.

This has an unfortunate consequence: sometimes an earlier reference provides
safe information about the reference at hand and k -CFA does not spot it:

(define (compose-same f x) 2(f 1(f x)))

In compose-same, both references to f are always bound at the same time.
However, if multiple closures flow to f, k -CFA may call one closure at call site
1 and a different closure at call site 2. This flow never happens at run time.

CFA2 tackles this problem by treating references for a variable v differently
from one another, depending on their location in the source code. If v appears
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in a static context where we know the current stack frame is its environment
record, we can be precise. If v appears free in some possibly escaping lambda,
we cannot predict its extent so we fall back to a conservative approximation.

3.3 Imprecision Increases the Running Time of the Analysis

It is known that k -CFA for k > 0 is not a cheap analysis, both in theory [10]
and in practice [16]. Counterintuitively, imprecision in higher-order control-flow
analyses can increase their running time: imprecision induces spurious control-
flow paths, along which the analysis must then flow data, thus creating further
spurious paths, and so on, in a vicious cycle which creates extra work whose only
function is to degrade the precision of the analysis. This is why techniques that
aggressively prune the search space, such as abstract garbage collection [8], not
only increase the precision, but can also improve the speed of the analysis.

In the previous subsections, we saw examples of information known at compile
time that k -CFA cannot exploit. CFA2 uses this information. The enhanced
precision of CFA2 has a positive effect on its running time (cf. section 6).

4 The CFA2 Semantics

4.1 Abstract Semantics

The CFA2 semantics is an abstract interpreter that executes a program in RCPS,
using a stack for variable binding and return-point information.

We describe the stack-management policy with an example. Assume that we
run the len program of section 3. When calling (len ’(3) halt) we push a
frame [l �→ (3)][k �→ halt ] on the stack. The test (pair? l) is true, so we add
the binding [test �→ true] to the top frame and jump to the true branch. We
take the cdr of l and add the binding [rest �→ ()] to the top frame. We call
len again, push a new frame for its arguments and jump to its body. This time
the test is false, so we extend the top frame with [test �→ false] and jump to the
false branch. The call to k is a function return, so we pop a frame and pass 0
to λ9. Call site 10 is also a function return, so we pop the remaining frame and
pass 1 to the top-level continuation halt .

In general, we push a frame at function entries and pop at tail calls and at
function returns. Results of intermediate computations are stored in the top
frame. This policy enforces two invariants about the abstract interpreter. First,
when executing inside a user function (λl(u k) call), the domain of the top frame
is a subset of LV (l). Second, the frame below the top frame is the environment
of the current continuation.

Each variable v in our example was looked up in the top frame, because each
lookup happened while we were executing inside the lambda that binds v. This
is not always the case; in the first snippet of section 3.2 there is a reference to
x inside λ1. When control reaches that reference, the top frame does not belong
to the user lambda that binds x. CFA2 uses a heap to look up such references.
The following definition makes these concepts precise.
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ÛEval to ÛApply:

([[(f e q)l]], st , h) � (ulam, d̂, ĉ, st ′, h)

ulam ∈ Au(f, st , h)
d̂ = Au(e, st , h)
ĉ = Ak (q, st)

st ′ =

8><>:
pop(st) Var?(q)
st Lam?(q) ∧(H?(f)∨Lam?(f))
setTop([f �→{ulam}], st) Lam?(q) ∧ S?(f)

ÛApply to dEval:

([[(λl(u k) call)]], d̂, ĉ, st , h) � (call , st ′, h ′)

st ′ = push([u �→ d̂][k �→ ĉ], st)

h ′ =

(
h 	 [u �→ d̂] H?(u)
h S?(u)

ĈEval to ĈApply:

([[(q e)γ ]], st , h) � (clam, d̂, st ′, h)

clam = Ak (q, st)
d̂ = Au(e, st , h)

st ′ =

(
pop(st) Var?(q)
st Lam?(q)

ĈApply to dEval:

([[(λγ(u) call)]], d̂, st , h) � (call , st ′, h ′)

st ′ = setTop([u �→ d̂], st)

h ′ =

(
h 	 [u �→ d̂] H?(u)
h S?(u)

Au(e, st , h) �

8><>:
{e} Lam?(e)
st(e) S?(e)
h(e) H?(e)

Ak (q, st) �
(

q Lam?(q)
st(q) Var?(q)

Abstract domains:

ς̂ ∈ ÛEval =UCall × Stack × Heap

ς̂ ∈ ÛApply = ULam × ÛClos × ĈClos× Stack × Heap

ς̂ ∈ ĈEval =CCall × Stack × Heap

ς̂ ∈ ĈApply = ĈClos × ÛClos × Stack× Heap

d̂ ∈ ÛClos =Pow(ULam)
ĉ ∈ ĈClos =CLam + halt

fr , tf ∈ Frame = (UVar ⇀ÛClos)∪ (CVar ⇀ ĈClos)
st ∈ Stack =Frame∗

h ∈ Heap =UVar ⇀ ÛClos

Stack operations:

pop(tf :: st) �st

push(fr , st) � fr :: st

(tf :: st)(v) � tf (v)

setTop([u �→ d̂], tf ::st) � tf [u �→ d̂] ::st

Fig. 4. Abstract semantics and relevant definitions

Definition 1 (Stack and heap references)

– Let ψ be a call site that refers to a variable v. The predicate S?(v) holds iff
v ∈ LV (ψ). We call v a stack reference.

– Let ψ be a call site that refers to a variable v. The predicate H?(v) holds iff
v /∈ LV (ψ). We call v a heap reference.

– v is a stack variable iff all its references satisfy S?.
– v is a heap variable iff some of its references satisfy H?.

Put differently, if the innermost user lambda that contains ψ is the one that
binds v, then v is a stack reference. In addition, if v is bound by a continuation
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lambda λγ , and the innermost user lambda that contains ψ also contains λγ ,
then v is a stack reference. Intuitively, only heap references may escape. We look
up stack references in the top frame, and heap references in the heap. Stack
lookups below the top frame never happen.

The CFA2 semantics appears in Fig. 4. An abstract value is either an abstract
user closure (member of the set ÛClos) or an abstract continuation closure (mem-
ber of ĈClos). An abstract user closure is a set of user lambdas. An abstract
continuation closure is either a continuation lambda or halt . A frame is a map
from variables to abstract values, and a stack is a sequence of frames. All stack
operations except push are defined for non-empty stacks only. A heap is a map
from variables to abstract values. It contains only user bindings because in RCPS
every continuation variable is a stack variable.

On transition from a ÛEval state ς̂ to a ÛApply state ς̂ ′, we first evaluate f ,
e and q. We evaluate user terms using Au and continuation terms using Ak . We
non-deterministically choose one of the lambdas that flow to f as the operator
in ς̂ ′.The change to the stack depends on q and f . If q is a variable, the call is
a tail call so we pop the stack (case 1). If q is a lambda, it evaluates to a new
continuation closure whose environment is the top frame, hence we do not pop
the stack (cases 2, 3). Moreover, if f is a lambda or a heap reference then we
leave the stack unchanged. However, if f is a stack reference, we set f ’s value
on the top frame to be {ulam}, possibly forgetting other lambdas that may flow
to f . This “stack filtering” prevents fake rebinding (cf. section 3.2): when we
return to ĉ, we may reach more stack references of f . These references and the
current one are all bound at the same time. Since we are committing to ulam in
this transition, these references must also be bound to ulam .

In the ÛApply-to-Êval transition, we push a frame for the procedure’s argu-
ments. In addition, if u is a heap variable we must update its binding in the
heap. The join operation � is defined in the usual way.

In a ĈEval-to-ĈApply transition, we are preparing for a call to a continuation
so we must reset the stack to the stack of its birth. When q is a variable, the
ĈEval state is a function return and the continuation’s environment is the second
stack frame. Therefore, we pop a frame before calling clam . When q is a lambda,
it is a newly created closure thus the stack does not change. Note that the
transition is deterministic, unlike ÛEval-to-ÛApply. Since we always know which
continuation we are about to call, call/return mismatch never happens. For
instance, the function len may be called from many places in a program, so
multiple continuations may flow to k. But, by retrieving k’s value from the
stack, we always return to the correct continuation.

In the ĈApply-to-Êval transition, our stack policy dictates that we extend the
top frame with the binding for the continuation’s parameter u. If u is a heap
variable, we also update the heap.
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|([[(h1 . . . hn)
ψ]], β, ve, t)|ca = ([[(h1 . . . hn)

ψ]], toStack(LV (ψ), β, ve), |ve|ca)

|(〈[[(λl(u k) call)]], β〉, d, c, ve, t)|ca = ([[(λl(u k) call)]], |d|ca , |c|ca , st , |ve|ca)

where st =

(
〈〉 c = halt

toStack(LV (γ), β′, ve) c = ([[(λγ(u′)call ′)]], β′)
|(〈[[(λγ(u) call)]], β〉, d, ve, t)|ca = ([[(λγ(u) call)]], |d|ca , toStack(LV (γ), β, ve), |ve|ca)

|(halt , d, ve, t)|ca = (halt , |d|ca , 〈〉, |ve|ca)

|([[(λl(u k) call)]], β)|ca = {[[(λl(u k) call)]]}

|([[(λγ(u) call)]], β)|ca = [[(λγ(u) call)]]

|halt |ca = halt

|ve|ca = { (u,
F

t
|ve(u, t)|ca) : H?(u)}

toStack({u1, . . . , un, k}, β, ve) �8>>>><>>>>:
〈[ ui �→ d̂i ][k �→ halt ]〉 d̂i = |ve(ui, β(ui))|ca ∧

halt = ve(k, β(k))

[ ui �→ d̂i ][k �→ [[(λγ(u) call)]]] :: toStack(LV (γ), β′, ve) d̂i = |ve(ui, β(ui))|ca ∧

([[(λγ(u) call)]], β′) = ve(k, β(k))

Fig. 5. From concrete states to abstract states

4.2 Correctness of CFA2

In this section, we show that the CFA2 semantics safely approximates the con-
crete semantics. First, we define a map |·|ca from concrete to abstract states.
Next, we show that if a state ς transitions to ς ′ in the concrete semantics, the
abstract counterpart |ς|ca of ς transitions to a state ς̂ ′ which approximates |ς ′|ca .
By proving this, we ensure that the possible behaviors of the abstract interpreter
include the actual run-time behavior of the program.

The map |·|ca appears in Fig. 5. The abstraction of an Eval state ς of the
form ([[(h1 . . . hn)

ψ]], β, ve, t) is an Êval state ς̂ with the same call site. Since ς
does not have a stack, we must expose stack-related information hidden in β and
ve. Assume that λl is the innermost user lambda that contains ψ. To reach ψ,
control passed from a ÛApply state ς̂ ′ over λl. According to our stack policy, the
top frame must contain bindings for the formals of λl and any temporaries added
along the path from ς̂ ′ to ς̂. Therefore, the domain of the top frame is a subset
of LV (l), i.e., a subset of LV (ψ). For each user variable ui ∈ (LV (ψ)∩dom(β)),
the top frame contains [ui �→ |ve(ui, β(ui))|ca ]. Let k be the sole continuation
variable in LV (ψ). If ve(k, β(k)) is halt (the return continuation is the top-level
continuation), the rest of the stack is empty. If ve(k, β(k)) is ([[(λγ(u) call)]], β′),
the second frame is for the user lambda in which λγ was born, and so forth:
proceeding through the stack, we add a frame for each live activation of a user
lambda until we reach the top-level continuation.
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The abstraction of a UApply state over 〈[[(λl(u k) call)]], β〉 is a ÛApply state
ς̂ whose operator is [[(λl(u k) call)]]. The stack of ς̂ is the stack in which the
continuation argument was created, and we compute it using toStack as above.

Abstracting a CApply is similar to the UApply case, only now the top frame
is the environment of the continuation operator. Note that the abstraction maps
drop the time of the concrete states, since the abstract states do not use times.

We can now state our simulation theorem. The proof proceeds by case analysis
on the concrete transition relation. The relation ς̂1 $ ς̂2 is a partial ordering on
abstract states and can be read as “ς̂1 is more precise than ς̂2”. The proof and
the definition of $ can be found in [17].

Theorem 1 (Simulation). If ς → ς ′ and |ς|ca $ ς̂, then there exists ς̂ ′ such
that ς̂ � ς̂ ′ and |ς ′|ca $ ς̂ ′.

5 Computing CFA2

In the previous section we saw how CFA2 addresses the problems of k -CFA,
but did not discuss how to explore its state space. Since the size of the stack
is unbounded, the state space of CFA2 is infinite and the standard workset
algorithms for k -CFA [1, 12] will diverge. For this reason, we have designed
a new algorithm based on summarization, a dynamic-programming technique
widely used in the interprocedural analysis of first-order programs [2, 3, 4] and
in context-free language (CFL) reachability algorithms [18].

The difficulty with analyzing programs in a way that respects call/return
matching is that the reachable program points from a point n do not depend
solely on n, but on the stack contents as well. The intuition behind summariza-
tion is to flow facts from n with an empty stack to another point n′ in the same
procedure. We say that n′ is same-context reachable from n. These facts are then
suitably combined to get flow facts for the whole program.

Let’s do the simplest data-flow analysis for the first-order program of Fig. 6,
namely find which nodes are reachable from the entry of the main function. We
will do so by using path edges, i.e., edges whose source is the entry of a procedure
and target is some program point in the same procedure. Path edges represent
intraprocedural paths, hence the name. We write nf for the entry node and xf

for the exit node of a procedure f . Solid arrows are intraprocedural steps. Dotted
arrows go from call nodes to the corresponding return nodes. Dashed arrows go
from call nodes to entries and from exits to return nodes.

We first scan the program to identify the call sites of each procedure and then
start the reachability analysis. Obviously, from 1 we can go to 2 and then to 3,
so we record 〈1, 1〉, 〈1, 2〉 and 〈1, 3〉. Then 3 calls sum, so we jump to its body.
Analysing sum produces 〈9, 9〉, 〈9, 10〉 and 〈9, 11〉. Node 11 is an exit reachable
from 9, so each caller of sum can reach its corresponding return point. We keep
track of this fact by recording the summary edges 〈3, 4〉 and 〈6, 7〉. Now 4 is
reachable from 1, so we discover a new path edge 〈1, 4〉. We go on to discover
〈1, 5〉 and 〈1, 6〉. Reachability inside sum does not depend on its calling context,
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nm

1
x ← 2
y ← 3

2

sum( )

3

ret

4

x ← 4
y ← 5

5

sum( )

6

ret

7

xm

8

nsum

9

z ← x+y
print z

10

xsum

11

Fig. 6. Interprocedural flow-graph for a simple program

so from the summary edge 〈6, 7〉 we infer that we can reach 7, so we add 〈1, 7〉 to
the set of path edges. Finally, we record 〈1, 8〉 which is the end of the program.

We cannot apply summarization to higher-order languages out of the box,
because we do not know the call sites of a function by looking at a program’s
source code. We need a search-based variant of summarization, that records
callers as it discovers them. Specifically, in the previous example we can record
the call 〈3, 9〉 when we reach 3. On reaching 11, we record the summary edge
〈9, 11〉. To find possible return points for sum, we look at the set of callers. Since
3 calls 9, 11 can return to 4. Later, when we reach 6, we look at the set of
summaries and see that sum reaches its exit, so 6 can reach 7. Note that our
search-based variant of summarization uses entry-to-exit summaries instead of
call-to-return summaries.

5.1 Local Semantics

Summarization-based algorithms operate on a finite set of program points. Hence,
we cannot use (an infinite number of) abstract states as program points. For this
reason, we introduce local states and define a map |·|al from abstract to local
states (Fig. 7). Intuitively, a local state is like an abstract state but with a single
frame instead of a stack. Discarding the rest of the stack makes the local state
space finite; keeping the top frame allows precise lookups for stack references.

Essentially, the local semantics describes executions that do not touch the rest
of the stack (in other words, executions where functions do not return). Thus, a
C̃Eval state with call site (k e)γ has no successor in this semantics. Since func-
tions do not call their continuations, the frames of local states contain only user
bindings. Local steps are otherwise similar to abstract steps. The metavariable
ς̃ ranges over local states. We define the map |·|cl from concrete to local states
to be |·|al ◦ |·|ca .

We can now see the emerging connection between local semantics and sum-
marization: the local semantics is used for intraprocedural steps and function
calls, and we discover return points by recording callers and summary edges.

Next, our algorithm needs to distinguish between different kinds of local
states: entries, exits, calls, returns and inner states. CPS lends itself naturally
to such a categorization:
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ŨEval to ŨApply:
([[(f e q)l]], tf , h) ≈> (ulam, d̂, h)
ulam ∈ Âu(f, tf , h)
d̂ = Âu(e, tf , h)

ŨApply to gEval:
([[(λl(u k) call)]], d̂, h)≈> (call , [u �→ d̂], h ′)

h ′ =

(
h 	 [u �→ d̂] H?(u)
h S?(u)

C̃Eval to C̃Apply:
([[(clam e)γ ]], tf , h) ≈> (clam, d̂, tf , h)
d̂ = Âu(e, tf , h)

C̃Apply to gEval:
([[(λγ(u) call)]], d̂, tf , h) ≈> (call , tf ′, h ′)
tf ′ = tf [u �→ d̂]

h ′ =

(
h 	 [u �→ d̂] H?(u)
h S?(u)

Âu(e, tf , h) �

8><>:
{e} Lam?(e)
tf (e) S?(e)
h(e) H?(e)

Local domains:

ς̃ ∈ gEval = Call × S̃tack × Heap

ς̃ ∈ ŨApply = ULam × ÛClos × Heap

ς̃ ∈ C̃Apply = ĈClos × ÛClos × S̃tack×
Heap

F̃rame = UVar ⇀ ÛClos

S̃tack = F̃rame + 〈〉

Abstract to local maps:

|(call , st , h)|al = (call , |st |al , h)

|(ulam, d̂, ĉ, st , h)|al = (ulam, d̂, h)

|(ĉ, d̂, st , h)|al = (ĉ, d̂, |st |al , h)

|tf :: st ′|al = { (u, tf (u)) : UVar?(u)}

|〈〉|al = 〈〉

Fig. 7. Local semantics

– A ŨApply state corresponds to an entry node—control is about to enter the
body of a function.

– A C̃Eval state where the operator is a variable is an exit node—a function
is about to pass its result to its context.

– A ŨEval state where the continuation argument is a variable is also an
exit—at tail calls control does not return to the caller.

– A ŨEval state where the continuation argument is a lambda is a call.
– A C̃Eval state where the operator is a lambda is an inner state.
– A C̃Apply state is a return if its predecessor is an exit, or an inner state if its

predecessor is also an inner state. Our algorithm will not need to distinguish
between the two kinds of C̃Applys; the difference is just conceptual.

Last, we generalize the notion of summary edges to handle tail recursion. In the
following, we rewrite sum in a functional style and place it in a context where it
gets called three times:

(let ((sum (λ(x y k) (+ x y (λ(z) 1(print z k))))))
...2(sum 2 3 (λ3(u1) call3))...
...4(sum 4 5 (λ5(u2) call5))...
...((λ6(n k2) 7(sum n 1 k2)) 9 (λ8(u3) call8))...)
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The first time (site 2), we record a summary edge from the entry of sum to its
exit at call site 1, and return to λ3. Then, at the second call (site 4) we use the
summary edge to find that sum will pass its result to λ5. The third call is a tail
call, so no continuation is born at call site 7. Upon return from sum, we must
be careful to pass the result to λ8. Also, we must restore the environment of the
call to λ6, not the environment of the tail call. We achieve these by recording
a “cross-procedure” summary edge from the entry of λ6 to call site 1. This
transitive nature of summaries is essential for tail recursion.

5.2 Summarization

The algorithm for CFA2 is shown in Fig. 8. It is a search-based summarization for
higher-order programs with tail calls. Its goal is to compute which local states
are reachable from the initial state of a program through paths that respect
call/return matching.

An edge (ς̃1, ς̃2) is an ordered pair of local states. We call ς̃1 the source and ς̃2
the target of the edge. The results of the analysis are stored in the set Seen. It
contains path edges (from a procedure entry to a state in the same procedure)
and summary edges (from an entry to a C̃Eval exit, not necessarily in the same
procedure). The target of an edge in Seen is reachable from the source and from
the initial state (cf. theorem 2). Summaries are also stored in Summary.

The workset W contains path edges and summaries to be examined. Final
records C̃Apply states that call halt with a return value for the whole program.
Callers contains triples 〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry, ς̃2 is a call in the same
procedure and ς̃3 is the entry of the callee. TCallers contains triples 〈ς̃1, ς̃2, ς̃3〉,
where ς̃1 is an entry, ς̃2 is a tail call in the same procedure and ς̃3 is the entry
of the callee. The initial state Ĩ(pr) is defined as |I(pr )|cl . The helper function
succ(ς̃) returns the successor(s) of ς̃ according to the local semantics.

At every iteration, we remove an edge (ς̃1, ς̃2) from W and branch depending
on ς̃2. If ς̃2 is an entry, a return or an inner state (line 6), then its successor ς̃3 is
a state in the same procedure. Since ς̃2 is reachable from ς̃1, ς̃3 is also reachable
from ς̃1. If we have not already recorded the edge (ς̃1, ς̃3), we do it now (line 25).

If ς̃2 is a call (line 8) then ς̃3 is an entry of a new procedure, so we propagate
(ς̃3, ς̃3) instead of (ς̃1, ς̃3) (line 10). Next, we record the call in Callers . If an exit
ς̃4 is reachable from ς̃3, it should return its result to the continuation born at ς̃2
(line 12). The function Update is responsible for computing the return state. We
find the return value d̂ by evaluating the expression e4 passed to the continuation
(lines 29-30). Since we are returning to λγ2 , we must restore the environment of
its creation which is tf 2 (possibly with stack filtering, line 31). The new state ς̃
is the corresponding return node of ς̃2, so we propagate (ς̃1, ς̃) (lines 32-33).

If ς̃2 is a C̃Eval exit and ς̃1 is the initial state (lines 14-15), then ς̃2’s successor
is a final state (lines 34-35). If ς̃1 is some other entry, we record the edge in
Summary and pass the result of ς̃2 to the callers of ς̃1 (lines 17-18). Last, consider
the case of a tail call ς̃4 to ς̃1 (line 19). No continuation is born at ς̃4. Thus,
we must find where ς̃3 (the entry that led to the tail call) was called from.



584 D. Vardoulakis and O. Shivers

01 Summary, Callers, TCallers, Final ←− ∅
02 Seen, W ←− {(Ĩ(pr), Ĩ(pr))}
03 while W �= ∅
04 remove (ς̃1, ς̃2) from W
05 switch ς̃2
06 case ς̃2 of Entry, CApply, Inner-CEval

07 for each ς̃3 in succ(ς̃2) Propagate(ς̃1, ς̃3)
08 case ς̃2 of Call

09 for each ς̃3 in succ(ς̃2)
10 Propagate(ς̃3, ς̃3)
11 insert (ς̃1, ς̃2, ς̃3) in Callers
12 for each (ς̃3, ς̃4) in Summary Update(ς̃1, ς̃2, ς̃3, ς̃4)
13 case ς̃2 of Exit-CEval

14 if ς̃1 = Ĩ(pr) then

15 Final(ς̃2)
16 else

17 insert (ς̃1, ς̃2) in Summary
18 for each (ς̃3, ς̃4, ς̃1) in Callers Update(ς̃3, ς̃4, ς̃1, ς̃2)
19 for each (ς̃3, ς̃4, ς̃1) in TCallers Propagate(ς̃3, ς̃2)
20 case ς̃2 of Exit-TC

21 for each ς̃3 in succ(ς̃2)
22 Propagate(ς̃3, ς̃3)
23 insert (ς̃1, ς̃2, ς̃3) in TCallers
24 for each (ς̃3, ς̃4) in Summary Propagate(ς̃1, ς̃4)

Propagate(ς̃1, ς̃2) �
25 if (ς̃1, ς̃2) not in Seen then insert (ς̃1, ς̃2) in Seen and W

Update(ς̃1, ς̃2, ς̃3, ς̃4) �
26 ς̃1 of the form ([[(λl1(u1 k1) call1)]] , d̂1, h1)

27 ς̃2 of the form ([[(f e2 (λγ2 (u2) call2))
l2 ]], tf 2, h2)

28 ς̃3 of the form ([[(λl3(u3 k3) call3)]] , d̂3, h2)
29 ς̃4 of the form ([[(k4 e4)

γ4 ]], tf 4, h4)

30 d̂ ←− Âu (e4, tf 4, h4)

31 tf ←−
{

tf 2[f 	→ {[[(λl3(u3 k3) call3)]]}] S?(f)

tf 2 H?(f) ∨ Lam?(f)

32 ς̃ ←− ([[(λγ2(u2) call2)]], d̂, tf , h4)
33 Propagate(ς̃1, ς̃)

Final(ς̃) �
34 ς̃ of the form ([[(k e)γ ]], tf , h)

35 insert (halt , Âu (e, tf , h), 〈〉, h) in Final

Fig. 8. CFA2 workset algorithm

Then again, it is possible that all calls to ς̃3 are tail calls, in which case we
keep searching further back in the call chain to find a return point. We do this
backward search by transitively adding a summary edge from ς̃3 to ς̃2 (line 25).

If ς̃2 is a tail call (line 20), we find its successors and record the call in TCallers
(lines 21-23). If a successor of ς̃2 goes to an exit, we propagate a summary
transitively (line 24).

The local state space is finite, so there is a finite number of path and summary
edges. We record edges as seen when we insert them in W , which ensures that
no edge is inserted in W twice. Therefore, the algorithm terminates.
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We obviously cannot visit an infinite number of abstract states. To establish
the soundness of our flow analysis, we show that if an abstract state ς̂ is reachable
from the initial state, then the algorithm visits |ς̂|al (cf. theorem 2). For instance,
CFA2 on len (cf. section 3) will tell us that we reach program point 10, not that
we reach 10 with a stack of size 1, 2, 3 etc.

Soundness guarantees that the CFA2 algorithm does not miss any flows, but
it could also compute flows that do not happen in the abstract semantics. For
example, a sound but useless algorithm would add all pairs of local states in
Seen. We establish the completeness of our algorithm by proving that every
visited edge has a corresponding abstract flow (cf. theorem 3).

The theorems use two definitions. The first associates a state ς̂ with its corre-
sponding entry, i.e., the entry of the procedure that contains ς̂. The second finds
all entries that reach the corresponding entry of ς̂ through tail calls. We include
the proofs of the theorems in [17].

Definition 2. The Corresponding Entry CE p(ς̂) of a state ς̂ in a path p is:

– ς̂, if ς̂ is an Entry
– ς̂1, if ς̂ is not an Entry, ς̂2 is not an Exit-CEval,

p ≡ p1 � ς̂1 �∗ ς̂2 � ς̂ � p2, and CEp(ς̂2) = ς̂1
– ς̂1, if ς̂ is not an Entry,

p ≡ p1 � ς̂1 �+ ς̂2 � ς̂3 �+ ς̂4 � ς̂ � p2, ς̂2 is a Call
and ς̂4 is an Exit-CEval, CEp(ς̂2) = ς̂1, and ς̂3 ∈ CE ∗

p(ς̂4)

Definition 3. For a state ς̂ and a path p, CE∗
p(ς̂) is the smallest set such that:

– CE p(ς̂) ∈ CE ∗
p(ς̂)

– CE ∗
p(ς̂1) ⊆ CE∗

p(ς̂), when p ≡ p1 � ς̂1 � ς̂2 �∗ ς̂ � p2,
ς̂1 is a Tail Call, ς̂2 is an Entry, and ς̂2 = CE p(ς̂)

Theorem 2 (Soundness). If p ≡ Î(pr ) �∗ ς̂ then, after summarization:

– if ς̂ is not a final state then (|CE p(ς̂)|al , |ς̂|al) ∈ Seen
– if ς̂ is a final state then |ς̂|al ∈ Final
– if ς̂ is an Exit-CEval and ς̂ ′∈CE ∗

p(ς̂) then (|ς̂ ′|al , |ς̂|al )∈Seen

Theorem 3 (Completeness). After summarization:

– For each (ς̃1, ς̃2) in Seen, there exist ς̂1, ς̂2 and p such that
p ≡ Î(pr) �∗ ς̂1 �∗ ς̂2 and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and ς̂1 ∈ CE ∗

p(ς̂2)
– For each ς̃ in Final , there exist ς̂ and p such that

p ≡ Î(pr) �+ ς̂ and ς̃ = |ς̂|al and ς̂ is a final state.

6 Evaluation

We implemented CFA2, 0CFA and 1CFA for the Twobit Scheme compiler [11]
and used them to do constant propagation and folding. In this section we report
on some initial measurements and comparisons.
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0CFA 1CFA CFA2
S? H? visited constants visited constants visited constants

len 9 0 81 0 126 0 55 2
rev-iter 17 0 121 0 198 0 82 4
len-Y 15 4 199 0 356 0 131 2
tree-count 33 0 293 2 2856 6 183 10
ins-sort 33 5 509 0 1597 0 600 4
DFS 94 11 1337 8 6890 8 1719 16
flatten 37 0 1520 0 6865 0 478 5
sets 90 3 3915 0 54414 0 4251 4
church-nums 46 23 19130 0 19411 0 22671 0

Fig. 9. Benchmark results

We compared the effectiveness of the analyses on a small set of benchmarks
(Fig. 9). We measured the number of stack and heap references in each program
and the number of constants found by each analysis. We also recorded what
goes in the workset in each analysis, i.e., the number of abstract states visited
by 0CFA and 1CFA, and the number of path and summary edges visited by
CFA2. The running time of an abstract interpretation is proportional to the
amount of things inserted in the workset.

We chose programs that exhibit a variety of control-flow patterns. Len com-
putes the length of a list recursively. Rev-iter reverses a list tail-recursively.
Len-Y computes the length of a list using the Y-combinator instead of explicit
recursion. Tree-count counts the nodes in a binary tree. Ins-sort sorts a list
of numbers using insertion-sort. DFS does depth-first search of a graph. Flatten
turns arbitrarily nested lists into a flat list. Sets defines the basic set operations
and tests De Morgan’s laws on sets of numbers. Church-nums tests distributivity
of multiplication over addition for a few Church numerals.

CFA2 finds the most constants, followed by 1CFA. 0CFA is the least precise.
CFA2 is also more efficient at exploring its abstract state space. In five out of
nine cases, it visits fewer paths than 0CFA does states. The visited set of CFA2
can be up to 3.2 times smaller (flatten), and up to 1.3 times larger (DFS) than
the visited set of 0CFA. 1CFA is less efficient than both 0CFA (9/9 cases) and
CFA2 (8/9 cases). The visited set of 1CFA can be significantly larger than that
of CFA2 in some cases (15.6 times in tree-count, 14.4 times in flatten, 12.8
times in sets).

Naturally, the number of stack references in a program is much higher than
the number of heap references; most of the time, a variable is referenced only by
the lambda that binds it. Thus, CFA2 uses the precise stack lookups more often
than the imprecise heap lookups.

7 Related Work

We were particularly influenced by Chaudhuri’s paper on subcubic algorithms for
recursive state machines [4]. His clear and intuitive description of summarization
helped us realize that we can use it to explore the state space of CFA2.
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Reps et al. [3] used summarization to reduce certain data-flow problems for
first-order languages to a graph-reachability problem. Our workset algorithm is
a variant of their tabulation algorithm, extended for tail recursion and higher-
order functions. The reader may have noticed that CFA2 essentially produces
a pushdown system. Then, one may wonder why we designed a new algorithm
instead of using an existing one like post∗ [6, ch. 3]. The reason is that callers
cannot be identified syntactically in higher-order languages. Hence, algorithms
that analyze higher-order programs must be based on search. The tabulation
algorithm can be changed to use search fairly naturally. It is unclear to us how
to do that for post∗. In a way, CFA2 creates a pushdown system and analyzes it
at the same time, much like what k -CFA does with control-flow graphs.

Melski and Reps [19] reduced Heintze’s set-constraints [20] to an instance of
CFL reachability, which they solve using summarization. Therefore, their solu-
tion has the same precision as 0CFA.

CFL reachability has also been used for points-to analysis of imperative
higher-order languages. For instance, Sridharan and Bod́ık’s points-to analysis
for Java [21] uses CFL reachability to match writes and reads to object fields.
Precise call/return matching is achieved only for programs without recursive
methods. Hind’s survey [22] discusses many other variants of points-to analysis.

Debray and Proebsting [23] used ideas from parsing theory to design an
interprocedural analysis for first-order programs with tail calls. They describe
control-flow with a context-free grammar. Then, the FOLLOW set of a procedure
represents its possible return points. Our approach is different on the surface,
but similar in spirit; we handle tail calls by computing summaries transitively.

Analyses that match an unbounded number of calls and returns have been
neglected by the functional language community. The type-based flow analysis
of Rehof and Fähndrich [7] is a notable exception. They encode flow information
in a type system and then recast the type inference problem to an instance
of CFL reachability. The type system uses let-polymorphism. As a result, it
provides precise call/return matching for let- and letrec-bound variables but not
for lambda-bound variables. For instance, if we lambda-bind id in our earlier
example, their type system will not find n2 to be constant:

((λ(id) (let ((n1 (id 1))
(n2 (id 2)))

(+ n1 n2)))
(λ(x) x))

CFA2 does not distinguish between let and lambda; in fact, the AST of Twobit
contains no lets.

Midtgaard and Jensen [24] created a flow analysis for direct-style higher-order
programs that keeps track of “return flow”. They point out that continuations
make return-point information explicit in CPS and show how to recover this in-
formation in direct-style. They do not address unbounded call/return matching.

Might and Shivers [8] proposed ΓCFA (abstract garbage collection) and μCFA
(abstract counting) to increase precision in k -CFA. ΓCFA removes unreachable
bindings from the variable environment; μCFA counts how many times a variable



588 D. Vardoulakis and O. Shivers

is bound during the analysis. The two techniques combined reduce spurious flows
and improve environment information. Stack references in CFA2 have a similar
effect, because different calls to the same function use different frames. However,
we can use ΓCFA and μCFA to improve precision in the heap.

Recently, Kobayashi [25] proposed a way to statically verify properties of
typed higher-order programs using model-checking. He models a program by a
higher-order recursion scheme G, expresses the property of interest in the modal
μ-calculus and checks if the infinite tree generated by G satisfies the property.
This technique can do flow analysis, since flow analysis can be encoded as a
model-checking problem. The target language of this work is the simply-typed
lambda calculus. Programs in a Turing-complete language must be approximated
in the simply-typed lambda calculus in order to be model-checked.

8 Conclusions

In this paper we propose CFA2, a pushdown model of higher-order programs, and
prove it correct. CFA2 provides precise call/return matching and has a better
approach to variable binding than k -CFA. Our evaluation shows that CFA2 gives
more accurate data-flow information than 0CFA and 1CFA.

CFA2 is monovariant in the heap. It can be easily extended with call-strings
polyvariance, like k -CFA, to produce a family of analyses CFA2.0, CFA2.1 and
so on. Then, any instance of CFA2.k would be strictly more precise than the
corresponding instance of k -CFA. Another possibility is to add contours in the
style of Agesen [26] or Wright and Jagannathan [9]. Note that CFA2 already has
most of the above polyvariance “accidentally”, because of the stack lookups.

We believe that pushdown models are a better tool for higher-order flow
analysis than control-flow graphs, and are working on providing more empir-
ical support to this thesis. We plan to use CFA2 for environment analysis and
stack-related optimizations. We also plan to add support for call/cc in CFA2.

Acknowledgements. Thanks to Will Clinger and Felix Klock for help with
Twobit, and to Manuel Fähndrich and Naoki Kobayashi for clarifications on
their work. Comments from Bryan Chadwick, Matthias Felleisen, Felix Klock,
Aaron Turon and the anonymous referees greatly improved the paper.
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Abstract. We develop a generic framework for the analysis of programs
with recursive procedures and dynamic process creation. To this end
we combine the approach of weighted pushdown systems (WPDS) with
the model of dynamic pushdown networks (DPN). The resulting model,
weighted dynamic pushdown networks (WDPN), describes processes run-
ning in parallel, each of them being able to perform pushdown actions,
that may spawn new processes as a side effect. As with WPDS, tran-
sitions are labelled by weights to carry additional information. Starting
from techniques for WPDS and DPN, we derive a method to determine
meet-over-all-paths values for the paths between regular sets of configu-
rations of a WDPN. Using this method we are able to solve basic dataflow
analysis problems in a parallel context.

1 Introduction

The interest in writing parallel programs has increased in recent years. How-
ever parallel programming is notoriously difficult and error-prone. Thus static
analysis of parallel programs has become more and more important. The goal
of this paper is to present a generic framework for the analysis of parallel pro-
grams, especially in the presence of recursive procedures and dynamic process
creation. We base our framework on DPN [1] and WPDS [2]. DPN precisely
model procedures and process creation and have been studied for reachability
analyses. Since the analysis of recursive procedures and synchronisation is un-
decidable [3], DPNs do not model synchronisation between processes. However,
through the addition of weights we will be able to analyse some interaction be-
tween processes. WPDS extend pushdown systems (PDS) by labelling transitions
with weights and solving the generalised pushdown predecessor (GPP) problem,
which is the meet-over-all-paths solution for paths from a starting configuration
into a regular set of target configurations. The weights can be used to formulate
a wide range of analysis problems. The GPP problem formulation allows for a
specific query represented by a regular constraint on the shape of the call-stack,
in contrast to standard dataflow techniques, where typically all information at
the topmost program point is merged.

The main advantage of our framework is, that we extend this ability to for-
mulate a query depending on a regular constraint on the shape of the call-stack
to queries depending on a regular constraint on the shape of the entire network.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 590–609, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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main:

1: call init_worker

2: write a

3: use a

4: return

init_worker:

5: spawn worker

6: return

worker:

7: write a

8: return

Fig. 1. Example program

Consider the pseudo program in Figure 1. It calls a procedure to initialise a
worker process, that calculates a value which is then stored in the variable a.
In parallel the main process uses the variable to store a value it needs in a fol-
lowing step. The program obviously contains a data race, since the worker can
overwrite the value of a before the main process reads it. Our framework is now
able to refine the analysis of such a data race by distinguishing the situation
where the main process reaches the use and the worker process has completed
his computation from the situation where the worker process has completed no
or only some steps.

Up to this point our framework can solve the bitvector problems for DPNs
formulated in [1], which is able to handle the same refinement described above.
The automata based approach in [1] however requires multiple computations of
predecessor sets, whereas our method only needs one step. The shortest path
analysis from [2] is an example for an analysis with an infinite domain, which
can not be formulated using the automata based techniques from [1], but can be
easily handled by our framework. In [4] a different approach to generalize WPDS
to parallel programs is presented, by introducing a context bound. This approach
can handle more powerful analyses than our framework, but the introduction of
a context bound leads to an underapproximation, whereas our approach handles
unbounded context switches precisely.

A main result is, that our framework can handle all KILL/GEN analyses
precisely in a uniform way. To the best of our knowledge no more general class
of analyses is known, for which precise analysis for some class of parallel program
is possible. In [5,6,7] KILL/GEN analyses have been considered for pcall type
parallelism, which can not be used to accurately model the process creation of a
DPN [1], which is the basis of our framework. In [8] KILL/GEN analyses were
extended to a model similar to DPN, which can handle dynamic process creation.
However in this approach all dataflow information reaching a program point is
merged, regardless of the state of the rest of the network. As described above,
our framework allows for a more distinct query, depending on the state of the
whole network.

Approach. Analogous to WPDS we extend DPN to WDPN by annotating weights
to transitions and study the GPP problem. Even though a WPDS is then simply a
WDPN with one process, adapting the approach to solve the GPP problem from
WPDS to WDPN is problematic. In general a path of a DPN is an interleaving of
the transitions of arbitrary many parallel processes. Results from [1] show, that
the set of paths connecting two regular sets of configurations can not be described
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in a way, where standard techniques like abstract interpretation [9] can be applied
to compute the abstraction in the weight domain.

We avoid these problems by introducing a branching semantics for DPN sim-
ilar to the tree semantics in [10]. Transitions of newly spawned processes are
no longer mixed with the transitions of the creating process, but contained in
their own branch. This results in executions which are tree shaped for single
processes and form hedges, which contain a tree for each process, for configura-
tions with multiple processes. The set of hedges connecting two regular sets of
configurations can be described by a constraint system, adapting the approach
for WPDS.

We introduce a weight domain to abstract these trees, and study the analogous
branching GPP (BGPP) problem, which is the meet-over-all-hedges solution, for
these branching WDPN (BWDPN). The solution of the BGPP problem can be
obtained by abstract interpretation of the constraint system. We show, that if
the weight domain of a WDPN and the extended weight domain of a BWDPN,
based on the same DPN, are related, the solution for the GPP problem of the
WDPN can be derived from the solution of the corresponding BGPP problem
of the BWDPN.

We demonstrate how this framework of WDPN and BWDPN can be used to
solve shortest path problems, bitvector analyses and the more general KILL/GEN
analyses for programs with recursive procedures and dynamic thread creation.

Outline. The remainder of the paper is organised as follows: Section 2 presents
the intuitive extension of WPDS to DPN called WDPN and defines the GPP.
Section 3 introduces BWDPN. We formulate the BGPP problem and present
the relation to the GPP problem. Section 4 presents applications and Section 5
introduces the approach to solve the BGPP problem for BWDPN.

2 Weighted Dynamic Pushdown Networks

A DPN [1] is a model for parallel programs with multiple processes and dynamic
process creation. Each process is modeled as a PDS, where the rules are extended
to allow creation of new processes. Formally a DPN is a tuple M = (P, Γ, Δ),
where P is a finite set of control states and Γ is a finite set of stack symbols,
with P ∩ Γ = ∅. Δ is a finite set of transition rules of the form:

pγ ↪→ c with p ∈ P, γ ∈ Γ, c ∈ (PΓ ∗)∗PΓ ∗.

The right side of a rule consists of the new control state and stacktop of the
original process in the rightmost position and the control states and stacks of all
processes spawned by this rule to the left. Configurations of a DPN are words
from Conf = (PΓ ∗)∗. The empty configuration is written as ε. For the rest of
the paper we fix a DPN M = (P, Γ, Δ) and two regular sets C1, C2 ⊆ Conf.

Example 1. The program in Figure 1 leads to a DPN with rules r1 = pγ1 ↪→
pγ5γ2, r2 = pγ5 ↪→ pγ7pγ6, r3 = pγ6 ↪→ p, r4 = pγ2 ↪→ pγ3, r5 = pγ3 ↪→ pγ4
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and r6 = pγ7 ↪→ pγ8, where a stack symbol γi represents the control location at
the beginning of line i of the program. The set of starting configurations for the
analyses of our program described in the introduction would be C1 = {pγ1} and
the target sets would either be C2 = {pγ8pγ3} if the spawned process makes all
steps or C′

2 = {pγ7pγ3} if it makes no steps.

Interleaving Semantics. An execution of the DPN M is represented by a path.
A path is defined as a sequence of rules:

ρ = r1 . . . rn with ri ∈ Δ.

The empty path is denoted by ερ and Paths is the set of all paths. The execution
of a path is modeled by the labelled transition relation−→ ⊆ Conf×Paths×Conf,
similar to [1], with:

[empty] c
ερ−→ c [rule] upγv

rρ−→ c if r = pγ ↪→ c′, uc′v
ρ−→ c

Application of a rule replaces the control state and top symbol of one stack by
the new control state and stacktop specified by the rule and inserts the newly
created processes with their initial stacks, as defined by the rule, to the left. We
call this the interleaving semantics of the DPN, since the rules of all processes
are mixed up. We are interested in the set:

Paths(C1, C2) = {ρ ∈ Paths | ∃c1 ∈ C1, c2 ∈ C2 with c1
ρ−→ c2},

of connecting paths from C1 to C2.

Example 2. The sets of connecting paths in our example are Paths(C1, C2) =
{r1r2r6r3r4, r1r2r3r6r4, r1r2r3r4r6} and Paths(C1, C

′
2) = {r1r2r3r4}.

Weights. In order to abstract from the set of connecting paths to the aspects
which are relevant to the analysis, we assign a weight to each transition of the
DPN. The structure of the weight domain is captured by a complete idempotent
semiring, which supports the necessary operators � for concatenation of weights
along a path and ⊕ for combination of weights of different paths. A complete
idempotent semiring is a tuple S = (D,⊕,�, 0, 1), where D is a set of elements
with 0, 1 ∈ D and ⊕,� are binary operators on D with:

• (D,⊕) is a commutative monoid with neutral element 0 and ⊕ is idempotent
• (D,�) is a monoid with neutral element 1 and 0 annihilates �
• (D,
) is a complete lattice, where 
, with d1 
 d2 :⇔ d1 ⊕ d2 = d1

for d1, d2 ∈ D, is the partial order induced by ⊕, i.e. ⊕ is the meet
operator of the lattice (D,
) and 0 is the �-element

• � distributes over arbitrary ⊕, i.e.
⊕

D1 �
⊕

D2 =
⊕
{d1 � d2 | di ∈ Di}

for D1, D2 ⊆ D

We fix a semiring S = (D,⊕,�, 0, 1). The weights are assigned to the transitions
of the DPNM using a weight function f : Δ → D. The function depends on the
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current analysis, since it describes how the transitions of the DPN are connected to
the analysed information represented by the semiring. We assume a given weight
function f for the rest of the paper. The tuple W = (M,S, f) is called a WDPN.
Given the WDPN we define an abstraction function α : Paths→ D for paths:

[empty] α(ερ) = 1 [rule] α(rρ) = f(r)� α(ρ)

Overloading it for sets of paths with α(M) =
⊕
{α(ρ) | ρ ∈ M}, we can formu-

late the GPP problem for WDPN as computing:

δ(C1, C2) = α(Paths(C1, C2)).

3 Branching Weighted Dynamic Pushdown Networks

It follows from results in [1] that the set Paths(C1, C2) can not be characterised
as least solution of a constraint system which uses only operators to concatenate
or interleave paths. Therefore we can not compute the solution for the GPP
problem directly by an abstract interpretation [9] of such a constraint system.
To avoid this problem we consider an alternative interpretation of an execution
of a DPN in form of a tree or hedge, first introduced in [10]. We will later see,
that set of connecting hedges can be assembled from sets of partial trees, which
in turn can be characterised using a constraint system.

Branching Semantics. We recursively define the set Trees of execution trees,
where Hedges = Trees∗ is the set of execution hedges.

ετ ∈ Trees r(στ) ∈ Trees for r ∈ Δ, σ ∈ Hedges, τ ∈ Trees

The empty tree ετ consisting of a single leaf node, representing a finished execu-
tion, is a tree. r(στ) is a tree with a root node labelled with a rule r ∈ Δ, describ-
ing the first step of the execution, and an ordered list of subtrees στ ∈ Hedges,
representing the executions σ of spawned processes and the rest of the execution
τ of the spawning process. The order of the children corresponds to the order of
processes on the right side of the rule r. εσ is the empty hedge.

The execution of a hedge is modeled by the labelled transition relation =⇒ ⊆
Conf × Hedges× Conf, with:

[none] ε
εσ=⇒ ε [tree] cpw

στ=⇒ c′c′′ if c
σ=⇒ c′ and pw

τ=⇒ c′′

[empty] pw
ετ=⇒ pw [rule] pγw

r(σ)
=⇒ c if r = pγ ↪→ c′, c′w

σ=⇒ c

We call this the branching semantics of the DPN, since each process has its own
branch in the execution. We are interested in the set

Hedges(C1, C2) = {σ ∈ Hedges | ∃c1 ∈ C1, c2 ∈ C2 with c1
σ=⇒ c2},

of connecting hedges.
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Example 3. The sets of connecting hedges for our example are Hedges(C1, C2) =
{r1(r2(r6(ετ )r3(r4(ετ ))))} and Hedges(C1, C

′
2) = {r1(r2(ετ r3(r4(ετ ))))}.

We define the ; operator to concatenate a hedge to the last tree of a hedge:

[hedge] (στ) ; σ′ = σ(τ ; σ′) [empty] ετ ;σ′ = σ′ [rule] r(σ) ; σ′ = r(σ ;σ′)

Fig. 2. Example for the concatenation of trees

Appending a hedge removes the rightmost leaf of the first hedge and adds the
trees of the second hedge as new children. Thus, if you only consider concate-
nation of trees, it is simply concatenation along the rightmost branches. The
reason for defining concatenation this way is, that we will later see, that we can
assemble any execution tree for an initial process by concatenating trees from a
finite number of classes. In the context of program analysis, these classes rep-
resent executions inside the body of a procedure. Figure 2 shows how we can
assemble an execution of our example program by concatenating the call rule r1,
the execution inside the called init_worker procedure, containing the execution
of the spawned process, and the rest of the execution of the main procedure. We
extend concatenation of trees to concatenation of hedges to describe the con-
struction of a new tree from a rule and a list of subtrees as concatenation of the
tree with the rule as root node and the empty tree as only child and the hedge
formed by the list of subtrees.

Interleaving vs. Branching. There is a strong connection between the interleaving
and branching semantics of a DPN. A hedge represents of a set of paths, which
can be constructed by interleaving the branches and trees of the hedge. Consider
a function ψ : 2Hedges → 2Paths that computes the set of interleavings of a set of
hedges, here ‖ is used for the standard interleaving operator for paths:

[none] ψ(εσ) = {ερ} [tree] ψ(στ) = ψ(σ) ‖ ψ(τ)
[empty] ψ(ετ ) = {ερ} [rule] ψ(r(σ)) = rψ(σ)

Results from [10] show, that:

Theorem 4. We have:

Paths(C1, C2) = ψ(Hedges(C1, C2)).
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Extended Weights. The semiring structure used for WDPN is not suitable to ab-
stract hedges. Especially with regard to the approach of combining an execution
tree out of partial trees by concatenation. The semiring could be used to com-
pute a weight for a given tree by computing the meet-over-all-interleavings, using
the weights given by f for each rule. However in this case the operator � is not
useable as abstraction for concatenation of trees, since the interleaving of a con-
catenated tree would in general not be the same as the concatenation of the inter-
leavings of the partial trees. If we take the trees from Figure 2 and set f(ri) = wi,
the left side evaluates to w1�w2� (w6�w3⊕w3�w6)�w4, which in general is
different from the value w1�w2� (w6�w3�w4⊕w3�w6�w4⊕w3�w4�w6)
of the right hand side.

To abstract hedges we define an extended complete idempotent semiring,
which contains the additional ⊗̄ operator for parallel combination of weights.
By making the parallel composition explicit and introducing new weights, we
can store additional information in the weights concerning parallel branches
to delay the actual interleaving. An extended complete idempotent semiring
E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄) is a tuple, where E is a set of values and ⊕̄, �̄, ⊗̄ are
binary operators on E with:

• (E, ⊕̄, �̄, 0̄, 1̄) is a complete idempotent semiring
• (E, ⊗̄) is a semigroup, 1̄ ⊗̄ e = e for e ∈ E and 0̄ annihilates ⊗̄
• ⊗̄ distributes over arbitrary ⊕̄, i.e.

⊕̄
E1 ⊗̄

⊕̄
E2 =

⊕̄
{e1 ⊗̄ e2 | ei ∈ Ei}

for E1, E2 ⊆ E
• (e1 ⊗̄ e2) �̄ e3 = e1 ⊗̄(e2 �̄ e3), for e1, e2, e3 ∈ E

The fourth property ensures, that ; is abstracted by �̄, by always appending
weights to the rightmost weight of a parallel combination. In this regard the ⊗̄
operator differs from the abstract interleaving operator ⊗ introduced in [6]. The
new operator is especially not commutative. This can also be seen in the fact,
that 1̄ is only left identity for ⊗̄, since a 1̄ in the right component can be altered
by appending an additional weight.

We fix an extended semiring E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄). As with WDPN we assume,
that a weight function f̄ : Δ → E is given. The tuple B = (M, E , f̄) is called a
BWDPN. Given a BWDPN we define an abstraction function β : Hedges → E
for hedges:

[none] β(εσ) = 1̄ [tree] β(στ) = β(σ) ⊗̄ β(τ)
[empty] β(ετ ) = 1̄ [rule] β(r(σ)) = f̄(r) �̄ β(σ)

Overloading it for sets of hedges with β(M) =
⊕̄
{β(σ) | σ ∈M}, we define the

BGPP problem for BWDPN as computing:

θ(C1, C2) = β(Hedges(C1, C2)).

Weights vs. Extended Weights. At this point, we have formulated two prob-
lems. The GPP problem describes the meet-over-all-paths of the interleaving
semantics, the BGPP problem describes the meet-over-all-hedges of the branch-
ing semantics. As mentioned in the beginning of this section, the solution to
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the GPP problem can not be computed directly. However we will later see, that
the solution of the BGPP problem can be obtained by solving a constraint sys-
tem. In the previous paragraph, we have seen, that we can not simply use the
weight domain for the GPP problem as a weight domain for the corresponding
BGPP problem. However Theorem 4 describes a strong relation between the
set of reaching paths and the set of reaching hedges. A similar result can be
shown for the solutions of the GPP and BGPP problems, if the semiring of the
WDPN is related to the extended semiring of the BWDPN. We describe the
necessary relation by an extension. An extension is a tuple (S, E , ι, η), contain-
ing embedding and projection functions ι : D → E and η : E → D, where for
d, di ∈ D, e, ei ∈ E the following conditions hold:

• E is the smallest set with ι(D) ⊆ E, closed under �̄, ⊗̄ and arbitrary ⊕̄
• ι(0) = 0̄, ι(1) = 1̄ and η(ι(d)) = d
• η distributes over arbitrary ⊕̄, i.e. η(

⊕̄
M) =

⊕
{η(e) | e ∈ M} for M ⊆ E

• η(e ⊗̄ 1̄) = η(e)
• η(e1 ⊗̄ . . . ⊗̄ en) =

⊕n
i=1 di � η(e1 ⊗̄ . . . ⊗̄ e′i ⊗̄ . . . ⊗̄ en) for ei = ι(di) �̄ e′i

The first three points ensure, that every weight of the original semiring has
a corresponding weight in the extended semiring and in reverse every element
of the extended semiring is a combination of embedded weights of the original
semiring. The last two points ensure, that the combination of weights is mapped
to the meet-over-all-interleavings of the weights they are constructed from. For
the rest of the paper, we assume that the semiring S and the extended semiring
E are connected by the extension (S, E , ι, η).

If f̄(r) = ι(f(r)), for all r ∈ Δ, i.e. the analysis of the WDPN is embedded in
the BWDPN, we can prove α(ψ(σ)) = η(β(σ)) for all σ ∈ Hedges by induction
on σ. Consequently with Theorem 4:

Theorem 5. It follows, that:

δ(C1, C2) = η(θ(C1, C2)).

Construction of Extended Semiring and Extension. An example for an extended
semiring E and extension (E ,S, ι, η), which exists for any semiring S, is the
extended semiring of weighted hedges, i.e. hedges where nodes are labelled with
a weight from the semiring S. This abstraction contains nearly all information
contained in the execution trees. An abstraction of an execution hedge is simply
the hedge, where nodes previously annotated with r are now annotated with
f(r) and the empty tree is annotated with 1. Interior nodes labelled with the
neutral element 1, which have no influence on the total weight of the tree, are
removed.

We define the set of weighted trees WTrees recursively, where WHedges =
WTrees+ is the set of weighted hedges:

1 ∈ WTrees w(σ) ∈WTrees for w ∈ D \ {1}, σ ∈ WHedges

1 is the empty weighted tree consisting of a single leaf node labelled with 1
and w(σ) is a weighted tree with a root node labelled with w and children σ. 1
doubles as the initial empty weighted hedge, and we define 1σ = σ.
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The operations of the extended semiring are then mapped onto the corre-
sponding weighted tree operations. We define σ ⊗̄ σ′ = σσ′ and concatenation is
concatenation of weighted hedges as with execution hedges:

[hedge] στ �̄σ′ = σ(τ �̄σ′) [empty] 1 �̄σ = σ [rule] w(σ) �̄ σ′ = w(σ �̄σ′)

Since there is no obvious way to compute a meet for two weighted hedges,
we go to the powerset of WHedges. The extended semiring is given by E =
(E, ⊕̄, �̄, ⊗̄, ∅, {1}), where E = 2WHedges, ⊕̄ = ∪ and �̄, ⊗̄ are extended to sets.

The embedding of the corresponding extension (S, E , ι, η), transforms a weight
into a corresponding set of weighted trees:

ι(0) = ∅ ι(1) = {1} ι(w) = {w(1)}

The projection back into the semiring then computes the value of all interleavings
for a given weighted hedge:

η(1) = 1 η(σ1) = η(σ)
η(w1(σ1) . . . wn(σn)) =

⊕n
i=1 wi � η(w1(σ1) . . . σi . . . wn(σn))

η is extended to sets by η(M) =
⊕
{η(σ) | σ ∈M} for M ⊆ WHedges. It can be

easily seen, that the definitions fulfill all the conditions for an extension between
the semiring S and E .

Fig. 3. Different abstractions provide the same result

Figure 3 shows, that in our example from Section 1, the abstraction, with
f(ri) = wi, of the set of paths of the connecting hedges Hedges(C1, C2) and the
projection of the direct abstraction, with f̄(ri) = ι(wi), of the same hedges lead
to the same results, confirming the result of Theorem 5.

Howerver, since the size of the sets, trees and hedges is not bounded, this
extended semiring is not efficient. In the next section we will explain, how in
some cases a smaller representation for the weighted hedges can be found, that
can be used to compute a solution for the BGPP problem.
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4 Applications

Since the existence of an efficient extended semiring and a matching extension
for a given semiring is not self-evident, we first give some examples of semir-
ings, for which an efficient extended semiring and a corresponding extension can
be constructed, before describing the approach to solve the BGPP problem in
Section 5.

Starting form the weighted trees in the previous section, we can simplify
the appearance of a tree by collapsing sequential parts of a tree using the �
operator of the semiring. To still be able to compute an interleaving of two col-
lapsed branches, we assume an abstract interleaving operator ⊗. The existence
of an abstract interleaving operator is again not self-evident, but is given for the
applications described later in this section. Since a weighted tree can be a repre-
sentation of a partial execution, we can not yet interleave the rightmost branch
with any of the other branches, since it only represents part of the execution of
the rightmost process. The solution to this problem is to precompute the total
weight of the tree for all possible weights of appended weighted trees. Thus the
extended weight representing a collapsed weighted tree is a function from D to
D. Figure 4 visualizes the collapsing of the weighted hedge in our example into
a function.

Fig. 4. Collapsing of a weighted tree

We set E ⊆ {F : D → D}. The embedding of a weight d ∈ D represents
a tree with just a single node labelled by the embedded weight. Concatenation
of another weighted tree leads to concatenation of d with the weight of the
tree, hence ι(d) = Fd, with Fd(x) = d � x. The projection is then a simple
evaluation of the collapsed tree, where the empty weighted tree, with semiring
weight 1 is appended, hence η(F ) = F (1). Concatenation of collapsed trees is
then combination of the functions representing the trees (F �̄G)(x) = F (G(x))
and the meet is the pointwise meet (F ⊕̄G)(x) = F (x)⊕G(x). For interleaving,
the left branch is evaluated at 1 to get the total weight of the left tree and
the interleaving with all possible values for the right tree is precomputed, hence
(F �̄G)(x) = F (1)⊗G(x). Then E is the smallest set with ι(D) ⊆ E, which is
closed under �̄, ⊗̄ and arbitrary ⊕̄.
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Shortest Path Analysis. The shortest path analysis assigns a positive integer
weight to all transitions. The weight of a path is the sum of the weights of the
transitions occurring on the path. The goal is to find the weight of the path
with the smallest weight. We use the semiring S = (N ∪ {∞}, min, +,∞, 0)
introduced in [2]. Since + is commutative and associative, the order in which
transitions occur and are combined on a path is irrelevant. Thus + can be used
as the abstract interleaving operator ⊗.

If we apply the construction described above, we get an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, F∞, F0), with ⊕̄, �̄ and ⊗̄ as described. Furthermore, we get an
extension (S, E , ι, η), with ι(d)(x) = d + x, for d ∈ N ∪ {∞} and η as described.
Since E contains only the elements derived from elements in ι(D), it can be show
that all elements F ∈ E can be written as F (x) = dF + x with dF ∈ N ∪ {∞}.
Then the operators of the extended semiring and extension can be reduced to
the operators of the semiring as follows:

(F �̄G)(x) = (dF + dG) + x (F ⊕̄G)(x) = min{dF , dG}+ x
(F ⊗̄G)(x) = (dF + dG) + x η(F ) = dF

One can observe, that instead of the functional notation of E , one can simply
use (N ∪ {∞}, min, +, +,∞, 0) as extended semiring. Using this construction,
we can precisely compute the length of the shortest path connecting the starting
and the target set in the DPN.

Example 6. By setting f(r4) = f(r6) = 1 and f(r) = 0 for all other rules, one
can, for example, determine the minimum number of times a is written in our
example.

Bitvector Analyses. Bitvector analyses examine a property represented by a
single bit. For lack of space, we consider only forward, information is propagated
from the start of the program, must, all paths reaching a target configuration
must set the bit to 1, bitvector analyses. Backward, information is propagated
from the end of the program, or may, it suffices, that one path reaching a target
configuration sets the bit to 1, analyses can be handled similarly. The transitions
of the DPN are annotated with transformers, that change the current state of the
bit. We use the semiring S = (D,⊕,�, zero, id), where D = {kill, id, gen, zero}.
Here gen represents the transformer setting the bit to 1, id is the identity and
kill sets the bit to 0. The artificial weight zero is introduced to represent the zero
element of the ring. For a forward analysis, � is reversed functional combination
extended to include zero. In case of a must analysis⊕ is a meet operator inducing
the ordering kill 
 id 
 gen 
 zero. In [6] it was shown, that the operator ⊗,
defined as f ⊗ g = (f � g)⊕ (g � f), is an abstract interleaving operator on the
path level.

If we apply the construction described above, we get an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, Fzero, Fid), with ⊕̄, �̄ and ⊗̄ as described, and an extension
(S, E , ι, η). Since E is the smallest set containing ι(T ) closed under ⊕̄, �̄ and ⊗̄,
it can be shown, that E = ι(D) ∪ {Fkill}, with Fkill(x) = x � kill, and η(Ff ) = f
and η(Fkill) = kill.
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This is can be explained by the fact, that a kill occurring in a parallel has the
most impact on the result if it is executed as last transition, where it can not
be overwritten. Thus we need an additional weight, that describes exactly the
effect, that once a kill has occurred as the result of a parallel process, it has to
always be the last weight considered. The function Fkill, describing a partial tree
containing a kill as the result of a parallel branch, does exactly that.

In contrast to kill, id and gen influence an interleaving the most if they are
considered as early as possible. In this case the weight of the parallel branch
needs to be considered right after it was created. Thus parallel composition
degenerates to sequential composition and no additional information needs to
be stored.

Example 7. To determine, whether the value of a written in line 2 is always used
in the calculation in line 3, we can use a forward must bitvector analysis. We set
the weights for the transitions of the DPN to be f(r4) = gen, i.e. if we encounter
the write at line 2, we set the bit to 1, f(r6) = kill, i.e. we set the bit to 0 if line
7 writes, and f(r) = id for all other rules. If the resulting function sets the bit,
we know, that the write in line 2 is always the last write to a before the use in
line 3.

KILL/GEN. KILL/GEN analyses are a special kind of dataflow analysis, where
dataflow facts are elements of a complete distributive lattice (D,�), with least
and greatest elements ⊥,�, and the set of transformers is restricted to T =
{f : D → D | ∃k, g ∈ D with f(x) = (x � kf ) � gf}. They can be used for
bitvector analyses, but also encompass other analyses, like strong copy constant
propagation [6].

We only consider forward KILL/GEN analyses, but backward analyses can
be handled similarly. The semiring is S = (T ∪ {zero},⊕,�, zero, id), where zero
is an artificial element representing the zero element of the ring and id(x) =
(x � �) � ⊥. For elements f, g �= zero we then have (f ⊕ g)(x) = f(x) � g(x)
and (f � g)(x) = g(f(x)). In [6] it was shown, that f ⊗ g = f � g ⊕ g � f is an
abstract interleaving operator.

Applying the construction described above, we arrive at an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, Fzero, Fid) and extension (S, E , ι, η). With ι(g)(f)(x) = f(g(x))
it can be shown, that every element F ∈ E \{Fzero} can be written as F (f)(x) =
f(fF (x))�iF with fF ∈ T, iF ∈ D. The operations on the extended semiring can
then be reduced to operations of the semiring and underlying lattice as follows:

(F �̄G)(f)(x) = f((fF � fG)(x)) � (iF � iG)
(F ⊕̄G)(f)(x) = f((fF ⊕ fG)(x)) � (iF � iG)
(F ⊗̄G)(f)(x) = f(fG(x � kfF )) � (iF � iG � gfF )
η(F )(x) = fF (x) � iF

On the one hand the result for the interleaving operator can be seen as gen-
eralisation of the bitvector result. Parallel effects that improve the result are
applied as early as possible, directly on the initial information and effects that
worsen the result are applied as late as possible, after all information has been
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computed. On the other hand we arrive at a result similar to [8]. Here it was
observed, that KILL/GEN analyses can be solved by separating paths directly
reaching a program point from the possible interference of the environment. The
same structure can be found in the extended weight domain, where a weight
is described by a standard transformer, representing the reaching path, that
is applied to the initial data and a lattice element, representing the possible
interference, that is added at the end.

Example 8. To determine, which writes of a can be used in the calculation in line
3, we can use a forward KILL/GEN analysis over the lattice (2{2,7},⊆). We set
the weights for the transitions of the DPN to be f(r4) = λx.{2}, f(r6) = λx.{7}
and f(r) = λx.x for all other rules. If we apply the resulting function to the
empty set, we get the set of writing locations whose value can be used in line 3.

5 Solving the BGPP Problem for BWDPN

Now consider an execution hedge in Hedges(C1, C2). Each tree of the hedge trans-
forms a stack in a starting configuration c1 ∈ C1 into a configuration containing
the transformed original stack and stacks of spawned processes, that is part of a
target configuration c2 ∈ C2. Analogous to the approach in [2], we can split each
tree into several parts along the rightmost branch. We differentiate between two
main types of partial trees. The first type transforms an initial stacktop of the
form pγ into cp′, meaning that the topmost stacksymbol is popped off the stack.
The second type transforms pγ into cp′w, with w ∈ Γ+, pushing additional sym-
bols on the stack. In both cases new process may be spawned and transformed,
forming the configuration c to the left of the initial process. If we take an execu-
tion tree τ , we can observe, that the execution of the initial process can always
be split into a sequence of pop transformation and a final push transformation.

If we now classify the partial trees by their initial stack pγ and their result
cp′ or cp′w, we can assemble each execution tree out of these classes. Taking
for example τ1, τ2 with piγi

τi=⇒ cipi+1 and τ3 with p3γ3
τ3=⇒ p′w′, we get an

execution tree τ = τ1 ; τ2 ; τ3 with p1γ1γ2γ3w
τ=⇒ c1c2c3p

′w′w.
Since the spawned processes and pushed stacksymbols of a partial tree are

unbounded this is still an infinite number of classes. We exploit the fact, that we
are only interested in the trees that reach a given regular set of configurations
and assume the set is described by an automaton. The spawned processes and
pushed stacksymbols of a partial tree will not be altered by a concatenated tree,
it will only spawn and transform its own new processes and a push is the final
phase of an execution. Consequently the spawned processes of a partial tree and
the symbols pushed onto the stack have to be part of the final configuration.
Since the configuration is part of a regular set we can describe these parts by
two states of the automaton between which a part is accepted. Grouping the
classes where the spawned processes and pushed stacksymbols are accepted by
the same states together, we arrive at a finite number of classes.
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To characterise these classes, we take a closer look at the saturation procedure
introduced in [1] to compute the set of predecessor configurations of a given
target set.

Regular Sets of Configurations. The saturation procedure requires special kinds
of automata for representation of the target set. We use M- and M∗-automata,
adapted from [1], as a compact representation for the target set. AM∗-automaton
is a finite automatonA∗ = (S, P ∪Γ, δ, ṡ, F ) that satisfies the following additional
conditions:

• SC , SP ⊆ S, where for all s ∈ SC , p ∈ P exists a unique and distinguished
state sp ∈ SP

• δ = δP∪δΓ where δP = {(s, p, sp) | s ∈ SC , p ∈ P} and δΓ ⊆ S×(Γ∪{ε})×S
• L(A) ⊆ Conf

A M-automaton A is a M∗-automaton, where the transition relation δ satisfies
the stronger condition δΓ ⊆ S × (Γ ∪ {ε}) × (S \ SP ) and ṡ ∈ S \ SP . We
write s

λ−→δ s′ for (s, λ, s′) ∈ δ and s
c−→

∗
δ s′ for the reflexive transitive closure.

L(A) is the language of the automaton. Each regular set of configurations can be
described by anM-automaton. For the rest of the paper we fix twoM-automata
A1 = (S1, P ∪ Γ, δ1, ṡ1, F1) and A2 = (S2, P ∪ Γ, δ2, ṡ2, F2) with L(A1) = C1
and L(A2) = C2.

Characterising Trees and Hedges. The following saturation procedure, taken
from [1], works by adding new transitions to the automaton A2, thus allow-
ing more configurations to be accepted. The result is a M∗-automaton A∗

2 =
(S2, P ∪ Γ, δ̄2, ṡ2, F2), with δ̄2 = δP

2 ∪ δ̄Γ
2 , where δ̄Γ

2 is the smallest set fulfilling
the conditions:

[init] t ∈ δ̄Γ
2 if t ∈ δΓ

2

[step] (sp, γ, s′) ∈ δ̄Γ
2 if r = pγ ↪→ c ∈ Δ, s ∈ SC , s

c−→
∗
δ̄2

s′

A transition is added, if there is a rule transforming the symbol into a configu-
ration which is accepted by previously existing transitions. If these transitions
were also added by the saturation, they themselves have a rules, which trans-
form their symbols. If we follow this recursion and assemble the rules into a
tree, we have a tree that transform the symbol of the newly added transition
into a configuration that can be read using only transition of A2. Consequently
all new configurations L(A∗

2) which are accepted because of this transition, are
predecessors of configurations in the original automaton. Additionally a new
transition (sp, γ, s′) is a witness for the existence of a tree, that transforms pγ
into a configuration c which is accepted between the states s and s′. If s′ ∈ SP

then c = c′p′, since only P transitions reach states in SP and the tree is a pop
transformation as described above. If s′ /∈ SP , we have c = c′p′w′ and the tree
is a push transformation.

We later extend the saturation procedure to collect all of these trees for a
transition by constructing a constraint system L over (2Trees,∪), similar to the
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grammar used to describe executions in [2]. The variables of the constraint
system L[t] with t ∈ δ̄Γ

2 can be seen as annotations to the transitions of the
saturated automaton. The least solution of the constraint system then corre-
sponds exactly to the classes of trees described above. We define a function
πL : S2 ×Conf × S2 → 2Hedges that constructs a set of hedges for a configuration
by reading the annotations from the automaton A∗

2:

[empty] πL(s, ε, s) = {εσ}
[epsilon] πL(s, ε, s′) =

⋃
{πL(s, ε, s′′) | s′′ ε−→δ̄Γ

2
s′}

[control] πL(s, cp, s′) =
⋃
{πL(s, c, s′′)ετ | s′′

p−→δ̄P
2

s′}
∪
⋃
{πL(s, cp, s′′) | s′′ ε−→δ̄Γ

2
s′}

[stack] πL(s, cγ, s′) =
⋃
{πL(s, c, s′′) ; L[(s′′, γ, s′)] | s′′ γ−→δ̄Γ

2
s′}

∪
⋃
{πL(s, cγ, s′′) | s′′ ε−→δ̄Γ

2
s′}

If we read a partial configuration c between two states of the saturated automa-
ton, we can construct the set of hedges transforming the configuration into a
partial configuration of the target set accepted between the same two states,
using πL.

We start with the set containing only the empty hedge and add a new empty
tree, whenever we read a control state of the DPN. Consider for example now
a configuration pγ1γ2. After reading p we are in a state sp and the current set
of hedges is {ετ}. ε transitions do not contain any additional information and
information is simply propagated trough. If we now read the next symbol in the
saturated automaton, we can distinguish two cases for the next transition:

Either the transition is (sp, γ1, s
′
p′). As observed above all trees annotated to

this transition are pop transformations, applying them to pγ1γ2 ends in a con-
figuration cp′γ2, where s

c−→
∗
δ2

s′. The next transition for γ2, is then (s′p′ , γ2, s
′′),

which is annotated with trees transforming p′γ2 into configurations c′ with

s′
c′−→

∗
δ2

s′′. If we concatenate the trees, we get transformations of pγ1γ2 to

cc′, with s
cc′−→

∗
δ2

s′′.
Or the transition is (sp, γ1, s

′), with s′ /∈ SP . As observed the trees annotated
to this transition are push transformations. Starting from pγ1γ2, they lead to

cp′w′γ2, with s
cp′w′
−→

∗

δ2
s′. Since we can accept the configuration as part of the

target set, we have another transition (s′, γ2, s
′′) in the original automaton. The

set of trees transforming the configuration pγ1γ2 is then simply the set of the first
transition. To simplify the construction, we annotate transitions not starting in
states in SP , with the set only containing the empty tree, thus we can simply
concatenate the annotated sets of all transitions in both cases.

This can be extended to a configuration with an arbitrary number of stack
symbols. If we take a configuration p1w1p2w2, we want to construct the set of
hedges transforming the configuration. If we read the configuration left to right
we construct the set of trees for the first stack a described above. If we now
encounter a transition for a control state, a new initial empty tree is added to
the end of the hedges. We can then construct the set of trees for second stack
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again as described above, since all concatenation operations now concern this
new last tree of the hedges. This can be extended to a configuration with an
arbitrary number of stacks.

Using these observations, we construct a set of constraints in a similar way
the saturation procedure adds transitions to the automaton:

[init] L[t] ⊇ {ετ} if t ∈ δΓ
2

[step] L[(sp, γ, s′)] ⊇ {r(ετ )} ;πL(s, c, s′) if r = pγ ↪→ c ∈ Δ, s ∈ SC , s
c−→

∗
δ̄2

s′

The trees are essentially constructed bottom up. Each transition starts with the
set containing only the empty tree. If we add a new transition, we add all trees
which can be constructed by the rule which lead to the addition, and all hedges,
which are already known to transform the configuration reached by that rule.

Fig. 5. Annotated automaton after saturation

Figure 5 shows part of the resulting automaton of the saturation procedure
applied to the target C2 set of our example and the least solution of the constraint
system annotated to the transitions of the automaton. The initial automaton is
displayed with solid arrows and transitions added by the saturation are dashed.

For the least solution lfp(L) of L we can prove, by induction on the structure
of the trees τ :

Lemma 9. For s ∈ SC
2 , s′ ∈ S2, p ∈ P, γ ∈ Γ, (sp, γ, s′) ∈ δ̄Γ

2 , we have:

lfp(L)[(sp, γ, s′)] = {τ | ∃c ∈ Conf with pγ
τ=⇒ c, s

c−→
∗
δ2

s′},

and for s /∈ SP
2 , s′ ∈ S2, γ ∈ Γ, (s, γ, s′) ∈ δ̄Γ

2 , we get:

lfp(L)[(s, γ, s′)] = {ετ}.

Thus the solution of the constraint system contains exactly the classes of trees
we wanted to characterise. If we annotate the transitions of A∗

2 with lfp(L), we
can prove by induction on the length of the configurations c:

Lemma 10. For s, s′ ∈ S2, c ∈ Conf, we have:

πlfp(L)(s, c, s′) = {σ | ∃c′ ∈ Conf with c
σ=⇒ c′, s

c′−→
∗
δ2

s′},
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Hence we have Hedges({c}, C2) =
⋃
{πlfp(L)(ṡ2, c, s) | s ∈ F2} for a configuration

c ∈ Conf. We can describe the set of all reaching hedges from the single configu-
ration c into the set C2. We are now interested in the union of all these sets for
configurations in C1. It suffices to consider configurations in C1 ∩ L(A∗

2), since
all other configurations have an empty set of reaching hedges. Since the number
of configurations can still be infinite and thus we can not evaluate πlfp(L) for all
these configurations, we construct a second constraint system O over (Hedges,∪),
that imitates the computation of πlfp(L) by propagating sets of hedges along the
transitions of an automaton and joining preliminary results at each state of the
automaton.

Since we only want the result for configurations in C1 ∩ L(A∗
2), we construct

the constraint system for the product automaton A3 = (S3, P ∪ Γ, δ3, ṡ3, F3) of
A1 and A∗

2, describing the intersection. For s ∈ S3 we write s|i, with i ∈ {1, 2},
to refer to the original state of automaton Ai that was used to form s in the
product automaton.

[empty] O[ṡ] ⊇ {εσ}
[epsilon] O[s′] ⊇ O[s] if (s, ε, s′) ∈ δΓ

3
[control] O[s′] ⊇ O[s]ετ if (s, p, s′) ∈ δP

3
[stack] O[s′] ⊇ O[s] ; lfp(L)[(s|2, γ, s′|2)] if (s, γ, s′) ∈ δΓ

3

Since it works on the transitions of the product automaton, the constraint sys-
tem emulates the steps of πlfp(L) on A∗

2 and simultaneously ensures, that each
transition followed in A∗

2 has a corresponding transition in A1. Thus it only
works on configurations which are also in C1.

It can then be shown, by induction on the length of the configuration c, that:

Lemma 11. For s ∈ S3, we get:

lfp(O)[s] =
⋃
{πlfp(L)(ṡ3|2, c, s|2) | ṡ3|1 c−→

∗
δ1

s|1},

Consequently, the solution of the constraint system at the accepting states of
the product automaton can be used to describe the set of all connecting hedges:

Theorem 12. We get:

Hedges(C1, C2) =
⋃
{lfp(O)[s] | s ∈ F3}.

Abstraction. To compute the weight of the hedges, we construct a constraint
system L#, a function π#

L# and constraint system O# over the weight domain by
replacing the operators and constants in the constraint system L, the function
πL and constraint system O, with the corresponding operators and constants
according to the abstraction function β:

(2Hedges,∪)� (E, ⊕̄) M � β(M)
M ;M ′ � β(M) �̄β(M ′) MM ′ � β(M) ⊗̄ β(M ′)
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Since the order in the abstract domain is dual to the ordering on sets of
hedges, we compute the greatest fixpoint in the abstract domain. Using standard
results from abstract interpretation [9], we get gfp(L#) = β(lfp(L)), π#

gfp(L#) =
β ◦ πlfp(L) and gfp(O#) = β(lfp(O)) for the solutions of the constraint systems.
With Theorem 12:

Theorem 13. It follows, that:

θ(C1, C2) =
⊕̄
{gfp(O#)[s] | s ∈ F3}.

Thus we can solve the BGPP problem by computing gfp(L#) and gfp(O#). The-
orem 5 states, that we get the solution to the GPP problem by applying η.

Algorithm. Given a WDPN (M,S, f) and two sets of configurations C1, C2,
represented by M-automata A1,A2, the complete algorithm to compute the
solution of the GPP problem δ(C1, C2) consists of the following steps:

1. Find a suitable extended semiring E and extension (S, E , ι, η) and consider
the BWDPN (M, E , f̄), with f̄(r) = ι(f(r)).

2. Construct the automaton A∗
2 using the saturation procedure. The saturation

can be done in O(|S2|3|Δ|‖Δ‖) time, where ‖Δ‖ is the length of the longest
right hand side of a rule in Δ. The size of the transition relation of the
saturated automaton is in O(|δ2|+ |S2|2|Δ|).

3. Construct the abstract constraint system L# for A∗
2 and solve it. The con-

struction can be done during the saturation of the automaton. The size of
the constraint system is in O(|δ2| + |S2|2‖Δ‖|Δ|). The time needed to solve
the constraint system depends on the solver and the height and complexity
of the weight domain.

4. Compute the product automaton A3 from A1 and A∗
2.

5. Construct the abstract constraint system O# for A3 and solve it. The con-
struction can be done during the computation of the product automation.
The size of the constraint system is equal to the size of the transition relation
of the product automaton and thus in O(|δ1|(|δ2|+ |S2|2|Δ|)).

6. Compute
⊕̄
{gfp(O#)[s] | s ∈ F3}.

7. Apply η to get δ(C1, C2).

In total the algorithm is linear in the size of the program |Δ|, exponential in
the size of the rules ‖Δ‖ and polynomial in the number of states and transitions
of the automata describing the starting and target sets of the query. Since all
DPN can be transformed into DPN with only rules of the type pγ ↪→ p′, pγ ↪→
p′γ′, pγ ↪→ p′γ′γ′′ and pγ ↪→ p′γ′p′′γ′′, where the number of rules increases
by a constant factor, the size of the rules ‖Δ‖ can be considered fixed and
small. Similarly the starting and target sets of a query are usually representable
by small automata and thus we have an efficient algorithm. For the first two
applications described in Section 4 the solution of the constraint system can be
computed using standard fixpoint algorithms. Termination of the computation
is guaranteed, since the domains do not contain infinite descending chains. For
the KILL/GEN analyses we additionally require, that the underlying lattice has
no infinite ascending chains, to ensure termination of the fixpoint iteration.
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6 Conclusion

We presented the GPP problem for a WDPN, which is a model for parallel
programs with dynamic process creation and recursive procedures. The GPP
problem is a general problem formulation, which can, for example, be used to
capture basic dataflow analysis problems. Since the GPP problem can not be
solved directly, our approach is based on an alternative branching semantics
for DPN. The resulting tree shaped executions can be characterised using a
constraint system, which can then be solved over an abstract domain to get
a solution for the BGPP problem for BWDPN. If the weight domains for the
BWDPN and WDPN are connected through an extension, the solution for the
GPP problem can be derived from the corresponding BGPP problem. We have
shown how the results can be used to solve basic dataflow analysis problems like
bitvector analyses or shortest path problems.

Future Work. Firstly, we are currently working on an implementation of the
algorithm and different weight domains.

Another direction of research is the iterated application of our algorithm.
One can observe, that the product automaton computed in Section 5 is again
an M-automaton, whose transitions are indirectly annotated by the solution of
the constraint system. The idea is to take this automaton as the target set for a
second computation, which is initialized with the annotation of the automaton.
Similar techniques have been studied for DPN without weights [11] and WPDS
[4] to realize context-bounded analyses.

To compute the BGPP solution we need to solve a constraint system over
the extended semiring. In practice this requires the extended semiring to fulfill
additional criteria for the computation to terminate, like finiteness or the de-
scending chain condition. To deal with unbounded domains, widening [9] could
be introduced. Additionally in recent work [12,13], new techniques have been
presented to solve equations for more general types of semirings. We plan on
examining, whether these can be applied to our extended semirings.

In addition the relationbetween a semiring and a corresponding extended semir-
ing and extension needs to be studied further. Here especially conditions which
guarantee the existence of an efficient construction are of interest. Or alternatively,
whether there are ways to construct at least an efficient approximation.

Our main application of BWDPN up to now is solving the GPP problem for
WDPN. BWDPN themselves can be interesting. One example are weight do-
mains which rely on thread identity. The thread executing a specific transition
can not be determined from an interleaved path, but is visible in an execu-
tion hedge. The acquisition structures studied in [10], to compute whether there
exists a path connecting two regular sets of configurations w.r.t. a lock sensi-
tive semantics, can for example be adapted into a weight domain for BWDPN.
Furthermore we plan to investigate whether the approach to the analysis of syn-
chronisation taken in [14] can be adapted to our framework and thus extended
to dynamic process creation.
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Explicit Stabilisation
for Modular Rely-Guarantee Reasoning

John Wickerson, Mike Dodds, and Matthew Parkinson

University of Cambridge Computer Laboratory

Abstract. We propose a new formalisation of stability for Rely-Guaran-
tee, in which an assertion’s stability is encoded into its syntactic form.
This allows two advances in modular reasoning. Firstly, it enables Rely-
Guarantee, for the first time, to verify concurrent libraries independently
of their clients’ environments. Secondly, in a sequential setting, it allows
a module’s internal interference to be hidden while verifying its clients.
We demonstrate our approach by verifying, using RGSep, the Version 7
Unix memory manager, uncovering a twenty-year-old bug in the process.

1 Introduction

Reasoning about concurrent programs is hard because commands from different
threads are interleaved non-deterministically. With many threads and many com-
mands per thread, naïve reasoning soon succumbs to a combinatorial explosion.
The Rely-Guarantee (RG) method [14] restores tractability through abstraction.
In addition to the pre and postconditions inherited from Hoare logic [12], a com-
mand is specified by two relations between states: a rely R that specifies all the
state transitions (or ‘actions’) the environment can cause, and a guarantee G
that specifies all the actions of the command itself. (The environment is the set
of concurrently-running threads.) The method conservatively assumes that be-
tween consecutive commands in a thread, any number of actions in R may occur.
The truth of an assertion that holds after one command must be preserved by
this ‘interference’, so that it may be safely assumed by the next command. Such
an assertion is deemed stable under R.

Stability is traditionally enforced through side-conditions on proof rules. We
propose (Sect. 3) a new formalisation in which stability is recorded within the
syntactic form of the assertion itself. Just as ‘explicit substitution’ [1] added
substitution to the syntax of λ-calculus terms, our work adds stabilisation to
the syntax of RG assertions. We propose two new constructs: �p�R to denote the
weakest assertion that is both stronger than p and stable under R, and dually,
�p�R to denote the strongest stable assertion that is weaker than p.

The main benefit is in modularity, two forms of which we tease apart and
tackle separately: verifying concurrent libraries independently of clients, and
verifying clients of a (sequential) module independently of its implementation.

Verifying libraries independently of clients. RG is a compositional method: an en-
tire program’s proof depends only upon the proofs of its constituent commands.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 610–629, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Weaken
R′, G′ � {p′}C {q′}
p ⇒ p′ q′ ⇒ q

R ⊆ R′ G′ ⊆ G

R,G � {p}C {q}

Par
R ∪ G2, G1 � {p1}C1 {q1} R ∪ G1, G2 � {p2}C2 {q2}

R, G1 ∪ G2 � {p1 ∧ p2}C1 ll C2 {q1 ∧ q2}

Basic
� {p} c {q} ↼p ∩ c ⊆ G

p stab R q stab R

R, G � {p} c {q}

Skip
p stab R

R, G � {p} skip {p}

Loop
R, G � {p}C {p}

R,G � {p}C+ {p}
Fig. 1. Selected RG proof rules (with stability checks)

Yet it is not modular: a command’s proof cannot necessarily be re-used when
the command features in a different program, because proofs are environment-
specific. Thus, RG cannot verify libraries that are invoked in several different
environments. Our solution (Sect. 4) has the library record stability requirements
using � �R and � �R, but leave the specification parametric in R. Each client then
instantiates R appropriately and performs the stabilisation.

Verifying clients independently of module implementations. In Sect. 5, we bring
explicit stabilisation to an RG-style logic that reasons about heap-manipulating
programs: RGSep [20]. Because it divides the heap into both thread-local and
shared regions, RGSep’s notion of stability is more complex than that of ordinary
RG; in particular, while only the shared heap is susceptible to interference,
we shall see that the local heap can still affect stability arguments. Originally
conceived for concurrency, RGSep is apt for verifying sequential modules too.
Such a verification must consider every action by which a client can mutate
the module’s part of the heap. Our extension of explicit stabilisation to RGSep
permits an InfoHiding rule that allows this so-called ‘internal interference’ to
be hidden while verifying clients. We demonstrate (Sect. 6) this approach by
verifying – for the first time – the Version 7 Unix memory manager. In doing so,
we uncover a bug that has lain dormant since 1979.

We begin with a short introduction to the RG proof system, followed by a brief
account of the failure of traditional RG to provide a modular specification for
even one of the most trivial library functions: increment.

2 Background: Rely-Guarantee Reasoning

RG specifications are of the form R, G � {p}C {q}, where R and G are relations
between states. Following [17], G shall be reflexive. This specification expresses
that when C begins execution in a state satisfying the precondition p, in an
environment whose interference is limited to the actions in the rely R, then any
state transitions performed by C are within its guarantee G, and moreover, if
the execution terminates, the final state satisfies the postcondition q.
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Figure 1 presents a selection of the RG proof rules, which concern commands
of the following simple parallel language:

C ::= skip | C ; C | C ll C | C + C | C+ | c

The + operator chooses one of its operands to execute, while C+ executes C at
least once.1 We consider only partial correctness, so these non-deterministic con-
structs for choice and looping suffice for encoding if and while commands. The
language is parameterised on the set of basic commands c, which are relations
that model atomic state transformations. We shall assume c includes assert
and assume commands and variable assignment. See [21] for the complete set of
proof rules and the formal semantics of our language.

The Basic rule requires that c meets the sequential specification {p} c {q},
and that any action it performs is within its guarantee. It uses the notation
↼p

def= {(σ, σ′) | σ |= p}. The pre and postconditions of the two ‘ground’ com-
mands, c and skip, are required to be stable. Since the other commands are
built inductively from these, their rules can assume any inherited assertions to
be stable (or else derived from stable assertions by the Weaken rule). Stability
checks are notated as follows:

Definition 1 (Stability). p stab R
def= ∀σ, σ′. σ |= p ∧ R(σ, σ′) =⇒ σ′ |= p.

The Par rule marks the epitome of RG reasoning. When reasoning about com-
mands composed in parallel, the rely of each command is extended to include
the guarantee of the other. The composed command C1 ll C2 guarantees actions
in either of its components’ guarantees, and establishes both components’ post-
conditions upon completion.

2.1 The Problem with Verifying Libraries

Consider a library function f() that atomically increments a shared variable
x. Its two clients, g() and h(), invoke f() in an empty environment and an
environment that may increase x, respectively. Call this latter environment Rx+.
The guarantee Gx+ additionally dictates that no variable other than x changes.

Definition 2. f() def= x++
g() def= assume(x=3) ; f() ; assert(x=4)
h() def= assume(x=5) ; (f() ll f()) ; assert(x≥6)
Rx+

def= {(σ, σ′) | σ(x) ≤ σ′(x)}
Gx+

def= {(σ, σ′) | σ(x) ≤ σ′(x) ∧ ∀v �= x. σ(v) = σ′(v)}
Now, the proofs of g() and h() hinge, respectively, upon deriving the following
two specifications for f():

∅, Gx+ � {x=X} f(){x=X+1} Rx+, Gx+ � {x≥X} f(){x≥X+1}
1 Interestingly, a variant of the Loop rule for reasoning about C∗ commands would

require a stability check on p, in case C∗ should behave like skip. Our language uses
C+ so as to sidestep this check.
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Both hold, yet no single ‘most general’ specification can derive them both. The
first has the stronger postcondition but the smaller rely; the second is vice versa.
This troublesome tradeoff can be blamed on stability: the larger the rely, the
tougher the stability requirement, and thus, the weaker the postcondition.

In Sect. 4, we shall present a single specification for f() from which both of
the above can be derived. Parameterised on an arbitrary rely R, it simply states
that the postcondition needs weakening from x=X+1 just enough to become
stable under R. Upon instantiating R to Rx+, to verify h(), the postcondition
becomes x≥X+1. And when R is ∅, for g()’s proof, no weakening is required.

3 Explicit Stabilisation

This section describes our formalisation of stability and applies it to the RG proof
rules. The remaining sections develop two alternate proof systems: one (Sect. 4)
that can specify libraries independently of clients, and another (Sects. 5 and 6)
that lets a module hide from clients its internal interference.

We propose two new syntactic constructs: �p�R for the weakest assertion that
is stronger than p and stable under R, and �p�R for the strongest assertion that
is weaker than p and stable under R. That is, �p�R =

∨
{q | q ⇒ p ∧ q stab R}

and �p�R =
∧
{q | q ⇐ p ∧ q stab R}.

Definition 3 (Semantics of �p�R and �p�R). The required properties are re-
alised uniquely by the following constructions:

σ |= �p�R
def⇐⇒ ∀σ′. (σ, σ′) ∈ R∗ =⇒ σ′ |= p

σ |= �p�R
def⇐⇒ ∃σ′. (σ′, σ) ∈ R∗ ∧ σ′ |= p.

�p�R�p�R p

Fig. 2

Figure 2 presents the intuition behind our new
operators. The nodes represent states; those that
are filled satisfy some assertion p. The edges de-
pict transitions of an arbitrary rely R. The states
in �p�R are those from which any reachable state
satisfies p. The states in �p�R are those reachable
from a state in p.

Our operators can also be defined using Dijk-
stra’s predicate transformer semantics [6]: �p�R is the weakest precondition of
R∗ given postcondition p, while �p�R is the strongest postcondition of R∗ given
precondition p.

Example. We stabilise x=0 and x �=0 under Rx+ (see Definition 2) like so:

�x=0�Rx+
⇔ false �x=0�Rx+

⇔ x≥0 �x �=0�Rx+
⇔ x>0 �x �=0�Rx+

⇔ true

3.1 Properties of Explicit Stabilisation

Both � � and � � are monotonic with respect to ⇒. They are related via the
equivalence �¬p�R ⇔ ¬�p�R−1 . Each has no effect on an already-stable operand,
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or when R is empty. Both true and false are stable, and conjunction and disjunc-
tion both preserve stability. The distributivity properties of � � and � � over ∧
and ∨ are analogous to those of ∀ and ∃ respectively:

�p ∧ q�R ⇔ �p�R ∧ �q�R �p ∨ q�R ⇐ �p�R ∨ �q�R
�p ∧ q�R ⇒ �p�R ∧ �q�R �p ∨ q�R ⇔ �p�R ∨ �q�R

Several properties mirror those of the floor and ceiling functions in arithmetic,
from which our syntax is borrowed. If R ⊆ R′, we have:

��p�R�R′ ⇔ ��p�R′�R ⇔ ��p�R′�R ⇔ �p�R′

��p�R�R′ ⇔ ��p�R′�R ⇔ ��p�R′�R ⇔ �p�R′

Finally, the following property reminds us of the trade-off mentioned in Sect. 2.1:
that as the rely becomes more permissive, stability becomes harder to show:

R ⊆ R′ implies �p�R ⇐ �p�R′ and �p�R ⇒ �p�R′

3.2 Application to RG Proof Rules

Basic-S
� {p} c {q} ↼p ∩ c ⊆ G

R,G � {�p	R} c {
q�R}

Skip-S

R,G � {p} skip {
p�R}

Fig. 3. New RG proof rules
(with stabilised assertions)

We now describe how the RG proof rules (Fig. 1)
can be adapted to use explicit stabilisation rather
than side-conditions.

Figure 3 displays the replacements for the Ba-
sic and Skip rules; the others remain unchanged.
The Basic-S rule first derives p and q by consid-
ering c sequentially; that is, without concern for
stability. A concurrent specification is obtained by
strengthening p and weakening q until they are
both stable. The Skip-S axiom is justified by con-
sidering the execution of skip from an initial state satisfying p. This state also
satisfies �p�R, and the final state must too, since skip does nothing. The follow-
ing backward-reasoning alternative is interderivable: R, G � {�p�R} skip {p}.

The new rules are at least as powerful as the originals, which can be obtained
by restoring the stability checks and then removing the redundant stabilisations.

3.3 Aside: Simplification of Complex RG Proof Rules

We now highlight the elegance of explicit stabilisation by showing how it can
simplify and generalise complex RG proof rules that rely subtly upon stability.

Coleman [5] proposes the following rule for reasoning about one-armed con-
ditional statements whose test conditions are evaluated non-atomically in the
presence of interference.

StableExpr(es, R) R, G � {p ∧ es}C {q} SingleUnstableVar(eu, R)
∀σ, σ′. σ |= p ∧ (σ, σ′) ∈ R∗ ∧ σ′ |= ¬(es ∧ eu) =⇒ σ′ |= q {¬eu, p, q} stab R

R, G � {p} if eu ∧ es then C {q}
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Tests are pure, and comprise an unstable conjunct eu and a ‘stable’ conjunct es

that contains no variables that R can change (first premise). Crucially, only es

can be assumed still to hold by C (second premise). By requiring eu to involve
only a single read of an unstable variable (third premise), we can treat it as a
predicate of a single state – the state in which the read occurs – despite not
knowing which state that is. Should the test fail, the postcondition must be met
without evaluating C (fourth premise). That premise requires R to preserve the
falsity of eu (fifth premise) so as to ensure that the obligation to fulfil q cannot
be bypassed by having the test evaluate to false but later become logically true.

Now consider the following alternative rule, which uses explicit stabilisation.

SingleUnstableVar(e, R) {p, q} stab R
R, G � {p ∧ �e�R}C1 {q}
R, G � {p ∧ �¬e�R}C2 {q}

R, G � {p} if e then C1 else C2 {q}

Essentially, the execution of C1 begins in a state that is reachable (by a sequence
of environment actions) from one in which e evaluated to true. Similarly, �¬e�R
describes a state reached from one where e did not hold. Stability checks on p
and q remain only for compatibility with the rest of Coleman’s system.

Thanks to explicit stabilisation, the new rule has fewer and simpler premises,
plus it extends naturally to two-armed conditionals. Moreover, e need not be split
into stable and unstable conjuncts, for our rule handles arbitrary test conditions.

4 Verifying Concurrent Library Code

Equipped with a notation for stabilising assertions, we revisit the challenge we
set in Sect. 2.1: to verify concurrent library code using RG reasoning.

Recall our library function f() and its clients g() and h() from Definition 2.
Using explicit stabilisation, we can derive the following specification, which
is parametric in R (although its instantiation will be restricted, as described
shortly).

R, Gx+ � {�x=X�R} f(){�x=X+1�R}

Observe that instantiating R to ∅ yields a specification suitable for proving g(),
while h() can be proved having set R to Rx+. We now present a proof system
for such ‘parametric specifications’ and formally derive the above one for f().

In a parametric specification, the rely is replaced by a set of relies R, and
the pre and postconditions (denoted p, q, r) become functions from relies to
assertions. We shall use λ-calculus notation to describe such functions.

Definition 4. R, G |=P {p}C {q} def⇐⇒ ∀R ∈ R. R, G |= {p(R)}C {q(R)}.

As the definition above shows, a parametric specification represents a family of
specifications, one for each rely in R. A selection of proof rules for parametric
specifications are presented in Fig. 4; those not depicted are lifted in the obvious
way. (See [21] for the full set.)
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P-Weaken
R′, G′ �P {p′}C {q′}
p ⇒R p′ q′ ⇒R q
R ⊆ R′ G′ ⊆ G

R, G �P {p}C {q}

P-Par
R ∪ G2, G1 �P {p1}C1 {q1}
R ∪ G1, G2 �P {p2}C2 {q2}

R, G1 ∪ G2 �P {p1 G2 llG1 p2}C1 ll C2 {q1 G2 llG1 q2}

P-Basic
� {p} c {q} ↼p ∩ c ⊆ G

U, G �P {λR. �p	R} c {λR. 
q�R}
P-Skip

U, G �P {λ_. p} skip {λR. 
p�R}

Abbreviations:
p1 ⇒R p2

def= ∀R ∈ R.p1(R) ⇒ p2(R) R ∪ R
def= {R′ ∪ R | R′ ∈ R}

p1 R1 llR2 p2
def= λR.p1(R ∪ R1) ∧ p2(R ∪ R2) U def= universal set of all relies

Fig. 4. Selected proof rules for parametric specifications

� {p} x++ {p[x−1/x]} Floyd’s Assignment Axiom

� {
x=X�R} x++ {
x=X�R [x−1/x]} Instantiate p to 
x=X�R
U, Gx+ �P {λR. 
x=X�R} x++ {λR.

⌈
x=X�R [x−1/x]
⌉
R
} P-Basic

comm(x++), Gx+ �P {λR. 
x=X�R} x++ {λR. 
x=X+1�R}
P-Weaken

Fig. 5. Derivation of parametric specification for f()

The P-Par rule has grown considerably more complex. The reason is that at
the fork and join of parallel commands, the rely changes. If the rely is R initially,
then within the component commands the rely becomes either R∪G2 or R∪G1,
and after joining, it reverts to R. Our rule simply reflects this progression.

The P-Basic and P-Skip rules both deduce specifications that feature the
universal set of relies, which enables their use in any environment. The P-
Weaken rule can then be used to shrink this set, typically removing the bigger
relies. Doing so restricts a specification’s reusability, but it enhances the appli-
cability of the ⇒R relation that allows it to be simplified.

Theorem 5. The proof rules of parametric stability are sound, that is:

R, G �P {p}C {q} =⇒ R, G |=P {p}C {q}
and they encode the proof rules of Fig. 1 (in which assertions do not contain
explicit stabilisation), both completely and soundly, that is:

R, G � {p}C {q} =⇒ P(R), G �P {λ_. p}C {λ_. q}
R, G |= {p}C {q} ⇐= P(R), G |=P {λ_. p}C {λ_. q}

Here, the use of powersets lets the P-Weaken rule emulate the Weaken rule.

Figure 5 shows the derivation of our specification for f(). In applying the P-
Basic rule, we utilised the identity ��x=X�R�R ⇔ �x=X�R. The specification on
the third line is the most general, as it allows the rely to be instantiated freely.
Yet we do not stop there. We restrict the rely to the set comm(x++) of those that
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comm(x++), Gx+ �P {λR. 
x=X�R} x++ {λR.
⌈
x=X�R [x−1/x]

⌉
R
}

Set R to ∅↙ ↘Set R to Rx+

∅, Gx+ � {x=X} f() {x=X+1} Rx+, Gx+ � {x≥X} f() {x≥X+1}
Fig. 6. Instantiating the specification

‘commute’ with the x++ operation; that is, for which �p�R [x−1/x]⇔ �p[x−1/x]�R
holds for all p. Using this property we can simplify the postcondition.

Figure 6 shows informally how the parametric specification can then be in-
stantiated to two ordinary specifications, for use in proving the two clients g()
and h(). Really, this ‘instantiation’ is an application of the P-Weaken rule to
restrict R to the singletons {∅} and {Rx+} respectively.2

In conclusion, we find that the ‘most general’ specifications that our para-
metric scheme can deduce are, though sometimes desirable, inhibited by their
complexity. The specification on the third line of Fig. 5 contains two stabilisation
operations in its postcondition – and this is for just a single basic command. A
sequence of n basic commands, specified in a similar way, may contain up to
n + 1 stabilisation operations in the postcondition (modelling the environmen-
tal interference before, between and after the commands). The complexity of the
specification is thus comparable to the implementation it describes. Accordingly,
it is crucial that our scheme allows specifications to be specialised to restricted
sets of relies, and thence, simplified.

5 Explicit Stabilisation for RGSep

We now bring explicit stabilisation to RGSep [20], an RG-style logic that reasons
about concurrent heap-manipulating programs by splitting the heap into shared
and thread-local parts. The development in this section builds upon our appli-
cation of explicit stabilisation to RG (Sect. 3), but we shall now leave behind
the parametric specifications of Sect. 4.

Though designed for concurrency, we show (Sect. 5.3) how RGSep can be
applied to sequential modules by reinterpreting the ‘shared’ heap as that part
owned by the module (its so-called ‘internal heap’). Our extension of RGSep with
explicit stabilisation enables an InfoHiding proof rule, by which a module can
hide from clients the interference that affects its internal heap. We demonstrate
our approach in Sect. 6, by verifying the Version 7 Unix memory manager.

5.1 Introduction to RGSep

RGSep extends ordinary RG reasoning with conceptual divisions of the heap
into thread-local and shared parts. The rely and guarantee need specify only
changes to the shared part, and thus become far more compact.
2 Interestingly, although the relies ∅ and Rx+ are both in comm(x++), the same is not

true of all those in P(Rx+): for instance, the rely that only increments x from 1 to 2.
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P ::= e
k�→e | emp | e = e | e > e | true | ¬P | P ⇒ P | P ∗ P | ∃x.P | �P 	R | 
P �R

where k ∈ (0, 1] and e is a pure expression
h, i |=SL e0

k�→e1
def⇐⇒ h = {�e0�i

k�→�e1�i}
h, i |=SL emp

def⇐⇒ h = ∅
h, i |=SL P0 ∗ P1

def⇐⇒ ∃h0, h1. h0⊥h1 ∧ h = h0�h1 ∧ h0, i |=SL P0 ∧ h1, i |=SL P1

h, i |=SL �P 	R
def⇐⇒ ∀h′. (h, h′) ∈ R∗ =⇒ h′, i |=SL P

h, i |=SL 
P �R
def⇐⇒ ∃h′. (h′, h) ∈ R∗ ∧ h′, i |=SL P

where h⊥h′ means dom(h) and dom(h′) are disjoint.

Fig. 7. Syntax and (selected) semantics of separation logic assertions

p ::= P | P | p ∗ p | p ∧ p | p ∨ p | ∃x. p | ∀x. p | �p	R | 
p�R
l, s, i |= P

def⇐⇒ l, i |=SL P

l, s, i |= P
def⇐⇒ l = ∅ ∧ s, i |=SL P

l, s, i |= p0 ∗ p1
def⇐⇒ ∃s0, s1. s0⊥s1 ∧ s = s0�s1 ∧ l, s0, i |= p0 ∧ l, s1, i |= p1

l, s, i |= �p	R
def⇐⇒ ∀s′. (s, s′) ∈ (R\l)∗ =⇒ l, s′, i |= p

l, s, i |= 
p�R
def⇐⇒ ∃s′. (s′, s) ∈ (R\l)∗ ∧ l, s′, i |= p

Fig. 8. Syntax and (selected) semantics of RGSep assertions

RGSep inherits its ability to reason naturally about heap-manipulating pro-
grams from separation logic [13,18], the assertion language of which is presented
in Fig. 7. States comprise a heap h mapping locations to values and a store i map-
ping variables to values. The ∗ operator attempts to split the heap using the &
operator, such that the two (disjoint) parts respectively satisfy its two operands.
We use the fractional permissions model [3], in which a heap may describe some
locations only partially. For instance, the assertion x

1'→3 describes a heap com-
prising a single location x with value 3, and confers full (write) permission on
that location. It may be split into several read-only permissions (e.g. x

.5'→3∗x .5'→3)
which may be shared between different threads. Threads communicate only via
the heap, so the stabilisation operators can ignore the store.

Figure 8 presents the assertion language of RGSep, augmented with explicit
stabilisation. The heap is split into disjoint local and shared regions, l and s,
which are described by unboxed and boxed assertions respectively. The ∗ op-
erator now splits only the local heap. The shared heap is never split, in order
that all threads share the same view of it. For instance, if one thread’s view of
the overall state is described by Ps ∗ Pl, and another’s by Qs ∗Ql, then the ∗
operator combines them thus: Ps ∧Qs ∗ Pl ∗Ql.

Definition 6 (RGSep actions). The action P � Q, defined {(s&s0, s
′&s0) |

∃i. s, i |=SL P ∧ s′, i |=SL Q}, replaces a part of the shared heap satisfying P
with one satisfying Q.
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Definition 7 (Contextual actions). The contextual action P � Q | F , de-
fined {(s&sF &s0, s

′&sF &s0) | ∃i. s, i |=SL P ∧ s′, i |=SL Q ∧ sF , i |=SL F},
requires a separate (unaffected) part of the heap that satisfies F to catalyse it.

5.2 RGSep and Stabilisation

Our semantics of �p�R and �p�R (Fig. 8) imposes the following restriction on R:

Definition 8 (Restricting the rely). R\l def= {(s, s′) ∈ R | l⊥s ∧ l⊥s′}

The R\l operation removes from R impossible environmental actions that would
make the shared heap overlap the current thread’s local heap l.3

All of the properties detailed in Sect. 3.1 continue to hold. The following series
of lemmas describe some additional RGSep-specific properties. Lemma 9 asserts
that local assertions are vacuously stable.

Lemma 9 (Local assertions). �P �R ⇔ �P �R ⇔ P .

The next lemma says that we need not restrict the rely when stabilising a shared
assertion. Such assertions imply that the local heap is empty (see Fig. 8), and
thus unable to conflict with the shared heap.

Lemma 10 (Shared assertions).
⌊

P
⌋
R
⇔ �P �R and

⌈
P
⌉
R
⇔ �P �R .

Finally, we describe the distributivity of the stabilisation operators over ∗.

Lemma 11 (Separately-conjoined assertions). �p�R∗�q�R ⇒ �p ∗ q�R and
�p ∗ q�R ⇒ �p�R ∗ �q�R.

Remark. Neither converse implication holds. Obtain a counterexample for the
first from p as t '→0 ∗ x '→0 ∨ t'→1 ∗ y '→0, q the same but with x and y
swapped, and R as the single action t'→0 � t'→1. For the second, take p as
∃n. t'→n ∧ n < 0 , q as ∃n. t'→n ∧ n > 0 , and R able to increase t’s value.

Frame-S
R, G � {p}C {q}

fv(r) ∩ mods(C) = ∅
R, G � {p ∗ r}C {q ∗ 
r�R∪G}

Fig. 9. New frame rule

The proof rules of RGSep can be adapted to use
explicit stabilisation. Figure 9 shows the replace-
ment for RGSep’s frame rule (see [21] for the com-
plete set of new rules). The original rule required
the frame r (which must not mention any local
variables modified by C) to be stable under both
R and G in case any shared heap it specifies is
mutated by either the environment or C itself. In the new rule, this check be-
comes an explicit stabilisation on r in the postcondition. As in the Skip-S rule
(Fig. 3), the stabilisation could equally be done in the precondition instead.

3 This approach slightly refines the presentation of stability in [19, Lem. 15], which
did not consider such conflicts between shared and local heaps.
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5.3 RGSep and Sequential Modules

This discussion lays the groundwork for the verification of a memory manager
presented in Sect. 6. We shall assume a module comprises some state, including
several heap locations, plus a collection of public routines that can manipulate
this so-called ‘internal heap’. A sequential module is one designed for single-
threaded machines: its routines and all of its clients are sequential.

Sequential modules are analogous to the concurrent programs that RGSep was
designed to verify. The RG method, of abstracting a command’s environment
by a rely, applies to both, albeit for different reasons. For concurrent programs,
we must abstract the concurrently-running threads in order to avoid the com-
binatorial explosion that results from considering each possible interleaving of
commands individually. For sequential modules, we must abstract clients’ actions
between module calls because we cannot know what clients will do. To verify
sequential modules, we redeploy RGSep’s ‘shared’ and ‘thread-local’ heaps to
model the module’s internal heap and, respectively, the heaps of its clients.

Consider a module M with several routines. A client first calls init(), which
prepares part of M ’s state for this client, and may transfer ownership of some of
M ’s heap cells. The return value x identifies subsequent calls in this sequence.
The client then invokes some other routines of M – passing x as a parameter
each time – before calling finalise(x) so that its parts of M ’s state can later
be used for another client. We use ‘client’ here to refer to a sequence of calls
parameterised on the same x.

The crux is to show that several interleaved clients can all interact with M
safely. For instance: if one client executes x :=init(), then another executes
y :=init() followed by a sequence of calls parameterised on y, can the first client
be sure that M is still in a state of readiness for a sequence of calls parameterised
on x, and that the intervening events have not affected its part of M ’s state?

This is actually a matter of stability: we are seeking to prove that the post-
condition of x :=init() is stable under an environment that can execute M ’s
routines arbitrarily (excepting those parameterised on x). We need only con-
sider an environment that calls M ’s routines: other activities do not affect M ’s
internal state, so can be deemed local.

To define such an environment, we require x := init() to return a token(x)
predicate, to reside in the client’s local heap. The predicate is abstract [16],
which means that its definition is out of scope. Later module calls by this client
(which we name Cx) shall require the token’s presence in its local heap, and the
finalise(x) call shall confiscate it. The postcondition of x := init() is thus of
the form P (x) ∗ token(x), where P (x) describes an internal heap with a part
initialised for Cx. Let G be the set of RGSep actions by which M ’s routines can
mutate its internal heap. Alone, P (x) is not stable under G, for G includes
actions that mutate Cx’s part of the internal heap. Yet it becomes stable when
combined with the local assertion token(x). Why? Because the presence of the
token(x) in Cx’s local state prohibits any other client having it and thus being
able to continue the sequence of calls parameterised on x. It is vital that our
refined notion of stability considers such conflicts between local and shared heaps
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(Definition 8). Since stability occupies such a central role here, perhaps explicit
stabilisation can be usefully applied? It can, in the following two ways.

Clarifying the stable parts of assertions. We have claimed P (x) ∗ token(x)
to be a suitable – and stable – postcondition for init. Using explicit stabilisation,
we now propose

⌊
P (x) ∗ token(x)

⌋
G

instead. Strengthening the postcondition
in this way is sound here, because the stabilisation has no effect on the already-
stable assertion. Thus, the presence of � � operators in the postcondition (and,
dually, � � in the precondition) serves to assert that their operands are stable.
(In fact, p ⇔ �p�R exactly characterises those assertions that are stable under
R.) We arrive at the following prototype specification:

G �
{⌈

P
⌉
G

}
x := init()

{⌊
P (x) ∗ token(x)

⌋
G
∗Q

}
.

We omit here and henceforth the rely from specifications, there being only one
thread. We retain the guarantee, whose abstraction of the module calls that
the thread may make is utilised by the Frame-S rule. The unparameterised
P describes any valid internal heap of the module. See how the assertion Q,
which describes cells that are transferred into the client’s local heap, can be
added outside the stabilised part: a client can mutate this part of the heap
without concern for stability, the changes being purely local (see Lem. 9). Not all
local changes can be treated so flippantly – indeed, the local assertion token(x)
is crucial to stability – but by delimiting the important assertions with the
stabilisation syntax, we certify exactly which bits can and cannot be touched.
Clients who obey this can be free of stability considerations, and instead rely on
general properties of stabilisation, such as those detailed in Sect. 3.1.

Information hiding. Because the clients need not perform stabilisation, they
need not even know the set of actions under which the assertions must be stable.
That is, the definition of G can be kept internal to the module. This observation
inspires the following proof rule.

InfoHiding

Module:
(
Δ, G �

{
pi

}
〈Ci〉

{
qi

})n
i=0

Client: Δ′ ⊆ Δ Δ′,
(
G �

{
pi

}
fi

{
qi

})n
i=0

, G � {p}C {q}
Whole system: � {p} let (fi=Ci)

n
i=0 in C {q}

The rule concerns a sequential module comprising routines f1 to fn with imple-
mentations C1 to Cn. The first line specifies each routine, in which G is the set
of actions that clients of the module can perform. (In order to be able to access
the module’s internal heap, RGSep requires Ci to appear in angled brackets.)
Δ denotes a set of predicate definitions, including the definition of token for
instance. It also includes the definition of G, which we shall treat as an abstract
predicate too. The second line specifies a client of the module, C. The Δ′ it
uses excludes the definitions of any predicates that are to remain abstract, and
crucially, omits G’s definition. Doing so makes the specification more reusable
– even in the event that G changes – and hence more conducive to modular
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reasoning. Explicit stabilisation is vital here: the stabilisation operations in the
pi’s and qi’s refer to a particular G in the module specifications, and an arbitrary
G in the client specification.

Theorem 12. The InfoHiding rule is sound.

Proof. The only departure from a typical rule for let commands is to remove
G’s definition from the client’s specification, which logically strengthens one of
the rule’s assumptions.

6 Case Study: Verification of a Memory Manager

We now reify the concepts of Sect. 5 by verifying the Version 7 Unix memory
manager. This illustrates both our extension of explicit stabilisation to RGSep,
and the use of the InfoHiding rule to hide a sequential module’s internal inter-
ference from its clients. The verification itself is not only believed to be the first
for this program; it also reveals a latent bug. The proof is one of safety: we prove
neither termination nor that blocks are allocated in any particular fashion.

To begin, consider the following natural specifications, from [16], for malloc
and free. Assume malloc cannot fail, and suppose a word is WORD bytes long.{

emp
}

x := malloc(n × WORD)
{
token(x, n) ∗ x '→_ ∗ · · · ∗ x+n−1 '→_

}{
∃n. token(x, n) ∗ x '→_ ∗ · · · ∗ x+n−1 '→_

}
free(x)

{
emp

}
The malloc routine gives each client an abstract token predicate, which the client
later uses to certify to free that the block being returned was truly allocated
by malloc (free’s behaviour being undefined otherwise). These specifications
could be realised naïvely by implementing token(x, n) as x−1 '→n; that is, by
storing the length of each block in the preceding cell.

Real memory managers are far more complex. The one we shall examine
forms the cells that precede each block into a monotonically-increasing chain of
pointers, linking all the allocated and free blocks. Such a manager must maintain
in its internal heap the pointer chain, plus any free blocks, while the allocated
blocks are conceptually held by each respective client. For a token, we can now
afford only half of the cell preceding the block, because the manager must retain
at least read-permission on this cell for later traversals of the pointer chain. Note
that by creating the token from part of the existing datastructure, our proof
avoids the need for auxiliary state.

The crux of the verification is to prove that a block allocated to a client
remains allocated until, and only until, that client frees it; that is, it is not
invalidated by other calls to malloc and free. Defining G as the set of actions
of malloc and free, we are asking if malloc’s postcondition is stable under G.

It is easy to show that it is unaffected when these actions are applied to blocks
other than the current one. And although the environment is allowed to apply
these actions to the current block, it is actually unable to do so. Why? Because
the current block cannot be accidentally re-allocated, since to do so would give
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G � {⌈ arena
⌉
G

}
x := malloc(n× WORD)

{⌊
arena

⌋
G
∗ �arenatoken(x, n)	G

∗ x�→_ ∗ · · · ∗ x+n−1�→_

}
G �

{∃n.
⌈

arena
⌉
G
∗ 
arenatoken(x, n)�G

∗ x�→_ ∗ · · · ∗ x+n−1�→_

}
free(x)

{⌊
arena

⌋
G

}
Fig. 10. Specifications of malloc and free

G � {⌈ arena
⌉
G

}
x := malloc(2*WORD);

3
{⌊

arena
⌋
G
∗ �arenatoken(x, 2)	G ∗ x�→_, _

}
=⇒ {⌈

arena
⌉
G
∗ �arenatoken(x, 2)	G ∗ x�→_, _

}
y := malloc(3*WORD);

6
{⌊

arena
⌋
G
∗ �arenatoken(x, 2)	G ∗ x�→_, _ ∗ �arenatoken(y, 3)	G ∗ y�→_, _, _

}
[y+1] := 7;{⌊
arena

⌋
G
∗ �arenatoken(x, 2)	G ∗ x�→_, _ ∗ �arenatoken(y, 3)	G ∗ y�→_, 7, _

}
9 =⇒ {⌈

arena
⌉
G
∗ 
arenatoken(x, 2)�G ∗ x�→_, _ ∗ �arenatoken(y, 3)	G ∗ y�→_, 7, _

}
free(x);{⌊
arena

⌋
G
∗ �arenatoken(y, 3)	G ∗ y�→_, 7, _

}
Fig. 11. Verification of a simple client

the client a duplicate token, which the ∗ operator forbids. And neither can it be
accidentally freed, without yielding its token.

Using explicit stabilisation, here is a first attempt to specify malloc:

G �
{⌈

arena
⌉
G

}
x := malloc(n × WORD)

{⌊
arena(x, n) ∗ token(x, n)

⌋
G

∗ x '→_ ∗ · · · ∗ x+n−1 '→_

}
The arena predicate asserts that the manager’s internal heap is valid, while
arena(x, n) additionally asserts that the block at x is missing. Note that the
stability of arena(x, n) relies on the token(x, n) predicate in the local heap.

This specification exposes too much of the manager’s innards. We address this
in the improved specifications in Fig. 10, by collapsing arena(x, n) ∗ token(x, n)
into a single abstract predicate, arenatoken(x, n). We also append the arena
predicate to both malloc’s postcondition and free’s precondition. Strictly, this
is redundant, for arena is entailed by arenatoken , but having malloc’s postcon-
dition reestablish its precondition simplifies the verification of successive calls to
malloc and allows the predicates to remain fully abstract.

Now consider the simple client in Fig. 11. Because the content of the block lies
outside the scope of the stabilisation, the client can mutate it (line 7) without
having to reconsider stability. The allocation of the block at y (line 5) does not
affect the block at x: such a deduction is enabled by the Frame-S rule of Fig. 9.
(Although this rule imposes a stabilisation on the entire frame, we can leave this
implicit for the local parts, by Lem. 9.) See how the use of explicit stabilisation
allows the client’s verifier to rely only on general properties of stabilisation: for
instance, the deduction of the assertion on line 4 follows straight from �p�R ⇒
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p ⇒ �p�R. The definition of G is thus not needed by the client, so we can use our
InfoHiding rule to keep it internal to the module.

The rest of this section concerns the implementation (Sect. 6.1) and verifica-
tion (Sect. 6.2) of the memory manager. The source code is provided in Appx. A;
our full proof is in [21]. We omit an optimisation that tells malloc where to begin
its search, because it contains a bug, which we explain in Sect. 6.3. Section 6.4
describes some peripheral details of the implementation and the verification.

6.1 Implementation of the Memory Manager

Lorem ipsum dolor sit
a m e t , c o n s e c t e t u r
adipiscing elit. Integer
eget risus luctus arcu
gravida elementum. Ut
ma lesuada rhoncus
quam ut accumsan. Sed
eu dui dolor, in eleifend
ipsum. Suspendisse
interdum sem a magna 
e u i s m o d i n a l i q u e t
s a p i e n f e r m e n t u m .
Integer ac porta nulla.
Vestibulum at felis tellus

M o r b i l o r e m u r n a , p l a c e r a t
pellentesque imperdiet vestibulum, 
fermentum sit amet felis. Praesent 
aliquet convallis libero quis placerat. 
Nam quis justo vitae quam laoreet 
iaculis. Curabitur quis mauris lectus, 
a vestibulum ligula. Suspendisse
nibh mi, luctus ac luctus ac, ultrices 
tincidunt velit. Praesent suscipit urna 
et mi mattis aliquet. Pellentesque 
vitae tortor malesuada lectus
bibendum dictum id sit amet urna. 
Phasellus egestas lobortis nulla vel 
pulvinar Suspendisse euismod

s t

Fig. 12. An arena

The memory manager controls the allocation and
deallocation of blocks of main memory to and
from client processes. The portion of memory it
controls (shown in Fig. 12) contains both free
and allocated blocks. The grey cells form a cyclic
chain of pointers and the white blocks in between
can be allocated to clients. Since blocks are word-
aligned, the least significant bit in each pointer is redundant, and is hence em-
ployed to signal the availability of the following block. In the figure, black and
white squares indicate that this so-called ‘busy’ bit is set and, respectively, un-
set. The module-level variables s and t respectively identify the first and last
pointers in the arena. Because it is not followed by an allocatable block, the last
pointer’s busy bit is permanently set.

A client requests a block of n bytes by calling malloc(n). For clarity of expo-
sition we shall keep n a multiple of the word size, WORD. The routine traverses
pointers until it finds a free block that is sufficiently large, returning the null
pointer in the case of failure. It coalesces consecutive free blocks throughout
the search. Should the block it finds be exactly the right size, a pointer to it is
returned, and should it be too large, it is divided into two and a pointer to the
first is returned. The client can later invoke free(x), x being the address of the
first cell in the block. Observe that free is not parameterised by the length of
the block, because the length was recorded when malloc allocated it.

6.2 Details of the Verification

Figure 13 defines some auxiliary predicates used in the specifications and proof.
x→u y describes an unallocated block between x and y. Upon being allocated a
block of size n with first cell x, the client is also given token(x, n), which contains
a half permission on the block’s pointer; the manager retains the other half. We
write x'→ybusy to mean that upon unsetting x’s busy bit, it would contain the
address of y. x	y says that y is the special pointer at the end of the arena
that points back to x, the start of the arena. x
y denotes a possibly-empty
monotonically-increasing chain of pointers from x to y (including any unallocated
blocks), the definition of which abbreviates x→x′ ∗ x′
y to x→x′
y.

Figure 14 formalises the ways in which the internal heap of the module may
be mutated by clients calling malloc and free. Only one routine can execute at
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x→u y
def= x<y ∧ x �→y ∗ (x+1) �→_ ∗ · · · ∗ (y−1) �→_

x→a y
def= x<y ∧ x

.5�→ybusy

x→y
def= x→u y ∨ x→a y

x	y
def= x<y ∧ y �→xbusy

x
y
def= (∃x′. x→x′
y) ∨ (x=y ∧ emp)

arena
def= s
t ∗ s	t

arena(x,n) def= s
(x−1)→a (x+n)
t ∗ s	t

token(x,n) def= (x−1) .5�→(x+n)busy

arenatoken(x,n) def= arena(x,n) ∗ token(x, n)

Fig. 13. Predicates

Coalesce: a→u b→u c � a→u c | s
a

AllocateEntire: a→u b � a→a b | s
a

AllocatePart: a→u b � a→a (b−n)→u b | s
a

Free: a→a b � a→u b | s
a

Fig. 14. Main actions

p

p

px

pxy

malloc(1000*WORD);

x := malloc(1*WORD);

y := malloc(3*WORD);

Fig. 15. The bug

once, so it would suffice to list a single action for each.
We prefer to split them into several simple actions. The
first coalesces two consecutive free blocks. The second
allocates an entire block to a client, while the third
allocates just the initial part. The fourth frees a block.
The context s
a ensures that the blocks that are acted
upon are really in the arena. G is the union of all these
actions.

6.3 A (Faulty) Optimisation

The following bug was discovered during the verifica-
tion process.

The manager maintains a global variable p (named
allocp in the original source code) that, after a block is
allocated, is pointed to the successive block, and after
a block is freed, is pointed to that block. It serves to
identify a good place for the next call to malloc to
begin its search. The implementation does not update
p if allocation fails, however, and therein lies the bug: p should be updated in
case the block to which it points has been coalesced with its predecessor, lest it
be left pointing inside a block.

Figure 15 demonstrates how this bug could wreak havoc. Our contrived arena
contains just two one-word blocks, both of which are free, and p initially points
to the second. The first malloc call fails, but has the side-effect of leaving p
inside the coalesced block. We then allocate a small block at x, before wrapping
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around to the start of the arena and allocating a larger block at y, thereby
reaching a situation in which the contents of the smaller block is allocated twice.

The discovery of this bug was prompted by the failure of the invariant s
p,
which states that p identifies a valid pointer in the arena. We have successfully
executed our exploit to confirm that the bug is real.

6.4 Other Issues

There are several other issues involved in the implementation and verification of
the memory manager, which we explain now. These issues have been sidestepped
so far in order to focus on the crucial parts of the verification.

Allocation failure. To handle the case where malloc fails, its postcondition
should be disjoined with the following assertion:

⌊
arena

⌋
G
∗ x=0.

Extending the arena. Once the search for a block has exhausted the arena,
malloc invokes sbrk to ask the system for another block of memory. This block
will be located at an address above t because, in Version 7 Unix, memory allo-
cated via sbrk is never returned. The following three actions should be added
to G, to formalise these calls to sbrk:4

ExtendGap: &t�→t ∗ s	t ∗ brk(b) ∧ b>t+1 � &t�→t′ ∗ t→a b→u t′ ∗ s	t′ ∗ brk(t′+1)
ExtendNoGap: &t�→t ∗ s	t ∗ brk(t+1) � &t�→t′ ∗ t→u (t+1)→u t′ ∗ s	t′ ∗ brk(t′+1)
AdvBreak: brk(b) � ∃n>0. brk(b+n)

The first extends the arena with a new block, leaving a gap that is filled with
an unfreeable dummy block to maintain the illusion of a contiguous arena. The
second is similar, but without the gap. The third action, which advances the
‘break value’ (the cell at which the next successful call to sbrk will return a
block), is kept distinct to reflect that it may be performed in other situations.

An issue with dummy blocks. When the arena is extended via the ExtendGap
action, the resulting gap is filled with a dummy block that is permanently allo-
cated. In order to allocate such a block, we need to hand the caller the token
predicate, yet there is no client in this situation. We thus add a true predicate
to the arena, which can ‘soak up’ these spare tokens. Considering this and the
previous points, the arena (see Fig. 13) can be more precisely defined as follows:

arena def= ∃s, t, b. true ∗ &s '→s ∗ &t '→t ∗ s
t ∗ s	t ∗ brk(b) ∧ t < b

7 Related Work

Explicit stabilisation arose out of ‘mid stability’ [19, §4.1], a variation of RG
reasoning that places stability checks not on the pre and postconditions of basic
commands, but at the points of sequential and parallel composition instead. This
more strategic placement eliminates redundant checks, and also allows libraries
4 We are now treating module-level variables more carefully: the variable t is modelled

as a heap cell at address &t, thus allowing its value to be altered by these actions.
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comprising just one basic command to be verified without considering stability.
Our parametric proof system (Fig. 4) extends this to all library functions (and
encodes mid stability soundly and completely).

RG-style reasoning has been used before to verify concurrent library code
(e.g. [10]). The specifications of that approach involve a particular rely, whereas
our parametric specifications do not require a particular rely to be instantiated.

RG has also furnished proofs of sequential modules before (e.g. [22]), but we
believe ours to be the first that hides the module’s internal interference. The
InfoHiding rule that enables this feat is related to the hypothetical frame rule
[15]: the latter rule hides the module’s state from the client, while ours hides
the module’s interference. Perhaps the hypothetical frame rule could be used to
remove the arena predicate from the verification given in Fig. 11, thus revealing
to the client neither the module’s state nor its internal interference.

SAGL [9], like RGSep, is a descendant of RG and separation logic, to which
explicit stabilisation could also be applied. Local Rely-Guarantee (LRG) [8] is
a third descendant that addresses an inherent flaw in the modularity of its sib-
lings: that the shared heap must be globally known. It defines a ∗ operator over
interference, which allows the shared heap to be split into portions that are
shared between just a few threads. The application of explicit stabilisation to
LRG could simplify the verification of clients that invoke multiple modules, for
our approach currently handles only one.

Explicit stabilisation can be seen as a bridge between theory and implemen-
tation: tools, such as SmallfootRG [4], that automate RG-style reasoning may
defer stability checks rather than perform them at the point of rule application,
and explicit stabilisation can help to formalise this ‘lazy’ approach. We have not
considered the implementation of stabilisation; this issue is explored in [2].

8 Conclusion

We have proposed explicit stabilisation as a new way to deal with stability in
RG reasoning. The central idea is to record information about an assertion’s
stability into its syntactic form. The main benefits are in modular reasoning:
Library code can be verified independently of clients. In Sect. 4, we showed how
an approach based upon explicit stabilisation enables RG reasoning to verify
concurrent library code. Essentially, the stabilisation in the library’s specification
is evaluated so lazily that it actually becomes an obligation of the client.

Client code can be verified independently of a sequential module. We showed in
Sect. 5 how the application of explicit stabilisation to RGSep gives rise to an
InfoHiding rule that allows a sequential module to hide its internal interference
from its clients. Such information hiding is crucial for modular reasoning, because
it allows the specification of a client to be reused, even despite changes to the
specification of this internal interference. Section 6 demonstrated this reasoning
by verifying a memory manager.

It would be interesting to investigate whether these two forms of modularity can
be combined; that is, can we verify both a library and its clients, modularly,at
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the same time? It looks feasible. The specification for the library in Sect. 4 used
explicit stabilisation with an arbitrary rely R, which became specific for each
client in turn. Meanwhile, the specifications for the memory manager in Sect. 6
used explicit stabilisation with the specific G of the module, which was then
generalised to an arbitrary G for the clients, so as to provide information hiding.
Perhaps a combination of these approaches would parameterise on both the rely
and the guarantee?

We also plan to apply explicit stabilisation to more advanced logics based
on RG, such as LRG, Deny-Guarantee [7], and the logic of Gotsman et al. for
proving liveness [11]. The notions of stability in such logics are becoming ever
more demanding, so it is increasingly important to have a solid basis upon which
to reason about stability. We believe explicit stabilisation provides such a basis.
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A Source Code of Unix V7 Memory Manager

Abridged and corrected. Retrieved from the Unix Heritage Society.5

#define WORD sizeof(st)
#define BLOCK 1024
#define testbusy(p) ((int)(p)&1)
#define setbusy(p) (st *)((int)(p)|1)
#define clearbusy(p) (st *)((int)(p)&~1)
struct store { struct store *ptr; };
typedef struct store st;
static st s[2]; /*initial arena*/
// static struct store *allocp; (bug removed)
static st *t; /*arena top*/
char* sbrk();
char* malloc(unsigned nbytes) {
register st *p, *q;
register nw; static temp;
// omitted: initialisation code
nw = (nbytes+WORD+WORD-1)/WORD;
for(p=s; ; ) {
for(temp=0; ; ) {
if(!testbusy(p->ptr)) {
while(!testbusy((q=p->ptr)->ptr))
p->ptr = q->ptr;

if(q>=p+nw && p+nw>=p) goto found;
}
q = p; p = clearbusy(p->ptr);

if(p>q) ;
else if(q!=t || p!=s) return 0;
else if(++temp>1) break;

}
temp = ((nw+BLOCK/WORD)

/(BLOCK/WORD))*(BLOCK/WORD);
q = (st *)sbrk(0);
if(q+temp < q) return 0;
q = (st *)sbrk(temp*WORD);
if((int)q == -1) return 0;
t->ptr = q;
if(q!=t+1) t->ptr = setbusy(t->ptr);
t = q->ptr = q+temp-1;
t->ptr = setbusy(s);

}
found:
if(q>p+nw) ((st *)(p+nw))->ptr = p->ptr;
p->ptr = setbusy(p+nw);
return((char *)(p+1));

}
free(register char *ap) {
register st *p = ((st *)ap)-1;
p->ptr = clearbusy(p->ptr);

}

5 http://minnie.tuhs.org/UnixTree/V7/usr/src/libc/gen/malloc.c.html

http://minnie.tuhs.org/UnixTree/V7/usr/src/libc/gen/malloc.c.html
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