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Abstract. This paper describes our efforts and solutions in porting our
IP system Igor 2 from the termrewriting language Maude to Haskell.
We describe how, for our purpose necessary features of the homoiconic
language Maude especially the treatment of code as data and vice versa,
can be simulated in Haskell using a stateful monad transformer which
makes type and class information available. With our new implementa-
tion we are now able to use higher-order context during our synthesis
and extract information from type classes useable as background knowl-
edge. Keeping our new implementation as close as possible to our old,
we could keep all features of our system.

1 Introduction

Inductive programming (IP) dares to tackle a problem as old as programming
itself: Help the human programmers with their task of creating programs, solely
using evidence of an exemplary behaviour of the desired program. Contrary to
deductive program synthesis, where programs are generated from an abstract,
but complete specification, inductive program synthesis is concerned with the
synthesis of programs or algorithms from incomplete specifications, such as in-
put/output (I/O) examples. Focus is on the synthesis of declarative, i.e., logic,
functional, or functional logic programs. The aims of IP are manifold. On the
one hand, research in IP provides better insights in the cognitive skills of human
programmers. On the other hand, powerful and efficient IP systems can enhance
software systems in a variety of domains—such as automated theorem proving
and planning—and offer novel approaches to knowledge based software engineer-
ing such as model driven software development or test driven development, as
well as end user programming support in the XSL domain (1).

Beginnings of IP research addressed inductive synthesis of functional programs
from small sets of positive I/O examples only (2). One of the most influential clas-
sical systems was Thesys (3) which synthesised linear recursive Lisp programs
by rewriting I/O pairs into traces and folding of traces based on recurrence de-
tection. Currently, induction of functional programs is covered by the analytical
approaches Igor 1 (4), and Igor 2 (5) and by the evolutionary/generate-and-
test based approaches Adate (6) and MagicHaskeller (7).

Analytical approaches work example-driven, so the structure of the given I/O
pairs is used to guide the construction of generalised programs. They are typically
very fast and can guarantee certain characteristics for the generated programs
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such as minimality of the generalisation w.r.t. to the given examples and termi-
nation. However they are restricted to programs describable by a small set of
I/O pairs.

Generate-and-test based approaches first construct one or more hypothetical
programs, evaluate them against the I/O examples and then work on with the
most promising hypotheses. They are very powerful and usually do not have any
restrictions concerning the synthesis able class of programs, but are extremely
time consuming.

Two decades ago, some inductive logic programming (ILP) systems were pre-
sented with focus on learning recursive logic programs in contrast to learning
classifiers: Ffoil (8), Golem (9), Progol (10), and the interactive system Di-

alogs (11). Synthesis of functional logic programs is covered by the system
Flip (12).

IP can be viewed as a special branch of machine learning because programs
are constructed by inductive generalisation from examples. Therefore, as for
classification learning, each approach can be characterised by its restriction and
preference bias (13). However, IP approaches cannot be evaluated with respect
to some covering measure or generalisation error since (recursive) programs must
treat all I/O examples correctly to be an acceptable hypothesis.

The task of writing programs writing programs—pardon the pun—is per se
reflexive, so it is virtually self-suggesting to use reflexive, also called homoiconic
languages. Unfortunately only a few homoiconic languages are declarative and
adequate for IP, e.g. Lisp and Maude. Nevertheless, they lack interesting fea-
tures like polymorphic types with type classes or higher-order functions. State-
of-the-art functional languages with a large community and good library support
as e.g. Haskell do not provide reflexive features, though.

Nevertheless, we value the pros of a state-of-the-art functional language more
and so grasp the nettle and build our own homoiconic support. This paper
describes our efforts and solutions in porting our IP system Igor 2 from the term
rewriting language Maude to Haskell facing problems in simulating reflexive
properties. This is done mainly to overcome Maude’s restricted higher-order
context, but also to use information about type classes as background knowledge.
Igor 2’s key features are kept unchanged. They are

– termination by construction,
– handling arbitrary user-defined data types,
– utilisation of arbitrary background knowledge,
– automatic invention of auxiliary functions as sub programs,
– learning complex calling relationships (tree- and nested recursion),
– allowing for variables in the example equations,
– simultaneous induction of mutually recursive target functions.

Furthermore it provides insights in less theoretical but more pragmatic imple-
mentation details of the systems. The next Section 2 gives an overview of the
theory behind Igor 2 and its strong linkage to Maude, and in Section 3 we
describe the library specification of our new implementation in Haskell. We
conclude with an outlook on future work in Section 5.
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2 Igor 2 and Maude

Igor 2’s (14) main objective is to overcome the strong limitations—only a small
fixed set of primitives and no background knowledge, strongly restricted program
schemas, linearly ordered I/O examples—of the classical analytical approach but
not for the price of a generate-and-test search. This is realized by integrating
analytical techniques into a systematic search in the program space. A prototype
is implemented in Maude. Please note that in the following chapter we adopt
the Maude syntax, where, contrary to Haskell variables are in upper case and
constructor symbal are in lower case.

2.1 The Igor 2-Algorithm

We only sketch the algorithm here. For a more detailed description see (14).
Igor 2 represents I/O examples, background knowledge, and induced pro-

grams as constructor (term rewriting) systems (CSs) over many-sorted (typed)
first-order signatures. Signatures for CSs are the union of two disjoint subsig-
natures called defined function symbols and constructor symbols, respectively.
Terms containing only constructor symbols (and variables) are called constructor
terms. A CS is a set of directed equations or rules of the form F (p1, . . . , pn) → t
where F is a defined function symbol, the pi are constructor terms and t is a
term. This corresponds to pattern matching over user-defined data types in func-
tional programming. A CS is evaluated by term rewriting. Terms that are not
rewritable—these include, in particular, all constructor terms—are called nor-
mal forms. For CSs representing I/O examples or background knowledge hold
the additional restriction that right-hand sides (rhss) are constructor terms. This
particularly means that also background knowledge must be provided in an ex-
tensional form, i.e. as non-recursive I/O examples.

In order to construct confluent CSs, i.e., CSs with unique normal forms,
Igor 2 assures that patterns of rules belonging to one defined function are dis-
joint, i.e., do not unify. Igor 2’s inductive bias is—roughly speaking—to prefer
CSs with fewer disjoint patters, i.e., CSs that partition the domain into fewer
subsets. With respect to this preference bias, Igor 2 starts with one initial rule
per target function. An initial rule is the least general generalisation—with re-
spect to the subsumption order t ≥ t′ (t subsumes or is more general than t′),
if there exists a substitution σ with tσ = t′—of the provided I/O examples.
Initial rules entail the I/O examples with respect to equational reasoning and
are correct with respect to the I/O examples in this sense. However, an initial
rule may contain variables in its right-hand side (rhs) not occurring in its left-
hand side (lhs), i.e. pattern. We call such variables unbound and rules and their
rhs containing them, open. Unbound variables may be instantiated arbitrarily
within rewriting such that CSs containing open rules do not represent functions.
Hence, CSs are transformed during the search by taking an open rule r out of
a CS and replacing it by a set of new rules R such that (i) either the unbound
variables are eliminated in the rhs of r in R or r is completely discarded from
R, and (ii) the resulting CS is still correct with respect to the I/O examples
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and equational reasoning. Different sets R may be possible as replacements for
an open rule, i.e., a refinement operator takes an open rule r and yields a set
of sets R of rules. In one search step, an open and best rated CS with respect
to the preference bias and one open rule from it is chosen. Then all refinement
operators are applied to r yielding a set of sets of rules each. The union of these
sets is the set of possible replacements R of r. Now r is replaced in each CS
containing it by each possible R. A goal state is reached if all best rated CSs are
closed. This set constitutes the solution returned by Igor 2.

There are three transformation operators: (i) The I/O examples belonging
to the open initial rule are partitioned into subsets and for each subset, a new
initial rule (with a more specific pattern than the original rule) is computed.
(ii) The open rhs is replaced by a (recursive) call to a defined function. The
arguments of the call may again contain calls to defined functions. Hence, com-
puting the arguments is considered as a new subproblem. (iii) If the open rhs
has a constructor as root, i.e., does not consist of a single unbound variable,
then all subterms containing unbound variables are treated as subproblems. A
new auxiliary function is introduced for each such subterm. We will explain all
of them in the following paragraphs.

Splitting an open rule. The first operator partitions the I/O examples belong-
ing to a rule into subsets such that the patterns of the resulting initial rules
are disjoint more specific than the pattern of the original rule. Finding such a
partition is done as follows: A position in the pattern p with a variable resulting
from generalising the corresponding subterms in the subsumed example inputs
is identified. This implies that at least two of the subsumed inputs have different
constructor symbols at this position. Now all subsumed inputs are partitioned
such that all of them with the same constructor at this position belong to the
same subset. Together with the corresponding example outputs this yields a
partition of the example equations whose inputs are subsumed by p. Since more
than one position may be selected, different partitions leading to different sets
of new initial rules may result.

For example, let
reverse([]) = []
reverse([X ]) = [X ]
reverse([X, Y ]) = [Y, X ]

be some examples for the reverse-function. The pattern of the initial rule is sim-
ply a variable Q, since the example input terms have no common root symbol.
Hence, the unique position at which the pattern contains a variable and the ex-
ample inputs different constructors is the root position. The first example input
consists of only the constant [] at the root position. All remaining example inputs
have the list constructor cons as root. Put differently, two subsets are induced by
the root position, one containing the first example, the other containing the two
remaining examples. The least general generalisations of the example inputs of
these two subsets are [] and [Q|Qs] resp. which are the (more specific) patterns
of the two successor rules.
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Introducing (Recursive) Function Calls and Auxiliary Functions. In cases (ii)
and (iii) help functions are invented. This includes the generation of I/O-examples
from which they are induced. For case (ii) this is done as follows: Function
calls are introduced by matching the currently considered outputs, i.e., those
outputs whose inputs match the pattern of the currently considered rule, with the
outputs of any defined function. A defined function is either the target function,
a function from the background knowledge, or an auxiliary function invented on
the fly. If all current outputs match, then the rhs of the current unfinished rule
can be set to a call of the matched defined function. The argument of the call
must map the currently considered inputs to the inputs of the matched defined
function. For case (iii), the example inputs of the new defined function also equal
the currently considered inputs. The outputs are the corresponding subterms of
the currently considered outputs.

For an example of case (iii) consider the last two reverse examples as they
have been put into one subset in the previous section. The initial rule for these
two examples is:

reverse([Q|Qs]) = [Q2|Qs2] (1)

This rule is unfinished due two the two unbound variables in the rhs. Now the
two unfinished subterms (consisting of exactly the two variables) are taken as
new subproblems. This leads to two new examples sets for two new help functions
sub1 and sub2:

sub1([X ]) = X
sub1([X, Y ]) = Y
sub2([X ]) = []
sub2([X, Y ]) = [X ]

The successor rule-set for the unfinished rule contains three rules determined as
follows: The original unfinished rule (1) is replaced by the finished rule:

reverse([Q|Qs]) = [sub1([Q|Qs]) | sub2[Q|Qs]]

And from both new example sets an initial rule is derived.
Finally, as an example for case (ii), consider the example equations for the

help function sub2 and the generated unfinished initial rule:

sub2([Q|Qs]) = Qs2 (2)

The example outputs, [], [X ] of sub2 match the first two example outputs of the
reverse-function. That is, the unfinished rhs Qs2 can be replaced by a (recursive)
call to the reverse-function. The argument of the call must map the inputs
[X ], [X, Y ] of sub2 to the corresponding inputs [], [X ] of reverse, i.e., a new help
function, sub3 is needed. This leads to the new example set:

sub3([X ]) = []
sub3([X, Y ]) = [X ]

The successor rule-set for the unfinished rule contains two rules determined as
follows: The original unfinished rule (2) is replaced by the finished rule:

sub2([Q|Qs] = reverse(sub3([Q|Qs]))
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Additionally it contains the initial rule for sub3.

2.2 Igor 2’s Use of Maude’s Term Rewriting and Homoiconic
Capabilities

In the functional subpart of Maude, a module essentially defines an order-
sorted signature1 Σ, a set of variables X , and a term rewriting system over
Σ and X . Hence, Igor 2’s I/O examples, background knowledge, and induced
programs are valid and evaluateable Maude modules. Since I/O examples, back-
ground knowledge, and induced CSs are input and output respectively, i.e., data
for Igor 2, we need some homoiconic capabilities: A Maude program (Igor 2)
needs to handle Maude programs as data. This is facilitated by Maude’s meta-
level. For all constructs of Maude modules—signatures, terms, equations, and
complete modules—sorts and constructors to represent them are implemented
in the META-LEVEL module and its submodules in Maude’s standard library.
Furthermore, functions to transform terms etc. to their meta-representation—
upTerm, upEqs, and upModule—are predefined there. Meta-represented terms,
equations, modules and so on are terms of types Term, Equation, Module etc.
and may be rewritten by a Maude program like any other term.

Let us examine in some more detail, how terms and equations are meta-
represented in Maude: Constants and variables are meta-represented by quoted
identifiers containing name and type of the represented constant or variable. E.g.,
upTerm(nil)where nil is a constant of sort List yields the constant ’nil.List
of sort Constant which is a subsort of Term and upTerm(X) where X is a variable
of sort List yields the constant ’X:List of sort Variable which is also a subsort
of Term. Other terms are represented by a quoted identifier as root and a list of
meta-terms in brackets as arguments. E.g., upTerm(Reverse(nil)) yields the
term ’Reverse[’nil.List] of sort Term.

The constructor in mixfix notation for representing an equation is eq = [ ].
where the first two placeholders ( ) may take a term in meta-representation each
(the rhs and lhs of the equation) and the third an attribute set (belonging to
an equation). The resulting term is of sort Equation.

Now consider a Maude module M containing the two equations

eq reverse(nil) = nil .
eq reverse(cons(X,nil)) = cons(X,nil) .

where X is a variable of sort Item. Applying upEqs(’M, false) then yields:

eq ’Reverse[’nil.List] = ’nil.List [none] .
eq ’Reverse[’cons[’X:Item,’nil.List]] =

’cons[’X:Item,’nil.List] [none] .

This is a term of the sort EquationSet.
Also concepts of rewriting, e.g., matching and substitutions, are implemented

for the meta-level. For example,
1 Order-sorted signatures are a non-trivial extension of many-sorted signatures. In an

order-sorted signature, the sorts partially ordered into sub- and supersorts.
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metaMatch(upModule(’M,false), ’X:List,
’cons[’Y:Item,’nil.List], nil, 0)

yields the term

’X:List <- ’cons[’Y:Item,’nil.List]

of sort Assignment which is a subsort of Substitution.

3 Igor 2 in Haskell

As Lisp, Maude is a dynamically typed, homoiconic language. This means that
(i) the majority of its type checking is done at run-time so type information
is available at this point, and, as seen in the previous section, (ii) it supports
treating ’code as data’ and vice versa ’data as code’ very well. This is quite useful
for program synthesis, because the data structure to represent hypotheses about
possible programs can directly be treated as code and evaluated, and of course
the other way round too. Any piece of code can be lifted into a data structure
and be modified. Furthermore, names of functions or data type constructors can
be reified, so the interpreter’s symbol table is accessible at runtime. This makes
it possible get the constructors of an arbitrary data type or the type of a function
at run-time without much effort.

From the viewpoint of IP, Haskell has on this matter its weak spot. As a
typical statically typed language, types are only necessary until type checking
is done. Once a piece of code has passed the type checker, type information
can safely be dropped. Although this improves efficiency for compiled programs,
when doing program synthesis, this information is necessary though. Lifting code
to a meta-level and back, as done with Maude’s upXYZ functions is only available
quite restricted. Also reification cannot be done so easily since again, there is no
access to the symbol table after type checking. There are various library exten-
sions for Haskell especially for GHC, to alleviate these problems, e.g. Template
Haskell (TH) (15) for compile-time metaprogramming and Data.Dynamic and
Data.Typeable to allow for dynamic typing. Why they are not useful for us
though, we will explain in the following..

Usually, in Haskell expressions are represented as an algebraic data type:

data Exp

= VarE Name

| ConE Name

| LitE Lit

| AppE Exp Exp

Template Haskell’s dual quasi-quoting ([||]) and splicing ($) operators would
provide us with the means to transform code into such an algebraic data type and
these expressions back into code, similar to Maude’s upXYZ functions. So [|1|]
would be LitE (IntegerL 1) inside the TH’s Q monad and $(LitE (IntegerL
1)) would be replaced by the Integer value 1 by the compiler. However, this
is only done at compile-time and without types of the quoted code itself. This
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simply comes from TH’s use case to be able to write code-generating macros,
so the purpose of quoting and splicing is really to coerce expressions into real
code at compile-time and evaluate it at run-time instead of having an algebraic
representation of that code at run-time.

Similarly, the dynamic typing library extension of Haskell is not appro-
priate for us, too. Its main idea is by creating a type class Typeable to be
able to compare the type of arbitrary and unknown values. For example the
function toDyn :: Typeable a => a -> Dynamic from Data.Dynamic. With-
out knowing the type of an arbitrary value, but being a member of Typeable,
a representation of its type can be created and e.g. compared. However, in our
case we are not interested in a type representation of an expression, but of the
type representation of an expression when interpreted as code.

In the rest of this section we will look at the Haskellspecific details of the
new Igor 2 implementation.

3.1 Expressions, Types, and Terms

Finally, there is nothing else for us but to write our own expression type and tag
it with an also algebraic representation of its underlying type.

type Name = String

data TExp

= TVarE Name Type

| TConE Name Type

| TLitE Lit Type

| TAppE TExp TExp Type

| TWildE Type

data Lit

= CharL Char

| IntL Int

| StringL String

So a typed expression is either a variable, a constant, a literal, or an application
of them. For simplicity let a Name be just a String. Neglecting the types for the
moment, the expression (:) 1 ((:)2 [])2 would be represented as follows:

TAppE (TAppE (TConE ” :”)
(TLitE (IntL 1)))

(TAppE (TAppE (TConE ” :”)
(TLitE (IntL 2)))

(TConE ” [ ] ”))

The algebraic data type of a type looks similar, where a type is either a type
variable, a type constant, an arrow, or an application of them.

type Cxt = [Type]

data Type

= ForallT [Name] Cxt Type

2 aka 1:2:[]. or [1,2].



148 M. Hofmann, E. Kitzelmann, and U. Schmid

−− v a r i a b l e s in scope , c l a s s contex t , t ype
| VarT Name

| ConT Name

| ArrowT

| AppT Type Type

Additionally, there is a forall type, allowing us to restrict a type variable to
a certain type class. As a short example, the type (Show a):: a -> [Int] is
represented as the following algebraic expression:

ForallT [”a”] [AppT (ConT ”Show”)
(VarT ”a”)]

(AppT (AppT ArrowT (VarT ”a”))
(AppT ListT (ConT ”Int”)))

For our convenience, we also create the class Typed to easily have access to a
type of an expression or the like.

class Typed t where

typeOf :: t -> Type

instance Typed TExp where

−− omi t t ed

For TExp, the function typeOf is just a projection on the last argument, i.e. the
type of an expression constructor.

To work with TExp and Type in the sense of terms we make them all instances
of a class Term which provides the basis for fundamental operations on terms.
The function sameSymAtRoot compares two term only at their root symbol,
subterms returns all immediate subterms of a term and root is the inverse of it
such that root t (subterms t)= t. The functions isVar, toVar, and fromVar
provide a type independent way to check for variables, access their name and
create a variable from a name.

class (Eq t) => Term t where

sameSymAtRoot :: t -> t -> Bool

subterms :: t -> [t]

root :: t -> ([t] -> t)

isVar :: t -> Bool

toVar :: t -> Name -> t

fromVar :: t -> Name

instance Term Type where

−− omi t t ed
instance Term TExp where

−− omi t t ed

Both, Types and TExp are instances of the class Term.
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3.2 Specification Context

Up to now, we have seen how to represent expressions and types, but as men-
tioned earlier, this is not sufficient, since synthesis of a program takes place in a
certain context. A small specification, which is itself a Haskell module, could
e.g. look like the following listing.

module FooMod where

data Peano = Z | S Peano

deriving (Eq, Ord)

count :: [a] -> Peano

count [] = Z

count [a] = S Z

count [a,b] = S S Z

Such a given specification is parsed and the IO examples for count are trans-
lated into TExp-expressions. Furthermore, all data type definition with their
constructors and types have to be stored in a record modelling the context of
this specification, i.e. all types and functions which are in scope. Since the stan-
dard Prelude is assumed to be allways in scope, their types and constructors
are included statically. We use a named record for managing the context, where
each field in this record is a Map from Data.Map storing the relevant key value
pairs.

import qualified Data.Map as M

data SynCtx = SCtx

{ sctx_types :: (M.Map Name Type)

−− f unc t i on name maps to i t s type
, sctx_ctors :: (M.Map Name Type)

−− con s t ru c t o r name maps to i t s type
, sctx_classes :: (M.Map Name [Name ])

−− c l a s s name maps to i t s s u p e r c l a s s e s
, sctx_members :: (M.Map Name [Name ])

−− c l a s s name maps to member f u n c t i o n s names
, sctx_instnces :: (M.Map Type [Name ])

−− t ype maps to c l a s s e s
, sctx_typesyns :: (M.Map Type Type)

}deriving (Show)

It is common practise to hide the relevant plumbing of stateful computation
inside a state monad (16), and so do we. While we are at it we can start stacking
monads with monad transformers (17) and add error handling. Later we will
go on in piling monads, and because this is the bottom one it is self-evident to
the add the error monad here. Our context monad now looks as follows with an
accessor function lookIn for our convenience.

type C a = StateT SynCtx (ErrorT String a)
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(lookIn) :: (Ord a) =>

a -> (SynCtx -> M.Map a b) -> C b

(lookIn) n f = gets f >>= \m ->

maybe (fail ”Not in context !”)
return

(M.lookup n m)

The function lookIn can now be used, preferably infix, wherever we need infor-
mation about names or types. For example, the expressions ”Peano”lookIn
sctx_classes yields the names of the classes Peano is an instance of, here
[”Eq”,”Ord”].

3.3 Using Terms

The cornerstones of our synthesis algorithm are unification and anti-unification.
Due to our type-tagged expression, computing the most general unifier or the
least general generalisation of two terms will become stateful, when considering
polymorphic types with type classes. Not only the terms have to be unified
or generalised, but with respect to their types. For this purpose we create the
classes Unifiable and Antiunifiable and make both TExp and Type instances
of them.

Substitutions which replace variables by terms are essential when unifying or
antiunifying terms. Let a Substitution be a list of pairs, such that the variable
with the name on the left side is replaced by the term on the right side of the
pair. Then we define our unification monad U t again as a monad transformer
as follows.

type Substitution t = [(Name ,t)]

nullSubst = []

type U t = StateT (Substitution t) C ()

Note that the last argument of StateT is the unit type. Consequently, a com-
putation inside U t has no result, or put differently, the result is the state itself,
i.e. the substitution which is modified on the way. Therefore, when computing
the most general unifier (mgu) or the substitution with which two terms match
matchingS, unify and match respectively are executed in the U t monad with
the empty substitution as initial state. As result the final state is returned.

class (Term t) => Unifiable t where

unify :: t -> t -> U t

mgu :: t -> t -> C (Substitution t)

mgu x y = execStateT (unify x y) nullSubst

match :: t -> t -> U t
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matchingS :: t -> t -> C (Substitution t)

matchingS x y =

execStateT (match x y) nullSubst

equal :: (Unifiable t) =>

t -> t -> C Bool

equal y x = matchingS x y >> return . null

‘catchError ‘ \_ -> return False

Remember that we stacked the U t monad on top of our context monad C which
supports error handling. So if two terms do not unify or match respectively, then
fail is invoked inside C, otherwise a potentially empty substitution is returned
inside C. The function matchingS returns the substitution that matches the first
term on the second term and equal returns True if the computation inside U t
succeeds with an empty substitution, False otherwise.

The class Antiunifier looks similar, but instead of a Substitution it uses
the data type VarImg as state. VarImg stores a list of terms, i.e. the so called
image, together with the variable subsuming these terms.

type VarImg t = [([t],Name)]

nullImg = []

type AU t = StateT (VarImg t) C t

However, unlike in the U t monad, there is a result of a computation in the
AU t monad: The least general generalisation of the given terms. With the func-
tion antiunify we throw the state away and return the result of the monadic
computation.

class (Term t) => Antiunifiable t where

aunify :: [t] -> AU t

antiunify :: [t] -> C t

antiunify t =

runStateT (aunify t) nullImg

The types TExp and Type are now added as instances to these type classes. We
omit the concrete implementations, since they are straight forward following the
structure of the algebraic data types. All that is left to say that two TExps only
unify/match/antiunify if and only if their types unify/match/antiunify.

3.4 Rules, Hypotheses, and Other Data Types

Now let us introduce the basic data types for the synthesis.
First of all we have a Rule, with a list of TExps on the left-hand side (lhs)

and one TExp on the right-hand side (rhs).

data Rule = R { lhs :: [TExp]

, rhs :: TExp }
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Usually we are talking about a certain rule, a rule covering some I/O examples
of a specific function. Therefore we need to store information about this specific
function and the covered I/O examples together with the Rule in a covering rule
CovrRule.

data CovrRule = CR

{ name :: Name

, rule :: Rule

, covr :: [Int] }

The accessor functions name, rule, and covr return the name of the function,
the rule itself, and the indices of the covered I/O examples. A CovrRule makes
therefore only sense, when there is something the indices refer to. The data
structure IOData answers this purpose. It is more or less a map, relating function
names to list of rules, i.e. the I/O examples. Let for simplicity be IOData just a
synonym.

type IOData = M.Map Name [Rule]

The indices in a CovrRule are just the position of rules in the list stored under a
name. The indices should not be visible outside IOData. For this purpose there
are a couple of functions to create and modify CovrRule referring to a certain
IOData. We refrain from the concrete implementations here.

getAll :: Name -> IOData

-> Maybe [CovrRule]

getNth :: Name -> IOData

-> Int -> Maybe CovrRule

As the names suggest, getAll is simply a lookup and returns just a list of
covering rules, each covering one I/O pair, and getNth just picks the nth of all.
The following functions are used to breakup and fuse covering rules. So breakup
returns a list of covering rule, each covering one I/O pair of those covered by
the original one, and fuse is the inverse of it, fusing many covering rules into
one which covers all their I/O pairs.

breakup :: CovrRule -> IOData -> [CovrRule]

fuse :: [CovrRule ] -> C CovrRule

We have to be inside the C monad for fusing, because we need to antiunify the
rules to be covered.

Hypotheses are the most fundamental data record storing a list of open cover-
ing rules, the closed rules as a list of declarations Decl, for each function one, and
all calling dependencies between all functions to prevent the system to generate
non-terminating programs. Let CallDep be the type of a calling dependency,
which encapsualtes the information which function calls which.

type Decl = (Name ,[Rule ])

data Hypo = HH { open :: [ CovrRule]

, clsd :: [Decl]

, callings :: CallDep }
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The basic idea behind calling dependencies is that if function f calls function g,
then f depends on g (f → g). The argument(s) of a call could either increase,
decrease or remain in their syntactic size, thus the dependency could be of either
type LT, EQ, or GT ( <−→,

=−→,
>−→).

Calling dependencies are transitive, so if f → g and g → h then also f → h.
The kind of the transitive dependency has the maximal type of all compound
dependencies with the obvious ordering LT < EQ < GT.

If already a calling dependency f → g exists, the following possibilities for g
calling f are allowed:

f
>−→ g ⇒ g is not allowed to call f

f
=−→ g ⇒ g

<−→ f

f
<−→ g ⇒ g

<−→ f or g
=−→ f

f = g ⇒ f
<−→ f

If there is no such calling dependency, all possibilities are allowed. To check,
whether a call is admissible and to get all allowed possible calls two functions
exist.

admissible :: (Name ,Ordering ,Name) -> CallDep -> Bool

allowedCalls :: Name -> CallDep -> M.Map Name [Ordering]

The first one checks if the given (new) calling dependency is admissible, and the
second returns for each function in a CallDep which additional calls to it are
allowed. If a function is not mentioned in the Map returned by allowedCalls,
anything goes.

3.5 Comparing Rules and Hypotheses

To compare rules and hypotheses to decide which to process we establish the
class Rateable with the member function rate which returns for each member
an Int value inside C.

class Rateable r where

rate :: r -> C Int

Hypotheses should be rated with regard to their number of different partitions,
i.e. patterns on the left-hand side of all their rules that do not match any other
pattern. This is motivated by some kind of Occam’s razor, preferring programs
with few rules.

instance Rateable Hypo where

rate h = numberOfPartitions h

numberOfPartitions :: Hypo -> RatingData

numberOfPartitions h = liftM length $

foldM leastPatterns $ allRules h

where
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leastPatterns [] p = return [p]

leastPatterns (p1:ps) p2 = do

p1gtp2 <- match ‘on‘ lhs p1 p2

p2gtp1 <- match ‘on‘ lhs p2 p1

if p1gtp2 then return (p2:ps)

else if p2gtp1 then return (p1:ps)

else liftM (p1:)(leastPatterns ps p2)

Covering rules are rated with regard to the longest chain of function calls they are
in, so preferring rules causing less nested function calls. To compute the length
of this longest path in the call dependencies, always a CallDep is required.

instance Rateable (CallDep ,CovrRule ) where

rate (cd,cr) = return.length (longestPath (name cr) cd)

3.6 The Synthesis Monad

For searching a space of hypotheses we need to maintain a data structure rep-
resenting this search space. In each step, the best hypothesis w.r.t to a certain
heuristic is selected and from it an appropriate rule, again w.r.t an a priori
defined heuristic is chosen. Refining one rule results in multiple sets of rules,
because multiple refinement operators are used and each operator may result
itself in multiple rules.

So let r be a rule and ρ1 . . . ρn are refinement operators, then are ρi(r) the
rules resulting in applying ρi to r. If R is the set of all rules occurring in any
hypothesis h, then is H the set of all hypotheses, with H included in the powerset
of R, where each h is treated as a set of rules. Applying the refinement operators
to a rule r in R results in R′ = R \ {r} ∪ {ρ1(r), . . . , ρn(r)}, thus changing H to
H ′ = H \ {h|r ∈ h} ∪ {hi|hi = h \ {r} ∪ ρi(r)} for i = 1 . . . n.

This makes the implementation of our search approach lack elegance when
compared to breadth-first search combinators proposed by Spivey (18; 19), where
the space for breadth-first search can be defined as an infinite list. Katayama
for example efficiently uses this approach (20; 7), because he is able to define his
search space intensionally a priori.

Following the current implementation, this is not applicable for us. Hypotheses
represent partial or unfinished programs, so our search space changes over time,
because refinement operators may but need not finish a hypotheses. Rather it
is refined to multiple, also unfinished, successor hypotheses. Thus, refining one
rule may affect multiple hypotheses and change the ordering in the search space
after each step.

Therefore we need to pull the whole search space explicitly through all our
computations. Again, we use a stateful transformer on top of our C monad.

data Igor = Igor { iodata :: IOData

, searchSpace :: HSpace}

type I a = StateT Igor C a
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modifyHS :: (HSpace -> HSpace) -> IM()

modifyHS f = modify (\ igor@(Igor _ sp _) ->

igor{searchSpace = f sp})

modifyIO ::( IOData -> IOData) -> IM()

modifyIO f = modify (\ igor@(Igor io _ _) ->

igor{iodata = f io})

The data structure Igor bundles the data structures IOData, known from sec-
tion 3.4 to manage the various IO examples and HSpace, a priority queue on
hypotheses w.r.t. to their heuristical rating. HSpace also supports efficient ac-
cess to hypotheses by their rules to facilitate updating hypotheses after one
refinement step. Igor serves as state for the monad I. The functions modifyHS
and modifyIO allow us to modify HSpace and IOData inside I.

The main loop returns a list of equivalent programs inside I, w.r.t. the given
heuristic, explaining the IO examples of the target function. Each program con-
sists of a list of declarations Decl where each Decl defines one function by at
least one Rule. First it fetches the currently best hypotheses, extracts the call
dependencies and the unfinished rules from this hypothesis. If there are no open
rules in all candidate hypotheses, the loop is exited and the candidate hypothe-
ses are returned as result. Otherwise one rule is chosen for refinement, refined
using the call dependencies and thus modifying the search space. After all, the
loop is entered again.

type Prog = [Decl]

enterLoop :: I [Prog]

enterLoop = do

chs <- currentBestHypos

(deps ,crs) <- chooseOneHypo chs

if (null crs) then stopWith chs

else chooseOneRule crs >>= refine deps >> enterLoop

Finally, refine computes all refinements, introduced in Section 2, of the given
unfinished rule with refineRule and propagates the result, a set of all possible
refinements, to the whole search space and updates all affected hypotheses with
propagate.

refine :: CallDep -> CovrRule -> I ()

refine cd cr =

refineRule cd cr >>= (modifyHS .) . propagate $ cr

refineRule :: CallDep -> CovrRule -> IM [( CovrRules ,[ Call ])]

refineRule cd cr = do

parts <- partition cr

cllfs <- callFunction cd cr

subfs <- inventSubfunction cr

return $ parts ++ subfs ++ cllfs
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4 Empirical Results

To test our new implementation (in the following named as Igor 2H) against the
old we have chosen some usual example problems on lists. As usually, they incor-
porate different recursions patterns, simple linear as in last or mutual recursive
as in odd/even. Most of the problems suggest for inventing auxiliary function as
e.g. lasts, repeatlst, sort, reverse, oddpos but only reverse explicitly needs to it
to be solvable.

Most of the problems have the usual semantics on lists and can be found in
a standard library of a functional Language. Table 1 shows a short explanation
of each of them nevertheless.

Table 1. Problem descriptions

add is addition on Peano integers,
append appends two lists,
drop drops the first n elements of a list,
evenpos are all elements in a list which index is even,
init are all elements but the last of a list,
last is the last element in a list,
last maps last over a list of lists,
length is the length of a list as Peano integer,
odd/even defines odd and even mutually recursive on Peano integers,
oddpos are all elements in a list which index is odd,
repeatfst overwrites all elements in a list with the first,
repeatlst overwrites all elements in a list with the last,
reverse reverses a list,
shiftl shifts all elements in a list one position to the left,
shiftr shifts all elements in a list one position to the right,
sort sorts a list of Peano integers using insertion into a sorted list,
swap changes the position of two consecutive elements in a list,
switch changes the position of the first and the last element,
take takes the first n elements from a list, and
weave merges two lists into one by alternating their elements.

The tests were run on a laptop with a 1.6Ghz Intel Pentium processor with
2GB RAM using Ubuntu 8.10. Igor2.2 with Maude 2.4 and version 0.5.9.4 of
the Haskell implementation have been used. All programs as well as the used
specification and a batch file for the Haskell implementation can be down-
loaded from our webpage3.

Keeping in mind that Maude is an interpreted language and Igor 2H is
compiled, it is not surprising that the new implementation is faster. A speedup
by the factor of 10 or more in most of the cases is more than expected, though.
Table 2 shows all runtimes and the approximte ratio of old to new.
3 http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html
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Table 2. Runtimes on different problems in seconds

Igor 2 Igor 2H
Igor 2

Igor 2H

�

Igor 2 Igor 2H
Igor 2

Igor 2H

�

add 0.236 0.076 3 repeatfst 0.052 0.004 13
append 46.338 0.080 579 repeatlst 0.100 0.004 25
drop 0.084 0.004 21 reverse 0.617 0.032 19
evenpos 0.056 0.004 14 shiftl 0.084 0.008 11
init 0.024 0.004 6 shiftr 0.308 0.020 15
last 0.024 0.001 24 sort 0.148 0.012 12
lasts 6.744 0.020 337 swap 0.108 0.008 14
length 0.028 0.001 28 switch 2.536 0.036 70
odd/even 0.080 0.004 20 take 1.380 0.012 115
oddpos 18.617 0.048 388 weave 0.348 0.036 13
� rounded to nearest proper fraction

5 Conclusion

We introduced the new program design of our system Igor 2, which has been
ported from Maude to Haskell. We described how, for our purpose neces-
sary, features of the homoiconic language Maude can be simulated in Haskell

using a stateful monad transformer. Although we can not model Maude’s full
reflexive capabilities, we can simulate all functionality necessary in our use case.
With our new implementation we paved the way to use higher-order context
during our synthesis and extract information from types and their classes usable
as background knowledge. Keeping our new implementation as close as possible
to our old, it was possible to keep all features of our system as e.g. termination
by construction of both synthesised programs and Igor 2-algorithm, minimal-
ity of generalisation, using arbitrary user-defined data types and background
knowledge, and others.

For the future we plan to utilise universal properties of higher-order func-
tions such as fold, map and filter to introduce certain recursion schemes as
programming patterns when applicable. In this context we will make use of type
information which is now accessible. Furthermore, it should be promising to re-
consider the current algorithm to make use of lazy data structures to better take
advantage of the benefits of lazy evaluation. Memoization could also be helpful
to avoid propagating the change of a rule over the whole search space.
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