
Integrated
Computer-Aided
Design in Automotive
Development

Mario Hirz · Wilhelm Dietrich
Anton Gfrerrer · Johann Lang

Development Processes, Geometric
Fundamentals, Methods of CAD,
Knowledge-Based Engineering
Data Management

Integrated Computer-Aided Design in
Automotive Development

Mario Hirz • Wilhelm Dietrich
Anton Gfrerrer • Johann Lang

Integrated Computer-Aided
Design in Automotive
Development

Development Processes, Geometric
Fundamentals, Methods of CAD,
Knowledge-Based Engineering Data
Management

123

Mario Hirz
Institute of Automotive Engineering
Graz University of Technology
Graz
Austria

Wilhelm Dietrich
MAGNA STEYR Engineering

AG & Co KG
Graz
Austria

Anton Gfrerrer
Johann Lang
Institute of Geometry
Graz University of Technology
Graz
Austria

ISBN 978-3-642-11939-2 ISBN 978-3-642-11940-8 (eBook)
DOI 10.1007/978-3-642-11940-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012954064

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science?Business Media (www.springer.com)

Introduction

Automotive development requires flexible and powerful tools. In the current,
highly competitive market, the need to continually reduce development time and
costs is driving the ongoing creation of strategies that can provide intelligent and
functional links between the many parties involved in vehicle development,
including project engineers, ergonomic specialists, safety and crash departments,
designers, and many more. While a combination of virtual design and simulation
methods with physical development and testing procedures represents the current
state-of-the-art, the trend is moving towards integrated virtual development
processes. Such processes focus on the product itself while also taking into account
a wide variety of potential production and supplier interrelationships, as well as
lifetime-relevant factors pertaining to customer use, support, service, and disposal.

In automotive development, computer-aided design (CAD) is used to perform
the geometrical product definition, which provides the basis for three-dimensional
virtual product models. The models are built by combining main assemblies,
sub-assemblies, and individual components, which brings the virtual models close
to the configurations of physical products. In this process, design tasks are carried
out using parametric-associative techniques, which require the implementation of
design-process-related guidelines and project-specific default procedural steps.
The realization of parametric-associative model structures and interlinked geom-
etry elements in turn improves the geometry representation by adding elements
related to design check features, information relevant to digital mock-ups, or
calculations and logical functionalities. The separation of geometry elements and
geometry-defining parameters enables the integration of complex computation
procedures, the creation of interfaces with design-external processes, and the direct
embedding of macro-based automated routines into the design software. In this
way, formerly separated working fields (e.g. calculation and simulation) are
integrated into or connected to CAD models.

To enhance engineering capabilities in modern product development, intelligent
solutions for the collection, storage, and distribution of product and process-
oriented data and knowledge must be implemented. Powerful management con-
cepts are necessary to manage the complex information flow, processes, and

v

documents during the development or modification of products. Engineering data
management (EDM), which organizes the data flow throughout the development
processes and prevents data redundancy, represents an important component in the
generation of complex product structures in the context of multi-firm and global
collaborations.

The book offers a comprehensive overview of integrated CAD, with a focus on
development processes in the automotive industry. This focus does not limit the
application of the methods, strategies, and tools described here to a specific
industry, but rather provides well-defined boundary conditions within which the
topic can be effectively discussed. Nevertheless, the basic findings of this book can
certainly be transferred to other industries in the area of mechanical or mecha-
tronics product development.

One primary aim of the book is to introduce and discuss the entire process chain
of product design, including the basic methods of geometry creation, the appli-
cation of CAD, the integration of design and engineering, and finally the man-
agement of information related to both product and process. This comprehensive
overview of the methods and tools of virtual product development will provide the
reader valuable insight into the complex web of interactions and connections that
characterize product development.

The following paragraphs provide brief summaries of the nine chapters inclu-
ded here:

Chapter 1, Automotive Development Processes, includes a retrospect of
achievements in the automotive industry and highlights the very different factors
that have influenced the development of cars over the past 120 years. The wide
range of requirements for current and future cars is then elaborated, in order to
clarify the current challenges facing automotive development. In addition, the
stages in automobile development are explained through a detailed analysis of the
different project phases, including a discussion on the integration of virtual product
creation throughout the entire development chain.

Chapter 2, Overview of Virtual Product Development, first provides a summary
of the various stages in the life cycle of mechanical products. The main terms,
definitions, and methods of computer-aided product development are then intro-
duced. This includes the historical development of CAD, simulation, and data
management. In addition, some selected, representative development workflows in
automotive engineering are presented and discussed, and the chapter then closes
with a brief introduction to the concepts of collaborative product development.

Chapter 3, Geometric Fundamentals, introduces the reader to the mathematical
and geometrical concepts which form the basis of a CAD system. It starts from
scratch and leads the reader through the fields of curves, surfaces, freeform
techniques, interpolation, approximation, and a range of other geometrical topics.
In effect, this section might also be considered a manual for standard CAD
concepts. However, rather than simply listing the methods and algorithms, this
chapter actually explains the ideas behind these elements. A proper understanding
of these ideas and properties can help engineers perform their jobs more
effectively.

vi Introduction

http://dx.doi.org/10.1007/978-3-642-11940-8_1
http://dx.doi.org/10.1007/978-3-642-11940-8_2
http://dx.doi.org/10.1007/978-3-642-11940-8_3

Chapter 4, Modeling Techniques in CAD, includes a detailed introduction of
design methods within the CAD environment. Structures and strategies of wire-
frame, surface, and solid modeling are presented and discussed in terms of their
application in collaborative product development processes. Beyond the applica-
tion of primary CAD functionalities, this chapter uses specific examples from the
automotive industry to present a variety of methods for the efficient creation of
mechanical components and assemblies.

Chapter 5, Knowledge-Based Design, covers the use of template models,
integrated calculation and simulation procedures, and automated routines to sup-
port product design. Knowledge-based design enables the collection, storage, and
reuse of expert knowledge, as well as the subsequent integration of know-how into
development processes. Using examples from component and assembly develop-
ment, the chapter elaborates on the potential of enhanced parametric-associative
design and knowledge-based engineering used in combination with simultaneously
linked calculation procedures.

Chapter 6, Engineering Data Management (EDM), describes the fundamental
principles of this approach, which involves the interdepartmental and interdisci-
plinary integration of data and workflows in automotive product development.
Both complete EDM use cases and the basic functional modules of CAD and
computer-aided engineering (CAE) are described in the context of process-ori-
ented product life cycle management approaches. Finally, the chapter also presents
the system-oriented view by describing EDM system architecture with integrated
computer-aided applications and data management systems.

Chapter 7, Knowledge Management in Product Development, describes product
knowledge as a basis for investigation, as well as the development of such
knowledge across the product life cycle. The chapter introduces and discusses the
fundamentals of knowledge, knowledge management, and knowledge transfer, as
well as the principle related basic models and approaches. Thus, the chapter offers
a summary of current scientific findings in the area of knowledge management that
serves as background for further analysis.

Chapter 8, Knowledge-Based Engineering Data Management, describes an
approach for using process-oriented knowledge management to identify and
organize knowledge-intensive activities in relation to data management activities.
Modern design processes involve a variety of tasks (e.g. geometry creation, sim-
ulation) and product-specific characteristics (e.g. functional layout, materials,
process-relevant data (e.g. for production), product structure, configuration), all of
which can be managed with knowledge-based methods. Comprehensive knowl-
edge exchange in product development requires effective data management
strategies, which can be applied within knowledge-based EDM.

Chapter 9, Advanced Applications of CAD/EDM in the Automotive Industry,
offers a selection of concrete use cases in automotive development. One use case
includes an application of knowledge-based EDM, which highlights the impor-
tance of the interaction of knowledge processes and data management throughout
virtual product development. This use case also describes the integrated applica-
tion of CAD, simulation, and management throughout the daily operations of

Introduction vii

http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_5
http://dx.doi.org/10.1007/978-3-642-11940-8_6
http://dx.doi.org/10.1007/978-3-642-11940-8_7
http://dx.doi.org/10.1007/978-3-642-11940-8_8
http://dx.doi.org/10.1007/978-3-642-11940-8_9

development processes. Another use case describes the integration of CAD data
management in automotive engineering, which is an essential topic in the area of
EDM. Finally, a use case describing an approach of a parametric-associative
concept model for initial vehicle development highlights the various working
fields involved in automotive concept phases and introduces a model for geo-
metrical and functional integration.

viii Introduction

Contents

1 Automotive Development Processes . 1
1.1 Manifold Requirements in the Past and in the Future 3
1.2 The Process of Automotive Development 11

1.2.1 Project Periods. 13
1.2.2 Phases of Automotive Development 14

1.3 Application of CAD in Automotive Development 21
References . 23

2 Overview of Virtual Product Development 25
2.1 Development of Mechanical Products. 25
2.2 Virtual Product Development . 29

2.2.1 Product Models . 32
2.2.2 CAD-CAE Workflows in Automotive Engineering . . . 34
2.2.3 Management of Product Data 43
2.2.4 CAD-CAE Data Exchange . 45
2.2.5 Concepts of Collaborative Product Development 47

References . 49

3 Geometric Fundamentals . 51
3.1 The 3-Space, Transformations and Motions. 52

3.1.1 Planar Reflections . 55
3.1.2 Translations and Rotations . 55
3.1.3 Orientation . 57
3.1.4 Helical Displacements . 59
3.1.5 Euclidean Motions . 60
3.1.6 Some Fundamentals of Line Geometry 62

3.2 Polynomials. 65

ix

http://dx.doi.org/10.1007/978-3-642-11940-8_1
http://dx.doi.org/10.1007/978-3-642-11940-8_1
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_1#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_2
http://dx.doi.org/10.1007/978-3-642-11940-8_2
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_2#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec10

3.3 Curves . 70
3.3.1 Parametric Representation of a Curve. 70
3.3.2 Planar Curves . 72
3.3.3 Derivatives and Tangents . 73
3.3.4 Arc Length Parameter. 76
3.3.5 Curvature and Torsion . 77
3.3.6 Osculating Circle and Osculating Plane 78
3.3.7 The Frenet Frame . 79
3.3.8 Planar Algebraic Curves . 81
3.3.9 Rational Curves . 82
3.3.10 Second Order Curves . 83

3.4 Freeform Curves . 85
3.4.1 Bézier Curves . 86
3.4.2 B-Spline Curves. 99
3.4.3 Rational Freeform Curves, NURBS 109

3.5 Univariate Interpolation . 116
3.5.1 Lagrange Interpolation . 119
3.5.2 Interpolation by Cubic Segments 122
3.5.3 Parameterization . 134

3.6 Univariate Approximation . 136
3.6.1 Improving the Quality of Approximation 140
3.6.2 Approximation with Cubic B-Splines 143

3.7 Surfaces . 144
3.7.1 Parametric Representation of a Surface. 144
3.7.2 Surface Curves . 146
3.7.3 Derivatives and Tangent Planes 147
3.7.4 Curvature Theory of Surfaces 152
3.7.5 Surfaces Represented by Equations 157
3.7.6 Algebraic Surfaces . 158
3.7.7 Rational Surfaces . 159
3.7.8 Quadrics . 160
3.7.9 Ruled Surfaces. 165
3.7.10 Developable Surfaces . 167
3.7.11 Surfaces of Revolution . 170
3.7.12 Helical Surfaces. 173
3.7.13 Moving a Curve or a Surface in Itself 174
3.7.14 Intersection of Surfaces . 176

3.8 Tensor Product Surfaces . 180
3.8.1 Bézier Surfaces . 182
3.8.2 B-Spline Surfaces . 192
3.8.3 Rational Tensor Product Surfaces,

NURBS Surfaces . 198

x Contents

http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec33
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec33
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec37
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec37
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec39
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec39
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec46
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec46
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec47
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec47
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec50
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec50
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec51
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec51
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec52
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec52
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec53
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec53
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec54
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec54
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec55
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec55
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec56
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec56
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec57
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec57
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec58
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec58
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec59
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec59
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec61
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec61
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec62
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec62
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec63
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec63
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec64
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec64
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec65
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec65
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec66
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec66
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec67
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec67
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec68
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec68
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec73
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec73
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec78
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec78
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec78

3.9 Bivariate Interpolation . 204
3.9.1 Coons Patches . 204
3.9.2 Interpolation of a Rectangular Point Set 206
3.9.3 Bivariate Lagrange Interpolation 208
3.9.4 Bivariate Hermite Interpolation 210
3.9.5 Bivariate Cubic B-Spline Interpolation 214

3.10 Bivariate Approximation . 216
3.10.1 A Plane Fitting a Set of Scattered Points 216
3.10.2 A Tensor Product Surface Fitting Scattered

Data Points . 220
3.11 Triangular Bézier Patches . 225
3.12 Tensor Product Volumes. 232
3.13 Example: Side Window Kinematics . 235

3.13.1 The Appropriate Screw Motion to a Given Surface . . . 236
3.13.2 Constructing an Ideal Side Window Surface 237

References . 238

4 Modeling Techniques in CAD . 241
4.1 Structures of 3D CAD Models. 249

4.1.1 Surface-Based Model Structure 250
4.1.2 Solid-Based Model Structure 252
4.1.3 The Role of CAD Models in Product Development . . . 254

4.2 Wireframe and Surface Design . 256
4.2.1 Reference Elements . 256
4.2.2 Wireframe Design . 257
4.2.3 Surface Design . 260
4.2.4 Operations in Wireframe and Surface Design 265
4.2.5 Modeling in Wireframe and Surface Design 270
4.2.6 Surface Analysis Functions . 274

4.3 Solid Design . 276
4.3.1 Modeling of Basis Solids . 277
4.3.2 Boolean Operations . 279
4.3.3 Editing and Detailing Functionalities 281
4.3.4 Feature-Based Geometry Modeling 282

4.4 Combination of Wireframe, Surface,
and Solid-Based Functions . 285

4.5 Assembly Design . 289
4.5.1 Organization of Product Structures. 290
4.5.2 Methods of Component Positioning 294
4.5.3 Geometry-Based Interlinks in Assembly Design 301

4.6 Derivation of 2D Drawings . 305
References . 308

Contents xi

http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec81
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec81
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec82
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec82
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec83
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec83
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec84
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec84
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec86
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec86
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec87
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec87
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec88
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec88
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec89
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec89
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec90
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec90
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec90
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec94
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec94
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec95
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec95
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec96
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec96
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec97
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec97
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec98
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Sec98
http://dx.doi.org/10.1007/978-3-642-11940-8_3#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_4#Bib1

5 Knowledge-Based Design . 309
5.1 Parameterization as a Basis for Knowledge-Based Design. 312

5.1.1 External Parameter Control . 315
5.1.2 Implementation of Non-CAD Data. 316

5.2 Knowledge Integration Using Template Models. 317
5.2.1 Template-Library-Based Design. 320
5.2.2 Implementation of Mathematical

and Logical Relations . 323
5.2.3 Integrated Virtual Product Development

Using Centralized Master Models 326
5.3 Example: Integrated Design in Automotive

Bumper System Development . 328
References . 330

6 Engineering Data Management. 331
6.1 The Concept of Engineering Data Management (EDM) 332

6.1.1 The Y-CIM Model . 332
6.1.2 PLM as a Foundation of EDM 334
6.1.3 Definition of Engineering Data

Management (EDM). 336
6.2 EDM in Virtual Product Development 338

6.2.1 Process Orientation in Product Development 338
6.2.2 EDM as Integrated Management Approach 339
6.2.3 The Product Development Process 341
6.2.4 EDM Support in Virtual Product Development 341
6.2.5 EDM Process Integration . 343

6.3 EDM Database . 344
6.3.1 The Role of Development Data 344
6.3.2 EDM Documents . 346
6.3.3 CAD Data in EDM . 347
6.3.4 Digital Mock-Up (DMU) . 347
6.3.5 The Virtual Product . 348
6.3.6 Data Security. 349

6.4 Engineering Data Management System (EDMS) 350
6.4.1 Product Data Management System (PDMS) 350
6.4.2 Application-Related Functions of EDMS 354
6.4.3 EDMS Architecture . 356
6.4.4 EDMS Interfaces . 357

6.5 Computer-Supported Engineering in the Context of EDM. 358
6.5.1 How CAx Changes Product Development 359
6.5.2 CAD Integration . 360
6.5.3 CAD Implementation . 361
6.5.4 Virtual Computer-Generated 3D Product

Design Models. 362

xii Contents

http://dx.doi.org/10.1007/978-3-642-11940-8_5
http://dx.doi.org/10.1007/978-3-642-11940-8_5
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_5#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_6
http://dx.doi.org/10.1007/978-3-642-11940-8_6
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec10
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec21
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec25
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec25
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec26
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec26
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec35
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec35
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec38
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec38
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec39
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec39
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec41
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec41
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec42
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec42
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec43
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec43
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec44
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec44
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec45

6.6 Integrated EDM Applications in Product Development 364
6.6.1 Functional Dimensioning and Optimization

in Early Design Phase . 364
6.6.2 Consistency of Simulation Data in Optimized

Design Processes . 365
6.6.3 Interdisciplinary Consistency of Simulation Data 366
6.6.4 Integration of Design and Simulation 367
6.6.5 CAD/CAE Data Management 368

References . 369

7 Knowledge Management in Product Development 371
7.1 Product Knowledge. 371

7.1.1 Development of Product Knowledge 371
7.1.2 Life Cycle of Product Knowledge 373
7.1.3 Defining Product Knowledge. 373
7.1.4 Product Knowledge Products 374
7.1.5 Product Knowledge Management 374

7.2 Fundamentals of Knowledge Management 375
7.2.1 Knowledge and Knowledge Management 375
7.2.2 Basic Elements of the Knowledge Base 376
7.2.3 Knowledge Management in Industrial Management . . . 379
7.2.4 Basic Model of Knowledge Management 380
7.2.5 System Orientation in Knowledge Management 382

7.3 Knowledge Transfer in Product Development 383
7.3.1 Definition of Knowledge Transfer 383
7.3.2 Transfer and Transformation Processes

in the Knowledge System . 384
7.3.3 Direct Versus Indirect Knowledge Transfer. 385
7.3.4 Direct Knowledge Transfer . 386
7.3.5 Indirect Knowledge Transfer 386
7.3.6 The Definition of Knowledge Logistics 388

7.4 Process Orientation in Knowledge Management 389
7.4.1 Knowledge-Oriented Process Management 390
7.4.2 Process-Oriented Knowledge Management 390
7.4.3 The Knowledge Process in Interaction

with the Added-Value Processes 391
References . 392

8 Knowledge-Based Engineering Data Management 393
8.1 Basic Models and Approaches

of Knowledge-Oriented EDM . 394
8.1.1 System-Oriented Reference Frame

of Knowledge-Oriented EDM 394

Contents xiii

http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec46
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec46
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec47
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec47
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec47
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec48
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec48
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec48
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec49
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec49
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec50
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec50
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec51
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Sec51
http://dx.doi.org/10.1007/978-3-642-11940-8_6#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_7
http://dx.doi.org/10.1007/978-3-642-11940-8_7
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec22
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec26
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec26
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec30
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec30
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec30
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec35
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec35
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec36
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec41
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec41
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec42
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec42
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec43
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec43
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec44
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec44
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Sec45
http://dx.doi.org/10.1007/978-3-642-11940-8_7#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_8
http://dx.doi.org/10.1007/978-3-642-11940-8_8
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec2

8.1.2 The Knowledge Process as Connection Between
Business Process and Support Process of EDM 394

8.1.3 Integrated Approach to Added-Value Processes 395
8.1.4 Model for the Integration of Knowledge Processes

and Data Management . 396
8.1.5 From the Knowledge Transfer Model

to the Knowledge-Oriented Engineering Data
Management . 398

8.1.6 Model for the Reconstruction of the Knowledge
Base and Database . 399

8.2 Requirements for the IT Support of Process-Oriented
Knowledge Management in EDM . 400
8.2.1 Modeling Approach for the Technical Subsystem 401
8.2.2 The Database of Knowledge-Oriented EDM 403
8.2.3 EDM Workflow Support of Knowledge-Intensive

Processes . 403
8.2.4 Management, Transfer and Steering

of Knowledge-Oriented EDM 404
8.3 Knowledgeware in Product Development 404

8.3.1 The Parametric-Associative Approach 405
8.3.2 The Fundamentals of Parametric-Associative

Design . 406
8.3.3 Knowledge Management and Product

Configuration . 407
References . 408

9 Advanced Applications of CAD/EDM
in the Automotive Industry . 409
9.1 Applications for Knowledge-Based EDM 409

9.1.1 Relevant Knowledge Operations in EDM 410
9.1.2 Factors that Influence Knowledge Transfer

Via Data Transfer at the Operational Level 410
9.1.3 Data Management Barriers in Indirect

Knowledge Transfer . 412
9.1.4 Reference Process for the Knowledge-Oriented

Development of EDM Use Cases. 413
9.2 Integrated CAD Data Management in Automotive

Engineering . 414
9.2.1 Challenges Related to the Topic 415
9.2.2 Concept of Integrated CAD Data Management 415
9.2.3 CAD Scheduling . 416
9.2.4 A Concept of Geometry Reference. 418
9.2.5 CAD Data Quality, Progress and Maturity 419

xiv Contents

http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec11
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec14
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Sec17
http://dx.doi.org/10.1007/978-3-642-11940-8_8#Bib1
http://dx.doi.org/10.1007/978-3-642-11940-8_9
http://dx.doi.org/10.1007/978-3-642-11940-8_9
http://dx.doi.org/10.1007/978-3-642-11940-8_9
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec1
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec2
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec3
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec4
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec5
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec6
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec7
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec8
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec9
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec12
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec13
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec13

9.2.6 Generic EDM Workflow for CAD
Data Management . 421

9.2.7 Data Monitoring . 422
9.3 A Parametric-Associative Concept Model

for Initial Vehicle Development. 422
9.3.1 Requirements for Automotive Concept Phases. 423
9.3.2 Integrated Approach to Virtual Concept

Development . 428
9.3.3 Data Pool Structure and Parameterization Strategy. . . . 434
9.3.4 Geometry Creation in Conceptual Vehicle

Development . 437
9.3.5 Processes and Applications in the Project Flow 446
9.3.6 Product Knowledge in Integrated

Virtual Concept Development 450
9.3.7 Integration of the Virtual Concept Vehicle

into the Knowledge-Based EDM 452
9.4 Analysis and Design Process of the Operating EDM 454

9.4.1 Integrated Consideration of Design Measures 455
References . 455

Curriculum Vitae of the Authors . 457

Index . 459

Contents xv

http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec15
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec16
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec18
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec19
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec20
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec23
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec24
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec24
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec24
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec27
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec28
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec29
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec30
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec30
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec31
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Sec31
http://dx.doi.org/10.1007/978-3-642-11940-8_9#Bib1

Acronyms

2D Two dimensional
2WD Two-wheel drive
3D Three dimensional
4WD Four-wheel drive
AGC Automatic geometry check
AR Augmented reality
AURORA Automobiltechnisches, anwenderorientiertes Entwurfssystem

zur Optimierung der rechnergestützten Auslegung
BE Business engineering
BMW Bayerische Motoren Werke
BOM Bill of material
BR Business reengineering
BREP Boundary representation
B-spline Basis spline
CA Computer aided
CAA Component application architecture
CAD Computer-aided design
CAE Computer-aided engineering
CAGD Computer-aided geometric design
CAM Computer-aided manufacturing
CAO Computer-aided office automation
CAP Computer-aided planning
CAPP Computer-aided process planning
CAQ Computer-aided quality
CAS Computer-aided styling
CASE Computer-aided software engineering
CAT Computer-aided testing
CATIA V5 Computer-aided three-dimensional interactive

application, version 5
CAVA CATIA V5 automotive extensions vehicle architecture
CAx Computer-aided technologies

xvii

CFD Computational fluid dynamics
CIM Computer integrated manufacturing
CIP Continuous improvement process
CNC Computer numerical control
COP Carry over parts
C-spline Cubic spline
CVT Continuously variable transmission
DIN Deutsches Institut für Normung
DM Document management
DMS Document management system
DMU Digital mock-up
DOT Department of Transportation
DPT Digital prototype
DSP Data synchronization point
DXF Drawing exchange format
EDB Engineering database
EDM Engineering data management
EDMS Engineering data management system
EEVC European Enhanced Vehicle Safety Committee
ERP Enterprise resource planning
FCM Fast Concept Modeler
FE Finite element
FEM Finite element method
FMEA Failure mode and effect analysis
GCIE Global Car Manufacturer Information Group
GIF Graphics interchange format
GUI Graphical user interface
H-Point Hip reference point
HTML Hyper text markup language
IGES Initial graphics exchange specification
IIHS Insurance Institute for Highway Safety
IS Information system
ISO International Organization for Standardization
IT Information technology
JT Jupiter tesselation
KBE Knowledge-based engineering
MBS Multi body system
MC Measure control
MPV Multi purpose vehicle
NC Numerical control
NEDC New European driving cycle
NURBS Non uniform rational B-splines
NVH Noise, vibration and harshness
OEM Original equipment manufacturer, e.g. automobile manufacturer
PCA Principal component analysis

xviii Acronyms

PDF Portable document format
PDM Product data management
PDMS Product data management system
PDP Product development process
PIM Product information management
PLM Product life cycle management
PMS Project management systems
PPC Production planning and control (German: PPS)
PS Post script
QFD Quality function deployment
R&D Research & development
RC Robot control
RPT Rapid prototyping
SAE Society of Automotive Engineers
SCM Supply chain management
SDM Security distributing and marketing
SDM Simulation data management
SgRP Seat relation point (=SRP)
SOP Start of production
STEP Standard for the exchange of product data
STL Structural triangle language
SUV Sport utility vehicle
TDM Team data management
TDMS Team data management system
TIFF Tagged image file format
TIM Technical information management
TIS Technical information system
TPD Technical product documentation
US United States (USA)
VB.Net Visual basic .Net
VBA Visual basic for applications
VDA Verband der Automobilindustrie
VDI Verein Deutscher Ingenieure
VMU Virtual mock-up
VPP Virtual process planning
VPT Virtual prototype
VR Virtual reality
VRML Virtual reality modeling language
VW Volkswagen
WF Workflow
WRL Web rule language
xDM Technologies of data management
XML Extensible markup language

Acronyms xix

Chapter 1
Automotive Development Processes

Product development in the automotive industry is driven by a highly complex series
of market requirements that stem from a wide range of product variants and func-
tionalities. Stagnating sales volumes in traditional markets and increased competi-
tion are leading to both growing product diversification and reduced time-to-market
processes. Furthermore, the industrial globalization of development, manufacturing
and distribution has resulted in new business models, which must consider several
market-specific factors. Changes in boundary conditions, resulting from both leg-
islation and customer orientation, and a growing realization of the finite nature of
crude oil supplies are spurring a reorientation of individual mobility and a continu-
ous introduction of new vehicle concepts. In order to develop lighter, more efficient
cars driven by alternative propulsion technologies, common vehicle concepts will
need to be revised and completely new vehicle architecture and styling solutions will
need to be introduced. At the same time, increasing customer demands in terms of
safety, comfort and fashion trends are driving the creation and implementation of
new technologies. This technical evolution necessitates a reduction of investment
risks throughout the entire product life cycle, which makes it essential to consider
factors related to production, market conditions, and disposal throughout the entire
development cycle.

Development processes in the automotive industry place high demands on the per-
formance and flexibility of the development strategies and tools applied. Besides the
standard prerequisites (e.g. design, simulation and production engineering), a num-
ber of enhanced requirements will present new challenges to the architects of future
development cycles. Within the boundaries of a permanent cost and time reduction
in engineering-based development, new strategies must support a smart connection
between the working fields of project engineers, component designers, ergonomic
specialists, safety and crash departments, designers and all other involved parties.
These days, automotive development is driven by the interaction of virtual design
and simulation methods in combination with physical development and testing proce-
dures (Fig. 1.1). The trend is definitely going towards integrated virtual development
processes which focus on the product function itself, but also take into account both
the production and supplier situations, as well as lifetime-relevant factors that pertain

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 1
DOI: 10.1007/978-3-642-11940-8_1, © Springer-Verlag Berlin Heidelberg 2013

2 1 Automotive Development Processes

Fig. 1.1 Sample phases of an automotive full-vehicle development process [1]

to customer use, support, service and disposal. The increasing application of virtual
methods is taking over several tasks formerly handled by physical development,
where the focus is now shifting to data acquisition and verification procedures. This
has led to a significant reduction in hardware-based test and prototype development
in the last decades.

The manifold variants and characteristics of automotive products present a chal-
lenge for the entire development process chain. Unlike the limited model ranges
that were typical in the mid twentieth century, the current range of personal auto-
mobiles is segmented into a wide variety of different vehicle categories, classes and
configurations. New car types (e.g. MPV-multipurpose vehicles, SUV-sport utility
vehicles), new body configurations (e.g. hatchback, roadster, coupe-convertible) and
the development of new engine and transmission systems (e.g. supercharged gaso-
line and diesel engines, hybrid and electric drive, automatic transmissions, double
clutch transmissions) have resulted in a significant increase in product variants and
data. Besides the variety of car types, propulsion systems and chassis configurations,
wide-ranging options for supplementary equipment have led to nearly endless prod-
uct variations, which is good for the customers, but presents a challenge for data
management in product development and throughout the product life cycle. At the
same time, the development time for new automotive models has decreased from
about seven years in the 1960s to about two years today (Fig. 1.2). This considerable
reduction in development time has been significantly supported by virtual design,
simulation and testing methods.

1.1 Manifold Requirements in the Past and in the Future 3

Fig. 1.2 Increase of model variants and decrease of development time in the last decades [2]

1.1 Manifold Requirements in the Past and in the Future

In addition to a brief overview of selected main topics in automotive development
over the last 120 years, this chapter includes a discussion of the wide variety of
development requirements for current and future cars.

More than a hundred years ago, at the beginning of automotive development, the
inventors of new motorized vehicles built up their creations in simple workshops sup-
ported by a small group of specialists. Development processes were strictly problem
oriented, and improvement cycles were mainly based on hardware testing procedures.
Layout, design and optimization followed the functional aspects of the product itself.
Figure 1.3 shows Gottlieb Daimler’s first Motorkutsche from 1886. This vehicle was
based on a coach from the Stuttgart Wagon manufacturer Wilhelm Wimpff and Sohn,
which was adapted with a one-cylinder, four-stroke engine developed by Daimler.
This early four-wheel automobile had a weight of 290 kg and a maximum driving
speed of 18 km/h [3]. The development of the engine was completely separate from
the development of the vehicle itself. Thus, people called early automobiles horseless
carriages.

The early years were characterized by high creativity and many vehicle vari-
ants. In principle, each car was built up as an individual item. In that time, auto-
motive development was completely hardware based and hierarchically structured.
The heads of development were key people who possessed the main knowledge of
construction, production and testing procedures. In many cases, the inventor, the
chief of development and the business leader were one and the same person. The
famous names from these early days of automotive development are well known,

4 1 Automotive Development Processes

Fig. 1.3 Gottlieb Daimlers first Motorkutsche (1886) [4]

such as Nicolaus August Otto (1832–1891, Germany), Siegfried Marcus (1831–
1898, Germany, Austria), Gottlieb Daimler (1843–1900, Germany), Henry Ford
(1863–1947, USA), Ferdinand Porsche (1875–1951, Austria, Germany) and many
others. At the beginning of the twentieth century, the production of the first series
vehicles started. Besides product-oriented technical requirements, the development
of series vehicles also had to take production-related aspects into account. In those
days, production engineering and operation planning were driven by the low number
of vehicles produced, meaning that the development process only partially considered
the organization and necessities of manufacturing.

Henry Ford made the first steps in mass production development. He adapted
assembly line manufacturing knowledge from simple products to the requirements
of relatively complex products, such as those produced in the automotive industry.
In this way, it was possible to produce large numbers of cars through only par-
tially automated but strictly organized stages with a surprisingly low cost per unit.
The introduction of assembly line production led to a modification of the principals
of automotive development processes. Besides product-oriented technical require-
ments, the influences of manufacturing and assembly became more and more impor-
tant. The first steps of production-line-oriented car development were strictly driven
by the approaches of conformity. Initially, the Ford Model T was available in just one
configuration, and new configurations were based on the same platform, assembled
with a high degree of carryover parts.

Figure 1.4 shows a component assembly and a final assembly line of the Ford
Model T, which was introduced in 1908. It had a robust vehicle setup and a four-
cylinder engine. In the year it was introduced, the Model T was sold as a low-
cost model for $825, a price which dropped in each subsequent year. Although
the automobile was initially produced in a conventional way, under Henry Ford’s
directive, the manufacturing process was subsequently improved. Seeking increased

1.1 Manifold Requirements in the Past and in the Future 5

Fig. 1.4 Production of the Ford Model T in Detroit, Michigan [5, 6]

efficiency and lower costs, Ford introduced moving assembly belts into his plants in
1913, which resulted in an enormous increase in productivity. One key to success
was the application of production-focused engineering in automotive development.
The production of the Model T was continued until 1927, with about 15 million units
sold within 19 years. The price of a basic model dropped to $290 in 1927 (which
is equivalent to about $6,200 in the year 2012, based on the consumer price index),
which made cars affordable for the middle class.

The increasing consideration of production-related aspects in the 1930s eventually
had a significant influence on the products themselves. Growing production quantities
led to the development of cost-optimized components, the use of building block
units (non-variable part strategy) and the assembly of optimized structures. These
measures helped lower costs, which supported the distribution of motorized vehicles
into different social stratums in both Europe and North America.

At this time, the first stylistic aspects were also incorporated in the development
of new cars. Stylists worked with drawings on paper and developed modeling proce-
dures with clay. These so-called clay models can be used in different scales and levels
of detail and are still an important part of the styling process today. Besides standard
necessities, such as vehicle packaging and passenger space, the first influences on
automotive styling came in the period between the World Wars from the aeronautic
industry. As an example, Fig. 1.5 shows the famous Bugatti Type 57 SC Atlantic
from 1937. Only four vehicles of this sports car were built, and it is currently one of
the most valuable antique cars.

In the late 1930s and during the Second World War, the requirements of military
armament influenced automotive manufacturers. Concerning automotive develop-
ment methods, a breakthrough came in 1940 when Riekert and Schunk introduced a
scientific approach for the calculation of the driving characteristics of a car, which
were described by a series of equations and relations based on a simplified automotive
model, the single track model [8]. The derivation of a simplified abstraction from a
real vehicle to enable the general calculations of characteristic dynamic driving values
represented an initial basic approach for the development of calculation and simula-

6 1 Automotive Development Processes

Fig. 1.5 Bugatti Type 57 SC Atlantic (1937) [7]

tion algorithms in a wide field of applications. Of course, the calculation itself was
performed by hand; computer-supported simulation started more than two decades
later. Today, the findings of Riekert and Schunk are still often used in different fields
of vehicle dynamic simulation.

In the ensuing years, as social prosperity increased, the automotive industry was
able to develop new products and to offer product variants. Mobility became more
and more important, and car manufacturers offered various models in different price
classes. The growing production quantity and the growing number of variants pre-
sented challenges for development departments. New development strategies and
procedures arose, which led to the implementation of new departments and cor-
porate structures. While communication had been easier in the time of compact
development departments (and development targets), as task load and manpower
requirements increased, it became necessary to develop new organizational struc-
tures for the organization of human resources and processes. In the early years, the
development of a car was based on the definition of main vehicle modules, such as
the engine module, transmission, suspension, chassis and body. Since individuals
(or small groups) were assigned to each clearly defined module, information flow
was relatively simple and consisted mainly of direct communication between the
responsible parties. In addition, the simple setup of a car resulted in relatively short
development times; in many cases, a car was developed in just a few months.

However, as the number of the development fields and people involved increased,
new organizational procedures were generated for new car development. Figure 1.6
shows the Opel Record, which was introduced in 1957 and became a successful mid-
class model in Europe. At that time, customers had begun to demand more comfort
and performance. The development targets were therefore performance, durability
and technical functionalities. In addition, styling and fashion became more important
in the European automotive industry in the years following reconstruction. Thus,

1.1 Manifold Requirements in the Past and in the Future 7

Fig. 1.6 Opel Rekord P1 from 1957 [9]

styling aspects, comfort and additional customer benefits began to influence the
development of personal cars.

In the second half of the 20th century, customer demands expanded to include
increased safety and comfort functions, electronic features, brand identity and more.
Due to growing product complexity, the automotive development became team ori-
ented. The structured division of labor generated new jobs and areas of responsibil-
ity. In the 1960s, development processes were more strictly defined and organized.
Driven by increasing responsibilities and resources, development departments were
subdivided based on different tasks and requirements. The separation of automotive
development into research, pre-development and series development followed. This
made it possible to conduct research and develop new, future-oriented technologies
without the boundary conditions of mass production and costs.

The growth in individual mobility also led to increasing numbers of traffic acci-
dents, which forced manufacturers to take safety-relevant aspects into account. In
1968, the American Transportation Agency (DOT) started a research program for the
development of vehicle safety technology. The European Enhanced Vehicle Safety
Committee (EEVC) was founded in 1970, as European car manufacturers also began
to intensify their commitment to crash tests and the development of passenger safety
technology (Fig. 1.7). These new targets influenced the research topics in vehicle
development. The vehicle body structure was analyzed in terms of stiffness and load
paths in the context of different accident scenarios, and calculation and crash test
procedures were added to the complete vehicle development processes. In later years,
the introduction of computation technologies brought new possibilities for vehicle
structure calculation. Computer-supported applications, first in simulation and later
in design, led to the implementation of new organizational structures and proce-
dures in development processes. The concern with safety continued into the 1980
and 1990s, which saw the introduction of both active and passive safety-relevant
functionalities first into luxury cars, and later into all vehicle classes.

In addition to improving vehicle safety, two factors also contributed to a demand
to improve vehicle efficiency. The first was a concern for the cost of operating a

8 1 Automotive Development Processes

Fig. 1.7 Mercedes Benz crash test 1959 [4]

vehicle, which was brought into start relief by the oil crises of the 1970s, as prices
rose and availability declined. The second factor was a growing awareness of the
environmental impact of the increasing number of automobiles that arose in the mid-
twentieth century. This began in California, where geographic and climate factors
led to heavy smog situations with serious air pollution, particularly in densely pop-
ulated urban areas. Therefore, in the early 1960s, the government of Los Angeles
introduced a limitation on carbon monoxide and hydrocarbon exhaust emissions for
cars. In Europe, the first exhaust emission regulation was introduced in 1970 and
has been continuously upgraded since then. In the 1980 and 1990s, strict exhaust
gas legislation led to the implementation of exhaust catalyst systems and electronic
motor management systems for gasoline engines. With the development of super-
charged diesel engines with direct injection systems, diesel vehicles were introduced
into many fields of application.

Along with safety and efficiency requirements, customer demands for better com-
fort also increased in the second half of the twentieth century. From ride comfort (e.g.
enhanced suspension systems) and convenience (e.g. electric windows) to climate
control and even on-board entertainment, developers and engineers were compelled
to integrate ever more technologies and features into new vehicle designs. However,
after a period of focus on improved comfort and performance, the end of the twentieth
century saw a distinct shift in focus towards environmental friendliness and fuel effi-
ciency. Low fuel consumption engines and alternative drivetrain concepts, such as
natural gas engines and hybrid systems, emerged, as customers began to understand
the direct dependency of their mobility on the availability of crude oil. For example,
Volkswagen announced the series production of a car with a fuel consumption of
one liter per hundred kilometers in 2013 (Fig. 1.8, right). The car bears a notable
resemblance to a 1986 Volkswagen concept vehicle, which had already emphasized
the requirements of a low-fuel-consumption vehicle, such as an efficient engine,

1.1 Manifold Requirements in the Past and in the Future 9

Fig. 1.8 Volkswagen concept cars: Scooter from 1986 and XL1 from 2013 [10, 11]

low weight and low driving resistance (Fig. 1.8, left). However, 20 years later, the
time for this vehicle had definitely arrived. In fact, the emphasis on environmental
friendliness has gone beyond simple fuel efficiency to include the use of recyclable
products and sustainable materials, which is becoming increasingly widespread.

With all these different, constantly evolving demands, contemporary market
researchers are constantly finding new market niches and variants to fulfill the cus-
tomer requirements in terms of individualism and customizing. For example, Fig. 1.9
shows the Nissan Concept Car Pivo2, a prototype vehicle equipped with four elec-
tric hub engines, an example of a concept that is designed to meet the requirements
of inner city traffic, such as an exhaust-emission-free drive unit, high flexibility for
parking space, and the option of electronic supporting equipment. While such con-
cepts represent real value for the consumers, it is important to recognize that all of
these sometimes conflicting demands and the product variation that they have caused
have presented significant challenges for vehicle engineers and developers.

Fig. 1.9 Nissan Concept Car Pivo2 (2007) [12]

10 1 Automotive Development Processes

To meet these challenges, fundamental changes had to be applied to both the
vehicles themselves and the processes by which they are developed. For example,
legislative limits on emissions and the growing impact of fuel costs led to the imple-
mentation of new engine concepts and exhaust gas aftertreatment systems. As the
complexity of the tasks required for engine development increased, it became nec-
essary to break the development process into separate, component-specific sub-
processes, such as engine, transmission and others. One important side effect of
this growing complexity was the resulting impetus to cooperate with specific key
suppliers for particular components or systems. This led to the definition of new,
shared development procedures, which integrated suppliers into the development
processes and thereby brought in their knowledge of their respective business fields.
One further result of this cooperation in development was the creation of know-how
networks and collaborations between different car manufacturers in specific research
fields, which play an important role in contemporary vehicle development.

Beyond the increased complexity of the vehicles themselves, the increased com-
plexity of the automobile market has also had a significant influence on modern
development strategies and methods. In particular, the globalization of automobile
companies has had a significant impact on development processes [13]. On the one
hand, there is pressure to meet the specific demands of different customer groups
and legislative bodies around the world. On the other hand, there is a counter pres-
sure to standardize as many production processes as possible, in order to achieve
synergy between the production facilities in different countries around the globe.
Thus, the organization and structure of global development has led to the implemen-
tation of global-network-based product data management systems and globalized
development processes, which are supported by virtual product development.

In the coming years, automotive development will face significant challenges.
New propulsion systems, energy storage media, tank systems and completely new
vehicle concepts must be developed to provide continued individual mobility in
the coming decades. New vehicle concepts call for new development methods and
new engineering tools. Thus, the importance of virtual development in automotive
engineering will increase in the next years, and the generation of flexible design
and simulation methods will be an important key to success. Nevertheless, the main
development targets remain the same as in previous decades - reduction of the costs
and development time and increase in the quality and efficiency of development
processes.

Figure 1.10 provides an overview of boundary conditions for the development of
new car models in the near future. Four main areas influence the general requirements:
the environmental impact of individual traffic, the influence of crude oil availability,
safety aspects, and the increase in customer demands in terms of comfort and lifestyle.

Focusing on automotive engineering, these boundary conditions have a significant
influence on the development targets and thus on the methods applied. The creation
of new vehicle concepts that fulfill increasing demands requires careful planning
and refinement of existing knowledge, as well as the generation of new ideas and
techniques. The early phases of development, in particular, play an important role in
conceiving, developing and evaluating new ideas and technologies.

1.2 The Process of Automotive Development 11

Fig. 1.10 Boundary conditions for the development of new cars

1.2 The Process of Automotive Development

Through the middle 1980s, automotive development processes were characterized
by a high degree of hardware and prototype-based optimization cycles. Develop-
ment projects were divided into individual tasks, which featured relatively little data
sharing. Individual processes were performed in essential serial sequences, and data
transfer was organized in rigid structures based on the completion of individual
tasks. Computer-aided calculation methods were applied in specific areas only. For
example, the application of the first computer-supported two dimensional drawing
systems in the late 1970s represented a fundamental change in the way vehicles were
designed.

At that time, full-vehicle development processes had a duration of about 6
years and included three prototype phases [14]. However, the integration of virtual,
computer-aided methods into automotive development led to significantly revised
processes. In the middle of the 1980s, computer-aided design and simulation meth-
ods began taking over engineering tasks that had formerly been done via hardware-
based development. The pre-calculation of vehicle structures, durability and acoustic
behavior in the layout phases supported product optimization without hardware tests,
and growing design and calculation possibilities increased the influence of virtual
computer-based development steps. Focusing on the design process, the introduction
of parametric-associative methods pushed virtual modeling intensively.

In the closing years of the twentieth century, integrated CAD/CAE processes
enabled network-based development in automotive engineering. Virtual prototypes
were generated, which replaced at least one physical prototype generation. The appli-
cation of virtual engineering in full-vehicle development fostered worldwide collabo-
ration by bringing together partners and markets from different countries and regions.
Today, a full-vehicle development project takes less than 3 years, and the trend is

12 1 Automotive Development Processes

Fig. 1.11 Stages in a typical state-of-the-art full-vehicle development process

moving towards an additional decrease. Of course, since the product quality must
be maintained, numerous virtual and physical test and acceptance procedures are
applied throughout the entire development process.

Although the exact sequence of automotive development varies from one manu-
facturer to the next, in principal, the main fields of engineering can be found regard-
less of the specific company. Figure 1.11 shows a typical state-of-the-art automotive
development process. The diagram displays the cumulative result of a detailed devel-
opment process study that examined several car manufacturers and globally operat-
ing suppliers. The process depicted can be understood as a synthesized procedure
which includes the main sections and milestones of a modern car development cycle.
The nomenclature sometimes differs, but the major modules can be found in most
development processes at car manufacturers around the world.

Therefore, the processes displayed serve here as a basis for the description and dis-
cussion of modern development cycles in the automotive industry, but do not reflect
an actual development procedure from a specific company. The scheme describes
the development sections of a new car model, without consideration of variants or
model releases. In addition, concurrent component development and parallel project-
independent research and development are not examined in detail. To support a clear

1.2 The Process of Automotive Development 13

illustration, the diagram is divided into different types of description. A general
structure is provided by the division into three main project periods, the technol-
ogy period, the vehicle development period and the series period, and an overview
of the most important gates during each section is given by the definition of main
milestones along the process progression. The process phases and the correspond-
ing procedures describe the workflow, while a selection of comprehensive working
disciplines points to the application of department-oriented tasks, which reflect the
complex and extensively inter-linked procedures.

1.2.1 Project Periods

An automotive development process can be divided into three main periods. The tech-
nology period includes the product characteristics formulation, the vehicle concept
and some initial pre-development steps. The technology period leads to the genera-
tion of a detailed target definition. This includes the definition of the vehicle layout
and the drivetrain configuration from a series of production-related viewpoints. At
the end of the technology period, variations pertaining to the drivetrain, transmission,
special technical features and car body are considered and described, and innova-
tions are defined and approved. Market-related research (from former models and/or
competitors) is considered. The vehicle development period starts with a detailed
planning of the subsequent vehicle-oriented development steps. At the beginning
of this period, manufacturing-related tasks are considered, and suppliers are inte-
grated into the development. Parallel to the design process, production engineering
is performed and the influences on the detailed product design are considered. All
production-related requirements have to be implemented before the concept confir-
mation. Technology test runs in the first section of the vehicle development period
have to evaluate and optimize the interactions between the different modules in a car.

After finishing the pre-development phase (milestone: Concept confirmation),
the series development phase takes the vehicle concept and develops the product
until market-ability. During this period, the amount of production-related engineer-
ing tasks and working packages continues to increase. In addition, the influences
of distribution and marketing are considered, while the product development itself
decreases. There are a large number of linked processes in series development, which
require an efficient project management. At the end of this period, the production,
product confirmation and the homologation are completed, and the vehicle develop-
ment period ends with the milestone Start of production.

As the consideration of manufacturing-related tasks increases, quality engi-
neering is incorporated in the development process. Parallel to the aforemen-
tioned periods, additional responsibilities are taken into account. Project-independent
research includes new technologies, strategic brand innovations and other fundamen-
tal research work. Project-independent component development is performed in the
area of engine and transmission development for different vehicle types, platform
development and/or development of components for the entire group. Project-related

14 1 Automotive Development Processes

concurrent component development is performed to ensure the on-time functional-
ity of delivered modules. This includes such tasks as parallel development, test and
optimization of engines, and transmissions, which help to manage the working effort
and time in the full-vehicle development process. In this way, different groups of
departments and specialists work on new engines, transmissions, electronic devices
and others. After completing the concurrent engineering processes, the tested and
approved modules are implemented into the full-vehicle development process just
in time.

1.2.2 Phases of Automotive Development

Besides the separation into three main periods, the product-generation process of a
car can also be divided into process phases. Figure 1.11 shows the sequence of five
main phases: the definition phase, the concept phase, the pre-development phase, the
series development phase and finally the pre-series and series production phase.

The Definition Phase

The definition phase encompasses an initial characteristics estimation and evaluation
of the car model which is to be developed. This phase is supported by far-reaching
market research and trend prognoses to predict the requirements in target markets
during the years of the projected product life cycle. In addition, the definition phase
of a new car has to consider the overall product strategy of the manufacturer and
boundary conditions related to the economic and financial situations. The product
characteristics are set down in a List of requirements, which serves as a start-up sched-
ule for the ensuing concept phase. Based on the definition phase, this list includes
a description of the car classification (mini, compact, sedan, SUV, van, sports car,
etc.), the main dimensions, the targeted driving behavior and other factors. In this
phase, initial styling proposals are also submitted and discussed in the context of
future styling trends and competing products.

The Concept Phase

The Concept definition milestone, one target of the concept phase, includes a detailed
description of the vehicle concept itself. At this milestone, a rough approximation
in terms of styling, packaging and functionalities is delivered, which provides an
overview of the principal vehicle setup. Frontloading techniques support the working
modules in the concept phase to enable the integration of knowledge from former
project and research work.

One main working field in the concept phase is the execution of the styling process
within given technical boundaries. In the initial phase, the generation of styling

1.2 The Process of Automotive Development 15

sketches and car body shape concepts is supported by initial packaging studies and
ergonomic drawings. In later steps, the car styling has to take into account technical
and legislative requirements in detail, such as space for the drivetrain and compo-
nents, aerodynamics, passenger, pedestrian and crash safety. The task of the stylists
is to find optimal solutions that meet the requirements of technical, economic, market
and fashion trends. Benchmark studies assist in the evaluation of market trends and
customer demands. In addition, typical brand characteristics have to be implemented
and enhanced. Therefore, numerous styling proposals are produced to serve as a basis
for discussions within the development team and in directive cycles.

The styling process is an important step in the concept phase, and even in the
entire development process, because the car styling has a significant impact on cus-
tomer perceptions and thus on the purchase decision. In modern vehicle development,
computer-aided styling software (CAS) often supports the creation of exterior and
interior styling surfaces. The styling software packages use several complex algo-
rithms for the definition of high-quality surface models, which provide the basis for
automotive styling development. The geometrical data are used for styling-related
evaluation and representation within a virtual reality (VR) environment and serve
as input information for subsequent engineering processes (e.g. vehicle packaging,
ergonomic development, component design, module design). In most cases, styling
data are transferred into the CAD-environment via neutral data formats.

In addition to styling, the packaging layout is another important task in the concept
phase. It is carried out using digital mock-up (DMU) processes, which are based
on a virtual assembling of the components and modules of a car. The geometrical
description of these components is delivered by CAD and CAS. The working field
of packaging layout handles the requirements of car module placement, such as
drivetrain, tank, climate control, suspension, and others. The primary issue of the
packaging investigations is the consideration of passenger and luggage space. In
modern development processes, the packaging is built up around the passengers. In
this context, the seating position plays an important role. Whether the passenger is
sitting in a sports car, a sedan or an SUV makes a significant difference.

Besides the car class, brand-specific seating positions and space characteristics
must be considered. Once the seating position, passenger’s space requirements (e.g.
head, elbow and knee clearance) and the luggage space have been designed, the
vehicle packaging concept can be built up. This includes the placement of main
modules, the review of compliance with legislative requirements and the definition
of technical-based outline surfaces. All technical requests have to be double-checked
with the styling surfaces of the car body to find an optimal solution that satisfies
technical requirements without interfering with the car styling.

Alongside with packaging-relevant investigations, initial functional studies are
performed. These studies examine the technical interaction of components and mod-
ules and also verify ergonomic functionalities. In this phase, technical modules are
prepared and reviewed for their suitability for implementation into the vehicle con-
cept. Technical modules include engine and drivetrain components, suspension and
other supplied units. In addition, the functional concept includes early functional
layout studies of components that must be newly developed, for example an initial

16 1 Automotive Development Processes

estimation of the basic door kinematics and the window lifter mechanism (see also
Sect. 3.13, p. 235). The package and functional check milestone includes a brief
description of the vehicle architecture in terms of styling and technical requirements.

Of course, one main task in the concept phase is the consideration of innovative
technologies, such as the implementation of new propulsion concepts (e.g. hybrid,
electrical drive), new transmission systems (e.g. CVT, double clutch transmission),
new vehicle concepts (e.g. convertible-coupe, micro city vehicles, one liter car) and
others. Whether these new technologies influence the entire vehicle architecture
(e.g. completely new vehicle types) or simply represent a part of the car (e.g. new
transmission type) makes a significant difference. In both cases, the new technology
has to be checked against the list of requirements for the new product, and its further
development and applicability to the new car being developed must be verified. This
can include concurrent, innovation-related virtual and hardware-based development
cycles.

Finally, the concept phase concludes with a feasibility investigation of the vehicle
concept. This section includes a description of different styling proposals that have
been reconciled with the vehicle packaging. In addition, the functional concept is
defined, and new technologies are approved for their principle usability in the new
car model.

The Pre-Development Phase

Based on the concept phase, the pre-development phase includes a detailed definition
of the vehicle layout taking into account all ergonomic and legislative boundary
conditions. The packaging studies are enhanced by complete assembly and placement
investigations, as well as functional optimizations. In addition to the definition of
technical-related characteristics, comprehensive product decisions are made. This
includes the integration of the new model into platform strategies, building block
systems and the definition of model derivates. In many cases, new cars are based
on predecessor models and carry over numerous technical features and components.
In this case, the pre-development phase includes an assessment and evaluation of
existing modules regarding their suitability for the new product.

The geometrical integration in the pre-development phase includes a detailed def-
inition of the packaging, as well as of other geometrically based boundaries, whereby
the knowledge from earlier models plays an important role. Brand-specific charac-
teristics, such as the seating position, the drivetrain configuration, and suspension
components, are implemented into the vehicle layout, which leads to a full-vehicle
concept. This full-vehicle concept is represented as a detailed 3D CAD Model. In
several steps, different specifications are adjusted in consultation with various devel-
opment departments and decision makers. Styling is developed and adjusted in par-
allel, whereby the adjustments are performed in each department, focusing on both
the styling and engineering.

In a parallel process, the functional integration verifies the technical functionali-
ties and the interaction of all components and units. The ergonomic influences on the

http://dx.doi.org/10.1007/978-3-642-11940-8_3

1.2 The Process of Automotive Development 17

functionalities are investigated through ergonomic studies and simulation, for exam-
ple entrance and seat position optimization, accessibility of switching devices, etc.
The linkage of styling and engineering is performed in several steps, with a repeated
data transfer between the departments. This procedure can sometimes be difficult,
particularly when the wishes of stylists and engineers conflict. The functional inte-
gration also includes other areas, such as chassis and drivetrain, although some of
these modules and components are normally developed separately because of their
use in different car models. The drivetrain module can be seen as a delivered unit, but
it must be considered in the vehicle setup from various viewpoints. For example, the
engine packaging, an appropriate connection to the cooling system, the integration
of the tank system, the development of the exhaust system (including exhaust gas
aftertreatment), and the application of sensors and control units have to be adapted
and approved for the new car model.

One important task of the functional integration is the full-vehicle layout related to
driving performance and fuel consumption. The calculations conducted at this early
stage are often based on former car models or by substituting simulation procedures
because the necessary data are not yet fully available for the new model in this
development phase. In many cases, there is an insufficient amount of data available
for the full-vehicle simulation of future concepts. In these cases, a smart integration
of existing data combined with pre-editing methods can improve the efficiency and
accuracy in this important development phase in order to obtain the data necessary
for simultaneous engineering.

Parallel to the general vehicle architecture development, the car body structure is
defined and optimized. In the early phase, a rough estimation of supporting elements
is defined and adjusted with styling and packaging. This initial structure is calculated
in view of major load cases, such as different crash scenarios, stiffness and maximum
stress. In many cases, the initial body structure is based on experience from former
projects and/or benchmark studies. As pre-development proceeds, both the body
structure design and its simulation begin to incorporate influencing factors to a higher
degree. Detailed stress and durability calculations, full-vehicle crash simulations,
weld spot pre-dimensioning and other production-related targets are considered and
implemented.

At the end of this phase, a completely calculated design proposal for the series
development is generated. In the case of a new body concept (e.g. new lightweight
materials or design approaches), additional aspects have to be investigated and taken
into account. In the last section of pre-development, a final styling concept is chosen
and verified. This styling concept fulfills all engineering-based requirements, such
as packaging, function, legislation, ergonomics, and aerodynamics. In most cases, a
1:1 hardware-styling prototype is built up to confirm the decision. Once the vehicle
styling has been fixed, no subsequent modifications are allowed, due to the significant
impact on the subsequent engineering steps. Parallel to the virtual development, dif-
ferent hardware test runs are conducted for both components and prototype vehicles
to verify the functionalities.

In the course of investigating and assessing different technologies, the Target
specifications milestone can be defined. This specification list includes a detailed

18 1 Automotive Development Processes

description of the product characteristics and deliverables. The target specification
list, which is based on the list of requirements, includes some adjustments and detail-
ing resulting from the progress of the concept phase and the pre-development phase.
The pre-development phase is completed with the Concept confirmation milestone.
At this milestone, all product characteristics related to the target specifications have
been fulfilled and verified. Modifications to the vehicle concept after the concept
freeze have a significant impact on the further process timeline and the project costs.
Due to the substantial influence that the initial development phases have on the prod-
uct development cycle success and even on the product itself, it is necessary to apply
highly flexible and efficient strategies. It is essential to use flexible tools, efficient
methods and experienced engineers to identify the best product characteristics and
technical solutions. In these early phases, the main facts of the entire product life
cycle are defined.

Series Development

The series development phase includes a realization of the concept that takes into
account process and production-related viewpoints. All of the engineering proce-
dures in this phase are influenced by manufacturing-related boundary conditions.
Thus, both the virtual and physical developments are performed in close cooperation
with production engineering and with the supporting suppliers tightly integrated. In
the series design process, the geometry of the components is described with a high
accuracy within a CAD-environment. In this phase, the level of detail is significantly
higher than during the concept phase or the pre-development phase. This precise
generation of virtual models that take manufacturing processes into account requires
special design methods and strategies. At present, the CAD models for series devel-
opment feature a lower level of parameterization and thus less flexibility than the
models created during the conceptual project phases.

The generation of new design methods, which enable a direct model transfer from
highly flexible project phases into the rigid series development environment, offers
substantial potential for increasing the efficiency of the entire development process.
Besides component design, the virtual optimization and verification of parts and
product configurations represent important steps in the series development. Digital
mock-up procedures check and improve the interactions between modules in terms
of functional aspects, assembly and tolerancing. Far-reaching simulation procedures
ensure a failure-free performance and interaction. In the case of the vehicle body,
structural investigations, virtual crash calculations and durability simulation are per-
formed in detail under consideration of component design, materials and the applied
connecting technologies. Especially in the case of modern lightweight body design,
virtual preservation of failure-free operation during the product lifetime represents
a significant challenge for all parties involved.

During series development, several concurrently developed components and mod-
ules are implemented into the full-vehicle architecture. Thereby, engine and drivetrain
modules, brakes, suspension and electronic systems are included into the vehicle

1.2 The Process of Automotive Development 19

setup. One significant advantage of concurrent component and module develop-
ment is the parallel generation and verification of enclosed units. These modules are
optimized and tested in terms of their theoretical failure-free operation. During the
integration process, they have to be verified in terms of suitability and failure-free
operation within the complex vehicle system.

One example of the integration of concurrent developed modules is the engine
unit. The development of internal combustion engines is a complex challenge and has
to take into consideration not only engineering requirements, but also customer and
legislative demands. Thus, a reduction of fuel consumption and exhaust emissions,
increasing performance requirements, the implementation of alternative drivetrain
concepts (e.g. hybrid power trains) and a high cost pressure influence the development
of new engine technologies. The engine development process itself is divided into
several sequences: design, mechanical and thermodynamic simulation, test bench and
on-road application, and production-related development. Since this chapter focuses
on the full-vehicle development process, it will not go into detail about engine or
component development.

One important stage in the series development phase includes the mass calcu-
lation and mass management task. This task is addressed via virtual optimization
and verification, as well as in hardware-related steps. The reduction of weight is
an important target for the development of new models because of the direct influ-
ence of the vehicle’s mass on driving dynamics, fuel consumption and exhaust gas
emissions. Parallel to the virtual development, hardware optimization and verifica-
tion take place. All the virtual development results are verified and fine tuned in the
course of prototype test procedures. Hardware optimization and verification includes
test cycles of components and modules, as well as work on full-vehicle prototypes on
test benches and under different road conditions. Examples of hardware tests include
tests of new propulsion concepts, engine and transmission tests, final aerodynamic
and air flow (cooling) studies on hardware models, functional test benches for clo-
sures, suspension and brake tests, electronic test procedures, software tests, haptic
and ergonomic studies, tests of sealing concepts, and many more.

Besides product-related hardware tests, manufacturing-related hardware opti-
mization loops are performed in the course of the production process development. In
addition, virtual manufacturing and plant engineering includes the simulation of pro-
duction and assembly procedures to support the optimization of in-house processes,
as well as integration with the supplier. One result of the series development is the
complete generation of 3D CAD models and 2D workshop drawings. These product
data are linked with different processes of data organization, supply and manufac-
turing. Parallel to component design, tools are designed and calculated in-house at
the manufacturer, as well as in cooperation with suppliers. Detailed specifications of
product quantity and quality, project schedule, logistics and manufacturing processes
are defined.

When considering the main milestones of the series development phase, the depen-
dency of product development and production engineering becomes evident. The
exterior and interior styling process ends at the Styling freeze milestone. This tar-
get includes the complete definition of the vehicle styling under consideration of

20 1 Automotive Development Processes

technical, production-related and, of course, aesthetic viewpoints. The Design freeze
milestone marks the end of the design process, including all supporting calcula-
tion and simulation procedures. At this milestone, the product-influencing factors of
production engineering have to be implemented. At the Prototype freeze milestone,
the vehicle setup is confirmed across an extensive range. This includes mechanical
and electrical confirmation, as well as hardware and software verification. The last
milestone in the series development is Production confirmation. At this stage, the
product is ready for production. Comprehensive workload in the area of production
planning and control is frozen and approved, which includes the administration and
organization of manufacturing-relevant data and procedures. The subsequent steps
have to finalize the production process itself.

Pre-Series and Series Production

The production of the new car model starts with the pre-series. In this phase, although
the series tools are used, the process is not performed on the ultimately planned time
schedule. During the pre-series, the tooling and assembly procedures are tested and
evaluated. This is performed with a reduced production rate to enable a detailed
check of each individual step. Computer-controlled procedures are reviewed, and
human resources are trained. Both the product itself and the production process are
tested in terms of the quality guidelines. The Product confirmation milestone marks
the acceptance of the product, including all aspects of development, production and
process quality.

Due to the different market requirements, the homologation of the vehicle is a
long-term process. Therefore, the homologation is carried out with pre-series vehicles
or series-near prototypes. Of course, these vehicles have to fulfill the homologation-
related specifications of series vehicles. The Homologation milestone denotes the
end of the legal approval procedure. Product development ends with the Start of
production (SOP) milestone. From this stage on, the manufacturing process is per-
formed in the predefined time steps, and the targeted production volume is achieved.
The delivery of supplied components and modules, the arrangement of the assembly
line and the quality control function in the specified order. In most cases, suppliers
have started their production a bit earlier, to ensure a failure-free start of the assem-
bly process. During series production itself, continuous quality checks guarantee the
predefined product features. Product and processes are checked continuously, and
improvement steps are implemented into the production procedure. During the life
cycle of a car model, further development and model upgrading include the imple-
mentation of new technologies (e.g. new engines and transmissions, new safety or
comfort equipment) or slight styling modifications. These modifications are devel-
oped in parallel to the series production and implemented into the manufacturing
process.

Once on the market, the product is maintained by a different kind of adminis-
tration. Besides spare part delivery, selling centers are involved in the quality and
improvement process. Feedback from the market provides important information for

1.2 The Process of Automotive Development 21

the current series, as well as for future development. Therefore, customer feedback
data are collected and evaluated at markets around the world and collected for a
detailed evaluation.

1.3 Application of CAD in Automotive Development

CAD is one of the central disciplines in modern automotive development. The effi-
cient computer-aided creation of geometrical models provides the basis for a broad
field of concerned engineering processes. The comprehensive CAD-based represen-
tation not only includes geometry data, but also provides extensive information about
the product structure (e.g. bill of material - BOM), geometrical and functional inter-
actions of components and modules, as well as much production-related information.

Section 1.2 introduced the sequences of a state-of-the-art automotive development
process, including all its sub domains and areas of operation. A considerable number
of working fields in this process are related to virtual product development and
thus to the generation, modification and use of CAD-based information. With the
goal of illustrating the main development targets and influencing factors, Fig. 1.12
shows several aspects of automotive engineering processes ordered in relation to
six main areas. Economic-related aspects include the product strategy, influences
from the market and of course cost management. Process-related aspects go hand in
hand with production engineering, supplier integration and spare part management.
Finally, traditional engineering-focused working areas contain the development of
components and modules, as well as the consideration and implementation of full-
vehicle-related technological parameters.

Since they are responsible for the generation of product data geometry within a
virtual environment, CAD-processes are involved in development processes from
the beginning. Market and product-strategy-related decisions are often influenced by
fashion trends and lifestyle. In this way, a computer-aided creation and visualization
of initial styling models plays an important role during assessment processes for
the definition of customer requirements and market trends. In subsequent steps, the
initially created styling surfaces serve as a basis for far-reaching optimization cycles,
including several modifications and adaptations. The application of computer-aided
styling (CAS) software supports the efficient creation of styling surfaces, data backup
processes and evolutionary modifications of existing models.

Since cost calculation has an important influence on competitiveness, consider-
able effort is invested in the prediction, computation and evaluation of a wide range
of product and production development processes in terms of their potential for cost
savings. The provision of current information (including geometry, functions, materi-
als, manufacturing and assembling related data), the implementation of components
and modules from other models (COP), and providing information about the product
structure throughout the entire product creation cycle offer significant support in
the determination of cost-related aspects. Product data management (PDM)-based

22 1 Automotive Development Processes

Fig. 1.12 Development targets and influencing factors of automotive full-vehicle engineering
processes [15]

organization of all the involved information supports a direct access of the concerned
departments and working areas to cost-calculation-relevant information.

Production planning and manufacturing engineering, including the integration of
supplier and logistic processes, involves automotive DMU structures for the com-
putation of mounting and assembly procedures, the verification of production lines,
and the development and evaluation of automated manipulation and transportation.
Derived from CAD data, the assembly simulation addresses the optimization of
mounting procedures regarding sequences, collision detection and ergonomics inves-
tigation of operators. In addition, the management of variants supports an efficient
confirmation of production processes in the case of product modifications or varia-
tions.

Full-vehicle development goes hand in hand with the development of compo-
nents and modules. These processes are traditionally known as product development
and include all tasks necessary for the creation and verification of all geometri-
cal and functional product characteristics. Whereas the development of component
technologies is often focused on restricted functionalities, full-vehicle development

1.3 Application of CAD in Automotive Development 23

processes have to consider the complete product structure, including complex geo-
metrical and functional interactions and requirements. Both disciplines are based on
virtual product development, as CAD plays a key role in the definition of both the
product structure and the product creation. Due to their central position in automotive
engineering, CAD data are managed in an extensive PDM structure and provided for
several parallel and subsequent calculation and simulation processes for functional
layout (e.g. kinematics simulation), structural dimensioning (e.g. body crash simula-
tion) or other optimization and verification processes (e.g. aerodynamics simulation,
weight computation).

Finally, process engineering handles the development and optimization of the
applied processes, beginning with a structurization of the complete vehicle devel-
opment (Fig. 1.11, p. 12). The derivation of sub-processes for detailed development
steps and for the integration of external engineering partners and suppliers plays an
important role in the integration of conception, design, calculation and simulation.
An optimized interaction of different departments, including differing development
disciplines, provides the foundation for successful product development. A special
focus is placed on the correct planning of different sequences and development
steps, in which the transfer of data plays an important role. Process engineering has
to ensure that all required information is available just in time for different processes
(e.g. geometrical information regarding components developed in design processes
has to be provided for subsequent stress and fatigue simulation). In modern auto-
motive development, the planning of development sequences and workflow faces
challenges from simultaneous engineering and frontloading approaches, which are
based on development steps that are partially performed in parallel and on the shift-
ing of knowledge-based, product-related decisions into early development phases.
The complex interaction of CAD, CAE and knowledge-based engineering has to be
planned carefully because of its importance for successful product development.

References

1. Hirz, M.: An approach of multi disciplinary collaboration in conceptual automotive develop-
ment. Int. J. Collaborative Enterp. IJCEnt 2(1), 39–56 (2011)

2. MAGNA STEYR Fahrzeugtechnik AG & Co KG: date of access: 2009–11-10. http://www.
magnasteyr.com

3. Bols, U.: Die berühmtesten deutschen Autos. Podszun, Brilon (1990)
4. Mercedes-Benz Classic Archive, Daimler AG, Stuttgart, Germany
5. Courtesy of Ford Motor Company - Gross Point Public School System: date of access: 2010–

05-11. http://www.gpschools.org
6. Courtesy of Ford Motor Company - Motorwayamerica: date of access: 2009–10-05. http://

www.motorwayamerica.com
7. Bugatti Type 57 Atlantic, photographed by Martyn Goddard, England. http://www.

martyngoddard.com
8. Riekert, P., Schunck, T.E.: Zur Fahrmechanik des gummibereiften Kraftfahrzeugs. Ing. Arch.

11(3), 210–224 (1940)
9. Opel Classic Archiv der Adam Opel AG, Rüsselsheim, Germany

10. Volkswagen AG: date of access: 2013–03-29. http://www.volksgenag.com

http://www.magnasteyr.com
http://www.magnasteyr.com
http://www.gpschools.org
http://www.motorwayamerica.com
http://www.motorwayamerica.com
http://www.martyngoddard.com
http://www.martyngoddard.com
http://www.volksgenag.com

24 1 Automotive Development Processes

11. Volkswagen Scooter 3-Wheel Microcar Press Kit, Volkswagen United States Inc., Michigan,
USA 1986

12. Nissan Austria: date of access: 2009–10-05. http://www.newsroom.nissaneurope.com/at/deat/
Home/Welcome.aspx

13. Jürgens, G., Hirz, M., Bader, M.: Entwicklungsmethodik. Lecture script at Graz University of
Technology, Graz (2011)

14. Sorsche, J.H.: PKW-Konstruktion. Lecture script at the University of Stuttgart (1989)
15. Hirz, M.: Advanced Computer Aided Design in Conceptual Automotive Development. Habil-

itation Thesis at Graz University of Technology, Graz (2011)

http://www.newsroom.nissaneurope.com/at/deat/Home/Welcome.aspx
http://www.newsroom.nissaneurope.com/at/deat/Home/Welcome.aspx

Chapter 2
Overview of Virtual Product Development

This chapter provides an overview of product development with a focus on (but not
limited to) automotive engineering. After a general definition of mechanical prod-
uct development processes, the main terms, definitions and a selection of methods
of virtual product development are introduced. This includes the history of CAD,
CAE and PDM, a classification of fundamental methods of product modeling, and a
short description of typical CAD-CAE process chains and product data management
tasks in automotive engineering. The chapter closes with a brief introduction to the
concepts of collaborative product development.

2.1 Development of Mechanical Products

Product engineering processes cover all operations for the development, manufac-
turing, use, servicing and disposal of products. Product development manages the
creation of the product itself, under the consideration of different boundary con-
ditions. In this way, product development processes include all of the operations
necessary to bring a new product to market. This includes the idea generation, the
concept phase, product styling and design and detail engineering, all of which are
conducted in the context of market research and marketing analysis.

Figure 2.1 shows a typical product life cycle sequence. Product research encom-
passes both basic research work and product-specific investigations. The product
planning stage is often embedded in the concept phase. In this first development
phase, the main characteristics of a new product are defined and evaluated. After the
concept phase, the series development includes the styling, the design and a detail
engineering phase. The extent of the product testing stage depends on the prod-
uct type. In the case of automotive engineering processes, the testing stage consists
of far-reaching test and optimization work. Next, production-related processes are
developed and implemented. After the start of production, the product manufacturing
phase represents the last stage in the product creation cycle. The product distribution,
use and liquidation (eventually recycling) stages take place in the market. During

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 25
DOI: 10.1007/978-3-642-11940-8_2, © Springer-Verlag Berlin Heidelberg 2013

26 2 Overview of Virtual Product Development

Fig. 2.1 Stages in a typical product life cycle

these phases, marketing-relevant factors, service and customer support have to be
considered.

The German VDI 2221 guideline describes the stages in the development of
mechanical products [1]. This standard process focuses on product development and
does not include the entire life cycle. Regardless of the specific development tools
and methods that are applied, the development process for mechanical products can
be divided into five main stages (Fig. 2.2). In the first stage, the product requirements
and specifications are defined. In the automotive industry, the description of product
characteristics is supported by far-reaching market studies, research into constantly
changing customer demands and an evaluation of future legislation-based boundary
conditions in target markets. The cost-intensive development phase and production
planning for a new car require a careful preparation of new automotive technologies
or models. Typical car models have a production life time between 6 and 10 years,
although some models are sold for more than 20 years. Adding a development time
of about 2–4 years, a new automotive product (including new technologies) has to be
competitive on the market for more than 10 years from the start of development. For
this reason, it is very important to consider market tendencies and legislation-based
trends in the very early phase of product development. A miscalculation of product
characteristics can have negative effects on the economic success of a product, and

2.1 Development of Mechanical Products 27

Fig. 2.2 Development process for mechanical products, according to [1]

consequently, due to the immense financial investment, undesirable effects on the
car manufacturer.

The description of product characteristics provides the basis for the definition of
the requirement specifications and target specifications of a new model. The require-
ment specifications include a complete description of the new product characteristics.
The project initiator is responsible for the requirement specification list. In the case
of automobile development projects, this can be the management board that has
ordered the development of a new car model. Requirement specifications take into
account functional and non-functional specifications. They include detailed infor-
mation about the requirements of product design and describe the desired behavior
of a product in terms of its operation. Supplemental information, such as quality
standards and manufacturing-related boundaries, complete the definitions of bound-
ary conditions for development. The target specifications, on the other hand, define
detailed approaches for the development process of the product as a function of
the requirement specifications. In this way, the target specification list consists of
precisely defined solutions and derived working packages for the completion of the
tasks that are defined in the requirement specifications.

The second stage of the development process includes the functional concept
of the new product. The new technologies implemented are defined and assessed
in terms of their functional configurations and interactions. A general product lay-
out describes the definition of functions and sub-functions. All of the interacting
requirements of a new product are checked in view of the requirement specifica-
tions and other influencing boundary conditions, such as legislation-relevant tasks or
production-related influences. In the case of a new car, the packaging concept plays
an important role in the functional development. Besides the general layout of a car
model, several technological characteristics are defined in this phase, which requires
the consideration of a broad variety of influencing factors (e.g. driving performance,

28 2 Overview of Virtual Product Development

vehicle safety, comfort, durability, and legislative/environmental requirements). New
technologies in automotive components, such as new safety equipment or environ-
mentally friendly propulsion technologies, are implemented and verified in terms of
their general functionalities within the full-vehicle system.

The third stage tackles the physical concept. This stage covers the definition of
the product composition. The development of new functions is carried out in asso-
ciative mechanisms. Besides simulation work, this stage includes the mechanical
dimensioning and calculation of components. In automotive development processes,
the physical concept defines the vehicle body structure layout in consideration of
crash and stiffness requirements. In addition, basic requirements of the new car con-
cept are addressed, such as driving performance, fuel consumption, vehicle mass,
and estimated values of driving dynamics. In the case of new drivetrain concepts
(e.g. electric driven vehicles), this stage includes an estimation of the performance
requirements and energy density, as well as the battery layout and capacity. These
factors influence the battery mass and therefore the vehicle mass, center of gravity,
driving characteristics and other factors. Together, the functional concept and the
physical concept form the concept phase of a new product. In automotive develop-
ment processes, the concept phase covers complex procedures that take into account
a wide variety of influential boundary conditions and factors.

The fourth stage handles the product design phase, which is directly dependent on
the product concept phase. The geometrical development of all components has to
consider the assembly of the product and the interactions of components, as specified
in the concept phase. Based on knowledge from the concept phase, the product
components are modeled in detail and optimized. The materials are defined, and the
boundaries for the production planning are derived.

Finally, the last stage consists of the production-related development. This phase
goes hand in hand with the design process because manufacturing boundaries often
influence the design of components. Thus, the production, assembly and inspection-
oriented development and the manufacturing-related optimization (including sup-
plier integration) interact with geometry creation and calculation processes. In former
times, these sections were performed separately, but nowadays, a close information
transfer supports an effective product development. As defined by VDI 2221, the final
step is the product documentation, which includes all product-relevant information,
as well as manufacturing data (e.g. workshop drawings and assembling guidelines).

The development process of mechanical products stipulated by VDI 2221 does
not consider the development tools and methods applied. In principle, the standard
is valid for the development of all mechanical products, regardless of the manpower,
machines and methods deployed. While standardized processes of product develop-
ment provide a framework, in the automotive industry, and especially in conceptual
development, significant additional specification and development of new models,
methods and tools for conceptual design are necessary. Since the late eighties, devel-
opment processes in the automotive industry have been supported by computational
methods and strategies. The trend is definitely going in the direction of integrated
virtual development that supports the complete generation of a new car. Taking its cue
from early pioneers in aeronautical engineering disciplines, the automotive industry

2.1 Development of Mechanical Products 29

Fig. 2.3 Design office circa 1900 [2]

has also played a leading role in the development of software tools and methods
for improving the virtual generation of new products, new technologies and man-
ufacturing processes. Within the boundaries of a fixed development time and cost
reduction, virtual engineering methods play an important role in the optimization
of technologies and products through design, simulation, calculation, organization,
production, distribution and other important tasks.

Figure 2.3 shows a design office around 1900. At that time, the main development
tools were a pencil, a ruler and a lot of paper. Although today’s development offices
are characterized by the wide-ranging application of computational tools, human
beings are naturally still the most important factor in the creation of new products.

2.2 Virtual Product Development

Virtual product development includes all IT-supported, virtual product-model-based
processes for the generation of a new product. Virtual product models are used to
perform optimization and testing procedures in a virtual environment with the goal
of saving development time and costs, while simultaneously increasing the product
quality. Depending on the categories of development applied, there are different types
of virtual models. They can include market-relevant or business-case-relevant data
(economic models), workflow-oriented information (process models), technical char-
acteristics and descriptions (functional models), and geometry information (design
models). Depending on the different requirements and characteristics of diverse dis-
ciplines, both the virtual models and the results generated can differ significantly. In
general, the disciplines of virtual product development can be classified into main
groups [3].

30 2 Overview of Virtual Product Development

CAD . . . Computer-aided design
CAS . . . Computer-aided styling
CAE . . . Computer-aided engineering
DMU . . . Digital mock-up
CAM . . . Computer-aided manufacturing
CAQ . . . Computer-aided quality assurance
CAT . . . Computer-aided testing

Depending on the type of product to be developed, several additional disciplines
are applied within the main groups mentioned above, such as computer-aided soft-
ware engineering (CASE), which is used in the development of IT-applications or
mechatronic products with implemented IT-supported functionalities.

Efficient virtual product development is based on an effective interaction and
integration of the various systems applied to enable a close cooperation with all
participating departments and development partners. Virtual product development in
the automotive industry uses a wide range of product models, which are connected
by global data management systems. Data management is organized in different
structures, depending on the requirements of the specific stages in the product devel-
opment and life cycle. Different terms are used to describe data-management-related
processes and functionalities (see Sect. 2.2.3 for an overview of product data man-
agement in automotive engineering).

Figure 2.4 shows the historical development of CAD, CAE and process-related
management, with a focus on their application in automotive development.

Fig. 2.4 Historical development of CAD, CAE and data management, based on [4–6]

2.2 Virtual Product Development 31

The initial computation-supported functions emerged in the late 1960s. These appli-
cations enabled mathematical operations and calculations. The first commercial
computer-aided drawing programs were used in the late 70s. These programs used
simple functionalities for the generation of two dimensional drawings of technical
products. Initial applications defined sketches using lines and circles, while later
software included additional functions, such as predefined geometrical figures or
the definition of axes, pattern or dimensions. In this way, it was possible to gen-
erate 2D product description and manufacturing-related workshop drawings. In the
80s, software suppliers began offering commercial calculation programs for personal
computers and work stations. At that time, integrated simulation methods for broad
applications were developed. Besides automotive manufacturers, automotive com-
ponent suppliers also drove the development of product-specific simulation methods
for detailed investigations of their products. Geometry-based and simulation-based
product data were used in different fields, and this required the implementation of
initial geometry-based and physically-based data management strategies.

The transition from 2D drawings to 3D models started in the early 80s, but com-
mercially successful 3D CAD programs were first introduced about 5 years later. 3D
CAD design changed the applied design methods significantly. Most importantly,
the introduction of 3D surface and solid models resulted in the evolution of design
methods from static, two-dimensional drawings in several views and sections to
dynamic, three-dimensional virtual geometric product models. Besides a detailed
and near-real-life representation of product geometry, these models included a vari-
ety of additional information and characteristics. With the help of 3D design, it was
possible to integrate production-related knowledge or assembly-related information
into the model. Die casting processes and forging procedures found their require-
ments displayed in 3D geometry models. For example, the design of die-cast parts
included all the requirements of moulds and casting process. In this way, 3D geom-
etry models were provided with draft angles and fillets based on the selected draft
directions. Design engineers obtained knowledge from cast-model manufacturers
that helped them take their requirements into account during the design process.
This method enabled a direct derivation of the moulds from virtual 3D CAD models.
Similar procedures were applied for the definition of forged components or for the
programming of numerically controlled (NC) production machines.

Direct data exchange between design and simulation started in the 90s through
the use of standardized neutral data exchange formats. In this way, it was possible
to use geometry data defined in design software packages for the definition of prod-
uct geometries in simulation processes. Imported geometry was used to generate
meshes for finite element simulations, the representation of dimensions and inertia
characteristics for multibody simulation, or for other types of calculations. At that
time, initial modeling strategies supported the implementation of CAD data, mater-
ial characteristics, load, restraints and other boundary conditions into an integrated
simulation process. 3D CAD spurred the development of product-knowledge-related
engineering methods. Information from successful projects was stored in CAD mod-
els and saved in templates or simplified databases to offer guidelines and basic
data for subsequent projects. These methods enabled a direct transfer of virtual

32 2 Overview of Virtual Product Development

product-model-based knowledge and experiences from earlier projects into new
tasks.

The parameterization of geometry data represented a significant evolutionary step
in 3D CAD processes. Parametric-associative 3D CAD software separated the admin-
istration of geometry and its controlling parameters. A logical and precisely defined
linkage of parameters and geometry in the geometry-creation process produced fully
parameterized geometry models. The parameter-based control of geometrical model
characteristics opened up a wide field of application for problem-specific design
applications. Parameterized CAD programs offered additional functionalities, such
as data interfaces, the integration of catalogue and knowledgeware functions, and the
possibility of macro-based procedures. All of these functionalities characterize state-
of-the-art CAD packages, which have come into use in automotive development.

The parameterization of geometry models in turn spurred a strong development of
data management systems. Initially, product and process modeling, and subsequently
product life cycle modeling, were essential for the organization of exploding data vol-
umes. Powerful product data management systems (PDMS) supported the increasing
integration of design and simulation processes. The trend in the software industry
is definitely going in the direction of integrated packages, which combine para-
metric design software and simulation software in the same environment. Although
this strategy reduces data interface losses, it has been criticized for the resulting
reduction in directly compatible program platforms. Nevertheless, future intelligent
geometry data exchange formats, which will be able to handle both geometry data
and additional characteristic product information, should increase the efficiency of
virtual product development processes significantly. In the case of integrated software
packages, or in the case of communicating stand-alone solutions, virtual develop-
ment will be extended to the entire range of product generation, starting from the
concept phase, continuing in the different development steps (including manufactur-
ing and production), supporting sales and aftermarket, and ending in the organization
of disposal processes.

2.2.1 Product Models

Virtual product development processes are based on product data models, which are
able to represent the specific product characteristics. Different applications call for
dissimilar product models. In general, the primary methods of product representation
can be classified as [3]:

• Geometric modeling
• Feature modeling
• Parametric modeling
• Knowledge-based modeling
• Structure representation
• Technical product documentation

2.2 Virtual Product Development 33

In automotive development, the design engineering of products is performed using
CAD. Modern CAD systems offer a wide variety of functionalities for 3-dimensional
product creation, 2-dimensional drafting and the creation of components and assem-
blies. Besides geometry creation, modern CAD systems enable the definition of
several additional product characteristics, such as material specifications, process-
relevant data (e.g. for production), and product structure. Geometry creation is one
important task in vehicle development. Therefore, state-of-the-art automotive devel-
opment processes are often based on the geometry data of a 3D CAD/DMU master
model. During the product definition process, this geometry-based model represents
the current state of development and interacts with all of the simultaneously per-
formed processes. This interaction includes geometry data export for the supply of
CAE, as well as the import of data for modifications and advancements, which are
delivered from simultaneously performed (CAD-external) operations.

The application of 3D CAD provides the basis for a three-dimensional description
of the product geometry. Modern CAD systems offer the possibility of parametric
geometry control, which can be used for manifold applications of integrated strate-
gies. The geometry is built up through the combination of single components (parts)
into an assembling structure. A systematic structure of the assembly in sub-products
and main products based on the structures in real life brings the virtual geometry
model close to the configuration of a physical product. Structuring tools include bills
of material, product configurations, assembling simulation, and others.

In the related literature, the process of virtual product generation is divided into
two main sections (Fig. 2.5), [7]. Virtual product development includes all tasks
necessary for the creation of product geometry and the implementation of product
characteristics. The virtual plant includes the development of all manufacturing-
related procedures and simulations. In this phase, the operations of production are
simulated and optimized within a virtual environment. In addition, the production
development takes into account the implementation of supplier, logistics and control-
ling mechanisms, as well as financial aspects. Optimized virtual product generation
processes are based on integrated virtual product models, which include the entire
product description.

Virtual product development itself can be divided into three main phases. The first
stage, 3D CAD design, includes the geometry creation based on product-specific fea-
tures. These features can cover technical functionalities or production-related details,
such as draft angles or fillets. The design process also handles the definition of materi-
als and the product structure. The second stage contains the digital mock-up of prod-
uct components, including tasks related to assembly and packaging. DMUs contain
both the product structure and simplified geometric models of individual compo-
nents or assemblies. DMU procedures calculate clash and assembly procedures and
are used to check several geometrical interactions in a product structure, such as
clearance or accessibility. In the third stage, the functional DMU (also called VMU -
virtual mock-up) considers the functional integration of the product, including all of
the features and functionalities necessary for a failure-free operation. These so-called
virtual prototypes take functional and physical characteristics into account and enable
functional simulations or calculations (e.g. kinematics, masses, center of gravity).

34 2 Overview of Virtual Product Development

Fig. 2.5 Concepts of virtual product development, based on [7]

In automotive development, the placing of 3D CAD data at the center of virtual
product generation is an efficient approach for the creation of an integrated develop-
ment process. 3D CAD models of vehicle concept, styling, components and pack-
aging serve as display units for each data status during the development project and
supply all the other relevant processes with the required information. All geometry-
based information is stored in the CAD model. In this way, it is possible to organize
the product release updates and project progress steps via a centralized master model.
The 3D CAD master model is in turn supported by a data management system, which
includes the product structure and other additional information. Of course, the spe-
cific data and information required must be generated separately by the departments
involved. For example, in crash simulation processes, crash-specific boundaries (e.g.
forces, loads, material characteristics) are defined, in addition to the geometry-based
information.

2.2.2 CAD-CAE Workflows in Automotive Engineering

CAD is used to create a geometrical product representation within a virtual envi-
ronment. In automotive development, the product is composed of three-dimensional
models in so-called 3D CAD programs. CAE includes a wide range of product
calculation, simulation, optimization and planning processes in several disciplines

2.2 Virtual Product Development 35

Fig. 2.6 Examples of CAD-CAE workflows in automotive applications [8]

(e.g. mechanics, electrics, electronics, optics), which are performed parallel to the
geometry creation. Of course, throughout the virtual development cycle, design
always goes hand in hand with computational engineering processes. In some litera-
ture, virtual development in general is denoted as CAx (computer aided technologies).
The combination of different CAD and CAE processes can be displayed as process
chains.

The following sections include a short introduction of typical CAD-CAE work-
flows. Based on a selection of typical automotive development processes, a short
description of the main targets, applied procedures and data formats provides an
overview of virtual-development-related tasks (Fig. 2.6). Different CAE applications
are based on a 3D CAD master model, which serves as a data source. Depending
on the data format and accuracy required, the geometrical product information is
converted and transferred into the CAE environment. The black arrows indicate a
direct data connection from the CAD system to the corresponding CAE process.
The information backflow after the evaluation and verification of simulation results
always represents an important task in efficient development cycles (dotted arrows).

Digital Mock-Up (DMU)

Digital mock-ups are digital dummies, which include a simplified geometrical rep-
resentation of a product. DMUs contain information about the product geometry
(volume and/or surface models) and the product structure. DMU processes are used
for packaging studies, clash detection, mounting and assembling simulations and
other 3D CAD-based analysis steps. Converted (simplified) 3D CAD data from a
virtual product model (master model) form the basis for DMU processes. The data
transfer can be accomplished using native CAD data or using neutral data formats

36 2 Overview of Virtual Product Development

Fig. 2.7 DMU workflow based on a conceptual vehicle packaging study [8]

(e.g. STEP - standard for the exchange of product data [9], IGES - initial graph-
ics exchange specification [10], JT - jupiter tessellation format, VDA (Verband der
Automobilindustrie, [11]) formats). Due to a certain degree of geometry simplifi-
cation, the accuracy of DMU models is lower than that of the corresponding 3D
CAD master models (i.e. DMU uses tessellated geometries). Direct modification of
geometry data is in general not possible within the DMU process. DMU supports
simultaneous engineering approaches by handling large data structures throughout
the product development, by localizing and eliminating geometrical problems in com-
plex assemblies, and through target-oriented, assembly-based optimizations. DMU
methods permit a geometrical freeze in early stages of the development cycle by
integrating functional investigations into the DMU process.

In automotive development, DMU investigations cover the creation of assem-
blies (including components and devices), analysis and simulation (e.g. assembly
procedures, movement and space investigations, collision checks, mounting and
installation simulation). DMUs are often linked with simulation procedures, such as
kinematical simulation processes for the optimization of movable functionalities (e.g.
door-opening mechanisms, wheel suspensions, movable components in engines).
Figure 2.7 depicts the DMU workflow and shows an example of a conceptual vehi-
cle DMU, which includes initial styling information, carry-over parts from a model
platform (drivetrain components, under-carriage and suspension), placeholders for
wheels and luggage, and simplified human models and seat geometries. In this exam-
ple, the DMU process supported the early layout of a new car model and enabled
a coordination of vehicle styling proposals with the geometrical requirements of
component and ergonomics configurations.

2.2 Virtual Product Development 37

Finite Elements Method (FEM)

The finite elements method is used to calculate stress, deformation, thermal load,
structural dynamics or NVH (noise, vibration and harshness). The FEM separates the
continuum into finite, simple areas or volumes (finite elements), which are connected
at defined nodes (mathematical discretization). FEM calculation processes are based
on approximated geometries, derived from a 3D CAD model. Depending on the type
of geometry and on the simulation target, different types of approximation are used.
The calculation method is based on the creation of a hypothetical continuum, which
is divided into simple patches or sub-bodies (meshing), which are in turn connected
at defined nodes. The deformation of the infinitesimal mass points is approximately
described as a function of the node deformation by means of a displacement approach
based on an element type. This enables the separation of the distributed variables
into space and time variables. FEM is suitable for the modeling of geometrically
complicated, homogeneous structures in the fields of statics and strength and for
the higher-frequency range of the motions [5, 12]. The geometry data transfer from
the 3D CAD model into the FE-program is performed by a discretization process.
Boundary conditions of loads (e.g. forces, moments), restraints (e.g. bearings, fixed
parts), material characteristics, temperatures and other factors are defined directly in
the FE-program. Figure 2.8 shows the general data flow in FEM processes using an
exemplary application in engine development.

Fig. 2.8 Data flow in FEM processes and exemplary FEM simulation of a 1-cylinder engine crank-
shaft

38 2 Overview of Virtual Product Development

Computational Fluid Dynamics (CFD)

Computational fluid dynamics simulation enables the calculation and optimization
of gaseous and liquid flow processes. Similar to the FEM calculation process, the
CFD model is based on an approximated geometry, the CFD mesh. The treatment
of flow problems leads in general to an infinite dimensional differential equation
system with space-dependent and time-dependent distributed variables (partial dif-
ferential equations), which must be dicretized for the practical solution and simplified
via idealizations. The idealizations selected depend on the actual interest and task
and on the expected accuracy of the results. The discretization (meshing) can be
performed at different levels of complexity, depending on the actual tasks and the
required accuracy. One-dimensional flow calculation represents the flow character-
istics along a streamline (e.g. within a tube). Three-dimensional flow calculations
use spatial meshing procedures and are applied for complicated geometries, such as
body flow (external aerodynamics), engine compartment flow (internal aerodynam-
ics), and channels in combustion engines. The data transfer from the 3D CAD model
into the CFD program is performed by neutral standard data formats (e.g. STEP,
IGES), and the boundary conditions for the calculations are defined directly in the
CFD program. Figure 2.9 shows the workflow of a CFD simulation and the results
of an injection spray and air-fuel ratio simulation of a 1-cylinder motorcycle engine.

Fig. 2.9 Cylinder head assembly and CFD simulation of a motorcycle engine

Multi-Body Simulation (MBS)

Multi-body simulation is used for the kinematic and dynamic calculation and opti-
mization of assembled (movable) parts. MBS models are based on general geomet-

2.2 Virtual Product Development 39

Fig. 2.10 MBS of an automotive suspension

rical definitions in CAD product structures. They consist of stiff bodies or mass
points, which are connected with each other or the environment by joints (kine-
matic constraints) and/or by specific force laws. They are very suitable for modeling
complex, inhomogeneous structures, such as full vehicles, and particularly for the
low-frequency range of the motions. The boundary conditions (e.g. forces, torsional
moments, masses, moments of inertia, degrees of freedom of movement) are defined
directly in the MBS program. The separation of the locally distributed parameters into
discrete parameters (e.g. mass, inertia, stiffness, damping) leads to a so-called phys-
ical discretization of the product model. Besides a rigid consideration of kinematic
systems, elastic sub-bodies from FEM-modelings can be imported and integrated
on demand (rigid-elastic MBS). Advanced MBS also enables the consideration of
non-mechanical couplings (hydraulic, pneumatic and electrical state variables), as
well as the modeling of active control units [5, 12]. Figure 2.10 shows the general
workflow of an MBS. In addition to the CAD model, the derived MBS model and
selected results of the MBS of an automotive suspension are shown.

Virtual Reality (VR)/Augmented Reality (AR)

Virtual reality and augmented reality generate virtual environments as real-time
simulations for product representation and product-related investigations. They par-
tially incorporate the user in virtual surroundings and product-related operations. AR
functionalities enable the implementation of additional information and data into a
VR environment (e.g. look-through functions or the accessibility of (virtual) con-

40 2 Overview of Virtual Product Development

Fig. 2.11 VR equipment and illustration at a power wall [13]

trol units). The real-time interactions of geometries or functionalities support the
assessment of procedures, in-use tests and product evaluation. The ability to manip-
ulate objects gives the virtual product a near-real-life feeling. Besides development-
related tasks, VR and AR technologies are used for applications in personnel training,
maintenance, marketing and education. One specific data format for these types of
applications (VRML - virtual reality modeling language) was designed to display 3D
models and to integrate user-based interactions. VRML data, which are generated
from a 3D CAD master model, include simplified geometry information without
product history or structural data. Figure 2.11 illustrates examples of virtual reality
application in automotive development. In the left figure, a realistic representation
of exterior surfaces supports the styling evaluation process, while the figure on the
right shows a look-through model of a car door module.

Technical Product Documentation (TPD)

Technical product documentation enables the derivation of technical drawings, bills
of material, spare-part lists, prospects, and other items directly from the 3D CAD
model. In order to enable a TPD generation, the CAD master model has to include all
of the required information (e.g. product structure, geometry, tolerances, material,
production related data). TPD formats include text-based formats (PDF - portable
document format), 2D vector and pixel graphics (DXF - drawing exchange format,
TIFF - tagged image file format, GIF - graphics interchange format), hypermedia
formats (HTML - hyper text markup language, XML - extensible markup language)
or 3D documentation software-based formats (3D PDF, WRL - web rule language)
[14, 15]. TPD processes are always linked to standardization regulations and guide-
lines (e.g. ISO - International Organization for Standardization, DIN - German Insti-
tute of Standardization) and company-defined standards. Figure 2.12 shows examples
of TPD, namely part lists, workshop drawings and an expanded view of a motorcycle
crankshaft.

2.2 Virtual Product Development 41

Fig. 2.12 Examples of TPD

Rapid Prototyping (RPT)

Rapid prototyping is used to generate hardware models from virtual geometry data
during the product development phase. Such prototypes, which are available at an
early stage, enable real-life studies, test bench optimization or customer discussions.
RPT is used for concept models, design or ergonomic studies, or functional tests and
optimization. Rapid prototypes are generated from tessellated geometries, which
are derived from 3D CAD master models. The most common file format is STL
(structural triangle language). STL geometries are calculated via triangulated sur-
faces with no design history or product structure information. RPT production tech-
niques include laser sintering, stereo lithographic, 3D-printing and others. Figure 2.13
depicts the 3D CAD model, rapid prototyping parts and the physical component of
an automotive cylinder head.

Numerical Control/Robot Control/Measure Control (NC/RC/MC)

Computer-aided numerical control, robot control and measure control cover manu-
facturing related process engineering tasks. These tasks are carried out in the course
of computer-aided manufacturing (CAM), which addresses IT-supported function-
alities for the control and monitoring of manufacturing resources. In NC/RC/MC
processes, product geometry data are converted from a 3D CAD master model into
a manufacturing-specific environment (language). Besides the geometry informa-
tion, the master model includes all production-relevant data (e.g. tolerances, surface
treatment, material characteristics). An NC data model contains machine-specific

42 2 Overview of Virtual Product Development

Fig. 2.13 Application of rapid prototyping in cylinder head development [16]

information about the applied tools, model fixation, cutting speed, and other fac-
tors. RC data enable the handling of assembly-relevant product information in man-
ufacturing processes. MC data define prescribed measurement procedures for the
analysis of the manufacturing process, deviation of tolerances or abrasion parame-
ters. Figure 2.14 shows examples of numerical control machining and robot control
simulation within virtual environment.

Fig. 2.14 Examples of NC and RC simulation [17]

2.2 Virtual Product Development 43

Production Planning and Control (PPC)

Production planning and control includes the administration and organization of
manufacturing-relevant data and procedures. Only released product data are trans-
ferred into the production planning process. PPC data are organized in BOM (bill of
material) structures and based on 3D CAD geometry, 2D drawings and additional
manufacturing-relevant information. Two important influencing factors are the work-
ing schedule and manufacturing resources. First, the basic economic and operational
functions of PPC include the management of customer orders, the project calculation,
the planning of requirements, the material logistics, the production capacity calcu-
lation and the order release organization. Second, PPC covers production-control-
related tasks, such as production management and control, operating data logging,
controlling processes (time, quantity and costs), and shipment management.

Whereas PPC covers the economic and operational tasks of manufacturing,
CAD/CAM operations basically handle technical functions. The working fields of
CAD/CAM can also be divided into two groups. The first group includes plan-
ning processes, such as the product concept development, design and simulation,
process planning material logistics and the programming of production machines
and resources. The second group includes the control of manufacturing and quality-
management-related procedures. This covers the control of NC-machines, transporta-
tion control, storage management, assembly control, maintenance management and
quality management.

2.2.3 Management of Product Data

Product life cycle management (PLM) includes all organizational tasks necessary
for the identification, supply and archival storage of product-related data during the
product life cycle. The management of all data flow, processes and documents during
the development or modification of products across the product life cycle provides the
basis for an efficient virtual product generation because complex product structures
or product variations create numerous product parameters and a great amount of
information. Product data management (PDM) organizes the data and information
flow throughout the development process of a product, prevents data redundancy
and is an important component in the generation of complex product structures in
multi-firm and global collaboration [14].

Product data can be classified into different categories.

• Product-defining data related to technical requirements include all kinds of data
for the product specification. In the case of automotive development, this can be
driving performance, car weight, fuel consumption, dimensions, targeted vehicle
configurations and other factors.

• Product-describing data related to technical product documentation are all of the
information that can be found in lists (e.g. BOM).

44 2 Overview of Virtual Product Development

• Geometry data include CAD model files, styling data, geometry data exchange
formats, CAD-based product structures and other design-based data.

• Information concerning the development process itself includes workflow data,
management of resources, data for engineering organization and others.

• Product configuration data include information about possible variants. They
define the setup of the car in accordance with the customer order, including the type
of engine and transmission, safety features, colors and all the possible accessories.

• Metadata describe additional product-related facts, such as production-related
information or data for calculation and organization.

Of course, the management of product data includes the maintenance of different
types of documents. Besides the main examples of product data, the documents can
be classified using characteristic criteria, which address data quality, the age and
maturity of data in the project progress, and the status. Further classifications are
made based on data formats and the utilization and validity of data.

Due to the introduction of virtual methods in design, simulation and data man-
agement, modern IT-supported technologies have emerged in nearly all areas of
mechanical industries in recent years. New methods and strategies have been devel-
oped to tap the potential of virtual product development processes, which has led
to the implementation of new procedures, methods and tools in industry, education
and research. IT-supported engineering in design, calculation and documentation
characterize virtual product development, whereas specific CAx methods handle the
generation of tasks, product models and process models that span multiple disci-
plines. In the automotive industry, virtual product development processes focus on
different fields and disciplines. Depending on the specific tasks, these can address
styling, vehicle packaging, component design, assembly, different types of simula-
tion, production development and others. The goal is to integrate individual processes
into incorporated virtual development processes supported by efficient data transfer
and management.

The integration of virtual product and process models has enabled new approaches
in design, simulation and manufacturing, which presents a challenge in the develop-
ment of new IT methods for data transfer and data organization. Complex devel-
opment processes require IT support and therefore the generation of PDM sys-
tems and other network-based information technologies. In addition, integrated data
organization simplifies the documentation across the entire development process.
An efficient documentation concept supports process and data standardization and
enables network-based development by supplying product information that is avail-
able worldwide. Finally, knowledge databases, drawn from successful projects, can
be created using an existing PDM network. These databases can be used for the re-
integration of knowledge and product data into new project creation process chains
and the re-use of experiences for variant studies and product optimization.

The new technologies lead to new possibilities and require new working methods
and procedures: from static, theme-related working methods to dynamic, process-
related working methods; from individual, hierarchic work to team-based work
embedded in multifunctional structures (e.g. matrix structures); from document-

2.2 Virtual Product Development 45

based methods to integrated, virtual-product-model-based development. This change
calls for the implementation of new networking processes and structures with a high
demand for flexibility. Process-oriented working methods require an intensive time
schedule with a detailed planning and management of several part-processes and
sequences. To tap the full potential of virtual product development, a powerful man-
agement system of the entire process structure is needed. Earlier processes, which
focused on digital models of the product, were unable to manage the data and infor-
mation flow efficiently. The increased orientation on virtual products requires an
increased implementation of integrated and linked development. Compared to the
past, the processes and methods applied are becoming more important, which results
in a change in the working procedure and working organization and presents a chal-
lenge to the people involved. In Sect. 6.4.1, product data management is treated in
more detail.

2.2.4 CAD-CAE Data Exchange

The exchange of product data within the same software environment is mainly per-
formed by native data formats. Native data are generated during the development of
product-related information within one program. They include product data, infor-
mation concerning the product development history, and methodological and orga-
nizational data. Thus, native data contain much more than purely discipline-specific
information (e.g. the product geometry in the case of 3D CAD). Heterogeneous data
exchange (e.g. importing product geometry information from a 3D CAD program
into FE simulation software) is accomplished with the use of neutral data formats.

Neutral data exchange formats enable the transfer of product data between dif-
ferent software applications. In the case of product design and simulation-related
processes, neutral data formats provide product geometry data and limited additional
product information for the exchange between different CAD software packages or
between CAD and CAE applications. Neutral data formats can be divided in geomet-
rically accurate systems, which transform CAD-native product information into sets
of mathematical descriptions of the model geometries. Examples are IGES, STEP
or VDA formats. Besides a purely geometrical representation, enhanced neutral data
formats are able to include additional facts, such as product structuring information
or the configuration of components, modules and sub-assemblies.

The second group of neutral data formats concerns solutions which are able to
convert the product geometry into models with approximated (tessellated) geome-
try. These formats yield geometry information that are less accurate but which also
contain significantly lower data volumes. Examples of neutral data formats with tes-
sellated geometries include STL, VRML and WRL. In addition, XML-based (exten-
sible markup language) geometry description also works with tessellation algorithms.
These approximated product data are often used in DMU-based investigations or for
visualization tasks.

http://dx.doi.org/10.1007/978-3-642-11940-8_6

46 2 Overview of Virtual Product Development

The JT format is a special neutral data format. This type of data exchange language
provides a mathematical geometry description by applying BREP-based (boundary
representation) algorithms, which rebuild the model geometry with groups of faces,
edges and vertices. In addition, the JT format also provides tessellation algorithms
for the creation of approximated geometries. Furthermore, product metadata can be
transferred using this type of neutral data format [14, 18].

For the application of neutral data formats, specific converters are required to
convert CAD-native geometry information into the corresponding format. In the case
of data import, neutral data have to be converted or integrated into the corresponding
software-specific format, which means that the target program must be able to read
the specific type of neutral data format.

Unlike native data formats, neutral data languages cannot contain detailed design-
process-related knowledge, such as the design history, product parameterization,
implemented algorithms or macros, functionalities, etc. Normally, only the geomet-
rical contour can be transmitted, although in some cases it is possible to transmit
some selected additional information. This limits the application of neutral data
formats to geometry-based processes and restricts advanced automation or design
integration. For this reason, alternative methods and strategies have arisen in recent
years. One such method is to manage data exchange by integrating PDM systems. In
this method, a PDM system manages the entire product data range, including geom-
etry data, product structure and additional data, such as materials, tolerances, and
production-related information. In the case of data exchange (e.g. between automo-
tive companies and suppliers), the required data are provided by the PDM system.
This method requires the integration of all corresponding development partners into
a comprehensive PDM system and a clear definition of the data models applied.

One trend is moving in the direction of integrated PDM systems, which integrate
the corresponding CAD and/or CAE software packages, e.g. [17]. This strategy
enables a universal data exchange, depending on the applied workflow. A central-
ized PDM system provides CAD-native data, as well as neutral geometry data and
data for calculation, simulation or testing procedures. Depending on the type of
development process, the specific required data are supplied and transferred. The
ability to closely integrate CAD and PDM enables direct access by the PDM system
to design-related native data (e.g. the product parameterization or specific constraints
or links) which have been defined during the design process. In this way, collabora-
tive design methods can be supported directly, without applying neutral data formats
(e.g. via internet or intranet-based communication technologies), even in the case of
a worldwide distribution of development partners.

The disadvantages of integrated PDM systems with directly integrated tools are
relatively rigid structures and stiff data management in terms of the applicable soft-
ware. The integration of external software (software from other software suppliers)
into product development processes requires the application of neutral data formats.
In addition, the data exchange performance depends on the data link provided, which
can cause problems in the case of the large data amounts characteristic of complex
products. Independent of PDM-related strategies, collaborative development meth-
ods call for the application of online data exchange and direct product data access

2.2 Virtual Product Development 47

across the entire development process chain. In addition, future data exchange for-
mats will facilitate object-oriented methods for the supply of simulation processes
and the creation of associative referencing techniques within complex virtual product
structures [19].

2.2.5 Concepts of Collaborative Product Development

Industrial development processes have included methods for collaborating strategies
for many years. More powerful IT systems and the capabilities of virtual engineering
and data management have supported an increase of data exchange and have opened
up new ways of collaborating. Modern development strategies, as they occur in auto-
motive development, are only possible with modern networked processes. Although
integrated, cross-linked strategies offer a significant potential for the improvement of
development efficiency and data quality compared to traditional, sequential develop-
ment methods, they require a significant re-configuration of established structures and
procedures. Two important factors of success are the implementation of knowledge-
based workflows in early phases of product generation and the integration of different
development disciplines into a comprehensive consideration of product-related para-
meters. These approaches require extensive planning and preparation phases under
consideration of the specific requirements in the relevant organization structures.

The integration of collaborative concepts of product development faces several
challenges, including the application of complex communication and data flow struc-
tures, as well as the implementation of knowledge management strategies. Besides
a resource shift into early project phases, the methods of collaborative development
applied are based on the utilization of partially unreleased data and procedures. This
requires efficient evaluation and assessment methods to avoid incorrect decisions in
the very sensitive phases of product definition. The following short overview intro-
duces three collaborating product development concepts, which have been applied
within the current fields of research and development.

Concurrent Design

Concurrent design is a cooperative product development method that is based on the
breakdown of complex design tasks into several subtasks. These subtasks are carried
out by specialists more or less in parallel sequences. All engineering processes are
linked, and the complete development process is supported by a data management
system. In concurrent design, an efficient data and information exchange between
the subtasks is an important factor. All participating parties (specialists) have to be
informed about the sequences of processes, the content of each step and the data
exchange procedures.

Synchronization of individual development steps can be performed with the help
of DMU methods, in which the product is assembled and checked in the context of

48 2 Overview of Virtual Product Development

geometrical tasks. For example, the design process of a cylinder head is arranged
as parallel design steps of the cast part, valve train components, other inner parts
and the cylinder head cover (Fig. 4.9, p. 255). One important factor in concurrent
design is the definition of design interfaces, such as flanges, adapter geometries or
the implementation of skeleton models.

Simultaneous Engineering

Simultaneous engineering covers not only the design process, but the entire product
development phase. Instead of working sequentially through stages, simultaneous
engineering defines a parallel workflow of development tasks. For example, the tool
design might be started before the detailed designs of the product components have
been finished. The engineer begins the detailed design of solid models before the
concept design surface models have been completed. Although simultaneous engi-
neering does not necessarily reduce the amount of manpower required for a project,
it can drastically reduce the development time and thus the time to market entry
(Fig. 2.15). Especially in conceptual development, it is important that all responsible
departments participate in simultaneous engineering. In automotive engineering, the
concept phase has to consider several requirements, including legislative demands,
crash and safety, functional aspects, packaging, production-related boundary condi-
tions and many more. The early availability of broad information enables efficient,
target-oriented product development.

Fig. 2.15 Workflow in simultaneous engineering [12]

http://dx.doi.org/10.1007/978-3-642-11940-8_4

2.2 Virtual Product Development 49

Frontloading

Frontloading is used in product feasibility studies, product planning and the early
phase of product development. The goal is to define the product specifications as
early as possible (as many characteristics and tasks as possible) in the concept phase.
To achieve this, it is essential to use knowledge from former projects. Frontloading
methods are based on a resources shift into the concept phase, in order to find solu-
tions in the initial phase. This leads to an intensive application of knowledge-based
engineering methods in combination with design and simulation steps. This can lead
to a reduction in development time through the determination of product character-
istics as accurately as possible and the elimination of functional product failure in
the early phase, when the degree of freedom for product-related characteristics is
high. The foundation is the availability of knowledge from former product develop-
ment processes, which is supported by the provision of product-related information,
the support by expert knowledge in the early phase, the use of simulation meth-
ods, and knowledge from former product life cycles (knowledge databases, lessons
learned). In this way, frontloading methods are able to reduce the risk of failure in
later development steps [2, 20].

References

1. Verein Deutscher Ingenieure: Methodik zum Entwickeln und Konstruieren technischer Systeme
und Produkte. VDI-Richtlinie (1993)

2. Eigner, M.: Virtuelle Produktentwicklung I. Lecture script at the Lehrstuhl für Virtuelle Pro-
duktentwicklung, Technische Universität Kaiserslautern (2008)

3. Dubbel, H., Grote, K.H., Feldhusen, J.: Dubbel-Taschenbuch für den Maschinenbau, 22nd edn.
Springer, Berlin (2007)

4. Ern, M.: Methodik zur Einsatz- und Ausbauplanung von CAE- Methoden für Entwicklung-
sprojekte in der Automobilindustrie. Ph.D. thesis, Universität Stuttgart, Stuttgart (2004)

5. Meywerk, M.: CAE-Methoden in der Fahrzeugtechnik. Springer, Berlin (2007)
6. Weissberg, D.E.: The Engineering Design Revolution: The People, Companies and Computer

Systems That Changed Forever the Practice of Engineering. Cyon Research Corporation (2008)
7. Grabowski, H., Anderl, R., Polly, A.: Integriertes Produktmodell. Beuth, Berlin (1993)
8. Hirz, M.: Product data management in automotive engineering. Lecture script at Graz Univer-

sity of Technology (2008)
9. International Organization for Standardization: Industrial automation systems and integration,

product data representation and exchange, (STEP-Standard for the Exchange of Product model
data). ISO 10303–11 (2004)

10. U.S. Product Data Association: Initial Graphics Exchange Specification IGES 5.3 (2012)
11. Verband der Automobilindustrie: VDA-FS guideline for CAD data exchange.

http://www.vda.de (1993). Accessed 20 April 2012
12. Hirz, M.: CAx in automotive and engine technology. Lecture script at Graz University of

Technology (2011)
13. AUDI AG, Ingolstadt, Germany
14. Eigner, M., Stelzer, R.: Product Lifecycle Management. Springer, Berlin (2009)
15. Schäfer, D., Roller, D.: XML: Grundlagen und Anwendung des neuen Internet Standards.

CAD-CAM Rep. 20(2), 28–33 (2001)

http://www.vda.de

50 2 Overview of Virtual Product Development

16. Schumacher, J.: Auslegung und Konstruktion thermodynamischer Teile eines 4-Ventil/4-
Zylinder CBR-Motorenkonzeptes. Diploma thesis, Graz University of Technology (2000)

17. Dassault Systems: CATIA V6. http://www.3ds.com/products/catia. Accessed 10 Nov 2009
18. International Organization for Standardization: Industrial automation systems and integration-

JT file format specification for 3D visualization. ISO/DIS 14306 (2012)
19. Meyer, B.: Objektorientierte Softwareprogrammierung. Hanser, München (1990)
20. Dankwort, C.W., Ovtcharova, J., Weidlich, R.: A concept of engineering objects for collabora-

tive virtual engineering: automotive case study. In: Fraunhofer, I.R.P. (ed.) Proceedings of the
ProSTEP iViP Science Days, Dresden (2003)

http://www.3ds.com/products/catia

Chapter 3
Geometric Fundamentals

An attribute of an object is called geometric if it is related to the spatial extension
or the shape. Obviously, there are lots of geometric attributes in an automobile. The
discipline dealing with geometric features is called Computer-Aided Design (CAD).

In the past few decades CAD has rapidly developed and broadly diversified. One
reason for the amazing growth of CAD was the fertile soil of geometric founding on
which it is based. CAD is one essential tool of research and development. Because of
its enormous economic importance, CAD has been a major driving force for research
in the theory of splines, approximation theory, computational geometry, geometry
processing, discrete differential geometry and computer graphics. CAD deals with
the process of design and design-documentation using a computer; these days, the
use of a computer is so ubiquitous that the words computer-aided could just as well
be omitted.

This chapter intends to give an introduction to CAD. Of course, it is of little use
to address hardware issues or the details of specific software since such information
might already be out of date by the time it is published.

CAD is used to design curves and shapes in the plane or curves, surfaces, and
solids in 3-space. Many of the applications described in this chapter basically involve
3D-issues, others can be viewed in either a 2D- or a 3D-guise. A central branch of
CAD deals with the design of geometric models for object shapes, which is called
Computer-Aided Geometric Design (CAGD). Many of the topics addressed in this
chapter belong to that field.

We start with fundamental attributes of 3-space (Sect. 3.1). Mathematical
properties of polynomials—a core tool of modeling and graphics—are followed
by general properties of curves in the plane and in 3-space (Sects. 3.2 and 3.3). Our
next topic—freeform curves—can be viewed as a combination of both, polynomials
and curves (Sect. 3.4). The fields of univariate interpolation and approximation are
also closely related to the previous ones. They are of considerable significance from
the engineer’s point of view (Sects. 3.5 and 3.6). Surfaces (Sect. 3.7) are a key issue
of CAD. This is why the concept of surfaces is also pivotal for the following sec-
tions in this chapter. The field of tensor product surfaces (Sect. 3.8) is a vital part of

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 51
DOI: 10.1007/978-3-642-11940-8_3, © Springer-Verlag Berlin Heidelberg 2013

52 3 Geometric Fundamentals

CAD. We describe different types of tensor product surfaces as well as their common
characteristics. The sections on bivariate interpolation (Sect. 3.9) and approximation
(Sect. 3.10) are an introduction to further methods of surface generation. Triangular
patches deserve separate attention as they require particular techniques (Sect. 3.11).
Finally, a section on solid representation rounds off the chapter (Sect. 3.12); the defi-
nitions and methods in this section greatly resemble the ones for surfaces. We finally
include a section where we discuss a single engineering task which is meant to show
a number of geometrical and technical aspects occurring in one job (Sect. 3.13).

Although we introduce the basic tools from the bottom up, we have to assume
that the reader is familiar with fundamental mathematical concepts. This chapter
is particularly geared towards engineers who want to see below the varnish of the
applied software and to understand how and why things work. Our intention is to
deliver more than a compilation of statements and definitions. While space limita-
tions do not allow for the proof of each single result, we endeavor to explain and
contextualize the individual steps and definitions at least to some extent. Thus, this
chapter on geometric fundamentals will hopefully serve as a useful reference source
for key terms and geometrical aspects.

Whenever a new task or problem arises in the course of automotive development
or more generally in mechanical engineering and design, there may be several ways
of solving it. Since human beings can only recognize things with which they are
familiar, an engineer’s geometric background is crucial for his or her capacity to see
the geometric aspects within a problem and to find the solutions.

3.1 The 3-Space, Transformations and Motions

For good reason we start with the 3-dimensional space E3 where most of our geomet-
ric considerations will be situated. However, some particular issues may essentially
be 2-dimensional, i.e., they happen in a plane.

A planar Cartesian coordinate frame in a plane ε is defined by its origin O and
two perpendicular coordinate axes x, y through O . Any point P in ε is uniquely
determined by two real numbers x, y (Fig. 3.1) called the Cartesian coordinates
of P . Alternatively, we can define a polar coordinate system in the plane by its origin
O and a reference line x through O . In this case a point P is described by two real
numbers r, u, namely its distance r from O and the angle u between the reference
line x and the line O P . Cartesian and polar coordinates are linked via

x = r cos u, y = r sin u. (3.1)

A spatial Cartesian coordinate frame is defined by a point O (origin) and a triple of
pairwise orthogonal, oriented lines through O—the coordinate axes x, y, z (Fig. 3.2).
The planes spanned by two of the coordinate axes are called coordinate planes. So
we have the xy-, the yz- and the zx-plane.

3.1 The 3-Space, Transformations and Motions 53

Fig. 3.1 Planar Cartesian
coordinate frame

Fig. 3.2 Spatial Cartesian
coordinate frame

With respect to a Cartesian coordinate system each point P in 3-space is assigned
a triple x, y, z of real numbers, the Cartesian coordinates of P (Fig. 3.2). These
numbers define the position vector

p =
⎡
⎣

x
y
z

⎤
⎦ .

We identify the point P and its position vector p which is why we usually say: the
point p.

For some specific purposes it may be favorable to use other types of spatial
coordinate systems like cylindrical or spherical coordinate systems.

A cylindrical coordinate system determines a point P by polar coordinates r, u of
its top view in the xy-plane and the additional Cartesian z-coordinate: P . . . r, u, z.

A spherical coordinate system, on the other hand, originates from geographic
coordinates on the globe. It is determined by its origin O and two planes: the equator
plane and the zero meridian plane. A point P is assigned two angles u and v and
its distance r from the origin (cf. Example 3.13 and Fig. 3.77, p. 158). Cartesian and
spherical coordinates are related via

x = r cos u cos v, y = r sin u cos v, z = r sin v. (3.2)

54 3 Geometric Fundamentals

Now we consider mappings, also called spatial transformations on the set of
points in 3-space. To each point p such a mapping assigns an image point p∗ (see
also [1], pp. 238).

Definition 3.1. Affine transformation.1 Let α : p −→ p∗ be a spatial transforma-
tion of the form

p∗ = A · p + d (3.3)

where d :=
⎡
⎣

a10
a20
a30

⎤
⎦ is a given 3-vector and A :=

⎡
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a32

⎤
⎦ is a given 3 × 3-

matrix. If A be regular, i.e., det A �= 0. then α is called an affine transformation.
Similarly, we speak of planar affine transformations which are defined within a
plane.

One core property of an affine transformation is that it always transforms
collinear points into collinear points which means that straight lines are pre-
served. Due to the regularity of A an affine transformation is one-to-one and
onto.

Definition 3.2. Isometry. An affine transformation (3.3) where additionally

A · A� = I3 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ (3.4)

is called an isometry.

Matrices A complying with (3.4) are referred to as orthogonal matrices. An isom-
etry can be geometrically characterized by the property that the distance of each pair
of points is preserved: dist (p, q) = dist (p∗, q∗).

Examples for isometries include reflections in planes, translations, rotations and
helical displacements. In fact it is easy to verify that an isometry does not only
preserve lengths but also angles and areas.

Isometries play an important role in the field of mechanical engineering. Design-
ing a part with a CAD tool frequently requires the application of isometries. On
the other hand, many mechanical parts such as cylinders, rotationally symmetric or
helical components are manufactured by means of appropriate congruence transfor-
mations. A body of revolution, for example, can be produced on a lathe by applying
a continuous rotation.

1 For an application of affine transformations in CAD see also p. 267.

3.1 The 3-Space, Transformations and Motions 55

Fig. 3.3 Reflection of a point
p(x, y, z) in a plane σ

Fig. 3.4 The chain (bike
drivetrain) is symmetric with
respect to the plane σ

σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ

3.1.1 Planar Reflections

As a simple example of an isometry (3.3) we first consider the reflection in a plane
(mirror plane, Fig. 3.3).

Definition 3.3. Reflection in a plane. Let σ be a plane. The planar reflection in the
plane σ transforms a point p into a point p∗ in the following way:

• Construct the line n through p perpendicular to σ . It intersects σ in a point n.
• Find the point p∗ on n with distance dist (n, p∗) = dist (p, n) such that p∗ is

opposite to p with respect to n.

Mirroring a point in a coordinate plane is a particularly easy task in terms of com-
putation: A point p(x, y, z) mirrored in the xz-plane delivers the point p∗(x,−y, z).

Of course, we can apply a reflection in a plane σ to all points of an object O
arriving at a mirrored object O∗. If O = O∗ we say that O is symmetric with respect
to σ . Figure 3.4 shows an example.

A reflection can physically be realized by a glossy, reflective plane σ . The light
rays mirrored in σ make believe that they are emitted from the mirrored object.

3.1.2 Translations and Rotations

Composing a reflection with itself transforms any point onto itself: p∗ = p. Hence,
this composition yields the identical transformation.

56 3 Geometric Fundamentals

Fig. 3.5 The composition
of two reflections in parallel
planes σ1 and σ2 yields a
translation

Fig. 3.6 The composition of
two reflections in planes σ1
and σ2 intersecting in a line
a yields a rotation about the
axis a

Fig. 3.7 Left analytical description of a rotation the point p, rotated about the z-axis by the angle
u, yields the revolved point p∗. Top view in z-direction. Right general view

The composition of two reflections in different but parallel planes (Fig. 3.5) is a
translation in the direction v orthogonal to the planes. Each point is moved in that
direction by twice the distance between the two parallel planes.

3.1 The 3-Space, Transformations and Motions 57

Analytically the resulting point p∗ can simply be obtained by adding the translation
vector v to p:

p∗ = p + v

If two planes σ1 and σ2 intersect in a line a = σ1 ∩ σ2 the composition of the two
reflections yields a rotation about the axis a. Each point is revolved by an angle u
which is twice the angle between the planes σ1 and σ2. Figure 3.6 shows the situation.
The planes σ1 and σ2 appear in edge view.

In the special case where σ1 and σ2 happen to be orthogonal we have u = π
∧=

180◦ for the rotation angle. This is a half turn about a, also dubbed axial reflection
or reflection in a line.

In order to describe rotations analytically we put the z-axis of the coordinate
system into the rotation axis a. (Fig. 3.7): Let

p =
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

r cos α

r sin α

z

⎤
⎦ , (3.5)

where r, α, z are the cylindrical coordinates of p. Revolving p about the z-axis by an
angle u we arrive at the point p∗ with cylindrical coordinates r, u + α, z. Returning
to Cartesian coordinates according to (3.1) we obtain

p∗ =
⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

r cos(u + α)

r sin(u + α)

z

⎤
⎦ .

It is easy to verify by means of the addition theorems for the sine and the cosine
functions that this implies

⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

cos u · x − sin u · y
sin u · x + cos u · y

z

⎤
⎦ .

Using matrix notation we arrive at

⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ ·
⎡
⎣

x
y
z

⎤
⎦ . (3.6)

3.1.3 Orientation

In 3-space there are two types of Cartesian coordinate frames: left-handed and right-
handed systems. In a left-handed system the x-, y- and z-axis are oriented just

58 3 Geometric Fundamentals

Fig. 3.8 The thumb
(x-axis), the index finger
(y-axis) and the middle finger
(z-axis) of the left hand pro-
vide a left-handed coordinate
system

Fig. 3.9 The same declaration
for the right hand delivers
a right-handed coordinate
system. Right-handed systems
are generally being used

like a person’s left hand thumb, index finger and middle finger (see Fig. 3.8). In a
right-handed system the same holds for a person’s right hand (Fig. 3.9).

We say that two right-handed systems (two left-handed systems) have the same
orientation whereas a right- and a left-handed system have different orientations.
In CAD-packages right-handed systems are standard. This is why we will also use
right-handed systems in this book.

A reflection in a plane turns a right-handed into a left-handed system and vice
versa. If an isometry can be obtained as a composition of an even (odd) number of
reflections in planes it preserves (reverses) the orientation of any coordinate system.
We call it an even isometry (odd isometry). As for the isometries considered above
we can say:

Reflections in planes are odd isometries. Translations and rotations are even
isometries.

As a further example let us compose three reflections in pairwise orthogonal
planes. Without loss of generality we choose the xy-, the yz- and the xz-plane of the
coordinate system as reflection planes. A point p(x, y, z) is eventually transformed
into the point p∗(−x,−y,−z). This is the point reflection in the origin o(0, 0, 0).
More generally, we can say that the composition of three planar reflections in pairwise
orthogonal planes is a point reflection in the point s which the three planes have in
common. A point reflection in 3-space is an odd isometry.

Note that a reflection in a line is the same as a rotation about this line by u = π
∧=

180◦ and hence an even isometry whereas a reflection about a plane or a point is odd.

3.1 The 3-Space, Transformations and Motions 59

Fig. 3.10 A helical displacement is the composition of a rotation (axis a, angle u) and a transla-
tion along a (translation vector v). Left left-handed screw displacement. Right right-handed screw
displacement

3.1.4 Helical Displacements

We now consider the composition of a rotation about an axis a (rotation angle u) and a
translation with a translation vector v parallel to a (Fig. 3.10). According to Sect. 3.1.2
this can also be viewed as a composition of four reflections in planes, the first two
containing the axis a (rotation about a) and the latter two being perpendicular to a
(translation along a). The emerging even isometry is called a helical displacement
or screw displacement with screw axis a, screw angle u > 0 and screw parameter

p := ±‖v‖
u

.

Here we presume that u is positive. The sign of p can still be chosen. A helical dis-
placement is a composition of four reflections in planes and hence an even isometry.

If we choose a right-handed coordinate system with the screw axis a as z-axis we
obtain the analytical representation

⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ ·
⎡
⎣

x
y
z

⎤
⎦+

⎡
⎣

0
0

p · u

⎤
⎦ (3.7)

where p(x, y, z) and p∗(x∗, y∗, z∗) denote a point and its transformed point and
v = [0, 0, p · u]�.

A helical displacement is called right-handed if the rotation—viewed in the xy-
plane against the v-direction—is counterclockwise. If this rotation is clockwise the
helical displacement is called left-handed. In (3.7) the condition p > 0 characterizes
the right-handed helical displacements just as p < 0 characterizes the left-handed.
Figure 3.11 shows an ordinary steel bolt with a right-handed thread.

Remark 3.1 It can be shown that any even isometry in 3-space is either a helical
displacement or a rotation or a translation. This important statement is commonly
known as Chasles’ Theorem [2].

60 3 Geometric Fundamentals

Fig. 3.11 The thread of a steel bolt as an application for screw motions

3.1.5 Euclidean Motions

A continuous series of even isometries is called a Euclidean motion (in short: motion,
Fig. 3.12). The series be parameterized by a real number u ∈ [u0, u1], the motion
parameter, which can as well be interpreted as time parameter.

One example of such a spatial motion, for instance, is the movement of a robot’s
end-effector. As another example we can think of a car window glass being moved
from its closed position into the door body by some window lifter mechanism. Due
to the curved shape of the window pane, to find the appropriate spatial motion can
be a challenge for the engineer (compare Sect. 3.13).

Analytically a Euclidean motion can be described via

p∗ = A(u) · p + d(u) (3.8)

where u is the motion parameter and

p :=
⎡
⎣

x
y
z

⎤
⎦ , p∗ :=

⎡
⎣

x∗
y∗
z∗

⎤
⎦

denote a point and its image. The 3-vector d = d(u) is the translational part of the
motion and A = A(u) is a proper orthogonal 3 × 3-matrix (rotation matrix), i.e.,

A · A� = I3 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ; det A = 1.

Note that the point p∗ depends on the parameter u; that means

p∗ = p∗(u) =
⎡
⎣

x∗(u)

y∗(u)

z∗(u)

⎤
⎦ .

This parametric representation describes the trajectory (path, orbit) of the point p.
We now consider a couple of simple examples of Euclidean motions.

3.1 The 3-Space, Transformations and Motions 61

Fig. 3.12 This continuous Euclidean motion smoothly moves the given coordinate system and a
cube along their orbit in 3-space

Example 3.1 A continuous translation along a given direction v can be defined by
the constant vector v �= [0, 0, 0]�. Its analytic description is

p∗ = p + u · v.

The path of any point p is obviously a straight line with direction v. In this case the
translational part of the motion is d(u) = u · v and the rotation matrix is the identity
matrix: A = I3.

Example 3.2 In a continuous revolution about an axis a the orbit of each point
p = [x, y, z]� is a circle with axis a. For the parameterization we use the rotation
angle u as motion parameter and we put the z-axis into a; then the trajectory p∗(u)

= [x∗(u), y∗(u), z∗(u)]� of p reads as

⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ ·
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

cos u · x − sin u · y
sin u · x + cos u · y

z

⎤
⎦ . (3.9)

Example 3.3 A screw motion is defined by its axis a and its screw parameter p.
A point p = [x, y, z]� is moved on its screw line trajectory (helix) p∗(u) =
[x∗(u), y∗(u), z∗(u)]�. As above we use the rotation angle u as parameter and put
the z-axis into a:

⎡
⎣

x∗
y∗
z∗

⎤
⎦ =

⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ ·
⎡
⎣

x
y
z

⎤
⎦+

⎡
⎣

0
0
pu

⎤
⎦ =

⎡
⎣

cos u · x − sin u · y
sin u · x + cos u · y

z + pu

⎤
⎦

(3.10)

The screw parameter p is the constant ratio between the translational component
pu and the rotation angle u. The translational component relating to u = 2π is

62 3 Geometric Fundamentals

commonly called the pitch h of the screw motion:

h = 2πp

One could say that the translation, the revolution and the screw motion play a piv-
otal role in the history of mechanical engineering. We just mention two fundamental
inventions: the wheel (revolution) and the screw (screw motion).

3.1.6 Some Fundamentals of Line Geometry

Line geometry is one intriguing facet of geometry. As its fundamentals are not gen-
erally included in the basics of geometry we mention a few details in this section.

Plücker Coordinates

Let g be an oriented line in 3-space determined by a point a and a direction unit vector
d (see Fig. 3.13). The straight line g can also be represented by the two vectors

g := d =
⎡
⎢⎣

g1

g2

g3

⎤
⎥⎦ , g := a × d =

⎡
⎢⎣

g1

g2

g3

⎤
⎥⎦ , (3.11)

called normalized Plücker vectors of g. The term normalized refers to the fact that
the vector g is a unit vector. Combining the two vectors g and ḡ to a 6-vector

[
g

g

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

g1

g2
g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

we arrive at a point G in 6-space R
6.

The six values g1, g2, g3, g1, g2, g2 are called normalized line coordinates or
normalized Plücker coordinates of the oriented line g. According to this procedure
each oriented line g in 3-space is mapped to a point G in 6-space R

6:

g −→ G

Further on we will denote this mapping by G and the image of a line g by G (g).

3.1 The 3-Space, Transformations and Motions 63

Fig. 3.13 The normalized
Plücker vectors g, g of a
straight line g. They are
determined by the point a on g
and the normalized direction
vector d of g. The first Plücker
vector is g = d itself, whereas
the second is the cross product
g = a × d

Fig. 3.14 The screw normals
of a given screw motion (axis
a and screw parameter p)
establish a linear complex.
The figure illustrates two
screw lines and the axis a.
One point is shown on each of
these lines, together with its
pencil of normals

Owing to their definition the Plücker vectors g, g are perpendicular to each other
and thus satisfy the condition2

〈g, g〉 = g1 · g1 + g2 · g2 + g3 · g3 = 0. (3.12)

Moreover, as g = d is normalized we also have

‖g‖2 = g2
1 + g2

2 + g2
3 = 1. (3.13)

The Eqs. (3.12), (3.13) determine two quadratic hypersurfaces in R
6. Hence we see,

that by means of G each oriented line g in 3-space is mapped into a point G = G (g)

contained in the intersection of those two hypersurfaces in R
6. Conversely, it can be

shown that each point G ∈ R
6 in the intersection of the two hypersurfaces (3.12),

(3.13) is the G -image of exactly one oriented line g of the 3-space.

2 Throughout this text we denote the dot-product of two vectors a and b by 〈a, b〉.

64 3 Geometric Fundamentals

Remark 3.2 The classical way of constructing a point model of the set of lines
in 3-space goes back to Grassmann and Klein3 and uses a projective image space
of dimension 5. Details on this so-called Plücker-mapping can be found in ([3],
pp. 133). The point model in R

6 of the oriented lines in R
3 which we have pre-

ferred instead can be seen as a variant of this classical Plücker-mapping. This
way we could get around the notions of projective spaces and homogeneous
coordinates.

Line Geometric View of a Screw Motion

In this section we use the term continuous screw motion (cf. Example 3.3) also for
the special cases of continuous rotations (zero translational part; cf. Example 3.2)
and continuous translations (zero rotational part; cf. Example 3.1).

Let M be a continuous screw motion. Then the trajectory of a point p is a screw
line (helix) p∗(u), a circle (in the special case of a rotation) or a straight line (in
the special case of a translation). In each of its points the curve p∗(u) has a one
parametric set of normals g: These are the straight lines through the respective point
of p∗(u) which lie in the plane orthogonal to the tangent of p∗(u) (see Fig. 3.14).
The set of all such lines is called linear line complex or simply linear complex. The
following geometric statements are well worth mentioning (cf. [3], pp. 163):

• All G -image points G = G (g) in R
6 of a linear complex lie in a common

5-dimensional hyperplane H through the origin O of R
6.

• Conversely, each hyperplane H of R
6 containing the origin of this space represents

a well-defined linear complex and thus a unique screw motion (or rotation or
translation) M .

• In general, any five path-normals g1, g2.g3, g4, g5 of a given screw motion (or
rotation or translation) determine the corresponding hyperplane H ⊂ R

6 uniquely.

Let now H ⊂ R
6 be a hyperplane through the origin O of R

6 and let

〈v, g〉 + 〈w, ḡ〉 = 0 (3.14)

be its equation. Here v = [v1, v2, v3]� and w = [w1, w2, w3]� are constant
coefficient vectors. Then the corresponding screw motion M is determined in
the following way:

p = 〈w, v〉
‖w‖2 (3.15)

3 Hermann Günther Grassmann (1809–1877) was a German mathematician and philologist. He is
renowned as the founder of vector and tensor calculus. Felix Christian Klein (1849–1925) was one
of the most prolific and significant German mathematicians of his time, particularly in the field of
geometry.

3.1 The 3-Space, Transformations and Motions 65

Fig. 3.15 The constant polynomial p0(x) = 3 is of degree 0. It determines a constant function
c0. The polynomial p1(x) = − 5

12 x + 5
2 is linear (of degree 1). We have a linear function c1. The

polynomial p2(x) = 1
6 x2 − x + 4

3 is of degree 2. We arrive at the quadratic function c2. The

polynomial p4(x) = 1
32 x4 − 25

64 x3 + 47
32 x2 − 13

8 x is of degree 4. It yields the quartic function c4

is the screw parameter,

d = w (3.16)

is a direction vector of the screw axis a and

a = w × v
‖w‖2 (3.17)

is the position vector of the point A ∈ a lying closest to the origin in R
3.

Remark 3.3 The Eqs. (3.15), (3.16), (3.17) are valid only if w �= [0, 0, 0]�. The case
w = [0, 0, 0]� characterizes continuous translations whereas a continuous rotation
is characterized by 〈w, v〉 = 0, w �= [0, 0, 0]�.

This classical connection between line geometry and screw motions has quite a
few applications in practical problems. Section 3.13 contains one example.

3.2 Polynomials

Polynomial functions play a crucial role in CAD and, of course, in many other
computational applications. One reason for this is that they can easily be evaluated.
Another reason is that almost any function occurring in practical applications can be
approximated by a polynomial with arbitrary degree of accuracy.

So whether or not the engineer knows it, polynomials are as ubiquitous as they
are indispensable. The user will not always be aware of the polynomial background

66 3 Geometric Fundamentals

of freeform curves, surfaces or solids. But still, the knowledge of polynomials and
their properties will certainly be valuable.

Definition 3.4. Polynomial in one variable. Let n be a nonnegative integer and let
a0, . . . , an be real numbers (elements of R) or complex numbers (elements of C).
Then the expression

p(x) =
n∑

i=0

ai · xi (3.18)

is called a univariate polynomial or, more specifically, a polynomial in the variable
x with coefficients ai in R or C.

The set of all polynomials in the variable x is usually denoted by K[x] where
K = R or K = C. We also call K[x] the set of polynomials over the field K in x .

Definition 3.5. Degree of a polynomial. If p(x) = ∑n
i=0 ai · xi is a polynomial

and an �= 0 the number n is called the degree of p(x), in symbols:

deg p(x) = n

Hence, the degree of a polynomial is the largest exponent occurring in (3.18). If
a0 = · · · = an = 0 we call p(x) = 0 the zero polynomial and put deg p(x) = −∞.

A polynomial of degree 0, 1, 2, 3, 4, . . . is also called a constant, linear, quadratic,
cubic, quartic, . . . polynomial, respectively. Figure 3.15 shows some examples of
polynomial functions (see Definition 3.13, p. 69) which are defined by polynomials
of degrees 0, 1, 2, 4.

We now consider the set K[x] of all polynomials over a field K and some of its
subsets. The set K[x] has the structure of a vector space4: Two polynomials can be
added and a polynomial can be multiplied with an element from K (multiplication
with a scalar). In both cases the result is again an element of K[x]. In this respect
polynomials behave like vectors. This is why concepts from the theory of vector
spaces (e.g., linear independence, generating systems and bases) also make sense
for polynomials.

Definition 3.6. Linearly independent polynomials. A set {p1(x), . . . , pk(x)} of
polynomials is called linearly independent if none of its elements can be expressed
as a linear combination of the remaining elements. In the opposite case the set of
polynomials is called linearly dependent.

We denote the set of all polynomials over K with degree ≤ n by Kn[x]. As can
easily be verified, this subset of K[x] is also a vector space: Kn[x] is a subspace of
K[x].

4 For the notion of a vector space see for instance [4].

3.2 Polynomials 67

Definition 3.7. Basis of a subspace. A set {p1(x), . . . , pk(x)} of polynomials in
Kn[x] is called a generating system if each element q(x) of Kn[x] can be expressed
as a linear combination of the elements p1(x), . . . , pk(x), i.e.,

q(x) =
k∑

i=0

λi · pi (x)

where λi ∈ K. A linearly independent generating system of Kn[x] is called a basis
of Kn[x].

We mention the so-called monomial basis {1, x, x2, . . . , xn} as one obvious exam-
ple of a basis of Kn[x]. Other examples of bases of Kn[x] are the Bernstein basis
(Sect. 3.4.1, p. 86) and the Lagrange basis (Sect. 3.5, p. 116).

We add the following two important facts:

• Each basis of Kn[x] has exactly n + 1 elements. In other words: The vector space
Kn[x] of all polynomials of degree ≤ n is (n + 1)-dimensional.

• If {p0(x), . . . , pn(x)} is a basis of Kn[x] then each polynomial q(x) ∈ Kn[x] can
be expressed as a linear combination of the basis polynomials, i.e.,

q(x) =
n∑

i=0

λi · pi (x). (3.19)

This is obvious since a basis is always a generating system of Kn[x]. But due to
the linear independence of a basis we additionally have that this representation is
unique: If q(x) = ∑n

i=0 λi · pi (x) = ∑n
i=0 μi · pi (x) then we inevitably have

μi = λi for i = 0, . . . , n.

We can multiply two polynomials in the usual way. In more detail, the product
p(x) · q(x) of a polynomial p(x) of degree m and a polynomial q(x) of degree n
is a polynomial r(x) = p(x) · q(x) of degree m + n. In this case the polynomials
p(x), q(x) are called divisors of r(x).

Note that any polynomial of degree 0—that is an element of K \ {0}—is a divisor
of any other polynomial. A divisor of degree > 0 is called a proper divisor.

Definition 3.8. Greatest common divisor of two polynomials. Let p(x), q(x) ∈
K[x] be nonzero polynomials. A polynomial d(x) is called greatest common divisor
of p(x), q(x) if

1. d(x) is a divisor of both p(x) and q(x) and
2. any common divisor of p(x) and q(x) is also a divisor of d(x).

It is easy to see that the greatest common divisor of two polynomials is uniquely
defined up to a constant nonzero factor. We denote the greatest common divisor of
p(x) and q(x) by gcd(p(x), q(x)).

68 3 Geometric Fundamentals

Definition 3.9. Zero of a polynomial. Let p(x) =∑n
i=0 ai ·xi in K[x] be a nonzero

polynomial. An element x0 ∈ K is called a zero or root of p(x) if

p(x0) =
n∑

i=0

ai · xi
0 = 0.

Many properties of polynomials heavily depend on their field of coefficients K.
The following theorem is a good example.

Theorem 3.1. The Fundamental Theorem of Algebra. A polynomial p(x) of
degree n > 0 in C[x] can be written as the product of n factors of degree 1 (called
linear factors), i.e.,

p(x) = a · (x − x1) · (x − x2) · . . . · (x − xn) (3.20)

where xi are elements of C.

Of course, the numbers x1, . . . , xn are roots of p(x). Certainly, it may also happen
that roots xi coincide.

One conclusion from the Fundamental Theorem of Algebra can be: Every non-
zero polynomial over C of degree n > 0 has at least one zero and at most n zeros.

As R ⊂ C, any polynomial over R can as well be viewed as a special case of a
polynomial over C. Thus, for any polynomial p(x) ∈ R[x] of degree n Theorem 3.1
can also be applied, however, as some of the values x1, . . . xn from (3.20) may well
be non-real complex numbers, we only have the weaker conclusion: There are no
more than n roots xi ∈ R if p(x) ∈ R[x].

We now regard polynomials with more than one variables:

Definition 3.10. Multivariate polynomials. The expression p(x, y) = ∑
i, j ai j ·

xi · y j is called a bivariate polynomial in the variables x, y if there are only finitely
many summands. Similarly a trivariate polynomial in the variables x, y, z is defined
as p(x, y, z) =∑i, j,k ai jk · xi · y j · zk . In the same way we can increase the number
of variables and generally call any finite sum of the form

p(x, y, . . .) =
∑
i, j,...

ai j ... · xi · y j · . . .

a multivariate polynomial in the variables x, y,

The concepts of the degree of a polynomial (see Definition 3.5 for univariate
polynomials) and of the greatest common divisor (gcd) of polynomials can as well
be extended to multivariate polynomials.

Definition 3.11. Degree of a multivariate polynomial. We consider a multivariate
polynomial p(x, y, . . .) = ∑

i, j,... ai j ... · xi · y j · The maximal exponent sum

3.2 Polynomials 69

i + j + . . . among all elements ai j ... · xi · y j · . . . is defined as the degree of the
polynomial p(x, y, . . .).

As an example we write down the trivariate polynomial p(x, y, z) = 1 + 2x −
yz2 + y3 + 4x2 yz which is of degree 4.

The set of all polynomials in the variables u, v shall be denoted by K[u, v]. We
shortly consider the subset of all polynomials of degree ≤ n in 2 variables u, v. They
form a subspace Kn[u, v] of K[u, v]. The dimension of this space of polynomials
can easily be computed as the monomial basis is obvious:

• The basis elements of degree 0 are multiples of the constant 1.
• The basis elements of degree 1 are u and v.
• The basis elements of degree 2 are u2, uv and v2.
• The basis elements of degree 3 are u3, u2v, uv2 and v3 and so on.

We can instantly count the number of elements up to degree n. As the set of these
polynomials can easily be recognized as a linearly independent generating system in
Kn[u, v] we eventually arrive at

Remark 3.4 Dimension of the space of bivariate polynomials of degree ≤ n. The
dimension of the space Kn[u, v] of polynomials in 2 variables u, v of degree ≤ n is
(n + 1) · (n + 2)/2.

A divisor of a multivariate polynomial p(x, y, . . .) is a polynomial d(x, y, . . .)

such that
p(x, y, . . .) = d(x, y, . . .) · e(x, y, . . .)

for some polynomial e(x, y, . . .).

Definition 3.12. Greatest common divisor of two multivariate polynomials. Two
non-zero multivariate polynomials p(x, y, . . .) and q(x, y, . . .) in K[x, y, . . .] be
given. A polynomial d(x, y, . . .) is the greatest common divisor of p(x, y, . . .) and
q(x, y, . . .) if

1. d(x, y, . . .) is a divisor of both, p(x, y, . . .) and q(x, y, . . .) and
2. any common divisor of p(x, y, . . .) and q(x, y, . . .) is also a divisor of

d(x, y . . .).

Definition 3.13. Polynomial functions and rational functions. Let p(x) =∑n
i=0 ai · xi in R[x]. The function

f : x �→ f (x) = p(x) =
n∑

i=0

ai · xi

is called (univariate) polynomial function. It maps every element t ∈ R into the
element

∑n
i=0 ai · t i ∈ R.

Let p(x) and q(x) in R[x] with gcd(p(x), q(x)) = 1. The function

70 3 Geometric Fundamentals

f : x �→ f (x) = p(x)

q(x)

is called (univariate) rational function. Of course, a rational function is only defined
where q(x) �= 0.

In the same way multivariate polynomial functions and multivariate rational func-
tions can be defined.

Polynomials will be the key tool for freeform curves (Sect. 3.4), freeform surfaces
(Sect. 3.8) and tensor product volumes (Sect. 3.12). They are also vital for interpola-
tion (Sects. 3.5 and 3.9) and approximation (Sects. 3.6 and 3.10).

3.3 Curves

A continuous 1-parameter set of points in 3-space (or in the plane) is generally
called a curve. We can think of a curved piece of (infinitely thin) wire. In mechanical
engineering curves frequently occur as curved edges of parts or surfaces.

3.3.1 Parametric Representation of a Curve

A curve c is a one-parameter set of points in the 3-dimensional space (or in the plane).
Hence, it can be described by

p(t) =
⎡
⎣

x(t)
y(t)
z(t)

⎤
⎦ , t ∈ [t0, t1]. (3.21)

where x(t), y(t) and z(t) are functions of one parameter t . This means that to every
t in the interval [t0, t1] ∈ R we assign a point p(t). These points trace the curve c
(Fig. 3.16). The interval [t0, t1] is also called parameter domain of p(t). The descrip-
tion (3.21) is also referred to as a parametric representation or parameterization of c.

Example 3.4 A straight line l can be parameterized via

p(t) = (1 − t) · a + t · b, t ∈ R. (3.22)

where a, b are two different points on l (Fig. 3.17). The parameter values t = 0 and
t = 1 in (3.22) refer to the points a and b. If we substitute u := 1 − t and v := t (cf.
Sect. 3.11, p. 225) we can rewrite (3.22) as

p̃(u, v) = u · a + v · b with u + v = 1. (3.23)

3.3 Curves 71

Fig. 3.16 The mapping on the interval [t0, t1] assigns a point p(t) to every value t ∈ [t0, t1]. The
points p(t) define a curve c

Fig. 3.17 Parametric repre-
sentation p(t) of a straight line
l through the points a and b

Fig. 3.18 A point p is sub-
jected to a continuous screw
motion. Its path c lies on the
corresponding screw cylinder
about the screw axis (z-axis)

Example 3.5 A screw line or helix c is the path of a point p under a screw motion
(Fig. 3.18; see also Example 3.3, p. 61). We take the z-axis as the screw axis and
consider the path c of p(r, 0, 0). The trajectory c has the parameterization

72 3 Geometric Fundamentals

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

r cos t
r sin t

pt

⎤
⎦ . (3.24)

Definition 3.14. Admissible parameterization of a curve. Let c be a curve with
some parameterization (3.21). If x(t), y(t), z(t) are differentiable functions and5

.
p(t) =

⎡
⎣

.
x(t)
.
y(t)
.
z(t)

⎤
⎦ �=

⎡
⎣

0
0
0

⎤
⎦ for all t ∈ [t0, t1], (3.25)

then the parameterization of c is called admissible.

Remark 3.5 To any given parameterization (3.21) of a curve c we can find infi-
nitely many alternative representations: By applying a function t = t (τ) (parameter
transformation) to the given parameterization (3.21) we obtain

q(τ) = p(t (τ)) =
⎡
⎣

x(t (τ))

y(t (τ))

z(t (τ))

⎤
⎦ , τ ∈ [τ1, τ2] (3.26)

which—for t (τ0) = t0 and t (τ1) = t1—describes the same curve c. If we additionally
demand that t = t (τ) is a differentiable function with

dt

dτ
�= 0 for all τ ∈ [τ1, τ2].

then t = t (τ) is called an admissible parameter transformation. Due to the chain
rule for derivatives it is clear that if the given parameterization (3.21) of c and
the parameter transformation both are admissible then this is also true for the new
parameterization (3.26).

3.3.2 Planar Curves

As a special case we can consider planar curves where we have z(t) ≡ 0. Of course,
in this case z can be omitted in the parametric representation altogether. A planar
curve c can be described by a parametric representation

p(t) =
[

x(t)
y(t)

]
, t ∈ [t0, t1]. (3.27)

5 The j th derivative of a vector function p(t) with respect to t is written as d j p
(dt) j . If the variable is

unambiguous we shortly write p(j) or
.
p,

..
p,

...
p,

3.3 Curves 73

At times it can also be represented by an equation

F(x, y) = 0. (3.28)

This way of describing a planar curve has its merits (see also Sect. 3.3.8, p. 81): A
point p(x, y) is contained in c if and only if (3.28) holds.

Example 3.6 An equation of the form

a · x + b · y + c = 0 (3.29)

where (a, b) �= (0, 0) represents a straight line g in the xy-plane. The coefficients
a, b determine a vector n = [a, b]� which is perpendicular to g. Mind that the same
straight line can also be described by a parametric representation of the form (3.22).

Example 3.7 A circle in the xy-plane centered in C(m, n), with radius r has the
equation

(x − m)2 + (y − n)2 − r2 = 0. (3.30)

A parametric representation of the same circle could be

[
x
y

]
=
[

m + r cos t
n + r sin t

]
. (3.31)

3.3.3 Derivatives and Tangents

This section and the following three are a short introduction to the differential geome-
try of curves. For more details we refer the reader to one of the excellent monographs
on this subject (cf., for instance, [5]).

Let us now suppose that the functions we use for the representation of curves are
differentiable and that the derivatives we need are still continuous.

Definition 3.15. Class of differentiability. Let k be a non-negative integer and let
c be a curve with parameterization p = p(t). If the k-th derivative

p(k)(t) := dp
dt

(t)

exists6 and if this function is a continuous vector function we say that the parame-
terization p = p(t) is of class Ck . Ck is also called the class of differentiability and
c is called a Ck-curve.

If the k-th derivative of a vector function p(t) exists for every k ∈ N we say that
p(t) is of class C∞ or smooth.

6 Of course, this automatically implies that all derivatives of order < k also exist.

74 3 Geometric Fundamentals

Fig. 3.19 Two curves joining C0-continuously. A parabola arc p1(t) = [t,−t + 3
2 t2]� and a

circular arc p2(t) = [sin t, 1 − cos t]� joining C0-continuously at t = 0. The tangents at the
junction point are different the two curves join without a gap, however in a sharp kink

Fig. 3.20 Two curves joining C1-continuously. A parabola arc p1(t) = [t, t2]� and a circular arc
p2(t) (see Fig. 3.19). The first derivative vectors of both parametric representations are identical:
.
p1(0) = .

p2(0). The tangents at the junction point are the same. The curvatures at the junction point
differ

Fig. 3.21 Two curves which join C2-continuously. A parabola arc p1(t) = [t, t2

2]� and again a
circular arc p2(t) (see Fig. 3.19). The first and the second derivative vectors of both parameterizations
are identical:

.
p1(0) = .

p2(0) and
..
p1(0) = ..

p2(0). As a consequence we even have the same curvature
at the junction point

Definition 3.16. Tangent of a curve. If c is a curve with an admissible parameteri-
zation (3.21) then the straight line through p(t) with direction

.
p(t) is called tangent

to c at p(t).

We now regard two curves with a common point. The concept of Ck-continuity
describes to what extent the two parameterizations fit together.

3.3 Curves 75

Definition 3.17. Ck-continuity of two curves. Let c1 and c2 be two curves with
the parameterizations p1 = p1(t) and p2 = p2(t), both of class Ck , k ≥ 0. The
parameterizations are said to be Ck-continuous at t0 if

p(i)
1 (t0) = p(i)

2 (t0), for all i = 0, . . . , k

Note that joining Ck-continuously is a local property of two parameterizations
of two curves. It indicates that—in one common point p1(t0) = p2(t0)—they fit
together up to the kth derivative vector.

In the same way we can define Ck-functions y = f1(x) and y = f2(x) joining
Ck-continuously at some value x = x0.

We now illustrate the geometric meaning of curves joining Ck-continuously for
k = 0, 1, 2 (compare Figs. 3.19, 3.20, 3.21):

• If two curves join C0-continuously in a point we can only say that c1 and c2 have
a common point at t0: p1(t0) = p2(t0)

• Curves joining C1-continuously additionally have the same tangent vectors at the
respective point. Note that, conversely, two curves may have a common tangent
in a point though their first derivative vectors (tangent vectors) are not identical;
they might only be of the same direction.

• In the case of curves joining C2-continuously both curves, additionally, have the
same 0th, 1st and 2nd derivative vector at the considered parameter value. As
a consequence they also have the same point, the same tangent and the same
curvature7 at the respective point.

The last two cases show that in terms of geometry the concept of curves joining
Ck-continuously could as well be replaced by a somewhat weaker definition which
is called geometric Ck-continuity:

Definition 3.18. GCk-continuity of two curves. Let two curves c1 and c2 be given
by parameterizations q1 = q1(σ) and q2 = q2(τ) and let them have a common
point, i.e., q1(σ0) = q2(τ0) =: a; then c1 and c2 are said to join GCk-continuously
at the point a if there exist reparameterizations

p1(t) := q1(σ (t))

and
p2(t) := q2(τ (t))

of c1 and c2 such that the new parametric representations p1(t), p2(t) of c1, c2 are
Ck-continuous at t0 in the sense of Definition 3.17. (t0 is the parameter value with
p1(t0) = p2(t0) = a.)

Mind that curves joining GCk -continuously cannot be distinguished visually from
curves joining Ck-continuously. However, if the parametric representations of two

7 As for the concept of curvature see Sect. 3.3.5, p. 77

76 3 Geometric Fundamentals

curves which merely join GCk-continuously, are used for CNC-machining the dif-
ference to genuine Ck-parameterizations might become noticeable. As an example,
one obvious effect might just be that the machining speed changes abruptly at the
transition point.

3.3.4 Arc Length Parameter

Definition 3.19. Arc length parameter. Let c be a curve with an admissible para-
meterization (3.21); then we can introduce a new parameter s = s(t) for the curve c
defined by

ds

dt
= ‖ .

p(t)‖ =
√

.
x2

(t) + .
y2

(t) + .
z2

(t). (3.32)

This parameter s called arc length.

The arc length parameter s is aptly named as we have:

Theorem 3.2. Arc length property. Let c be a curve parameterized by its arc
length s:

p(s) =
⎡
⎣

x(s)
y(s)
z(s)

⎤
⎦ , s ∈ [s0, s1].

Let moreover p0 = p(s0) and p1 = p(s1) be the points on c. Then |s1 − s0| is the
length of the arc on c between p0 und p1.

A proof to this theorem can be found in ([5], p. 19). In contrast to derivatives
with respect to an arbitrary parameter t (indicated by dots) we mark derivatives with

respect to the arc length s by primes: p′(s) = dp
ds (s), p′′(s) = d2p

(ds)2 (s),
Another important property of the arc length parameter s is the following:

Theorem 3.3. Derivative vector p′(s). Let c be a curve parameterized by its arc
length s:

p(s) =
⎡
⎣

x(s)
y(s)
z(s)

⎤
⎦ , s ∈ [s0, s1]

Then we have

‖p′(s)‖ =
∥∥∥∥

dp
ds

(s)

∥∥∥∥
s≡ 1. (3.33)

3.3 Curves 77

This theorem directly follows from (3.32) and from the chain rule of differentia-
tion. It states that, at any point p(s), the tangent vector (first derivative vector) of a
curve c parameterized by its arc length is a unit vector. If we interpret s as the time
parameter and, consequently, the derivative p′(s) as the velocity we can say: The
curve c is tracked with constant speed 1.

From ‖p′‖2 = 〈p′, p′〉 ≡ 1 we obtain

〈p′, p′′〉 s≡ 0. (3.34)

This means that the first derivative vector and the second are perpendicular are
orthogonal.

3.3.5 Curvature and Torsion

In this section we will develop the concepts of curvature and torsion which are two
significant functions pertaining to any given space curve. The definition of these func-
tions requires that the curve is—at least—of class C3 according to Definition 3.15,
p. 73.

Definition 3.20. Curvature and torsion of a curve. Let c be a space curve with an
admissible parameterization (3.21). Thus we have

.
p(t) �= [0, 0, 0]�.

1. If p(t) is of class C2 the curvature κ(t) of c can be defined via

κ(t) =
∥∥ .

p × ..
p
∥∥

∥∥ .
p
∥∥3 . (3.35)

2. If p(t) is of class C3 the torsion τ(t) of c in p(t) is

τ(t) = det
[.
p,

..
p,

...
p
]

∥∥ .
p × ..

p
∥∥2 . (3.36)

For a planar curve

p(t) =
[

x(t)
y(t)

]

the definition of the curvature has to be slightly modified:

κ(t) = det(
.
p,

..
p)

‖ .
p‖3

=
.
x
..
y − .

y
..
x

(
.
x2 + .

y2
)

3
2

. (3.37)

78 3 Geometric Fundamentals

Remark 3.6 We record a couple of properties related to curvature and torsion:

(a) The curvature and torsion of a curve are invariant with respect to parameterization
and change of the coordinate system. In other words: Curvature and torsion both
bear geometric meaning which will be referred to in the following section.

(b) A space curve which is contained in a plane, and thus is a planar curve is char-
acterized by τ(t) ≡ 0.

(c) As can be inferred from (3.35) or (3.37) the concept of curvature is even defined
for curves of class C2.

(d) In the planar case the curvature κ even has a sign which is geometrically mean-
ingful.8 If we interpret a planar curve as the track of a car being driven in the
plane, at any instant κ can be understood as the current steering wheel position.
The sign of κ distinguishes between left and right cornering.

In the special case where the spatial curve c is parameterized by its arc length
p = p(s) the formulae for the curvature κ and the torsion τ become a lot simpler:

κ = ∥∥p′′∥∥ (3.38)

τ = det
[
p′, p′′, p′′′]

‖p′′‖2 (3.39)

3.3.6 Osculating Circle and Osculating Plane

Let g be the tangent to a curve c at p(u0) and let p(u1) be an additional point on
c, then in general there exists a unique circle l∗ tangent to g at p(u0) and passing
through p(u1). The limiting process u1 −→ u0 moves the point p(u1) along the
curve c into the point p(u0). The circle l∗ simultaneously adjusts and eventually
turns into a circle l which is called osculating circle of the curve c at p(u0) (see
Fig. 3.22 and [5], p. 55). It can be shown that the radius ρ of l is the inverse of the
above-mentioned curvature (3.35):

ρ = 1

κ
(3.40)

Hence, ρ is also called radius of curvature of c at p(u0). The plane σ containing the
osculating circle, is usually called osculating plane of c at p(t0). It is spanned by the
first and the second derivative vector of p(t).

Points with κ = 0 are called inflection points. They are characterized by the
condition that their first and second derivative vectors are linearly dependent. The
osculating plane and the osculating circle do not exist. Instead, the tangent assumes
the role of the osculating circle.

8 For more details we refer to ([5], p. 26).

3.3 Curves 79

Fig. 3.22 The curve c . . . p(u) is evaluated at u = u0 which yields the point p(u0). At this point
it determines the tangent t and the osculating plane σ . The osculating circle l lies in σ and has the
radius ρ = 1

κ

Basically, the curvature in a point indicates to what extent the curve strives away
from the tangent in that point. If the curvature is zero within a whole interval the
respective part of the curve is a straight line segment.

The torsion of a curve in a point indicates to what extent the curve strives away
from the osculating planeσ at that point. In particular, a planar curve c is characterized
by τ ≡ 0. The plane which contains c is identical with the osculating plane σ at each
of its points.

Let c1 and c2 be two curves joining C2-continuously at u0 (see Definition 3.17,
p. 75). Then c1 and c2 have the same curvature, the same osculating plane and the
same osculating circle at p(u0). This is obvious as the derivative vectors occurring
in (3.35) are the same. If c1 and c2 are even C3-continuous at p(u0), the two curves
additionally have the same torsion at that point (cf. (3.36)).

3.3.7 The Frenet Frame

Let p = p(s), s ∈ [s0, s1] be a curve parameterized with respect to its arc length s,
then

‖p′‖ ≡ 1, (3.41)

〈p′, p′′〉 ≡ 0 (3.42)

according to (3.33) and (3.34), p. 74. Moreover, with (3.38), p. 78, we have

‖p′′‖ ≡ κ. (3.43)

where κ is the curvature of c. Let us assume that κ �= 0 in the considered interval
[s0, s1], i.e., there is no inflection point on the considered part of the curve c. Then

80 3 Geometric Fundamentals

Eq. (3.42) tells us that the two unit vectors

t := p′, (3.44)

h := p′′

κ
(3.45)

are perpendicular. In order to complete the two to an orthogonal vector basis we add
the third vector

b := t × h. (3.46)

Definition 3.21. Frenet frame of a curve.9 Let c be a curve parameterized by
p = p(s), s ∈ [s0, s1] with respect to its arc length s and let ‖p′′‖ = κ �= 0 within
[s0, s1]. Then the orthonormal vector basis {t, h, b} defined via (3.44), (3.45), (3.46)
is called the Frenet frame of c. The vectors t, h, b are called the tangent vector, the
principal normal vector and the binormal vector at the respective point p(s) of c.

Note that the tangent vector t and the principal normal vector h span the osculating
plane σ of c (see Sect. 3.3.6, p. 78). Figure 3.23 shows a space curve c and its Frenet
frame for six different values of s.

The Frenet frame is defined for any point of the curve where ‖p′′‖ = κ �= 0. It
makes sense to compute the derivatives of the vectors t, h, b in the Frenet basis. We
arrive at the so-called Frenet-Serret formulae.

Fig. 3.23 A curve c and its Frenet frame {t, h, b} displayed for different values of the arc length
parameter s. The tangent vector t, principal normal vector h and binormal vector b are displayed
in red, green and blue, respectively

9 Jean Frédéric Frenet (1816–1900) was a French mathematician who published these formulae
which were also found by Joseph Alfred Serret (1819–1885).

3.3 Curves 81

t′ = κ · h
h′ = −κ · t + τ · b
b′ = −τ · h

⎫⎬
⎭ (3.47)

The coefficients occurring in these formulae are the curvature κ and torsion τ of the
curve c (cf. Sect. 3.3.5, p. 77). We omit the proof which is based on (3.43) and the
orthogonality of the vectors t, h, b (see, for instance, [5], p. 58).

3.3.8 Planar Algebraic Curves

In this section we focus on a particular class of planar curves which are given by
their equation as in (3.28), p. 73.

Definition 3.22. Planar algebraic curve. A planar curve c is called algebraic if it
can be described by a polynomial equation

F(x, y) =
∑

f ini te

ai j xi y j = 0 (3.48)

where at least one of the coefficients ai j is nonzero. The integer

n := max{i + j | ai j �= 0} (3.49)

i.e., the degree of the polynomial
∑

f ini te
ai j xi y j , is called the order of the algebraic

curve c.
Non-algebraic curves are those which cannot be characterized by any equation of

this type (3.48). They are also referred to as transcendent curves.

Example 3.8 Straight lines as 1st order planar algebraic curves. Planar algebraic
curves of order 1 have an equation of the form

ax + by + c = 0

with (a, b) �= 0. They are straight lines.

Example 3.9 2nd order planar algebraic curves. Planar algebraic curves of order
2 have an equation of type

ax2 + by2 + 2cxy + 2dx + 2ey + f = 0 (3.50)

with (a, b, c) �= (0, 0, 0).

The concept of the order of a planar algebraic curve bears some geometrical
relevance as is shown in the following two theorems.

82 3 Geometric Fundamentals

Fig. 3.24 A simple example
to Bézout’s Theorem: two
different regular 2nd order
curves (conics) c1 und c2
cannot have more than four
intersection points

Theorem 3.4. Intersection of a planar algebraic curve with a straight line. Let
c be a planar algebraic curve of order n and let g be a straight line, g �⊂ c; then c
und g can not have more than n points in common.

Proof Let c be determined by (3.48) and g be given by its parameterization p(t) =
(1 − t) · a + t · b which reads as

[
x
y

]
= (1 − t) ·

[
xA

yA

]
+ t ·

[
xB

yB

]
. (3.51)

Substituting (3.51) into (3.48) yields

∑
ai j ((1 − t) · xA + t · xB)i ((1 − t) · yA + t · yB) j = 0.

The left-hand side of this equation is a polynomial of degree n in the variable t .
Hence, it has at most n zeroes (Theorem 3.1: Fundamental Theorem of Algebra,
p. 68). Any of the zeroes might be either a complex or a real number. Substituted
into (3.51) each of the real-valued zeroes delivers a common point of c and g.

Theorem 3.5. Bézout’s Theorem.10 Let c1 and c2 be planar algebraic curves with
order n1 und n2. Let us further assume that c1 und c2 do not have any common
component (algebraic curve which is part of both c1 and c2). Then c1 und c2 have
at most n1 · n2 common points (see Fig.3.24).

The proof to this theorem is again based on the Fundamental Theorem of Algebra.
It can be found in every book on basic Algebraic Geometry (see, for instance, [6],
p. 59).

3.3.9 Rational Curves

Here we consider curves which can be parameterized by fractions of polynomials:

10 Named after the French mathematician Étienne Bézout (1730–1783). It was first stated 1779 in
É. Bézout’s Théorie générale des équations algébriques.

3.3 Curves 83

Definition 3.23. Rational curve. A curve c is called a spatial rational curve if it
can be represented by a rational parameterization

p(t) =

⎡
⎢⎢⎢⎣

q1(t)
q0(t)

q2(t)
q0(t)

q3(t)
q0(t)

⎤
⎥⎥⎥⎦ (3.52)

Here qi (t) are polynomials with11

gcd {q1(t), q0(t)} = gcd {q2(t), q0(t)} = gcd {q3(t), q0(t)} = 1.

In order to obtain a planar rational curve we only have to put q3(t) ≡ 0 in (3.52).
If especially q0(t) ≡ 1 the denominator can be omitted; we call c a polynomial

curve.
The integer n := max{deg q0(t), deg q1(t), deg q2(t), deg q3(t)} is called the

degree of the rational curve c.

It can be shown that any planar rational curve of degree n is also an algebraic
curve of order ≤ n. However, the converse is not true: A planar algebraic curve need
not be rational.

Due to their simple representation rational and particularly polynomial curves are
frequently used in CAD applications. Bézier curves (Sect. 3.4.1), B-Spline curves
(Sect. 3.4.2) and NURBS (Sect. 3.4.3) are typical examples of curves consisting of
rational or even polynomial components.

3.3.10 Second Order Curves

Second order curves include a couple of well-known and frequently occurring planar
curves.

An algebraic curve of order 2 (= second order curve) is a curve with an equation
of the form (3.50) with (a, b, c) �= (0, 0, 0). Selecting the coordinate system in the
plane adequately this equation can be put into exactly one of the following normal
forms (a, b, p ∈ R

+):

(a) x2 = 0.
This is a straight line. It is sometimes referred to as a doubly counted straight
line.

(b) a2x2 + b2 y2 = 0.
This can also be written in the form (ax + iby) · (ax − iby) = 0 where i is the
complex unit (i2 = −1). This shows that we have a pair of conjugate complex

11 gcd denotes the greatest common divisor of polynomials; see Definition 3.8, p. 67.

84 3 Geometric Fundamentals

Fig. 3.25 Conic sections. Left ellipse, vertices A, B and C, D; the values a, b from (3.53) are
marked. Center hyperbola, vertices A, B and asymptotes u, v; a, b from (3.54) are again marked.
Right parabola, vertex A, focus point F , parabola axis x , point at infinity U

lines. This curve only contains one real point, namely o(0, 0)—the point of
intersection of the two complex lines.

(c) a2x2 − b2 y2 = 0.
Because of a2x2 − b2 y2 = (ax + by) · (ax − by) the curve c is a pair of real
straight lines.

(d) x2 + a2 = 0.
As this is equivalent to (x + ia) · (x − ia) = 0, we have a pair of conjugate
complex parallel lines. The curve does not contain any real point apart from the
point at infinity!

(e) x2 − a2 = 0.

Again we can factorize the left-hand side of the equation: x2 − a2 = (x + a) ·
(x − a). This shows that c consists of two real parallel lines.

(f) x2

a2 + y2

b2 = −1.

This curve does not contain any real point and is called null conic.

(g) x2

a2 + y2

b2 = 1.

In this case c is an ellipse whose axes coincide with the coordinate axes and have
lengths 2a and 2b (Fig. 3.25, left).

(h) x2

a2 − y2

b2 = 1.

We have a hyperbola whose axes lie on the coordinate axes. The distance of the
two apexes is 2a and its asymptote angle α is defined by tan α

2 = b
a (Fig. 3.25,

center).
(i) y2 = 2px .

This is a parabola with its apex in the origin and its symmetry axis on the x-axis.
Its focus is F(

p
2 , 0) (Fig. 3.25, right).

Admittedly, the types (a)–(e) are not particularly thrilling as they consist of straight
lines; they are called singular second order curves. The other types (f)–(i) are called
regular second order curves. The three types (g), (h) and (i) (ellipse, hyperbola and
parabola) are referred to as conics or conic sections.

3.3 Curves 85

For the ellipse (g) we have the following standard parameterization:

p(t) =
[

a cos t
b sin t

]
, t ∈ [0, 2π) (3.53)

In the hyperbola case (h) we have:

p(t) =
[±a cosh t

b sinh t

]
, t ∈ R (3.54)

The parabola (i) can be parameterized by:

p(t) =
[1

2p t2

t

]
, t ∈ R. (3.55)

In Fig. 3.25 the three types of conic sections are illustrated. As for the stan-
dard parameterizations (3.53), (3.54) and (3.55) the coordinate system is specifically
adapted to the curve to obtain a particularly simple form. In these normal forms the
symmetry axes of the curves are the axes of the coordinate system.

Obviously, the standard parameterizations (3.53), (3.54) of the ellipse and the
hyperbola are not rational. However, there also exist rational parameterizations and,
as a consequence, conics are rational curves. We will harness this property in Propo-
sition 3.9, p. 113.

A parabola is even a polynomial curve. Moreover, we have the following result:

Theorem 3.6. Parameterization of a parabola. Let a0, a1, a2, b0, b1, b2 be con-
stant real numbers. Then

p(t) =
[

a0 + a1t + a2t2

b0 + b1t + b2t2

]
, t ∈ R

is the parameterization of a parabola if

a1b2 − a2b1 �= 0 (3.56)

This can be proved by means of suitable coordinate transformations.

3.4 Freeform Curves

Working in a CAD environment requires adequate, simple tools for the control of
pretty complex geometric objects. The user ought to be given the option of easily
modifying their shapes by interactive manipulation.

86 3 Geometric Fundamentals

As for the case of one-parametric objects so-called freeform curves have emerged
as standard. The most important types will be defined and discussed in detail in
the following sections: Bézier curves, B-spline curves, Lagrange interpolants and
Hermite interpolants. We mention that there exist further types of freeform curves:
μ-splines, β-splines, Wilson-Fowler-splines, splines in tension, exponential splines
and nonlinear splines. A closer look at these interesting curves is beyond the scope
of this introduction. It can be found in [7].

We first launch the general concept of a freeform curve:

Definition 3.24. Freeform curve. Let n + 1 points a0, . . . , an in 3-space (or in the
plane) be given and let Fi (t), i = 0, . . . , n be a family of functions of a parameter t .
The curve with the parametric representation

p(t) =
n∑

i=0

Fi (t) · ai , t ∈ [a, b] (3.57)

is called the freeform curve to the given control polygon a0, . . . , an belonging to the
function family {Fi (t)}; [a, b] is the corresponding parameter interval.

Remark 3.7 The definition of freeform curves requires the choice of a family {Fi (t)}
of functions. The whole concept only makes sense if the curve is finally determined
by the control polygon a0, . . . , an and does not depend on the choice of the coordinate
system used for its description. It is easy to prove that this independence is guaranteed
if and only if the condition

n∑
i=0

Fi (t) ≡ 1 (3.58)

holds. In that case the function family {Fi (t)} is called a partition of unity.

If (3.58) is fulfilled there is a close geometric bond between the control points
and the resulting freeform curve. This relationship greatly depends on the choice of
the functions Fi (t). In the following sections we will study the most common types.

3.4.1 Bézier Curves

Within the last few decades the Bézier curves have emerged as the forefathers of
various free form spline techniques. No matter which type of freeform technique is
applied in a CAD system, the basic properties of Bézier curves are key. Bézier curves
are freeform curves where the underlying family {Fi (t)} of functions is specified as
the family of Bernstein polynomials.

3.4 Freeform Curves 87

Definition 3.25. Bernstein polynomials. For a given positive integer n the Bern-
stein polynomials Bn

i (t) of degree n are defined as

Bi,n(t) =
(

n

i

)
· t i ·(1− t)n−i = n!

i ! · (n − i)! · t i ·(1− t)n−i , i = 0, . . . , n. (3.59)

This family of polynomials plays an important role throughout this chapter and
beyond.

Proposition 3.1 Properties of Bernstein polynomials. The Bernstein polynomials
Bi,n(t) are polynomials of degree n (see Definition 3.5, p. 66). Further properties
are:

1. The Bernstein polynomials are bounded within the interval [0, 1]:
0 ≤ Bi,n(t) ≤ 1 for t ∈ [0, 1].

2. From the Binomial Theorem we have

1 = (1 − t + t)n =
n∑

i=0

(
n

i

)
· t i · (1 − t)n−i

which in turn implies
n∑

i=0

Bi,n(t) ≡ 1. (3.60)

The Bernstein polynomials are a partition of unity (cf. (3.58)).
3. The set of all Bernstein polynomials {B0,n(t), . . . , Bn,n(t)} of degree n is a basis

of the vector space Rn[t] of all polynomials of degree ≤ n (Bernstein basis).
4. For i = 1, . . . , n − 1 we have the recursion formula

Bi,n(t) = (1 − t) · Bi,n−1(t) + t · Bi−1,n−1(t) (3.61)

and, as a supplement:

B0,n(t) = (1 − t) · B0,n−1(t)

Bn,n(t) = t · Bn−1,n−1(t) (3.62)

5. For every i = 0, . . . , n we have

Bn−i,n(1 − t) = Bi,n(t). (3.63)

The Bernstein polynomials are symmetric (see also Figs. 3.26 and 3.27).
6. For the k-th derivatives B(k)

i,n (t) of the polynomial functions Bi,n(t) at t = 0 and
t = 1 we have

88 3 Geometric Fundamentals

Fig. 3.26 The Bernstein basis
functions of degree 2 on the
unit interval [0, 1]. Mind
that according to (3.60) their
values add up to 1 for every t

Fig. 3.27 The Bernstein basis
functions of degree 4 on [0, 1]

B(k)
i,n (0) = 0 for i = k + 1, . . . , n (3.64)

B(k)
i,n (1) = 0 for i = 0, . . . , n − k − 1 (3.65)

The proofs to these claims are an easy exercise (see also [7], pp. 118 and [8],
p. 38).

The Bernstein polynomials were introduced as early as in 1912 (see [9]) by Sergei
Natanovich Bernstein (1880–1968). He used this family of polynomials to prove the
so-called Stone-Weierstrass approximation theorem: Every real continuous function
on a closed interval can be uniformly approximated by polynomial functions.

The Bézier curves are defined as the freeform curves (see Definition 3.24) where
the family {Fi (t)} of functions is specified as the family of Bernstein polynomials
{Bi,n(t)}:
Definition 3.26. Bézier curve. Let n+1 points a0, . . . , an in 3-space or in the plane
be given. The curve c defined by

3.4 Freeform Curves 89

p(t) =
n∑

i=0

Bi,n(t) · ai , t ∈ [0, 1] (3.66)

is called the Bézier curve of degree n to the given control polygon a0, . . . , an .

Basically, a Bézier curve of degree n is a polynomial curve of degree n. On the
other hand, any polynomial curve of degree n can be represented as a Bézier curve
of degree n with an appropriate control polygon. This follows from the fact that the
set {B0,n(t), . . . , Bn,n(t)} of Bernstein polynomials is a basis of Rn[t] (Proposition
3.1, 3.).

Proposition 3.2 Properties of Bézier curves. Let a Bézier curve of degree n be
defined by a control polygon a0, . . . , an. Then we have:

1. p(0) = a0, p(1) = an. The Bézier curve and its control polygon have the same
starting point a0 and the same end point an (see also Figs.3.28 and 3.29).

2. Let k ∈ {1, . . . , n} be an integer. The k-th derivative vector p(k)(t) at t = 0 only
depends on the points a0, . . . , ak , k ∈ {0, . . . , n}. More detailed, we have:

Fig. 3.28 A planar Bézier
curve c of degree 3, deter-
mined by the control polygon
a0, a1, a2, a3

Fig. 3.29 A spatial Bézier
curve c of degree 5 together
with its control polygon
a0, a1, a2, a3, a4, a5

90 3 Geometric Fundamentals

p(k)(0) = n · (n − 1) · . . . · (n − k + 1)

k∑
i=0

(−1)i ·
(

k

i

)
· ak−i (3.67)

Analogously: The k-th derivative vector p(k)(t) at t = 1 only depends on the
points an, . . . , an−k , k ∈ {0, . . . , n}:

p(k)(1) = n · (n − 1) · . . . · (n − k + 1)

k∑
i=0

(−1)i ·
(

k

i

)
· an−i (3.68)

3. The curve is invariantly connected with its control polygon a0, . . . , an with respect
to affine transformations (see also Remark 3.7, p. 86) and particularly with respect
to isometries.

4. Exploiting the symmetric behavior (3.63) of the Bernstein polynomials we get

n∑
i=0

Bi,n(t) · ai =
n∑

i=0

Bn−i,n(1 − t) · ai =
n∑

i=0

Bi,n(1 − t) · an−i .

The Bézier curve defined by the reversed control polygon is the same as the
original curve c. Reversing the polygon only reverses the orientation of c. The
overall curve c remains the same.

5. The curve is completely contained in the convex hull of its control polygon.
(convex-hull property, see Fig.3.30). The property also holds for spatial Bézier
curves where the convex hull of the control polygon is, in general, a polyhedron.

6. Let c be a planar Bézier curve to a control polygon p. We consider a straight line
g and intersect it with c and p. The number of intersection points with c is less or
equal to the number of intersection points with p (see Fig.3.31). This interesting
characteristic is usually called the variation diminishing property. It can also be
formulated for spatial Bézier curves where the number of intersection points with
some plane γ has to be regarded.

Proposition 3.2 contains a lot of fundamental issues: Eq. (3.67) for k = 1 simply
yields

.
p(0) = n ·(a1 −a0). This means that the first edge a0a1 of the control polygon

is tangent to the Bézier curve c in the starting point a0. Equally, the last edge an−1an

is tangent to the curve c in the endpoint an (see Figs. 3.28 and 3.29).
Property 3.) follows from the fact that the Bernstein polynomials of degree n are

a partition of unity. If α is an affine transformation (cf. Definition 3.1, p. 54) we have

α(p(t)) = α

(
n∑

i=0

Bi,n(t) · ai

)
=

n∑
i=0

Bi,n(t) · α(ai). (3.69)

3.4 Freeform Curves 91

Fig. 3.30 Convex hull prop-
erty: the planar Bézier curve
c is contained in the con-
vex hull of its control points
a0, a1, a2, a3, a4, a5 (grey
area)

Fig. 3.31 Variation diminish-
ing property a straight line g
intersects the planar Bézier
curve c in r points � and its
control polygon in s points
�. The variation diminishing
property of Bézier curves says:
r ≤ s for every straight line
g. Here we have r = s = 3

Applying α to the control polygon and then constructing the corresponding Bézier
curve (right hand side of (3.69)) gets us the same thing as though we applied α to
the Bézier curve p(t) in the first place (left hand side of (3.69)).

For the proofs see also ([7], pp. 115–128) or ([8], pp. 30–32 and 40–46).

Bézier Curves on an Arbitrary Support Interval

Obviously the Bernstein polynomials are perfectly adapted to the unit interval [0, 1]
(Proposition 3.1, 1.), 6.)). Sometimes though, it is indispensable to transform them
to an arbitrary interval [τ0, τ1] by the linear substitution

t = τ − τ0

τ1 − τ0
. (3.70)

We arrive at:

Definition 3.27. Bernstein polynomials, general form. For any positive integer n
the generalized Bernstein polynomials are

92 3 Geometric Fundamentals

B[τ0,τ1]
i,n (τ) = 1

(τ1 − τ0)n

(
n

i

)
· (τ − τ0)

i · (τ1 − τ)n−i ; i = 0, . . . , n (3.71)

By substituting (3.70) into the parametric representation (3.66) of a Bézier curve
c we obtain the new parameterization of c:

q(τ) =
n∑

i=0

B[τ0,τ1]
i,n (τ) · ai , τ ∈ [τ0, τ1] (3.72)

As we merely have applied a linear parameter transformation (3.70) the kth deriv-
ative vectors are only multiplied by a constant factor, namely 1

(τ1−τ0)k , which is a
consequence of the chain rule of differentiation. In particular, the kth derivative vec-
tors with respect to the new parameter τ at the starting point and at the end point are

q(k)(τ0) = n · (n − 1) · . . . · (n − k + 1)

(τ1 − τ0)k
·

k∑
i=0

(−1)i ·
(

k

i

)
· ak−i ,

q(k)(τ1) = n · (n − 1) · . . . · (n − k + 1)

(τ1 − τ0)k
·

k∑
i=0

(−1)i ·
(

k

i

)
· an−i ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.73)

which is a direct consequence of (3.67), (3.68).
For example, for k = 1 we obtain the tangent vectors at τ0 and τ1:

.
q(τ0) = n

τ1 − τ0
· (a1 − a0)

.
q(τ1) = n

τ1 − τ0
· (an − an−1)

⎫⎪⎬
⎪⎭

(3.74)

The de Casteljau Algorithm

If we are to compute the point p(t) on a Bézier curve c to a given parameter value
t ∈ [0, 1] we sure can use (3.66) as proposed in Definition 3.26. However there
are several reasons why users and software engineers prefer the following simple
geometric algorithm instead (see Fig. 3.32 and the scheme (3.75)):

Algorithm 3.1. De Casteljau algorithm for Bézier curves. To a given control
polygon a0, . . . , an the point p(t) on the Bézier curve c can be constructed as follows
(see also (3.75)):

1. Rename ci,0 := ai for all i = 0, . . . , n − 1. Starting with the polygon
c0,0, . . . , cn,0, to each segment ci,0ci+1,0 compute the point12

ci,1 := (1 − t) · ci,0 + t · ci+1,0.

12 The point ci,1 is constructed by subdivision of the segment by the prescribed ratio t : (1 − t).

3.4 Freeform Curves 93

Fig. 3.32 The de Casteljau algorithm for a Bézier curve of degree n = 3 to some given parameter
value t ∈ [0, 1]—here t = 0.4. The algorithm eventually delivers the point c0,3 = p(t)

This provides a new polygon c0,1, . . . , cn−1,1 having one point less than the
former.

2. Next apply the same routine to the new polygon c0,1, . . . , cn−1,1 and so on.
3. Every round of this iteration process reduces the number of points in the polygon

by 1.
4. After n steps one arrives at one single point c0,n .

c0,n is just the desired point p(t) on the Bézier curve c.

This construction can easily be proved by means of the recursion formula (3.61)
(see also [8], pp. 167). The following scheme (3.75) briefly outlines the procedure.

c0,0 = a0 c0,1 ∗ ∗ ∗ c0,n−1 c0,n = p(t)
c1,0 = a1 c1,1 ∗ ∗ ∗ c1,n−1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ cn−1,1

cn,0 = an

(3.75)

Figure 3.32 shows the de Casteljau algorithm graphically for the case n = 3. Basi-
cally, the de Casteljau algorithm is a series of subdivisions of straight line segments
and hence, it consists of repeated linear combination of vectors. With this algorithm
the evaluation of Bernstein polynomials can be avoided in the first place.

The de Casteljau algorithm once again shows what has already been stated in
Proposition 3.1, 3.): The Bézier curve is affinely connected with its control polygon:
Dividing a straight line segment by a given ratio is an affine construction. Moreover
the convex hull property (Proposition 3.2),5.)) of a Bézier curve can easily be verified
by the algorithm as—for t ∈ [0, 1]—each of the occurring points ci, j lies in the
interior of the line segment [ci, j−1, ci+1, j−1]; hence, no point of the Bézier curve
can lie outside the convex hull of the control polygon.

94 3 Geometric Fundamentals

Fig. 3.33 Splitting a Bézier curve at a point p(t0) the de Casteljau algorithm for a Bézier curve c
of degree n = 3 to the parameter value t0 = 0.4. The algorithm delivers control polygons to each
of the two sections into which c is split by the point c0,3 = p(t0)

Continuation of a Bézier Curve

The de Casteljau scheme (3.75) applied to the parameter value t = t0 does not only
yield the point c0,n = p(t0) on the Bézier curve c as described above. In fact it
delivers a lot more (Fig. 3.33):

Construction 3.1 Splitting a Bézier curve into two segments. The points c0,0,

c0,1, . . . , c0,n−1, c0,n in the first row of the scheme (3.75) represent a control
polygon to a Bézier curve c1 which happens to be identical with the very part
of c belonging to the parameter interval [0, t0]. On the other hand, the points
c0,n, c1,n−1, . . . , cn−1,1, cn,0 in the diagonal of the scheme are the control points
of another Bézier curve c2 which incidentally is the remaining part of c, belonging
to the parameter interval [t0, 1].

The Bézier curve is usually regarded in the domain corresponding to the interval
[0, 1]. As it is a polynomial curve we can as well extend the parameter area to any
interval contained in R or even to R itself.

As a consequence, all the considerations above remain equally valid if we omit
the restriction t0 ∈ [0, 1]. If t0 > 1 we end up in a point p(t0) belonging to the
continuation of c beyond the parameter interval [0, 1] (Fig. 3.34).

In case of t0 > 1 the two emerging parts c1 and c2 are parameterized by [0, t0]
and [t0, 1]. The first part c1 ranges from the starting point a0 all across c to the
point c0,n = p(t0). The second part c2 obtained from our splitting procedure starts
at c0,n = p(t0) and leads all the way back to the endpoint an (Fig. 3.34). In fact, it is
part of c1.

Up to now we have gained a continuation c2 of the original Bézier curve c such that
c2 is defined by a separate control polygon c0,n, c1,n−1, . . . , cn−1,1, cn,0. The two
curves c and c2 are joined at their junction point an . They are GC∞ (see Definition
3.18) which means that after some appropriate parameter transformation the new

3.4 Freeform Curves 95

Fig. 3.34 Continuation of a Bézier curve of degree 3. The splitting algorithm applied for t0 =
1.65 > 1 determines the continuation c2 (white) of c (black) beyond its endpoint a3. The control
polygon c0,3, c1,2, c2,1, c3,0 of c2 has to be reversed: b0, b1, b2, b3. The parameterization of c2 is
to be adjusted accordingly. Finally the two curves c and c2 join at an = b0 with C∞-continuity

parameterizations could even be C∞-continuous. It is not a big deal to reparameterize
c2 accordingly. To this end the following two steps are necessary:

1. We reverse the order (see Proposition 3.2, 4.) of the control points of c2, arriving at
b0 := cn,0, b1 := cn−1,1, . . . , bn−1 := c1,n−1, bn := c0,n . This control polygon
again delivers the Bézier curve c2, however starting at cn,0 = an . . . t = 0 and
ending at c0,n . . . t = 1.

2. We now reparameterize this curve via (3.70), p. 91 putting τ0 = 1 and τ1 = t0,
i.e., t = τ−1

t0−1 .

This new parametric representation is identical to p(t) within the interval [1, t0]. We
can summarize:

Construction 3.2 Continuation of a Bézier curve. We apply the de Casteljau
algorithm with some parameter t0 > 1. The points c0,n, c1,n−1, . . . , cn−1,1, cn,0
in the diagonal of the scheme (3.75) are the control points of a Bézier curve c2 which
represents the continuation of the segment c beyond the parameter value t = 1. c2
belongs to the parameter interval [t0, 1]. Reversing its control polygon gives it the
correct orientation cn,0 = b0, cn−1,1 = b1, . . . , c1,n−1 = bn−1, c0,n = bn and can
be dealt with all on its own. In order to have a C∞-continuation in terms of the
parameterization we have to apply the parameter transformation t = τ−1

t0−1 .

The fact that we now have access to two separate control polygons to two adjacent
segments of a Bézier curve will enable us to easily modify one of the segments without
affecting the other.

96 3 Geometric Fundamentals

Fig. 3.35 We start with a Bézier curve c of degree n = 5 and apply the de Casteljau continua-
tion algorithm (Construction 3.2) to its control polygon a0, a1, a2, a3, a4, a5. We obtain a control
polygon a5 = b0, b1, b2, b3, b4, b5 of the continuation segment c2 which extends c with C∞-
continuity. The modification of c2 amounts to replacing the points b3, b4, b5 by some modified
(chosen) points b∗

3, b∗
4, b∗

5. The modified curve c∗
2 still extends c with C2-continuity as the first

three points a5 = b0, b1, b2 remain unaltered

Modeling Bézier Curves

Modeling and shaping a curve is one fundamental task of any stylist. Powerful algo-
rithms have to be complemented by creativity. The continuation of a given Bézier
curve as described above can be the starting point. Depending on the desired degree
of smoothness at the junction point of two segments particular points of the control
polygon can be modified.

Construction 3.3 Modeling Bézier curves. Let c be a Bézier curve with the control
polygon a0, a1, . . . , an (Fig.3.35). Let b0, . . . , bn be the control polygon of a contin-
uation c2 belonging to the parameter t0 (Construction 3.2). We replace the control
points bk+1, . . . , bn of c2 by some (deliberately chosen) new points b∗

k+1, . . . , b∗
n

and leave the first k + 1 control points b0, . . . , bk untouched.
Then the Bézier curve c∗

2 defined by the control polygon b0, . . . , bk, b∗
k+1, . . . , b∗

n

extends the original curve c Ck-continuously at the junction point.

The reason for Ck-continuity at the junction point lies in Proposition 3.2, 2.):
The new curve c∗

2 still yields the same derivative vectors up to order k as c2 at the
transition point an of c and c∗

2.
The choice of the parameter t0 used for the continuation is essential, as it deter-

mines the first k+1 points of the control polygon to c∗
2. This parameter t0 is commonly

named design parameter.
In the same way as we have created the continuation beyond the endpoint an with

some design parameter t0 > 1 we could also generate a continuation in the other

3.4 Freeform Curves 97

Fig. 3.36 Example for a C1-connection to two given Bézier curves c and e (black), both of degree
4. The connecting curve d is again of degree 4. At either end d fits C1-continuously. As we have
n = 4 and k = 1 there is only one point d2 left to be chosen by the user

direction across the endpoint a0. To this avail we would have to choose a design
parameter t0 < 0.

One standard situation in curve design is the task of creating a smooth connection
between two given Bézier curves (Fig. 3.36).

Construction 3.4 Connecting two Bézier curves. We start with two Bézier curves
c and e, both of degree n. Let k be a non-negative integer with k ≤ n−1

2 . In order to
connect c and e by a Ck-continuous transition curve the following steps have to be
taken:

• Construct a continuation c∗ of c with a design parameter t0 > 1 via Construction
3.3. The resulting control polygon be c∗

0, . . . , c∗
n.

• Analogously, construct a continuation e∗ of e with some design parameter s0 < 0;
e∗

0, . . . , e∗
n be the control polygon of e∗.

Fig. 3.37 Bézier curve c (n = 3). The control polygon a0, a1, a2, a3 is subjected to the degree
elevation algorithm (3.76). The new control polygon b0, b1, b2, b3, b4 determines the same Bézier
curve c—now formally of degree 4. In this case the segments of the control polygon are subdivided
by the ratios 3 : 1, 2 : 2, and 1 : 3

98 3 Geometric Fundamentals

• Generate a new series of points as follows: c∗
0, . . . , c∗

k , dk+1, . . . , dn−k−1,

e∗
k , . . . , e∗

0 . The points dk+1, . . . , dn−k−1 of this series can be deliberately chosen
by the user.
The Bézier curve d to this control polygon delivers a transition between c and e
which is a Ck-continuation at either end.

Obviously we have to observe the restriction k ≥ n−1
2 . The number of points

dk+1, . . . , dn−k−1 which are left for the user to be chosen is n − 2k − 1. E.g., for
n = 4 and k = 1 (C1-continuous connection at either end) we have n − 2k − 1 = 1;
so, there is only one point left for manipulation.

The number n + 1 of control points obviously determines the polynomial degree
n of a Bézier curve c. Larger values of n will deliver more freedom for modeling
and/or a higher degree k of continuity at the junction point. Though it is not always
preferable to use high degree Bézier curves, it sometimes may be useful to increase
the degree n.

Degree Elevation

In some cases it may be beneficial to represent a Bézier curve of degree n as a higher
degree Bézier curve. It is easy to see that such a thing is always possible, as every
polynomial of degree n can be displayed in the Bernstein basis of degree n + 1. This
is how degree elevation basically works.

Let c be a Bézier curve of degree n with the control polygon a0, a1, . . . , an . In
order to represent the curve c as a Bézier curve of degree n + 1, the control poly-
gon is to be replaced by some control polygon b0, b1, . . . , bn, bn+1. The points of
the new control polygon can easily be computed. Basically, we have to express
the Bernstein polynomials of degree n in the Bernstein basis of degree n + 1:
We—formally—multiply the representation p(t) = ∑n

i=0 Bi,n(t) · ai by the fac-
tor 1 = (1 − t) + t and collect the summands in terms of the Bernstein polynomials
Bi,n+1(t). This immediately yields the recipe for the construction of the new control
polygon:

b0 = a0

bk = k

n + 1
· ak−1 + (1 − k

n + 1
) · ak, k = 1, . . . , n (3.76)

bn+1 = an

The construction consists of subdivisions, where the ratios (1 − k
n+1) : k

n+1 are vari-
able, depending on the index k. Figure 3.37 illustrates the procedure.

Construction 3.5 Degree elevation of a Bézier curve. Every Bézier curve of degree
n can be represented as a Bézier curve of degree n + 1. The corresponding points
of the new control polygon can be constructed from the original control polygon
via (3.76).

3.4 Freeform Curves 99

To give an example, we consider the modeling of Bézier curves (Construction
3.3). In order to achieve Ck-continuity for the continuation c2 of a Bézier curve
c we have to keep the first k + 1 points b0, . . . , bk untouched. The other control
points can be used for modeling. If there are too few remaining points, degree
elevation my well be a good strategy as it could provide more leverage for the
stylist.

3.4.2 B-Spline Curves

Continuing a Bézier curve and modeling it according to Sect. 3.4.1 enables us to
construct a curve consisting of an arbitrary number of polynomial segments of degree
n with Ck-continuity at the transition points. The idea of piecing a curve together
this way leads to the concept of a spline curve.

The term spline is commonly used in the CAD context. It denotes a curved line
element. In the olden days spline curves were materialized by sleek wooden beams
(stringers) used in the construction of ship bodies. The stringers were forced to
run through given points on the predefined cross-sections (frames). These points
fractionize the stringer into several segments. Before we delve into particular types
of spline curves we consider the concept more generally:

Definition 3.28. Spline functions and spline curves. Mathematically splines are
defined as follows:

1. The real numbers in the series t0 < t1 < · · · < tm are called knots. The ordered
set (t0, t1, . . . , tm) is called a knot vector.

2. Let a knot vector (t0, t1, . . . , tm) be given. A function F(t), t ∈ [t0, tm] consisting
of polynomial segments f j (t), t ∈ [t j , t j+1] of degree k−1 is called a spline func-
tion if it is (k − 2)-times differentiable at the knots. This means that consecutive
polynomials f j (t), f j+1(t) have identical derivatives up to order k − 2 at t j+1.
If the order of differentiability at these points is less than k −2 we call it subspline
function.

3. The set of all spline functions of degree k−1 to a given knot vector (t0, t1, . . . , tm)

shall be denoted by Sk−1(t0, t1, . . . , tm).
4. A freeform curve p(t) =∑m

i=0 Fi (t) · ai is called spline curve (subspline curve)
if the functions Fi (t) are spline functions (subspline functions) with a common
knot vector (t0, t1, . . . , tm).

5. The points p(ti) belonging to the knots are also called junction points of the spline
curve.

The proof to the following remark can be found in ([8], p. 158).

Remark 3.8 The set of all spline functions Sk−1(t0, t1, . . . , tm) is a vector space of
dimension

100 3 Geometric Fundamentals

Fig. 3.38 The B-spline basis
functions Ni,1(t) for i = 0,
i = 2 and i = 4. For the
sake of clarity the ones for
i = 1 and i = 3 are not
displayed. As an example
the basis function N2,1(t) is
highlighted in black

Fig. 3.39 The B-spline basis
functions Ni,2(t) for i =
0, 1, 4. The basis functions
N3,2(t), N4,2(t) in between
have been left out. The basis
function N1,2(t) is highlighted
in black

Fig. 3.40 The B-spline
basis functions Ni,3(t) for
i = 0, 1, 2, 3. N1,3(t) is high-
lighted in black

Fig. 3.41 The B-spline basis
functions Ni,4(t) for i =
0, 1, 2. N1,4(t) is highlighted
in black

d = dim Sk−1(t0, t1, . . . , tm) = m + k − 1. (3.77)

Remark 3.9 The definition of spline functions as given above can be generalized by
allowing multiple knots (cf. Definition 3.32, p. 106). This means that the assumption
t0 < t1 < · · · < tm is replaced by t0 ≤ t1 ≤ · · · ≤ tm . The emerging generalized
spline functions have slightly different properties; for instance, the differentiability
at a multiple knot decreases. The dimension formula (3.77) also has to be adapted.

3.4 Freeform Curves 101

Multiple knots can be used to shape the spline functions in a way. We will use this
concept in the case of B-spline functions.

An in-depth introduction to spline theory can be found in [10, 11] or [12]. In
this paragraph we particularly discuss one prominent example of spline curves: the
B-spline curves. Remember that the introduction of Bézier curves (Sect. 3.4.1) was
preceded by the definition of the corresponding basis functions (Bernstein polyno-
mials). In the case of B-spline curves we equally have to define a specific set of
suitable functions.

Definition 3.29. B-spline basis functions. Let n and k < n be positive integers
and let (t0, t1, . . . , tn, tn+1, . . . , tn+k) be a knot vector. Then we define

• in case of k = 1:

Ni,1(t) =
{

1 if ti ≤ t < ti+1
0 if else

(3.78)

• and in case of k > 1:

Ni,k(t) = t − ti
ti+k−1 − ti

· Ni,k−1(t) + ti+k − t

ti+k − ti+1
· Ni+1,k−1(t) (3.79)

where i = 0, . . . , n. The functions Ni,k(t) are called the B-spline basis functions.

We have:

Proposition 3.3 Properties of B-spline basis functions. The following properties
of the B-spline basis functions are easy to check (see also [7], pp. 167 and [8], p. 38):

1. Ni,k(t) > 0 for t ∈ (ti , ti+k) and Ni,k(t) = 0 anywhere else (see Figs.3.38, 3.39,
3.40, 3.41).

2. Ni,k(t) consists of polynomial segments of degree k−1, each defined in an interval
[t j , t j+1] between two consecutive knots.

3. Each B-spline basis function Ni,k(t) is (k − 2)-times differentiable at each knot
ti , ti+1, . . . , ti+k . Everywhere else it is smooth.

4. Within the interval [tl , tl+1] the only B-spline basis functions different from 0 are
Nl−k+1,k(t), . . . , Nl,k(t).

5. The B-spline basis functions are a partition of unity:

n∑
i=0

Ni,k(t) ≡ 1 (3.80)

6. The B-spline basis functions N0,k(t), . . . , Nn,k(t) establish a basis of the linear
function space Sk−1(tk−1, . . . , tn+1). Their number n + 1 coincides with (3.77).

102 3 Geometric Fundamentals

Fig. 3.42 B-spline curve: n = 4 and k = 3. If the knot vector is uniform (see Definition 3.31,
p. 103) the junction points are the midpoints of the control polygon edges. The different sections
of the B-spline curve are parabola arcs tangent to the control polygon

Fig. 3.43 B-spline curve: n = k = 4. Adjacent segments are joined C2-continuously. According
to Definition 3.30 the parameter interval [tk−1, tn+1] = [t3, t5] provides only two segments with
their junction point p(t4)

Based on the functions Ni,k(t) we now define the B-spline curves.13

Definition 3.30. B-spline curve. We are given two positive integers k, n with k <

n + 2 and a knot vector (t0 < t1 < · · · < tn < tn+1 < · · · < tn+k) as in Definition
3.28. We additionally have n + 1 points a0, . . . , an in 3-space (or in the plane).
The curve c with the parametric representation

p(t) =
n∑

i=0

Ni,k(t) · ai , t ∈ [tk−1, tn+1] (3.81)

is called the B-spline curve to the given control polygon a0, . . . , an and the given
knot vector (t0, . . . , tn+k). The points ai are called control points or de Boor points.

13 The properties of B-splines were essentially known in the nineteenth century. One of the first
mathematicians to investigate the properties of such spline functions was J.C.F. Haase (1870, see
[13]). The introduction of B-spline curves dates back to the Romanian mathematician I. Schoenberg
(1903–1990). The theory of approximation by B-splines and algorithms for working with them are—
among others—owed to the German-American mathematician Carl de Boor (born 1937 in Stolp,
today Slupsk, Poland).

3.4 Freeform Curves 103

Note that B-spline curves are one example of freeform curves according to
Definition 3.24 where the family of functions is specified as the set of B-spline
basis functions.

Due to Proposition 3.3, 3.) the differentiability class of the B-spline basis functions
is Ck−2 and thus, the same holds for the B-spline curves. According to Fig. 3.38 the
B-Spline curve for k = 1 would not be worth mentioning: It consists of the discrete
vertices of the control polygon and would not even deserve the term curve. For
k = 2 we would obtain a B-spline curve which is identical to the edges of the control
polygon which is C0-continuous (without gaps) but still pointed at the vertices. For
k ≥ 3 the B-spline curve (see Figs. 3.42 and 3.43) is differentiable.

Definition 3.31. Uniform and non-uniform B-spline curves. If the knot intervals
[ti , ti+1] are of equal lengths we call the knot vector uniform. A B-spline curve to
such a knot vector is called a uniform B-spline curve. Knot vectors with non-uniform
distribution yield non-uniform B-spline curves.

Proposition 3.4 Properties of B-spline curves.

1. Owing to Proposition 3.3, 4.) we have

p(t) =
n∑

i=0

Ni,k(t) · ai =
l∑

i=l−k+1

Ni,k(t) · ai (3.82)

for t ∈ [tl , tl+1]. All the other B-spline basis functions vanish within this interval.
As a consequence: The segment of the B-spline curve relating to the interval
[tl , tl+1] only depends on the k control points al−k+1, . . . , al .

2. The curve is invariantly connected with its control polygon a0, . . . , an with respect
to affine transformations (see also Remark 3.7, p. 86).

3. A B-spline curve is smooth within each subinterval [ti , ti+1]. It is Ck−2-continuous
at the junction points p(ti).

We remember that the polynomial degree of a Bézier curve is 1 less than the
number of control points. As for B-spline curves we see: The polynomial degree is
k − 1 and hence does not depend on the number n + 1 of control points. Increasing
n arbitrarily does not affect the polynomial degree which is a great benefit.

Proposition 3.4, 1.) indicates that changing the control point al will only affect
the segments of the B-spline curve relating to [tl , tl+k]. All other segments remain
unaltered (see Fig. 3.44). This is generally referred to as the local control property
of B-spline curves.

The Cox-de Boor Algorithm

For Bézier curves we easily obtained the point p(t) belonging to the parameter value
t by employing the de Casteljau scheme (3.75), p. 93. For B-spline curves we are

104 3 Geometric Fundamentals

Fig. 3.44 Local control of a B-spline curve, k = 4. Changing the control point a5 to a∗
5 changes

the 4 segments of the B-spline curve which relate to the intervals [t5, t6], [t6, t7], [t7, t8], [t8, t9].
The segments relating to [t3, t4], [t4, t5] and [t9, t10], [t10, t11] remain unchanged

lucky to have a similarly powerful method, called14 Cox-de Boor algorithm. Starting
with the set of control points (and the knot vector) we recursively define a series of
points (see Fig. 3.45) and arrive at a truly helpful scheme (3.83):

Algorithm 3.2. Cox-de Boor algorithm. The control polygon a0, . . . , an and the
knot vector (t0, . . . , tn+k) of a B-spline curve c be given. In order to obtain the point
p(t) on c belonging to a given parameter value t ∈ [tk−1, tn+1] we take the following
steps:

1. Determine l with tl ≤ t < tl+1; in case of t = tn+1 put l = n.
2. Put dl−k+i,0 := al−k+i for i = 1, . . . , k.
3. For j = 1, . . . , k − 1 and i = 1, . . . , k − j compute the points

dl−k+i, j := (1 − β(i, j, k, l, t)) · dl−k+i, j−1 + β(i, j, k, l, t) · dl−k+i+1, j−1

with

β(i, j, k, l, t) := t − tl+i−k+ j

tl+i − tl+i−k+ j
.

4. The desired point appears at the right top end of the scheme (3.83): p(t) =
dl−k+1,k−1.

14 As for C.R. de Boor see p. 107.

3.4 Freeform Curves 105

Fig. 3.45 The Cox-de Boor algorithm for a B-spline curve c with k = 4 to some given parameter
value t ∈ [tk−1, tn+1]. The algorithm is based on successive subdivision as in the de Casteljau
scheme for Bézier curves. However, the division ratio in the Cox-de Boor algorithm varies from
step to step as illustrated (on top). The algorithm results in the point p(t) ∈ c

dl−k+1,0 dl−k+1,1 ∗ ∗ ∗ dl−k+1,k−2 dl−k+1,k−1 = p(t)
dl−k+2,0 dl−k+2,1 ∗ ∗ ∗ dl−k+2,k−2

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ dl−1,1

dl,0

(3.83)

This construction is based on the recursive Definition 3.39 of the B-Spline basis
functions. For the proof see ([8], p. 154ff).

106 3 Geometric Fundamentals

Endpoint Interpolation

As for Bézier curves we are familiar with the fact that they start at the first point of
the control polygon and are even tangent to its first edge. The same thing happens at
the end point. We call this property the endpoint interpolation property. In general
B-spline curves behave differently (see Figs. 3.43 or 3.45). But they are extremely
versatile. If desired we can easily tweak the knot vector such that the resulting
B-spline curve also has the endpoint interpolation property. To this end we have to
allow the concept of multiple knots:

Definition 3.32. Multiple knots. Let (t0, t1, . . . , tn+k) be a knot vector and let l be
an integer with l ∈ {0, . . . , k − 1}. If

ti−1 < ti = ti+1 = · · · = ti+l < ti+l+1

for some i ∈ {0, . . . , n + k − l} then ti is called a knot with multiplicity l + 1.

If we set 0
0 := 0 the recursive Definition 3.29, p. 100 of the B-spline basis functions

is still valid in case of knot vectors with multiple knots in the sense of Definition
3.32.

For example, in the knot vector (t0, t0, t1, t1, t1, t2) the knots t0 and t1 occur with
multiplicity 2 and 3, respectively. Another typical example is the knot vector

(t0, . . . , t0︸ ︷︷ ︸
k−fold

, t1, . . . , t1︸ ︷︷ ︸
k−fold

), (3.84)

which consists of only two distinct knots t0, t1 each of them with multiplicity k. It can
easily be shown that in that case a B-spline curve p(t) to this knot vector is identical
with the Bézier curve which has the DeBoor polygon of p(t) as control polygon (see
also [7], p. 173). Hence, we can state:

Proposition 3.5 Every Bézier curve can be represented as a B-spline curve.

In this sense B-spline curves can be seen as a generalization of Bézier curves. Addi-
tionally we have:

Proposition 3.6 Endpoint interpolation property. Let c be a B-spline curve with
some control polygon a0, . . . , an and a knot vector with knots of multiplicity k at
either end:

t0 = t1 = · · · = tk−1, tk, . . . , tn, tn+1 = tn+2 = · · · = tn+k (3.85)

Then the B-spline curve c has the endpoint interpolation property (see Figs.3.46 and
3.47):

• c starts at a0 and ends at an:

3.4 Freeform Curves 107

Fig. 3.46 Endpoint interpolation of a B-spline curve for n = 5 and k = 3

Fig. 3.47 Endpoint interpolation of a B-spline curve for n = 5 and k = 4

p(tk−1) = a0, p(tn+1) = an (3.86)

• c is tangent to the first edge a0a1 of the control polygon at the starting point and
to the last edge an−1an at its end point. More detailed, the tangent vectors in those
points are

.
p(tk−1) = k − 1

tk − tk−1
· (a1 − a0),

.
p(tn+1) = k − 1

tn+1 − tn
· (an − an−1) (3.87)

The k coinciding knots t0 = · · · = tk−1 enforces the B-spline curve to behave just
like a Bézier curve of degree k − 1 whose first two control points are a0 and a1—at
least up to the first derivative. The same holds for the end point.

Closed B-Spline Curves

A curve is generally called closed if its end point coincides with its starting point.
Such curves are also called loops. Other curves are called open.

B-splines can easily be adapted to deliver loops if desired. Not only can we manage
that the end point coincides with the starting point, we even can achieve that—at this

108 3 Geometric Fundamentals

point—the emerging curve is also Ck−2-continuous just as at any other knot point
p(ti). To this end we have to adapt the knot vector and make some arrangements:

Proposition 3.7 Closed B-spline curve. We start with a B-spline curve defined by
a de Boor polygon a0, . . . , an and a knot vector (t0, . . . , tn+k). First we continue
the control polygon periodically by putting an+i = ai−1 for i = 1, . . . , k − 1.
Additionally, the knot vector is continued by adding k − 1 new knots in the following
way:

tn+k+i = tn+k − tk−1 + tk−1+i , i = 1, . . . , k − 1 (3.88)

Then the B-spline curve c defined by the control polygon a0, . . . , an+k−1 and the knot
vector t0, . . . , tn+2k−1 is a closed curve. The parameter interval for one complete
round is [tk−1, tn+k]. We have p(tk−1) = p(tn+k); even the derivatives up to order
k − 2 coincide at tk−1 and tn+k . The bonding point p(tk−1) = p(tn+k) behaves just
like any other junction point p(ti).

Engineering applications often call for closed curves which are all but seamless.
This is exactly what such B-spline applications are capable of. Adapting the order k

Fig. 3.48 Closed B-spline curve c for n = 5 and k = 3. The number of points being repeated at
the end of the de Boor polygon is k − 1 = 2. The bonding point is p(t2) = p(t8)

Fig. 3.49 Closed B-spline curve c for n = 5 and k = 4. There are k − 1 = 3 de Boor points being
repeated at the end of the de Boor polygon. Apart from this, the de Boor polygon is the same as in
the example on the left. The bonding point of the curve is p(t3) = p(t9)

3.4 Freeform Curves 109

will easily allow for any desired degree of smoothness all over the loop. Figures 3.48
and 3.49 show two examples with C1- and C2-continuity even at the junction points.

3.4.3 Rational Freeform Curves, NURBS

Having selected an appropriate family of basis functions Fi (t), i = 0, . . . , n any
control polygon determines a freeform curve (see Definition 3.24). We now describe
the more general notion of rational freeform curves.

We consider a polygon a0, . . . , an in the [x, y]-plane:

ai =
[

ai,1
ai,2

]
, i = 0, . . . , n.

To define a rational freeform curve r(t) we choose one further value wi for every
control point ai . This additional real number is called the weight of the point ai . To
construct r(t) we apply the following three steps (see Fig. 3.50):

Step 1: We assume that the plane π containing the control polygon a0, . . . , an is
embedded into 3-space E3. We choose a spatial coordinate system Σ (origin
O∗, coordinate axes x0, x1, x2) in E3 so that the plane π of the control
polygon is given by π . . . x0 = 1. More precisely, a point p with coordinates
x, y in π has coordinates x0 = 1, x1 = x, x2 = y with respect to Σ .

Fig. 3.50 The planar rational freeform curve c . . . r(t) can be interpreted as the central projection
of an ordinary spatial freeform curve q(t)

110 3 Geometric Fundamentals

Step 2: Every point ai is now viewed as a 3-vector [1, ai,1, ai,2]�. Its weight wi shall
be used as the scale factor of a dilation from the center O∗. The dilation
gets ai into a point bi = [wi , wi ai,1, wi ai,2]�. This new point bi bears the
information of both, the coordinates of ai and its weight wi . The points
b0, . . . , bn form a new (spatial) polygon which can be used as a control
polygon of a spatial freeform curve

q(t) =
n∑

i=0

Fi (t) · bi , t ∈ [t0, t1] (3.89)

with basis functions Fi (t) as defined in (3.57), p. 86. Moreover, we require
that the Fi (t) are polynomial functions or at least consist of polynomial
segments.

Step 3: We now consider the central projection δ from the center O∗ into the plane
π . . . x0 = 1. A point q = [x0, x1, x2]� in 3-space with x0 �= 0 is mapped
to its image point p = [1, x1

x0
, x2

x0
]�. We omit the coordinate x0 = 1 and

put δ(q) = [x1
x0

, x2
x0

]� =: [x, y]�. The rational freeform curve r(t) is then
defined as the central projection of the ordinary (polynomial) freeform curve
q(t) into the plane π :

r(t) = δ(q(t)) =

n∑
i=0

Fi (t) · wi · ai

n∑
i=0

Fi (t) · wi

(3.90)

Summarizing we can give the following

Definition 3.33. Rational freeform curve. The rational freeform curve r(t) to a
given control polygon a0, . . . , an , given weights w0 �= 0, . . . , wn �= 0 and polyno-
mial basis functions F0(t), . . . , Fn(t) is defined by the parameterization (3.90).

Remark 3.10 The fore-mentioned recipe shows how to create a rational freeform
curve from an ordinary one.

(a) For the sake of clarity we started with a planar control polygon ai = [ai,1, ai,2]�,
i = 0, . . . , n to define a planar rational freeform curve. We can easily generalize
this concept to the case of a spatial rational freeform curve by starting with a
spatial control polygon ai = [ai,1, ai,2, ai,3]�, i = 0, . . . , n. Definition 3.33
is still valid, because adding a further coordinate does not change anything
significantly. We subsequently carry out a central projection. In the planar case
this projection led from the 3-space into the plane, whereas in case of spatial
rational freeform curves it leads from the 4-space containing q(t) into the 3-space
containing the resulting rational curve r(t).
The very reason why we initially confined ourselves to planar rational freeform
curves was that the interpretation as a central projection from 3-space to the
plane is easier to imagine.

3.4 Freeform Curves 111

(b) A rational freeform curve (3.90) is well-defined for all parameters t except for

the zeroes of the denominator
n∑

i=0
Fi (t) · wi .

(c) The weights wi which can additionally be chosen provide more leverage. The
range of curves which can be represented this way, is considerably wider than
with ordinary freeform curves.

How do the weight factors affect the curve shape? Of course, the answer depends
on the type of the freeform curve (i.e., Bézier curve, B-spline curve, etc.). But still
we can generally confirm:

Proposition 3.8 Properties of rational freeform curves. Let c . . . r(t) be a rational
freeform curve defined by the control polygon a0, . . . , an, the weights w0, . . . , wn

and the polynomial basis functions F0(t), . . . , Fn(t) according to (3.90).

1. The shape of c can be modified without altering the control polygon, just by
changing some of the weights wi .

2. Let w0, . . . , wn be positive. If one weight wi0 is increased to wi0 + Δ with Δ > 0
then c . . . r(t) turns into a new curve c∗ . . . r∗(t). Moreover, for every value t the
points r(t), r∗(t) and ai0 are collinear (see Fig.3.51).
If the functions Fi (t) are non-negative within their support interval15 we can even
observe that for a positive Δ the point r(t) moves towards ai0 . The new point r∗(t)
is closer to ai0 than r(t). More detailed we have

r∗(t) − r(t) = Fi0(t) · Δ∑n
i=0 Fi (t) · wi − Fi0(t) · Δ

(ai0 − r(t)) (3.91)

as can easily be verified.
Increasing the weight of a control point really puts more emphasis on this point.

3. Multiplying all weights with the same constant factor α �= 0 would not change
the resulting rational freeform curve: The common factor could be cancelled in
the denominator and numerator of (3.90).

4. If all weights wi are equal (w0 = · · · = wn = w �= 0) the rational freeform
curve is identical to the ordinary freeform curve p(t) = ∑n

i=0 Fi (t) · ai . This is
a consequence of the partition of unity (3.58) of the functions Fi (t):

r(t) =

n∑
i=0

Fi (t) · w · ai

n∑
i=0

Fi (t) · w
=

w ·
n∑

i=0
Fi (t) · ai

w ·
n∑

i=0

Fi (t)

︸ ︷︷ ︸
=1

=
n∑

i=0

Fi (t) · ai .

15 Bézier and B-spline curves are defined by basis functions with this handy property. So rational
Bézier or rational B-spline curves comply with this rule.

112 3 Geometric Fundamentals

Fig. 3.51 Rational Bézier
curve c of degree 2. Increasing
the weight w1 to w1 + Δ

delivers a different rational
Bézier curve c∗. Increasing
the weight w1 moves every
point towards the control
point a1

Fig. 3.52 A rational Bézier
curve of order 2 with weights
w0, w2 = 1 at the entpoints.
Depending on the weight w1
we c an create an ellipse, a
parabola or a hyperbola c

In this paragraph we have addressed rational freeform curves in a general context.
This is to say that we have not specified the defining family Fi (t), i = 0, . . . , n of
polynomials. Whenever we go for a particular family of such functions we possibly
can render more details of the corresponding rational freeform curve.

Rational Bézier Curves

Remember the Bernstein polynomials Bi,n(t) of degree n see Definition 3.25, p. 87).
Specifying Fi (t) = Bi,n(t) we obtain the parameterization of a rational Bézier curve:

r(t) =

n∑
i=0

Bi,n(t) · wi · ai

n∑
i=0

Bi,n(t) · wi

(3.92)

Ordinary (polynomial) Bézier curves bring about lots of limitations. Even in the
case n = 2 these limitations become obvious. Every polynomial Bézier curve of
degree n = 2 is some part of a parabola (see Theorem 3.6, p. 85).

3.4 Freeform Curves 113

It is impossible to represent the other types of regular 2nd order curves (hyper-
bolae, ellipses, and esp. circles) as polynomial Bézier curves. We now use rational
Bézier curves to fill this gap. This will be feasible as arcs of circles, ellipses or
hyperbolae can be parameterized by rational functions.

As every rational curve of degree 2 represents a planar16 algebraic curve of order
2 (see Sect. 3.3.9, p. 82), a rational Bézier curve c of degree 2 is an arc of a parabola, a
hyperbola or an ellipse (circles included) whenever the three control points a0, a1, a2
are not collinear. If they are collinear c is a straight line segment.

The general representation of a rational Bézier curve c of degree 2 is

r(t) =

2∑
i=0

Bi,2(t) · wi · ai

2∑
i=0

Bi,2(t) · wi

= (1 − t)2 · w0 · a0 + 2 · t · (1 − t)2 · w1 · a1 + t2 · w2 · a2

(1 − t)2 · w0 + 2 · t · (1 − t)2 · w1 + t2 · w2
. (3.93)

Proposition 3.9 Conics as rational Bézier curves. Let c be a rational Bézier curve
of degree 2 with the parameterization (3.93) and let moreover w0 = w2 = 1 (cf.
Fig.3.52).

Then c is an arc of

⎧⎨
⎩

an ellipse if 0 < w1 < 1.

a parabola if w1 = 1.

a hyperbola if w1 > 1.

⎫⎬
⎭

Now we can easily offer a (rational) Bézier representation of any circular arc:

Proposition 3.10 Circular arcs as rational Bézier curves. Let c be a circular arc
centered in m with radius r and endpoints a0, a2. Let ϕ < π be the central angle of
c and let a1 be the intersection point of the tangents at a0 and a2 (see Fig.3.53).

If we choose the weights w0 = w2 = 1 and put w1 = cos ϕ
2 for a rational Bézier

curve r(t) of degree 2 then r(t) is a parametric representation of the given circular
arc c.

The interpretation of rational freeform curves (or particularly rational Bézier
curves) as central projections of ordinary freeform curves put us in the position
to assess the effect of increasing or reducing the weights. In the same ways we can
interpret the effect of positive or negative weights. But all the same, we confine
ourselves to positive weights.

r(t) be a (planar) rational Bézier curve, obtained by central projection of the (ordi-
nary) spatial Bézier curve q(t). If all the weights wi are positive the control polygon
of q(t) is entirely contained in the upper half space x0 > 0. Owing to the convex hull
property (Proposition 3.2, 5., p. 89) the same thing holds for the curve q(t) itself.

16 Note that any rational curve of degree 2 is necessarily planar.

114 3 Geometric Fundamentals

Projecting the points of q(t) centrally from the origin O∗ onto the plane π : x0 = 1
is trouble-free; the denominator in (3.92) has no zeroes within the interval [0, 1].

If there is some weight wi < 0, though, we cannot guarantee this any more. It
may well happen that for some particular points on q(t) the denominator in (3.92)
vanishes. The projection ray is parallel to the image plane x0 = 1 and thus intersects
in a point at infinity of the resulting rational Bézier curve r(t). In the computation
such singular cases have to be addressed adequately.

Nevertheless, in some cases negative weights may well be useful, as the following
proposition shows.

Proposition 3.11 Complementary conic arcs. We consider a rational Bézier curve
r(t) of degree 2. Its weights be w0 = w2 = 1 and w1 > 0 (see Fig.3.54). Due to
Proposition 3.9 the arc r(t) lies on a conic section c. Replacing the weight w1 by
w∗

1 = −w1 we obtain another rational Bézier arc r∗(t) with the same endpoints a0,
a2 (see Fig.3.54). We have:

r∗(t) and r(t) are complementary arcs on the same conic section c.

This can particularly be applied to circular arcs described in Proposition 3.10.
Replacing w1 = cos ϕ

2 by w1 = − cos ϕ
2 amounts to the same thing as replacing ϕ

by 2π − ϕ.

Fig. 3.53 Circular arc, rep-
resented as a rational Bézier
curve c: w0 = w2 = 1, w1 =
cos ϕ

2

Fig. 3.54 Two complemen-
tary arcs r(t) and r∗(t) on a
conic section c, represented as
rational Bézier curves

3.4 Freeform Curves 115

Rational B-Spline Curves, NURBS

As we could already see the B-spline curves are an extremely versatile tool for the
engineer. We now extend this concept to rational B-spline curves which even gives
us a lot of additional options.

Definition 3.34. Rational B-spline curve. Let a (planar or spatial) control polygon
a0, . . . , an , weight factors w0, . . . , wn be given. Let Ni,k(t), i = 0, . . . , n be the B-
spline basis functions belonging to the knot vector (t0, t1, . . . , tn, tn+1, . . . , tn+k).
Then we call

r(t) =

n∑
i=0

Ni,k(t) · wi · ai

n∑
i=0

Ni,k(t) · wi

(3.94)

the corresponding rational B-spline curve.

Fig. 3.55 Two closed ratio-
nal B-spline curves c and
c∗ with k = 4. As for c
(grey) all weights wi = 1,
so c is an ordinary B-Spline
curve (see Proposition 3.8,
4., p. 111). For c∗ (black) the
weights w0, w2, w4 have been
increased to 3

Fig. 3.56 Two B-spline
curves c and c∗. Here, the
weights of c (grey) remained
untouched. The variation c∗
(black) is due to a modification
of the knot vector

116 3 Geometric Fundamentals

The knot vector of a rational B-spline curve can be uniform or non-uniform (see
Definition 3.31, p. 103).

Definition 3.35. NURBS. Rational B-spline curves with non-uniform knot vectors
are generally called NURBS (Non-Uniform Rational B-Spline).

NURBS offer lots of parameters to control the shape: Apart from modifying the
de Boor polygon the user can subtly change the weights or the knot vector. This
versatility may be the reason why NURBS have emerged as one of the standard
tools in CAD and graphics. Figures 3.55 and 3.56 illustrate some of the options of
modification applied to closed B-spline curves.

3.5 Univariate Interpolation

Interpolation deals with the problem of finding a function (out of a given preselected
class) which adopts certain prescribed data. If the function to be found depends on
one variable the task is called univariate interpolation. The following interpolation
problem frequently occurs in practical applications:

Problem 3.1 Univariate interpolation of real values. Let parameter values s0 <

· · · < sn ∈ R within a closed interval [a, b] be given as well as n + 1 corresponding
values c0, . . . , cn ∈ R (see also Fig. 3.57). Moreover let F be a linear space17 of
continuous functions on [a, b]. We further demand18: dim F = n + 1.

Find a function p(t) ∈ F such that

p(s j) = c j , j = 0, . . . , n. (3.95)

The problem can be addressed as follows. We choose a basis {F0(t), . . . , Fn(t)} in
F ; then the interpolating function p(t) to be found must have a unique representation
of the form

p(t) =
n∑

i=0

Fi (t) · ai . (3.96)

Substituting this representation into the interpolation conditions (3.95) we obtain the
n + 1 linear equations

17 This means that F has the structure of a vector space: With F1(t), F2(t) ∈ F and λ ∈ R the
functions F1(t) + F2(t) and λ · F1(t) also belong to F . The set F is closed with respect to sums
and scalar multiples.
18 This is equivalent to the existence of a basis {F0(t), . . . , Fn(t)} consisting of n + 1 elements.

3.5 Univariate Interpolation 117

n∑
i=0

Fi (s j) · ai = c j , j = 0, . . . , n (3.97)

in the n + 1 yet unknown coefficients ai .
We can easily rewrite (3.97) in matrix form as follows:

⎡
⎢⎣

F0(s0) . . . Fn(s0)
...

...

F0(sn) . . . Fn(sn)

⎤
⎥⎦ ·
⎡
⎢⎣

a0
...

an

⎤
⎥⎦ =

⎡
⎢⎣

c0
...

cn

⎤
⎥⎦ (3.98)

At this point it is clear that the interpolation task has a unique solution if and only if
the coefficient matrix

F :=
⎡
⎢⎣

F0(s0) . . . Fn(s0)
...

...

F0(sn) . . . Fn(sn)

⎤
⎥⎦ (3.99)

of the linear system is invertible, i.e., det F �= 0. In that case the solution is

⎡
⎢⎣

a0
...

an

⎤
⎥⎦ = F−1 ·

⎡
⎢⎣

c0
...

cn

⎤
⎥⎦ . (3.100)

The following concept proves particularly helpful.

Definition 3.36. Chebyshev space. Let F be a linear space of continuous functions
on an interval [a, b] with dim F = n + 1.

Fig. 3.57 Nine values c0, . . . , c8 are prescribed. The curve c is the solution to the Interpolation
Problem 3.2 in the space R8[t] of polynomials of degree 8

118 3 Geometric Fundamentals

1. F is called a Chebyshev space19 if for any basis {F0(t), . . . , Fn(t)} of F and
for any series s0 < s1 < · · · < sn of real values in the interval [a, b] the matrix
F (Eq. (3.99)) is invertible.

2. Any basis of a Chebyshev space is called a Chebyshev system.

We mention a few valuable characterizations of Chebyshev spaces:

Theorem 3.7. Characterization of Chebyshev spaces. Let the assumptions of Def-
inition 3.36 be fulfilled. The following items are equivalent:

1. F is a Chebyshev space.
2. Every function p(t) in F has no more than n zeroes in [a, b].
3. Every interpolation task akin to Problem 3.1 has a unique solution in F .

Example 3.10 We consider the linear space Rn[t] of polynomials of degree ≤ n (see
Sect. 3.2, pp. 65), however viewed as continuous functions on the interval [a, b]. This
is a Chebyshev space of dimension n +1. We have already got to know two different
bases of this space: the monomial basis {1, t, t2, . . . , tn} and the Bernstein basis
{B0,n(t), . . . , Bn,n(t)} (see p. 87). Problem 3.1 has a unique solution in Rn[t]. Any
choice of a basis in Rn[t] delivers an approach. Each of such approaches, of course,
leads to the same solution. The key of the matter is the coefficient matrix F (Eq. (3.99))
whose inverse delivers the solution (3.100).

This matrix F, however, depends on the choice of the basis. The monomial basis,
for one, delivers the so-called Vandermonde-Matrix

F =
⎡
⎢⎣

1 s0 . . . sn
0

...
...

1 sn . . . sn
n

⎤
⎥⎦ (3.101)

whose determinant is

det F =
∏

0≤i< j≤n

(s j − si) �= 0.

It would be a quite natural question whether there is a basis of Rn[t] such that F
is the unit matrix. This question will be answered positively in Sect. 3.5.1.

Example 3.11 The space of trigonometric functions spanned by the functions B =
{1, sin t, cos t, sin(2t), cos(2t), . . . , sin(nt), cos(nt)} on the interval [0, 2π] is a
Chebyshev space of dimension 2n + 1 and B is a basis.

The interpolation of values ci ∈ R can easily be generalized to the interpolation
of data in a k-dimensional space. The following problem deals with the case k = 2
and k = 3.

19 Named after the Russian mathematician Pafnuty Lvovich Chebyshev (1821–1894). Sometimes
these spaces are also called Haar spaces after the Hungarian mathematician Alfred Haar (1885–
1933).

3.5 Univariate Interpolation 119

Problem 3.2 Univariate interpolation of points. Let n +1 points c0, . . . , cn in the
plane or in 3-space and corresponding parameter values s0 < · · · < sn in a closed
interval [a, b] be given. Furthermore let F be a linear space of continuous functions
on [a, b] as in Problem 3.1. Let {F0(t), . . . , Fn(t)} be a basis of F .

Find a curve of the form

p(t) =
n∑

i=0

Fi (t) · ai (3.102)

interpolating the given data, i.e.,

p(s j) = c j , j = 0, . . . , n. (3.103)

The solution is given by

Proposition 3.12 Solvability of the interpolation problem. If the matrix F defined
by (3.99) is invertible there is a unique solution to Problem 3.2; the coefficient vectors
ai belonging to this solution are20

⎡
⎢⎣

a0
...

an

⎤
⎥⎦ = F−1 ·

⎡
⎢⎣

c0
...

c0

⎤
⎥⎦ . (3.104)

Remark 3.11 To compute the inverse to a large matrix F can sometimes be numeri-
cally challenging. Depending on the entries of the matrix large sets of input data—in
special cases—may even render the method inapplicable.

3.5.1 Lagrange Interpolation

In case of the polynomial space F = Rn[t] the most traditional approach to Problem
3.2 is owing to J.-L. Lagrange.21

For a given knot vector (s0, s1, . . . , sn) we consider the set {L0,n(t), . . . , Ln,n(t)}
of polynomials in Rn[t] defined by

Li,n(t) =
n∏

k=0
k �=i

t − sk

si − sk
, i = 0, . . . , n. (3.105)

They are called Lagrange polynomials; they form a basis of Rn[t], the so-called
Lagrange basis. Moreover, we have

20 Of course, one has to interprete Eq. (3.104) for every coordinate of the vectors ai , ci separately!
21 Joseph-Louis Lagrange (1736–1813) was a French mathematician who also contributed to ana-
lytical mechanics and mathematical physics.

120 3 Geometric Fundamentals

Fig. 3.58 The Lagrange solution to Interpolation Problem 3.2 with input points c0, . . . , c7 and a
uniform knot vector s0, . . . , s7. The resulting interpolation curve c is C∞ all over its domain

Li,n(s j) =
{

0 if j �= i
1 if j = i

}
. (3.106)

This is a stunning result as it simply implies that the matrix F (see (3.99)) is the unit
matrix. Hence, using the Lagrange basis the straightforward solution to Problem 3.2 is

ai = ci , i = 0, . . . , n.

with respect to the Lagrange basis the polynomial interpolation curve for the given
input data can be written as

p(t) =
n∑

i=0

Li,n(t) · ci . (3.107)

The solution to this task certainly does not depend on the chosen basis. But still, the
choice of the basis has an impact on the computational cost. The Lagrange basis is
optimal in this sense; inverting the matrix F can be avoided in the first place. Though
the solution curve is unaffected by the used basis, it traditionally is named Lagrange
interpolation curve. Figure 3.58 gives an example of a Lagrange interpolation curve
to a given set of input points. A uniform knot vector has been chosen for this task.

Aitken’s Algorithm

Remember that Bézier curves can conveniently be evaluated by the de Casteljau
algorithm. The de Boor algorithm similarly does a good job for B-spline curves.
We now describe a geometric algorithm22 called Aitken’s algorithm to obtain the
Langrange interpolation curve (see Fig. 3.59). Again, it is based on repeated subdi-
vision of straight line segments (see also [8], pp. 67–70). The whole algorithm can
be observed in Fig. 3.59.

Algorithm 3.3. Aitken’s algorithm. Let n +1 points a0, . . . , an and the parameter
values s0 < · · · < sn of a Lagrange interpolation curve (3.107) be given. In order

22 This algorithm is due to Alexander Craig Aitken (1895–1967), a mathematician from New
Zealand.

3.5 Univariate Interpolation 121

Fig. 3.59 Aitken’s algorithm for n = 3. It consists of successive subdivision, starting with the given
points a0, a1, a2, a3 (right). The ratio of subdivision is to be computed from the given parameter
values s0, s1, s2, s3 as indicated (left). The algorithm results in the point b0,3 = p(t) ∈ c

to obtain the point p(t) on this curve belonging to the parameter value t ∈ [s0, sn]
we take the following steps:

1. Rename bi,0 := ai for i = 0, . . . n.
2. For l = 1, . . . , n and i = 0, . . . , n − l compute the points

bi,l(t) := (1 − α(t, i, l)) · bi,l−1(t) + α(t, i, l) · bi+1,l−1(t)

with

α(i, l, t) = t − si

si+l − si
,

successively (see scheme (3.108)).
3. The desired point eventually shows up at the right top end of scheme (3.108):

p(t) = b0,n.

b0 b0,1 ∗ ∗ ∗ b0,n−1 b0,n = p(t)
b1 b1,1 ∗ ∗ ∗ b1,n−1
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ bn−1,1
bn

(3.108)

A graphic proof to this handy geometric algorithm can be found in ([8], pp. 67).

122 3 Geometric Fundamentals

Fig. 3.60 The Lagrange interpolation curve c to a given set of points c0, . . . , c7 and a uniform knot
vector s0, . . . , s7. In this case the solution curve c shows considerable oscillation. For comparison,
the curve c∗ (double line) indicates what the user might have expected

We summarize that a Lagrange interpolation curve can easily be computed or—if
desired—be constructed geometrically via Aitken’s algorithm. The number of input
points determines the polynomial degree: n + 1 points imply an interpolation curve
of degree n. We though have to admit that this also entails one significant drawback:
High degree polynomial curves are prone to oscillation. So, if the number of input
points is large we may get undesired phenomena (Fig. 3.60). Even though Lagrange
interpolation delivers a smooth (C∞) solution we have to face the fact that—in
particular cases—it may not be the right tool.

The following section is some kind of trade-off: We avoid any tendency to oscil-
lation by confining ourselves to polynomial curves of degree 3. On the other hand we
have to make do with C1-continuity at the junction points of the resulting subspline
curve. However, in the subsequent paragraph we will improve the continuity to C2,
obtaining a cubic spline curve solution.

3.5.2 Interpolation by Cubic Segments

C2-continuity means that apart from the common first derivative vector at the junction
points there is also a second derivative vector that both adjacent segments have in
common. In terms of geometry C2-continuity means that the segments have the same
tangent and the same curvature at their junction point. So, the visual impression
of C2-splines is indeed compelling. A spline curve with cubic segments delivers
C2-continuity even at the knots (see Definition 3.28). Later in this section we will
provide such cubic splines solving the interpolation problem.

In many instances even a cubic subspline with C1-continuity will do the job: The
derivative vectors at the junction point of two consecutive segments are identical.
One simple way of constructing a cubic interpolating subspline curve was suggested
by A.W. Overhauser,23 [14]:

23 Albert W. Overhauser, born 1925 in San Diego, California is an American physicist.

3.5 Univariate Interpolation 123

Fig. 3.61 We put i = 1 in (3.110). The Overhauser subspline segment is constructed as a linear
blending of parabola arcs p0,1,2(t) and p1,2,3(t). The blending curve p(t) inherits the tangent vector
from p0,1,2(t) at s1 and the tangent vector from p1,2,3(t) at s2. This way the resulting subspline
segments join C1-continuously at their junction points

Fig. 3.62 Overhauser subspline as a solution to the Interpolation Problem 3.2. The different seg-
ments (black and white, alternately) are joined C1-continuously. They are generated as explained in
(3.110) and illustrated in Fig. 3.61. For comparison, the thin grey curve c∗ is the Lagrange solution
with a uniform knot vector

Interpolation by Overhauser Subsplines

We first introduce the concept of linear blending of two curves. Let p1(t) and p2(t)
be the parameterizations of two curves on an interval [s1, s2]. The linear blending of
p1(t) and p2(t) is defined as the curve

p(t) = s2 − t

s2 − s1
p1(t) + t − s1

s2 − s1
p2(t). (3.109)

If we apply linear blending (3.109) to the curves p1(t) and p2(t) and additionally
assume that p1(s1) = p2(s1) and p1(s2) = p2(s2), the resulting blending curve p(t)
inherits its tangent vectors at t = s1 from p1 and at t = s2 from p2. This is the basic
idea for the following construction of Overhauser subsplines (Figs. 3.61 and 3.62).

We now introduce a simple but efficient algorithm to construct interpolation curves
capable of coping with large numbers of input points without unwanted oscillation.

124 3 Geometric Fundamentals

Definition 3.37. Overhauser subspline. Let n + 1 points c0, . . . , cn and corre-
sponding parameter values s0, . . . , sn be given. Let pi,i+1,i+2(t) denote the Lagrange
interpolation curve to the input data ci , ci+1, ci+2 and si , si+1, si+2. Then the curve
p(t) defined by

p(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p0,1,2(t) if t ∈ [s0, s1]
si+1−t
si+1−si

pi−1,i,i+1(t) + t−si
si+1−si

pi,i+1,i+2(t) if t ∈ [si , si+1],
i = 1, . . . , n − 2

pn−2,n−1,n(t) if t ∈ [sn−1, sn]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(3.110)

is called Overhauser subspline.

Proposition 3.13 Properties of Overhauser subsplines.

1. The first segment of an Overhauser subspline curve (relating to the interval [s0, s1]
is a Lagrange interpolation curve of degree 2, i.e., a parabola segment. The same
holds for the last segment.

2. The intermediate segments (relating to the intervals [si , si+1], i = 1, . . . , n − 2)
are linear blendings of parabola segments. Thus they are cubic curves (polynomial
curves of degree 3).

3. At their junction point adjacent segments meet with C1-continuity, i.e., they have
a common first derivative vector.

Overhauser supsplines are capable of interpolating a large number of input points
without being susceptible to unwanted oscillation effects.

The only downside to this useful algorithm is that it merely delivers C1-continuity.
However, this limitation can also be overcome by resorting to non-linear blending
of higher degree elements (see [15]).

Hermite Interpolation

In this paragraph we describe another truly classical solution to the interpolation
problem. It employs cubic spline segments which are joined to a C1-subspline curve.

Hermite interpolation starts with a set of points to be interpolated and—
additionally—a set of derivative vectors at the given points to be adopted.

The restriction to low degree spline elements avoids oscillation in the first place.
In the subsequent paragraph we will even be able to modify the approach and deliver
a C2-spline solution with cubic segments.

Problem 3.3 Hermite interpolation.24 Let a set of points c0, . . . , cn , a set of cor-
responding parameter values s0 < · · · < sn and a corresponding set t0, . . . , tn of
derivative vectors be given (Fig. 3.63).

24 Charles Hermite (1822–1901) was a French mathematician who particularly contributed to the
fields of number theory and algebra.

3.5 Univariate Interpolation 125

Fig. 3.63 Hermite interpolation problem: the points c0, c1, c2, c3, the corresponding derivative
vectors t0, t1, t2, t3 and the knot vector s0, s1, s2, s3 are given. The sections of the emerging Hermite
solution curve c are marked in black and white. The same input, however with different derivative
vectors t∗1 = 2 · t1 and t∗2 = 2 · t2, delivers the solution c∗ (grey)

Find a curve p(t) consisting of cubic segments such that for every j = 0, . . . , n:

p(s j) = c j (3.111)
.
p(sj) = t j (3.112)

Basically, this task is taken on separately for every single interval [s j , s j+1]: A
cubic curve p j (t) is uniquely determined by prescribing two points c j , c j+1 and the
corresponding derivative vectors t j , t j+1 at the respective parameters s j , s j+1.

We represent the desired curve as a cubic Bézier curve on the interval [s j , s j+1]
(compare with (3.72), p. 92):

p j (t) =
3∑

i=0

B
[s j ,s j+1]
i,3 (t) · a j,i (3.113)

A Bézier curve interpolates the first and the last point of its control polygon, so
from (3.111) we get:

a j,0 = c j , a j,3 = c j+1 (3.114)

According to (3.74), p. 92 the derivative vectors of this segment at the starting
point and at the end point are:

126 3 Geometric Fundamentals

.
p j (s j) = 3

Δ j
· (a j,1 − a j,0),

.
p j (s j+1) = 3

Δ j
· (a j,3 − a j,2)

where Δ j = s j+1 − s j .
As we are also given the prescribed derivative vectors t j , t j+1 at s j , s j+1 according

to (3.112) we obtain:

a j,1 = c j + Δ j

3
· t j , a j,2 = c j+1 − Δ j

3
· t j+1 (3.115)

Inserting (3.114) and (3.115) into (3.113) perfectly conveys the representation of
the cubic segment to the interval [s j , s j+1]. In terms of the input data this formula
can be rewritten as

p j (t) = Hj,0(t) · c j + Hj,1(t) · t j + Hj,2(t) · t j+1 + Hj,3(t) · c j+1 (3.116)

where the functions

Hj,0(t) = 1

Δ3
j

· (s j+1 − t)2 · (2t + s j+1 − 3s j),

Hj,1(t) = 1

Δ2
j

· (t − s j) · (s j+1 − t)2,

Hj,2(t) = − 1

Δ2
j

· (t − s j)
2 · (s j+1 − t),

Hj,3(t) = 1

Δ3
j

· (t − s j)
2 · (−2t + 3s j+1 − s j)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.117)

are the classical cubic Hermite polynomials on the support interval [s j , s j+1].
Remark 3.12 The Hermite interpolation problem can also be solved if higher order
derivative vectors at the junction points are prescribed. In this case more than
C1-continuity can be achieved (see [8], pp. 79–80, [7], pp. 96–98). An explicit for-
mula for Hermite interpolants with various numbers of given higher order derivatives
at the knots can be found in [16], p. 121.

In the next paragraph the option of preselecting the tangent vectors at every data
point will be discarded in exchange for higher smoothness at the junction points.

3.5 Univariate Interpolation 127

Fig. 3.64 C1-continuity as opposed to C2-continuity. Left interpolation by Overhauser subsplines
delivers spline segments joined C1-continuously. In the figure this is illustrated for the junction point
c1: the two segments joined at c1 have the same tangent vector t1 whilst the second derivative vectors
b1 and b∗

1 are different. The osculating circles k1 and k∗
1 of the two segments are also different;

the curvature changes abruptly at the junction point. Right the Hermite approach as explained in
this section delivers a C2-continuous interpolation curve. Even at the junction points (in the figure
illustrated for c1) the first derivative vectors of the two segments coincide, and so do the second
derivative vectors and the osculating circles. The curvature varies smoothly all over the interpolation
curve, even at the junction points

Cubic Spline Interpolation: The Hermite Approach

Cubic segments are well capable of delivering more than C1-continuity at the junction
points. Figure 3.64 highlights the difference between C1- and C2-continuity.

Generally speaking, segments of degree k with k − 1-continuity are the hall-
mark of proper splines (see Definition 3.28, p. 99). The case k = 3 can already
deliver curvature-continuity (i.e., C2-continuity) of consecutive spline segments in
their junction points which is—in most applications—just right. We now solve the
interpolation problem by splines of degree k = 3 (cubic splines).

Problem 3.4 Cubic spline interpolation. Let a set of points c0, . . . , cn (in 3-space
or the plane) and a set of corresponding parameter values s0 < · · · < sn be given. Find
a cubic spline curve p(t), t ∈ [s0, sn] with the knot vector (s0, . . . , sn) interpolating
the given data, i.e.,

p(s j) = c j , j = 0, . . . , n. (3.118)

The following strategy is based on Hermite interpolation (see above):

• We record the representation of the j th segment of the desired cubic spline inter-
polant represented in terms of the Hermite polynomials

128 3 Geometric Fundamentals

p j (t) = Hj,0(t) · c j + Hj,1(t) · t j + Hj,2(t) · t j+1 + Hj,3(t) · c j+1, (3.119)

j = 0, . . . , n − 1

with yet unknown derivative vectors t j , t j+1 at the knots s j , s j+1; those vectors
are still to be computed.

• As we go for C2-continuity we set up the conditions

..
p j (s j+1) = ..

p j+1(s j+1), j = 0, . . . , n − 2. (3.120)

This is a system of n −1 linear equations for the n +1 unknown vectors t0, . . . , tn .
• We have two more unknown vectors than equations, so we are still to add two

more conditions. At this point we have several alternatives how to go ahead. We
describe two (standard) options of continuing the computation:

(a) We prescribe the derivative vectors t0, tn at either endpoint c0 and cn in the
following way:
The first three points c0, c1, c2 uniquely determine a Lagrange interpolation
curve according to (3.107), p. 120, which is—in this case—a parabola. Its
tangent vector at c0 can easily be computed by

t0 = γ0 · c0 + γ1 · c1 + γ2 · c2 (3.121)

with

γ0 := − 2Δ0 + Δ1

Δ0(Δ0 + Δ1)
, γ1 := Δ0 + Δ1

Δ0Δ1
, γ2 := − Δ0

(Δ0 + Δ1)Δ1
.

We equally have

tn = γn−2 · cn−2 + γn−1 · cn−1 + γn · cn (3.122)

for the tangent vector at cn with the abbreviations

γn−2 := Δn−1

Δn−2(Δn−2 + Δn−1)
, γn−1 := −Δn−2 + Δn−1

Δn−2Δn−1
,

γn := 2Δn−1 + Δn−2

(Δn−2 + Δn−1)Δn−1
.

Adding these two conditions the final system of linear equations reads as25

D ·
⎡
⎢⎣

t0
...

tn

⎤
⎥⎦ = D̃ ·

⎡
⎢⎣

c0
...

cn

⎤
⎥⎦ (3.123)

25 Equation (3.123) has to be interpreted for each coordinate of the vectors ti , ci separately, so it
basically consists of three equations.

3.5 Univariate Interpolation 129

with the matrices D, D̃:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
Δ1 2(Δ0 + Δ1) Δ0 0
0 Δ2 2(Δ1 + Δ2) Δ1
...

. . .
. . .

. . .
...

0
... Δn−1 2(Δn−2 + Δn−1) Δn−2
0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.124)

D̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 γ1 γ2 0 . . . 0

−3 Δ1
Δ0

3(
Δ1
Δ0

− Δ0
Δ1

) 3 Δ0
Δ1

0

0 −3 Δ2
Δ1

3(
Δ2
Δ1

− Δ1
Δ2

) 3 Δ1
Δ2

...
. . .

. . .
. . .

...

0
... −3 Δn−1

Δn−2
3(

Δn−1
Δn−2

− Δn−2
Δn−1

) 3 Δn−2
Δn−1

0 . . . γn−2 γn−1 γn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.125)

(b) We offer another proposal how to add two additional constraints by simply
demanding

..
p0(s0) = ..

pn−1(sn) = 0. (3.126)

Owing to these conditions the resulting interpolation curve has points of inflec-
tion at its endpoints. Interpreting the curve as a flexible beam (Sect. 3.4.2,
p. 99) this means that outside the support interval there are no forces exerted
to the beam. At each endpoint it behaves as though it was continued as a
straight line.
If we apply these conditions (3.126) instead of the aforementioned the first
and the last row in matrix D have to be replaced by

2Δ0,Δ0, 0, , 0,

0, , 0, Δn−1, 2Δn−1.

Furthermore the first and last row of D̃ have to be replaced by

−3, 3, 0, , 0,

0, , 0,−3, 3.

130 3 Geometric Fundamentals

• The tridiagonal matrix D is invertible in both cases a) and b). The reason for this is
that D is main diagonal dominant: In every row the element in the main diagonal is
greater than the other entries of the same row. The solution to (3.123) is given by26

⎡
⎢⎣

t0
...

tn

⎤
⎥⎦ = D−1 · D̃ ·

⎡
⎢⎣

c0
...

cn

⎤
⎥⎦ . (3.127)

• Having found all the tangent vectors t j , j = 0, . . . , n we can easily finish the task:
The j th segment p j (t) of the required cubic spline curve is determined by the
given points c j , c j+1 and the just computed tangent vectors t j , t j+1. Its explicit
representation is (3.119), p. 128.

Figure 3.65 shows an example of cubic Hermite spline interpolation.

Physical Interpretation of Cubic Spline Interpolation

The first time that we referred to the use of flexible beams passing through given
points, was at the beginning of Sect. 3.4.2, p. 99. The Interpolation Problem 3.2,
p. 119, is closely related to this task. If we force such a beam through given points it
will try to assume a balanced state. The beam p(t) minimizes the linearized bending
energy

E = c ·
∫

κ2(s)ds = c ·
∫

‖p′′‖2ds (3.128)

where c is a constant, s denotes the arc length on p(t) and primes denote differentia-
tion with respect to s (compare with (3.38), p. 78). We can state (without going into
details):

Among all curves through the given points ci it is the cubic spline curve which
minimizes the bending energy E . This means that this curve roughly behaves like a
flexible beam through these points.

Cubic Spline Interpolation: The B-Spline Approach

In this paragraph we describe another way of solving Problem 3.4, p. 127. The
resulting interpolation curve is the same as it is uniquely determined by the input
and thus independent of the way how to get there.

For the approach at hand we use the cubic B-spline basis functions Ni,4(t) (Def-
inition 3.29, p. 100). In contrast to the Hermite approach we compute the control

26 The inverse of a tridiagonal matrix can for instance be computed by the method suggested in
[17] though we do not recommend going this way. Instead we opt for the numerically stable Gauss-
Jordan method with pivoting for solving the linear equation system (3.123) which is a standard
mathematical tool.

3.5 Univariate Interpolation 131

Fig. 3.65 Cubic Hermite splines deliver a C2-continuous interpolation curve to the given data
points c0, . . . , c9. Note that at each junction point the spline segments (marked in black and white,
alternately) have identical first and second derivative vectors (named ti and bi in the figure). The
common osculating circle ki of adjacent segments at the junction point ci is also shown. At the
endpoints we went for option (3.126): the second derivative vectors at either end (b0 and b9) vanish

points ai of the resulting B-spline curve p(t) directly (without computing the tangent
vectors at the knots si beforehand).

We generally demand that the knots t0, . . . , tm, . . . , tm+k of the B-spline curve
p(t)—which is meant to be our solution—coincide with the interpolation knots s j .
As we use a cubic B-spline curve p(t) we have to put k = 4; the support interval of
p(t) has to be [t3 = s0, tm+1 = sn]. The appropriate knot vector is

t0, t1, t2, t3 = s0, . . . , tn+3 = sn, tn+4, tn+5, tn+6. (3.129)

We intend to compute the control points ai of the cubic B-spline curve

p(t) =
n+2∑
i=0

Ni,4(t) · ai , t ∈ [s0, sn]. (3.130)

The free knots t0, t1, t2 and tn+4, tn+5, tn+6 at either end can be chosen arbitrarily.
We suggest t0 = t1 = t2 = t3 = s0 and sn = tn+3 = tn+4 = tn+5 = tn+6 which—by
the way—does not affect the final outcome.

This choice, on the other hand, brings about one convenient side-effect (see Propo-
sition 3.6, p. 106): For the first and the last control point we have

a0 = p(s0) = c0,

an+2 = p(sn) = cn .

}
(3.131)

The remaining conditions for the points c j to be interpolated at s j are:

132 3 Geometric Fundamentals

p(s j) =
n+2∑
i=0

Ni,4(s j = t j+3) · ai , = c j , j = 1, . . . , n − 1 (3.132)

Due to ((Proposition 3.3, 4.), p. 100), there are only three non-zero terms in every
sum of (3.132) as we have:

N j,4(t j+3) · a j + N j+1,4(t j+3) · a j+1 + N j+2,4(t j+3) · a j+2, = c j ,

j = 1, . . . , n − 1 (3.133)

The non-vanishing values N j,4(t j+3), N j+1,4(t j+3), N j+2,4(t j+3) can directly be
expressed in terms of the knots ti :

N j,4(t j+3) = (t j+4 − t j+3)
2

(t j+4 − t j+1)(t j+4 − t j+2)

N j+1,4(t j+3) = (t j+3 − t j+1)(t j+4 − t j+3)

(t j+4 − t j+1)(t j+4 − t j+2)
+ (t j+5 − t j+3)(t j+3 − t j+2)

(t j+5 − t j+2)(t j+4 − t j+2)

N j+2,4(t j+3) = (t j+3 − t j+2)
2

(t j+5 − t j+2)(t j+4 − t j+2)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.134)

The n + 3 de Boor points ai of the required interpolation curve p(t) are to be
computed. As of now, we have n +1 conditions, i.e., the two constraints (3.131) plus
the n − 1 conditions (3.133). There are, obviously, two additional constraints to be
chosen.27

One option would certainly be to select (arbitrary) tangent vectors t0 and tn at
c0 and cn , respectively. This is what commonly used CAD programs suggest. They
request the tangent vectors at either end and they interactively show a preview of the
resulting interpolation curve.

In many cases the additional free choice of two vectors is not exactly what the
user expects. As an alternative we regard the Lagrange interpolation curve to the
three points c0, c1, c2: Its tangent vector t0 at c0 has been computed in (3.121),
p. 128. Equally, we obtain the tangent vector tn of the Lagrange interpolation curve
to cn−2, cn−1, cn in (3.122). These two vectors are a good suggestion for the required
additional input as they perfectly blend in the shape of the input data.

The Lagrange interpolation curve to the first (or the last) three given data points
is a parabola which—in most cases—yields a suitable tangent at the end point of the
segment. Sometimes, though, the shape of the parabolic segment may cause some
inappropriate kink near the endpoint. In such a case, a circle through the first (or the
last) three data points may be the more preferable choice.

As we have k coinciding knots at the beginning the tangent vector t0 can be written
in terms of the first two de Boor points a0, a1 (see Proposition 3.6, (3.87), p. 106):

27 Remember the similar situation with the Hermite approach to the same task.

3.5 Univariate Interpolation 133

Fig. 3.66 The B-spline approach delivers a C2-continuous interpolation curve to the given data
points c0, . . . , c9. In order to obtain the resulting B-spline curve we compute the de Boor points
a0, . . . , a11. As for the two free conditions at the endpoints c0 and c9 we here used (3.121) and
(3.122) the parabola arcs c012 and c789 defined by the first and the last three points, respectively,
are highlighted in grey. We demand that the interpolation curve inherits its tangent vectors at either
end from these two parabolae

3

s1 − s0
· (a1 − a0) = t0 (3.135)

In the same way we get

3

sn − sn−1
· (an+2 − an+1) = tn, (3.136)

as we also have k coinciding knots at the endpoint.
Combining the n − 1 conditions (3.133), the two conditions (3.131) and the last

two (3.135), (3.136) we get a system of n + 3 linear equations

F ·

⎡
⎢⎢⎢⎢⎢⎣

a0
a1
...

an+1
an+2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

t0
c0
...

cn

tn

⎤
⎥⎥⎥⎥⎥⎦

(3.137)

where

134 3 Geometric Fundamentals

F :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
s1−s0

3
s1−s0

0 0

1 0 0

0 N1,4(s1) N2,4(s1) N3,4(s1) 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0 Nn−1,4(sn−1) Nn,4(sn−1) Nn+1,4(sn−1) 0

0 0 1

0 0 − 3
sn−sn−1

3
sn−sn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.138)

Certainly, the values of Ni,4(s j) occurring in this matrix can be computed right away
by (3.134).

The matrix F is tridiagonal and invertible.28 The de Boor points of the solution
curve to the interpolation problem appear as

⎡
⎢⎢⎢⎢⎢⎣

a0
a1
...

an+1
an+2

⎤
⎥⎥⎥⎥⎥⎦

= F−1 ·

⎡
⎢⎢⎢⎢⎢⎣

t0
c0
...

cn

tn

⎤
⎥⎥⎥⎥⎥⎦

. (3.139)

To know that the solution is unique and can basically be expressed via the inverse
matrix F−1 is comforting. For the actual computation—particularly if the matrix
F is very large—we recommend an alternative option (see footnote on p. 130). In
Figs. 3.66 and 3.67 two examples of cubic B-spline spline interpolation are illustrated.
Figure 3.66 refers to the planar case whereas Fig. 3.67 shows the solution to a spatial
interpolation problem.

3.5.3 Parameterization

In the Interpolation Problem 3.2, p. 119, we started with given data points c0, . . . , cn

and a sequence s0 < · · · < sn of given parameter values. In practice we may only be
given the points c j whereas the parameter values s j can—theoretically—be chosen
at will. We have to be careful as the resulting interpolation curve heavily depends
upon this choice. For in-depth considerations on numerical methods we also refer to
[18] and [16].

28 In fact its invertibility is easy to check after expanding the matrix along the 2nd and the last but
one row. The remaining matrix is main diagonal dominant (see p. 130) and hence its determinant
is non-zero.

3.5 Univariate Interpolation 135

Fig. 3.67 The 16 points c0, . . . , c15 lie on a right cylinder. They are interpolated by a cubic
B-spline curve as described above; chordal parameterization. The tangents at either end (c0 and
c15) are prescribed as tangents to the boundary circle (zebra striped) in order to guarantee a flush
transition. Strictly speaking, the interpolation curve is not contained in the cylindric surface, though
it adapts pretty well

One simple choice of the sequence s0, . . . , sn is the parameterization: s j = j
which is called uniform parameterization (see below). This choice completely
ignores the geometry of the input data points.29

Considering the parameter t of an interpolation curve p(t) as time the uniform
parameterization implies that a section between two distant points on p(t) is covered
with higher speed than a section between two close points. This also affects the shape
of p(t) (see Fig. 3.68).

In order to achieve a more balanced speed distribution we can allow for the
distances ‖c j+1 − c j‖ between consecutive points.

Definition 3.38. Standard types of parameterization. The knot vector (s0, . . . , sn)

is called

• uniform if

29 The same thing holds for the first Interpolation Problem 3.1. If we interpret the scalar values ci
as ‘points’ on the real number line we can apply the following adaption of the parameter sequence
s0, . . . , sn correspondingly.

136 3 Geometric Fundamentals

Fig. 3.68 Equidistant parameterization provides a first solution to the interpolation problem (grey).
As the input points c0, . . . , c11 are not evenly distributed, the chordal parameterization delivers a
more balanced result (double line). Centripetal parameterization finally conveys an interpolation
curve (black) which greatly considers the geometry of the input. It depends on the task which of
the results is preferable

s j+1 = s j + δ, with δ = const. for j = 0, . . . , n − 1. (3.140)

• chordal if

s j+2 − s j+1

s j+1 − s j
= ‖c j+2 − c j+1‖

‖c j+1 − c j‖ , j = 0, . . . , n − 2. (3.141)

• centripetal if

s j+2 − s j+1

s j+1 − s j
=
√

‖c j+2 − c j+1‖
‖c j+1 − c j‖ , j = 0, . . . , n − 2. (3.142)

Chordal parameterization adapts the parameter intervals proportional to the chord
lengths. Centripetal parameterization stems from physical observations regarding the
centripetal force of a body moving along the curve.

For other suggestions of appropriate parameterizations we refer to ([7], pp. 201).
The choice of parameterization is an important and influential step within the inter-

polation job. It finally determines the quality of the resulting interpolation curve. To
recognize the great influence of the parameter distribution we solve an interpolation
problem to twelve given input points c0, . . . , c11 by cubic spline interpolation. The
different shapes of the solutions (see Fig. 3.68) merely stem from different parame-
terizations.

3.6 Univariate Approximation

Approximation deals with the problem of finding a function (out of a given class)
such that a distance function to a set of prescribed data is minimized. Basically, this

3.6 Univariate Approximation 137

is an optimization problem. As opposed to the interpolation case the given data do
not have to be adopted exactly. The task reads as follows:

Problem 3.5 Univariate approximation of real values. Let m + 1 real values
c0, . . . , cm in R and corresponding parameter values s0 < · · · < sm in an interval
[a, b] be given. The vector (s0, . . . , sn) is also called knot vector. As in Problem 3.1
let F be a linear space of continuous functions on [a, b]. Moreover let30 m > n =
dim F − 1.

Find a function p(t) ∈ F such that the squared error sum (error function)

e =
m∑

j=0

∣∣p(s j) − c j
∣∣2 (3.143)

is minimized.

This optimization task is a classical Gauss least squares problem. We address it
in the following manner:

Let F0(t), . . . , Fn(t) be a basis of F . The required approximation function p(t)
can be written in the form

p(t) =
n∑

i=0

Fi (t) · ai (3.144)

with coefficients a0, . . . , an ∈ R. The squared error sum g can be rendered more
precisely as the function

e(a0, . . . , an) =
m∑

j=0

|p(s j) − c j |2 =
m∑

j=0

∣∣∣∣
(n∑

i=0

Fi (s j) · ai

)
− c j

∣∣∣∣
2

(3.145)

which is quadratic in the yet unknown constant coefficients a0, . . . , an . The necessary
conditions for a minimum of this function e are that all partial derivatives ∂e

∂ai
are

zero:

∂e

∂ai
= 0, i = 0, . . . , n

These are n +1 linear equations for the n +1 coefficients ai . In matrix form these
conditions read as

30 Usually, approximation deals with large data sets: m > n; the case m ≤ n would offer the
opportunity to switch over to an interpolation task (see Sect. 3.5).

138 3 Geometric Fundamentals

M ·
⎡
⎢⎣

a0
...

an

⎤
⎥⎦ =

⎡
⎢⎣

∑m
j=0 F0(s j) · c j

...∑m
j=0 Fn(s j) · c j

⎤
⎥⎦ (3.146)

where M is the symmetric positive definite (n + 1) × (n + 1)-matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
j=0

F2
0 (s j)

m∑
j=0

F0(s j) · F1(s j) . . .
m∑

j=0
F0(s j) · Fn(s j)

m∑
j=0

F0(s j) · F1(s j)
m∑

j=0
F2

1 (s j) . . .
m∑

j=0
F1(s j) · Fn(s j)

...
...

. . .
...

m∑
j=0

F0(s j) · Fn(s j)
m∑

j=0
F1(s j) · Fn(s j) . . .

m∑
j=0

F2
n (s j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.147)

Note that M can also be written as

M = F� · F

where

F :=
⎡
⎢⎣

F0(s0) . . . Fn(s0)
...

...

F0(sm) . . . Fn(sm)

⎤
⎥⎦ . (3.148)

Comparing with (3.99), p. 117, we see that the matrix F corresponds to the one
in the interpolation problem. However, in the approximation case F is not a square
matrix. The number m + 1 of rows exceeds the number n + 1 of columns.

The matrix M is the so-called Gram matrix assigned to the matrix F and has
the following properties: M is positive semidefinite31 and thus has a non-negative
determinant. Moreover, det M > 0 if and only if the rank of F is n + 1: The n + 1
columns of F are linearly independent. We can summarize:

Proposition 3.14 Solvability of the approximation task. If F is a Chebyshev
space the Approximation Problem 3.5 has the unique solution p(t) =∑n

i=0 Fi (t) ·ai

31 A matrix M of dimension (n + 1) × (n + 1) is called positive semidefinite if

[x0, . . . , xn] · M ·
⎡
⎢⎣

x0
.
.
.

xn

⎤
⎥⎦ ≥ 0 for all x0, . . . , xn ∈ R.

3.6 Univariate Approximation 139

in F where {F0(t), . . . , Fn(t)} is an arbitrary basis of F . The coefficients ai for the
solution can be computed via

⎡
⎢⎣

a0
...

an

⎤
⎥⎦ = M−1 ·

⎡
⎢⎣

∑m
j=0 F0(s j) · c j

...∑m
j=0 Fn(s j) · c j

⎤
⎥⎦ . (3.149)

Whether or not the approximation task has a unique solution only depends on the
space of functions F considered and the given knot vector (s0, . . . , sm). However,
it does not depend on the values c0, . . . , cm to be approximated.

The linear space Rn[t] of polynomials of degree ≤ n (see Sect. 3.2) on any interval
[a, b] is a Chebyshev space. Hence the Approximation Problem 3.5 always has a
unique solution in Rn[t]. Figure 3.69 shows the solutions for one particular input in
the spaces R3[t], R4[t], R5[t].

The same holds for the (2n + 1)-dimensional space of trigonometric functions
spanned by the functions 1, sin t, cos t sin(2t), cos(2t), . . . , sin(nt), cos(nt) on the
interval [0, 2π].

At this point it is easy to rephrase Problem 3.5 for points (vectors) to be approxi-
mated instead of real values. It then reads as:

Problem 3.6 Univariate approximation of points. Let m + 1 points c0, . . . , cm in
the plane or in 3-space and corresponding parameter values s0 < · · · < sm in a closed
interval [a, b] be given. Furthermore let F be a linear space of continuous functions
on [a, b] as in Problem 3.5. Let {F0(t), . . . , Fn(t)} be a basis of F . Moreover let
m > n = dim F − 1. Find a curve p(t)

p(t) =
n∑

i=0

Fi (t) · ai (3.150)

such that the squared error sum (error function)

e(a0, . . . , an) =
m∑

j=0

∥∥p(s j) − c j
∥∥2 =

m∑
j=0

∥∥∥∥
(n∑

i=0

Fi (s j) · ai

)
− c j

∥∥∥∥
2

(3.151)

is minimized.

The following proposition covers the question of solvability of Problem 3.6 and
also conveys the solution.32

Proposition 3.15 Approximation of points. If F is a Chebyshev space there is
exactly one solution to Problem 3.6. The coefficient vectors ai of the solution curve

32 Of course, the approximation task for points can also be solved ‘coordinate-wise’ with the help
of Proposition 3.14 We still want to note Proposition 3.15 explicitely as a condensed account on
the frequently occurring task regarding points.

140 3 Geometric Fundamentals

Fig. 3.69 Three different solutions to Problem 3.5. Nine values c0, . . . , c8 are to be approximated.
The input data are the same as in Fig. 3.57. The approximation problem is solved in different spaces
of polynomials. This is why different solutions arise. Grey curve k3: solution in the space R3[x].
Black curve k4: solution in the space R4[x]. Double line k5: solution in the space R5[x]

are33

⎡
⎢⎣

a0
...

an

⎤
⎥⎦ = M−1 ·

⎡
⎢⎣

∑m
j=0 F0(s j) · c j

...∑m
j=0 Fn(s j) · c j

⎤
⎥⎦ (3.152)

where M is the matrix defined in (3.147).

3.6.1 Improving the Quality of Approximation

Robust Approximation

Frequently the data points c j to be approximated are afflicted with measurement
errors. This may render the whole approximation susceptible to coincidence. In order
to minimize the influence of single measurement errors we can replace the error sum
(3.151) by a weighted variant

e(a0, . . . , an) =
m∑

j=0

w j ·
∥∥∥∥∥

(
n∑

i=0

Fi (s j) · ai

)
− c j

∥∥∥∥∥
2

(3.153)

where the weights w j are positive real numbers. The value of w j is chosen small in
case of an unreliable point c j and large in case of a sound input.

33 This equation has to be interpreted separately for each component of the vectors ai , c j .

3.6 Univariate Approximation 141

In order to allow for the additional parameters (weights) the solution (3.152) to
the approximation problem has to be slightly modified:

⎡
⎢⎣

a0
...

an

⎤
⎥⎦ = M̃−1 ·

⎡
⎢⎣

∑m
j=0 w j · F0(s j) · c j

...∑m
j=0 w j · Fn(s j) · c j

⎤
⎥⎦ (3.154)

where

M̃ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
j=0

w j · F2
0 (s j)

m∑
j=0

w j · F0(s j) · F1(s j) . . .
m∑

j=0
w j · F0(s j) · Fn(s j)

m∑
j=0

w j · F0(s j) · F1(s j)
m∑

j=0
w j · F2

1 (s j) . . .
m∑

j=0
w j · F1(s j) · Fn(s j)

.

.

.
.
.
.

. . .
.
.
.

m∑
j=0

w j · F0(s j) · w j · Fn(s j)
m∑

j=0
w j · F1(s j) · w j · Fn(s j) . . .

m∑
j=0

w j · F2
n (s j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.155)

If the user is aware of possible measurement errors but has no reliable information
which of the input data points c j are particularly concerned he or she can address
the problem as follows:

1. Compute an approximating curve p(t) without specific weights.
2. Measure the distances of the input points to the resulting curve: If the distance

‖p(s j)− c j‖ is particularly large it is likely that c j is an unreliable point and thus
it gets assigned a small weight, else it gets a larger weight w j for the next round
of computation.

3. Compute a weighted approximation curve using the weights w j .
4. The whole process could be repeated and the weights could be further adjusted

if necessary.

This modified approach increases the overall robustness of the approximation
process.

Parameter Correction

For approximation problems the input data c j are frequently given without pre-
scribed corresponding parameter values s j . If so, it is imperative to choose them
appropriately.

In the case of interpolation we have already recognized that the choice of the
parameter values s j is important. It makes little sense to choose equidistant values
s j if the distance of consecutive data points c j varies a lot. In that case chordal or
centripetal parameter distribution (3.141), (3.142), p. 136, is the better choice.

142 3 Geometric Fundamentals

But even if we choose the parameter values s j sensibly we still must be aware
that the distances ‖p(s j)−c j‖ occurring in the error sum are not measured along the
curve normals. So the point p(s j) is not the pedal point l j of c j on the approximation
curve c. Measuring these errors on the normals may well improve the result. Unfor-
tunately this is a nonlinear problem. Yet an improvement can be obtained by iterative
parameter value correction s j −→ s j + σ j getting the point p(s j) gradually closer
to the respective pedal point l j after a few steps (compare with [7], p. 208).

In order to determine the correcting term σ j we have to minimize the squared
distance function

d j (t) := ‖c j − p(t)‖2

for each j where t = s j + σ j . This means that we have to find a zero of its first
derivative which after division by 2 reads as34

f j (t) = 〈c j − p(t),
.
p(t)〉.

Expanding f j (t) by means of a Taylor series at s j and suppressing higher order
terms we obtain a linear approximation of that function:

f j (t) = f j (s j + σ j) ∼ f j (s j) + .
f j (s j) · σ j

= 〈c j − p(s j),
.
p(s j)〉 + (−‖ .

p(s j)‖2 + 〈c j − p(s j),
..
p(s j)〉) · σ j

As a first approach we get

σ j ∼ 〈c j − p(s j),
.
p(s j)〉

‖ .
p(s j)‖2 − 〈c j − p(s j),

..
p(s j)〉 . (3.156)

This is the quintessence of an iterative procedure which can improve the overall
quality of the approximation curve significantly:

Algorithm 3.4. Parameter correction for approximation curves. To given data
points c j and appropriately chosen respective parameter values s j an approximating
curve p(t) is computed (see p. 139). To improve the quality of approximation take
the following steps:

1. Replace the parameter value s j by the new value

s∗
j := s j + σ j

where σ j is computed via (3.156).
2. Compute a new approximation curve p∗(t) with the new parameter values s∗

j .
3. If necessary repeat steps 1. and 2.

The effect of the parameter correction is demonstrated in Fig. 3.70, p. 143.

34 Here, dots indicate differentiation with respect to the parameter t on the curve.

3.6 Univariate Approximation 143

Fig. 3.70 Approximation by cubic (k = 4) B-Spline curves; target points c j dotted in black. The
grey curve k1 is the variant with uniform parameterization. The points p(s j) relating to the parameter
values s j are marked (parameter points, grey). The thin grey connection lines to the target points
symbolize the distances whose square sums have been optimized. The black version k2 (with the
squared parameter points) originates from chordal parameterization. Finally, the double line variant
k3 has been obtained after 16 rounds of parameter correction according to (3.156), p. 142. It is
obvious that the parameter points (marked by triangles) are close to the pedal points of the targets

3.6.2 Approximation with Cubic B-Splines

Cubic B-spline curves are a common tool for approximation tasks. This is because
they are easy to compute, behave nicely, are not prone to oscillation and still are
sufficiently smooth (C2-continuity is guaranteed). We want to approximate a given
series c0, . . . , cm of points with corresponding parameter values s0, . . . , sm by a
cubic B-spline curve

p(t) =
n∑

i=0

Ni,4(t) · ai , t ∈ [t3, tn+1]. (3.157)

with some knot vector (t0, t1, t2, t3, t4, . . . , tn, tn+1, tn+2, tn+3, tn+4). As the support
interval of the cubic B-Spline curve is [t3, tn+1] it is necessary to adapt the knot vector
to the range of the prescribed parameter values si :

t3 ≤ s0, sm ≤ tn+1.

In our examples we put t3 = s0 and tn+1 = sm .
Certainly also the intermediate values t4, . . . , tn of the knot vector will affect the

shape of the curve—a consistent distribution of the values ti with respect to the given
parameter values s j is worth considering: One has to avoid the clustering of values

144 3 Geometric Fundamentals

s j within one interval [ti , ti+1] as in that case the approximation task might become
unsolvable.35

Here the matrix M (see (3.147)) reads as:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
j=0

N 2
0,3(s j)

m∑
j=0

N0,3(s j) · N1,3(s j) . . .
m∑

j=0
N0,3(s j) · Nn,3(s j)

m∑
j=0

N0,3(s j) · N1,3(s j)
m∑

j=0
N 2

1,3(s j) . . .
m∑

j=0
N1,3(s j) · Nn,3(s j)

...
...

. . .
...

m∑
j=0

N0,3(s j) · Nn,3(s j)
m∑

j=0
N1,3(s j) · Nn,3(s j) . . .

m∑
j=0

N 2
n,3(s j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.158)

Figure 3.70 shows an example of a cubic B-spline curve approximating a series of
15 target points c j in the plane. The different variants arise from different parameteri-
zations as explained above. It is easy to recognize that the choice of parameterization
and the iterative parameter correction process are important steps to improve the
overall quality of approximation.

3.7 Surfaces

A surface is a 2-dimensional point set in 3-space. Surfaces play an important role in
automotive engineering. Not only do they constitute the exterior shell of a vehicle,
they also define the shape of virtually each of its components. This section deals
with the basic definitions, the mathematical description and the common geometric
properties of surfaces.

3.7.1 Parametric Representation of a Surface

A point in 3-space is usually described by a constant vector (position vector). It is
sometimes referred to as a zero-dimensional object. If a position vector depends on
one parameter t we obtain a curve (one dimensional object, see Sect. 3.3). A surface
is a set of points in 3-space described by a vector function in two parameters u, v
(Fig. 3.71):

35 Mind that the vector space of cubic splines defined on a given knot vector is—in general—not a
Chebyshev space (compare Proposition 3.14, p. 138)!

3.7 Surfaces 145

Fig. 3.71 Parameterization of a surface Φ: the mapping on the parameter domain D = [u0, u1] ×
[v0, v1] assigns a point q(u, v) to every value (u, v) ∈ D. The points p(u, v) define a surface Φ in
3-space

q(u, v) =
⎡
⎣

x(u, v)
y(u, v)
z(u, v)

⎤
⎦ , (u, v) ∈ D (3.159)

This is called a parametric representation or parameterization of the surface.
The pairs (u, v) of parameters run in a set D ⊂ R × R called the parameter

domain which is frequently rectangular: D = [u0, u1] × [v0, v1].
Example 3.12 Parametric representation of a plane. Be a, b, c three non-collinear
points in 3-space. Then

q(u, v) =
⎡
⎣

x(u, v)
y(u, v)
z(u, v)

⎤
⎦ = u · a + v · b + (1 − u − v) · c, (u, v) ∈ R × R

(3.160)

is a parametric representation of the plane ε through a, b, c. The given points a, b,
c relate to the parameter values (u = 1, v = 0), (u = 0, v = 1) and (u = 0, v = 0).
If we substitute 1 − u − v = w (compare also Definition 3.66, p. 226) the plane ε is
represented by:

q̃(u, v, w) = u · a + v · b + w · c with u + v + w = 1 (3.161)

Definition 3.39. Admissible parameterization of a surface. A parameterization
(3.159) of a surface is called admissible if it is a differentiable vector function in u
and v and if for all u, v ∈ D the derivative vectors

146 3 Geometric Fundamentals

qu(u, v) := dq
du

(u, v), qv(u, v) := dq
dv

(u, v)

are linearly independent:

qu × qv �= 0

Remark 3.13 The parameterization of a surface is not uniquely determined. The
same point set could also be parameterized differently. The change

u = u(u, v)
v = v(u, v)

}
(3.162)

from one parameterization to another is called parameter transformation (compare
also Remark 3.5, p. 72).

The functions (3.162) are called an admissible parameter transformation if their
first partial derivatives exist and satisfy

det

[
∂u
∂u

∂v
∂u

∂u
∂v

∂v
∂v

]
= ∂u

∂u
· ∂v

∂v
− ∂u

∂v
· ∂v

∂u
�= 0 for all (u, v) ∈ D. (3.163)

Due to the chain rule of differentiation any admissible parameter transforma-
tion (3.162), substituted in an admissible parameterization (3.159) again delivers an
admissible parameterization of the same surface.

3.7.2 Surface Curves

If a surface Φ is given by a parametric representation it is easy to describe curves
contained in it:

Definition 3.40. Surface curve. Let Φ be a surface with its parametric representa-
tion (3.159). We consider two functions

u = u(t)
v = v(t)

}
(3.164)

in one variable t determining a parameterized curve k in the domain D which in turn
delivers a curve

p(t) := q(u(t), v(t)) =
⎡
⎣

x(u(t), v(t))
y(u(t), v(t))
z(u(t), v(t))

⎤
⎦ , (3.165)

3.7 Surfaces 147

Fig. 3.72 Any curve u = u(t), v = v(t) on the parameter domain D yields a surface curve
c . . . p(u(t), v(t)). As special cases of such surface curves we have the u-lines and the v-lines
defined by the parameterization of Φ. Every point q(u0, v0) on Φ is the intersection of a u-line
u = u0 and a v-line v = v0

lying on the surface Φ (Fig. 3.72). We call it a surface curve.
The very special case of

u = t
v = v0 = const

}
(3.166)

yields a whole set of such surface curves depending on the constant v = v0. We call
them the u-lines. In the same way

u = u0 = const
v = t

}
(3.167)

yields a set of surface curves, called v-lines. The u-lines and the v-lines are generally
referred to as the net of parameter lines.

These two sets of surface curves certainly depend on the given parametric rep-
resentation q(u, v) of Φ. If we reparameterize the surface by means of a parameter
transformation (Remark 3.13) we—in general—obtain different sets of u-lines and
v-lines. The parameter lines are often used to represent a surface. Their shape can
convey the shape of the surface Φ.

3.7.3 Derivatives and Tangent Planes

Definition 3.41. Class of differentiability. Let k be a non-negative integer and
let Φ be a surface with parameterization q = q(u, v), (u, v) ∈ D. We say that the
parameterization q(u, v) is of class Ck if all partial derivatives

148 3 Geometric Fundamentals

∂kq
(∂u)i (∂v) j

(u, v), i + j = k, (3.168)

of order k exist36 and are continuous vector functions. Ck is also called the class of
differentiability of the given parameterization.

If the k-th partial derivatives of a bivariate vector function p(u, v) exists for every
integer k ∈ N we say that q(u, v) is of class C∞ or smooth.

Let Φ be a surface with a parameterization q = q(u, v) of class C1 and let c be
a surface curve parameterized by p(t) = q(u(t), v(t)) with functions u = u(t), v =
v(t) of class C1. Then the tangent vector to c at t = t0 can be computed via the chain
rule of differentiation:

.
p(t0) = dp

dt
(t0)

= dq
du

(u0, v0) · du

dt
(t0) + dq

dv
(u0, v0) · dv

dt
(t0)

= qu(u0, v0) · .
u(t0) + qv(u0, v0) · .

v(t0) (3.169)

with u0 := u(t0) and v0 := v(t0). Thus we see that the tangent vector of any
surface curve through a point q(u0, v0) of the surface is a linear combination of
the tangent vectors qu , qv of the parameter lines intersecting at that point. If the
surface parameterization q(u, v) is admissible (see Definition 3.39, p. 145) the partial
derivative vectors qu , qv at (u0, v0) are linearly independent and thus they span a plane
τQ through the point Q . . . q(u0, v0) containing all such tangent vectors (Fig. 3.73):

Definition 3.42. Tangent plane and normal vector in a point. Let Φ be a surface
with an admissible parameterization q = q(u, v) of class C1, and let Q . . . q(u0, v0)

Fig. 3.73 The tangent plane
τQ at q(u0, v0). τQ is spanned
by the partial derivative vec-
tors qu , qv; they are the tangent
vectors to the parameter lines
through q(u0, v0). The tangent
to any surface curve c through
q(u0, v0) is contained in τQ

36 Of course, this automatically implies that all derivatives of order < k exist as well.

3.7 Surfaces 149

be one of its points. Then the plane τQ through Q spanned by the vectors qu(u0, v0),
qv(u0, v0) is called tangent plane to Φ at q(u0, v0). The tangent plane in a point
Q . . . q(u0, v0) is also determined by the normal vector

n(u0, v0) = qu(u0, v0) × qv(u0, v0). (3.170)

The plane τQ has the equation

τQ . . . 〈n(u0, v0), x − q(u0, v0)〉 = 0. (3.171)

It is a major task in CAD to fit surface patches smoothly together. The following
definitions and explanations illuminate the mathematical background of this issue.

Definition 3.43. Ck-continuity of two surfaces in a point. Let Φ1 and Φ2 be two
surfaces with the parameterizations q1 = q1(u, v) and q2 = q2(u, v), both of class
Ck , k ≥ 0. Then the parameterizations join Ck-continuously at (u0, v0) if

∂ lq1

(∂u)i (∂v) j
(u0, v0) = ∂ lq2

(∂u)i (∂v) j
(u0, v0), for all l = 0, . . . , k, i + j = l.

A parameter transformation according to Remark 3.13 only affects the means of
representation but not the point set of a surface itself. Definition 3.43, however, relates
to the parametric representations of two surfaces. It seems evident that the concept
of two surfaces joining Ck-continuously in a point could favorably be replaced by a
somewhat weaker definition which is closer to geometry:

Definition 3.44. GCk-continuity of two surfaces in a point. Let two surfaces Φ1
and Φ2 be given by parameterizations r1 = r1(s, t) and r2 = r2(σ, τ) and let them
have a common point, i.e., r1(s0, t0) = r2(σ0, τ0) =: a; then Φ1 and Φ2 are said to
join GCk-continuously at the point a if there exist reparameterizations

q1(u, v) := r1(s(u, v), t (u, v))

and

q2(u, v) := r2(σ (u, v), τ (u, v))

of Φ1 and Φ2 such that the new parametric representations q1(u, v), q2(u, v) of Φ1,
Φ2 are Ck-continuous at (u0, v0) in the sense of Definition 3.43.

In the reparameterization the common point is a = q1(u0, v0) = q2(u0, v0).

Mind that two surfaces joining GCk-continuously cannot be distinguished visu-
ally from surfaces joining Ck-continuously in that point. In particular, surfaces join-
ing C0-, C1-continuously frequently occur in surface modeling:

• Two surfaces Φ1 and Φ2 joining C0-continuously in a point, for one, have a
common point at u0, v0: q1(u0, v0) = q2(u0, v0)

150 3 Geometric Fundamentals

• Two surfaces joining C1-continuously in a point additionally have the same tangent
plane at that point. Of course, the same holds for GC1-continuous surfaces.

Applications in automotive engineering are predominantly C2-continuous, espe-
cially those at the body shell (see also Remark 3.14) and Sect. 4.2.6, p. 274.

Definition 3.45. Ck- and GCk-continuity along a surface curve. Let Φ1 and Φ2
be two surfaces.

1. If the parameterizations of Φ1 and Φ2 join Ck-continuously in every point of the
common surface curve c we say that Φ1 and Φ2 join Ck-continuously along c.

2. If there exist parameter transformations of the two surfaces such that the new
parametric representations are Ck-continuous for every point of the surface curve
c then we say that Φ1 and Φ2 join GCk-continuously along c.

Ck-continuous and GCk-continuous transitions of surfaces along a curve c fre-
quently appear in Sect. 3.8, p. 180, and generally in CAD applications. The following
remark states that in such a case we only have to make provisions that the partial
derivatives in the cross direction are identical. The derivatives along the common
curve c are identical anyway (which is trivial). The mixed derivatives along c are
also identical if only the derivatives in cross direction comply. We record:

Remark 3.14 Two surfaces Φ1 . . . q1(u, v) and Φ2 . . . q2(u, v) with a common
u-line c . . . v = v0 join Ck-continuously along c if only

∂ lq1

(∂v)l
(u, v0) = ∂ lq2

(∂v)l
(u, v0) for all l = 0, . . . , k and for all u.

Obviously, an analogous statement holds for a common v-line of two surfaces.

Another interesting phenomenon is described in

Remark 3.15 Let Φ be a surface consisting of two patches Φ1 and Φ2 joined Ck-
continuously along a transition curve c. Then a smooth space curve reflected in the
surface Φ only shows Ck−1-continuity at the transition point on c.

We can observe that the continuity of the reflected curves is (by one degree) less
than the continuity of the surface transition. This is why regarding reflected curves
on a surface unveils a lot more about discontinuities between the two surfaces than
just considering ordinary surface curves.

In Fig. 3.74 we show a few examples, particularly for the cases k = 0, 1, 2.
Figure 3.74a just illustrates the test arrangement for the following Fig. 3.74b–d: A
zebra-striped cylindric surface Ψ encircles a given surface Φ. This surface Φ is our
sample whose continuity shall be examined visually. Φ is meant to be reflective such
that the mirror images of the zebra stripes can be viewed in the glossy surface. Φ

consists of two smooth patches Φ1 and Φ2. We focus on the reflected image of the
stripes, and particularly on their points on the transition curve.

According to Remark 3.15 the behavior of the reflected curves is more sensitive
than the transition itself. They are also more sensitive by one degree than a cross-

http://dx.doi.org/10.1007/978-3-642-11940-8_4

3.7 Surfaces 151

(a) (b)

(c) (d)

Fig. 3.74 Two patches, joined with different degrees of continuity. In order to visualize the quality
of transition a test arrangement (Fig. 3.74a) is readied. The reflections of the striped cylinder on the
given patch are shown in the following Fig. 3.74b–d. They are always more sensitive to discontinu-
ities: if the surface patches are joined with Ck -continuity along their transition curve the reflected
curves are only Ck−1-continuous at the transition point. a The pattern of the zebra-striped cylindric
surface Ψ is reflected in a patch Φ. The patch consists of two parts joined with different degrees
of continuity along the transition curve. The following Fig. 3.74b–d shows the reflected pattern.
b Two surfaces joined C0-continuously along a common curve. The reflected stripes show gaps
along this curve. c Two surfaces with C1-continuous transition. At any point on the transition curve
the tangent planes of both surfaces are the same. The reflected stripes have kinks at the respective
transition points. d Two surfaces with C2-continuous transition along the common curve. Mind that
even the reflected images of the stripes cross the transition curve C1-continuously

section of the patch would be. If the two patches are joined C0-continuously the
reflected stripes are not even continuous at all. Moreover, they show gaps along the
transition curve (Fig. 3.74b). We can equally observe that mere C1-continuity of the
two patches provokes kinks of the reflected curves along the transition (Fig. 3.74c).
C2-continuity of the two joined patches leads to C1-continuity of the reflected curves.
This is why—in automotive styling—C2-transitions are widely used; consequently,
reflections of smooth lines on a car body are at least C1-curves (Fig. 3.74d). This
way, transitions between adjacent patches can hardly be detected with the naked eye.

152 3 Geometric Fundamentals

3.7.4 Curvature Theory of Surfaces

We consider a surface Φ with an admissible parameterization

q(u, v) =
⎡
⎣

x(u, v)
y(u, v)
z(u, v)

⎤
⎦ , (u, v) ∈ D (3.172)

and one of its surface curves c (cf. Fig. 3.72, p. 147)

p(t) := q(u(t), v(t)) =
⎡
⎣

x(u(t), v(t))
y(u(t), v(t))
z(u(t), v(t))

⎤
⎦ . (3.173)

We additionally assume that all occurring functions are of class C2 and, beyond this,
that (

.
u,

.
v) �= (0, 0) for all (u, v) ∈ D. So, the tangent vector

.
p = dq

du
· du

dt
+ dq

dv
· dv

dt
= qu · .

u + qv · .
v. (3.174)

of c is always different from zero. If s is the arc length parameter on c we have (cf.
Sect. 3.3.4, p. 76)

(
ds

dt

)2

= ‖ .
p‖2 = ‖qu · .

u + qv · .
v‖2

= ‖qu‖2 · .
u2 + 2〈qu, qv〉 · .

u · .
v + ‖qv‖2 · .

v2
.

With the abbreviations

E := ‖qu‖2, F := 〈qu, qv〉, G := ‖qv‖2 (3.175)

we can rewrite this as

(
ds

dt

)2

= E · .
u2 + 2F · .

u · .
v + G · .

v2
. (3.176)

If we reparameterize the surface curve c by its arc length parameter s and denote
derivatives with respect to s by primes we have

p′ = t, p′′ = κ · h (3.177)

where t and h are the unit tangent vector and principal normal vector of c (cf.
Sect. 3.3.7, p. 79). Recall that the vectors t and h span the osculating plane σ of c in

3.7 Surfaces 153

the respective point (cf. Sect. 3.3.6, p. 78). Via the chain rule of differentiation we
get

p′ = qu · u′ + qv · v′, (3.178)

p′′ = quu · u′2 + 2quv · u′ · v′ + qvv · v′2 + qu · u′′ + qv · v′′. (3.179)

If ϕ denotes the angle between the surface unit normal vector

n := qu × qv

‖qu × qv‖ (3.180)

and the principal normal vector h of c we obtain

κ · cos ϕ = κ · 〈n, h〉 = 〈n, p′′〉
= 〈n, quu〉 · u′2 + 2〈n, quv〉 · u′ · v′ + 〈n, qvv〉 · v′2 (3.181)

which follows from (3.177), (3.179) and from the fact that n is perpendicular to the
vectors qu , qv. Returning to some parameter t on c we have to allow for

u′ = .
u · dt

ds
, v′ = .

v · dt

ds

and Eq. (3.181) reads as

κ · cos ϕ = 〈n, quu〉 · .
u2 + 2〈n, quv〉 · .

u · .
v + 〈n, qvv〉 · .

v2

(ds
dt

)2 . (3.182)

Putting
L := 〈n, quu〉, M := 〈n, quv〉, N := 〈n, qvv〉 (3.183)

and substituting (3.176) we finally get

κ · cos ϕ = L · .
u2 + 2M · .

u · .
v + N · .

v2

E · .
u2 + 2F · .

u · .
v + G · .

v2
. (3.184)

If, especially, ϕ = 0 or ϕ = π—which means that the osculating plane σ of the
surface curve c contains the surface normal—we have

κ =
∣∣∣∣∣

L · .
u2 + 2M · .

u · .
v + N · .

v2

E · .
u2 + 2F · .

u · .
v + G · .

v2

∣∣∣∣∣ . (3.185)

We now introduce the parameter

154 3 Geometric Fundamentals

Fig. 3.75 The normal curvature of a surface Φ can be computed to every λ = tan α via (3.188). It
coincides with the curvature of the normal section of c = Φ ∩ σ in that direction. The intersection
plane σ is spanned by the surface normal vector n and the tangent vector dp

dt = qu
du
dt + qv

dv
dt

λ := dv

du
=

.
v
.
u

(3.186)

which equals tan α where α denotes the angle between the u-axis and the direction
[.
u,

.
v]� in the u, v-parameter plane (Fig. 3.75):

λ = tan α

Thus (3.185) reads as

κ =
∣∣∣∣

L + 2M · λ + N · λ2

E + 2F · λ + G · λ2

∣∣∣∣ . (3.187)

Definition 3.46. Normal curvature. For a C2-surface Φ given by the parameter-
ization (3.172) the normal curvature of Φ in the point q(u0, v0) belonging to the
tangential direction λ = dv

du (see (3.186)) is defined by

κn(λ) = L + 2M · λ + N · λ2

E + 2F · λ + G · λ2 (3.188)

evaluated at (u0, v0).

Note that the normal curvature κn is—up to the sign—equal to the curvature κ of
the normal section of Φ with the plane σ through the surface tangent g (Fig. 3.75):

g . . . g(w) = q + w · (qu · .
u + qv · .

v) = q + w · .
p

For any fixed point q(u0, v0) on the surface Φ the normal curvature κn(λ) is a rational
quadratic function in λ.

3.7 Surfaces 155

We record some properties of κn(λ):

1. Due to (3.176) the denominator of (3.188) is always positive which means that
κn(λ) is defined for all λ ∈ R.

2. The rational quadratic function κn(λ) is constant if and only if

E : F : G = L : M : N . (3.189)

A surface point q(u0, v0) with this property is called a umbilic point: All normal
sections of the surface through such a point have the same curvature. On a sphere
this is obviously the case for each point. If Φ is an arbitrary surface and q(u0, v0)

is a umbilic point on Φ then we say that in a neighborhood of q(u0, v0) the surface
Φ behaves like a sphere.

3. For any non-umbilic point q(u0, v0), i.e., E : F : G �= L : M : N in that point,
one can show (see [5], p. 91) that κn = κn(λ) has exactly two different extremal
values κn,1 = κn(λ1) and κn,2 = κn(λ2) where the values λ1 and λ2 can be
computed as the zeroes of the quadratic polynomial

f (λ) =
∣∣∣∣∣∣
λ2 −λ 1
E F G
L M N

∣∣∣∣∣∣
= (FN − GM) · λ2 + (EN − GL) · λ + (EM − FL).

The two extremal values κn,1 and κn,2 are called principal curvatures of Φ at
q(u0, v0). They satisfy the conditions

κn,1 · κn,2 = LN − M2

EG − F2 ,

κn,1 + κn,2 = EN − 2FM + GL

EG − F2 .

The directions of the respective normal sections yielding these extremal curvatures
are even orthogonal to each other.

We give the following

Definition 3.47. Gaussian curvature and mean curvature of a surface. Let Φ be
a C2-surface given by the parameterization (3.172). Then the Gaussian curvature K
and the mean curvature H are defined by

K := κn,1 · κn,2 = L N − M2

EG − F2 , (3.190)

H := κn,1 + κn,2

2
= E N − 2F M + GL

2(EG − F2)
. (3.191)

The Gaussian curvature enables us to classify the surface points in three categories:

156 3 Geometric Fundamentals

Definition 3.48. Elliptical, hyperbolic and parabolic surface points. Let Φ be a
C2-surface given by the parameterization (3.172). Then a non-umbilic point q(u0, v0)

on Φ

is called

⎧⎨
⎩

elliptical
hyperbolic
parabolic

⎫⎬
⎭ point if

⎧⎨
⎩

K > 0
K < 0
K = 0

⎫⎬
⎭.

To find out the geometric meaning of this categorization we study the normal
sections of the surface Φ through the given point q(u0, v0). Obviously, the centers
of curvature c(λ) of those normal sections lie on the surface normal n of Φ through
q(u0, v0). The point q(u0, v0) splits the normal n into two rays, say n+ and n−.

• If q(u0, v0) is an elliptical point the principal curvatures κn,1, κn,2 are both different
from zero and have the same sign. Additionally, one can show that κ = κ(λ) has
this sign for all λ ∈ R. This means that all centers of curvature c(λ) are distributed
on only one of the two rays n+, n−. Locally, the surface lies only on one side of
its tangent plane at the point q(u0, v0)—the surface is locally convex. An example
is the ellipsoid (Fig. 3.79, p. 162) which has elliptical points only.

• If q(u0, v0) is a hyperbolic point the principal curvatures κn,1, κn,2 are both dif-
ferent from zero but have different signs. In this case, one can show that κ = κ(λ)

has exactly two zeroes: The centers of curvature c(λ) are distributed on both rays
n+ and n−. Hence, the surface intersects its tangent plane at the point q(u0, v0)

in some curve. Locally the surface is saddle shaped. A typical example is the
hyperbolic paraboloid (Fig. 3.84, p. 165) which has hyperbolic points only; this,
by the way, accounts for its name.

• If q(u0, v0) is a parabolic point one of the two principal curvatures κn,1, κn,2 is
zero. A cylinder (cf. Definition 3.52, p. 166), for instance, has parabolic points
only.

If a surface Φ contains both, elliptical and hyperbolical points, then in general each
sort defines one or more regions on Φ. In this case each boundary curve between an
elliptical and a hyperbolic region consists of parabolic points. A typical example is a
torus Φ (cf. Example 3.19, p. 172) where the parabolic points set up two circles on Φ

separating the region of elliptical points and the one of hyperbolic points (Fig. 3.76).
The importance of the Gaussian curvature K and the mean curvature H is also

illustrated by

Theorem 3.8. Characterization of particular surfaces by special Gaussian and
mean curvature values.

• Developable surfaces (cf. Sect.3.7.10, pp. 167) are characterized by K ≡ 0.
• If K = H ≡ const �= 0 holds for a surface Φ, then Φ is a sphere and vice versa.
• If K = H ≡ 0 holds for a surface Φ, then Φ is a plane and vice versa.
• Minimal surfaces are characterized by H ≡ 0.

Minimal surfaces are an interesting geometric issue as they minimize the total
surface area subject to some constraint: If a wire frame is dipped into a soap solution
the soap film assumes a minimal surface whose boundary is the wire frame.

3.7 Surfaces 157

Fig. 3.76 On a torus we have one region of elliptic points (blue, Gaussian curvature K > 0),
another one consisting of hyperbolic points (gray, Gaussian curvature K < 0). The boundary
curves of these two regions are two circles (red) whose points are parabolic (Gaussian curvature
K = 0)

Remark 3.16 The differential form

I := E · du2 + 2F · du dv + G · dv2 (3.192)

which is based on (3.176) is called the first fundamental form of the surface Φ.
The Eqs. (3.183) and (3.184) suggest the introduction of a further differential form

I I := L · du2 + 2M · du dv + N · dv2 (3.193)

which is referred to as the second fundamental form of the surface Φ.
The first fundamental form is in charge of the surface metric. Both fundamental

forms control the curvature of surface curves in terms of (3.182).

Gaussian and mean curvature also appear in various CAD-applications (compare
also Sect. 4.2.6, pp. 274).

3.7.5 Surfaces Represented by Equations

To define a surface by a parametric representation is not the only option we have. A
surface Φ in the 3-space might also be determined by some equation

F(x, y, z) = 0. (3.194)

A point p is contained in Φ if its coordinates (x, y, z) fulfill the condition (3.194).
If one of the coordinates—say z—can be expressed explicitly in that equation we
can transform (3.194) into

http://dx.doi.org/10.1007/978-3-642-11940-8_4

158 3 Geometric Fundamentals

Fig. 3.77 A sphere with its
standard (geographic) para-
meterization. The parameter
u is the longitude, v measures
the geographical latitude.
The u-lines are the circles of
latitude, the v-lines are the cir-
cles of longitude (meridians).
Both, its parameterization
(3.196) and its algebraic
Eq. (3.197) have their specific
merits

z = f (x, y). (3.195)

Example 3.13 Sphere. A sphere (Fig. 3.77) with center m(x0, y0, z0) and radius r
can be parameterized by37

q(u, v) =
⎡
⎣

x(u, v)
y(u, v)
z(u, v)

⎤
⎦ =

⎡
⎣

x0 + r · cos u · cos v
y0 + r · sin u · cos v

z0 + r · sin v

⎤
⎦ , (3.196)

(u, v) ∈ [0, 2π) ×
[
−π

2
,
π

2

]
.

On the other hand it can be described by the equation

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0. (3.197)

It is simple to check if a given parameterization q(u, v) = [x(u, v), y(u, v),
z(u, v)]�, (u, v) ∈ D and an Eq. (3.194) describe the same surface: One only has
to substitute x = x(u, v), y = y(u, v), z = z(u, v) into (3.194) and verify if the
emerging equation is satisfied for all (u, v) ∈ D.

3.7.6 Algebraic Surfaces

Among the surfaces defined by equations there are some which deserve particular
attention: those whose equations consist of polynomial expressions only.

37 This is the so-called geographic parameterization of a sphere as the parameters u and v represent
the geographic longitude and latitude, respectively.

3.7 Surfaces 159

Definition 3.49. Algebraic surface. We consider some polynomial equation in the
variables x, y, z.

1. A surface Φ is called algebraic if it is defined by a polynomial equation:

F(x, y, z) =
∑

f ini te

ai jk xi y j zk = 0 (3.198)

2. The algebraic surface is called of order n if deg F(x, y, z) = n (cf. Definition
3.11, p. 68).

3. A surface which cannot be described by a polynomial equation is called a tran-
scendent surface.

Example 3.14 Planes. Any algebraic surface of order 1 is a plane:

Ax + By + Cz + D = 0

Example 3.15 Sphere. The sphere is an algebraic surface of order 2 because in its
Eq. (3.196) there are only terms of degree 2 or less.

Example 3.16 Transcendent surface. One example of a transcendent surface is

z cos x + ey x = 0.

The helical surfaces (Sect. 3.7.12, pp. 173) are further examples of transcendent
surfaces.

The order of an algebraic surface can be interpreted geometrically. Similarly to
Theorem 3.4, p. 82 we have:

Theorem 3.9. Intersection of an algebraic surface with a straight line or a plane.
An algebraic surface Φ or order n has the following properties:

1. A straight line g which is not contained in Φ, has no more than n points of
intersection with Φ.

2. A plane ε which is not contained in Φ, intersects Φ in a planar algebraic curve
of order n (see Definition 3.22, p. 81).

3.7.7 Rational Surfaces

Similar to rational curves (Sect. 3.3.9, p. 82) we define rational surfaces:

Definition 3.50. Rational surface. A surface Φ is called a rational surface if it can
be represented by a rational parameterization

160 3 Geometric Fundamentals

q(u, v) =

⎡
⎢⎢⎢⎣

q1(u,v)
q0(u,v)

q2(u,v)
q0(u,v)

q3(u,v)
q0(u,v)

⎤
⎥⎥⎥⎦ (3.199)

where qi (u, v) are bivariate polynomials with38

gcd {q1(u, v), q0(u, v)} = gcd {q2(u, v), q0(u, v)} = gcd {q3(u, v), q0(u, v)} = 1.

If especially q0(u, v) ≡ 1 we call Φ a polynomial surface.
n := max{deg q0(u, v), deg q1(u, v), deg q2(u, v), deg q3(u, v)} is called the

degree of the rational surface Φ.

Rational surfaces belong to the family of algebraic surfaces. We have:

Theorem 3.10. Any rational surface of degree n is an algebraic surface of order
≤ n.

The proof to this statement is non-trivial. We note that the converse is not true:
An algebraic surface need not be rational.

A polynomial surface is a special case of a rational surface. Rational and particu-
larly polynomial surfaces are frequently used in CAD applications. Bézier surfaces
(Sect. 3.8.1) are examples of polynomial surfaces, B-Spline surfaces (Sect. 3.8.2) are
piecewise polynomial, the components of NURBS surfaces (Sect. 3.8.3) are piece-
wise rational surfaces.

3.7.8 Quadrics

Algebraic surfaces of order 2 are called quadrics. They have polynomial equations
of degree 2. Their general form reads as

Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2H y + 2I z + J

= [1, x, y, z] ·

⎡
⎢⎢⎣

J G H I
G A D E
H D B F
I E F C

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1
x
y
z

⎤
⎥⎥⎦ = 0 (3.200)

with coefficients A, . . . , J ∈ R. Of course we demand that not all coefficients
A, . . . , F be zero.

38 gcd denotes the greatest common divisor of polynomials; see Definition 3.12, p. 69.

3.7 Surfaces 161

Classification of Quadrics

It is a standard exercise in linear algebra to show that—by some appropriate change
of the coordinate system—one of the following normal forms of the Eq. (3.200) can
be achieved (a, b, c, p ∈ R

+):

(a) x2 = 0
This is a plane which is doubly counted (double plane).

(b) a2x2 + b2 y2 = 0
This equation can be rewritten as (ax + iby) · (ax − iby) = 0 with i2 = −1.
Thus it is a conjugate complex pair of planes. The intersecting line of these
planes is real (here: the z-axis). All other points of this quadric are non-real.

(c) a2x2 − b2 y2 = 0
This leads to (ax + by) · (ax − by) = 0 and the surface consists of two
intersecting real planes.

(d) x2 + a2 = 0
This amounts to (x + ia) · (x − ia) = 0, and we have a pair of conjugate
complex parallel planes.

(e) x2 − a2 = 0
yields (x + a) · (x − a) = 0 and we have a pair of real parallel planes.

(f) x2

a2 + y2

b2 = 1
turns out to be an elliptic cylinder (Fig. 3.78, left).

(g) x2

a2 − y2

b2 = 1
is a cylinder with a hyperbola as its directing curve (Fig. 3.78, center).

(h) y2 = 2px

Fig. 3.78 Parallel straight line generators characterize a cylinder. Planar cross sections of a cylinder
(with planes not parallel to the generators) suggest their classification. The three types of quadratic
cylinders are distinguished by quadratic curves as their cross sections an ellipse, a hyperbola or a
parabola. Left elliptic cylinder; here the special case of a right cylinder; the orthogonal cross-section
is a circle. Center hyperbolic cylinder. Right parabolic cylinder

162 3 Geometric Fundamentals

Fig. 3.79 This quadratic
cone Φ (case (k)) has its
singular point (vertex) in the
origin O . The cone consists
of straight line generators
through O . Every planar
section ε ∩ Φ = k where ε

does not go through O is a
regular curve of 2nd order.
The represented parameter
lines on this example are such
planar sections (ellipses) and,
on the other hand, straight line
generators through O

Fig. 3.80 The ellipsoid Φ

(case (l)) is one model of a
quadric. As a very special
case a = b = c we could
also obtain the sphere. The
example of this figure is
an ellipsoid of revolution
we have a = b; the axis
of revolution is the z-axis.
The parameter lines for the
chosen parameterization are
shown: circles in parallel
planes, orthogonal to the axis
of revolution, and meridian
ellipses

We have a parabolic cylinder (Fig. 3.78, right).

(i) x2

a2 + y2

b2 = −1
This is a cylindric surface (virtual cylinder) which happens to have no real point
at all.

(j) x2

a2 + y2

b2 − z2

c2 = 0
represents a real quadratic cone with its apex in the origin (Fig. 3.79).

(k) x2

a2 + y2

b2 + z2

c2 = 0
This is a virtual quadratic cone with the apex in the origin. The apex is its only
real point.

3.7 Surfaces 163

Fig. 3.81 An example of a 1-sheet hyperboloid (case (m)). Here we have a = b, a 1-sheet hyper-
boloid of revolution. Apart from the hyperbolic paraboloid (Fig. 3.84) this is the only regular
quadratic surface to carry two families of real straight line generators. Left the displayed para-
meter lines refer to the generation of the surface as a surface of revolution. The parameter lines
are the circles latitude and the meridian curves (hyperbolae). Right the same surface, parameter-
ized according to its straight lines generators. The u-lines are one family of straight lines on Φ,
the v-lines are the other. Two generators of the same family are skew, two generators of different
families intersect in a point on the surface. As the formwork for such surfaces is particularly simple
(straight beams) these surfaces are also used in civil engineering, e.g., for cooling towers of power
plants

(l) x2

a2 + y2

b2 + z2

c2 = 1
is an ellipsoid with its center in the origin O (Fig. 3.80).

(m) x2

a2 + y2

b2 − z2

c2 = 1
This surface is called a one-sheet hyperboloid (Fig. 3.81).

(n) x2

a2 + y2

b2 − z2

c2 = −1
yields a 2-sheet hyperboloid (Fig. 3.82).

(o) x2

a2 + y2

b2 + z2

c2 = −1
This is a virtual ellipsoid; it has no real point.

(p) x2

a2 + y2

b2 = z
This surface is called elliptic paraboloid (Fig. 3.83).

(q) x2

a2 − y2

b2 = z
We finally have a hyperbolic paraboloid. It is sometimes called a saddle surface
(Fig. 3.84; compare also Example 3.23 and Fig. 3.115a, pp. 204 and 205).

164 3 Geometric Fundamentals

Fig. 3.82 The 2-sheet hyper-
boloid (case (n)) in a special
form; here we have a = b:
a surface of revolution with
a hyperbola as its meridian
curve. The main axis of the
hyperbola acts as the axis of
revolution. The 2-sheet hyper-
boloid has no real straight
line generators. According to
its name it consists of two
separate sheets. The general
type of a 2-sheet hyperboloid
a �= b can be created from this
surface of revolution by some
contraction in y-direction

Fig. 3.83 An example of an
elliptic paraboloid (case (p)):
here we have again selected the
special case a = b which leads
to a surface of revolution. The
meridian curves are parabolae,
the circles of latitude lie in
parallel planes orthogonal to
the axis of revolution (z-axis)

The types (a)–(k) are also referred to as singular quadrics. The types (a)–(e) among
the singular quadrics are called reducible. The types (l)–(q) are regular quadrics. The
normal forms have planes of symmetry in the three coordinate planes, except for the
types (p) and (q) which are only symmetric with respect to the xz- and the yz-plane.
Admittedly, the types (a)–(e) and the virtual surfaces (k) and (o) are of little relevance
for practical engineering. We have just listed them for the sake of completeness.

It can easily be shown that the types (a), (f), (g), (h), (j), (l), (m), (n), (p) and
(q) are rational (see Sect. 3.7.7, pp. 159): they can also be represented by rational
parameterizations.

3.7 Surfaces 165

Fig. 3.84 The hyperbolic paraboloid (case (q)) is the classical saddle surface. Apart from the
1-sheet hyperboloid—see above—this is the only surface to carry two families of straight lines.
In this figure the axis of Φ is the z-axis. The same hyperbolic paraboloid is parameterized in two
different ways. Left the parameter lines are vertical parabola cross-sections. Right the two families
of straight line generators are the parameter lines. This type of surfaces can easily be used in civil
engineering for curved roofs, especially if a skew quadrangle has to be covered. The straight beams
of the two families make it easy to construct some appropriate scaffold or formwork

It is remarkable that the quadratic surfaces (m) and (q) carry two mutually skew
families of straight lines. Hence they can be viewed as doubly ruled surfaces.39

In fact, there are no doubly ruled surfaces apart from these two types. They are
particularly interesting for construction engineers because of their statics and their
simple scaffolding.

The hyperbolic paraboloid (type (q)), in particular, can be generated by the follow-
ing simple idea: A skew quadrilateral a0,0, a0,1, a1,0, a1,1 (see also Fig. 3.84, right)
can be filled by a family of straight lines, each of them connecting two points on the
opposite sides a0,0a0,1 and a1,0a1,1 belonging to the same ratio. Of course, this can
also be performed for the other pair a0,0a1,0 and a0,1a1,1 of opposite sides delivering
another family of straight lines. It is pretty easy to check that these two families of
straight lines lie on the same surface sheet Φ: They are the two sets of generators
on one hyperbolic paraboloid Φ. This amazing example will also be referred to in
Example 3.23, p. 204.

3.7.9 Ruled Surfaces

Surfaces which are built up by a set of straight lines are well worth mentioning. Not
only can they be formed by a formwork consisting of straight planks (construction
engineering), they also show up in a lot of mechanical engineering applications.

39 For the notion of ruled surfaces see Sect. 3.7.9.

166 3 Geometric Fundamentals

Fig. 3.85 A ruled surface consists of straight lines (generators). Each of the generators is defined
by a point p(u) and a direction vector e(u)

Fig. 3.86 Cylinders and cones are particular types of ruled surfaces. Left a cylinder Φ is defined
by its directing curve p(u) and the constant direction vector e of its parallel straight line generators.
Right the straight line generators of a cone go through a vertex s

Definition 3.51. Ruled surface. A surface Φ with a parameterization of the form

q(u, v) = p(u) + v · e(u) with e(u) �= [0, 0, 0]� (3.201)

is called a ruled surface (Fig. 3.85). It consists of a one-parameter set of straight lines,
called the generators of Φ, whose directions are given by the vectors e(u). These
lines are the v-lines of the parametric representation (3.201). The u-line p(u) =
q(u, 0) is also called the directing curve of the parametric representation (3.201).

Two very specific types of ruled surfaces are defined in:

Definition 3.52. Cylinders and cones.

(a) A ruled surface (3.201) where e(u) ≡ e is a constant vector is called a cylindric
surface or a cylinder. Its generators are parallel to e (Fig. 3.86, left). A cylinder
is defined by e and its generator curve.

(b) A ruled surface Ψ where all generators run through a given point s is called a
cone with vertex s (Fig. 3.86, right). It is defined by s and a directing curve p(u).
As e(u) = p(u)−s is a direction vector of the respective generator, the cone can
be parameterized by:

3.7 Surfaces 167

q(u, v) = s + v · (p(u) − s) (3.202)

3.7.10 Developable Surfaces

In mechanical engineering some surfaces have to be produced from sheet metal
without deep-drawing, merely by bending the sheet.

Definition 3.53. Developable surface. A surface is called developable if it can
be transformed into a plane sheet without stretching. Mathematically this can be
expressed by the condition that there exists an isometry—i.e., a mapping that pre-
serves the arc length of any surface curve—from the surface into a plane.

A developable surface is shortly termed a developable. We consider a classical
result on developables (see [5], pp. 115).

Theorem 3.11. Characterization of developables. A surface Φ is developable if
the following two conditions hold:

1. Φ is a ruled surface.
2. For each straight line generator e there is only one plane tangent all along e.

The second condition in this characterization is in general not fulfilled by an
arbitrary ruled surface. Which ruled surfaces comply? The answer is given by

Theorem 3.12. Types of developables. There are 3 types of developable surfaces:

• cylindric surfaces
• cones
• tangent surfaces to spatial curves

The first and the second type have already been mentioned in Definition 3.52,
p. 166. The third is somewhat the generic type of a developable. Such a developable
surface is built up by the tangents to a given space curve c . . . p = p(u) (see Fig. 3.87).
In this case the direction vector e(u) of the respective generator (Definition 3.51,
p. 78) has to be specified by e(u) = .

p(u) = dp
du .

A tangent surface Φ to a spatial curve c can be represented by

q(u, v) = p(u) + v · .
p(u) (3.203)

where the spatial curve c . . . p(u) is called the edge of regression. Moreover, by using
(3.203) one can easily check that the osculating planes of c (see Sect. 3.3.6, p. 78) are
the tangent planes to Φ. The following remark is of utmost practicality (Fig. 3.87):

Remark 3.17 Recognizing a developable. Developables can visually be recognized:

• A developable has a straight line contour with respect to any (central or parallel)
projection.

168 3 Geometric Fundamentals

Fig. 3.87 The tangents of a space curve c . . . p(u) represent a ruled surface which is developable.
In fact every developable which is not a cylinder or a cone can be generated as the tangent surface
to some space curve

• A ruled surface with straight contours with respect to every parallel (central)
projection is developable (compare Fig. 3.88b,d).

An exception of this rule only occurs if one projects a cylinder parallel to its generators
or a cone via a central projection from its vertex—in those cases the cylinder or cone
appears as a curved line!

Example 3.17 A developable connecting two planar curves. Construct a devel-
opable surface Φ through a pair of plane curves c1 ⊂ ε1 and c2 ⊂ ε2 (Fig. 3.88a):
Imagine a piece of the air duct in an engine, a connecting tube of two convex holes.
The core part of the task is to find the generators of the ruled surface Φ such that
Φ turns out to be developable. A point c1(u1) on c1 and a point c2(u2) on c2 are
connected by a generator of Φ if the tangents t1, t2 of the two points are coplanar40:

det

[
c2(u2) − c1(u1),

dc1

du1
(u1),

dc2

du2
(u2)

]
= 0. (3.204)

This way, for any given parameter u1 the corresponding parameter u2 has to be a
zero of Eq. (3.204).

In general the outcome will not be a cylinder or a cone, so by rule of exclusion
(Theorem 3.12) we can say that it will be the tangent surface (see above) to some
spatial curve c.

Remark 3.18 The recipe described in the above example also works for space curves
c1, c2 instead of planar curves. The zeroes of condition (3.204) can still be evaluated
numerically. Again, we arrive at corresponding pairs of parameters (u1, u2) and thus
pairs of points which are to be connected by straight line generators.

40 It can be proved: If the tangent planes of two distinct points on a generator of a ruled surface are
identical, any other point on this generator will also have this tangent plane.

3.7 Surfaces 169

(a) (b)

(c) (d)

Fig. 3.88 Joining two closed planar curves by a developable surface. Whenever a part has to be
produced from a planar sheet by mere bending these geometrical considerations may be valuable.
The shape of the constructed net has to be cut out from the planar sheet. a Two planar curves c1 and
c2 are to be connected via a developable ruled surface. Each straight line generator has to connect
points p1 ∈ c1 and p2 ∈ c2 with coplanar tangents t1 and t2: the tangents t1 and t2 meet the line
s = ε1 ∩ ε2 in a common point. b A developable surface connecting c1 and c2. In general, this
surface will be the tangent surface Φ to some space curve c. Mind that the contour of Φ consists
of straight lines (Remark 3.17). In order to develop Φ we can approximate it by a finite number of
straight line generators. c The segment determined by two neighboring generators is a (albeit slim)
skew quadrangle. It can be divided into two triangles by one of its diagonals. Adding such elements
in the plane generates an approximating planar net of the surface. d If the two planar curves c1
and c2 are connected arbitrarily via straight lines the emerging ruled surface will, in general, not
be developable. In accordance with Remark 3.17 the contour of the non-developable ruled surface
does not consist of straight lines

170 3 Geometric Fundamentals

Fig. 3.89 A profile curve c is subjected to a revolution about the axis z. Every point p ∈ c runs
on a circular trajectory. All such circles of latitude lie in parallel planes orthogonal to the axis of
revolution

3.7.11 Surfaces of Revolution

Subjecting a curve c to a spatial motion creates a surface. Such surfaces are generally
called surfaces of motion. The particular type of surface created this way depends
on the type of motion and on the generating curve c.

Definition 3.54. Surface of revolution. (Figure 3.89) A continuous revolution
about the z-axis as in (3.9), p. 170, is applied to a curve

c . . . p(v) = [x(v), y(v), z(v)]� .

The resulting surface Φ has the parametric representation

q(u, v) =
⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ · p(v) =

⎡
⎣

cos u · x(v) − sin u · y(v)
sin u · x(v) + cos u · y(v)

z(v)

⎤
⎦ (3.205)

and is called surface of revolution41 with the generating curve (profile curve) c.

Every plane through the axis of revolution a (which—in our case—is the z-axis) is
called a meridian plane of Φ. Its intersection with Φ is dubbed a meridian curve of Φ.
All meridian curves of Φ are congruent curves. If we replace the generating curve c
by any meridian curve we certainly arrive at the very same surface of revolution Φ

albeit with another parameterization. In Fig. 3.89 the curve c is a meridian curve as
are the further parameter lines of that type. Some of them are shown in the figure.

41 This is the kind of surface which can be machined on a lathe.

3.7 Surfaces 171

While being rotated about the axis a every point p of c is moved on a circular
path. The circles all have the same axis a; they are the u-lines in the parameterization
(3.205) with constant v = v0. We also call them circles of latitude on Φ. The v-lines
u = u0—on the other hand—are the generating curve (c . . . u0 = 0) and its instances
while c is being rotated about a. If the generating curve c happens to be a meridian
curve (e.g., in the plane x = 0) the v-lines coincide with the meridians.

Remark 3.19 Quadrics of revolution. The quadrics (see Sect. 3.7.8, pp. 160)
include several examples of surfaces of revolution: If we put a = b in the cases
(f), (j), (l), (m), (n), (p) we obtain a cylinder of revolution (right cylinder), a cone of
revolution (right cone), an ellipsoid of revolution, a 1-sheet hyperboloid of revolu-
tion, a 2-sheet hyperboloid of revolution and a paraboloid of revolution, respectively.
In each of these normal forms the axis is the z-axis.

Example 3.18 A straight line generating a surface of revolution. To give an exam-
ple we revolve a simple straight line e about the z-axis. Let e be parameterized as

p(v) =
⎡
⎣

α

v · β

v · γ

⎤
⎦ with γ �= 0. Inserted into (3.205) this yields

q(u, v) =
⎡
⎣

α cos u − βv sin u
α sin u + βv cos u

γ v

⎤
⎦ =

⎡
⎣

x
y
z

⎤
⎦ . (3.206)

Eliminating u and v from (3.206) we arrive at one of the equations

x2 + y2

α2 − β2z2

α2γ 2 = 1 if α, β �= 0, (3.207)

x2 + y2

β2 − z2

γ 2 = 0 if α = 0, β �= 0, (3.208)

x2 + y2 = α2 if α �= 0, β = 0. (3.209)

By comparison with Remark 3.19 one can easily check that

⎧⎨
⎩

(207)

(208)

(209)

⎫⎬
⎭ repre-

sents a

⎧⎨
⎩

1 − sheet hyperboloid
cone

cylinder

⎫⎬
⎭ of revolution by putting

⎧⎨
⎩

a = α, c = αγ
β

a = α, c = γ

a = α

⎫⎬
⎭. The

meridian curve of the surface (3.207) is a hyperbola whose minor axis coincides
with the z-axis. This accounts for its name: 1-sheet hyperboloid. Figure 3.81 shows
this type of surface. The figure on the right shows the generation by a straight line
subjected to a revolution. The left figure shows that the same surface can as well be
created by revolving a meridian (hyperbola).

172 3 Geometric Fundamentals

Fig. 3.90 The torus, generated as a surface Φ of revolution. The axis of revolution is the z-axis.
The profile c is a circle in the yz-plane (meridian plane). The resulting surface is algebraic of order
4 (cf. Remark 3.20)

Example 3.19 Torus. (Figure 3.90) We give another example which is equally clas-
sical. Let c be the circle

p(v) =
⎡
⎣

0
a + b · cos v

b · sin v

⎤
⎦ (3.210)

in the yz-plane. Its center is (0, a, 0) and its radius is b. We apply a revolution about
the z-axis and obtain a surface of revolution Φ.
Substitution of (3.210) into (3.205) delivers the parameterization of Φ:

q(u, v) =
⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

− sin u · (a + b · cos v)
cos u · (a + b · cos v)

b · sin v

⎤
⎦ (3.211)

This surface is called torus. Eliminating the parameters u and v from (3.211) we
obtain the equation

(x2 + y2 + z2 + a2 − b2)2 = 4 · a2 · (x2 + y2). (3.212)

As this is a polynomial equation of degree 4 we conclude: The torus is an algebraic
surface of order 4. A 2nd order meridian curve provided a surface of revolution of
order 4. This observation adheres to a general rule:

Remark 3.20 Algebraic surfaces of revolution. If a planar algebraic curve c of
order n is used as the meridian curve we obtain a surface of revolution Φ which is

• algebraic of degree 2n if c is not symmetric with respect to the axis of revolution.
• algebraic of degree n if c is symmetric with respect to the axis of revolution.

3.7 Surfaces 173

As examples for the second case we mention the hyperboloid of revolution, the
ellipsoid of revolution and the paraboloid of revolution. Examples for the first case
are—apart from the torus and many others—the right cone and the right cylinder.

3.7.12 Helical Surfaces

We proceed creating surfaces by applying some type of spatial motion to a given
profile curve c. We now consider a screw motion about the z-axis, with a pitch
h = 2πp as in (3.10), p. 61.

Definition 3.55. Helical surface. A curve c

c . . . p(v) =
⎡
⎣

x(v)
y(v)
z(v)

⎤
⎦

subjected to a helical motion (3.10) delivers a surface Φ with the parameterization

q(u, v) =
⎡
⎣

cos u − sin u 0
sin u cos u 0

0 0 1

⎤
⎦ · p(v) =

⎡
⎣

cos u · x(v) − sin u · y(v)
sin u · x(v) + cos u · y(v)

z(v) + p · u

⎤
⎦ . (3.213)

Φ is called a helical surface with generating curve c.

Every plane through the screw axis a is called a meridian plane of Φ. Its intersec-
tion with Φ is a meridian of the surface. All meridians of Φ are congruent curves.
Replacing the generating curve c by a meridian results in the same helical surface Φ.

Helical surfaces are not algebraic. The only exception is trivial: a right cylinder
with axis a. The assumption that a helical surface Φ (other than a right cylinder)
with the screw axis a and a profile curve c be algebraic, can easily be proven wrong:
A line parallel to the axis a through any point P ∈ c will deliver an infinite number
of intersection points with Φ. If Φ were algebraic of any order n the number of
intersection points with a straight line would be no more than n (Theorem 3.9, p. 159).

A surface of revolution can be viewed as a special case of a helical surface whose
pitch has shrunk to zero. We can equally view any cylindric surface as a special case
of a helical surface where the rotational component is suppressed.

Definition 3.56. Helical ruled surface, circular helical surface. If the profile
curve c of the helical surface Φ is a straight line we call Φ a helical ruled surface.
If the profile curve c is a circle the generated helical surface Φ is called a circular
helical surface.

Figure 3.91 shows a sample of helical ruled surfaces: If the generating straight
line c is skew to the screw axis a and not perpendicular to a the surface is called
generic helical ruled surface. If the profile curve c happens to be a screw tangent
(Fig. 3.91, center) the surface is developable (compare with Sect. 3.7.10). It is the

174 3 Geometric Fundamentals

Fig. 3.91 A helical ruled surface is generated by a straight line c which is subjected to a helical
motion. Left the helical ruled surface Φ is determined by a straight line generator c which is skew to
the screw axis (z-axis). Center basically the helical ruled surface Ω is of the same type as Φ (left).
However, in the case of Ω the generator c happens to be the tangent of a trajectory (screw line of
this very screw motion). This is why we arrive at a developable surface which—by the way—can be
recognized by its straight line contour (cf. Remark 3.17, p. 167). Right the straight line generator
c intersects the screw axis orthogonally. This surface Ψ is called right helicoid

tangent surface to a helix. Apart from the trivial case of right cylinders such tangent
surfaces of helices are the only developable helical surfaces.

One interesting application of developable helical surfaces are helical gears:
These surfaces form the tooth flanks of such cogs. At any moment the two flanks
of engaging cogs have line contact along a generating straight line c. Their main
advantage is their low noise action.

Figure 3.92 shows a special circular helical surface: If the screw tangent of the
profile circle’s center is orthogonal to the plane of the circle the emerging surface is
a tubular helical surface. It can also be generated subjecting a sphere Ω to a screw
motion, thus generating a one-parametric family Ω(u) of spheres. The envelope of
this family Ω(u) is the tubular helical surface. Such surfaces occur as springs in
mechanical devices.

Helical surfaces do not only show up in the threads of nuts and bolts, they even
play an important role in the design of cars (cf. Sect. 3.13, pp. 235).

3.7.13 Moving a Curve or a Surface in Itself

We now define a concept which links spatial motions and surfaces (or curves):

Definition 3.57. Moving a curve or a surface in itself. A curve c (or a surface Φ)
is said to be moved in itself if every point of c (or Φ) stays on that curve (surface)

3.7 Surfaces 175

Fig. 3.92 The tubular helical surface is a special case of a circular helical surface. A circle c is
subjected to a helical motion. The particular thing is that the screw tangent t of the circle center is
orthogonal to the circle’s plane

throughout the motion. As an example we can think of a surface of revolution Φ

which is revolved about its own axis, or a helical surface Φ which is subjected to
the very screw motion which created it. Overall, the surface stays the same whilst its
points are being moved on the sheet.

The following theorem is well-known in the field of mathematics. It is, however,
not generally recognized in automotive design.

Theorem 3.13. Classification of curves and surfaces which are moveable in
themselves.

1. The only curves movable in themselves are the straight lines, the circles and the
helices. The corresponding motions are appropriate translations, rotations and
screw motions.

2. The helical surfaces (together with their special cases of cylinders and surfaces
of revolution) are the only surfaces which can be moved in themselves. The cor-
responding motions are appropriate translations, rotations and screw motions.

This fundamental geometric result can be more than useful for practical applica-
tions (see [3, 19–21]). As for automotive design it can be used for the construction
of retractable surfaces such as car side windows (see Sect. 3.13, pp. 235 of this book
and [22, 23]).

176 3 Geometric Fundamentals

Fig. 3.93 A point p on the intersection curve c = Φ ∩ Ψ lies on both tangent planes τΦ and τΨ .
If these planes are different they have a unique intersection tp which is the tangent to c in P

3.7.14 Intersection of Surfaces

We now consider two surfaces Φ and Ψ . Their intersection c = Φ ∩Ψ is, in general,
a one-parametric set of points, i.e., a space curve or—in some cases—a set of planar
curves. We call the outcome intersection curve c of the surfaces Φ and Ψ .

In a general point on the intersection curve c we can easily construct the tangent
to c. As the curve c lies on both surfaces Φ and Ψ , its tangent has to be contained in
both tangent planes (cf. Fig. 3.73, p. 148). If the two tangent planes in the regarded
point p do not coincide we have:

Proposition 3.16 Tangent to the intersection curve. Let p ∈ c be a point on the
intersection curve c of the two given surfaces Φ and Ψ (Fig.3.93). Let moreover τΦ

and τΨ be the tangent planes of Φ and Ψ in the point p. Then we have:
If τΦ �= τΨ then the tangent tp to c at p exists and is the intersection of the two

tangent planes τΦ and τΨ in the common point p:

tp = τΦ ∩ τΨ

Moreover, as τΦ �= τΨ , the normal vectors nΦ and nΨ of Φ and Ψ at p are linearly
independent and their cross product

tp = nΦ × nΨ

is a direction vector of tp.

We add a few examples.

Example 3.20 Two quadrics of revolution. Let us regard two quadrics of revolution
Φ and Ψ , e.g., two right cylinders as in Figs. 3.94, 3.95, 3.96, and 3.97 or a right

3.7 Surfaces 177

Fig. 3.94 Two right cylinders Φ and Ψ . The surfaces are displayed with some of their straight line
generators. The intersection curve c = Φ ∩ Ψ is a spatial curve. In this particular case c consists of
one piece

Fig. 3.95 Two right cylinders Φ and Ψ . The intersection curve c = Φ ∩ Ψ is a spatial curve
consisting of two pieces (two connected components)

cylinder and a right cone as in Fig. 3.98. We can think of two intersecting pipes. Of
course, there are a lot of options for the shape of the outcome. Figure 3.94 shows
the case where the intersection curve is a spatial curve consisting of one connected
component. In Fig. 3.95 there occur two connected components within the space
curve c.

If the two surfaces are tangent in a point D (Fig. 3.96), this point is in general
a so-called double point of the intersection curve c. The tangent to the intersection
curve is no more uniquely determined (see Proposition 3.16) as the tangent planes of

178 3 Geometric Fundamentals

Fig. 3.96 The two right cylinders Φ and Ψ share a point D where the two surfaces have the same
tangent plane. We say: Φ and Ψ are tangent at D. The intersection curve c = Φ ∩ Ψ (again a
spatial curve) has a double point D; the curve c goes through D twice

the two surfaces in that point coincide. In general, the curve goes through D twice.
Figure 3.96 can be viewed as the border case between the preceding two Figs. 3.95
and 3.94.

The following example again refers to intersecting quadrics of revolution. How-
ever, it shows the case when the outcome consists of planar curves.

In practice a pipe junction is much easier to handle (cutting with an angle grinder
or a circular saw) if the intersection curve c consists of planar components. When
does that happen? The answer takes a little algebraic geometry (e.g., see [24]). We
note the result (see Figs. 3.97 and 3.98):

Example 3.21 A pipe junction with planar intersection curves. If the axes of the
two quadrics of revolution intersect in a point M and if there is a common sphere
Ω with center M , inscribed tangentially into both surfaces, the intersection c of Φ

and Ψ decomposes and consists of two second order curves (in the regarded cases:
ellipses). For two right cylinders this means that they have intersecting axes and the
same radius. This often happens in pipe knees, in pipe T-knees or pipe crossings.
Figure 3.97 shows this case where additionally the two axes intersect orthogonally.
Figure 3.98 shows the case of a right cylinder and a right cone. Here, the existence
of a common tangent sphere is a welcome criterion for the intersecting curves to
emerge as planar curves.

We mention one further useful example.

Example 3.22 Every skew circular cone carries two families of circles. We regard
a circular cone Φ (not a right cone; such cones are often referred to as skew circular
cones) with vertex S and a directing circle c lying in a plane ε. (Figure 3.99a). We

3.7 Surfaces 179

D2D1

Φ

Ψ

e, ē

Φ

Ψ e
ē

D1

D2

Fig. 3.97 The two right cylinders Φ and Ψ are tangent at D1 and D2. They have the same radius.
Their axes intersect. In that case the intersection curve c = Φ ∩ Ψ degenerates into two (planar)
curves. It consists of two ellipses: c = Φ ∩ Ψ = {e, ē}

(a) (b)

Fig. 3.98 Pipe junctions of cylindric and conical surfaces of revolution. It is sometimes recom-
mendable to dimension the pipes such that this intersection decomposes into planar components.
The criterion for this to happen is the existence of a sphere inscribed tangentially to both surfaces
of revolution (pipes) of 2nd order. a A right cylinder Φ and a right cone Ψ . Each of them is tangent
to the same sphere Ω along one of its circles of latitude. The intersection curve c = Φ ∩ Ψ has
two double points D1 and D2 (see right figure). It decomposes into planar curves (ellipses). b A
pipe junction can easier be produced if the intersection curve consists of planar components. The
existence of a sphere tangent to both pipes (left figure) provokes this phenomenon

consider a sphere Ω which also goes through c. Then the intersection curve Φ ∩ Ω

also contains the circle c; the remainder of the intersection is one further circle c̄. The
respective proofs can be found in books on algebraic geometry (e.g., see [24]). It is
interesting to see that the skew circular cone contains another circle c̄ whose plane

180 3 Geometric Fundamentals

(a) (b)

Fig. 3.99 A circular cone Φ—in general—carries two pencils of circles if the cone is different
from a right cone. a A circle c on a circular cone Φ. The sphere Ω through c intersects the cone
in a further circle c̄. This way the cone can be used to join two right cylinders Φ2 and Φ1 with
different radii. b Under certain preconditions (left figure) two right cylinders—albeit with different
radii—can be joined by a circular cone such that the intersection curve at both ends is a circle

is not even parallel to the plane of c. The intersection of the cone and the sphere gets
us the position of that circle c̄.

As central dilations from the vertex S transform c̄ into a pencil (family) of parallel
circles on Φ we can summarize:

Proposition 3.17 Existence of two pencils of circles on a circular cone. On every
circular cone (given by a directing circle c and a vertex S) which is not a right cone
there exists—apart from the pencil of circles containing c—a second pencil of circles.
Intersecting the cone with a sphere through c delivers—apart from c—one circle c̄
of the second family of circles.

3.8 Tensor Product Surfaces

In Sect. 3.4, p. 85, we have defined freeform curves. Such a curve is ruled by a
control polygon: The curve’s shape can be modified by repositioning the vertices of
its control polygon. Similar ideas can be used to generate surfaces. In this case the
control polygon has to be replaced by a control net:

3.8 Tensor Product Surfaces 181

Fig. 3.100 Once the families of functions Fi (u), i = 0, . . . , m and G j (v), j = 0, . . . , n are
preselected, the control net ai, j , i = 0, . . . , m, j = 0, . . . , n determines a tensor product surface.
Here, we have m = 2 and n = 3. Left the control net as a matrix of points ai, j in 3-space. The
connecting lines are also called the u-threads (constant index j) and the v-threads (constant index
i). Right the surface q(u, v) as defined in (3.214) or likewise (3.215), together with its defining
control net

Definition 3.58. Tensor product surface. Let (m + 1) × (n + 1) points ai, j , i =
0, . . . , m, j = 0, . . . , n in 3-space be given (Fig. 3.100). Moreover, let Fi (u), i =
0, . . . , m and G j (v), j = 0, . . . , n be two sets of functions of parameters u and v,
respectively. Then the surface with the parametric representation

q(u, v) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · ai, j , u ∈ [u0, u1], v ∈ [v0, v1] (3.214)

is called tensor product surface or tensor product patch. The point matrix ai, j , i =
0, . . . , m, j = 0, . . . , n is referred to as the control net of the tensor product surface
q(u, v) and the functions Fi (u) and G j (v) are called blending functions.

Remark 3.21 An obvious method of generalizing the concept of freeform curves
could be to use only one family of blending functions Hi, j (u, v), i = 0, . . . , m, j =
0, . . . , n—albeit doubly indexed and bivariate—and define a freeform surface as

q(u, v) =
m∑

i=0

n∑
j=0

Hi, j (u, v) · ai, j .

This would, undoubtedly, be a more general approach. The primary reason for stick-
ing to products Fi (u) · G j (v) of univariate functions instead is that this way one can
easily transfer a lot of methods and concepts from the freeform curves.

Remark 3.22 A tensor product surface is a very special type of a so-called freeform
surface. The notion freeform surface refers to a pretty general class including sub-

182 3 Geometric Fundamentals

division surfaces, triangular patches (cf. Sect. 3.11, pp. 225), Coons patches (cf.
Sect. 3.9.1, pp. 204) and many more.

One appealing form of representing a tensor product surface (3.214) is:

q(u, v) = [F0(u), . . . , Fm(u)] ·
⎡
⎢⎣

a0,0 . . . a0,n
...

...

am,0 . . . , am,n

⎤
⎥⎦ ·
⎡
⎢⎣

G0(v)
...

Gn(v)

⎤
⎥⎦ (3.215)

The u-lines v = v0 = const on a tensor product surface q(u, v), for one, can be
recognized as freeform curves in the sense of Definition 3.24, p. 86:

q(u, v0) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v0) · ai, j =
m∑

i=0

Fi (u) ·
⎛
⎝

n∑
j=0

G j (v0) · ai, j

⎞
⎠

︸ ︷︷ ︸
=: ci

=
m∑

i=0

Fi (u) · ci (3.216)

The points ci form a control polygon of that u-line. An analogous result holds for
the v-lines.

A tensor product surface is uniquely determined by the given control net and the
two families Fi (u) and G j (v). Moreover, it does not depend on the choice of the
coordinate system if each of the families Fi (u) and G j (v) fulfills the partition of
unity-condition:

m∑
i=0

Fi (u) ≡
n∑

j=0

G j (v) ≡ 1 (3.217)

3.8.1 Bézier Surfaces

We now particularize the tensor product surfaces by choosing specific sets of blending
functions Fi (u) and G j (v). For the most famous type of tensor product surfaces—
the Bézier surfaces—these functions are Bernstein polynomials (see Definition 3.25,
p. 87).

Definition 3.59. Bézier surface. A Bézier surface (or Bézier patch) of degree
(m, n) is a tensor product surface (Definition 3.58) to a given control net ai, j , i =
0, . . . , m, j = 0, . . . , n where the two sets of functions Fi (u) and G j (v) consist of
the Bernstein polynomials Bi,m(u) and B j,n(v) of degree m and n, respectively:

3.8 Tensor Product Surfaces 183

Fig. 3.101 The (2,3)-control net defines a Bézier surface. The corners of the patch coincide with the
corners of the control net; even the tangent planes in the corner points (orange cubes) are spanned
by the respective threads (orange). The parameter lines are Bézier curves themselves. The control
polygons of the four boundary curves are even the boundary threads of the net

q(u, v) =
m∑

i=0

n∑
j=0

Bi,m(u) · B j,n(v) · ai, j , u ∈ [0, 1], v ∈ [0, 1] (3.218)

Proposition 3.18 Properties of Bézier surfaces. A Bézier patch is defined by its
control net. The following items point out the close connection between this net and
the surface itself (Fig.3.101):

1. Any u-line (v-line) of a Bézier surface is a Bézier curve (cf. Definition 3.26, p. 89).
Its control polygon can be computed via (3.216).

2. The four boundary curves of the Bézier patch (3.218) are Bézier curves. This
statement is, of course, a special case of the preceding. Their control polygons,
however, are just the four boundary threads of the control net. For example, the
control polygon of the boundary curve p(u) := q(u, 0) is a0,0, . . . , am,0.

3. The Bézier surface and its control net have the same corner points:
q(0, 0) = a0,0, q(0, 1) = a0,n, q(1, 0) = am,0, q(1, 1) = am,n.

4. The tangent plane τ0,0 to the Bézier surface at q(0, 0) = a0,0 is spanned by the
points a0,0, a0,1, a1,0. This is evident from 2.) and from the basic properties of
Bézier curves. The same holds for the other three corners. We can shortly note:
The tangent plane in a corner point of the Bézier patch is spanned by the two
threads of the control net through this corner point.

5. As the Bernstein polynomials of a given degree are a partition of unity (3.217) we
have: The surface is invariantly connected with its control net ai, j with respect
to affine transformations.

184 3 Geometric Fundamentals

6. Due to the symmetry properties (3.63), p. 87, of Bernstein polynomials we have:
The Bézier surface defined by the reversed42 control net is the same as the original
Bézier surface. Reversing the net only reverses the orientation of the respective
parameter. The Bézier surface, taken as a whole, remains the same.

7. The surface is completely contained in the convex hull of the control net (convex-
hull property).

Bézier Surfaces on an Arbitrary Rectangular Domain

Sometimes it is necessary to transform the parameter representation of a Bézier sur-
face to an arbitrary domain. We have introduced Bernstein polynomials on arbitrary
intervals (see (3.71), p. 91). They immediately convey the more general parameteri-
zation of a Bézier surface:

q(u, v) =
m∑

i=0

n∑
j=0

B[u0,u1]
i,m (u) · B[v0,v1]

j,n (v) ·ai, j , u ∈ [u0, u1], v ∈ [v0, v1] (3.219)

The de Casteljau Algorithm for Bézier Surfaces

Of course, (3.218) or (3.219) perfectly yields the point q(u0, v0) on a Bézier surface
q(u0, v0) to any given parameter pair (u0, v0). As a favorable alternative to construct
the point q(u0, v0) we can also apply the following geometric algorithm (Fig. 3.102)
which is greatly based on the de Casteljau Algorithm 3.1 for curves, p. 92.

Algorithm 3.5. De Casteljau algorithm for Bézier surfaces. We are given the
control net ai, j , i = 0, . . . , m, j = 0, . . . , n of a Bézier surface and a pair of
parameters (u0, v0). The control net consists of m + 1 v-threads: The v-thread with
index i is ai,0, . . . , ai,n.

1. We apply the de Casteljau algorithm for Bézier curves (Algorithm 3.1, p. 92) for
the parameter value v0 to each of the m +1 v-threads. This way we obtain a point
ci for every i = 0, . . . , m.

2. These points c0, . . . , cm, in turn, form a control polygon to one further Bézier
curve which is the parameter line v = v0 of the given Bézier patch.

3. We again apply the de Casteljau algorithm for Bézier curves, this time to the
control polygon c0, . . . , cm for the parameter value u0. We end up at one single
point which is the desired surface point q(u0, v0).

Of course, this algorithm can also be applied the other way round, starting with
the u-threads, accordingly. The final result q(u0, v0) remains the same. The proof to

42 Here, reversing the net refers to swapping one index—say i—from i to (m − i) and leaving the
other index untouched. Reversing the net with respect to the second index—here, replacing j by
(n − j)—is a different operation. Both actions combined make for 4 options overall.

3.8 Tensor Product Surfaces 185

this construction lies in formula (3.216) which—for Bézier surfaces—now reads as:

q(u0, v0) =
m∑

i=0

n∑
j=0

Bi,m(u0) · B j,n(v0) · ai, j

=
m∑

i=0

Bi,m(u0) ·
⎛
⎝

n∑
j=0

B j,n(v0) · ai, j

⎞
⎠

︸ ︷︷ ︸
=: ci

=
m∑

i=0

Bi,m(u0) · ci (3.220)

The de Casteljau algorithm for surfaces basically amounts to applying repeated
subdivision to straight line segments, albeit with one additional loop (compared to
the Bézier curve case). This also implies that the Bézier surface is affinely connected
with its control net: Dividing a straight line segment by a given ratio is an affine
construction.

Let us now refer to the standard parameter domain [0, 1] × [0, 1] as defined
in (3.218). For u0, v0 ∈ [0, 1] the segments are always divided in their interior
throughout the whole de Casteljau algorithm; therefore, all corresponding points lie
within the convex hull of the control net, and so does the resulting Bézier patch itself.
This yields a straightforward proof to the convex hull property of Bézier patches
(Proposition 3.18, 7.)).

Fig. 3.102 The de Casteljau algorithm for a Bézier surface of degree (m, n) = (2, 2) to the pair
of parameters (u0, v0) = (0.66, 0.55). Repeated subdivision applied to the edges of the control net
leads to the point q(u0, v0)

186 3 Geometric Fundamentals

Fig. 3.103 We start with a (2, 3)-Bézier patch (control net light grey). Degree elevation, applied in
v-direction, delivers a new control net (dark threads and cubes). This net—formally—determines
a (2, 4)-Bézier patch which, however, is the same as the initial one

Degree Elevation

The procedure of degree elevation for Bézier curves (see (3.76), p. 98) can be trans-
ferred to Bézier surfaces. Let q(u, v) be a Bézier patch of order (m, n) with the
control net ai, j , i = 0, . . . , m, j = 0, . . . , n. In order to raise the degree n to n + 1
we take the following steps

• We apply the degree elevation for each of the m + 1 v-threads ai,0, . . . , ai,n ,
i = 0, . . . , m.

• The emerging new threads add up to a (m, n + 1)- control net bi, j , i = 0, . . . , m,
j = 0, . . . , n + 1 of the original Bézier patch q(u, v).

Figure 3.103 shows a graphic example for a (2, 3)-Bézier patch (control net ai, j).
After degree elevation the very same surface is represented as a (2, 4)-Bézier patch
with the control net bi, j .

Of course, degree elevation can equally be applied to the u-threads, increasing
the degree (m, n) to (m + 1, n). Repeated degree elevation of either sort offers
an abundance of options. The procedure does not change the shape of the Bézier
patch, but it offers more leverage for further modification and modeling (compare
the following section).

3.8 Tensor Product Surfaces 187

Fig. 3.104 A (2, 3)-Bézier patch Φ (light grey) and its continuation Φ̄ (blue) in v-direction to a
design parameter v0 = 1.95. The surface Φ̄ is a C∞-continuation to Φ

Modeling Bézier Surfaces

We now want to create a continuation of a Bézier patch across one of its the boundary
curves.

Construction 3.6 Continuation of a Bézier patch across a boundary curve.
(Figure 3.104) Let Φ be a Bézier patch with the control net ai, j , i = 0, . . . , m, j =
0, . . . , n. We continue the patch across the boundary curve c . . . v = 1 in the follow-
ing way:

• We choose a so-called design parameter v0 > 1 which controls the extent of the
continuation.

• For every i = 0, . . . , m we apply the continuation algorithm for Bézier curves
(Construction 3.2, p. 95) to the i-th v-thread ai,0, . . . , ai,n of the control net.

• For every i = 0, . . . , m we regard bi,0, . . . , bi,n, the resulting control polygon of
the i-thread continuation. The set of all such continuation polygons constitutes a
new control net bi, j , i = 0, . . . , m, j = 0, . . . , n of some Bézier patch Φ̄ which
is the desired continuation of Φ across the boundary curve c.

Figure 3.104 shows one example of such a continuation for the case m = 2 and
n = 3. Here we have to keep in mind that a polynomial surface (e.g., a Bézier
surface) can basically have the parameter domain R × R. It ranges far beyond the
considered parameter domain [0, 1] × [0, 1] of the original patch Φ. Thus, we can
consider the continuation patch Φ̄ as just another part of the same polynomial surface,
albeit for the parameter domain [0, 1] × [1, v0]. The smoothness between Φ and its
continuation Φ̄ is GC∞.

Remark 3.23 Note on the GCk- and Ck-continuity of continuation patches. Sim-
ilarly as in the case of continuations of Bézier curves via the de Casteljau algorithm
(Remark 3.23, p. 187) we have to admit that the new patch Φ̄ only continues Φ with

188 3 Geometric Fundamentals

C∞-continuity after we have applied the linear parameter transformation v = τ−1
v0−1 .

Otherwise all partial derivatives of Φ̄ with respect to the parameter v differ from those
of Φ by the factor v0 − 1 all along the common boundary curve. This is why we can
only speak of GC∞-continuity. Analogously, we would only have GCk- instead of
Ck-continuity between Φ and a modified continuation patch Φ̄∗ generated via Con-
struction 3.7, if we don’t reparameterize accordingly. In the following paragraphs
we will imply that this simple substitution has to be carried out after continuation
though we will not always mention this step explicitly.

To have a separate control net for the continuation patch Φ̄ is pivotal for the
following modeling process. Modifying the points of this control net will only affect
the patch Φ̄. The original patch Φ will stay unaltered.

The procedure of modeling can also be transferred from the Bézier curve case
(see Proposition 3.3, p. 100) to the case of Bézier surfaces:

Construction 3.7 Modeling the continuation of a Bézier patch. Let Φ be a Bézier
patch with the control net ai, j , i = 0, . . . , m, j = 0, . . . , n. Moreover, let v0 > 1
be a design parameter. Modeling the continuation patch Φ̄ consists of the following
steps:

• Construct the continuation Φ̄ belonging to the design parameter v0 (Construc-
tion 3.6).

• In each of the v-threads bi,0, . . . , bi,n of Φ̄ replace the last n − k control points by
some deliberately chosen43 new points b∗

i,k+1, . . . , b∗
i,n, but leave the first k + 1

control points bi,0, . . . , bi,k untouched.
• The modified control net

⎡
⎢⎣

b0,0 . . . b0,k b∗
0,k+1 . . . b∗

0,n
...

...
...

...

bm,0 . . . bm,k b∗
m,k+1 . . . b∗

m,n

⎤
⎥⎦

defines a Bézier surface Φ̄∗ which still continues the original surface Φ with
Ck-smoothness.

Figure 3.105 shows an example where the continuation has been modified. The
modified patch is still C2-continuous along the boundary curve as the first 3 threads—
counted from the transition tread a0,3 = b0,0, a1,3 = b1,0, a2,3 = b2,0—remain
unmodified.

Clearly, this construction can be adapted to the case where Φ has to be continued
along its boundary curve v = 0 for some design parameter v0 < 0. The analogue
construction continues the patch across the boundary curve u = 1 or u = 0.

In the following construction we aim at filling a gap between two given Bézier
patches, both of degree (m, n). To achieve this, two continuations of the fore-

43 The choice of such control points is the job of the stylist. The expression deliberately chosen is
only meant in terms of geometric correctness.

3.8 Tensor Product Surfaces 189

Fig. 3.105 The continuation Φ̄ (see Fig. 3.104) is modified according to Construction 3.7. As the
first three threads of Φ̄ remain unaltered the modified patch Φ̄∗ (blue) still enjoys C2-continuity
towards Φ (grey) along the common boundary curve

mentioned type have to be applied. In a way, this is akin to Construction 3.4, p. 97,
of a transition curve between two Bézier curves.

Construction 3.8 Filling a gap between two Bézier patches. Let Φ1 and Φ2 be
two Bézier patches, both of degree (m, n) and let k be a non-negative integer with
k ≤ n−1

2 . To find a Bézier patch filling the gap between Φ1 and Φ2 Ck-continuously
at either end we obey the following steps:

• Construct a continuation Φ̄1 of Φ1 along v = 1 with some design parameter
v0 > 1. Let

⎡
⎢⎣

b0,0 . . . b0,n
...

...

bm,0 . . . bm,n

⎤
⎥⎦ (3.221)

be the control net of Φ̄1.
• Analogously, construct a continuation Φ̄2 of Φ2 along v = 0 with a design para-

meter v0 < 0. Let

⎡
⎢⎣

c0,0 . . . c0,n
...

...

cm,0 . . . cm,n

⎤
⎥⎦ (3.222)

be its control net.
• Assemble a new control net as follows:

190 3 Geometric Fundamentals

⎡
⎢⎣

b0,0 . . . b0,k d0,0 . . . d0,n−2k−1 c0,k, . . . c0,0
...

...
...

...
...

...

bm,0 . . . bm,k dm,0 . . . dm,n−2k−1 cm,k, . . . cm,0

⎤
⎥⎦ (3.223)

The control points bi, j and ci, j are taken from (3.221) and (3.222), the points di, j

can be deliberately chosen.
The Bézier patch Ω with this control net joins the two patches Φ1 and Φ2 Ck-
continuously. The transition curve v = 1 of Φ1 is identical to the boundary curve
v = 0 of Ω . In the same way the transition curve v = 0 of Φ2 is identical to the
boundary curve v = 1 of Ω .

Figure 3.106 shows some examples with different values n −2k −1 indicating the
number of threads in the control net of the gap filling patch which are still disposable
for modeling.

We now return to Construction 3.6 which can be applied in u-direction as well as
in v-direction, accordingly. These two continuations of a given patch Φ, however, do
not fill a rectangular domain. To complete this we have to deliver some additional
construction. Again, the tool is based on the de Casteljau scheme:

Construction 3.9 Filling a rectangular domain Ck-continuously with Bézier
patches. (Figure 3.107) Let Φ be a (m,n)-Bézier patch belonging to the control net
ai, j , i = 0, . . . , m, j = 0, . . . , n. Let moreover u0, v0 > 1 be two design parameters
and let k ≥ 0 be the desired degree of continuity.

• We continue the given patch Φ to a patch Φ1 in u-direction beyond u = 1 (design
parameter u0) and equally to a patch Φ2 in v-direction beyond v = 1 (design
parameter v0) by Construction 3.6, employed twice.

• Next we modify the two continuations Φ1 and Φ2 such that Ck-smoothness towards
Φ is still retained (cf. Construction 3.7, p. 188). We name the modified patches Φ∗

1
and Φ∗

2 .
• We now continue Φ∗

1 in v-direction with respect to the design parameter v0 and
Φ∗

2 in u-direction with respect to u0 as design parameter. This way we arrive at
two control nets; we now construct the control net of the desired patch Ω∗ from
these two.

• From each of the emerging two control nets we keep the k + 1 threads adjacent
to their respective transition thread. Note that the points within the overlapping
area of those threads are identical anyway.

• The (m − k)× (n − k) points in the remote corner of the control net can be chosen
deliberately which leaves space for further modeling.

The Bézier surface Ω∗ belonging to the constructed control net continues both adja-
cent patches Φ∗

1 and Φ∗
2 Ck-continuously.

3.8 Tensor Product Surfaces 191

Fig. 3.106 The given (2, 3)-Bézier patches Φ1 and Φ2 (light grey) are to be connected via a further
patch Ω such that the gap between the surfaces is closed. Top both patches Φ1 and Φ2 are continued
towards the gap as described in Construction 3.6. The gap filling patch Ω is created from these two
continuations. Each of them contributes the boundary thread and one further thread. The two threads
from either continuation constitute the four threads of the (2, 3)-control net (blue cubes). The gap
filling patch Ω continues Φ1 and Φ2 with mere C1-continuity at either side. We have n = 3 and
k = 1 and, consequently, n−2k −1 = 0 there are no remaining points di, j in-between which would
be free for modification (see (3.223)). Center in order to achieve C2-continuous transitions for the
gap filling patch Ω the two given (2, 3)-control nets are subjected to repeated degree elevation in v-
direction (see p. 186). We formally arrive at two (2, 5)-Bézier patches Φ1 and Φ2. We now demand
k = 2, so each of the continuations contributes three threads to the (2, 5)-control net of the gap
filling patch Ω̄ . Here we have n = 5 and k = 2. The new gap filling patch Ω̄ is a C2-continuation
at either end. As for the number of threads which are free for further modification we again have
n−2k −1 = 0. Bottom in order to retain C2-continuity and to be able to modify the gap filling patch
¯̄Ω we apply the degree elevation to Φ1 and Φ2 in v-direction one more time. Continuation as above

(see (3.223)) delivers a (2, 6)-patch ¯̄Ω which now offers one thread (control points d0,0, d1,0, d2,0,
orange) which can be modified by the user without compromising the C2-continuity at either end

192 3 Geometric Fundamentals

Fig. 3.107 The given (m, n)-Bézier patch Φ (here m = n = 3) is to be continued C2-continuously
(k = 2) in both directions u and v such that the overall continuation again fills a rectangular domain.
The resulting surface is still to be modified such that C2-continuity is retained. In the first step the two
C2-continuations Φ1 (in u-direction) and Φ2 (in v-direction) are each created as in Construction 3.6
(blue patches). The dark blue cubes denote the control points which are still free for modification.
The red cubes signify the modified points. The continuation patches modified this way are named
Φ∗

1 and Φ∗
2 . Finally, the patches Φ∗

1 and Φ∗
2 have to be continued in v-direction and in u-direction,

respectively, according to Construction 3.9. We arrive at the patch Ω∗. As (m − k) × (n − k) = 1,
in this example there is only one point left for modification. It is represented by the red cube at
the front top corner. For comparison, the figure also shows the unmodified patches Φ1, Φ2 and the
patch Ω (yellow) generated from them

3.8.2 B-Spline Surfaces

After having negotiated Bézier surfaces we now consider another type of tensor
product surfaces more closely. We specify the blending functions Fi (u), i = 0, . . . , m
and G j (v), j = 0, . . . , n (Definition 3.58, p. 181) as B-spline basis functions (see
Definition 3.29, p. 100). This gets us to B-spline surfaces. which are widely applied
in CAD (see also [10], pp. 486 or [7], pp. 275).

Definition 3.60. Spline surfaces and subspline surfaces. A tensor product surface
q(u, v) =∑m

i=0
∑n

j=0 Fi (u) ·G j (v) ·ai, j is called spline surface (subspline surface)

if the functions Fi (u), G j (v) are spline functions (subspline functions).44

44 As for the term spline function and subspline function see Definition 3.28, p. 99.

3.8 Tensor Product Surfaces 193

Fig. 3.108 A B-spline surface to a 5 × 5-de Boor net (m = n = 4). The grey and blue areas mark
the segments of the B-spline surface relating to the parameter domains (see Proposition 3.19, 1.)).
These surface segments are connected Ck−2-continuously in u-direction and Cl−2-continuously
in v-direction (see Proposition 3.19, 3.)) Top k = l = 3. Due to k − 2 = l − 2 = 1 we have
C1-continuity all over between the segments. Bottom the same De Boor net as above, however with
k = 4, l = 3. The number of segments decreases whilst the degree of continuity in u-direction
increases to k − 2 = 2.

Definition 3.61. B-spline surface. Let k, l, m, n be integers with 2 ≤ k ≤ m+1, 2 ≤
l ≤ n+1 and let (u0, u1, . . . , um, um+1, . . . , um+k), (v0, v1, . . . , vn, vn+1, . . . , vn+l)

be two knot vectors. Let moreover ai, j , i = 0, . . . , m, j = 0, . . . , n be a matrix of
points in 3-space. Then the surface with the parametric representation

q(u, v) =
m∑

i=0

n∑
j=0

Ni,k(u) · N j,l(v) · ai, j ,

(u, v) ∈ [uk−1, um+1] × [vl−1, vn+1] (3.224)

is called B-spline surface (see also Fig. 3.108) to the given knot vectors and to the
control net ai, j , i = 0, . . . , m, j = 0, . . . , n. The latter is also called the de Boor net
of q(u, v).

194 3 Geometric Fundamentals

If the knot vectors are uniform (see Definition 3.31, p. 103), we also call the
B-spline surface uniform.

Proposition 3.19 Properties of B-spline surfaces. We consider a B-spline surface
according to Definition 3.61:

1. The segment of the B-spline surface relating to the domain [ur , ur+1]×[vs, vs+1]
only depends on the control points ai, j , i = r − k + 1, . . . , r , j = s − l + 1,

. . . , s.
2. The surface is invariantly connected with its de Boor net ai, j with respect to affine

transformations.
3. A B-spline surface is smooth (i.e., C∞-continuous) within each domain

(ui , ui+1) × (v j , v j+1). For r = min(k, l) it is Cr−2-continuous even along
the boundary curves between such domains.

4. For the widely used case k = l we can state: A B-spline surface is Ck−2-
continuous all over.

As is the case for B-spline curves, increasing m or n arbitrarily does not affect
the polynomial degree of the B-spline surface. This is one big difference to Bézier
surfaces, and one big advantage, too.

The Cox-de Boor Algorithm for B-Spline Surfaces

The de Casteljau algorithm for Bézier surfaces (Algorithm 3.5) has a counterpart for
B-spline surfaces, the so-called Cox-de Boor algorithm for B-spline surfaces.

The point q(u0, v0) on a B-spline surface can be constructed by means of the
Cox-de Boor Algorithm 3.2 for curves, p. 104, applied to the single threads of the
de Boor net m + 1 times in v-direction, followed by one additional application to the
resulting polygon in u-direction.

This algorithm amounts to subdividing straight line segments repeatedly by prede-
fined ratios. Thus the construction is affinely invariant. It tells us that the connection
between the de Boor net and the B-spline surface is invariant with respect to affine
transformations. The de Boor net subjected to such a transformation (e.g. scalings,
isometries, coordinate transformations, …) delivers the same surface as though we
had subjected the original B-spline surface to that transformation.

Corner Interpolation

We remember that Bézier surfaces interpolate the four corners of their control net.
Moreover the tangent planes in those four points are determined by the net segments
starting at those points (Proposition 3.18, (3. and 4.), p. 183). For B-spline patches
this handy attribute does not appear in general, though it can also be imposed if we
choose k identical knots at both ends of the u-knot vector, i.e.,

3.8 Tensor Product Surfaces 195

Fig. 3.109 In order to achieve the corner interpolation property the knot vectors have to be adjusted
(see (3.225) and (3.226)). In this example we have m = n = 4 and k = l = 4. The tangent planes
in the corners a0,0, a0,4, a4,0, a4,4 (orange cubes) are spanned by the respective edges of the De
Boor net (orange)

u0 = u1 = · · · = uk−1, uk, . . . , um, um+1 = um+2 = · · · = um+k, (3.225)

and, analogously, l identical knots at both ends of the v-knot vector:

v0 = v1 = · · · = vl−1, vl , . . . , vn, vn+1 = vn+2 = · · · = vn+l (3.226)

Using these modified knot vectors the B-spline surface interpolates the corners
a0,0, a0,n, am,0, am,n for the parameter pairs (u0, v0), (u0, vn+1), (um+1, v0), (um+1,

vn+1), respectively. Moreover, the two segments of the de Boor net emanating from
each corner span the tangent plane of the surface in that point (Fig. 3.109).

Closed B-Spline Surfaces

In a similar way as we created closed B-spline curves (cf. Proposition 3.7, p. 108)
we can also generate closed B-spline patches by continuing the de Boor net and the
knot vectors periodically.

Note that a B-spline surface can be closed either in one direction (in u-direction
or, alternatively, in v-direction) or in both directions (see Fig. 3.110).

We start with a B-spline surface defined by a de Boor net

⎡
⎢⎣

a0,0 . . . a0,n
...

...

am,0 . . . am,n

⎤
⎥⎦

and two knot vectors (u0, . . . , um+k), (v0, . . . , vn+l). To close the patch in u-direction
we continue the net ai, j periodically in column direction:

196 3 Geometric Fundamentals

Fig. 3.110 B-spline surfaces can be closed in either direction. Top left A B-Spline patch with
m = n = k = l = 3, not closed. Top right closing the patch in u-direction. Bottom left closing
the patch in v-direction. Bottom right applying the closing procedure in u-direction and, after that,
additionally in v-direction, delivers a doubly closed patch

3.8 Tensor Product Surfaces 197

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 . . . a0,n
...

...

am,0 . . . am,n

a0,0 . . . a0,n
...

...

ak−2,0 . . . ak−2,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.227)

Additionally the u-knot vector is continued by adding the k − 1 new knots:

um+k+r = um+k − uk−1 + uk−1+r , r = 1, . . . , k − 1

Then the B-spline surface belonging to the de Boor net (3.227) and the knot vectors
(u0, . . . um+2k−1) and (v0, . . . vn+l) is closed in u-direction.

Obviously the analogue procedure could be applied to close the B-spline patch in
v-direction.

If we apply the closing procedure in v-direction after having already closed the
patch in u-direction we obtain a doubly closed surface (Fig. 3.110, bottom right). The
topology resembles that of a torus (see Example 3.19, p. 172). The de Boor net of
this doubly closed surface is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 . . . a0,n a0,0 . . . a0,l−2
...

...
...

...

am,0 . . . am,n am,0 . . . am,l−2
a0,0 . . . a0,n a0,0 . . . a0,l−2
...

...
...

...

ak−2,0 . . . ak−2,n ak−2,0 . . . ak−2,l−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.228)

its v-knot vector is (v0, . . . vn+2l−1) where the additional knots vn+l+1, . . . , vn+2l−1
have to be computed via

vn+l+s = vn+l − vl−1 + vl−1+s, s = 1, . . . , l − 1.

Local Control

Proposition 3.19, (1.), p. 194 implies that changing any of the specified control
points—say ar,s—only influences the patch of the B-spline surface relating to the
parameter domain [ur , ur+k] × [vs, vs+l]. The sections of the B-spline surface out-
side this domain remain unaffected. This is generally referred to as the local control
property of B-spline surfaces. Figure 3.111 illustrates the effect of such a modifica-
tion.

It is evident that local control is a significant and welcome characteristic of
B-spline surfaces.

198 3 Geometric Fundamentals

Fig. 3.111 Local control property of B-Spline surfaces. Here we have m = n = 6, k = l = 3. The
segments of the B-spline patch are marked in light blue and blue. The transitions between them
are C1 all over. Top the original patch Φ. Bottom the control point a3,3 of Φ has been modified
(orange cube). The yellow segments are affected by the modification, the others remain unaltered.
The transitions between segments are still C1 all over the surface

3.8.3 Rational Tensor Product Surfaces, NURBS Surfaces

Having selected two appropriate families of basis functions Fi (u), i = 0, . . . , m and
G j (v), j = 0, . . . , n of parameters u and v, respectively, any control net determines
an appropriate tensor product surface (see Definition 3.58, p. 181). We now describe
the more general notion of rational tensor product surfaces.

We consider a control net of (m + 1) × (n + 1) points

ai, j =
⎡
⎣

ai, j,1
ai, j,2
ai, j,3

⎤
⎦ , i = 0, . . . , m, j = 0, . . . , n

in 3-space. For every control point ai, j we choose one further value wi, j , the weight
of the point ai, j . We generate a rational tensor product surface from the given control
net ai, j and the chosen weights wi, j in much the same way as we generated rational
freeform curves in Sect. 3.4.3, p. 109:

We use a coordinate system Σ in 4-space with some origin O∗ and coordinates
x0, x1, x2, x3. Let us assume that the 3-space containing the control net ai, j is embed-

3.8 Tensor Product Surfaces 199

ded as the space π . . . x0 = 1. More precisely, a point p with coordinates x, y, z in
3-space now is viewed as a 4-vector [1, x, y, z]�. This way the control point ai, j is
represented by the 4-vector [1, ai, j,1, ai, j,2, ai, j,3]�.

Now, the weight wi, j of the point ai, j comes into play: It is used as the scale factor
of a dilation from the center O∗. The dilation gets ai, j = [1, ai, j,1, ai, j,2, ai, j,3]�
into a point bi, j := [wi, j , wi, j ai, j,1, wi ai, j,2, wi ai, j,3]�. This new point bears the
information of both, the coordinates of ai, j and its weight wi, j . The points bi, j

constitute a net in 4-space which can be used as a control net of an ordinary tensor
product surface

q(u, v) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · bi, j , (u, v) ∈ [u0, u1] × [v0, v1] (3.229)

with some polynomial basis functions Fi (u) and G j (v).
We now consider the central projection δ from the center O∗ into the 3-space

x0 = 1. A point q = [x0, x1, x2, x3]� in the 4-space with x0 �= 0 is mapped
to its image point p = [1, x1

x0
, x2

x0
, x3

x0
]�. We omit the coordinate x0 = 1 and put

δ(q) = [x1
x0

, x2
x0

, x3
x0

]� =: [x, y, z]�.
This geometric interpretation can be condensed into the following

Definition 3.62. Rational tensor product surface. The rational tensor product
surface to a given control net ai, j , given weights wi, j and two families of polynomial
functions Fi (u) and G j (v), i = 0, . . . , m, j = 0, . . . , n, is the surface represented by

r(u, v) =

m∑
i=0

n∑
j=0

Fi (u) · G j (v) · wi, j · ai, j

m∑
i=0

n∑
j=0

Fi (u) · G j (v) · wi, j

. (3.230)

It is well-defined for all parameter pairs (u, v) except for the zeros of the denominator
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · wi, j .

Remark 3.24 Rational tensor product surfaces are actually no tensor product sur-
faces (compare (3.230) with (3.214)). However, they can be viewed as central pro-
jections of tensor product surfaces in a 4-dimensional space. Thus, they share a lot
of properties with tensor product surfaces.

It is obvious that putting all the weights wi, j = 1 gets us the ordinary tensor
product surfaces as defined in Definition 3.58, p. 181: The denominator in (3.230)
equals 1. Thus, rational tensor product surfaces can be viewed as a generalization of
tensor product surfaces. The latter are also called ordinary or integer tensor product
surfaces as opposed to rational tensor product surfaces.

200 3 Geometric Fundamentals

Fig. 3.112 A rational (2, 2)-Bézier patch; Left wi, j = 1.0 for i, j = 0, 1, 2; an integer Bézier
patch for comparison. Middle all weights unaltered except for w1,1 which is changed to w1,1 = 5.0.
Compared to the left example all points move towards a1,1 (orange cube). Right the weights of the
marked points (orange cubes) are changed: w1,1 �→ 0.02, w0,1 = w1,0 = w2,1 = w1,2 �→ 3.0. The
shape adapts accordingly

Our interpretation of such surfaces as central projections easily shows that a lot of
properties of ordinary tensor product surfaces can be transferred to the rational case.
The new parameters (weights) which can additionally be chosen by the user for each
control point offer quite a bit more leverage. Even the range of surfaces which can
be represented this way, is considerably wider if we decide to go for rational tensor
product surfaces.

In Fig. 3.112 the effect of modifying the weights of rational Bézier patches is
demonstrated. The left image shows an ordinary (integer) Bézier patch where the
weights all equal 1. In the other two examples the weights of the orange control
points (symbolized as cubes) have been modified accordingly (see caption).

The rational tensor product surfaces are a very handy tool for the stylist. The
knowledge of their basic properties is essential. The question how the weight factors
affect the surface shape, can be answered as in Proposition 3.8, p. 111:

Proposition 3.20 Properties of rational tensor product surfaces.

1. The shape of a rational tensor product surface can be modified by changing
weights, even without altering the control net (see Fig. 3.112).

2. Let ai, j be the control net of a rational tensor product surface r(u, v). Moreover
let us assume that all weight factors wi, j are positive. Increasing one weight wi0, j0
to wi0, j0 + Δ gets us another rational tensor product surface r∗(u, v). We have:
For all (u, v) the points r(u, v), r∗(u, v) and ai0, j0 are collinear. If the functions
Fi (u) and G j (v) are non-negative within their support interval we can even
observe that for a positive Δ every point r(u, v) moves towards ai0, j0 . We can
conclude:
Increasing the weight wi0, j0 puts more emphasis on the corresponding control
point ai0, j0 .

3.8 Tensor Product Surfaces 201

3. Multiplying all weights with the same constant factor α �= 0 does not change the
resulting rational tensor product surface. The common factor α �= 0 appears in
the denominator and in the numerator of (3.230) and thus can be cancelled.

4. If all weights wi, j are equal the rational tensor product surface is identical to the
ordinary tensor product surface to the same control net.

Rational Bézier Surfaces

In the last paragraph we were dealing with rational tensor product surfaces in general.
We now specify the defining families Fi (u) and G j (v)of polynomials as the Bernstein
polynomials of degree m and n (see Definition 3.59, p. 182). Putting Fi (u) = Bi,m(u)

and G j (v) = B j,n(v) we obtain a rational Bézier surface:

r(u, v) =

m∑
i=0

n∑
j=0

Bi,m(u) · B j,n(v) · wi, j · ai, j

m∑
i=0

n∑
j=0

Bi,m(u) · B j,n(v) · wi, j

(3.231)

The range of surfaces covered by rational Bézier representations is considerably
wider, compared to ordinary (integer) Bézier surfaces. To give an example, we now
can even represent surfaces as Bézier patches whose parameterizations have circular
parameter lines. Figure 3.113, for one, shows a rational surface of revolution (com-
pare also Sect. 3.7.11, p. 170) created as a rational Bézier surface. Its meridian curve
is some rational Bézier curve, marked in orange. The highlighted part of the surface
(blue segment on the right) has been created via Proposition 3.10, p. 113. The angle
of the circular arcs is ϕ = π

2 (quarter circles). The weights w0,0, w1,0, w2,0, w3,0 and
w0,2, w1,2, w2,2, w3,2 of the two boundary u-threads have be set to 1, whereas the

weights w0,1, w1,1, w2,1, w3,1 of the middle u-thread have been set to cos π
2 =

√
2

2 .
Proposition 3.10 states right away that this way the boundary curves on the top end
and bottom end of the patch are circular arcs. It is easy to see, though, that the same
holds for all v-lines on the patch and, moreover, that the patch in fact is part of a
surface of revolution which could be assembled by four patches of rational Bézier
surfaces of this type. The same method also works for arbitrary angles ϕ.

Further strategies of creating kinematic surfaces45 as rational Bézier patches can
be found in [25] and [26].

Rational B-Spline Surfaces, NURBS Surfaces

Once the general approach of creating a rational tensor product surface from an
ordinary one is established it is an easy task to apply it to the case of B-spline
surfaces:

45 A kinematic surface is generated by subjecting a curve to a Euclidean motion.

202 3 Geometric Fundamentals

Fig. 3.113 A rational surface of revolution, represented as rational Bézier surface. The control net
of one quarter is illustrated

Definition 3.63. Let a control net ai, j and weight factors wi, j , i = 0, . . . , m, j =
0, . . . , n be given. Let Ni,k(u) and N j,l(v) be the B-spline basis functions belong-
ing to the knot vectors (u0, . . . , um+k) and (v0, . . . , vn+l), respectively. Then the
corresponding rational B-spline surface is defined via

q(u, v) :=

m∑
i=0

n∑
j=0

Ni,k(u) · N j,l(v) · wi, j · ai, j

m∑
i=0

n∑
j=0

Ni,k(u) · N j,l(v) · wi, j

. (3.232)

The interpretation as a central projection of an ordinary B-spline surface in 4-space
yields the basic properties of rational B-spline surfaces. The decision to switch over
from ordinary B-spline surfaces to rational B-spline surfaces is an easy one. The
rational ones cover the former class completely: Sticking to weights wi, j = 1 all
over delivers an ordinary B-spline patch (cf. Proposition 3.20, p. 200). Hence, the
latter is just a special case of a rational B-spline patch.

The knot vectors of a B-spline surface can be uniform or non-uniform (see Defi-
nition 3.31, p. 103). The same holds for rational B-spline surfaces.

Definition 3.64. Rational B-spline surfaces with non-uniform knot vectors are gen-
erally called NURBS surfaces (Non-Uniform Rational B-Spline surfaces).

NURBS surfaces offer lots of parameters to control the shape. This may be the
reason why they have developed as a standard in CAD and graphics. Figure 3.114
shows some options of modification. Tinkering with the knot vectors and the weight
can have a profound effect on the outcome. Mind that in Fig. 3.114 the control

3.8 Tensor Product Surfaces 203

Fig. 3.114 NURBS surface with m = n = 5 and k = l = 4. Modification options with-
out changing the control net. Top all weights are 1; uniform parameterization with ui = i and
v j = j . Middle four weights (respective points marked by orange cubes) are increased sig-
nificantly: w2,2 = w2,3 = w3,2 = w3,3 = 16.0. The knot vectors are modified u = v =
(0.0, 1.0, 2.0, 3.0, 4.0, 4.5, 5.5, 6.5, 7.5, 8.5); regard the rectangular parameter area. Bottom the
weights of the marked points (orange) are reduced: w2,2 = w2,3 = w3,2 = w3,3 = 0.25. The knot
vectors are set to u = v = (0.0, 1.0, 2.0, 3.0, 4.0, 6.5, 7.5, 8.5, 9.5, 10.5)

204 3 Geometric Fundamentals

net remains unaltered. Of course, changing the net itself would be an additional
opportunity for the stylist.

3.9 Bivariate Interpolation

In Sect. 3.5 we have been dealing with univariate interpolation. Depending on the
approach we could achieve C0-, C1- or C2-continuous and—for particular cases—
even smooth curves through given data points. Bivariate interpolation delivers a
surface through a given set of points.

First we give an example of a tensor product surface (see Sect. 3.8) which is,
at the same time, an example of bivariate interpolation. We can interpret it as the
interpolation surface to a given skew rectangle.

Example 3.23 The hyperbolic paraboloid as a tensor product surface. Let us
recall that a hyperbolic paraboloid (see Fig. 3.84, right, p. 165) consists of two families
of straight lines. We can easily generate this surface as a (1, 1)-tensor product surface
with blending functions46 F0(u) = 1 − u, F1(u) = u, G0(v) = 1 − v, G1(v) = v
and the control net consisting of the four vertices a0,0, a0,1, a1,0, a1,1 of a skew
quadrilateral. In this case the representation (3.215, p. 182) reads as

q(u, v) = [1 − u, u] ·
[

a0,0 a0,1
a1,0 a1,1

]
·
[

1 − v
v

]
(3.233)

= (1 − u) · (1 − v) · a0,0 + (1 − u) · v · a0,1

+ u · (1 − v) · a1,0 + u · v · a1,1.

The two families of straight line generators are the parameter lines of this parame-
terization.

This pretty simple approach enables us to fill a quadrangular mesh with curved
surface patches. The straight line boundary segments between two adjacent patches
are edges with mere C0-continuity.

In the next paragraph we construct an interpolation surface to a given curved
quadrangle.

3.9.1 Coons Patches

A surface patch q(u, v) to some rectangular domain (u, v) ∈ [0, 1] × [0, 1] has four
boundary curves

46 The blending functions are the Bernstein polynomials of degree 1; the tensor product surface is
a (1, 1)-Bézier surface.

3.9 Bivariate Interpolation 205

(a) (b)

(c) (d)

Fig. 3.115 A Coons patch c(u, v) (Fig. 3.115d) to a given curved quadrangle is made up from
the hyperbolic paraboloid q(u, v) (Fig. 3.115a) and the ruled surfaces q1(u, v) (Fig. 3.115b) and
q2(u, v) (Fig. 3.115c). a A suitable curved patch to a quadrangle a0,0, a1,0, a1,1, a0,1 with given
curved edges d0(u), e1(v), d1(u), e0(v) is to be created. The very first approach to this task is a
hyperbolic paraboloid q(u, v) through the corners of the given quadrangle. It contains neither of
the given curved edges. b In the following step the ruled surface q1(u, v) is created (see (3.236)). It
connects the two opposite curved edges d0(v) and d1(v). c The next step towards a Coons patch is
the ruled surface q2(u, v) as described in (3.237). It connects the two opposite curved edges e0(v)
and e1(v). d Finally, according to (3.235) the three approaches are combined to the Coons patch
c(u, v). As desired, it goes through all the given curved edges

d0(u) := q(u, 0),

d1(u) := q(u, 1),

e0(v) := q(0, v),

e1(v) := q(1, v).

These curve segments meet at their endpoints:

a0,0 = d0(0) = e0(0)

a0,1 = d1(0) = e0(1)

a1,0 = d0(1) = e1(0)

a1,1 = d1(1) = e1(1)

⎫⎪⎪⎬
⎪⎪⎭

(3.234)

If, conversely, such a curved quadrangle is given, the problem of creating some
appropriate surface patch through these boundary curves has been solved by S.A.
Coons47 in a simple and elegant way [27]. His solution is commonly known as Coons
patch (Fig. 3.115):

47 Steven Anson Coons (1912–1979) was an early pioneer in the field of computer graphics at the
MIT (Massachusetts Institute of Technology).

206 3 Geometric Fundamentals

Definition 3.65. Coons patch. Let a curved quadrangle with edge curves d0(u),
d1(u), e0(v), e1(v) and corners ai, j according to (3.234) be given. Moreover, let
q(u, v) denote the parameterization of the hyperbolic paraboloid through the corner
points ai, j as defined in (3.233). The surface patch

c(u, v) := (1− v) ·d0(u)+ v ·d1(u)+ (1−u) · e0(v)+u · e1(v) − q(u, v) (3.235)

is called the Coons patch to the given curved quadrangle.

This patch (3.235) has boundary curves which indeed follow the given curved
quadrangle. Coons’ idea was to start with two ruled surfaces

q1(u, v) := (1 − v) · d0(u) + v · d1(u) (3.236)

and

q2(u, v) := (1 − u) · e0(v) + u · e1(v). (3.237)

Each of them connects two opposite curves of the given curved quadrangle. They
form the first two summands of the parameterization (3.235). From this we have to
subtract the hyperbolic paraboloid q(u, v) as represented in (3.233). These three
ingredients perfectly add up to the solution of the task.

Coons patches, though introduced at a very early stage in the history of CAD, are
used and appreciated as a singular gem of CAD to this day (cf. fill surfaces, p. 264).
Sometimes this type of interpolation is termed transfinite interpolation as there are
not only a number of single points to be interpolated but a quadrangle of curves with
their infinite number of points.

If the Coons patch was to join with some given adjacent surface patch C1-
continuously the linear blending functions would have to be replaced by appropriate
cubic functions ([7], pp. 377). This way, even a quadrangular gap surrounded by adja-
cent surface patches can be mended C1-continuously. As an example of application
we refer to Sect. 4.2, p. 256. In that example Fig. 4.20, center, shows the case with-
out continuation constraints (C0-continuity) and with tangency constraints (joining
C1-continuously all around, Fig. 4.20, right).

3.9.2 Interpolation of a Rectangular Point Set

The classical case of bivariate interpolation deals with the following task:

Problem 3.7 Bivariate interpolation. Let a rectangular point set.48 The ci, j , i =
0, . . . , m, j = 0, . . . , n in 3-space and two knot vectors (s0, . . . , sm) and (t0, . . . , tn)

be given.

48 The term rectangular refers to a matrix of points ci, j , i = 0, . . . , m, j = 0, . . . , n.

http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_4

3.9 Bivariate Interpolation 207

Find a surface
q(u, v), u ∈ [s0, sm], v ∈ [t0, tn] (3.238)

interpolating the given data, i.e.,

q(si , t j) = ci, j , i = 0, . . . , m, j = 0, . . . , n. (3.239)

Clearly, we could modify this task looking for real-valued bivariate functions
q(u, v) interpolating a rectangular set of real values, i.e., q(si , t j) = ci, j . The solu-
tions for vector functions which we offer in this section could easily be adjusted to
that special case. So, in the following paragraphs we will concentrate on bivariate
interpolation of points (vectors).

The formulation of Problem 3.7 is quite a bit general. We now modify the task by
confining ourselves to tensor product surfaces:

Problem 3.8 Bivariate interpolation by a tensor product surface. Let a rectan-
gular point set ci, j , i = 0, . . . , m, j = 0, . . . , n in 3-space and two knot vectors
(s0, . . . , sm) and (t0, . . . , tn) be given. Let moreover Fi (u) and G j (v) be two fami-
lies of linearly independent functions49 such that each of these families forms a basis
to some function spaces F and G , respectively.

Find a tensor product surface

q(u, v) = [F0(u), . . . , Fm(u)] ·
⎡
⎢⎣

a0,0 . . . a0,n
...

...

am,0 . . . am,n

⎤
⎥⎦

︸ ︷︷ ︸
=:A

·
⎡
⎢⎣

G0(v)
...

Gn(v)

⎤
⎥⎦ (3.240)

meeting the conditions (3.239).

The particular ansatz (3.240) permits a straightforward solution. The unknown
coefficient vectors ai, j in the matrix A are to be computed. The conditions (3.239)
now read as follows50:

F · A · G = C (3.241)

where F is the (m + 1) × (m + 1)-matrix

F :=
⎡
⎢⎣

F0(s0) . . . Fm(s0)
...

...

F0(sm) . . . Fm(sm)

⎤
⎥⎦ , (3.242)

49 The reader might as well imagine the functions Fi (u) and G j (v) to be the Bernstein polynomials
of degree m and n, respectively.
50 Of course, this equation has to be interpreted for each component of the vectors ai, j , ci, j separately.

208 3 Geometric Fundamentals

G is the (n + 1) × (n + 1)-matrix

G :=
⎡
⎢⎣

G0(t0) . . . G0(tn)
...

...

Gn(t0) . . . Gn(tn)

⎤
⎥⎦ (3.243)

and C contains the points ci, j to be interpolated:

C :=
⎡
⎢⎣

c0,0 . . . c0,n
...

...

cm,0 . . . cm,n

⎤
⎥⎦ (3.244)

If F and G are invertible matrices51 the unknown coefficient vectors can uniquely be
determined via

A = F−1 · C · G−1. (3.245)

We summarize in

Theorem 3.14. General solvability of the bivariate interpolation problem. The
bivariate interpolation Problem 3.8 has a unique solution if (3.242) and (3.243) are
invertible matrices. In this case the solution is the tensor product surface (3.240)
where the matrix A is determined according to (3.245).

Of course, we cannot leave it there. We now specify the considered space of
polynomials and the applied basis which will lead us to a more down-to-earth-
attitude.

3.9.3 Bivariate Lagrange Interpolation

We pose Problem 3.8 in the spaces F = Rm[t] and G = Rn[t] of polynomials of
degrees ≤ m and ≤ n, respectively.

We still have to specify the bases of F and G though we are, of course, aware that
the solution to our problem does not depend on the employed bases. The classical
Lagrange approach uses the Lagrange bases

Fi (u) = Li,m(u) =
m∏

l=0
l �=i

u − sl

si − sl
, i = 0, . . . , m,

51 This is for instance the case if both, F and G , are Chebyshev spaces; see Definition 3.36, p. 117.

3.9 Bivariate Interpolation 209

Fig. 3.116 The data points ci, j , i, j = 0, . . . , 4 are to be interpolated. Bivariate Lagrange interpo-
lation for m = n = 4 yields an appropriate polynomial surface. It is worth while comparing it with
the B-spline solution shown in Fig. 3.118. Both figures start with the same set of input data. The
Lagrange solution is prone to waviness; a phenomenon which is subdued in the B-spline solution
(Fig. 3.118)

G j (v) = L j,n(v) =
n∏

k=0
k �= j

v − tk
t j − tk

, j = 0, . . . , n

belonging to the knot vectors (s0, . . . , sm) and (t0, . . . , tn), respectively. As in the
univariate case (see Sect. 3.5.1, p. 119) we enjoy the benefit that F and G are unit
matrices. As a consequence of (3.245) we have A = C. Hence, the bivariate Lagrange
interpolation surface has the parameterization

q(u, v) =
m∑

i=0

n∑
j=0

Li,m(u) · L j,n(v) · ci, j , u ∈ [s0, sm], v ∈ [t0, tn]. (3.246)

Any other choice of bases in F and G would have provided another approach to the
same solution. Obviously, opting for the Lagrange bases cuts the whole story short.
Figure 3.116 shows the Lagrange solution of a bivariate interpolation task.

Aitken’s Algorithm for Bivariate Lagrange Interpolation

Aitken’s algorithm for univariate Lagrange interpolation can easily be adapted to the
bivariate case. The method resembles the de Casteljau scheme for Bézier surfaces
(Algorithm 3.5, p. 184).

210 3 Geometric Fundamentals

Algorithm 3.6. Aitken’s algorithm; bivariate case. Let C (Eq. (3.244)) be the
rectangular set of points to be interpolated and let (s0, . . . , sm) and (t0, . . . , tn) be
the given knot vectors. To compute the point q(u, v) on the Lagrange interpolation
surface (3.246) we have to follow the steps:

1. We apply the univariate version of Aitken’s algorithm (Algorithm 3.3, p. 121) to
each column of the matrix C with respect to the knot vector (s0, . . . , sm) and the
value u. This gets us one point di for each column.

2. In the next step we apply the Aitken scheme to this polygon d0, . . . , dm with
respect to the knot vector (t0, . . . , tn) and the value v. We end up at one single
point which is the desired surface point q(u, v).

Of course, the point q(u, v) could also be constructed the other way round, starting
with the v-threads, accordingly.

In case of larger numbers of input points ci, j the emerging Lagrange interpolation
surface may be prone to oscillation which—in some cases—might even render the
whole method useless. However, it is a perfect tool for reasonably small data sets.
On the plus-side of the method we can also point out that the solution surface is
C∞-continuous all over.

3.9.4 Bivariate Hermite Interpolation

For the interpolation of larger rectangular data sets it may be advisable to partition
the input into single quadrangles and to solve the interpolation Problem 3.8 for each
quadrangle separately. The single solutions are to be created the way that they fit
C1-continuously along the seams. This is what we are aiming at in this section.

In a first step we consider one quadrangle where we additionally prescribe deriv-
ative vectors in the four corners:

Problem 3.9 Bivariate Hermite interpolation. Let the following input be given
(Fig. 3.117):

• four points c0,0, c0,1, c1,0, c1,1
• corresponding partial derivative vectors ui, j , vi, j , i, j = 0, 1
• additional vectors ti, j , i, j = 0, 1 (which will be called twist vectors)
• a parameter domain [s0, s1] × [t0, t1]

Find a surface with a bicubic tensor product representation

q = q(u, v), (u, v) ∈ [s0, s1] × [t0, t1] (3.247)

satisfying the conditions

3.9 Bivariate Interpolation 211

Fig. 3.117 A Hermite patch defined by its partial derivative vectors and twist vectors at the corner
points

q(si , t j) = ci, j ,

∂q
∂u

(si , t j) = ui, j ,

∂q
∂v

(si , t j) = vi, j ,

∂2q
∂u ∂v

(si , t j) = ti, j (3.248)

for i, j = 0, 1.

The Hermite basis (compare with (3.117), p. 126) comes in handy as the solution
q(u, v) to our problem can be written promptly in terms of the input data:

q(u, v) = [H∗
0 (u), H∗

1 (u), H∗
2 (u), H∗

3 (u)] · H ·

⎡
⎢⎢⎢⎢⎣

H◦
0 (v)

H◦
1 (v)

H◦
2 (v)

H◦
3 (v)

⎤
⎥⎥⎥⎥⎦

, (3.249)

(u, v) ∈ [s0, s1] × [t0, t1]

where H is the 4 × 4-matrix

H =

⎡
⎢⎢⎢⎢⎣

c0,0 v0,0 v0,1 c0,1

u0,0 t0,0 t0,1 u0,1

u1,0 t1,0 t1,1 u1,1

c1,0 v1,0 v1,1 c1,1

⎤
⎥⎥⎥⎥⎦

. (3.250)

212 3 Geometric Fundamentals

The functions

H∗
0 (u) = 1

(s1 − s0)3 · (s1 − u)2 · (2u + s1 − 3s0),

H∗
1 (u) = 1

(s1 − s0)2 · (u − s0) · (s1 − u)2,

H∗
2 (u) = − 1

(s1 − s0)2 · (u − s0)
2 · (s1 − u),

H∗
3 (u) = 1

(s1 − s0)3 · (u − s0)
2 · (−2u + 3s1 − s0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.251)

are the cubic Hermite polynomials on the interval [s0, s1] and

H◦
0 (v) = 1

(t1 − t0)3 · (t1 − v)2 · (2v + t1 − 3t0),

H◦
1 (v) = 1

(t1 − t0)2 · (v − t0) · (t1 − v)2,

H◦
2 (v) = − 1

(t1 − t0)2 · (v − t0)2 · (t1 − v),

H◦
3 (v) = 1

(t1 − t0)3 · (v − t0)2 · (−2v + 3t1 − t0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.252)

are the cubic Hermite polynomials on the interval [t0, t1].
The solution (3.249) is called the Hermite interpolation patch to the input data

given in Problem 3.9. Such a patch with its specified tangent and twist vectors at the
corner points is displayed in Fig. 3.117. The following remark bears some significance
if we intend to glue together patches of this kind.

Remark 3.25 A Hermite patch (3.249) has the following properties:

1. The boundary curve u = s0 is a Hermite curve (compare with (3.116), p. 126) to
the input data c0,0, v0,0, v0,1, c0,1 in the first row of matrix (3.250):

q(s0, v) = H◦
0 (v) · c0,0 + H◦

1 (v) · v0,0 + H◦
2 (v) · v0,1 + H◦

3 (v) · c0,1

2. In the same way the cross derivative vectors along the same boundary curve are
determined by input data u0,0, t0,0, t0,1, u0,1 in the second row of the matrix
(3.254):

∂q(u, v)

∂u
(s0, v) = H◦

0 (v) · u0,0 + H◦
1 (v) · t0,0 + H◦

2 (v) · t0,1 + H◦
3 (v) · u0,1

Obviously, respective statements can be given for the other three boundary curves of
the Hermite patch.

3.9 Bivariate Interpolation 213

We now are ready to construct a C1-continuous interpolation surface for a whole
rectangular net of input data.

Problem 3.10 Bivariate Hermite interpolation of a rectangular point net. Let
the following input be given:

• (m + 1) × (n + 1) points ci, j , i = 0, . . . , m, j = 0, . . . , n in 3-space
• corresponding partial derivative vectors ui, j , vi, j

• corresponding twist vectors ti, j

• and two knot sequences (s0, . . . , sm) and (t0, . . . , tn)

Find a surface

q(u, v), u ∈ [s0, sm], v ∈ [t0, tn] (3.253)

which consists of bicubic tensor product patches qi, j (u, v) and satisfies the conditions

q(si , t j) = ci, j ,

∂q
∂u

(si , t j) = ui, j ,

∂q
∂v

(si , t j) = vi, j ,

∂2q
∂u ∂v

(si , t j) = ti, j

for i = 0, . . . , m, j = 0, . . . , n.

The solution to this problem is straightforward as we can construct a Hermite
patch (3.249) for each parameter rectangle [si , si+1] × [t j , t j+1]. We only have to
replace s0, s1, t0, t1 by si , si+1, t j , t j+1 and the matrix H by

Hi, j =

⎡
⎢⎢⎢⎢⎣

ci, j vi, j vi, j+1 ci, j+1

ui, j ti, j ti, j+1 ui, j+1

ui+1, j ti+1, j ti+1, j+1 ui+1, j+1

ci+1, j vi+1, j vi+1, j+1 ci+1, j+1

⎤
⎥⎥⎥⎥⎦

. (3.254)

We now ask the key question: Do adjacent patches constructed this way really fit
C1-continuously all along their common boundary curve?

As the matrices (3.254) belonging to adjacent patches coincide in the two rows or
columns along the common boundary the answer to this question is positive. Remark
3.25 makes sure that all the cross derivatives along the boundary curve are identical.
In Remark 3.14, p. 150, we explained that this is already sufficient for the two patches
to join C1-continuously along their common boundary.

214 3 Geometric Fundamentals

One big advantage to the Hermite approach is that it does not lead to a linear
system of equations which in case of large data sets might render the problem a
numerical challenge.

The Hermite approach also requires derivative vectors ui, j , vi, j and twist vectors
ti, j apart from the given points ci, j to be interpolated. The choice of these vectors
offers more leverage to the user. On the other hand, though, it may be difficult to
choose those vectors reasonably. In order to estimate the derivative vectors ui, j one
can, for instance, compute a curve p j (u) interpolating the points c0, j , . . . , cm, j for
the knot sequence s0, . . . , sm and then put

ui, j := dp j

du
(si).

An analogous construction can be applied to obtain the vectors vi, j .
Several suggestions for the choice of the twist vectors ti, j can be found in ([8],

p. 276). Often the twist vectors are, for simplicity, all chosen zero which was primarily
proposed by J. Ferguson [28] (Ferguson approach).

3.9.5 Bivariate Cubic B-Spline Interpolation

In the univariate case we have addressed the B-spline approach to the interpolation
task (see p. 130). In this paragraph we transfer this method to the bivariate case.

We return to Problem 3.8, p. 207, now specifying the families Fi (u) and G j (v)
as the cubic B-spline basis functions Ni,4(u), N j,4(v) (cf. Definition 3.29, p. 100).

Algorithm 3.7. Construction of an interpolating cubic B-spline surface. Let a
rectangular point set

C :=
⎡
⎢⎣

c0,0 . . . c0,n
...

...

cm,0 . . . cm,n

⎤
⎥⎦

and two knot vectors (s0, . . . , sm) and (t0, . . . , tn) be given as input data.

1. For every column of C we construct an interpolating cubic B-spline curve

p j (u) =
m+2∑
i=0

Ni,4(u) · bi, j

according to the method explained in Sect.3.5.2, p. 122. Note that we have to add
one additional tangent vector at either end, say u0, j and um, j . They assume the
role of the tangent vectors t0 and tn (see (3.135), (3.136), p. 133). Moreover, an
appropriate knot vector (u0, . . . , um+6) for the cubic B-spline functions Ni,4(u)

3.9 Bivariate Interpolation 215

c2,2

d3,3
d2,3

d4,3

d2,4

Fig. 3.118 Bivariate interpolation by a cubic B-spline surface for 5 × 5 input data points ci, j . The
de Boor net di, j , i, j = 0, . . . , 6 of the appropriate B-spline interpolation patch has been computed
via Algorithm 3.7. The set of data points ci, j , i, j = 0, . . . , 4 (orange) to be interpolated is the very
same as the one from Fig. 3.116. A comparison with the Lagrange solution in Fig. 3.116 shows
that the B-spline method provides a more adaptive interpolation surface which is less susceptible
to oscillation

has to be chosen. This vector plays the role of the knot vector (t0, . . . , tn+6)

defined in the univariate case (see (3.129), p. 131).
The de Boor points bi, j of the B-spline curve p j (u) are computed via

⎡
⎢⎢⎢⎢⎢⎣

b0, j

b1, j
...

bm+1, j

bm+2, j

⎤
⎥⎥⎥⎥⎥⎦

= F−1 ·

⎡
⎢⎢⎢⎢⎢⎣

u0, j

c0, j
...

cm, j

um, j

⎤
⎥⎥⎥⎥⎥⎦

.

where F is the matrix given by (3.138), p. 134, albeit with n �→ m.
2. In the next step we apply the same procedure to the rows of the obtained new

matrix

B :=
⎡
⎢⎣

b0,0 . . . b0,n
...

...

bm+2,0 . . . bm+2,n

⎤
⎥⎦ .

Again, an appropriate knot vector (v0, . . . , vn+6) has to be determined, this time
for the cubic B-spline functions N j,4(v). As in step 1.) we add a tangent vector,

216 3 Geometric Fundamentals

now at either end of each row to compute the points of our final de Boor net

D :=
⎡
⎢⎣

d0,0 . . . d0,n+2
...

...

dm+2,0 . . . dm+2,n+2

⎤
⎥⎦ . (3.255)

3. The cubic B-spline surface

q(u, v) =
m+2∑
i=0

n+2∑
j=0

Ni,4(u) · N j,4(v) · di, j

belonging to the de Boor net (3.255) and the knot vectors (u0, . . . , um+6) and
(v0, . . . , vn+6) solves the interpolation problem.

Figure 3.118 shows an example of a cubic B-spline interpolation surface created
this way.

The biggest advantage of the B-spline approach is its ability to adapt even to larger
sets of input points without noticeable oscillation.

3.10 Bivariate Approximation

This section deals with the problem of finding a surface S which fits52 a given set
of points cα, α = 0, . . . , μ. The simplest case is the one where S is a plane (plane
of regression). This task can also be referred to as principal component analysis, in
short PCA (see [1], pp. 398–408). This very special case serves as a preparation
for the following more challenging job of finding a tensor product surface fitting the
given point set.

3.10.1 A Plane Fitting a Set of Scattered Points

It is a classical problem to determine a plane ε fitting a set

cα =
⎡
⎣

cα,1
cα,2
cα,3

⎤
⎦ , α = 0, . . . , μ

52 We say that a surface fits a given set of points, if certain distances between the points and
some surface points are minimized. At the moment this explanation may seem faint, but it will be
substantiated further on.

3.10 Bivariate Approximation 217

of points in 3-space. The solution offered below is particularly satisfactory as it does
not favor any one of the 3 coordinate directions.

We regard a plane ε with the equation

n1 · x + n2 · y + n3 · z + n0 = 0

where

n :=
⎡
⎣

n1
n2
n3

⎤
⎦

denotes a normalized normal vector of ε:

n2
1 + n2

2 + n2
3 = 1 (3.256)

Then the distance of a point X (x, y, z) from the plane ε is computed as

dist (X, ε) = |n1 · x + n2 · y + n3 · z + n0|.

Hence, we can get down to our optimization task as follows

Problem 3.11 Plane fitting. Let a set of points cα , α = 0, . . . , μ be given. Find a
plane

n1 · x + n2 · y + n3 · z + n0 = 0

such that n0, n1, n2, n3 minimize the error function (= sum of squared distances)

e(n0, n1, n2, n3) :=
μ∑

α=0

(n1 · cα,1 + n2 · cα,2 + n3 · cα,3 + n0)
2 (3.257)

subject to the constraint (3.256).

Introducing the (μ + 1) × 4 design matrix

C :=
⎡
⎢⎣

c0,1 c0,2 c0,3 1
...

...

cμ,1 cμ,2 cμ,3 1

⎤
⎥⎦

we can rewrite (3.257) as follows:

e(n0, n1, n2, n3) := u� · S · u (3.258)

218 3 Geometric Fundamentals

where

S := C� · C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ∑
α=0

c2
α,1

μ∑
α=0

cα,1 · cα,2

μ∑
α=0

cα,1 · cα,3

μ∑
α=0

cα,1

μ∑
α=0

cα,1 · cα,2

μ∑
α=0

c2
α,2

μ∑
α=0

cα,2 · cα,3

μ∑
α=0

cα,2

μ∑
α=0

cα,1 · cα,3

μ∑
α=0

cα,2 · cα,3

μ∑
α=0

c2
α,3

μ∑
α=0

cα,3

μ∑
α=0

cα,1

μ∑
α=0

cα,2

μ∑
α=0

cα,3 μ + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.259)

is the symmetric and positive semidefinite scatter matrix and

u :=

⎡
⎢⎢⎣

n1
n2
n3
n0

⎤
⎥⎥⎦ .

In vector notation constraint (3.256) reads as

u� · E · u = 1 (3.260)

with

E :=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ . (3.261)

In order to complete the Plane Fitting Task 3.11 we introduce a Langrange multiplier
λ (see [1], p. 415) to link the error function (3.258) with the constraint (3.260):

ẽ(n0, n1, n2, n3) := u� · S · u − λ · u� · E · u

Every solution u = [n1, n2, n3, n0]� to Problem 3.11 has to satisfy the four equations

∂ ẽ

∂n1
= ∂ ẽ

∂n2
= ∂ ẽ

∂n3
= ∂ ẽ

∂n0
= 0

3.10 Bivariate Approximation 219

which are linear in n0, n1, n2, n3. This system of equations can also be written as

(S − λE) · u = 0 = [0, 0, 0, 0]�. (3.262)

At this point we arrive at a generalized eigenvalue problem.53 The characteristic
polynomial

p(λ) = det(S − λE)

of the matrix S with respect to the matrix E is of degree 3 and thus may have up to
three zeroes. Its roots can easily be determined, either numerically or by G. Cardano’s
formula for the zeroes of cubic polynomials.54 We record some well-known issues:

• The eigenvalues of S with respect to E, i.e., the zeroes of p(λ), are all real and
non-negative. (This is due to the fact that both S and E are symmetric positive
semidefinite matrices.)

• S is singular if and only if the input points cα are coplanar. This case is characterized
by the existence of a zero eigenvalue λ0 = 0.

• If not all of the input points are coplanar then the solution u = [n1, n2, n3, n0]� of
Problem 3.11 belongs to the smallest eigenvalue λ0 (= smallest zero of p(λ)). In
general, the eigenspace belonging to λ0 will have dimension 1 which means that
the solution plane n1 · x + n2 · y + n3 · z + n0 = 0 for this point cloud is unique.

We have arrived at the following

Algorithm 3.8. Plane fitting algorithm. Let a set

cα, α = 0, . . . , μ

of points be given in 3-space. To compute the plane

ε . . . n1 · x + n2 · y + n3 · z + n0 = 0 (3.263)

which minimizes the sum of squared distances

μ∑
α=0

dist 2(cα, ε)

we have to determine an eigenvector u = [n1, n2, n3, n0]� belonging to the smallest
(positive) eigenvalue of the generalized eigenvalue problem (3.262). The coordinates

53 If E was the identity matrix, we would have an ordinary eigenvalue problem as opposed to the
case where E is an arbitrary matrix; then the eigenvalue problem is called generalized.
54 Gerolamo Cardano (1501–1576) was an Italian Renaissance mathematician. Cardano’s formula
for the solution of 3rd order equations can be found in every formulary booklet.

220 3 Geometric Fundamentals

u

ν

sα

tα

ε

cα

lα

Fig. 3.119 We are given a point cloud of 64 points in 3-space. The Plane Fitting Algorithm 3.8
determines a plane ε such that the squared distance sum to the given points is minimized. The input
points cα are highlighted in red, the pedal points lα on the resulting plane ε are marked as blue
disks. The black sticks symbolize the distances. This algorithm is also used to assign parameters to
the points of a given point cloud (parameter distribution of a point cloud, Sect. 3.10.2)

n1, n2, n3, n0 of this eigenvector u are the coefficients in the linear Eq. (3.263) of the
desired fitting plane (plane of regression).

Figure 3.119 shows the result of the plane fitting algorithm to a given point cloud
of 64 points.

3.10.2 A Tensor Product Surface Fitting Scattered Data Points

Let a point cloud

cα, α = 0, . . . , μ

and two sets of basis functions

Fi (u), i = 0, . . . , m,

G j (v), j = 0, . . . , n

}
(3.264)

be given. We are to construct a tensor product surface

3.10 Bivariate Approximation 221

q(u, v) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · ai, j (3.265)

fitting the given scattered data points. We solve this task in three steps:

(a) First we roughly estimate a suitable parameter distribution (u = sα, v = tα) for
the given points cα , α = 0, . . . , μ.
(b) Next we determine the yet unknown vector coefficients ai, j of the desired solution
surface (3.265) by solving a Gaussian least square problem.
(c) Finally we apply some iterative parameter correction routine in order to improve
the result.

(a) A Parameter Distribution of a Point Cloud

In order to find a pair (u = sα, v = tα) of suitable parameters for each of the
given points cα we determine the plane ε of regression to the given point cloud
according to Sect. 3.10.1. Let lα be the orthogonal projections of the points cα onto
the plane ε (Fig. 3.119). If the points cα do not deviate too much from ε and moreover,
if the mapping cα −→ lα is bijective it makes sense to use the points lα to find a
suitable parameterization: We choose an arbitrary (but not necessarily orthogonal)
u, v-coordinate system in ε, determine the coordinates u = sα, v = tα of lα with
respect to that coordinate system and use them as u- and v-parameters for the input
points cα .

Remark 3.26 In many cases the best fitting plane does the job properly. In some
cases, however, there may be another simple surface which is better adjusted to the
points cα (e.g., a sphere, right cylinder, quadric, …). We can use this surface instead
to determine a parameterization of the points.

The parameterization is important even though, in the third step, a round of para-
meter correction procedure will still fine-tune the parameters.

(b) An Approximating Tensor Product Surface to a Parameterized
Point Cloud

Let now μ+1 points cα together with suitable parameter pairs (sα, tα), α = 0, . . . , μ

be given. We want to determine a tensor product surface (3.265) such that the squared
error sum

222 3 Geometric Fundamentals

e(a0,0, . . . , am,n) =
μ∑

α=0

‖q(sα, tα) − cα‖2

=
μ∑

α=0

∥∥∥∥∥∥

⎛
⎝

m∑
i=0

n∑
j=0

Fi (sα) · G j (tα) · ai, j

⎞
⎠− cα

∥∥∥∥∥∥

2

(3.266)

is minimized.
For a minimum of the error function (3.266) it is necessary that all partial deriv-

atives with respect to the components of the vectors ai, j vanish. In order to write
down these conditions concisely we introduce the (μ+ 1)× (m + 1)(n + 1) product
matrix

P :=
⎡
⎢⎣

F0(s0)G0(t0) . . . F0(s0)Gn(t0) Fm(s0)G0(t0) . . . Fm(s0)Gn(t0)

...
...

F0(sμ)G0(tμ) . . . F0(sμ)Gn(tμ) Fm(sμ)G0(tμ) . . . Fm(sμ)Gn(tμ)

⎤
⎥⎦

(3.267)

and collect the yet unknown points ai, j and the input points cα in arrays of length
(m + 1) · (n + 1) and μ + 1, respectively:

a :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,0
...

a0,n
...
...

am,0
...

am,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c :=
⎡
⎢⎣

c0
...

cμ

⎤
⎥⎦ . (3.268)

This way the vanishing of all partial derivatives of the error function (3.266) with
respect to the components of the unknown vectors ai, j can be written as

P� · P · a = P� · c. (3.269)

If the quadratic [(m +1) · (n +1)]×[(m +1) · (n +1)]-matrix P� ·P on the left hand
side of this equation is invertible our approximation task has the unique solution

a =
(

P� · P
)−1 · P� · c. (3.270)

3.10 Bivariate Approximation 223

q(u,v)

Fig. 3.120 A point cloud of 64 points in 3-space is to be approximated by a (2, 2)-Bézier surface.
The input points are highlighted in red. The function which is minimized in Algorithm 3.9 is the
squared distance sum between the input points (red) and the points on the approximating surface
belonging to the parameter pairs (sα, tα); the latter are marked as white disks. Mind that these
points—in general—are not the pedal points on the approximating surface (marked as blue disks)

Note that the Eqs. (3.269) and (3.270) are written in condensed notation. They have
to be interpreted separately for each component of the vectors ai, j and cα!

Algorithm 3.9. A tensor product surface fitting a parameterized set of scattered
points. Let μ + 1 points cα , α = 0, . . . , μ in 3-space and corresponding parameter
pairs (sα, tα), α = 0, . . . , μ be given. Moreover, let Fi (u), i = 0, . . . , m and G j (v),
j = 0, . . . , n be two sets of basic functions defining a class of tensor product surfaces.

After having defined the matrix P and the arrays a, c according to (3.267) and
(3.268) the control net {ai, j } of the tensor product surface

q(u, v) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · ai, j

that minimizes the squared error sum (3.266) can be computed via (3.270) if only
the matrix P� · P is invertible.

Figure 3.120 shows a cloud of 64 points and an approximating surface which
has been computed according to Algorithm 3.9. In this case the basic functions are
the Bernstein polynomials; hence the emerging approximating surface is a Bézier
surface. The degree m = n = 2 of the approximating Bézier patch has been chosen
pretty low for this example in order to visualize the distances between the input
points and the approximating surface .

224 3 Geometric Fundamentals

(c) Parameter Correction

We have determined suitable parameter pairs (sα, tα) for each point cα of the given
point cloud (see step (a), on p. 221). This parameter estimate was pretty rough and
also widely accidental. If we use those parameter pairs as input in Algorithm 3.9 the
error distances ‖q(sα, tα) − cα‖ are not measured on the normals of the resulting
tensor product surface

q(u, v) =
m∑

i=0

n∑
j=0

Fi (u) · G j (v) · ai, j .

This may compromise the result.
To improve the overall result it is helpful to adjust the suggested parameterization

subsequently in the following way.55

Like in the univariate case the idea is to replace the parameter pairs sα, tα by new
ones s∗

α = sα +σα, t∗α = tα +τα such that the point q(s∗
α, t∗α) lies sufficiently close to

the respective pedal point lα . The values σα, τα have to be computed by minimizing
the squared distance function

dα(u, v) := ‖cα − q(u, v)‖2

for each α = 0, . . . , μ where u = sα+σα and v = tα+τα . The first partial derivatives
of the function dα(u, v) with respect to u and v have to vanish at the minimum, i.e.,56

fα(u, v) := dα,u(u, v) = 〈cα − q(u, v), qu(u, v)〉 = 0,

gα(u, v) := dα,v(u, v) = 〈cα − q(u, v), qv(u, v)〉 = 0.

We expand the functions fα(u, v) and gα(u, v) in Taylor series at (sα, tα) and—
omitting the higher order terms—we resort to the first order Taylor series approach

[
fα(u, v)
gα(u, v)

]
=

[
fα(sα + σα, tα + τα)

gα(sα + σα, tα + τα)

]
∼
[

fα(sα, tα)

gα(sα, tα)

]
+ J ·

[
σα

τα

]
(3.271)

where J is the Jacobian

J :=
[

fα,u(sα, tα) fα,v(sα, tα)

gα,u(sα, tα) gα,v(sα, tα)

]
.

The entries of J are

55 Here we adapt the method for parameter correction which we have already applied in the univariate
case; see Sect. 3.6, p. 136.
56 Subscribed u’s and v’s indicate differentiation with respect to to u and v.

3.10 Bivariate Approximation 225

fα,u(sα, tα) = −‖qu(sα, tα)‖2 + 〈cα − q(sα, tα), qu,u(sα, tα)〉,
fα,v(sα, tα) = −〈qu(sα, tα), qv(sα, tα)〉 + 〈cα − q(sα, tα), qu,v(sα, tα)〉,

gα,u(sα, tα) = fα,v(sα, tα)

gα,v(sα, tα) = −‖qv(sα, tα)‖2 + 〈cα − q(sα, tα), qv,v(sα, tα)〉.

Due to (3.271) the desired values σα and τα can then be computed via

[
σα

τα

]
= −J−1 ·

[
fα(sα, tα)

gα(sα, tα)

]
. (3.272)

The results σα and τα are the respective parameter correction values. This is the core
point of an iterative procedure:

Algorithm 3.10. Parameter correction for approximation surfaces. To given
data points cα and appropriately chosen respective parameter pairs sα, tα an approx-
imating surface q(u, v) is computed (Algorithm 3.9). To improve the quality of q(u, v)
take the following steps:

1. Replace the parameter pairs sα, tα by the new pairs

s∗
α := sα + σα,

t∗α := tα + τα

where σα, τα are computed via (3.272).
2. Compute a new approximation surface q∗(u, v) to the parameter pairs s∗

α, t∗α
according to Algorithm 3.9.

3. If necessary repeat steps 1. and 2.

Figure 3.121 has been created with the same input and the same degree (2, 2) of
the approximating surface as Fig. 3.120. However, six rounds of parameter correction
have considerably improved the result. Each round of parameter correction has been
followed by a complete recalculation of the approximating surface.

In Fig. 3.122 the input data are the same, whilst the degree of the approximating
Bézier patch has been raised to m = n = 3 which still improves the quality of the
result. Of course, we did not miss out parameter correction.

Each round of parameter correction bears some significant influence on the shape
of the approximation surface and on the overall quality of the final result.

3.11 Triangular Bézier Patches

Four-sided patches—especially four-sided tensor product patches—are the prevalent
type of freeform surfaces. In some cases, however, geometric circumstances require

226 3 Geometric Fundamentals

q(u,v)

Fig. 3.121 The same set of input points as in Fig. 3.120, again approximated by a (2, 2)-Bézier
surface. Here, six rounds of parameter correction according to Algorithm 3.10 have been employed.
As a consequence of iterative parameter correction the white disks and the blue disks are virtually
identical all over the surface

triangular patches. On an odd occasion it may be an option to tweak a rectangular
patch into triangular shape (see also [7], pp. 289). In the majority of cases, however,
a genuine tool for triangular patches will be the better approach which is exactly
what we develop in this section. The key instrument for that purpose are barycentric
coordinates.

Barycentric Coordinates

A straight line l determined by the two points u, v can be parameterized via p(u, v) =
u ·u+v ·v with u+v = 1 (cf. Example 3.4, p. 70). Analogously, a plane ε determined
by the three non-collinear points u, v, w has a parametric representation of the form
q(u, v, w) = u · u + v · v + w · w with u + v + w = 1 (cf. Example 3.12, p. 145).

Definition 3.66. Barycentric coordinates. Let u, v, w be a triangle and let p be a
point in the plane ε determined by u, v, w, i.e.,

p = u · u + v · v + w · w (3.273)

with

3.11 Triangular Bézier Patches 227

q(u,v)

Fig. 3.122 The same set of input points as before, this time approximated by a (3, 3)-Bézier
surface. The iterative process of parameter correction (Algorithm 3.10) has been applied 4 times.
Bivariate approximation with sufficiently high degree (m, n) together with parameter correction
delivers convincingly

u + v + w = 1. (3.274)

Then (u, v, w) are called the barycentric coordinates of p with respect to u, v, w.
The triangle u, v, w is called coordinate triangle or barycentric coordinate system
in ε. The point p is called an affine combination of the points u, v, w.

We compile some basic properties of barycentric coordinate systems (Fig. 3.123):

1. The barycentric coordinates of the coordinate triangle’s vertices u, v, w are
(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively.

2. The condition u = u0 = const. determines a straight line, parallel to the edge
vw called u-parameter line or simply u-line. We have to keep in mind that
along a u-line the parameters v and w vary—albeit under the norming condi-
tion u0 + v + w = 1.

3. A special case of a u-line is the straight line u = u0 = 0 which is the edge vw of
the coordinate triangle.

4. In the same way we can define v-lines and w-lines.
5. Through every point p(u0, v0, w0) there exists one u-line u = u0, one v-line

v = v0 and one w-line w = w0.
6. Coordinates u, v, w with 0 < u, v, w < 1 refer to points inside the coordinate

triangle.
7. We refer to Remark 3.7, p. 86, where we described the concept and the conse-

quences of the partition of unity. In the case of barycentric coordinates condition

228 3 Geometric Fundamentals

Fig. 3.123 Barycentric coor-
dinates of points in the plane.
A triangle u, v, w in the plane
determines a barycentric coor-
dinate system. Each point
is assigned a triple (u, v, w)

of coordinates, subject to
u + v + w = 1. A u-parameter
line is determined by the con-
dition u = u0. Two other
parameter lines arise from
v = v0 and w = w0. All three
parameter lines meet at the
point p(u0, v0, w0)

u (1,0,0) v (0,1,0)

w (0,0,1)

p(u0, v0, w0)
u =

 0

v
=

0
w = 0

u = u
0

u-line

v
=

v 0
v-

lin
e

w = w0

w-line

(3.274) claims that the coordinates (u, v, w) in (3.273) are a partition of unity. As
a consequence, the point p = u · u + v · v + w · w is affinely connected with the
coordinate triangle.

Bivariate Bernstein Polynomials

Let us recall that the (univariate) Bernstein polynomials Bi,n(t) can also be interpreted
as the coefficients in the binomial expansion of 1 = (t + (1 − t))n :

1 = (t + (1 − t))n =
n∑

i=0

(n

i

)
· t i · (1 − t)n−i =

n∑
i=0

Bi,n(t)

Substituting u = t and v = 1 − t we can rewrite Bi,n(t) as

Bi,n(t) = n!
i ! j ! · ui · v j with i + j = n.

We can easily generalize this to the bivariate case:

Definition 3.67. Bivariate Bernstein polynomials. Let u, v, w ∈ R with u + v +
w = 1; then the functions

Bi, j,k;n(u, v, w) := n!
i ! j !k! · ui · v j · wk, i + j + k = n (3.275)

3.11 Triangular Bézier Patches 229

are called bivariate Bernstein polynomials of degree n or Bernstein polynomials of
degree n on a triangular domain.

Note that the Bernstein polynomials (3.275) are in fact only bivariate functions
because the three parameters u, v, w are linked via u + v + w = 1. Moreover it is
obvious that they are the summands in the trinomial expansion of 1 = (u + v + w)n :

1 = (u + v + w)n =
n∑

i, j,k=0
i+ j+k=n

n!
i ! j !k! · ui · v j · wk =

n∑
i, j,k=0

i+ j+k=n

Bi, j,k;n(u, v, w) (3.276)

Hence, they are a partition of unity.
Owing to Remark 3.4, p. 69 the dimension of the space Kn[u, v] of bivariate

polynomials of order ≤ n is (n + 1) · (n + 2)/2. We have:

Proposition 3.21 Basis property of bivariate Bernstein polynomials. The set
{Bi, j,k;n(u, v, 1 − u − v) | i + j + k = n, 0 ≤ i, j, k ≤ n} of bivariate Bern-
stein polynomials of degree n is a basis of the vector space Kn[u, v] of all bivariate
polynomials of degree ≤ n.

This proposition states that every bivariate polynomial f (u, v) of degree ≤ n can
be uniquely expressed as a linear combination of the bivariate Bernstein polynomials
of degree n, i.e.,

f (u, v) =
n∑

i, j,k=0
i+ j+k=n

ai, j,k · Bi, j,k;n(u, v, 1 − u − v)

with uniquely determined coefficients ai, j,k . We skip the detailed proof of Proposi-
tion 3.21 which splits into two parts: First the linear independence of the bivariate
Bernstein polynomials Bi, j,k;n(u, v, 1 − u − v) has to be verified. Then the fact that
the number (n + 1) · (n + 2)/2 of these polynomials coincides with the dimension
of Kn[u, v], finishes the proof.

Barycentric coordinates together with bivariate Bernstein polynomials are the
perfect ingredients for the definition of triangular Bézier patches.

Triangular Bézier Patches

Definition 3.68. Triangular net. A triangular net of order n or simply triangular
net (Fig. 3.124) is a set of (n + 1) · (n + 2)/2 points ai, j,k , i + j + k = n together
with the following three sets of polylines (threads):

230 3 Geometric Fundamentals

ai0,0,n−i0 , ai0,1,n−i0−1, . . . , ai0,n−i0,0, i0 = const, i0 = 0, . . . , n − 1

a0, j0,n− j0 , a1, j0,n− j0−1, . . . , an− j0, j0,0, j0 = const, j0 = 0, . . . , n − 1

a0,n−k0,k0 , a1,n−k0−1,k0 , . . . , an−k0,0,k0 , k0 = const, k0 = 0, . . . , n − 1

Definition 3.69. Triangular Bézier patch. Let a triangular net {ai, j, j }, i, j, k =
0, . . . , n, i + j + k = n be given. The corresponding triangular Bézier surface
or triangular Bézier patch of degree n (Fig. 3.124) is the surface defined by the
parameterization

q(u, v) =
n∑

i, j,k=0
i+ j+k=n

Bi, j,k;n(u, v, w) · ai, j,k (3.277)

with (u, v, w) ∈ [0, 1] × [0, 1] × [0, 1] and u + v + w = 1. The given triangular net
{ai, j, j } is called the control net of the patch.

Triangular Bézier patches have properties analogue to those of their tensor product
counterparts. We mention a few of the most important (Fig. 3.124):

1. A triangular Bézier patch and its control net have the same corner points:
q(1, 0) = an,0,0, q(0, 1) = a0,n,0, q(0, 0) = a0,0,n ,

2. The tangent plane τ1,0 to the triangular Bézier patch at q(1, 0) = an,0,0 is spanned
by the points an,0,0, an−1,1,0, an−1,0,1. Analogue statements hold for the two other
corners q(0, 1) = a0,n,0, q(0, 0) = a0,0,n : The tangent plane in a corner point
of the Bézier patch is spanned by the two threads of the control net through this
corner point.

3. As the bivariate Bernstein polynomials of a given degree are a partition of unity
(3.276) we have: A triangular Bézier patch is invariantly connected with its control
net ai, j,k with respect to affine transformations.

4. A triangular Bézier patch is completely contained in the convex hull of its control
net (convex-hull property).

The de Casteljau Algorithm for Triangular Patches

Evaluating the bivariate Bernstein polynomials for a triangular Bézier patch accord-
ing to (3.275) can be avoided in the first place. In much the same way as for standard
tensor product Bézier surfaces we can set up the de Casteljau algorithm for the tri-
angular case. It is based on repeated affine combinations of three points. This is a
good example to see how smoothly most of the procedures from the standard Bézier
patches adapt to the triangular case.

Algorithm 3.11. The de Casteljau algorithm for triangular patches. (Fig. 3.125)
Let the control net {ai, j,k} of a triangular Bézier patch of degree n and a triple of
parameters (u0, v0, w0 = 1 − u0 − v0) be given. To compute the point q(u0, v0)

3.11 Triangular Bézier Patches 231

Fig. 3.124 A triangular Bézier patch Φ of degree n = 3 and its control net {ai, j,k}. The two threads
(red lines) meeting at a corner of the triangular patch span the tangent plane in that corner point.
The figure also shows a couple of parameter lines including the boundary curves of the patch. The
parameter lines form a 3-fold weave

of the corresponding triangular Bézier patch (3.277) one has to take the following
steps:

1. Put c0
i, j,k := ai, j,k and recursively compute the points

cr
i, j,k := u0 · cr−1

i+1, j,k + v0 · cr−1
i, j+1,k + w0 · cr−1

i, j,k+1 (3.278)

for r = 1, . . . , n and i, j, k = 0 . . . , n; i + j + k = n − r .
2. The point cn

0,0,0 is the desired point:

q(u0, v0) = cn
0,0,0

A couple of further procedures (see Sect. 3.8) for (rectangular) tensor product
patches like

• continuation of a Bézier patch (see Construction 3.6, p. 187)
• modeling the continuation of a Bézier patch (see Construction 3.7, p. 188)
• degree elevation (see p. 186).

can be adapted to triangular Bézier patches in a straightforward way. For more details
we refer the reader to ([7], p. 293).

232 3 Geometric Fundamentals

c0
3,0,0

c0
2,1,0 c0

1,2,0

c0
0,3,0

c0
2,0,1 c0

0,2,1

c0
1,0,2 c0

0,1,2

c0
0,0,3

c1
2,0,0

c1
1,1,0

c1
0,2,0

c1
1,0,1 c1

0,1,1

c1
0,0,2

c2
1,0,0 c2

0,1,0

c2
0,0,1

c3
0,0,0

Fig. 3.125 The triangular de Casteljau scheme, applied to a given Bézier patch of degree n = 3
and a given parameter triple (u0 = 0.25, v0 = 0.35, w0 = 1 − u0 − v0 = 0.4). The original control
net (grey, superscript 0) consists of n2 = 9 triangles, namely (n + 1) · n/2 = 6 upright triangles
and n · (n − 1)/2 = 3 downright triangles. The corners of every upright triangle within the net
are affinely combined to a new point according to (278), r = 1. We arrive at the net of the next
generation (orange, superscript 1). In the same way we take each upright triangle of that net and
arrive at a point of the following generation (blue net, superscript 2) and so forth. Finally we get
a net which consists of one single point (here c3

0,0,0 = q(u0, v0)) which is the desired point of the
triangular Bézier patch, relating to the given parameter triple (u0, v0, v0). We can even point out that
the triangle of the last but one generation (blue triangle) marks the tangent plane of the considered
point

3.12 Tensor Product Volumes

In Sects. 3.4 and 3.8 we have been developing freeform curves and their bivariate
counterparts, tensor product surfaces. Basically all the methods and algorithms can
as well be extended to multivariate objects. In engineering applications the most
common is the trivariate case. It deals with tensor product volumes.57

Definition 3.70. Tensor product volume. Let (l + 1) × (m + 1) × (n + 1) points
{ai, j,k}, i = 0, . . . , l, j = 0, . . . , m, k = 0, . . . n in 3-space be given: We call
this array of points a control grid. We further use three sets of functions Fi (u),
i = 0, . . . , l, G j (v), j = 0, . . . , m and Hk(w), k = 0, . . . , n of parameters u, v,
and w, respectively. The trivariate vector function

q(u, v, w) =
l∑

i=0

m∑
j=0

n∑
k=0

Fi (u) · G j (v) · Hk(w) · ai, j,k, (3.279)

u ∈ [u0, u1], v ∈ [v0, v1], w ∈ [w0, w1]

57 For modeling with solids see also Sect. 4.3, p. 276.

http://dx.doi.org/10.1007/978-3-642-11940-8_4

3.12 Tensor Product Volumes 233

represents the tensor product volume to the given control grid ai, j,k relating to the
families of basis functions Fi (u), G j (v) and Hk(w).

A tensor product volume is uniquely determined by its control grid and the three
function families Fi (u), G j (v), Hk(w). It does not depend on the chosen coordinate
system if each of the families Fi (u), G j (v) and Hk(w) fulfills the partition of unity-
condition:

l∑
i=0

Fi (u) ≡
m∑

j=0

G j (v) ≡
n∑

k=0

Hk(w) ≡ 1 (3.280)

Here we do not want to particularize all conceivable types and options of tensor
product volumes. We rather confine our considerations to Bézier volumes:

Definition 3.71. Bézier volume. A Bézier volume of degree (l, m, n) is a tensor
product volume (3.279) where the functions Fi (u), G j (v), and Hk(w) are the Bern-
stein polynomials of degree l, m and n in u, v and w, respectively:

q(u, v, w) =
l∑

i=0

m∑
j=0

n∑
k=0

Bi,l(u) · B j,m(v) · Bk,n(w) · ai, j,k,

(u, v, w) ∈ [0, 1] × [0, 1],×[0, 1] (3.281)

Of course, it is difficult to display a volume in itself, so we have to gratefully
resort to particular surfaces and curves contained in it in a natural way:

Definition 3.72. Parameter surfaces and parameter lines of a Bézier volume.
Let a Bézier volume according to Definition 3.71 be given.

1. The Bézier surface defined by the condition

u ≡ u0 = const. (3.282)

is called a (v, w)-parameter surface of the Bézier volume. In the same way the
conditions v ≡ v0 and w ≡ w0 lead to a (u, w)- and a (u, v)-parameter surface,
respectively.

2. The Bézier curve defined by the condition

u ≡ u0 and v ≡ v0 (3.283)

is called a w-parameter line (or a w-parameter curve) of the Bézier volume.
Similarly, the conditions w ≡ w0 and u ≡ u0 as well as u ≡ u0 and v ≡ v0
lead to a v- and a w-parameter line, respectively.

234 3 Geometric Fundamentals

In much the same way as surfaces are often displayed by means of parameter lines,
the tensor product volumes can be illustrated by means of some of their parameter
surfaces and parameter lines (Fig. 3.126).

Definition 3.73. Two Bézier volumes p(u, v, w) = q(u, v, w) are called Cr -
continuous in a point p(u0, v0, w0) = q(u0, v0, w0) if all partial derivatives up to
order r coincide at this point.

Two Bézier volumes p(u, v, w) = q(u, v, w) are called Cr -continuous all along
a parameter curve or a parameter surface (or in any other parameter domain) if all
partial derivatives up to order r coincide for all respective parameter values (u, v, w)

within that domain.

There are a lot of concepts and algorithms for Bézier surfaces (see Sect. 3.8.1,
p. 182) which can promptly be inherited to Bézier volumes. We mention some exam-
ples:

1. The de Casteljau algorithm for Bézier surfaces (cf. Algorithm 3.5, p. 184) can be
adapted to Bézier volumes right away.

2. Tensor product volumes can be continued with respect to any of their three para-
meters.

3. The continuation via the de Casteljau algorithm delivers a control grid of a con-
tinuation volume.

p

Fig. 3.126 A Bézier volume of degree (k, m, n) = (2, 3, 4) and its control grid. The boundary
surfaces u = 1 (orange), v = 1 (blue) and w = 1 (grey) are visible as are a couple of parameter
lines (white). The point p = q(u0, v0, w0) to the parameter triple (u0, v0, w0) = (0.6, 0.7, 0.5) is
marked in red. The (v, w)-parameter surface u = u0 and the other two parameter surfaces through
p are also displayed

3.12 Tensor Product Volumes 235

4. The partial derivatives up to order r in a boundary point u0 = 0 only depend on
grid points contained in the first r + 1 layers {ai, j,k}, i ≤ r .

5. We regard a Bézier volume and its continuation in u-direction with respect to a
design parameter u0 > 1. The resulting continuation grid {bi, j,k} obtained via
the de Casteljau algorithm defines a Bézier volume which continues the original
volume C∞-continuously in the sense of Remark 3.23, p. 187. Modifying the
grid {bi, j,k} by replacing some of its control points will still yield Cr -continuity
along the boundary surface (transition surface) as long as the first r + 1 layers
{bi, j,k}, i = 0, . . . , r of the continuation grid remain unaltered.

This short record on Bézier volumes, their continuation and modification is meant
to convey that the basic methods can easily be transferred from the bivariate to the
trivariate case. For more details on multivariate methods we refer the reader to ([7],
pp. 462–504) and the references cited therein.

3.13 Example: Side Window Kinematics

In this section we discuss a single engineering task which is meant to show a num-
ber of geometrical and technical aspects occurring in one job. For more detailed
information see [22].

In Sect. 3.7.13, Definition 3.57, p. 174, we have been dealing with surfaces and
curves which can be moved in themselves which is—by the way—the key property
of a car side window surface, and that is for a couple of reasons:

• The window pane has to be movable through the sealing slit along the daylight
curve.

• Moreover, in the course of its motion the side window has to vanish in the door
body, where the conditions are rather crammed.

Both reasons would highly recommend movability in itself. But there is one com-
pelling argument which is even harder to ignore:

• If the window motion is stopped at some moment during its action, the window—
or the part of it which is still visible at that instant—still has to lie on the same
surface as formerly in its closed position. Any deviation from that surface would
sorely be noticed in the reflected light on the shiny car body shell.

In order to be movable in itself, a surface has to be a helical surface or—as special
cases of helical surfaces—a cylinder or a surface of revolution (cf. Sect. 3.7.13,
p. 174).

Certainly, the outer shell of a car is mainly driven by styling. And so is the geometry
of a car side window. While the stylist creates the window surface he or she may be
unaware of movability in itself. It so may happen that the stylist’s first suggestion of
a side window does not allow for this severe geometric constraint. So, if we put it
bluntly: The engineer’s task to design the mechanism moving the side window is all
but impossible.

236 3 Geometric Fundamentals

roof curve c

B
-p

ill
ar

bo
un

da
ry

cu
rv

e
b

daylight curve d

window surface Φ

Fig. 3.127 Car side window with its boundary curves: the roof curve c, the B-pillar boundary curve
b and the daylight curve d

Figure 3.127 shows the shape of a car side window with its three boundary curves:
the B-pillar boundary curve b, the roof curve c and the daylight curve d.

3.13.1 The Appropriate Screw Motion to a Given Surface

Let Φ be the surface representing the door window pane as it has been designed by
the stylist. Even though Φ is—in all likelihood—not a helical surface we can still
use the line geometry tools introduced in Sect. 3.1.6, p. 62, to compute a suitable
screw motion M fitting Φ.

We select a number of normals gi of Φ and determine their Plücker vectors
gi = [gi,1, gi,2, gi,3]�, gi = [gi,1, gi,2, gi,3]� (cf. Eq. (3.11), p. 62) arriving at a set
of points Gi . . . gi,1, gi,2, gi,3, gi,1, gi,2, gi,3 in 6-space R

6 (see Fig. 3.128).
We already know that the points Gi would lie in a hyperplane H through the

origin O of R
6 in case of Φ being a helical surface. This is because the normals gi

to a helical surface Φ also belong to the linear complex of the corresponding screw
motion (cf. p. 64)!

If Φ is not actually a helical surface we still can compute the point set {Gi } to the
normals {gi } of Φ. In that case they will not be contained in a hyperplane H ⊂ R

6

through O . Instead, we can determine an approximating hyperplane H through O .
We have arrived at the standard task of plane fitting, though in a higher dimensional
space. The methods presented in Sect. 3.10.1, p. 216 can easily be adapted to this
case. They were originally introduced in [19].

3.13 Example: Side Window Kinematics 237

gi

ΦΦ

Gi

H

O

Fig. 3.128 Finding a spatial motion M which is adapted to the given window surface Φ. The input
of the optimization job consists of a number of surface normals gi (left, red). The optimization boils
down to a plane fitting problem of scattered data points Gi , albeit in a higher dimensional space
(right, symbolical)

Having computed the approximating hyperplane

H . . . 〈v, g〉 + 〈w, ḡ〉 = 0

in R
6 through O we can easily find the corresponding screw motion M according to

(3.15), (3.16) and (3.17), p. 65.

Remark 3.27 The motion M which we have constructed, is adapted to the given
window surface Φ. In this very example we additionally have to demand that the
B-pillar boundary curve b is a trajectory of the motion M . This further constraint
can easily be imposed without problems (for details see [22]).

3.13.2 Constructing an Ideal Side Window Surface

If we had started with a helical surface Φ in the first place the screw motion M
constructed above would move the surface Φ perfectly in itself.

Yet, for now we have to put up with the stylist’s window pane Φ which—in
general—is NOT movable in itself. We have computed the screw motion M which
is adapted to Φ in the best possible way.

If we subject the stylist’s surface Φ to the motion M we certainly have to be aware
that deflections along the seals might be inevitable. It will be alright as long as these
deflections do not exceed certain limits.

238 3 Geometric Fundamentals

In order to assess these deflections it would be convenient to compare Φ with
some appropriate helical surface Φ∗ which,

• subjected to the motion M , does not cause any stress on the sealing,
• lies very close to Φ.

To this avail we take the roof-line58 c and subject it to the screw motion M . Of course,
we arrive at a helical surface. We call Φ∗ the ideal window surface. If we applied
the motion M to Φ∗ we would not have to face any deflections at all as Φ∗ is moved
in itself all the way.

As a consequence the distance between stylist’s surface Φ and the ideal surface
Φ∗ measures the deflections of Φ. The maximum distance ε between Φ and Φ∗
indicates the maximum stress on the rubber seals. So we can easily compute the
amount of stress which we have to be braced for. If that stress ε is well below the
given limits (imposed by the sealings manufacturer) we can combine the motion M
and the given window surface Φ and go on with the construction of the window
lifting mechanism.

However, if the maximum stress ε exceeds the limits there are two options for the
engineer and the stylist:

1. Replace the window surface Φ by the ideal surface Φ∗. That modification of
the overall design will change the window surface by an extent which nowhere
exceeds the value ε.

2. Create a blending surface Φ∗∗ between the original suggestion Φ and the ideal
surface Φ∗ such that the maximum stress stays within some desired limits.

Our geometric considerations have delivered a tool which offers more than one
benefit.

• We can find the optimal motion of a car side window lifter mechanism.
• We get reliable information about the quality of the suggested window surface Φ

and the amount of deflections which are inherent in the geometry of Φ.
• Last, but not least, we get an ideal side window which can—just in case—be a

perfect substitute for the originally suggested window surface. Its distance from
the original proposal would nowhere be more than the above-mentioned ε, whilst
any problems with sealing stress could be avoided in the first place.

References

1. Gallier, J.: Geometric Methods and Applications. 2nd edn. Springer , New York (2011)
2. Chasles, M.: Note sur les propriétés générales du système de deux corps semblables entr’eux et

placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit
d’un corps solide libre. Bull. des Sci. Mathematiques Astronomiques Physiques et Chim. 14,
321–326 (1830)

58 Note that what we call the roofline is actually the boundary curve of the window towards the roof
plus its boundary curve towards the A-pillar of the car.

References 239

3. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2000)
4. Blyth, T.S., Robertson, E.F.: Basic Linear Algebra. 2nd edn. Springer, Berlin (2002)
5. Stoker, J.J.: Differential Geometry. Wiley, New York (1969)
6. Walker, R.J.: Algebraic Curves. Springer, New York (1978)
7. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. Wellesley,

Massachusetts (1993)
8. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. 2nd edn. Academic

Press, Boston (1990)
9. Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités.

Commun. Math. Soc. Kharkov (2) 13, 1–2 (1912)
10. Schuhmaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)
11. De Boor, C.: A Practical Guide to Splines. vol. 27, rev. edn. Applied Mathematical Sciences,

Springer (2001)
12. Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)
13. Haase, J.C.F.: Zur Theorie der ebenen Curven n-ter Ordnung mit (n − 1)(n − 2)/2 Doppel-

und Rückkehrpunkten. Math. Ann. 2, 515–548 (1870)
14. Overhauser, A.: Analytic Definition of Curves and Surfaces by Parabolic Blending. Technical

report, Ford Motor Company (1968)
15. Röschel, O.: An interpolation subspline scheme related to B-spline techniques. In: B. Werner

(ed.) Computer Graphics International ’97, pp. 131–136. IEEE Computer Society Press, Los
Alamitos (1997)

16. Beresin, I.S., Shidkow, N.P.: Numerische Methoden 1, Hochschulbücher für Mathematik, vol.
70. VEB Deutscher Verlag der Wissenschaften, Berlin (1970)

17. Usmani, R.A.: Inversion of Jacobi’s tridiagonal matrix. Comput. Math. Appl. 27, 59–66 (1994)
18. Ascher, U.M., Greif, C.: A first course in numerical methods, Computational Science and

Engineering. In: Society for Industrial and Applied Mathematics (SIAM), vol. 7. Philadelphia,
USA (2011)

19. Pottmann, H., Hofer, M., Odehnal, B., Wallner, J.: Line geometry for 3D shape understanding
and reconstruction. In: Pajdla, T., Matas, J. (eds.) Computer Vision—ECCV 2004, Part I.
Lecture Notes in Computer Science, vol 3021, pp. 297–309. Springer (2004)

20. Odehnal, B., Stachel, H.: The upper talocalcanean join. Technical Report 127, Vienna Univer-
sity of Technology (2004). http://www.geometrie.tuwien.ac.at/odehnal/knochen.pdf

21. Pottmann, H., Randrup, T.: Rotational and helical surface approximation for reverse engineer-
ing. Computing 60, 307–322 (1998)

22. Gfrerrer, A., Lang, J., Harrich, A., Hirz, M., Mayr, J.: Car side window kinematics. Comput.
Aided Des. 43, 410–416 (2011)

23. Harrich, A., Mayr, J., Hirz, M., Rossbacher, P., Lang, J., Gfrerrer, A., Haselwanter, A.: CAD-
based synthesis of a window lifter mechanism. In: SAE World Congress, Detroit (2010) doi:10.
4271/2010-01-0009

24. Shafarevich, I.: Algebraic Geometry I, II. Springer, New York (1977, 1994)
25. Röschel, O.: Rationale Bézier Schiebflächen. CAD Computergraphik und Konstruktion 13,

29–33 (1989)
26. Röschel, O.: Kinematic Rational Bézier Patches I, II. Rad YAZU 10(95–108), 131–138 (1991)
27. Coons, S.: Surfaces for computer aided design. Technical Report VA 22161, MIT, available as

AD 663 504 from the National Technical Information Service, Springfield (2001)
28. Ferguson, J.: Multivariable curve interpolation. JACM 2(2), 221–228 (1964)

http://www.geometrie.tuwien.ac.at/odehnal/knochen.pdf
http://dx.doi.org/10.4271/2010-01-0009
http://dx.doi.org/10.4271/2010-01-0009

Chapter 4
Modeling Techniques in CAD

Computer-aided design in mechanical engineering covers the IT-supported creation
of product geometry and the corresponding product structure within a virtual envi-
ronment. In the automotive industry, three-dimensional product modeling was estab-
lished in the 1980s, which was significantly supported by the introduction of 3D CAD
software. CAD processes focus on the representation of product geometry and topol-
ogy and include all required geometry modeling operations and structure-related
organizational procedures. The geometrical representation of product models can
require the creation of complex curves, surfaces and solids within a virtual environ-
ment (CAD-working space), whereby different technologies of geometry definition,
approximation, interpolation and transformations come into use. Besides the creation
of geometry models, CAD provides the basis for subsequently performed engineering
tasks and model preparation (e.g. meshing operations).

Fig. 4.1 CAD model of an automotive bodywork

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 241
DOI: 10.1007/978-3-642-11940-8_4, © Springer-Verlag Berlin Heidelberg 2013

242 4 Modeling Techniques in CAD

In mechanical engineering, geometrical modeling is performed in different ways
(e.g. as surface modeling in body-in-white design or as solid modeling for the devel-
opment of casting components). The integration of geometry information, product
structure and additional data (e.g. dimensioning, tolerances, material, masses and
moments of inertia, production-related information) significantly enhanced the fields
of application and made it necessary to involve CAD models in nearly all of the disci-
plines in virtual product and production development. In computer-aided design, the
product geometry is composed of several basis-elements (i.e. lines, curves, different
types of surfaces and volume elements). Depending on the type of product and the
desired characteristics of the virtual product model, these elements are combined by
applying specific methods and strategies, which are called design rules. In general,
complex CAD models consist of numerous components and modules, which are put
together and structured in assemblies.

Computer-aided styling (CAS) is a related discipline for the creation of styling-
relevant geometry. In contrast to technology-oriented product modeling in CAD-
processes, the creation of smooth styling surfaces for vehicle exteriors and interiors
places high demands on the quality of the curves and surfaces themselves. Qual-
ity criteria include the order and continuation of curves and surface patches, the
complexity of surface definition, and the curvature of surfaces and poly-surfaces.
Styling surfaces are often based on supporting elements or measured data, such as
sketches, point clouds, curves or meshes, which provide the basis for the definition of
three-dimensional bent geometrical elements. Because neither product structure nor
production related information is considered, CAS provides functionalities purely
for geometry creation. Figure 4.1 shows a combination of styling data which define
the outline of a car and design data, which represent the technical components of
automotive bodywork. Figure 4.2 illustrates automotive exterior surfaces with their
segmentations. In this example, several different types of styling-relevant surface
patches are used.

Fig. 4.2 Automotive exterior surfaces with segmentations

4 Modeling Techniques in CAD 243

The different stages of the development process lead to styling surfaces with differ-
ent quality levels. These quality levels of surface data are classified as class A, B, or C
surfaces. At the beginning of styling development, the concepts are represented with
low accuracy as so-called class C-surfaces. These surfaces are used for initial evalua-
tions of the styling concepts and the first engineering-related operations and feasibil-
ity studies. In addition, class C surfaces are utilized for concealed areas and compo-
nents. Class B surfaces are used for hidden components and surfaces, whose appear-
ance is relatively unimportant. Application examples for class B surfaces include
the inner areas of body design, the engine compartment, and the under carriage. In
general, class C surfaces are characterized by a relatively discontinuous progres-
sion, whereby class B surfaces show a tangency continuation (cf. Sect. 3.7.3, p. 148).
Finally, class A surfaces are applied for all visually relevant components, such as
the visible exterior and interior surfaces. Class A surfaces fulfill high smoothness
requirements and are characterized by smooth transitions between individual patches
to keep the variation of curvature low. CAS delivers surfaces and boundary conditions
for subsequent engineering-based processes, such as vehicle layout and component
development. The data transfer between styling software and engineering software
is mainly performed via neutral data interfaces, such as IGES, STEP, and JT.

The preparation and maintenance of geometrical data for subsequent calculation
and simulation processes are two other important tasks that are highly dependent
on CAD. In common development processes, geometrical data delivered by CAD
models serve as a basis for the generation of specific geometry models suitable for
the projected simulation. This can involve the generation of approximated geom-
etry models by triangulation (surface or volume meshes) or the derivation of geo-
metrically simplified simulation models (e.g. beam models). In both approaches,
process-specific geometry models are derived from existing CAD models. Some
simulation software supports the development of geometry models for a specific
simulation application (e.g. the conceptual creation of the vehicle body structure). In
such cases, CAD methods are combined with CAE-related functionalities to enable
the efficient generation of simplified product models for subsequent FE-simulation
(e.g. [1]). Figure 4.3 shows an example of a surface mesh of an automotive bodywork
that is used for finite-element-based crash simulation.

CAD systems use computational graphics algorithms to generate near real-life
objects in a virtual environment. The main features of virtual product representation
were developed in the 1980s. They provided the foundation for the fast-growing
expansion of computer-aided applications in research and development. Currently,
a variety of software solutions for computational product generation are available on
the market, but these solutions generally use similar algorithms for the representation
of geometries. Depending on the specific type of application, styling software enables
the creation of smooth surfaces for product shaping. Design software, on the other
hand, offers functionalities for engineering-focused product creation processes, and
computation software facilitates the derivation of computation models for further
simulation procedures. In the automotive industry, there are three main providers
of 3D CAD software on the market today [2–4], but the standard algorithms of
computer-aided geometry representation are valid for a broad field of applications.

http://dx.doi.org/10.1007/978-3-642-11940-8_4

244 4 Modeling Techniques in CAD

Fig. 4.3 Surface mesh of an automotive bodywork

The representation of geometrical elements in CAD software can be classified
in different ways. A simple categorization considers the dimension of the element
space. 0D elements are points which merely define a location in space, 1D elements
are lines and curves, and 2D elements include surfaces. Earlier CAD systems used
2.5D elements to define the characteristics of two-dimensional sections as a func-
tion of a third coordinate. In this way, three-dimensional figures were built up from
a number of layers. Finally, 3D representation models cover all three dimensional
components which are used for the visualization of product models in space. Mathe-
matical descriptions can include vectors or matrices with more than three dimensions
to enable different computations, but in general, the models used in product-design
processes are mainly represented in two or three-dimensional (2D or 3D) spaces.

Another way of categorizing geometrical elements is based on their types. Basi-
cally, these types are the following:

• Wireframe models include points and curves for the definition of two- and three-
dimensional objects. Two-dimensional wireframe models are used for the gen-
eration of 2D workshop drawings, simple component modeling or for NC-path
control algorithms. In design processes, wireframe models provide the basis for
the generation of surface or volume features. Wireframe elements are able to
define positions, dimensions and some kinds of component extensions, but they
lack information about material filling and inside/outside orientations.

• Surface models describe planar and cambered faces in three-dimensional space.
Apart from standard surface types, Bezier, B-spline and NURBS (non-uniform
rational B-splines) models are particular instances defined by specific mathemat-
ical relations. Typical applications of 3D CAD surface modeling include body
design in automotive and aeronautic engineering and the representation of com-
plex geometries in a wide variety of uses, including even architectural or medical
representation tasks. Surface models contain the geometrical information of a

4 Modeling Techniques in CAD 245

product in terms of its hull geometry, but they do not include information on solid
components.

• Volume (solid) models enable a complete and compact geometrical product rep-
resentation in a virtual environment. Alongside the hull geometry, solid models are
capable of defining closing conditions, inside/outside information and geometrical
consistency specifications. The ability to define material properties supports the
realization of several physical simulations (weight, inertia). In subsequent steps,
the 3D CAD model serves as a basis for far-reaching technical simulation and
computation procedures.

• Hybrid models include all types of geometrical representation in a logical order
for the definition of a virtual product. The connection of wireframe and surface
models and the subsequent derivation of solid objects are state of the art in modern
3D CAD software packages as they are used in the automotive industry.

The design of the kind of complex mechanical products that are used in the auto-
motive industry requires the application of integrated CAD software packages that
provide much more than simple functions for digital geometry creation. CAD mod-
els can contain additional information and functionalities that join components, parts
and modules. Automotive CAD processes are based on the assembly of numerous
components, units and groups in DMUs. Thus, it is important to recognize that CAD
is used not only for the definition of individual component geometries on the part
level, but also to accomplish component positioning and other features on the assem-
bly level. The implementation of parameters, constraints and relations within an
assembly structure enables the linkage of components with the goal of a systematic,
structured control of their positioning within a superordinated system. The success of
CAD-based modeling is due to the design methods and strategies applied. The imple-
mentation of interconnections between geometry elements and parameters requires
an integrated modeling process which increases the effort of former non-parametric
geometry creation. In particular, the development of complex product structures with
a large number of various components and modules necessitates the implementation
of design-process-related guidelines which include detailed instructions regarding
both the geometry definition strategy and the structurization of assemblies.

Non-Parametric CAD

In the early years of 3D CAD, non-parametric design methods enabled product rep-
resentation in a virtual environment using geometry-focused functionalities. The cre-
ation of geometrical objects strictly followed the requirements of geometry creation
and enabled a direct access to specific functionalities. However, as the complexity
increased, the definition of geometry models became more and more cumbersome
and difficult. Since non-parametric design methods are focused only on geometry cre-
ation, the part-oriented design processes are accomplished in autonomous operations.
These operations have to be coordinated with relatively large effort, which impedes
the creation of complex product structures. Since assemblies do not include interac-

246 4 Modeling Techniques in CAD

Fig. 4.4 Exemplary non-parametric creation of a cylindrical surface Z

tions between components or modules calling for the implementation of extensive
control and monitoring procedures, modifications of product models are often com-
plex and troublesome. Due to the fact that geometry elements are defined with low
levels of logical dependencies and associations, single geometrical modifications
can lead to instabilities of the entire model structure, which in turn can require
complicated revisions of the complete geometry model. Figure 4.4 shows the steps
of an exemplary non-parametric creation of a cylinder surface Z . The individual
elements are defined separately (e.g. the basis point P1 might be defined by coordi-
nates). A plane ε1 in space could be defined by an equation or via other components
(e.g. lines, planar curves, etc.). Finally, the first basis circle C1 is created based on
P1, ε1 and a radius, whereby the radius could be defined by some appropriate value
or the selection of another point. The resulting cylindrical surface Z is created under
consideration of the basis circle C1, a second circle C2 in a parallel plane ε1 and a
second point P2.

The relatively simple model structure and lean application of non-parametric
CAD makes this technique favorable for initial sketches and drafts. Direct modeling
enables the efficient creation of geometry models, independent from any adjacent
components and boundary conditions. The disadvantages, however, are the limited
number of advanced design methods available with this approach and the increasing
effort in the case of complex product models. In particular, the efficient integration of
multiple assemblies in automotive engineering is limited when using non-parametric
CAD. Since the significant number of independent components and modules led
to disadvantages in the management and maintenance of complex product models,
nearly all automotive manufacturers and suppliers worldwide switched to parametric
CAD at the beginning of the twenty-first century.

Parametric-Associative CAD

Parametric modeling techniques in 3D CAD link geometry objects with geomet-
ric constraints and dimensional data. The separation of the geometry elements of

4 Modeling Techniques in CAD 247

the CAD model and the corresponding parameters is one important characteristic
of parametric design. Geometry variation is accomplished by changing the input
data of the corresponding dimensional constraint associated with a new computation
cycle. The parameter values are influenced either through direct data input or by
means of equations. In the latter case, parameters are able to supersede the equation
arguments. In order for this recalculation to be performed, the model consistency
must first be examined to determine if it is suitable for geometrical adaptation. The
geometrical degrees of freedom of associative models are only partly ascertained by
the direct input of specifications. The remaining requirements for an unambiguous
determination are defined by means of relations between geometrical elements.

Associative design operations include direct relations and dependencies between
geometrical objects. Geometrical interrelations are defined as a part of the creation
process and establish parent-child relations. For example, a direct relationship is
established between a given surface (parent) and its offset surface (child); any modi-
fication of the parent elements then results in an update cycle of the offset geometry.
Modern CAD systems also offer the ability to create multi-model links, which enable
the definition of associative functionalities between (formerly independent) parts in
assembly structures. This characteristic supports the implementation of far-reaching
geometrical connective relations through the use of comprehensive functionalities.

In addition, parametric-associative design combines the possibilities of parametric
design and associative functionalities. The realization of parametric geometry con-
trol and interlinked geometry elements enables an enhancement of 3D CAD product
representation with mathematical and logical functionalities. One further important
characteristic of parametric-associative design methods is the unambiguous assign-
ment of geometrical functions and their controlling parameters. Apart from that,
logical relations between parameters and geometrical elements form parent-child
relations, which lead to comprehensive parametric model structures. In the case
of complex product models, geometrical modifications require re-calculation of the
entire model structure, which subsequently leads to a logical modification of the com-
ponents involved. Of course, these various integrated relationships lead to complex
model structures, which have to be carefully created and maintained.

Figure 4.5 shows an example of the parametric creation of simple geometry. The
geometrical parameters of cylinder Z are defined by inputting the length L Z and
the radius RZ . The cylinder geometry itself is positioned in relation to a line g,
whereby the line definition depends on a point P1. Due to the logical dependencies,
the resulting geometry elements allow for the modification of elementary compo-
nents (parent-child relations). In the present example, a modification of the parent-
element P1 would lead to a modification of the position of Z , while a modification
of the direction of g would lead to a modified orientation of Z . While this strat-
egy supports efficient subsequent variations, in the case of complex parent-child
linkages, the interactions have to be monitored and maintained carefully to avoid
logical inconsistencies and update problems.

Parametric-associative methods offer several key advantages. First, a clear defi-
nition of the geometry, parameters and reference elements in the entire design data
structure is essential for the implementation of automated functionalities for subse-

248 4 Modeling Techniques in CAD

Fig. 4.5 Exemplary parametric creation of a cylindrical surface Z

quent or parallel processes, such as component weight calculation, production-related
investigations or data quality check functionalities. Second, a continuously compati-
ble model data structure provides the foundation for interconnected working methods
that integrate engineering providers and component suppliers. Third, a predefinition
of the data setup in CAD parts enables the application of enhanced design methods
in assembly development. Finally, the definition of adapter geometries (or adapter
models) supports parametric geometry management in several components by using
centralized control geometry. This control geometry contains the key information for
the creation of geometrical structures, which are then transferred into the correspond-
ing models. As an example, flange geometries are controlled by adapters, which in
turn define the geometry of the models at both sides of the flange. A modification
in one model triggers an automatic adjustment of the corresponding geometry in
the neighboring part. In complex assembly, parametric skeleton models can serve as
reference elements for the positioning of modules and components.

Parametric-associative design can be applied on both the part level and the assem-
bly level. The part level includes the implementation of relations, dependencies
and mathematical functionalities within the environment of individual components.
These components are generated in reproducible historical orders of parameters and
geometry elements, which are represented in specific lists or tables (structure trees).
Complex products are created in assemblies, which support a classification and struc-
turing into modules and sub-modules.

The application of parametric-associative structures on the assembly level facili-
tates a highly flexible but complex product representation in a virtual environment.
The manifold interactions between components have to be organized by a data man-
agement system (PDM-System) for efficient data handling. The integrated consid-
eration of product-structure-related influences supports the continuous cross-linking
of components and modules. Using relational design methods, design processes
are interlinked with several external activities, such as product calculation and
simulation, organizational sequences and production engineering. In this way, the

4 Modeling Techniques in CAD 249

CAD methods applied have considerable bearing on the entire product development
process.

Parametric-associative CAD constitutes a basis for a vision of a highly integrated
virtual development that would enable the complete virtual (digital) product descrip-
tion (including process integration, production and manufacturing planning, and the
attendant operations) throughout the product life cycle. In this case, the effort required
for data management and process organization increases significantly with increas-
ing levels of parameterization. The consideration of different information related to
product and process during state-of-the-art 3D CAD routes is leading to an increasing
implementation of data and knowledge into the models created. As the complexity of
design methods and technologies increases, the complexity of data and process orga-
nization increases as well. This leads to changes in the share of workload intensity
during the design processes.

Unlike non-parametric geometry creation methods, the implementation of
parametric-associative design involves an increased effort for the programming of
parametric models. The implementation of logical relations with parameters and the
generation of a history-based data structure require additional effort, which leads to
higher expenses during the early development phase. Once the parametric-associative
models (with all the implemented functions and data) have been created, the geome-
try creation expenditure decreases considerably, as modifications can be performed
more clearly and easily than in direct design processes. Especially during series
development, the advantages of the parametric-associative design method offer sig-
nificant benefits, as the method offers the ability to draw on the knowledge generated
previously in the introduction phase of development.

In order to reap the full benefits of parametric-associative design, additional pro-
visions in terms of knowledge integration and automation have to be implemented.
Knowledge-based design processes include the use of predefined parametric geom-
etry structures and models (e.g. templates), which can be reused in different appli-
cations. In this way, design knowledge gained in former projects is saved and made
available for new development cycles. In addition, the establishment of mathemati-
cal connections between geometry-driving parameters supports quick and effective
geometry creation cycles. In automotive development, the sequences of design are
prescribed in so-called ‘startup models’, which include some detailed prediction of
the historical order, the relations to reference elements and the marking of different
geometrical elements in a 3D CAD model structure.

4.1 Structures of 3D CAD Models

3D CAD models are configured in a logical order of geometrical elements. In state-
of-the-art design software, the history-based construction of parametric-associative
geometry models is represented in specification trees, which include a detailed
description of all geometrical elements and parametric relations. In modern develop-
ment processes, the 3D CAD geometry generation is based on parametric-associative

250 4 Modeling Techniques in CAD

Fig. 4.6 Surface model with different elements necessary for geometry definition

structures, while the virtual models are built up according to predefined orders in
so-called startup models. These startup models include various definitions related to
the design process of the components and can also include additional functionalities
associated with design check features, DMU-relevant information or calculations. In
automotive development processes, different kinds of parts call for different design-
related boundary conditions. Therefore, the setup of startup models varies according
to the requirements of each type of component to be created.

4.1.1 Surface-Based Model Structure

Surface-based models, which occur in car body development, require a predefinition
of the sheet metal design process. Depending on which CAD software is applied,
startup models of surface-based parts consist of reference geometries, supporting
geometries, executive surfaces, green surfaces and the final geometry. Figure 4.6
shows an example of a surface model with the different elements necessary for the
geometry definition. A startup model predefines the order of each element of the
geometry creation process to support modifications, check operations or upgrade
processes. Startup models of components from the same category (e.g. sheet metal
parts, plastic parts, cast parts) ensure the consistency of the model structure through-
out the entire development project.

Figure 4.7 shows a generic model structure for sheet metal design processes, which
was created after detailed studies of body in white startup model configurations in
the automotive industry. The generic startup model shows the segmentation of a

4.1 Structures of 3D CAD Models 251

Fig. 4.7 Example of a startup model configuration for sheet-metal-based geometry creation

parametric model structure into different modules, which contain specific types of
components, functions and relations required for the model generation. Because
different OEMs use varying methods and strategies in component design, startup
models from different automotive manufacturers differ. However, the main functions
shown in Fig. 4.7 can be found in all startup models.

Each component is identified by its part number and/or component name. Unam-
biguous notations are the basis for the integration of CAD models into product data

252 4 Modeling Techniques in CAD

management systems, which control the data flow during the development processes.
Reference elements serve to orient geometrical relations within the entire product
structure. There are different types of reference elements, which are organized in
prescribed folders within the specification tree.

Axis systems define main positions in the design process. In automotive engi-
neering, the main axis system of a car in the design process is usually placed in the
center of the front axis at the mean plane. This is different from the axis system of
simulation processes, which is positioned at the car’s center of gravity. Based on the
requirements of specific component and module design, subsequent axis systems are
implemented to define positions and orientations. Besides axis systems, points, lines
and planes often serve as reference elements. Combining different geometrical ele-
ments in two-dimensional sketches with three-dimensional wireframe configurations
enables the definition of skeleton models, which provide integrated functionalities
for geometry-related referencing. External geometry elements serve as input data
and boundary conditions for the design process. In this way, styling data, adapter
geometries and other external geometry-related aspects are imported into the model
environment and stored in a predefined folder of the specification tree.

Design-related standards and information enable the implementation of
production-related aspects, such as demolding and trimming directions, annotations,
and specifications for programming mechanical machining procedures. This infor-
mation is provided as geometry elements or in the form of information and parame-
ters. The folder Parameters/relations includes user-defined parameters and formulas,
which control a variety of integrated functions, such as embedded calculation algo-
rithms, geometry control and data exchange procedures. In combination with macro
routines, several automated processes can be implemented into the CAD model.

The geometry creation process itself is accomplished in the Geometry Definition
area, which is divided into different folders based on the requirements of the model
which has to be created. In many cases, the operational sequences of geometry
creation are not prescribed and therefore provide the creative freedom that is essential
for the generation of appropriate geometries. In this area, engineers produce their
models based on their knowledge and experience. Finally, the resulting geometry is
marked as final component and checked for further processes. The approved geometry
is placed in a specific area of the structure tree, for example in the folder Publication
of the final surface. Supporting calculations and measurement operations are placed
in the last folder of the specification tree.

4.1.2 Solid-Based Model Structure

Unlike sheet metal parts, cast metal components are mainly designed in solid struc-
tures. Solid structures define the geometry with the help of volume-based function-
alities. The main body design is generated with the help of solid-based features
and so-called Boolean operations. If required, surfaces are integrated as boundary
conditions, reference elements or splitting components.

4.1 Structures of 3D CAD Models 253

Fig. 4.8 Structure of a 3D CAD cylinder head model

As an example, Fig. 4.8 shows a general structure of a cast metal part. The motor-
cycle cylinder head presented is made of aluminum in a casting process with steel
molds and sand cores. In the case of the cylinder head, the manufacturing processes
significantly influence the structure of the geometry creation. The principle structure
of the startup model corresponds to that of the sheet-metal-based geometry creation.
Axis systems, boundary conditions, annotations and reference elements are arranged
in the same order, but the geometry creation itself follows the rules of solid-based
operations. In this way, the node Geometry Definition in SOLID is performed as a
logical connection of several bodies. Each body can consist of numerous solid func-
tions and describes a single module. The final geometry results in a logical interaction
of these bodies in a coherent order.

The sample cylinder head model depicted in Fig. 4.8 is composed of seven individ-
ual elements (solids), whereby each element includes all of the required information
related to both its geometry and the production process. The body Outer Shape of the

254 4 Modeling Techniques in CAD

Cylinder Head contains geometry data for the mold manufacturing process, includ-
ing the parting surfaces, the draft angles and the fillets. In this way, the manufacturer
is able to produce the mold directly from the 3D CAD model by separating the body
Outer Shape of the Cylinder Head from the cylinder head model. The second body
Cylinder Head - Inner Area also includes the production-related information and is
defined as a negative volume.

After removing the second body from the first one with a Boolean operation, the
geometry of the cylinder head in the upper area is created. In the production process,
the intake and the exhaust port are defined as sand core parts, which are fixed in
the steel mold. The corresponding bodies in the virtual geometry creation process
include all of the information required for the production and positioning of the
core parts. The last body describes the mechanical machining of the cylinder head.
This component represents the basis for the programming of NC-controlled working
machines and can also include 3D tolerance-related data.

4.1.3 The Role of CAD Models in Product Development

CAD models play an important role in modern product development processes.
Because product representation is accomplished by comprehensive geometry mod-
els within a CAD environment, different product-related information is developed,
stored and maintained in parametric-associative design processes. The design model
itself is composed of a number of sub-modules, which are arranged in logical orders.
These sub-modules can serve as a basis for simultaneous, linked CAE-processes,
which cover specific calculation and simulation processes. The assemblies of mod-
ules and sub-modules result in CAD-models of specific components, which can
serve as an information source for different operations performed in parallel or sub-
sequently (e.g. production-related development processes or DMU-based investiga-
tions).

A parametric-associative structure of virtual product models provides the basis
for highly flexible development processes. Parameterized design modules can be
linked with each other or linked with modules of external geometries, thereby sup-
porting automatic update functions during optimization cycles. Figure 4.9 shows the
interactions of a virtual engineering process using the example of a cylinder head
development. The parametric-associative design process is divided into several sec-
tions, which are simultaneously linked with corresponding CAE processes. A smart
structuring of the CAD model enables a relatively simple exchange between of indi-
vidual modules. In this way, the results of simulation processes (e.g. FE optimization,
CFD calculations) of specific areas can be continuously implemented.

In the cylinder head presented, the geometry of the intake and exhaust ports, as
well as the geometry of the water jacket, are first built into the 3D CAD model as
a rough estimation. These initial geometry models serve as placeholders in early
design phases and also as input data for extensive computational flow-dynamics
simulation. The findings of the CFD-simulation are transferred into design processes

4.1 Structures of 3D CAD Models 255

Fig. 4.9 Parametric-associative design and simultaneous, linked CAE operations in a cylinder head
development process

and result in modifications of the initial geometries. During the design process, the
model shapes are revised under consideration of several additional characteristics
(e.g. space requirements or production-related aspects).

A logical arrangement of modules and sub-modules leads to a final CAD-model,
which represents the virtual geometry model of a component. In the present example,
the design process results in a cylinder head model cast part. This cast part provides
the basis for the design of casting molds and sand cores. Besides the geometrical
information of the cylinder head, the design of molds and cores has to consider several
production-related aspects, such as the requirements of production machines and
other casting-technology-related properties. Simultaneously performed solidification
simulation can support both detailing of the cylinder head geometry (especially in
areas that are relevant for the flow of liquid aluminum) and the actual design of the
molds.

In the case of cast parts, mechanical processing operations (e.g. drilling and
milling) are designed as a separate module. This so-called machining body includes
all of the surfaces of mechanical processing and different manufacturing-related
information (e.g. the type of mechanical treatment, cutting speed and feed rate,
tolerancing). In addition, the geometrical information contained in the machining
body can support the programming of production machines. Finally, the finished
CAD part is used in assemblies and subsequent DMU processes, the derivation
of workshop drawing and in kinematics or other functional simulation processes.
The periodic interaction of parametric-associative design and simultaneously linked
CAE-processes forms virtual optimization phases, whereas geometry generation sec-
tions and simulation steps are linked using CAD product models.

256 4 Modeling Techniques in CAD

4.2 Wireframe and Surface Design

Commercial CAD software applications provide user-oriented functionalities for
the definition and modification of geometrical elements, which support efficient
design processes. Unlike the fundamental mathematical description of points, curves
and surfaces introduced in Chap. 3, the handling of functions and operations within
a CAD software environment is object- and problem oriented and supports user-
friendly access to the geometrical elements. These methods enable efficient design
processes because the engineers can focus on product-oriented development, while
the software manages the mathematical definition of geometry in the background.
In general, modern CAD software provides several functions for the definition of
geometrical basis elements (e.g. points, lines, curves or different types of surfaces
and solids). Once defined, these elements can be modified or combined in a logical
order to form the desired geometry of the product which is being developed.

The definition of geometry differs between styling and design software. Due to the
specific requirements of styling surfaces, CAS software provides functionalities for
an efficient conversion of sketches or point clouds into smooth surfaces. In addition,
the creation of curves and surface patches is performed via control polygons and
control grids. In combination with different geometrical weighting factors, the con-
trol elements enable a direct access to the shape of curves and surfaces (cf. Sects. 3.4,
p. 85 and 3.8, p. 181). Unlike CAS, CAD requires the technology-focused definition
of geometry as well as a logical and comprehensible structuring of product models.
This is the reason why CAD software manufacturers are increasingly implementing
parametric-associative functionalities in combination with feature-based modeling.
These utilities provide the foundation for object-oriented design processes, which
push the development of the product itself into the foreground, while the math-
ematical geometry definition is performed simultaneously by software-embedded
automated routines in the background. The following sections give a software-
manufacturer-independent overview of state-of-the-art functionalities and methods
in the application of 3D CAD.

4.2.1 Reference Elements

Reference elements serve as a basis for dimensioning or for the definition of spe-
cific boundary elements. They also enable efficient design processes by supporting
geometry creation and transformation features. In general, coordinate systems can
serve as reference elements, which are related to a specific position and orientation
in the working space. In modern CAD systems, a coordinate system with an origin
P and three axes x , y, z also defines three planes, εxy , εyz and εxz , which can be
used for different purposes. Besides coordinate systems, single planes often serve
as reference elements (e.g. to define a distance or an orientation). Planes can be
defined as an offset element from another plane or planar surface, by two lines or a

http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3

4.2 Wireframe and Surface Design 257

Fig. 4.10 Examples of point definition in CAD

planar curve, as well as a normal plane to a curve in space. In addition, a plane is
defined via its equation Ax + By +Cz + D = 0 (cf. Example 3.14, p. 159), whereby
n = [A, B, C]� is a normal vector of the plane and |D|√

A2+B2+C2 is its distance from
the coordinate system’s origin.

In general, all geometry elements can serve as reference elements. Besides the
two types mentioned above, points, lines and regular surfaces can be used because
of their relatively simple definition and high stability. Complex geometries should
not be used as reference elements because they tend to lead to instability in the case
of geometrical or structural modifications of the CAD model.

4.2.2 Wireframe Design

Wireframe elements include points, lines and curves, which are defined in two-
dimensional or three-dimensional working spaces. In the case of two-dimensional
definitions, the elements can be created as independent elements within a plane or as
components of a sketch. In all instances, wireframe elements can have non-parametric
or parametric-associative characteristics.

Points often serve as initial elements in CAD. In parametric design processes,
points can be created in different ways. Besides inputting the point coordinates, it is
possible to create a point on a curve or as an intersection of two curves or a surface
and a curve. The projection of an existing point in space onto a curve or a surface also
serves for the definition of point elements. Due to the fact that a point represents a zero
dimensional location in space, point elements can serve as reference elements, as the
basis for the creation of curves or lines, or originators for parametric dimensioning. In
addition, points can serve as elements for measurement procedures in virtual product
models. Figure 4.10 shows a selection of examples of point creation in CAD.

Lines often serve as reference elements or as supporting elements for the design
of surfaces and solids. In parametric CAD, lines are created based on parent elements

258 4 Modeling Techniques in CAD

(e.g. points, vertices, curves or surfaces). The simplest definition of a line consid-
ers two points as start and end elements. Another possibility is the definition of a
start point, a direction and a length, whereby the direction vector can be defined by
different elements (e.g. a line, an edge or a normal direction to a plane or a sur-
face). Another possibility is the extraction of the axis from surfaces of revolution.
In general, CAD systems enable the extraction of lines from the boundary elements
of existing elements (e.g. a cube or a block). Figure 4.11 includes a selection of
examples of the creation of lines in CAD.

Fig. 4.11 Examples of line definition in CAD

Curves, which serve as a basis for the creation of simple and complex surfaces,
solid models and as reference elements for different additional operations (e.g. as
translation paths in kinematics simulation), are important geometrical elements in
CAD processes. Curves can be defined within planes or planar surfaces as 2D ele-
ments or in the 3D working space.

Regular curves are curves that can be defined by mathematical equations (e.g.
circles, conic sections, helical curves or spirals; cf. Sect. 3.4, p. 85). CAD softwares
provide additional possibilities for the creation of regular curves by different types
of operations (e.g. using geometrical elements as parent elements and boundary
conditions). As an example, a circle c can be defined by selecting a supporting plane
ε, a point p1 as circle center and a point p2 ∈ ε for the definition of the radius. Another
possibility is the consideration of a center point p1 and a tangent curve cT . There
are other commonly applied methods of circle definition that are similar to these
examples, and analogous functionalities are provided for other regular curves. With
all of these approaches, regular curves are created using geometrical elements for
their unambiguous definition. Screw lines (helices) represent a special case of regular
curves because of their three dimensional extension. A helix c displays the path of
a point which rotates around an axis g while simultaneously proceeding a pitch h
(cf. Example 3.3, p. 61 and Example 3.5, p. 71). Besides a helix, Fig. 4.12 shows
examples of the definition of two selected regular curves, a circle and a parabola.

Splines represent a general, so-called freeform type of curve in space (cf. Sect. 3.4,
p. 85 and, in particular, Definition 3.28, p. 99). While their mathematical defin-
ition takes into account different complex interpolation and weighting function-

http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3

4.2 Wireframe and Surface Design 259

Fig. 4.12 Examples of regular curves

Fig. 4.13 Exemplary definitions of free-form curves in CAD

alities, CAD systems offer geometry-based operations for a user-friendly creation.
In common CAD systems, splines can be defined by passing points pi , tangent direc-
tions gi and tension factors (Fig. 4.13, left). Tension factors are factors that influence
the progression of curves as a function of the curvature and the distance from a spe-
cific point on the curve. In CAD processes, splines often result from intersection or
projection operations. Figure 4.13 shows a selection of operations for the creation of
free-form curves. The intersection of two surfaces Φ1, Φ2 leads to a curve c, which is
represented by some spline curve in the CAD environment. The projection of a curve
c0 along a direction vector v onto a surface Φ also results in a curve c. The last exam-
ple shows the translation l of a curve c0 on a surface Φ, resulting in a curve c. With
all of these operations, the resulting curve is related to its associated parent elements.

In parametric-associative designprocesses, wireframe elements often serve as the
basis for the creation of complex surface or solid models. The simple and lean
structure of wireframe geometry makes this type favorable for application as basic
elements, control geometry or dimensioning components. In addition, wireframe
geometry is often used for the parametric positioning of components and modules in
assembly structures. In this way, components are positioned in relation to a so-called
skeleton model, which provides exact information about the location and arrangement
of each component in the 3D space. If the skeleton model has a parametric structure,

260 4 Modeling Techniques in CAD

Fig. 4.14 Wireframe elements as a skeleton model for the positioning of surface and solid geome-
tries in a simplified human manikin model

it can be used to control movements and dimensional variations as well. Figure 4.14
shows an example assembly of a simplified human manikin model with wireframe,
surface and solid geometries. The manikin model consists of several parts that are
assembled in relation to a wireframe model, which is used as a positioning skeleton.

4.2.3 Surface Design

The modeling of surfaces was a main development goal of CAD software suppliers
in the 1980s. Since that time, the implementation of multifarious functionalities has
broadened the application of surface design significantly, enabling the virtual creation
of complexly styled product models. With the introduction of solid-modeling in the
early 1990s, the application of surface-based design in mechanical engineering was
reduced, whereas some area of business, and especially the aeronautic industry,
always has used surface based geometry creation. Since the beginning of the twenty-
first century, the combination of parametric-associative design methods and surface-
based product modeling has undergone a strong revival. The high styling and shape
requirements in modern product design led to an intensified re-integration of surface
modeling into development processes.

Especially in the automotive industry, the application of surface modeling is not
restricted to sheet metal design, but also concerns the design and development of
nearly all visible components. Thus, exterior components and interior car surfaces
(e.g. seats, dashboards, panels) are designed with surface modeling, as well as the
complete vehicle body structure. Besides these applications, surface modeling has a

4.2 Wireframe and Surface Design 261

strong relevance in the development of components and modules that are related to
fluid dynamics. Examples include the intake and exhaust systems and ports of internal
combustion engines, their cooling systems, and components for brake cooling and
vehicle air conditioning. The following section provides an overview of the main
functionalities of surface modeling in modern CAD systems and uses application
examples to show some important surface-based design methods.

Regular surfaces are surfaces that can be defined by the motion of a curve without
surface-based interpolation or weighting functionalities. This basic type of surfaces
consists of extruded surfaces (also called cylinders; cf. Definition 3.52, p. 166), sur-
faces of revolution (see Sect. 3.7.11, p. 168), translational surfaces, helical surfaces
(cf. Sect. 3.7.12, p. 172) and pipes. An extruded surface is based on a profile curve
cP , which is displaced along a direction vector v under consideration of a length l. In
general, the basis curve cP is defined as a 2D-curve within a plane (e.g. in a sketch),
but this is not a limitation. A surface of revolution is defined in terms of a curve c, a
revolution axis g and an angle of revolution α (Fig. 4.15).

Multi-section surfaces are based on a set of curves, which define sections of the
surface to be created. These sections can be positioned in the 3D working space
in any way, but should be positioned in an expedient configuration, such that the
multi-section surface can be created clearly with no ambiguity or twisted areas. The
sections are connected by a surface, whereby the surface continuation can be adjusted
by applying several additional functionalities. One possibility is the definition of
coupling points at each section. These points serve for the definition of surface
segments, which enables the computation of even characteristics for each segment.
The segmentation of the surface is performed by coupling functionalities, which
link the corresponding points of each section. Figure 4.16 shows an example of a
multi-section surface, which is based on two sections, c1 and c2. The unregulated
surface ΦU has a twisted and unsmooth progression, which is not useful for the
desired application. The regulated surface ΦR shows a smooth progression and no
sharp edges. This behavior is achieved by coupling predefined corresponding points
of each section, which significantly improves the surface quality.

Fig. 4.15 Extruded surface and surface of revolution

http://dx.doi.org/10.1007/978-3-642-11940-8_3
http://dx.doi.org/10.1007/978-3-642-11940-8_3

262 4 Modeling Techniques in CAD

Fig. 4.16 Multi-section surface with coupling function

Besides the adjustment of multi-section surfaces using coupling points, addi-
tional functionalities enable extensive modifications. For example, guide curves serve
as shaping elements, which are positioned on the surface itself to define its shape
directly. Figure 4.17 shows an example of the application of multi-section surfaces
based on more than two sections. This part of a longitudinal beam consists of a sur-
face which changes its cross sections as a function of the beam length. The sections
c1, c2, c3, c4 and c5 are positioned in parallel planes ε1, ε2, ε3, ε4, and ε5. In the
present example, additional guide curves g1, g2 and g3 support the computation of the
resulting surface to achieve a smooth continuation. Important functionalities include
the ability to define tangency and curvature continuations of the surface patches,
interpolation and extrapolation operations, and the ability to define spine curves as
additional shaping elements.

Fig. 4.17 Longitudinal beam created as a multi-section surface

4.2 Wireframe and Surface Design 263

Fig. 4.18 Translational surfaces with guide curves

The functionalities of multi-section surfaces can be applied at open or closed
profiles. In this way, they are used for the design of sheet metal components as well as
for the creation of tubes and pipes with variable cross-sections. The manifold options
for varying and adjusting surface progression and continuation under different quality
criteria make this type of surface suitable for the creation of complex geometries.

Translational surfaces concern a broad family of surfaces, which can be defined
in different ways. One possibility is the translation of a profile cP along a guide curve
cG , whereby the angle α between the profile and the guide curve remains constant.
The rotational position of the swept profile as a function of the guide curve length can
be constant or variable. In the left-hand example in Fig. 4.18, the profile cP is a 2D
curve within a plane εc, and the rotation angle is set to zero in relation to a reference
plane εR . The right-hand example in Fig. 4.18 shows a translational surface which
is defined by a profile curve cP , two guide curves cG1 and cG2, and a computation
direction v. The surface ΦT is created by a displacement of cP along two guide
curves, whereby the distances of two sectioning points pi and p j serves as a scaling
factor for each section of the surface. The sectioning points are created by a set of
intersections of planes εc, which have a perpendicular position to the computation
direction v. In this way, every incremental position in the computation direction
between a starting plane εc and an ending plane εi results in two sectioning points
(from p1, p2 to pi , p j), which define the related scaled profile curve cPi in each
section. A swept combination of a quantity of incremental sections leads to the final
swept surface ΦT . The application of swept surface creation based on profile and
guide curve based enables a parametric definition of multifarious surface models by
utilizing complex interpolation procedures, whereby the geometry-based definition
of input parameters and boundary conditions supports a user-friendly handling within
common CAD software.

Figure 4.19 includes two examples of swept surfaces which use other options
for the creation of such surfaces. In the example on the left, a translational surface
is defined by a profile curve cP , one guide curve cG and a reference surface ΦR

containing cG . In this case, the angle α between the profile curve and the reference

264 4 Modeling Techniques in CAD

Fig. 4.19 Examples of swept surfaces with reference surfaces

surface is kept constant, so the resulting surface ΦT has a constant orientation in
relation to the reference surface. One other common option, which is not shown in
the figure, is to use a variable profile angle α, which results in a bended surface ΦT

in relation to the reference surface ΦR . The example on the right of Fig. 4.19 shows
an exemplary application of tangential surfaces for the creation of swept surfaces. In
this example, a surface ΦT is defined by a guide curve c, a constant circular profile
radius R and a tangency constraint in relation to a reference surface ΦR . There are
several other ways to define swept surfaces using geometrical boundary conditions,
such as using two tangential surfaces, variable profile radii or the implementation of
specific functions for the definition of the profile curves (e.g. conic sections). These
approaches have two things in common: the sliding of a (possibly variable) profile
curve in a prescribed direction, and the application of one or several guide curves or
one or several tangency surfaces.

Because the features for the creation of multi-section surfaces and swept surfaces
offer a wide range of functionalities for the creation of complex surface models,
these types of geometrical elements play an important role in automotive design
processes. An efficient application of functions for complex surface definition pro-
vides the foundation for efficient design processes but also requires well-educated
design engineers who are able to manage the extensive functionalities offered by
state-of-the-art CAD software.

A fill surface is a special type of surface, which is based on a group of boundary
elements. In general, fill surfaces fill in a set of wireframe elements, which have
to be arranged in an unbroken configuration. The mathematical background of fill
surfaces (see also Sect. 3.9.1, p. 205) contains complex interpolation functionalities,
which are applied automatically within the CAD environment. The uncomplicated
user handling simulates a simple operation, but in some cases, fill surfaces show an
extraordinary behavior. Due to the fact that wireframe elements in a 3D-working
space can have extensive progressions and sharp corners, the continuations of fill
surfaces may have uneven characteristics. To avoid this, the wireframe elements
must be carefully defined. Modern CAD systems enable additional functionalities
for controlling the shape of fill surfaces (e.g. by applying tangency constraints in

http://dx.doi.org/10.1007/978-3-642-11940-8_3

4.2 Wireframe and Surface Design 265

Fig. 4.20 Sample of fill surfaces

relation to adjacent surface patches). Figure 4.20 shows an example of the application
of two different types of fill surfaces. ΦF1 represents the result of a fill operation of
the limiting curves c1, c2, c3, c4 without consideration of tangency constraints. ΦF2
shows the result in the case of tangency constrains in relation to adjacent surfaces
Φ1, Φ2, Φ3 and Φ4.

Finally, offset surfaces represent parallel surfaces of an existing set of closed
surface elements. Their definition requires parent surfaces and the specification of
an offset distance. In the case of radii or restricted curvatures which are smaller than
the transformation distance l, the derivation of offset surfaces may lead to sharp
edges g. Figure 4.21 shows and example of such a case by creating an offset surface
ΦO based on the reference surface ΦR .

Fig. 4.21 Exemplary creation of offset surfaces

4.2.4 Operations in Wireframe and Surface Design

Wireframe and surface elements can be manipulated by different types of opera-
tions, which enable modeling by taking into consideration and/or modifying two or

266 4 Modeling Techniques in CAD

Fig. 4.22 Joining of surface
patches

more geometrical components. These functionalities are based on the interactions of
individual elements and result in composed configurations. In parametric design, the
resulting geometry is associated with parent elements, whereby the specific functions
execute the corresponding mathematical operations in the background. The follow-
ing section introduces and briefly explains selected main operations in wireframe and
surface design. In addition to the functions described here, modern CAD systems
offer other possibilities, which are often composed of the main operations presented
below. Besides functionalities for geometry manipulation, these extended features
enable several adjustments and configurations in terms of tolerances, continuations,
and other factors.

One important operation in wireframe and surface design enables the merging of
several geometrical elements (e.g. the composition of surface patches to one cumula-
tive surface model). This so-called join function can be applied to surfaces as well as to
lines or curves, but it requires a clear definition of the elements to be considered. In this
operation, some specific handling errors can lead to geometrical problems. Sources
for errors include gaps or overlapping areas between single elements, as well as com-
putation tolerances and deviations in tangency or curvature continuation. Figure 4.22
shows an example of a result of a join operation of several surfaces Φ1 · · · Φ6.

Another family of operations handles split and trim functionalities. Split opera-
tions use splitting geometry (e.g. planes, lines, curves, surfaces) to cut wireframe
elements. The resulting elements show a modified geometrical extension such that
the intersecting curve of the geometrical elements involved represents the partition-
ing component. If the intersecting curve is shorter than the surface which has to be
split, modern CAD systems offer extrapolation functionalities to enable an easy han-
dling. In the case of split using wireframe elements, it has to be ensured that the lines
or curves lie completely on the surfaces treated. The middle illustration in Fig. 4.23
shows an example of the result of a split operation of two surfaces Φ1 and Φ2.

In contrast to split operations, trim operations modify the treated surfaces and join
them at the same time. Trim operations offer different settings for the orientation of
resulting surfaces, their continuation and the extrapolation of trim curves. Similar to
split operations, the intersecting curve of the surfaces involved represents the trim
curve. In the case of split- or trim operations of wireframe geometries, the intersection
results in a point. The right-hand illustration in Fig. 4.23 shows a possible result of a
trim operation of two surfaces Φ1 and Φ2. In this case, the left side of Φ2 is joined
with the lower part of Φ1.

4.2 Wireframe and Surface Design 267

Fig. 4.23 Split and trim operations

Rounding and fillets are applied by using specific features that enable an easy
handling of these complex mathematical operations. In general, fillet operations
enable the application of corners with a constant or variable radius at edges or between
wireframe or surface elements. In the case of wireframe elements, the operation
results in a curve; in the case of surface elements, the operation results in additional
surfaces. These fillet surfaces can be trimmed with the adjacent parent surfaces
automatically or can be kept separate for further operations.

Fig. 4.24 Fillet operations

Figure 4.24 shows examples of the application of two different types of fillets with
two initial surfaces Φ1 and Φ2 (here planes) as boundary elements. The application
of a fillet surface with constant radius R leads to a simple cylindrical surface ΦF

(middle), whereas the application of a fillet surface with variable radius Rvar results
in a more complex surface. The continuation characteristic of Rvar as a function of
the length of the intersection curve of the two initial surfaces Φ1 and Φ2 directly
defines the shape of the resulting surface. In standard applications, the resulting fillet
surface has a tangent continuation (GC1-continuity; cf. Sect. 3.7.3, p. 148) to the

http://dx.doi.org/10.1007/978-3-642-11940-8_3

268 4 Modeling Techniques in CAD

Fig. 4.25 Exemplary application of a scale operation with different factors for the x , y and z
directions

adjacent surfaces. Advanced functionalities enable the definition of more complex
continuation behavior, as well as the implementation of enhanced curves as section
profiles instead of circular radii. These so-called styling fillets facilitate a smooth
curvature continuation (GC2-continuity) from one surface to another and are used in
the case of vehicle body design or the creation of other visually relevant components.

Another family of operations includes extrapolation, transformation, scaling and
pattern functions. Extrapolations enable an extension of existing wireframe or surface
elements under consideration of continuation conditions (e.g. tangency or curvature).
Transformation functions cover the movement of geometrical elements, including
translation, rotation and symmetry functions. These operations often enable the cre-
ation of clone elements from existing parent geometries. Scaling operations handle
the modification of geometry extension under consideration of scale factors, whereby
these factors can be defined separately for the x-, y- and z-direction.1 This possibility
supports a simple creation of warped surface models (Fig. 4.25).

Fig. 4.26 Pattern operations

Figure 4.26 shows an example of the application of pattern operations. In the case
of a rectangular pattern, the initial geometry ΦC is transferred and copied into the v
and the w directions by defining the desired numbers of elements. The circular pattern
concerns a rotational transformation of initial geometry in reference to a rotation

1 These operations are affine transformations in the sense of Definition 3.1, p. 54.

4.2 Wireframe and Surface Design 269

Fig. 4.27 Example of an unfolded sheet metal

axis g. Pattern operations can be combined with different subsequent operations like
trimming by a surface ΦE .

Besides fundamental functionalities for geometry creation, modern CAD systems
also offer far-reaching operations for the support of production-related product mod-
eling. These features often combine several basic functionalities for the formulation
of problem-oriented and user-friendly operations in wireframe and surface model-
ing. Figure 4.27 shows one example of the automated development of unfolded sheet
metals. In general, an existing surface model provides the basis for the creation of
an unfolded model, which can be directly transferred into production engineering
processes. One prerequisite for a failure-free development of unfolded surface models
is the preparation of foldable parent surfaces. It is known that not all types of surfaces
are able to be transferred into an unfolded planar surface model (cf. Sect. 3.7.10, p.
167). For the treatment of 3D-bent or free-form surfaces, modern CAD systems offer
approximation techniques, which perform a segmentation of the 3D-surface patches
and a subsequent transformation into 2D-unfolded models. These approximations
always result in distortions, which have to be monitored and evaluated carefully for
each application case.

Another important function handles the application of draft angles. Draft angles
concern a specific orientation of surfaces for production purposes. The manufactur-
ing process of deep-drawn parts, some types of cast parts and forged components
makes the application of angled surfaces necessary. This is based on the molding
process and depends on several production-related factors, such as the type of manu-
facturing, the component material, materials of molds, and mold lifetime. Typically,
draft angles are 0–2◦ for plastic die-cast parts, 1.5–3◦ for aluminum die-cast parts,
3–5◦ for forged steel parts, and 1–5◦ for deep-drawn steel metal sheets. The bigger
the draft angle, the better the mold durability and surface quality of the components,
but increasing draft angles lead to increasing modification of the model geometry
itself. Thus, the application of draft angles is always a compromise between the
product geometry shape and the different requirements from production engineer-
ing. Modern CAD systems offer several features for the application of draft surfaces,
but in general, a thorough knowledge of the manufacturing process is required for
the proper design of these types of components. Figure 4.28 shows an example of a

http://dx.doi.org/10.1007/978-3-642-11940-8_3

270 4 Modeling Techniques in CAD

Fig. 4.28 Example of draft application

deep-drawn sheet metal part and the simplified mold components. Corresponding to
the tooling direction, draft angles are applied on the affected surfaces.

4.2.5 Modeling in Wireframe and Surface Design

Depending on the CAD software package applied, the workflow in parametric-
associative wireframe and surface design will vary, but the general modeling
processes follows similar steps of geometry creation. The following sequence gives a
software-independent overview of the design process in wireframe and surface geom-
etry modeling using two examples. In these examples, the main steps are shown and
briefly explained to introduce the structuring of surface models in automotive engi-
neering. The examples are related to sheet metal body components. The design of
plastic parts or aluminum cast components may differ significantly because of fun-
damentally different modeling strategies, which include solid bodies. The different
possibilities for the integration of volume and solid models in surface design are
discussed in Sect. 4.5.

In addition, the methods of parametric-associative surface design introduced here
do not correspond with the techniques of CAS. Whereby CAD encompasses the
technology-oriented engineering of product models, CAS is focused on the creation
of styling surfaces for the definition of the product outline and its shape. In general,
the processes can be distinguished as the development of product appearance on the
one hand (CAS) and the development of everything that is behind the skin on the
other hand (CAD). Of course, the two disciplines influence each other significantly,
and it is clear that there are many instances of multiple functions and processes. In
general, however, CAS uses non-parametric geometry creation for the development
of smooth free-form surfaces.

Figure 4.29 shows an exemplary parametric-associative design process for a sheet
metal cover. In the first step, the basis profile is defined in a two-dimensional wire-
frame model c1. This wireframe model consists of lines and circles and can be

4.2 Wireframe and Surface Design 271

Fig. 4.29 Exemplary design steps of a sheet metal cover

272 4 Modeling Techniques in CAD

defined using elements in 3D-working space or using sketch-based functions within
a selected plane ε1. In both cases, the corresponding dimensional parameters R1, R2
and L1 control the geometrical extension of c1. The basis profile is used to define
the bottom and circumference surfaces in step 2. The bottom surface ΦB is a planar
surface in ε1, which is framed by c1. The circumference surface ΦC is defined by
an extension L2 and a draft angle αD , which takes the tooling process of the sheet
metal part into account. ΦC can be defined via different operations, which depend
on the CAD software applied. Some software enables the creation of draft surfaces,
which are built on basis surfaces. In the present case, the circumference surface is
created by using an extrusion function, and in a subsequent step, the application
of the required draft angle onto this extrude leads to the final drafted surface. One
alternate possibility applies a translational surface operation, which sweeps a profile
along the basis curve c1. In this case, the profile is represented by a line with an angle
of 90◦ + αD in relation to the bottom plane ε1.

Step 3 shows the result of the application of a rounding surface with a constant
radius R3 and the subsequently performed trim operations. In step 4, the profile curve
c2 of the split surface ΦS is defined. The definition follows the strategy of description
of c1 and is performed within a plane ε2. The dimensions of c2 are described by the
parameters L3, . . . , L8. This profile curve serves as a basis for an extrude operation,
which defines the split surface ΦS , as shown in step 5. The final step 6 includes the
split operation with the goal of creating the final surface ΦF . In a subsequent step, the
surface model can serve as input for a thick operation, which converts it into a solid
model under consideration of a desired wall-thickness. This operation is discussed
in detail in Sect. 4.5.

The next example covers the general design steps for the creation of a more
complex sheet metal panel. This panel is part of an engine carrier beam and is used
in a personal car. Figure 4.30 shows the main steps of design but does not go into
detail in terms of parameterization or the individual operations of surface creation.
Step 1 handles the definition of reference elements, which characterize the general
extensions of the panel and serve as a basis for different operations. These reference
elements consist of an axis system and planes. Depending on the specific task and
the modeling strategies applied, additional elements (e.g. lines, points, curves) may
be used. Step 2 shows the basic surfaces of the relevant model, which are trimmed in
step 3. Draft angles in relation to a predefined tooling direction along the z- axis are
considered. In general, basic surfaces are designed somewhat larger than the final
geometry to support some geometrical operations, such as split or trim functions.
The trimmed basic surface provides a source for several subsequently performed
operations, which finally form the resulting surface model. Due to the symmetry of
the panel, only one half is designed and then mirrored in a final step.

In step 4, the deep drawn trays of the panel are created under consideration of
the required draft angles for production engineering. Each element is composed
of several surface patches, which are created using common functionalities (e.g.
extrude, revolute, and sweep operations). In the present example, some of the trays
have the same geometrical shape, so these can be designed individually and copied
using transfer functions. The deep drawn trays are integrated into the surface model

4.2 Wireframe and Surface Design 273

Fig. 4.30 Exemplary design steps of a sheet metal panel

274 4 Modeling Techniques in CAD

by applying trim operations in step 5. Step 6 includes the definition of additional
trim surfaces, which characterize several details of the panel. These trim surfaces
are created under consideration of the desired draft angles and are positioned using
the corresponding reference elements. After that, they are integrated into the panel
model using trim operations.

At this point, the geometric main characteristics of the panel are implemented.
The following steps handle the final detailing operations. Step 7 includes the result of
several operations. Firstly, all the relevant shaping surfaces are integrated by split and
trim operations, and secondly, the actual main dimensions of the panel are fixed by
trim operations with the corresponding reference planes. Finally, step 7 also includes
the application of fillet surfaces at the corresponding edges of the model.

The next step concerns the cut-out operation of inside holes. In the present exam-
ple, specific surfaces serve as cutting elements. These surfaces simulate the stamping
process in production and are integrated into the panel model using a split function
(step 8). In step 9, the panel is completely defined and ready for the final symmetry
operation. Step 10 shows the resulting panel, which includes all required information
for a complete geometrical product description. The surface model can be converted
into a solid model by applying a wall thickness. During further processes, additional
information can be applied, such as the material characteristics and supplementary
production-related information. The panel model itself is implemented within an
assembly structure and serves as a basis for DMU-based investigations and crash
and stiffness simulation. The panel model also serves as a geometrical boundary for
the design of adjacent components and modules.

4.2.6 Surface Analysis Functions

Modern CAD software offers different analysis functions which enable extensive
evaluation and optimization of wireframe, surface and solid models. In general,
these functions are related to geometrical product characteristics. However, as the
product geometry includes knowledge of different disciplines, the design analysis
also covers topics of styling evaluation and production-related aspects.

An assessment of geometry within a CAD-environment begins with the visualiza-
tion techniques. There are different types of visualization enabling diverse types of
product display and thus several variants for the recognition of defects. Figure 4.31
shows a selection of different types of visualization in CAD.

For the following considerations on surface continuity we also refer to Definition
3.44, p. 149. In mechanical design the analysis of surface and wireframe geometry
often focuses on the quality of geometry assembly and continuity. This way the dis-
tances between curve elements or surface patches are checked to avoid unwanted
holes, gaps or overlapping wireframe or surface areas. The continuity characteristics
represent a special case. Closed surface patches with edges in-between fulfill the low-
est standard of continuity, the so-called GC0-continuity which only ensures that the
joined surface elements meet along an edge. The second degree GC1 is represented

4.2 Wireframe and Surface Design 275

Fig. 4.31 Selected different types of visualization in CAD

by tangency continuity which is often applied in technology-based design processes.
All standard operations of modern CAD systems work with GC1-continuity, such
as the application of fillet surfaces or the extrapolation of surface patches. Curvature
continuity GC2 describes the higher order of wireframe or surface continuity. Sur-
faces with curvature continuity are used in styling surfaces or in the surfaces of visible
components. Due to their high visual quality, GC2-surfaces show a smooth behavior
even in the reflection of light. In addition to visual purposes, curvature continuity
is applied in the design of components relevant to fluid dynamics, which require a
smooth change of flow sections. Finally, the GC3-continuity represents the high-
est degree of smoothness in wireframe and surface design employed in automotive
engineering. GC3 characterizes a smooth change of curvature all along a transition
curve. Surfaces with GC3-quality are used in some areas of automotive body design
with particularly high claims to visual quality.

Fig. 4.32 Examples of surface analysis functions

276 4 Modeling Techniques in CAD

There are different functions for the analysis of curvature continuity. One type is
the porcupine curvature analysis which enables a detailed observation of the behavior
of curves or internal curves of surfaces by using a colored or a spike representation
along the curve length. In Fig. 4.32, the image on the left shows an example of a
porcupine curvature analysis of a section curve of a connection tube, which has been
created as a multi-section surface. The length of the spikes represents a value for the
curvature behavior. Another option for assessing the quality of surface progression
is the application of surface-based curvature analysis, such as the Gaussian curvature
distribution of a surface patch (cf. Definition 3.47, p. 155). This so-called surfacic
curvature analysis displays different areas of curvature in different colors under con-
sideration of the curvature direction (Fig. 4.32, middle). Similar to these exemplary
functionalities, there are several additional features for surface analysis which sup-
port the evaluation of surfaces by displaying minimum or maximum radii, inflected
areas, and others.

4.3 Solid Design

Solid modeling deals with the generation of virtual figures of products as compact
three-dimensional models in a CAD environment. Unlike wireframe or surface mod-
els, which are based on sets of curves or surfaces, solid models are characterized by
their representation as closed volumes (see also Sect. 3.12, p. 233). This enables
a detailed description of the product specification beyond the purely geometrical
aspects of the outer shape. For example, the definition of material characteristics
enables a weight calculation, and the volume geometry can serve as input data for
meshing operations or for direct derivations of tool path computation for numer-
ically controlled production machines. In addition, the design process considers
manufacturing-related requirements for the model structure, such as the subdivision
of model components for casting or forging processes. Compared to wireframe and
surface generation, the definition of solid models requires more complex computa-
tional procedures. It is not sufficient to define the outer geometry of a model; the hull
surfaces have to satisfy closing conditions. In addition, geometry inconsistencies,
such as overlapping surfaces or manifold solutions, have to be prevented.

To support solid modeling processes, modern CAD systems offer various func-
tionalities which automatically include the complex mathematical algorithms for the
definition of solid bodies. Solid models enable the calculation of volume properties
directly from the geometry model. The volume properties are the volume, mass (as a
function of the density), center of gravity, moments of inertia and products of inertia.
The volumetric property calculation with a general function Ψ of the triple integral
of a function F(x, y, z) can be defined as

Ψ =
∫ ∫ ∫

F(x, y, z) dV, (4.1)

http://dx.doi.org/10.1007/978-3-642-11940-8_3

4.3 Solid Design 277

which can be applied for the calculation of density distribution in a closed volume,
for example.

Since the 1980s, different solid modeling methods and procedures have been
introduced and discussed in the literature, while the fast-growing capabilities and
frequently expanded functionalities of 3D CAD design software have led to a logical
progression of software capabilities. Depending on the specific requirements of work-
ing fields in automotive engineering, solid modeling is combined with wireframe and
surface design, thereby enabling a thorough virtual product representation. State-of-
the-art design software packages enable a fusion of wireframe, surface and solid
modeling techniques, which supports the application of integrated design methods.
The following sections provide a brief overview of the main functionalities of solid
design in modern 3D CAD software packages.

4.3.1 Modeling of Basis Solids

The composition of basis solids enables the development of the raw product geometry,
which is defined in the initial steps. In subsequent detailing operations, this basis
geometry is refined and detailed. Depending on which CAD software package is
applied, there are different functionalities available for the formation of basis solid
models.

Fig. 4.33 Examples of primitives in solid design

The creation of primitives enables a simple and quick generation of solid mod-
els using predefined geometries. As an example, cuboids, cylinders, cones, torus
etc. are created by inputting the corresponding geometrical parameters. Figure 4.33
shows examples of primitives in solid design. The computation procedure for these
objects includes a user-defined input of the geometrical dimensions and a subsequent
automated calculation of the closed outer surface, including identification as a solid
model.

One alternative technique is the definition of primitive objects using two-
dimensional sketches. In this technique, sketches describe the geometry of a section,
which is used for the definition of three-dimensional geometries. The sketch-based

278 4 Modeling Techniques in CAD

Fig. 4.34 Sketch-based solid definition

definition method offers a wide range of possibilities for geometry creation via
user-friendly operations. Besides simple outlines for the generation of raw geome-
tries, sketches can be used to create complex shaped drawings, which serve as input
data for subsequent translational or rotational solid definition. Figure 4.34 shows an
example of a sketch-based solid creation using a translational function. The object
measurements are defined in a sketch (black dimensions) as well as in the transla-
tional function (green dimensions), which form a 3D solid from the 2D drawing.

The combination of several 2D sketches enables an easy-to-handle creation of
basis solids with more complex hull geometries. Figure 4.35 shows an example of
a multi-sectional solid definition. A closed volume is defined by a skin surface over
a number of cross sections. Each cross section includes the geometry information
defined in planar sketches or wireframe arrangements, and a trajectory gives the
computation direction in the form of a center line. The skin surface is created by
connecting the cross section using coupling points, which can be positioned individ-
ually to influence the shape and smoothness of the hull surface. A closing condition is
fulfilled under consideration of the two cross-sectional surfaces at the ends. Depend-
ing on the applied 3D CAD program, there are different sketch-based functionalities
available for the modeling of basis solids, but all of them refer to the same methods
of translational, rotational, sweeping or skinning operations. Similar functionalities
are available in surface design. The so-called multi-section surfaces are created in a
comparable procedure by defining the outline geometries of the presented function-
alities without considering the requirements of solid creation. In this way, there is
no closing condition required, and surfaces can be created as separate elements and
used for subsequent operations.

4.3 Solid Design 279

Fig. 4.35 Multi-section solid

4.3.2 Boolean Operations

Boolean operations make it possible to combine independent geometrical objects. In
the case of solid modeling, the Boolean operations enable the union, subtraction and
intersection of volume models. The union operation combines two existing solids
into a resulting solid with the extension of the outer hull geometry of the initial
solids. The resulting solid object has a closed character, which means that it can be
handled as a solid primitive in further operations. The subtraction operation removes
the volume of the subtracted model from that of the remaining model. The resulting
solid has a reduced geometrical extension, as compared to the initial primitives. The
premise for a failure-free application of a subtraction operation is the geometrical
intersection of both treated solid models. Finally, the intersection operation calculates
the conjoint volume of both contributing objects. Figure 4.36 shows examples of the
application of Boolean operations in solid design with primitives.

Boolean operations with primitives are performed to enable the creation of com-
plex geometry structures. Besides purely geometrical aspects, Boolean operations

Fig. 4.36 Modeling of primitives with Boolean operations

280 4 Modeling Techniques in CAD

Fig. 4.37 Application of Boolean operations in production-related modeling of a piston

can be used to create specific model structures, which are often required for the con-
sideration of production-related viewpoints. For example, the design process of die
casting or forging parts has to consider the factors influencing mold design, includ-
ing draft angles, rounding and of course the configuration of the mold components.
Thus, the design of a product (or components of a product) which is produced in a die
casting process has to consider several production-related aspects, and particularly
the partitioning surfaces of the molds.

Figure 4.37 shows an example of a piston model, which will be produced by
a die casting process and subsequent mechanical machining operations. Due to its

4.3 Solid Design 281

relatively simple geometry, the piston shown can be cast in a two-parted mold with
slider technology or by applying a sand core. One component of the mold defines
the outer (cylindrical) shape, and the other component forms the inner shape. In
Fig. 4.37, the inner shape of the piston is designed as a subtraction solid, which
means that the geometry represents a negative volume. The inner shape of the pis-
ton is designed completely as an independent component, including all necessary
geometrical details, such as draft angles and fillets. This solid is subtracted from
the primary solid object, which defines the cylindrical outline. After performing the
Boolean operation, the final piston model shows the characteristics of the mechanical
part. For the completeness of the presented example, it must be mentioned that in
the industrial engineering of a piston, the outline-defining solid is also created as a
die cast mold.

The presented design method enables a direct derivation of the molds from the
product model. The subtraction solid can be extracted in the design software and
provided for subsequent design processes of molds and machines. In this way, the
design process not only considers the product geometry creation, but also involves
important aspects that have far-reaching influences on the entire product generation
cycle. Besides the standard requirements of geometry and function, today’s design
engineers have to consider a variety of product-related information. The presented
design method enables the consideration of draft angles, fillets and material addition
for the subsequent mechanical machining processes. In the present example, the
mechanical treatment is represented as an additional solid, which is subtracted in a
final step.

4.3.3 Editing and Detailing Functionalities

The functionalities described above mainly serve for the creation of general geom-
etry and for the application of production-related design strategies in principle. To
enable a detailed geometry definition, modern CAD systems offer several additional
functionalities. One main group of editing and detailing operations deals with the
application of detailing-production-related aspects, such as draft angles, rounding
and filleting, as well as the definition of threads. These operations are always related
to existing geometries and modify them according the specified input data. While
different software packages offer different user handling procedures, their function-
alities are all quite similar.

Figure 4.38 shows an example of a sequence of detailing functions applied to
a primitive solid. In the first step, a draft surface is attached to a basis surface by
defining a draft angle. Draft operations apply inclined surfaces to existing geometries
to enable demolding in casting, forging or deep drawn manufacturing processes (see
also Fig. 4.28). Adding draft surfaces always modifies the outer contour of the model.
Based on the draft angle and the model dimensions, the geometrical changes have
to be considered and evaluated. The next step includes the application of rounding
and fillets at specified edges. Rounding functions replace sharp edges with smooth,

282 4 Modeling Techniques in CAD

Fig. 4.38 Selection of editing and detailing functionalities

curved surfaces. In the design processes of mechanical products, the surfaces have
a tangency continuation with a constant or variable radius. In the case of styling
surfaces, rounding surfaces sometimes require enhanced shapes, such as curvature
continuation surfaces (e.g. Bézier patches; cf. Sect. 3.8.1, p. 183), to achieve attrac-
tive outline shapes. The third example in Fig. 4.38 shows the application of chamfers,
which are applied on predefined edges. In the case of mechanical processing, cham-
fers are used to avoid sharp edges. There are various additional editing and detailing
functionalities available, such as for defining threads and taps, for implementing
pattern, and for the scaling, translation or rotation of components.

4.3.4 Feature-Based Geometry Modeling

Feature-based modeling in 3D CAD uses predefined combinations of functionalities
to create geometrical components. Features are created as model-building primitives,
which are related to reference systems or to existing solid geometry. In this way,
feature-based modeling uses associative design methods to create pockets, holes,
ribs, slots, etc., whereby both the referencing behavior and the geometrical charac-
teristics can be controlled by associated rules and attributes. In feature-based model-
ing, the creation of geometrical components is performed by interlinked sequences
of functions, which include the definition of the feature type, the selection of refer-
ence elements, the input of required dimensions and the composition of the desired
geometry models (surfaces and solids). Unlike stepwise design methods, features
enable the definition of geometrical objects within one process. In addition to the
geometrical characteristics, features can include additional information for organiza-
tional, manufacturing or distribution processes and support the derivation of data and
information for subsequent engineering processes. In general, modern CAD systems
offer two types of features. The first type includes standard functionalities offered by
the software package, which enable a user-friendly creation of different geometrical

http://dx.doi.org/10.1007/978-3-642-11940-8_3

4.3 Solid Design 283

Fig. 4.39 Sample applications of feature-based modeling

elements (e.g. primitives, pockets, grooves, holes). The second type includes user-
defined features, which are problem-oriented operations for the support of specific
product design processes. Such user-defined features often include knowledge of
design methods and product-related information.

Figure 4.39 includes examples of feature-based modeling. In the case of creating
a pocket or a groove, the geometric characteristics are defined in two-dimensional
sketches using wireframe elements and attached dimensions. Depending on the type
of feature, these contours are used in subsequent operations, such as translation for
the creation of a pocket or rotation for the creation of a groove. The example at
the bottom right shows the application of a hole, which is positioned on a surface
of the primitive solid. The borehole position is related to the existing edges of the
primitive, and its dimensions (length and diameter) are specified within the feature-
creation process. In the CAD program, the borehole geometry elements are marked
as a borehole, which enables a direct data transfer to subsequent NC-production
planning processes. Feature-based modeling is not restricted to solid design. State-
of-the-art CAD systems also offer various methods for generating surface-based
feature modeling to support integrated development processes.

A smart combination of functionalities in solid design supports an efficient def-
inition of complex product models, which include more than purely geometrical
information. In particular, the creation of cast and forged solid components requires
that production-related aspects be taken into account during the design process.
In mechanical product development, and especially in automotive development,
this type of parts plays an important role, alongside sheet metal parts and plastic

284 4 Modeling Techniques in CAD

Fig. 4.40 Exemplary design steps of a valve cover

components. Metal cast-parts or forged parts are used in drivetrains (e.g. cylinder
head, engine block, transmission casing or others), as well as being applied as main
components of suspension systems and as other load-related elements of a car. Plastic
parts are often used in car interiors or as components of front or rear-end modules.

Incorporating production-related requirements of casting and forging processes
in the design of mechanical products directly influences the geometrical shape of the
models and thus the entire design process. Since the molds in modern development
processes are directly derived from the product models, various required information
for mold design has to be considered during product design. In this context, the
appropriate application of draft angles and fillets at the corresponding faces and
edges plays an important role. In mold design processes, these draft angles and
fillets are directly integrated into the corresponding tools (Fig. 4.9, p. 255).

As a representative example, Fig. 4.40 shows the design steps of a valve cover.
This valve cover is made of aluminum and manufactured by a combination of die-
casting and subsequent machining operations. The design process starts with the
definition of an initial body, which represents the primitive geometry. For symmetry
reasons, several design steps are applied on a half-side model, which is mirrored in a

4.3 Solid Design 285

later step. In the present example, the primitive geometry is described by a rotational
solid, which serves as the raw shape of the model. Step 2 includes the forming of
the upper area. This is performed by applying a pocket-operation, which removes
material from the upper primitive solid. The next step applies the side block by adding
and blending two extruded solids. In step 4, the draft angles are applied at selected
surfaces. In the present example, a two-part mold is used for the die-casting process.
In this way, the valve cover is separated into two main solids, whereby each of them
is designed under consideration of a corresponding draft direction, which is normal
to the symmetry plane of the valve cover. All surfaces with draft angles are colored
green. After applying the draft angles, step 5 includes the application of fillets and
rounding. The final raw cast model results from a mirror operation (step 6). It must
be stated that the cast model considers different aspects of production (e.g. draft
angles, fillets and additional wall-thickness) for subsequent mechanical machining
operations. Normally, the specific measures required for the cast process itself (e.g.
ducts for pouring in the liquid aluminum and holes to allow gas to escape during the
casting process) are defined during production engineering processes. In this way,
the CAD model shown in step 6 represents the raw geometry of the valve cover cast
part as it results from the casting process and arrives in the machining department.

In the solid-based design of mechanical components, surfaces that result from
machining operations are created separately from the geometry which results from
non-cutting manufacturing processes. In many cases, all the surfaces that result from
mechanical treatment are integrated into one solid and subtracted from the initial cast-
part. This strategy enables a clearly arranged structure of design-related components
within complex models. Step 7 shows a solid that includes all of the geometrical
elements necessary for the definition of mechanical machined surfaces. This solid is
designed as a comprehensive closed body and subtracted from the cast-part using a
Boolean operation, which results in a final geometry of the valve cover.

4.4 Combination of Wireframe, Surface,
and Solid-Based Functions

The design of the complex geometries and component assemblies that occur in auto-
motive development requires the integration of wireframe, surface and solid geome-
tries into one modeling process, which makes it possible to use each type based on its
specific attributes. Thus, wireframe elements are used as reference elements (points,
lines or curves and planes), which define positions in the working space exactly or
serve as skeleton models for the assembly of modules and components. In mechanical
design, surface elements are used for various purposes. Sheet metal parts and auto-
motive body components, which are characterized by thin walls, are mainly designed
as surface structures. The high requirements for the surface shape and its quality call
for flexible geometry generation possibilities, which are available in surface design.
Once surface models have been created, they can be converted into solid models by
applying a wall thickness. This leads to the generation of three-dimensional models,

286 4 Modeling Techniques in CAD

Fig. 4.41 Example of split operation of a solid model

which are suitable for subsequent analysis, such as accurate DMU studies and the
application of material properties for weight calculation and subsequent CAE simu-
lations.

Styling software often works with surface functionalities due to the high degree of
freedom for the creation of smooth free-form surfaces with a high visual quality. In
technical engineering processes, styling surfaces are delivered in neutral data formats
and integrated into component design. For example, surface models can serve as
split and trim objects for modifications of solid geometries. In state-of-the-art CAD
systems for automotive development, solid models represent the basis for product
representation in a virtual environment. In recent years, solid models have replaced
the formerly preferred surface models in nearly all applications. The advantageous,
near-real product representation of solid models enables a direct integration of DMU
processes into the 3D CAD software environment. Figure 4.41 shows an example
of a split operation of a solid model with a surface geometry. After it has fulfilled
its function, the surface can be hidden, and the solid model can be used for further
operations.

Thick operations enable another important integration of surface models into solid
design. This type of operation is applied to transfer surface models (e.g. sheet-metal
models) into solid models to enable the definition of wall thickness and to handle
other related information (e.g. material) as well as to compute mass and center of
gravity. Figure 4.42 shows an exemplary application of a thick operation onto a
surface model (left). The final solid (right) considers the geometrical shape of the
surface model, but has been modified by adding a wall thickness. The wall thickness
is applied by an offset operation with a constant distance, and the space between the
initial surface and the offset surface has been filled and converted into a solid. The
application of thick operations places high demands on the quality of the underlying
surface models. Smooth surfaces with no discontinuities or sharp edges are essential
for failure-free transformation. In addition, the radii of the initial surfaces must have
values below the desired wall thickness of the solid model to avoid geometrical
errors.

4.4 Combination of Wireframe, Surface, and Solid-Based Functions 287

Fig. 4.42 Exemplary thick operation applied onto a sheet-metal model

The consideration of production-related aspects in sheet metal design requires
the application of specific methods. Sheet metal parts are manufactured by applying
deep-drawing operations, which form raw sheets into the desired shape (Fig. 4.28,
p. 270). After the forming process, the excess material is cut away by punching
machines. The punching machine stamps have working directions, which emboss the
cutting edges of the sheet metal parts. Because the thick operations of CAD systems
work with offset surfaces, which are created by perpendicular transformation, the
areas of three-dimensional shaped edges are created as non-manufacturing-related
solutions. Figure 4.43 shows an example of sheet metal design that does not take
manufacturing-related edges into account. The closing surfaces of sheet metals at
three-dimensional bent edges show a unidirectional progression, which does not
consider the punching directions of cutting processes (arrows in the detail views of
Fig. 4.43). If the CAD process has to consider production-related aspects, the design
process for the sheet metal part must include several additional steps.

Unlike conventional design processes, the consideration of production-influences
requires a completely different model structuring. In standard sheet metal design, a
comprehensive surface model includes all geometrical information of the final geom-
etry, except the wall thickness. The wall thickness is applied in a final step using thick

Fig. 4.43 Sheet metal design without consideration of manufacturing-related edge design

288 4 Modeling Techniques in CAD

Fig. 4.44 Sheet metal design considering manufacturing-related edge design

4.4 Combination of Wireframe, Surface, and Solid-Based Functions 289

operations, which convert the surface model into a solid model. A consideration of
punch directions requires a stepwise design of the final geometry. Figure 4.44 shows
an example of a method for sheet metal design that takes into account manufacturing-
related edge design. In this case, an initial surface model defines the uncut geometry
(step 1). The appropriate wall thickness is then applied to convert the surface model
into a solid model (step 2), which in turn is split using separate surfaces, representing
the geometry of the applied tooling. In addition, predefined punch directions define
the cutting directions for split operations of the initial solid geometry. In the present
example, the split operations of steps 3 and 4 cut away the right side area and the
hole of the sheet metal part using cylindrical surfaces. Step 5 then forms the upper
area by removing the corresponding material with a split operation supported by a
translational surface, which represents punch direction 2. Step 6 produces the final
geometry using a split operation that considers punch direction 3, represented by
a cylindrical surface. The final model features correct punching edges. The arrows
show the sensitive areas of the model, and a comparison with the model in Fig. 4.43
reveals the differences.

4.5 Assembly Design

Complex mechanical products are composed of several modules and components,
which are arranged in logical sequences in so-called product structures. These struc-
tures define the order of different main and sub-modules and manage linkages and
relationships between the components. Besides geometrical design-related aspects,
product structures provide information for the generation of organizational lists and
tables (e.g. the bill of material (BOM)). Modern CAD systems include specific
assembly-related workbenches for the creation and organization of product struc-
tures. In this way, modules and components in 3D CAD are managed within an
assembly-design environment. The product structures created contain links between
the individual components and their relations to each other. An assembly-oriented
design strategy in automotive engineering is based on a division of the product struc-
ture into several sub-assemblies, which supports an easy examination of component
positions and intersections.

In general, assembly design includes the following tasks:

• Arrangement of modules and components within 3D CAD
• Definition of product structures for the organization of modules and components
• Positioning of modules and components in the working space and in relation to

each other
• Definition of relations and links between modules and components, including

the creation of geometrical dependencies (so-called multi-model links) and the
implementation of logical interconnections

• Implementation and organization of component-comprehensive parameter struc-
tures

290 4 Modeling Techniques in CAD

• Provision of geometry and structure information for subsequent digital mock-up
processes

• Provision of geometry data for assembly-based simulation processes (e.g. multi-
body simulation, MBS)

• Interaction with product data management (PDM) systems

Digital mock-up investigations are carried out on the basis of 3D CAD product
structures, which include the placement of all involved components within the work-
ing space. The 3D CAD assembly model provides all geometrical information for
the subsequent derivation of DMU-models, which represent a simplified shape of the
modules and components involved, including the product structure. For example, a
sub-assembly of a vehicle DMU can represent the body, including all movable and
fixed parts. The described sub-assembly of an automotive body itself consists of sev-
eral sub-assemblies (e.g. side panel modules, the roof module, doors, and some other
products and parts). Stripping down complex structures into sub-assemblies consist-
ing of multiple components provides a basis for simultaneous design processes that
take into account various functional and spatial requirements.

4.5.1 Organization of Product Structures

The organization of product structures consists of several levels, which include spe-
cific combinations of autonomic or linked components and modules. These levels
are defined under consideration of reasonable compositions of CAD models. In most
cases, a technical background prescribes the assembly structuring. Some examples of
factors that influence the distribution of components and modules are the classifica-
tion into main and sub-modules, assembly sequences in the production process and
other manufacturing-related aspects (e.g. the integration of supplier deliverables).
Figure 4.45 shows an exemplary product structure that includes several hierarchi-
cal levels. The main product is composed of components and modules which are
arranged within the main level 1. Components are single parts that are not split any
further. In 3D CAD, these components mainly represent indivisible elements, such
as cast parts, machined elements or standard parts. In many cases, the assembly of
components results in a module or, in the case of a simple product, in a main prod-
uct structure. Complex mechanical products are composed of numerous elements,
whereby modules and sub-modules include separate configurations of components
and sub-modules in reasonable configurations.

In the present example, module 2 consists of a component 2.1, a sub-module 2.2
and other components and sub-modules within level 2. Sub-module 2.2, in turn, is
composed of component 2.2.1, sub-module 2.2.2 and other components and sub-
modules within level 3. This method can be expanded such that even very complex
products can be assembled in a logical and clearly arranged order. It is important that
each level of the product structure is completely defined, including the creation of
geometrical positioning constraints between all components and modules, as well as

4.5 Assembly Design 291

Fig. 4.45 Exemplary product structure including several hierarchical levels

the definition of linkages and logical relations between the elements. Similar to the
complex hardware models that occur in the automotive industry, the product structure
has to represent a meaningful distribution of individual elements with the target
of defining the complete system. Although the product structure often represents
assembling sequences in the manufacturing process, there are several exceptions,
such as the automotive wiring harness, which is structured in a separate sub-module
of the main vehicle product structure. In contrast to this separate structuring, hardware
wiring harness elements are assembled according to the meaningful configuration
in the relevant modules and are interconnected with the main wiring at the vehicle
assembly line.

In addition to the theoretical background of product structuring, the following
example describes a practical application of assembly design in automotive engi-
neering. Figure 4.46 shows an assembly of an automotive front axis composed of a
McPherson suspension strut and a lower suspension arm, a wheel hub, a rim and the
tire, as well as the brake system, the steering system and the drive shaft. Altogether,
this exemplary front axis consists of 6 modules. Figure 4.46 shows the front axis

292 4 Modeling Techniques in CAD

Fig. 4.46 Front axis assembly

assembly and an expanded view of the 6 main modules. Module 1 represents the
wheel unit, consisting of the wheel itself, the rim, the valve, the balancing weights
and the wheel bolts. As in the other modules, these components are positioned in
relation to each other using geometrical constraints. Module 2 includes the complete
suspension strut as it is delivered by a supplier. Module 3 consists of steering system
components, including the actuator, the link lever and the joints. Module 4 represents
the complete drive axle, including pivots, bearings and sealing. Module 5 represents
the lower suspension arm, including all fixed and movable parts. Finally, module 6
represents the brake system, including the wheel hub and the wheel carrier. Mod-
ule 7, which is not shown in Fig. 4.46, includes all screws and standard parts for the
assembly of the 6 main modules. These modules are arranged in the main level of
the product structure (see Fig. 4.48).

To explain a breakdown of main modules into sub-divisions, Fig. 4.47 shows the
assembly of module 6, the brake system with the hub and wheel carrier. Module 6

4.5 Assembly Design 293

Fig. 4.47 Assembly of module 6, brake system including hub and wheel carrier

consists of components of both the brake system (e.g. the brake disc, the brake
protection plate and the brake caliper unit) and the wheel hub (e.g. the bearing and
locking rings and the wheel carrier). The brake caliper unit itself, which represents
a further sub-module, is also composed of several components, which are listed in
Fig. 4.48 under the corresponding header Brake caliper unit. Finally, Module 6, which
includes a set with the screws required for assembly, is represented in the product
structure as Brake system screws. The geometrical positioning of the components
and sub-modules is accomplished using different types of constraints, which are
explained in Sect. 4.5.2.

Figure 4.48 shows the product structure of the exemplary automotive front axle
assembly. For a better understanding of the structuring, white boxes indicate compo-
nents, and grey boxes indicate modules. The front axis assembly represents the main
level, which is divided into 7 sub-modules. With the exception of module 7 (Screws),
all sub-modules consist of several components and modules, which are arranged in a
logical order. As an example, the configuration of module 6, Brake system and hub,
is illustrated in detail. Module 6 consists of 7 components (Brake disc, Protection
plate, Wheel hub, Bearing, Locking ring 1, Locking ring 2 and Wheel carrier) and
two modules (Brake caliper unit and Brake system screws). The sub-module Brake
caliper unit, in turn, is composed of 15 components, which are also listed in Fig. 4.48.

294 4 Modeling Techniques in CAD

Finally, the sub-module Brake system screws includes all screws and standard parts
for the assembly of module 6.

In a complete automotive product structure, the front axis assembly discussed
above might represent one sub-module of the Suspension module. The Suspension
module, in turn, could be a main module in an assembly structure, which contains
the main modules of a car. This so-called automotive main structure could consist
of the main modules Body, Exterior components, Interior components, Propulsion
system, Energy storage system, Suspension, Electronics and Others. It is evident that
the overall product structure of a product such as a car reaches a very high degree of
complexity, which has to be managed carefully during the development process of a
new vehicle, and also during the rest of its life cycle.

Besides the nomenclature of different modules, the structure contains a clearly
dedicated numbering of each element. This is very important for the product structure
management, the unambiguous definition of the corresponding CAD data, and a
clear definition of the complete assembly in a PDM-system. Of course, the form
of numbering and element title can vary based on the different requirements of the
specific project, the software environment, the manufacturer regulations or other
influencing factors, but the general structure includes a clearly defined name and
number of all elements. Some PDM systems work with element numbers only, but
the corresponding names are stored in a database to support the user-orientation.

4.5.2 Methods of Component Positioning

The geometrical positioning of components and modules within the working space
and in relation to each other is an important task in 3D CAD. In general, individual
elements or groups of elements can be translationally and rotationally moved in
space by applying different types of functions. However, these simple movements
do not define any geometrical relationships of positioning. Geometrically binding
positioning can be accomplished in different ways.

In the case of small assemblies, it makes sense to define geometrical constraints
directly between the corresponding components. Typical constraints define distances,
coincidences or angles between geometrical elements (e.g. points, lines, planes or
surfaces). Thus, the components of a product can be positioned with reference to
each other, with the constraints being subject to parametric-associative laws.

More complex assemblies can be built up by using dedicated positioning com-
ponents within the product structure. The so-called skeleton method does not use
constraints between the components. Instead, the positions of the components are
defined relative to an auxiliary construction, the skeleton. The geometrical elements
of the skeleton model therefore define the positions of each component in space and
relative to the other components. The reference elements of skeletons are typically
lines, planes or points. Tall assemblies use several sub-products geometrically com-
bined with the help of a number of skeletons, thereby generating a modular design.

4.5 Assembly Design 295

Fig. 4.48 Product structure
of an automotive front axis
assembly

296 4 Modeling Techniques in CAD

In addition to the two positioning strategies mentioned above, a different method
has been established in automotive development. This strategy consists of arranging
each component relative to one pre-defined main coordinate system. The positions are
defined in the course of the part design process using a startup model, which includes
the main coordinate system. Sub-modules can be placed by creating sub-coordinate
systems, which are related to the main coordinate system. In automotive development,
the main vehicle coordinate system for design and assembling processes is placed in
the symmetry plane near the front axis in most cases. Of course, it is also possible
to combine the different positioning methods. To avoid problems during the design
process, it is essential to clearly predefine the component positioning strategies in
the course of the project planning.

Positioning Using Constraints

Geometrical constraints for positioning include different types of functions. The
first group, the so-called coincidence conditions, defines the congruent alignment of
two geometrical elements. This can relate to the concentricity of two circles or the
coaxiality of two rotational surfaces (e.g. for the assembly of a bolt in a bore-hole).
In addition, coincidence conditions cover the placement of two geometrical elements
exactly at the same place (e.g. the alignment of two points or two planes directly upon
each other). The application of coincidence constraints to two coordinate systems
covers both the placement of the points of origin and the association of the coordinate
system orientations.

The second group, known as offset conditions, enables the positioning of two
geometrical elements with a distance in between. These conditions are applied to
points, planes or planar surfaces under consideration of orientation vectors, which
define the direction of distance. The third group, angular conditions, covers the cre-
ation of angles between planes or lines. In both cases, the orientation angle between
the elements must be clearly defined. In the case of two lines, it has to be ensured
that the corresponding lines meet at one point. Parallel elements are defined using
offset conditions.

In order to position components and modules within 3D CAD working spaces, the
reference elements must be clearly defined. This can be accomplished by assigning
at least one fixed part in space, which then represents the basis for the subse-
quently performed geometrical assembly process. This fixed part should be posi-
tioned unambiguously and non-relocatably in the working space to avoid problems
with the location of assemblies and sub-assemblies in later steps. Modern CAD sys-
tems provide specific functions for defining geometrically fixed parts and creating
combinations of rigid configurations.

Figure 4.49 shows an exemplary application of positioning constraints for the
assembly of a crank-train model. The left side shows the individual components,
while the right side shows the combined crank-train model after assembly. In this
example, the rack is the fixed reference element. All other components are then
placed using coincidence constraints and offset constraints based on the logical order
of assembly. The configuration shown places the elements such that a rotation around

4.5 Assembly Design 297

Fig. 4.49 Exemplary application of positioning constraints for the assembly of a crank-train model

the crankshaft axle is still possible. Therefore, the crank-train could execute a trans-
lational movement of the piston along the cylinder axis.

Figure 4.50 shows a detailed view of the coaxiality constraint and offset constraint
for the assembly of a crankshaft and bearing block. In the first step, the axis a of
the crankshaft is aligned with the axis b of the bearing cylinder using a coincidence
constraint (coaxiality). The second step defines the axial position of the crankshaft
bearing pivot in relation to the outer bearing cylinder of the rack using an offset
constraint, which is defined between the two planes ε1 (crankshaft) and ε2 (rack).
The positioning method does not restrict the rotation of the crankshaft along its axis
a, so this degree of freedom could be used in later steps to simulate the crank-train
mechanism.

Fig. 4.50 Exemplary application of positioning constraints for the assembly of a crank-train model

298 4 Modeling Techniques in CAD

Positioning Using Skeleton Models

Skeleton models are separate components in product structures which enable an
efficient positioning and control of other components and modules. The positioning
process is accomplished by applying constraints, whereby the constraints are not
defined between the corresponding components and modules, but rather link each
element with the skeleton model. In this way, all positioning constraints are related to
the skeleton model. A geometrical modification of the skeleton model (e.g. lengths
or distances) leads to a geometrical modification of the product structure positioning
and, in special cases, can lead to a modification of the geometry characteristics of
the components themselves.

In the product structure, the skeleton model is first placed in the corresponding
level and clearly named. The skeleton itself is not a design model in the classic sense
because it does not include the geometry of a part or a module. For this reason, this
type of model has to be managed separately. By providing the ability to predefine
the positions and some geometrical extensions of several parts within an assembly,
skeleton models offer centralized functionalities for the design process. The applica-
tions of skeleton models range from the positioning of elements in simple models to
the management of complex assemblies. Tall product structures use several skeleton
models, which are interlinked using parametric-associative connections.

Theoretically, skeleton models can include any geometrical elements. However,
to provide an efficient setup, they are mainly composed of points, lines, planes and
coordinate systems, which define the geometrical positions of all the components and
modules of the product structure. Figure 4.51 shows the application of a skeleton
model of a scooter assembly. For better visualization, the geometrical elements of the
skeleton model are displayed in red. In this example, the skeleton model consists of
lines and planes only. These lines and planes define the positions of all components,
which are mounted on the main part, the scooter frame. In addition to the positioning
function, the scooter frame itself is related to the skeleton model using parametric-
associative design methods. In this way, the main dimensions of the scooter frame
(e.g. the steering head angle, the swing arm mounting position or the suspension
frame position) can be modified by adapting the skeleton model.

Positioning Using Main Coordinate Systems

In automotive full-vehicle development, the positioning of components and modules
using main coordinate systems has been established for many years. This method
supports the efficient creation of complex assemblies by simply loading the cor-
responding elements into the product structure. The positioning process is carried
out automatically because all components and modules are designed in the right
place in relation to a main coordinate system. In this way, all elements automatically
take their correct positions in the 3D working space and in relation to each other.
The advantage of this method is obvious: Because every element is placed in rela-
tion to a main coordinate system, there is no need for a separate positioning effort.

4.5 Assembly Design 299

Fig. 4.51 Elements of a skeleton model of a scooter assembly

The management of components and modules within the product structure is lean
because there are no additional relations or links between the elements. In general,
a very stable and safe data structure is generated, which can be relatively easily
managed by PDM-systems. The disadvantages are the very complex handling in the
case of design modifications or later geometrical adjustments. In such cases, every
element of the product structure has to be moved to its new position, which requires
a substantial effort. In addition, this method prohibits any logical or geometrical
links and relations between the components, which are state-of-the-art in modern
parametric-associative design processes. In this way, the full potential of modern
CAD systems cannot be exploited dues to restrictions in data linkage across the
product structure.

In general, the user can define the location of the main coordinate system of a
vehicle, but in most cases, it is positioned in the middle of the front axis. Because
right-handed coordinate systems are used, the x-direction points to the back side,
the y-direction to the right side (in the direction of travel) and the z-direction to the
top of the car. This so-called design coordinate system differs in its position and in
its orientation from the standard automotive coordinate system, which is positioned
at the full-vehicle center of gravity (according to ISO 70000 [5] or SAE J670e [6]).
Due to advantages for full-vehicle-related simulation and calculation procedures,
several CAE processes use the automotive standard coordinate system, which makes

300 4 Modeling Techniques in CAD

it necessary to transform the coordinates between the main coordinate system for
design and the general standard coordinate system.

In the product structure, the main coordinate system represents both the origin for
the design process and the reference orientation for component positioning. Every
component and module which is positioned in the main product structure has its
own main coordinate system as a reference element. The design process itself is
accomplished using different additional coordinate systems and wireframe elements,
but all of them refer to the main axis system. During the assembly process, the main
coordinate systems of all elements are aligned to each other to achieve the correct
positions.

Figure 4.52 shows an exemplary full-vehicle assembly of a heavy truck model.
The full vehicle model has its main coordinate system in the middle of the front axis,
x0, y0, z0. The positions of all main modules are related to this coordinate system. In
the example, the rear axis assembly, which has its own reference coordinate system
x, y, z, is positioned in relation to the main coordinate system x0, y0, z0.

Advantages and Disadvantages of the Three Positioning
Methods

The three positioning methods have their specific pros and cons, and automotive
development processes therefore combine the three methods to achieve optimal
assembly configurations. Small assemblies with limited numbers of elements are
often assembled using positioning constraints. Because it defines unambiguous

Fig. 4.52 Exemplary full-vehicle assembly of a heavy truck model including a rear axis assem-
bly [7]

4.5 Assembly Design 301

joints, this method is also applied when kinematics functionalities have to be taken
into account. However, in the case of large product structures with numerous ele-
ments, the efficiency of positioning using constraints has limitations: the effort
required to interlink all elements geometrically expands; and the management of
elements and constraints becomes difficult. On the other hand, the introduction
of skeleton models into complex product structures supports both the positioning
of numerous elements and the structuring of complex products. Since both the loca-
tion and the order of each element are related to the corresponding skeleton model
(using constraints), the organization of tall assemblies follows the order of the applied
skeleton models. A careful structuring of complex assemblies and a division into rea-
sonable sub-modules at the beginning of the design process provides the foundation
for an effective application of the skeleton method.

Finally, positioning in relation to a main coordinate system has the advantage of
lean data structures, which are controlled by the product structure itself. Since there
are no geometrical constraints or complex skeleton model structures, this method
enables an easy assembly of nearly any desired complexity of product structures.
However, and here is the main limitation, every elements must be designed in its
correct place. In automotive engineering, main coordinate systems are applied for
the positioning of components and modules in the case of full-vehicle assembling,
which involves a significant number of main modules. The main modules represent
closed units, which define the vehicle body, the engine, transmission, suspension, etc.
These main modules, in turn, are composed of several sub-modules and components,
which are positioned using different strategies (e.g. the use of geometrical constraints
on the application of skeleton models).

4.5.3 Geometry-Based Interlinks in Assembly Design

Geometry-based interlinks in assembly design enable a direct control of geometry
between different parts. Within the design process, a spanned connection of geometry
can be carried out in different ways. To avoid potential problems due to the complex
interconnection of geometrical characteristics, a careful planning and management of
interlinks are essential. Modern CAD systems support the creation of interlinks using
several functions. In general, they can be divided into direct geometry derivation,
the creation of geometry references and the implementation of adapter models. All
these functions are based on the parametric-associative relationship of the relevant
geometry, such that any modification of the initial elements leads to an adaptation of
the derived geometry as well. These so-called parent-children relations increase the
complexity of the design process, but they offer significant potential for the efficient
creation of complex product models.

As an example, consider the cylinder and piston of an internal combustion engine,
which are two separate parts, each of which is characterized by its diameter. In the
case of the piston, the piston outer diameter defines the piston size, and in the case
of the cylinder, the inner diameter defines the bore of the engine. For a failure-free

302 4 Modeling Techniques in CAD

operation, the piston should fit perfectly into the cylinder bore, meaning that both
diameters should have the same value. In a parametric-associative design process, the
outer diameter of the piston can be derived from the inner diameter of the cylinder
using a geometrical connection. If the cylinder diameter is then modified during
the design process, the piston diameter will reflect the modification and be adapted
automatically.

This simple example highlights the complexity of geometrical interlinks in the
design of complex products. Because product models contain numerous geometrical
characteristics that could be connected, the complexity of parametric-associative
CAD models increases rapidly, which leads to a decrease in their stability in the
case of modifications. To avoid complexity problems, the implementation of parent-
children relations should be planned carefully, and the geometrical linkage between
components should be kept to a reasonable level. The lower the number of interlinks,
the lower the model complexity, which normally leads to a higher model stability.
Nevertheless, this technology offers far-reaching possibilities for the improvement
of design processes, and it will therefore become more and more important in the
future design of complex mechanical products.

Geometry-based interlinks enable the linking of different parts such that modi-
fications to one part will automatically result in modifications to the other part(s).
In addition, these functions are used to define the relative positions between the
relevant components, since the geometry derivations are performed within the 3D
working space. When geometrical interlinks are applied, it is important to consider
the comprehensive dependencies of the parts involved. Problems can occur if both the
derivation of geometrical elements and the creation of binding positioning strategies
(constraints or skeleton models) are applied to the same components.

Besides a parametric-associative derivation of geometrical dependencies, modern
CAD systems enable the development of non-associative geometry. Non-associative
geometry represents elements which are not parametrically defined and are not related
to any other geometrical object. These elements are used as reference elements or
for the representation of independent geometry within parametric-associative model
structures. In general, all types of geometrical elements (i.e. wireframe, surface and
solid models) can be defined as non-parametric, but the restricted possibilities of
this type of geometry within modern design methods limit its application in CAD. In
automotive engineering, some guidelines prescribe the application of non-parametric
geometry in the case of geometry-based interlinks or geometry derivation between
different parts in order to reduce the model complexity and to avoid unwanted depen-
dencies in complex model structures. In such cases, all external geometry references
are performed with no parametric-associative linkage. Geometries derived from
external sources appear as frozen snap-shots, which cannot be parametrically mod-
ified. These geometrical elements are imported into the design environment of the
relevant part and can then be used for further design steps. If these frozen geometries
are modified, they must be imported again from the supplying part(s).

Figure 4.53 shows an example of the implementation of external geometry into
part design by direct geometry derivation. Part 1 represents a simplified cylinder
of an internal combustion engine, and Part 2 represents the corresponding piston

4.5 Assembly Design 303

Fig. 4.53 Cross-part geometry derivation

model. With the goal of controlling the diameter of the piston, the cylinder sur-
face is extracted from Part 1 and imported into Part 2. Within the environment of
Part 2, the piston is designed using the derived cylinder surface as a reference. If the
cylinder diameter is modified, the associative reference surface in the piston model
is adapted, and the related piston design is modified as well. The applied design
method must be related to the reference surface in such a way that the geometry
model will remain stable if modifications are made. This behavior should be ensured
for a defined range of adaptation. In the present example, the piston model can han-
dle modifications of the cylinder diameter between 40 and 80 mm. Below or above
these values, the parametric-associative configuration of the piston would lead to
update errors because of geometrical miscalculation. It is advisable to include vari-
ation ranges when planning the design process of parametric-associative models, in
order to avoid potential problems in modification cycles or optimization loops.

Figure 4.54 shows an example of design using imported geometry references
within the assembly of an internal combustion engine. The exemplary engine has an
inline 6-cylinder configuration with an aluminum cylinder block and a magnesium
bed plate. The one-piece forged crankshaft is made of steel and carries 6 units of con-
rod and piston. At the rear end of the crankshaft, a flywheel is mounted. In the design
process of the crankshaft model, several geometry references have been adopted
from the cylinder block model to support the positioning in relation to the bearing
surfaces of the crankshaft and con-rods. This is accomplished by transferring specific
geometry reference elements from one model to the other. In the present example,
the engine centerline and several reference planes are imported into the crankshaft
model to serve as indicators for the design process. In this way, the positions of
significant components of the crankshaft can be directly controlled by the crankcase
model. The part-comprehensive import of reference elements is somewhat similar to
the application of skeleton models. Similar to skeleton models, wireframe elements
(points, lines, planes, etc.) are used to control geometry. However, unlike the imple-
mentation of a skeleton into an assembly, the application of interlinked reference

304 4 Modeling Techniques in CAD

Fig. 4.54 Inline 6-cylinder engine assembly

geometry is always restricted to the components concerned. No separate model is
needed in the product structure.

Similar to skeleton models, adapter models are separate components in assembly
structures and enable an efficient control of geometrical information in several parts.
However, unlike skeleton models, adapter models do not define the positioning of
components, but rather have direct access to the geometrical characteristics of the
components. In this way, adapter models serve as geometric control elements for
components within a hierarchical sub-structure in assemblies. Adapter models can
include different types of geometries (i.e. wireframe, surface, and solid elements)
and can be a part of the assembly as available geometrical component.

Adapter models summarize geometry data from the sub-ordinated structure and
provide this information for subsequent processes by publishing predefined geo-
metrical elements. In general, they are used to control geometrical elements in the
concerned parts, but they can also be involved in component positioning and the
structuring of design processes.

Figure 4.55 includes an exemplary application of an adapter model in the design
process of engine components. In this example, the adapter model includes the geo-
metrical information of the sealing flange for the crankshaft bearing unit. This geo-
metrical information is provided to the two concerned components of the bearing
unit, the cylinder block model and the bedplate model. In the assembly, the lower
flange of the cylinder block is bolted to the upper flange of the bedplate. The adapter
model is positioned in between these two components and defines the geometrical
extension of the flange. Due to the parametric-associative linkage of both concerned

4.5 Assembly Design 305

Fig. 4.55 Exemplary application of an adapter model in engine design

flanges with the adapter model, the flange geometry of the cylinder block and the
bedplate fit perfectly to each other. Modifications to the flange geometry are made
in the adapter model, which leads to adjustments in the corresponding components.

4.6 Derivation of 2D Drawings

Modern CAD processes derive two-dimensional (2D) drawings directly from the
corresponding 3D models. 2D drawings serve as product documentation, for the
development and evaluation of different product characteristics, and of course as
workshop drawings for production purposes. The derivation of drawings from 3D
CAD data is accomplished by creating views and sections. In addition, specific
functions enable the creation of 2D geometry for additional drawings of supporting
geometry, but these tools are not designed to create 2D drawings manually.

Once views or sections have been created, they can be used for dimensioning, tol-
erancing, the application of additional information and text boxes, etc. Modern CAD
systems provide several functions for the efficient creation of workshop drawings,
including frame, title block, bill of material (BOM), and all the other elements of
standardized 2D documentation. Besides efficient support for the creation of draw-
ings, different operations enable an automated application of standardized features,
such as the application and adjustment of dimensions, the definition of standards, and
the calculation of weight, volume and other relevant information. Besides native data
formats, different types of neutral data formats are used for the exchange of drawing
data, including Drawing Interchange File Format (DXF), Initial Graphics Exchange

306 4 Modeling Techniques in CAD

Fig. 4.56 Derivation of a 2D drawing from a 3D model

Specification-2D (IGES-2D), Post Script (PS), Portable Document Format (PDF),
and others.

In recent years, the trend has moved in the direction of 3D tolerancing and annota-
tions, which incorporate complete product-related information into the correspond-
ing 3D CAD models in order to avoid additional 2D drawings. Although this trend
should continue in the coming years, the application of complete 3D product descrip-
tion will be restricted to specific areas of products that allow for a consistent digital
product and production description. In cases where manual working steps are a part of
engineering processes, the derivation of 2D drawings will continue to be an attractive
technology.

Figure 4.56 shows an exemplary derivation of 2D views and sections from a
3D piston model. The drawing includes several dimensions and annotations for
manufacturing. A complete workshop drawing for production would contain some
additional information (e.g. material, specific surface treatment information, part
number). These data are displayed in an additional title block and/or a BOM.

Figure 4.57 shows an actual example of a workshop drawing including different
types of information (e.g. dimensioning, tolerances, surface treatment). This drawing
is one of several drawings of a motorcycle cylinder head, which has been developed
and prepared for serial production and shows the complexity of manufacturing-
related 2D dimensioning.

4.6 Derivation of 2D Drawings 307

Fig. 4.57 Detail Workshop drawing of a motorcycle cylinder head [8]

308 4 Modeling Techniques in CAD

References

1. SFE - SOLUTIONS FOR EXCELLENCE, Gesellschaft für Strukturanalyse in Forschung und
Entwicklung mbH/SFE CONCEPT: date of access: 2010–07-01. http://www.sfe-berlin.de

2. Dassault Systems: CATIA V6. Date of access: 2009–11-10. http://www.3ds.com/products/catia
3. Parametric Technology Corporation: date of access: 2010–04-29. http://www.ptc.com/products/

proengineer
4. Siemens PLM Software: date of access: 2010–04-29. http://www.plm.automation.siemens.com/
5. International Organization for Standardization: Road vehicles, vehicle dynamics and road-

holding ability, vocabulary. ISO 70000 (1994)
6. Society of Automotive Engineers: SAE Recommended Practice: Vehicle Dynamics Simulation

Terminology. SAE J670e (1952)
7. Stadler, S.: Aerodynamische Optimierung von Fernverkehr Sattelzügen. Diploma Thesis, Graz

University of Technology, Austria (2010)
8. Korman, M., Hirz, M., Kirchberger, R.: Low Emission High Performance 4 Stroke Scooter

Engine - PartII. In: Research Report at the Institute for Internal Combustion Engines and Ther-
modynamics at Graz University of Technology, Graz (2006)

http://www.sfe-berlin.de
http://www.3ds.com/products/catia
http://www.ptc.com/products/proengineer
http://www.ptc.com/products/proengineer
http://www.plm.automation.siemens.com/

Chapter 5
Knowledge-Based Design

Knowledge-based engineering as a part of knowledge management includes a
technology-oriented focus on methods and tools for the support of product devel-
opment. Knowledge-based design concentrates on product design and its related
procedures. In essence, knowledge-based design supports design processes by re-
using predefined methods, algorithms or results, and it is integrated into specific
tasks or workflows that are involved in the design processes. In addition, since the
knowledge-related design methods and tools applied often contain company-specific
information and knowledge, confidentiality must be maintained. This chapter focuses
on the possibilities for the development and integration of knowledge-based methods
and tools into design processes. A detailed introduction and discussion of knowl-
edge, knowledge management as well as the corresponding strategies and systems
is included in Chaps. 6, 7, 8 and 9.

The application of a specific knowledge-based engineering solution within an
existing project environment follows the sequences of input, (partially) automated
development procedures and output. In many cases, the output includes new infor-
mation for the extension of the method or tool applied. The re-implementation of
previously generated knowledge (experience) and the implementation of automated
routines within design processes improve product development and can lead to a
significant reduction in development effort.

Knowledge-based design methods and tools can include rigid or variable geometry
data, the integration of calculation and simulation procedures into the design process,
or the application of problem-oriented software solutions that can be integrated into
the design environment. Although one main advantage of knowledge-based design is
that it makes existing, proven solutions available for specific tasks, this also involves
some drawbacks that must be acknowledged. For example, an initial effort is required
to create template models, algorithms or program sequences, and continuous main-
tenance and update procedures are then needed to keep knowledge-based design
tools current with the latest state of development. Finally, the use of previously
created solutions to generate knowledge models may reduce the potential for cre-
ativity in some cases. In particular, the re-use of existing geometry models affects

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 309
DOI: 10.1007/978-3-642-11940-8_5, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-11940-8_6
http://dx.doi.org/10.1007/978-3-642-11940-8_7
http://dx.doi.org/10.1007/978-3-642-11940-8_8
http://dx.doi.org/10.1007/978-3-642-11940-8_9

310 5 Knowledge-Based Design

several design-related aspects and can inhibit the development of outstanding new
solutions. Nevertheless, in the long run, the potential gains in power and efficiency
that knowledge-based design offers outweigh the drawbacks.

Knowledge-based engineering applications are provided as independent soft-
ware solutions or integrated into the relevant design or simulation software. In the
field of knowledge-based design, the trend is moving towards the direct integra-
tion of solutions into the applied CAD software. These solutions are often based
on existing functionalities of the design environment and can include specially cre-
ated or programmed features. Besides geometrical modeling tasks, knowledge-based
applications can provide functionalities that integrate procedures which were pre-
viously accomplished via separate calculation or simulation software. For example,
integrated computation algorithms can be used to pre-calculate the dimensions of
mechanical components under consideration of load conditions and material charac-
teristics. To provide another example, a kinematic mechanism can be integrated into
the design model to enable the layout of movable machineries and the computation
of motion characteristics and space requirements.

Due to its wide range of functionalities and applications, one finds different
definitions of knowledge-based design in the relevant literature. On the one hand,
knowledge-based design starts with the parameterization of geometrical objects in the
course of the design process. On the other hand, the creation of extensive, problem-
oriented simulation algorithms within a design environment represents a transition
into complex software applications. In this way, the creation of different types of
knowledge-based design methods and tools enables the handling of the specific task.
Figure 5.1 shows different types of knowledge-based design applications grouped
in terms of the effort required for creation and maintenance, as well as the level
of complexity. The class of rigid geometry models includes different types of 2 or
3-dimensional non-parametric geometry models, which are provided for re-use in

Fig. 5.1 Different types of knowledge-based design applications

5 Knowledge-Based Design 311

databases. These models often represent components from previous development
projects or standard components. Rigid models can be provided in native or neu-
tral data formats. Because rigid models represent carry-over parts or simple standard
components, the creation and maintenance effort is limited to organizational tasks and
data provision. Variable geometry models, also known as template models, include
the predefined configuration of geometrical driving parameters to achieve variability
of geometrical characteristics. Besides the effort for geometry-related design, which
mainly addresses the development of the product shape and function, the creation of
variable templates is more complex. In addition, variable geometry models include
parametric control of geometry-defining parameters, which are open for user editing.
The stability of variable geometry models has to be ensured by taking the desired
variation ranges into account within the model structures. All of these points lead to
an increased creation and maintenance effort.

Integrating mathematical or logical relations into variable geometry models by
implementing formulas, rules, reactions or check operations provides a significant
potential in terms of supported geometry creation. Logical relations and the mathe-
matical combination of parameters, which define the dimensions of the design model,
expand the control of geometry by input parameters. Besides geometrical charac-
teristics, other parameters (e.g. material, weight calculation) can be calculated auto-
matically within the design process. Automated routines for geometry creation or
calculation procedures are performed by integrated scripts (e.g. Visual Basic for
Applications (VBA) scripts), which are configured according to the requirements
of logical software development. They follow the sequences of input, processing
and output, whereby the input section is based on the definition of input parame-
ters or geometrical input elements. The processing section can contain automated
calculation sequences or the automated generation of geometrical elements, and the
output section displays computation results and/or the created geometrical elements.
Automated routines are implemented in template models and require some mainte-
nance and update efforts. Unlike automated routines within CAD models, interactive
applications are programmed within the applied design software and are therefore
supplied independent from the actual loaded geometry models. Interactive applica-
tions represent problem-oriented software solutions for specific tasks. These software
solutions are characterized by graphical user interfaces (GUI) for user-friendly han-
dling, professional parameter management and integrated calculation or simulation
procedures. If necessary, CAD-external software packages or databases can be inte-
grated using bi-directional data interfaces. In this way, interactive applications enable
an integration of CAE into CAD processes.

The integration of knowledge-based methods and tools into design processes can
support product design significantly while simultaneously improving development
efficiency, as well as product and process-related know-how. The different stages
of knowledge-based design, which feature different levels of complexity, enable a
problem-oriented selection of appropriate solutions. It is important to remember that
the implementation of new methods and tools always requires a certain effort for
creation and support. In addition, complex models can lead to arrangements that
are not clearly defined (due to overloaded functionalities) and enlarged computation

312 5 Knowledge-Based Design

durations. Efficient structures and intelligent programming are necessary to avoid
these problems.

5.1 Parameterization as a Basis for Knowledge-Based
Design

The application of parameterization for geometry and model structuring provides an
important basis for knowledge-based design methods and tools. Chapter 4 includes a
detailed explanation of parametric design and some sample applications. In general,
the parameterization of a geometrical object leads to a separation of geometry and its
defining parameters. Besides a direct access for the definition of geometrical char-
acteristics, additional parameters can be implemented for calculation or structuring
purposes. All parameters can be accessed by specific functionalities to support a
user-friendly handling. In this way, the parameter structure can be divided into dif-
ferent sections (e.g. an input parameter section, a parameter section for values that
drive geometry, and a section for calculation parameters).

Figure 5.2 shows an example of the use of dimensional parameters to control
parametric geometry. A modification of the parameters shown leads to an adjust-
ment of the corresponding geometry. Parameterization of geometrical elements is
not limited to three-dimensional models. Depending on the functionalities provided
by the CAD software, two-dimensional models (e.g. so-called sketches) can be built
up in a similar structure. Complex parametric template models include a wide variety
of highly complex geometrical elements and therefore a large number of parameters
and associations. To avoid complex and inefficient model structures, these templates

Fig. 5.2 Parametric design of a rotational groove [1]

http://dx.doi.org/10.1007/978-3-642-11940-8_4

5.1 Parameterization as a Basis for Knowledge-Based Design 313

Fig. 5.3 Implementation of user-defined parameters for geometry control

must be carefully configured. Figure 5.3 shows a possible parameterization strategy
for the example from Fig. 5.2. The user can enter dimensional values for a set of pre-
defined parameters, which are linked with the standard CAD parameters that are used
to define the corresponding geometrical elements or functionalities. Thus, the pis-
ton template geometry can be modified by altering the user-defined parameters. This
method combines an efficient, user-friendly handling and a clearly arranged template
structure, which enables subsequent reconstructing, modification or maintenance of
the template model.

Beyond the parameterization of CAD models of single components (parts), a
parametric structuring of assemblies in combination with skeleton and/or adapter
models supports the creation of complex template assemblies. Such comprehensive
product templates can consist of a large number of individual components and mod-
els, which are then logically interlinked and variable controllable. In order to be
user friendly and to avoid circular references, over-constraint geometries and para-
meterization errors, these complex product templates must be clearly arranged and
linked.

Figure 5.4 shows two of the most commonly applied linking strategies in assembly
design. The geometry-based relations (left figure) are based on a direct linkage of
geometrical elements (e.g. the use of a flange in a component as driving geometry

314 5 Knowledge-Based Design

Fig. 5.4 Linkage strategies in assembly design

for the definition of a second components shape). In general, these multi-model
links can include different types of geometrical links and can be applied between all
components of an assembly. However, complex assembly structures, which contain
numerous geometrical links, tend to yield somewhat confusing and overcharged
relations, which are difficult to understand and to reproduce. For this reason, complex
product template models, which must be sufficiently stable and user-friendly to be
re-used, should be parameterized in a clear structure.

To this end, the example on the right in Fig. 5.4 shows a product structure with
parameter-based relations. Within this assembly, direct (geometrical) linkage is
replaced by parameter control mechanisms. The main parameter level includes a
set of user-defined parameters and serves as an input box. The user-defined parame-
ters on the main level are linked with corresponding user-defined parameters on the
module or component level. As the example shows, on the module level, the sub-
assembly structure has the same arrangement, whereby the main parameter level
is supplied by the superordinate level. On the component level, the parameteriza-
tion follows the strategy shown in Fig. 5.3. Complex product templates can also
include skeleton and/or adapter models, which serve as positioning elements or for
the definition of superordinate geometrical characteristics. The parameterization of
these models follows the strategy of a main parameter level, which supplies specific
user-defined parameters for each component.

5.1 Parameterization as a Basis for Knowledge-Based Design 315

5.1.1 External Parameter Control

In order to make work routines both user-friendly and highly automatic, modern
CAD software offers the ability to control the internally used parameters externally.
An interface to a spread-sheet or text processor enables the external control of the
parameters that drive the geometry within the CAD model. Figure 5.5 shows an
example of an external geometry control procedure. A set of user-defined parameters
in a CAD model is supplied with corresponding values from a data sheet containing
a predefined parameter structure.

Fig. 5.5 External parameter control of a simple geometry

These features make it possible to define design-relevant parameters in a database.
The database can be integrated into the 3D CAD model and thereby control functions
of geometry-relevant parameters, such that a definition of values in the external data
collector controls the geometry of the CAD model. The CAD-independent character
of external databases opens up a wide range of possibilities for implementing addi-
tional applications. The geometry-based data storage of existing components that are
not connected to a CAD system can be linked with other external data collectors.
During the design process, the required data can be selected and incorporated into
the 3D CAD model (Fig. 5.6). All of the geometry data of the virtual model that are
not controlled by an external data link can be modified at any point in the design
process. If the external data collector is implemented in a commercially available
spreadsheet software package, additional mathematical connections and functions

316 5 Knowledge-Based Design

Fig. 5.6 Procedure for an external, parameter-controlled 3D CAD model [2]

can be performed beyond the CAD system, in order to prepare the data flow for the
geometrical parameter control in the model.

5.1.2 Implementation of Non-CAD Data

Modern 3D CAD software packages enable the incorporation of pictures, 2D studies,
sketches or drawings into the 3D model. This possibility moves the engineering-based
construction and DMU development close to the styling process.

Fig. 5.7 Example of sketch-based and measurement-point-based surface creation [3]

As an example, 2D-based studies can be integrated into a virtual car model to
perform different checks pertaining to ergonomic viewpoints (passengers), pack-
aging boundaries (e.g. drivetrain or chassis components) or legislation-based influ-

5.1 Parameterization as a Basis for Knowledge-Based Design 317

ences (e.g. safety and crash regulations). Advanced design software packages offer
an additional ability to generate 3D surfaces from 2D sketches, which allow for a
direct implementation of studies into the automotive 3D CAD model. In the case of
provided 3D hardware (style studies, clay models or scaled detail models), scan or
measurement data can be directly imported into the CAD software to serve as a basis
for surface-generation processes (Figs. 5.7 and 5.8).

Fig. 5.8 Combination of a 3D CAD model and a picture [4]

5.2 Knowledge Integration Using Template Models

Template models represent a kind of master models that can be integrated into
development processes. Because templates are prepared for re-use, they include spe-
cific know-how. In this way, the application of templates transfers knowledge from
former development projects into current product-generation processes. Template-
based development methods are used in various domains (e.g. design, simulation,
software development). The present book focuses on design processes, whereby the
ability of modern CAD software to perform calculation and simulation procedures
using design templates enables an integration of CAD and CAE. Here, template
models are understood as predefined design model structures or geometry models,
which can be augmented with additional functionalities.

The diagram in Fig. 5.9 presents a classification of CAD templates. Process
templates support the development and management of different types of processes
(e.g. for production engineering or cost calculation). The product templates discussed
below focus on product development and can include a variety of knowledge that sup-
ports design-related tasks. Product templates can be divided into structure templates,
geometry templates and functional templates.

318 5 Knowledge-Based Design

Fig. 5.9 Categories of CAD templates [5]

Structure templates address the predefinition of the internal design model
arrangement. This is mainly accomplished by the introduction of startup models,
which prescribe the sequences of geometry creation and the integration of different
additional design-related aspects and automated functionalities (e.g. mass calcula-
tion, surface area computing). The application of structure templates ensures that
design rules and specifications are considered throughout the entire development
project. This plays an important role, especially in the case of complex product
development, in which numerous engineers and departments are involved. There are
two types of structure templates, startup models for component design and startup
models for assembly design (Sects. 4.1 and 4.5). Assembly startup models define
the structuring of a product by predefining groups, modules and components with
the goal of generating a predefined product structure that persists through the entire
development process. Complex products require the implementation of several lev-
els, which can lead to a multifaceted assembly structure. For example, an assembly
startup model of a car can be divided into five main groups, vehicle body, carriage,
interior, electrics and drivetrain. The drivetrain group could be further divided into
several modules (e.g. engine, transmission and axis). The engine module, in turn,
can be divided into the sub-modules cylinder head, motor block, crank train, cool-
ing system and further components. This model is thus broken down into individual
components or small modules. The complex configuration of tall assembly models
makes it logical to link the structuring directly with the applied engineering data
management system (EDM), in order to support efficient data management. In auto-
motive development, assembly startup models are often similar because car types of
the same class have comparable architectures. This makes the integration of several
functionalities to support the design process desirable (e.g. the automated loading of
DMU, automated clash analysis, mass calculation procedures or the organization of
a bill of material (BOM)).

http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_4

5.2 Knowledge Integration Using Template Models 319

Geometry templates include rigid and variable geometry models. In the case of
rigid geometry templates, the geometry of the models is not adjustable by direct
access. Rigid templates are not normally built up by parametric-associative design
methods, and they include no enhanced functionalities for geometry creation. In
general, rigid templates are provided in native data formats, which restricts the
application to a specific CAD environment, or in neutral data formats, which enables
a broad distribution independent from a specific software. This type of template is
used to represent carry-over parts (COP), which are delivered from former (car) mod-
els and integrated into new vehicles (e.g. engines, suspension components). Besides
3D components, 2D models are also used to define the design or reference sections.
One major advantage of rigid templates is their ease of reproduction and re-use in
different types of development cycles, as well as the relatively simple data man-
agement, since there are not relations or linkages to other components, modules
or assemblies.

Variable geometry templates represent predefined component, module or assem-
bly models, which can include several functionalities for supporting the design
process. The separation of geometry from underlying parameters enables the defin-
ition of flexible models, which can be modified by simply changing the parameter
values. These highly variable templates include all structural and geometric informa-
tion and are controlled by input parameters. The geometry creation process for these
templates has to offer a universal usability, so that changing lengths or distances
has no negative influence on the stability of the model. When generating variable
template models, it is essential that both the range of possible parameter values and
the flexibility of the created geometry fulfill the requirements of the intended appli-
cation. Mathematical connections of parameters and restrictions of input values to
reasonable rates support the definition of expandable templates for many standard
components. Every variant of a template component represents a variation of the
basic model, including the same design methods and rules. In this way, variable tem-
plates support the collection of expert knowledge and integrate know-how into the
design processes.

The application of variable templates covers a broad field in product design.
The range of complexity starts with simple geometry models (e.g. standard parts),
which are adjusted based on the desired dimensions. Popular applications address
the reproduction of business-specific components, which include knowledge regard-
ing modeling structure and product characteristics (e.g. for the consideration of
production-related aspects). The geometry is adjusted by inputting relevant dimen-
sional parameters, which define the geometry model dimensions. Examples for this
template type are piston models, gearwheels and different types of shafts. One special
case of variable template models concerns predefined geometry creation sequences,
which are saved in libraries and provided for re-use in different types of applica-
tions. These so-called power copies support quick and efficient creation or recurrent
or standard geometries and also include functionalities for geometrical variations.
Automotive body design offers several examples of such applications, such as seams,
bird picks, flange geometries and other form shapes.

320 5 Knowledge-Based Design

Beyond components, variable template models can also include several parts,
which are (variably) organized in assembly structures. This provides flexibility in
the geometry characteristics, as well as in positioning and structural configurations.
In the case of complex variable assembly templates, skeleton or adapter models
can support the control and linkage of different model structures. As mentioned
above, a clear and logical structuring of the assembly templates is essential in order
to avoid application problems that might be caused by complexity. Integrating the
parameter structure into the applied EDM system enables a direct integration of
automated functionalities. Thus, variable assembly templates can provide signifi-
cant support for conceptual development. Comprehensive variable product models
can include high level of details, which incorporate know-how from former projects
into initial concept investigations, variant studies and geometrical optimization
cycles.

Finally, functional templates in a CAD environment include specific,
problem-oriented calculation and simulation procedures, which can support different
areas of product development (e.g. design and dimensioning, production engineering,
cost calculation). Functional templates can exist as special programs or may be inte-
grated into simulation or design software. In the case of CAD-external software, data
transfer from calculation to design and vice versa is accomplished by integrating data
interfaces. This approach can be applied for everything from simple computations
up to integrated software solutions, which enable complex product layout. In many
cases, functional templates are integrated into development processes and serve as
problem-oriented tools. Embedding them into variable geometry models makes it
possible to integrate them into the (existing) parameter structure of CAD models.
In this way, an unambiguous parameterization strategy supports efficient data trans-
fer between design and calculation cycles. The combination of variable geometry
templates and functional templates within one data structure enables the generation
of efficient tools for product development. Because of their integrated programmed
functions and algorithms, such tools are advanced knowledge carriers that include
company-specific know-how. The following sections present some sample methods
for creating integrated templates in automotive development.

5.2.1 Template-Library-Based Design

As an advancement of conventional template methods, library-based design methods
facilitate the configuration of knowledge-related models, which are composed of dif-
ferent preselected parametric modules that are imported from a 3D CAD model data-
base. This method supports a quick and efficient generation of conceptual geome-
tries that takes into account a wide range of influencing factors. Beyond the use
of complete predefined models as templates, an enhanced application supports the
generation of new geometries using predefined modules, which are selected by the
user and assembled via automated functions. Due to the remarkable advantages of

5.2 Knowledge Integration Using Template Models 321

Fig. 5.10 Semi-automated design process using a modular template library [6]

library-based geometry creation methods, this approach has a high potential for a
further increase of efficiency in modern design processes.

The product geometry is divided into several modules, which are saved in a data-
base. During the design process, these modules are loaded in a predefined sequence
and integrated into the 3D CAD model. After a user selects the desired components
from the library, the geometry is built up step by step by applying automated load-
ing and assembling procedures. Figure 5.10 shows an example of a semi-automated
design process using a modular template library. In this example, the library includes
several modules for the design of a complex product, which includes different levels
of detail. A predefinition of production-related features (e.g. mold configuration, draft
direction, draft angles and rounding characteristics) considers the requirements of
mass production processes from initial design phases on. Each parametric-associative
geometry template module is available in a number of options with different char-
acteristics and details; thus, a broad combination variety enables the generation of
numerous different concept geometries.

Figure 5.10 displays the general strategy of a library-based design procedure. The
database structure of the library includes a skeleton module, a module with main
geometry elements, a module with shaping components and finally a module with
detailing components. The first step of semi-automated geometry creation includes
an adaptation of a variable skeleton module to conform with geometric boundary
conditions. The variable skeleton serves as a reference for the subsequent process
of positioning the geometry templates. In the next steps, the user selects the main
geometry modules, which are then implemented in prescribed sequences. All main
modules include sub-elements, which are available in the database as parametric-
associative template geometries. The automated assembling process of geometry
templates can include Boolean operations or split and trim operations, as well as the
application of fillets and draft angles.

322 5 Knowledge-Based Design

Fig. 5.11 Modular configuration of library-based parametric-associative door design [7, 8]

The sample geometry generation process above has been fully implemented into a
commercial 3D CAD environment, such that all standard functionalities for geometry
generation and modification can be combined within the automated design process,
thereby enabling subsequent manual modifications. A direct linking of the skele-
ton module to boundary conditions (e.g. geometries of surrounding components or

5.2 Knowledge Integration Using Template Models 323

imported styling surfaces) supports adjustments and optimization cycles. If these
boundary conditions change during the development process, the existing references
are exchanged, and the geometry model is reconnected automatically. In this way, the
application of template-based geometry modules for the generation of parametric-
associative concept geometries supports a user-friendly definition of flexible 3D CAD
models. A high level of detail is achieved by using a hierarchical model architecture,
which includes rough geometry templates for initial steps, as well as detailed models
for the creation of connecting surfaces, punches, flanges and trims.

Figure 5.11 shows an application of library-based design using the example of
parametric-associative door development. A stepwise creation of the product geome-
try in combination with a continuously increasing portion of verified data leads to an
increase of product maturity throughout the entire development process. The product
maturity itself is defined by the fulfillment of clearly prescribed milestones, which
enables a procedure for observing and reporting on the achievement of objectives.
Every optimization step in the workflow is accomplished by a coupled reaction of the
3D CAD model, which leads to a successive increase of knowledge in all involved
areas, as level of detail in geometry creation and the amount of information contained
in the technology concept definition increase steadily. Besides the purely technology-
oriented procedures in virtual product development, the integrated architecture of
the presented approach supports communication between all parties involved and
the required knowledge transfer. This is achieved by a user-friendly product repre-
sentation via 3D CAD geometry data, as well as by the universal parameterization
strategy and a data-based parameter management.

5.2.2 Implementation of Mathematical and Logical Relations

The definition of mathematical connections between parameters enables the
implementation of logical geometrical dependencies. In this way, formulas, rela-
tions, rules and reactions can be integrated into the 3D CAD model environment
and support automated geometry definition processes. This can lead to a reduction
in design effort in the case of variant studies or the re-use of parametric models.
Besides purely geometry-related characteristics, these enhanced parametric models
can include additional knowledge about dependencies and relations between different
design-related aspects.

Figure 5.12 shows an example of function-oriented geometry creation within a
common 3D CAD environment. The definition of mathematical connections between
parameters forms the basis for the creation of rules that can be used to control
geometric functionalities in the applied CAD system. In the present example, the
equation x2 = Asin(kx1), with [0 ≤ x1 ≤ kπ] and the real parameter A (amplitude),
defines the progression of a curve in a Cartesian coordinate system. The application
of this curve progression onto a user-defined curve in space as a leading element
results in the corresponding three-dimensional spline, which can be used to create
complex technical surfaces (e.g. sine-based tubes).

324 5 Knowledge-Based Design

Fig. 5.12 Exemplary function-based geometry creation [6]

Besides standard functionalities for the implementation of mathematical and
logical coherences, the integration of (internal or external) problem-oriented solv-
ing procedures into the design process supports recurrent operations in the course
of development and optimization cycles. In the case of internal calculation proce-
dures, the mathematical algorithms are embedded in the CAD environment, which
facilitates a direct access to the implemented functionalities. Internal solving algo-
rithms use the functionalities of the CAD system to specify user-defined procedures
and calculations. These can be simple linear calculations of dimensional values or
enhanced mathematical algorithms, which are embedded in macro-controlled soft-
ware sequences.

External solving algorithms use specific programs and/or simulation procedures
for computation in complex tasks. A bi-directional data transfer between the design

Fig. 5.13 Application of external solver algorithms in cylinder head development [9]

5.2 Knowledge Integration Using Template Models 325

software and the simulation programs provides the parameter values required for the
calculation. For this purpose, specific parameter sets are defined in the CAD software
and handed over to the simulation program. The subsequent external computation
procedures can include a variety of procedures, such as complex calculations of
dimensional characteristics, optimization cycles or the simulation of influencing
physical processes.

Figure 5.13 shows an example of an application of external solver algorithms in
cylinder head development. The target of the calculation is to optimize the intake
and exhaust valve diameters for a motorcycle engine. The relevant geometrical
parameters are the valve diameters, the cylinder diameter, the combustion cham-
ber radius, minimum distances between valves and cylinder wall and the valves.
Additional CDF-based simulation procedures, which take into account the dimen-
sional effects on the intake and exhaust flow situation, consider physical influences.
All optimization-relevant parameters are exported from the 3D CAD model into an
external solver algorithm, which combines the influencing aspects into mathematical
optimization cycles. The computation yields parameter values, which are imported
to drive a geometry update of the cylinder head model and a subsequent evaluation.

The ability to create macros can be very helpful for enabling automatic sequences
of features and actions. Most of the advanced CAD software packages offer pro-
gramming languages or editors, which support the creation of effective and versatile
routines (e.g. VBA, VB.Net). Macros can control recurrent operations in virtual
development processes. The integration of these programs into the CAD software
enables their integration into the virtual model, while the data flow in assembling
structures and between other types of CAD files supports the generation of efficient
tools for specific problems in the development process. An automated handling of
problem-oriented mathematical connections, formulas, rules and algorithms can be
integrated into the corresponding product model to provide significant support for
the layout and design phase. In addition, the creation of graphical user interfaces and
macro-specific toolbars in the design environment supports a user-friendly operation.

Figure 5.14 shows the general architecture of a macro-based business-oriented
software application for the automated generation of sections in 3D CAD product
models. Graphical user interfaces make it easy to input data. In the present example,
the interface prompts the user to enter the path to the relevant product geometry,
as well as the positions and orientations of sections, in prescribed boxes. Next,
the program loads the specified geometry models and automatically performs the
operations required for the sectioning process. Finally, the produced 3D and 2D
sections are saved in predefined folders. Based on the automated functionality, a
large number of sections can be created with relatively little manpower (e.g. as an
autonomous overnight work package).

326 5 Knowledge-Based Design

Fig. 5.14 Example of a CAD-system-integrated, automated sectioning application [6]

5.2.3 Integrated Virtual Product Development Using Centralized
Master Models

One key to an effective coupling of design-related aspects and simulation-related
tasks can be the use of a centralized master model, which contains the product geom-
etry, as well as additional information. In principle, the components to be developed
form the point of intersection between all engineering disciplines. On the one hand,
the design department has to develop the product geometry (including the compo-
nent structure) under consideration of several design-related aspects. To guarantee
an efficient production engineering process, this development must be performed
in the context of many boundary conditions (e.g. from calculation, simulation) and
under consideration of production requirements. On the other hand, the production
engineering must consider the product characteristics, which means the product is
the focal point of several processes. Thus, the use of a geometry model as center
of development can be the optimum solution. This master geometry model can be
managed in a superordinated product data management structure, which takes into
account all required data flows.

Figure 5.15 shows the configuration of an integrated master model, which can be
used for the development of complex mechanical products. The geometry section
includes all components and modules of the product as 3D CAD components. The
product structure is arranged and managed in an assembly structure. In addition to
the tasks of positioning, packaging and functional development (e.g. kinematics),
the assembly includes a hierarchical configuration of the sub-modules and compo-
nents. For archival purposes and to support production engineering, parametrically
derived two-dimensional (2D) drawings are created and administered. One impor-
tant feature is the organization of geometry parameters in a predefined order, which
includes a consistent parameter structure in each component and assembly level, as

5.2 Knowledge Integration Using Template Models 327

well as a centralized parameter structure in the main level of the product assembly.
This centralized parameter structure is used for direct information exchange with an
associated database.

The database section also contains the product structure to enable a thorough
organization of different types of product data. These data are stored in different areas
of the database and supply a broad field of development disciplines with required
information. Besides this role, the database serves as a central unit for storage and
tracking functionalities throughout the entire virtual product development process.
Depending on the type of product being developed, different disciplines are taken
into account. The exemplary configuration in Fig. 5.15 shows a selection of main
working tasks and data groups in an automotive full-vehicle development process.

In many cases, the product development starts with a design process within a
CAD environment. In the initial phase, the model structure has to be adapted to
the requirements of the development status and is displayed in separate, prescribed
configurations. Product data management (PDM) systems for series production apply
their management strategies in relatively rigid structures, which are created to fulfill
the demands of design, simulation, production and administration, whereas PDM
configurations for the concept and pre-development phases have to consider the
highly flexible processes and requirements of initial engineering. For the engineers
who create new development processes and strategies, the challenge is to create
methods that are able to combine the flexible work characteristic of concept phases
with the rigid, manpower-intensive work in series development. The target is to
transfer the knowledge from concept phases directly into the series development
process. A direct adoption of geometry models coming from the concept phase as

Fig. 5.15 Configuration of a sample integrated master model [1]

328 5 Knowledge-Based Design

Fig. 5.16 Relationship between degree of parameterization and level of detail during the develop-
ment phases (trend lines) [10]

start-up models in the series development cycle can lead to a data flow integration
of both phases. This method has to meet the subsequent challenges (Fig. 5.16).

The use of the same parametric-associative geometry model structure in both pre-
development and series development requires a flexible model architecture which is
able to fulfill the requirements of both process phases. Currently, different start-up
models are used to meet the different requirements. The different demands related to
geometry creation are mainly based on a high flexibility during the concept phase and
a high degree of detailing during series development. Normally, the degree of para-
meterization is much higher in initial development phases and decreases significantly
in series development. On the other hand, the level of detail in component geometry is
relatively low in the early phases, but has to be high in the production-related devel-
opment of the final geometry creation process. The development of future design
processes must solve this contradiction by implementing flexible geometry model
structures for both phases. Two things must first be clarified: the degree of parame-
terization that is reasonable for each process step, and how a changing level of model
parameterization can be handled in the same environment to ensure an effective data
and knowledge transfer between the different disciplines and departments. In this
context, research work in the coming years will take advantage of the increasing
abilities of CAD software combined with rising hardware performance to enable a
high degree of parameterization of the 3D CAD models throughout the entire devel-
opment process.

5.3 Example: Integrated Design in Automotive Bumper
System Development

This application shows a current challenge for the development of integrated,
business-specific design methods using advanced CAD technique in automotive
development. A master model includes a full-vehicle configuration and serves as a

5.3 Example: Integrated Design in Automotive Bumper System Development 329

Fig. 5.17 Workflow of an automotive bumper system development using integrated design methods
[6]

central development platform. Within this configuration, a conceptual vehicle model
covers all full-vehicle-related boundary conditions and requirements, such as leg-
islative prescriptions, requirement specifications, ergonomic demands, packaging-
relevant aspects, and styling data. This conceptual vehicle model consists of several
parametric CAD templates and supports the entire full-vehicle layout phase of a new
car model. Section 9.3 describes the set-up of the integrated vehicle model and its
possible applications. In addition, the master model DMU contains different design-
related modules for the development of a full-vehicle model, including assembly
groups and meta-data (e.g. technological requirements). The entire master model
structure is linked with a CAD-external database, which manages product structure,
as well as implementing and organizing simultaneously performed workflows. For an
improved user handling, macro-based program routines and graphic user interfaces
are implemented.

Figure 5.17 shows the workflow of an exemplary bumper system development as
a part of the full-vehicle development process. Specific requirements and boundary
conditions for the development of a front-end crash structure (e.g. packaging-relevant
data, limitations imposed by standardized crash tests or legislation, styling demands)
are transferred from the master model structure into the targeted module level. The
layout of the front-end crash system is performed in a module level using specific lay-
out algorithms, which are implemented in an integrated CAD template model. Within
this model, the dimensions of the bumper and deformation elements are conceptually
calculated using empirically determined, experienced values and integrated compu-
tation routines. As a result, the main dimensions of the bumper system are transferred
to a parametric-associative skeleton model, which displays the packaging-relevant

http://dx.doi.org/10.1007/978-3-642-11940-8_10

330 5 Knowledge-Based Design

space requirements of this module. The verified design space provides the basis for
a subsequent conceptual geometry creation process of the respective components.

The geometry is created at the component level using parametric templates for
each component, which are included in start-up model configurations. The advantage
of the start-up model approach is the predefined component structure, which leads
to predefined geometry creation methods and facilitates the reuse of template mod-
els and different automation functionalities. Thus, adaptations and changes of the
geometry can be arranged flexibly and quickly. Furthermore, the prescribed model
structure enables geometry creation procedures using library-based geometry cre-
ation features. In this way, a predefined geometry, for example of a crash box, is
implemented and automatically adjusted to the embedded module skeleton. The
components are assembled on the module level and parametrically associated to the
module skeleton model. Finally, the conceptual bumper system geometry is imple-
mented into the full-vehicle configuration of the master model.

This procedure makes it possible to create conceptual component and module
geometries quickly and efficiently in initial product development phases. The early
concept geometries are used for initial investigations and simulation procedures; so
they are continuously improved or replaced by models with higher maturity. Due to
the flexible data configuration of the centralized master model, product-related data
can be handled efficiently, an advantage which is not limited to the design process,
but also comes into play in many related working fields.

References

1. Hirz, M.: Advanced Computer Aided Design in Conceptual Automotive Development. Habil-
itation Thesis at Graz University of Technology, Graz (2011)

2. Lang, M., Göber, T., Hirz, M.: Macro - based CAD- and DMU- Analysis Methods. Lake
Chiemsee, Germany (2007)

3. Dassault Systems: CATIA V6. Date of access: 2009–11-10. www.3ds.com/products/catia
4. Göber, T., Hirz, M., Krammer, S.: A Method for Externally Controlled Parameterized Auto-

motive Design at an Initial Development Stage. Lake Chiemsee, Germany (2006)
5. Harrich, A.: CAD basierte Methoden zur Unterstützung der Karosseriekonstruktion in der

Konzeptphase. Phd Thesis, Graz University of Technology, Austria (2012)
6. Hirz, M., Harrich, A., Rossbacher, P.: Advanced computer aided design methods for inte-

grated virtual product development processes. Comput. Aided Des. Appl. 8(6), 901–913 (2011).
doi:10.3722/cadaps.2011.901-913

7. Harrich, A., Mayr, J., Hirz, M., Haselwanter, P., Lang, J., Gfrerrer, A., Haselwanter, A.: Unter-
stützung der Türenkonstruktion in der Konzeptphase durch parametrisch-assoziative Konstruk-
tionsmethoden. In: OEM Forum Fahrzeugklappen und -türen, no. 2064 in VDI Berichte, pp.
21–37. Verein Deutscher Ingenieure (2009)

8. Hirz, M., Harrich, A., Mayr, J., Rossbacher, P., Haselwanter, A.: The potential of paramet-
ric design methods in automotive door development. In: Proceedings of the FISITA World
Congress. FISITA, Budapest (2010)

9. Hirz, M., Kirchberger, R., Göber, T., Lang, M., Tromayer, J.: Integrierte 3D CAD Konstruk-
tionsstrategien im Motorenentwicklungsprozess. In: Symposium Konstruktionsmethodik Graz.
Graz (2006)

10. Anderl, R.: Virtuelle Produktentwicklung. Lecture Script at Technische Universität Darmstadt
(2007)

www.3ds.com/products/catia
http://dx.doi.org/10.3722/cadaps.2011.901-913

Chapter 6
Engineering Data Management

This section will describe Engineering Data Management (EDM) as a concept involv-
ing the interdepartmental and interdisciplinary integration of data and workflows
in automotive product development. More specifically, the fundamental principles
of EDM data, basic functional modules and typical CAD and CAE use cases are
described based on process-oriented PLM approaches.

Product development in the automotive industry presents several challenges in
the area of EDM, including:

• Insufficient transmission of knowledge gained in process and knowledge
management to engineering data management

• Systematic approach to the design and development of EDM processes and
systems (functional strategy, roadmap)

• Few use cases for operative and project-oriented application of EDM
• The implementation of PLM approaches involves some difficulties, especially in

larger companies with complex structures
• Data management activities can lack a process orientation
• Excessive orientation towards systems and software in EDM designs

Engineering data management supports an integrated view of product development
that fosters a synergy between static results and a dynamic approach. It facilitates
the management of master data and development data functionally and even sup-
ports and improves product development processes. Consequently, EDM aim is not
only to integrate technical data and processes, but also to link and correlate them
to economic parameters. Thereby, it ensures efficient development processes while
simultaneously supporting the establishing of conventions for product development
and market launch.

Among other factors, EDM consists of the common and complete management of
all product and process-related data during product engineering and the visualization
of this data in a manner suitable for the real business world. All these characteris-
tics are based on the organizational and systematic support of engineering work
beyond the product life cycle and the (departmental) borders of a company. Modern
author systems (CAD-, CAM-, and CAE-systems) and the related simulation and

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 331
DOI: 10.1007/978-3-642-11940-8_6, © Springer-Verlag Berlin Heidelberg 2013

332 6 Engineering Data Management

visualization tools support the methods mentioned above at an IT-level, while EDM
system solutions form the functional and administrative backbone.

Additional important features of EDM include the virtual product representation
and its time-dependent data and configuration management concerning the matu-
rity during the entire development process (e.g. maturity and status of data, DMU-
configuration). This section examines EDM topics from a knowledge perspective.
Specifically, the EDM workflow management and integration platform, including the
related interdisciplinary data management, are adapted for modeling. These compo-
nents provide the foundation for integrated applications in product development,
which in turn lead to the development of design approaches for integrated data man-
agement in product development.

Besides the basic functional angle, aspects of engineering data management may
also be viewed from a process-oriented and a system-specific view. The system-
specific view mainly considers the functions, methods and systems used in EDM.
In the present work, the process-oriented approaches of EDM are generally subor-
dinated to the findings of PLM-oriented approaches.

The following sections provide background about the development of EDM and
a definition of the basic concept. Furthermore, EDM data basis and its role in prod-
uct development are described, as well as the structure of an EDM-system and its
most important functions. Finally, some examples of integrated EDM applications
in product development provide some insight into the potential for efficient use of
EDM.

6.1 The Concept of Engineering Data Management (EDM)

EDM is a concept used for the interdepartmental integration of information and data
flow, as well as business data flows and procedures, throughout the complete life
cycle of products. In this context, the term engineering data comprises all data and
documents created within product development and stored for further processing.
Data are always stored and handled in relation to their respective products, so the
terms product data or product data management (PDM) are sometimes used as well.
Metafiles and different other kinds of documents consist of product and process data.
EDM encompasses all of the functions that are necessary for editing and distributing
product and process data and documents. In this context, a main task of EDM systems
is to store, manage and provide data and documents that describe products and
processes as subsets to the product life cycle [1].

6.1.1 The Y-CIM Model

The integrated controlling of business processes via information technology was first
conceived in the early 1980s together with the beginning development of Computer

6.1 The Concept of Engineering Data Management (EDM) 333

Integrated Manufacturing (CIM). At that time, the main focus lay on the integrated
consideration and control of both logistic functions and research and development
activities in the corporate context. The technical process chain focuses on the devel-
opment and production processes of the actual products. The main task is to plan
and implement the product portfolio, which comprises the construction and valida-
tion of products. Moreover, environments for the production of the products being
developed have to be established. In particular, this means defining work schedules
for employees and implementing programs for the control of production machinery.
Both tasks are completed on the manufacturing level, where the work schedules for
employees and control programs for machinery are listed.

According to Scheer [2], economic and technical process chains in production
are the core of the Y-CIM model (see Fig. 6.1). The economic tasks are the planning
and implementation of production orders. On the planning side, this includes the
chronological planning of all orders, as well as determining the materials needed for
production and scheduling their delivery. The production side includes the detailed
planning of orders, the implementation of manufacturing orders and feedback on the
progress status. The economic and technical process chains are independent from
each other at the beginning. In general, this means that economic planning in the
sense of order handling and technical planning for product development may be
considered non-connected.

Based on the relationships between economic and technical process chain
(as shown in Fig. 6.1), both chains may be considered as combined on the man-

Fig. 6.1 Y-CIM model in industrial business

334 6 Engineering Data Management

ufacturing level in the graphical representation. Assuming objectively logical and
chronological flows, the issues form a Y. This shows how the chains are independent
on the planning level but merge into each other on the production level.

Differentiation of Production Planning and Scheduling

The left side of the Y-CIM model shows the economically logical process chain
in industrial corporations. Production and scheduling plans are established based
upon sales forecasts and order extrapolations. Proceeding from the longer-term out-
line planning, the time range is reduced step-by-step, with the planning becoming
increasingly detailed. The final task in industrial planning is the release of orders,
which is the first point of contact to production and manufacturing. The right side
of the Y-CIM model is predominant in issues of construction support, exploration of
customer requirements and methods for product validation. In this context, market-
ing’s primary task is to determine the basic properties the targeted customers expect
for a future product, as well as shortcomings in current products (from the customer
point of view) which must be remedied in the future.

The application of Computer-Aided Engineering (CAE) supports an integration of
the aforementioned requirements into early product drafts. Using Computer-Aided
Design (CAD), the product can be defined in terms of its actual composition, whereby
the individual components of the product are defined and described. Beyond geo-
metrical characteristics and weight definitions, this process includes performance
requirements, material definition and tolerances for manufacturing. The specified
product data are then implemented in Computer-Aided Planning (CAP) for manu-
facturing using relevant concepts and application systems. EDM harmonizes and con-
trols data management for these application systems. Figure 6.1 shows the positioning
of the deployed application systems, which are described in detail in Sect. 6.5.1. The
Y-CIM model provides a generally valid representation of these topics and a clear
differentiation and positioning of the EDM approach. Due to its primary techni-
cal function, EDM focuses on service structures, and especially on the engineering
process. In this context, the engineering process refers to product planning, which is
clearly different from product manufacturing.

6.1.2 PLM as a Foundation of EDM

Due to globalization, business concentration and outsourcing of both processes and
complete business units, there is a growing need to improve the integration of core
processes within companies and to optimize them by using modern technology.
Therefore, the consistency of data originating from the product development process
must be guaranteed throughout the subsequent phases of product life cycle. These
phases include production and logistics, as well as customer processes such as sales,
marketing, customer support and recycling [2]. The industry is constantly searching
for new concepts of how to manage products in all business processes as efficiently as

6.1 The Concept of Engineering Data Management (EDM) 335

possible across their complete life cycles. This strategic concept, known as Product
Life cycle Management (PLM), seeks to take into account the prevailing circum-
stances within both the sector and the specific company.

Fig. 6.2 Exemplary product life cycle in automotive industry [3]

A product’s life cycle begins with product development and continues through
manufacturing, sales, maintenance and finally withdrawal from the market. Since
this long process involves numerous departments which have different information
requirements, the goal of PLM is to optimize the design of processes. The prod-
uct development process and the provision of full product information as required
throughout a product’s complete life cycle are of particular interest in this context.
Figure 6.2 depicts a typical life cycle of a product in automotive industry. This figure
also shows the requirements for EDM and CAx in the particular phases of the life
cycle.

Today, the management of product data and engineering processes across the
complete product life cycle is one of the most important management tasks in indus-
try. Therefore, a significant expansion of PLM applications is expected in the near
future, particularly in medium-sized businesses.

Development of PLM Technologies

Product life cycle management was first conceived around 25 years ago. At that time,
so-called engineering databases offered IT support for administering information
and data that originated from design processes. At first, the main focus was on data
storage and the integration of systems. However, it soon became clear that this was

336 6 Engineering Data Management

more than just an IT task. The term product life cycle (PLM) caused quite some
confusion because it carried different meanings when used in different contexts or
fields. Today, the term PLM is not only defined imprecisely and in different ways,
but the definitions are also constantly evolving. As shown above, PLM is a concept
that is used in different ways by users and software providers.

Fig. 6.3 Development of PLM-technologies

Figure 6.3 provides an overview of the development of PLM technologies in recent
years. While industrial software developers consider their own systems (e.g. CAD,
CAE, DMU, PDM, or ERP software) as PLM-oriented solutions, IT integrators do not
see PLM as an IT system. Instead, they see it as an integration platform for engineering
applications. On the other hand, strategic consultants define PLM as a vision, strategy
or management concept. Regardless of the particular system, scientific institutions
or market analysts view PLM as either an engineering/business approach or as a
solution for the management of all product-related data and processes, depending on
their specific perspectives.

6.1.3 Definition of Engineering Data Management (EDM)

There is no universal definition of EDM in the relevant literature. The following two
definitions try to sum up the most common elements found in the various definitions
of EDM:

• EDM offers an approach for integrating data and processes across the complete
product life cycle and serves as a backbone for technical and administrative infor-
mation processing by providing interfaces to CAD and PPC-systems, as well as
to CAx-applications [4].

• EDM denotes the holistically structured and consistent administration of all data
and processes that are generated, required and forwarded during the development
of new products or the modification of existing products throughout the complete
product life cycle [5].

Engineering Data Management System (EDMS)

EDMS act as integrative platforms that join required application systems (e.g.
CAx-applications, Office programs, NC tools) via interfaces to one overall system.

6.1 The Concept of Engineering Data Management (EDM) 337

Besides the data from the relevant systems, development processes and their con-
nected processes are administrated and controlled. Data administration refers to the
definition, creation, saving, controlling, control and spread of related business data.
Data created during the product life cycle and administrated via EDMS include prod-
uct configuration (e.g. spare parts lists), CAD models and drawings, random types
of electronic and non-electronic documents, as well as project and workflow plans.

In accordance with the definition, an EDMS defines, controls and checks the
process of product development or creation and also administers the dataflow. This is
accomplished via the definition of processes and the related states and state changes,
access rights and other activities along the process chain. Project management and
scheduling can also be integrated into EDMS. EDMS can be used in individual areas
or business units or on a company-wide basis. Thus, they are not restricted to the clas-
sical engineering area in the manufacturing industry, but rather can be considered for
general information administration and process control requirements. For this rea-
son, the ability to carry out the integrated design of product and processes offered by
EDMS lies within the central management of master data, which enables continuous,
widespread access to product data that is always consistent. An additional potential
lies within the active control, creation, change and distribution of data, which enable
systematic process management on the working, team and management levels [1].
Today, the remaining weaknesses of EDMS lie in the areas of standardized data
exchange, integration of external applications and the parallel editing of documents.
These problems mainly stem from the heterogeneity of the CAx-systems involved.
One further problem is the redundancy of data between EDMS, PPC and ERP, which
significantly handicaps product and process design in the implementation phase [6].

Concepts Related to EDM

The confusion which already arose when defining PLM is further increased by the
implied system orientation of EDM and the resulting relation to PDM. For this reason,
the concept of engineering data management is used as a synonym for a number of
other concepts that share the same core targets, including:

• Product data management (PDM)
• Engineering database (EDB)
• Technical information system (TIS)

Some other synonyms and related concepts are:

• Document management (DM)
• Product information management (PIM)
• Technical (Team) data management (TDM)
• Technical information management (TIM)

In the United States, engineering data management (EDM) is commonly referred
to product data management (PDM). This book adopts the following simplified

338 6 Engineering Data Management

definition of engineering data management as a discipline of data management within
the engineering process that follows the concept of PLM using EDM/PDM systems.

6.2 EDM in Virtual Product Development

Virtual product development can boost the innovative power of OEMs and suppliers
in the automotive industry. Expert knowledge is prepared for several parties with
different viewpoints in a targeted manner using a primarily digitalized reproduction
of company-wide accessible process and product data. The task is not only to manage
and represent the development process up to the time of manufacturing, but rather
to depict the complete product life cycle. Thus, companies can incorporate various
external partners and suppliers in their local working environments. As a result, inno-
vation cycles can be significantly shortened, and costs can be significantly reduced.

Crucial factors that contribute to the dramatic increase in the complexity of devel-
opment projects and products for automotive suppliers include shorter modeling
cycles, reduction of product development time, relocation and outsourcing of devel-
opment tasks, growth of variants and the trend towards IT systems. These crucial
factors will shape the requirements for EDM in the future.

6.2.1 Process Orientation in Product Development

Since the beginning of the 1990s, several approaches to the introduction of business
process orientation in companies have been developed and applied. They provide the
basis for process orientation in different disciplines. The most important approaches
in this context are Business Reengineering and Business Engineering. Business
Reengineering (BR) is a concept for restructuring organizations that involves a rad-
ical redesign of business processes.

Hammer/Champy [8] and Davenport [9], the two most well-known proponents of
Business Reengineering (BR), have expressed their support for the idea of a quick
transformation of an organization into a business-process-oriented enterprise. The
core processes of the enterprise must be reorganized and remodeled according to
target quantities, such as costs, time, quality and an increased customer orientation.

According to Österle [7], business engineering (BE) follows a top-down principle.
In this principle, the business strategy takes precedence over the business process
when establishing the connection to the information system. However, BE extends
the procedure to take common business conditions into account. According to BE,
these common business conditions are that a project can be positioned on any of the
three possible levels, as long as the other two levels are involved. Figure 6.4 shows
the integration of business strategies, processes and information systems within the
different disciplines of a company. As the figure shows, it is necessary to consider

6.2 EDM in Virtual Product Development 339

strategy, process and system for every subject area, even if they take place on different
business levels.

Fig. 6.4 Dimensions of business engineering [7]

The business strategy determines the general conditions for the enterprise, which
provide the basis for decisions that must be made concerning business segments, IT
structures, etc. Tasks are defined and teams are formed on the business-process level.
These definitions act as a frame for the next level of detail, which is the level of infor-
mation systems. The modeled business processes are implemented in information
systems applications. Both the business-process level and the information systems
level provide the basis for EDM, which seeks to connect the strategy with operative
applications.

6.2.2 EDM as Integrated Management Approach

As stated above, when considered as an integrated management approach, EDM
can have a crucial influence on a company’s success. In the future, the successful
introduction of EDM solutions will therefore be a very important component of busi-
ness strategy. For this purpose, the systematic development and implementation of a
long-term EDM strategy as part of the overall business strategy can be helpful. The
strategic introduction of EDM is specific to the company. To accomplish this task,
there are numerous methods and experiences from successful EDM users available
today. While best-practice experiences can prevent mistakes and incorrect decisions,
they cannot provide competitive advantages. Hence, a company should review exist-
ing experiences critically and use them selectively, while still daring to develop their
own new, innovative concepts. Managers of companies that want to survive and be
successful in the future must also recognize the importance of strategic management
and devote time and attention to it, despite the enormous operative pressure.

340 6 Engineering Data Management

The introduction of an efficient engineering data management system is
indispensable for the establishment and successful operation of these very complex,
distributed and knowledge-based engineering processes with the relevant employees
and supporting IT systems. Recently, product life cycle management has become
accepted as an integrated approach for engineering management across the complete
life cycle of a product. As mentioned above, PLM comprises concepts, method and
tools for the management of product-specific data and engineering processes, as well
as for the integration of operative methods and application systems (e.g. CAD, CAE,
CAM) in cooperative, globally distributed product life cycles, including manufactur-
ers, customers, suppliers and partners. Although the concept of EDM includes tasks
and interests of the management, the top management level of companies rarely feels
involved. The concept also includes data, which again implies the management of
computer systems, software applications or system administration of a specified area.

Thus, EDM is a management issue. Without EDM and the reasonably extensive
deployment of modern technologies, it is impossible to provide the necessary orga-
nizational prerequisites for the development of innovative products at reasonable
prices and in the short time that is available. In this context, EDM plays a key role
because without the correct use of innovative technologies, there will be no innovative
processes, and without innovative processes, the production of innovative products
is unlikely. And a company without innovative products has little chance of being
competitive, let alone becoming a market leader.

So many things depend on the way managers face these tasks. Company
management cannot leave decisions about product data management to the individ-
ual business units. There is a wide variety of reasons why individual business units
do not share the overall business view on this issue. Although EDM mainly concerns
product development, it is relevant in nearly all areas of the company in synergy
with PLM. As explained above, data and information are created and required within
the business process. The representation of these processes, with all of the relevant
functions, data, information and IT systems, forms the ideal basis for EDM strate-
gies. Moreover, it forms an ideal platform for the maintenance and control of the
implemented EDM processes. Users of IT systems are not the only ones who profit
from this approach; it also enables a streamlined IT infrastructure with the resulting
streamlined data structures. The generic representation of EDM processes can pro-
vide an overview of the interaction between EDM and the business processes, with
a particular focus on the process map. The process map can be used to classify the
business processes as either core or support processes and to visualize their position
within the framework of EDM strategies. The development of sub-processes with
different levels of detail make it possible to address all of the processes within the
particular segments that comprise a product’s life cycle. In the context of EDM, this
means the product development process in particular.

6.2 EDM in Virtual Product Development 341

6.2.3 The Product Development Process

The main result of the Product Development Process (PDP) is the intellectual product,
which is the product description including all associated documents, descriptions,
specifications, digital models and draft documents of all associated equipment (e.g.
tools, machines, facilities). Additional processes include product manufacturing, the
result of which is the physical product that is created via manufacturing and assem-
bling, as well as processes involved in purchasing and the provision of the necessary
operative resources (e.g. facilities, equipment, staff, financial resources). PDP com-
prises requirements management, portfolio and product planning, product design,
and the actual product development, as well as the construction, analysis, calcula-
tion, simulation and testing. This process section yields a complete description of
the (for the time being) virtual product. Within the framework of product defini-
tion, engineers are also involved in supply chain management (SCM), the design or
acquisition of equipment, the planning of manufacturing and assembling processes
(process planning), and the generation of technical documentation. An integrated
EDM concept should represent all of the derivable requirements for technical prod-
uct documentation.

Through development processes, engineers plan, design, define, verify and docu-
ment products, as well as their production, implementation, use and disposal. Most
engineering activities take place at the beginning of a product life cycle, which means
before implementation and production. Various methods (e.g. design methods) and
tools (e.g. CAD, CAE, CAM applications) support operative engineering processes
and tasks. Engineering tasks that are continuously supported by EDM are often
called Digital Engineering or Virtual Engineering. In the near future, changes in the
industrial environment will drive the following important changes in engineering:

• Increased engineering cooperation across locations and disciplines
• Augmented engineering of innovative, multidisciplinary products, including

embedded computational components
• Increased application of product-related services and comprehensive customer

solutions
• Increased customer integration in early phases of product life cycle
• Increased importance of engineering in the product use phase and at the end of the

product life (e.g. due to new regulations regarding product return and recycling)
• Increased protection of copyright (due to theft of ideas and product piracy)
• Increased attention towards new laws and regulations (e.g. product liability)
• Increased efficiency of engineering tasks (due to increased competition)

6.2.4 EDM Support in Virtual Product Development

In the context of EDM, virtual product development is understood as the most
comprehensive description possible of a virtual product. Although the goal is to min-

342 6 Engineering Data Management

imize the number of physical prototypes required, the products being developed are
still real, which should influence all relevant product-development-related decisions.

All results of improvement processes should also contribute to a less expensive
and faster production. For example, digital packaging, geometry checks and dig-
ital assembly evaluations reveal design problems (e.g. intersections of parts) long
before the actual vehicle assembly. Building body prototypes for crash-tests is far
more expensive than attempting to get the results via computer simulation of crash
scenarios.

In the area of product life cycle management, the goal is to manage all data (e.g.
CAD models) and types of work emerging from product development as completely
as possible and to have the corresponding threads run together in one place. In
former times, it was necessary to purchase many individual components. Today, a
supplier is expected to deliver complete systems, such as the entire interior design
or the complete lighting equipment. In order to create and conduct virtual product
development systematically, a general process should be defined in combination with
the specific processes concerned. The procedure should be designed such that the
important, general functional units of engineering are queued in a logical order, which
serves as a reference sequence. This reference sequence represents the foundation of
EDM approaches.

In relation to the product, the EDM approach assembles all relevant product data
in an EDM structure. This is the basis for the configuration of the specific prod-
uct, the creation of virtual product models, and thus for an early validation (e.g. for
manufacturing, factory planning and service). During each individual phase, the cur-
rently relevant product data are created and saved in relation to either specific phases
(e.g. the concept, structure and production phases) or to a specific model and vari-
ant. While product definition occurs top-down, product validation occurs bottom-up
within complete vehicle tests. Thus, several model and phase-specific product struc-
tures co-exist. Currently, it is not possible to align them to one common, life cycle-
oriented product structure. The development of such a product structure is one of the
primary challenges in virtual product development. Immersive visualization supports
decision-making in complex problem situations (e.g. in styling review, construction
testing, simulation data evaluation, assembly/disassembly research, tool certification
and factory design).

EDM also supports simultaneous engineering with a particular target: to reduce
the total sequence time by enabling parallel processing of procedural steps from
conception to production scheduling that have traditionally been executed one after
another. This target can be reached by means of a central 3D CAD data model,
which supports all communication between the parties involved in development.
Changed workflows enable design engineers to get feedback from manufacturing
earlier, so they can incorporate this feedback into their work. Thus, post processing
both during and after the design procedure can be reduced. The disadvantage of
an early integration of different departments by simultaneous engineering is that
development cycles are often carried out with insecure data status (see Sect. 2.2.5).

EDM supports another approach for efficient product development called
frontloading. Front-loading involves the shifting of partial processes and resources

http://dx.doi.org/10.1007/978-3-642-11940-8_2

6.2 EDM in Virtual Product Development 343

that are crucial to results to early phases of development with the target of reduc-
ing development time. Providing high-quality product data at the beginning of
development can help to identify mistakes early and to avoid costs for changes. The
task of EDM is to establish the required framework to support this shift of resources
and to aggregate knowledge and data related to a product as much as possible, in
order to allow the product to go into production as quickly as possible.

Engineering workflow is the detailed connection of all activities related to the
creation, description and alteration of a product, including processes across the com-
plete life cycle of a product. These processes include operating sequences in the
planning, design and adoption of the product, as well as the related workflows for
change and technical release. The engineering workflow supports the most detailed
level of processes.

Collaboration involves cooperation and the exchange of information between
departments or business units inside and outside of the company along the product
development process. The cooperation of different companies with a common goal
creates networks of suppliers, customers and development partners that are focused
on adding value. A reorientation around organizational structures and processes that
are conducive to mutual cooperation should be important for all participants.

EDM can help provide the prerequisites for the realization of this ambitious vision,
including:

• Cooperative, virtual and integrated product creation processes
• Early and close integration of engineering partners
• Increasing the number of experts who can contribute to a project
• Common cost and time management
• High transparency of decision making processes
• Synchronization of product networks
• Flexible and efficient system integration and system interfaces
• Efficient data management concepts

6.2.5 EDM Process Integration

EDM plays a key role in the redesign of products. The roles of the people involved
are being gradually redefined, and processes are being reshaped. This is where the
body of a project is created, to which the employees from the project team con-
tribute steadily. In former times, it was a given that concept and design, construction
and testing, tool and mould design, production planning and manufacturing were all
established within one company. Today, this is only true in exceptional cases. Within
the network of different companies and project partners, each individual participant
has a specific understanding of its role, which is derived from the aforementioned
tasks. For example, one company might develop innovative concepts and manage
a project that leads to in-house serial production. Another company might deliver

344 6 Engineering Data Management

components or modules according to exactly defined requirements. Yet a third com-
pany might be responsible for calculations, simulation and perhaps even the design
of different types of test beds. The distribution of tasks and responsibilities can vary
greatly, depending on the industry, the product, and the size of a company [10].
Extensive international and intercontinental networks of engineering offices, devel-
opment partners and suppliers have led to dramatic developments in data manage-
ment systems in recent years. Within this network, EDM has become the essential
engineering backbone.

Tasks of EDM Process Integration

Every sequence of operations that uses resources to transform input into results
can be considered a process. Organizations have to identify numerous linked and
mutually dependent processes in order to contribute meaningfully to the introduction
of an EDM system solution. This systematic identification and handling of different
processes within an organization and the mutual influences of these processes is called
a process-integrated approach. Methods are available to support process integration.
The need for both IT and methodological support are closely linked to the global trend
towards an increased complexity of products and processes. In terms of processes,
it is also necessary to establish cross-company and multicultural collaborations with
linked work sequences, so that mutually influencing components can be developed
simultaneously in different locations. In terms of products, the demands for flexibility
and versatility have led to a greater number of models and options [11].

In order to enable processes oriented EDM, a system-comprehensive methodo-
logical level should be established within a company, which involves many orga-
nizational and cultural changes. The primary task of this level is the translation of
strategic company targets into process requirements. Based on these requirements,
appropriate working methods can be defined in the form of suitable process mod-
els (set processes). In turn, these set processes and customer requirements provide
the basis for the development of concepts for IT support. The IT support concepts
are then communicated to IT system developers, who then add additional system
requirement details. The process integration level accompanies the development,
testing, introduction and use of system solutions in the operative processes, which
are implemented according to set processes. The process integration level must also
track operative results in order to compare them to the defined company targets.

6.3 EDM Database

6.3.1 The Role of Development Data

Product data and development data originate and evolve during development. An
efficient and secure electronic administration is one of the central prerequisites for
successful engineering. These data do not become irrelevant upon product release and

6.3 EDM Database 345

manufacturing, which is another important reason for the application of EDM. One
might ask why the role of product development data has evolved over the years. The
reason is that today complete, generally comprehensible, three-dimensional product
descriptions can be used for numerous tasks that are not necessarily restricted to engi-
neering. Furthermore, such product descriptions are the prerequisite for additional
process optimization in other core areas, especially in manufacturing and assem-
bly. This enhanced role of EDM is also apparent in the growing use of 3D CAD
systems.

EDM is not only an instrument for the improved organization and efficiency
of development processes, but also a hub that allows product data to be used as
a knowledge resource throughout the company. EDM provides a crucial interface
between engineers, designers and experts from various other disciplines involved
in the product life cycle. Thus, EDM is also a crucial ingredient for the cohesion
and effective functioning of interdisciplinary project teams, which are common in
progressive companies [10].

Company-Specific Data

Company-specific data is of importance to a company and to the performance of its
business processes. These data are derived from an organizational knowledge base
and then documented in order to enable the transfer of knowledge to other authorities
of know-how. System elements of the organizational knowledge base (i.e. employees)
have to examine data by information processes to categorize such data as company-
specific. Ongoing changes in business contexts also make it necessary to consider
options for ensuring that company-specific data are always up-to-date.

Intelligent Document Management

Manufacturing companies also possess a world of documents beyond the article
and beyond parts master data and product-relevant data and files. This additional
data world is growing and becoming more and more complex and confusing. In
terms of a company’s competitiveness and the organization of both internal processes
and communication with partners and customers, the importance of this world of
documents cannot be specifically quantified. For a long time, it has only been possible
to estimate its importance. General document management differs in many ways from
the specific conditions of engineering. The engineer usually works with particular
authoring systems for design and simulation, and the results of these procedures play
an important role, either directly or indirectly, for the product description.

The overflow of digital documents that are related to neither one particular article
number nor to one particular project has reached a point where companies are forced
to take action. Firstly, all relevant information should be organized, which includes
more than just product data. Secondly, document storage must be simple and secure
enough to allow employees to access and manipulate data without problems. Thirdly,

346 6 Engineering Data Management

data administration must enable quick locating and accessing of documents without
knowledge of the document’s actual content, origin or authors [10].

EDM supports engineers in storing and managing the emerging documents in a
structured way. For example, engineers know very exactly which assembly unit a part
belongs to during the design process. The working structure applied by engineers is
generally the product’s structure. Therefore, employees of the engineering business
unit generally know how and where to search for relevant information, and their
exploration is generally successful when using EDM. This expert unit is the main
user of EDM in companies today. However, there is a huge amount of data generated
which are not gathered by the engineering department but play an important role. For
engineers, different processes beyond the application of their specialized software
(e.g. table calculations, scheduling, presentation design) are minor sequences as far
as data management is concerned. If they save the results of these sequences in
individually created directories on local machines or a decentralized data storage
unit, product development is not influenced directly. Indirectly, however, the lack of
organization and a proper overview can lead to data inconsistencies. This problem was
the original trigger for the creation of document management systems that support
responsible parties by structuring, administrating and searching specific documents.
Although the range of applications that contribute to the data such a program must
manage is generally far wider than the equivalent range for EDM systems, the task
is still very similar.

6.3.2 EDM Documents

Many documents emerge during product development and must be managed
carefully. With the growing use of IT in companies, the number and types of docu-
ments are growing as well. Within a company, documents must always be managed,
regardless of whether or not they are linked to product data, such as photos, presen-
tations, letters, emails, animations, digital mock-ups (DMU), videos, drawings and
protocols, to name only a few important representatives. Even totally independent
from 2D and 3D CAD (for which PDM was originally developed), there is an enor-
mous need to manage the different types of data that document any working step,
procedure or contract. Until recently, such data were mainly created manually and
stored in physical folders. Often, they were created using programs for text editing or
outmoded methods on a computer. In the end, the data were printed on paper, signed
and stored as documents, without even recording this somewhere or registering the
storage location [10].

6.3 EDM Database 347

6.3.3 CAD Data in EDM

When introducing a database-oriented administration system, a primary focus should
be placed on the administration of design data. Such database systems offer far more
possibilities that should be considered when selecting a system without forgetting
about future add-ons. CAD systems provide functionalities, which include main
features for the management of CAD data. This represents a potential for the linkage
with functionalities of EDM. As an example, a central access to design data and
maintenance of a central assembly structure can be established. Users need to be
made aware of the general complexity of the system in a logical step-by-step manner,
in order to ensure acceptance of the system. Appropriate interfaces and integrations
offer bi-directional matching of data between EDM and CAD systems. Thus, users
can work in their usual CAD environments and enter all of the necessary input there.
Functions beyond the scope of a CAD system (e.g. freezing or releasing a data record)
are triggered directly in the EDM system. Securing this process also eliminates the
need for frequent search for latest data and the integration of development sites and
suppliers spread across the world.

6.3.4 Digital Mock-Up (DMU)

The concept of digital mock-up (DMU) includes more than just the digital repre-
sentation of a vehicle. DMUprovides the foundation for a constructive development
because individual results from different business units are always incorporated and
can be evaluated holistically. The DMU is a digital vehicle dummy that can be used for
various investigations, simulations and evaluations (e.g. collisions, functional mini-
mum offsets, geometric properties, legal requirements and requirements of assembly
and service) (see Sect. 2.2.2).

The source for this representation is the data management system for geometrical
data, which enables structured storage of CAD data and attributes for a complete
vehicle. In most cases, it does not rely on the product data management system to
store the product-describing data. This structure makes it possible to define different
variations of vehicles and to manage them accordingly. However, the number of vari-
ations to be represented also increases the complexity which the system must handle.
The digital mock-up is thus the foundation for an interdepartmental communication
platform and information hub. EDM systems enable the creation of complete vehicle
structures based on meta information. This means that components do not have to be
provided as CAD models, but can still be integrated in the product structure as com-
ponents of the superordinate part list. Integrated EDM systems enable the automated
provision of viewing-data formats and integrated viewing mechanisms of predefined
virtual product configurations without implementing separate software.

Virtual products in vehicle development processes consist of many variants and
combination options. Using variant management in the EDM system, particular
assemblies can be filtered from a 150%-parts list after the definition of compo-

http://dx.doi.org/10.1007/978-3-642-11940-8_2

348 6 Engineering Data Management

nent affiliation. These concretely defined variants of a vehicle serve as the basis for
the evaluation of package, geometric and functional characteristics or as a basis for
subsequently performed simulation processes.

6.3.5 The Virtual Product

With the performance ability of modern information and communication systems,
a vision of a consistent digital product creation process has emerged. This process
could shift product development to the virtual world as far as sensible. Thus, there is
a concept of a virtual product development that can be implemented in several steps
of integration. However, the integration of additional product information categories
in virtual product models clearly increases both the degree and the complexity of
virtuality. As a consequence, the virtual product (i.e. its computer representation)
may be viewed as the result of the simulation of development phases of a technical
product and thus as a central information carrier of a completely computer-based,
virtual product development.

Functional units must be validated within the optimization of the product
development process in PLM and the linked EDM system based on virtual models.
Therefore, the virtual product includes all computer-based and integrated models of
a product throughout the entire product life cycle using virtual reality technologies
as an environment. The virtual model makes it possible to consider different groups
of participants (e.g. developers, suppliers, manufacturers and customers) equally. In
addition, the model makes it possible to handle the virtual product and its speci-
fications up through service and recycling in an exclusively virtual manner and to
evaluate properties and functions in an environment that is close to reality. Such a
virtual product is also referred to as a virtual or digital prototype. The concept of
virtual mock-up (VMU) is also used, although this term denotes the expansion of
DMU to a virtual prototype. Beyond the geometric validation provided by DMU,
a VMU is intended to validate the technical aspects of both the functionality and
production of a product with reduced or no use of physical prototypes.

The creation of such a prototype is the primary strategic target of modern
IT-supported product development processes for a common communication and deci-
sion making because it could make it possible to examine the future product’s quality
in all its facets in advance. Furthermore, products could be defined in relation to cus-
tomer demands, and the feasibility of their manufacture could be tested in advance.
To date, specific characteristics of the product are altered in the workstations via
modeling and verification functionalities (i.e. virtually). Thus, the virtual product is
the computer-based, realistic representation of a technical product with all functions
required within the product life cycle, which implies a near-realistic simulation model
that includes all product information and functions, as well as all the properties of
the later real product.

6.3 EDM Database 349

Digital Prototypes (DPT)

The application of digital prototypes (DPT) enables the examination of all parts
of a new product in terms of their interplay and functionality at an early stage of
development. For example, endurance runs are conducted to test the reliability or
breaking strength of certain elements [10].

The increased sophistication of 3D modeling and its gradual evolution into a
common tool of automotive product development have had a significant impact on
the testing phase. The more sophisticated 3D modeling has become, the more the
testing phase has shifted away from hardware prototyping to digital prototyping
as a virtual product. Testing and calculation methods have also been digitalized in
recent years. Besides the Finite Element Method (FEM) for calculating component
stresses, a variety of programs are available today that allow development teams to
simulate nearly all kinds of product functionality on the digital product. It is easy
to see the great potential of these simulations. For example, some automotive man-
ufacturers are already simulating the noise in different driving situations. However,
there is one shortcoming in modern product development: the data management of
these disciplines is not yet integrated continuously throughout the complete product
development process.

6.3.6 Data Security

Data security, one of the main issues with respect to managing development data, is
a multifaceted topic:

• Firstly, the central purpose of EDM is to collect and save all data created in the
course of product development. The data are not only stored, but also made contin-
uously available. However, this is not always the case with hardcopy drawings and
working schedules. Therefore, without electronic data management, it can never
be guaranteed that minor changes in a drawing or part model will not be lost.

• Secondly, EDM-administered data is secure against unauthorized use or change
because PDM uses access rights to reliably control data access.

• Thirdly, EDM data offers high information security because the system always
knows the current status and version of any document. It also knows if it is still
up-to-date or out-dated, the author of the data, and the system they were created
with.

In addition, this information security is a crucial factor for increased process
security because only correct data and files can lead to the successful achievement of
project goals. Finally, it is important to mention another aspect of data security that
deserves special attention because it is not automatically present when using EDM
- securing data against theft. Since this aspect of security can be quite complicated,
a complete treatment of this topic is beyond the scope of this book.

350 6 Engineering Data Management

6.4 Engineering Data Management System (EDMS)

It is crucial to take a closer look at some concepts from the system-technical
perspective before investigating the functions and applications of EDMS in detail. In
essence, information systems technologies that are part of the common programmer
toolkit provide the foundation of EDM functions.

6.4.1 Product Data Management System (PDMS)

In essence, and for the purpose of the present work, the concept of engineering data
management systems (EDMS) is based on a classic PDM system. Thus, the functional
description of the system is executed in the manner of a PDMS. All comprehensive
discussions in this work are performed in the context of the definition of EDM
found in Sect. 6.1.3, in which PDMS is defined as a main component of EDM. The
designation EDM is used for the general system-technical relation in the further
discussions. The term PDM is only used when the PDM system is meant exclusively
and explicitly.

Studies have shown that the search for relevant information can take up between
30 and 70 % of an engineer’s project work [12]. Therefore, if engineers could work
with up-to-date data from the very beginning, this would generally lead to higher
product quality because wrong decisions caused by obsolete or missing data could be
avoided. This requires the supply of not only product-specific data, but also indirectly
product-related information (e.g. the names of experts who might contribute to the
solution of sub-issues, even if they are not directly involved in the development
process).

PDMS has a long history that started some decades ago. These systems grew out
of a desire to manage CAD drawings. The growing need for CAD drawings increased
the need for data management tools that would be able to handle different types of
digital documents created by different programs and systems. Such tools were called
engineering database (EDB) or technical information system (TIS); other designa-
tions (primarily used in the US) were engineering document management system
(EDMS), product information management (PIM) and product data management
system (PDMS) [11]. These systems and programs were the main components of the
central administration and organization of technical data and information in the CIM
concepts of the 1990s. The functionality of these systems developed from the initial
approaches of pure document administration to the administration of all development
data of product development, and then further to the management of product data
and schedules of all complete product development processes and product life cycles.
Even though the term product data management system (PDMS) has prevailed, there
is still a great variety of concepts.

6.4 Engineering Data Management System (EDMS) 351

Building a PDMS

A PDM system offers users numerous application-related functions, which can
organize, administer and distribute all of their electronic data and documents in a
product and project-related manner either within their own company or among several
companies in the case of cross-company cooperation. Anderl [13] states that the main
functions are those for object or element administration, privilege and access admin-
istration and process and data administration. In addition, cross-application functions
enable the administration and customizing of PDM systems and thus guarantee the
check-in and check-out of data stored in the system database and the archiving on
system volumes.

Fig. 6.5 Exemplary PDM system architecture [14]

Figure 6.5 provides a basic overview of the principle design of PDM systems as
suggested by Anderl. At the core, there are the two functional modules, which are
divided into cross-application and application-related. These are built upon a data
foundation that contains a database and a database management system (DBMS).
User interfaces and system interfaces enable communication between human beings
and machines. According to Bullinger [4], PDM is the key technology for targeted
knowledge management in product development. In this approach, product infor-
mation should not only be made available to people who are involved in product
development, but also to those outside of the actual product development process
(e.g. suppliers or customers). This makes it possible to reach the desired mutual
corporate targets.

Although PDMS were developed as a kind of product knowledge management
tool for the central long-term archiving of product data, their archiving function ends
when the data reading and writing system ends, be it a technical end or a general

352 6 Engineering Data Management

Fig. 6.6 Main functionalities of PDM, according to [15]

loss of data. Another issue is, that there are currently no integrated concepts for the
general storage of particularly important product documentation files that should
be filtered from the overwhelming mass of PDM information. Such files should be
saved, archived and maintained in a separate part of the system so that they can be
manually isolated from other data and intentionally transferred to another system.

Main Functionalities of PDM

The main functionalities of PDM can be divided into five areas.These areas are
connected via relationships between the acting persons, the predefined processes and
the product components (parts and assembling), which are described in documents
and files. Figure 6.6 shows the five main functionality groups of PDM. In general,
product-oriented functions include data and processes related to the generation and
description of the product itself, whereas process-oriented functions include all tasks
related to the development and life cycle.

Product Structure Management

The management of product structure and variant data supports the organization of
components and modules. Especially in the case of complex products, the assembly
of different versions requires specific methods for recording and administrating the
dependencies and interactions of built-in elements. Modifications of individual com-
ponents or sub-assemblies during the development phase or revisions in the product
life cycle are documented and evaluated. An exact knowledge of the product struc-

6.4 Engineering Data Management System (EDMS) 353

ture ensures the generation of current bills of material during the entire development
phase.

Workflow Management

Global companies act globally. Engineering in Austria, production in China, and the
company leadership in the USA—configurations like these are common in the auto-
motive industry. Globalization entails opportunities and risks—and in the case of
automobile manufacturers, a significant challenge for data management. Pre-defined
standards and rules in PDM specify who is allowed to change a component and how
this modification has to be approved. Workflow management includes the control
and distribution of documents and the integration of the customer and supplier into
different processes. During development processes, the management of CAE data
and the change management (including problem identification, modification mea-
sures and release management) are important. Applications include the control of
documents (modification, verification), the integration of customer and supplier, the
distribution of documents, CAD data management, DMU/CAx workflow and change
management.

Document Management

PDM controls the access rights of product data and ensures the use of current
information. Modern PDM systems have direct interfaces to software applications
(design software, cost-calculation programs or manufacturing-related software) and
are directly accessible for modification or data updates. Document management
covers the provision of data and documents and data archiving, as well as document
control and distribution. Applications include the provision of data and documents,
data archiving, document control and document distribution.

Classification

Standardization of components and the use of standard parts are important factors
for the reduction of product costs. Classification of product data across the entire
product range supports the detection and application of (existing) parts and modules
in the development of new models.

Project Management

The management of product data and the storage of information related to components
and structure support project-management-related tasks. In this way, a powerful PDM
system is able to simplify calculations related to cost and time for both current project
and the advance planning of future projects.

354 6 Engineering Data Management

PDM systems are based on client/server-based software architecture. They are
characterized by a modular configuration of system components, which are organized
by relational or object-oriented database management systems. PDM systems are
equipped with several data interfaces and user-oriented modules to enable effective
data transfer. Figure 6.5 shows the main modules of an exemplary PDM system
architecture.

6.4.2 Application-Related Functions of EDMS

Based on a PDMS, an EDMS can easily be defined with some additional func-
tions. These functions primarily consist of improved application relation, increased
integration of authoring systems, application of simulation and viewing tools, and
workflow management across projects, processes and data. Based on the design of
PDMS (see Fig. 6.5), the particular functional entities of an EDMS can be described.
From the wide variety of application-related functions of EDMS, master data man-
agement, document management, release of changes and the DMU process are
described in detail below as representative functions for automotive product devel-
opment.

The cross-application functions of EDM are:

• Change management
• Workflow management
• Process management
• Project management
• Communication
• Research, visualization
• User administration
• Data protection, data security/storage
• Archiving

Master Data Management

Master data management (or product data management) comprises the administra-
tion of all product-describing master data (e.g. documents, stock lists, parts lists,
product structures), as well as specifications and classifying properties. In addition
to data expansion during the development process (e.g. from CAD start-up model
to the final design model that is released), revisions and configurations must also be
managed [2].

Master data management requires clear definitions of data objects and their
data fields to guarantee consistent, non-contradictory and harmonized master data
throughout the complete product life cycle. Master data management also defines
maintenance processes for the creation and alteration of data and specifies the orga-
nizational entities responsible for these processes. In this context, the best practice is

6.4 Engineering Data Management System (EDMS) 355

to maintain data where they are created in the technical department and then combine
them with a central point of master data maintenance (technical product documen-
tation) that is also responsible for the process as a whole. This overall process is
understood as the continuous control and optimization of data and may even cover
the maintenance of crucial data content (e.g. article number determination).

Finally, master data management also includes the definition of a master IT
architecture with data flow and data distribution to all systems that need master
data for post-processing. For this purpose, the clear definition of which systems will
maintain and change which master data objects has proven successful. These systems
are the single starting point for data distribution. Additional generic PDM processes
that mainly happen in the context of manufacturing and logistics (e.g. enterprise
content management, asset life cycle management, quality management) are beyond
the scope of the present book.

Document Management System (DMS)

Document management (DM) is designed to help with such tasks as scanning,
creating, administering, forwarding, storing, archiving, opening and searching doc-
uments, with the primary goal being to increase productivity by shortening the doc-
ument processing time and by providing the necessary information immediately.
Document management systems (DMS) do not only support office processes but
also optimize them via the definition and support of dynamic sequences of proce-
dures and the integration of static information objects.

Currently, many businesses contain inefficient work procedures and redundant
parallel work. Time-intensive document search, long processing times, multiple
storing, lack of transparency of systems and procedures, differences in the applied
data formats and the incompatibility of partial systems inhibit integrated, customer-
oriented and efficient workflows. In addition, the number of documents has exploded
in recent years and continues to grow. This situation makes it necessary to use
computer-supported document management systems. Effective and efficient office
work implies company-specific technology management and efficient information
management that support business processes. Information management determines
the flow of information in production and administration. A growing number of com-
panies are recognizing that improved information management is a important factor
for competitiveness. Specifically, information management includes the logical and
complete administration and editing of all documents that a company produces or
requires.

Imaging is the conversion of paper documents into digital representations. Imaging
data allows only a rough estimation of complete system functionalities. Imaging sys-
tems allow users to create an electronic copy of a paper document via a scanner and to
save the digital representation in a computer, which eliminates the media disconnect
between the computer world and the paper world. However, it yields a non-editable
digital representation of a page (i.e. a representation that cannot be interpreted by a
computer).

356 6 Engineering Data Management

The market for DMS has developed enormously in recent years. Companies that
introduce such systems expect cost reduction and improvements in productivity and
quality. A growing number of small and medium-sized businesses that use electronic
document management emphasize that these expectations are more than just the
marketing strategies of the system providers. DMS supports the storage of drawings
in technical offices, the storage of receipts in banks, the archiving and locating of
a variety of textual and pictorial material in magazine publishing houses and press
agencies, as well as text and image flow and applications in insurance agencies and
public services. Just as PDMS was becoming accepted as a suitable tool for the
administration of development-specific data (i.e. design data), other software came
on the market for the administration of general documents.

While PDM soon focused on a clearer and more reliable representation of complex
3D design models and the automated creation of parts lists, DMS focused on revising
and linking random documents. No matter whether companies adopted DMS or PDM
first, eventually they began to wonder whether it would help optimize procedures
if only one database was used. This means one database to collect all documents
in synergy with document data and to administer them accordingly. The ability to
provide such functionality is another important criterion for the selection of a PDM
system.

6.4.3 EDMS Architecture

Integration platform features direct the coupling of EDMS and other software
applications, whereby the exchange and synchronization of attributes and parame-
ters or structures occur on a meta-data level via an integrated data model. Usu-
ally, this integration involves no exchange of native data, and even when such an
exchange occurs, the relevant data are checked out to provide some applications.
Therefore, EDMS maintains the status of data master for all integrated applications.
(Section 6.5.1 provides a detailed description of CAx-integration, one important
application of the functional module integration platform in vehicle development.)

Putting together all of the functional modules partially described above, it is now
possible to provide an overview and functional design of the modules in the form of
an EDMS architecture diagram.

Figure 6.7 shows the specific functions of a comprehensive engineering data
management system in a rough alignment with the superordinated components fol-
lowing the design of a PDMS:

• Application integration platform
• System integration
• Project control environment
• Engineering database
• Interfaces, data exchange and data preparation
• Access and administration

6.4 Engineering Data Management System (EDMS) 357

Fig. 6.7 EDMS architecture

Built upon a data foundation that is now obviously extended with project and
process data, the figure once again shows the main modules, application, control
and integration platform of an EDMS. The integration platform contains the afore-
mentioned CAx-applications. The control module contains the process, project and
change management functions on the one hand, and the other operative workflow
management on the other hand. An over-arching user/access rights management
system controls who can use or access the data.

6.4.4 EDMS Interfaces

At the beginning of computer-supported product development, very few interfaces
existed. Systems with software that was completely separate from other applications
were considered ready to use. Only special hardware was able to run certain software,
and data output was performed via screens, printers or a plotter and saved on data
tapes and (compared to today’s standards) huge discs. Although these circumstances
are long gone and past, isolated islands of many different products from numerous
providers on different hardware have developed in many companies over the last
years. As companies continue to optimize their processes, their systems and software
become more and more specific, and the importance of the links between these
elements increases.

358 6 Engineering Data Management

In terms of product data management, the goal of interfaces is not only to enable
data exchange, but also to ensure that data is always up-to-date and synchronized,
even beyond system borders. The goal is to implement the majority of these func-
tions in the background (i.e. with no user effort). The degree to which such systems
function as integrative components ultimately determines the overall quality of a
particular system technological solution. This function is precisely what is expected
from EDM in its complete form - the integration of all systems and applications
involved in the product development process. It is necessary to define how the mas-
ter data of different systems align with each other. This definition ensures that data is
mapped correctly to the defined fields whenever a data record is created, changed or
deleted, thereby guaranteeing that both systems will remain accurate and up-to-date.
When data structures differ between different systems, automatic synchronization is
required.

Integration has a significant advantage if all parties involved are using PDMS. In
such cases, geometry data can be displayed via a viewer that is usually not saved
on the ERP side. All of this is possible and has already been implemented several
times. Unfortunately, due to old conflicts resulting from a failure to use interfaces as
bridges, one aspect generally does not receive the necessary attention—the synchro-
nization of data (either automatically or manually) and the question of who triggers
synchronization and which information is transferred from where to where.

EDMS Interfaces for Data Exchange

This section covers the support of a controlled, documented and traceable method
for exchanging data between the internal clients and external customers or suppliers
of a company:

• Internal clients/suppliers: design, CAE, production planning, purchasing
• External customers/suppliers: OEM, component/system development suppliers

The functions of such import/export interfaces are:

• Data transformation, mapping and conversion
• I/O logics und methods
• I/O automation
• I/O quality, conformity and plausibility checks
• Protocolling of data transfer processes

6.5 Computer-Supported Engineering in the Context of EDM

The strong growth of IT-supported development is ongoing. Replacing drawing tables
by computers and software was the first step, which is being repeated today with the
implementation of parameter-oriented working software in a similar way. CAx sys-
tems are more than just an electronic replacement of previously existing methods.

6.5 Computer-Supported Engineering in the Context of EDM 359

They are also an extensive functional extension to fulfill the increased requirements of
product development. Simultaneous engineering has increased the amount of infor-
mation and data present in the development process and thus further increased the
complexity of tasks. Flexible yet standardized methods are required to maintain the
overview and to provide possibilities for continuous monitoring that can be imple-
mented from the organizational level down to the CAx detail level.

6.5.1 How CAx Changes Product Development

Although PDM can manage such tasks as the administration of released design data
and relevant parts lists and their preparation for manufacturing, logistics, calculation
of costs and product management, this is not yet EDM. The core of EDM is the
management of the complete product development process starting with the initial
request and then continuing through concept and detailing, serial development and
validation, mould and tool casting, and all the way to the prototype and examina-
tions, including the complete development history with revisions change requests and
workflows. However, EDM has additional possible applications in the context of the
structured management of three-dimensional product data in the CAx environment
(e.g. CAD, CAM, CAE) [10].

Software applications are represented by different groups of authoring systems,
such as:

• Computer-Aided Design (CAD) refers to computer-supported engineering and is
used as an umbrella term for 2D and/or 3D applications.

• Computer-Aided Engineering (CAE) refers to computer-supported engineering
procedures and encompasses all methods of computer support for working proce-
dures in the technical context. This includes calculations, analyses and simulations,
such as strength calculations or flow simulation.

• Computer-Aided Process Planning (CAP or CAPP) refers to computer-supported
work scheduling, which generates data for component manufacturing and assem-
bly based on conventional or CAD data.

• Computer-Aided Manufacturing (CAM) refers to computer-supported manufac-
turing, which features the direct control of manufacturing facilities and supports
transport and storing systems.

• Computer-Aided Testing (CAT) refers to the computer-supported and automated
implementation and the interpretation of hardware tests [16].

CAD, CAE, CAT and CAM have a significant influence on the process of product
creation. Figure 6.1 shows their positions in the Y-CIM model. None of these fields
can be considered an isolated field, and engineers must have at least a basic knowledge
of all of them. If such knowledge is present, CAx can clearly accelerate the produc-
tion process. Since all fields require expertise, they are tackled by multiple experts.
This requires communication (see Fig. 6.8) between them, which also depends on a
common terminology.

360 6 Engineering Data Management

Fig. 6.8 Relationship between CAD, CAE, CAT and CAM

The even greater challenge is the exchange of data between the fields. First, there
must be a suitable exchange format. Second, the requirements for the individual
fields differ. This makes data exchange harder and inhibits cooperation to some
extent. Within the complete process of a simulation, more than 50 % of the time is
used for data research and management [17]. Continuous data management between
parts list, CAD and simulation and the integration of simulation data (properties,
results etc.) into an EDMS can reduce this percentage.

6.5.2 CAD Integration

In most companies, the most important authoring system in product development
is certainly CAD software. This is where models are created, detailed and subdi-
vided into components and assembly groups depending on their intended functions.
The efficiency and duration of engineering and the degree of creativity, which is
the engineer’s core competence, depend on the degree of integration of the EDM
software.

CAD software is particularly important when multiple CAD tools are used (i.e. in
the case of multi-CAD installation). One frequent practice is to equip each of these
programs with its own team data management system (TDMS). This is frequently the
only way that specific software features can be used. Furthermore, it is only possible
to represent results in the models and to make changes if access to these special
features is granted. More often, it is nearly impossible for these special features
to handle models, mock-ups or drawings from other applications because they are
completely integrated data management systems that might even be based on the
same data format as the one provided by the CAD package.

6.5 Computer-Supported Engineering in the Context of EDM 361

This highlights one of the primary challenges faced by EDM as a tool for
integration—the need to exploit the full potential of a heterogenic CAD landscape
without losses and to provide a central management of development data. Another
aspect of EDM integration is that the design process is normally equipped with a
CAD system, either alone or in connection with proprietary management software
that is intended to last for several years. But what happens if the system must be
altered? What if, for whatever reason, a different CAD system needs to be installed?
How can design data from previous projects be handled in such cases? How can they
be maintained and further used in the new system, if necessary? This can lead to
enormous costs for companies who lack a systematic, electronic storage system for
all of the data that can handle output and, ideally, the conversion of the relevant data.
In this case, it cannot be guaranteed that none of the ‘old data’ will be lost in the
conversion.

Integration basically means that PDM functionality is offered within a CAD sys-
tem. Design engineers do not have to leave the application, but rather can create,
save, load or delete CAD data in PDM via user interfaces. For these engineers, inte-
gration mainly means an extension of application menus, which includes functions
that the CAD system alone cannot provide [10]. The integration of CAD and EDM
also means that design engineers do not depend on a single CAD system with con-
sistent classification features and EDM functionalities. In multi-CAD environments,
this advantage should not be underestimated. On the other hand, it means that EDM
accesses the data of connected CAD software directly to represent them subsequently
via particular viewers.

One critical point for most EDM implementations is the question of how well and
how completely existing development data (e.g. data created by the customer) can be
converted and imported as a basic design status to the EDMS. When implementing an
EDM, the project team faces thousands of CAD objects, all stored on decentralized,
individual CAD work stations, which must be imported into the EDMS. In addition,
EDM and CAD are rarely used in parallel. For this reason, high-quality EDM software
should always offer tools for importing existing data. Beyond this initial import, it
is important to plan and organize data change management with customers and
suppliers and to implement it in EDMS. For this purpose, virtual data milestones are
established where specific data management activities take place. These milestones
are called virtual prototypes (VPT) or digital prototypes (DPT) for the virtual product.
To this end, so-called data synchronization points (DSP) are set up for operative data
management. All these control and operative activities are represented as project
planning in EDM workflows.

6.5.3 CAD Implementation

In order to reduce the development time for a product and to guarantee the availability
of product data for all affected departments, most manufacturing industries need

362 6 Engineering Data Management

their CAD systems to be directly integrated into their business processes and EDM
systems.

Fig. 6.9 Criteria for the integration of CAD-systems

According to Scheer [2], it is necessary to consider some important criteria for
the integration of CAD systems into a PLM environment, as shown in Fig. 6.9. Thus,
EDM should be planned in advance, and project-specific functional requirements
must be coordinated between the engineering teams and the EDM development.
Usually, EDM functionality is implemented in a development project following an
EDM stage plan.

6.5.4 Virtual Computer-Generated 3D Product Design Models

In current engineering product development, steadily growing virtualization tasks
are causing an increase in the emphasis being placed on 3D product design models.
These models mainly consist of:

• the 3D CAD model, which is the geometric foundation of the product and thus
also the foundation of any modern virtual product development;

• the 3D DMU model for digital mock-up, which is exported from 3D CAD models
as a digital dummy for different simulation purposes;

• the 3D CAE model, which is specially prepared for calculation and simulation;
• the 3D VIEW model, which is a simplified 3D CAD model for viewer solutions;

6.5 Computer-Supported Engineering in the Context of EDM 363

• the 3D VR model, which is created during product creation by converting 3D
CAD models based on the focus of the VR system in use and is edited in terms of
properties and behavior; and

• the 3D STORAGE model, which is a format that is derived from a 3D CAD model
and is independent from any particular authoring system or 3D viewing software.
It is used for office applications or for purposes of reproducibility in long-term
archiving (e.g. 3D PDF format).

In this context, a 3D CAD model mainly represents the geometric properties of a
technical product, its product design and its structure. CAD models are composed of
different model-building geometric basic objects: points, lines, surfaces or volume
models. Among these options, the volume model is the most prominent due to its
current performance, particularly with respect to its re-usability in product design in
parallel and subsequent partial product creation processes.

The creation of 3D CAD models is supported by so-called technical modeling
because geometric modeling alone does not provide an adequate product descrip-
tion. In technical modeling, technical properties that do not only influence geom-
etry (e.g. material, tolerances and surface treatment) are assigned to the model. In
addition, relationships between geometric elements and functional information (e.g.
features that influence geometry) are assigned. The features are particular aggrega-
tions of design characteristics in terms of their properties, values, relationships and
constraints. Chapter 4 includes a detailed introduction and description of modeling
techniques in 3D CAD.

One difficulty lies in importing 3D model product data into the EDM system to
integrate them in engineering data management. It is also necessary to create specific
data models for the administration and control of features and to integrate these
models into EDM. Consequently, the use of different CAD authoring systems causes
severe problems for EDM integration. This leads to software and hardware problems,
as different software providers follow different market strategies, continuously adapt
their interfaces, and use differing CAD methods and training programs for design
engineers.

The 3D DMU model represents a digital model of a CAD-based product that
contains the component geometry and assembly group structure. Geometric design
primarily evolves via tessellation from a 3D CAD model (derivative approach), but
there is also a native approach which uses original digital masters of CAD models (cf.
Sect. 2.2.2). The DMU serves as an information and communication tool for model
analysis, which is primarily used for validating and optimizing a product with regard
to its spatial and functional design. DMU systems offer numerous functions for this
purpose, such as a visualization of the virtual product for the evaluation of engineer-
ing spaces and collisions via kinematic simulation. The aim of DMU is to provide
consistent availability of multiple views of the design, the expected functional range
of the future product, and further technological relations. One important application
of DMU is the joining of heterogeneous models from different CAD systems, after
which the results can be re-imported to the CAD model, if necessary. The DMU
geometry reference is usually represented in the team data management (TDM) of

http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_2

364 6 Engineering Data Management

an EDM. Thus, the unambiguous DMU specifications are product configuration,
product view and model state for a defined virtual milestone.

Viewing models are generated to provide all users with access to a product’s
visualization (regardless of their particular authoring systems) using popular viewing
tools. Commercially available viewing tools are inexpensive, easy to use and may
be used in a wider application range via WEB technologies, even across different
company. Each VR model relates to one 3D design model and is then extended
by the representation of the relevant design model’s behavior in the virtual world.
VR models are often created from surface and volume-oriented 3D CAD systems,
which do not depend on the interfaces of the particular VR systems used [18]. The VR
software in VR systems can also be used to represent the movements and reactions of
a VR model. VR is presented to the viewer in real time. The real-time presentation of
the core of VR (i.e. connected 3-dimensional computer graphics), immersive design
and the need for interaction lead to high requirements for VR models and their virtual
operational environment. In particular, sensory fidelity must be taken into account
to prevent uncomfortable side effects for the viewer both during and after the virtual
experience.

All of these different 3D design models must first be connected and repre-
sented in EDMS. However, the greater challenges are the integration of these
different CAD representations with their respective product structure views, as
well as the distribution of data to highly differing applications and the integra-
tion of specific authoring systems (CAD, CAE, DMU, VR, viewer, office software)
into EDMS.

6.6 Integrated EDM Applications in Product Development

The following sections examine some concrete application scenarios in detail, focus-
ing on EDM support of CAD and CAE applications and their integration in the
product development process.

6.6.1 Functional Dimensioning and Optimization
in Early Design Phase

The role of CAE in the early design phase is continuously changing. Parametric
geometry models are able to support the re-calculation of models from former projects
to provide basic data for initial calculation or simulations. These early geometry
model often feature simplified geometries, which lead to a reduced level of detail
in CAE processes. Currently, vehicle concept decisions must be validated during
drafting and development. As continuous CAD descriptions are not available in this
early phase, CAE methods and procedures for a rapid creation of parametric geometry
models are directly interlinked. Only then, the CAE engineer can contribute to new
developments by evaluating crucial influences on the required functionalities.

6.6 Integrated EDM Applications in Product Development 365

Evaluation steps are always oriented towards the state of development. The ability
to adapt reactions during the design phase based on the relevant depth of information
is essential. Even if no detailed information is available in the early phase, rough
parametric models should be provided that are able to define space, topology, styling
and package requirements. Topology-geometry models are also evaluated in terms
of their suitability to fulfill functional requirements throughout development.

In the end, these models are meant to provide interlinked vehicle design, meaning
that they should provide a foundation for the concept team, which consists of special-
ists for package, calculation, pre-development and design. Topology and geometry
models should be able to adapt quickly to new package or styling information. More-
over, they have to support the optimization of geometrical topologies and address
issues of standardization, commonalities, vehicle families and exchangeability. In
addition, topology geometries should ideally offer a data interchange interface. This
common data exchange platform will serve for:

• Re-using implicitly parametric vehicle models
• Creating, structuring and distributing knowledge
• Using knowledge from current and past development projects
• Improving of data and data consistency

A topology geometry model is highly valuable. The concept engineer must be able
to provide statements on crash behavior, stiffness changes and geometric compati-
bility with existing 2D/3D package requirements. In this way, the topology geometry
model supports the engineer in deriving not only an analysis model but also a design
model (including design variables, design space, target function and constraints)
and in directly verifying and supporting the optimization of the topology. For this
purpose, a topology geometry model enables the automatic generation of a robust,
high-quality grid for finite element computations. In addition, it derives the necessary
joinings (e.g. bonds, seam welds, spot welds) and the FE conditions from parame-
ters. In this context, it is important that the degree of detail depends on the state of
information during the design process. Thus, there is always a compromise between
the desired precision of results and analysis efforts.

6.6.2 Consistency of Simulation Data in Optimized
Design Processes

The desirability of having continuously usable data throughout the design process is
obvious. However, it is important to acknowledge some conflicting targets, such as
those present in functional validation and geometric design requirements. The used
design tools should always follow and support the actual current states of informa-
tion. Parametric models must be designed in such a way that the design engineer can
implement parametric changes that were not previously planned at any time. In order
to fulfill these requirements, references in parametric design systems are changed

366 6 Engineering Data Management

and defined for interpretation (e.g. for topology optimization). To enable these fea-
tures, the design system should automatically create and interpret new geometric
configurations and the resulting parameterization. The demand for a parameterized
concept model that can be used continuously up to the point of serial production is
neither realistic nor productive.

EDM plays a essential role here because EDMS can import parameter data from
authoring systems through direct interaction and thus cover most of the issues of prod-
uct development. On the other hand, EDMS can also act as the parameter database
itself, so non-interlinked systems (e.g. ERP and PPC) can be supplied with para-
meter data. EDMS is also used for configuration management in this context and
can therefore be understood as a knowledge database as well. High data integrity
at this level also increases the degree of automation of data management activities
and consequently increases the trust in the reliability, availability, currentness, and
quality of data.

6.6.3 Interdisciplinary Consistency of Simulation Data

The effort required for the management and administration of product information
is growing significantly as the volume and complexity of data continue to grow.
Company-wide system integration solutions in technical departments are currently
limited to design data due to the relatively high degree of overlap of information from
different CAD systems. As the complexity of product structure definition grows,
completely new requirements are emerging within and between different engineer-
ing disciplines because the level of shared information is very low (e.g. design and
simulation data). Interdisciplinary structures of this kind enhance the quality of rep-
resentation of product development history and configuration and thus represent
an initial step towards interdisciplinary integration. However, the requirements are
considerably higher for extending this approach for the common use of application
data from other disciplines. For this purpose, the information objects within product
structure must inevitably be adapted and standardized in such a way that they can be
processed and interpreted by different systems and tools from multiple disciplines.
The premise for this is the structuring and modularizing of the processes that deal with
these information objects. For example, one requirement is to structure operational
processes such that they have input and output information, which establishes a
foundation for shared information objects.

Configuration management, the core competence of EDMS, also offers a general
solution. The difficulty here lies mainly in defining such a structuring standard that
takes into account the requirements of all disciplines and in institutionalizing this
standard in the company. In addition, the respective experts must create and maintain
the different structures in EDMS. Finally, the issue of change management should
also be addressed on every structural level.

6.6 Integrated EDM Applications in Product Development 367

6.6.4 Integration of Design and Simulation

Development times are getting shorter in order to react as quickly as possible to trends
and customer demands. New, up-to-date development methods must be established
to keep pace with this trend and prevent a decrease of product quality. It is very
expensive to remedy product defects if they are detected too late. Thus, late detection
results in considerably higher development costs and, in the worst case, even to a
delayed market launch. Design evaluation has traditionally occurred at the end of the
design phase. Since different types of simulation (e.g. mechanical, thermal, kinematic
and acoustic simulations, as well as flow simulation and molding simulation) are
often implemented without CAD-integrated simulation solutions, data transmission
and conversion is cumbersome, and specialist staff must be employed. Automotive
manufacturers need more integrated simulation at earlier stages of the development
process in order to reduce costs (especially costly physical testing) and to optimize
the product quality and marketability.

Since there is a potential for high savings at the beginning of component and
module development, it is clear that engineers should use simulations in the early
design phase. Highly automated simulation solutions that are integrated into design
environments at an earlier stage eliminate time-consuming tasks. The difficulty for
the engineer in using CAx tools is also reduced when the application is integrated
into the relevant CAD environment. Close collaboration between design engineers
and CAE engineers can improve early product optimization as well. Using the same
CAx system saves precious time by avoiding data conversion and redundant data
keeping.

Synergies between design and simulation software within one EDM environment
clearly facilitate the use of simulations. In this way, simulation can be completely
integrated into the development tool, and transparent connections to design geometry
can be established. Thus, engineers can implement required changes at an early stage
and reduce the duration of simulation cycles. This leads to several advantages:

• No geometry interface → no problems of geometry transmission and no effort for
geometry recovery

• Associative and generative connection to geometry simulation → simulation is
always up-to-date

• Access to parametric information from design (e.g. wall thickness, positions and
center of gravity definitions)

• Result evaluation according to pre-defined rules via existing standard functions or
CAD applications

• Direct manual or automated change of geometry and updating of results → quick
evaluation of variants

• Use of analysis templates → easy to replace geometry and reuse FE-definitions
• One single application environment → identical user handling and menu structure
• Controllable CAD/CAE data management (e.g. subscribing, change management,

analysis of potentials)

368 6 Engineering Data Management

6.6.5 CAD/CAE Data Management

Automotive manufacturers make increasingly more use of CAE methods to calculate
vehicle properties. These properties affect the body and chassis, as well as safety
components, aspects of comfort and power train. The desire for early optimization
and functional approval of a vehicle (i.e. before a hardware prototype is even built)
is the main reason why CAE methods have become more popular in recent decades.
The goal is to use a virtual prototype for calculations as early as possible, in order
to find faults and to implement design-related changes in the CAD model [16].

In some configurations, especially in large companies, EDM systems control
process sequences and administer product data, and the integration of product struc-
ture and parts lists is already highly sophisticated within the design departments.
In contrast, CAE systems deliver their results in the context of virtual product vali-
dation via simulation and calculation with a delay. As a frequent consequence, the
development state of the product does not match the current calculation results. To
improve the system, the defined target must be to integrate CAE systems into the
development process in a synchronous manner and to manage the CAE system data
in an EDM system.

For this reason, subsequently performed simulations and the emerging results
must be managed in the EDM system with reference to design data. To guarantee
consistency, data storage must be harmonized between simulation tools and the EDM
system. In this context, the relevant data to be exchanged are:

• 3D geometry as 3D CAD models or 3D CAE models
• Product structures (DMU, assembly sequences, FEM, NVH or crash simulation

models)
• Mass properties (mass, center of gravity, moment of inertia)
• Material data (material, thickness of metal sheet, density)
• Joining systems (e.g. welding points, rivets)
• Technology data

Figure 6.10 shows an EDMS architecture schema with CAx and xDM integration.
As basically described in the schema of EDMS architecture in Fig. 6.7, the individual
functional modules again establish a common engineering database.

The process-oriented workflow control is situated in the upper area of project and
process management. The integration platform in between is a bit more complex
because different disciplines with different applications and therefore different data
formats are integrated, and integrated configuration management is required for the
definition of digital prototypes (DPT). Additionally, different xDM systems result in
a non-interlinked database, which creates an additional challenge for operative data
exchange. The target is to manage all data relevant for CAD/CAE within one EDM.
In the near future, the variety of functions offered by different software applications,
as well as the high amount of different software providers will preclude a holistic
integration of EDMS. However, an initial successful step would be to at least use
EDM functions consistently for workflow management, change management, central

6.6 Integrated EDM Applications in Product Development 369

Fig. 6.10 EDMS architecture with CAx and xDM integration

data storage, data preparation and data import/export in all CAx disciplines. Thus,
for the time being, the advantages provided by existing links in data management
systems and software applications need to be integrated into the EDM approach as a
whole. In terms of CAD application, this is accomplished by classical product data
management systems and the increasingly important team data management (TDM)
systems. In the case of CAE, the integration can be achieved by different types of
simulation data management (SDM) systems.

References

1. Abramovici, M., Bickelmann, S.: Engineering Daten Management (EDM) Systeme:
Anforderungen, Stand der Technik und Nutzenpotentiale, CIM-Management (1993)

2. Scheer, A.W., Boczanski, M., Muth, M., Schmitz, W.G., Segelbacher, U.: Prozessorientiertes
Poduct Lifecycle Management. Springer, Berlin (2005)

3. Grabowski, H., Schnack, E.: Berechnung und Simulation in der Konstruktion. Lecture script
at TU Karlruhe (2009)

4. Bullinger, H.: EDM: vom Datenmanagement zum Wissensmanagement. In: Chrysler, D. (ed.)
Proceedings EDM Forum. Stuttgart, Germany (1999)

5. Eigner, M., Stelzer, R.: Product Lifecycle Management. Springer, Berlin (2009)
6. Spur, G., Krause, F.: Das virtuelle Produkt - Management der CAD-Technik. Hanser, München

(1997)
7. Öterle, H.: Business Engineering - Prozeß- und Systementwicklung. Springer, Berlin (1995)
8. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business Revolu-

tion. HarperCollins, New York (1993)
9. Davenport, T.H.: Process Innovation: Reengineering Work Through Information Technology.

Harvard Business Review Press, Bosten (1993)

370 6 Engineering Data Management

10. Sendler, U., Wawer, V.: CAD und PDM- Prozessoptimierung durch Integration. Hanser,
München (2011)

11. Eigner, M., Hiller, C., Schindewolf, S., Schmich, M.: Engineering Database - Strategische
Komponenten in CIM-Konzepten. Hanser, München (1991)

12. Doblies, M.: Globales Produktdatenmanagement zur Verbesserung der Produktentwicklung.
Phd Thesis, TU Berlin (1998)

13. Anderl, R.: Produktdatentechnologie B - Produktdatenmanagement. Lecture Script at Technis-
che Universität Darmstadt, Germany (2003)

14. Hirz, M.: CAx in Automotive and Engine Technology. Lecture script at Graz University of
Technology, Austria (2011)

15. Goltz, M., Müller, D.: PDM/PLM - Verwalten von Produktdaten ohne Grenzen. IMW Insti-
tutsmitteilung 27, 57–67 (2002)

16. Meywerk, M.: CAE-Methoden in der Fahrzeugtechnik. Springer, Berlin (2007)
17. Anderl, R.: Produktdatenmanagement in der Simulation und Berechnung. Produktdaten J.

(2002)
18. Berliner, K.: wissenschaftliches Forum für Produktentwicklung e.V.: Technology monitoring

1/01 - Virtual Reality. Technical Report, Paderborn, Germany (2001)

Chapter 7
Knowledge Management in Product
Development

Generating and managing knowledge about a certain product is crucial for automotive
product development and should therefore be assigned a high priority. This chapter
describes product knowledge as a basis for investigation, as well as its development
along the product life cycle. Thus, knowledge takes center stage as a kind of customer
of engineering data management. The discussion investigates the fundamentals of
knowledge, knowledge management and knowledge transfer, as well as the related
most important basic models and approaches. Although no new definitions and con-
cepts are presented here, this chapter is intended as a summary of current scientific
findings in the area of knowledge management, which provides background for fur-
ther analysis.

7.1 Product Knowledge

Although there are many slightly different definitions of product knowledge, essen-
tially it involves:

• Knowledge and information contained in the product (geometries, functions, hard-
ware)

• Information about the product—explicitly documented knowledge as information
• Knowledge about the product—knowledge in the heads of product developers

The following analysis addresses the development, meaning and life cycle of
product knowledge, as well as definitions of the product knowledge product and
product knowledge management.

7.1.1 Development of Product Knowledge

The contemporary approach to data processing is different because data are not only
computed and stored, but rather augmented with additionally linked information that

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 371
DOI: 10.1007/978-3-642-11940-8_7, © Springer-Verlag Berlin Heidelberg 2013

372 7 Knowledge Management in Product Development

is provided in a user-friendly way and helps with efficient interpretation. Whereas
product data is merely a string of characters without any indication of usage, product
information also provides knowledge about sequences, facts or events regarding cer-
tain products. Since product information has a certain reference to the problem itself,
it is goal oriented and has its own semantics, from which the related product knowl-
edge is drawn. The consistent application of product knowledge within a discipline
leads to mastery of the associated routine and finally becomes product knowledge
competence. In North’s [1] concept of stairs of knowledge, the ability to compete is
the final step at the highest level.

Product knowledge emerges from various origins. Just as fundamental human
knowledge is learned through upbringing and all manner of education, product
knowledge also develops naturally in every human being who has an interest in
a particular product. In terms of organizational product knowledge, this means that
methods of product data management and knowledge management must be used
in order to build up a collective knowledge base, which establishes and preserves
the acquired product knowledge. In this context, product knowledge represents the
entire body of information surrounding a product. This knowledge is created through
product development and product advancements and is further extended to a range of
variants and versions. Ultimately, knowledge aggregates along the entire product life
cycle. The combination of basic knowledge, professional expertise and knowledge
from experience, combined with knowledge about processes and the life cycle, leads
to the product knowledge, which is also influenced by socioeconomic factors.

Engineers are specialists. The quality and level of innovation of a company’s
products depend on the special knowledge and expertise of its engineers, as well as
their inventiveness and creativity. Ultimately, customer satisfaction and economic
success depend also closely upon these aspects. While engineering knowledge is
first and foremost in the heads of engineers, it is also increasingly being stored in
the computer data generated by engineers. Such data (especially the increase of
geometrical design elements, assemblies, modules and products) can be key factors
for integrating different engineering disciplines into the overall processes of product
development. This data is also an important factor for the continuous guidance of
core processes within a company.

A company has to gain possession of the special knowledge of engineers, which
has often been seen as private property. Instead of maintaining personal ownership
of expert knowledge, engineers offer it up for general use, which transforms it into
a company resource. Experience has shown that the engineers are only willing to do
this if they can count on improvements in work conditions and when they have or
possess the skills and resources required to make information more generally avail-
able. For many engineers, this implies the ability to reuse design models or variant
investigations, as well as the ability to trace all changes of product development and
product documentation. Since EDM provides these functions, it makes product devel-
opment more efficient. One prerequisite is that data management must be understood
as not only a depository, but also a tool for steering processes. Admittedly, EDM also
involves changes in both the individual work of engineers and the form and content
of collaboration between the disciplines involved. Individual engineers will have to

7.1 Product Knowledge 373

abide by certain rules and will also have to perform additional data management that,
at first glance, will not be inherently beneficial for their particular range of activities.
Nevertheless, engineers must fully embrace all of the aforementioned principles in
order to achieve a successful process optimization.

7.1.2 Life Cycle of Product Knowledge

Product knowledge as a class of information passes through nearly the same char-
acteristic life cycle as the product itself. This means that it evolves and eventually
becomes obsolete; it is acquired and then forgotten. While this could be seen as
a harmless and natural process, if the product knowledge is an essential company
asset, it can also be fatal. Based on the introduction of the knowledge transfer in
product development in Sect. 7.3, this section examines the product life cycle chain
for product knowledge, which consists of:

• Product motivation—provides the impetus to examine the product more closely
• Product investigation—the collection of all suitable, findable, explicit data about

a product, as well as any related information and knowledge
• Interpretation of information—the structuring and evaluation of collected facts
• Awareness of knowledge—the storage of new product knowledge
• Publication of knowledge—the dissemination of new product knowledge
• Application of knowledge—the practical use of product knowledge
• Selection of knowledge—the preliminary stage of product knowledge conservation
• Loss of knowledge—the preliminary stage of product knowledge oblivion

The long-term preservation of product knowledge, which is similar to product
preservation and long-term knowledge preservation, can be seen as the establishing
of the active product knowledge pool.

7.1.3 Defining Product Knowledge

Nowadays, product knowledge (especially specific product knowledge) is one of the
most important factors of production and economic success for organizations around
the world. Product knowledge provides the basis for powerful innovations because it
collects the know-what, know-how and know-why for all particular products across
their development states. Certain aspects, such as a product’s design (including col-
ors and materials), always capture the spirit of the time and society’s current taste.
Product development lines also reflect the technical capabilities of society during a
certain period in history and provide information about preferred technical solutions
and choices in engineering designs.

Product knowledge can be enhanced by providing early expertise. This can be
done by using simulations and computations to generate and evaluate knowledge, as

374 7 Knowledge Management in Product Development

well as to provide other relevant information. In addition, product knowledge can be
expanded via feedback from product life cycles, evaluation methods, optimization
methods and organizational decision support. Today, it is possible to conserve knowl-
edge in knowledge documents and knowledge products. However, simply storing
such special knowledge in PDM systems, document management systems or certain
electronic memory media is not sufficient. Instead, there is a growing demand to
be more knowledgeable about the stored data’s content, rather than simply know-
ing where and how it is stored. Furthermore, it is necessary to plan for the possible
breakdown of the hardware system or a software-related data loss. For this reason,
continuous maintenance of the digital inventory is essential, and data is stored in the
conservative, traditional manner (i.e. put down on paper) to cover the risk of data
loss. Weaknesses and aberrations in particular products can be easily tracked and
shown over the different stages of development, which can be beneficial for further
product development.

7.1.4 Product Knowledge Products

Product knowledge products are the concrete manifestation of fact knowledge (know-
what), process knowledge (know-how) and explanation knowledge (know-why).
More precisely, they represent explicit, impersonal knowledge about products in
their versions and variants. Such representations also include knowledge about dif-
ferent kinds of products and product classes. According to Probst [2] these products
are also part of product knowledge conservation if they can be reused and are valid
for a longer period.

7.1.5 Product Knowledge Management

Within the product development process, product knowledge includes technical
and economic information about the necessary methods, facts and rules about the
expected product life cycle, and the product assembly. This knowledge can be univer-
sal, sector-specific, organization-specific or product-specific. This knowledge data
should be collected and preserved, and all created documents and applications of
product development should be stored centrally and archived conveniently, at the
very least. Although current PDM and document management systems can store
and archive data effectively, the state-of-the-art technology is often unable to imple-
ment content linkage or to store knowledge data such that it can be easily located
and published. Thus, EDM systems must be altered in the coming years to make
them more similar to so-called product-knowledge-management systems. This can
be accomplished by integrating knowledge management activities into these original
EDM systems. This alone is one approach for archiving data on product knowledge
over a long term.

7.2 Fundamentals of Knowledge Management 375

7.2 Fundamentals of Knowledge Management

7.2.1 Knowledge and Knowledge Management

Knowledge management is a management tool which can be used to design and
control processes and can also be applied to support the general development of an
organization. The task of knowledge management is to create boundary conditions
for a better cross-linkage of knowledge senders and receivers, with the ultimate goal
of improving the generation and application of knowledge. Wohinz has suggested
that knowledge management can be interpreted as the management of knowledge
systems [3]. Thus, successful knowledge management means a purposeful investment
in people, organization and technology.

Defining Knowledge

In order to focus specifically on knowledge, it is important to delineate the intended
scope of the term. Researchers from disciplines such as philosophy, psychology and
sociology have used the term knowledge, and so many people have written about the
topic that there is no clear, generally accepted description of knowledge. This paper
draws on the ideas of Probst, who defines knowledge as “The whole set of experience
and all skills that individuals use to solve problems.” [2]

Differentiating Data, Information and Knowledge

Many users have sought to define knowledge, and their definitions are normally
influenced by their own particular challenges and preconceptions about the topic. The
following list of terms highlights some of the main criteria for differentiating between
different terms (e.g. characters, data, information and knowledge), as well as the
correlation between different hierarchy levels among these terms and conditions [4].

Data can consist of symbols or sequences of characters (e.g. letters, digits, special
characters) which are combined meaningfully and are in line with a code or syntax.
However, raw data is not interpreted, and thus it is possible to draw conclusions based
solely on data [5].

Information, on the other hand, is created when data is evaluated and placed into
context. By adding an economic perspective or interpretation, raw data is converted
into meaningful information that can be used to guide operations and decisions.
Knowledge, in turn, develops when information is further connected in a goal-
oriented way and classified within the context of experience. The dependence on
context might give rise to the problem that the same information can lead to dif-
ferent forms of knowledge about the same circumstances if it is placed in different
experience-based context.

376 7 Knowledge Management in Product Development

North’s Stairs of Knowledge

North’s concept of stairs of knowledge helps to illustrate the important definitions
related to the terms data, information and knowledge [1]. Knowledge only becomes
valuable to a company if such knowledge (knowledge—what) is turned into mastery
(knowledge—how). For this reason, knowledge has to connect to action. However,
since mastery only leads to concrete actions if a certain drive exists, a relevant
motivation or desire is indispensable. Actions shows results that can be used to
measure how a person, a group of people or an organization (e.g. enterprise, university
institute) uses knowledge to solve a problem in terms of a certain defined target. This
ability, which is also called competence, becomes well defined at the moment when
knowledge is applied.

Core competences, which are seen as extraordinarily important for organizations,
are a collection of skills and technologies which include specific knowledge and
cannot be easily copied by competitors. They allow the organization to satisfy the
customer and can be transferred to new products and product areas [6]. Because they
are unique, core competences ultimately help determine the competitiveness of an
enterprise, as knowledge in the form of competences becomes a strategic resource
that provides the foundation for developing competitive advantages.

7.2.2 Basic Elements of the Knowledge Base

Structuring of Knowledge

The relevant literature covers the ways knowledge can be structured and how dif-
ferent forms of knowledge can be distinguished. In the present book, knowledge is
structured into knowledge psychology, expression and knowledge carrier [7], see
Fig. 7.1.

Structuring in Terms of the Knowledge Carrier

This form of structuring shows that knowledge is not only an individual possession
but is also important for an organization:

• Individual knowledge is the knowledge of each person. It is context-free, and its
availability depends on the knowledge carrier.

• Collective knowledge is only important within a particular environment or orga-
nization (team, enterprise, etc.). It is knowledge from different people that can be
combined to result in target-oriented actions and is owned by all members of a
collective.

7.2 Fundamentals of Knowledge Management 377

Structuring Based on the Ability to Express

This classification shows whether or not the knowledge carrier is aware of the knowl-
edge and therefore whether or not it can be expressed:

• Explicit knowledge is knowledge that is conscious and can be expressed. The
knowledge carrier is aware of it and can talk about it.

• Implicit knowledge is knowledge of which the carrier is not consciously aware. It
either cannot be captured or can only be captured with a significant effort (e.g. by
using special questioning or analysis techniques).

Structuring Based on Knowledge Psychology

Knowledge psychology distinguishes between declarative knowledge and procedural
knowledge:

• Declarative knowledge relates to all facts (e.g. operations, issues) and is constituted
as knowing what.

• Procedural knowledge is an awareness of the way cognitive processes are carried
out and is also referred to as process knowledge or Knowing how.

Fig. 7.1 Structure of knowledge

378 7 Knowledge Management in Product Development

Basic Forms of Knowledge

There are three basic forms of knowledge:

• Fact knowledge (know-what) describes knowledge about specific facts and events.
• Process knowledge (know-how) encompasses the knowledge required to execute

development processes.
• Explanation knowledge (know-why) includes knowledge about cause-effect rela-

tionships and the coherence of the causal chain.

The form of knowledge also states whether it is explicit or tacit. In addition, the
knowledge dimension includes encoded knowledge, which can include knowledge
in figures and textual descriptions, data and formulas in books, documents, com-
puter files, databases, software or videos. The material forms of this knowledge are
called knowledge products, which are explicit and independent from individuals. If a
knowledge product can be stored and is valid for a longer period, it is also known as
a knowledge preserve. Knowledge integrated in databases can only be fully utilized
by targeted human actions [2].

Implicit and Explicit Knowledge

Knowledge can exist in different aggregate states. The differentiation between
explicit and implicit knowledge can be traced back to Polyani [8], who argued that
all people know more than they can articulate. He called the part of knowledge that
cannot be expressed tacit, which is also known as implicit knowledge. The ability to
communicate and the means of doing so can be used to differentiate between these
two forms of knowledge.

Implicit Knowledge (Tacit Knowledge)

Implicit knowledge is strongly based on experience and personal values, and the
individual is often unaware of it. It is also difficult to observe, articulate and formalize.
It is the part of knowledge which an individual either cannot express or can only
express with a great effort. It is the kind of knowledge that is nearly impossible to be
expressed completely comprehensibly. Tacit knowledge, therefore, is strongly tied
to the individual person.

Explicit Knowledge

In contrast, explicit knowledge is schematic. Since it can be encoded with languages,
figures, characters, symbols, drawings, etc., it is also easier to communicate. Implicit
and explicit knowledge can be transformed into each other. Implicit knowledge must
be codified in order to translate it into explicit knowledge. Once knowledge has

7.2 Fundamentals of Knowledge Management 379

been codified, it can be accessed and understood by other people, and it can also be
organized, used and shared with others.

Individual, Collective and Organizational Knowledge

Individuals are the central carriers of organizational knowledge because they have
the ability to transfer data into knowledge and are able to use that knowledge for
the company’s benefit. However, it is not sufficient to view the knowledge base
only from the individual’s perspective. In fact, many processes contain elements of
collective knowledge and provide the basis for effective organizational action [2].
Organizational knowledge is another kind of knowledge that contains both individ-
ual knowledge and the collective knowledge shared by groups. This organizational
knowledge is more than the sum of knowledge of individuals, and it provides an orien-
tation and a frame for the actions of individuals in an organization. The combination
of individual and collective knowledge forms the organizational knowledge base.

Organizational knowledge is created by sharing knowledge between individuals
within the organization or possibly also including individuals outside of the orga-
nization in order to take actions that contribute to the fulfillment of a stated goal.
Thus, the organizational knowledge base represents an extension of the collective
knowledge and offers a certain potential. It includes individual knowledge which is
not accessible to an organization, as well as combinations of individual knowledge
which did not previously exist. A company’s raw, stored data does not count as part
of the organizational knowledge base.

7.2.3 Knowledge Management in Industrial Management

In the present book, knowledge management does not mean managing raw knowl-
edge, but rather the management of knowledge systems. Knowledge management
involves creating a guiding concept for the target-oriented design, steering and devel-
opment of an organization. Knowledge management must establish boundaries in
order to create and link individual bodies of knowledge. Although the approaches
to knowledge management are as different as the definitions of the term knowledge,
generally speaking, two ways can be used:

• People-oriented approach: The focus is on the employee as knowledge carrier.
• Technology-oriented approach: The focus is on the supporting information and

communication technologies (i.e. a greater focus on data and information man-
agement).

The management of knowledge in industrial management can be seen as a basic
prerequisite for target-oriented action, which helps create and maintain a compet-
itive edge. However, knowledge management goes beyond corporate borders. The
newest trends are trying to create an efficient interface to customers, which can

380 7 Knowledge Management in Product Development

transfer and exploit all customer-related knowledge (customer knowledge manage-
ment). Basically, this represents a combination of customer relationship management
with knowledge management.

7.2.4 Basic Model of Knowledge Management

For experts in applied sciences, it is often difficult to grasp the importance of the
field of knowledge management. Therefore, it is important to elaborate the concepts
of knowledge management in an easily comprehensible manner, and a knowledge-
oriented organization design should be used to present the goals in a transparent
manner.

Fig. 7.2 The basic model of knowledge management

Figure 7.2 shows the basic model of knowledge management as a possible
approach for the knowledge-oriented investigation of an organization. It is divided
into five levels—the knowledge, data, operational, target and cultural levels. These
levels identify the aspects that are important when dealing with organizational knowl-
edge and define the organizational boundaries that can be established to optimize the
development, transfer and use of knowledge [9].

7.2 Fundamentals of Knowledge Management 381

Levels of the Basic Model

The traditional differentiation of knowledge and data/information leads to the dis-
tinction between a knowledge level and a data level. The knowledge level includes
the personal element of the organizational knowledge base. On the knowledge level,
employees play the central role, and establishing links and communication between
employees is also important. In contrast, all of the organization’s data and informa-
tion can be found on the data level, which includes the explicit, collective knowledge,
as well as the related technological infrastructure for storing, organizing and distrib-
uting knowledge.

However, the real value is added in different business processes on the operational
level of an organization, where the knowledge is implemented in certain actions. The
gathering and interpretation of operative results and their resulting adaptation for fur-
ther actions can bring an adjustment of individual and organizational memory, which
is also known as learning. The target level is above the three levels of acting, knowl-
edge and data. It defines the targets and requirements of knowledge management.
Here, specifications from organizational strategies are broken down to the level of
individual business processes. The strategic knowledge management and the con-
trolling of knowledge are also found on this level. The knowledge targets relate to
the design of important knowledge activities, but also to the creation of necessary
boundary conditions.

All of the knowledge activities described in the first four levels exist within the
context of the organization’s culture level. The culture of an organization has a
important influence on how knowledge is handled. In this context, it is crucial that a
tolerant, open culture of learning be established so that employees can communicate
openly with each other and be willing to share their knowledge. Generally speaking,
tools, methods or software solutions do not really help if they are not accepted by
the people involved, and the organizational culture has a strong influence on this
acceptance.

Cross-Linking of Levels

Direct interactions between the target level, the knowledge level, the data level and
the operational level are particularly important. The culture level of the knowledge
model lies in the background and determines the establishment of cultural boundary
conditions for activities on these other levels. Demands from the target level are
directed to the operational level and the knowledge level, which requires specific
knowledge targets. Targets on the operational level are generally aimed at a business
process and normally include knowledge-related goals. With regard to the execution
and effectiveness of the measures undertaken, controlling should provide regular
feedback to the target level, which makes it possible to adjust targets or to derive
further actions to achieve the relevant objectives.

The knowledge and operational levels are linked due to the application of knowl-
edge on the operational level and the action-based learning process. Once again,

382 7 Knowledge Management in Product Development

action-based learning creates new knowledge at the knowledge level itself. Finally,
the knowledge and data levels are directly linked through the documentation and
information processes. Analysis transforms data into knowledge, which is then trans-
formed into knowledge and made explicit. The operational and data levels are in turn
linked via data transfer, which provides important data for the execution of processes
to the data level, where the data itself is stored and processed.

7.2.5 System Orientation in Knowledge Management

Knowledge management can now be explored in terms of defining a knowledge
system. A system consists of individual elements which are correlated to each other
and combined to form a unit. The connections can be material flow, information flow,
relative positioning, functional dependence, etc. Each individual element can also
be seen as a system itself. The arrangement of elements and their connections are
called the structure of a system [10].

Although the purpose of the system does not need to be pre-defined, it will influ-
ence the interactions within the system. The knowledge system can therefore be seen
as a socio-technical system in which people and technical facilities interact with each
other. The purpose of such a system can be described with the modules of knowledge
management.

Fig. 7.3 Individuals and technical facilities as elements of a knowledge system

Transfer relationships in a knowledge system are closely related to system ele-
ments. As previously described, a socio-technical system consists of social elements
(e.g. humans) and technology system elements (e.g. computers). Although the social
elements can be assigned to both the operations and knowledge levels, only the
knowledge level is relevant for this discussion of transfer relationships. The ele-
ments of the technical system are assigned to the data level and represent the data
of a company. Figure 7.3 illustrates the knowledge system, which contains people
(P1, P2) and technical facilities (T1, T2, T3) that are connected to each other. The

7.2 Fundamentals of Knowledge Management 383

figure also shows that connections can exist with elements beyond the borders of
knowledge systems.

The knowledge system is therefore a specific expression of an industrial operation
system and has a correlation with the system of value creation. As knowledge carriers,
people form a social subsystem and are seen as elements of the value chain on the
operational level [3]. Organizational and technical facilities (tools) are the elements
of the technical support subsystem. It is common to distinguish between three levels
of knowledge management (cf. Rehäuser/Krcmar) [4]:

• The knowledge use level—the basis for knowledge requirements and provided
knowledge

• The knowledge holders level—people who are responsible for meeting knowledge
needs

• The knowledge infrastructure and information processing level

Knowledge management can therefore be interpreted as the management of
knowledge systems.

7.3 Knowledge Transfer in Product Development

Knowledge transfer is a key factor for the efficient design of product development
in the automotive industry. The complexity of the automobile product itself leads
to a very complex product knowledge that needs to be maintained and exchanged
via transfers between all of the parties involved. A variety of specific and com-
plex development, optimization and simulation processes depend strongly upon each
other. Additionally, they are accompanied by a pronounced change management. One
significant challenge is the manufacturer/supplier relationship across multiple orga-
nizational levels and units. Here, the related knowledge transfer must be managed
with an eye towards protecting know-how, which is seen as an important compet-
itive advantage. In addition, the communication between employees of a project
team and the support of systematic and structured data management play significant
roles in the efficient transfer of knowledge. A detailed analysis of the knowledge
processes is necessary in order to identify and properly interpret the factors that
influence knowledge transfer. The following sections describe the basic concepts of
knowledge transfer.

7.3.1 Definition of Knowledge Transfer

In the context of knowledge management, the contact between two individuals is
important, and the question of whether or not knowledge is transported is particularly
relevant.

384 7 Knowledge Management in Product Development

Hartlieb [11] defines knowledge transfer as follows:

“The knowledge demand is satisfied by the transfer of existing knowledge. A knowl-
edge transfer has taken place if the knowledge receiver has a similar understanding
of the knowledge content as the knowledge sender.”

The knowledge transfer is an important object in the investigations of knowledge-
oriented engineering data management.

Knowledge Transfer Versus Knowledge Induction

Sammer [12] describes the term knowledge induction as follows:

“Knowledge of an individual becomes data through documentation—this data and
only this—is transferred and induces possibly similar knowledge in the knowledge
receiver.”

In this book, the term knowledge transfer is used to express a concept that goes
beyond this definition of knowledge induction. First, a distinction is made between
direct and indirect transfer of knowledge. Within indirect knowledge transfer, a fur-
ther differentiation can be made between knowledge transfer through telecommu-
nication and knowledge transfer through documentation and information, whereby
only the transfer of knowledge through the documentation and information processes
fits within the definition of the term knowledge induction.

7.3.2 Transfer and Transformation Processes
in the Knowledge System

From the comparison of data and knowledge, the following transfer and transforma-
tion processes are derived, which are essential for further analysis and the design of
knowledge transfer processes.

Figure 7.4 shows a matrix of possible data and knowledge transfer relationships
based on the work of Nonaka/Takeuchi [13].

Knowledge Transfer Process

This relationship deals with the direct transfer of knowledge between two individuals
(knowledge transfer without data management).

Documentation Process

Sammer [12] defines documentation as the transformation of knowledge to data.
Documentation can be understood as the process of knowledge externalization by

7.3 Knowledge Transfer in Product Development 385

which data is created in the form of numbers, languages, texts and pictures, which
is designed to transfer knowledge as accurately as possible to other individuals.

Information Process

The information process involves the transformation of data to knowledge. Arbitrary
data triggers the individual processing of information, by which the individual’s
cognitive system provides context and meaning to the raw data.

Data Transfer Process

This involves a direct transfer of data (i.e. data to data), which can be performed via
different media (e.g. printed documents, electronic media) and is mostly supported
by modern information and communication technologies.

Fig. 7.4 Transfer matrix for data and knowledge, adapted from Nonaka/Takeuchi

7.3.3 Direct Versus Indirect Knowledge Transfer

It is important to note that shared knowledge (or collective knowledge) can be created
through either direct knowledge transfer (i.e. the upper left box in Fig. 7.4) or through
indirect knowledge, which involves the information and documentation processes
mentioned above (and normally the data transfer process as well). In the latter, it
makes no difference if the information is made available in hard-copy form (i.e.
printed documents) or in electronic form (e.g. PC memory).

386 7 Knowledge Management in Product Development

7.3.4 Direct Knowledge Transfer

Direct knowledge transfer describes the transfer of knowledge via communica-
tion between two individuals in a social system. It can be understood as the link-
ing of two human entities, each of which can be further divided into motor and
sensory sub-systems. For instance, face-to-face communication is a typical prereq-
uisite for the occurrence of a direct transfer of knowledge. The transferred knowl-
edge is encoded by the sending person into signals, which are then picked up by
the receiver. The receiver can only generate knowledge from signals by decoding
them. Decoding, which refers to the personal interpretation of the signals, is also
influenced by personal context knowledge. In order to bring the recipient up to the
sender’s level of knowledge, both parties must have a common contextual knowledge
(common language, common understanding of the terms, etc.). Of course, this is also
related to the field of knowledge, and in the end, no transfer can be achieved if the
two parties do not share a common contextual knowledge.

7.3.5 Indirect Knowledge Transfer

As already mentioned, the indirect transfer of knowledge between two individuals is
performed via the technical subsystem, which means that a link is established between
the social and technical system elements, which helps support the knowledge transfer
in a socio-technical system. Thus, the knowledge system is divided into a technical
subsystem and a social subsystem. In the technical subsystem, a person performs
data-technical actions (e.g. speech, exerting mechanical force to operate a keyboard),
and data (e.g. in the form of numbers, language, texts or images) are created. This
data then becomes externalized knowledge, which can be stored and/or transferred in
the technical subsystem. Subsequently, these data can be coded into signals, which
are spatially and temporally decoupled. Those signals can be gathered by a person,
further classified with personal context, and can thereby create knowledge.

Through telecommunications, knowledge can also be transferred via the techni-
cal subsystem, which is totally decoupled from any location. For knowledge to be
successfully transferred, recipients must be able to generate knowledge from the
information contained in recorded signals by classifying it within the context of their
individual knowledge. For knowledge transfer through the documentation and infor-
mation processes, the effectiveness and efficiency will depend on both how well the
receiver can adapt to the context knowledge of the sender, and how well the sender
takes this aspect into account when creating the documentation. It has to be noted
that, due to errors in the signal conversion and the limited range of signals, the qual-
ity of the knowledge transfer may be less than that which occurs via a face-to-face
conversation.

Furthermore, this chapter does not go into details of the application of telecommu-
nications, but focuses on the importance of knowledge transfer via documentation and

7.3 Knowledge Transfer in Product Development 387

information processes, because they are more important for the knowledge-oriented
EDM. The indirect transfer of knowledge can be divided into three sub-processes:

• Documentation process
• Information process
• Data transfer process

The signal interface between the technical and social subsystems in information
management is referred to as the user interface. A transfer of knowledge via docu-
mentation and information transmission requires data that is available on one of the
many forms of storage media [14].

The Documentation Process

The knowledge of an individual always provides the background for documentation.
Individuals try to create data and documents by encoding knowledge in a way that
will make it accessible to others. This can only succeed if the information is encoded
into signals. Content has to be coded in order to transfer it to a technical subsystem
and to store it. The technical subsystem can be used both to store data and to create
signals. In all cases, there must be a human who acts on the technical subsystem in
order to create a signal code or to store data. For example, this could involve the
use of a keyboard or speech recognition programs. The main human tasks for the
creation and storage of data are:

• The human must provide signals for the technical system in a form that is workable.
• The human must interact with the technical subsystem.

The context knowledge of receivers should be taken into account when docu-
menting or coding the knowledge. This means that the author has to think about
the minimum knowledge context that humans must possess in order to successfully
complete the knowledge transfer process by creating knowledge themselves. Thus,
the effectiveness and efficiency of the knowledge transfer depends on how well the
knowledge sender knows the context knowledge of the receivers and how well the
sender can adapt the documentation to this context.

The Information Process

Data formed through coding, signal transfer and storage can generate knowledge at
a later time through the information process. The information process is the process
by which a receiver generates knowledge by acquiring and decoding a signal. This
process is affected by the individual context knowledge of the recipient and also on
different physical signals (e.g. sound waves from an audio tape, light waves when
reading) which can be absorbed by human sensors. The receiver must possess the
necessary context knowledge for a satisfactory knowledge transfer to occur, and the
quality of knowledge transfer increases if more of the receiver’s human sensors are
stimulated.

388 7 Knowledge Management in Product Development

The Process of Documentation and Information on the Data-Level

A temporal decoupling can be achieved when data is permanently stored on a stor-
age medium. To be more precise, it is the temporal decoupling of the documentation
process (sender) and the information process (receiver). Since data is created based
on human knowledge, the documentation process and the subsequent information
process can also be seen as a kind of knowledge transfer. Figure 8.4 in Sect. 8.1.5
shows the signal flow of the entire procedure. Knowledge carrier A encodes knowl-
edge into data and stores it in the technical subsystem. Knowledge carrier B can
then access those signals time independently and can further create knowledge by
the information process, during which knowledge carrier B processes and interprets
the knowledge within his/her own knowledge context.

7.3.6 The Definition of Knowledge Logistics

The definition of knowledge logistics is based on the work of Hartlieb [11], who uses
an analogy to material logistics:

“Operative knowledge logistics uses appropriate interventions to ensure that all
available knowledge required for the particular operations is provided. It must be
temporally and locally available, accessible and provided in an appropriate form.”
(author’s translation)

Engineering data management can be linked with the logistic process because
the functions that comprise logistics can also be applied to EDM. Thus, knowledge
logistics can be seen as the reference framework necessary for the development of
knowledge-oriented approaches in engineering data management. When examined in
more detail, knowledge logistics can be understood as the management of knowledge
demands, knowledge supply and knowledge transfer, thereby connecting these three
domains. Entities responsible for certain tasks, knowledge carriers or management
can create and express knowledge demand. The knowledge supply consists of the
actual organizational knowledge base. Knowledge demand can be fulfilled by the
transfer/transformation processes and should be executed by the engineering data
management. Therefore, it is necessary to define the tasks of EDM in relation to the
definition of knowledge management.

It is important to differentiate between two distinct yet interrelated forms of knowl-
edge management: the management of existing knowledge and the management of
knowledge enhancements. Knowledge-oriented EDM can be seen as the part of
knowledge management that focuses on the management of existing knowledge in
an organization (i.e. the emphasis is on managing the existing knowledge base via
data management). Although knowledge development (i.e. managing the enhance-
ment of the knowledge base) is not the primary object of investigation here, it should
be mentioned that the implementation and application of EDM also has an effect on
the prerequisites and development of the knowledge base.

http://dx.doi.org/10.1007/978-3-642-11940-8_8
http://dx.doi.org/10.1007/978-3-642-11940-8_8

7.4 Process Orientation in Knowledge Management 389

7.4 Process Orientation in Knowledge Management

The motivation for process orientation derives from the challenge of implement-
ing knowledge management directly into the added-value chain. Negative effects
often arise in an organization due to the separation of various management activ-
ities, operational activities and associated specializations. For example, individual
departments may not be operating at their best, or they may have implemented unnec-
essary or incomprehensible interfaces. Since such adverse effects occur particularly
in functional and organizational structures, companies are trying more and more to
overcome these problems by integrating perspectives [9].

One related approach is process orientation, which focuses on the relevant value-
adding operations of an organization, and which considers various processes and tries
to optimize them across the departments. A process owner is given the responsibility
for an entire process, thereby making it possible to regard the process as a unit
and to optimize it cross-functionally. Thus, interface problems can be minimized,
and a consistent customer focus can be implemented along the entire value chain. A
process is a set of activities that are geared towards a specific goal and are established
to convert input (e.g. production factors, information science) into a defined result.
Each process is initiated by a start event and ends with the attainment of one or more
final states. Here, functions and their sequence of targets are determined on the one
hand by the demands of internal and external customers and stakeholders, and on the
other hand by overall organizational goals.

The term business process is applied to any process that contributes either directly
or indirectly to add value for an organization. The traditional starting point of process
orientation is derived from the value chain model, which is based on an organiza-
tional analysis of value-adding activities. Process management is based on process
orientation and implements this orientation in all divisions of an organization. Process
management encompasses the analysis, planning, controlling, steering and optimiza-
tion of processes.

Processes take place on the operational level, which includes the business process
model of an organization and its systematic management. For a process-oriented
approach, it is useful to distinguish between three categories of knowledge:

• Knowledge for the process is required for the optimal performance of business
processes.

• Knowledge from the process is knowledge that is created during value-adding
activities, which can include knowledge and experience. The goal is to develop
this collectively in an organization.

• Beyond the first two categories, which are generally assigned to knowledge man-
agement, there is also knowledge about the process itself. This process knowledge
is associated with process management.

The connection between process management and knowledge management can
primarily be regarded from two points of view, the knowledge-oriented process man-
agement and the process-oriented knowledge management.

390 7 Knowledge Management in Product Development

7.4.1 Knowledge-Oriented Process Management

In the first case, knowledge management can be seen as providing support for process
management. This assumes that knowledge is generated in processes and then also
reapplied. Furthermore, the goal is to optimize the integration of knowledge man-
agement and process management, which should ultimately lead to a knowledge-
based process management. In such a system, a process is managed with a particular
emphasis on the resource knowledge.

Regarding knowledge-based process management, the following points are impor-
tant:

• It deals with the optimal and efficient design of processes, with a focus on knowl-
edge management methods.

• The goal is to optimize processes in a way that they support the best possible
learning and that new knowledge can be created as a result of the findings and
operations within processes.

• There is a focus on effective knowledge-relevant process design.
• Knowledge-oriented process management is operated by the process owner.
• The findings of knowledge-based process design should be increasingly reflected

in the standardized and documented processes of the company.

7.4.2 Process-Oriented Knowledge Management

If knowledge management is viewed as a process itself, the process orientation
is introduced to knowledge management. According to the typology approach of
Oesterle [15], process-oriented knowledge management can be seen as a supporting
process. Probst [2] suggests that an initial approach is provided by the components
of knowledge management. These components can be viewed as sub-processes and
are addressed in knowledge management. Regarding process-oriented knowledge
management, the following points are significant:

• The intention is to apply methods of knowledge management to fixed and largely
unchangeable processes to create the expected value.

• It acts directly on the operation itself and on the people acting within the process.
• The aim is to improve the efficiency of the process (process efficiency).
• Process-oriented knowledge management is controlled by a process manager.
• Specific, knowledge-related adaptations and characteristics of the process sequence

can be defined in work instructions.

It is advantageous to integrate the perspective of knowledge in a process-oriented
structure of the organization and to place the business processes at the center of knowl-
edge management. In this way, knowledge can be more easily generated because
knowledge about the process and knowledge from the process are directly related to
applications. Therefore, knowledge can be used to support business processes in an

7.4 Process Orientation in Knowledge Management 391

action-oriented way. In addition, the process orientation provides approaches for an
easier measurement of the costs and benefits of knowledge activities and knowledge-
intensive business processes.

7.4.3 The Knowledge Process in Interaction
with the Added-Value Processes

The previous discussion of process-oriented knowledge management emphasized
the knowledge-oriented modeling of business processes. The general process ori-
entation in knowledge management is related to the business process level. In the
operative level, the process orientation can also be related to the added-value process.
The following section takes a closer look at the process orientation of knowledge
processes, with a particular focus on knowledge operations that conceptualize the
knowledge process as a knowledge transfer between two added-valued processes.
Thus, the fundamental considerations may also include the concept of added-value
processes, as defined by Remus [16]. In order to minimize the effort of mapping
knowledge processes, it is useful and appropriate to select processes that interact
extensively for knowledge analysis.

Fig. 7.5 The knowledge process in interaction with the added-value processes

Figure 7.5 presents a knowledge process between added-value processes with
typical knowledge activities. As suggested above, support from data management is
required for a continuous knowledge process behind specific knowledge operations.
The question now arises of how knowledge processes between added-value processes
can be implemented, supported and designed, and also if particular knowledge oper-
ations have to be linked with additional processes or actions.

392 7 Knowledge Management in Product Development

References

1. North, K.: Wissensorientierte Unternehmensführung. Wiesbaden, Germany (2002)
2. Probst, G., Raub, S., Romhardt, K.: Wissen managen - Wie Unternehmen ihre wertvollste

Ressource optimal nutzen. Wiesbaden (2006)
3. Wohinz, J.W.: Industrielles Management - Das Grazer Modell. Wien, Graz (2003)
4. Rehäuser, J., Krcmar, H.: Wissensmanagement, Chap. Wissensmanagement im Unternehmen.

Berlin, New York (1996)
5. Wohinz, J.W., Oberschmid, H.: Wissensmanagement. Induscript, TU Graz (2007)
6. Hammel, G., Prahalad, C.: Competing for the Future. Harvard Business School Press, Boston

(1994)
7. Scheuble, S.: Wissen und Wissenssurrogate - Eine Theorie der Unternehmung. Deutscher

Universitäts, Wiesbaden (1998)
8. Polyani, M.: The Tacit Dimension. Routledge and Kegal Paul, London (1966)
9. Wissensmanagement Forum: Das praxishandbuch wissensmanagement - integratives wissens-

management (2007)
10. Haberfellner, R., et. al.: Systems Engineering - Methodik und Praxis. 11th edn. Verlag Indus-

trielle Organisation, Zürich (2002)
11. Hartlieb, E.: Zur Rolle der Wissenslogistik im betrieblichen Wissensmanagement. Phd Thesis,

Graz University of Technology, Austria (2010)
12. Sammer, M.: Wissensinduktion in Organisationen. Phd Thesis, Montanuniversität Leoben,

Austria (1999)
13. Nonaka, I., Takeuchi, H.: Die Organisation des Wissens: Wie japanische Unternehmen eine

brachliegende Ressource nutzbar machen. Frankfurt/Main, New York (1997)
14. Willfort, R.: Innovationsdienstleistungen im wissensorientierten Management von Innovation-

sprozessen. Phd Thesis, Graz University of Technology, Austria (2000)
15. Öterle, H.: Business Engineering - Prozeß- und Systementwicklung. Springer, Berlin (1995)
16. Remus, U.: Prozessorientiertes Wissensmanagement - Konzepte und Modellierung. Springer,

Berlin (2002)

Chapter 8
Knowledge-Based Engineering Data
Management

Knowledge-oriented engineering data management (knowledge-oriented EDM) seeks
to use process-oriented knowledge management to identify the knowledge-intensive
activities of the value-added process. These activities are then interlinked by using
knowledge-based process management to develop knowledge processes. The rela-
tionship between two processes is what provides knowledge management with a
process orientation. In engineering data management, the primary goal of knowl-
edge orientation is to answer the following questions:

• How is it possible to capture and classify the underlying database of product
knowledge and then make it accessible?

• What knowledge demand can be fulfilled by systematic EDM?
• How can the EDM support the knowledge process through data management and

workflows?
• How can different knowledge demands be transferred between knowledge holders

and task carriers via EDM?

By answering these questions, the knowledge factor can improve the quality and
efficiency of engineering data management. The goals are to integrate the findings
obtained into the value-added process, to generate knowledge from processes, and
then to use this knowledge. This should lead to the establishment of a continuous
improvement process (CIP) that (ideally) occurs in all areas of an enterprise and is
supported by EDM.

Some important elements of knowledge management can be implemented imme-
diately by using integrated CAD and EDMS. One of the most important targets of
this technique is to re-use parts and entire products, including even the re-use of prod-
uct structures that have already been proven effective. The know-how of the people
involved exists precisely in these products. The ethos of knowledge management is
not to dispose of something after using it once, but rather to maintain it and organize
it wisely, so that it can be accessed again for similar projects. EDM alone does not
represent knowledge management. Even if an organization has not addressed the
questions of the parameterization and application of knowledge management, this
says nothing about the need for EDM or its potential benefits.

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 393
DOI: 10.1007/978-3-642-11940-8_8, © Springer-Verlag Berlin Heidelberg 2013

394 8 Knowledge-Based Engineering Data Management

8.1 Basic Models and Approaches of Knowledge-Oriented EDM

8.1.1 System-Oriented Reference Frame of Knowledge-
Oriented EDM

For further considerations of the integration of knowledge management in
engineering data management, it is necessary to establish a uniform definition that
places it into the context of the basic model of knowledge management. The approach
for knowledge-oriented EDM can now be applied to the system-oriented frame of
reference. Thus, tools for data searching and data submission are assigned to the
IT facilities within the knowledge system, while software applications, their func-
tionality and data management systems are assigned to the technical facilities of the
value-added system. For this reason, it is possible to apply and depict engineering
data management on the general approach of the system-oriented frame of refer-
ence. As an example, the application of CAD template models within a development
process requires a specific system configuration (e.g. pre-settings, standards). These
guidelines should be provided and administrated by the EDM in the context of the
entire IT-architecture.

8.1.2 The Knowledge Process as Connection Between Business
Process and Support Process of EDM

One of the key factors for successful knowledge management in organizations is
the integration of knowledge management operations into business processes. This
knowledge is often seen as particularly valuable because it increases the effectiveness
and efficiency of the organization in its core business processes. In addition to busi-
ness processes, which are seen as the primary starting point for the development of
knowledge management, other types of processes are also taken into account, particu-
larly the processes of continuous maintenance of the knowledge base, the knowledge
management processes and the overall knowledge (transfer) processes [1].

EDM supports processes of continuous maintenance, including editorial activities,
innovations of internal service providers, the compilation and preparation of docu-
ments, and the examination, correction and update of information. Meta processes
of knowledge management or of knowledge management processes are knowledge
management projects or operations that develop resources for the knowledge work
(e.g. the design and implementation of knowledge management applications, the edu-
cation of qualified knowledge workers or the consultation of organizational responsi-
bilities within an enterprise). Knowledge processes transfer and develop knowledge
beyond business processes and business cases because they also coordinate the han-
dling of business processes and continuous maintenance activities. EDM is therefore
like a continuous support process, which supplies business processes with the nec-
essary product and process data.

8.1 Basic Models and Approaches of Knowledge-Oriented EDM 395

Fig. 8.1 The knowledge process as a link between the business process and the continuous support
process of EDM

Knowledge management in business processes (i.e. its primary target) is
unthinkable without relying on secondary support and transfer processes. There-
fore, the second key factor in process-oriented knowledge management is to adjust
and link different process types with each other. Figure 8.1 shows that the knowledge
process provides the link between business processes and the continuous support
process of EDM. Knowledge-intensive processes are characterized by flexible and
non-predictable knowledge requirements. They produce different and (at the time of
modeling) only partly foreseeable results and are characterized by strong knowledge
transfers between different individuals and business cases. Process-oriented integra-
tion brings the fields of knowledge management and engineering data management
together on the knowledge, operational, and data levels.

8.1.3 Integrated Approach to Added-Value Processes

The defined reference frame shows clearly that the levels of knowledge and data
observation should not be considered separately. Instead, it is necessary to connect
and integrate them on the operational level into the value creation process. Up to
this point, the focus has been on integrating knowledge management in business
process modeling. The focus will now shift to the issue of combining disciplines in
knowledge management and data management. The questions are: what is the role
of knowledge management processes for operational data management, and what
opportunities does a knowledge-oriented view of data management afford?

396 8 Knowledge-Based Engineering Data Management

Fig. 8.2 Integrated perspective of knowledge and data management operations between added-
value processes

Figure 8.2 shows the link between knowledge processes and added-value
processes, including a further enhancement with the data level and its characteristic
properties. It can be argued that, theoretically, a data management operation has to be
considered for every knowledge operation in the knowledge process. In this approach,
it is crucial that the project management requirements must drive the operational data
management. In the end, the individual data management operations are triggered
by the requirements of knowledge processes. The need for a knowledge-oriented
data management is justified by the challenge of identifying the operational require-
ments of data management and further satisfying them with appropriate methods.
To achieve this, the relevant data management operation must be defined for each
knowledge operation, and the knowledge process must then be incorporated into a
systematic data management.

8.1.4 Model for the Integration of Knowledge Processes
and Data Management

Data management is the set of methodological, conceptual, organizational and tech-
nical measures and procedures used to deal with data. The aim is to exploit the full
potential of data in business processes and to ensure the optimal use of the data in
ongoing operations. As discussed in Sect. 7.3.5, knowledge is transferred in EDM
via the documentation and information processes, as well as by the corresponding
data transfer. This requires a complex data management in order to achieve a con-
tinuous knowledge process, which means that processes should be designed in the
EDM environment with respect to data management.

http://dx.doi.org/10.1007/978-3-642-11940-8_7

8.1 Basic Models and Approaches of Knowledge-Oriented EDM 397

Fig. 8.3 Model for the integration of knowledge processes and data management through the
operational level

Figure 8.3 shows how this relation can be modeled across the process-oriented
operational level. The interaction takes place between the knowledge and data lev-
els of an organization, whereby one level is receiving and the other is providing
knowledge respectively data. Business-process-oriented knowledge management
must assign equal importance to the employees and the technical facilities. Thus,
the efficient integration of the knowledge and data levels into processes makes it
possible to supply each subsequently developed business process with knowledge
and data from other business processes that have already been established in the
organization.

A new approach has been consciously employed in Fig. 8.3 to emphasize the
operational level and its documentation and information processes. Since these two
processes provide the most important links between the knowledge and data levels,
they are highlighted here. A theoretical contemplation and study of data management
activities leads to the conclusion that knowledge processes play an important role
for the activation and the sequence of such data management activities.

As Fig. 8.3 shows, knowledge processes can be represented as an integrated inter-
face layer between the added-value processes and data management. In this configu-
ration, knowledge processes perform tasks which have not been previously performed
and build the basis for knowledge-based data management.

398 8 Knowledge-Based Engineering Data Management

8.1.5 From the Knowledge Transfer Model to the
Knowledge-Oriented Engineering Data Management

Projecting the previously established models and approaches onto Hartlieb’s knowl-
edge transfer model shows that this knowledge transfer model can be extended
by incorporating the frame of reference of knowledge-oriented EDM, as shown in
Fig. 8.4.

Fig. 8.4 Knowledge transfer model of knowledge-oriented engineering data management

This model contains a more detailed description of data transfer, which includes
the prerequisite that data management requirements should always be placed in the
context of current knowledge processes. The knowledge process between knowl-
edge carrier A as transmitter of knowledge (Motorium M) and knowledge carrier
B as receiver of knowledge (Sensorium S) is the underlying consideration for this
approach. In terms of process orientation, this knowledge transfer commonly takes
place between two added-value processes or two activities within a added-value
process. Therefore, the portion of knowledge which cannot be transferred through
communication within a shared context will be transferred via a data-management-
supported indirect knowledge transfer.

This figure also shows that the success of knowledge transfer depends on the con-
tinuity of the knowledge process. In the context of EDM, this means that the support
by data management and its functions is not sufficient, and that the documentation
and information processes must also be supported. EDM must also receive, inter-
pret and translate the signals from sender and receiver that enter into the knowledge

8.1 Basic Models and Approaches of Knowledge-Oriented EDM 399

process in order to support an ongoing process flow. Finally, the figure also shows
that a workflow accompanies the knowledge transfer, which is a system-supported
way to ensure that the knowledge process is not interrupted. In order to compensate
for the different requirements for the interpretation of encoded knowledge between
sender and receiver, the EDM must perform data processing for both the receiver
and the user. However, since the workflow only supports the process of knowledge
transfer, EDM must also provide a mechanism for data distribution so that the data
reaches its place of usage, as well as a mechanism for the physical data transfer.
Based on the knowledge-intensive processes, relevant knowledge processes can now
be defined and analyzed according to this particular model. This makes it possible
to develop EDM under the consideration of the aforementioned aspects, which can
be seen as knowledge-oriented engineering data management.

8.1.6 Model for the Reconstruction of the Knowledge
Base and Database

In order to prepare the knowledge transfer model of the knowledge-based engi-
neering data management in a logical manner, it is necessary to conduct a thor-
ough analysis of the knowledge base and database. This is crucial for the quality
of the derived EDM measures and activities. Based on the analytical structure of
knowledge-oriented EDM (which is discussed in the relevant literature [2]), this
structure can now be schematically summarized as a model for the reconstruction of
knowledge/data requirements and the data services offered.

Fig. 8.5 Model for the reconstruction of knowledge- and database

400 8 Knowledge-Based Engineering Data Management

Figure 8.5 shows a model for analyzing and reconstructing knowledge demands
and knowledge supply using existing in-house and external data potential. The knowl-
edge/data transfer takes place between the task carrier on the left side and knowledge
carrier on the right side. The availability of organizational and external databases
form the basis, while the processes of documentation, by which the knowledge car-
rier tries to offer his knowledge in form of data to the task carrier, act between. The
task carrier tries to satisfy the data demand via the process of information and the
decoding of data by the recipient creates new knowledge. This model is also applied
in Sect. 9.1.4, which demonstrates the need to conduct a systematic analysis of the
established structure in order to build up knowledge or provide data.

8.2 Requirements for the IT Support of Process-Oriented
Knowledge Management in EDM

The application of technical subsystems in knowledge management is justified by the
potential simplification of procedures. In the field of knowledge management, this
simplification refers primarily to the optimization of the processes of information,
documentation and data transfer. The documentation process can be seen as the
basis for subsequent underlying processes. Documentation must be receiver-oriented,
which means that it must take into account the knowledge that the receiver has to
apply for a successfully data interpretation. EDM has the task of supporting the
documentation process via appropriate methods and applications.

The technical subsystem can support the documentation process by managing
and administering data. In this context, data management can be understood as the
storage, archiving/backup, structuring and classification of data, as well as data distri-
bution and retrieval. For the documentation process (i.e. the transformation of infor-
mation/knowledge into data), the technical subsystem can thereby provide assistance
by performing tasks such as the search for information (search engines), translating
data (translation engines) and linking data.

One of the key design parameters in knowledge management is the interface
between man and machine. This aspect, which is often referred to as the user inter-
face, ultimately influences the way that information processes can be triggered. In
practical applications, the factor ‘ease of use’ defines the extent to which the user
interfaces meet user requirements. One of the most common mistakes is that inter-
face designs ignore or fail to fulfill user demands. The process of data transfer
interlinks particular system elements of the technical subsystem. Here again, this
process may be hindered by incompatibilities between particular elements. In prac-
tical application, technical barriers (e.g. system failures, lack of networks, using too
many different systems and application products) place significant limitations on the
theoretical knowledge transfer process.

http://dx.doi.org/10.1007/978-3-642-11940-8_9

8.2 Requirements for the IT Support of Process-Oriented Knowledge Management in EDM 401

8.2.1 Modeling Approach for the Technical Subsystem

In order to design the interface between man and machine (or between the operational
level of business processes and systems) in accordance with the needs and practices
of EDM, the fundamental approaches to modeling business information systems (IS)
must be examined firstly. The four most common approaches are the following:

• Functional decomposition is based on the decomposition of IS functions into
multi-level sub-functions when defining interfaces.

• The data flow approach attempts to define IS as a set of data flows which are
transformed by actions. Data storage is made available for the temporal buffering
of data streams.

• Data modeling focuses on describing the structure of the database of the IS. This
structure consists of data object types with associated attributes. The individual
data object types are connected via defined relationships.

• The business-process-oriented approach marks the transition from a primarily
static and structured view of IS to a dynamic and behavioral perspective.

In order to describe the modeling scope of the different approaches, a distinction
is made between the static view of the IS function (function view), the data structures
(data view), the communication channels (interaction view) and the dynamic view
of operations (task view). A function is understood as a task which is performed with
the assistance of computers.

Defining the Task Structure

As the connecting element between process and system, a task is defined as the goal
of task-related human actions. Figure 8.6 shows a task structure as the connecting
element between process and system in the area of EDM.

To indicate the possible degrees of freedom in the specification and implementa-
tion phases of a task, the terms external and internal view of a task, task carrier and
process are used here with following meanings.

The external view of a task defines what should be achieved and when. It influ-
ences the effectiveness of a process. Here, it is important to identify the right tasks,
to define them and finally to perform them. The top left-hand area of Fig. 8.6 shows
how the right tasks can be derived. Initially, it is important to define manageable busi-
ness processes based on corporate objectives. These processes are extended dead-
lines, organizational factors and responsibilities and thus value-defined, value-adding
support processes can be derived. Relevant, mission-critical processes can then be
more detailed and arranged in a task structure, which makes it possible to describe
tasks more exactly. At the same time, a role structure is created with the purpose
of describing functions for staff. The definition of the external view is supported by
the enterprise’s handbook of quality management, which defines standards and job
instructions for operating processes.

402 8 Knowledge-Based Engineering Data Management

Fig. 8.6 Task structure as the connecting element between process and system in EDM

The internal view of a task specifies the efficiency of this task, which is basically
about doing the task in the correct way. It defines the problem-solving method of
the task and refers to how the task will be completed (the task carrier) i.e. whether
the task is done by humans or machines. How should the task be executed to reach
the task target? The internal view therefore defines the method, tools and systems
which are most suitable for the fulfillment of a task. This includes the assignment
of responsibility and defines what an employee must achieve, what task is involved
and how long it should take.

The method - how to do assignment solutions - has to be defined for each partic-
ular task and simultaneously forms the basis of the definition of employee skills. It
is also the basis for the determination of requirements for system, software solution
and application. The human being as the task carrier represents the most important
connection to merge the internal and external views and carries out the task in a self-
contained way. The task-oriented formation of groups includes contexts of teams,
organizations and roles. The assignment of tasks and responsibilities and the com-
petences and qualifications of employees can be derived from such a correlation in
order to facilitate the fulfillment of a task. Finally, the human being uses systems for
the execution of tasks to a certain extent. The procedure describes the operational
implementation of the task - who can execute the solution procedure and with what?
- This can be done by:

• People (non-automated task)
• Computers (fully automated task)
• Man-machine systems (partly automated tasks)

8.2 Requirements for the IT Support of Process-Oriented Knowledge Management in EDM 403

Depending on the scope of the tasks and the complexity and repetition level,
system supporting methods can be defined and then integrated into the EDM envi-
ronment. This system support can be established through application processing (e.g.
CAD, CAE, CAT) or in a cross-functional way through EDM workflows or across
systems interfaces and networks of the EDM system. The economic efficiency of a
process is characterized by the definition of the external view (effectiveness) and the
internal view (efficiency) of a task and also the qualification of task carriers (skills,
responsibility) and the degree of system support for the procedure. In the EDM envi-
ronment, the external view of tasks basically defines and controls the EDM workflow,
while the internal view affects applications and functions with its methods.

8.2.2 The Database of Knowledge-Oriented EDM

The database consists of components of the technical subsystem that are able to
process data, as well as documents and metadata of an organization, regardless of
their origin. The organizational memory is supported by generating and record-
ing data. This is especially relevant in the documentation of business-relevant data,
which allows other knowledge carriers to re-integrate knowledge into the informa-
tion process at any time. The automotive industry must deal with an extraordinary
variety of data. The essential forms of data are:

• Documents (e.g. measurement reports, specification sheets, standards, protocols,
testing regulations, rules, product descriptions, modification documents)

• Metadata (e.g. computation data, mass, gravity center, technical data)
• Geometries (e.g. design models, textures, designs, styling surfaces, facades)
• Process data (e.g. design, simulation, planning, manufacturing, production)
• Data structure (e.g. configurations, process-oriented views of interest)
• Project management and process management data (e.g. milestones, schedules,

costs)

8.2.3 EDM Workflow Support of Knowledge-Intensive Processes

Engineering data management systems (EDMS) that are currently available on the
market are often either insufficient or poorly suited for supporting knowledge-
intensive processes. In order to represent process-oriented knowledge, it is necessary
to integrate so-called contexts into the workflow module of EDMS. Using contexts
integrates the workflow editors into the workflow process and therefore gives them
access to process-related knowledge that is not included in the process model, such
as requirements, processes handling experience, reasons for decisions, knowledge
about customers or competitors, and information on time limits. The context, which
contains a whole set of documents that represent process-related knowledge, is tied

404 8 Knowledge-Based Engineering Data Management

to a specific workflow object of the process structure (process, action, application,
template of documents and business case) or the organizational structure (organiza-
tional unit, role, editor). This context association to a workflow object determines
when a document is relevant for the context of a processing operation. The developers
can thus find additional knowledge within the workflow execution via these different
types of contexts. This knowledge can be necessary for a particular operation or can
be relevant in a certain business case.

8.2.4 Management, Transfer and Steering of Knowledge-
Oriented EDM

A major goal of knowledge-oriented EDM is to support the task carrier’s ability to
act as effectively as possible at the relevant time and in the relevant place. Thus, task
carriers must use the knowledge offered through data in the optimal manner in order to
carry out development tasks and hence meet customer requirements. Here, the cross-
linking of knowledge demands and knowledge offers is very important and takes
place at the operational, knowledge, and data levels, whereby the demand generation,
the place of demand and the time of demand have to be taken into account as well.
The individual levels also have to be considered more closely during the transfer. A
transfer can only be initiated if the existing knowledge and data is transparent and
available. In terms of the availability of data in a very complex development process
data are continuously generated anew. The essential points are:

• Data generation
• Data preparation
• Data allocation
• Data evaluation
• Data control and management

Data transfers between technical subsystems (e.g. simulation programs and data-
bases) are executed on the data level. The transfer of relevant data (e.g. protocols,
product data, structures, geometries) guarantees the ability to act at the receiving point
of an engineering task. Before providing further analysis about design in knowledge-
oriented engineering data management, some background information is necessary.
Here, the exclusive focus is on cases in which the knowledge carrier generates the
necessary knowledge from data that has been sent through a completed data transfer.

8.3 Knowledgeware in Product Development

Exponential growth in the area of computer-based development is still continuing.
Replacing the drafting board by computers and its related software was a first step
which is nowadays being repeated due to parametric design and simulation sys-
tems. State-of-the-art CAD systems not only replace earlier design methods, but also

8.3 Knowledgeware in Product Development 405

provide a strong functional enhancement that can help to cope with the growing
demands of product development. The use of knowledgeware requires more orga-
nizational effort than the pure installation of CAD software and the introduction of
users to its functional range. Beyond an extensive knowledge of the product being
developed and its context, design engineers must also possess IT know-how. Only
this additional know-how will enable them to create software systems that will offer
advantages in subsequent processes.

However, even modern CAx systems cannot generate new design models with
just the push of a button. Human beings remain the critical factor and must have the
support of adequate tools to be able to cope with the complexity and information
flood that characterize simultaneous engineering. One additional important step is the
standardization of development tasks, which increases the service capacity of para-
meterization. The extension of known CAD functionalities not only offers potential
improvements in collaboration between product development and production engi-
neering, but also in the area of knowledge integration. The terms knowledge-based
design and knowledge-based engineering (KBE) (see Chap. 5, pp. 309) are used when
organizational knowledge is used in product development. This knowledge, which
must be suitable for the product development process, is used in a way that does
not rely on individuals. One approach to support the enhancement and integration
of product knowledge during product development is the method of parametric-
associative design. This approach enables an integration of intelligent tools into a
CAD environment, which then make it possible to distribute and support knowl-
edge within an organization. Since available data has to be captured and mapped as
knowledge in CAD models, it is possible to transfer crucial parameters.

8.3.1 The Parametric-Associative Approach

The parametric-associative approach is becoming more common in vehicle develop-
ment. It supports network thinking, development and the design of vehicle assem-
blies within different process stages. Chapter 4 includes an introduction of the
design-related aspects of parametric-associative development and gives insights into
functionalities of parametric-associative CAD. In the years before the introduction
of parametric-associative design, vehicle development was divided into sequential
development phases. However, the parametric-associative approach enables the use
of computational monitoring to make processes transparent and simultaneous in dif-
ferent development phases. The associative parametric approach allows knowledge
in CAx/EDM-integrated applications to be stored and managed. Processes, special-
ized departments and suppliers that were formerly kept separate can now move closer
together and interact during different stages of development using new networking
strategies. Parametric-associative CAD models store knowledge about the vehicle
development process and make it reusable for new vehicle projects.

The advantage of this new transparent vehicle development is the continuous
control over different phases and the resulting time and quality optimization. These

http://dx.doi.org/10.1007/978-3-642-11940-8_5
http://dx.doi.org/10.1007/978-3-642-11940-8_4

406 8 Knowledge-Based Engineering Data Management

qualities are particularly important in the contemporary automotive industry, where
the increasing complexity of vehicle models and the concomitant increase in informa-
tion content demand improved efficiency. Minor changes in a process section, which
previously would have lead to uncontrolled effects on individual components, are
now optimized and controlled within the CAD environment. The traditional devel-
opment method, in which CAD systems offered isolated, static models, is being
replaced by flexible parametric models. This new approach creates relationships
between individual components and assemblies so that changes of vehicle compo-
nents that are dynamically linked can be automatically altered through several stages
of development [3].

In the past two decades, the growing number of vehicle projects and the related
requirements have led to a certain segregation of the parties involved in development.
Coordinators responsible for projects and processes are mostly separated from the
design development, which is mainly handled by development partners. Due to this,
OEMs have lost much engineering knowledge that would be crucial for the continued
systematic progress of associative parametric design processes. Extensive efforts
by all parties involved in the process are needed in order to create a continuous
parametric-associative process chain from the layout phase to manufacturing. The
combination of design with computation and production supply planning is opening
up new paths for optimization.

8.3.2 The Fundamentals of Parametric-Associative Design

In parametric-associative design, geometry-related information is not only stored as
the product shape but also as cross-links between geometry elements. The shape of a
model will be automatically adjusted if the variables that define the geometry model
(i.e. parameters) are changed or replaced, but the design goals will also be taken
into account. This highlights the importance of the ability to reuse CAD models for
similar design applications (cf. Chap. 4, pp. 241 and Chap. 5, pp. 309). Concerning
CAD models, a huge variety of control parameters are available. In standard models,
it is sufficient to visualize important parameters explicitly in tree structures. However,
geometry families can also be joined in design tables and can therefore be altered by
combining explicit parameters. Applying formulas in CAD programs or tables can
further extend the range of control parameters. In the case of very complex models,
control parameters can also be derived from programmed macros and codes. In
addition, design tables and macros can be used to exchange parameters with other
CAE programs, as well as to optimize parameters.

Parametric-associative design presents a significant opportunity to collect and
refine company and employee know-how and to make this asset accessible for
future developments. All design engineers must be challenged to link their personal
knowledge with other CAE processes and to enhance it using parametric-associative
design. The following elements are essential for this method:

http://dx.doi.org/10.1007/978-3-642-11940-8_4
http://dx.doi.org/10.1007/978-3-642-11940-8_5

8.3 Knowledgeware in Product Development 407

• Parameters can be both numerical and geometric elements (e.g. lines, curves or
surfaces).

• Implicit parameters are (hidden) parameters (e.g. defined in 2D sketches of 3D
models or drawings).

• Explicit parameters are visualized in the CAD model structure tree parametric and
control the geometry elements.

• Design tables are able to define parameter families for the control of geometry in
parts and assemblies.

• Checks (e.g. warnings via signals and messages) alert the user of any non-
compliance in the parameters defined.

• Checks with reactions trigger branched design steps if, for example, defined para-
meters are changed during the update process.

• Any values, such as from mechanics (momentum, acceleration) or geometry (vol-
ume, trigonometric functions), can be represented as parameters and applied in
formulas or rules.

• Complex relationships and design variants can be controlled by macros (e.g. pro-
grammed in Visual Basic).

8.3.3 Knowledge Management and Product Configuration

Knowledge management and product configuration are treated in terms of their char-
acteristics within EDM. Design engineers’ and simulation engineers’ knowledge is
stored as computer-generated data. The goal is to use specific programs to process
data such that certain tasks in creative engineering can be automated as well. In the
past, large enterprises developed some approaches that tried to achieve this goal in
scientific projects, and a few software companies even tried to create programs with
such abstract goal formulations in order to create approaches which could handle
applications from different fields. The ulterior motive was to create standard software
which could be used in different areas of expertise [4].

However, with regard to the complexity of engineering, it can be stated that the
development of such software solutions is a serious challenge. Although computer
programs, which can make many things much easier, have become indispensable
tools (especially in the area of engineering), computer programs are not able to
replace the creativity of engineers. The approach developed in recent years, called
knowledge management, is more realistic. This term encompasses the improved use
of available know-how. Parameters, templates and models can be applied to store
and document the experience of engineers, which is thereby made reproducible. One
tangible application of this principle is the parametric-associative concept vehicle,
which is described in more detail in Sect. 9.3.

http://dx.doi.org/10.1007/978-3-642-11940-8_9

408 8 Knowledge-Based Engineering Data Management

References

1. Hoffmann, M., Goessmann, T., Misch, A.: Unsichtbar oder Vergessen-Wie man “verborgenen
Wissensprozessen” auf die Schliche kommt. In: Professionelles Wissensmanagement-WM2001
(2001)

2. Hartlieb, E.: Zur Rolle der Wissenslogistik im betrieblichen Wissensmanagement. Ph.D. thesis,
Graz University of Technology (2010)

3. Tecklenburg, G. (ed.): Die digitale Produktentwicklung. Expert (2008)
4. Sendler, U., Wawer, V.: CAD und PDM-Prozessoptimierung durch Integration. Hanser, München

(2011)

Chapter 9
Advanced Applications of CAD/EDM
in the Automotive Industry

The following investigations examine the product development process in the
automotive industry. Subjects relating to current problems were specifically selected
from the EDM environment of product development.

9.1 Applications for Knowledge-Based EDM

Now that knowledge processes have been identified as a relevant component of
data management operations, and the general positioning of knowledge and data
management has been clarified, it is important to analyze in detail how these two
things interact. In terms of key knowledge-intensive operations, the focus is on the
level below the top level of the sub-processes of the business process model. Here,
knowledge-intensive operations have to be executed, which requires the application
of knowledge processes. Within the highly IT-driven research and development area,
knowledge-intensive activities are very often coupled with intensive data manage-
ment operations. Although the system landscape herein varies, product data man-
agement plays a central role in automotive development.

If the product development process demands a certain result at a certain time (mile-
stone), and if the desired results require the execution of knowledge-intense opera-
tions, then the requirements for this milestone also influence the requirements placed
on the realm of data. These requirements are combined in a data-synchronization
point. Data management activities can be performed if the requirements of the syn-
chronization point are fulfilled at a certain time. In this case, the knowledge process
can be completed, and the partial result of the knowledge-intensive operations can
be fed back into the process. The determination of these synchronization points and
the chronological order of data management operations and knowledge operations
depend on the particular applications. Section 9.2.3 describes an application that uses
the concept of data roadmap.

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development, 409
DOI: 10.1007/978-3-642-11940-8_9, © Springer-Verlag Berlin Heidelberg 2013

410 9 Advanced Applications of CAD/EDM in the Automotive Industry

9.1.1 Relevant Knowledge Operations in EDM

Knowledge operations determine the way that knowledge is handled at each step of the
knowledge process. However, it is necessary to define the knowledge operations that
are used to analyze various knowledge processes in terms of specific implementation
scenarios.

Figure 9.1 provides a summary of a case study that shows the EDM-relevant
knowledge operations and their derivation on the operational and data levels. To
understand the relationship between knowledge processes and data management, it
is important to specify the following knowledge operations, which are necessary for
reporting:

• Knowledge identification
• Knowledge generation
• Knowledge storage
• Knowledge preparation
• Knowledge distribution
• Knowledge application

Fig. 9.1 Derivation of knowledge operations at the action and data levels

After the knowledge base has been implemented and the knowledge processes
have been modeled, knowledge operations can be used to derive the required opera-
tions down to the data level.

9.1.2 Factors that Influence Knowledge Transfer Via Data
Transfer at the Operational Level

Value-adding processes that are based on a defined working procedure generally take
place on the operational level. If the operations are mainly intended to support knowl-

9.1 Applications for Knowledge-Based EDM 411

edge management (which is the case in product development), the investigation can
be limited to two relevant processes: the information process and the documentation
process. Thus, both documentation and information processing can be seen as special
types of operation, in which a human being influences a technical subsystem with the
goal of encoding knowledge and making it accessible to other people. This process
generates data and adds additional value. When implementing EDM, the process of
data transfer is particularly important for the quality of the knowledge transfer.

Fig. 9.2 Factors that influence the data transfer process

Figure 9.2 provides an overview of the possible interventions in the process of
data transfer between value-added processes A and B. This overview is the result of
an analysis of numerous EDM use cases in the course of a case study. In data transfer,
the following data management operations can be executed:

• Data enhancement
• Data filtering
• Data preparation
• Data conversion
• Data manipulation

412 9 Advanced Applications of CAD/EDM in the Automotive Industry

Since each individual knowledge operation can potentially affect the quality of
the knowledge transfer in the relevant overall knowledge transfer process, there are
a number of barriers that may disrupt the knowledge flow.

9.1.3 Data Management Barriers in Indirect Knowledge Transfer

Knowledge processes based on information from the business process analysis are
used to analyze the actual knowledge transfer. Thereby, barriers occur in the data
management of the EDM use case.

Figure 9.3 shows different characteristic combinations of knowledge operations
and their influence on knowledge transfer. It also shows the related EDM problems
and intervention measures. The knowledge activities column shows when knowl-
edge processes are not working. Based on this pattern, classifiable data management
operations can be derived, which are described in the EDM interventional procedure
column.

Fig. 9.3 EDM barriers in the knowledge transfer process

9.1 Applications for Knowledge-Based EDM 413

9.1.4 Reference Process for the Knowledge-Oriented Development
of EDM Use Cases

Fig. 9.4 Reference process for the knowledge-oriented development of EDM use cases

414 9 Advanced Applications of CAD/EDM in the Automotive Industry

As a central investigation object, this use case shows the correlation between
knowledge processes and data management in a reference model. Thus, the planning
phase for data management can be integrated into the knowledge-oriented concept.

The use cases now generate requirements as they are normally generated in the
general planning phase, where process methods set the requirements for the data
management. With the positioning of use cases and the representation of the knowl-
edge processes that occur along these use cases, it is possible to refer to this as
a knowledge-based planning phase in data management (see Fig. 9.4). When use
cases are applied to generate requirements, the knowledge-oriented use case analysis
also provides the requirements for the development of EDM methods and advanced
EDM features. By providing knowledge about the relationships between business
process model, knowledge processes and the operational data management, one step
is made towards an EDM method development. This development is executed on
the basis of knowledge-oriented investigations and can be seen as the final step of a
multi-stage concept for integrating knowledge management into the product devel-
opment process.

The previous section described the close connection between knowledge processes
and data management, which provides the starting point for some purposes. Not only
can it be used for mapping the current processes, but it can also contribute to the
development of efficient methods for engineering data management. If EDM is seen
as the central knowledge base for a variety of knowledge-intensive actions in the
development process, then the knowledge-oriented view of data management must
be a good starting point for method development. This holistic approach, which also
connects to the business process model, establishes a solid foundation and makes
this style of developing operations and methods a promising tool.

9.2 Integrated CAD Data Management in Automotive
Engineering

This section deals with CAD data management, which is an essential topic in the
area of engineering data management. The aim of the case study in this section was
to develop a concept for integrated CAD data management. The concept is process-
oriented and seeks to establish requirements more clearly by using the knowledge
point of view by restructuring the CAD knowledge base. In the end, this increases
the quality of CAD data management. The project investigates the integration of
CAD data management with DMU and VMU in the product development process
and basically deals with CAD data management, CAD model description, CAD data
quality, CAD workflow management, CAD data monitoring and the control of CAD
data in the development process. Furthermore, a more detailed representation of the
CAD process is provided before, with a focus on the documentation of product data.
Data which had previously been mapped in drawings is now transferred to the digital
products. The aim is to design a master plan for integrated data management in CAD

9.2 Integrated CAD Data Management in Automotive Engineering 415

applications. All of the following design approaches for CAD data management are
based on the procedure for process analysis and the reconstruction of the knowledge
base that is presented in Sect. 8.1.6.

9.2.1 Challenges Related to the Topic

Companies usually establish CAD data management based on certain rules known
as CAD standards. These standards do not sufficiently take into account the way
in which demands placed on the CAD data management change during the product
development. There is usually a rough plan for data management activities at project
milestones, which makes it necessary to plan the product development process in
terms of data management as well. Specific project requirements for data manage-
ment or specific data management between two processes are not usually taken into
account. The analysis of data management operations in terms of knowledge is even
less incorporated. The following systematic procedure is used below to demonstrate
an efficient and effective method of EDM design:

• Process analysis by application of a process matrix
• Reconstruction of the knowledge and databases
• Transformation of knowledge operations into data management operations
• Derivation of appropriate design approaches for CAD and EDM

The process-oriented data management must be starting with the begin of the
development process. Only if this process is described in detail and all interfaces are
Defined, the CAD data requirements for individual process steps can be defined.

9.2.2 Concept of Integrated CAD Data Management

The results from these case studies can be combined to form the concept of integrated
CAD data management. EDMS supports basically all of these requirements via
standard function modules and is thus the ideal integration platform. Figure 9.5 shows
the functional modules:

• CAD scheduling (project orientation, data roadmap)
• CAD geometry reference
• CAD data quality, progress and maturity
• CAD workflow (process orientation)
• CAD data monitoring

These functional modules are integrated in CAD data management and are embed-
ded between the project milestones and schedule data.

The following sections discuss the individual functional modules of integrated
CAD data management in more detail.

http://dx.doi.org/10.1007/978-3-642-11940-8_8

416 9 Advanced Applications of CAD/EDM in the Automotive Industry

Fig. 9.5 Concept of integrated CAD data management

9.2.3 CAD Scheduling

As a basis for CAD data management planning, it is necessary to align key milestones
in the project and to retrieve the resulting demands for CAD data management. These
demands provide the first reference points for the planning of data management
operations and the necessary adjustments to EDM methods and systems. Project-
specific needs always require adjustments to the milestones. For example, some
milestones may be omitted, others might be added, or milestone events and lines
may be altered or shifted. Possible reasons for such changes include adapting to
predefined quality gates. The time schedule also provides the basis for the creation
of the data roadmap.

Concept of Data Roadmap

The data roadmap concept is a management tool for CAD data management. It is
divided into four levels and is temporally linked to the project schedule.

Figure 9.6 schematically shows such a data roadmap. On the first level, a link
with the project time schedule is established, in which the major project milestones
and additional required quality gates are defined in terms of CAD data management.
On the second level, the development of the virtual product is mapped, which can
be done by using the complete body of CAD data. This takes place at a designated
time and corresponds to the requirements of the geometry reference. On the third
level, the documentation of the necessary EDM milestones, which required for data
management, is created. This step is performed more precisely, since it will con-
trol the data management operations between different specialist processes. Finally,
on the fourth level, the EDM use cases are mapped, from which the specific data
management activities can be derived.

9.2 Integrated CAD Data Management in Automotive Engineering 417

Fig. 9.6 The concept data roadmap in the product development process

The data roadmap contains not only the dates of data management, but also ref-
erences to the respective descriptions of data content (e.g. quality, configuration,
size). The data roadmap also shows the contents which are defined by the geometry-
maturity reference. When producing this graphic illustration, the challenge is to show
the temporal parallelism of processes in a manageable way without losing informa-
tion. The arrows (i.e. connections) principally show that data flows from a data source
to a data sink, while no statement is made about the granularity of contents. The fol-
lowing example will clarify the issue of granularity. The simulation of both material
strength and multi-body simulation (MBS) requires information for validation. This
information includes data from the product geometry and its structure. In order to
perform its dynamics simulation (e.g. an analysis of a suspension), MBS only needs
connection point coordinates of the components involved. The exact geometrical
shapes of the semi axel, wheel carrier, stabilizers, etc. are not relevant in this case.
The outputs of MBS are spatial curves, which define the impact of involved compo-
nents on the driving behavior. The only feedback to the design process are potential
changes of coordinates or envelope curves, which represent the positioning of par-
ticular components. In contrast to this, the strength calculations and their derivations
require consistent and detailed geometries, which are then processed in the appropri-
ate systems and enriched with additional information. This example shows that MBS
is a simulation discipline that performs several and meaningful computations with
reduced, specific information (e.g. in the area of axle analysis or vehicle dynamic
simulations). It terms of the data roadmap, it is important to provide reduced data
for specific simulation processes.

During the progress of development, the data granularity increases. Within virtual
development, the virtual product models are able to describe the real-life models
with a high accuracy, but it is impossible to achieve a 100 % formulation of all
characteristics. For this reason, it makes sense to concentrate on the description of
main characteristics (e.g. geometry, structure, material and connecting technology),
which can be introduced as product data objects in the data roadmap.

418 9 Advanced Applications of CAD/EDM in the Automotive Industry

Expected Benefits of a Data Roadmap

• Raising employee awareness: If vehicle project teams, led by a data manager,
embrace the data roadmap concept and understand it’s benefit, this tool can become
a living procedure.

• Reduction of relatively meaningless validation operations: Partial simulations are
included in the schedules of some projects that seem to make no sense at that
particular time, which sometimes means simulations must be repeated at a later
date.

• Less problem solving resulting from missing data: If a team agrees that a validation
is not possible at the moment because data is missing, then it automatically reduces
the number of unsolved problem points. Clashes within a project are reduced, and
employees can concentrate on important things again.

9.2.4 A Concept of Geometry Reference

CAD models are created in the CAD author system, and data is provided via EDMS
using an integration platform. The methods of data storage and data transfer depend
on the depth of the interface between CAD and EDMS. Although the transfer of
particular models is usually less problematic, more significant barriers are often
revealed when it comes to the exchange of structural information. The goal is to
provide an explicit geometry reference that contains the geometry states necessary
for the functional supply and production-related supply of specialist teams.

Figure 9.7 shows the reference geometry approach, which can be described in
three dimensions:

• The product configuration essentially defines the composition of the vehicle prod-
uct set. Here, drivetrain variants or feature variations are mapped, for example.

• The product structure shows different views of the virtual product (e.g. DMU,
CAE, assembly).

• The product development dimension maps the various degrees of maturity along
the product development process. These maturity degrees are temporally controlled
by milestones or generations.

The figure also shows that the application of reference geometry once again
requires preparatory and operational data management operations in the project.
This is mainly evident in design, simulation and the operational data management,
with its various applications.

9.2 Integrated CAD Data Management in Automotive Engineering 419

Fig. 9.7 Concept of geometry reference for a digital product

9.2.5 CAD Data Quality, Progress and Maturity

During the development process of a mechanical product, which can begin with a
base body and continues until all the necessary design elements have been included,
the CAD model becomes more and more detailed. This is recorded in the defined
maturity level model. The data roadmap also specifies which information is needed by
particular departments (e.g. DMU department). Ideally, these data bundles represent
all of the data which required as part of a product life cycle in each functional unit.

However, where the data must come from, what quality level it must have, and
when it must be made available is not defined at that point. In order to supply data
for a particular geometry reference concerning the data roadmap under consideration
of quality aspects, the product is described with a three-dimensional maturity level
model. These CAD documents are also provided for certain applications on the basis
of this model. This describes the development status of a particular model and all
design specifications, such as maturity, weld points or tolerances. If the conditions
necessary for all maturity levels are defined, then every model can be assigned to a
particular maturity level.

420 9 Advanced Applications of CAD/EDM in the Automotive Industry

The Three-Dimensional Maturity Level Model for CAD Documents

Figure 9.8 shows an approach of a three-dimensional maturity level model for CAD
documents in the EDM system, which can be divided into the following segments:

• EDM maturity - usability maturity of the geometry
• EDM quality - what requirements are there for the CAD geometry, and which ones

are fulfilled?
• EDM status - what obligations can the process hand over to the CAD data?

Fig. 9.8 The three-dimensional maturity level model for CAD documents

The maturity model, which depends on the defined geometry reference in the
data roadmap, influences the generic EDM workflow. In this context, the CAD data
quality has a particular meaning that can be defined by the following aspects:

• Quantitative quality: In terms of data, this indicates the degree of fulfillment (up
to 100 %) in relation to the geometry reference.

• Quality of conformity/administrative quality: This value corresponds to the
system-technical and/or organizational requirements and says nothing about the
quality of content.

• Content quality: This measure indicates the consistency of selected data in relation
to the application, or if the results of a previous test were correct.

• Quality chronology: When considering the individual kinds of quality, it is useful
to maintain a logical sequence. For example, it does not make much sense to
validate the scope (quantitative quality) if the stability of the period of consideration
has not been previously investigated (quality of availability).

9.2 Integrated CAD Data Management in Automotive Engineering 421

9.2.6 Generic EDM Workflow for CAD Data Management

Workflows have to be established in order to deal with the logistical requirements of
the data roadmap. These workflows have to be adjusted during the project start-up
phase and have to be adapted to the particular project requirements. The workflows
should be derived from the PDP so they will reflect interactions between departments.
They have to be linked to data registers for each milestone.

Fig. 9.9 Generic EDM workflow for CAD documents

Figure 9.9 shows the generic structure of an EDM workflow to control the CAD
data management system and its influencing factors. The central element is based on
a use case of the EDM with its workflow process steps shown. The workflow has a
defined start, which is provided with a trigger. The workflow consists of several steps
with branches and returns and is processed in a system-controlled manner. Within
the workflow, the process-relevant aspects of CAD data management are requested,
tested, and modified. In addition, further EDM activities and information flows for
product or process data are derived. The workflow also takes the pre-definitions of
the data roadmap into consideration.

422 9 Advanced Applications of CAD/EDM in the Automotive Industry

9.2.7 Data Monitoring

The data content is monitored at least for every milestone. It would seem to be
practical to appoint a data manager, who has the complete overview and reports to
the project management.

Data Management Operations

• System: Basically, there has to be a system environment available so that data can
flow and can be exchanged. Without this, data monitoring is meaningless.

• Quantity: The complexity has to be monitored and guided during the time of
investigation.

• Operative: The operative activities have to be depicted, whereby the question is
which data has to be delivered by which providers at which times.

• Time: The system’s cycle time is investigated to deals with computational power.
• Workflow: Includes classification number, workflow-status, number of applica-

tions etc.

To document and report the progress of a development process, it is necessary to
define quantifiable classification numbers. These numbers should be easy to derive
and to project. Typical criteria that are accessed within CAD monitoring include:

• Data currency
• Data availability
• Data quality
• Data consistency
• Level of integration (use, configuration)

Although CAD data monitoring is not a standard functional module of EDMS,
it would make sense to implement CAD monitoring in existing EDM environments
due to the broadly available database.

9.3 A Parametric-Associative Concept Model for Initial
Vehicle Development

In automotive development, the main characteristics of a new car model are deter-
mined in the initial phases of product generation. Since the conceptual definition
has to consider various, partially conflicting boundary conditions and requirements,
the resulting vehicle concept always represents the outcome of intensive optimiza-
tion processes. This multidisciplinary optimization requires a high flexibility from
the tools, methods and processes applied. In the present approach, the integration
of CAD and CAE disciplines results in an easy-to-handle tool that helps support
and maintain the entire conceptual full-vehicle process. This starts with initial ideas,

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 423

sketches and specifications, continues with the 3D CAD representation of bound-
ary conditions, the formation of preliminary and ultimately final vehicle concept
geometries, and finally provides functional layout procedures for weight estimation,
propulsion layout and driving dynamics behavior. The following sections include
an introduction of the working fields involved in conceptual full-vehicle develop-
ment and describe the methods of resolution developed for the integrated approach.
The integration of different engineering disciplines into one comprehensive software
model provides significant potential for the process-oriented combination of knowl-
edge management and engineering data management. The method of application is
focused on the specific corresponding processes. This requires the implementation
of complex data models and data management strategies, while maintaining a focus
on product knowledge throughout the entire development cycle.

9.3.1 Requirements for Automotive Concept Phases

Automotive full-vehicle development processes start with the definition of product
specifications, an initial functional layout and the general vehicle package config-
uration. An initial full-vehicle layout is generated through a combination of initial
styling proposals and technology concepts. In particular, the challenge for develop-
ing innovative technologies is to create a highly flexible 3D CAD model that can
help deal with numerous package variants and can enable an efficient optimization.
This optimization must take into account legislative guidelines, styling and techni-
cal functionalities, and must help to address the issues of drivetrain configurations,
energy storage systems, vehicle driving characteristics and much more (see Sect.
1.2 for a detailed description of the entire automotive development cycle). Integrated
development strategies, including parametric-associative geometry creation, inter-
linked with simulation and computation procedures, have to be applied to fulfill the
requirements of multidisciplinary work packages in early development phases.

Modern development processes generate knowledge about various product char-
acteristics in early process stages, which helps to reduce the engineering effort
and risk in subsequent (cost-intensive) sequences. This requires powerful and user-
friendly methods and strategies for conceptual automotive development, which help
to meet the various, highly integrated demands during these initial engineering pro-
cedures. Figure 9.10 shows an example of the workflow of working areas in an
automotive concept phase.

Requirements for automotive concept phases:

• Quick identification of relevant facts for design and packaging
• Ergonomic viewpoints (e.g. passenger seating position, accessibility of control

elements, entrance areas, car-boot characteristics, efficiencies of mirrors)
• Simple implementation of design data (exterior and interior surface models)
• Implementation of existing DMU components (e.g. engine and drivetrain, interior

and exterior components, human models)

http://dx.doi.org/10.1007/978-3-642-11940-8_1

424 9 Advanced Applications of CAD/EDM in the Automotive Industry

• Easy classification of various legislative influences (e.g. active and passive crash
safety, visual requirements, lighting, space requirements for passengers and lug-
gage)

• Weight management, axle load distribution
• Integration of safety technologies
• Functional layout of propulsion and energy storage technology
• Chassis and suspension pre-dimensioning
• Discussions with customers, development partners and designers
• Comparison of different competing/benchmark products based on simple data

sources (photos, drawings and simplified 3D data)

Fig. 9.10 Working areas in sample automotive concept phase

During the initial design and layout phase of a new car, an optimal interac-
tion between the styling process, technical engineering operations, economic pre-
calculation and customer-related inputs represents an important factor for an efficient
concept generation. The concept phase of automotive development has to consider
numerous factors that influence the definition of a full-vehicle concept model.

In virtual development, this vehicle model is displayed in different ways to account
for the product structure list, the conceptual vehicle cost structure, weight and mass
lists, finite element meshes, styling models, and of course a 3D CAD model struc-
ture. All of these representations of a concept vehicle serve for particular fields of
development and are generated and maintained in different departments. In most
development processes, these subareas are treated more or less separately, and the
data transfer between the disciplines is focused on the tasks in each section. This
procedure leads to an opaque full-vehicle development process, which has to be
monitored carefully and with a significant organizational effort.

Figure 9.11 shows the most important factors that influence an integrated 3D
CAD model in the early development phase. In the present approach, the 3D CAD
vehicle geometry is placed in the middle of different working areas, thereby linking

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 425

the disciplines and serving as a data collector and representation model for the entire
development progress. At the beginning, initial styling studies are implemented into
the geometry model to enable an adjustment of the targeted geometry data (e.g.
vehicle dimensions) with the styling proposals. This initial styling information can
be integrated in the form of simple 2D sketches, drawings or initial scan data of clay
models. In later phases, computer-aided exterior and interior styling surfaces are
imported into the 3D CAD model to facilitate detailed studies of the vehicle styling
in terms of legislation-based boundaries (crash and pedestrian safety regulations),
ergonomic tasks and dimensional viewpoints.

Fig. 9.11 Factors that influence an integrated 3D CAD model in the early development phase [1]

Applying a complete parametric CAD-model already in the initial development
phase enables a significantly enhanced integration of concept model and serial devel-
opment status. One challenge is the efficient representation of the comprehensive
functionalities of full-vehicle models, including the required flexibility for variation
and optimization loops. The parametric-associative structure of the present vehicle
model requires the consideration of all possible modifications to achieve a stable
vehicle model. One important factor thereby is the integration of EDM strategies to
exploit the full potential of the integrated approach.

One main procedure in conceptual development deals with the packaging layout
and geometrical integration. These processes address the geometrical arrangement
of vehicle components, as well as the definition of the passenger space and luggage
compartment. The geometrical investigations are performed within the boundaries of
targeted comfort and space requirements, vehicle dimension definitions and technical

426 9 Advanced Applications of CAD/EDM in the Automotive Industry

module space requirements. In this phase, the virtual concept vehicle architecture is
defined, which often includes a combination of new geometries and existing compo-
nents from predecessor models (e.g. drivetrain, chassis, fuel tank, air-conditioning
system). In addition, the packaging requirements of alternative drive train concepts
have to be considered. The influence of gas tanks, electric motors and batteries, hybrid
engine configurations and other technologies on conventional and future vehicle
arrangements is investigated.

The basis for the packaging layout and geometrical integration is a 3D CAD
model structure, which contains all geometry data as well as simultaneous inter-
faces to several disciplines. DMU processes (e.g. component positioning, clash and
distance analysis) and sectioning functionalities support the concept phase and the
pre-development phase significantly. In state-of-the-art full-vehicle development,
the geometrical integration starts with the definition of passenger requirements. The
important elements here are the entrance area, seating position, head and elbow clear-
ance and the accessibility of control units. The car type has a significant influence
on the seating position. There is a notable difference between the development of
a sports car and that of an SUV. In addition, the target markets influence passenger
space requirements. A car for the Indian market has to meet different room and lug-
gage targets than a car for the European market, for example. All of these factors
have to be considered from the early development phase on and define the vehicle
characteristics in general. Figure 9.12 shows a dimension concept of a modern car.
A large number of dimensions are visible, which show the interaction of technical
components and ergonomic viewpoints. The main vehicle dimensions are prescribed
in several standards. The most important standard for European car manufacturer is
the GCIE standard (Global Car Manufacturers Information Exchange Group), which
defines a long list of ergonomic and technical car dimensions [2].

Fig. 9.12 Full-vehicle layout of a modern car with about 30 selected ergonomic and body
dimensions

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 427

The module structure and crash simulation deals with the definition of an ini-
tial vehicle body arrangement. In this development phase, the vehicle body struc-
ture is generated with consideration given to load and durability requirements, as
well as crash and stiffness demands. The body layout has to consider the applied
frame configurations, materials and connecting technologies. Several factors (i.e.
the vehicle category, targeted vehicle mass, production quantity, cost influences and
platform strategies) influence the choice between conventional steel-based concepts,
aluminum space frames or combined structures. During the development process,
the body-structure model is generated in 3D CAD with ever increasing accuracy. In
different steps of maturity, the geometry data are transferred into a finite element
calculation program to enable an evaluation under predefined load conditions. The
results of the calculation directly drive a subsequent geometry modification.

The implementation of parametric-controlled interfaces to connect the 3D CAD
model with the generation of meshes and other relevant data is important. This
phase is characterized by high flexibility demands on the geometry model. The
degree of detail, which is relatively low at the beginning, increases during the devel-
opment process. Weld spot and connection technology definition as a function of
applied materials and technologies are defined. At the end of conceptual engineer-
ing processes, a verified body structure provides the basis for series development.
Figure 9.13 shows an example of an early car body structure, ready for simulation.

Fig. 9.13 Conceptual vehicle body structure [3]

Drivetrain components have to be inserted to find space in the vehicle environment.
In the early concept phase, different power train technologies are evaluated in terms
of the targeted driving performance and fuel consumption. The ability of selected
engines to fulfill the requirements of the new car concept has to be approved. In the
case of hybrid concepts, the configuration of internal combustion engines, electric
motors, batteries and control units has to be developed. The outline figures of engine
and transmission components are delivered as DMU models to enable initial place-
ment studies. In most cases, these components are derived from other models or from

428 9 Advanced Applications of CAD/EDM in the Automotive Industry

specific development departments. Besides the geometrical aspects of the drive train
unit, the functional aspects of future exhaust emission legislation, fuel consumption
and performance targets in the implementation of hybrid concepts and alternative
engines have to be considered. This application is mainly done concurrently in the
responsible engine development department, supported by linked simulation and
optimization processes.

In addition, the initial layout of vehicle components is supported by the func-
tional integration of several modules. Whereas the drive unit is developed in specific
departments and delivered as a closed unit, the integration of several components
into the vehicle setup is a part of the full-vehicle development process. An efficient
data transfer between the participating engineering departments is an important fac-
tor of success during the entire conceptual development. All these factors have to be
considered during the conceptual layout of a new car, whereby the legislation varies
between different markets.

The ergonomic layout of a car is closely related to these safety concerns. In the
concept phase, the targeted vehicle class provides the principle layout of the seating
position in each row, the number of passengers and the arrangement of luggage space.
Besides these principal decisions, brand-specific boundaries influence the ergonomic
layout. The seating position and the passenger space are important physical factors.
All of these ergonomic elements influence the layout of the door entrance area, the
opening angle, the handling of the trunk cover and other factors.

Specific customer demands are related to the vehicle class or the specific brand
and can be influenced by market peculiarities. In general, cars developed for global
markets have to consider a wide variety of legislations and regulations (e.g. crash
and safety, lighting, exhaust emissions, performances and weight, assurance grad-
ing), while cars built for a specific market can be developed by focusing on the
requirements of the target market.

9.3.2 Integrated Approach to Virtual Concept Development

The present approach includes the implementation of an integrated vehicle model to
improve conceptual automotive development. All of the processes in the concept and
pre-development phases are linked to the full-vehicle model in order to connect the
different fields of development (e.g. geometry, legislation, functional aspects). This
integrated full-vehicle model covers geometry data, functional data and different
interfaces for data transfer to connected processes. A powerful database contains a
list of all of the information relevant for the control of geometry models and for other
simulation and calculation procedures. The product visualization is performed by an
integrated, parameterized 3D CAD full-vehicle model, which is controlled by the
main database. The 3D CAD geometry model serves as a basis for several geometry-
related investigations and also as a demonstration unit for the entire concept model.
A bi-directional connection to the database enables a parametric geometry control,
as well as a tracking procedure and data archiving. This virtual concept model is

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 429

connected to several supplementary tools and procedures via data interfaces. Thus,
the geometry model can be understood as a display of the overall vehicle concept
model.

Overview of Past and Current Development in the Area of Conceptual
Full-Vehicle Design Using Computer-Aided Methods

Due to the importance of conceptual vehicle layout, this topic has been intensively
explored by automotive manufacturers, universities and research institutes. Since the
beginning of the 1980s, virtual development methods have emerged in the automotive
industry and have also been applied in conceptual vehicle design. The following
section includes a selection of related research work and publications. In addition,
the integrated approach presented in the current chapter is delimited in relation to
the general state of the art.

Hänschke published initial findings for the conceptual representation of car mod-
els in 1986 [5]. In a co-operation between the Technische Universität Berlin and a
German car manufacturer, the CAD-based tool AURORA (Automobiltechnisches,
anwenderorientiertes Entwurfssystem zur Optimierung der rechnergestützten Ausle-
gung) was developed, which enabled the creation of simplified geometrical elements
for the representation of vehicle outer contour and inner geometries for packaging-
relevant investigations. In this way, it was possible to generate a variable vehicle
model within a CAD environment to represent the space requirements of compo-
nents as well as of general, legislation-based boundary conditions. As a further
development of AURORA, Heinke and Deter introduced a parametric system for
the representation of conceptual vehicle geometries in the 1990s [6, 7]. The geomet-
rical representation was based on wireframe elements, which were composed using a
skeleton model. Once created for a specific car, the model enabled parametric modi-
fications of the geometries, which supported variant studies and optimization loops.
By exporting points and coordinates, parallel simulation procedures (MBS, FEM)
were supplied. These initial findings for the parametric creation and representation
of a simplified full-vehicle model served as a basis for several further approaches
and software solutions in the ensuing years, e.g. [8].

Bulheller established an integrated product data model, which contained the prod-
uct geometry, technological information (e.g. materials, tolerances) and information
about production planning in one structure in 1994 [9]. This integrated product model
served as a basis for product representation and as a data source for different develop-
ment processes, thereby enabling simultaneous engineering approaches, including a
linking of CAD and CAM.

Drawing on the concepts of Heinke [6] and Deter [7], Rasenack developed a
method for the parametric control of vehicle packaging geometries [10]. The method
included the creation of simplified, functional geometries of engine and drivetrain
packaging, as well as the implementation of wheel envelope for initial investigations
in conceptual full-vehicle development. Besides the pure geometrical representation,

430 9 Advanced Applications of CAD/EDM in the Automotive Industry

he developed initial methods for the support of geometry-based packaging optimiza-
tion loops.

Parametric design methods significantly enhanced the possibilities for conceptual
vehicle geometry creation. Besides the geometrical representation, the design model
serves as a basis for simulation procedures, such as FEM calculation. Focusing on
the requirements for conceptual layout of a vehicle structure in terms of strength,
stiffness and NVH characteristics, Zimmer has been engaged since the middle 1980s
in the development of a FEM-based platform for the representation and simulation of
vehicle body structures [8]. Unlike conventional 3D CAD-model-based approaches,
Zimmer’s method is based on the parametric generation of simplified geometry mod-
els, which are created to be used directly for subsequent meshing procedures for the
supply of FEM simulation.

The implementation of parametric 3D CAD systems into full-vehicle development
processes at the beginning of this century enabled the creation of new integrated meth-
ods in vehicle development. Several research projects were carried out between 2000
and 2005, which explored the development of enhanced design methods for auto-
motive concept phases to tap the full potential of parametric-associative design. The
following three doctoral theses represent a selection of the comprehensive research
work in this area. In 2001, Gessner investigated the possibilities for creating geo-
metrical features which represent predefined models for packaging studies [11]. The
introduction of parametric geometries for the representation of packaging-relevant
factors, such as the view areas of passenger, head clearance, etc., supported the cre-
ation of new vehicle models, especially in early development phases. Next, Forsen
combined the possibilities of parametric design and associative methods for the effi-
cient creation of body in white components in automotive development in his 2003
doctoral thesis [12]. Using examples from automotive applications, he introduced
and evaluated different possibilities of parametric-associative design, including sys-
tematic approaches for the improvement of data quality and knowledge-based reuse
of template models. In addition, Forsen pointed out the importance of hierarchical
structuring of parametric CAD models and of dependencies in complex models.
At the same time, Böhme investigated the classification of parameters and the data
model structure for the efficient combination of package-relevant components. Fur-
thermore, he introduced methods for the definition of knot geometries within a CAD
model for the supply of CAD-external simulation and variant studies [3].

In the middle of the last decade, a comprehensive approach for the support of
conceptual vehicle layout was developed by a commercial software supplier in a joint
venture with several research institutes and German automotive manufacturers. The
vehicle layout tool CAVA (CATIA V5 automotive extensions vehicle architecture)
is embedded in a standard 3D CAD software package [13] as an integrated CAA
(component application architecture) module [14]. The tool supports the general
layout development of a new car by providing CAD surfaces as boundary conditions
of vehicle main dimensions, geometrical representation of selected legislations, and
passenger ergonomics basics, as well as vision wiper and mirror layout. To provide
up-to-date information, the software is revised continuously with the current laws
and trends.

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 431

In recent years, several automotive manufacturers have developed 3D CAD-based
tools and methods to support their conceptual vehicle development, following front-
loading and simultaneous engineering approaches. These solutions are specifically
configured for the requirements in each company, and they often include specific
features and functionalities. As an example of manufacturer-specific methods, Tesch
introduced an approach for the parametric derivation of new vehicle concepts based
on an existing model structure (i.e. from former models) at BMW [15]. The approach
is based on a simplified, parametric vehicle model, which mainly consists of the
underbody structure. In this structure, several components from existing models are
implemented (e.g. drivetrain, suspension). This conceptual configuration serves for
derivate studies and packaging optimization.

Nikol represents a second example of manufacturer-related conceptual design
methods [16]. In his publication, he introduced a conceptual full-vehicle design
method, which was developed by Audi. In this approach, a new model architecture
is always based on an existing design of a former car model. This provides a high
level of geometrical detail, including the ability to utilize knowledge from the serial
design of former models. However, this method restricts the degree of freedom in
terms of creating completely new vehicle types and architectures.

Since 2002, this author has been involved in the development of a method for the
integrated consideration of different influencing factors in conceptual automotive
development. The project started with the parametric creation of simplified geome-
tries within a 3D CAD environment to enable an automated representation of vehicle
main dimensions. In the course of continuous expansion and improvement, several
additional modules and functionalities have been implemented, so that the current
version covers a broad field of applications for the early definition of car concepts.
As an additional field of investigation, the functional vehicle layout has become
an important aspect of vehicle layout procedures. The development of methods that
would enable the connection of a geometrical vehicle representation and its boundary
conditions, and the calculation and simulation procedures which are required for the
estimation of driving characteristics, fuel consumption and others was a significant
challenge. The current version of the tool is used by both an international automo-
tive engineering and component supplier and a German car manufacturer. The close
co-operation with these companies provides an effective project environment for the
further development of tools and methods which will support the comprehensive
working fields in conceptual automotive development.

Architecture of the Integrated Approach

In the present approach, the virtual car model of the first step consists of database-
controlled axel and wheel dimensions, wheel base, car outer dimensions and con-
figurations of passenger seat points (SgRP). The implementation of additional
components expands the virtual car model through the positioning and evalua-
tion of both externally controlled components (e.g. variable crash barriers) and
non-parameterized components (e.g. simplified 3D models of drivetrain, chassis or

432 9 Advanced Applications of CAD/EDM in the Automotive Industry

interior modules). Functional aspects are incorporated using additional modules,
which enable early calculation and simulation processes. In this way, the integrated
geometry model is linked with a mass calculation module, the calculation of the
center of gravity and an estimation procedure for the required propulsion perfor-
mance (by considering targeted acceleration and vehicle speed values). In addition,
the model can be used to estimate fuel consumption (or energy consumption in case
of an electric drive line) in standardized driving cycles of a given or assumed drive-
train configuration. An implemented single-track model of the vehicle supports the
assessment and evaluation of driving dynamic characteristics.

The parameters that influence the early development phase predefine the structure
of an integrated concept vehicle, which forms the core of a supporting tool for all
concept phases of automotive development projects. This concept tool consists of a
database, which includes a logical order of data modules, and a linked 3D CAD model
comprising seven main sections (Fig. 9.14). An externally controlled 3D CAD-based
development strategy simplifies the conceptual design and packaging process by
using an external data pool, which controls the parameterized model. The external
data collector includes a key collection of relevant dimensions, positions and/or
ergonomic viewpoints. The data sheets also permit modifications and variant studies
of the virtual car by project partners who are not primarily specialized in the applied
3D CAD design software, thereby providing direct access to the relevant information
on vehicle geometry.

Fig. 9.14 Principle architecture of the concept tool

The data pool architecture consists of seven main sections, in which all main
geometries are defined in accordance with the GCIE standardization. Data for func-
tional investigations are handled in a specific module, which also includes mathe-
matical calculations and relations. The legal-based tasks include crash and safety,
visual regulations, lighting equipment, ergonomic data and other governmentally

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 433

regulated areas. Data from standardized import geometries control the dimensioning
and positioning of additional simplified geometry models, such as drivetrain com-
ponents, suspension, luggage elements, and interior models. The verification data
sheet enables a definition of control mechanism, different check geometries and the
generation of predefined 2D sections. A data storage system supports the creation of
variant studies, the handling of benchmark data and release archiving throughout the
entire development process. An efficient data exchange with the 3D CAD system and
different simulation programs is performed with the help of an export management
system.

The virtual vehicle model in the geometry module integrates several sections,
which combine elements to form a logical unit with cross-module dependencies and
parameters controlled by the external data pool for a centralized input and editing.
The modular construction and open architecture provide the required flexibility and
allow for the implementation of additional components. The parametric 3D CAD
model includes the visualization of the following components:

• Basic vehicle geometries, which consider car dimensions in relation to the GCIE
regulation

• Exterior surfaces (simplified, engineering-based surfaces considering the basic
layout, legislation requirements and packaging-relevant facts)

• Interior surfaces (simplified, engineering-based surfaces considering ergonomic
viewpoints, packaging-relevant facts, legislation boundaries (e.g. view, mirrors))

• Check geometries for the evaluation and verification of the virtual concept vehicle
• Import geometries to enable an implementation of predefined automotive compo-

nents (e.g. engine, drivetrain, suspension)
• 2D sectioning (possibility of automated sectioning for release definitions and a

basis for technical discussions both in DMU tasks and in the field of detailed
engineering)

A separate calculation module is connected with the data pool and with the
geometry module. This calculation module consists of different functional-oriented
sections, which support full-vehicle-related layout during conceptual development.
Thus, the integrated and highly flexible formulas and simulation models support
early weight estimation, different power train layout procedures and primary vehicle
dynamics calculations. A bi-directional information flow from the data pool to the
parameters of the virtual car model and from the CAD system back to the data pool
efficiently supports geometrical conceptual working steps. An advanced parameter
structure organizes the input of relevant data to each component of the tool. Besides
the information transfer from the input and data organizing tool to the 3D CAD sys-
tem, a reverse data exchange from the 3D CAD system to the data pool guarantees
an efficient workflow during the entire development processes.

The user-friendly disentanglement of the data pool and the actual geometrical
environment offers the advantage of a clearly arranged overview of all decisive
characteristics that are necessary for the model description. Furthermore, the use of
spreadsheets opens up the possibility of adopting standardized parameters directly
from automotive tables. Taking this into account, the preparation of the collected

434 9 Advanced Applications of CAD/EDM in the Automotive Industry

Fig. 9.15 User operation and data flow [1]

model input (e.g. databases, established standards or customer-specific information)
takes place in the form of interconnected tables. The input templates include infor-
mation concerning the positioning coordinate system, wheel dimensions, seat ori-
entation of the passengers in the third row, load conditions, approximated spring
constants, axle load distribution and position of the accelerator pedal points based
on the GCIE standard. The parameter values contained in these tables are accessible
for explicit editing. Concurrently, the inserted values are monitored with regard to
their plausibility by the help of predefined borders. Figure 9.15 illustrates data flow
and parameter control between the user, the data pool, the geometry module and the
calculation module.

9.3.3 Data Pool Structure and Parameterization Strategy

The parameterization of the entire concept tool is based on a list of exactly defined
parameters, which include all of the information required for the control and oper-
ation of the different working fields in the data pool, the geometry module and the
calculation module. The complete list of parameters is managed in the data pool (or
the database), whereby each parameter has its counterpart in the corresponding sec-
tions of the geometry and the calculation module. The information flow between the
modules and the data pool is bi-directional. This enables user-friendly modifications
either by changing parameters in the data pool or by changing them in the working

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 435

area by modifying geometry values or values of calculation procedures. One key
feature of the parameter-based system is the ability of users to adjust the parame-
terization, which provides essential flexibility in the concept phase. Thus, various
associations between different parameters can be defined and modified during dif-
ferent steps of the development process. In this way, users can add new parameters
or configure formulas or relations with respect to current project requirements. For
example, engineers can decide whether the wheelbase is a value that will be entered
or one that will be calculated based on the vehicle wheel coordinates.

According to the method of object-oriented parameterization, each parameter of
the system is equipped with a list of parameter attributes [17]. This method expands
the information content based on the different applications of parameters. In this
way, it is possible to integrate a universal parameterization for different operations in
the concept tool, such as geometry creation, geometry structure organization, check
operations, or functional vehicle computations.

The integrated data pool configuration manages the complete parameter struc-
ture of all enclosed modules and functionalities, including the template structure,
a user interface and a tracking system. The data pool itself serves as a centralized
parameter platform and supplies the geometry model as well as the calculation and
simulation processes with the necessary information. This structure ensures a logical
parameterization architecture in different applications while simultaneously prevent-
ing data redundancy. Besides the main operational tasks, the data pool is equipped
with a user-configurable interface module, which supports the definition of different
data exchange formats to supply multiple applications and a quick adaption to new
requirements.

Fig. 9.16 Parameterization strategy of the integrated concept tool

Figure 9.16 displays the parameterization structure of the data pool, the geom-
etry module and the calculation module. The data pool control system is based on
several VBA routines (visual basic for applications), which facilitate automated pro-

436 9 Advanced Applications of CAD/EDM in the Automotive Industry

cedures to control and perform the different functionalities and operations. At the
same time, graphical user interfaces support an efficient and easy handling. The data
management of the entire concept tool is based on the integrated parameter structure.
Besides parameters, specific objects include information of geometry components
(e.g. envelope of geometries), calculation components (e.g. diagrams or maps) or
parameter interrelations (e.g. check parameters, reference points). In addition to
managing parameters and objects, the data pool organizes equations from the vari-
able parameterization in the geometry module. For this purpose, linear equations
from the geometry module are controlled in a way that different parameters of a
linear equation can be variably defined as input or as output values.

The data flow management combines information from different sources and pro-
vides accessibility to the data. The work area serves as an input platform in the data
pool and always holds the current data status. The tracking area consists of two mod-
ules. An efficient save management module makes it possible to save processes of
the work status during the development process, while the load management mod-
ule supports the reloading of the desired development status. Internal calculation
procedures, such as the computation of geometrical and functional parameters (e.g.
lengths, center of gravity, flow resistance areas), are handled by the application con-
trol module. The import/export area manages data exchange processes with external
applications. This includes importing supplementary data of geometry components,
as well as data for calculation procedures. In addition, the export system permits an
efficient transfer of parameter configurations for use in external programs. As men-
tioned before, the data pool holds all of the data of the concept tool that is utilized in
both the geometry and the calculation modules. Vehicle geometry data, legislation-
based information and import geometry data are transferred to the geometry module
to control the conceptual vehicle geometry model. Functional data are handled for
different calculation procedures. Several check operations include verification data of
predefined concept check procedures. In addition, the data pool includes operations
of data storage (tracking) and data exchange.

The parameterization of the geometry module consists of the module control, the
module utilization and an interface structure. The entire data flow and the processes
are controlled by integrated VBA routines, which also support data input and user
handling. The parameter structure in the geometry module is completely integrated in
the parametric-associative geometry definition structure. This means that the geome-
try definition is based on predefined parameters, corresponding associative geometry
configurations and geometrical constraints. Relations are used to express connections
between parameters in the form of geometrical functions or of logical configurations
in equations, which makes it possible to apply variable parameter input strategies.

The configuration of different associative geometry sections enables the definition
of an integrated conceptual vehicle model in the applied CAD software package.
This includes basic geometries, exterior and interior surfaces, and a traffic sight
module. The incorporation of import geometries into the product structure enables a
consideration of components delivered in the concept process. As a separate feature,
the geometry check module supports an evaluation of different variants throughout
the course of conceptual development.

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 437

The geometry module is equipped with interfaces for an enhancement of the con-
cept development and for the integration of external geometries and applications. The
DMU/product structure interface supports the integration of product structures into
the virtual concept vehicle model. This includes a structuring of the virtual vehicle
model into sub-modules and components based on a predefined bill of material or
a neutral product structure list. This segmentation of the product into several lay-
ers and modules supports an efficient integration of components and modules into a
digital mock-up model. In cooperation with the different modules of the concept vehi-
cle, the DMU integration supports a detailed consideration of provided geometries,
including their specification characteristics and their space requirements. External
applications, such as modules for the investigation of suspension systems (includ-
ing kinematics) or the integration of parametric geometry models from libraries, are
imported and positioned in the vehicle mock-up via a specific interface. Besides the
DMU structure and the integration of external applications, an attendant geometry
adapter enables the import of additional, subsequent geometry elements, which are
able to support the design process. These can be data from existing vehicle models,
benchmark data, or the integration of components and modules for pre-studies.

The calculation module consists of two main areas. The module control section
organizes the data exchange between the data pool and subsequent external appli-
cations via data interfaces and manages different algorithms and calculation proce-
dures. In the second module, different utilizations of functional vehicle layout are
organized, such as weight estimation, power train layout procedure and conceptual
vehicle dynamics simulation.

9.3.4 Geometry Creation in Conceptual Vehicle Development

A conceptual vehicle model, which includes all of the geometry elements for the
description of a virtual concept vehicle, is generated in a 3D CAD software package.
These include wireframe elements (points, lines and curves), surfaces and solids. The
geometry elements are completely parameterized, whereby two types of geometry-
based parameters occur. In the concept vehicle, there are a total of about 500 driving
parameters which define the geometry dimensioning, and there are secondary para-
meters, which result from geometry-related operations. The driving parameters are
controlled by an embedded parameter table, which is connected with the CAD exter-
nal data pool.

The geometry module is composed of seven main sections, which are interlinked
by a number of formulas and dependencies. These mathematical relations are also
parameter driven and are displayed in a separate relations table. Besides the linkage
to the data pool, the geometry module is equipped with an interface to the calcula-
tion module and interfaces to external applications. A connection to the calculation
module handles all geometry-based information for the functional vehicle layout,
such as principal vehicle dimensions (e.g. suspension characteristics), the centers of
gravity of components, and areas for the calculation of air resistance. External inter-

438 9 Advanced Applications of CAD/EDM in the Automotive Industry

faces work with program-independent geometry data formats and form a linkage to
styling or calculation software packages.

Figure 9.17 shows an example of a vehicle concept that results from all of the
sections displayed in the geometry module. A combination of the seven modules
forms an integrated 3D CAD conceptual vehicle, which includes the vehicle basis
geometries, technical-related exterior and interior surfaces, check surfaces for leg-
islative and ergonomic boundaries and imported silhouette data. A geometry-based
evaluation of the concept can be performed by visual checks and by automated veri-
fication cycles in the geometry check module. The following sections include a short
description of the seven sections of the geometry module and provide an overview
of the interlinking functionalities and applications.

Fig. 9.17 Conceptual vehicle layout displayed in the geometry module

The general vehicle dimensions are displayed in a basis geometry section, which
includes the boundary surfaces of vehicle main dimensions. In this way, a number
of standardized interior and exterior car dimensions are displayed as simplified geo-
metrical elements (e.g. the vehicle length, width and height, the wheelbase, front and
rear ramp angles, maximum opening dimensions of doors and closures).

In total, the basis geometry section includes 45 dimensions and geometry bound-
aries. The boundary surfaces do not display the geometry of the car itself, but
rather represent check gauges for the geometrical vehicle concept configuration.
This method enables a vehicle setup definition at an early conceptual phase without
information about the car styling or other secondary parameters. The basis geometry
section supports the entire development process, beginning from the first dimen-
sioning, maintaining the definition of technical, legislative and ergonomic-related
configurations, and finally serving as check geometry for the confirmation of the
vehicle concept.

The confirmation procedure is performed in a separate check unit, which is linked
with the basis geometry section. For this purpose, the basis geometry section is

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 439

Fig. 9.18 Selection of boundary surfaces and dimensions in the basis geometry section

enhanced with functionalities from a commercially available software package,
which covers legislation-based information [18]. The close integration of the off-
the-shelf software package in the applied 3D CAD system [13] enables a direct
embedding in the geometry module of the virtual concept vehicle. This close inte-
gration facilitates the import of both the object definition and the parameteriza-
tion strategy into the overall software architecture. Figure 9.18 shows a selection of
geometries and dimensions displayed in the basis geometry section.

All of the dimensions in the basis geometry section follow the guidelines of SAE
standards and specifications corresponding to the GCIE guidelines. The exterior
geometry section represents simplified outer surfaces of the virtual concept vehicle.
These surfaces are technical-based and highly flexible to enable the geometrical
description of different car types. The exterior geometry section does not generate
any kind of styling surfaces, but rather a complete technical representation of the
outer car silhouette. The applied wireframe and surface elements are parametric-
associatively interlinked and integrated into the logical parameter management of
the geometry module as a template model. The manipulation of the exterior section
is performed by the CAD -external database or by data input via graphical user
interfaces (GUI) in the CAD environment. Figure 9.19 shows a sample selection of
available vehicle templates of car exterior geometries.

In case the predefined template geometry cannot fulfill the requirements of a
new vehicle concept, an additional freestyle unit is integrated. This unit enables the
definition of vehicle geometries not covered by common car setups. In this way,
the generation of completely new, future-oriented concepts for individual traffic

440 9 Advanced Applications of CAD/EDM in the Automotive Industry

Fig. 9.19 Available vehicle templates and a selection of sample car exterior geometries

is supported without limitations from existing categories and integrated into the
functionalities of the virtual concept vehicle. The freestyle unit enables a high degree
of geometrical freedom (Fig. 9.20).

The concept vehicle interior geometries are represented in a separate section,
which includes simplified surfaces of seats, dashboard, steering wheel, gearshift,
pedals, cabin and trunk inner surfaces, as well as a number of boundary geometries
for ergonomic investigations (e.g. knee and elbow clearance, entrance area, head
clearance). The logical configuration of the interior geometry section is the same as
in the exterior geometry section. It contains a template-like characteristic, with the
option of parameter-controlled geometry adjustments.

Fig. 9.20 Example of freestyle exterior surfaces with a selection of main dimensions in accordance
with the SAE standard J1100

Since the interior geometry section is linked to the basis geometry section
and the exterior geometry section, modifications made in any section are incorpo-

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 441

Fig. 9.21 Interior geometry section with application examples

rated into the entire virtual concept vehicle. The interlinked parameter management
ensures that each parameter in the database has an exactly defined corresponding
geometry parameter in the targeted section of the CAD model, which influences
dependent parameters in other sections. Depending on the functionalities of the
applied human models, anthropologic and ergonomic studies can be carried out.
Vehicle interior characteristics, such as seating positions, accessibility of control
units, comfort dimensions and entrance areas, can be optimized.

Figure 9.21 shows examples of interior-surface-based studies in the early con-
cept phase. Besides the representation of the simplified inner surfaces of a car, the
integration of human models and boundary surfaces enables detailed ergonomic stud-
ies, packing optimization with different vehicle components and the evaluation of
legislative regulations.

The general geometry module architecture is oriented to the general vehicle
dimensions, boundary surfaces and check geometries of a virtual concept vehicle.
The integration of additional component geometries, which are required for DMU and
packaging-relevant investigations, is performed in an import geometry section. This
section offers two different kinds of functionalities. Variable parametric-associative
templates of selected components include a fuel tank dummy, gas tanks, battery
units, electric motor dummies and a collection of common suspension systems. These
templates are directly integrated into the parameterization concept of the geometry
module and thus connected with the data pool. These include the outer contours
of common internal combustion engines between 1.6 and 6 liter displacement and
typical transmissions, as well as a selection of standardized components.

In addition, an interface for the integration of external DMU geometries sup-
ports the implementation of packaging-relevant technical standard components or

442 9 Advanced Applications of CAD/EDM in the Automotive Industry

carry-over parts into the virtual concept vehicle (e.g. engines, transmissions, engine
cooling systems, chassis components, seat models, air conditioning systems, window
lifters, loudspeakers, suitcases). The parts from external sources are positioned by a
parameter-controlled positioning axis system, which enables data-based control and
save management.

Import geometries from external sources are implemented as non-variable DMU
elements that describe the outer contours of components. The import geometry
section offers a selection of implemented dummies for engine, transmission and
suitcases, which can be selected in a database and positioned in the vehicle model
by a parametric reference axis system. Additional parts for conceptual studies are
implemented via a geometry interface. In this method, existing components from
other cars can be taken into consideration during the concept phase and can serve
for ergonomic studies, packaging and clash analysis, evaluation of styling concepts
in terms of space requirements and other functions.

Fig. 9.22 Packaging study with import geometries

Figure 9.22 shows an example of the results of a packaging study with simplified
geometries of the virtual concept vehicle and supplementary CAD components from
a predecessor model. In the case of the displayed study, the car being developed
had to adopt components from former models. Therefore, a representative engine,
drivetrain component, suspension parts, steering system and the under carriage were
loaded into the conceptual vehicle layout to evaluate the geometrical possibilities of
the new model.

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 443

Geometry Checks

The geometry check section enables a validation of the virtual concept vehicle
based on a list of predefined quality parameters, which define the general vehicle
dimensions in accordance with the GCIE and SAE standards, legislative require-
ments, ergonomic characteristics and packaging-relevant factors (e.g. component
collisions, passenger space requirements, the layout of luggage space). The check
procedure is performed on demand during the development process or in the course
of specified milestones. Thus, it can be applied to support optimization cycles, as
well as for verification and technical release procedures.

The geometry check section contains boundary surfaces, which are defined in the
basis geometry section, the exterior section and the interior section, as well as check
vectors and check dimensions, which enable additional tests. A direct parametric
dependency of the check program on geometry driving sections ensures the currency
of the checking process and the integration of check results into the parameter and
data management system of the virtual vehicle model. The check procedure includes
automated verifications of clash or overlapping geometries and user-oriented visual
inspections. The results of automated verifications are saved in a check results list
by the program, while the manual inspections are performed with a list of prescribed
check tasks and are recorded by the user. Figure 9.23 illustrates a selection of check
surfaces and their application on a vehicle model.

Fig. 9.23 Selection of check surfaces and their application on a vehicle model

444 9 Advanced Applications of CAD/EDM in the Automotive Industry

Once the technical solutions have been approved by the check functionalities, the
development status can be saved, and the geometrical and functional parameters can
be imported into the data management system. In a later step, when 3D CAD styling
data are available, the technical exterior surface is replaced by styling surfaces, which
also have to fulfill the technical and legislative requirements. These styling surfaces
are analyzed with the geometry check section to visualize the conformance with given
requirements or, in the case of disconformities, to highlight and localize divergences.

The engineering-styling convergence always represents an important task in auto-
motive development. In many cases, the two departments differ in their interpreta-
tions of product requirements and in their determinations of solutions. If the styling
solution passes the check procedure, the vehicle concept status is approved and can
be saved. In the event that the geometry check discovers discrepancies between the
styling surfaces and the concept specifications, the vehicle styling must be reconsid-
ered with respect to the technical necessities.

An integrated 2D sectioning functionality enables an automated parametric deriva-
tion of 2D drawings from the virtual concept vehicle. These drawings include prede-
fined views and sections and describe the dimensional concept of the car. Geometry
dimensions, which are defined in views or sections, are generated automatically in
accordance with the GCIE standards and are linked to the 3D CAD model. Modifi-
cations of the model in 3D working space affect the dimensional drawings directly
to keep them updated during the development process. The dimensional concept dis-
plays the complete vehicle, including annotations and text tables. All sections, views
and dimensioning are embedded in the global parameterization management system
of the virtual concept vehicle, including a connection to the data pool.

Fig. 9.24 Front view and side view of a dimensional vehicle layout

The relevant and critical geometrical dimensions provide an overview of key char-
acteristics related to the vehicle size, packaging solutions and ergonomic viewpoints.
The dimensional concept is a part of the full-vehicle description during the concep-
tual development and serves for data tracking and release archiving. Figure 9.24
shows the front view and the side view of a dimensional vehicle layout in the early
concept phase with selected vehicle components and dimensions.

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 445

External Interfaces

The geometry module is embedded in a commercial 3D CAD software package,
which offers different possibilities for geometry data exchange. The open struc-
ture enables an easy-to-handle implementation of external vehicle mock-up data
for the integration of components, product structures or full-vehicle geometries.
The integration is performed in a separate DMU area and managed by the GUI-
supported data organization strategy of the virtual concept vehicle. In addition to
vehicle DMUs for geometry-based investigations, a flexible CAE interface enables
the connection of structural optimization software, which is used for conceptual
pre-calculation of vehicle body, NVH, stiffness and crash performance [3, 19]. The
interface works bi-directionally and exports the necessary geometry data from the
virtual concept vehicle to the simulation software. In the second direction of data
flow, body structure models, including simplified beams, carries and joint elements,
are imported into the virtual concept vehicle and serve as geometrical components for
packaging studies. A general geometry export function supports the data transport via
neutral data interfaces. In this way, selected geometries of the virtual concept vehicle
are saved as neutral data formats and can be imported into several common design or
simulation software packages. These neutral data formats consider the geometrical
characteristics, including dimensions and shape, but they do not include any para-
meter or history data of the concept model. Thus, different CAE applications can be
integrated into the virtual vehicle development process, such as noise-vibration and
harshness simulation, finite element calculations, multi-body simulations, specific
crash-related calculations and others.

Besides simulation, different processes in the field of product planning and tech-
nical calculation can be supported with the supply of concept geometry data from
an initial phase on. These include project and product planning, cost calculation,
early production engineering tasks and the estimation of technical and economic
feasibility studies. An efficient data transfer to external engineering and component
suppliers enables a direct integration into the development process. Vehicle styling
is an important process during the conceptual development phases. In the present
approach, a close interaction between the engineering-based technical development
and the styling department is supported by an integrated styling export function,
which enables the definition and transfer of (technical) boundary surfaces from the
virtual concept vehicle into the applied styling software packages. For this purpose,
the surfaces to be exported are selected in a dialog box and converted into a neutral
data format. This neutral geometry is imported into the applied styling software and
serves as input data for the development of the vehicle exterior and interior styling sur-
faces. At the same time, the exported surfaces are saved in the parametric-associative
virtual concept vehicle to ensure a clear assignment during the development progress.
All related parameters are saved in the data pool’s tracking system for archiving pur-
poses. The exported boundary surfaces for the styling creation consist of curves and
surfaces from the basis geometry section, the exterior section and the interior section
and represent the virtual concept vehicle at the selected development status.

446 9 Advanced Applications of CAD/EDM in the Automotive Industry

9.3.5 Processes and Applications in the Project Flow

The initial phase of automotive development includes the following core processes:

• Geometry generation
• Geometrical integration
• Functional integration

Fig. 9.25 Modules and functionalities of the virtual concept vehicle in the process flow [20]

Figure 9.25 shows an overview of the relevant disciplines and verification meth-
ods in relation to the core processes. The process targets include different product-
describing aspects, which are displayed as superordinated requirements. All relations
between geometry creation and functional development are linked with processes of
geometrical integration in order to support verification, as well as functional integra-
tion and evaluation. This enables a simultaneous optimization of the vehicle architec-
ture in the form of a centralized working area. The intersection of multiple disciplines
in a centralized virtual concept vehicle enables a concurrent consideration of often
conflicting viewpoints. This is precisely the main application of the present approach
of an integrated concept model, which is defined and controlled by the vehicle archi-
tect. The process of geometry generation is driven by the definition or description
disciplines of styling and design, which deliver styling surfaces and data for carry-
over parts and standard components that are already available in the early concept
phase.

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 447

In the concept phase, high-quality CAD data of new components that can be
used as technical surfaces are rare. Most of the geometries are defined as rough
estimations for package investigations only. During processes of geometrical inte-
gration, the application passes through diverse sub-tasks of packaging and layout,
virtual ergonomic investigations, verification of legal requirements, the generation
of a dimensional concept and the definition of a mass package. The functional verifi-
cation includes a transfer of CAE-relevant information from the geometry model as
input data or boundary conditions for simulation processes to enable a consolidation
of workflows which were strictly separated previously. The parametric-associative
generation of comprehensive geometry data for a virtual concept vehicle under the
consideration of legal requirements, functional aspects and customer-related influ-
ences enables an accurate characterization of a new vehicle concept from the initial
process phase on. In the course of the development project, a rough vehicle package
is refined stepwise by the implementation of several components and modules.

Fig. 9.26 Interdisciplinary consideration of the workflow in an automotive concept phase using
the integrated approach [1]

Figure 9.26 provides an overview of the application based on the workflow of typi-
cal project engineering procedures. Starting from first vehicle data, an initial concep-
tual 3D CAD model is defined. Depending on the requirements of each individual
development step or verification process, different modules of the virtual concept

448 9 Advanced Applications of CAD/EDM in the Automotive Industry

vehicle are used. Figure 9.26 shows an interdisciplinary consideration in which all
tasks from the conceptual development cycle are performed within the virtual vehicle
model. Since data transfers to external applications are also triggered and monitored
by the virtual model, the general data flow is managed by one centralized system. The
results of all working procedures are saved and maintained in an integrated database
structure. The centralized data management concept avoids inconsistent information
flow and supports the execution of variant studies and optimizing cycles significantly.

A conceptual automotive development process can start with the definition of
packaging-relevant vehicle data, which correspond with the requirements in the
specification table. This process includes the representation of vehicle main dimen-
sions through appropriate parametric boundary surfaces and geometrical elements
in the 3D CAD model. An additional implementation of predefined components and
human models enables the definition of an initial full-vehicle packaging concept.
Sources for predefined components or modules can include existing vehicle mod-
els (e.g. predecessor models), geometry data pools or simplified 3D CAD models.
The integration of envelope geometries from external sources and simplified prede-
fined components, as well as the representation of boundary surfaces for the vehicle
dimensions in one 3D CAD model lead to an early and efficient setup of a conceptual
full-vehicle model. This concept model provides the basis for further investigation
and optimization cycles, which deal with the interactions of components, vehicle
dimensions and space requirements of passengers, as well as an early estimation of
the storage concept.

During the initial phase of development, the limited availability of information
about the vehicle styling makes it difficult to consider the future outline shape. To
avoid problems in later steps, two-dimensional styling sketches can be implemented
directly into the 3D CAD vehicle model. This procedure allows for an early assess-
ment of the technology-styling convergences and makes it possible to carry out
modification or optimization cycles from the beginning. The implementation of the
styling process itself into the conceptual full-vehicle development is performed by
deriving relevant geometries from the virtual concept vehicle. These surfaces are
summarized in a hard point model, which represents the specification geometries
of vehicle main dimensions and the space requirements for passenger, luggage or
components, as well as legal instructions. An import into the applied styling software
is accomplished via neutral geometry data interfaces.

One important work package in early vehicle development is the definition of
ergonomic solutions for driver and passengers. The generation of an interior module,
which comprises seats, dashboard, control elements and cabin-limiting surfaces, is
directly connected to the positions of human models as driver and passengers. Derived
from the seating positions and the space requirements, a variable configuration of
the 3D CAD interior model supports the initial definition and optimization cycles
under the consideration of specific ergonomic necessities.

The legal requirements for full-vehicle development include instructions for pas-
sive safety, geometrical prescriptions for lighting equipment and relevant standards
for driver vision and passenger safety. A representation of each regulation as a geo-
metric check surface enables a direct implementation into the data structure of the

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 449

integrated virtual vehicle model and thus a consideration throughout the entire devel-
opment cycle.

Besides different geometry-based applications, the integrated vehicle model
includes a module for functional layout and evaluation for full-vehicle develop-
ment. The consolidation of geometry-related tasks and functional aspects enables
an interdisciplinary treatment of the entire concept phase, which supports the con-
sideration of a broad variety of requirements and characteristics. The estimation of
vehicle weight and the position of the vehicle center of gravity is a fundamental
challenge in functional concept development. Linking the database and the geom-
etry module facilitates an easy-to-handle estimation of both the total vehicle mass
and the vehicle center of gravity independent from the project development sta-
tus. Driving performance and fuel (i.e. energy) consumption are estimated based on
geometry data, mass data and imported information about engine and drivetrain con-
figurations, under the consideration of specific driving resistances at different load
conditions. The computation of representative numbers for driving behavior includes
vehicle speed, acceleration and climbing potential and enables an early assessment
of different power train technologies in terms of their suitability for the relevant
vehicle concept. Besides standard drive units, electric motors and hybrid propul-
sion configurations are also considered. Finally, lateral driving and vehicle handling
characteristics are computed by using an integrated single-track model, which com-
bines information from the geometry module, the vehicle mass and center of gravity
estimation, the drive line layout and the data pool. The simulation of driving tenden-
cies (under-steering, neutral and over-steering) under the consideration of different
axle load conditions enables an early assessment and optimization of influencing
parameters to achieve a well-balanced chassis and vehicle layout.

Modern 3D CAD software packages enable the implementation of 2D studies,
sketches or drawings into the 3D model. This possibility brings the engineering-
based construction and DMU development close to the styling process. Based on
an open architecture, 2D studies can be implemented into the virtual car model to
perform different checks related to ergonomic viewpoints (passengers), packaging
boundaries (drivetrain or chassis components) or legal-based influences (e.g. safety
and crash regulations). Advanced design software provides an additional ability to
generate 3D surfaces from 2D sketches, which allows for a direct conversion of 2D
studies in the automotive 3D CAD model. In the case of supplied 3D hardware (style
studies, clay models or detailed scale models), scan or measurement data can be
directly imported into the CAD software to serve as a basis for subsequent surface
generation processes.

Figure 9.27 displays an exemplary work flow in the integrated 3D CAD model
during an automotive concept phase. The initial steps start with the definition of
concept modules. A logical arrangement of these basic modules results in an inte-
grated 3D CAD model, which includes the main dimensions and check geometries of
the most important legislative-influenced components. The adaptation and adoption
of additional import geometries leads to a vehicle packaging concept and then to a
dimensional layout. If no design surfaces are available in an early concept phase,
simplified parameterized exterior surfaces can be used to visualize the outer geome-

450 9 Advanced Applications of CAD/EDM in the Automotive Industry

Fig. 9.27 Geometry-focused workflow example of the integrated 3D CAD model [1]

tries of the concept vehicle. These simplified exterior surfaces can be replaced with
the outer surfaces in later steps or can support the visualization of car body derivation
or variant studies. Similarly, parametrically controlled, simplified interior surfaces
visualize car seats, dashboard and other components in a very early concept phase,
thereby enabling initial ergonomic studies and optimization processes. Due to the
variable structure, the applied methods of data organization and geometrical para-
meter control make it possible to switch between the modules at any time for an
optimized evaluation and modification of the virtual concept vehicle model.

9.3.6 Product Knowledge in Integrated Virtual Concept
Development

A stepwise generation of the vehicle concept in combination with a continuously
increasing share of verified data leads to an increase in product maturity throughout
the conceptual development process. The product maturity itself is defined by the
fulfillment of clearly prescribed milestones, which enables a reporting and obser-
vation procedure based on the achievement of objectives. Every application step in
the workflow is accomplished by a coupled reaction of the 3D CAD model (or cal-
culation model) and the database structure, which leads to a continuous increase of
knowledge in all areas involved. This is made possible by an increasing level of detail
in geometry creation and growing information content in both the calculation mod-
ule and the tracking system of the database. Compared to earlier steps, the execution
of improvements and variant studies or the implementation of new aspects into the

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 451

virtual model increases and strengthens the project status and thus the knowledge
status of the product.

Fig. 9.28 The virtual concept vehicle embedded in an automotive development process [21]

Figure 9.28 shows an example of two automotive development processes con-
nected by an embedded virtual concept vehicle. Besides the purely technical-oriented
procedures for the conceptual development of a new vehicle, the integrated archi-
tecture of the virtual development tool supports the communication between the two
parties involved and the required knowledge transfer. This is achieved by an easy-to-
handle product representation via 3D CAD geometry data, as well as the universal
parameterization strategy and a data-based parameter management.

The actions performed in sub-process (A) generate data for the definition of a vir-
tual concept vehicle, which is able to visualize the information of (A) in a parametric-
associative 3D CAD model. A parallel sub-process (B) has access to the CAD model
and is able to perform different operations with relation to the vehicle model. In
this way, the execution of sub-process (B) is accomplished with an added value in
terms of a product interpretation and evaluation. In an inverse consideration, the
sub-process (B) increases product knowledge by providing access to virtual model
data, such as during the documentation of verification or checking procedures. The
subsequent activities in sub-process (A) can read this information from the database
and use it as a basis for further development steps.

Ongoing data flow and data enrichment cycles during the development process
increase the information density in the virtual concept vehicle and consequently the
knowledge about the product. A combination of an integrated database structure and
a fully parametric-associative geometry definition enables a comprehensive product
description based on object-oriented parameters, which are transferred into different
associated processes. An efficient interpretation of product information in external
applications (e.g. finite element calculations) is achieved by exported parameters in
combination with parallel available geometry data from the 3D CAD model. In the

452 9 Advanced Applications of CAD/EDM in the Automotive Industry

inverse process direction, an increasing level of knowledge is facilitated by an accu-
mulation of information in the database. Newly revised or implemented parameter
values are transferred from a sub-process (B) via the database structure into the
sub-process (A). For example, the results of check procedures in (B), which reveal
possible failure in the fulfillment of legal predictions, are used for geometry modifica-
tions, which are performed in (A). The extended consideration of numerous working
fields in conceptual development processes in combination with a detailed parame-
terization of a virtual vehicle model itself and its influencing boundary conditions
enables the generation of a knowledge-base-oriented tool for the stepwise creation
of automotive concept studies, all within a virtual environment.

9.3.7 Integration of the Virtual Concept Vehicle into the
Knowledge-Based EDM

After having investigated the application-oriented view of the virtual concept vehi-
cle, it is now interesting to discuss the integration of the method of associative
parametric geometry creation into the model of knowledge EDM. This requires a
process-oriented view of tools, which must then be integrated into the model of
knowledge processes between value-added processes (see Sect. 7.4.3).

Figure 9.28 shows the virtual concept vehicle embedded between two specialized
product development processes and the knowledge process running in between. This
process is supported by the knowledge activities documentation and informing and
enables access to the data layer by providing appropriate system interaction. Thus,
this represents an indirect transfer of knowledge. Knowledge is transferred into the
project area, which involves coupling CAD modules with the database. The link to
previous applications also leads to increasing knowledge in the project environment
of the concept development.

On the data level, the transferred data is upgraded through the associative para-
metric design method because users can interpret the data in an application-specific
way and can therefore use the data in a certain context in the subsequent processes.
In other words, knowledge transfer becomes more efficient due to the additional
visualization of the geometry of the product/concept data itself, as well as the visual
representation of the geometric relationships, which is helpful for the functional
assessment of the vehicle concept. In the opposite direction, the flow of knowledge
and data also generates added value as geometric changes can be made to the con-
cept using parameters that are either drawn directly from the database or prepared
via another method.

The product maturity increases continuously due to the knowledge gained via
the step by step build up of the vehicle concept and the continuous application of
secured data. The progression of the concept development process essentially deter-
mines the product maturity. To be more precise, data reliability and the level of data
protection, together with the established product knowledge, leads to product matu-

http://dx.doi.org/10.1007/978-3-642-11940-8_7

9.3 A Parametric-Associative Concept Model for Initial Vehicle Development 453

rity. If product and process data are continuously communicated and documented
throughout the development process, then the product model represents not only a
tool for documentation, but also a knowledge database. Such a knowledge database
is required to support development because administration data is highly contextual,
and a knowledge database would make it possible to reproduce the data throughout
the development process.

Figure 9.28 shows that the following aspects are important in the interaction of
multiple processes:

• Team communication
• Document management
• Product data management
• Process data management

Product knowledge can only be managed if all of these factors are combined. Next,
all of these considerations must be united and systematically integrated into an EDM
environment. To this end, the associative parametric modeling, which can be seen as
the core method of virtual concept vehicles, is integrated as an additional module,
and an EDM system takes over the functions of data and process management as its
core modules.

Fig. 9.29 Engineering data management system—architecture with integrated virtual concept
vehicle module

Figure 9.29 shows the integration of the virtual concept vehicle module into the
architecture of an EDM system. On the one hand, it forms an interaction interface
for CAD applications in the integration platform, and on the other hand, it provides
a two-way interface to the database of the EDM. This interface does not only allow
the input/output of necessary CAD model parameters but can also provide additional
data that the CAD model can use to inform the user. As a result, the original functions

454 9 Advanced Applications of CAD/EDM in the Automotive Industry

of the virtual concept vehicle are divided into associative parametric modeling and
the core functions of an EDM system. The number of non-value-adding routines and
side-line jobs are thereby reduced, and existing system interfaces are avoided, which
enhances the entire virtual process chain and makes it possible to focus on the actual
core tasks of the concept work.

In the automotive industry, concept tools are already being used to evaluate vehicle
concepts in terms of geometric features and geometric specifications in the early
stages of the innovation process. This is even possible with limited data availability
and can lead to a better concept validation. The concept tool supports the principle
of frontloading by providing a higher informative value in the earlier developmental
stage than was previously possible. This reduces the number of changing loops
required in the concept phase and thus shortens the development time.

9.4 Analysis and Design Process of the Operating EDM

The procedure for process analysis (Sect. 9.1.4) and the activities involved in the
design of the operating EDM can be displayed together in a combined procedure
model.

Fig. 9.30 The analysis and design process of the operating EDM

Figure 9.30 shows the five process steps that were addressed in the previous
chapters, from the process-oriented task to the application in the EDM system:

• Process analysis links the knowledge processes thereby creating knowledge-
intensive processes, which serve as additional objects of analysis.

• To form this inter-process link, an EDM use case is defined in order to capture all
necessary EDM conditions or demands.

9.4 Analysis and Design Process of the Operating EDM 455

• With this frame of reference, the knowledge base or database is reconstructed and
the knowledge process is therefore analyzed.

• The individual knowledge activities are then allocated to the relevant information
management operations and referenced to the available data basis.

The procedure model can therefore be applied generally for a knowledge-oriented
data management analysis, although it has been demonstrated here specifically for
the implementation of an EDM workflow.

9.4.1 Integrated Consideration of Design Measures

An integrated knowledge-based engineering data management can be created by
combining the knowledge-based strategic and operational design measures.

Fig. 9.31 Model of integrated knowledge-oriented engineering data management

Figure 9.31 shows the main starting points used in an integrated approach, which
are also used for a systematic and continuous EDM development.

References

1. Hirz, M.: An approach of multi disciplinary collaboration in conceptual automotive develop-
ment. Int. J. Collaborative Enterp. 2(1), 39–56 (2011)

2. GCIE: Global Cars Manufacturers Information Exchange Group, Model Year (2008)
3. Nelsen, M.: FCM - Fast Concept Modeller. Product Presentation (2009)
4. International Organization for Standardization: Road vehicles - Functional safety. ISO 26262

(2009)
5. Hänschke, A., Kramer, F., Kondzilla, R., Wollert, W.: Das rechnergestützte Entwicklungssys-

tem für Fahrzeuge AURORA. VDI-Berichte 613 (1986)

456 9 Advanced Applications of CAD/EDM in the Automotive Industry

6. Heinke, O., Kondziella, R., Appel, H.: Variable Konzeptentwicklung mit einem Fahrzeugen-
twurfsystem. VDI-Berichte 968 (1992)

7. Deter, T., Oertel, C.: Einsatz eines Entwurfssystems beim Entwicklungsprozeß des Automobils.
ATZ Automobiltechnische Zeitschrift 97 (1995)

8. Zimmer, H., Hövelmann, A., Frodl, B., Hänle, U., et al.: Entwurfstool zur Generierung para-
metrischer, virtueller Prototypen im Fahrzeugbau. VDI-Berichte 1559 (2000)

9. Bulheller, K.: Das Produktmodell als Kommunikationsbasis im Entwicklungsverbund. VDI-
Berichte 1148 (1994)

10. Rasenack, W.: Parametervariation als Hilfsmittel bei der Entwicklung eines Parameter-Package,
vol. D 83. Offset-Druckerei Gerhard Weinert, Berlin (1998)

11. Gessner, K.: Package-Feature für die Kommunikation in der frühen Phase der Automobilen-
twicklung. Fraunhofer IPK/IRB (2001)

12. Forsen, J.: Ein systemtechnischer Ansatz zur methodischen parametrisch-assoziativen Kon-
struktion am Beispiel von Karosseriebauteilen. Shaker, Aachen (2003)

13. Dassault Systems: CATIA V6. Date of access: 2009–11-10. http://www.3ds.com/products/
catia

14. Potthoff, J.: CAVA: Fahrzeugauslegung mit CATIA V5 unter Berücksichtigung gesetzlicher
Vorgaben und Richtlinien. Die digitale Produktentwicklung 1148 (2008)

15. Tesch, F.: Strukturvariabilität: Ableitung von Derivaten in Produktfamilien mit CATIA V5 in
frühen Phasen. Die digitale Produktentwicklung 1148 (2008)

16. Nikol, B.: Definition von Auslegungsmethoden durch Standardisierung von V5-Tools in der
Audi-Konzeptentwicklung. Die digitale Produktentwicklung II 1148 (2010)

17. Meyer, B.: Objektorientierte Softwareprogrammierung. Hanser, München (1990)
18. Transcat: CAVA - CATIA V5 Automotive Extensions Vehicle Architecture. date of access:

2008–11-14. http://www.transcat-plm.com
19. SFE - SOLUTIONS FOR EXCELLENCE, Gesellschaft für Strukturanalyse in Forschung und

Entwicklung mbH/SFE CONCEPT: date of access: 2010–07-01. http://www.sfe-berlin.de
20. Dietrich, W., Hirz, M., Rossbacher, P.: Integration von geometrischen und funktionalen Aspek-

ten in die parametrisch assoziative Modellgestaltung in der konzeptionellen Automobilentwick-
lung. In: 3. Grazer Symposium Virtuelles Fahrzeug, Graz (2010)

21. Dietrich, W.: Zur prozessorientierten Integration von Wissensmanagement in das Engineering
Data Management. Phd Thesis, Graz University of Technology, Graz (2010)

http://www.3ds.com/products/catia
http://www.3ds.com/products/catia
http://www.transcat-plm.com
http://www.sfe-berlin.de

Curriculum Vitae of the Authors

Mario Hirz has been awarded an M.S. degree in mechanical engineering and
economics, a Ph.D. in mechanical engineering, and a venia docendi in the area of
virtual product development. He is a regular lecturer at the Graz University of
Technology and a frequent guest lecturer at universities and automotive
manufacturers throughout Europe and Asia. As head of the research area for
Virtual Product Development at the Institute of Automotive Engineering, he is
responsible for different international engine and vehicle R&D projects. His research
topics comprise design methods, knowledge-based engineering and efficient
development processes. Dr. Hirz has published more than 120 works and has
received several national and international awards for his scientific contributions.

Wilhelm Dietrich has been awarded an M.S. degree and a Ph.D. in mechanical
engineering and economics at Graz University of Technology. His research activities
and scientific contributions are focused on knowledge-based engineering data
management. Since 2000, he has been employed at MAGNA STEYR Engineering
AG & Co KG and is competent in the development of CAD and EDM methodology
and systems. He was responsible for several areas of virtual product development and
was project manager of a number of EDM R&D projects. As head of the vehicle
architecture and function department, Dr. Dietrich is currently responsible for
vehicle concepts, package layout, ergonomic and complete vehicle functions.

Anton Gfrerrer received the M.S. degree in mathematics and descriptive
geometry from the University of Graz, Graz, Austria, in 1989 and the Ph.D. degree
from Graz University of Technology (TU Graz) in 1992. He is currently an
Associate Professor with the Institute for Geometry, TU Graz, and also lectures at
the University of Leoben. His research fields are geometry, CAD, kinematics and
robotics.

Johann Lang received his M.S. degree in mathematics and descriptive geometry
at Graz University in 1977 and his Ph.D. degree at Graz University of Technology
(TU Graz) in 1979. He is currently an Associate Professor with the Institute for
Geometry, TU Graz. His research fields are geometry and kinematics.

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development,
DOI: 10.1007/978-3-642-11940-8, � Springer-Verlag Berlin Heidelberg 2013

457

Index

A
Adapter model, 301, 304
Added-value process, 391, 395, 397
Affine

combination, 227
transformation, 54

Algebraic surface, 158
Algorithm

Aitken, 120, 210
Cox-de boor, 194
de casteljau

for Bézier curves, 92
for Bézier surfaces, 184
for tensor product Bézier volumes, 234
triangular case, 230

Analysis
curvature, 276

Approximating surface, 220
Approximation

bivariate, 216
parameter correction, 141, 224
univariate, 137
with cubic B-splines, 143

Arc length, 76
Assembly design, 289, 313, 318
Assembly structure, 245, 259, 274, 294
Automated routines, 309, 311
Axis system, 252, 272, 300

B
Barycentric coordinates, 226
Basis solid, 277, 278
Bending energy, 130
Bernstein polynomials, 87

bivariate, 228
on a triangular domain, 228
on an arbitrary interval, 91, 125, 184
properties, 87

Bézier
curve

connecting, 98
continuation, 95
definition, 88
degree elevation, 98
modeling, 96
properties, 90
rational, 112
splitting, 94

surface, 182
connecting, 189
continuation, 187
degree elevation, 186
modeling, 188
rational, 200
triangular, 230

volume, 233
continuation, 234
modeling, 235

Bézout’s theorem, 82
Binormal vector, 80
Bivariate

approximation, 216
interpolation, 206, 208

Hermite, 210
Lagrange, 208

Blending function, 181
Boolean operation, 254, 279–281,

285
Boundary element, 256

M. Hirz et al., Integrated Computer-Aided Design in Automotive Development,
DOI: 10.1007/978-3-642-11940-8, � Springer-Verlag Berlin Heidelberg 2013

459

B-spline
basis functions, 101
curve

closed, 108
definition, 102
endpoint interpolation, 106
local control, 103
properties, 103
rational, 115
uniform, 103

surface, 193
closed, 195
corner interpolation, 194
local control, 197
properties, 194
rational, 201

Bumper system, 328–330
Business

engineering, 338
process, 334, 362, 381, 391, 394
reengineering, 338

C
CAD, 21, 241, 359

data management, 414, 421
EDM integration, 347, 360
implementation, 361
integrated concept model, 425, 431, 446

CAE, 34, 359
CAE data management, 368
CAM, 41, 359
CAP, 359
CAPP, 359
Car body, 13, 15, 17, 250
CAT, 359
CAx, 359
Centripetal parameterization, 136
Chassis, 2, 6, 17
Chebyshev space, 117
Chordal parameterization, 136
Circle, 73, 175

osculating, 78, 79
Circular arc, 113
Ck-continuity, 75, 149
Ck-curve, 73
Ck-surface, 147
Class

of differentiability, 73, 147
Coincidence condition, 296
Collaboration, 47, 343
Complementary conic arcs, 114

Component positioning, 294, 296, 300, 304
Computer-aided design, 359
Computer-aided engineering, 334, 359
Computer-aided manufacturing, 359
Computer integrated manufacturing, 333, 350
Concept phase, 14, 25, 32, 327, 423
Concept vehicle, 424, 426, 432, 433, 437,

439–448, 450–454
Cone, 166

quadratic, 162
Configuration management, 366, 368
Conic, 84, 113
Conic section, 84
Constraint, 39, 46, 245, 294
Continuation quality, 242, 267, 276, 282
Control grid, 233
Control net, 181
Control polygon, 86
Convex hull property, 90, 184, 230
Coons patch, 206
Coordinate system, 256, 296, 298–300

Cartesian, 52
cylindrical, 53
main, 57, 296, 298–301
right-handed, 57
spherical, 53

Coupling function, 261, 262
Cox-de boor algorithm, 104, 194
Curvature, 77, 81

of a curve, 77
Gaussian, 155, 276
mean, 155
normal, 154
of a planar curve, 77
of a surface, 152
principal, 155
radius of, 78
surface curve, 153

Curvature analysis, 276
Curve, 70, 242, 256, 276, 285

2nd order, 81, 83
arc length parameter, 76
binormal vector, 80
curvature, 77, 81
equation, 73
freeform, 86
inflection point, 78, 79
movable in itself, 174
osculating circle, 78, 79
osculating plane, 78, 80
parameterization, 70
planar, 72

460 Index

curvature, 77
planar algebraic, 81
polynomial, 83
principal normal vector, 80
rational, 83
tangent vector, 80
torsion, 77, 81
transcendent, 81

Cylinder, 161, 166
Cylinder head, 41, 42, 48, 253, 284, 306

D
Data

classification, 353
demand, 399
exchange, 31, 44, 45, 252, 358
flow, 401
maturity, 419
monitoring, 422
progress, 419
quality, 419
roadmap, 416
scheduling, 416
security, 349
structure, 340, 434
supply, 399
synchronization, 409
transfer, 385, 400, 410, 412

Data management, 44
activities, 397, 404
activity, 395, 410, 412
barrier, 412
factors, 410
integrated CAD, 414, 425, 431, 434, 446
knowledge-oriented, 396
master, 354
systems, 30

Database, 344, 399, 403, 434
de Boor

net, 193
polygon, 102

de Casteljau algorithm
for Bézier curves, 92
for Bézier surfaces, 184
for tensor product Bézier volumes, 234
triangular case, 230

Degree elevation
curve, 98
surface, 186

Design
freeze, 20

knowledge-based, 309, 310, 312
non-parametric, 245
parametric-associative, 254, 259, 298, 405,

406, 422
process, 11

Developable surface, 167
Digital

engineering, 341
mock-up, 15, 22, 35, 285, 286, 290, 290,

347, 353, 423
prototype, 348, 349, 361

Dimension concept, 426
Direct modeling, 246
Divisor

greatest common, 67
of a polynomial, 67

Documentation process, 384, 387,
397, 398

Document management, 345, 350, 353, 355,
374

Door window motion, 235
Draft angle, 254, 269, 272, 321
Drivetrain, 13, 28, 36, 318, 423
Driving dynamics, 19, 423

E
EDM

application integration, 356, 364
application-related function, 351, 354
architecture, 356
CAD integration, 347, 360
configuration management, 332, 337
documents, 346
integrated management, 339
interfaces, 357
knowledge-oriented, 388, 393, 398, 399,

403, 404, 413, 452, 454
process integration, 343
process-oriented, 400
support process, 394
system, 337, 350, 453
use case, 413, 454
workflow, 332, 403, 421, 454

Ellipse, 85
Ellipsoid, 163
Elliptical point, 156
Elliptic paraboloid, 163
Engineering

database, 350, 356, 368
data management, 331, 336
data management system, 336, 350

Index 461

Equation
of a planar curve, 73
of a surface, 157

Euclidean motion, 60
Exhaust gas emissions, 19
Exterior geometry, 439, 440
External parameter control, 315
External solver, 324, 325
Extrapolation, 262, 266, 268, 275
Extruded surface, 261

F
Feature-based modeling, 256, 282, 283
Fillet operation, 267
Fill surface, 206, 264, 265
Freeform

curve, 86
rational, 110

surface, 181
Frenet frame, 79
Frenet-Serret formulae, 80
Frontloading, 14, 23, 49
Frozen geometry, 302
Function

blending, 181
Functional layout, 423, 424, 449
Fundamental form

first, 157
second, 157

Fundamental theorem of algebra, 68

G
Gaussian curvature, 155, 276
GCk-continuity, 75, 149
GCIE standard, 426, 432, 434, 444
Geometry

check, 436, 438, 443, 444
reference, 301, 303, 418
representation, 362

Greatest common divisor, 67
Guide curve, 262–264

H
Helical

displacement, 59
gear, 174
surface, 173, 175, 235, 237, 238

circular, 173
ruled, 173

Helix, 64, 71, 175
Hermite

interpolation, 124, 210
patch, 212
polynomial, 126, 211

Homologation, 13, 20
Hyperbola, 85
Hyperbolic paraboloid, 163, 165, 204
Hyperbolic point, 156
Hyperboloid, 163

I
Inflection point, 78, 79
Information process, 385, 397, 398
Interior geometry, 440, 441
Interpolating cubic B-spline surface, 214
Interpolation

bivariate, 206
cubic spline, 127
Hermite, 124, 210
Lagrange, 119, 208
univariate, 116
with cubic B-splines, 130, 214
with cubic segments, 122

Isometry, 54
even, 58
odd, 58

J
Join function, 266

K
Knot

multiple, 106, 194
Knot vector, 99, 101, 102, 115, 119, 127, 137,

143, 193, 202, 206, 207, 210, 214
centripetal, 136
chordal, 136
non-uniform, 103, 202
uniform, 103, 135, 194, 202
with multiple knots, 106

Knowledge, 375
activity, 412
base, 345, 379, 415
carrier, 376, 398, 400
collective, 376, 379
database, 44, 49
declarative, 377
definition, 375

462 Index

explicit, 377, 378
implicit, 377, 378
individual, 376
induction, 384
logistics, 388
management, 309
operation, 410
organizational, 379
preserve, 378
procedural, 377
process, 391
stairs of, 372, 376
structuring, 376
system, 379, 382
tacit, 378

Knowledge-based
data management, 399, 400, 452
design, 309, 310, 312, 405
engineering, 405
engineering data management, 455
process analysis, 412
process management, 390

Knowledge management, 375, 379, 423
basic model, 380
process orientation, 389, 390
system orientation, 382

Knowledge transfer, 383
barrier, 412
direct, 386
indirect, 386, 412
influences, 410
process, 384

Knowledgeware, 404

L
Lagrange interpolation, 119, 208
Lagrange polynomials, 119
Library based design, 320, 321, 323
Line, 70, 175, 256, 285, 294, 298

coordinates, 62
geometry, 62
reflection in a, 57

Linkage strategies, 314
Local control

B-spline curve, 103
B-spline surface, 197

M
Macro routines, 252
Master model, 33, 317, 326, 328–330
Matrix

orthogonal, 54

tridiagonal, 130, 134
Mean curvature, 155
Meridian plane, 170, 173
Modeling

Bézier surface, 188
feature-based, 282, 283

Model range, 1, 2
Model structure, 246, 247, 249, 250, 252, 301
Mold design, 280, 284
Monomial basis, 67
Motion

Euclidean, 60
in itself, 174

Multi-model link, 247, 289
Multi-section surface, 279

N
Net

rectangular, 181
triangular, 229

Normal curvature, 154
Normal vector

principal, 80
NURBS, 115
NURBS surface, 202

O
Offset condition, 296
Operating process, 401
Orientation, 58
Osculating

circle, 78, 79
plane, 78, 80

Overhauser subspline, 124

P
Parabola, 85
Parabolic point, 156
Paraboloid

elliptic, 163
hyperbolic, 163, 165

Parameter
domain, 70, 145
line, 147, 233
surface, 233
transformation

of a curve, 72
of a surface, 146

Parameterization, 134, 310, 312, 320, 434, 435
admissible, 72, 145
centripetal, 136

Index 463

chordal, 136
of a curve, 70, 72
of a surface, 144, 145
smooth, 73
uniform, 135

Parameter line, 227
Parametric-associative

concept model, 422
design, 254, 259, 298, 405, 406, 422

Parametric modeling, 32, 246
Parent-child relation, 247
Partition of unity, 86
Pattern function, 268
PCA, 216
Planar algebraic curve

order, 81
Plane

equation, 159, 257
fitting, 216
osculating, 78, 80
parametric representation, 145, 226
reflection in a, 55
tangent, 148

Plücker coordinates, 62
Point, 52, 246, 256–258, 278, 285, 294, 296,

298, 299, 303
elliptical, 156
hyperbolic, 156
parabolic, 156
reflection in a, 58
umbilic, 155

Point cloud, 242, 256
Polygon

control, 86
de Boor, 102

Polynomial, 66
basis, 67
Bernstein, 87
bivariate, 68
degree, 66
function, 69
Hermite, 126, 211
Lagrange, 119
multivariate, 68
root of a, 68
space, 66
trivariate, 68
univariate, 66
zero of a, 68

Polynomials
product, 67

Positioning
component, 300

Position vector, 53

Principal component analysis, 216
Principal curvature, 155
Principal normal vector, 80
Process

added-value, 391, 395, 397
knowledge, 378
knowledge-intensive, 395, 403
of documentation, 397, 398
of information, 397, 398

Process management, 338, 394
knowledge-oriented, 390

Process planning, 341
Product

configuration, 366, 407, 418
data, 19, 31, 44, 353
data management, 10, 21, 25, 30, 43, 248,

252, 290, 299, 332, 351, 352
data management system, 350
development process, 331, 341, 416, 428,

446, 450
life cycle management, 335
structure, 352, 418

Product knowledge, 371, 373
concept development, 450
life cycle, 373
management, 351, 374

Production confirmation, 20
Production planning and control, 336, 337
Profile curve, 261, 263, 264, 272
Project

management, 353
milestones, 416, 418

Propulsion concept, 16, 19
Prototype freeze, 20

Q
Quadric, 160

classification of, 161
of revolution, 171, 177

R
Rational

B-spline curve, 115
B-spline surface, 201
Bézier curve, 112

circular arc, 113
of degree 2, 113

Bézier surface, 201
curve

degree, 83
freeform curve

properties, 111

464 Index

function, 69
surface, 159
tensor product surface, 199

Real-time simulation, 39
Reflection

axial, 57
in a line, 57, 58
in a plane, 55
in a point, 58

Regression
plane of, 216

Revolution
continuous, 61
surface of, 170, 201

Robust approximation, 140
Root of a polynomial, 68
Rotation, 57
Ruled surface, 165

S
Sand core, 253–255, 281
Scaling operation, 268
Scattered points, 216, 220
Screw

displacement, 59
line, 64, 71
motion, 61, 64, 236
parameter, 61

Seating position, 15, 16
Series development, 7, 13, 25, 249
Sheet metal part, 250, 270, 283, 285
Side window, 235
Simulation data management, 365, 368, 369
Simultaneous engineering, 36, 48, 342
Skeleton model, 259, 260, 285
Sketch, 242, 252, 256, 257, 277
Skin surface, 278
Solid design, 276, 277, 286
Spatial transformation, 54
Sphere, 158
Spline

curve, 99
function, 99
surface, 192

Split operation, 266, 286
Startup model, 249–251, 296
Steel mold, 253, 254
Styling fillet, 268
Styling freeze, 19
Subspline

function, 99
overhauser, 124
surface, 192

Supply chain management, 341
Surface, 242

2nd order, 160
algebraic, 158
B-spline, 193
Bézier, 182

triangular, 230
curvature, 152
curve, 146
developable, 167
equation, 157
fitting, 220
helical, 173, 175, 235, 237, 238, 261

circular, 173
ruled, 173

intersection, 176
movable in itself, 174, 235
multi-section, 261–263, 278
offset, 286, 287
of revolution, 168, 170, 258, 261
parameterization, 145
rational, 159
ruled, 165
tensor product, 181
transcendent, 159
translational, 261, 263, 264, 272, 289

Surface design, 260, 277, 278, 285
Suspension, 6, 15, 36, 39, 291
Swept surface, 263

T
Tangent

plane, 148
to a curve, 74

Tangent vector, 80
Target definition, 13
Target specifications, 17, 18, 27
Task

carrier, 400
structure, 401

Technical subsystem, 400
Template library, 321
Template model, 309, 312, 317, 329, 330, 430
Tensor product

surface, 181
rational, 198

volume, 232
Tessellated geometry, 36, 41, 45
Torsion, 77, 81

space curve, 77
Torus, 172
Trajectory

of a motion, 61

Index 465

Transformation, 241, 268, 287
affine, 54

Translation, 56
Translational surface, 261, 263, 264, 272, 289
Triangular Bézier patch, 230
Triangular patch, 225
Trim operation, 266, 267, 272, 274
Tubular helical surface, 174

U
Umbilic point, 155
Unfolding, 269
Uniform parameterization, 135
Univariate

approximation, 137–139
interpolation, 116, 119

V
Vandermonde matrix, 118
Variation diminishing property, 90
Vector function

derivative, 73
Vector space, 66
Vehicle concept, 1, 10, 16, 424

Vehicle package, 423, 447
Virtual

concept vehicle, 428, 446, 450
engineering, 341
environment, 21, 29, 241, 286
mock-up, 33, 348
product, 30, 348
product development, 29, 338, 341, 428,

446, 450
prototype, 361, 368, 418
reality, 39, 364

Volume, 242

W
Workflow management, 421
Working space, 241, 256, 285, 289, 298

Y
Y-CIM model, 332

Z
Zero of a polynomial, 68

466 Index

	Introduction
	Contents
	Acronyms
	1 Automotive Development Processes
	1.1 Manifold Requirements in the Past and in the Future
	1.2 The Process of Automotive Development
	1.2.1 Project Periods
	1.2.2 Phases of Automotive Development

	1.3 Application of CAD in Automotive Development
	References

	2 Overview of Virtual Product Development
	2.1 Development of Mechanical Products
	2.2 Virtual Product Development
	2.2.1 Product Models
	2.2.2 CAD-CAE Workflows in Automotive Engineering
	2.2.3 Management of Product Data
	2.2.4 CAD-CAE Data Exchange
	2.2.5 Concepts of Collaborative Product Development

	References

	3 Geometric Fundamentals
	3.1 The 3-Space, Transformations and Motions
	3.1.1 Planar Reflections
	3.1.2 Translations and Rotations
	3.1.3 Orientation
	3.1.4 Helical Displacements
	3.1.5 Euclidean Motions
	3.1.6 Some Fundamentals of Line Geometry

	3.2 Polynomials
	3.3 Curves
	3.3.1 Parametric Representation of a Curve
	3.3.2 Planar Curves
	3.3.3 Derivatives and Tangents
	3.3.4 Arc Length Parameter
	3.3.5 Curvature and Torsion
	3.3.6 Osculating Circle and Osculating Plane
	3.3.7 The Frenet Frame
	3.3.8 Planar Algebraic Curves
	3.3.9 Rational Curves
	3.3.10 Second Order Curves

	3.4 Freeform Curves
	3.4.1 Bézier Curves
	3.4.2 B-Spline Curves
	3.4.3 Rational Freeform Curves, NURBS

	3.5 Univariate Interpolation
	3.5.1 Lagrange Interpolation
	3.5.2 Interpolation by Cubic Segments
	3.5.3 Parameterization

	3.6 Univariate Approximation
	3.6.1 Improving the Quality of Approximation
	3.6.2 Approximation with Cubic B-Splines

	3.7 Surfaces
	3.7.1 Parametric Representation of a Surface
	3.7.2 Surface Curves
	3.7.3 Derivatives and Tangent Planes
	3.7.4 Curvature Theory of Surfaces
	3.7.5 Surfaces Represented by Equations
	3.7.6 Algebraic Surfaces
	3.7.7 Rational Surfaces
	3.7.8 Quadrics
	3.7.9 Ruled Surfaces
	3.7.10 Developable Surfaces
	3.7.11 Surfaces of Revolution
	3.7.12 Helical Surfaces
	3.7.13 Moving a Curve or a Surface in Itself
	3.7.14 Intersection of Surfaces

	3.8 Tensor Product Surfaces
	3.8.1 Bézier Surfaces
	3.8.2 B-Spline Surfaces
	3.8.3 Rational Tensor Product Surfaces, NURBS Surfaces

	3.9 Bivariate Interpolation
	3.9.1 Coons Patches
	3.9.2 Interpolation of a Rectangular Point Set
	3.9.3 Bivariate Lagrange Interpolation
	3.9.4 Bivariate Hermite Interpolation
	3.9.5 Bivariate Cubic B-Spline Interpolation

	3.10 Bivariate Approximation
	3.10.1 A Plane Fitting a Set of Scattered Points
	3.10.2 A Tensor Product Surface Fitting Scattered Data Points

	3.11 Triangular Bézier Patches
	3.12 Tensor Product Volumes
	3.13 Example: Side Window Kinematics
	3.13.1 The Appropriate Screw Motion to a Given Surface
	3.13.2 Constructing an Ideal Side Window Surface

	References

	4 Modeling Techniques in CAD
	4.1 Structures of 3D CAD Models
	4.1.1 Surface-Based Model Structure
	4.1.2 Solid-Based Model Structure
	4.1.3 The Role of CAD Models in Product Development

	4.2 Wireframe and Surface Design
	4.2.1 Reference Elements
	4.2.2 Wireframe Design
	4.2.3 Surface Design
	4.2.4 Operations in Wireframe and Surface Design
	4.2.5 Modeling in Wireframe and Surface Design
	4.2.6 Surface Analysis Functions

	4.3 Solid Design
	4.3.1 Modeling of Basis Solids
	4.3.2 Boolean Operations
	4.3.3 Editing and Detailing Functionalities
	4.3.4 Feature-Based Geometry Modeling

	4.4 Combination of Wireframe, Surface, and Solid-Based Functions
	4.5 Assembly Design
	4.5.1 Organization of Product Structures
	4.5.2 Methods of Component Positioning
	4.5.3 Geometry-Based Interlinks in Assembly Design

	4.6 Derivation of 2D Drawings
	References

	5 Knowledge-Based Design
	5.1 Parameterization as a Basis for Knowledge-Based Design
	5.1.1 External Parameter Control
	5.1.2 Implementation of Non-CAD Data

	5.2 Knowledge Integration Using Template Models
	5.2.1 Template-Library-Based Design
	5.2.2 Implementation of Mathematical and Logical Relations
	5.2.3 Integrated Virtual Product Development Using Centralized Master Models

	5.3 Example: Integrated Design in Automotive Bumper System Development
	References

	6 Engineering Data Management
	6.1 The Concept of Engineering Data Management (EDM)
	6.1.1 The Y-CIM Model
	6.1.2 PLM as a Foundation of EDM
	6.1.3 Definition of Engineering Data Management (EDM)

	6.2 EDM in Virtual Product Development
	6.2.1 Process Orientation in Product Development
	6.2.2 EDM as Integrated Management Approach
	6.2.3 The Product Development Process
	6.2.4 EDM Support in Virtual Product Development
	6.2.5 EDM Process Integration

	6.3 EDM Database
	6.3.1 The Role of Development Data
	6.3.2 EDM Documents
	6.3.3 CAD Data in EDM
	6.3.4 Digital Mock-Up (DMU)
	6.3.5 The Virtual Product
	6.3.6 Data Security

	6.4 Engineering Data Management System (EDMS)
	6.4.1 Product Data Management System (PDMS)
	6.4.2 Application-Related Functions of EDMS
	6.4.3 EDMS Architecture
	6.4.4 EDMS Interfaces

	6.5 Computer-Supported Engineering in the Context of EDM
	6.5.1 How CAx Changes Product Development
	6.5.2 CAD Integration
	6.5.3 CAD Implementation
	6.5.4 Virtual Computer-Generated 3D Product Design Models

	6.6 Integrated EDM Applications in Product Development
	6.6.1 Functional Dimensioning and Optimization in Early Design Phase
	6.6.2 Consistency of Simulation Data in Optimized Design Processes
	6.6.3 Interdisciplinary Consistency of Simulation Data
	6.6.4 Integration of Design and Simulation
	6.6.5 CAD/CAE Data Management

	References

	7 Knowledge Management in Product Development
	7.1 Product Knowledge
	7.1.1 Development of Product Knowledge
	7.1.2 Life Cycle of Product Knowledge
	7.1.3 Defining Product Knowledge
	7.1.4 Product Knowledge Products
	7.1.5 Product Knowledge Management

	7.2 Fundamentals of Knowledge Management
	7.2.1 Knowledge and Knowledge Management
	7.2.2 Basic Elements of the Knowledge Base
	7.2.3 Knowledge Management in Industrial Management
	7.2.4 Basic Model of Knowledge Management
	7.2.5 System Orientation in Knowledge Management

	7.3 Knowledge Transfer in Product Development
	7.3.1 Definition of Knowledge Transfer
	7.3.2 Transfer and Transformation Processes in the Knowledge System
	7.3.3 Direct Versus Indirect Knowledge Transfer
	7.3.4 Direct Knowledge Transfer
	7.3.5 Indirect Knowledge Transfer
	7.3.6 The Definition of Knowledge Logistics

	7.4 Process Orientation in Knowledge Management
	7.4.1 Knowledge-Oriented Process Management
	7.4.2 Process-Oriented Knowledge Management
	7.4.3 The Knowledge Process in Interaction with the Added-Value Processes

	References

	8 Knowledge-Based Engineering Data Management
	8.1 Basic Models and Approaches of Knowledge-Oriented EDM
	8.1.1 System-Oriented Reference Frame of Knowledge- Oriented EDM
	8.1.2 The Knowledge Process as Connection Between Business Process and Support Process of EDM
	8.1.3 Integrated Approach to Added-Value Processes
	8.1.4 Model for the Integration of Knowledge Processes and Data Management
	8.1.5 From the Knowledge Transfer Model to the Knowledge-Oriented Engineering Data Management
	8.1.6 Model for the Reconstruction of the Knowledge Base and Database

	8.2 Requirements for the IT Support of Process-Oriented Knowledge Management in EDM
	8.2.1 Modeling Approach for the Technical Subsystem
	8.2.2 The Database of Knowledge-Oriented EDM
	8.2.3 EDM Workflow Support of Knowledge-Intensive Processes
	8.2.4 Management, Transfer and Steering of Knowledge- Oriented EDM

	8.3 Knowledgeware in Product Development
	8.3.1 The Parametric-Associative Approach
	8.3.2 The Fundamentals of Parametric-Associative Design
	8.3.3 Knowledge Management and Product Configuration

	References

	9 Advanced Applications of CAD/EDM in the Automotive Industry
	9.1 Applications for Knowledge-Based EDM
	9.1.1 Relevant Knowledge Operations in EDM
	9.1.2 Factors that Influence Knowledge Transfer Via Data Transfer at the Operational Level
	9.1.3 Data Management Barriers in Indirect Knowledge Transfer
	9.1.4 Reference Process for the Knowledge-Oriented Development of EDM Use Cases

	9.2 Integrated CAD Data Management in Automotive Engineering
	9.2.1 Challenges Related to the Topic
	9.2.2 Concept of Integrated CAD Data Management
	9.2.3 CAD Scheduling
	9.2.4 A Concept of Geometry Reference
	9.2.5 CAD Data Quality, Progress and Maturity
	9.2.6 Generic EDM Workflow for CAD Data Management
	9.2.7 Data Monitoring

	9.3 A Parametric-Associative Concept Model for Initial Vehicle Development
	9.3.1 Requirements for Automotive Concept Phases
	9.3.2 Integrated Approach to Virtual Concept Development
	9.3.3 Data Pool Structure and Parameterization Strategy
	9.3.4 Geometry Creation in Conceptual Vehicle Development
	9.3.5 Processes and Applications in the Project Flow
	9.3.6 Product Knowledge in Integrated Virtual Concept Development
	9.3.7 Integration of the Virtual Concept Vehicle into the Knowledge-Based EDM

	9.4 Analysis and Design Process of the Operating EDM
	9.4.1 Integrated Consideration of Design Measures

	References

	Curriculum Vitae of the Authors
	Index

