
Automated Method Induction:

Functional Goes Object Oriented

Thomas Hieber and Martin Hofmann

University Bamberg - Cognitive Systems Group,
Feldkirchenstr. 21, 96050 Bamberg, Germany

thomas-wolfgang.hieber@stud.uni-bamberg.de,
martin.hofmann@uni-bamberg.de

http://www.uni-bamberg.de/kogsys/

Abstract. The development of software engineering has had a great
deal of benefits for the development of software. Along with it came a
whole new paradigm of the way software is designed and implemented -
object orientation. Today it is a standard to have UML diagrams trans-
lated into program code wherever possible. However, as few tools really
go beyond this we demonstrate a simple functional representation for
objects, methods and object-properties. In addition we show how our in-
ductive programming system IgorII cannot only understand those basic
notions like referencing methods within objects or using a simple proto-
col called message-passing, but how it can even learn them by a given
specification - which is the major feature of this paper.

1 Introduction

IgorII is a system for synthesizing recursive functional programs, which learns
potentially recursive functions solely from input/output (I/O) examples. Since
IgorII is naturally based in functional programming, the main focus of this
paper lies on finding a way to use IgorII for program inference in an object
oriented background, which requires to express the behaviour of objects and
method calls by I/O examples. In order to do so, it is necessary to find a way to
express object oriented programs in a functional way and as mainstream software
for daily use is commonly not created with functional programming languages it
is about time to raise the question whether it is possible to adapt object oriented
language features to a functional, Inductive Programming setting.

In addition, it is necessary to enable an object oriented programmer to pro-
vide input to the synthesis system as unobtrusive as possible. For this purpose,
an interface for Eclipse will allow a programmer to use annotations in order to
provide input for our induction process, thus seamlessly integrating with soft-
ware engineering tools like Rational Software Architect (RSA). More practical
concerns regarding the plug-in itself can be found in [1].

In this paper we will be introducing the concept of Constructor Term Rewrit-
ing Systems (CTRS) with respect to IgorII and how it can be used in order

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 159–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.uni-bamberg.de/kogsys/

160 T. Hieber and M. Hofmann

to construct a simple algebra to represent object orientation in a functional en-
vironment. After this we are going to show some examples to demonstrate how
this can be done practically with the help of IgorII. The last chapter takes one
step further explaining how this approach has been integrated in a prototype
plug-in for the Eclipse IDE.

2 Status Quo

In the past 30 years, many different inductive programming (IP) systems have
been developed, many of them sharing a functional approach. The extraction of
programs from input/output examples started in the the seventies and has been
greatly influenced by Summers’ [2] paper on the induction of LISP programs.
After the great success of Inductive Logical Programming (ILP) on classification
learning in the nineties, research on IP shifted more to this area. Prominent ILP
systems for IP are for example Foil [3], Golem [4] or Progol [5] - systems
which make use of Prolog and predicate logic.

Later, the functional approach was taken up again by the analytical ap-
proaches IgorI [6], and IgorII [7] [8] and by the evolutionary/generate-and-test
based approaches Adate [9] and MagicHaskeller [10].

All in all you can subsume the concern of Inductive Programming as the
search for algorithms which use as little additional information as possible to
generate correct computer programs from a given minimal specification consist-
ing of input/output examples. Similar to classifier learning, IP systems can be
characterised by a preference and a restriction bias [11].

At the same time functional languages have had to face the development
in programming paradigms which led to many approaches to support object
orientation. Established functional languages have their own object oriented ex-
tensions like OCaml [12] or OOHaskell ([13]). Additionally there are various
approaches to include an object system in a functional language without chang-
ing the type system or the compiler (see e.g. [13] for a Haskell related overview).

For our purpose we do not need such sophisticated techniques (yet), therefore
we content ourselves with taking on a quite näıve and very simplified perspective,
though sufficient for our case, and treat objects merely as tuples.

On the other hand there are some very powerful tools for object oriented
programmers which support automated code-generation to a certain extent and
the community for Automated Software Engineering is very productive to take
this even further. In this context it is inevitable to have a look at program
synthesis since we ideally do not want to stop at automatically generating class
files from UML diagrams like IBM’s RSA, or generate a GUI by ‘WYSIWYG‘
editors such as NetBeans or Visual Studio.

3 Constructor Term Rewriting

For our purpose it shall be sufficient to define a functional program as a set of
equations consisting of pairs of terms over a many-sorted signature Σ . We are

Automated Method Induction: Functional Goes Object Oriented 161

going to adapt the common nomenclature as used in [14] when describing the
concepts below using terms and term rewriting. A signature is defined as a set
of function symbols Σ and a set of variables X which are used to form terms.
In other words, terms over Σ and X are denoted TΣ(X) whereas variable free
terms (ground-terms) are just labelled TΣ . Since Σ is many-sorted, all our terms
are typed.

One important differentiation to be alert of is that function symbols can ei-
ther be datatype constructors or (user-)defined functions. In this fashion Σ =
C ∪ F , C ∩ F = ∅, where C contains the constructors and F the defined func-
tion symbols. Our inductive programming system IgorII represents result pro-
grams as a set of recursive equations (rules) over a signature Σ. These rules
consist of a left-hand side (lhs) and a right-hand side (rhs). While a rhs consists
of regular Σ terms TΣ(X), the lhs has the form F (p1, ..., pn) and is called the
function head with F ∈ F being the name of the function implemented by the
current rewrite rule (plus some others). The pi ∈ TC(X) consist of constructors
and variables only.

V ar(t) are all variables of a Term t. The constructor terms pi on the lhs of
an equation may contain variables and are called pattern. All variables on the
rhs of an equation are required to occur in the pattern on the lhs. We say that
such variables are bound (or unbound otherwise). A substitution is a function
σ : X → TΣ(X). For our purpose, we write it in postfix and extend it to terms
replacing all contained variables simultaneously. So tσ is the result of applying
the substitution σ to term t, i.e., applying σ to each v ∈ V ar(t). If s = tσ, then
t is called a generalization of s and we say that t subsumes s and s matches
t by σ, respectively. Given two terms t1 and t2 and a substitution σ such that
t1σ = t2σ, we say that t1 and t2 unify. Given a finite set of terms S = s, s′, s′′, ...
then there exists a term t which subsumes all terms in S and which itself is
subsumed by any other term also subsuming all terms in S. The term t is called
the least general generalisation (lgg) [15] of the terms in S. To generalise a lggs
to a set of equations, we tacitly treat the equal sign as a constructor symbol
with the lhs and the rhs as arguments.

The operational semantics of a set of equations in the above mentioned form
are best described in terms of a term rewriting system (TRS). An equation can be
read as a simplification (or rewrite) rule replacing a term matching the lhs by the
rhs. TRS which equations have the above described form are called constructor
term rewriting systems (CTRS). From now on, we use the terms equation and
rule as well as equation set and CTRS interchangeably throughout the paper,
depending on the context. Let i be the vector i1, ..., in. Evaluating an n-ary
function F for an input i consists of repeatedly rewriting the term F (i) w.r.t.
the rewrite relation R implied by the CTRS until the term is in normal form,
i.e., cannot be rewritten further. A sequence of (in)finitely many rewrite steps
t0 →R t1 →R ... is called derivation. If a derivation starts with term t and results
in a normal form s this is written t

!−→R s. We say that t normalises to s and
call s the normal form of t. In order to define a function on a domain (a set of
ground terms) by a CTRS, no two derivations starting with the same ground

162 T. Hieber and M. Hofmann

term may lead to different normal forms, i.e., normal forms must be unique.
A sufficient condition for this is that no two lhss of a CTRS unify; this is a
sufficient condition for a CTRS to be confluent. A CTRS is terminating if each
possible derivation terminates. A sufficient condition for termination is that the
arguments/inputs of recursive calls strictly decrease within each derivation and
w.r.t. a well founded order.

Each rewrite rule may be augmented with a condition that must be met to
apply the conditional rule. A term rewriting system or constructor system is
called conditional constructor term rewriting system (CCTRS) respectively if it
contains at least one conditional rule. A condition is an ordered conjunction of
equality constraints vi = ui with vi, ui ∈ T(X). Each ui must be grounded if the
lhs of the rule is instantiated and if all equalities vj = uj with j < i evaluate
to true, then ui evaluates to some ground normal form. For the vi must hold
(i) either the same as for the ui or (ii) vi may contain unbound variables but
then it must be a constructor term. In the first case also vi evaluates to some
ground normal form and the equality evaluates to true if both normal forms are
equal. In the second case the equality evaluates to true if vi and the ground
normal form of ui unify. Then the free variables in vi are bound and may be
used in the following conjuncts and the rhs of the rule. We write conditional
rules in the form: l → r ⇐ v1 = u1, ..., vn = un. The ! indicates negation, thus
!(vi = ui) holds if both normal forms do not unify. Rules without a condition
are called unconditional. If we apply a defined function to ground constructor
terms F(i1, ..., in), we call the ii inputs of F . If such an application normalises
to a ground constructor term o we call o output. A CCTRS is terminating if all
rewriting processes end up in a normal form. In order to implement functions
the outputs are required to be unique for each particular input vector. This is
the case if the TRS is confluent.

4 Igor

IgorII is a prototype for constructing recursive functional programs from few
non-recursive, possibly non-ground example equations describing a subset of the
input/output (I/O) behaviour of a function to be implemented. For all of the
example specifications in IgorII the signatures of the following functions shall
be established:

[] : → List (1)
cons : Element × List → List (2)

s : Nat → Nat (3)
0 : → Nat (4)

t : → Boolean (5)
f : → Boolean (6)

Automated Method Induction: Functional Goes Object Oriented 163

Here is a simple example of how the list-function even would be presented to
the system as I/O examples. Please note that constructor symbols and function
names are in lower case, variables in upper case.

even(0) = t
even(s(0)) = f
even(s(s(0))) = t
even(s(s(s(0)))) = f
even(s(s(s(s(0))))) = t

The induction of a correct program in IgorII is organised as a best-first search.
During a search, a hypothesis is a set of equations entailing the example equa-
tions but potentially with unbound variables in the right-hand side. Starting
from an initial hypothesis, successively the best hypothesis, w.r.t. some prefer-
ence bias, is selected and an unfinished rule is chosen and replaced by its successor
rules. This is continued until the current best hypothesis does not contain any
unbound variables.

Initial Rule. The initial hypothesis contains one rule per target function. This
rule is a least general generalisation (lgg) of the example equations. The lgg for
the previous even-examples is:

even (N) = B

Without getting into theoretical details, it should be sufficient to know for now
that constructor symbols or sub-terms occurring at the same position in all
equations are kept, everything else is substituted by variables. We say, that the
rule covers all previous examples, because the pattern on the lhs subsumes each
lhs of the examples. Of course, this rule is not a functional program, because it
contains an unbound variable on the rhs. To remedy this, the initial hypothesis
is stepwise re-defined. For this purpose, IgorII employs three transformation
operators:

1. The I/O examples belonging to the open initial rule are partitioned into
subsets and for each subset, a new initial rule (with a more specific pattern,
or left-hand side, than the original rule) is computed.

2. If the open rhs has a constructor as root, i.e., does not consist of a sin-
gle unbound variable, then all sub-terms containing unbound variables are
treated as sub-problems. A new auxiliary function is introduced for each
such sub-term.

3. The open right-hand side is replaced by a (recursive) call to a defined func-
tion. The arguments of the call may be computed by new auxiliary functions.
Hence, computing the arguments is considered as a new sub-problem.

Splitting an open rule. The first operator partitions the I/O examples belonging
to a rule into subsets such that the patterns of the resulting initial rules are
disjoint and more specific than the pattern of the original rule. Finding such a
partition is done as follows:

164 T. Hieber and M. Hofmann

A position in the pattern p with a variable resulting from generalising the
corresponding sub-terms in the subsumed example inputs is identified. This im-
plies that at least two of the subsumed inputs have different constructor symbols
at this position. Now all subsumed inputs are partitioned such that all of them
with the same constructor at this position belong to the same subset. Together
with the corresponding example outputs this yields a partition of the example
equations whose inputs are subsumed by p. Since more than one position may
be selected, different partitions leading to different sets of new initial rules may
result.

Introducing (Recursive) Function Calls and Auxiliary Functions. In cases (2)
and (3) auxiliary functions are invented. This includes the generation of I/O-
examples from which they are induced. For case (2) this is done as follows:
Function calls are introduced by matching the currently considered outputs,
i.e., those outputs whose inputs match the pattern of the currently considered
rule, with the outputs of any defined function. If all current outputs match, the
rhs of the current unfinished rule can be set to a call of the matched defined
function. The argument of the call must map the currently considered inputs to
the inputs of the matched function. For case (3), the example inputs of the new
defined function also equal the currently considered inputs. The outputs are the
corresponding sub-terms of the currently considered outputs.

Terms matching the lhs of a rule, where a variable can subsume any sub-term
of the accordant type, can be replaced by the rhs of this rule. This procedure is
repeated until the term does not match any more lhs.

Example. Using the data type specification and the I/O examples given below,
we will sketch the IgorII algorithm by developing a solution for the list-function
even. Starting from the initial rule

even(N) = B

The IgorII algorithm successively develops a solution that is correct and com-
plete w.r.t. the I/O examples using the previously described operators.

In the first step, the example set is partitioned w.r.t. root constructor symbol
in the first argument.

even(0) = t
even(s(N)) = B

The second rule now covers all examples but the first one. In a second step,
again a partition is introduced. Now the constructor symbol of the first subterm
below the root position discriminates the I/O examples.

even(0) = t
even(s(0)) = f
even(s(s(N))) = B

Automated Method Induction: Functional Goes Object Oriented 165

The first and the second rule are the base cases of the target function, both cov-
ering only one I/O example. The third rule, becoming the recursive call, covers
the rest. Following the second partition of the rule set, an auxiliary function is
introduced since the rhs contains a constructor symbol:

even(0) = t
even(s(0)) = f
even(s(s(N))) = sub1(s(s(N)))
sub1(s(s(N)) = even(N)

This result computed by IgorII is a correct and complete w.r.t. the I/O exam-
ples, recursive solution to the problem.

Up to this point it should be clear how in the context of a CTRS, IgorII
develops a correct functional solution from a set of non–recursive I/O examples.
What is left to do now is how we can manage to encapsulate the functional
flavour in an object oriented protocol since we are trying to bring those two
paradigms together.

5 Igor and Object Orientation

In order to model object oriented processes in a functional way we are going to
use two Constructor Term Rewriting Systems (CTRSs). This is done for quite
a simple purpose: encapsulation. One CTRS will be employed to model object
orientation as a simple protocol, the other one will be used to encapsulate the
problem domain as described in section 3. This is as much as we need to under-
stand for now as we are going to come back to that later on.

The two CTRSs are going to be defined like this:

COO : Σ = F ∪ C ∪ {D},X , E (7)

CP : Σ′ = F ′ ∪ C′,X ′, E ′ (8)

The first equation describes the object oriented protocol which will be introduced
in this section. One main difference to the second one has to be remarked, since
D represents a constant which will be used as place holder for terms over COO

The second equation defines the CTRS describing terms in the problem do-
main. They shall be related to each other in a way that CP is a proper Sub
CTRS of COO.

The concepts Super Constructor Term Rewriting System (COO) and Sub Con-
structor Term Rewriting System (CP) shall be defined like this:

Definition 1. CP is a Sub CTRS of COO (CP ⊂ COO), iff

Σ′ ⊂ Σ s.t. F ′ ⊂ F and C′ ⊂ C
X ′ ⊂ X
E ′ ⊂ E

166 T. Hieber and M. Hofmann

Definition 2. COO is a Super CTRS of CP , iff

CP ⊂ COO

5.1 The Super CTRS

Since the aim of this paper is to define an algebraic definition of a simple object
oriented protocol, the major part of this section is concerned with the Super
CTRS and how it models object orientation. Before we proceed it is important
to point out that it is not in the focus of this work to create a full-scale model of
object orientation. Rather have we singled out a couple of interesting mechanics
and put them together to a tiny fragment of object orientation, the one which is
concerned with identifying methods and properties in an object and interacting
with them.

For this we establish the already known concepts of methods and properties
(a.k.a. member-variables) along with a protocol we call message-passing, which
is used by objects in order to interchange data. The relevant parts contained in
the protocol will now be described by relating them to Σ of COO. For this we
need the constant D, constructors C and the functions F themselves.

data :→ Data (9)

Data will be treated as constant throughout the object oriented protocol, since
it is used to have it as wild card for terms of the problem domain it should be
self evident that it strictly consists of terms in CP , in other words TΣ′(X ′). This
is also the actual trick which makes the two domains independent of each other,
which should become clear in the course of this section.

The definition of an object in our algebra would look like this:

object : Identifier × PropList × MethodList → Object (10)

The constructor’s arguments are the object’s Identifier, a List of properties (ob-
ject resident member variables) and a List of (object resident) methods. Later
on it is going to be of importance whether an object contains a method or not
- this is specified with the help of this constructor.

As the object constructor needs a list of properties to be provided it is time
to find out how they can be constructed.

property : Identifier × Data → Property (11)

Just like before, a property must be labelled with an Identifier, the value on
the other hand seems rather obscure. Data is used to abstract the information
contained within the property. This is a crucial section in this protocol since it
is the ‘wrapper‘ for our Sub CTRS. So, whenever Data is used it should be clear
that it is the ‘packaging‘ for terms of our problem domain and the only way
to combine it with the object oriented protocol. Because it is intended to draw
a clear distinction between the two CTRSs it is important to understand that

Automated Method Induction: Functional Goes Object Oriented 167

using Data on the level of object oriented communication is more than enough
and all to be aware of at this stage.

There are two more constructors left to define, the first is the one for a Method :

method : Identifier × Message → Method (12)

As it is already evident that a method will have to be identified later on, an
Identifier needs to be declared for it as done for Object and Property. The second
argument is called Message and this is the important part in our protocol when
it comes to object interaction. As soon as an object needs to call a method or
get the value of a property on any other object (or even itself), it will send a
Message which contains some kind of data.

The nature of the data becomes clear looking at the constructor of the
Message:

message : Data → Message (13)

As seen in the Property constructor the actual nature of the data transported
between objects is abstracted. And this should be quite self evident now since it
has been the intention to keep the object oriented protocol strictly apart from
the actual data processed with it’s help. It is not necessary to know what is inside
Data, since the only concern for now is how to transport it from one object to
another.

This brings us to the concept of message-passing. The idea behind it is quite
literal the exchange of messages, whenever we are trying to access an object’s
property or call one of it’s methods. Before it is possible to call a function or
a property’s value they have to be looked up in the target objects’ property
list/method list.

This can be done by the two following functions:

Match method : Identifier × MethodList → Method (14)

Match prop : Identifier × PropList → Property (15)

For convenience, things are sped up now since it is not hard understanding how to
access to the two lists containing the target object’s methods/properties. And for
now it is not a problem as it is our main focus to clarify how to access a method
or a property given a random object. Those functions should demonstrate that a
positive match of identifiers within an object’s method/property list will return
the method/property we are trying to address and raise an exception otherwise.

All that is left to do is to request either the value of it, or call it with a list of
method arguments.

It has just been mentioned that the part where the method/property list from
an object are extracted - so this is the formal approach in our protocol:

Call : Object × Identifier × Message → Message (16)

168 T. Hieber and M. Hofmann

Up to now the development of signatures in COO has been delivered and it is
intriguing to find out how to proceed further, since the protocol is far away from
being complete. The major part of the work left to do will be carried out by
IgorII, who will take those signatures and induce the according functions with
the help of some simple I/O examples.

5.2 The Sub CTRS

As already pointed out, the Sub CTRS is entirely separated from the object-
oriented message protocol. This means that it can encapsulate virtually anything
without interfering with the Super CTRS. And this is where the beauty of our
approach lies in since we have now successfully separated the way to represent a
problem domain structurally from the way it is represented semantically. Since
IgorII can only understand functional problem specifications it seems quite
rational to have them represented using only terms over a functional algebra –
in this case it is CP .

6 Examples

In section 5 the introduction of two CTRSs has been used in order to define
a simple object-oriented protocol encapsulating a functional problem domain.
However, only signatures have been defined by now. And in order to receive the
mechanics of the object-oriented methods like Match method, Match prop and
Call the inductive programming system IgorII is going to be used to infer those
methods just from a few I/O examples. When constructing I/O examples for the
system, we use the signatures defined in section 5, which we will include again
below:

Match method : Identifier × MethodList → Method (17)

method : Identifier × Message → Method (18)

The first method to infer is Match method, however, in order to express an
unsuccessful match, an exception shall be defined beforehand in the following
manner:

exc : → Method (19)

Mind that the constant exception has not been defined earlier, it is just a place-
holder for any kind of imaginable procedure to capture a ‘no-match‘. Apart from
that, the matching process is passed a variable as identifier as well as a list of
methods which of course would have been taken from an existing object. In case
the requested identifier is matched by a resident method within the method list,
the according method is returned, otherwise an exception is thrown.

Automated Method Induction: Functional Goes Object Oriented 169

The examples for the method itself read as follows:

match_method(Id1 []) = exc
match_method(Id2 []) = exc

match_method(Id1 cons(method(Id1 msg) [])) = method(Id1, msg)
match_method(Id1 cons(method(Id2 msg) [])) = exc
match_method(Id2 cons(method(Id1 msg) [])) = exc
match_method(Id2 cons(method(Id2 msg) [])) = method(Id2, msg)

[...]

IgorII takes those examples and constructs the following set of equations:

1) match_method(Id1 []) = exc

2) sub1(Id1 cons(method(Id2 msg) Restlist)) =
Id1 <== !(Id1 = Id2)

3) sub2(Id1 cons(method(Id2 msg) Restlist)) =
Restlist <== !(Id1 = Id2)

4) match_method(Id1 cons(method(Id2 msg) Restlist)) =
match_method(sub1(Id1 cons(method(Id2 msg)
sub2(Id1 cons(method(Id2 msg) Restlist)))))
<== !(Id1 = Id2)

5) match_method(Id1 cons(method(Id2 msg) Restlist)) =
method(Id1 msg) <== (Id1 = Id2)

The same result is returned for Match method, which will be left out here since
it is almost identical to Match method. Moving one step further we are going to
find out whether the Call method can be induced as easily - the answer is yes!

Remember the signature of Call :

Call : Object × Identifier × Message → Message (20)

Now it has been demonstrated that IgorII can not only understand, but also
induce the simple object—oriented protocol which is reason enough to try and
insert some terms from the problem domain into our specification. For this the
example from section 4 is used, so the functional I/O examples for even will be
encapsulated within an object oriented specification. As the signature requests
an actual Object to be part of the call, it is going to be inserted as the variable
O of the type Object. This is enough for our purpose here, since it is never used
and remains constant within all our examples.

170 T. Hieber and M. Hofmann

Call(O even message(0)) = message(t)
Call(O even message(s(0))) = message(f)
Call(O even message(s(s(0)))) = message(t)
Call(O even message(s(s(s(0))))) = message(f)
Call(O even message(s(s(s(s(0)))))) = message(t)

The result is as straightforward as before, but notice how the message-passing
is used consistently:

1) call(O even message(0)) = message(t)

2) call(O even message(s(0))) = message(f)

3) call(O even message(s(s(X1)))) =
call(sub19 message(s(s(X1))))

4) sub19(message(s(s(X1)))) = message(X1)

Here it is clearly evident that the object-oriented terms do not obstruct IgorII
in any way, an explanation as to why will be given shortly. Another more com-
plex example has the system induce an operator which is very famous in object
orientation - the iteration. For the sake of readability those examples are not
wrapped in messages and within calls. That this is no big problem will be clear
at the end of this section, so bear with us for now and just look at the example:

iterate([]) = []
iterate(cons(A [])) = cons(call(A))
iterate(cons(A cons(B []))) = cons(call(A) cons(call(B) []))
iterate(cons(A cons(B cons(C [])))) =
cons(call(A) cons(call(B) cons(call(C) [])))

The very abstract idea is that a rather abstract Call (which could be any defined
method) is applied to every object within a list. As expected, IgorII comes up
with a recursive solution to this problem:

1) iterate([]) = []

2) iterate(cons(Object Restlist)) =
cons(sub1(cons(Object Restlist)) sub2(cons(Object Restlist)))

3) sub1(cons(Object Restlist)) = call(Object)

4) sub2(cons(Object Restlist)) =
iterate(sub5(cons(Object Restlist)))

5) sub5(cons(Object Restlist)) = Restlist

Automated Method Induction: Functional Goes Object Oriented 171

As mentioned before have we reduced the complexity of our Call signature in
order to increase readability of the examples. One question when dealing with
all the object-orientation might have been urging all the time: Isn’t this a lot of
overhead?

Therefore we are going to combine the signatures of Object, Call, Message
and Method, generating a Call of the signature:

Call : Object × Identifier × Message → Message (21)

Into the call (lines 1–8), an Object (line 3) is inserted, containing an identifier
OId, an (empty) property list and two methods even and odd (all in line 3).
When we would now call the function even (line 5) with a Message containing
a singleton list as argument (line 7) it would look like this:

1: (
2: # <-- Object: Identifier x PropList x MethodList
3: (OId [] cons((even bool ([] [])) (odd bool ([] []))))
4: # <-- Identifier
5: even
6: # <-- Message
7: message(0
8:)
9: # <-- Message
10: = message(t)

This looks very bloated and one might wonder if all this is prone to slow down
IgorII during the synthesizing? For this let us have a look how it anti-unifies
the terms gradually:

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(0))

)
= message(f)

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(succ(0)))

)
= message(t)

after anti-unification:

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(t))

)

172 T. Hieber and M. Hofmann

Looking at those examples you find the answer to the question if the protocol’s
overhead is impeding the system and at the same time you get the key aspect of
all the examples and the increasing complexity: it doesn’t matter! From this
it will also be plain to understand why the iteration example has been kept quite
simple with no message-passing involved at all. It would just be additionaly code
around the problem specification itself. And that is the one which matters to
IgorII, since it does not even use the terms from COO in any way.

7 AutoJAVA

All the theory so far has clarified the fact that a functional inductive program-
ming system as IgorII can be confronted with problems outside the functional
context. You may have noticed that we are still delivering the problems in a
functional way, since this is the only format the system can understand. But
it should be obvious that after successfully modeling a very small protocol of
object oriented flavour we could enlarge this tiny model into a larger one, much
more like a real object oriented protocol.

In order to use our findings in a practical way, a prototype plug-in for eclipse
was designed which was aimed to enable a programmer to characterise the be-
haviour of a function in an abstract way (I/O examples) and having IgorII
create a program from this specification, which would be wrapped into our COO

1.

8 Conclusion

Not only have we successfully modelled objects, methods, properties and mes-
sages - we also had igor synthesize all of them. So machine learning approaches
have been used in order to have a system learn how to describe generic pro-
cesses within programming languages. We provided a showcase of how functional
programming can be combined with object orientation. The prototype plug-in
AutoJAVA should prove this to be true and opens up many paths for future ex-
pansion. As the problem specification can be embedded within the annotations
of a program’s method an entry point for large-scale applications such as IBMs
RSA has been created. A developer can annotate his UML diagrams and have
those annotations transferred into the auto-generated code, so you could imag-
ine Igor using the specification during the code generation filling in a method’s
implementation.

All in all there has to be said that even though the results presented in this
paper do not seem very novel or breathtaking. But they nevertheless show that
by enabling functional programs to deal with object orientation we can play to
the strengths of both paradigms. It feels like that we have created a foundation
for some more thorough steps which might gradually improve the methodology
and finally result in a larger scale prototype which actually produces Java code
instead of functional programs.
1 See more on http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

Automated Method Induction: Functional Goes Object Oriented 173

References

1. Hieber, T.: Transportation of the JEdit plug-in ProXSLbE to eclipse. Technical
report, Otto Friedrich University of Bamberg (2008)

2. Summers, P.D.: A methodology for LISP program construction from examples.
Journal of the ACM 24(1), 161–175 (1977)

3. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

4. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of
the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, pp.
368–381 (1990)

5. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

6. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

7. Kitzelmann, E.: Data-driven induction of recursive functions from I/O-examples.
In: Kitzelmann, E., Schmid, U. (eds.) Proceedings of the ECML/PKDD 2007 Work-
shop on Approaches and Applications of Inductive Programming (AAIP 2007),
pp. 15–26 (2007)

8. Hofmann, M., Kitzelmann, E.: I/o guided detection of list catamorphisms – towards
problem specific use of program templates in ip. In: Proceedings of the ACM SIG-
PLAN 2010 Workshop on Partial Evaluation and Program Manipulation (PEPM
2010) (to appear, 2010)

9. Olsson, R.J.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

10. Katayama, S.: Systematic search for lambda expressions. In: van Eekelen, M.C.J.D.
(ed.) Revised Selected Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, vol. 6, pp. 111–126. Intellect (2007)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education, New York
(1997)

12. Rémy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to
ML (1998); A preliminary version appeared in the proceedings of the 24th ACM
Conference on Principles of Programming Languages (1997)

13. Kiselyov, O., Laemmel, R.: Haskell’s overlooked object system. CoRR (2005); in-
formal publication

14. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

15. Plotkin, G.: A note on inductive generalisation. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence 5, pp. 153–163. Edinburgh University Press, Edinburgh (1969)

	Automated Method Induction:Functional Goes Object Oriented
	Introduction
	Status Quo
	Constructor Term Rewriting
	Igor
	Igor and Object Orientation
	The Super CTRS
	The Sub CTRS

	Examples
	AutoJAVA
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

