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Abstract. Inductive programming (IP)—the use of inductive reasoning
methods for programming, algorithm design, and software development—
is a currently emerging research field. A major subfield is inductive pro-
gram synthesis, the (semi-)automatic construction of programs from ex-
emplary behavior. Inductive program synthesis is not a unified research
field until today but scattered over several different established research
fields such as machine learning, inductive logic programming, genetic
programming, and functional programming. This impedes an exchange
of theory and techniques and, as a consequence, a progress of inductive
programming. In this paper we survey theoretical results and methods
of inductive program synthesis that have been developed in different re-
search fields until today.

1 Introduction

Inductive programming (IP) is an emerging field, comprising research on induc-
tive reasoning theory and methods for computer programming, algorithm design,
and software development. In this sense, albeit with different accentuation, the
term has been used by Partridge [1], by Flener and Partridge [2], within the
workshops on “Approaches and Applications of Inductive Programming”, and
within the ICML’06 tutorial on “Automatic Inductive Programming”.

IP has intersections with machine learning, artificial intelligence, program-
ming, software engineering, and algorithms research. Nevertheless, it goes be-
yond each of these fields in one or the other aspect and therefore is a research
field in its own right, intrinsically.

It goes beyond classical machine learning in that the focus lies on learning
general programs including loops and recursion, instead of merely (mostly non-
recursive) models or classifiers in restricted representational frameworks, such
as decision trees or neural networks.

In classical software engineering and algorithm design, a deductive—reasoning
from the general to the specific—view of software development is predominant.
One aspires a general problem description as starting point from which a program
or algorithm is developed as a particular solution. Methods based on deductive
reasoning exist to partly automatize the programming and verification process—
such as automatic code generation from UML diagrams, (deductive) program
synthesis to generate algorithmic parts, program transformation and refactoring
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to optimize programs, and theorem proving, model checking, and static analysis
to verify programs. To emphasize this common deductive foundation one might
speak of deductive programming to subsume established software development
methods.

Inductive programming, on the other side, aims at developing methods based
on inductive—from the specific to the general—reasoning (not to be confused
with mathematical or structural induction) to assist in programming, algorithm
design, and the development of software. Starting point for IP methods is specific
data of a problem—use cases, test cases, desirable (and undesirable) behavior
of a software, input/output examples (I/O-examples) of a function or a module
interface, computation traces of a program for particular inputs and so forth.
Such descriptions of a problem are known to be incomplete. Inductive meth-
ods produce a generalization of such an incomplete specification by identifying
general patterns in the data. The result might be again a—more complete—
specification or an actual implementation of a function, a module, or (other
parts of) a program.

Inductive reasoning is per se unsound. Inductively obtained conclusions are
hypotheses and incapable of proof regarding their premises. This is, perhaps,
the most severe objection against IP. What is the use of methods whose results
cannot be proven correct and possibly deviate from what was intended? However,
if the data at hand is representative then it is likely that identified patterns
actually hold in the general case and that, indeed, the induced result meets the
general problem. On the other side, all software development necessarily makes a
transition from a first informal and often incomplete problem description by the
user or customer to a complete and ideally formal specification. This transition
is (i) also incapable of formal proof and (ii) possibly based on—non-systematic,
inexplicit—generalization. Also, IP should not be understood as a replacement
for deductive methods but as an addition. IP may be used in different ways: to
generate candidate solutions subject to further inspection, in combination with
deductive methods to tackle a problem from the general description as well as
from concrete (counter-)instances, to systematize occurring generalizations, or
to check the representativeness of example cases provided by the user. Some
problems, especially many problems in the field of artificial intelligence, elude
a complete specification at all, e.g., face recognition. This factum is known as
knowledge-acquisition bottleneck. Overall, there is no reason why systematically
incorporating existing or easily formulated data by inductive methods should
not improve efficiency and even validity of software development.

One important aspect of IP is the inductive synthesis of actual, executable
programs including recursion or loops. Except to professional software develop-
ment, possible application fields of the (semi-)automatic induction of programs
from exemplary behavior are end-user programming and learning of recursive
policies [3] in intelligent agents. Research on inductive program synthesis (IPS)
started in the seventies. However, it has, since then, always been only a niche
in several different research fields and communities such as artificial intelligence,
machine learning, inductive logic programming (ILP), genetic programming, and
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functional programming. Until today, there is no uniform body of theory and
methods. This fragmentation over different communities impedes exchange of
results and may lead to redundancies. The problem is all the more profound as
only few people and groups at all are working on IPS worldwide.

This paper surveys theoretical results and IPS methods that have been de-
veloped in different research fields until today. We grouped the work into three
blocks: First the classical, analytic data-driven induction of Lisp programs as
invented by Summers [4] and its generalizations (Section 3), second ILP (Sec-
tion 4), and third several generate-and-test based approaches to the induction
of functional programs (Section 5). In Section 6 we state some conclusions and
ideas of further research. As general preliminaries, we informally introduce some
common IPS concepts in the following section.

This survey is quite comprehensive, yet not complete and covers functional
generate-and-test methods less detailed than the other two areas. This is due to
limited space in combination with the author’s areas of expertise and shall not
be interpreted as a measure of quality. We hope that it will be a useful resource
for all people interested in IP.

2 Basic Inductive Programming Concepts

IPS aims at constructing a computer program or algorithm from a (known-
to-be-)incomplete specification of a function to be implemented, called target
function. Incomplete means, that the target function is not specified on its whole
domain but only on (small) parts of it. Typically, an incomplete specification
consists of a subset of the graph of the function: input/output examples (I/O-
examples). Variables may be allowed in I/O-examples and also more expressive
formalisms have been used to specify the target function.

An induced program contains function primitives, predefined functions known
to the IPS system. Primitives may be fixed within the IPS system or dynamically
be given as an extra, problem-specific, input. Dynamically provided primitives
are called background knowledge.

Example 1. Suppose the following I/O-examples on lists (whatever the list ele-
ments A, x, y, z, 1, 2, 3, 5 stand for; constants, variables, or compound objects),
are provided: (A) �→ ( ), (x, y, z) �→ (x, y), (3, 5, 2, 1) �→ (3, 5, 2). Given the com-
mon list constructors/destructors nil, cons, head, tail, the predicate empty to
test for the empty list, and the if-then-else-conditional as primitives, an IPS
system might return the following implementation of the Init -function returning
the input list without its last element:

F(x) = if empty(tail(x)) then nil
else cons(head(x), F(tail(x))) .

Given a particular set of primitives, some target function may not be repre-
sentable by only one recursive function definition such that a non-specified re-
cursive subfunction needs to be introduced; this is called (necessary) predicate
invention in ILP.
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IPS is commonly regarded as a search problem. In general, the problem space
consists of the representable programs as nodes and instances of the operators
of the IPS system to transform one program into another as arcs. Due to under-
specification in IP, typically infinitely many (semantically) different programs
meet the specification. Hence, one needs criteria to choose between them. Such
criteria are called inductive bias [5]. Two kinds of inductive bias exist: If an IPS
system can only generate a certain proper subset of all (computable) functions
of some domain, either because its language is restricted or because its operators
are not able to reach each program, this constitutes a restriction bias. The order
in which the problem space is explored and hence the ordering of solutions is the
preference bias ; it can be modelled as probability distribution over the program
space.

3 The Analytical Functional Approach

A first systematic attempt to IPS was made by Summers [4]. He noticed that
under particular restrictions regarding allowed primitives, program schema, and
choice of I/O-examples, a recursive Lisp program can be computed from I/O-
examples without search in program space. His insights originated some further
research.

3.1 Summers’ Pioneering Work

Summers’ approach to induce recursive Lisp functions from I/O-examples in-
cludes two steps: First, a so-called program fragment, an expression of one vari-
able and the allowed primitives, is derived for each I/O-pair such that applied
to the input, evaluates to the specified output. Furthermore, predicates are
derived to distinguish between example inputs. Integrated into a McCarthy
conditional, these predicate/fragment pairs build a non-recursive program com-
puting the I/O-examples and is considered as a first approximation to the
target function. In a second step, recurrent relations between predicates and
fragments each are identified and a recursive program generalizing them is
derived.

Example inputs and outputs are S-expressions, the fundamental data struc-
ture of the Lisp language [6]. We define the set of subexpressions of an S-
expression to consist of the S-expression itself and, if it is non-atomic, of all
subexpressions of both its components.

The programs constructed by Summers’ technique use the Lisp primitives
cons , car , cdr , nil , atom, and T, the last denoting the truth value true. Par-
ticularly, no other predicates than atom and T (e.g., eq for testing equality
of S-expressions), and no atoms except for nil are used. This choice of primi-
tives is not arbitrary but crucial for Summers’ methodology of deriving programs
from examples without search. The McCarthy conditional and recursion are used
as control structure. Allowing atom and T as only predicates and nil as only
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atom in outputs means that the atoms in the I/O-examples, except for nil , are
actually considered as variables. Renaming them does not change the meaning.
This implies that any semantic information must be expressed by the structure
of the S-expression.

1. Step: Initial Non-recursive Approximation. Given a set of k I/O-ex-
amples, {〈i1, o1〉, . . . , 〈ik, ok〉}, a program fragment fj(x), j ∈ {1, . . . , k}, com-
posed of cons , car , and cdr is derived for each I/O-pair, which evaluates to the
output when applied to the input: fj(ij) = oj .

S-expressions are uniquely constructed by cons and destructed by car and
cdr . We call car -cdr compositions basic functions (cp. [7]). Together with the
following two conditions, this allows for determining unique program fragments.
(i) Each atom may occur only once in each input. (ii) Each atom, except for nil ,
occurring in an output must also occur in the corresponding input. Due to the
first condition, each subexpression occurs exactly once in an S-expression such
that subexpressions are denoted by unique basic functions.

Deriving a program fragment works as follows: All subexpressions of an input,
together with their unique basic functions, are enumerated. Then the output is
rewritten by composing the basic functions from the input subexpressions with
cons and nil .

Example 2. Consider the I/O-pair ((a . b) . (c . d)) �→ ((d . c) . (a . b)). The in-
put contains the following subexpressions, paired with the corresponding unique
basic functions:

〈((a . b) . (c . d)), I 〉 , 〈(a . b), car 〉 , 〈(c . d), cdr 〉 ,
〈a, caar〉 , 〈b, cdar〉 , 〈c, cadr 〉 , 〈d, cddr 〉 .

Since the example output is neither a subexpression of the input nor nil , the
program fragment becomes a cons of the fragments for the car - and the cdr -
component, respectively, of the output. The car -part, (d . c), again becomes a
cons , namely of the basic functions for d: cddr , and c: cadr . The cdr -part, (a . b),
is a subexpression of the input, its basic function is car . With variable x denoting
the input, the fragment for this I/O-example is thus:

cons(cons(cddr (x), cadr (x)), car (x))

Next, predicates pj(x), j = 1, . . . , k must be determined. In order to get the cor-
rect program fragment fj be evaluated for each input ij, all predicates pj′ (ij), 1 ≤
j′ < j (positioned before pj in the conditional) must evaluate to false and pj(ij)
to true. Predicates fulfilling this condition exist if the example inputs form a
chain.

We do not describe the algorithm here. Both algorithms, for computing frag-
ments and predicates, can be found in [7]. Figure 1 shows an example for the
first step.
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I/O-examples:

(a) �→ nil ,

(a, b) �→ (a),

(a, b, c) �→ (a, b),

(a, b, c, d) �→ (a, b, c),

(a, b, c, d, e) �→ (a, b, c, d) .

First approximation:

F (x) = (atom(cdr(x)) → nil

atom(cddr(x)) → cons(car(x),nil)

atom(cdddr(x)) → cons(car(x), cons(cadr(x),nil))

atom(cddddr(x)) → cons(car(x), cons(cadr(x), cons(caddr(x),nil)))

T → cons(car(x), cons(cadr(x), cons(caddr(x),

cons(cadddr(x),nil)))))

Fig. 1. I/O-examples and the corresponding first approximation

2. Step: Recurrence Relations. The basic idea in Summers’ generalization
method is this: The fragments are assumed to be the actual computations car-
ried out by a recursive program for the intended function. Hence fragments of
greater inputs must comprise fragments of lesser inputs as subterms, with a
suitable substitution of the variable x and in a recurrent form along the set of
fragments. The same holds analogously for the predicates. Summers calls this
relation between fragments and predicates differences.

As a preliminary for the following, we need to define the concept of a context.
A (one-hole) context C[ ] is a term including exactly one occurrence of the dis-
tinguished symbol �. C[s] denotes the result of replacing the � by the (sub)term
s in C[ ].

Definition 1. A difference exists between two terms (fragments or predicates)
t, t′ iff t′ = C[tσ] for some context C[ ] and substitution σ.

If we have k + 1 I/O-examples, we only consider the first k fragment/predicate
pairs because the last predicate is always ’T ’, such that no sensible difference
can be derived for it.

Example 3. The following differences, written as recurrence relations (2 ≤ i ≤
3), can be identified in the first k = 4 fragments/predicates of the program of
Figure 1.

p1(x) = atom(cdr (x)) f1(x) = nil
p2(x) = atom(cddr (x)) f2(x) = cons(car (x),nil )

pi+1(x) = pi(cdr(x)) fi+1(x) = cons(car (x), fi(cdr (x)))
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In the general case, we have (for k fragments/predicates):

j − 1 “constant” fragments (as derived from the examples): f1, . . . , fj−1,

further n constant base cases: fj , . . . , fj+n−1,

finally, remaining k − (j + n − 1) cases recurring to

previous cases: fi+n = C[fiσ1] for i = j, . . . , k − n ;
analogously for predicates: p1, . . . , pj−1, pj, . . . , pj+n−1, pi+n = pi(σ2) .

(1)

Index j denotes the first predicate/fragment pair which recurs in some following
predicate/fragment pair (the first base case). The precedent j − 1 predicate/
fragment pairs do not recur. n is the interval of the recurrence. For Example 3
we have j = 2 and n = 1.

Inductive Inference. If k− j ≥ 2n then we inductively infer that the recurrence
relations hold for all i ≥ j.

In Example 3 we have k− j = 2 ≥ 2 = 2n and hence induce that the relations
hold for all i ≥ 2.

The generalized recurrence relations may be used to compute new approxima-
tions of the assumed target function. The mth approximating function, m ≥ j,
is defined as

Fm(x) = (p1(x)→ f1(x), . . . , pm(x)→ fm(x), T → ω)

where the pi, fi with j < i ≤ m are defined in terms of the generalized recurrence
relations and where ω means undefined. Consider the following complete partial
order over partial functions, which is well known from denotational semantics:

F (x) ≤F G(x) iff F (x) = G(x) for all x ∈ Dom(F ) .

Regarding this order, the set of approximating functions builds a chain. The
assumed target function F is defined as the supremum of this chain.

Now the hypothesized target function is defined, in terms of recurrence rela-
tions. In his synthesis theorem and its corollaries, Summers shows how a function
defined this way can be expressed by a recursive program.1

Theorem 1 ([4]). If F is defined in terms of recurrence relations as in (1) for
j ≤ i ∈ N then the following recursive program is identical to F:

F (x) = (p1(x)→ f1(x), . . . , pj−1(x)→ fj−1(x),
T → G(x))

G(x) = (pj(x)→ fj(x), . . . , pj+n−1(x)→ fj+n−1(x),
T → C[G(σ(x))]) .

1 This works, in a sense, reverse to interpreting a recursively expressed function by
the partial function given as the fixpoint of the functional of the recursive definition.
In the latter case we have a recursive program and want to have the particular
partial function computed by it—here we have a partial function and want to have
a recursive program computing it.
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Example 4. The recurrence relations from Example 3 with i ≥ 2 define the
function F to be the Init-function. According to the synthesis theorem, the
resulting program is:

F (x) = (atom(cdr(x))→ nil , T → G(x))
G(x) = (atom(cddr (x))→ cons(car(x),nil ),

T → cons(car(x), G(cdr (x)))) .

Introducing Additional Variables. It may happen that no recurrent differences
can be found between a chain of fragments and/or predicates. In this case, the
fragments/predicates may be generalized by replacing some common subterm
by an additional variable. In the generalized fragment/predicate chain recurrent
differences possibly exist.

3.2 Early Variants and Extensions

Two early extensions are described. A broader survey of these and other early
extensions can be found in [7].

BMWk—Extended Forms of Recurrences. In Summers’ approach, the con-
dition for deriving a recursive function from detected differences is that the dif-
ferences hold—starting from an initial index j and for a particular interval n—
recurrently along fragments and predicates with a constant context C[ ] and a con-
stant substitution σ for x. The BMWk

2 algorithm [8] generalizes these conditions
by allowing for contexts and substitutions that are different in each difference.
Then a found sequence of differences originates a sequence of contexts and substi-
tutions each. Both sequences are considered as fragments of new subfunctions. The
BMWk algorithm is then recursively applied to these new fragment sequences,
hence features the automatic introduction of (necessary) subfunctions.

Furthermore, Summers’ ad-hoc method to introduce additional variables is
systematized by computing least general generalization (lgg) [9] of successive
fragments.

Biermann et al—Pruning Enumerative Search Based on Recurrences
within Single Traces. Summers objective was to avoid search and to justify
the synthesis by an explicit inductive inference step and a subsequent proven-
to-be-correct program construction step. This could be achieved by a restricted
program schema and the requirement of a well chosen set of I/O-examples.

On the contrary, Biermann’s approach [10] is to employ traces (fragments) to
speed up an exhaustive enumeration of a well-defined program class, the so-called
regular Lisp programs. Biermann’s objectives regarding the synthesis were

1. convergence to the class of regular Lisp programs,
2. convergence on the basis of minimal input information,
3. robust behavior on different inputs.
2 This abbreviates Boyer-Moore-Wegbreit-Kodratoff.
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Particularly 2 and 3 are contradictory to the recurrence detection method—by 2
Biermann means that no synthesis method exists which is able to synthesize ev-
ery regular Lisp program from fewer examples and by 2 he means that examples
may be chosen randomly.

3.3 From Lisp to Term Rewriting Systems

At the beginning of Section 3.1 we stated the Lisp primitives as used in programs
induced by Summers’ method (as well as by BMWk and Biermann’s method).
This selection is crucial for the first step, the deterministic construction of first
approximations, yet not for the generalization step. Indeed, the latter is inde-
pendent from particular primitives, it rather relies on matching (sub)terms over
arbitrary first-order signatures. Two recent systems inspired by Summers’ recur-
rence detection method use term rewriting systems over first-order signatures to
represent programs. Special types of TRSs can be regarded as (idealized) func-
tional programs.

A term rewriting system (TRS) is a set of directed equations or (rewrite)
rules. A rule is a pair of first-order terms 〈l, r〉, written l → r. The term l is
called left-hand side (lhs), r is called right-hand side (rhs) of the rule.

We get an instance of a rule by applying a substitution σ to it: lσ → rσ. The
instantiated lhs lσ is called redex (reducible expression). Contracting a redex
means replacing it by its rhs. A rewrite step consists of contracting a redex
within an arbitrary context: C[lσ]→ C[rσ]. The one-step rewrite relation → of
a rule is defined by the set of its rewrite steps. The one-step rewrite relation →R

of a TRS R is the union of the one-step rewrite relations of its single rules. The
rewrite relation of a TRS R, ∗→R, is the reflexive transitive closure of →R.

Igor1—Inducing Recursive Program Schemes. The system Igor1 [11]
induces recursive program schemes (RPSs). An RPS is a special form of TRS:
The signature is divided into two disjoint subsets F and G, called unknown and
basic functions, respectively; rules have the form F (x1, . . . , xn)→ t where F ∈ F
and the xi are variables, and there is exactly one rule for each F ∈ F .

Igor1’s program schema is more general than Summers’ in that recursive
subfunctions are found automatically with the restriction that (recursive) calls
of defined functions may not be nested in the rhss of the equations. Furthermore,
additional parameters are introduced systematically.

(Mutually) recursive RPSs do not terminate. Their standard interpretation is
the infinite term defined as the limit lim

n→∞,F (x)
n→t

t where F denotes the main
rule of the RPS. One gets finite approximations by replacing infinite subterms
by the special symbol Ω, meaning undefined. Certainly, such an infinite tree and
its approximations contain recurrent patterns because they are generated by re-
peatedly replacing instances of lhss of the rules by instances of rhss. Igor1 takes
a finite approximation of some (hypothetical) infinite tree as input, discovers the
recurrent patterns in it, and builds, based on these recurrences, an RPS R such
that the input is a finite approximation of the infinite tree of R.
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Example 5. For a simple example without subfunctions (the Init function again),
consider the finite approximation of some unknown infinite term:

if (atom(cdr ( x )),nil ,
cons(car ( x ),

if (atom(cdr ( cdr (x) )),nil ,
cons(car ( cdr (x) ),

if (atom(cdr ( cdr (cdr(x)) )),nil ,
cons(car ( cdr (cdr(x)) ),

Ω)))))) .

At the path from the root to Ω, where the latter denotes the unknown infi-
nite subterm of the infinite target term and hence, which has been generated
by an unknown recursive RPS, we find a recurring sequence of if -cons pairs.
This leads to the hypothesis that a replacement of the lhs of a recursive rule by
its rhs has taken place at the if -positions. The term is divided at these posi-
tions leading to three segments (assume, the break-positions are replaced by Ω).
An approximation of the assumed rhs is computed as the lgg of the segments:
if (atom(cdr (x)),nil , cons(car(x), Ω)).

The Ω denotes the still unknown recursive call. The non-equal parts of the
segments, which are replaced by the variable x in the lgg, are highlighted by
extra horizontal space in the term. These parts must have been generated by the
substitution {x ← cdr(x)} in the recursive call. Denoting the induced function
by F , it is now correctly defined as

F (x)→ if (atom(cdr (x)),nil , cons(car (x), F (cdr (x)))) .

Different methods to construct a finite approximation as first synthesis step have
been proposed. In [11], an extension of Summers’ first step is described. Examples
need not be linearly ordered and nested if-then-else-conditionals are used
instead of the McCarthy conditional. In [3], universal planning is proposed as
first step.

3.4 Igor2—Combining Search and Analytical Techniques

All methods based on Summers’ seminal work described so far suffer from strong
restrictions regarding their general program schemas, the commitment to a small
fixed set of primitives, and, at least the early methods, to the requirement of
linearly ordered I/O-examples.

The system Igor2 [12] aims to overcome these restrictions, but not at the
price of falling back to generate-and-test search (cp. Section 5). Igor2 conducts
a search in program space, but the transformation operators are data-driven and
use techniques such as matching and least generalizations, similar to the methods
described so far. In contrast to generate-and-test search, only programs being
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correct with respect to the I/O-examples in a particular sense (but possibly
unfinished) are generated. This narrows the search tree and makes testing of
generated programs unnecessary.

Programs (as well as I/O-examples and background knowledge) are repre-
sented as constructor (term rewriting) systems (CSs). CSs can be regarded as
an extension of RPSs: The function sets F and G are called defined functions
and constructors, respectively. The arguments of a defined function symbol in
a lhs need not be variables but may be terms composed of constructors and
variables and there may be several rules for one defined function. This extension
corresponds to the concept of pattern matching in functional programming. One
consequence of the CS representation is that I/O-examples themselves already
constitute “programs”, CSs. Hence, rewriting outputs into fragments to get a
first approximation (Section 3.1) is not necessary anymore.

Igor2 is able to construct complex recursive CSs containing several base-
and (mutually) recursive rules, automatically identified and introduced recursive
subfunctions, and complex compositions of function calls. Several interdependent
functions can be induced in one run. In addition to I/O-examples, background
knowledge may be provided.

3.5 Discussion

Summers’ important insights were first, how the algebraic properties of data-
structures can be exploited to construct program fragments and predicates with-
out search and second, that fragments (and predicates) for different I/O-pairs
belonging to one recursively defined function share recurrent patterns that can
be used to identify the recursive definition. Obviously, it is necessary for recur-
rence detection that I/O-examples are not randomly chosen but that they consist
of the first k ∈ N examples regarding the underlying order on S-expressions, i.e.,
that they are complete up to some level.

If the general schema of inducible functions becomes more complex, e.g., if
subfunctions can be found automatically, and/or if background knowledge is
allowed, then search is needed. Igor2 shows that Summers’ ideas for general-
ization can be integrated into search operators.

Search is also needed if the goal is to induce programs based on minimal
sets of randomly chosen examples. In this case, the recurrence detection method
cannot be applied. Biermann’s method shows that it is possible for particular
program classes to use fragments as generated in Summers’ first step to constrain
an exhaustive search in program space.

4 Inductive Logic Programming

Inductive Logic Programming (ILP) [13,14] is a branch of machine learning [5]—
intensional concept descriptions are learned from (counter-)examples, called pos-
itive and negative examples. The specificity of ILP is its basis in computa-
tional logic: First-order clausal logic is used as uniform language for hypotheses,
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examples, and background knowledge, semantics of ILP is based on entailment,
and inductive learning techniques are derived by inverting deduction.

Horn clause logic together with resolution constitutes the (Turing-complete)
programming language Prolog. Program synthesis is therefore principally
within the scope of ILP and has been regarded as one application field of ILP [13].
One of the first ILP systems, MIS [15], is an automatic programming/debugging
system. Today, ILP is concerned with (relational) data-mining and knowledge
discovery and program synthesis does not play a role anymore.

4.1 Preliminaries

An atom is a predicate symbol applied to arguments, a literal is an atom or
negated atom. A clause is a (possible empty) disjunction of literals, a Horn clause
is a clause with at most one positive literal, a definite clause is a clause with
exactly one positive literal. A definite program is a finite set of definite clauses.
A definite clause C consisting of the positive literal A and the negative literals
¬B1, . . . ,¬Bn is equivalent to B1 ∧ . . . ∧Bn → A, written A← B1, . . . , Bn.

4.2 Overview

In the definite setting, hypotheses and background knowledge are definite pro-
grams, examples are ground atoms. The following two definitions state the ILP
problem with respect to the so-called normal semantics.3

Definition 2. Let Π be a definite program and E+, E− be positive and negative
examples. Π is

complete with respect to E+ iff Π |= E+,
consistent with respect to E− iff Π �|= e for every e ∈ E−,
correct with respect to E+ and E− iff it is complete with respect to E+ and

consistent with respect to E−.

Definition 3. Given

– a set of possible hypotheses (definite programs) H,
– positive and negative examples E+, E−,
– consistent background knowledge B (i.e., B �|= e for every e ∈ E−) such that

B �|= E+,

find a hypothesis H ∈ H such that H ∪B is correct with respect to E+ and E−.

Entailment (|=) is undecidable in general and for Horn clauses, definite programs,
and between definite programs and single atoms in particular. Thus, in practice,
different decidable (and preferably also efficiently computable) relations, which

3 There is also a non-monotonic setting in ILP where hypotheses need not entail
positive examples but only state true properties. This is useful for data mining or
knowledge discovery but not for program synthesis, so we do not consider it here.
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are sound but more or less incomplete, are used. We say that a hypothesis
covers an example if it can be proven true from the background knowledge and
the hypothesis. That is, a hypothesis is regarded correct if it, together with
the background knowledge, covers all positive and no negative examples. Two
commonly used notions are:

Extensional coverage. Given a clause C = A ← B1, . . . , Bn, a finite set of
ground atoms B as background knowledge, positive examples E+, and an
example e, C extensionally covers e iff there exists a substitution θ such that
Aθ = e and {B1, . . . , Bn}θ ⊆ B ∪ E+.

Intensional coverage. Given a hypothesis H , background knowledge B, and
an example e, H ∪ B intensionally covers e iff e can be proven true from
H∪B by applying some terminating theorem proving technique, e.g., depth-
bounded SLD-resolution.

Example 6. As an example for extensional coverage, suppose B = ∅ and E+ =
{ Init([c], [ ]), Init([b, c], [b]), Init([a, b, c], [a, b]) }. The recursive clause
Init([X |Xs ], [X |Ys]) ← Init [Xs ,Ys] extensionally covers the positive example
Init([b, c], [b]) with θ = {X ← b,Xs ← [c],Ys ← [ ]}.
Both extensional and intensional coverage are sound. Extensional coverage is
more efficient but less complete. As an example for the latter, suppose the posi-
tive example Init([c], [ ]) is missing in E+ in Example 6. Then the stated recur-
sive clause together with the base clause Init([X ], [ ]) still intensionally covers
e = Init([b, c], [b]) yet the recursive clause does not extensionally cover e any-
more. Obviously, extensional coverage requires that examples (and background
knowledge) are complete up to some complexity (cp Section 3.5). Another prob-
lem with extensional coverage is that if two clauses each do not cover a negative
example, both together possibly do.

Extensional and intensional coverage are closely related to the general ILP
algorithm (Algorithm 1) and the covering algorithm 2 as well as to the gen-
erality models θ-subsumption and entailment as described below (Section 4.3),
respectively.

ILP is considered as a search problem. Typically, the search operators to
compute new candidate programs are based on the dual notions of generalization
and specialization of programs or clauses.

Definition 4. A program Π is more general than a program Φ iff Π |= Φ. Φ is
said to be more specific than Π.

This structure of the program space provides a way for pruning. If a program is
not consistent then all generalizations are also not consistent and therefore need
not be considered. This dually holds for non-completeness and specializations. Al-
gorithm 1 shows a generic ILP algorithm. Most ILP systems are instances of it.

A common instance is the covering algorithm (Algorithm 2). The individual
clauses of a program are generated independently one after the other. Hence, the
problem space is not the program space (sets of clauses) but the clause space (sin-
gle clauses). This leads to a more efficient search.
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Algorithm 1. A generic ILP algorithm.

Input: B, E+, E−

Output: A definite program H such that H ∪ B is correct with respect to E+

and E−

Start with some initial (possibly empty) hypothesis H
repeat

if H ∪ B is not consistent then specialize H
if H ∪ B is not complete then generalize H

until H ∪ B is correct with respect to E+ and E−

return H

Algorithm 2. The covering (typically interpreted extensionally)
algorithm.

Input and Output as in Algorithm 1
Start with the empty hypothesis H = ∅
repeat

Add a clause C not covering any e ∈ E− to H
Remove all e ∈ E+ covered by C from E+

until E+ = ∅
return H

Entailment (|=) as well as θ-subsumption (Section 4.3) are quasi-orders on
sets of definite programs and clauses, respectively. We associate “more general”
with “greater”. The operators carrying out specialization and generalization are
called refinement operators. They map clauses to sets of (refined) clauses or
programs to sets of (refined) programs. Most ILP systems explore the problem
space mainly in one direction, either from general to specific (top-down) or the
other way round (bottom-up). The three well-known systems Foil [16] (top-
down), Golem [17] (bottom-up), and Progol [18] (mixed) are instantiations
of the covering algorithm.

Example 7. For an example of the covering algorithm, let B and E+ be as in
Example 6 and E− all remaining instantiations for the “inputs” [c], [b, c], [a, b, c],
e.g., Init([b, c], [c]). Let us assume that a (base-)clause Init([X ], [ ]) is already
inferred and added and hence, the covered example Init([c], [ ]) is deleted from
E+. Assume, our instantiation of the covering algorithm is a top-down algo-
rithm. This means, each clause is found by starting with a (too) general clause
and successively specializing it until no negative examples are covered anymore.
Let us start with the clause Init([X |Xs],Ys)←. It covers all remaining positive
but also all corresponding negative examples; it is too general. Applying the sub-
stitution {Ys ← [X |Ys]} specializes it to Init([X |Xs], [X |Ys])←. This excludes
some negative examples (e.g., Init([b, c], [c])). Adding the literal Init(Xs ,Ys) to
the body again specializes the clause to Init([X |Xs ], [X |Ys])← Init(Xs,Ys). All
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remaining positive examples are still covered but no negative example is covered
anymore. Hence, the clause is added and the algorithm returns the two inferred
clauses as solution.

Both specializations were refinements under θ-subsumption (Section 4.3, “Re-
finement Operators”).

4.3 Generality Models and Refinement Operators

Instead of entailment (|=), θ-subsumption is often used in ILP as generality
model. It is incomplete with respect to |= but decidable, simple to implement,
and efficiently computable. If we have background knowledge B, then we are
not simply interested in whether a clause C is more general than a clause D
but in whether C together with B is more general than D (together with B).
This is captured by the notions of relative (to background knowledge) entailment
respectively θ-subsumption.

Refinement under (Relative) θ-subsumption

Definition 5. Let C and D be clauses and B a set of clauses.
C θ-subsumes D, written C � D, iff there exists a substitution θ such that

Cθ ⊆ D.
C θ-subsumes D relative to B, written C �B D, if B |= Cθ → D for a

substitution θ.
A Horn clause language quasi-ordered by θ-subsumption with an additional bot-
tom element is a lattice. This does not generally hold for relative subsumption.
Least upper bounds are called least general generalizations (lgg) [9]. Lggs and
greatest lower bounds are computable and hence may be used for generalization
and specialization, though they do not properly fit into our general notion of
refinement operators because they neither map single clauses to sets of clauses
nor single programs to sets of programs.

A useful restriction is to let background knowledge be a finite set of ground
literals. In this case, lggs exist under subsumption relative to B and can be
reduced to (non-relative) lggs. The bottom-up system Golem uses this scenario.

In general, (relative) θ-subsumption is sound but not complete. If C � D
(C �B D) then C |= D (C ∪B |= D) but not vice versa. For a counter-example
of completeness let C = P (f(X))← P (X) and D = P (f(f(X)))← P (X) then
C |= D4 but C �� D. As the example indicates, the incompleteness is due to
recursive rules and therefore especially critical for program synthesis.

Refinement Operators. A specialization operator refines a clause by

– applying a substitution for a single variable or
– adding one most general literal.

A generalization operator uses inverse operations.
Application of these operators is quite common in ILP, e.g., in the systems

MIS, Foil, Golem, and Progol.
4 D is simply the result of self-resolving C.
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Refinement under (Relative) Entailment. Due to the incompleteness of
θ-subsumption regarding recursive clauses, refinement under (relative) entail-
ment has been studied. Relative entailment is defined as follows:

Definition 6. Let C and D be clauses and B a finite set of clauses. Then C
entails D relative to B, denoted C |=B D, if {C} ∪B |= D.

Neither lggs nor greatest specializations exist in general for Horn clause lan-
guages ordered by (relative) entailment.

Refinement Operators. Roughly speaking, entailment is equivalent to resolution
plus θ-subsumption. This leads to specialization operators under (relative) en-
tailment. Objects of refinement under entailment are not single clauses but sets
of clauses, i.e., programs. A specialization operator under entailment refines a
definite program by

– Adding a resolvent of two clauses or
– adding the result of applying the θ-subsumption specialization operator to

a clause or
– deleting a clause.

4.4 Automatic Programming Systems

The three general-purpose systems Foil, Golem, and Progol are successful
in learning non-recursive concepts from large data sets, yet have problems to
learn recursive programs: Due to their use of the covering approach (extensional
coverage), they need complete example sets and background knowledge to in-
duce recursive programs. Since they (at least Foil and Golem) explore (i) only
the θ-subsumption lattice of clauses and (ii) do this greedily, correct clauses
may be passed. Finally, their objective functions in the search for clauses is to
cover as many as possible positive examples. Yet base clauses typically cover
only few examples such that these systems often fail to induce correct base
cases.

Hence ILP systems especially designed to learn recursive programs have been
developed. They address different issues: Handling of random examples, predi-
cate invention, usage of general programming knowledge, and usage of problem-
dependent knowledge of the user, which goes beyond examples. A comprehensive
survey of automatic programming ILP systems can be found in [19].

Inverting entailment by structural analysis. Several systems—Crustacean [20],
Clam [21], Tim [22], mri [23]—address the issue of inducing recursive programs
from random examples by inverting entailment based on structural analysis,
similar to Section 3, instead of searching in the θ-subsumption lattice. These
systems also have similar restrictions regarding the general schema of learnable
programs. However, some of them can use background knowledge; mri can find
more than one recursive clause.
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Top-down induction of recursive programs. Top-down systems can principally—
even if they explore the θ-subsumption clause-lattice only—generate arbitrary
(in particular all recursive) Horn clauses.5 Thus, if a top-down covering system
would use intensional instead of extensional coverage, it could principally induce
recursive programs from random examples. Certainly, this would require to find
clauses in a particular order—base clauses first, then recursive clauses, only de-
pending on base clauses and themselves, then recursive clauses, only depending
on base clauses, the previously generated recursive clauses, and themselves, and
so on. This excludes programs with mutually interdepending clauses. The sys-
tem Smart [24] is based on these ideas. It induces programs consisting of one
base clause and one recursive clause. Several techniques to sensibly prune the
search space allows for a more exhaustive search than the greedy search applied
by Foil, such that the incompleteness issue of θ-subsumption-based search is
weaken.

The system Filp [25] is a covering top-down system that induces functional
predicates only, i.e., predicates with distinguished input- and output parameters,
such that for each binding of the input parameters exactly one binding of the
output parameters exists. This makes negative examples unnecessary. Filp can
induce multiple interdependent predicates/functions where each may consist of
several base- and recursive clauses. Hence, intensional coverage is not assured
to work. Filp starts with a few randomly chosen examples and tries to use
intensional covering as far as possible. If, during the intensional proof of some
example, an instance of the input parameters of some predicate appears for which
an output is neither given by an example nor can be derived intensionally, then
Filp queries for this “missing” example and thereby completes the example set
as far as needed.

Using programming knowledge. Flener argued, in several papers, for the use of
program schemas that capture general program design knowledge like divide-
and-conquer, generate-and-test, global-search etc., and has implemented this in
several systems. He distinguishes between schema-based systems inducing pro-
grams of a system-inherent schema only and schema-guided systems, which take
schemas as dynamic, problem-dependent, additional input and thus are more
flexible. Flener’s Dialogs [26] system uses schemas and strong queries to re-
strict the search space and thereby is able to efficiently induce comparatively
complex programs including predicate invention.

Jorge and Brazdil have—besides for clause structure grammars defining a pro-
gram class and thus similar to schemas as dynamic language-bias—argued for so
called algorithm sketches. An algorithm sketch is problem-dependent algorithm
knowledge about the target function and provided by the user in addition to
examples. This idea is implemented in their SKIL and SKILit systems [27].

5 Hence, although θ-subsumption is incomplete with respect to entailment due to
recursive clauses, every clause, in particular the recursive clauses, can be generated
by refinement based on θ-subsumption—if one searches top-down starting from the
empty clause or some other clause general enough to θ-subsume the desired clauses.



Inductive Programming: A Survey of Program Synthesis Techniques 67

4.5 Discussion

Compared to the classical approaches in Section3 (except for Igor2), ILP has
broadened the class of inducible relations by allowing for background knowledge,
using particular search methods and other techniques (Section 4.4).

Shapiro [15] and Muggleton and De Raedt [13] argued for clausal logic as uni-
versal language in favor to other universal formalisms such as Turing machines
or Lisp. Their arguments are: (i) Syntax and semantics are closely and in a nat-
ural way related. Hence if a logic program makes errors, it is possible to identify
the erroneous clause. Furthermore, there are simple and efficient operations to
manipulate a logic program with predictable semantic effects (cp. Section 4.3).
Both is not possible for, say, Turing machines. (ii) It suffices to focus on the logic
of the program, control is left to the interpreter. In particular, logic programs
(and clauses) are sets of clauses (and literals), order does not matter.

The first argument carries over to other declarative formalisms such as equa-
tional logic, term rewriting, and functional logic programming (Flip [28] is an
IPS system in this formalism). The second argument also carries over to some
extent, declarative programming all in all shifts the focus off control and to
logic. Yet in this generality it only holds for non-recursive programs or ideal,
non-practical, interpreters. For the efficient interpretation of recursive programs
however, order of clauses in a program and order of literals in a clause mat-
ters. Hence we think that declarative, (clausal- and/or equational-)logic-based
formalisms are principally equally well suited for IPS.

Logic programs represent general relations. (Partial) functions are special
relations—their domains are distinguished into source and target (or: a func-
tional relation has input and output parameters) and they are single-valued
(each instantiation of the input parameters implies a unique instantiation of the
output parameters). Regarding functional- and logic programming, there is an-
other difference: Functional programs are typically typed, i.e., their domain is
partitioned and inputs and outputs of each function must belong to specified
subsets, whereas logic programs are typically untyped. Interestingly, all three
“restrictions” of functions compared to relations have been shown to be advan-
tageous from a learnable point of view in ILP. The general reason is that they
restrict the problem space such that search becomes more efficient and fewer ex-
amples are needed to describe the intended function. In particular, no negative
examples are needed since they are implicitly given by the positive ones.

ILP is built around the natural generality structure of the problem space.
Regarding functional relations, we observe an “oddity” of this structure. For
definite programs, “more general”, with respect to the minimal Herbrand model,
means “more atoms”. If the relation is a function, an additional ground atom
must have a different instantiation of the input parameters compared to all
other included atoms. Thus, “more general” in the case of definite programs
representing functions reduces to “greater domain”. In other words: All functions
with the same domain are incomparable with respect to generality. Since most
often one is interested in total functions, generality actually provides no structure
at all of the space of possible solutions.
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5 Functional Generate-and-Test Approaches

The functional IPS methods in this third block have in common that their search
is generate-and-test based. I/O-examples are not used as a means to construct
programs but only to test generated programs.

5.1 Genetic Programming

Genetic programming (GP) [29], like other forms of evolutionary algorithms is
inspired by biological evolution. GP systems maintain populations of candidate
solutions, get new ones by stochastical methods like reproduction, mutation, re-
combination/crossover, and selection, and thereby try to maximize fitness. Evo-
lutionary search can be useful when the problem space is too broad to conduct
an exhaustive search and simultaneously nothing or few is known about the fit-
ness landscape, i.e., when it is not possible to construct sensible heuristics. The
randomness of the search cares for a widespread exploration of the problem space
which is guided by the fitness measure. On the other side, this “chaotic” search
in a space with unknown properties makes it difficult to give any guaranties
regarding solutions and leads to only approximated solutions. A GP problem is
specified by fitness cases (e.g., example inputs of the target function), a fitness
function, and primitives to be used in evolved expressions. There are no prede-
fined goal criteria or preference biases in GP systems. The search is completely
guided by the fitness function that is to be maximized.

Data structures and recursion do not play a predominant role in GP. A typical
evolved program is an arithmetic expression or a propositional formula. Koza
and his colleagues [30] integrated recursion into GP. One of the major issues
is the handling of non-terminating programs. As a generate-and-test approach,
GP relies on testing evolved candidate programs against the given examples.
If non-termination may appear then a runtime limit is applied. This raises two
problems if non-terminating programs are frequently generated: (i) The difficulty
of assigning a fitness value to an aborted program and (ii) the runtime uselessly
consumed by evaluating non-terminating programs. Wong and Mun [31] deal
with this problem by a meta-learning approach to decrease the possibility of
evolving non-terminating programs.

Others try to avoid non-termination completely: In her system PolyGP [32],
Yu integrates implicit recursion through the use of user-provided higher-order
functions. Kahrs [33] evolves primitive recursive functions over the natural num-
bers. Binard and Felty [34] evolve programs in System F, a typed lambda calcu-
lus where only total recursive functions are expressible. The primitive recursive
functions are contained as proper subclass.

Hamel and Shen [35] have developed a method lying in the intersection of ILP,
GP and algebraic specification. They evolve (recursive) algebraic specifications,
i.e., equational theories over many-sorted signatures, using GP search methods.
Instead of providing a fitness function, a target theory is, as in ILP, specified
by positive and negative facts—ground equations in this case. Additionally, a
background theory may be provided. The fitness function to be maximized is
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derived from such a specification. Candidate theories satisfying more positive
facts, excluding more negative facts, and being of smaller syntactical complexity
are preferred.

5.2 ADATE

The ADATE system [36], to our knowledge the most powerful inductive pro-
gramming system regarding inducible programs, is an evolutionary system in
that it maintains a population of programs and performs a greedy search guided
by a fitness function. Yet unlike GP, it is especially designed to evolve recursive
programs and applies sophisticated program transformation operators, search
strategy, and program evaluation functions to this end.

Programs are represented in ADATE-ML, a subset of Standard ML. Pro-
grams are rated according to a user-provided output evaluation function, user
provided preference biases, and syntactical and computational complexity.

5.3 Systematic Enumeration of Programs

Two further recent methods, MagicHaskeller [37] and the software testing
system G∀ST [38] essentially systematically enumerate programs of a certain
class.

MagicHaskeller uses higher-order functions as background knowledge.
Katayama argues that by using higher-order functions, programs can be rep-
resented in a compact form and by using strong typing, the problem space is
narrowed such that a simple brute-force enumeration of programs could make
sense. He furthermore considers MagicHaskeller as a base-line which could be
used to evaluate the performance of more sophisticated methods. As a first result,
Katayama compares MagicHaskeller and PolyGP for the problems Nth,
Length, and Map, and states that PolyGP, in contrast to MagicHaskeller,
needs different higher-order functions for each of these problems, needs several
runs to find a solution, needs additional parameters to be set, and, nevertheless,
consumes more time to induce a solution.

5.4 Discussion

One general advantage of generate-and-test methods is their greater flexibility,
in at least to aspects: First regarding the problem space—there are no princi-
ple difficulties in enumerating even very complex programs. Second regarding
the form of the incomplete specification. Whereas the search operators of an
analytical technique depend on the specification (e.g., I/O-examples) such that
different forms of specification need different search operator techniques, the
search is more independent from the specification in generate-and-test methods
such that more expressive forms of specification can easily be integrated. In par-
ticular, fitness functions in GP or the objective function in ADATE are more
expressive than I/O-examples since no fixed outputs need to be provided but
general properties to be satisfied by computed outputs can be specified.
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The disadvantage of generate-and-test methods is that they generally generate
far more candidate programs until a solution is found and hence need much
more time than data-driven methods to induce programs of equal size. Several
analytical and generate-and-test systems have been compared empirically in [39].
A further problem is non-termination. As generated programs need to be tested
against the provided examples, non-termination is a serious issue. Higher-order
functions or formalisms that a-priori only include total functions are helpful to
circumvent this problem.

6 Conclusions and Further Research

In the previous sections, we described several approaches and systems to the
inductive synthesis of functional and logic programs and discussed pros and
cons and relations between them.

One obvious dimension to classify them is the way of how example data is
used: As basis to construct candidate solutions (Section 3) or to test and evaluate
independently generated candidates (Section 5). (In ILP, both approaches are
found.) The analytical approach tends to be faster because many representable
programs are a priori excluded from being generated. On the other side, since
it strongly depends on the data and the language bias, it is much less robust
and flexible regarding the whole problem specification including types of data,
preference-, and language biases. Besides further developing both general ap-
proaches separately, we think that examining ways to combine them could be
useful to achieve a satisfiable combination of robustness, flexibility, expressive-
ness, and efficiency. Our system Igor2 and the well-known ILP system Progol

indicate the potential of such an integration.
One important topic, that certainly has not received sufficient attention in

the context of inductive program synthesis, is learning theory, including mod-
els of learning and criteria to evaluate candidate programs. PAC-learning, the
predominant learning model in machine learning, is well-suited for restricted rep-
resentation languages and noisy data, hence approximate solutions. Yet in pro-
gram synthesis, we have rich representation languages, often assume error-free
examples, and want have programs that exactly compute an intended function
or relation. Moreover, efficiency, not only of the induction process, but of the
induced program, becomes an important issue. Muggleton’s U-learning model6

captures these needs and is probably a good model or initial point to develop
learning models for inductive program synthesis.

There has certainly been significant progress since the beginnings in the sev-
enties. Yet inductive program synthesis still is not yet in a status to be applied to
real problems. We think that it is now time for a more target-oriented approach.
This does not mean to replacing general approaches by problem-dependent ad
hoc techniques. We rather think that identifying and promoting specific applica-
tion fields and domains could help to spark broader interest to the topic as well

6 The ’U’ stands for ’universal’.
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as to sensibly identify strengths and weaknesses of existing methods, to extend
them and to identify possibilities to integrate them in a useful way.

In the context of software engineering, we think that test-driven development
(TDD) would be a good starting point to bring IPS to application. The paradigm
requires preparing tests “(incompletely) defining” a function before coding it.
Hence, IPS could smoothly fit in here. Moreover, TDD typically features a strong
modularization such that only small entities need to be synthesized.

Within algorithms research, one could try to find (classes) of problems for
which “better” than currently known algorithms are expected to exist and to
apply IPS methods to them.
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