

Lecture Notes in Computer Science 5812
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ute Schmid Emanuel Kitzelmann
Rinus Plasmeijer (Eds.)

Approaches and Applications
of Inductive Programming

Third International Workshop, AAIP 2009
Edinburgh, UK, September 4, 2009
Revised Papers

13

Volume Editors

Ute Schmid
Emanuel Kitzelmann
Otto-Friedrich-Universität Bamberg
Fakultät Wirtschaftsinformatik und Angewandte Informatik
96045 Bamberg, Germany
E-mail: {ute.schmid,emanuel.kitzelmann}@uni-bamberg.de

Rinus Plasmeijer
Radboud University Nijmegen
Institute for Computing and Information Sciences
6525AJ Nijmegen, The Netherlands
E-mail: rinus@cs.ru.nl

Library of Congress Control Number: 2010923416

CR Subject Classification (1998): I.2, D.2, F.3, H.3, D.3, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-11930-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11930-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

To Phil Summers
who laid the foundation

Preface

Inductive programming is concerned with the automated construction of declar-
ative – often functional – recursive programs from incomplete specifications such
as input/output examples. The inferred program must be correct with respect
to the provided examples in a generalizing sense: it should be neither equivalent
to it, nor inconsistent. Inductive programming algorithms are guided explicitly
or implicitly by a language bias (the class of programs that can be induced)
and a search bias (determining which generalized program is constructed first).
Induction strategies are either generate-and-test or example-driven. In generate-
and-test approaches, hypotheses about candidate programs are generated inde-
pendently from the given specifications. Program candidates are tested against
the given specification and one or more of the best evaluated candidates are de-
veloped further. In analytical approaches, candidate programs are constructed
in an example-driven way. While generate-and-test approaches can – in princi-
ple – construct any kind of program, analytical approaches have a more limited
scope. On the other hand, efficiency of induction is much higher in analytical
approaches.

Inductive programming is still mainly a topic of basic research, exploring
how the intellectual ability of humans to infer generalized recursive procedures
from incomplete evidence can be captured in the form of synthesis methods.
Intended applications are mainly in the domain of programming assistance –
either to relieve professional programmers from routine tasks or to enable non-
programmers to some limited form of end-user programming. Furthermore, in
future, inductive programming techniques might be applied to further areas such
as support inference of lemmata in theorem proving or learning grammar rules.

Inductive automated program construction has been originally addressed
by researchers in artificial intelligence and machine learning. During the last
few years, some work on exploiting induction techniques has been started also
in the functional programming community. Therefore, the third workshop on
“Approaches and Applications of Inductive Programming” took place for the
first time in conjunction with the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2009). The first and second workshop were as-
sociated with the International Conference on Machine Learning (ICML 2005)
and the European Conference on Machine Learning (ECML 2007).

AAIP 2009 aimed to bring together researchers from the field of inductive
functional programming from the functional programming and the artificial intel-
ligence communities and advance fruitful interactions between these communities
with respect to programming techniques for inductive programming algorithms,
identification of challenge problems and potential applications. Accordingly, the
organizers as well as the Program Committee and the reviewers consisted of
members from both communities.

VIII Preface

The workshop was enriched by three invited talks from members of the func-
tional programming community and we want to thank Lennart Augustsson,
Pieter Koopman and Neil Mitchell for their support. We are very grateful to
Martin Hofmann, who invested much of his time to support the workshop or-
ganization. Furthermore, we want to thank all presenters for submitting their
work to our workshop and all attendants for stimulating discussions.

We are proud that all authors of accepted workshop papers as well as two
of the invited speakers provided revised papers for this proceedings publication.
Thereby we can present a rather representative selection of current research
in the field of inductive programming. For everybody interested in inductive
programming, we recommend visiting the website
www.inductive-programming.org.

December 2009 Ute Schmid
Emanuel Kitzelmann

Rinus Plasmeijer

Organization

Organizing Committee

Ute Schmid University of Bamberg, Germany
Emanuel Kitzelmann University of Bamberg, Germany
Rinus Plasmeijer Radboud University Nijmegen,

The Netherlands
Technical Support Martin Hofmann, University of Bamberg,

Germany

Program Committee

Pierre Flener Uppsala University, Sweden
Lutz Hamel University of Rhode Island, Kingston, USA
Jose Hernandez-Orallo Technical University of Valencia, Spain
Johan Jeuring University of Utrecht, The Netherlands
Susumu Katayama University of Miyazaki, Japan
Pieter Koopman Radboud University Nijmegen,

The Netherlands
Oleg G. Monakhov Russian Academy of Sciences, Siberian

Branch, Russia
Ricardo Aler Mur Universidad Carlos III de Madrid, Spain
Roland Olsson Ostfold College, Norway
Maria José

Ramı́rez Quintana Technical University of Valencia, Spain

Board of Reviewers

All members of the Organizing Committee and of the Program Committee served
as reviewers for the workshop and the proceeding submissions. In addition, we
thank the following external reviewers:

Wolfgang Jeltsch BTU Cottbus, Germany
Janis Voigtländer University of Bonn, Germany

Table of Contents

Invited Papers

Deriving a Relationship from a Single Example . 1
Neil Mitchell

Synthesis of Functions Using Generic Programming 25
Pieter Koopman and Rinus Plasmeijer

Regular Papers

Inductive Programming: A Survey of Program Synthesis Techniques 50
Emanuel Kitzelmann

Incremental Learning in Inductive Programming . 74
Robert Henderson

Enumerating Well-Typed Terms Generically . 93
Alexey Rodriguez Yakushev and Johan Jeuring

Generalisation Operators for Lists Embedded in a Metric Space 117
V. Estruch, C. Ferri, J. Hernández-Orallo, and
M.J. Ramı́rez-Quintana

Porting IgorII from Maude to Haskell . 140
Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid

Automated Method Induction: Functional Goes Object Oriented 159
Thomas Hieber and Martin Hofmann

Recent Improvements of MagicHaskeller . 174
Susumu Katayama

Author Index . 195

Deriving a Relationship from a Single Example

Neil Mitchell

http://community.haskell.org/~ndm

Abstract. Given an appropriate domain specific language (DSL), it is
possible to describe the relationship between Haskell data types and
many generic functions, typically type-class instances. While describing
the relationship is possible, it is not always an easy task. There is an
alternative – simply give one example output for a carefully chosen input,
and have the relationship derived.

When deriving a relationship from only one example, it is important
that the derived relationship is the intended one. We identify general
restrictions on the DSL, and on the provided example, to ensure a level
of predictability. We then apply these restrictions in practice, to derive
the relationship between Haskell data types and generic functions. We
have used our scheme in the Derive tool, where over 60% of type classes
are derived from a single example.

1 Introduction

In Haskell [22], type classes [29] are used to provide similar operations for many
data types. For each data type of interest, a user must define an associated in-
stance. The instance definitions usually follow a highly regular pattern. Many li-
braries define new type classes, for example Trinder et. al. [27] define the NFData
type class, which reduces a value to normal form. As an example, we can define
a data type to describe some computer programming languages, and provide an
NFData instance:

data Language = Haskell [Extension] Compiler
| Whitespace
| Java Version

instance NFData Languge where
rnf (Haskell x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Whitespace) = ()
rnf (Java x1) = rnf x1 `seq̀ ()

We also need to define NFData instances for lists, and each of the data types
Extension, Compiler and Version. Any instance of NFData follows naturally from
the structure of the data type: for each constructor, all fields have seq applied,
before returning ().

Writing an NFData instance for a single simple data type is easy – but for
multiple complex data types the effort can be substantial. The standard solution

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 1–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://community.haskell.org/~ndm

2 N. Mitchell

is to express the relationship between a data type and it’s instance. In standard
tools, such as DrIFT [30], the person describing a relationship must be familiar
with both the representation of a data type, and various code-generation func-
tions. The result is that specifying a relationship is not as straightforward as one
might hope.

Using the techniques described in this paper, these relationships can often
be automatically inferred from a single example. To define the generation of all
NFData instances, we require an example to be given for the Sample data type:

data Sample α = First
| Second α α
| Third α

instance NFData α ⇒ NFData (Sample α) where
rnf (First) = ()
rnf (Second x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Third x1) = rnf x1 `seq̀ ()

The NFData instance for Sample follows the same pattern as for Language. From
this example, we can infer the general relationship. However, there are many pos-
sible relationships between the Sample data type and the instance above – for
example the relationship might always generate an instance for Sample, regard-
less of the input type. We overcome this problem by requiring the relationship
to be written in a domain specific language (DSL), and that the example has
certain properties (see §2). With these restrictions, we can regain predictability.

1.1 Contributions

This paper makes the following contributions:

– We describe a scheme which allows us to infer predictable and correct rela-
tionships (§2).

– We describe how this scheme is applicable to instance generation (§3).
– We outline a method for deriving a relationship in our DSL, without resorting

to unguided search (§4).
– We give results (§5), including reasons why our inference fails (§5.1). In our

experience, over 60% of Haskell type classes can be derived using our method.

2 Our Derivation Scheme

In this section we define a general scheme for deriving relationships, which we
later use to derive type-class instance generators. In general terms, a function
takes an input to an output. In our case, we restrict ourselves to functions that
can be described by a value of a DSL (domain specific language). The person
defining a derivation scheme is required to define suitable types named Input,
Output and the DSL. To use a value of DSL, we need an apply function to serve
as an interpreter, which takes a DSL value and an input and produces an output:

Deriving a Relationship from a Single Example 3

apply :: DSL→ Input→ Output

Now we turn to the derivation scheme. Given a single result of the Output type,
for a particular sample Input, we wish to derive a suitable DSL. It may not be
possible to derive a suitable DSL, so our derivation function must allow for the
possibility of failure. Instead of producing at most one DSL, we instead produce
a list of DSLs, following the lead of Wadler [28]:

sample :: Input
derive :: Output→ [DSL]

We require instantiations of our scheme to have two properties – correctness (it
works) and predictability (it is what the user intended). We now define both
of these properties more formally, along with restrictions necessary to achieve
them.

2.1 Correctness

The derivation of a particular output is correct if all derived DSLs, when applied
to the sample input, produce the original output:

∀ o ∈ Output • ∀ d ∈ derive o • apply d sample ≡ o

Note that given an incorrect derive function it is possible to create a correct
derive function by simply filtering out the incorrect results – correctness can be
tested inside the derive function.

2.2 Predictability

A derived relationship is predictable if the user can be confident that it matches
their expectations. In particular, we don’t want the user to have to understand
the complex derive function to be confident the relationship matches their in-
tuition. In this section we attempt to simplify the task of defining predictable
derivation schemes.

Before defining predictability, it is useful to define congruence of DSLs. We
define two DSLs to be congruent (∼=), if for every input they produce identical
results – i.e. apply d1 ≡ apply d2.

d1
∼= d2 ⇐⇒∀ i ∈ Input • apply d1 i ≡ apply d2 i

Our derive function returns a list of suitable DSLs. To ensure consistency, it is
important that the DSLs are all congruent – allowing us to choose any DSL as
the answer.

∀ o ∈ Output • ∀ d1, d2 ∈ derive o • d1
∼= d2

This property is dependent on the implementation of the derive function, so is
insufficient for ensuring predictability. To ensure predictability we require that
all results which give the same answer on the sample input are congruent:

4 N. Mitchell

∀ d1, d2 ∈ DSL • apply d1 sample ≡ apply d2 sample⇒ d1
∼= d2

The combination of this predictability property and the correctness property
from §2.1 implies the consistency property. It is important to note that pre-
dictability does not impose conditions on the derive function, only on the DSL,
the apply function and the sample input.

2.3 Scheme Roles

The creation and use of a derivation scheme can be split into separate roles,
perhaps completed by different people, each focusing on only a few aspects of
the scheme.

The scheme creator defines the Input, Output and DSL types, the apply function,
and the sample value of type Input (§3). Their choice must satisfy the predictabil-
ity property (§3.4).

The derivation function author defines the derive function (§4). They may choose
to ensure the correctness property, or filter the results. They do not need to
concern themselves with predictability.

The relationship creator gives an appropriate output based on the previously
defined sample input (§1 and examples throughout). In order to ensure their
relationship matches their intuition, they may wish to familiarise themselves
with some details of the DSL, but hopefully these will not be too onerous.

The relationship user simply gives an input, and receives an output – the output
will always be what the relationship creator intended.

3 Deriving Instances

In this section we apply the scheme from §2 to the problem of deriving type class
instances. We let the output type be Haskell source code and the input type be
a representation of algebraic data types. The DSL contains features such as
list manipulation, constant values, folds and maps. We first describe each type
in detail, then discuss the restrictions necessary to satisfy the predictability
property.

3.1 Output

We wish to generate any sequence of Haskell declarations, where a declaration
is typically a function definition or type class instance. There are several ways
to represent a sequence of declarations:

Deriving a Relationship from a Single Example 5

String. A sequence of Haskell declarations can be represented as the string of
the program text. However, the lack of structure in a string poses several
problems. When constructing strings it is easy to generate invalid programs,
particularly given the indentation and layout requirements of Haskell. It is
also hard to recover structure from the program that is likely to be useful
for deriving relationships.

Pretty printing combinators. Some tools such asDrIFT [30] generate Haskell
code using pretty printing combinators. These combinators supply more
structure than strings, but the structure is linked to the presentation, rather
than the meaning of constructs.

Typed abstract syntax tree (AST). The standard representation of Haskell
source code is a typed AST – an AST where different types of fragment (i.e.
declarations, expressions and patterns) are restricted to different positions
within the tree. The first version of Derive used a typed AST, specifically
Template Haskell [24]. This approach preserves all the structure, and makes
it reasonably easy to ensure the generated program is syntactically correct.
By combining a typed AST with a parser and pretty printer we can convert
between strings as necessary.

Untyped abstract syntax tree (AST). An untyped AST is an AST where all
fragments have the same type, and types do not restrict where a fragment may
be placed. The removal of types increases the number of invalid programs that
can be represented – for example a declaration could occurwhere an expression
was expected. However, by removing types we make it easier to express some
operations that operate on the tree in a uniform manner.

For our purposes, it is clear that both strings and pretty printing combinators are
unsuitable – they lack sufficient structure to implement the derive operation. The
choice between a typed and untyped AST is one of safety vs simplicity. The use of
a typed AST in the first version of Derive caused many complexities – notably
the DSL was hard to represent in a well-typed manner and some functions had
to be duplicated for each type. The loss of safety from using an untyped AST is
not too serious, as both DSLs and ASTs are automatically generated, rather than
being written by hand. Therefore, we chose to use untyped ASTs for the current
version of Derive. We discuss possible changes to regain type safety in §7.

While we work internally with an untyped AST, existing Haskell libraries for
working with ASTs use types. To allow the use of existing libraries we start from
a typed AST and collapse it to a single type, using the Scrap Your Boilerplate
generic programming library [16,17].

The use of Template Haskell in the first version of Derive provided a number
of advantages – it is built in to GHC and can represent a large range of Haskell
programs. Unfortunately, there were also a number of problems:

– Being integrated in to GHC ensures Template Haskell is available every-
where GHC is, but also means that Template Haskell cannot be upgraded
separately. Users of older versions of GHC cannot take advantage of improve-
ments to Template Haskell, and every GHC upgrade requires modifications
to Derive.

6 N. Mitchell

– Template Haskell does not support new GHC extensions – they are often
implemented several years later. For example, Template Haskell does not
yet support view patterns.

– Template Haskell allows generated instances to be used easily by GHC com-
piled programs, but it makes the construction of a standalone preprocessor
harder.

– If Template Haskell is also used to read the input data type (as it was in
the first version of Derive) then only data types contained in compilable
modules can be used. In particular, all necessary libraries must be compiled
before an instance could be generated.

– The API of Template Haskell is relatively complex, and has some inconsis-
tencies. In particular the Q monad caused much frustration.

We have implemented the current version of Derive using the haskell-src-exts
library [2]. The haskell-src-exts library is well maintained, supports most Haskell
extensions1 and operates purely as a library. We convert the typed AST of
haskell-src-exts to a universal data type:

data Output = OString String
| OInt Int
| OList [Output]
| OApp String [Output]

OString and OInt represent strings and integers. The OList constructor generates
a list from a sequence of Output values. The expression OApp c xs represents
the constructor c with fields xs. For example Just [1, 2] would be represented by
the expression OApp "Just" [OList [OInt 1, OInt 2]]. These constructed values
represent the AST defined by haskell-src-exts, so can represent all of Haskell –
e.g. a case expression would be OApp "Case" [on, alts].

Our Output type can represent many impossible values, for example the ex-
pression OApp "Just" [] (wrong number of fields) or OApp "Maybe" [] (not a
constructor). We consider any Output value that does not represent a haskell-
src-exts value to be an error. The root Output value must represent a value of
type [Decl]. We can translate between our Output type and the haskell-src-exts
type [Decl]:

toOutput :: [Decl]→ Output
fromOutput :: Output→ [Decl]

We have implemented these functions using the SYB generics library [17], specif-
ically we have implemented the more general:

toOut :: Data α⇒ α → Output
fromOut :: Data α⇒ Output→ α

These functions are partial – they only succeed if the Output value represents
a well-typed haskell-src-exts value. When operating on the Output type, we are
1 Haskell-src-exts supports even more extensions than GHC!

Deriving a Relationship from a Single Example 7

data DSL
-- Constants

= String String
| Int Int
| List [DSL]
| App String DSL {-[α] -}

-- Operations
| Concat DSL {-[[α]] -}
| Reverse DSL {-[α] -}
| ShowInt DSL {-Int -}

-- Fold
| Fold DSL DSL
| Head
| Tail

-- Constructors
| MapCtor DSL
| CtorIndex
| CtorArity
| CtorName

-- Fields
| MapField DSL
| FieldIndex

-- Custom
| DataName
| Application DSL {-[Exp] -}
| Instance [String] String DSL {-[InstDecl] -}

Fig. 1. DSL data type

working without type safety. However, provided all DSL values are constructed
by derive, and that derive only constructs well-formed DSL values, our fromOutput
function will be safe.

3.2 Input

While the output type is largely dictated by the need to generate Haskell, we
have more freedom with the input type. The input type represents Haskell data
types, but we can choose which details to include, and thus which relationships
we can represent. For example, we can include the module name in which the
data type is defined, or we can omit this detail. We choose not to include the
module name, which eliminates some derivations, for example the Typeable type
class [16].

8 N. Mitchell

apply :: DSL→ Input→ Output
apply dsl input = applyEnv dsl Env {envInput = input}

data Env = Env {envInput :: Input, envCtor :: Ctor,
envField :: Int, envFold :: (Output, Output)}

applyEnv :: DSL→ Env → Output
applyEnv dsl env@(Env input ctor field fold) = f dsl

where
vars = take (dataVars input) $ map (:[]) [’a’ . .]

f (Instance ctx hd body) = OApp "InstDecl"
[toOut [ClassA (UnQual $ Ident c) [TyVar $ Ident v] | v ← vars, c ← ctx]
, toOut $ UnQual $ Ident hd
, toOut [foldl TyApp (TyCon $ UnQual $ Ident $ dataName input)

[TyVar $ Ident v | v ← vars]]
, f body]

f (Application (f → OList xs)) = foldl1 (λa b → OApp "App" [a, b]) xs
f (MapCtor dsl) = OList [applyEnv dsl env {envCtor = c}
| c ← dataCtors input]

f (MapField dsl) = OList [applyEnv dsl env {envField = i}
| i ← [1 . . ctorArity ctor]]

f DataName = OString $ dataName input
f CtorName = OString $ ctorName ctor
f CtorArity = OInt $ ctorArity ctor
f CtorIndex = OInt $ ctorIndex ctor
f FieldIndex = OInt $ field

f Head = fst fold
f Tail = snd fold
f (Fold cons (f → OList xs)) =

foldr1 (λa b → applyEnv cons env {envFold = (a, b)}) xs

f (List xs) = OList $ map f xs
f (Reverse (f → OList xs)) = OList $ reverse xs
f (Concat (f → OList [])) = OList []
f (Concat (f → OList xs)) = foldr1 g xs

where g (OList x) (OList y) = OList (x ++ y)
g (OString x) (OString y) = OString (x ++ y)

f (String x) = OString x
f (Int x) = OInt x
f (ShowInt (f → OInt x)) = OString $ show x
f (App x (f → OList ys)) = OApp x ys

Fig. 2. The apply function

Deriving a Relationship from a Single Example 9

Our Input type represents algebraic data types. We include details such as
the arity of each constructor (ctorArity), the 0-based index of each constructor
(ctorIndex) and the number of type variables (dataVars), but omit details such
as types and record field names. Our Input type is:

data Input = Input {dataName :: String, dataVars :: Int, dataCtors :: [Ctor]}
data Ctor = Ctor {ctorName :: String, ctorIndex :: Int, ctorArity :: Int}

Values of Input for the Sample data type and the Language data type (both
defined in §1) are:

sampleType :: Input
sampleType = Input "Sample" 1

[Ctor "First" 0 0
, Ctor "Second" 1 2
, Ctor "Third" 2 1]

languageType :: Input
languageType = Input "Language" 0

[Ctor "Haskell" 0 2
, Ctor "Whitespace" 1 0
, Ctor "Java" 2 1]

The Input constructor contains the name of the data type, and the number of
type variables the data type takes. For each constructor we record the name,
0-based index, and arity. These choices allow derivations to depend on the arity
or index of a constructor, but not the types of a constructors arguments. In §5
we consider possible extensions to the Input type.

3.3 DSL

Our DSL type is given in Figure 1, and our apply function is given in Figure 2.
The operations in the DSL are split in to six groups – we first give a high-level
overview of the DSL, then return to each group in detail. The apply function
is written in terms of applyEnv, where an environment is passed including the
input data type, and other optional fields. Some functions in the DSL add to
the environment (i.e. MapCtor), while others read from the environment (i.e.
CtorName). Any operation reading a value from the environment must be nested
within an operation placing that value in the environment.

Some operations require particular types – for example Reverse requires it’s
argument to evaluate to OList. Where possible we have annotated these restric-
tions in the DSL definition using comments. We have used view patterns, as
implemented in GHC 6.10 [25], to perform matches on the evaluated argument
DSLs. Our use of view patterns can be understood with the simple translation2:

2 View-patterns and pattern-guards in GHC have different scoping behaviour, but this
difference does not effect our apply function.

10 N. Mitchell

f (Reverse (f → OList xs)) = . . .
≡

f (Reverse v1) | OList xs ← f v1 = . . .
≡

f (Reverse v1) | case v2 of OList { } → True; → False = . . .
where v2 = f v1; OList xs = v2

Some operations have restrictions on what their arguments must evaluate to,
and what environment values must be available. It would be possible to capture
many of these invariants using either phantom types [4] or GADTs [23]. However,
for simplicity, we choose not to.

Constants. We include constants in our DSL, so we can lift values of Output
to values of DSL. The String, Int, List operations are directly equivalent to the
corresponding Output values. The App constructor is similar to OApp, but instead
of taking a list of arguments, App takes a single argument, which must evaluate
to an OList. Requiring an OList rather than an explicit list allows the arguments
to App to be constructed by operations such as Reverse or Concat.

Operations. The operations group consists of useful functions for manipulating
lists, strings and integers. The operations have been added as required, based on
functions in the Haskell Prelude. The Concat operation corresponds to concat,
and concatenates either a list of lists, or a list of strings. The Reverse operation
performs reverse on a list. The ShowInt operation performs show, converting an
integer to a string. We do not provide an append or (++) operation, but one can
be created from a combination of List and Concat.

Some examples of these operations in use are:

Concat (List [String "hello ", String "world"]) ≡ OString "hello world"
Reverse (List [Int 1, Int 2, Int 3]) ≡ OList [OInt 3, OInt 2, OInt 1]
ShowInt (Int 42) ≡ OString "42"

Fold. The Fold operation corresponds to foldr1, but can be combined with
Reverse to simulate foldl1. The first argument of Fold is a function – a DSL
containing Head and Tail operations. The second argument must evaluate to a
list containing at least one element. If the list has exactly one element, that is
the result. If there is more than one element, then Head is replaced by the first
element, and Tail is replaced by a fold over the remaining elements. This can be
described by:

Fold fn [x] = x
Fold fn (x : xs) = fn [x / Head, Fold fn xs / Tail]

For example, to implement concat in terms of an Append operation would be
Fold (Append Head Tail) (ignoring the case of the empty list). The fold operation
is more complicated than the previous operations, but may still be useful to
other DSLs.

Deriving a Relationship from a Single Example 11

Constructors. To insert information from the constructors we provide MapCtor.
This operation generates a list, with the argument DSL evaluated once with
each different constructor in the environment. The argument to MapCtor may
contain CtorName, CtorIndex and CtorArity operations, which retrieve the in-
formation associated with the constructor. CtorName produces a string, while
the others produce integers. An example of MapCtor on the Sample data type
is:

MapCtor CtorName ≡ OList
[OString "First", OString "Second", OString "Third"]

Fields. The MapField operation is similar to MapCtor, but maps over each field
within a constructor. MapField is only valid within MapCtor. Within MapField,
the FieldIndex operation returns the 1-based index of the current field. While
most indexing in Haskell is 0-based, fields usually correspond to variable indices
(i.e. x1), which tend to be 1-based. As an example of MapField, using Second as
the constructor in the environment:

Concat (List [List [CtorName],
MapField (Concat (List [String "v", ShowInt FieldIndex]))])
≡ ["Second", "v1", "v2"]

Custom. The final set of operations are all specific to our particular problem.
The simplest operation in this group is DataName, which returns the string
corresponding to the name of the data type.

The second operation is Application. The haskell-src-exts library uses binary
application, where multiple applications are often nested – we provide Application
to represent vector application. Vector application is often used to call construc-
tors with arguments resulting from MapField.

The final operation is Instance, and is used to represent a common pattern of
instance declaration. For example, given the type Either α β, a typical instance
declaration might be:

instance (Show α, Ord α, Show β, Ord β) ⇒ ShowOrd (Either α β) where . . .

This pattern requires each type variable to be a member of a set of type classes.
The resulting instance construction is:

Instance ["Show", "Ord"] "ShowOrd" . . .

The Instance fields describe which classes are required for each type variable (i.e.
Show and Ord in this example), what the main class is (i.e. ShowOrd), and a
DSL to generate the body. To specify this pattern without a specific Instance
operation would require operations over type variables – something we do not
support.

12 N. Mitchell

3.4 Restrictions for Predictability

To ensure predictability there must be no non-congruent DSL values which give
equal results when applied to the sample input (see §2.2). Currently this invariant
is violated – consider the counterexample DataName vs String "Sample". When
applied to the sample input, both will generate OString "Sample", but when ap-
plied to other data types they generate different values. To regain predictability
we impose three additional restrictions on the DSL:

1. The strings Sample, First, Second and Third cannot be contained in any String
construction. Therefore, in the above example, String "Sample" is invalid.

2. All instances must be constructed with Instance.
3. Within MapCtor we require that the argument DSL must include CtorName.

We have already seen an example of the first restriction in practice, and the
second restriction has similar motivation – to avoid making something constant
when it should not be. Now let us examine the third restriction, with a practical
example:

instance Arities (Sample α) where
arities = [0, 2, 1]

Given this instance, we could either infer the arities function always returns
[0, 2, 1], or it returns the arity of each constructor. While a human can spot the
intention, there is a potential ambiguity. Using the third restriction, we conclude
that this must represent the constant operation. To derive a version returning
the arities we can write:

instance Arities (Sample α) where
arities = [const 0 First{}, const 2 Second{}, const 1 Third{}]

While this code is more verbose, any good optimiser (e.g. GHC [25]) will generate
identical code.

While our DSL has forms of iteration (i.e. MapCtor), it does not have any
conditional constructs such as if or case. The lack of conditionals is deliberate
– to maintain predictability every branch of every conditional would need to be
exercised by a different constructor or field in the Sample type, thus increasing
the size of Sample.

The restrictions in this section aim to ensure that no fragment of output can
be represented by both a constant and be parameterised by the data type. The
Sample type ensures no fragment can be parameterised in multiple ways, by
having different arity/index values for some constructors – explaining why the
Second constructor has arity 2, while the Third has arity 1. We believe that the
restrictions in this section, along with the Sample data type, ensure predictability.
We have not proved the predictability property, but we have checked it using
QuickCheck [3]. We do not see any reason this property could not be proven
more formally, but leave this task as future work.

Deriving a Relationship from a Single Example 13

4 Implementing derive

This section covers the implementation of a derive function, as described in §2.
There are many ways to write a derive function, our approach is merely one option
– we hope that the scheme we have described provides ample opportunity for
experimentation.

Before implementing derive it is useful to think about which properties are
desirable. It is easy to ensure correctness by filtering incorrect results (see §2.1),
but our method chooses to only generate correct results. We follow all the re-
strictions in §3.4, which we believe ensure predictability. We want our derive
function to terminate, and ideally terminate within a reasonable time bound.
Finally, we would like the derive function to find an answer if one exists, i.e.:

∀ o ∈ Output, d ∈ DSL • null (derive o)⇒ apply d sample
≡ o

We were unable to implement a derive function meeting this property for our
problem which performed acceptably. Our method is a trade off between runtime
and success rate, with a particular desire to succeed for real-world examples.

Our derive implementation is based around a parameterised guess. Each frag-
ment of output is related to a guess – a DSL parameterised by some aspect of
the environment. For example, OString "First" results in the guess CtorName
parameterised by the first constructor. Concretely, our central Guess type is:

data Guess = Guess DSL
| GuessCtr Int DSL -- 0-based index
| GuessFld Int DSL -- 1-based index

derive :: Output→ [DSL]
derive o = [d | Guess d ← guess o]

guess :: Output→ [Guess]

Applying guess (OString "First") produces a guess of GuessCtr 0 CtorName.
The GuessCtr and GuessFld guesses are parameterised by either constructors or
fields, and can only occur within MapCtor or MapField respectively. The Guess
guess is either parameterised by the entire data type, or is a constant which does
not refer to the environment at all.

To generate a guess for the entire output, we start by generating guesses for
each leaf node of the Output value, then work upwards combining them. If at
any point we see an opportunity to apply one of our custom rules (i.e. Instance),
we do so. The important considerations are how we create guesses for the leaves,
how we combine guesses together, and where we apply our custom rules. We
require that all generated guesses are correct, defined by:

∀ o ∈ Output • ∀ g ∈ guess o • applyGuess g ≡ o

applyGuess :: Guess → Output
applyGuess (Guess d) = applyEnv d Env {envInput = sample}

14 N. Mitchell

applyGuess (GuessCtr i d) = applyEnv d Env {envInput = sample, envCtor = c}
where c = dataCtors sample !! i

applyGuess (GuessFld i d) = applyEnv d Env {envInput = sample, envField = i}

4.1 Guessing Constant Leafs

String To guess an OString value is simple – if it has a banned substring (i.e.
Sample or one of the constructors) we generate an appropriately parameterised
guess, otherwise we use the constant string. Some examples:

OString "hello" ≡ Guess (String "hello")
OString "Sample" ≡ Guess DataName
OString "First" ≡ GuessCtr 0 CtorName
OString "isThird" ≡ GuessCtr 2 (Concat (List [String "is", CtorName]))

Application. The guess for an OApp is composed of two parts – the name of
the constructor to apply and the list of arguments. The name of the constructor
in App always exactly matches that in OApp. The arguments to App are created
by applying guess to the list, and wrapping the generated DSL in App op. The
guess for OApp can be written as:

guess (OApp op xs) = map (lift (App op)) (guess (OList xs))

lift :: (DSL→ DSL) → Guess → Guess
lift f (Guess d) = Guess (f d)
lift f (GuessCtr i d) = GuessCtr i (f d)
lift f (GuessFld i d) = GuessFld i (f d)

Integer. Given an integer there may be several suitable guesses. An integer
could be a constant, a constructor index or arity, or a field index. We can guess
an OInt as follows:

guess (OInt i) =
[GuessFld i FieldIndex | i ∈ [1, 2]] ++
[GuessCtr 1 CtorIndex | i ≡ 1] ++
[GuessCtr 1 CtorArity | i ≡ 2] ++
[Guess (Int i)]

And some examples:

OInt 0 ≡ [Guess (Int 0)]
OInt 1 ≡ [GuessFld 1 FieldIndex, GuessCtr 1 CtorIndex, Guess (Int 1)]
OInt 2 ≡ [GuessFld 2 FieldIndex, GuessCtr 1 CtorArity, Guess (Int 2)]
OInt 3 ≡ [Guess (Int 3)]

When guessing an OInt, we never generate guesses for any constructors other
than Second (represented by GuessCtr 1) – the reason is explained in §4.2.

Deriving a Relationship from a Single Example 15

4.2 Lists

Lists are the most complex values to guess. To guess a list requires a list of
suitable guesses for each element, which can be collapsed into a single guess.
Given a suitable collapse function we can write:

guess (OList xs) =
mapMaybe (liftM fromLists ◦ collapse ◦ toLists) (mapM guess xs)

fromLists = lift Concat
toLists = map (lift (λx → List [x]))

collapse :: [Guess]→ Maybe Guess

The mapM function uses the list monad to generate all possible sequences of
lists. The toLists function lifts each guess to a singleton list, and the fromLists
function concatenates the results – allowing adjacent guesses to be collapsed
without changing the result type. The function collapse applies the following
three rules, returning a Just result if any possible sequence of rule applications
reduces the list to a singleton element.

Promotion. The promotion rule adds a parameter to a guess. We can pro-
mote Guess to either GuessFld or GuessCtr, with any parameter value. The value
Guess d, can be promoted to either of GuessCtr i d or GuessFld i d, for any index
i. The promotion rule does not reduce the number of elements in the list, but
allows other rules to apply, in particular the conjunction rule.

Conjunction. If two adjacent guesses have the same parameter value, they can
be combined in to one guess. For example, given GuessCtr 2 d1 and GuessCtr 2 d2

we produce GuessCtr 2 (Concat (List [d1, d2])). This rule shows the importance
of each guess evaluating to a list.

Sequence. The sequence rule introduces either MapField or MapCtor from a list
of guesses. Given two adjacent guesses we can apply the rule:

(GuessFld 1 d1) (GuessFld 2 d2)
| applyGuess (GuessFld 2 d1) ≡ applyGuess (GuessFld 2 d2)
= GuessCtr 1 (MapField d1)

It is important that the fields are in the correct order, one of the DSL values
(in this case d1) is applicable to both problems, and the resultant guess is pa-
rameterised by the Second constructor (which has two fields). We also permit
sequences in reverse order, which we generate by reversing the list before, and
inserting a Reverse afterwards.

The sequence construction for fields can be extended to constructors by de-
manding three guesses parameterised by consecutive constructors. For construc-
tors we only check using the DSL relating to the Second constructor, as this DSL
is the only one that could have a MapField construct within it. Because we only
test against the Second DSL, we can avoid generating CtorArity and CtorIndex

16 N. Mitchell

guesses for the other constructors. We also require that when creating a MapCtor
the guess contains a CtorName, to ensure the restrictions from §3.4 are met.

4.3 Folds

The addition of fold to our DSL is practically motivated – a number of real
derivations require it. Currently we only attempt to find folds in a few special
cases. We require folds to start with one of the following patterns:

OApp m [OApp m [x, op, y], op, z]
OApp m [x, op, OApp m [y, op, z]]

Given such a pattern, we continue down the tree finding all matching patterns
of op and m. After constructing a fold we then apply guess to the residual list.

4.4 Application

As with fold, the introduction of Application is practically motivated. We replace
any sequence of left-nested OApp "App" expressions with Application.

4.5 Instance

As per the restrictions given in §3.4, the only way of creating an Instance
value as output is to use the Instance DSL operator – it is forbidden to use
App "Instance". Given this restriction, we translate values to Instance where
they follow the pattern set out in §3.3.

5 Results

This section discusses the results of using our automatic derivation scheme on
real examples. We first categorise the instances we are unable to derive, then
share some of the tricks we have developed to succeed with more examples. For
each limitation we discuss possible modifications to our system to overcome it.
Finally we give timing measurements for our implementation.

5.1 Limitations of Automatic Derivation

The instance generation scheme given is not complete – there exist instances
whose generator cannot be determined. The Derive tool [21] generates instances
for user defined data types. Of the 24 instances supported by Derive, 15 are
derived from one example, while 9 require hand-written instance generators. All
the examples which can’t be derived are due to the choices of abstraction in our
Input type. We now discuss each of the pieces of information lacking from Input
that result in some instances being inexpressible.

Deriving a Relationship from a Single Example 17

Module Names. Some type classes require information about the module con-
taining a type, for example Typeable instances [16] follow the pattern:

typename Language = mkTyCon "ModuleName.Language"

instance Typeable Language where
typeOf = mkTyConApp typename Language []

The Typeable class performs runtime type comparison, so each distinct type
needs a distinct string to compare, and the module name is used to disambiguate.
Our Input type does not include the module name, so cannot be used to derive
Typeable. It would be possible to define the string "Module.Name" as the module
name of the sample, and treat it in a similar manner to the string "Sample".
However, the only instance we are aware of that requires the module name is
Typeable, so we do not provide module information.

Infix Constructors. Some instances treat infix constructors differently, for
example the Show instance on a prefix constructor is:

instance Show PrefixConstructor where
show (Prefix x y) = "Prefix " ++ show x ++ " " ++ show y

But using an infix constructor:

instance Show InfixConstructor where
show (x :+: y) = show x ++ " :+: " ++ show y

Our Input type does not express whether a constructor is infix or prefix, so
cannot choose the appropriate behaviour. The loss of infix information mainly
effects instances which display information to the user, i.e. Show and pretty
printing [10]. For most type classes, the infix information is not used, and infix
constructors can be bracketed and treated as prefix (:+:). To deal with infix
constructors would require an infix constructor added to the Sample data type,
and modifications to the DSL to allow different results to be generated depending
on infix information. These changes would pose difficulties to predictability and
require all example instances to have at least one additional case defined – we
do not consider this a worthwhile trade off for a small number of additional
instances.

Record-based definitions. Haskell provides records, which allow some fields
to be labelled. Some operations make use of the record fields within a data type,
for example using the data type:

data Computer = Desktop {memory :: Int}
| Laptop {memory :: Int, weight :: Int}

18 N. Mitchell

It is easy to write the definition:

hasWeight Desktop{} = False
hasWeight Laptop{} = True

Where hasWeight returns True if the weight selector is valid for that constructor,
and False if weight x ≡ ⊥. Unfortunately our Input type does not contain infor-
mation about records, so cannot express this definition. There are only a few
type classes which exhibit label specific behaviour, such as Show which outputs
the field name if present.

Record fields are not present in our Sample type, but could be added. The
difficulty is that Haskell allows for one field name to be shared by multiple
constructors, and allows some constructors to have field names while others do
not. This flexibility results in a massive number of possible combinations, and
so a Sample type with sufficient generality would require many constructors.
Allowing records would be more feasible for a language such as F#, where records
contain only one constructor and all fields must be named.

Type-based definitions Our Sample data type has a simple type structure,
and our DSL does not allow decisions to be made on the basis of type – these
restrictions means some type classes can’t be defined. For example, a Monoid
instance processes items of the same type using mappend, but items of a different
type using mempty. Several other type classes require type specific behaviour,
including Functor, Traversable and Uniplate.

The lack of type information has other consequences. For example, we can
write the definition:

fromFirst (First) = const First{} $ tuple0
fromSecond (Second x1 x2) = const Second{} $ tuple2 x1 x2

fromThird (Third x1) = const Third{} $ tuple1 x1

This function returns the elements contained within a constructor, generalising
operations such as fromJust, and has seen extensive use in the Yhc compiler
[26]. When compiled with GHC this code generates a warning that no top-
level type signatures have been given. These type signatures can be inferred,
but the Haddock documentation tool [18] won’t include functions lacking type
signatures. Without type information in Input, we can’t generate appropriate
type signatures.

We see no easy way to include type information in our derivation scheme –
types are varied, and different type classes make use of different type information.
It may be possible to identify some restricted type information that could be
used for a subset of type-based instances, but we have not done so.

5.2 Practical Experiences

This section describes our experiences with specifying instances in a form suit-
able for derivation. Ideally, we would write all instances in a natural way, but

Deriving a Relationship from a Single Example 19

sometimes we need to make concessions to our derivation algorithm. Using the
techniques given here, it seems possible to write most instances which are based
on information included in the Input type.

Brackets Matter. The original Derive program used Template Haskell, which
does not include brackets in the abstract syntax tree. For example, the ex-
pressions (First) and First are considered equal. However, using haskell-src-exts,
brackets are explicit and care must be taken to ensure every constructor has
the same level of bracketing. Examples of otherwise unnecessary brackets can
be seen with fromFirst in §5.1, where the constructor First is bracketed. This
restriction could be lifted if all brackets were removed before processing, then
minimal brackets were added back afterwards.

Variable Naming. When naming variables it is important that a sequence of
variables follow a pattern. For example, in §5.1 we use Second x1 x2, rather than
Second x y. By naming variables with consecutive numbers we are able to derive
the fields correctly.

Explicit Fold Base-Case. When performing a fold, it is important to explic-
itly include the base-case. In the introductory example of NFData the Second
alternative is specified as rnf x1 `seq̀ rnf x2 `seq̀ (), however we can show that:

∀ x • rnf x `seq̀ () ≡ rnf x

Therefore we could write the Second alternative more compactly as the expres-
sion rnf x1 `seq̀ rnf x2. However, doing so would mean there was not one consis-
tent pattern suitable for all constructors, and the derivation would fail. In general,
when considering folds, the base-case should always be written explicitly.

Empty Record Construction. One useful feature of Haskell records is the
empty record construction. The expression Second{} evaluates to Second ⊥ ⊥.
This expression is useful for generating constructors to pass as the second argu-
ment to const3, for some generic programming operations, and for values that
are lazily evaluated. The pattern Second{} matches all Second constructors, re-
gardless of their fields.

Constructor Count. Some instances aren’t inductive – for example Binary
instances require a tag indicating which constructor has been stored, but only if
there is more than one constructor. This pattern can be written as:

instance Binary α⇒ Binary (Sample α) where
put x = case x of

First → do putTag 0
Second x1 x2 → do putTag 1; put x1; put x2

Third x1 → do putTag 2; put x1

3 "Second" would also work, but the use of a string feels too unpleasant.

20 N. Mitchell

where
useTag = length [First{}, Second{}, Third{}] > 1
putTag = when useTag ◦ putWord8

get = do
i ← getTag
case i of

0 → do return (First)
1 → do x1 ← get; x2 ← get; return (Second x1 x2)
2 → do x1 ← get; return (Third x1)
→ error "Corrupted binary data for Sample"

where
useTag = length [First{}, Second{}, Third{}] > 1
getTag = if useTag then getWord8 else return 0

The value length [First{}, Second{}, Third{}] is used to compute the number of
constructors in the data type, which can be tested to get the correct behaviour.
This pattern is used in other classes, for example Enum and Arbitrary. Using sim-
plifications we can remove the test and produce code specialised to the number
of constructors.

The pattern for the number of constructors is useful, but seems a little ver-
bose. In the first version of Derive the constructor count was guessed from the
number 3. Unfortunately, the inclusion of this guess breaks the restrictions we
have imposed for predictability. Another way of simplifying this pattern would
be to introduce a meta function ctorCount, which expanded to the number of
constructors. This solution would mean inputs were not real example instances,
and would require users to learn part of the DSL – something we have tried to
avoid. In the end, we simply accept that the constructor count is slightly verbose.

5.3 Timing Properties

We have implemented the methods described in this paper, and have used them
to guess all 15 examples referred to in §5.1, along with 2 additional test cases.
For each example we perform the following steps:

1. We derive the DSL from an example.
2. We apply the DSL to the Sample data type and check it matches the input

example.
3. We apply the DSL to three other data types, namely lists, the eight element

tuple and the expression type from the Yhc Core library [7].

To perform all steps for 17 examples takes 0.3 seconds when compiled with
GHC -O0 on a laptop with a 2GHz CPU and 1Gb of RAM. We consider these
times to be more than adequate, so have not carried out further experiments or
investigated additional optimisations.

Deriving a Relationship from a Single Example 21

6 Related Work

An earlier version of the Derive tool was presented in a previous paper [20]. The
previous work described only the derivation algorithm. There was no intermedi-
ate DSL, and no predictability. Given a single example the tool could produce
multiple different answers, and would always use the first generated – not always
corresponding to the users intention. In practice the lack of predictability meant
the scheme could only be used under careful supervision, and thus offered only
minimal benefits over writing the relationship by hand. This paper presents a
much more general scheme, along with many improvements to the previous work.
Crucial improvements have been made to the derivation algorithm, particularly
when dealing with lists.

6.1 Deriving Type Classes

Jeuring et. al. [11] generate Haskell type classes by using the Djinn tool [1]
to automatically generate candidate instances, which were then checked using
QuickCheck properties [3]. Their work takes a substantially different approach to
ours – rather than generating relationships from implementations, they generate
relationships from specifications (both types and properties). The tool based on
their work is still a proof of concept, and has only been used to infer a handful of
relationships (such as maps and zips), specifically it is limited to not calling other
generic functions, and does not support recursive data types. Using properties to
ensure both predictability and correctness is an interesting approach, but does
require sufficient properties to completely capture the semantics of the type class.

6.2 Specifying Type Classes

From an end-user perspective, the DrIFT tool [30] is similar to Derive – both
take data types and produce associated instances. To add a type-class to DrIFT
the programmer manually writes a translation from input types to Haskell source
code, using pretty-printing combinators. There is no automatic derivation of
instance generators, and no underlying DSL. As a result, it is substantially easier
to add generators which can be derived from one example to Derive.

Another mechanism for specifying type classes is to use generic type classes
[9], a language extension supported by GHC. A programmer can write default
instances for type classes in terms of the structure of a type, using unit, products
and sums. There are many restrictions on such classes, including restrictions on
the type of instance methods and the structure of the input type. Using the
abstraction of products and sums, it is impossible to represent many instances
such as those dealing with records or containing type specific behaviour.

6.3 Deriving Relationships

The purpose of our work is to find a pattern, which is generalised to other
situations. Genetic algorithms [6] are often used to automatically find patterns

22 N. Mitchell

in a data set. Genetic algorithms work by evolving a hypothesis (a gene sequence)
which is tested against a sample problem. While genetic algorithms are good for
search, they usually use a heuristic to measure closeness – so lack the exactness
of our approach.

There is much research on learning relationships from a collection of in-
put/output pairs, often using only positive examples [13]. Some work tackles this
problem using exhaustive search [12], a technique that could possibly replace our
derive function. Instead of using specific examples, some work generalises a set
of non-recursive equations into a recursive form [15,14]. All these pieces of work
require a set of input/output examples, in contrast to our method that requires
only one output for a specific input.

The closest work we are aware of is that of the theorem proving commu-
nity. Induction is a very common tactic for writing proofs, and well supported in
systems such as HOL Light [8]. Typically the user must suggest the use of induc-
tion, which the system checks for validity. Automatic inference of an induction
argument has been tried [19], but is rarely successful. However, these systems all
work from one positive example, attempting to determine a reasonably restricted
pattern.

7 Conclusions and Future Work

We have presented a scheme for deriving a DSL from one example, which we
have used to automatically derive instance generators for Haskell type classes.
Our technique has been implemented in the Derive tool, where 60% of instance
generators are specified by example. The ease of creating new instances has
enabled several users to contribute instance generators. The Derive tool can be
downloaded from Hackage4, and we encourage interested users to try it out.

One of the key strengths of our derivation scheme is that concerns of cor-
rectness and predictability are separated from the main derivation function.
Correctness is easy to test for, so incorrect derivations can simply be discarded.
Predictability is a property of the DSL and sample input, and can be determined
in isolation from the derivation function. The derivation function merely needs
to take a best guess at what derivation might work, allowing greater freedom to
experiment.

We see several lines of future work:

– By deriving an explicit DSL, we can reuse the DSL for other purposes. A
DSL could be used to prove properties, for example that all Eq instances
are reflexive, or that put/get in Binary are inverses. Another use might be to
generate human readable documentation of an instance. We suspect there
are many other uses.

– The Sample data type (from §1) allows many instances to be inferred – but
more would be desirable. We have discussed possible extensions in §5.1, but
none seems to offer compelling benefits. An alternative approach would be

4 http://hackage.haskell.org/package/derive

http://hackage.haskell.org/package/derive

Deriving a Relationship from a Single Example 23

to introduce new sample data types with features specifically for certain
types of definition. Care would have to be taken that these definitions still
preserved predictability, and did not substantially increase the complexity
of writing examples.

– While our scheme is implemented in a typed language, most of the actual
DSL operations work upon a universal data type with runtime type check-
ing – essentially a dynamically typed language. In order to preserve types
throughout we could make use of GADTs [23].

– We have implemented our scheme specifically for instance generators in
Haskell, but the same scheme could be applied to other computer languages
and other situations. One possible target would be F#, where there are in-
terfaces instead of type classes. Another target could be an object-orientated
language, where design patterns [5] are popular.

Computers are ideally suited to applying a relationship using new parameters,
but specifying these relationships can be complex and error prone. By specifying
a single example, instead of the relationship, a user can focus on what they care
about, rather than the mechanism by which it is implemented.

Acknowledgements

Thanks to Stefan O’Rear for help writing the first version of the Derive tool.
Thanks to Niklas Broberg for the excellent haskell-src-exts library. Thanks to
Hongseok Yang for fruitful discussions on the original instance generation work.
Thanks to Mike Dodds and the anonymous referees for useful feedback on earlier
drafts.

References

1. Augustsson, L.: Putting Curry-Howard to work. In: AAIP 2009: Proceedings of
the ACM SIGPLAN Workshop on Approaches and Applications of Inductive Pro-
gramming, p. 1 (2009)

2. Broberg, N.: Haskell-src-exts (2009),
http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/

3. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: Proc. ICFP 2000, pp. 268–279. ACM Press, New York (2000)

4. Fluet, M., Pucella, R.: Phantom types and subtyping. In: Proc. TCS 2002, Deven-
ter, The Netherlands, pp. 448–460 (2002)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, Reading (1995)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Professional, Reading (1989)

7. Golubovsky, D., Mitchell, N., Naylor, M.: Yhc.Core – from Haskell to Core. The
Monad. Reader 1(7), 45–61 (2007)

8. Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

9. Hinze, R., Peyton Jones, S.: Derivable type classes. In: Hutton, G. (ed.) Proc.
Haskell Workshop 2000. Elsevier Science, Amsterdam (2000)

http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/

24 N. Mitchell

10. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995)

11. Jeuring, J., Rodriguez, A., Smeding, G.: Generating generic functions. In: WGP
2006: Proceedings of the 2006 ACM SIGPLAN workshop on Generic programming,
pp. 23–32. ACM, New York (2006)

12. Katayama, S.: Efficient exhaustive generation of functional programs using Monte-
Carlo search with iterative deepening. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Heidelberg (2008)

13. Kitzelmann, E.: Data-driven induction of recursive functions from input/output-
examples. In: Proceedings of the Workshop on Approaches and Applications of
Inductive Progamming (AAIP 2007), pp. 15–26 (2007)

14. Kitzelmann, E.: Data-driven induction of functional programs. In: Proc. ECAI
2008. IOS Press, Amsterdam (2008)

15. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs – An ex-
planation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

16. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern
for generic programming. In: Proc. TLDI 2003, pp. 26–37. ACM Press, New York
(2003)

17. Lämmel, R., Peyton Jones, S.: Scrap more boilerplate: reflection, zips, and gener-
alised casts. In: Proc. ICFP 2004, pp. 244–255. ACM Press, New York (2004)

18. Marlow, S.: Haddock, a Haskell documentation tool. In: Proc. Haskell Workshop
2002, Pittsburgh Pennsylvania, USA. ACM Press, New York (2002)

19. Mintchev, S.: Mechanized reasoning about functional programs. In: Hammond, K.,
Turner, D.N., Sansom, P.M. (eds.) Functional Programming, pp. 151–166. Springer,
Heidelberg (1994)

20. Mitchell, N.: Deriving generic functions by example. In: Mühlberg, J.T., Perna,
J.I. (eds.) Proc. York Doctoral Symposium 2007, October 2007, pp. 55–62. Tech.
Report YCS-2007-421, University of York (2007)

21. Mitchell, N., O’Rear, S.: Derive - project home page (2009),
http://community.haskell.org/~ndm/derive/

22. Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

23. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: Proc. ICFP 2006, pp. 50–61. ACM Press,
New York (2006)

24. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Proc.
Haskell Workshop 2002, pp. 1–16. ACM Press, New York (2002)

25. The GHC Team. The GHC compiler, version 6.10.3 (May 2009),
http://www.haskell.org/ghc/

26. The Yhc Team. The York Haskell Compiler – user manual (February 2007),
http://www.haskell.org/haskellwiki/Yhc

27. Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S.: Algorithm + strategy
= parallelism. JFP 8(1), 23–60 (1998)

28. Wadler, P.: How to replace failure by a list of successes. In: Proc. FPCA 1985, pp.
113–128. Springer-Verlag New York, Inc. (1985)

29. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proc.
POPL 1989, pp. 60–76. ACM Press, New York (1989)

30. Winstanley, N.: Reflections on instance derivation. In: 1997 Glasgow Workshop on
Functional Programming. BCS Workshops in Computer Science (September 1997)

http://community.haskell.org/~ndm/derive/
http://www.haskell.org/ghc/
http://www.haskell.org/haskellwiki/Yhc

Synthesis of Functions
Using Generic Programming

Pieter Koopman and Rinus Plasmeijer

Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{pieter,rinus}@cs.ru.nl

Abstract. This paper describes a very flexible way to synthesize func-
tions matching a given predicate. This can be used to find general re-
cursive functions or λ-terms obeying an input–output behavior specified
by a number of examples. Generating complex algorithms from just a
small number of simple input-output pairs is the goal of inductive pro-
gramming. This paper illustrates that our approach works well in some
challenging examples.

1 Introduction

Inductive programming aims to synthesize functions or programs from a small
number of input-output pairs. In general there will by many functions that have
the desired behavior. From this family of solutions we are interested in the
smallest or simplest solution. In some situations there are (often well-know)
algorithms to construct such functions, for instance for fitting a linear function
through a set of points in the �2. In general it is very hard to construct functions
for arbitrary data types in this way. Instead of constructing a function that has
the desired behavior we use a generate-and-test based approach. Our system
generates a sequence of more and more complex candidate functions, the system
verifies if these candidates have the desired behavior and yields the first candidate
that passes this test.

Since there are enormous many candidate functions one has to guide this
search process in one way or another to synthesize the desired function in rea-
sonable time. In this paper we show how we can control the synthesis of candidate
functions effectively by defining a tailor made data type for the grammar of the
candidate functions. The instances of these data types represent the candidate
functions, in fact the generated instance of the data type are the abstract syn-
tax trees of the corresponding functions. In contrast with real functions, these
syntax trees can be easily inspected and manipulated.

To reduce the manual effort in defining algorithms to generate candidate can-
didate functions we introduce a generic algorithm that enumerates the instances
of any (recursive) data type from small to large. We show how we can use this
to generate tailor-made candidate functions with very little effort. Usually we
only have to specify the constants to be used explicitly, everything else is done
by the generic algorithm and the type definitions.

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 25–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

26 P. Koopman and R. Plasmeijer

It appears that the generic algorithm for generating instances of a data type
that is used to generate test suites in the model-based test tool G∀st is very
effective to synthesize candidate functions in inductive programming. In order
to verify if a synthesized abstract syntax tree represents the correct function,
the system needs to be able to execute it as a function. This is done by a user
defined function that transforms the abstract syntax tree to the corresponding
function.

Using a test system to generate candidate functions and check their suitability
has additional advantages. Instead of specifying just input output pairs for the
functions one can specify an arbitrary predicate in first order logic.

For a new application domain the user has to define the grammar of candidate
functions as a data type and how instances of this data type are transformed to
functions. Next the user specifies a predicate about the specific function wanted.
The system synthesizes the instances and tests the candidates until one (or more)
functions with the desired behavior are found.

This paper first gives an explanation of the generate and test approach to syn-
thesize functions in section 2. In section 3 we explain how the candidate functions
can be synthesized using generic programming. Section 4 shows how the desired
functions can be selected from the candidates with the model-based test tool
G∀st.Then we show some nontrivial examples of our approach. Keppler’s third
law relating the distance of planets and their period is rediscovered empirically
in section 5. Next we show how one can synthesize primitive recursive function
in section 6. Section 7 shows how to synthesize complex λ-terms. Finally we
discuss related work, section 8, and conclude in section 9.

2 The Generate and Test Approach to Synthesis
Functions

It is a challenging idea to create a computer system that is able to produce the
function we have in mind based on just a few examples from input and output.
On one hand it is obvious that such a system cannot exist for arbitrary functions,
e.g. we cannot expect a function that solves the halting problem based on some
examples of terminating and nonterminating functions. On the other hand there
are couple of examples in the literature (e.g. [8,3,6,11,14]) that show that these
kind of systems can be constructed and that these systems are capable to find
solutions in a number of situations.

In this paper we are looking for a system that synthesizes a function based
on some partial specification, usually a small number of typical input–output
pairs. Since the specification given by these input–output pairs is partial (usually
the given inputs are only a small fraction of the domain of the function) there
are generally many functions that match this specification. A trivial one is the
function that maps only the given inputs to the associated outputs. Such a
function is not what we are looking for. Apart from mapping the given inputs
to outputs we have the following constraints:

Synthesis of Functions Using Generic Programming 27

1. A function with a small body is considered to be better than a function with
a big body. We will use the size of the abstract syntax tree as a measure for
the size of the function body.

2. As a consequence of the previous point we generally prefer a nonrecursive
definition over a recursive one and single recursion over double recursion.

3. The function should contain at most a few special case for specific arguments.
A recursive function needs of course some stopping criterion, but we do not
want many special cases. If there are special cases the should preferably
handle the non-recursive alternatives of a recursive data type (e.g. empty
list or empty tree), or common stop criteria for other functions (e.g. the
numbers 0 or 1).

These additional properties are not added to the specification. In order to specify
that one function is smaller or simpler than another solution we need both
functions and compare them. Instead we will use a predicate to capture only the
constraints like input–output pairs. The numbered constraints will be met by
the kind and order in which candidate functions are generated. When we do not
generate functions with excessive pattern matching on input arguments, such a
function will never be found. By generating candidate functions from small to
large the first function matching the constraints will be the smallest function we
are looking for.

An example illustrates the preference of functions. Suppose we are looking for
a function f that has the following behavior: f(0) = 0, f(2) = 4 and f(3) = 9.
Some functions displaying the required input–output behavior are:
f1 0 = 0
f1 2 = 4
f1 3 = 9
f1 x = x

f2 x = x∗x

f3 x = xˆ2

f4 x = g x
where

g 0 = 0
g y = x + g (y−1)

From these functions f1 is clearly undesirable, it contains too much specific
patterns for the given input–output pairs. The functions f2 and f3 are equally
good, they are small and meet the desired input–output relations with a general
pattern. Function f4 implements the multiplication by repeated addition. Since
its definition is larger than the definition of f2 and f3 we do not prefer the
solution f4.

2.1 Partial Specification of the Functions

We prefer a richer specification language than just input–output pairs. We also
want to be able to express properties like f(1) ≥ 0, or even ∀x . f(x) ≥ (0) and
∀x . f(x) ≥ (0)⇒ f(x + 1) > f(x). To be able to specify this kind of properties

28 P. Koopman and R. Plasmeijer

we use first order logic as specification language for the functions we are looking
for rather than only input–output pairs.

The predicate corresponding to the input–output pairs f(0) = 0, f(2) = 4 and
f(3) = 9 becomes p1(f) = f(0) = 0∧f(2) = 4∧f(3) = 9. In our implementation
this is modeled by a Boolean–valued function in the functional programming
language Clean [13].
p1 : : (Int→ Int) → Bool
p1 f = f 0 == 0 && f 2 == 4 && f 3 == 9

Our test system G∀st provides a full range of logical operators. Using some of
these logical operators the predicate f(2) = 4∧∀x . f(x) ≥ (0)⇒ f(x+1) > f(x)
can be written as
p2 : : (Int→ Int) → Property
p2 f = f 2 == 4 ∧ ForAl l λx . f x ≥ 0 =⇒ f (x+1) > f x

Each property that uses logical operators from G∀st yields Property instead of Bool.
This is necessary in the implementation, but the user can consider this type as
an equivalent for Booleans.

Since these predicates in general do not pinpoint the desired functions com-
pletely, the predicates are partial specifications.

2.2 Automatic Test Systems

Automatic test systems like G∀st [10] and QuickCheck [5] are designed to handle
these kind of predicates. The test system is designed to falsify a property by
finding a counterexample. A typical example of such a property for the functions
abs that computes the absolute value of an integer is ∀ i ∈ Int . abs(i) ≥ 0.
Expressed as a Boolean function that can be handled by G∀st this is:
pAbs : : Int → Bool
pAbs i = abs i ≥ 0

This property can be tested automatically by executing
Start = tes t pAbs

To test this property the system executes the following subtasks.

Test suite generation. The test suite is the collection of values that will be
used in the test. For our test tool the test suite is a, potentially infinite, list
of values.

In this example the function tes t detects that the property pAbs ranges
over integer values. A test suite for the type integer and other predefined
types is provided by G∀st.

If we want to deviate in a specific test from the predefined test suite we
can use the operator For. The property pAbs can be tested for integers between
−100 and 100 by executing
Start = tes t (pAbs For [−100..100])

Test execution. Since the property is generated and the test suite is given as
a list of values, test execution is basically just a map of the property over
the test suite.

Synthesis of Functions Using Generic Programming 29

Generating a verdict. The test system generates a verdict by inspecting the
first N (by default 1000) Boolean values in the list generated by test exe-
cution. Basically the property passes the test is all Booleans have the value
True and fails otherwise.

In reality the verdict is a little more detailed. Possible verdicts are:
Proof. The property holds for all elements of the test suite. Such a proof

by exhaustive testing is only possible when the size of the test suite is
smaller than the maximum number of tests to be done.

Executing the test Start = tes t (pAbs For [−100..100]) yields Proof since
there are only 201 test cases and they all succeed.

Pass. If all tests done are successful, but there are more values in the test
suite than the maximum number of tests to be done, the test result is
Pass.

Counterexample. If one of the test results is False the property obviously
does not hold. The test system G∀st does not only yield the test result
Counterexample, but also prints the test value that causes this counter
example. Moreover, it is possible to indicate that one wants at most M ,
by default 1, counterexamples in the first N test cases.

Executing the test Start = tes t pAbs yields the counterexample
-2147483648, which is the minimum integer number of the 32-bit in-
tegers. This counterexample is found almost immediately since integers
that are known to be often good test values (like 0, 1, ,-1, maxint, and
minint) are placed near the head of the test suite for integers.

Testing of properties is not restricted to properties with a single universal quanti-
fied variable, or predefined data types. Suppose we have a function rev : : [x] → [x]

that reverses lists. A desirable property is given by the list law ∀xs, ys . rev (xs+
+ ys) = rev ys++ rev xs. This law [4] can be directly used to formulate a prop-
erty to be tested by G∀st. We only have to add a data type to be used in the test
and make sure to use a defined instance for the equality.
pRev : : [Color] [Color] → Bool
pRev xs ys = rev (xs++ys) === rev ys ++ rev xs

: : Color = Red | Yellow | Blue

In the next section we show generic, also called polytypic, programming [2]
removes the burden to define these things from the user of the test system. The
test system has generic definitions for operations like generation of test suites,
equality of elements and showing the elements. The desired operations can be
derived by the compiler from the generic definitions. The user just has to write
der ive ggen Color // generic generation of the list of all Colors
der ive gEq Color // generic equality for Color
der ive genShow Color // generic show (transformation to strings) for Color

Now the property can be tested by executing Start = tes t pRev. For a correct
function rev the test result will be Pass. For a correct function there will be
no counterexamples, but the generated test suite is an infinite list of lists of
colors. For an incorrect implementation a typical test result is: Counterexample
1 found after 1 tests: [Yellow] [Blue]. The generic algorithm generates test

30 P. Koopman and R. Plasmeijer

values from small to large. This implies that the counterexamples found are the
smallest counterexample that exists. Having small counterexamples is beneficial
since this makes it usually much easier to find the bug in the system under test
(SUT, here the function rev).

Although the goal of these test systems is just opposite to inductive program-
ming, we can reuse the automatic test machinery in inductive programming.

2.3 Selecting Functions with an Automatic Test System

Above we developed a property for G∀st that captures the desired input–output
behavior. The goal of inductive programming is to find a function that satisfies
this predicate, and hence posses the desired input–output relation. A test system
is designed to find counterexamples, which is just the opposite of finding evidence
that such a function exists. Instead of change the test system to an inductive
programming system we will change the properties. Constructing a new system
requires additional work to change the system. Moreover, we need to maintain
two systems.

By a small change of the properties we obtain exactly the desired effect.
Instead of specifying what properties the desired function has, we specify that
all functions does not poses the desired properties. Counterexamples found by
the test system are exactly the functions we are looking for.

For example we replace property p1 from section 2.1 by
p1 ‘ : : (Int→ Int) → Bool
p1 ‘ f = ¬(f 0 == 0 && f 2 == 4 && f 3 == 9)

Using De Morgan’s law this can also be written as:
p1 ‘ ‘ : : (Int→ Int) → Bool
p1 ‘ ‘ f = f 0 �= 0 | | f 2 �= 4 | | f 3 �= 9

The generation of candidate functions is now the only missing part. This is
handled in the next section.

3 Generic Synthesis of Functions

The crux of the synthesis of functions using generic programming is the sys-
tematic generation of candidate functions. In order to limit the search space we
will use a data type that corresponds directly to the grammar of the candidate
functions.

As an example we start with arithmetic expression with a single variable. The
syntax is:

Expr = IConst | Var | BinOp Expr
BinOp e = e + e | e − e | e × e | e ^ PConst

Var = X

IConst = 1..5
PConst = 2..4

Synthesis of Functions Using Generic Programming 31

We have used a higher order grammar rule for BinOp in order to reuse it later
with a different argument.

Each grammar rule is directly mapped to an algebraic data type. In order
to reduce the number of constructors needed we will use the data type OR to
indicate a binary choice.
: : OR s t = L s | R t

The data types corresponding to the grammar rules above are:

: : Expr = Expr (OR (OR Var IConst) (BinOp Expr))
: : BinOp e = OpPlus e e | OpMinus e e | OpTimes e e | OpPower e PConst
: : Var = X
: : IConst = IConst Int
: : PConst = PConst Int

For the constants IConst and PConst we have added a constructor to make it a
data type on its own instead of using the type synonym : : IConst :== Int. These
separate data types appear to be convenient in the generation of instances.

Using these data types the expression (X + 1)^2 is represented by a data
type of the form OpPower (OpPlus (L X) (R (IConst 1))) (R (PConst 2)) of type
BinOp (OR Var IConst.

The next step is generating instances of these data types that are going to be
used as candidate function bodies. Rather than defining this for each and every
data type over and over again we are going to define one generic algorithm that
is able to enumerate the instances of any data type.

3.1 Generic Programming

The basic idea of generic programming is very simple. It is based on a uniform
representation of arbitrary, user defined, data types. The language compiler can
transform instances of an arbitrary data type to this uniform representation
and from this representation back to the original data type. If we need a class
of similar function we define the function on the generic representation instead
of on all types individually. Famous examples are operations like equality and
pretty printing etcetera. Generic programming is however by no means limited
to these simple examples.

Generic Representation of Values. The uniform representation of data types
is constructed with ordinary algebraic data types. These data type are used to
construct binary trees representing the usual constructors. The basic types to
construct these binary trees are:

: : UNIT = UNIT // leaf
: : EITHER a b = LEFT a | RIGHT b // choice
: : PAIR a b = PAIR a b // grouping

The type UNIT represents the leaves of the binary tree. The type EITHER is used to
indicate a choice. Using these choices the representation indicates what

32 P. Koopman and R. Plasmeijer

constructors is actually used. This is very similar to the type OR introduced
above1. The type PAIR is used to glue things together, typically arguments to
constructors.

In addition to the basic types it appears to be convenient to have some ad-
ditional types carrying information about objects and constructors. We only
introduce the type CONS indicating explicitly that there is a constructor at this
spot in the generic representation. In the Clean version of generic programming
this constructor is able to provide information about the actual constructor (like
name, arity, type it belong to etc.).
: : CONS a = CONS a

The generic representation of the type Color introduced in section 2.2 is

: : Colorg = EITHER (CONS UNIT) (EITHER (CONS UNIT) (CONS UNIT))

The generic representation of the constructors Red, Yellow, and Blue from this type
become:
Redg = LEFT (CONS UNIT)
Yellowg = RIGHT (LEFT (CONS UNIT))
Blueg = RIGHT (RIGHT (CONS UNIT))

If a constructor has an argument, this argument replaces the place holder UNIT

in the generic representation. For example the generic representation of the type
IConst is:
IConstg = CONS Int

As an example of of grouping things together by PAIR we give the generic repre-
sentation of x1. This value represents the expression x + 1 as an algebraic data
type of type BinOp (OR Var IConst) (a binary operator expression over variables or
constants).
x1 : : BinOp (OR Var IConst)
x1 = OpPlus (L X) (R (IConst 1))

The generic representation of this expression is:

LEFT (LEFT ((CONS (PAIR (LEFT (CONS (CONS UNIT)) (RIGHT (CONS (CONS 1))))))))

Here the PAIR glues both arguments of OpPlus together. This generic form of x+1
is huge and quite incomprehensible. Fortunately, those generic representations
of expressions are usually generated. The transformation between the generic
representation and the usual representation of data types can always be handled
automatically by the compiler.

Generic functions. The power of generic programming is that an operation
can be applied to an arbitrary data type by defining it only for the basic generic
types (UINT, EITHER, PAIR, and CONS). Since the transformation of the data type to

1 In fact there is no need to introduce the type OR, we can use EITHER equally well. We
have introduced OR only to prevent confusion between the ordinary domain of data
types and the domain of generic representation of these data types.

Synthesis of Functions Using Generic Programming 33

its generic representation is done by the language implementation all we have to
do is to provide an instance for the four generic data types.

The classical example of generic programming is equality. First we define the
general generic function, similar to a class definition.
generic gEq a : : a a → Bool

Next we define instances for the generic types and the basic types used in our
program.

The instant for UNIT is very simple, there is only one constructor in the data
type (line 1 in the code block below). Without looking at the argument supplied
we known that the elements must be equal.

The type EITHER indicates a choice. The given elements can only be equal if
the make the same choice between LEFT and RIGHT. If they make the same choice
we have to compare the arguments (line 2 and 3). In contrast with a class the
comparison of the arguments of LEFT and RIGHT is not done by an overloaded
recursive call of geq. In the generic programming variant implemented in Clean

the functions to compare the type arguments of EITHER are supplied as additional
arguments by the generic system. In the code below we call these functions f l

and f r .
Since the type PAIR has also two type arguments the generic instance of geq

for PAIR has also two additional functions as arguments. The type PAIR has only
one alternative (line 5). Hence we can immediately start with comparing the
arguments of the constructor PAIR using the given functions.

For the single argument type CONS we have only one additional function. Since
there is again only one constructor in the type, the only task we have is to
compare the function arguments using the given function f (line 6).

In this example the only basic type needed is Int. Integers are compared using
the ordinary equality on integers (line 7).

All code for defined instances of geq together is:
1geq{|UNIT|} = True
2geq{|EITHER|} f l f r (LEFT x) (LEFT y) = f l x y
3geq{|EITHER|} f l f r (RIGHT x) (RIGHT y) = f r x y
4geq{|EITHER|} f l f r = False
5geq{|PAIR|} fx fy (PAIR x1 y1) (PAIR x2 y2) = fx x1 x2 && fy y1 y2
6geq{|CONS|} f (CONS x) (CONS y) = f x y
7geq{| Int |} x y = x == y

For any other data type we can define an instance like the instances shown
above. The power of generic programming however is that we can derive these
instances.
der ive geq OR, BinOp , Var , IConst , PConst

Now you can use the operation geq for all types mentioned. The Clean system
implements those operations by transforming the instances of the type to their
generic representations and comparing those representations using the definitions
given above.

Using those definitions we can compare the values IConst 5 and IConst 7 by
executing
Start = geq{|�|} (IConst 5) (IConst 7)

34 P. Koopman and R. Plasmeijer

As we might expect and hope the result is False.
One might wonder what the result of comparing IConst 3 and PConst 3 world be.

These values have the same generic representation, but a different type. If one
tries to compare them in an expression like geq{|�|} (IConst 3) (PConst 3), this fails
rather than yielding True. This expression contains a type error since the generic
function definition generic gEq a : : a a → Bool requires that both arguments have
the same type.

It is important to realize that generic programming is by no means limited to
the simple classical examples like equality and pretty printing. In this paper we
will use it to generate the instances of data types.

3.2 Generic Generation of Instances of a Data type

Now we consider the task of generating a list of values for all types. We approach
this task by generic programming. Our algorithm will generate the generic in-
stances of those values and the Clean system will convert those generic values to
ordinary values whenever desired.

What we need is a generic function that yields a list of all values of a given
type. This is:
generic gengen a : : [a]

Again we define the instances for the generic types and derive the instances of
other types whenever possible.

The instance for UNIT is again very simple (line 1 in the numbered code block
below). There is only one value of this type: the constructor UNIT. So, the list of
values contains only this constructor.

For the type CONS we only have to apply the constructor CONS to all possible
arguments (line 2). The list l of possible arguments is supplied by the generic
system, just as the functions to compare arguments in geq above.

For the type PAIR we have to combine the elements from the given lists is all
possible ways. We use the library function diag2 to ensure that the elements are
mixed in a ‘fair’ way. This prevents that we take the first element of one of the
lists and pair it with all elements of the second list before we consider the second
argument of the first list. To illustrate this mixing of list elements with some
ordinary types we consider the unbounded lists of integers [0 . .] and the list of
characters [’a’ . .] . The expression diag2 [0 . .] [’a’ . .] yields
[(0 ,’a’) ,(1 ,’a’) ,(0 ,’b’) ,(2 ,’a’) ,(1 ,’b’) ,(0 ,’c’) ,(3 ,’a’) ,(2 ,’b’) ,(1 ,’c’) ,(0 ,’d’) , . .

An ordinary combination of list elements with [(i , c) \\ i←[0 . .] , c← [’a’ . .]] yields
[(0 ,’a’) ,(0 ,’b’) ,(0 ,’c’) ,(0 ,’d’) ,(0 ,’e’) ,(0 ,’f’) ,(0 ,’g’) ,(0 ,’h’) ,(0 ,’i’) ,(0 ,’j’) , . .

Here only the integer 0 is used.
For the choice between elements from two lists in the type EITHER we apply

the combinators LEFT and RIGHT to the elements in the given lists (line 4). The
function merge merges the resulting list by taking repeatedly one element from
the first list and one element from the second list.

The instance of the generic generation of lists of values for integers is defined
such that it yields the list [0 ,1 ,−1,2 ,−2,3 ,−3, . . (line 9).

Synthesis of Functions Using Generic Programming 35

1gengen{|UNIT|} = [UNIT]
2gengen{|CONS|} l = map CONS l
3gengen{|PAIR|} l m = [PAIR a b \\ (a ,b) ← diag2 l m]
4gengen{|EITHER|} l g = merge (map LEFT l) (map RIGHT m)
5where
6merge [] m = m
7merge l [] = l
8merge [a : r] m = [a:merge m r]
9gengen{| Int |} = [0 : [j\\ i←[1 . .] , j← [i ,−i]]]

After these preparations we can derive the generation of our data types by
der ive gengen OR, BinOp , Var

From the syntax in section 3.2 we see that the values for IConst vary from 1 to
5 and the values for PConst range from 2 to 4. This implies that they cannot be
derived. By deriving those values all integers would occur. Instead of deriving
we use tailor made definitions for these types.
gengen{| IConst|} = map IConst [1 . . 5]
gengen{|PConst|} = map PConst [2 . . 4]

Using this we can generate a list of expressions of type BinOp (OR Var IConst) just
by writing
l : : [BinOp (OR Var IConst)]
l = gengen{|�|}

The first 10 expressions generated are:
[OpPlus (L X) (L X) // x+x
,OpTimes (L X) (L X) // x×x
,OpMinus (L X) (L X) // x-x
,OpPower (L X) (PConst 2) // x^2
,OpPlus (R (IConst 1)) (L X) // 1+x
,OpTimes (R (IConst 1)) (L X) // 1×x
,OpMinus (R (IConst 1)) (L X) // 1-x
,OpPower (R (IConst 1)) (PConst 2) // 1^2
,OpPlus (L X) (R (IConst 1)) // x+1
,OpTimes (L X) (R (IConst 1)) // x×1
]

The mechanism to produce instances of data types introduced here appears to
be very general. If we want an abstract syntax tree for an other grammar, we
just define a new data type that mimics this syntax. For the generation we
derive whatever possible and use a tailor made definition for the other types.
The pattern seen here appears to be common, everything except the constants
represented by basic types can be derived. The required manual definitions are
very simple.

For instance if we want recursive expression given by the syntax

Expr = Var | IConst | BinOp Expr

we define the recursive data type Expr.
: : Expr = Expr (OR (OR Var IConst) (BinOp Expr))

After deriving gengen for Expr we can generate those expressions. The first 10
expressions generated are:

36 P. Koopman and R. Plasmeijer

[Expr (L (L X)) // x
,Expr (R (OpPlus (Expr (L (L X))) (Expr (L (L X))))) // x+x
,Expr (L (R (IConst 1))) // 1
,Expr (R (OpTimes (Expr (L (L X))) (Expr (L (L X))))) // x×x
,Expr (L (R (IConst 2))) // 2
,Expr (R (OpMinus (Expr (L (L X))) (Expr (L (L X))))) // x-x
,Expr (L (R (IConst 3))) // 3
,Expr (R (OpPower (Expr (L (L X))) (PConst 2))) // x^2
,Expr (L (R (IConst 4))) // 4
,Expr (R (OpPlus (Expr (R (OpPlus (Expr (L (L X))) // (x+x)+x

(Expr (L (L X))))))
(Expr (L (L X)))))]

The actual generic generation algorithm ggen used by G∀st uses a pseudo ran-
dom choice between the list with LEFT elements and RIGHT elements instead of a
strict interleaving. As a result the order of elements in the resulting lists has a
slight pseudo random perturbation compared with the algorithm presented here.
Testers are found of such randomness. Here it does not harm us, but neither is
a big advantage. In the rest of the paper we will use the generic function ggen

from G∀st instead of the somewhat simpler version gengen introduced here.

3.3 Transforming Syntax Trees to Functions

Now we are able to generate abstract syntax trees of candidate functions in
a convenient and high level way. Just by changing the algebraic data types
representing the syntax trees, we can change the candidate functions considered.

However, in order to evaluate a predicate over a candidate function we do
need the function instead of its abstract syntax tree. In order to construct these
functions we define the class apply. The functions in this class produce a value v

given a data type instance d and an environment e. As usual in interpreters and
semantically descriptions this environment is used to store bindings of variables
to values.
c las s apply d e v : : d → e → v

The first instance is for the type OR. The type restriction apply x b c & apply y b c

says the we need to be able to apply the types x and y for the given binding b

and value v
2. All this function apply does is removing the constructor LEFT or RIGHT

and apply the appropriate function apply to the argument of the constructor.
instance apply (OR x y) b c | apply x b c & apply y b c
where

apply (L x) = apply x
apply (R y) = apply y

Slightly more interesting is the instance of apply for binary operations, BinOp x.
The definition just transforms the arguments of the operator to a value of type v

by apply x b v or apply PConst b v and applies the indicated operator to the result.
The class restriction just requires that all the operations are available.

2 In Haskell one write such a type restriction as
instance (apply x b c, apply y b c) => apply (OR x y) b c

where ..

Synthesis of Functions Using Generic Programming 37

instance apply (BinOp x) b v | apply x b v & +, −, ∗ , ˆ v & apply PConst b v
where

apply (OpPlus x y) = λb.apply x b + apply y b
apply (OpMinus x y) = λb.apply x b − apply y b
apply (OpTimes x y) = λb.apply x b ∗ apply y b
apply (OpPower x p) = λb.apply x b ˆ apply p b

Our very simple expressions of type Expr from section 3.2 just have one variable
X. The environment needed to evaluate these expressions can be accordingly
simple, we just have to store the value of this single variable. If we assume that
this variable is of type Int we have:
instance apply IConst b Int where apply (IConst i) = λb . i
instance apply PConst b Int where apply (PConst i) = λb . i
instance apply Var Int Int where apply X = λ i . i
instance apply Expr Int Int where apply (Expr f) = apply f

For the constants IConst and PConst we just ignore the binding environment b

and yield the stored value. For a variable, Var, we produce the value stored in
the environment. For an expression, Expr, we just remove the combinator and
continue recursively.

Here it pays off to use the type OR instead separate constructors for all al-
ternatives. If we had used separate constructors for the alternatives we would
need one alternative of apply for each constructor. In our current approach the
instance of apply handles all choices in the syntax.

After all these preparations we can reformulate our predicate and start the
test system. The difference between this version of the predicate, p1e, and the
predicate p1 ‘ from section 3.2 is that p1e ranges over Expr while p1 ‘ ranges over
functions of type Int→ Int. The test system generates instance e of type Expr ef-
fectively by the given instance of ggen. The generated abstract syntax tree e

is transformed to the desired function f by the appropriate instance of apply.
In this example we execute at most 1000 test and stop after finding 10 coun-
terexamples, hence we use testnm instead of tes t since tes t will produce only one
counterexample.
p1e : : Expr → Bool
p1e e = ¬(f 0 == 0 && f 2 == 4 && f 3 == 9) where f = apply e

Start = testnm 1000 10 p1e

The result produced by G∀st in 0.4 seconds is:

Counterexample 1 found a f t e r 16 t e s t s : (x∗x)
Counterexample 2 found a f t e r 22 t e s t s : ((1∗x)∗x)
Counterexample 3 found a f t e r 38 t e s t s : (xˆ2)
Counterexample 4 found a f t e r 358 t e s t s : ((x∗1)ˆ2)
Counterexample 5 found a f t e r 381 t e s t s : ((xˆ2)+(1−1))
Counterexample 6 found a f t e r 453 t e s t s : ((x+(x∗x))−x)
Counterexample 7 found a f t e r 491 t e s t s : ((x∗x)−(x−x))
Counterexample 8 found a f t e r 582 t e s t s : (((xˆ2)+x)−x)
Counterexample 9 found a f t e r 713 t e s t s : ((1+(x∗x))−1)
Counterexample 10 found a f t e r 762 t e s t s : (1∗(x∗x))

These counterexamples of the predicate p1 are all functions matching the input–
output patterns f 0 = 0, f 2 = 4, and f 3 = 9.

Obviously we used a tailor made instance of the generic show function rather
than deriving an instance. Our instance removes all unnecessary constructors and

38 P. Koopman and R. Plasmeijer

prints the binary operations as infix operators. The pretty printer here gives only
the body of the function found. The first solution found should be understood
as f x = x∗x.

4 Selecting Candidate Solutions

Looking at the solutions found at the end of the previous section we notice that
a desired solution is found quickly and is the first solution found. However, many
of the other solutions have a rather undesirable form. For instance, for a human
it is obvious that the second solution f x = (1∗x)∗x represents semantically exactly
the same solution as the first one f x = x∗x.

There are at least three ways to avoid those kind of undesirable solutions.

1. One can design a better syntax that excludes those undesirable solutions. It
is obvious how this should be done. Since the undesirable candidates cannot
be represented in the new data types, they will never be considered. The
advantage is that we obtain a complex syntax, and hence data type, for
simple expressions. We will not elaborate on this since it is obvious how it
should be done and we prefer a simple syntax (and hence data types).

2. We can adapt the generation of instances such that the undesirable candidate
functions are never considered. This is an unattractive solution since we now
have to define a generation algorithm manually instead of reusing the generic
algorithm.

In section 7 however we will provide an elegant solution that combines a
simple data structure, generic generation and tailor made instances.

3. Finally we can at runtime exclude undesirable candidate solutions. This
is possible since the candidate function is available as an abstract syntax
tree. We can easily write a predicate f i t that inspects the syntax tree and
yields a Boolean indicating if this candidate function should be used. We
will illustrate this solution here.

We will illustrate the selection of candidate functions here. First we define a
class f i t that determines if the candidate is healthy.
c las s f i t a : : a → Bool

The maximum penalty for making the predicate not advanced enough is that
a candidate function is considered that actually has not the desired form. The
instances of this class presented below are pretty straightforward, of course we
can make these predicates as cleaver as desired.

For the choice type Or the instance of f i t determines what alternative we have
at hand and applies the appropriate version of f i t recursively.

The real work happens in the instance of f i t for binary operations. For x− y
we require that x
= y, y
= 0, x is fit, y is fit, and that x and y are not both
constants. For the other alternatives we impose similar constraints.

Synthesis of Functions Using Generic Programming 39

An expression of the form Expr e is fit if e is fit.
instance f i t (OR s t) | f i t s & f i t t
where

f i t (L x) = f i t x
f i t (R y) = f i t y

instance f i t (BinOp x) | gEq{|�|} x & isConst , f i t x
where

f i t (OpMinus x y) = x =!= y && ¬(i s 0 y) && f i t x && f i t y && ¬(isAny x && isAny y)
f i t (OpPlus x y) = ¬(i s 0 x) && ¬(i s 0 y) && f i t x && f i t y && ¬(isAny x && isAny y)
f i t (OpTimes x y) = ¬(i s01 x) && ¬(i s01 y) && f i t x && f i t y && ¬(isAny x && isAny y)
f i t (OpPower x (PConst p)) = p>1 && f i t x

instance f i t Expr where f i t (Expr e) = f i t e

In the code above we used the following predicates to decide if some data type
represents the constant 0 (i s 0), the constant 0 or 1 (i s01), or any constant (isAny).
i s 0 x = i sConst (λ i . i ==0) x
is01 x = i sConst (λ i . i ==0 | | i==1) x
isAny x = i sConst (λi .True) x

These predicates are built on top of the class i sConst defined as:
c las s i sConst a : : (Int→Bool) a → Bool

instance i sConst (OR s t) | i sConst s & isConst t
where

i sConst p (L s) = i sConst p s
isConst p (R t) = i sConst p t

instance i sConst IConst where i sConst p (IConst i) = p i
instance i sConst Expr where i sConst p (Expr e) = i sConst p e
instance i sConst a where i sConst p a = False

Using this predicate we can update our predicate to find functions matching
f(0) = 0, f(2) = 4 and f(3) = 9 to:
p2 : : Expr → Property
p2 d = f i t d =⇒ ¬(f 0 == 0 && f 2 == 4 && f 3 == 9) where f = apply d

In order to test the first 1000 candidates, the test system rejects 738 candidates
that are not f i t and not counted as a test. Within one second the test system
produces the following result:
Counterexample 1 found a f t e r 13 t e s t s : (x∗x)
Counterexample 2 found a f t e r 24 t e s t s : (xˆ2)
Counterexample 3 found a f t e r 253 t e s t s : ((x+(x∗x))−x)
Counterexample 4 found a f t e r 332 t e s t s : (((xˆ2)+x)−x)
Counterexample 5 found a f t e r 419 t e s t s : ((1+(x∗x))−1)
Counterexample 6 found a f t e r 654 t e s t s : (((xˆ2)+(x+x))−(x+x))

This shows that a number of undesirable results are removed. One might argue
that the solutions from 3 up to 6 are all undesirable. They can be excluded by
improving the predicate f i t as well.

This concludes the generation of candidates for this simple example. Perhaps
the reader wonders that we needed quite a heavy equipment to find rather simple
functions. There are two answers to this concern. First and foremost, the test
tool G∀st including the generic generation of instances of data types is existing
technology. It is treated here to make this paper self-contained, but only the
application as inductive programming tool is new. Second, the approach intro-
duced here can also be applied to many other and more complicated problem
areas. We show a couple of those applications in the next sections.

40 P. Koopman and R. Plasmeijer

5 Keppler’s Third Law

Kepler (1571-1630) studied the motion of planets of the Sun. He is famous for
formulating 3 laws about the motion of planets. His third law was formulated
more than ten years after the first two laws. This third law quantitatively relates
orbital period and distance of the planet to the Sun. Apparently it was hard for
him to find this law. This may be partially caused by the kind of equipment and
data available in those days.

In order to test the power of our approach we try to rediscoverKepler’s third law
from data about the planets found on Wikipedia [1]. The basis of our data is table 1
containing the diameter, mass, orbital radius, and orbital period of the planets of
our Sun. These parameters are given in astronomical units (AU), which means
that these parameters are relative to the parameter for the Earth.

Table 1. Parameters of the planets

Name Equatorial Mass Orbital Orbital Period
diameter (AU) (AU) radius (AU) (years)

Mercury 0.382 0.06 0.39 0.24
Venus 0.949 0.82 0.72 0.62
Earth 1.00 1.00 1.00 1.00
Mars 0.532 0.11 1.52 1.88

Jupiter 11.209 317.8 5.20 11.86
Saturn 9.449 95.2 9.54 29.46
Uranus 4.007 14.6 19.22 84.01
Neptune 3.883 17.2 30.06 164.8

In our synthesis this table is represented as a list of 5-tuples. Each tuple
represents one line in the table.
// [(name, diameter, mass, orbital radius, and orbital period)]
planetTable : : [(String , Real ,Real ,Real , Real)]
planetTable

= [("Mercury" ,0 .382 ,0 .06 ,0 .39 ,0 .24)
,("Venus" ,0 .949 ,0 .82 ,0 .72 ,0 .62)
,("Earth" ,1 .00 ,1 .00 ,1 .00 ,1 .00)
,("Mars" ,0 .532 ,0 .11 ,1 .52 ,1 .88)
,("Jupiter" ,11 .209 ,317 .8 ,5 .20 ,11 .86)
,("Saturn" ,9 .449 ,95 .2 ,9 .54 ,29 .46)
,("Uranus" ,4 .007 ,14 .6 ,19 .22 ,84 .01)
,("Neptune" ,3 .883 ,17 .2 ,30 .06 ,164 .8)
]

For Keppler’s third law we are looking for a function giving the period as function
of the mass and the distance, that is a function of type f (mass , distance) =
period .

Clearly we need slightly different expressions as above. Here we have two real
numbers as argument instead of one integer. Moreover, there might be other op-
erators involved. Apart from the expressions x1 − x2, x1 + x2, x1 × x − s and
x^p (power) considered above, we include sin x, cos x and

√
x. This are the usual

operations found in any handbook of physics. The corresponding data types are:

Synthesis of Functions Using Generic Programming 41

: : Op x
= OpPlus x x | OpMinus x x | OpTimes x x | OpPower x PConst
| OpDivide x x | OpRoot x PConst | Sin x | Cos x

: : Var = Var Int
: : Expr = Expr (OR (OR Var RConst) (Op Expr))

: : RConst = RConst Real
: : PConst = PConst Real

Exactly as above we derive generation of instances of these types for all com-
plicated types. The only interesting cases are the generation of variables and
constants. In this situation we know that the arity (number of arguments) of the
desired function is two. So, only the variables Var 0 and Var 1 make sense.
ggen{|Var|} n r = map Var [0 . .ar i ty−1]
a r i t y = 2
ggen{|PConst|} n r = map PConst [2 . 0 . . 3 . 0]
ggen{|RConst|} n r = map RConst [1 .0 , pi , pi4]

The environment should here not consider a single integer value as above, but
a real value for each argument. This is represented by a list of reals. The only
slightly interesting instance is the one that looks up a variable in the environ-
ment.
instance apply Var [Real] Real where apply (Var i) = λe . e ! ! i

All other instances of apply are exactly similar to the once shown above. The
only difference is that the resulting value is of type Real. Whenever necessary the
environment should be given the type [Real] .

After these preparations we can immediately state the property for func-
tions implementing Keppler’s third law: The function k3 should be fit and
k3 (m, r) ≈ p.
pKepler : : Expr → Property
pKepler k3 = f i t k3 =⇒ ¬((λ(name,d ,m, r ,p) . apply k3 [m, r] ≈ p) For planetTable)

In order to compensate for small errors in real calculations and finite preci-
sion the the numbers in the planet table we use ≈ instead of =. The opera-
tor ≈ considers two numbers equal if their relative difference is less than some
δ, e.g. 1%.
(≈) i n f i x 4 : : Real Real → Bool
(≈) x y = x==y | | (abs (x−y)/(abs x+abs y)) ≤ del ta

Within 0.5 second this system generates the first version of Keppler’s third law.
The first 5 functions generated are:
Counterexample 1 found a f t e r 4838 t e s t s : k3 x0 x1 = (x1ˆ(1/2))ˆ3
Counterexample 2 found a f t e r 6121 t e s t s : k3 x0 x1 = (x1ˆ(1/2))∗x1
Counterexample 3 found a f t e r 12286 t e s t s : k3 x0 x1 = (x1ˆ3)ˆ(1/2)
Counterexample 4 found a f t e r 54331 t e s t s : k3 x0 x1 = (x1∗x1)/(x1ˆ(1/2))
Counterexample 5 found a f t e r 80598 t e s t s : k3 x0 x1 = (x1ˆ2)/(x1ˆ(1/2))

Note that the mass, x0, of the planet does not occur in the body of these functions.
Apparently it plays no rôle in the law. If we had known this before, we could
have searched for a function obeying the predicate k3 (r) ≈ p. We pretended

42 P. Koopman and R. Plasmeijer

that we had just like Keppler no idea of the relation to be found. The generated
functions are all equivalent to the official versions of Kepplers third law:

K3 : p =
√

r
3

Our system found this law within one second. Even if we include the time to
construct our function synthesis system this is much faster than the ten years
Keppler needed. This is of course by no means a fair comparision. For instance
we can lookup the data of planets simply at Wikipedia and have quite powerful
computers available. However, this example shows that our approach is capable
to solve nontrivial problems.

Until know we have shown that it is possible to generate functions with a body
that is some expression over containing variables, and predefined operators. In
the next sections we try to find recursive functions and λ–expressions obeying
some predicate.

6 Synthesizing Primitive Recursive Functions

The principle introduced above can also be applied to recursive functions. How-
ever, the presence of functions imposes one additional concern. Suppose we syn-
thesize a nonterminating function and start evaluating the predicate. This will
start a nonterminating computation. We can look for three kind of solutions:

1. At first glance extending the predicate f i t to allow only terminating func-
tions looks tempting. Unfortunately termination of computations is an un-
decidable problem. Of course we make a safe approximation and allow only
functions that are known to terminate. In case of doubt, the function is
considered to be not f i t .

2. A better solution is to synthesize only functions that are known to terminate
always. We will explore this approach in this section for primitive recursive
functions.

3. Another approach is to reduce functions only a finite amount of reduction
steps, say 1000 step. If the predicate is not reduced to True in these steps
we reject this candidate function. Of course this includes the risk to reject
matching functions, but we avoid nontermination. This approach is explored
in the next section.

In order to generate primitive recursive functions that are guaranteed to ter-
minate we extend the syntax for expression from section 3.2 with the following
syntax for recursive functions.

Fun = f(x) ={ Expr | RFun }
RFun = if (x ≤ Termval) then Expr else PRex

PRex = FunAp | V ar | IConst | BinOp PRex

FunAp = f (x− FConst)
TermV al = 0 .. 2

FConst = 1 .. 2

Synthesis of Functions Using Generic Programming 43

Again we map this directly to a data type that includes all variable parts of the
functions. There is no reason to store constant parts in the abstract syntax tree.
For this reason FunAp only contains the constant subtracted from the argument
x in the recursive call.

: : PRex = PRex (OR (OR FunAp Var) (OR IConst (BinOp PRex)))
: : FunAp = FunAp Int
: : TermVal = TermVal Int
: : RFun = RFun TermVal Expr PRex
: : Fun = Fun (OR Expr RFun)

Like usual we derive the generation of everything in the abstract syntax trees
but the constants. The generation of constants has the familiar pattern:
gengen{|TermVal|} = map TermVal [0 . . 2]
gengen{|FunAp|} = map FunAp [1 . . 2]

In order to evaluate the application of such syntax trees we use an environment
that contains the recursive function as well as the value of the current argument:
(Int→ Int , Int).
In the instance for variable we select the appropriate field from this environment:

instance apply Var (x , Int) Int where apply X = λ(, i) . i

The interesting instances of apply are the recursive function call FunAp, and the
initial function definition by RFun. In the instance for RFun we transform the ab-
stract syntax tree to a function of type Int→ Int and put it in the initial environ-
ment together with the current argument.
instance apply FunAp (Int→ Int , Int) Int where apply (FunAp d) = λ(f , i) . f (i−d)
instance apply RFun Int Int
where apply r f=: (RFun (TermVal c) t e) = f

where f i = i f (i≤c) (apply t i) (apply e (f , i))

We can synthesize functions for the input–output patterns from above: f(0) = 0,
f(2) = 4 and f(3) = 9 by:
p3 : : Fun → Property
p3 d = f i t d =⇒ ¬(f 0 == 0 && f 2 == 4 && f 3 == 9) where f = apply d

Start = testnm 1000 5 p1

Note that compared to p2 only the type used in the predicate is changed from
Expr to Fun, this is all we need to do to change the search space. The results are:
Counterexample 1 found a f t e r 25 t e s t s : f x = x∗x
Counterexample 2 found a f t e r 57 t e s t s : f x = xˆ2
Counterexample 3 found a f t e r 6241 t e s t s : f x = ((x+x)−x)ˆ2
Counterexample 4 found a f t e r 7500 t e s t s : f x = ((x∗x)+x)−x
Counterexample 5 found a f t e r 8336 t e s t s : f x = i f (x≤1) (x+x) (f (x−2)+(f (x−1)+x))

As expected the first results are identical to synthesizing using the type Expr since
this is the first option in the type Fun. The fifth function synthesized however is
a recursive function.

In exactly the same way we can synthesize familiar primitive recursive func-
tions from a few input–output pairs. For instance:

44 P. Koopman and R. Plasmeijer

p4 : : Fun → Property
p4 d = f i t d =⇒ ¬(f 1 == 1 && f 4 == 24) where f = apply d

yields the factorial function.
Counterexample 1 found a f t e r 2785 t e s t s : f x = i f (x≤0) 1 (x∗f (x−1))

and
p5 : : Fun → Property
p5 d = f i t d =⇒ ¬(f 5 == 8 && f 7 == 21) where f = apply d

yields the famous Fibonacci function
Counterexample 1 found a f t e r 1167 t e s t s : f x = i f (x≤1) 1 (f (x−2)+f (x−1))

The Ackermann function cannot be synthesized in this way since it is not prim-
itive recursive.

This approach is not restricted to function having a single integer variable
as argument. Above we have shown how multiple arguments can be handled.
In exactly the same way as functions over integers we have also synthesized
recursive functions over lists and other recursive data types.

7 Synthesizing Lambda Expressions

In this section we show how λ-expressions with specific properties can be syn-
thesized. This imposes two problems. First it is not possible to use a data type
that represents only terminating functions. If we need to generate λ-expressions,
the abstract syntax tree to be used reflects the structure of those λ-expressions.
The second problem is a consequence of using those λ-expressions: it is hard to
determine an interesting class of λ-expressions that is known to terminate.

We solve these problems one by one. First we define a data type to rep-
resent λ-expressions. Apart from the well-known variables (Var V), abstractions
(Abs V LExpr), and applications (Ap LExpr LExpr), we have integer constants (Const C),
and binary operator constants (OpConst Str ing). These binary operations are in-
teger manipulations like "+" and "-".
: : LExpr = Var V | Abs V LExpr | Ap LExpr LExpr | Const C | OpConst Str ing
: : V = V Int // variable
: : C = C Int // constant

We do not include a build-in conditional for our λ-expressions. The Booleans
and the conditional are represented by the expressions λ v0 . λ v1 . v0 for True,
λ v0 . λ v1 . v1 for False, and the identity function λ v . v for if. Represented as
syntax trees this is:
TRUE = Abs v0 (Abs v1 (Var v0))
FALSE = Abs v0 (Abs v1 (Var v1))
I f = Abs v0 (Var v0)

It is completely standard to write a reducer for λ-expressions of the form LExpr.
We omit the details here for brevity and assume that we have a reducer to head
normal form according to the lazy (left-most, outer-most) strategy.

hnf : : LExpr → LExpr

Synthesis of Functions Using Generic Programming 45

The only thing special about this reduce is that it does at most N reduction
steps in order to ensure termination. In our test we used 1000 as upper limit for
the number of reduction steps.

As a first approach we generate instance of LExpr in the now familiar way:
we manually generate some appropriate constants and variables and derive gen-
eration for the other types. We reformulate property p1 from above to find λ-
expression matching f(0) = 0, f(2) = 4 and f(3) = 9 as:
pL1 : : LExpr → Bool
pL1 f = ¬(p 0 0 && p 2 4 && p 3 9)
where p x y = hnf (Ap f (Const (C x))) === (Const (C y))

Unfortunately our synthesis technique does not find an answer in reasonable
time. Our approach fails since the search space is too large. Most of the generated
expressions are ill-formed, like λa . b, λa . +, and so on.

There are several solutions for this problem. For instance we can define the
generation of instances of LExpr manually as we did in [12]. This works well, but
this approach is not very elegant. Another solution is to keep track of the type
of the generated expressions during generating and make sure to yield only well-
typed expressions. Katayama [8] uses this approach quite successfully. We find
it less appealing since it further complicates the generation algorithm.

In this paper we propose a new method to control the generation of λ-
expressions: we introduce an additional data type that corresponds to a high
level language that describes the functions we want to consider. We synthesize
instances of these high level data type in the usual way; define the instances of
constants manually and derive the generation of the rest. Next we convert the
instances of these high level syntax trees to λ-expressions. For this purpose we
can introduce the class conv.
c las s conv a : : a → LExpr

However, it is more interresting and convenient to define a generic conversion.
generic gconv a : : a → LExpr

The instances for EITHER, PAIR and CONS do nothing else than applying the given
conversion function to the arguments.
gconv{|EITHER|} gf gg (LEFT x) = gf x
gconv{|EITHER|} gf gg (RIGHT y) = gg y
gconv{|PAIR|} gf gg (PAIR x y) = Ap (gf x) (gg y)
gconv{|CONS|} g (CONS x) = g x

For all leaves of the tree we have to think what should be done. For this reason
we do not provide an instance of UNIT.

The conversion of high-level functions to λ-expressions can be found in any
textbook on semantics or implementation of functional languages.

We use a data type very similar to the one for primitive recursive functions
shown in the previous section.
: : Op = Op String
: : Oper x = Oper Op x x
: : X = X
: : RecAp = RecAp Int
: : Ex = Ex (OR (OR X C) (Oper Ex))

46 P. Koopman and R. Plasmeijer

: : Pr = Pr (OR (OR X C) (OR (Oper Pr) RecAp))
: : RFun = RFun C Ex Pr
: : Fun = Fun Ex

As usual we define the generation of constants manually and derive generation
for all other data types.
gengen{|Op|} = map Op ["+" ,"*"]
gengen{|RecAp|} = map RecAp [1 . . 2]
der ive gengen Oper , X, Ex , Pr , RFun, Fun

Similar to the previous section we can define an instance of f i t for those types.
This contains no surprises at all.

The conversion of these types to the corresponding types for λ-expressions is
very simple for most types. Some typical examples are:
gconv{|C|} c = Const c
gconv{|V|} v = Var v

The conversion of a given body to a function is rather simple. We only have to
add an abstraction to the converted body.
gconv{|Fun|} (Fun b) = Abs v0 (gconv{|�|} b)

Only the conversion of recursive functions deserves some attention. First we need
to decide how we handle the recursion. Usually this is done by a Y-combinator
defined as Y f = f (Y f). Here we unfold the Y-combinator at conversion time.
This implies that every recursive call gets its own function as λ-term as its
first argument. By convention the function argument is represented by v0 and
the recursive function by v1. This implies that the recursive call f (x − c) is
represented by the term v1 v1 (− v0 c). In terms of our data types this is:
gconv{|RecAp|} (RecAp c)
= Ap (Ap (Var v1) (Var v1)) (Ap (Ap (OpConst "-") (Var v0)) (Const (C c)))

A recursive function definition rearranged the argument and the function such
that it can be recursively applied. That is the function is represented by the
λ-expression (λv4 . λv3 . v4 v4 v3) f where f is the λ-expression corresponding
to the primitive recursive function. This function f as a λ-expression gets itself
and the argument x as arguments (λv1 . λv0 ...). In a conditional expression (see
I f defined as the identity function above) it checks wether x is less or equal to
the given constant: ≤ v0 c. Depending on this condition it either executes the
converted then-part t, or else-part e.
gconv{|RFun|} (RFun c t e)
= Ap (Abs v4 (Abs v3 (Ap (Ap (Var v4) (Var v4)) (Var v3)))) f

where f = Abs v1 (Abs v0 (Ap (Ap (Ap I f (Ap (Ap (OpConst "≤") (Var v0)) (Const c)))
(conv t)) (conv e)))

The conversion of Ex, Pr, and OR can be derived.
der ive gconv Ex , Pr , OR

After all these preparations it is easy to generate high quality λ-expressions. We
simply convert the fit instance of functions Fun and recursive functions RFun.
ggen{|LExpr|} n r = map gconv{|�|} (f i l t e r f i t (es n r))

es : : [OR Fun RFun]
es = gengen{|�|}

Synthesis of Functions Using Generic Programming 47

With these generator for instance of LExpr the test system finds solutions for
predicate pL1 quickly:
Counterexample 1 found a f t e r 4 t e s t s : (λa. (∗ a) a)
Counterexample 2 found a f t e r 748 t e s t s : (λa. (+ ((∗ −1) a)) ((∗ a) ((+ a) 1)))
Counterexample 3 found a f t e r 863 t e s t s : (λa. (+ ((∗ a) −1)) ((∗ a) ((+ a) 1)))
Counterexample 4 found a f t e r 1294 t e s t s : (λa. (+ ((+ 1) ((∗ a) a))) −1)
Counterexample 5 found a f t e r 1484 t e s t s : (λe .e e)(λb.λa. (((λa.a)((≤ a) −1)) 1)((∗ a)a))

In a similar way we can state some input–output pairs of the Fibonacci function:
pL2 : : LExpr → Bool
pL2 f = ¬(p 3 3 && p 4 5 && p 5 8 && p 7 21)
where

p x y = hnf (Ap f (Const (C x))) === (Const (C y))

The first Fibonacci function in λ-calculus found is:
(λe .e e) (λb.λa. (((λa.a) ((≤ a) 1)) 1) ((+ ((b b) ((− a) 2))) ((b b) ((− a) 1))))

This λ-term corresponds exactly to the most common double recursive definition.
Of course it is also possible to select the desired (primitive recursive) functions

in a way similar to the previous section and transform the matching functions
to λ-terms. We prefer the route outline here. The synthesized λ expressions
are really used to determine if they obey the given predicate. This gives much
more confidence that they really are the expressions we are looking for. In the
alternative approach mistakes in compiling high-level functions to λ-terms will
pass unnoticed.

8 Related and Future Work

Many attempts have been described to construct inductive programming sys-
tems. The synthesize candidates and test approach here is just one of the possi-
bilities. See for instance [14] for an overview.

Closely related to our work is the approach of Katayama [8]. He generates
λ-expressions using type information and a set of user-defined functions in the
functional programming language Haskell. Recursion for a data type that is
used as argument of the generated functions has to be defined as one of the
primitives in Haskell. The actual generation of λ-terms is a black box. Since
our approach is based on a general test system supporting first–order logic,
our system is able to handle a wider range of predicates. We can control the
generation of candidate functions very easily by changing the appropriate data
types. this make our approach more flexible. In [9] Katayama proposes to use
a test based approach to determine the equivalence of functions as alternative
to our function f i t . It is very easy to add this to our system, but unnecessary.
The given definitions of f i t removes equivalent candidate functions effectively.
Since f i t only has to look at the current candidate it is more efficient if the
system has to generate large number of candidates. The amount of work needed
to compare a new candidates with the candidates seen before will increase if
the number of candidates seen increases. An even better approach is to use a
more sophisticated grammar and associated data-types that exclude many of the
redundant function candidates. Using such a grammar we can for instance ensure

48 P. Koopman and R. Plasmeijer

that constants for operations like addition and multiplication only occur in one
of the branches, and try to avoid subexpressions that contain only arithmetic
operations applied to constants.

Our approach works for any kind of functions. The user has to supply only a
data type representing the abstract syntax trees, a function apply that assigns a
meaning to those syntax trees, and the generation of the trees. We have show
that generic programming can really help to reduce the amount of functions that
has to be defined manually.

In the future we want to develop a generic version of apply. This function has
now a lot of dull instances that should be derived from a generic definition.

The current examples do not need much constants. In many kind of functions
there are a lot of constants involved. Determining these constants by a generate
and test approach will not be very effective. We want to investigate if it is
possible to determine the shape of the functions by the techniques outlined in
this paper and select the appropriate constants by a conventional technique like
hill climbing.

The real challenge is of course to generate more complex functions using in-
ductive programming. Despite all our efforts the search space for complicated
functions still grows rapidly. Hence it will take much time to find such a function
by a generate and test approach. There are two directions of optimizations pos-
sible. First we can generate more appropriate candidate expressions by adding
knowledge to our system. If we somehow know what suitable building blocks of
good candidates are, we add these primitives as additional items to our data
types representing the candidate functions. Second we can try to split the prob-
lem area in smaller pieces and find solutions to these pieces separately, see [7].
In a next phase try to find solutions for the full problem by combining these
partial solutions.

9 Conclusions

In this paper we have shown a very general and flexible approach to do inductive
programming by a generate and test approach. The user defines the syntax of
the functions to be generated by a set of algebraic data types. Using generic
programming support the user defines the semantic of these syntax trees in
function apply. The generation of instances of the algebraic data type representing
the syntax of the candidate functions is done by a generic algorithm. Only the
generation of constants deserves manual definitions. Using the model-based test
tool G∀st one can specify high level predicates about determining the functions
wanted.

In this paper we have shown that this system works for nonrecursive function,
primitive recursive functions and λ-expressions. We are convinced that there are
many more application areas.

Acknowledgement

We thank the anonymous reviewers for their useful feedback.

Synthesis of Functions Using Generic Programming 49

References

1. http://en.wikipedia.org/wiki/planet

2. Alimarine, A., Smetsers, S.: Efficient generic functional programming. Technical
report niii-r0425, Institute for Computing and Information Sciences, Radboud Uni-
versity Nijmegen, The Netherlands (2004)

3. Banerjee, D.: A methodology for synthesis of recursive functional programs. ACM
Transactions on Programming Languages and Systems (TOPLAS) 9(3), 441–462
(1987)

4. Bird, R.: Introduction to functional programming using Haskell, 2nd edn. Prentice
Hall, Englewood Cliffs (1998)

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the 5th ACM SIGPLAN International Con-
ference on Functional Programming, Montreal, Canada, pp. 268–279. ACM Press,
New York (2000)

6. Cypher, A.: Watch what I do: programming by demonstration. MIT Press, Cam-
bridge (1993)

7. Henderson, R.: Incremental learning in inductive programming. In: Schmid, U.,
Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 74–92.
Springer, Heidelberg (2010)

8. Katayama, S.: Systematic search for lambda expressions. In: Proceedings of the
6th Symposium on Trends in Functional Programming (TFP 2005), pp. 195–205
(2005)

9. Katayama, S.: Efficient exhaustive generation of functional programs using monte-
carlo search with iterative deepening. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Heidelberg (2008)

10. Koopman, P., Plasmeijer, R.: Fully automatic testing with functions as specifica-
tions. In: Horváth, Z. (ed.) CEFP 2005. LNCS, vol. 4164, pp. 35–61. Springer,
Heidelberg (2006)

11. Koopman, P., Plasmeijer, R.: Systematic synthesis of functions. In: Nilsson, H.
(ed.) Selected Papers of the 7th Symposium on Trends in Functional Programming,
TFP 2006, Nottingham, UK, April 19-21, pp. 68–83 (2006), Intellect Books, ISBN
978-1-84150-188-8

12. Koopman, P., Plasmeijer, R.: Systematic synthesis of λ-terms. In: Barendsen, E.,
Capretta, V., Geuvers, H., Niqui, M. (eds.) Reflections on Type Theory, λ-Calculus,
and the Mind - Essays dedicated to Henk Barendregt on the Occasion of his 60th
Birthday, December 17, pp. 211–222 (2007) ISBN 978-90-9022446-6

13. Plasmeijer, R., van Eekelen, M.: Concurrent Clean language report (version 2.0)
(December 2001), http://www.cs.ru.nl/~clean/

14. Schmid, U. (ed.): Inductive Synthesis of Functional Programs. LNCS (LNAI),
vol. 2654. Springer, Heidelberg (2003)

http://en.wikipedia.org/wiki/planet
http://www.cs.ru.nl/~clean/

Inductive Programming:
A Survey of Program Synthesis Techniques

Emanuel Kitzelmann

Cognitive Systems Group, University of Bamberg
emanuel.kitzelmann@uni-bamberg.de

Abstract. Inductive programming (IP)—the use of inductive reasoning
methods for programming, algorithm design, and software development—
is a currently emerging research field. A major subfield is inductive pro-
gram synthesis, the (semi-)automatic construction of programs from ex-
emplary behavior. Inductive program synthesis is not a unified research
field until today but scattered over several different established research
fields such as machine learning, inductive logic programming, genetic
programming, and functional programming. This impedes an exchange
of theory and techniques and, as a consequence, a progress of inductive
programming. In this paper we survey theoretical results and methods
of inductive program synthesis that have been developed in different re-
search fields until today.

1 Introduction

Inductive programming (IP) is an emerging field, comprising research on induc-
tive reasoning theory and methods for computer programming, algorithm design,
and software development. In this sense, albeit with different accentuation, the
term has been used by Partridge [1], by Flener and Partridge [2], within the
workshops on “Approaches and Applications of Inductive Programming”, and
within the ICML’06 tutorial on “Automatic Inductive Programming”.

IP has intersections with machine learning, artificial intelligence, program-
ming, software engineering, and algorithms research. Nevertheless, it goes be-
yond each of these fields in one or the other aspect and therefore is a research
field in its own right, intrinsically.

It goes beyond classical machine learning in that the focus lies on learning
general programs including loops and recursion, instead of merely (mostly non-
recursive) models or classifiers in restricted representational frameworks, such
as decision trees or neural networks.

In classical software engineering and algorithm design, a deductive—reasoning
from the general to the specific—view of software development is predominant.
One aspires a general problem description as starting point from which a program
or algorithm is developed as a particular solution. Methods based on deductive
reasoning exist to partly automatize the programming and verification process—
such as automatic code generation from UML diagrams, (deductive) program
synthesis to generate algorithmic parts, program transformation and refactoring

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 50–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Inductive Programming: A Survey of Program Synthesis Techniques 51

to optimize programs, and theorem proving, model checking, and static analysis
to verify programs. To emphasize this common deductive foundation one might
speak of deductive programming to subsume established software development
methods.

Inductive programming, on the other side, aims at developing methods based
on inductive—from the specific to the general—reasoning (not to be confused
with mathematical or structural induction) to assist in programming, algorithm
design, and the development of software. Starting point for IP methods is specific
data of a problem—use cases, test cases, desirable (and undesirable) behavior
of a software, input/output examples (I/O-examples) of a function or a module
interface, computation traces of a program for particular inputs and so forth.
Such descriptions of a problem are known to be incomplete. Inductive meth-
ods produce a generalization of such an incomplete specification by identifying
general patterns in the data. The result might be again a—more complete—
specification or an actual implementation of a function, a module, or (other
parts of) a program.

Inductive reasoning is per se unsound. Inductively obtained conclusions are
hypotheses and incapable of proof regarding their premises. This is, perhaps,
the most severe objection against IP. What is the use of methods whose results
cannot be proven correct and possibly deviate from what was intended? However,
if the data at hand is representative then it is likely that identified patterns
actually hold in the general case and that, indeed, the induced result meets the
general problem. On the other side, all software development necessarily makes a
transition from a first informal and often incomplete problem description by the
user or customer to a complete and ideally formal specification. This transition
is (i) also incapable of formal proof and (ii) possibly based on—non-systematic,
inexplicit—generalization. Also, IP should not be understood as a replacement
for deductive methods but as an addition. IP may be used in different ways: to
generate candidate solutions subject to further inspection, in combination with
deductive methods to tackle a problem from the general description as well as
from concrete (counter-)instances, to systematize occurring generalizations, or
to check the representativeness of example cases provided by the user. Some
problems, especially many problems in the field of artificial intelligence, elude
a complete specification at all, e.g., face recognition. This factum is known as
knowledge-acquisition bottleneck. Overall, there is no reason why systematically
incorporating existing or easily formulated data by inductive methods should
not improve efficiency and even validity of software development.

One important aspect of IP is the inductive synthesis of actual, executable
programs including recursion or loops. Except to professional software develop-
ment, possible application fields of the (semi-)automatic induction of programs
from exemplary behavior are end-user programming and learning of recursive
policies [3] in intelligent agents. Research on inductive program synthesis (IPS)
started in the seventies. However, it has, since then, always been only a niche
in several different research fields and communities such as artificial intelligence,
machine learning, inductive logic programming (ILP), genetic programming, and

52 E. Kitzelmann

functional programming. Until today, there is no uniform body of theory and
methods. This fragmentation over different communities impedes exchange of
results and may lead to redundancies. The problem is all the more profound as
only few people and groups at all are working on IPS worldwide.

This paper surveys theoretical results and IPS methods that have been de-
veloped in different research fields until today. We grouped the work into three
blocks: First the classical, analytic data-driven induction of Lisp programs as
invented by Summers [4] and its generalizations (Section 3), second ILP (Sec-
tion 4), and third several generate-and-test based approaches to the induction
of functional programs (Section 5). In Section 6 we state some conclusions and
ideas of further research. As general preliminaries, we informally introduce some
common IPS concepts in the following section.

This survey is quite comprehensive, yet not complete and covers functional
generate-and-test methods less detailed than the other two areas. This is due to
limited space in combination with the author’s areas of expertise and shall not
be interpreted as a measure of quality. We hope that it will be a useful resource
for all people interested in IP.

2 Basic Inductive Programming Concepts

IPS aims at constructing a computer program or algorithm from a (known-
to-be-)incomplete specification of a function to be implemented, called target
function. Incomplete means, that the target function is not specified on its whole
domain but only on (small) parts of it. Typically, an incomplete specification
consists of a subset of the graph of the function: input/output examples (I/O-
examples). Variables may be allowed in I/O-examples and also more expressive
formalisms have been used to specify the target function.

An induced program contains function primitives, predefined functions known
to the IPS system. Primitives may be fixed within the IPS system or dynamically
be given as an extra, problem-specific, input. Dynamically provided primitives
are called background knowledge.

Example 1. Suppose the following I/O-examples on lists (whatever the list ele-
ments A, x, y, z, 1, 2, 3, 5 stand for; constants, variables, or compound objects),
are provided: (A) �→ (), (x, y, z) �→ (x, y), (3, 5, 2, 1) �→ (3, 5, 2). Given the com-
mon list constructors/destructors nil, cons, head, tail, the predicate empty to
test for the empty list, and the if-then-else-conditional as primitives, an IPS
system might return the following implementation of the Init -function returning
the input list without its last element:

F(x) = if empty(tail(x)) then nil
else cons(head(x), F(tail(x))) .

Given a particular set of primitives, some target function may not be repre-
sentable by only one recursive function definition such that a non-specified re-
cursive subfunction needs to be introduced; this is called (necessary) predicate
invention in ILP.

Inductive Programming: A Survey of Program Synthesis Techniques 53

IPS is commonly regarded as a search problem. In general, the problem space
consists of the representable programs as nodes and instances of the operators
of the IPS system to transform one program into another as arcs. Due to under-
specification in IP, typically infinitely many (semantically) different programs
meet the specification. Hence, one needs criteria to choose between them. Such
criteria are called inductive bias [5]. Two kinds of inductive bias exist: If an IPS
system can only generate a certain proper subset of all (computable) functions
of some domain, either because its language is restricted or because its operators
are not able to reach each program, this constitutes a restriction bias. The order
in which the problem space is explored and hence the ordering of solutions is the
preference bias ; it can be modelled as probability distribution over the program
space.

3 The Analytical Functional Approach

A first systematic attempt to IPS was made by Summers [4]. He noticed that
under particular restrictions regarding allowed primitives, program schema, and
choice of I/O-examples, a recursive Lisp program can be computed from I/O-
examples without search in program space. His insights originated some further
research.

3.1 Summers’ Pioneering Work

Summers’ approach to induce recursive Lisp functions from I/O-examples in-
cludes two steps: First, a so-called program fragment, an expression of one vari-
able and the allowed primitives, is derived for each I/O-pair such that applied
to the input, evaluates to the specified output. Furthermore, predicates are
derived to distinguish between example inputs. Integrated into a McCarthy
conditional, these predicate/fragment pairs build a non-recursive program com-
puting the I/O-examples and is considered as a first approximation to the
target function. In a second step, recurrent relations between predicates and
fragments each are identified and a recursive program generalizing them is
derived.

Example inputs and outputs are S-expressions, the fundamental data struc-
ture of the Lisp language [6]. We define the set of subexpressions of an S-
expression to consist of the S-expression itself and, if it is non-atomic, of all
subexpressions of both its components.

The programs constructed by Summers’ technique use the Lisp primitives
cons , car , cdr , nil , atom, and T, the last denoting the truth value true. Par-
ticularly, no other predicates than atom and T (e.g., eq for testing equality
of S-expressions), and no atoms except for nil are used. This choice of primi-
tives is not arbitrary but crucial for Summers’ methodology of deriving programs
from examples without search. The McCarthy conditional and recursion are used
as control structure. Allowing atom and T as only predicates and nil as only

54 E. Kitzelmann

atom in outputs means that the atoms in the I/O-examples, except for nil , are
actually considered as variables. Renaming them does not change the meaning.
This implies that any semantic information must be expressed by the structure
of the S-expression.

1. Step: Initial Non-recursive Approximation. Given a set of k I/O-ex-
amples, {〈i1, o1〉, . . . , 〈ik, ok〉}, a program fragment fj(x), j ∈ {1, . . . , k}, com-
posed of cons , car , and cdr is derived for each I/O-pair, which evaluates to the
output when applied to the input: fj(ij) = oj .

S-expressions are uniquely constructed by cons and destructed by car and
cdr . We call car -cdr compositions basic functions (cp. [7]). Together with the
following two conditions, this allows for determining unique program fragments.
(i) Each atom may occur only once in each input. (ii) Each atom, except for nil ,
occurring in an output must also occur in the corresponding input. Due to the
first condition, each subexpression occurs exactly once in an S-expression such
that subexpressions are denoted by unique basic functions.

Deriving a program fragment works as follows: All subexpressions of an input,
together with their unique basic functions, are enumerated. Then the output is
rewritten by composing the basic functions from the input subexpressions with
cons and nil .

Example 2. Consider the I/O-pair ((a . b) . (c . d)) �→ ((d . c) . (a . b)). The in-
put contains the following subexpressions, paired with the corresponding unique
basic functions:

〈((a . b) . (c . d)), I 〉 , 〈(a . b), car 〉 , 〈(c . d), cdr 〉 ,
〈a, caar〉 , 〈b, cdar〉 , 〈c, cadr 〉 , 〈d, cddr 〉 .

Since the example output is neither a subexpression of the input nor nil , the
program fragment becomes a cons of the fragments for the car - and the cdr -
component, respectively, of the output. The car -part, (d . c), again becomes a
cons , namely of the basic functions for d: cddr , and c: cadr . The cdr -part, (a . b),
is a subexpression of the input, its basic function is car . With variable x denoting
the input, the fragment for this I/O-example is thus:

cons(cons(cddr (x), cadr (x)), car (x))

Next, predicates pj(x), j = 1, . . . , k must be determined. In order to get the cor-
rect program fragment fj be evaluated for each input ij, all predicates pj′ (ij), 1 ≤
j′ < j (positioned before pj in the conditional) must evaluate to false and pj(ij)
to true. Predicates fulfilling this condition exist if the example inputs form a
chain.

We do not describe the algorithm here. Both algorithms, for computing frag-
ments and predicates, can be found in [7]. Figure 1 shows an example for the
first step.

Inductive Programming: A Survey of Program Synthesis Techniques 55

I/O-examples:

(a) �→ nil ,

(a, b) �→ (a),

(a, b, c) �→ (a, b),

(a, b, c, d) �→ (a, b, c),

(a, b, c, d, e) �→ (a, b, c, d) .

First approximation:

F (x) = (atom(cdr(x)) → nil

atom(cddr(x)) → cons(car(x),nil)

atom(cdddr(x)) → cons(car(x), cons(cadr(x),nil))

atom(cddddr(x)) → cons(car(x), cons(cadr(x), cons(caddr(x),nil)))

T → cons(car(x), cons(cadr(x), cons(caddr(x),

cons(cadddr(x),nil)))))

Fig. 1. I/O-examples and the corresponding first approximation

2. Step: Recurrence Relations. The basic idea in Summers’ generalization
method is this: The fragments are assumed to be the actual computations car-
ried out by a recursive program for the intended function. Hence fragments of
greater inputs must comprise fragments of lesser inputs as subterms, with a
suitable substitution of the variable x and in a recurrent form along the set of
fragments. The same holds analogously for the predicates. Summers calls this
relation between fragments and predicates differences.

As a preliminary for the following, we need to define the concept of a context.
A (one-hole) context C[] is a term including exactly one occurrence of the dis-
tinguished symbol �. C[s] denotes the result of replacing the � by the (sub)term
s in C[].

Definition 1. A difference exists between two terms (fragments or predicates)
t, t′ iff t′ = C[tσ] for some context C[] and substitution σ.

If we have k + 1 I/O-examples, we only consider the first k fragment/predicate
pairs because the last predicate is always ’T ’, such that no sensible difference
can be derived for it.

Example 3. The following differences, written as recurrence relations (2 ≤ i ≤
3), can be identified in the first k = 4 fragments/predicates of the program of
Figure 1.

p1(x) = atom(cdr (x)) f1(x) = nil
p2(x) = atom(cddr (x)) f2(x) = cons(car (x),nil)

pi+1(x) = pi(cdr(x)) fi+1(x) = cons(car (x), fi(cdr (x)))

56 E. Kitzelmann

In the general case, we have (for k fragments/predicates):

j − 1 “constant” fragments (as derived from the examples): f1, . . . , fj−1,

further n constant base cases: fj , . . . , fj+n−1,

finally, remaining k − (j + n − 1) cases recurring to

previous cases: fi+n = C[fiσ1] for i = j, . . . , k − n ;
analogously for predicates: p1, . . . , pj−1, pj, . . . , pj+n−1, pi+n = pi(σ2) .

(1)

Index j denotes the first predicate/fragment pair which recurs in some following
predicate/fragment pair (the first base case). The precedent j − 1 predicate/
fragment pairs do not recur. n is the interval of the recurrence. For Example 3
we have j = 2 and n = 1.

Inductive Inference. If k− j ≥ 2n then we inductively infer that the recurrence
relations hold for all i ≥ j.

In Example 3 we have k− j = 2 ≥ 2 = 2n and hence induce that the relations
hold for all i ≥ 2.

The generalized recurrence relations may be used to compute new approxima-
tions of the assumed target function. The mth approximating function, m ≥ j,
is defined as

Fm(x) = (p1(x) → f1(x), . . . , pm(x) → fm(x), T → ω)

where the pi, fi with j < i ≤ m are defined in terms of the generalized recurrence
relations and where ω means undefined. Consider the following complete partial
order over partial functions, which is well known from denotational semantics:

F (x) ≤F G(x) iff F (x) = G(x) for all x ∈ Dom(F) .

Regarding this order, the set of approximating functions builds a chain. The
assumed target function F is defined as the supremum of this chain.

Now the hypothesized target function is defined, in terms of recurrence rela-
tions. In his synthesis theorem and its corollaries, Summers shows how a function
defined this way can be expressed by a recursive program.1

Theorem 1 ([4]). If F is defined in terms of recurrence relations as in (1) for
j ≤ i ∈ N then the following recursive program is identical to F:

F (x) = (p1(x) → f1(x), . . . , pj−1(x) → fj−1(x),
T → G(x))

G(x) = (pj(x) → fj(x), . . . , pj+n−1(x) → fj+n−1(x),
T → C[G(σ(x))]) .

1 This works, in a sense, reverse to interpreting a recursively expressed function by
the partial function given as the fixpoint of the functional of the recursive definition.
In the latter case we have a recursive program and want to have the particular
partial function computed by it—here we have a partial function and want to have
a recursive program computing it.

Inductive Programming: A Survey of Program Synthesis Techniques 57

Example 4. The recurrence relations from Example 3 with i ≥ 2 define the
function F to be the Init-function. According to the synthesis theorem, the
resulting program is:

F (x) = (atom(cdr(x)) → nil , T → G(x))
G(x) = (atom(cddr (x)) → cons(car(x),nil),

T → cons(car(x), G(cdr (x)))) .

Introducing Additional Variables. It may happen that no recurrent differences
can be found between a chain of fragments and/or predicates. In this case, the
fragments/predicates may be generalized by replacing some common subterm
by an additional variable. In the generalized fragment/predicate chain recurrent
differences possibly exist.

3.2 Early Variants and Extensions

Two early extensions are described. A broader survey of these and other early
extensions can be found in [7].

BMWk—Extended Forms of Recurrences. In Summers’ approach, the con-
dition for deriving a recursive function from detected differences is that the dif-
ferences hold—starting from an initial index j and for a particular interval n—
recurrently along fragments and predicates with a constant context C[] and a con-
stant substitution σ for x. The BMWk

2 algorithm [8] generalizes these conditions
by allowing for contexts and substitutions that are different in each difference.
Then a found sequence of differences originates a sequence of contexts and substi-
tutions each. Both sequences are considered as fragments of new subfunctions. The
BMWk algorithm is then recursively applied to these new fragment sequences,
hence features the automatic introduction of (necessary) subfunctions.

Furthermore, Summers’ ad-hoc method to introduce additional variables is
systematized by computing least general generalization (lgg) [9] of successive
fragments.

Biermann et al—Pruning Enumerative Search Based on Recurrences
within Single Traces. Summers objective was to avoid search and to justify
the synthesis by an explicit inductive inference step and a subsequent proven-
to-be-correct program construction step. This could be achieved by a restricted
program schema and the requirement of a well chosen set of I/O-examples.

On the contrary, Biermann’s approach [10] is to employ traces (fragments) to
speed up an exhaustive enumeration of a well-defined program class, the so-called
regular Lisp programs. Biermann’s objectives regarding the synthesis were

1. convergence to the class of regular Lisp programs,
2. convergence on the basis of minimal input information,
3. robust behavior on different inputs.
2 This abbreviates Boyer-Moore-Wegbreit-Kodratoff.

58 E. Kitzelmann

Particularly 2 and 3 are contradictory to the recurrence detection method—by 2
Biermann means that no synthesis method exists which is able to synthesize ev-
ery regular Lisp program from fewer examples and by 2 he means that examples
may be chosen randomly.

3.3 From Lisp to Term Rewriting Systems

At the beginning of Section 3.1 we stated the Lisp primitives as used in programs
induced by Summers’ method (as well as by BMWk and Biermann’s method).
This selection is crucial for the first step, the deterministic construction of first
approximations, yet not for the generalization step. Indeed, the latter is inde-
pendent from particular primitives, it rather relies on matching (sub)terms over
arbitrary first-order signatures. Two recent systems inspired by Summers’ recur-
rence detection method use term rewriting systems over first-order signatures to
represent programs. Special types of TRSs can be regarded as (idealized) func-
tional programs.

A term rewriting system (TRS) is a set of directed equations or (rewrite)
rules. A rule is a pair of first-order terms 〈l, r〉, written l → r. The term l is
called left-hand side (lhs), r is called right-hand side (rhs) of the rule.

We get an instance of a rule by applying a substitution σ to it: lσ → rσ. The
instantiated lhs lσ is called redex (reducible expression). Contracting a redex
means replacing it by its rhs. A rewrite step consists of contracting a redex
within an arbitrary context: C[lσ] → C[rσ]. The one-step rewrite relation → of
a rule is defined by the set of its rewrite steps. The one-step rewrite relation →R

of a TRS R is the union of the one-step rewrite relations of its single rules. The
rewrite relation of a TRS R, ∗→R, is the reflexive transitive closure of →R.

Igor1—Inducing Recursive Program Schemes. The system Igor1 [11]
induces recursive program schemes (RPSs). An RPS is a special form of TRS:
The signature is divided into two disjoint subsets F and G, called unknown and
basic functions, respectively; rules have the form F (x1, . . . , xn)→ t where F ∈ F
and the xi are variables, and there is exactly one rule for each F ∈ F .

Igor1’s program schema is more general than Summers’ in that recursive
subfunctions are found automatically with the restriction that (recursive) calls
of defined functions may not be nested in the rhss of the equations. Furthermore,
additional parameters are introduced systematically.

(Mutually) recursive RPSs do not terminate. Their standard interpretation is
the infinite term defined as the limit lim

n→∞,F (x) n→t
t where F denotes the main

rule of the RPS. One gets finite approximations by replacing infinite subterms
by the special symbol Ω, meaning undefined. Certainly, such an infinite tree and
its approximations contain recurrent patterns because they are generated by re-
peatedly replacing instances of lhss of the rules by instances of rhss. Igor1 takes
a finite approximation of some (hypothetical) infinite tree as input, discovers the
recurrent patterns in it, and builds, based on these recurrences, an RPS R such
that the input is a finite approximation of the infinite tree of R.

Inductive Programming: A Survey of Program Synthesis Techniques 59

Example 5. For a simple example without subfunctions (the Init function again),
consider the finite approximation of some unknown infinite term:

if (atom(cdr (x)),nil ,
cons(car (x),

if (atom(cdr (cdr (x))),nil ,
cons(car (cdr (x)),

if (atom(cdr (cdr (cdr(x)))),nil ,
cons(car (cdr (cdr(x))),

Ω)))))) .

At the path from the root to Ω, where the latter denotes the unknown infi-
nite subterm of the infinite target term and hence, which has been generated
by an unknown recursive RPS, we find a recurring sequence of if -cons pairs.
This leads to the hypothesis that a replacement of the lhs of a recursive rule by
its rhs has taken place at the if -positions. The term is divided at these posi-
tions leading to three segments (assume, the break-positions are replaced by Ω).
An approximation of the assumed rhs is computed as the lgg of the segments:
if (atom(cdr (x)),nil , cons(car(x), Ω)).

The Ω denotes the still unknown recursive call. The non-equal parts of the
segments, which are replaced by the variable x in the lgg, are highlighted by
extra horizontal space in the term. These parts must have been generated by the
substitution {x ← cdr(x)} in the recursive call. Denoting the induced function
by F , it is now correctly defined as

F (x) → if (atom(cdr (x)),nil , cons(car (x), F (cdr (x)))) .

Different methods to construct a finite approximation as first synthesis step have
been proposed. In [11], an extension of Summers’ first step is described. Examples
need not be linearly ordered and nested if-then-else-conditionals are used
instead of the McCarthy conditional. In [3], universal planning is proposed as
first step.

3.4 Igor2—Combining Search and Analytical Techniques

All methods based on Summers’ seminal work described so far suffer from strong
restrictions regarding their general program schemas, the commitment to a small
fixed set of primitives, and, at least the early methods, to the requirement of
linearly ordered I/O-examples.

The system Igor2 [12] aims to overcome these restrictions, but not at the
price of falling back to generate-and-test search (cp. Section 5). Igor2 conducts
a search in program space, but the transformation operators are data-driven and
use techniques such as matching and least generalizations, similar to the methods
described so far. In contrast to generate-and-test search, only programs being

60 E. Kitzelmann

correct with respect to the I/O-examples in a particular sense (but possibly
unfinished) are generated. This narrows the search tree and makes testing of
generated programs unnecessary.

Programs (as well as I/O-examples and background knowledge) are repre-
sented as constructor (term rewriting) systems (CSs). CSs can be regarded as
an extension of RPSs: The function sets F and G are called defined functions
and constructors, respectively. The arguments of a defined function symbol in
a lhs need not be variables but may be terms composed of constructors and
variables and there may be several rules for one defined function. This extension
corresponds to the concept of pattern matching in functional programming. One
consequence of the CS representation is that I/O-examples themselves already
constitute “programs”, CSs. Hence, rewriting outputs into fragments to get a
first approximation (Section 3.1) is not necessary anymore.

Igor2 is able to construct complex recursive CSs containing several base-
and (mutually) recursive rules, automatically identified and introduced recursive
subfunctions, and complex compositions of function calls. Several interdependent
functions can be induced in one run. In addition to I/O-examples, background
knowledge may be provided.

3.5 Discussion

Summers’ important insights were first, how the algebraic properties of data-
structures can be exploited to construct program fragments and predicates with-
out search and second, that fragments (and predicates) for different I/O-pairs
belonging to one recursively defined function share recurrent patterns that can
be used to identify the recursive definition. Obviously, it is necessary for recur-
rence detection that I/O-examples are not randomly chosen but that they consist
of the first k ∈ N examples regarding the underlying order on S-expressions, i.e.,
that they are complete up to some level.

If the general schema of inducible functions becomes more complex, e.g., if
subfunctions can be found automatically, and/or if background knowledge is
allowed, then search is needed. Igor2 shows that Summers’ ideas for general-
ization can be integrated into search operators.

Search is also needed if the goal is to induce programs based on minimal
sets of randomly chosen examples. In this case, the recurrence detection method
cannot be applied. Biermann’s method shows that it is possible for particular
program classes to use fragments as generated in Summers’ first step to constrain
an exhaustive search in program space.

4 Inductive Logic Programming

Inductive Logic Programming (ILP) [13,14] is a branch of machine learning [5]—
intensional concept descriptions are learned from (counter-)examples, called pos-
itive and negative examples. The specificity of ILP is its basis in computa-
tional logic: First-order clausal logic is used as uniform language for hypotheses,

Inductive Programming: A Survey of Program Synthesis Techniques 61

examples, and background knowledge, semantics of ILP is based on entailment,
and inductive learning techniques are derived by inverting deduction.

Horn clause logic together with resolution constitutes the (Turing-complete)
programming language Prolog. Program synthesis is therefore principally
within the scope of ILP and has been regarded as one application field of ILP [13].
One of the first ILP systems, MIS [15], is an automatic programming/debugging
system. Today, ILP is concerned with (relational) data-mining and knowledge
discovery and program synthesis does not play a role anymore.

4.1 Preliminaries

An atom is a predicate symbol applied to arguments, a literal is an atom or
negated atom. A clause is a (possible empty) disjunction of literals, a Horn clause
is a clause with at most one positive literal, a definite clause is a clause with
exactly one positive literal. A definite program is a finite set of definite clauses.
A definite clause C consisting of the positive literal A and the negative literals
¬B1, . . . ,¬Bn is equivalent to B1 ∧ . . . ∧Bn → A, written A ← B1, . . . , Bn.

4.2 Overview

In the definite setting, hypotheses and background knowledge are definite pro-
grams, examples are ground atoms. The following two definitions state the ILP
problem with respect to the so-called normal semantics.3

Definition 2. Let Π be a definite program and E+, E− be positive and negative
examples. Π is

complete with respect to E+ iff Π |= E+,
consistent with respect to E− iff Π
|= e for every e ∈ E−,
correct with respect to E+ and E− iff it is complete with respect to E+ and

consistent with respect to E−.

Definition 3. Given

– a set of possible hypotheses (definite programs) H,
– positive and negative examples E+, E−,
– consistent background knowledge B (i.e., B
|= e for every e ∈ E−) such that

B
|= E+,

find a hypothesis H ∈ H such that H ∪B is correct with respect to E+ and E−.

Entailment (|=) is undecidable in general and for Horn clauses, definite programs,
and between definite programs and single atoms in particular. Thus, in practice,
different decidable (and preferably also efficiently computable) relations, which

3 There is also a non-monotonic setting in ILP where hypotheses need not entail
positive examples but only state true properties. This is useful for data mining or
knowledge discovery but not for program synthesis, so we do not consider it here.

62 E. Kitzelmann

are sound but more or less incomplete, are used. We say that a hypothesis
covers an example if it can be proven true from the background knowledge and
the hypothesis. That is, a hypothesis is regarded correct if it, together with
the background knowledge, covers all positive and no negative examples. Two
commonly used notions are:

Extensional coverage. Given a clause C = A ← B1, . . . , Bn, a finite set of
ground atoms B as background knowledge, positive examples E+, and an
example e, C extensionally covers e iff there exists a substitution θ such that
Aθ = e and {B1, . . . , Bn}θ ⊆ B ∪ E+.

Intensional coverage. Given a hypothesis H , background knowledge B, and
an example e, H ∪ B intensionally covers e iff e can be proven true from
H∪B by applying some terminating theorem proving technique, e.g., depth-
bounded SLD-resolution.

Example 6. As an example for extensional coverage, suppose B = ∅ and E+ =
{ Init([c], []), Init([b, c], [b]), Init([a, b, c], [a, b]) }. The recursive clause
Init([X |Xs], [X |Ys]) ← Init [Xs ,Ys] extensionally covers the positive example
Init([b, c], [b]) with θ = {X ← b,Xs ← [c],Ys ← []}.

Both extensional and intensional coverage are sound. Extensional coverage is
more efficient but less complete. As an example for the latter, suppose the posi-
tive example Init([c], []) is missing in E+ in Example 6. Then the stated recur-
sive clause together with the base clause Init([X], []) still intensionally covers
e = Init([b, c], [b]) yet the recursive clause does not extensionally cover e any-
more. Obviously, extensional coverage requires that examples (and background
knowledge) are complete up to some complexity (cp Section 3.5). Another prob-
lem with extensional coverage is that if two clauses each do not cover a negative
example, both together possibly do.

Extensional and intensional coverage are closely related to the general ILP
algorithm (Algorithm 1) and the covering algorithm 2 as well as to the gen-
erality models θ-subsumption and entailment as described below (Section 4.3),
respectively.

ILP is considered as a search problem. Typically, the search operators to
compute new candidate programs are based on the dual notions of generalization
and specialization of programs or clauses.

Definition 4. A program Π is more general than a program Φ iff Π |= Φ. Φ is
said to be more specific than Π.

This structure of the program space provides a way for pruning. If a program is
not consistent then all generalizations are also not consistent and therefore need
not be considered. This dually holds for non-completeness and specializations. Al-
gorithm 1 shows a generic ILP algorithm. Most ILP systems are instances of it.

A common instance is the covering algorithm (Algorithm 2). The individual
clauses of a program are generated independently one after the other. Hence, the
problem space is not the program space (sets of clauses) but the clause space (sin-
gle clauses). This leads to a more efficient search.

Inductive Programming: A Survey of Program Synthesis Techniques 63

Algorithm 1. A generic ILP algorithm.

Input: B, E+, E−

Output: A definite program H such that H ∪ B is correct with respect to E+

and E−

Start with some initial (possibly empty) hypothesis H
repeat

if H ∪ B is not consistent then specialize H
if H ∪ B is not complete then generalize H

until H ∪ B is correct with respect to E+ and E−

return H

Algorithm 2. The covering (typically interpreted extensionally)
algorithm.

Input and Output as in Algorithm 1
Start with the empty hypothesis H = ∅
repeat

Add a clause C not covering any e ∈ E− to H
Remove all e ∈ E+ covered by C from E+

until E+ = ∅
return H

Entailment (|=) as well as θ-subsumption (Section 4.3) are quasi-orders on
sets of definite programs and clauses, respectively. We associate “more general”
with “greater”. The operators carrying out specialization and generalization are
called refinement operators. They map clauses to sets of (refined) clauses or
programs to sets of (refined) programs. Most ILP systems explore the problem
space mainly in one direction, either from general to specific (top-down) or the
other way round (bottom-up). The three well-known systems Foil [16] (top-
down), Golem [17] (bottom-up), and Progol [18] (mixed) are instantiations
of the covering algorithm.

Example 7. For an example of the covering algorithm, let B and E+ be as in
Example 6 and E− all remaining instantiations for the “inputs” [c], [b, c], [a, b, c],
e.g., Init([b, c], [c]). Let us assume that a (base-)clause Init([X], []) is already
inferred and added and hence, the covered example Init([c], []) is deleted from
E+. Assume, our instantiation of the covering algorithm is a top-down algo-
rithm. This means, each clause is found by starting with a (too) general clause
and successively specializing it until no negative examples are covered anymore.
Let us start with the clause Init([X |Xs],Ys) ←. It covers all remaining positive
but also all corresponding negative examples; it is too general. Applying the sub-
stitution {Ys ← [X |Ys]} specializes it to Init([X |Xs], [X |Ys]) ←. This excludes
some negative examples (e.g., Init([b, c], [c])). Adding the literal Init(Xs ,Ys) to
the body again specializes the clause to Init([X |Xs], [X |Ys]) ← Init(Xs,Ys). All

64 E. Kitzelmann

remaining positive examples are still covered but no negative example is covered
anymore. Hence, the clause is added and the algorithm returns the two inferred
clauses as solution.

Both specializations were refinements under θ-subsumption (Section 4.3, “Re-
finement Operators”).

4.3 Generality Models and Refinement Operators

Instead of entailment (|=), θ-subsumption is often used in ILP as generality
model. It is incomplete with respect to |= but decidable, simple to implement,
and efficiently computable. If we have background knowledge B, then we are
not simply interested in whether a clause C is more general than a clause D
but in whether C together with B is more general than D (together with B).
This is captured by the notions of relative (to background knowledge) entailment
respectively θ-subsumption.

Refinement under (Relative) θ-subsumption

Definition 5. Let C and D be clauses and B a set of clauses.
C θ-subsumes D, written C � D, iff there exists a substitution θ such that

Cθ ⊆ D.
C θ-subsumes D relative to B, written C �B D, if B |= Cθ → D for a

substitution θ.
A Horn clause language quasi-ordered by θ-subsumption with an additional bot-
tom element is a lattice. This does not generally hold for relative subsumption.
Least upper bounds are called least general generalizations (lgg) [9]. Lggs and
greatest lower bounds are computable and hence may be used for generalization
and specialization, though they do not properly fit into our general notion of
refinement operators because they neither map single clauses to sets of clauses
nor single programs to sets of programs.

A useful restriction is to let background knowledge be a finite set of ground
literals. In this case, lggs exist under subsumption relative to B and can be
reduced to (non-relative) lggs. The bottom-up system Golem uses this scenario.

In general, (relative) θ-subsumption is sound but not complete. If C � D
(C �B D) then C |= D (C ∪B |= D) but not vice versa. For a counter-example
of completeness let C = P (f(X)) ← P (X) and D = P (f(f(X))) ← P (X) then
C |= D4 but C
� D. As the example indicates, the incompleteness is due to
recursive rules and therefore especially critical for program synthesis.

Refinement Operators. A specialization operator refines a clause by

– applying a substitution for a single variable or
– adding one most general literal.

A generalization operator uses inverse operations.
Application of these operators is quite common in ILP, e.g., in the systems

MIS, Foil, Golem, and Progol.
4 D is simply the result of self-resolving C.

Inductive Programming: A Survey of Program Synthesis Techniques 65

Refinement under (Relative) Entailment. Due to the incompleteness of
θ-subsumption regarding recursive clauses, refinement under (relative) entail-
ment has been studied. Relative entailment is defined as follows:

Definition 6. Let C and D be clauses and B a finite set of clauses. Then C
entails D relative to B, denoted C |=B D, if {C} ∪B |= D.

Neither lggs nor greatest specializations exist in general for Horn clause lan-
guages ordered by (relative) entailment.

Refinement Operators. Roughly speaking, entailment is equivalent to resolution
plus θ-subsumption. This leads to specialization operators under (relative) en-
tailment. Objects of refinement under entailment are not single clauses but sets
of clauses, i.e., programs. A specialization operator under entailment refines a
definite program by

– Adding a resolvent of two clauses or
– adding the result of applying the θ-subsumption specialization operator to

a clause or
– deleting a clause.

4.4 Automatic Programming Systems

The three general-purpose systems Foil, Golem, and Progol are successful
in learning non-recursive concepts from large data sets, yet have problems to
learn recursive programs: Due to their use of the covering approach (extensional
coverage), they need complete example sets and background knowledge to in-
duce recursive programs. Since they (at least Foil and Golem) explore (i) only
the θ-subsumption lattice of clauses and (ii) do this greedily, correct clauses
may be passed. Finally, their objective functions in the search for clauses is to
cover as many as possible positive examples. Yet base clauses typically cover
only few examples such that these systems often fail to induce correct base
cases.

Hence ILP systems especially designed to learn recursive programs have been
developed. They address different issues: Handling of random examples, predi-
cate invention, usage of general programming knowledge, and usage of problem-
dependent knowledge of the user, which goes beyond examples. A comprehensive
survey of automatic programming ILP systems can be found in [19].

Inverting entailment by structural analysis. Several systems—Crustacean [20],
Clam [21], Tim [22], mri [23]—address the issue of inducing recursive programs
from random examples by inverting entailment based on structural analysis,
similar to Section 3, instead of searching in the θ-subsumption lattice. These
systems also have similar restrictions regarding the general schema of learnable
programs. However, some of them can use background knowledge; mri can find
more than one recursive clause.

66 E. Kitzelmann

Top-down induction of recursive programs. Top-down systems can principally—
even if they explore the θ-subsumption clause-lattice only—generate arbitrary
(in particular all recursive) Horn clauses.5 Thus, if a top-down covering system
would use intensional instead of extensional coverage, it could principally induce
recursive programs from random examples. Certainly, this would require to find
clauses in a particular order—base clauses first, then recursive clauses, only de-
pending on base clauses and themselves, then recursive clauses, only depending
on base clauses, the previously generated recursive clauses, and themselves, and
so on. This excludes programs with mutually interdepending clauses. The sys-
tem Smart [24] is based on these ideas. It induces programs consisting of one
base clause and one recursive clause. Several techniques to sensibly prune the
search space allows for a more exhaustive search than the greedy search applied
by Foil, such that the incompleteness issue of θ-subsumption-based search is
weaken.

The system Filp [25] is a covering top-down system that induces functional
predicates only, i.e., predicates with distinguished input- and output parameters,
such that for each binding of the input parameters exactly one binding of the
output parameters exists. This makes negative examples unnecessary. Filp can
induce multiple interdependent predicates/functions where each may consist of
several base- and recursive clauses. Hence, intensional coverage is not assured
to work. Filp starts with a few randomly chosen examples and tries to use
intensional covering as far as possible. If, during the intensional proof of some
example, an instance of the input parameters of some predicate appears for which
an output is neither given by an example nor can be derived intensionally, then
Filp queries for this “missing” example and thereby completes the example set
as far as needed.

Using programming knowledge. Flener argued, in several papers, for the use of
program schemas that capture general program design knowledge like divide-
and-conquer, generate-and-test, global-search etc., and has implemented this in
several systems. He distinguishes between schema-based systems inducing pro-
grams of a system-inherent schema only and schema-guided systems, which take
schemas as dynamic, problem-dependent, additional input and thus are more
flexible. Flener’s Dialogs [26] system uses schemas and strong queries to re-
strict the search space and thereby is able to efficiently induce comparatively
complex programs including predicate invention.

Jorge and Brazdil have—besides for clause structure grammars defining a pro-
gram class and thus similar to schemas as dynamic language-bias—argued for so
called algorithm sketches. An algorithm sketch is problem-dependent algorithm
knowledge about the target function and provided by the user in addition to
examples. This idea is implemented in their SKIL and SKILit systems [27].

5 Hence, although θ-subsumption is incomplete with respect to entailment due to
recursive clauses, every clause, in particular the recursive clauses, can be generated
by refinement based on θ-subsumption—if one searches top-down starting from the
empty clause or some other clause general enough to θ-subsume the desired clauses.

Inductive Programming: A Survey of Program Synthesis Techniques 67

4.5 Discussion

Compared to the classical approaches in Section3 (except for Igor2), ILP has
broadened the class of inducible relations by allowing for background knowledge,
using particular search methods and other techniques (Section 4.4).

Shapiro [15] and Muggleton and De Raedt [13] argued for clausal logic as uni-
versal language in favor to other universal formalisms such as Turing machines
or Lisp. Their arguments are: (i) Syntax and semantics are closely and in a nat-
ural way related. Hence if a logic program makes errors, it is possible to identify
the erroneous clause. Furthermore, there are simple and efficient operations to
manipulate a logic program with predictable semantic effects (cp. Section 4.3).
Both is not possible for, say, Turing machines. (ii) It suffices to focus on the logic
of the program, control is left to the interpreter. In particular, logic programs
(and clauses) are sets of clauses (and literals), order does not matter.

The first argument carries over to other declarative formalisms such as equa-
tional logic, term rewriting, and functional logic programming (Flip [28] is an
IPS system in this formalism). The second argument also carries over to some
extent, declarative programming all in all shifts the focus off control and to
logic. Yet in this generality it only holds for non-recursive programs or ideal,
non-practical, interpreters. For the efficient interpretation of recursive programs
however, order of clauses in a program and order of literals in a clause mat-
ters. Hence we think that declarative, (clausal- and/or equational-)logic-based
formalisms are principally equally well suited for IPS.

Logic programs represent general relations. (Partial) functions are special
relations—their domains are distinguished into source and target (or: a func-
tional relation has input and output parameters) and they are single-valued
(each instantiation of the input parameters implies a unique instantiation of the
output parameters). Regarding functional- and logic programming, there is an-
other difference: Functional programs are typically typed, i.e., their domain is
partitioned and inputs and outputs of each function must belong to specified
subsets, whereas logic programs are typically untyped. Interestingly, all three
“restrictions” of functions compared to relations have been shown to be advan-
tageous from a learnable point of view in ILP. The general reason is that they
restrict the problem space such that search becomes more efficient and fewer ex-
amples are needed to describe the intended function. In particular, no negative
examples are needed since they are implicitly given by the positive ones.

ILP is built around the natural generality structure of the problem space.
Regarding functional relations, we observe an “oddity” of this structure. For
definite programs, “more general”, with respect to the minimal Herbrand model,
means “more atoms”. If the relation is a function, an additional ground atom
must have a different instantiation of the input parameters compared to all
other included atoms. Thus, “more general” in the case of definite programs
representing functions reduces to “greater domain”. In other words: All functions
with the same domain are incomparable with respect to generality. Since most
often one is interested in total functions, generality actually provides no structure
at all of the space of possible solutions.

68 E. Kitzelmann

5 Functional Generate-and-Test Approaches

The functional IPS methods in this third block have in common that their search
is generate-and-test based. I/O-examples are not used as a means to construct
programs but only to test generated programs.

5.1 Genetic Programming

Genetic programming (GP) [29], like other forms of evolutionary algorithms is
inspired by biological evolution. GP systems maintain populations of candidate
solutions, get new ones by stochastical methods like reproduction, mutation, re-
combination/crossover, and selection, and thereby try to maximize fitness. Evo-
lutionary search can be useful when the problem space is too broad to conduct
an exhaustive search and simultaneously nothing or few is known about the fit-
ness landscape, i.e., when it is not possible to construct sensible heuristics. The
randomness of the search cares for a widespread exploration of the problem space
which is guided by the fitness measure. On the other side, this “chaotic” search
in a space with unknown properties makes it difficult to give any guaranties
regarding solutions and leads to only approximated solutions. A GP problem is
specified by fitness cases (e.g., example inputs of the target function), a fitness
function, and primitives to be used in evolved expressions. There are no prede-
fined goal criteria or preference biases in GP systems. The search is completely
guided by the fitness function that is to be maximized.

Data structures and recursion do not play a predominant role in GP. A typical
evolved program is an arithmetic expression or a propositional formula. Koza
and his colleagues [30] integrated recursion into GP. One of the major issues
is the handling of non-terminating programs. As a generate-and-test approach,
GP relies on testing evolved candidate programs against the given examples.
If non-termination may appear then a runtime limit is applied. This raises two
problems if non-terminating programs are frequently generated: (i) The difficulty
of assigning a fitness value to an aborted program and (ii) the runtime uselessly
consumed by evaluating non-terminating programs. Wong and Mun [31] deal
with this problem by a meta-learning approach to decrease the possibility of
evolving non-terminating programs.

Others try to avoid non-termination completely: In her system PolyGP [32],
Yu integrates implicit recursion through the use of user-provided higher-order
functions. Kahrs [33] evolves primitive recursive functions over the natural num-
bers. Binard and Felty [34] evolve programs in System F, a typed lambda calcu-
lus where only total recursive functions are expressible. The primitive recursive
functions are contained as proper subclass.

Hamel and Shen [35] have developed a method lying in the intersection of ILP,
GP and algebraic specification. They evolve (recursive) algebraic specifications,
i.e., equational theories over many-sorted signatures, using GP search methods.
Instead of providing a fitness function, a target theory is, as in ILP, specified
by positive and negative facts—ground equations in this case. Additionally, a
background theory may be provided. The fitness function to be maximized is

Inductive Programming: A Survey of Program Synthesis Techniques 69

derived from such a specification. Candidate theories satisfying more positive
facts, excluding more negative facts, and being of smaller syntactical complexity
are preferred.

5.2 ADATE

The ADATE system [36], to our knowledge the most powerful inductive pro-
gramming system regarding inducible programs, is an evolutionary system in
that it maintains a population of programs and performs a greedy search guided
by a fitness function. Yet unlike GP, it is especially designed to evolve recursive
programs and applies sophisticated program transformation operators, search
strategy, and program evaluation functions to this end.

Programs are represented in ADATE-ML, a subset of Standard ML. Pro-
grams are rated according to a user-provided output evaluation function, user
provided preference biases, and syntactical and computational complexity.

5.3 Systematic Enumeration of Programs

Two further recent methods, MagicHaskeller [37] and the software testing
system G∀ST [38] essentially systematically enumerate programs of a certain
class.

MagicHaskeller uses higher-order functions as background knowledge.
Katayama argues that by using higher-order functions, programs can be rep-
resented in a compact form and by using strong typing, the problem space is
narrowed such that a simple brute-force enumeration of programs could make
sense. He furthermore considers MagicHaskeller as a base-line which could be
used to evaluate the performance of more sophisticated methods. As a first result,
Katayama compares MagicHaskeller and PolyGP for the problems Nth,
Length, and Map, and states that PolyGP, in contrast to MagicHaskeller,
needs different higher-order functions for each of these problems, needs several
runs to find a solution, needs additional parameters to be set, and, nevertheless,
consumes more time to induce a solution.

5.4 Discussion

One general advantage of generate-and-test methods is their greater flexibility,
in at least to aspects: First regarding the problem space—there are no princi-
ple difficulties in enumerating even very complex programs. Second regarding
the form of the incomplete specification. Whereas the search operators of an
analytical technique depend on the specification (e.g., I/O-examples) such that
different forms of specification need different search operator techniques, the
search is more independent from the specification in generate-and-test methods
such that more expressive forms of specification can easily be integrated. In par-
ticular, fitness functions in GP or the objective function in ADATE are more
expressive than I/O-examples since no fixed outputs need to be provided but
general properties to be satisfied by computed outputs can be specified.

70 E. Kitzelmann

The disadvantage of generate-and-test methods is that they generally generate
far more candidate programs until a solution is found and hence need much
more time than data-driven methods to induce programs of equal size. Several
analytical and generate-and-test systems have been compared empirically in [39].
A further problem is non-termination. As generated programs need to be tested
against the provided examples, non-termination is a serious issue. Higher-order
functions or formalisms that a-priori only include total functions are helpful to
circumvent this problem.

6 Conclusions and Further Research

In the previous sections, we described several approaches and systems to the
inductive synthesis of functional and logic programs and discussed pros and
cons and relations between them.

One obvious dimension to classify them is the way of how example data is
used: As basis to construct candidate solutions (Section 3) or to test and evaluate
independently generated candidates (Section 5). (In ILP, both approaches are
found.) The analytical approach tends to be faster because many representable
programs are a priori excluded from being generated. On the other side, since
it strongly depends on the data and the language bias, it is much less robust
and flexible regarding the whole problem specification including types of data,
preference-, and language biases. Besides further developing both general ap-
proaches separately, we think that examining ways to combine them could be
useful to achieve a satisfiable combination of robustness, flexibility, expressive-
ness, and efficiency. Our system Igor2 and the well-known ILP system Progol

indicate the potential of such an integration.
One important topic, that certainly has not received sufficient attention in

the context of inductive program synthesis, is learning theory, including mod-
els of learning and criteria to evaluate candidate programs. PAC-learning, the
predominant learning model in machine learning, is well-suited for restricted rep-
resentation languages and noisy data, hence approximate solutions. Yet in pro-
gram synthesis, we have rich representation languages, often assume error-free
examples, and want have programs that exactly compute an intended function
or relation. Moreover, efficiency, not only of the induction process, but of the
induced program, becomes an important issue. Muggleton’s U-learning model6

captures these needs and is probably a good model or initial point to develop
learning models for inductive program synthesis.

There has certainly been significant progress since the beginnings in the sev-
enties. Yet inductive program synthesis still is not yet in a status to be applied to
real problems. We think that it is now time for a more target-oriented approach.
This does not mean to replacing general approaches by problem-dependent ad
hoc techniques. We rather think that identifying and promoting specific applica-
tion fields and domains could help to spark broader interest to the topic as well

6 The ’U’ stands for ’universal’.

Inductive Programming: A Survey of Program Synthesis Techniques 71

as to sensibly identify strengths and weaknesses of existing methods, to extend
them and to identify possibilities to integrate them in a useful way.

In the context of software engineering, we think that test-driven development
(TDD) would be a good starting point to bring IPS to application. The paradigm
requires preparing tests “(incompletely) defining” a function before coding it.
Hence, IPS could smoothly fit in here. Moreover, TDD typically features a strong
modularization such that only small entities need to be synthesized.

Within algorithms research, one could try to find (classes) of problems for
which “better” than currently known algorithms are expected to exist and to
apply IPS methods to them.

References

1. Partridge, D.: The case for inductive programming. Computer 30(1), 36–41 (1997)
2. Flener, P., Partridge, D.: Inductive programming. Automated Software Engineer-

ing 8(2), 131–137 (2001)
3. Schmid, U.: Inductive Synthesis of Functional Programs: Universal Planning, Fold-

ing of Finite Programs, and Schema Abstraction by Analogical Reasoning. LNCS
(LNAI), vol. 2654. Springer, Heidelberg (2003)

4. Summers, P.D.: A methodology for LISP program construction from examples.
Journal of the ACM 24(1), 161–175 (1977)

5. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
6. McCarthy, J.: Recursive functions of symbolic expressions and their computation

by machine, part i. Communications of the ACM 3(4), 184–195 (1960)
7. Smith, D.R.: The synthesis of LISP programs from examples: A survey. In: Bier-

mann, A., Guiho, G., Kodratoff, Y. (eds.) Automatic Program Construction Tech-
niques, pp. 307–324. Macmillan, Basingstoke (1984)

8. Jouannaud, J.P., Kodratoff, Y.: Program synthesis from examples of behavior. In:
Biermann, A.W., Guiho, G. (eds.) Computer Program Synthesis Methodologies,
pp. 213–250. D. Reidel Publ. Co. (1983)

9. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163
(1970)

10. Biermann, A.W.: The inference of regular LISP programs from examples. IEEE
Transactions on Systems, Man and Cybernetics 8(8), 585–600 (1978)

11. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

12. Kitzelmann, E.: Analytical inductive functional programming. In: Hanus, M. (ed.)
Logic-Based Program Synthesis and Transformation. LNCS, vol. 5438, pp. 87–102.
Springer, Heidelberg (2009)

13. Muggleton, S.H., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19, 20, 629–679 (1994)

14. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.
LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)

15. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
16. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B.

(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

72 E. Kitzelmann

17. Muggleton, S.H., Feng, C.: Efficient induction of logic programs. In: Proceedings
of the First Conference on Algorithmic Learning Theory, Ohmsha, pp. 368–381
(1990)

18. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing 13,
245–286 (1995)

19. Flener, P., Yilmaz, S.: Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. The Journal of Logic Programming 41(2-3), 141–195 (1999)

20. Aha, D.W., Lapointe, S., Ling, C.X., Matwin, S.: Inverting implication with small
training sets. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784,
pp. 29–48. Springer, Heidelberg (1994)

21. Rios, R., Matwin, S.: Efficient induction of recursive prolog definitions. In: McCalla,
G.I. (ed.) Canadian AI 1996. LNCS, vol. 1081, pp. 240–248. Springer, Heidelberg
(1996)

22. Idestam-Almquist, P.: Efficient induction of recursive definitions by structural anal-
ysis of saturations. In: Advances in Inductive Logic Programming. IOS Press, Am-
sterdam (1996)

23. Furusawa, M., Inuzuka, N., Seki, H., Itoh, H.: Induction of logic programs with
more than one recursive clause by analyzing saturations. In: Džeroski, S., Lavrač,
N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 165–172. Springer, Heidelberg (1997)

24. Mofizur, C.R., Numao, M.: Top-down induction of recursive programs from small
number of sparse examples. In: Advances in Inductive Logic Programming. IOS
Press, Amsterdam (1996)

25. Bergadano, F., Gunetti, D.: Inductive Logic Programming: From Machine Learning
to Software Engineering. MIT Press, Cambridge (1995)

26. Flener, P.: Inductive logic program synthesis with DIALOGS. In: ILP 1996. LNCS,
vol. 1314, pp. 175–198. Springer, Heidelberg (1997)

27. Jorge, A.M.G.: Iterative Induction of Logic Programs. PhD thesis, Departamento
de Ciência de Computadores, Universidade do Porto (1998)

28. Ferri-Ramı́rez, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: Incremental learn-
ing of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001.
LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

29. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

30. Koza, J.R., Andre, D., Bennett, F.H., Keane, M.A.: Genetic Programming III:
Darwinian Invention & Problem Solving. Morgan Kaufmann, San Francisco (1999)

31. Wong, M., Mun, T.: Evolving recursive programs by using adaptive grammar based
genetic programming. Genetic Programming and Evolvable Machines 6(4), 421–455
(2005)

32. Yu, T.: Hierarchical processing for evolving recursive and modular programs using
higher-order functions and lambda abstraction. Genetic Programming and Evolv-
able Machines 2(4), 345–380 (2001)

33. Kahrs, S.: Genetic programming with primitive recursion. In: Proceedings of the
8th annual Conference on Genetic and Evolutionary Computation (GECCO 2006),
pp. 941–942. ACM, New York (2006)

34. Binard, F., Felty, A.: Genetic programming with polymorphic types and higher-
order functions. In: Proceedings of the 10th annual Conference on Genetic and
Evolutionary Computation (GECCO 2008), pp. 1187–1194. ACM Press, New York
(2008)

35. Hamel, L., Shen, C.: An inductive programming approach to algebraic specification.
In: Proceedings of the 2nd Workshop on Approaches and Applications of Inductive
Programming (AAIP 2007), pp. 3–14 (2007)

Inductive Programming: A Survey of Program Synthesis Techniques 73

36. Olsson, J.R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

37. Katayama, S.: Systematic search for lambda expressions. In: van Eekelen, M.C.J.D.
(ed.) Revised Selected Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, vol. 6, pp. 111–126. Intellect (2007)

38. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: GAST: Generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670.
Springer, Heidelberg (2003)

39. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and
evaluation of inductive programming systems. In: Proceedings of the Second Con-
ference on Artificial General Intelligence, Atlantis, pp. 55–60 (2009)

Incremental Learning in Inductive Programming

Robert Henderson

Department of Computing, Imperial College London, United Kingdom
rjh09@doc.ic.ac.uk

Abstract. Inductive programming systems characteristically exhibit an
exponential explosion in search time as one increases the size of the pro-
grams to be generated. As a way of overcoming this, we introduce incre-
mental learning, a process in which an inductive programming system
automatically modifies its inductive bias towards some domain through
solving a sequence of gradually more difficult problems in that domain.
We demonstrate a simple form of incremental learning in which a system
incorporates solution programs into its background knowledge as it pro-
gresses through a sequence of problems. Using a search-based inductive
functional programming system modelled on the MagicHaskeller system
of Katayama [4], we perform a set of experiments comparing the perfor-
mance of inductive programming with and without incremental learning.
Incremental learning is shown to produce a performance improvement of
at least a factor of thirty on each of the four problem sequences tested.
We describe how, given some assumptions, inductive programming with
incremental learning can be shown to have a polynomial, rather than
exponential, time complexity with respect to the size of the program
to be generated. We discuss the difficulties involved in constructing suit-
able problem sequences for our incremental learning system, and consider
what improvements can be made to overcome these difficulties.

Keywords: Inductive programming, inductive functional programming,
incremental learning.

1 Introduction

Inductive Programming (IP) differs from more conventional machine learning
techniques in that it features the use of a general, expressive programming lan-
guage as a space of hypotheses for describing patterns in data. Herein lies both
the attraction and the apparent downfall of IP: having such an expressive hy-
pothesis space allows IP to be used to model complex or recursive patterns
that simply cannot be represented with the more conventional methods (feed-
forward neural networks or decision trees, for example). On the other hand, this
expressivity also means that IP methods can become intractable very quickly
when applied to larger problems. State of the art IP systems such as ADATE
[8], Igor II [6], and MagicHaskeller [4] have shown promise on relatively simple
arithmetic and list processing problems, but are not currently capable of synthe-
sising the kinds of complex programs that realistic practical applications would
demand. See [3] for a recent evaluation of the capabilities of these systems.

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 74–92, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Incremental Learning in Inductive Programming 75

How can we solve this dilemma, and get the benefits of a general, expressive
hypothesis space as well as a method that is computationally tractable? It has
been proposed [12,10] that combining IP with incremental learning may pro-
vide a solution. An incremental learning system is one that can automatically
modify its inductive bias towards a given domain through solving a sequence of
successively more difficult problems in that domain. In other words, incremental
learning is about gaining the expertise required to solve hard problems through
the experience of solving easier ones. If successfully equipped with an incremental
learning mechanism, a system should be able to learn to solve complex problems
without the need for a human expert to hand-code extensive domain-specific
knowledge or algorithms into its workings.

In this paper we present experimental evidence that incremental learning is
a viable means for producing orders of magnitude performance improvements
in IP. We start with a review of previous work in IP that features incremental
learning (Sect. 2). We then describe the particular incremental learning mecha-
nism to be evaluated here (Sect. 3), and give an overview of the IP system that
was used in our experiments (Sect. 4). We present the experiments themselves
along with their results, and give an explanation for these results in the form of a
computational complexity argument (Sect. 5). Finally, we discuss the limitations
of our chosen incremental learning mechanism, and consider what improvements
are required before it can be of practical use (Sect. 6).

2 Previous Work

Quinlan and Cameron-Jones [9] were probably the first to demonstrate a form
of incremental learning in an IP context. They showed how their inductive logic
programming system, FOIL, was able to solve more than half of the problems in
a sequence of 18 textbook logic programming exercises presented to it in order of
gradually increasing difficulty. This was made possible by having the system add
each solution program to its background knowledge as it went along. It could
therefore potentially re-use solutions to earlier problems as primitive elements
in the construction of solutions to later problems.

More recently, Schmidhuber et al. [11] studied an incremental learning mecha-
nism which they termed ‘adaptive Levin search’. The idea behind adaptive Levin
search is that, in a search-based IP system, the inductive bias can be controlled
by weighting the different programming language primitives according to how
frequently they should be used. As a system solves a succession of problems,
these weights are gradually modified according to how often each primitive ac-
tually occurs in solution programs. Thus, the system becomes biased towards
re-using primitives that were present in successful programs in the past. Adap-
tive Levin search was shown to produce some performance improvement on a
selection of simple problem sequences.

Schmidhuber later followed up the work on adaptive Levin search with a
fully fledged incremental learning IP system called OOPS [10]. OOPS supported
both a weight modification mechanism with a similar role to the one in adaptive

76 R. Henderson

Levin search, as well as an ability to invoke chunks of code from past programs
in solutions to new problems. However, in the problem sequence that Schmid-
huber tested, which involved solving the general ‘towers of Hanoi’ problem, only
the weight modification mechanism was shown to provide a direct performance
benefit.

Khan et al. [5] made a brief study into incremental learning in inductive logic
programming, under the name of ‘repeat learning’. Using the Progol inductive
logic programming system, they demonstrated how helper predicates invented
in order to solve one problem may be re-used when constructing the solution to
another. They chose a problem domain concerning the inference of the general
descriptions of moves in chess.

In this paper, we have chosen to focus on the kind of incremental learning
mechanism that was employed in FOIL, that in which a system adds solution
programs to its background knowledge as it progresses through a problem se-
quence. As we shall see, this simple method is remarkably powerful. The main
drawback of Quinlan’s and Cameron-Jones’ short study is that they did not
provide a direct comparison between scenarios with and without incremental
learning. We shall remedy that with the experiments presented here.

3 Incremental Learning Mechanism

We aim to give a convincing demonstration of one simple but effective incre-
mental learning mechanism. The mechanism works as follows: a sequence of
successively more difficult, but related, problems is presented to an IP system.
The system must solve the problems in the order given, and will incorporate
each solution program into its object language as a new primitive function (i.e.
into its background knowledge) as it goes along. This addition of these new func-
tions to the system’s object language is what constitutes the modification of its
inductive bias. For an appropriately designed problem sequence, we would ex-
pect the time taken for the system to solve whole the sequence, with the help of
incremental learning, to be much less than if it were tasked simply with solving
the final problem of the sequence in isolation.

One can see how this mechanism might be expected to work effectively by
considering how, particularly in functional programming, it is often natural to
express the solution to a complex problem in terms of the solutions to one
or more simpler problems already solved. This breaks the program down into
smaller, more managable units, and is a technique commonly known as procedural
abstraction when used by human programmers.

4 Implementation

We implemented, for the purpose of this study, a simple brute-force search based
IP system modelled on the MagicHaskeller system of Katayama [4]. We shall refer
to our implemented system as ‘MagicLisper’ (it was written in Common Lisp). In
this section, we first review MagicHaskeller and explain our reasons for choosing

Incremental Learning in Inductive Programming 77

it, then we describe how our system differs from MagicHaskeller in a few respects.
We also talk through an example usage of our system on an IP problem.

4.1 Review of MagicHaskeller

MagicHaskeller is a search-based inductive functional programming system that
infers programs from input-output training examples. Its main distiguishing fea-
ture is the brute-force algorithm that it uses to synthesise solution programs.
More or less, it simply generates and tests all possible programs in its object
language in order of length, using a breadth-first search, until it finds one that
matches the training examples. This is tractable because of two features of
MagicHaskeller’s object language. Firstly, the language is strongly typed, with
only type-consistent programs being considered by the search algorithm. Sec-
ondly, recursion is supported not explicitly, but via the use of certain higher-order
primitive operations known as morphisms [1]. These morphisms are essentially
generalisations of standard functional programming operations such as map and
reduce, and with them, many useful recursive processes can be expressed con-
cisely. Ultimately, these two features combine to produce a search space that
contains rather few obviously useless programs, allowing brute-force search to
fare well.

For this investigation into incremental learning, we chose to use a system based
on MagicHaskeller for two reasons. Firstly, MagicHaskeller’s search algorithm
is fast; synthesising simple recursive programs takes only a matter of seconds.
Secondly, the search algorithm is simple and predictable; it is easy to understand
exactly why MagicHaskeller succeeds or fails in finding a solution to a given
problem, which helps immensely when one is designing problem specifications.
It is for this second reason in particular that we chose MagicHaskeller as our
base rather than an alternative such as ADATE or Igor II.

4.2 Differences between MagicLisper and MagicHaskeller

The object language of MagicLisper has the same form as the ‘de Bruijn lambda
calculus’ language used in the version of MagicHaskeller described in [4]. There
is one significant structural difference: for the sake of simplicity, MagicLisper’s
type system does not support parametric polymorphism; instead, every primitive
function in its object language has one or more explicit ground types. The default
library of primitive functions and constants used by MagicLisper is given in
Table 1. Also see Fig. 1 for precise definitions of the morphism primitives.

In this paper we shall use a Lisp-style notation to represent programs. So, for
example, the following program (sum-elems), which sums the elements of a list,
in Haskell notation:

(\ a1 -> paralist (\ a2 a3 a4 -> + a4 a2) a1 0)

is written in the Lisp notation as:

(λ (a1) (paralist (λ (a2 a3 a4) (+ a4 a2)) a1 0))

78 R. Henderson

Table 1. The default library of primitive functions and constants used by MagicLisper.
The type system consists of: integers (int), lists of integers (list), and booleans (bool).
A compound type expression of the form: (λ (a b ...) r) represents a function whose
argument types are a, b, etc., and whose return type is r. The role of the weights is to
bias the system towards using certain primitives more than others when constructing
programs; primitives with lower weights are used more frequently (see Sect. 4.2).

Name Type Weight
— The empty list —

nil list 2.1
— List operations —

cons (λ (int list) list) 2.1
car (λ (list) int) 3.2
cdr (λ (list) list) 3.2

— Integer constants —
0 int 3.4
1 int 3.4

— Integer operations —
inc (λ (int) int) 3.4
dec (λ (int) int) 3.4
+ (λ (int int) int) 3.4
* (λ (int int) int) 3.4

— If-then-else —
if (λ (bool int int) int) 2.5
if (λ (bool list list) list) 2.5

— Boolean constants —
t bool 3.5
f bool 3.5

— Boolean operations —
not (λ (bool) bool) 3.5
and (λ (bool bool) bool) 3.5
or (λ (bool bool) bool) 3.5

— Integer comparions operations —
eql (λ (int int) bool) 2.0
< (λ (int int) bool) 2.0

— Morphisms —
paranat (λ ((λ (int int) int) int int) int) 4.0
paranat (λ ((λ (int list) list) int list) list) 4.0
paranat (λ ((λ (int bool) bool) int bool) bool) 4.0
paralist (λ ((λ (int list int) int) list int) int) 4.0
paralist (λ ((λ (int list list) list) list list) list) 4.0
paralist (λ ((λ (int list bool) bool) list bool) bool) 4.0
analist (λ ((λ (list) list) list) list) 4.5

MagicHaskeller searches through programs in order of length, or more pre-
cisely, it searches through programs in order of the total number of functor
and lexical variable invocations they contain. In MagicLisper, we generalise on
this process by requiring that primitive functors each be assigned a numerical

Incremental Learning in Inductive Programming 79

(define (paranat f n x)

(if (zero? n)

x

(f (- n 1) (paranat f (- n 1) x))))

(define (paralist f lst x)

(if (null? lst)

x

(f (car lst) (cdr lst) (paralist f (cdr lst) x))))

(define (analist f lst)

(let ((pair (f lst)))

(if (null? pair)

’()

(cons (car pair) (analist f (cdr pair))))))

Fig. 1. Definitions of MagicLisper’s morphism primitives given in the Scheme dialect
of Lisp: natural number paramorphism, list paramorphism, and list anamorphism

weight. Programs are synthesised in order of total weight, this being the sum
of the weights of their component functor and lexical variable invocations. Lexi-
cal variables always receive a weight of 0.4. The weights of the default primitive
functors range between 2.0 and 4.5 (see Table 1). As an example of how to calcu-
late the total weight of a program, consider the sum-elems program mentioned
above, which has a weight of 12:

paralist + a4 a2 a1 0 Total
Weight 4.0 3.4 0.4 0.4 0.4 3.4 12

Note that symbols occuring in lambda parameter lists do not contribute to the
calculation.

The weighting feature allows one to manually bias the system towards using
certain primitives by assigning them lower weights. This extra flexibility allows
our system to potentially handle a larger primitive library than MagicHaskeller,
since more rarely used primitives can be given higher weights to minimise their
negative impact on the search performance. Note that if one sets all the weights
to the same value, our search algorithm reduces to that of MagicHaskeller. In
this study, the weights were chosen by hand; however, we note that for a more
advanced system it would make sense to have these weights tuned automati-
cally (see Sect. 6.3). To justify our choice of weight values, we have tested Mag-
icLisper’s performance on a selection of nine non-incremental problems, both
with and without the customised weights (Table 2). The problems all exhibit a
significant increase in solution speed due to the custom weights, ranging from a
factor of 2.4 to a factor of 165.7.

MagicLisper does not employ the memoisation or fusion rule optimisations of
MagicHaskeller. Finally, MagicLisper requires the user to explicitly specify the
maximum number of ‘steps’ for which to test any candidate solution program
on a given training example. Each step corresponds to one evaluation by the

80 R. Henderson

Table 2. Some typical problems that MagicLisper can solve without the aid of incre-
mental learning. In each case, between 3 and 5 training examples were given. Solution
times were measured in two different scenarios: ‘custom weights’, in which the lexi-
cal variable and primitive weights were set up as described in Sect. 4.2, and ‘uniform
weights’, in which the lexical variable and primitive weights were all set to the value
1. The ‘speed-up factor’ column gives the proportional increase in speed due to the
custom weights: time (uniform weights) divided by time (custom weights). The mea-
surements were made on a 2GHz Intel Core II Duo desktop PC with 2GB of RAM
running GNU CLISP.

Name Description Time / s Time / s Speed-up
(custom (uniform factor
weights) weights)

append Appends two lists together. < 0.1 14.5 > 145.0

make-list
Constructs the list of n instances of
a given value.

0.1 13.3 133.0

length Finds the length of a list. 0.2 1.9 9.5

sum-elems
Finds the sum of the elements in a
list.

0.5 19.9 39.8

evenp Tests if a given integer is even. 0.7 1.7 2.4

nth Finds the nth element of a list. 0.9 26.0 28.9

last-elem Finds the last element of a list. 1.5 248.5 165.7

member
Tests if a given value is a member
of a list.

6.7 > 251.4 > 37.5

pow
Raises one integer to the power of
another.

9.6 31.2 3.3

interpreter of a sub-expression within a program, and this ‘number of steps’ is an
approximate specification of the maximum time to spend testing each program.

4.3 Example Usage of MagicLisper

Let us briefly look at MagicLisper in action on a simple problem. Consider the
following specification for a function which finds the length of a list:

() → 0 [10 steps]
(8) → 1 [20 steps]
(10 4 7 2) → 4 [50 steps]

To solve this, MagicLisper first determines the type of the program implied
by the specification: in this case, it is a function mapping a list of integers to
an integer. It then performs an iterative deepening search through the space

Incremental Learning in Inductive Programming 81

of programs matching that type; on the nth iteration, it generates and tests
programs whose total weight is less than or equal to n. When testing a program,
MagicLisper runs it on each training input in turn, for no more than the specified
number of steps in each case. The whole search finishes when MagicLisper finds
the program with the smallest weight that satisfies all of the training examples,
which is in this case:

(λ (a1) (paralist (λ (a2 a3 a4) (inc a4)) a1 0))

The above program has a weight of 11.6, so is found on the 12th search iteration.

5 Incremental Learning Experiments

In this section, we describe a set of experiments with MagicLisper that demon-
strate the incremental learning mechanism of Sect. 3, that in which solution
programs are successively added to the system’s object language as new
primitives.

5.1 Method and Results

We measured the performance of MagicLisper on four problem sequences, both
with and without the aid of incremental learning in each case. Full specifications
of these problem sequences along with the experimental results are given in
Figs. 2 to 5. Each specification consists of a main problem, and a sequence of sub-
problems whose solutions may act as building blocks out of which the solution
to the main problem can be constructed. For example, in the sort problem
sequence (Fig. 4) we tasked our system with inferring an algorithm to sort a list
of numbers. Sub-problems included the simpler but related task of taking the
smallest element out of a list and bringing it to the front (extract-least-elem),
and the yet simpler tasks of finding the smallest element in a list (least-elem),
and of removing a given element from a list (remove-elem).

When designing the problem sequences, we used our knowledge of how one
might implement the solution programs by hand in order to choose appro-
priate sub-problems. We used some degree of trial and error in tweaking the
problem sequences until incremental learning worked effectively (for example,
remove-first-block was originally the first stage in our design for the
block-lengths problem sequence; we added an extra stage, car-p, when it be-
came apparent that our system was taking too long to solve remove-first-block
from the default starting conditions). Also when choosing step counts, we made
use of our knowledge of the computational complexities of the desired solutions,
as well as a degree of trial and error. For now, let us emphasise the point that
readily comprehensible and effective incremental problem specifications often ex-
ist. In the next section (Sect. 6) we shall consider in detail the issue of how much
human effort is required to produce these specifications, as well as what ways
can be developed to reduce or remove the need for this human effort.

82 R. Henderson

deref-list: dereferences a list of indices into another list.

— Training examples —
(), (7) → () [20 steps]
(0), (6) → (6) [50 steps]
(1 0 2), (8 6 4 5) → (6 8 4) [200 steps]
— Test examples —
(3 2 2 1 3 4 0 5), (77 42 3 -10 8 61) → (-10 3 3 42 -10 8 77 61)

(8 4 7), (9 5 2 5 8 4 1 9 1 7) → (1 8 9)

Incremental specification

1. nth: returns the nth element of a list.

— Training examples —
0, (5) → 5 [15 steps]
1, (8 6) → 6 [30 steps]
3, (4 10 77 34 58) → 34 [150 steps]
— Test examples —
8, (8 4 9 3 7 1 9 2 5 4 7) → 5

4, (11 23 45 15 27 89 102 56) → 27

2. deref-list

Results

Stage Time / s Depth Solution

nth 0.9 12 (λ (a1 a2) (car (paranat (λ (a3 a4) (cdr a4)) a1 a2)))

deref-list 3.6 13
(λ (a1 a2) (paralist (λ (a3 a4 a5) (cons (nth a3 a2) a5))

a1 nil))

Total 4.5

Non-incremental: TIMEOUT (950.2 seconds, depth 18)

Fig. 2. The deref-list problem sequence: specification and results

For every problem and sub-problem, in order to obtain some guarantee that
the program found was indeed the correct general solution, we checked it against
a set of test examples. When designing our problem specifications, if any fail-
ure occurred at the testing stage, we added new training examples and re-ran
the experiment. For the final specifications given in the figures, every solution
program has passed all of its test examples.

We recorded the times taken for MagicLisper to solve the stages of each se-
quence. Total times was determined by adding these values together. Following
each sub-problem in a sequence, the inferred solution program was added to the
library of primitives and assigned a weight of 2.5, 2.5, 3.5, or 3.0 in the case
of problem sequences deref-list, reverse, sort, and block-lengths respec-
tively. The library of primitives was reset to its default state between problem

Incremental Learning in Inductive Programming 83

reverse: reverses a list.

— Training examples —
() → () [20 steps]
(8) → (8) [40 steps]
(3 7) → (7 3) [150 steps]
(9 4 7 1) → (1 7 4 9) [800 steps]
— Test examples —
(2 9 1 7 -3 4 8 9 10 12) → (12 10 9 8 4 -3 7 1 9 2)

(6 4 5 2 1 1 1 8 2) → (2 8 1 1 1 2 5 4 6)

Incremental specification

1. append-elem: appends an element to the end of a list.

— Training examples —
8, () → (8) [15 steps]
4, (9) → (9 4) [30 steps]
7, (3 8 1) → (3 8 1 7) [100 steps]
— Test examples —
6, (4 7 1 3 9 8 6) → (4 7 1 3 9 8 6 6)

3, (8 8 8 8 8) → (8 8 8 8 8 3)

2. reverse

Results

Stage Time / s Depth Solution

append-elem 1.0 12
(λ (a1 a2) (paralist (λ (a3 a4 a5) (cons a3 a5)) a2 (cons

a1 nil)))

reverse 0.1 10
(λ (a1) (paralist (λ (a2 a3 a4) (append-elem a2 a4)) a1

nil))

Total 1.1

Non-incremental: SOLUTION FOUND (569.6 seconds, depth 19):
(λ (a1) (paralist (λ (a2 a3 a4) (paralist (λ (a5 a6 a7) (cons a5 a7)) a4 (cons a2 nil))) a1 nil))

Fig. 3. The reverse problem sequence: specification and results

sequences. We also tested how our system fared when solving each main problem
on its own with the default primitive library, i.e. without incremental learning.
We allowed at least 500 seconds for every problem; if this time limit was ex-
ceeded then the computation was aborted after allowing for the current search
iteration to finish, and ‘TIMEOUT’ was indicated in the results table. Also
given in each results table are the search depths, in units of program weight,
at which any solution was found or a timeout occurred, as well as the solution
programs themselves. The experiments were performed on a 2GHz Intel Core II
Duo desktop PC with 2GB of RAM running GNU CLISP.

84 R. Henderson

sort: sorts a list of integers in ascending order.

— Training examples —
() → () [30 steps]
(7) → (7) [100 steps]
(4 2) → (2 4) [500 steps]
(9 8 7) → (7 8 9) [2000 steps]
(3 2 3 2 3) → (2 2 3 3 3) [10000 steps]
— Test examples —
(10 6 -30 7 2 5 -2 3 1 6 4) → (-30 -2 1 2 3 4 5 6 6 7 10)

(1 1 1 8 6 8 6 4 3 3 1 1) → (1 1 1 1 1 3 3 4 6 6 8 8)

(10 2 105 -78 46 45 23) → (-78 2 10 23 45 46 105)

Incremental specification

1. remove-elem: removes the first instance of a given element from a
list.

— Training examples —
6, (6) → () [15 steps]
7, (8 7) → (8) [30 steps]
3, (3 3) → (3) [30 steps]
10, (2 4 10 7 2 1) → (2 4 7 2 1) [200 steps]
— Test examples —
43, (9 56 43 2 7) → (9 56 2 7)

8, (6 8 4 8 2 8) → (6 4 8 2 8)

9, (7 5 2 9) → (7 5 2)

2. min: returns the smaller of two integers.

— Training examples —
2, 1 → 1 [10 steps]
3, 10 → 3 [10 steps]
7, 7 → 7 [10 steps]
— Test examples —
-5, -10 → -10

-3, 20 → -3

27, 27 → 27

Fig. 4. The sort problem sequence: specification and results

5.2 Analysis

The total times taken for our system to solve the incremental specifications
ranged between 1 and 16 seconds. On the other hand, all of the non-incremental
scenarios took more than 500 seconds, with a solution only being found at all in
the case of reverse. This amounts to an increase in speed due to incremental
learning of at least a factor of thirty in every case.

On inspection of the solution programs for the incremental sequences, we see
that the majority of programs do indeed invoke earlier solutions, as expected.
Indeed, for the longer sequences sort and block-lengths we can visualise a
graph of dependencies between the solution programs (Fig. 6).

Incremental Learning in Inductive Programming 85

3. least-elem: returns the smallest element in a list of integers.

— Training examples —
(3) → 3 [20 steps]
(8 4 7) → 4 [100 steps]
(9 6 2 9 2) → 2 [200 steps]
— Test examples —
(10 7 45 5 7 8) → 5

(77 34 59 34 208) → 34

4. extract-least-elem: brings the smallest element to front of a list of
integers.

— Training examples —
(8) → (8) [50 steps]
(10 4) → (4 10) [200 steps]
(8 6 2 7 2 5) → (2 8 6 7 2 5) [2000 steps]
— Test examples —
(3 2 1 2 3) → (1 3 2 2 3)

(54 70 14 59 14 20) → (14 54 70 59 14 20)

5. sort

Results

Stage Time / s Depth Solution

remove-elem 7.8 14
(λ (a1 a2) (paralist (λ (a3 a4 a5) (if (eql a3 a1) a4 (cons

a3 a5))) a2 a2))

min 0.0 7 (λ (a1 a2) (if (< a2 a1) a2 a1))

least-elem 0.7 13 (λ (a1) (paralist (λ (a2 a3 a4) (min a4 a2)) a1 (car a1)))

extract-least-elem 3.3 14
(λ (a1) (cons (least-elem a1) (remove-elem (least-elem a1)

a1)))

sort 4.5 14
(λ (a1) (analist (λ (a2) (paralist (λ (a3 a4 a5) (extract-

least-elem a5)) a2 a2)) a1))

Total 16.3

Non-incremental: TIMEOUT (586.6 seconds, depth 19)

Fig. 4. (continued)

The timing results indicate that, at worst, incremental learning can greatly
improve the performance of IP, while, at best, it is able to make otherwise in-
tractable problems tractable. To see why this should be the case, consider the
following computational complexity argument. Assuming that it takes constant
time to generate and test each program, then the time taken for MagicLisper’s
search algorithm to solve a given problem will be proportional to the total num-
ber of programs generated. We expect this to be approximately O[bd], where b

86 R. Henderson

block-lengths: replaces all blocks of consecutive identical elements in
a list with their lengths.

— Training examples —
() → () [50 steps]
(8) → (1) [200 steps]
(7 6) → (1 1) [700 steps]
(8 8 3 4) → (2 1 1) [5000 steps]
(6 5 5 4) → (1 2 1) [5000 steps]
— Test examples —
(7 7 7 7 7 5 5 5 7 7 2 2 4 9 9 9) → (5 3 2 2 1 3)

(5 8 8 4 9 1 2 1 2) → (1 2 1 1 1 1 1 1)

(0 0 0 0 0 7 0 0 0 5 5 5 5 5 5) → (5 1 3 6)

Incremental specification

1. car-p: tests whether an object is the first element of a list.

— Training examples —
0, () → f [15 steps]
1, () → f [15 steps]
4, (4) → t [15 steps]
5, (2) → f [15 steps]
8, (8 2) → t [15 steps]
7, (6 2 7) → f [15 steps]
— Test examples —
7, (8 7 7 6 4 7) → f

3, (3 8 1 4) → t

2. remove-first-block: removes the first block of consecutive identical
elements from a list.

— Training examples —
(8) → () [30 steps]
(4 6) → (6) [100 steps]
(1 3 1 3) → (3 1 3) [400 steps]
(9 9 8 6 9 3) → (8 6 9 3) [1000 steps]
(5 5 5 5 4 9) → (4 9) [1000 steps]
— Test examples —
(7 7 7 7 4 4 3 3 7 8 8 7 2 2) → (4 4 3 3 7 8 8 7 2 2)

(1 6 5 1 2 2 2) → (6 5 1 2 2 2)

(9 9 9 9 9) → ()

3. length: finds the length of a list.

— Training examples —
() → 0 [10 steps]
(8) → 1 [20 steps]
(10 4 7 2) → 4 [50 steps]
— Test examples —
(8 4 7 3 2 9 1 1 2) → 9

(92 -8 7 83 24) → 5

Fig. 5. The block-lengths problem sequence: specification and results

Incremental Learning in Inductive Programming 87

4. length-first-block: finds the length of the first block of consecutive
identical elements in a list.

— Training examples —
(8) → 1 [50 steps]
(4 6) → 1 [100 steps]
(9 9 8 6 9 3) → 2 [1000 steps]
— Test examples —
(3 3 3 3 8 7 6 3 4 5) → 4

(5 5 5 5 5 5 5 2 2) → 7

5. convert-first-block-to-length: replaces the first block of consecutive
identical elements in a list with its length.

— Training examples —
() → () [20 steps]
(8) → (1) [100 steps]
(7 6) → (1 6) [400 steps]
(8 8 3 4) → (2 3 4) [2000 steps]
(5 5 5 3) → (3 3) [2000 steps]
— Test examples —
(8 8 8 6 6 6 6) → (3 6 6 6 6)

(4 1 5 4 2 2) → (1 1 5 4 2 2)

6. block-lengths

Results

Stage Time / s Depth Solution

car-p 0.4 11 (λ (a1 a2) (paralist (λ (a3 a4 a5) (eql a3 a1)) a2 f))

remove-first-block 0.5 12
(λ (a1) (paralist (λ (a2 a3 a4) (if (car-p a2 a3) a4 a3))

a1 a1))

length 0.2 12 (λ (a1) (paralist (λ (a2 a3 a4) (inc a4)) a1 0))

length-first-block 6.9 15
(λ (a1) (length (paralist (λ (a2 a3 a4) (cdr a4)) (remove-

first-block a1) a1)))

convert-first-block-

to-length
4.8 14

(λ (a1) (paralist (λ (a2 a3 a4) (cons (length-first-block

a1) (remove-first-block a1))) a1 a1))

block-lengths 0.1 9
(λ (a1) (analist (λ (a2) (convert-first-block-to-length a2))

a1))

Total 12.9

Non-incremental: TIMEOUT (561.8 seconds, depth 19)

Fig. 5. (continued)

88 R. Henderson

remove-elems min

least-elem

extract-least-elem

sort

�

�
�

�
��

����

�

car-p

remove-first-block

length

length-first-block

convert-first-block-to-length

block-lengths

�

����
�

�
�� 	

	
	
	

�
��

�

Fig. 6. Dependency graphs for the solutions to the sort and block-lengths problem
sequences. Each arrow x → y means ‘program x invokes program y’.

is the search branching factor, roughly proportional to the size of the primitive
library, and d is the search depth of the lowest-weight solution program that
exists for the problem. Now, if we make an assumption that with incremen-
tal learning we can always divide a problem into sub-problems whose solution
depths are bounded by a constant d0, then the time taken to solve the problem
in incremental stages is no more than O[n(b0 + nΔb)d0], where n is the number
of stages, b0 is the branching factor of the default primitive library and Δb is the
increase in the branching factor that occurs each time we add a new primitive.
Let us also assume that the number of stages required to satisfactorily break
down a problem is roughly proportional to the depth of the lowest-weight so-
lution program that we’d get if the problem were solved non-incrementally, in
other words, n = kd. This gives us a time taken of O[kd(b0 +kdΔb)d0], or simply
O[dd0+1] with respect to d, if the problem is solved incrementally, compared with
O[b0

d] if it is solved non-incrementally. In this way, IP with incremental learning
can allow a system to solve, in polynomial time, problems that take exponential
time with non-incremental IP.

6 Limitations and Further Work

The main contribution of this paper has been to demonstrate a simple, working
methodology for incremental learning in IP. This methodology involved equipping
a brute-force search based IP system with an ability to reuse solution programs
by adding them to its primitive library. We showed that this mechanism can be
effective by demonstrating its use on four problems, each of which had been broken
down into an appropriate sequence of sub-problems. Our IP system was able to
solve the problems orders of magnitude more quickly when making using of the
incremental sequences than when simply solving the main problems in isolation.

In this section we address the limitations of our simple incremental learning
methodology; in particular we talk about the difficulties involved in constructing
problem sequences. We consider how to overcome these limitations, and discuss
how, by eliminating the need for problem sequences to be designed by a human
expert, we aim to enable a much more useful, autonomous form of incremental
learning.

Incremental Learning in Inductive Programming 89

6.1 Limitations of the Simple Methodology

The main drawback of the simple incremental learning methodology presented
in this paper is the significant amount of human effort and expertise required to
design effective problem sequences. Based on our experience designing problem
sequences for MagicLisper, we feel that the need for this effort and expertise is
largely due to what we shall call ‘brittleness’ in the system’s learning mechanism.
In other words, problem specifications must obey certain conditions in order for
learning to work, and they ‘break easily’, i.e. if these conditions are not met
perfectly, then the system will fail to find a solution at all.

One source of brittleness in our mechanism is the fact that solutions to sub-
problems are only useful if a solution to the main problem can be expressed in
terms of them directly. It is not enough for a sub-problem simply to be related
to the main problem, for example if their solutions would share some common
structure. In consequence, the success or failure of incremental learning is very
sensitive to the exact choice and order of sub-problems. Often, the only way to
predict if a particular sub-problem will be effective is to use ones knowledge of
how one might implement the target program by hand; in other words, using
the IP system does not save one much effort over hand-coding the program.
Our methodology suffers from brittleness in two other ways too. Firstly, the IP
system will not tolerate any error or noise in the training examples. Secondly,
if any of the step counts associated with the training examples are too low, the
system will again completely fail to find a solution.

6.2 Overcoming the Limitations

The need to specifiy step counts with training examples should be the easiest
limitation to overcome. In MagicHaskeller, it is already unnecessary to specify
step counts, because the system simply tests all programs until termination,
relying on the fact that the primitive library belies the possibility of infinite
loops. However, we don’t expect this approach to remain feasible as we start to
generate more complex programs, because the number of programs that run for a
long time before termination will become much larger. Instead, we propose using
an algorithm like ‘Levin search’ [10], in which the iterative deepening nature of
our IP search is extended so as to automatically re-test programs for longer and
longer step counts as the search progresses.

The need for a solution to a main problem to be expressible directly in terms of
solutions to sub-problems could be overcome as follows. Suppose that we modify
our incremental learning mechanism such that, instead of adding actual solution
programs to the primitive library, it attempts to derive re-usable procedural
abstractions from groups of solution programs, and then adds these abstractions
as the new primitives. The potential re-usabilility of a procedural abstraction
can be measured objectively using a principle of ‘minimum description length’:
if a procedure, when reused in multiple solution programs, serves to reduce the
combined size of these programs by more than its own size, then we can deem it
a useful abstraction. Though the best way to discover candidate abstractions is

90 R. Henderson

an open question, it would seem a reasonable starting point to try a brute-force
search. This method of incremental learning would be much more adaptable and
generic than our original mechanism, in that it should be able to extract useful
inductive bias from almost any kind of shared structure or commonality between
solution programs. We know of at least one previous implementation of a similar
idea: the ‘Duce’ system [7] can discover abstractions that encapsulate shared
structure among groups of statements in propositional logic.

To overcome the lack of toleration of errors or noise in the training examples,
we feel that the most satisfactory solution will ultimately be to reformulate our IP
methodology within a probabilistic framework. In such a framework, a program
would no longer describe a deterministic mapping from inputs to outputs, rather
it would represent a conditional probability distribution over the set of possible
outputs given the inputs. Such a reformulation is highly desirable if our aim is
to develop a machine learning technique of practical use, since real-world data is
usually noisy. Indeed, the development of probabilistic frameworks for IP is an
active area of research, particularly within inductive logic programming [2].

In overcoming the above limitations, our eventual goal is to produce an IP
methodology capable of performing incremental learning simply from a corpus of
data, without the need for that data to be organised into problem sequences by
a human expert. To see how this might work, first consider how a system could
perform incremental learning if provided with a large bank of related problems of
various difficulties, in no particular order. Such a system could repeatedly scan
through the problems, briefly attempting to solve each as it goes. Some of the
problems might be easy enough to solve immediately, and the system could then
use the solutions of these to derive procedural abstractions which it would add
to its primitive library. On the next scan through the problem bank, these new
primitives should enable the system to solve some problems that were previously
out of its reach. Ideally, the process iterates until most of the problems are solved.
Consider next how one might extend this idea in order to create a system capable
of automonomously learning a model for a complex environment or corpus of
data. In a such a situation, it might often be the case that various parts of the
environment or corpus can be described by simple models. By analogy with the
‘bank of problems’ scenario, one may imagine an incremental learning system
that initially looks for these simple models, adds abstractions derived from those
models to its background knowledge, then searches for more complex models, and
so on. We may think of this process as an automation of the scientific method.

6.3 Managing an Expanding Background Knowledge

Let us lastly discuss the issue of how to prevent an incremental learning system
from becoming gradually less efficient as the size of its background knowledge
increases. Each time a system like MagicLisper adds a new procedure to its prim-
itive library, it increases the branching factor of its search space. As discussed
in Sect. 5.2, we expect the time taken for our system to solve a given problem to
increase polynomially with the value of this branching factor. Here we suggest
two ways to alleviate this potential source of slowdown.

Incremental Learning in Inductive Programming 91

Our first solution would be to enable our IP system to automatically tune
the weights of primitives. Not only would this remove the need for a human to
choose the weight values, but it would also provide a mechanism for the system
to control the size of its background knowledge by ‘unlearning’ any procedures
that turned out to be not so useful in the long term. To perform the tuning, we
can adjust weights according to how frequently their associated primitives occur
in solution programs, as in ‘adaptive Levin search’. If we do this in an online
manner, problem by problem, then rarely used primitives will gradually increase
in weight until their influence becomes negligible. We can even delete primitives
altogether if their weights exceed some threshold.

If an incremental learning IP system is ever to grow a large background knowl-
edge consisting of hundreds or even thousands of primitives, it could do with
some means of automatically inventing new data types. Types place constraints
on which primitives can be used in combination with which others, and the more
of these constraints that we have, the greater the size of the primitive library
we can support while still maintaining a low search branching factor. For hu-
man programmers, it is natural to define new types (with the data keyword in
Haskell, for instance) as well as new functions as we build up a software system.
Can an IP system do the same in an effective way? We leave this as an open
question.

7 Conclusion

In this paper, we have demonstrated a simple but effective incremental learning
mechanism for an inductive programming system. It works by having the system
incorporate solution programs into its object language as new primitive functions
as it progresses through a sequence of problems. The mechanism is capable of
producing orders of magnitude improvements in problem solving performance,
but at the expense of considerable human effort spent in designing appropriate
problem sequences. However, we have sketched a number of possible improve-
ments to the mechanism intended to reduce or remove much of this need for
human guidance. Our aim is that this methodology can eventually be developed
into a powerful generic machine learning technique by which a system can learn
a model of a large, complex dataset in an autonomous fashion.

Acknowledgments. Thank you to my MSc supervisor Michael O’Boyle, for
his support and encouragement on this project.

References

1. Augusteijn, L.: Sorting morphisms. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP
1998. LNCS, vol. 1608, pp. 1–27. Springer, Heidelberg (1999)

2. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: Ben-
David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp.
19–36. Springer, Heidelberg (2004)

92 R. Henderson

3. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and
evaluation of inductive programming systems. In: Proceedings of the Second Con-
ference on Artificial General Intelligence, AGI 2009 (2009)

4. Katayama, S.: Systematic search for lambda expressions. In: Revised Selected Pa-
pers from the Sixth Symposium on Trends in Functional Programming, TFP 2005,
vol. 6, pp. 111–126. Intellect (2007)

5. Khan, K., Muggleton, S., Parson, R.: Repeat learning using predicate invention.
In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 165–174. Springer, Heidelberg
(1998)

6. Kitzelmann, E.: Data-driven induction of recursive functions from input/output-
examples. In: Proceedings of the ECML/PKDD 2007 Workshop on Approaches
and Applications of Inductive Programming (AAIP 2007), pp. 15–26 (2007)

7. Muggleton, S.: Duce, an oracle based approach to constructive induction. In: IJCAI
1987, pp. 287–292 (1987)

8. Olsson, J.R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

9. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

10. Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54(3), 211–
254 (2004)

11. Schmidhuber, J., Zhao, J., Wiering, M.: Shifting inductive bias with success-
story algorithm, adaptive levin search, and incremental self-improvement. Machine
Learning 28(1), 105–130 (1997)

12. Solomonoff, R.J.: Progress in incremental machine learning. Given at: NIPS Work-
shop on Universal Learning Algorithms and Optimal Search. Whistler, B.C.,
Canada, December 14 (2002), http://world.std.com/~rjs/pubs.html

http://world.std.com/~rjs/pubs.html

Enumerating Well-Typed Terms Generically

Alexey Rodriguez Yakushev1 and Johan Jeuring2,3

1 Vector Fabrics B.V., Paradijslaan 28, 5611 KN Eindhoven, The Netherlands
2 Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,

3508 TB Utrecht, The Netherlands
3 School of Computer Science, Open University of the Netherlands, P.O. Box 2960,

6401 DL Heerlen, The Netherlands

Abstract. We use generic programming techniques to generate well-typed lamb-
da terms. We encode well-typed terms by means of generalized algebraic dataty-
pes (GADTs) and existential types. The Spine approach to generic programming
supports GADTs, but it does not support the definition of generic producers for
existentials. We describe how to extend the Spine approach to support existentials
and we use the improved Spine to define a generic enumeration function. We
show that the enumeration function can be used to generate the terms of simply
typed lambda calculus.

1 Introduction

This paper discusses the problem of given a type, generate lambda terms of that type.
There exist several algorithms and/or tools for producing lambda terms given a type (1;
8; 10). The approach discussed in this paper uses generic programming techniques on
Generalized Algebraic Datatypes (GADTs) and existentials to enumerate well-typed
lambda terms. The enumeration function is much simpler than previous work; the main
problem lies in making generic programming techniques available for GADTs and exis-
tentials in functions that produce values of a particular datatype, such as an enumeration
function.

Since their introduction in Haskell, Generalized Algebraic Datatypes (GADTs) (3;
13; 16) are often used to improve the reliability of programs. GADTs encode datatype
invariants by type constraints in constructor signatures. With this information, the
compiler rejects values for which such invariants do not hold during type-checking.
In particular, GADTs can be used to model sets of well-typed terms such that values
representing ill-typed terms cannot be constructed. Other applications of GADTs in-
clude well-typed program transformations, implementation of dynamic typing, staged
computation, ad-hoc polymorphism and tag-less interpreters.

Given the growing relevance of GADTs, it is important to provide generic program-
ming support for them. The generation of datatype values using generic programming
is of particular interest. Generic value generation has been used before to produce test
data, which can be used to check the validity of program properties (9). In generic
value generation, the datatype definition acts as a specification for test data. However,
this specification is often imprecise, since it gives rise to either values that do not occur
in practice, or, worse, ill-formed values (for example, a program fragment with unbound
variables). For this reason, QuickCheck (4) allows the definition of custom generators.

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 93–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

94 A. Rodriguez Yakushev and J. Jeuring

GADT definitions may specify types more precisely than normal datatypes. In the
case of well-typed terms, the constraints in the datatype definition describe the forma-
tion rules of a well-typed value. It follows that a generic producer function on a GADT
might produce values that are better suited for testing program properties. For example,
it should be possible to use a generic value generation function with a GADT encoding
lambda calculus, in order to produce a well-typed lambda term with which a tag-less
interpreter can be tested.

The spine view (6; 7), which is based on “Scrap Your Boilerplate” (11), is the only
approach to generic programming in Haskell that supports GADTs. The main idea be-
hind the spine view is to make the application of a data constructor to its arguments
explicit. The spine view represents a datatype value by means of two cases: the rep-
resentation of a datatype constructor, and the representation of the application to con-
structor arguments. A generic function can then be defined by case analysis on the spine
view. Hinze et al. (6) describe how to use the spine view to represent GADT values and
define generic functions to consume and produce such values.

Besides GADT definitions, our definition of well-typed terms uses existentially quan-
tified type variables. In particular, the type of expression application is that of the func-
tion return type. The argument type is hidden from the application type and is therefore
existentially quantified. Under certain conditions, the spine view supports the definition
of generic functions that consume existentially typed values. Unfortunately, it cannot
be used to define a generic function that produces them. It follows that the spine view
cannot in general be used to define generic enumerators for well-typed terms.

This paper extends the spine view to allow the use of producer functions on existen-
tial types. We make the following contributions:

– We show how to support existential types systematically within the spine view. We
extend the spine view to encode existentially quantified type variables explicitly.
This enables the definition of generic functions that perform case analysis on such
types. As a consequence, the extended spine view supports the definition of generic
producers that work on existential types. We demonstrate the increased general-
ity by defining generic serialization and deserialization for existential types and
GADTs.

– We define a generic enumeration function that can be used with GADTs and ex-
istential types. This function can be used to enumerate the well-typed terms rep-
resented by a GADT. Consider a GADT that represents terms in the simply typed
lambda calculus. The enumeration of terms with type Expr ((b→ c)→ (a→ b)→
a→ c) yields the term that corresponds to function composition. The enumeration
function requires explicit support for existential types in producers. For that reason
it cannot be defined in approaches such as that of Hinze et al. (6).

This paper is organized as follows. Section 2 introduces the spine view and gives several
examples illustrating why this view is not suitable to define producers for existential
types. Section 3 describes our extensions to the spine view, which enable producer
support for existential types. Section 4 uses the extended spine view to define a generic
enumeration function. The enumeration function is then used to produce well-typed
lambda calculus terms. Section 5 discusses related work, and section 6 concludes.

Enumerating Well-Typed Terms Generically 95

2 The Spine View

The spine view was introduced by Hinze et al. (7). This view supports the definition
of generic functions that consume (such as show or eq) or transform (such as map)
datatype values. We introduce the spine view using the generic show function as an
example. This function prints the textual representation of a value based on the type
structure encoded by the view. To implement this function, we need case analysis on
types to implement type-dependent behavior.

2.1 Case Analysis on Types

The spine view uses GADTs to implement case analysis on types. We define a type
representation datatype where each constructor represents a specific type:

data Type ::∗→ ∗ where
Int ::Type Int
Maybe ::Type a→ Type (Maybe a)
Either ::Type a→ Type b→ Type (Either a b)
List ::Type a→ Type [a]
(:→) ::Type a→ Type b→ Type (a→ b)

An overloaded function can be implemented by performing case analysis on types. To
perform case analysis on types we pattern match on the type representation values. The
GADT pattern matching semantics (13) ensures that the type variable a is refined to the
target type of the matched constructor:

show ::Type a→ a→ String
show Int n = showInt n
show (Maybe a) (Just x) = paren ("Just" • show a x)
show (Maybe a) Nothing = "Nothing"
show (Either a b) (Left x) = paren ("Left" • show a x)
show (Either a b) (Right y) = paren ("Right" • show b y)
show (List a) ((:) x xs) = paren ("(:)" • show a x • show (List a) xs)
show (List a) [] = "[]"

This function prints a textual representation of a datatype value. Note that we choose
to print lists in prefix syntax rather than the usual Haskell notation. The operator (•)
separates two strings with a white space, and paren prints parentheses around a string
argument.

2.2 The Spine Representation of Values

Type representations can be used to implement overloaded functions, but such functions
are not generic. The user needs to define new show cases for every datatype added to
the program. To define generic functions, we make use of the spine view.

The spine view represents all datatype values by means of two cases: a constructor
and the application of a (partially applied) constructor to an argument. This is embodied
in the Spine datatype:

96 A. Rodriguez Yakushev and J. Jeuring

data Spine ::∗→ ∗ where
Con ::ConInfo a→ Spine a
(:�:) ::Spine (a→ b)→ Typed a→ Spine b

infixl 0 :�:

The Con case of the spine view stores a value constructor of type a together with ad-
ditional information including the constructor name, the fixity, and the constructor tag.
This additional information is stored in the datatype ConInfo. The application case (:�:)
consists of a functional value Spine that consumes a-values, and the argument a paired
with its type representation in the datatype Typed. We show Typed, and a simplified
ConInfo containing only the constructor name below:

data ConInfo a = ConInfo{conName ::String,conVal ::a}
data Typed a = (::) {val ::a,rep ::Type a}

To write a generic function, we first convert a value to its Spine representation. We show
how to perform this conversion using the type-indexed function toSpine:

toSpine ::Type a→ a→ Spine a
toSpine Int x = Con (conint x x)
toSpine (Maybe a) (Just x) = Con (conjust Just) :�: x :: a
toSpine (Maybe a) Nothing = Con (connothing Nothing)
toSpine (Either a b) (Left x) = Con (conleft Left) :�: x :: a
toSpine (Either a b) (Right y) = Con (conright Right) :�: y :: b
toSpine (List a) ((:) x xs) = Con (concons (:))

:�: x :: a :�: xs :: List a
toSpine (List a) [] = Con (connil [])

Because we reuse the constructor information in later sections of the paper, we define
ConInfo values separately. We give some examples below:

conint :: Int→ a→ ConInfo a
conint i = ConInfo (showInt i)
connothing,conjust ::a→ ConInfo a
connothing = ConInfo "Nothing"
conjust = ConInfo "Just"

In summary, to enable generic programming using the spine view, we define a GADT
for type representations, the Spine datatype, and conversions from datatype values to
their spine representations. The conversions for datatypes are written only once, and
then the same conversion can be reused for different generic functions. The conversion
to the spine representation is regular enough that it can be automatically generated from
the syntax trees of datatype declarations1.

1 At the time of writing, Template Haskell cannot handle GADT declarations. Our prototype
generates the spine representation for a GADT using a manually constructed declaration syntax
tree instead of parsing the GADT declaration and processing it via Template Haskell.

Enumerating Well-Typed Terms Generically 97

Equipped with the spine representation, we can write a number of generic functions.
For example, this is the definition of generic show:

show ::Type a→ a→ String
show rep x = paren (gshow (toSpine rep x))
gshow ::Spine a→ String
gshow (Con con) = conName con
gshow (con :�: arg) = gshow con • show (rep arg) (val arg)

This function is a simplified variant of the show function defined in the Haskell pre-
lude. All datatype values are printed uniformly: constructors are separated from the ar-
guments by means of the • operator, and parentheses are printed around fully applied
constructors.

2.3 A View for Producers

We now discuss the definition of generic producers using parsing as an example. In the
first part of the paper we use parsing to motivate and illustrate our improvements to the
spine approach. With the improvements in place, Section 4 shows the main function of
interest in this paper: generic enumeration.

It is impossible to define read, the inverse to show using the current Spine datatype.
We could for example use the following type for read:

read ::Type a→ String→ [(a,String)]

This function produces all possible parses of type a (paired with unused input) from
a representation for the type a and an input string. To write such a generic function,
we would need a spine representation to guide the parsing process. Unfortunately, a
representation Spine a cannot be used for this purpose. A value of Spine a represents
a particular value of type a (for example, a singleton list) rather than the full datatype
structure (a description of the cons and nil constructors and their arguments). To enable
a generic definition of generic read and other producer generic functions, Hinze et al. (6)
introduce the type spine view. This view describes all values of a rather than a particular
one.

type TypeSpine a = [Signature a]
data Signature ::∗→ ∗ where

Sig ::ConInfo a→ Signature a
(:⊕:) ::Signature (a→ b)→ Type a→ Signature b

infixl 0 :⊕:

Here we again have two cases, one for encoding a constructor and another for the appli-
cation of a (partially) applied constructor to an argument. The application case contains
only a type representation and no argument value anymore. A value of TypeSpine a is
a list of constructor signatures representing all constructors of the represented datatype.
The type-indexed function typeSpine produces the type spine representations of all
datatypes on which generic programming is to be used.

98 A. Rodriguez Yakushev and J. Jeuring

typeSpine ::Type a→ TypeSpine a
typeSpine Int = [Sig (conint i i) | i← [minBound. .maxBound]]
typeSpine (Maybe a) = [Sig (connothing Nothing),Sig (conjust Just) :⊕: a]
typeSpine (Either a b) = [Sig (conleft Left) :⊕: a,Sig (conright Right) :⊕: b]
typeSpine (List a) = [Sig (connil []),Sig (concons (:)) :⊕: a :⊕: List a]

The generic parsing function read builds a parser that deserializes a value of type a:

read ::Type a→ Parser a

For the purposes of this paper, we assume that Parser is an abstract parser type with a
monadic interface, with some standard derived functions:

return ::a→ Parser a
(>>=) ::Parser a→ (a→ Parser b)→ Parser b

ap ::Parser (a→ b)→ Parser a→ Parser b
(>>) ::Parser a→ Parser b→ Parser b

noparse ::Parser a
alternatives :: [Parser a]→ Parser a

readInt ::Parser Int
lex ::Parser String

token ::String→ Parser ()
readParen ::Parser a→ Parser a

The definition of generic read uses readInt to read an integer value. For other datatypes,
we make parsers for each of the constructor representations and merge all the alterna-
tives in a single parser.

read ::Type a→ Parser a
read Int = readInt
read rep = alternatives [readParen (gread conrep) | conrep← typeSpine rep]

The generic parser of a constructor is built by induction on its signature representation.
The base case (Sig) tries to recognize the constructor name and returns the constructor
value. The application case parses the function and argument parts recursively and the
results are combined using monadic application:

gread ::Signature a→ Parser a
gread (Sig c) = token (conName c)>> return (conVal c)
gread (con :⊕: arg) = gread con ‘ap‘ read arg

2.4 Generalized Algebraic Datatypes

Recall that generalized algebraic datatypes are datatypes to which type-level constraints
are added. Such constraints can be used to encode invariants that datatype values must
satisfy. For example, we can define a well-typed abstract syntax tree by having the
syntactic categories of constructs in the target type of constructors:

Enumerating Well-Typed Terms Generically 99

data Expr ::∗→ ∗ where
EZero ::Expr Int
EFalse ::Expr Bool
ESuc ::Expr Int → Expr Int
ENot ::Expr Bool→ Expr Bool
EIsZero ::Expr Int → Expr Bool

We have constants for integer and boolean values, and operators that act on them.
GADTs can easily be represented in the spine view. For instance, the definition of

toSpine for this datatype is as follows:

toSpine (Expr Int) EZero = Con (conezero EZero)
toSpine (Expr Bool) EFalse = Con (conefalse EFalse)
toSpine (Expr Int) (ESuc e) = Con (conesuc ESuc) :�: e :: Expr Int
toSpine (Expr Bool) (ENot e) = Con (conenot ENot) :�: e :: Expr Bool
toSpine (Expr Bool) (EIsZero e) = Con (coneiszero EIsZero) :�: e :: Expr Int

where conezero etc. represent constructor information. This definition requires the ex-
tension of Type with the representation constructors Expr and Bool. Generic functions
defined on the spine view, such as generic show, can now be used on Expr.

What about generic producer functions? These can be used on Expr too, because it is
also possible to construct datatype representations for GADTs in the type spine view:

typeSpine (Expr Int) = [Sig (conezero EZero)
,Sig (conesuc ESuc) :⊕: Expr Int]

typeSpine (Expr Bool) = [Sig (conefalse EFalse)
,Sig (conenot ENot) :⊕: Expr Bool
,Sig (coneiszero EIsZero) :⊕: Expr Int]

To parse boolean expressions, we invoke the generic read function as follows:

readBoolExpr ::Parser (Expr Bool)
readBoolExpr = read (Expr Bool)

The parser for integer expressions would use a different argument for Expr. In this
example, we are assuming that the expression to be parsed is always of a fixed type.
A more interesting scenario would be to leave the type of the GADT unspecified and
let it be dynamically determined from the parsed value. This would be useful if the
programmer wants to parse some well-typed expression regardless of the type that the
expression has.

A possible solution to parsing a GADT without specifying its type argument would
be to existentially quantify over that argument in the result of the parsing function. Next,
we discuss how the spine view deals with existential types.

2.5 Existential Types and Consumer Functions

In Haskell, existential types are introduced in constructor declarations. A type variable
is existentially quantified if it is mentioned in the argument type declarations but omitted
in the target type. For example, consider dynamically typed values:

100 A. Rodriguez Yakushev and J. Jeuring

data Dynamic ::∗ where
DynVal ::Type a→ a→ Dynamic

The type variable a in the declaration is existentially quantified. It is hidden when build-
ing a Dynamic value.

The type a is kept abstract when pattern matching a Dynamic value, but by case
analyzing the type representation it is possible to dynamically recover the type a. Thus,
statically, Dynamic values all have the same type, but, dynamically, the type distinction
can be recovered and acted upon.

To represent dynamic values in Spine, we add type representations for Type itself
and Dynamic. Hence, we add the following two constructors to Type:

Type ::Type a→ Type (Type a)
Dynamic ::Type Dynamic

Now, Dynamic values may be represented as follows by the spine view:

toSpine Dynamic (DynVal rep val) = Con (condynval DynVal)
:�: rep :: Type rep
:�: val :: rep

While Dynamic values may be easily represented, this is not the case for all dataty-
pes having existential types. Recall that in a spine representation, every constructor
argument is paired with its type representation in the datatype Typed. In general, in
constructors having existential types, it may not be possible to build such a pair because
the representation of the existential type may be missing. The constructor DynVal is
a special case, because it carries the representation type of the existential a. For an
example where the representation of a constructor with existential types is not possible,
consider adding an application constructor to the expression datatype:

EApp ::Expr (a→ b)→ Expr a→ Expr b

and consider the corresponding toSpine alternative:

toSpine (Expr b) (EApp fun arg) = Con (coneapp EApp)
:�: fun :: Expr (a :→ b)
:�: arg :: Expr a

This code is incorrect due to the unbound variable a which stands for the existential
representation. The conclusion here is that the spine view can be used on an existential
type, as long as the constructor in which it occurs carries a type representation for it.

2.6 Existential Types and Producer Functions

Unfortunately the spine approach does not support the definition of generic producer
functions that build existentially typed values. In particular, This makes it hard to define
a generic generator for datatypes with existential types such as Expr in our previous
example, and a generator for simply typed lambda calculus as defined in Section 4.

Enumerating Well-Typed Terms Generically 101

The reason behind this problem is that the generating function has no access to the
representation of the existential type. For example, consider the representation for dy-
namically typed values:

typeSpine Dynamic = [Sig (condynval DynVal) :⊕: Type a :⊕: a]

What should the representation a be? There are two options, we either fix it to a single
type representation or we range over all possible type representations. Choosing one
type representation would be too restrictive, because read would only parse dynamic
values of that type and fail on any other type. We try the second option:

typeSpine Dynamic = [Sig (condynval DynVal) :⊕: Type a :⊕: a | a← types]

This code does not yet have the behavior we desire. For typeSpine to be type-correct,
types must return a list of representations all having the same type. Because Type is a
singleton type (each type has only one value), types returns a single type representation.
We would like types to generate a list of all possible type representations, but different
type representations have different types. Therefore, types should return representations
whose represented type is existentially quantified. To this end, we define the type of
boxed type representations:

data BType = ∀a.Boxed (Type a)
applyBType :: (∀a.Type a→ c)→ BType→ c
applyBType f (Boxed a) = f a

Now we can define the type spine of dynamic values, for which we assume a list of
boxed representations (types):

types :: [BType]
typeSpine Dynamic =[Sig (condynval DynVal) :⊕: Type a :⊕: a | Boxed a← types]

The boxed representations are used to construct a list of constructor signatures that
represent a dynamic value of the corresponding type. There are infinitely many type in-
stances of polymorphic types, therefore there are infinitely many Dynamic constructor
representations. An infinite type spine is not a desirable representation to work with.
The read function would try to parse the input using every Dynamic constructor repre-
sentation. If there is a correct parse, parsing eventually succeeds with one of the repre-
sentations. However, if there is no correct parse, parsing does not terminate. Moreover,
this representation precludes implementing more efficient variants of parsing.

Infinite type spine representations for datatypes with existentials make the use of
generic producers on such datatypes unpractical. Before describing a modified type
spine view that solves this problem, we explore a couple of non-generic examples to
motivate our design decisions.

We start with the parser definition for Dynamic values. In the code above, we can
parse any possible dynamic value because there are DynVal constructor signatures for
all possible types. For each signature, we build a parser that parses the correspond-
ing type representation and a value having that type. Now, rather than parsing the two

102 A. Rodriguez Yakushev and J. Jeuring

arguments of the constructor DynVal independently, we introduce a dependency on rep-
resentations. First, we parse the type representation for the existential. Then, we use it
to build a parser of the corresponding type and parse the second argument. In this way,
we no longer need to have an infinite representation of types because we obtain the
representation of the existential during the parsing process:

read Dynamic = do
Boxed a← readType
value ← read a
return (DynVal a value)

To this end, we use a function that parses type representations. Because the result may
be of an arbitrary type, readType produces a representation that is boxed:

readType ::Parser BType

We defer the presentation of readType to Section 3.3.
The same technique can be used to parse any constructor having an existential type.

For example, the definition for parsing expression applications is as follows:

read (Expr b) = do
Boxed a← readType
fun ← read (Expr (a :→ b))
arg ← read (Expr a)
return (EApp fun arg)

In this example, the type representation that is parsed is used to build the type represen-
tations for the two remaining arguments.

These two examples show that constructors with existential types must be handled
differently from other constructors. In such constructors, the constructor argument rep-
resentations depend on the type representation of the existential type. In our examples,
this dependency is witnessed by the dynamic construction of parsers based on the type
representation that was previously parsed.

3 An Improved Spine View: Support for Existential Types

We start this section by showing how to extend the spine view for producers to represent
existential types explicitly. Then, we show why this extension is also necessary for the
consumer spine view.

3.1 The Existential Case for Producer Functions

We have learned two things from the read examples for constructors with existential
types. First, we need a way to represent existential variables explicitly, so that generic
functions can handle existential type variables specifically. And second, there is a de-
pendency from constructor arguments on the existential variable. For example, we can

Enumerating Well-Typed Terms Generically 103

only parse the function and argument parts of an expression application, if we have
already parsed the existential type representation. We modify the type spine view to
accommodate these two aspects. We extend the constructor signatures in this view with
a constructor to represent existential quantification: AllEx. The dependency of type b on
an existential type a is made explicit by means of a function from type representations
of type a to representations of b.

data Signature ::∗→ ∗ where
Sig ::a→ Signature a
(:⊕:) ::Signature (a→ b)→ Type a→ Signature b

AllEx :: (∀a.Type a→ Signature b)→ Signature b

Interestingly, the type variable a is universally rather than existentially quantified. Why
is this the case? The type spine view represents all possible values of a datatype, there-
fore the existential variable must range over all possible types. This also explains the
name of the constructor AllEx, which stands for all existential type representations.

There is another modification to the type spine view. The Sig constructor no longer
carries constructor information. Instead, this information is stored at the top-level of the
representation:

type TypeSpine a = [ConInfo (Signature a)]

This change is not strictly necessary but it is convenient. Suppose that the constructor in-
formation is still stored in Sig. Now, applications that need to perform a pre-processing
pass using constructor information (for example, for more efficient parsing) would be
forced to apply the function in AllEx only to obtain the constructor information. Having
this information at the top-level, rather than at the Sig constructor, avoids the trouble of
dealing with AllEx unnecessarily.

The function typeSpine has to be modified to deal with the new representation:

typeSpine ::Type a→ TypeSpine a
typeSpine Int = [conint i (Sig i) | i← [minBound. .maxBound]]
typeSpine (Maybe a) = [connothing (Sig Nothing),conjust (Sig Just :⊕: a)]
typeSpine (Either a b) = [conleft (Sig Left :⊕: a),conright (Sig Right :⊕: b)]
typeSpine (List a) = [connil (Sig []),concons (Sig (:) :⊕: a :⊕: List a)]
typeSpine Dynamic = [condynval (AllEx (λ a→ Sig (DynVal a) :⊕: a))]

Now let us rewrite the read function using the new type spine view. First of all, the
constructor is parsed in read, because the constructor information is now at the top-
level:

read ::Type a→ Parser a
read Int = readInt
read rep = alternatives [readParen (conParser conrep) | conrep← typeSpine rep]

where conParser conrep = token (conName conrep)>>gread (conVal conrep)

The generic parsing function is not very different for the first two Signature constructors:

104 A. Rodriguez Yakushev and J. Jeuring

gread ::Signature a→ Parser a
gread (Sig c) = return c
gread (con :⊕: arg) = gread con ‘ap‘ read arg

The existential case is the most interesting one. We first parse the type representation,
and then continue with parsing the remaining part of the constructor.

gread (AllEx f) = readType>>=applyBType (gread◦ f)

This example effectively captures the read examples for dynamically typed values and
for expression applications. The type representation is used to build the parser for the re-
maining constructor arguments. This dependency is expressed using the bind operation
on parsers (>>=).

There is one function that we use to read type representations:

readType ::Parser BType

Because type representations are somewhat special, we deal with them separately in
Section 3.3.

3.2 The Existential Case for Consumer Functions

Producer functions need a modified type spine view (TypeSpine) to handle existential
types. Do we need to modify the spine view (Spine) for consumers too? After all, we
were able to define toSpine for Dynamic using the existing view. There is a good rea-
son why we still need to modify the spine view to handle existentials in an appropriate
way. Consider the read and show functions for example. There is a clear dependency on
the representation of existential types during parsing. It is not possible (or at least very
impractical) to parse a dynamic value without first having the type representation for
it. Therefore, existential type representations should appear earlier than the constructor
arguments that depend on it in the text input used for parsing. This means that show
must pretty print the type representation for the existential before the dependent con-
structor arguments. However, the current spine view makes this difficult because the
representation for the existential may appear in any position.

We solve the problem above making the dependence between existential types and
constructor arguments explicit. Like the type spine view, the new constructor encodes
the dependency on existentials using a function. The type variable is existentially quan-
tified because in this case we are representing a specific constructor value:

data Spine ::∗→ ∗ where
Con ::a→ Spine a
(:�:) ::Spine (a→ b)→ Typed a→ Spine b

Ex ::Type a→ (Type a→ Spine b)→ Spine b

The pretty printing function is modified to handle the existential case as follows (we
omit the remaining show code):

gshow (Ex a f) = showType a • gshow (f a)

The function for printing type representations is explained next:

showType ::Type a→ String

Enumerating Well-Typed Terms Generically 105

3.3 Handling Type Representations

In the example above, we have used the function readType to parse a type representa-
tion. The function readType returns a boxed representation since the represented type is
dynamically determined during parsing. Unfortunately, it is not easy to define produc-
ers that return boxed representations using generic programming. If special care is not
taken, such functions may loop when invoked. In the following we describe the problem
in more detail and we propose a solution.

Parsing type representations. The obvious way to parse a type representation is to do it
generically by using the read function. To this end, we use generic read to parse boxed
type representations:

readType ::Parser BType
readType = read BType

Unfortunately, the function given above is non-terminating. First, remember that BType
uses existential quantification, and hence its type spine is:

typeSpine BType = [conboxed (AllEx (λ a→ Sig (Boxed a)))]

Since the type spine uses an existential case, gread would try to parse a BType-value
calling readType recursively. Therefore, trying to parse a boxed type representation
would lead to parsing an existential type, which leads to parsing a boxed type repre-
sentation and so on.

How can we solve this problem? A desperate solution would be to give up using
generic programming in the definition of readType. This approach is undesirable be-
cause every generic producer would need to have a type representation case. Worse
even, every such case would have to handle all type representation constructors. If there
are n generic functions and m represented types, the programmer would need to write
n×m cases. Despite this significant problem, it is worth exploring a non-generic variant
of readType and try to generalize it.

readType = alternatives (map readParen
[token "Int">>boxed Int
, token "Maybe">> readType>>=applyBType (boxed◦Maybe)
, token "List">> readType>>=applyBType (boxed◦List)
, token "Either">> readType>>=
applyBType (λ l→ readType>>=applyBType (boxed◦ (Either l)))
])

where boxed rep = return (Boxed rep)

This example shows that parsing a type representation is no different than parsing a
normal datatype in that the type argument of the GADT plays no role here. This ex-
ample also illustrates the verbosity of writing such boilerplate without using generic
programming.

The code of readType suggests that we could forget the “GADT-ness” of type rep-
resentations during parsing. This is the first step we take towards being able to de-
fine generic producers for boxed representations, namely, defining the datatype of type
codes, a non-GADT companion to type representations:

106 A. Rodriguez Yakushev and J. Jeuring

data TCode ::∗ where
CInt ::TCode
CMaybe ::TCode→ TCode
CEither ::TCode→ TCode→ TCode
CList ::TCode→ TCode
CArrow ::TCode→ TCode→ TCode
CType ::TCode→ TCode
CDynamic ::TCode
CTCode ::TCode

Besides naming and the absence of a type argument, this datatype is identical to type
representations. To make the relation between type codes and type representations pre-
cise, we introduce two conversion functions. The first function converts a type repre-
sentation to a type code, erasing the type information in the process:

eraseType ::Type a→ TCode
eraseType Int = CInt
eraseType (Maybe a) = CMaybe (eraseType a)
eraseType (a :→ b) = CArrow (eraseType a) (eraseType b)
. . .

Conversely, we want to be able to convert from a type code to a type representation.
Note, however, that the resulting type-index depends on the value of the type code and
hence the result is a boxed representation:

interpretTCode ::TCode→ BType
interpretTCode CInt = Boxed Int
interpretTCode (CMaybe a) = appTCode (Boxed ◦Maybe) a
interpretTCode (CArrow a b) =appTCode(λ r→ appTCode(Boxed ◦ (r :→)) b)a
. . .

appTCode ::∀c.(∀a.Type a→ c)→ TCode→ c
appTCode f code = applyBType f (interpretTCode code)

Using type codes it is now possible to implement parsing of type representations gener-
ically. To implement readType, we parse a type code value and then we interpret it to
obtain a type representation:

readType ::Parser BType
readType = read TCode >>= return◦ interpretTCode

Here TCode is the type representation for type codes, we do not show the spine and
type spine views for this datatype as they are no different from that of other datatypes.

Showing a type representation was no problem previously, we could have written
showType as follows:

showType ::Type a→ String
showType a = show (Type a) a

Enumerating Well-Typed Terms Generically 107

However, to remain compatible with read we use type codes as the means to pretty print
type representations:

showType ::Type a→ String
showType = show TCode◦ eraseType

Summarizing, readType is a special function. It cannot be defined by instantiating read
to boxed representations. Such an instantiation leads to non-termination because pars-
ing a boxed representation uses the existential case of generic parsing, which in turn
makes the recursive call to readType. To solve this problem, we defined type codes,
a non-GADT analogue of type representations. Non-termination is no longer an issue
with type codes. To parse a type code we no longer need to parse existential types,
which prevents the recursive call to readType. This machinery enables the definition of
readType as a generic program. This machinery can be reused for other generic produc-
ers, for example, see the definition of enumerateType in Section 4.

3.4 Equality of Type Representations

In this section, we have introduced machinery to handle type representations generi-
cally, namely type codes and conversion functions between type codes and type repre-
sentations. In Section 4, we show an advanced GADT example that requires a last piece
of machinery: equality on type representations.

The function teq compares two type representations, if the two representations are
the same, it returns a proof that the arguments represent the same type.

teq ::Monad m⇒ Type a→ Type b→m (TEq a b)

The resulting proof, a value of type TEq a b, can be used to convince the type checker
that two types a and b are the same at compile time. The type TEq is defined as follows:

data TEq ::∗→ ∗→ ∗ where
Refl ::TEq a a

Two type representations need not be the same, so we use a monad and function fail to
encode failure in the comparison of two types. The definition of teq is as follows:

teq Int Int = return Refl
teq (Maybe a) (Maybe b) = liftM cong1 (teq a b)
teq (a :→ c) (b :→ d) = liftM2 cong2 (teq a b) (teq c d)
. . .
teq = fail "Different reprs"

Here, we use liftM and liftM2 to turn congruence functions into functions on mon-
ads. Congruence functions are used to lift equality proofs of types to arbitrary type
constructors.

cong1 ::TEq a b→ TEq (f a) (f b)
cong1 Refl = Refl

cong2 ::TEq a b→ TEq c d→ TEq (f a c) (f b d)
cong2 Refl Refl = Refl

108 A. Rodriguez Yakushev and J. Jeuring

3.5 Type Codes and Dependently Typed Programming

In the literature of generic programming based on dependent types, sets of types hav-
ing common structure are modelled by universes (2). Values known as universe codes
describe type structure and an interpretation function makes the relationship between
codes and types explicit.

The generic programming approach that this chapter describes would greatly benefit
from the use of dependent types. Our approach is slightly redundant due to the neces-
sity of both type representations and type codes. If we were to revise our approach to
use dependent types, the generic machinery would be based on type codes only. Previ-
ously, the type representation datatype described the relationship between types and the
values that represent them. Using dependent types, this relationship would be defined
by interpretation on codes and therefore type representations would not be necessary.
Furthermore, producers like readType would no longer need to generate type represen-
tations. It follows that it would not be possible to accidentally define a non-terminating
variant of such producers.

4 Application: Enumeration Applied to Simply Typed Lambda
Calculus

Generalized algebraic datatypes can encode sophisticated invariants using type-level
constraints. We can combine such precise datatypes with generic producer functions, to
generate values that have interesting properties. The example of this section combines a
datatype representing terms of the simply typed lambda calculus with a generic function
that enumerates all the values of a datatype. Using this function we can, for example,
generate the terms that have the type of function composition.

4.1 Representing the Simply Typed Lambda Calculus

Terms of the simply typed lambda calculus can be represented as follows:

data Lam ::∗→ ∗→ ∗ where
Vz ::Lam a (EnvCons a e)
Vs ::Lam a e→ Lam a (EnvCons b e)
Abs ::Lam b (EnvCons a e)→ Lam (a→ b) e
App ::Type a→ Lam (a→ b) e→ Lam a e→ Lam b e

The datatype Lam can be read as the typing relation for the simply typed lambda calcu-
lus. A value of type Lam a e represents the typing derivation for a term of type a in an
environment e. Environments are encoded by list-like type constructors:

data EnvCons a e
data EnvNil

Each Lam constructor is a rule of the typing relation. The first constructor (Vz) rep-
resents a variable occurrence of type a, which refers to the first position of the en-
vironment (EnvCons a e). We can build a variable occurrence that refers to a deeper

Enumerating Well-Typed Terms Generically 109

environment position by means of the weakening constructor Vs. Lambda abstractions
are typed by means of the Abs constructor. In this case, a b-expression that is typeable
in an environment containing a in the first position can be turned into a lambda abstrac-
tion of type a→ b. The application constructor is almost like application in our previous
example, EApp, except that App includes a representation for the existential type.

The spine representation for this datatype can be defined as follows:

toSpine (Lam a e) Vz = convz (Con Vz)
toSpine (Lam a (EnvCons b e)) (Vs tm) = convs (Con Vs :�: tm :: Lam a e)
toSpine (Lam (a :→ b) e) (Abs tm) = conabs (Con Abs :�: body)

where body = tm :: Lam b (EnvCons a e)
toSpine (Lam b e) (App arg tm1 tm2) = conapp (Ex arg app)

where app a = Con (App a) :�: tm1 :: Lam (a :→ b) e :�: tm2 :: Lam a e

The type representations are pattern matched in the Vs and Abs constructors to build
the representation in the right hand side. The App constructor has an existential type,
therefore we use Ex in the spine representation. Using the type representation, we can
now print lambda terms.

For producer functions, we define the type spine view on Lam as follows:

typeSpine (Lam a e) = concat
[[convz (Sig Vz) | EnvCons a’ e’← [e],Refl← teq a a’]
, [convs (Sig Vs :⊕: Lam a e’) | EnvCons b e’← [e]]
, [conabs (Sig Abs :⊕: Lam b (EnvCons a’ e)) | a’ :→ b← [a]]
, [conapp (AllEx (λ b→ Sig (App b) :⊕: Lam (b :→ a) e :⊕: Lam b e))]
]

We test whether a constructor signature has the desired target type by performing pat-
tern matching on type representations. The cases Vz and Vs are only usable if the en-
vironment type argument is not empty. Additionally, the target type of Vz requires the
equality of the type and the first position in the environment. Therefore, the Vz case
invokes type equality (teq) on the term type (a) and the type of the first environment po-
sition (a’). The abstraction constructor (Abs) requires an arrow type, which is checked
by pattern matching against an arrow type representation. The application constructor
can always be used, because there is no restriction on the target type of App.

This type spine representation is more informative and larger than previous exam-
ples. The reason is that the GADT type argument is more complex because of the use
of type-level environments. Furthermore, the type constraint in Vz requires the use of
type equality (teq). Fortunately, it is possible to generate the type spine representation
by induction on the syntax of the datatype declaration. It would be possible to automate
this process using external tools such as DrIFT and Template Haskell if these tools
supported GADTs.

4.2 Breadth First Search Combinators

The generic enumeration function generates all possible values of a datatype in breadth
first search (BFS) order. The order used in the search corresponds to the search cost of
terms generated. The type BFS is used for the results of a breadth first search procedure:

110 A. Rodriguez Yakushev and J. Jeuring

type BFS a = [[a]]

The type BFS represents a list of multisets sorted by cost. The first multiset contains
terms of cost zero, the second contains terms of cost one and so on. Using this datatype,
a consumer can inspect the terms up to a certain cost bound and hence the search does
not continue if further terms are not demanded. This is useful because the enumeration
function returns a potentially infinite list of multisets.

Multiple BFS values can be zipped together by concatenating multisets having terms
of equal cost:

zipbfs :: [BFS a]→ BFS a
zipbfs [] = []
zipbfs xss = if all null xss then [] else concatMap head xss’ : zipbfs (map tail xss’)

where xss’ = filter (¬◦ null) xss

It is more convenient to manipulate BFS results using monadic notation. Therefore, we
define return and bind on BFS:

returnbfs x = [[x]]
(>>=bfs) ::∀a b.BFS a→ (a→ BFS b)→ BFS b
(>>=bfs) xss f = foldr (λ xs xss→ zipbfs (map f xs++[[] : xss])) [] xss

Return creates a search result that contains a value of cost zero. Bind feeds the terms
found in a search xss to a search procedure f. The cost of the term passed to f is added
to the costs of that search procedure. Consider, for example, the search results aSearch
consisting of the terms λ x y→ y and λ x y→ x with costs three and four respectively;
and a search procedure that produces a term of cost one by adding an abstraction to its
argument:

aSearch = [[], [], [], [Abs (Abs Vz)], [Abs (Abs (Vs Vz))]]
f tm = [[], [Abs tm]]

Then, the expression (aSearch>>=bfs f) evaluates to the following:

[[], [], [], [], [Abs (Abs (Abs Vz))], [Abs (Abs (Abs (Vs Vz)))]]

The two terms in the initial search result now have an additional abstraction argument
and have costs of four and five respectively.

The cost addition property of bind can be stated more formally as follows:

propBind ::BFS a→ (a→ BFS b)→ Bool
propBind xss f = all (all costBind) (costs xss f)

where costBind (c,(cxss,cf)) = c≡ cxss + cf

costs ::BFS a→ (a→ BFS b)→ BFS (Int,(Int, Int))
costs xss f = cost (cost xss>>=bfs λ (cxss,x)→ cost (f x)>>=bfs λ (cf,y)→

returnbfs (cxss,cf))

where cost annotates each BFS result value with its cost:

Enumerating Well-Typed Terms Generically 111

cost ::BFS a→ BFS (Int,a)
cost = zipWith (λ sz→map ((,) sz)) [0 . .]

Additionally we use a function that increases the cost of the values found in a search
procedure:

spend :: Int→ BFS a→ BFS a
spend n = (!!n)◦ iterate ([]:)

When using a very expensive search procedure, it is useful to increase the cost of terms
exponentially:

raise :: Int→ BFS a→ BFS a
raise base xss = traverse 0 xss where

traverse [] = []
traverse 0 (xs : xss) = [] : xs : traverse 1 xss
traverse exp (xs : xss) = spend (baseexp−baseexp−1−1)

(xs : traverse (exp+1) xss)

For example, spend 2 aSearch and raise 2 aSearch evaluate to:

[[], [], [], [], [], [Abs (Abs Vz)], [Abs (Abs (Vs Vz))]]
[[], [], [], [], [], [], [], [], [Abs (Abs Vz)], [], [], [], [], [], [], [], [Abs (Abs (Vs Vz))]]

4.3 Generic Enumeration

The generic enumeration function returns values of a datatype, classified by cost in
increasing order. The cost of a term is the number of datatype constructors used therein
(constructors used in type representations are an exception and we discuss them last in
the definition of enumerateType).

enumerate ::Type a→ BFS a
enumerate a = zipbfs [genumerate (conVal s) | s← typeSpine a]

At the top-level, function genumerate is invoked on each constructor signature and the
resulting search results are zipped together.

The first case of genumerate returns the constructor value as the search result assign-
ing it a cost of one. The second case performs search recursively on the function and ar-
gument parts and combines the results using BFS monadic application apbfs ::BFS (a→
b)→ BFS a→ BFS b.

genumerate ::Signature a → BFS a
genumerate (Sig c) = spend 1 (returnbfs c)
genumerate (fun :⊕: arg) = genumerate fun ‘apbfs‘ enumerate arg

The third case deals with existential types and hence in our particular application it
deals with expression application. This case first enumerates all possible types, and
then constructs a constructor signature using f, for each type, and enumeration is called
recursively:

genumerate (AllEx f) = enumerateType>>=bfs genumerate◦ applyBType f

112 A. Rodriguez Yakushev and J. Jeuring

As usual with producer functions, enumerateType returns a boxed representation.
The enumeration of types is performed on type codes, which interpretTCode converts
to boxed representations.

enumerateType ::BFS BType
enumerateType = raise 4 (enumerate TCode)>>=bfs returnbfs ◦ interpretTCode

For the examples in this paper, we are not interested in values that have very complex
existential types. Therefore, we keep their size small by assigning an exponential cost
to existentials. This also has the effect of reducing the search space, which makes the
generation of interesting terms within small cost upperbounds more likely.

4.4 Term Enumeration in Action

For convenience, we define a wrapper function to perform enumeration of lambda
terms:

enumerateLam ::Type a→ Int→ BFS (Lam a EnvNil)
enumerateLam a cost = take (cost+1) (enumerate (Lam a EnvNil))

Our term datatype can perfectly deal with open terms. But the user interface becomes
simpler if only closed terms are provided. Therefore, the wrapper function only gener-
ates closed lambda terms.

A direct invocation of the enumeration function will result in an attempt to generate
an infinite number of terms. For convenience, our wrapper function takes a cost upper-
bound that limits the cost of terms that are reported. Because of lazy evaluation, the
search procedure stops when all terms within the cost bound are reported. The user may
choose to increase the cost upperbound in subsequent invocations if the desired term is
not found.

The language that the Lam datatype represents is very simple. There are no datatypes,
recursion, and arithmetic operations. For example, we cannot expect the enumeration
function to generate the successor or predecessor functions for naturals if functions of
the type Int→ Int are requested. In principle, it is not difficult to extend the language by
adding the appropriate constants to Lam. For example, we could add naturals and arith-
metic operations on them. We could also add list constructors and elimination functions
and even recursion operators such as catamorphisms and paramorphisms.

However, we can keep our language simple and still generate many interesting terms.
We focus our attention to parametrically polymorphic functions. Although we do not
model parametric polymorphism explicitly in Lam, such functions are naturally gener-
ated when the requested type is an instance of the polymorphic type. For instance, a
request with type Int→ Int generates the identity function.

To make the intent of generating polymorphic functions more explicit, we assume
a few uninhabited types A, B, C, and D and their respective type representations. For
example, representation A has type Type A. These types play the role of type variables
in polymorphic type signatures.

In our first example, we generate the code for the identity function. The type of the
identity function is ∀a.a→ a, which in our notation translates to A :→ A. The function
we expect to generate is λ x→ x, which in Lam is written as Abs Vz. This term consists

Enumerating Well-Typed Terms Generically 113

of two constructors, therefore a cost upperbound of two should suffice to generate it.
The application enumerateLam (A :→ A) 2 results in:

[[], [], [Abs Vz]]

It is instructive to sketch the search procedure as it looks for the identity function.
First, enumerate is called on the identity type with a closed environment. This function
calls genumerate on all constructor signatures that match the desired type. The two
variable cases Vz and Vs are not considered because they cannot be used with an empty
environment. Application can always be used but recall that it requires an existential
type representation, so the cost is at least 5, which is more expensive than the function
that we are looking for. The abstraction case matches the identity type so enumeration is
called recursively to generate the abstraction body. Now, a term of type A is requested
with a type A in the first position in the environment. The case Vz matches perfectly
with this request so the term Abs Vz is returned with cost two.

There are infinitely many lambda calculus terms of a given type when that type
is inhabited. A simple way to way to obtain a new term is by creating a redex that
reduces to the term that we currently have. For example, we can obtain a new identity
function by adding a redex in the function body: λ x→ (λ x→ x) x. Can this term be
found by our enumeration function? Yes, provided that we increase the cost upperbound
to include that of our new term. The new term is essentially two identity functions
plus an application constructor, which makes a cost upperbound of nine. We evaluate
enumerateLam (A :→ A) 9 which yields:

[[], [], [Abs Vz], [], [], [], [], [], [], [Abs (App A (Abs Vz) Vz)]]

This example shows that the search space is somewhat redundant. A way to speed up
term search would be to avoid the generation of redundant terms by adding constraints
to Lam. For example, we could avoid redeces by preventing the generation of abstrac-
tions in the left part of applications.

Another interesting example is the generation of the application term, which has type
∀a b.(a→ b)→ a→ b. In our notation we write ((A :→ B) :→ A :→ B). Let us evaluate
enumerateLam ((A :→ B) :→ A :→ B) 10 to generate an application term:

[[], [], [Abs Vz], [], [], [], [], [], [], [], [Abs (Abs (App A (Vs Vz) Vz))]]

These are the encodings for the functions λ x→ x and λ x y→ x y. The careful reader
may wonder why the other identity term λ x → (λ x → x) x, which has cost 8 in the
previous example, is not generated. The answer is that the cost of the term includes that
of the type representation used in the application constructor. Since this example has a
different type, the type representation would be A :→ B rather than A. It follows that the
term λ x→ (λ x→ x) x is not generated because it has a cost of 14.

Our last example is function composition. The type of this function is ∀a b c.(b→
c)→ (a→ b)→ a→ c. To generate composition, we evaluate

last (enumerateLam ((B :→ C) :→ (A :→ B) :→ (A :→ C)) 19)

which yields to the encoding of λ x y z→ x (y z):

[Abs (Abs (Abs (App B (Vs (Vs Vz)) (App A (Vs Vz) Vz))))]

114 A. Rodriguez Yakushev and J. Jeuring

5 Related Work

To the best of our knowledge, only the spine approach (6; 7) enables generic program-
ming on generalized algebraic datatypes in Haskell. This is the approach on which the
work in this chapter is based. Because both the spine and the type spine view can encode
GADTs, both consumer and producer functions can be defined on such datatypes. Inter-
estingly, to properly support GADTs for producer functions, the approach should also
support existential types. For example, when reading a GADT from disk, we may want
the GADT type argument to be dynamically determined from the disk contents. There-
fore, we would existentially quantify over that argument. However, the spine approach
supports existential types for consumers but not for producers.

Generalized algebraic datatypes are inspired by inductive families in the dependent
types community. We are aware of two approaches (2; 12) that support definitions by
induction on the structure of inductive families. Both approaches make essential use of
evaluation on the type level to express the constraints over inductive families. Examples
of type families on which generic programming is applied include trees (indexed by their
lower and upper size bounds), finite sets, vectors and telescopes. Neither approach gives
examples for the support of existential types so it is not clear whether these are supported.

Weirich (15) proposes a language that provides a construct to perform runtime case
analysis on types. In order to support universal and existential quantification, the lan-
guage includes analyzable type constants for both quantifiers. This approach supports
the definition of consumers and producers. Moreover, if the language is extended with
polymorphic kinds it supports quantification over arbitrarily kinded types.

Our approach to defining breadth-first search combinators is not novel. Spivey (14)
defines a set of breadth-first search combinators such as monadic join and composition,
and proves desirable properties for them. There are many similarities between our work
and that of Spivey. It would be interesting to see whether our combinators satisfy the
same properties as the combinators proposed by Spivey.

Koopman et al. (10) generate lambda calculus terms by performing systematic enu-
meration based on a grammar. To reduce the size of the search space, the grammar has
syntactic restrictions such as that the applications of certain operands are always satu-
rated, and recursive calls are always guarded by a conditional. The candidate terms are
then reported to the user based on whether they satisfy an input-output specification,
which is established by evaluation.

Djinn (1) generates lambda calculus terms based on a user-supplied type. This tool
implements the decision procedure for intuitionistic propositional calculus due to Dy-
ckhof (5). Similarly, the work of Katayama (8) makes use of a type inference monad to
generate well-typed terms. Later, the candidate terms are evaluated and checked against
an input-output specification. As in our approach, Djinn and the approach of Katayama
generate only well-typed terms so there is no need for a type checking phase to discard
ill-typed terms.

The main difference between the work of Koopman et al. (10) and ours is that our
generator is typed-based. It follows that our generator never returns ill-typed terms be-
cause the search space is reduced by means of type-level constraints in the GADT.
Generating ill-typed terms has advantages. For example, Koopman’s approach can
generate the Y-combinator. On the other hand, ill-typed terms are usually not desirable,

Enumerating Well-Typed Terms Generically 115

so these have to be discarded through evaluation (as in Koopman’s work) which slows
down the generation algorithm. In Koopman’s work the generation of ill-typed terms is
prevented to some extent by the syntactic constraints imposed on the grammar.

A type-based generator, such as Djinn, Katayama’s generator and our approach, is
able to synthesize polymorphic functions without the need for input-output specifica-
tions. In contrast, Koopman’s generator cannot produce polymorphic functions based
solely on type information.

Djinn supports user-defined dataypes. Katayama and Koopman’s generators are able
to generate recursive programs. Our approach currently generates programs for a rather
spartan language. However, it should be possible to add introduction and elimination
constants for (recursive) datatypes, and recursion operators such as catamorphisms and
paramorphisms.

Both Djinn and our approach enumerate terms guided by type information. How-
ever, the two approaches are very different. Djinn has a carefully crafted algorithm that
handles the application of functional values in such a way that it is not necessary to
exhaustively enumerate the infinite search space. As a consequence, Djinn is able to
detect that a type is uninhabited in finite time. In contrast, our approach produces func-
tion applications by means of exhaustive enumeration. First, all the possible types of an
argument are enumerated, and, for each of them, function and argument terms are enu-
merated to construct an application. The good side of an exhaustive approach like ours
is that it can generate all possible terms of a given type. For example, it can generate all
Church numerals, whereas Djinn only generates those corresponding to zero and one.
On the bad side, if unbounded, our approach does not terminate when trying to generate
a term for an uninhabited type.

We have not performed a careful performance comparison but we believe that our
generator may be the slowest of the approaches considered here. Probably the main
culprit for inefficiency is the implementation of the existential case. Currently this case
enumerates all possible types, even if no applications for that argument type can be con-
structed. Ill-typed terms are never generated, but resources are nevertheless consumed
when attempting to enumerate terms having possibly uninhabited types. It is difficult to
make the algorithm smarter about generating types because, being generic, it does not
make assumptions about the particularities of lambda calculus. On the other hand, it is
possible to reduce the search space by adjusting the definition of Lam. For example, we
could forbid the formation of redeces to avoid redundancy of terms, or even adopt the
syntactic restrictions used in Koopman’s work.

While our approach may be less efficient, it has the virtue of simplicity: the core of
the generation algorithm consists of roughly a dozen lines of code and there is no need
for an evaluation phase when generating polymorphic functions. Furthermore, it has the
advantage of an elegant separation between the grammar constraints and the formula-
tion of the enumeration algorithm. This allows us to use the enumeration function to
generate other languages, whereas the other generators are specific to lambda calculus.

6 Conclusions

We have presented an extension of the spine approach to generic programming,
which supports the definition of generic producers for existential types. This

116 A. Rodriguez Yakushev and J. Jeuring

extension allows the definition of, for example, generic read for datatypes that use ex-
istential quantification.

Our approach opens the way for a new application of generic programming. By tak-
ing the standard enumeration generic function and extending it with a case for exis-
tentials, we obtain a function that enumerates well-typed terms. For example, we can
instantiate enumeration to the GADT that represents terms of the simply typed lambda
calculus and use the resulting function to search for terms that have a given type. Such
an application was not previously possible because producers that handle existential
types could not be generically defined.

Acknowledgements. We are grateful to Andres Löh for the productive discussions that
inspired this paper. The ST reading club at Utrecht University gave detailed feedback
on an earlier version of this paper. We thank the anonymous reviewers for the useful
suggestions and comments. We also thank Lambert Meertens, the careful reader who
motivated us to improve the explanations in Section 4.4.

References

[1] Augustsson, L.: Announcing Djinn, version 2004-12-11, a coding wizard (2005),
http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747

[2] Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in dependent
type theory. Nordic Journal of Computing 10(4), 265–289 (2003)

[3] Cheney, J., Hinze, R.: First-class phantom types. Technical report, Cornell University
(2003)

[4] Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In: ICFP 2000, pp. 286–279 (2000)

[5] Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Sym-
bolic Logic 57(3), 795–807 (1992)

[6] Hinze, R., Löh, A.: “Scrap Your Boilerplate” revolutions. In: Uustalu, T. (ed.) MPC 2006.
LNCS, vol. 4014, pp. 180–208. Springer, Heidelberg (2006)

[7] Hinze, R., Löh, A., Oliveira, B.C.d.S.: “Scrap your boilerplate” reloaded. In: Hagiya, M.,
Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 13–29. Springer, Heidelberg (2006)

[8] Katayama, S.: Systematic search for lambda expressions. In: TFP 2005 (2005)
[9] Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic automated software

testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670. Springer, Heidelberg (2003)
[10] Koopman, P., Plasmeijer, R.: Systematic synthesis of λ -terms. In: Essays dedicated to Henk

Barendregt on the Occasion of his 60th Birthday (2007)
[11] Lämmel, R., Jones, S.P.: Scrap your boilerplate: A practical design pattern for generic pro-

gramming. In: TLDI 2003, pp. 26–37 (2003)
[12] Morris, P.: Constructing Universes for Generic Programming. PhD thesis, The University

of Nottingham (2007)
[13] Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type

inference for GADTs. In: ICFP 2006, pp. 50–61 (2006)
[14] Spivey, M.: Combinators for breadth-first search. Journal of Functional Programming 10(4),

397–408 (2000)
[15] Weirich, S.: Higher-order intensional type analysis. In: Le Métayer, D. (ed.) ESOP 2002.

LNCS, vol. 2305, pp. 98–114. Springer, Heidelberg (2002)
[16] Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL 2003,

pp. 224–235 (2003)

http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747

Generalisation Operators for Lists Embedded in
a Metric Space

V. Estruch, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

DSIC, Univ. Politècnica de València
Camı́ de Vera s/n, 46020 València, Spain

{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. In some application areas, similarities and distances are used
to calculate how similar two objects are in order to use these measure-
ments to find related objects, to cluster a set of objects, to make classifi-
cations or to perform an approximate search guided by the distance. In
many other application areas, we require patterns to describe similarities
in the data. These patterns are usually constructed through generalisa-
tion (or specialisation) operators. For every data structure, we can define
distances. In fact, we may find different distances for sets, lists, atoms,
numbers, ontologies, web pages, etc. We can also define pattern languages
and use generalisation operators over them. However, for many data
structures, distances and generalisation operators are not consistent. For
instance, for lists (or sequences), edit distances are not consistent with
regular languages, since, for a regular pattern such as ∗a, the covered
set of lists might be far away in terms of the edit distance (e.g. bbbbbba
and aa). In this paper we investigate the way in which, given a pattern
language, we can define a pair of generalisation operator and distance
which are consistent. We define the notion of (minimal) distance-based
generalisation operators for lists. We illustrate positive results with two
different pattern languages.

Keywords: Distance-based methods, inductive operators, induction with
distances, list-based representations.

1 Introduction

Distance-based (or more generally, instance-based) methods are a powerful tool
in the field of machine learning. Several reasons back its popularity, among them,
we must stand out its capability to cope with different data representations: these
methods are designed on the basis of a similarity principle (similar examples
should share similar properties) which makes them easily adaptable to different
datatypes via redefining the similarity (distance) function. In this sense, multiple
distances and similarity functions can be found in the literature.

However, in the area of Inductive Programming, the use of distances is still at
a very incipient state. Inductive Programming is concerned with the automated
construction of declarative programs from data. We can distinguish several ap-
proaches to this problem according to the knowledge representation adopted. For

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 117–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 V. Estruch et al.

instance, the field known as Inductive Logic Programming (ILP) [13] aims to in-
duce consistent first order theories from data represented as first order objects
(atoms or clauses). A natural extension of this comes when we move to higher-
order logics [1,12]. The synthesis of functional programs arises when training
data consist in a sample of inputs and outputs of a evaluation function [14,16].
A more generic framework corresponds to the induction of functional-logic the-
ories. This paradigm centres on performing induction within a formal context
that combines the strengths of logic and functional programming [7,10,9].

In this area, the use of similarity functions and distances has been restricted
to ILP, and very specially for machine learning applications of ILP and not for
program synthesis. The reason for this limited success of the use of distances
in inductive programming is twofold. First, distances and similarities return nu-
merical values which are difficult to integrate with declarative models. A model
such as “the sequence aabb has been classified as positive since it is similar to
the sequence aaba which is also positive” cannot reduce the part “similar to”
to a traditional declarative notation, since it usually involves an external func-
tion similarity(s1, s2) and a numerical threshold. In other words, no declarative
pattern has been defined to capture the notion of similarity or, at least, to be
consistent with the notion. Second, although declarative languages constitute an
elegant and powerful framework for program synthesis, they show some limita-
tions when the semantics of the data representation does not match the implicit
semantics managed by these declarative languages. An example of this is found
when working with lists or sequences. From a declarative point of view, lists are
recursively defined in terms of a special item (head) and a tail, which is another
(sub)list. This perspective makes it difficult for the search of patterns in data
that does not suit this definition. For instance, if we are given the lists abaca and
bc, it is not immediate to learn a pattern of the form ∗b∗c∗ because of the simple
fact that the heads of the lists do not match. Unfortunately, list-based repre-
sentations appear in many real-world domains, which might put some limits on
the applicability of declarative tools. For instance, in bioinformatics, compounds
such as amino-acids have a direct representation as sequences of symbols. Fur-
thermore, other much more complex molecules can also be described in terms of
sequences by using the so-called 1-D or SMILE representation [17]. Another ex-
ample is found in text or web mining where documents are usually transformed
into sequences of words. Very common software utilities such as command line
completion or orthographic correctors work on lists as well.

In general, we could wonder if some of the tools employed in inductive pro-
gramming (generalisation operators) could be upgraded to deal with list-based
representations in a more satisfactory way and overcome this limitation. In [4,6],
we consider the possibility by analysing the relationship between distance and
generalisation. In [5] we analysed this framework employing distances and gen-
eralisations for graphs.

Note that most of the applications that handle sequences usually employ dis-
tances in order to find the most similar sequences in data. Distances (and conse-
quently, metric spaces) play an important role in many inductive techniques that

Generalisation Operators for Lists Embedded in a Metric Space 119

have been developed to date. Similarity offers a well-founded inference principle
for learning and reasoning since it is commonly assumed that similar objects
have similar properties. Given the importance of lists as a datatype for knowl-
edge representation, several distances can be found in the literature, being the
edit distance [11] the best-known. The drawback is that these methods do not
infer a model (or patterns) from data as declarative inductive (or more general,
symbolic) learners do.

Therefore, if we were able to find out a connection between distance and
generalisation we could, on the one hand, define more suitable generalisation
operators to work with structured data in general and with lists in particular;
and on the other hand, we could come up with induction techniques capable of
transforming distance-based method outputs into symbolic models, and conse-
quently, more comprehensible explanations for the user.

There might be many different ways to establish a connection between dis-
tance and generalisation. Ensuring the consistency between them is a compelling
one. Note that if the generalisation process is not driven by the distance, this
might result in patterns that do not capture the semantics of the distance, so
giving wrong explanations about why objects are similar. Let us see an example
of this. If we consider the edit distance over the lists bbab, bab and aaba, we see
that the list ab is close to the previous lists (distances are 2, 1, and 2 respec-
tively). However, a typical pattern that can be obtained by some model-based
methods, *ba*, does not cover the list ab. The pattern does cover the list ded-
edfafbakgagggeewdsc, which is at distance 20 from the three original lists. The
pattern and the distance are up to some point inconsistent since those elements
that are most similar to the initial examples which are excluded.

Although there are other important works on hybridisation, they tend to
ignore the problem of consistency between the semantic of the model learnt and
the semantic of the underlying distance. Basically, what we do is to define some
simple conditions that a generalisation operator should have in order to behave
in a consistent way wrt. a distance. These operators are called distance-based
generalisation operators.

In this paper, we address the problem of inducing patterns from lists of sym-
bols embedded in a metric space. In other words, the work we present here can
be seen as an instantiation for lists of the general framework aforementioned.
It is noteworthy that, even though first-order logic constitutes an elegant and
powerful framework for symbolic knowledge representation, lists have a complex
and a little intuitive representation by means of first-order formulas which im-
plies that patterns over lists have also a complex representation. This fact makes
rather complicated that the ILP techniques can find patterns over lists by ap-
plying a generalisation operator like the lgg. In fact, one of the consequences
derived of this term-based representation is that we need auxiliary predicates
to extract requested information which is packed in a term (like member, head,
tail, previous, , . . .). Hence, useful patterns might not be learnt if we have not
previously defined the correct auxiliary predicates [3].

120 V. Estruch et al.

This paper is organised as follows. Section 2 contains an overview of our
proposal. In Section 3, we analyse how our framework could be used to learn
symbolic patterns from lists. To this end, we introduce two different pattern lan-
guages: L0 and another more expressive L1, and study how to define (minimal)
distance-based operators in all of them. Finally, conclusions and future work are
given in Section 4.

2 Framework

In this section we summarise the main concepts of our setting which integrates
distances and generalisation. For a more detailed presentation of it we refer the
reader to [3].

The underlying idea in our proposal is that, in order to have a true connection
between distance and generalisation, the generalisation process have to take the
underlying distance into consideration (or at least the two must be consistent).
This special relation is formalised through three notions: reachability, intrinsi-
cality and minimality.

Reachability implies that the generalisation of two elements ought to include
those paths (a sequence of elements in the metric space) that allow us to reach
both elements from each other by making small “steps”. The concept of short
step must be understood in the sense of the distance.

The second property arises from the observation that the distance between
two elements is always given by the length of the shortest paths. Thus, if we
want our generalisation to be compatible with the distance, we need the ele-
ments belonging to the shortest paths to be covered by the generalisation. This
condition is called intrinsicality.

The two above properties have been defined for two elements since they are
established in terms of the distance which is a binary function. But generalisa-
tion operators are not binary, thus for more than two elements, the connection
between distance and generalisation turns a bit unclear. It seems that the prop-
erties of reachability and intrinsicality must be extended for this generic case.
Distance-based algorithms suggest that it would make sense to impose the no-
tion of intrinsicality for some pairs of elements. The pairs of elements that will
have to comply with the intrinsicality property will be set by a path or con-
nected graph which we will call nerve. Furthermore, we obtain with this a more
generic notion of reachability since all the elements in the set are reachable from
any of them by moving from one element to another through combinations of
(intrinsical) paths.

In Figure 1, generalisations G1 and G2 do not connect the three elements to
be generalised. Only the generalisations G3 and G4 connect the three elements
through combinations of straight segments.

Finally, the last property concerns with the notion of minimality, which is
understood not only in terms of fitting the set (i.e., semantic minimality) but
also as the simplicity of the pattern (i.e., syntactic minimality). In Figure 1, G3
is an example of a very specific and rather complicated generalisation of A, B
and C.

Generalisation Operators for Lists Embedded in a Metric Space 121

G2G1

A

B

C
A

B

C
A

B

C A

B

C

G4G3

Fig. 1. Generalising the elements E = {A, B, C}. Elements in E are not reachable
through a path of segments in generalisations G1 and G2. For any two elements in E,
generalisations G3 and G4 include a path of segments connecting them.

2.1 Distance-Based Inductive Operators

Next, we formally show how the three previous notions are employed in order to
define the so-called distance-based generalisation operators.

A generalisation of a finite set of elements E ⊂ X could be seen as any su-
perset of E in X . Therefore, a generalisation operator (denoted by Δ) simply
maps sets of elements E into supersets. As known, this superset can be exten-
sionally or intensionally defined, being the latter one more useful from a pre-
dictive/explanatory point of view. Symbolic patterns constitute a widely-spread
manner of representing intensional generalisations. For instance, the pattern a∗
denotes all the lists headed by the symbol a. We denote by L the pattern lan-
guage and by Set(p) the set of all the elements in X that the pattern p ∈ L
represents. For instance, Set(a∗) = {a, aa, ab, . . .}. If necessary, L expressive-
ness can always be increased by combining patterns via logical operators (e.g.
pattern disjunction). In this work, disjunction is denoted by the symbol + and
the expression p1 + p2 represents the set Set(p1) ∪ Set(p2). For simplicity, the
pattern p = p1 + . . . + pn will be expressed as p =

∑n
i=1 pi.

Now, we can already introduce the definition of binary distance-based pattern
and binary distance-based generalisation operator.

Definition 1 (Binary distance-based pattern and binary distance-based
generalisation operator). Let (X, d) be a metric space, L a pattern language,
and a set of elements E = {e1, e2} ⊂ X. We say that a pattern p ∈ L is a
binary distance-based (db) pattern of E if p covers all the elements between e1
and e2

1. Additionally, we say that Δ is a binary distance-based generalisation
(dbg) operator if Δ(e1, e2) always computes a binary distance-based pattern.

As previously said, for the case of more than two elements to be generalised,
the concept of “nerve” of a set of elements E is needed to define non-binary dbg
operators. Informally, a nerve of E is simply a connected2 graph whose vertices
are the elements belonging to E. Observe that if E = {e1, e2}, the only possible
nerve is a one-edged graph. Formally,
1 Given a metric space (X, d) and two elements e1, e2 ∈ X, we say that an element

e3 ∈ X is between e1 and e2, or is an intermediate element wrt. d, if d(e1, e2) =
d(e1, e3) + d(e3, e2).

2 Here, the term connected refers to the well-known property for graphs.

122 V. Estruch et al.

Definition 2 (Nerve function). Let (X, d) be a metric space and let SG be
the set of undirected and connected graphs over subsets of X. A nerve function
N : 2X → SG maps every finite set E ⊂ 2X into a graph G ∈ SG, such that each
element e in E is inequivocally represented by a vertex in G and vice versa. We
say the obtained graph N(E) is a nerve of E.

Fig. 2. Two nerves for the set E. (Left) ν1 is a complete graph. (Right) ν2 is a 3-star
graph.

Some typical nerve functions are the complete graph, and a radial/star graph
around a vertex (see Figure 2).

Recall that the nerve corresponds to the notion of reachability and indicates
which intermediate elements must be covered by the generalisations. In a more
precise way,

Definition 3 (Skeleton). Let (X, d) be a metric space, L a pattern language,
a set E ⊆ X, and ν a nerve of E. Then, the skeleton of E wrt. ν, denoted
by skeleton(ν), is defined as a set which only includes all the elements z ∈ X
between x and y, for every (x, y) ∈ ν.

Consequently, we look for generalisations that include the skeleton. From here,
we can define the notion of distance-based pattern wrt. a nerve.

Definition 4 (Distance-based pattern and distance-based pattern wrt.
a nerve ν). Let (X, d) be a metric space, L a pattern language, E a finite set
of examples. A pattern p is a db pattern of E if there exists a nerve ν of E such
that skeleton(ν) ⊂ Set(p). If the nerve ν is known, then we will say that p is a
db pattern of E wrt. ν.

And, from here, we have:

Definition 5 (Distance-based generalisation operator). Let (X, d) be a
metric space and L be a pattern language. Given a generalisation operator Δ,
we will say that Δ is a dbg operator if for every E ⊆ X, Δ(E) is a db pattern
of E.

The above definition can be characterised for one nerve function in particular.

Definition 6 (Distance-based generalisation operator wrt. a nerve func-
tion). Let (X, d) be a metric space and L a pattern language. A generalisation
operator Δ is a dbg operator wrt. a nerve function N if for every E ⊆ X then
Δ(E) is a db pattern of E wrt. N(E).

Generalisation Operators for Lists Embedded in a Metric Space 123

In general it is quite hard to prove that a generalisation operator is db wrt.
any nerve function. Fortunately, for most of the applications it is enough to
exist a particular nerve function wrt. Δ is distance-based. If the nerve is known
beforehand, we speak of distance-based generalisation operators wrt. a nerve
function N .

Proposition 1. Let L be a pattern language endowed with the operation + and
let Δb be a binary dbg operator in L. Given a finite set of elements E and a
nerve function N , the generalisation operator ΔN defined as follows is a dbg
operator wrt. N .

ΔN (E) =
∑

∀(e1,ej)∈N(E)

Δb(ei, ej)

Proof. It follows from the definition of dbg operator.

2.2 Minimality

Given the definition of dbg operator in the previous section, we can now guar-
antee that a pattern obtained by a dbg operator from a set of elements ensures
that all the original elements are reachable inside the pattern through intrinsic
(direct) paths. However, the generalisation can contain many other, even distant,
elements.

An abstract, well-founded and widely-used principle that connects the notions
of fitness and simplicity is the well-known MDL/MML principle [15,19]. Ac-
cording to this principle, in our framework, the optimality of a generalisation
will be defined in terms of a cost function, denoted by k(E, p), which considers
both the complexity of the pattern p and how well the pattern p fits E in terms
of the underlying distance.

From a formal viewpoint, a cost function k : 2X×L → R+∪{0} is a mapping
where we assume that E is always finite, p is any pattern covering E and k(E, p)
can only be infinite when Set(p) = X .

As usual in MDL/MML approaches, most of the k(E, p) functions will be
expressed as the sum of a complexity (syntactic) function c(p) (which measures
how complicated the pattern is) and a fitness function c(E|p) (which measures
how the pattern fits the data E). As said, the most novel point here is that
c(E|p) will be expressed in terms of the distance employed.

As c(p) measures how complex a pattern is, this function will strongly depend
on the sort of data and the pattern space L we are dealing with. For instance, if
the generalisation of two real numbers is a closed interval containing them, then
a simple choice for c(p) would be the length of the interval.

As c(E|p) must be based on the underlying distance, a lot of definitions are
based on or inspired by the well-known concept of border of a set3. But as the
concept of border of a set is something intrinsic to metric spaces, several general
definitions of c(E|p) can be given independently from the datatype as shown in
Table 1.
3 Intuitively, if a pattern p1 fits E better than a pattern p2, then the border of p1

(∂p1) will somehow be nearer to E than the border of p2 (∂p2).

124 V. Estruch et al.

Table 1. Some definitions of the function c(E|p): 1-Infimum of uncovered elements, 2-
Supremum of covered elements, 3-Minimum to the border, 4-Minimum and maximum
to the border

L c(E|p)
1 Any

∑
∀e∈E re

re = infr∈RB(e, re) �⊂ Set(p)
2 Any

∑
∀e∈E re

re = supr∈RB(e, re) ⊂ Set(p)
3 Any

∑
∀e∈E mine′∈∂Set(p)d(e, e′)

4 Set(p) is a
∑

∀e∈E mine′∈∂Set(p)d(e, e′)
bound set +maxe′′∈∂Set(p)d(e, e′′)

Now, we can introduce the definition of minimal distance-based generalisa-
tion operator and minimal distance-based generalisation operator relative to
one nerve function.

Definition 7 (Minimal distance-based generalisation operator and
minimal distance-based generalisation operator relative to one nerve
function N). Let (X, d) and N be a metric space and a nerve function, and
let Δ be a dbg operator wrt. N defined in X using a pattern language L. Given
a finite set of elements E ⊂ X and a cost function k, we will say that Δ is a
minimal distance-based generalisation (mdbg) operator for k in L relative to N ,
if for every dbg operator Δ′ wrt. N ,

k(E, Δ(E)) ≤ k(E, Δ′(E)), for every finite set E ⊂ X. (1)

In similar terms, we say that a dbg operator Δ wrt. a nerve function N is a
mdbg operator relative to N if the expression (1) holds for every dbg operator
Δ′ wrt. N .

The previous definition says nothing about how to compute the mdbg operator,
and as we will see later, this might be difficult. A way to proceed is to first try
to simplify the optimisation problem as much as possible, as the next definition
shows:

Definition 8 (Skeleton generalisation operator wrt. a nerve function
N). Let (X, d) be a metric space and N a nerve function. The skeleton general-
isation operator Δ̄N is defined for every set E ⊂ X as follows:

Δ̄N (E) = argmin∀p∈L:skeleton(N(E))=Set(p) k(E, p)

which means the simplest pattern that covers the skeleton of the evidence (given
a nerve) and nothing more. Clearly, it is a dbg operator because it includes the
skeleton, but it might not exist because it cannot be expressed.

The following section is devoted to defining db and mdbg operators for the list
data type.

Generalisation Operators for Lists Embedded in a Metric Space 125

3 Inductive Operators for Lists

Lists or sequences is a widely-used datatype for data representation in different
fields of automatic induction such as structured learning, bioinformatics or text
mining. In this section, we apply our framework to finite lists of symbols by
introducing two cost functions and two pattern languages for this sort of data
and studying different dbg and mdbg operators for each particular combination
of language and cost function. Due to space limitations as well as comprehensi-
bility’s sake, we sketch those proofs that are excessively long and would make
the reading unnecessarily difficult. If needed, a complete detail of them can be
found in [3].

3.1 Metric Space, Pattern Languages and Cost Functions

Several distance functions for lists have been proposed in the literature. For
instance, the Hamming distance defined for equally-length lists in [8], or the
distance in [2], defined for infinite-length lists but which can easily be adapted
for finite lists.

However, the most widely used distance function for lists is the edit distance
(or Levenshtein distance [11]), which is the one we are working with. Specifically,
we set the edit distance in such a way that only insertions and deletions are
allowed (a substitution can be viewed as a deletion followed by an insertion or
vice-versa).

Two different pattern languages L0 (single-list pattern language) and L1
(multiple-list pattern language) will be introduced in this section. The patterns
in L0 are lists that are built from the extended alphabet Σ′ = {λ}∪Σ∪V where
λ denotes the empty list, Σ = {a, b, c, . . .} is the alphabet (also called ground
symbols) from which the lists to be generalised are defined, and V = {V1, V2, . . .}
is a set of variables. The same variable cannot appear twice in a pattern. Each
variable in a pattern represents a symbol from {λ}∪Σ. Finally, the pattern lan-
guage L1 is defined from L0 by means of the operation + (see Subsection 2.1)
and aims to improve the expressiveness of L0. For instance, if we let Σ = {a, b},
then, the patterns p1 = aV1V2 and p2 = bV1V2b belong to L0 where Set(p1) =
{aaa, aab, aba, abb, aa, ab, a} and Set(p2) = {baab, babb, bbab, bbbb, bab, bbb, bb}.
In other words, the pattern p1 denotes all those lists headed by the symbol
a whose length ranges between 1 and 3. In a similar way, p2 contains all the
lists headed and ended by b whose length ranges between 2 and 4. Likewise,
the pattern p3 = p1 + p2 belongs to L1 and Set(p3) = Set(p1) ∪ Set(p2) =
{aaa, aab, aba, abb, aa, ab, a, baab, babb, bbab, bbbb, bab, bbb, bb}.

With regard to the cost function, it is convenient to discuss some issues about
the computation of the semantic cost function c(·|·) for this particular setting.
We will do this by means of an example. Suppose we are given the pattern
p = V1V2V3V4aV5V6V7V8 and the element e = ccaba which is covered by p. The
computation of c(e|p) is equivalent to find one of the nearest elements to e,
namely e′, which is not covered by p. Note that e′ is not covered by p when the
symbol a does not occur in e′ (e.g. e′ = ccb) or the number of symbols before or

126 V. Estruch et al.

after each occurrence of a in e′ is greater than 4 (e.g. e′ = ccbbbaba). From this
two possibilities, it is clear in this case that e′ = ccb is the nearest element to e
not covered by p. This simple example allows us to affirm that the calculus c(e|p)
can be as complicated as determining the number of times a sequence s1 occurs
in a sequence s2. Generally speaking, if sp is the sequence of ground symbols in
a pattern p and e′ is the nearest element to e not covered by p, then e′ will be a
supersequence or a subsequence of e which will be obtained by modifying all the
occurrences of sp in e. Of course, as for the general form c(E|p), this operation
must be repeated for all the elements in E.

Therefore, if the learning problem requires the use of a cost function (e.g.
because we are interested in minimal generalisations), it might be more con-
venient to approximate c(E|p), instead of handling the original definition. For
instance, we propose a naive but intuitive approximation of c inspired on the
one we introduced in [3] for sets:

c′(E|p =
n∑

i=1

pi) =

⎧⎨
⎩
|E − E1|+ c(E1|pk), ∃pk = V1 . . . Vj

and E1 = {e ∈ E : length of e ≤ j}
|E|, otherwise.

The justification is as follows. If there exists a pattern pk = V1 . . . Vj in p, then it
is immediate that for every element e such that its length l is equal to or less than
j, its nearest element not covered by p is, at least, at a distance j − l + 1, which
is the value computed by c(e|V1 . . .Vj). Otherwise, we assume that the nearest
element of e is, at least, at a distance of 1. Implicitly, we are assuming that
the nearest element to e can be obtained by removing (or adding) one specific
ground symbol from (to) e.

The simplicity of c′(·|·) will help us to study and compare the computation
of the mdbg in L0 and L1. As for L0, the cost function is directly defined as
k0(E, p) = c′(E|p) (that is, the complexity of the pattern is disregarded). As for
L1, we use k1(E, p) = c1(p) + c′(E|p) where c1(p) measures the complexity of a
pattern p ∈ L1 by counting both the ground and variable symbols in p.

3.2 Notation and Previous Definitions

The function Seq(·) defined over a pattern p ∈ L0 returns the sequence of ground
symbols in p. For example, setting p = V1aaV2b, then Seq(p) = aab. The bar
notation | · | denotes the length of a sequence (here a sequence can be an element,
a pattern, etc.). For instance, in the previous case, |p| = 5. The i-th symbol in a
sequence p is denoted by p(i). Following with the example, p(1) = V1, p(2) = a,
. . . , p(5) = b. Any sequence is indexed starting from 1. The set of all the indices
of p is denoted by I(p). Thus, I(p) = {1, 2, 3, 4, 5}. We sometimes use superscript
as a shorthand notation to write sequences and patterns. For instance, V 5a3V 2 is
equivalent to V1 . . .V5aaaV6V7, and V 2(ab)3c is the same as V1V2abababc. Finally,
we will often introduce mappings that are defined from one sequence to another.
By Dom(·) and Im(·) we denote the domain and the image, respectively, of a
mapping.

Generalisation Operators for Lists Embedded in a Metric Space 127

The first concept that is required is:

Definition 9 (Maximum common subsequence). Given a set of sequences
E = {e1, . . . , en}, and according to [18], the maximum common subsequence
(mcs, to abbreviate) is the longest (not necessarily continuous) subsequence of
all the sequences in E.

This concept is already widely used in pattern recognition. Note that the mcs of
a group of sequences is not necessarily unique. The following definitions will let
us work with the concept of common subsequence in a more algebraic fashion.

Definition 10 (Alignment). Given two elements e1 and e2, we say that the
mapping M e1

e2
: I(e1)→ I(e2) is an alignment of e1 with e2 if:

i) ∀i ∈ Dom(M e1
e2

), e1(i) = e2(M e1
e2

(i))
ii) M e1

e2
is a strictly increasing function in Dom(M e1

e2
).

(Remark 1). If Dom(M e1
e2

) = ∅, we say that M e1
e2

is the empty alignment of e1
with e2. Thus, for every pair of elements we can affirm that there is always at
least one alignment between them.
(Remark 2). Note that the alignment definition does not exclude the case
e1 = e2.
(Remark 3). We call e1(i) = e2(M e1

e2
(i)) a (symbol) matching. Thus,

|Dom(M e1
e2

)| (or equivalently, |Im(M e1
e2

)|) is the number of matchings between
e1 and e2 captured by M e1

e2
, and the subsequence obtained by considering the

i-th symbols of e1 where i ∈ Dom(M e1
e2

) is the sequence of matchings. For the
sake of simplicity, we denote this sequence by Seq(M e1

e2
).

Definition 11 (Optimal alignment).Given two elements e1 and e2, if
Seq(M e1

e2
) is a mcs of e1 and e2, then we say that M e1

e2
is an optimal alignment.

Since I(e1) and I(e2) are finite sets, an alignment M e1
e2

can be written as a 2×n
matrix where n (which we denote as Rang(Me1

e2
)) is the number of matchings.

Hence,

M e1
e2

=
(

a11 . . . a1n

a21 . . . a2n

)

where e1(a1i) = e2(a2i) for all 1 ≤ i ≤ n (condition i) from Definition 10) and
a1i < a1(i+1) and a2i < a2(i+1) for all 1 ≤ i ≤ (n − 1) (condition ii) from
Definition 10). An element of M e1

e2
placed at row i and column j is denoted by

(M e1
e2

)ij .
Let us illustrate all these ideas by means of an example.

Example 1. Given the elements e1 = caabbc and e2 = aacd where I(e1) =
{1, 2, 3, 4, 5, 6} and I(e2) = {1, 2, 3, 4}. An alignment Me1

e2
(M in short) is

M =
(

2 3 6
1 2 3

)
≡ c a a b b c

a a c d

Note that M satisfies both conditions from Definition 10. Following with M , we
have that Dom(M) = {2, 3, 6}, Im(M) = {1, 2, 3}, Rang(M) = 3 and Seq(M) =
aac. Finally, M is an optimal alignment.

128 V. Estruch et al.

Given that different optimal alignments can be defined over two elements e1 and
e2, we might be interested in obtaining a concrete optimal alignment. To do
this, we define a total order over all of them which lets us formally specify which
optimal alignment we want.

Definition 12 (Total order for optimal alignments). Given two elements
e1 and e2 and given the optimal alignments M e1

e2
(M in short) and Ne1

e2
(N in

short) defined as

M =
(

a11 . . . a1n

a21 . . . a2n

)
N =

(
b11 . . . b1n

b21 . . . b2n

)

we say that M < N iff (a11, . . . , a1n, a21, . . . , a2n) <LO (b11, . . . , b1n, b21, . . . , b2n)
where <LO is the Lexicographical Order for numerical tuples.

Example 2 Given e1 = aab and e2 = ab, we define the optimal alignments

M e1
e2

=
(

1 3
1 2

)
Ne1

e2
=

(
2 3
1 2

)

Then M e1
e2

< Ne1
e2

.

Every alignment between two elements e1 and e2 induces a special pattern p
which covers both e1 and e2. This pattern is unique and we call it the pattern
associated to an alignment.

Definition 13 (Pattern associated to an alignment and optimal align-
ment pattern). Let e1 and e2 be two elements in Σ∗ and let M e1

e2
(M in short)

be an alignment of e1 with e2. We say that a pattern p ∈ L0 is a pattern associ-
ated to the alignment M (denoted by pM), if
i) Seq(M) = Seq(p)
ii) the variable symbols in p are distributed as follows (letting n = Rang(M),
l1 = |e1|, l2 = |e2|):

– The number of variables in the pattern p before the first ground symbol is
equal to

((M)11 − 1) + ((M)21 − 1)

– The number of variables between whatever two ground symbols p(i) and p(j)
(i < j) in Seq(p) such that there does not exists i < k < j where p(k) is a
ground symbol, is equal to

((M)1(i+1) − (M)1i − 1) + ((M)2(i+1) − (M)2i − 1)

– The number of variables after the last ground symbol in p is equal to

(l1 − (M)1n) + (l2 − (M)2n)

If M e1
e2

is an optimal alignment of e1 with e2, we say that pM
e1
e2

is an optimal
alignment pattern.

Generalisation Operators for Lists Embedded in a Metric Space 129

For instance, the pattern associated to the alignment M in Example 1 is
pM = V1aaV2V3cV4, which is an optimal alignment pattern because M is an
optimal alignment. Note that if M is the empty alignment then pM = V l1+l2

and Seq(M) = λ.
The alignment and optimal alignment concepts (Definitions 10 and 11) can

be easily extended to cope with patterns. Given two patterns p1 and p2, Mp1
p2

is an alignment of p1 with p2 where only matchings between ground symbols
are taken into account, that is, ∀i ∈ Dom(Mp1

p2
), p1(i) = p2(Mp1

p2
(i)), p(i) ∈ Σ

and p2(Mp1
p2

(i)) ∈ Σ. Analogously, Mp1
p2

is an optimal alignment if Seq(Mp1
p2

) is
a msc of p1 and p2.

To conclude, we introduce a binary bottom-up generalisation operator (called
↑-transformation) defined over L0, which allows us to move through the pattern
language.

Definition 14. Given two patterns p1 and p2 in L0 we define the binary mapping

↑ (·, ·) : L0 × L0 → L0
(p1, p2) → ↑ (p1, p2) = p, such that

1. Let Mp1
p2

(M in short) be the minimum optimal alignment of p1 with p2, then
Seq(p) = Seq(M).

2. If Seq(M) = λ then p = V max{|p1|,|p2|}. Otherwise, the distribution of the
variables in p is:
– Before the first ground symbol in p, the number of variable is equal to:

max{(M)11 − 1, (M)21 − 1}

– Between two consecutive ground symbols in p, the number of variables is
equal to:

max{(M)1(i+1) − (M)1i − 1, (M)2(i+1) − (M)2i − 1}

– After the last ground symbol in p, the number of variables is equal to
(letting n = Rang(M), l1 = |p1| and l2 = |p2|):

max{l1 − (M)1n, l2 − (M)2n}

Example 3. Given the patterns p1 = abcV1, p2 = V1abcccV2 and p3 = dV1, then
↑ (p1, p2) = V abcV 3 and ↑ (p1, p3) = V 4.

Proposition 2. For every pair of patterns p1 and p2 in L0, if p =↑ (p1, p2) then
Set(p1) ⊂ (p) and Set(p2) ⊂ (p).

Proof. It directly comes from the definition of the ↑-transformation.

Next, we explain how to define dbg operators for the different pattern languages,
and we study the possibility of finding mdbg operators for (L0, k0) and (L1, k1).

130 V. Estruch et al.

3.3 Single List Pattern Language (L0)

One would expect that if Δ(E) computes a pattern p such that Seq(p) is a mcs
of the lists in E, then Δ(·) is a dbg operator. However, we find that this operator
is not, in general, distance-based. The following example illustrates this:

Example 4. Let E = {e1, e2, e3} where e1 = c5a3b3, e2 = c5a2d4 and e3 =
a3b3d4c5 are the elements to be generalised. Initially, we are going to fix a nerve
for these elements, namely, the complete nerve (see Figure 3).

e1=cccccaaabbb

e2=cccccaadddd e3=aaabbbddddccccc

Fig. 3. A complete nerve ν for the evidence E = {e1, e2, e3}

The pattern p = V 10c5V 6 generalises E, and Seq(p) is a mcs of the lists in E.
However, this pattern is not a db pattern of E since, for example, the element
a3b3 (which is between e1 and e3) and the element a2d4 (which is between e2
and e3) are not covered by p. As a matter of fact, no pattern containing the
ground symbol c will be db and this result is independent of the nerve chosen.

The explanation for this apparently counterintuitive result is based on how the
distance between the different pairs of elements ei and ej is calculated. In fact,
although all the lists in E have subsequence c5 in common, this subsequence is
never taken into account to compute the distance d(ei, ej), for any pair (ei, ej) in
ν. Therefore, the operator definition we propose next not only uses the concept
of mcs but also uses others such as the ↑-transformation and the concept of
nerve which ensures the condition of being db. First, we deal with the binary
generalisation operator, and then we extend it for the n-ary case.

In the first stage, for any two elements e1 and e2 to be generalised, we need
to somehow find out which patterns in L0 can cover those elements between e1
and e2.

Proposition 3. Given the elements e1, e2 and e, if e is between e1 and e2, then
there exists an optimal alignment pattern p associated to an optimal alignment
of e1 and e2 such that e ∈ Set(p).

Proof. (Sketch) Let M e1
e and M e

e2
be the optimal alignments of e1 with e and

e with e2, respectively. We define the mapping M between e1 and e2 as the
composition of M e1

e and M e
e2

. The goal is to prove first that M is an optimal
alignment of e1 with e2 and then, see that the associated pattern p

M
covers e.

For this last step we distinguish two cases: i) M is the empty alignment and
consequently pM = V |e1|+|e2|. According to Proposition 21 in [3], if e is between

Generalisation Operators for Lists Embedded in a Metric Space 131

e1 and e2, then |e| ≤ |e1|+ |e2|, hence e ∈ Set(p
M

). ii) M is not empty and we
aim to prove that the variable symbols in M are distributed in such a way that
we can ensure that e ∈ Set(p

M
).

We will use the proposition above along with the ↑-transformation to define
binary db operators.

Corollary 1. Given the elements e1 and e2, if {pi}n
i=1 is the set of all the

optimal alignment patterns of e1 and e2, then the generalisation operator defined
as follows is db.

Δb(e1, e2) =↑ (p1, ↑ (p2, . . . ↑ (pn−1, pn)) . . .)

Proof. For every optimal alignment pattern, we know from Proposition 2, that

Set(pi) ⊂ Set(Δb(e1, e2)) (2)

Then, from Proposition 3, we can write that

∀ element e between e1 and e2 ⇒ ∃pi : e ∈ Set(pi) (3)

Now, combining (2) and (3), we can affirm that

∀ element e between e1 and e2 ⇒ e ∈ Set(Δb(e1, e2)) (4)

Hence, the generalisation operator is distance-based.

Next, we extend Corollary 1 for an arbitrary number of elements.

Corollary 2. Given a finite set of elements E ⊂ X and a function nerve N ,
the generalisation operator Δ defined in Algorithm 1 (where Δb is defined in
Corollary 1) is db wrt. N .

Proof. For every (ei, ej) ∈ N(E), Set(Δb(ei, ej)) ⊂ Set(Δ(E)) by the definition
of the ↑-transformation. Therefore, for every finite set E, Δ(E) is distance-based
w.r.t. N(E).

Algorithm 1 returns a pattern p such that Set(Δb(ei, ej)) ⊂ Set(p), for every pair
of elements in N(E), by iteratively applying the ↑-transformation over all the
patterns Δb(ei, ej). The else-block is important since it ensures that Seq(p)
= λ,
if all the sequences Seq(Δb(e1, ej)) have a subsequence in common. Let us see
an example of this.

Example 5. Given E = {e1, e2, e3, e4} where e1 = abc, e2 = cabcd, e3 = c,
e4 = cab and the nerve N(E) = {(e1, e2), (e2, e3), (e2, e4)}. The binary distance-
based generalisations (lines 5-7 in the algorithm) are:

L[0] = Δb(e1, e2) = V abcV
L[1] = Δb(e2, e3) = V cabV
L[2] = Δb(e2, e4) = V 3cV 4

132 V. Estruch et al.

Data: E = {e1, . . . , en}, Δb (binary dbg operator) and ν (a nerve of E)
Result: Distance-based pattern of E wrt. ν
begin1

k ← 0;2

L ← []/ ∗ empty list ∗ /;3

for (ei, ej) ∈ N(E) do4

L[k] ← Δb(ei, ej);5

k ← k + 1;6

end7

S ← {ai ∈ Σ : ∀0 ≤ j ≤ k : ai ∈ Seq(L[j]);8

if S = ∅ then return V max{|L[j]|:∀0≤j≤k} ;9

else10

p ← First(L);11

Remove(L, p);12

while L �= ∅ do13

Find pi ∈ L: ∃aj ∈ S, aj ∈ Seq(↑ (p, pi));14

p ←↑ (p, pi);15

Remove(L, pj);16

end17

return p;18

end19

end20

Algorithm 1. An algorithm to compute a db pattern of a set of lists E wrt. a nerve ν

If we applied the ↑-transformation in any arbitrary order over the set of binary
patterns, we could obtain for example:

p ← V abcV
p ← ↑ (p, V cabV) = V 2abV 2

p ← ↑ (p, V 3cV 4) = V 9

However, if the ↑-transformation is applied as the algorithm indicates (lines 8-
17), then S = {c} and the patterns would be merged in the following order:

p ← ↑ V abcV
p ← ↑ (p, V 3cV 4) = V 3cV 4

p ← ↑ (p, V cabV) = V 3cV 4

With regard to the computation of mdbg operators in (L0, k0), the algorithm
above always return the mdbg. On the one hand, if all the binary patterns have
a subsequence in common, the algorithm computes a distance-based pattern p
such that Seq(p)
= λ and the function c′(E|p) = |E| which attains a minimum
value. On the other hand, the algorithm returns a pattern with variable symbols
only, and whose length is the minimum length required to be distance-based.
Therefore, p is minimal as well.

Generalisation Operators for Lists Embedded in a Metric Space 133

3.4 Multiple List Pattern Language (L1)

We will define dbg operators in L1 via ΔN (Proposition 1). The binary operator
Δb required by ΔN is the one introduced in Corollary 1. An example of how this
operator works is shown below:

Example 6. Given a finite set of elements E = {e1, e2, e3, e4} where e1 =
a2b2d, e2 = da2c2, e3 = c2db2 and e4 = ad and the nerve N(E) =
{(e1, e2), (e1, e3), (e1, e4)}.

Δb(e1, e2) = p1 = V a2V 5

Δb(e1, e3) = p2 = V 5b2

Δb(e1, e4) = p3 = V aV 3d

Finally,
ΔN (E) = V a2V 5 + V 5b2 + V aV 3d

Observe that the solution for this example in L0 is just a pattern consisting of
variable symbols only, which shows the utility of L1. Next, let us see how to
obtain mdbg operators in L1.

Since the only way we know to define a distance-based operator in L1 consists
in fixing a nerve beforehand, it is reasonable to study how to define mdbg oper-
ators relative to a nerve function. However, the calculus of the mdbg operator is
not easy at all. Basically, the question is whether the mdbg operators relative to a
nerve function N can be defined in terms of ΔN and the ↑-transformation. How-
ever, this result seems hard to be established. On the one hand, we ignore how
to explicitly define most of the Δb operators (since Corollary 1 only establishes
a sufficient condition) and on the other hand, we must take into consideration
some inherent limitations of the ↑-transformation:

1. The mdb pattern might not be found by applying the ↑-transformation over
ΔN if this one uses the binary operator Δb defined in Corollary 1: we will
illustrate this by means of an example.

Example 7. Given the set E = {e1, e2, e3}, where e1 = a1a2a3, e2 = a1a6a7
and e3 = a2a4a5, and N(E) = {(e1, e2), (e1, e3)}. The optimal alignment
patterns which are associated to (e1, e2) and (e1, e3), respectively, are a1V

4

and V a2V
3. Then a1V

4 is a db pattern of (e1, e2) (since it is the only optimal
alignment pattern) and V a2V

3 is a db pattern of (e2, e3) (since it is the only
optimal alignment pattern). Hence, the pattern p = a1V

4 + V a2V
3 is db

w.r.t. N(E). However, the pattern p′ = a1V
4 + a2V

3 is distance-based (the
only element between e1 and e2, which is not covered by a2V

3, is a1a2a4a5
but this is covered by a1V

4) but Set(p′)
⊂ Set(p). The mdb pattern for E
will have |p′| or even fewer symbols and this will never be achieved by the
↑-transformation over the optimal alignment patterns.

Therefore, given that Δb is defined from the concept of optimal alignment
patterns and ΔN is defined from Δb, it is not possible that the mdbg operator
can be expressed in terms of the ↑-transformation and ΔN .

134 V. Estruch et al.

2. The mdbg pattern might not be found by applying the ↑-transformation over
skeleton(N(E)): from the previous point, we could think that the mdb pat-
tern cannot be found because the optimal alignment patterns are excessively
general. However, if it was so, it would mean that starting the search from
something extremely specific, namely the skeleton, the mdb pattern should
be found. However, this is not true as the next example reveals:

Example 8. Given E = {e1, e2, e3, e4, e5} where e1 = ac3b2, e2 = ab2, e3 =
ab2ce, e4 = d and e5 = fgh and the nerve depicted below:
If we group the elements according to its similarity and then apply the ↑-
transformation over the different groups, the pattern obtained would attain
a lower value for k1(E, ·). Taking this strategy into account, we can dis-
tinguish several meaningful grouping criteria. For instance, those elements
which contain the subsequence abb (G1) and those which do not (G2). That
is,

G1 = {ac3b2, acb2, ac2b2, ab2, . . . , ab2d}
G2 = {dfgh, fdgh, fgdh, fghd}

In this particular case, it does not matter how the elements in the groups are
ranked in order to apply the ↑-transformation since the final result remains
invariable. Thus, we can write

p1 =↑ (G1)+ ↑ (G2) = V aV 3bV bV 2 + V fV gV hV

For any other binary splitting, we would have elements having no subse-
quence in common in the same group (e.g. abb and dfgh). The shortest
patterns would be

p2 = aV 3b2V 2 + V 4

p3 = V 6

e1=acccbb e2=abb e3=abbce

dfgh
fdgh
fgdh
fghd

abdb
abbd

adbb
dabb

accbb

acbb abbc
abbe

e4=d e5=fgh

Fig. 4. A naive generalisation of the set E w.r.t. the nerve N(E). Circled elements are
the intermediate elements.

Generalisation Operators for Lists Embedded in a Metric Space 135

Using three groups, another interesting possibility can be explored. For in-
stance, G1 = {fgh}, those elements containing the subsequence d (G2) and
the remaining ones (G3). Depending on the order of the elements in G2 we
could obtain by applying the uparrow-transformation.

p4 = V 5 + aV 3b2V 2

p5 = V 3dV 3 + aV 3b2V 2 + fgh

Finally, it is not worth using more than three groups because of the excessive
length of the pattern obtained. Evaluating the different patterns, we have
that:

k1(E, p1) = c(p1) + c′(E|p1) = 17 + 5 = 22
k1(E, p2) = c(p2) + c′(E|p2) = 12 + 10 = 22
k1(E, p3) = c(p3) + c′(E|p3) = 6 + 17 = 23
k1(E, p4) = c(p4) + c′(E|p4) = 13 + 13 = 26
k1(E, p5) = c(p5) + c′(E|p5) = 18 + 5 = 23

But the following patterns are also distance-based for E:

p6 = V 3cV 2 + V 4

p7 = aV 5 + V 4

where
k1(E, p6) = c(p6) + c′(E|p6) = 10 + 10 = 20
k1(E, p7) = c(p7) + c′(E|p7) = 10 + 10 = 20

However, neither p6 nor p7 can be derived from a ↑-transformation since
this tends to extract the longest common subsequence. Observe that all the
elements which have the subsequence c or a also contain the subsequence
abb in common.

From this previous analysis, we can conclude that the ↑-transformation is not
enough in itself to explore the search space. We need a generalisation tool which
is not based on the concept of the longest common subsequence. For this purpose,
we introduce the so-called inverse substitution.

Definition 15 (Inverse substitution). Given a pattern p in L0 or in L1 an
inverse substitution σ−1 is a set of indices where each index denotes a ground
symbol in p to be changed by a variable. Thus, pσ−1 represents the new pattern
which is obtained by applying σ−1 over p.

Basically, an inverse substitution just changes ground symbols by variables. For
example, given p = V aabV and σ−1 = {2, 4} then pσ−1 = V 2aV 2. Now, we are
in conditions to introduce the next proposition:

Proposition 4. Given a finite set of elements E = {e1, . . . , en} and a nerve func-
tion N . If we set S = skeleton(N(E)) then there exists a partition P of the set S
and a collection of inverse substitutions {σ−1

1 , . . . , σ−1
n } such that the pattern

p =
∑

∀Pi={eki
}mi

ki=1∈P

↑ ({ekiσ
−1
ki
}mi

ki=1)

is a mdb pattern of E relative to N(E).

136 V. Estruch et al.

Proof. (Sketch). We can assume that there exists a pattern p =
∑n

i=1 pi such
that k(E, p) attains a minimum value. The pattern p induces a partition of
E = ∪Ei in such a way that ei ∈ Ei iff ei ∈ Set(pi). Next, we remove repeated
elements in the different Ei in order to make sure that the subsets Ei are pairwise
disjoints. Finally, the proposition can be proved using the concepts of inverse
substitution and ↑-transformation over the partition we have set.

This latter proposition leads to an exhaustive search algorithm in order to com-
pute the mbdg operator. This algorithm turns out to be useless in general due to
the size of the search space (the number of different possibilities for the partition
of skeleton(N(E)) and substitutions). In fact, for a particular version of L1, we
have proved that this optimisation problem is NP -Hard (see [3]).

Hence, the other option is to approximate the calculus of the mdb patterns.
To do this, we use a greedy search schema driven by the cost function. That is,
for each iteration, the ↑-transformation is applied over the pair of patterns that
reduces th cost function most. This idea is formalised in the Algorithm 2 and
illustrated in Example 9.

Input: E = {e1, . . . , en}, Δb (binary dbg operator) and N (nerve function)
Output: A pattern which approximates a mdb pattern of E w.r.t. N(E)
Δ̃N (E)1

begin2

k ← 1;3

for (ei, ej) ∈ N(E) do4

pk ← Δb(ei, ej);5

k ← k + 1;6

end7

p =
∑n

k=1 pk;8

do9

kp ← k1(E, p);10

p′ ← argmin{k1(E, pij) : ∀1 ≤ i, j,≤ n, pij =↑ ({pi, pj}) + (p− pi − pj)};11

k′
p ← k1(E, p′);12

if kp′ < kp then p ← p′;13

while kp′ < kp14

return p;15

end16

//The notation p − pi − pj employed in the algorithm means all the patterns in17

p except pi and pj .;

Algorithm 2. A greedy algorithm which approximates the mdbg operator

Example 9. Let E and N(E) be the set of examples and the nerve employed in
Example 6. Remember that,

p1 = Δb(e1, e2) = V a2V 5

p2 = Δb(e1, e3) = V 5b2

p3 = Δb(e1, e4) = V aV 3d

Generalisation Operators for Lists Embedded in a Metric Space 137

and
p = V a2V 5 + V 5b2 + V aV 3d

see lines 4-8 in the algorithm. Next, we have to apply the ↑-transformation over
each pair of binary generalisations and we choose the one which attains a lower
value of k1(E, ·) (see lines 9-14). In our case, we must consider two possibilities:

p1 = ↑ (V a2V 5, V 5b2) + V aV 3d = V 8 + V aV 3d
= V 8

p2 = ↑ (V a2V 5, V aV 3d) + V 5b2 = V aV 6 + V 5b2

Since k1(E, p2) = 19 is less than k1(E, p1) = 27, we choose the pattern p2. The
process stops when the pattern cannot be further improved. Note that the next
iteration leads to

↑ (V aV 6, V 5b2) = V 8

which performs worse than p2. Therefore, the algorithm returns p2.

4 Conclusions and Future Work

We have followed the connection between two major concepts in inductive pro-
gramming, the concept of distance and generalisation, when applied to lists. This
work is based in a correct integration of distance-based methods with symbolic
inductive learners we introduced in [4][6]. This proposal relies on the novel con-
cept of (minimal) distance-based generalisation operator, which aims to induce
consistent (minimal) patterns from data embedded in a metric space.

The main contribution of this paper consists in studying how to apply our
framework in order to infer consistent symbolic patterns from a particular struc-
tured data type (lists) and a distance function (edit distance). More concretely,
we have seen how to define (minimal) distance-based generalisation operators
for this domain. To do this, we have introduced two different pattern languages
L0 and L1. The first language is made up of patterns which consist of finite
sequences of ground and variable symbols. The language L1 extends L0 in that
the disjunction of patterns is permitted. Additionally, we have defined a cost
function for each language in order to study the minimality of the patterns we
can obtain.

We have proved that for more than two sequences, the widely-used concept
of maximum common subsequence does not necessarily lead to distance-based
generalisation operators. In order to obtain this sort of operators, we need to
introduce a new concept: namely, the concept of sequence associated to an op-
timal alignment. This kind of sequences leads to certain patterns that when
combined, allows us to define distance-based operators. As for the minimality
of these operators, we have shown this is a computational hard problem in L1.
For this reason, we have introduced a greedy search algorithm which allows us
to approximate minimal generalisations.

There are some work ahead to ease the integration of these generalisation op-
erators into inductive programming tools. For instance, the computational com-
plexity of the greedy search algorithm which approximates minimal patterns is

138 V. Estruch et al.

a concern. This has a quadratic complexity with the number of subpatterns in
the pattern obtained by Proposition 1. Unfortunately, this operation still has a
high cost, if we want to run our algorithm over large data sets. Thus, it would
be convenient to try other heuristics with a lower complexity that ensure a good
approximation. Another one is devoted to the pattern languages that have been
investigated. Note that both L0 and L1 are subfamilies of regular languages.
A very interesting line of work would consist in extending all the results pre-
sented in this paper in order to include pattern representations based on other
more expressive subfamilies of regular languages. By doing this, we could ob-
tain not only new grammar inference algorithms but also new grammar learners
that would ensure the consistency of the inferred model wrt. the underlying dis-
tance, something which does not happen when traditional grammar learners are
applied.

Acknowledgments

This work was partially supported by the EU (FEDER) and the Spanish Gov-
ernment MEC/MICINN, under grant TIN 2007-68093-C02, the Spanish project
“Agreement Technologies”(CONSOLIDER-INGENIO CSD2007-00022) and the
Valencian project PROMETEO/2008/051.

References

1. Bowers, A.F., Giraud-Carrier, C.G., Lloyd, J.W.: Classification of individuals with
complex structure. In: Proc. of the 17th International Conference on Machine
Learning (ICML 2000), pp. 81–88. Morgan Kaufmann, San Francisco (2000)

2. Edgar, G.A.: Measure, Topology and Fractal Geometry. Springer, Heidelberg
(1990)

3. Estruch, V.: Bridging the gap between distance and generalisation: Symbolic learn-
ing in metric spaces. PhD Thesis, DSIC-UPV (2008),
http://www.dsic.upv.es/~vestruch/thesis.pdf

4. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Distance
based generalisation. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI),
vol. 3625, pp. 87–102. Springer, Heidelberg (2005)

5. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Distance
based generalisation for graphs. In: Proc. Work. of Machine and Learning with
Graphs, pp. 133–140 (2006)

6. Estruch, V., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Minimal
distance-based generalisation operators for first-order objects. In: Muggleton, S.H.,
Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp.
169–183. Springer, Heidelberg (2007)

7. Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Incremental learning of
functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS,
vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

8. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Journal 26(2), 147–160 (1950)

http://www.dsic.upv.es/~vestruch/thesis.pdf

Generalisation Operators for Lists Embedded in a Metric Space 139

9. Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Inverse narrowing for the induction
of functional logic programs. In: 1998 Joint Conference on Declarative Program-
ming, APPIA-GULP-PRODE 1998, A Coruña, Spain, July 20-23, pp. 379–392
(1998)

10. Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: A strong complete schema for in-
ductive functional logic programming. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999.
LNCS (LNAI), vol. 1634, pp. 116–127. Springer, Heidelberg (1999)

11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

12. Lloyd, J.W.: Learning comprehensible theories from structured data. In: Mendel-
son, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI),
vol. 2600, pp. 203–225. Springer, Heidelberg (2003)

13. Muggleton, S.H.: Inductive logic programming: Issues, results, and the challenge
of learning language in logic. Artificial Intelligence 114(1-2), 283–296 (1999)

14. Olsson, R.: Inductive functional programming using incremental program transfor-
mation. Artifificial Intelligence 74(1), 55–81 (1995)

15. Rissanen, J.: Hypothesis selection and testing by the MDL principle. The Computer
Journal 42(4), 260–269 (1999)

16. Schmid, U.: Inductive synthesis of Functional Programs-Universal Planning, Fold-
ing of Finite Programs, and Schema Abstraction by Analogical Reasoning.
Springer, Heidelberg (2003)

17. Swamidass, S.H., Chen, J., Bruand, J., Phung, P., Ralaivola, L., Baldi, P.: Kernels
for small molecules and the prediction of mutagenecity, toxicity and anti-cancer
activity. Bioinformatics 21, 359–368 (2005)

18. Rivest, R., Cormen, T.H., Leiserson, C., Stein, C. (eds.): Introduction to Algo-
rithms. MIT Press, Cambridge (2000)

19. Wallace, C.S., Dowe, D.L.: Minimum Message Length and Kolmogorov Complexity.
Computer Journal 42(4), 270–283 (1999)

Porting IgorII from Maude to Haskell

Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid

Cognitive Systems Group, University of Bamberg
{martin.hofmann,emanuel.kitzelmann,ute.schmid}@uni-bamberg.de

Abstract. This paper describes our efforts and solutions in porting our
IP system Igor 2 from the termrewriting language Maude to Haskell.
We describe how, for our purpose necessary features of the homoiconic
language Maude especially the treatment of code as data and vice versa,
can be simulated in Haskell using a stateful monad transformer which
makes type and class information available. With our new implementa-
tion we are now able to use higher-order context during our synthesis
and extract information from type classes useable as background knowl-
edge. Keeping our new implementation as close as possible to our old,
we could keep all features of our system.

1 Introduction

Inductive programming (IP) dares to tackle a problem as old as programming
itself: Help the human programmers with their task of creating programs, solely
using evidence of an exemplary behaviour of the desired program. Contrary to
deductive program synthesis, where programs are generated from an abstract,
but complete specification, inductive program synthesis is concerned with the
synthesis of programs or algorithms from incomplete specifications, such as in-
put/output (I/O) examples. Focus is on the synthesis of declarative, i.e., logic,
functional, or functional logic programs. The aims of IP are manifold. On the
one hand, research in IP provides better insights in the cognitive skills of human
programmers. On the other hand, powerful and efficient IP systems can enhance
software systems in a variety of domains—such as automated theorem proving
and planning—and offer novel approaches to knowledge based software engineer-
ing such as model driven software development or test driven development, as
well as end user programming support in the XSL domain (1).

Beginnings of IP research addressed inductive synthesis of functional programs
from small sets of positive I/O examples only (2). One of the most influential clas-
sical systems was Thesys (3) which synthesised linear recursive Lisp programs
by rewriting I/O pairs into traces and folding of traces based on recurrence de-
tection. Currently, induction of functional programs is covered by the analytical
approaches Igor 1 (4), and Igor 2 (5) and by the evolutionary/generate-and-
test based approaches Adate (6) and MagicHaskeller (7).

Analytical approaches work example-driven, so the structure of the given I/O
pairs is used to guide the construction of generalised programs. They are typically
very fast and can guarantee certain characteristics for the generated programs

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 140–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Porting IgorII from Maude to Haskell 141

such as minimality of the generalisation w.r.t. to the given examples and termi-
nation. However they are restricted to programs describable by a small set of
I/O pairs.

Generate-and-test based approaches first construct one or more hypothetical
programs, evaluate them against the I/O examples and then work on with the
most promising hypotheses. They are very powerful and usually do not have any
restrictions concerning the synthesis able class of programs, but are extremely
time consuming.

Two decades ago, some inductive logic programming (ILP) systems were pre-
sented with focus on learning recursive logic programs in contrast to learning
classifiers: Ffoil (8), Golem (9), Progol (10), and the interactive system Di-

alogs (11). Synthesis of functional logic programs is covered by the system
Flip (12).

IP can be viewed as a special branch of machine learning because programs
are constructed by inductive generalisation from examples. Therefore, as for
classification learning, each approach can be characterised by its restriction and
preference bias (13). However, IP approaches cannot be evaluated with respect
to some covering measure or generalisation error since (recursive) programs must
treat all I/O examples correctly to be an acceptable hypothesis.

The task of writing programs writing programs—pardon the pun—is per se
reflexive, so it is virtually self-suggesting to use reflexive, also called homoiconic
languages. Unfortunately only a few homoiconic languages are declarative and
adequate for IP, e.g. Lisp and Maude. Nevertheless, they lack interesting fea-
tures like polymorphic types with type classes or higher-order functions. State-
of-the-art functional languages with a large community and good library support
as e.g. Haskell do not provide reflexive features, though.

Nevertheless, we value the pros of a state-of-the-art functional language more
and so grasp the nettle and build our own homoiconic support. This paper
describes our efforts and solutions in porting our IP system Igor 2 from the term
rewriting language Maude to Haskell facing problems in simulating reflexive
properties. This is done mainly to overcome Maude’s restricted higher-order
context, but also to use information about type classes as background knowledge.
Igor 2’s key features are kept unchanged. They are

– termination by construction,
– handling arbitrary user-defined data types,
– utilisation of arbitrary background knowledge,
– automatic invention of auxiliary functions as sub programs,
– learning complex calling relationships (tree- and nested recursion),
– allowing for variables in the example equations,
– simultaneous induction of mutually recursive target functions.

Furthermore it provides insights in less theoretical but more pragmatic imple-
mentation details of the systems. The next Section 2 gives an overview of the
theory behind Igor 2 and its strong linkage to Maude, and in Section 3 we
describe the library specification of our new implementation in Haskell. We
conclude with an outlook on future work in Section 5.

142 M. Hofmann, E. Kitzelmann, and U. Schmid

2 Igor 2 and Maude

Igor 2’s (14) main objective is to overcome the strong limitations—only a small
fixed set of primitives and no background knowledge, strongly restricted program
schemas, linearly ordered I/O examples—of the classical analytical approach but
not for the price of a generate-and-test search. This is realized by integrating
analytical techniques into a systematic search in the program space. A prototype
is implemented in Maude. Please note that in the following chapter we adopt
the Maude syntax, where, contrary to Haskell variables are in upper case and
constructor symbal are in lower case.

2.1 The Igor 2-Algorithm

We only sketch the algorithm here. For a more detailed description see (14).
Igor 2 represents I/O examples, background knowledge, and induced pro-

grams as constructor (term rewriting) systems (CSs) over many-sorted (typed)
first-order signatures. Signatures for CSs are the union of two disjoint subsig-
natures called defined function symbols and constructor symbols, respectively.
Terms containing only constructor symbols (and variables) are called constructor
terms. A CS is a set of directed equations or rules of the form F (p1, . . . , pn) → t
where F is a defined function symbol, the pi are constructor terms and t is a
term. This corresponds to pattern matching over user-defined data types in func-
tional programming. A CS is evaluated by term rewriting. Terms that are not
rewritable—these include, in particular, all constructor terms—are called nor-
mal forms. For CSs representing I/O examples or background knowledge hold
the additional restriction that right-hand sides (rhss) are constructor terms. This
particularly means that also background knowledge must be provided in an ex-
tensional form, i.e. as non-recursive I/O examples.

In order to construct confluent CSs, i.e., CSs with unique normal forms,
Igor 2 assures that patterns of rules belonging to one defined function are dis-
joint, i.e., do not unify. Igor 2’s inductive bias is—roughly speaking—to prefer
CSs with fewer disjoint patters, i.e., CSs that partition the domain into fewer
subsets. With respect to this preference bias, Igor 2 starts with one initial rule
per target function. An initial rule is the least general generalisation—with re-
spect to the subsumption order t ≥ t′ (t subsumes or is more general than t′),
if there exists a substitution σ with tσ = t′—of the provided I/O examples.
Initial rules entail the I/O examples with respect to equational reasoning and
are correct with respect to the I/O examples in this sense. However, an initial
rule may contain variables in its right-hand side (rhs) not occurring in its left-
hand side (lhs), i.e. pattern. We call such variables unbound and rules and their
rhs containing them, open. Unbound variables may be instantiated arbitrarily
within rewriting such that CSs containing open rules do not represent functions.
Hence, CSs are transformed during the search by taking an open rule r out of
a CS and replacing it by a set of new rules R such that (i) either the unbound
variables are eliminated in the rhs of r in R or r is completely discarded from
R, and (ii) the resulting CS is still correct with respect to the I/O examples

Porting IgorII from Maude to Haskell 143

and equational reasoning. Different sets R may be possible as replacements for
an open rule, i.e., a refinement operator takes an open rule r and yields a set
of sets R of rules. In one search step, an open and best rated CS with respect
to the preference bias and one open rule from it is chosen. Then all refinement
operators are applied to r yielding a set of sets of rules each. The union of these
sets is the set of possible replacements R of r. Now r is replaced in each CS
containing it by each possible R. A goal state is reached if all best rated CSs are
closed. This set constitutes the solution returned by Igor 2.

There are three transformation operators: (i) The I/O examples belonging
to the open initial rule are partitioned into subsets and for each subset, a new
initial rule (with a more specific pattern than the original rule) is computed.
(ii) The open rhs is replaced by a (recursive) call to a defined function. The
arguments of the call may again contain calls to defined functions. Hence, com-
puting the arguments is considered as a new subproblem. (iii) If the open rhs
has a constructor as root, i.e., does not consist of a single unbound variable,
then all subterms containing unbound variables are treated as subproblems. A
new auxiliary function is introduced for each such subterm. We will explain all
of them in the following paragraphs.

Splitting an open rule. The first operator partitions the I/O examples belong-
ing to a rule into subsets such that the patterns of the resulting initial rules
are disjoint more specific than the pattern of the original rule. Finding such a
partition is done as follows: A position in the pattern p with a variable resulting
from generalising the corresponding subterms in the subsumed example inputs
is identified. This implies that at least two of the subsumed inputs have different
constructor symbols at this position. Now all subsumed inputs are partitioned
such that all of them with the same constructor at this position belong to the
same subset. Together with the corresponding example outputs this yields a
partition of the example equations whose inputs are subsumed by p. Since more
than one position may be selected, different partitions leading to different sets
of new initial rules may result.

For example, let
reverse([]) = []
reverse([X]) = [X]
reverse([X, Y]) = [Y, X]

be some examples for the reverse-function. The pattern of the initial rule is sim-
ply a variable Q, since the example input terms have no common root symbol.
Hence, the unique position at which the pattern contains a variable and the ex-
ample inputs different constructors is the root position. The first example input
consists of only the constant [] at the root position. All remaining example inputs
have the list constructor cons as root. Put differently, two subsets are induced by
the root position, one containing the first example, the other containing the two
remaining examples. The least general generalisations of the example inputs of
these two subsets are [] and [Q|Qs] resp. which are the (more specific) patterns
of the two successor rules.

144 M. Hofmann, E. Kitzelmann, and U. Schmid

Introducing (Recursive) Function Calls and Auxiliary Functions. In cases (ii)
and (iii) help functions are invented. This includes the generation of I/O-examples
from which they are induced. For case (ii) this is done as follows: Function
calls are introduced by matching the currently considered outputs, i.e., those
outputs whose inputs match the pattern of the currently considered rule, with the
outputs of any defined function. A defined function is either the target function,
a function from the background knowledge, or an auxiliary function invented on
the fly. If all current outputs match, then the rhs of the current unfinished rule
can be set to a call of the matched defined function. The argument of the call
must map the currently considered inputs to the inputs of the matched defined
function. For case (iii), the example inputs of the new defined function also equal
the currently considered inputs. The outputs are the corresponding subterms of
the currently considered outputs.

For an example of case (iii) consider the last two reverse examples as they
have been put into one subset in the previous section. The initial rule for these
two examples is:

reverse([Q|Qs]) = [Q2|Qs2] (1)

This rule is unfinished due two the two unbound variables in the rhs. Now the
two unfinished subterms (consisting of exactly the two variables) are taken as
new subproblems. This leads to two new examples sets for two new help functions
sub1 and sub2:

sub1([X]) = X
sub1([X, Y]) = Y
sub2([X]) = []
sub2([X, Y]) = [X]

The successor rule-set for the unfinished rule contains three rules determined as
follows: The original unfinished rule (1) is replaced by the finished rule:

reverse([Q|Qs]) = [sub1([Q|Qs]) | sub2[Q|Qs]]

And from both new example sets an initial rule is derived.
Finally, as an example for case (ii), consider the example equations for the

help function sub2 and the generated unfinished initial rule:

sub2([Q|Qs]) = Qs2 (2)

The example outputs, [], [X] of sub2 match the first two example outputs of the
reverse-function. That is, the unfinished rhs Qs2 can be replaced by a (recursive)
call to the reverse-function. The argument of the call must map the inputs
[X], [X, Y] of sub2 to the corresponding inputs [], [X] of reverse, i.e., a new help
function, sub3 is needed. This leads to the new example set:

sub3([X]) = []
sub3([X, Y]) = [X]

The successor rule-set for the unfinished rule contains two rules determined as
follows: The original unfinished rule (2) is replaced by the finished rule:

sub2([Q|Qs] = reverse(sub3([Q|Qs]))

Porting IgorII from Maude to Haskell 145

Additionally it contains the initial rule for sub3.

2.2 Igor 2’s Use of Maude’s Term Rewriting and Homoiconic
Capabilities

In the functional subpart of Maude, a module essentially defines an order-
sorted signature1 Σ, a set of variables X , and a term rewriting system over
Σ and X . Hence, Igor 2’s I/O examples, background knowledge, and induced
programs are valid and evaluateable Maude modules. Since I/O examples, back-
ground knowledge, and induced CSs are input and output respectively, i.e., data
for Igor 2, we need some homoiconic capabilities: A Maude program (Igor 2)
needs to handle Maude programs as data. This is facilitated by Maude’s meta-
level. For all constructs of Maude modules—signatures, terms, equations, and
complete modules—sorts and constructors to represent them are implemented
in the META-LEVEL module and its submodules in Maude’s standard library.
Furthermore, functions to transform terms etc. to their meta-representation—
upTerm, upEqs, and upModule—are predefined there. Meta-represented terms,
equations, modules and so on are terms of types Term, Equation, Module etc.
and may be rewritten by a Maude program like any other term.

Let us examine in some more detail, how terms and equations are meta-
represented in Maude: Constants and variables are meta-represented by quoted
identifiers containing name and type of the represented constant or variable. E.g.,
upTerm(nil)where nil is a constant of sort List yields the constant ’nil.List
of sort Constant which is a subsort of Term and upTerm(X) where X is a variable
of sort List yields the constant ’X:List of sort Variable which is also a subsort
of Term. Other terms are represented by a quoted identifier as root and a list of
meta-terms in brackets as arguments. E.g., upTerm(Reverse(nil)) yields the
term ’Reverse[’nil.List] of sort Term.

The constructor in mixfix notation for representing an equation is eq = [].
where the first two placeholders () may take a term in meta-representation each
(the rhs and lhs of the equation) and the third an attribute set (belonging to
an equation). The resulting term is of sort Equation.

Now consider a Maude module M containing the two equations

eq reverse(nil) = nil .
eq reverse(cons(X,nil)) = cons(X,nil) .

where X is a variable of sort Item. Applying upEqs(’M, false) then yields:

eq ’Reverse[’nil.List] = ’nil.List [none] .
eq ’Reverse[’cons[’X:Item,’nil.List]] =

’cons[’X:Item,’nil.List] [none] .

This is a term of the sort EquationSet.
Also concepts of rewriting, e.g., matching and substitutions, are implemented

for the meta-level. For example,
1 Order-sorted signatures are a non-trivial extension of many-sorted signatures. In an

order-sorted signature, the sorts partially ordered into sub- and supersorts.

146 M. Hofmann, E. Kitzelmann, and U. Schmid

metaMatch(upModule(’M,false), ’X:List,
’cons[’Y:Item,’nil.List], nil, 0)

yields the term

’X:List <- ’cons[’Y:Item,’nil.List]

of sort Assignment which is a subsort of Substitution.

3 Igor 2 in Haskell

As Lisp, Maude is a dynamically typed, homoiconic language. This means that
(i) the majority of its type checking is done at run-time so type information
is available at this point, and, as seen in the previous section, (ii) it supports
treating ’code as data’ and vice versa ’data as code’ very well. This is quite useful
for program synthesis, because the data structure to represent hypotheses about
possible programs can directly be treated as code and evaluated, and of course
the other way round too. Any piece of code can be lifted into a data structure
and be modified. Furthermore, names of functions or data type constructors can
be reified, so the interpreter’s symbol table is accessible at runtime. This makes
it possible get the constructors of an arbitrary data type or the type of a function
at run-time without much effort.

From the viewpoint of IP, Haskell has on this matter its weak spot. As a
typical statically typed language, types are only necessary until type checking
is done. Once a piece of code has passed the type checker, type information
can safely be dropped. Although this improves efficiency for compiled programs,
when doing program synthesis, this information is necessary though. Lifting code
to a meta-level and back, as done with Maude’s upXYZ functions is only available
quite restricted. Also reification cannot be done so easily since again, there is no
access to the symbol table after type checking. There are various library exten-
sions for Haskell especially for GHC, to alleviate these problems, e.g. Template
Haskell (TH) (15) for compile-time metaprogramming and Data.Dynamic and
Data.Typeable to allow for dynamic typing. Why they are not useful for us
though, we will explain in the following..

Usually, in Haskell expressions are represented as an algebraic data type:

data Exp

= VarE Name

| ConE Name

| LitE Lit

| AppE Exp Exp

Template Haskell’s dual quasi-quoting ([||]) and splicing ($) operators would
provide us with the means to transform code into such an algebraic data type and
these expressions back into code, similar to Maude’s upXYZ functions. So [|1|]
would be LitE (IntegerL 1) inside the TH’s Q monad and $(LitE (IntegerL
1)) would be replaced by the Integer value 1 by the compiler. However, this
is only done at compile-time and without types of the quoted code itself. This

Porting IgorII from Maude to Haskell 147

simply comes from TH’s use case to be able to write code-generating macros,
so the purpose of quoting and splicing is really to coerce expressions into real
code at compile-time and evaluate it at run-time instead of having an algebraic
representation of that code at run-time.

Similarly, the dynamic typing library extension of Haskell is not appro-
priate for us, too. Its main idea is by creating a type class Typeable to be
able to compare the type of arbitrary and unknown values. For example the
function toDyn :: Typeable a => a -> Dynamic from Data.Dynamic. With-
out knowing the type of an arbitrary value, but being a member of Typeable,
a representation of its type can be created and e.g. compared. However, in our
case we are not interested in a type representation of an expression, but of the
type representation of an expression when interpreted as code.

In the rest of this section we will look at the Haskellspecific details of the
new Igor 2 implementation.

3.1 Expressions, Types, and Terms

Finally, there is nothing else for us but to write our own expression type and tag
it with an also algebraic representation of its underlying type.

type Name = String

data TExp

= TVarE Name Type

| TConE Name Type

| TLitE Lit Type

| TAppE TExp TExp Type

| TWildE Type

data Lit

= CharL Char

| IntL Int

| StringL String

So a typed expression is either a variable, a constant, a literal, or an application
of them. For simplicity let a Name be just a String. Neglecting the types for the
moment, the expression (:) 1 ((:)2 [])2 would be represented as follows:

TAppE (TAppE (TConE ” :”)
(TLitE (IntL 1)))

(TAppE (TAppE (TConE ” :”)
(TLitE (IntL 2)))

(TConE ” [] ”))

The algebraic data type of a type looks similar, where a type is either a type
variable, a type constant, an arrow, or an application of them.

type Cxt = [Type]

data Type

= ForallT [Name] Cxt Type

2 aka 1:2:[]. or [1,2].

148 M. Hofmann, E. Kitzelmann, and U. Schmid

−− v a r i a b l e s in scope , c l a s s contex t , t ype
| VarT Name

| ConT Name

| ArrowT

| AppT Type Type

Additionally, there is a forall type, allowing us to restrict a type variable to
a certain type class. As a short example, the type (Show a):: a -> [Int] is
represented as the following algebraic expression:

ForallT [”a”] [AppT (ConT ”Show”)
(VarT ”a”)]

(AppT (AppT ArrowT (VarT ”a”))
(AppT ListT (ConT ”Int”)))

For our convenience, we also create the class Typed to easily have access to a
type of an expression or the like.

class Typed t where

typeOf :: t -> Type

instance Typed TExp where

−− omi t t ed

For TExp, the function typeOf is just a projection on the last argument, i.e. the
type of an expression constructor.

To work with TExp and Type in the sense of terms we make them all instances
of a class Term which provides the basis for fundamental operations on terms.
The function sameSymAtRoot compares two term only at their root symbol,
subterms returns all immediate subterms of a term and root is the inverse of it
such that root t (subterms t)= t. The functions isVar, toVar, and fromVar
provide a type independent way to check for variables, access their name and
create a variable from a name.

class (Eq t) => Term t where

sameSymAtRoot :: t -> t -> Bool

subterms :: t -> [t]

root :: t -> ([t] -> t)

isVar :: t -> Bool

toVar :: t -> Name -> t

fromVar :: t -> Name

instance Term Type where

−− omi t t ed
instance Term TExp where

−− omi t t ed

Both, Types and TExp are instances of the class Term.

Porting IgorII from Maude to Haskell 149

3.2 Specification Context

Up to now, we have seen how to represent expressions and types, but as men-
tioned earlier, this is not sufficient, since synthesis of a program takes place in a
certain context. A small specification, which is itself a Haskell module, could
e.g. look like the following listing.

module FooMod where

data Peano = Z | S Peano

deriving (Eq, Ord)

count :: [a] -> Peano

count [] = Z

count [a] = S Z

count [a,b] = S S Z

Such a given specification is parsed and the IO examples for count are trans-
lated into TExp-expressions. Furthermore, all data type definition with their
constructors and types have to be stored in a record modelling the context of
this specification, i.e. all types and functions which are in scope. Since the stan-
dard Prelude is assumed to be allways in scope, their types and constructors
are included statically. We use a named record for managing the context, where
each field in this record is a Map from Data.Map storing the relevant key value
pairs.

import qualified Data.Map as M

data SynCtx = SCtx

{ sctx_types :: (M.Map Name Type)

−− f unc t i on name maps to i t s type
, sctx_ctors :: (M.Map Name Type)

−− con s t ru c t o r name maps to i t s type
, sctx_classes :: (M.Map Name [Name])

−− c l a s s name maps to i t s s u p e r c l a s s e s
, sctx_members :: (M.Map Name [Name])

−− c l a s s name maps to member f u n c t i o n s names
, sctx_instnces :: (M.Map Type [Name])

−− t ype maps to c l a s s e s
, sctx_typesyns :: (M.Map Type Type)

}deriving (Show)

It is common practise to hide the relevant plumbing of stateful computation
inside a state monad (16), and so do we. While we are at it we can start stacking
monads with monad transformers (17) and add error handling. Later we will
go on in piling monads, and because this is the bottom one it is self-evident to
the add the error monad here. Our context monad now looks as follows with an
accessor function lookIn for our convenience.

type C a = StateT SynCtx (ErrorT String a)

150 M. Hofmann, E. Kitzelmann, and U. Schmid

(lookIn) :: (Ord a) =>

a -> (SynCtx -> M.Map a b) -> C b

(lookIn) n f = gets f >>= \m ->

maybe (fail ”Not in context !”)
return

(M.lookup n m)

The function lookIn can now be used, preferably infix, wherever we need infor-
mation about names or types. For example, the expressions ”Peano”lookIn
sctx_classes yields the names of the classes Peano is an instance of, here
[”Eq”,”Ord”].

3.3 Using Terms

The cornerstones of our synthesis algorithm are unification and anti-unification.
Due to our type-tagged expression, computing the most general unifier or the
least general generalisation of two terms will become stateful, when considering
polymorphic types with type classes. Not only the terms have to be unified
or generalised, but with respect to their types. For this purpose we create the
classes Unifiable and Antiunifiable and make both TExp and Type instances
of them.

Substitutions which replace variables by terms are essential when unifying or
antiunifying terms. Let a Substitution be a list of pairs, such that the variable
with the name on the left side is replaced by the term on the right side of the
pair. Then we define our unification monad U t again as a monad transformer
as follows.

type Substitution t = [(Name ,t)]

nullSubst = []

type U t = StateT (Substitution t) C ()

Note that the last argument of StateT is the unit type. Consequently, a com-
putation inside U t has no result, or put differently, the result is the state itself,
i.e. the substitution which is modified on the way. Therefore, when computing
the most general unifier (mgu) or the substitution with which two terms match
matchingS, unify and match respectively are executed in the U t monad with
the empty substitution as initial state. As result the final state is returned.

class (Term t) => Unifiable t where

unify :: t -> t -> U t

mgu :: t -> t -> C (Substitution t)

mgu x y = execStateT (unify x y) nullSubst

match :: t -> t -> U t

Porting IgorII from Maude to Haskell 151

matchingS :: t -> t -> C (Substitution t)

matchingS x y =

execStateT (match x y) nullSubst

equal :: (Unifiable t) =>

t -> t -> C Bool

equal y x = matchingS x y >> return . null

‘catchError ‘ _ -> return False

Remember that we stacked the U t monad on top of our context monad C which
supports error handling. So if two terms do not unify or match respectively, then
fail is invoked inside C, otherwise a potentially empty substitution is returned
inside C. The function matchingS returns the substitution that matches the first
term on the second term and equal returns True if the computation inside U t
succeeds with an empty substitution, False otherwise.

The class Antiunifier looks similar, but instead of a Substitution it uses
the data type VarImg as state. VarImg stores a list of terms, i.e. the so called
image, together with the variable subsuming these terms.

type VarImg t = [([t],Name)]

nullImg = []

type AU t = StateT (VarImg t) C t

However, unlike in the U t monad, there is a result of a computation in the
AU t monad: The least general generalisation of the given terms. With the func-
tion antiunify we throw the state away and return the result of the monadic
computation.

class (Term t) => Antiunifiable t where

aunify :: [t] -> AU t

antiunify :: [t] -> C t

antiunify t =

runStateT (aunify t) nullImg

The types TExp and Type are now added as instances to these type classes. We
omit the concrete implementations, since they are straight forward following the
structure of the algebraic data types. All that is left to say that two TExps only
unify/match/antiunify if and only if their types unify/match/antiunify.

3.4 Rules, Hypotheses, and Other Data Types

Now let us introduce the basic data types for the synthesis.
First of all we have a Rule, with a list of TExps on the left-hand side (lhs)

and one TExp on the right-hand side (rhs).

data Rule = R { lhs :: [TExp]

, rhs :: TExp }

152 M. Hofmann, E. Kitzelmann, and U. Schmid

Usually we are talking about a certain rule, a rule covering some I/O examples
of a specific function. Therefore we need to store information about this specific
function and the covered I/O examples together with the Rule in a covering rule
CovrRule.

data CovrRule = CR

{ name :: Name

, rule :: Rule

, covr :: [Int] }

The accessor functions name, rule, and covr return the name of the function,
the rule itself, and the indices of the covered I/O examples. A CovrRule makes
therefore only sense, when there is something the indices refer to. The data
structure IOData answers this purpose. It is more or less a map, relating function
names to list of rules, i.e. the I/O examples. Let for simplicity be IOData just a
synonym.

type IOData = M.Map Name [Rule]

The indices in a CovrRule are just the position of rules in the list stored under a
name. The indices should not be visible outside IOData. For this purpose there
are a couple of functions to create and modify CovrRule referring to a certain
IOData. We refrain from the concrete implementations here.

getAll :: Name -> IOData

-> Maybe [CovrRule]

getNth :: Name -> IOData

-> Int -> Maybe CovrRule

As the names suggest, getAll is simply a lookup and returns just a list of
covering rules, each covering one I/O pair, and getNth just picks the nth of all.
The following functions are used to breakup and fuse covering rules. So breakup
returns a list of covering rule, each covering one I/O pair of those covered by
the original one, and fuse is the inverse of it, fusing many covering rules into
one which covers all their I/O pairs.

breakup :: CovrRule -> IOData -> [CovrRule]

fuse :: [CovrRule] -> C CovrRule

We have to be inside the C monad for fusing, because we need to antiunify the
rules to be covered.

Hypotheses are the most fundamental data record storing a list of open cover-
ing rules, the closed rules as a list of declarations Decl, for each function one, and
all calling dependencies between all functions to prevent the system to generate
non-terminating programs. Let CallDep be the type of a calling dependency,
which encapsualtes the information which function calls which.

type Decl = (Name ,[Rule])

data Hypo = HH { open :: [CovrRule]

, clsd :: [Decl]

, callings :: CallDep }

Porting IgorII from Maude to Haskell 153

The basic idea behind calling dependencies is that if function f calls function g,
then f depends on g (f → g). The argument(s) of a call could either increase,
decrease or remain in their syntactic size, thus the dependency could be of either
type LT, EQ, or GT (<−→,

=−→,
>−→).

Calling dependencies are transitive, so if f → g and g → h then also f → h.
The kind of the transitive dependency has the maximal type of all compound
dependencies with the obvious ordering LT < EQ < GT.

If already a calling dependency f → g exists, the following possibilities for g
calling f are allowed:

f
>−→ g ⇒ g is not allowed to call f

f
=−→ g ⇒ g

<−→ f

f
<−→ g ⇒ g

<−→ f or g
=−→ f

f = g ⇒ f
<−→ f

If there is no such calling dependency, all possibilities are allowed. To check,
whether a call is admissible and to get all allowed possible calls two functions
exist.

admissible :: (Name ,Ordering ,Name) -> CallDep -> Bool

allowedCalls :: Name -> CallDep -> M.Map Name [Ordering]

The first one checks if the given (new) calling dependency is admissible, and the
second returns for each function in a CallDep which additional calls to it are
allowed. If a function is not mentioned in the Map returned by allowedCalls,
anything goes.

3.5 Comparing Rules and Hypotheses

To compare rules and hypotheses to decide which to process we establish the
class Rateable with the member function rate which returns for each member
an Int value inside C.

class Rateable r where

rate :: r -> C Int

Hypotheses should be rated with regard to their number of different partitions,
i.e. patterns on the left-hand side of all their rules that do not match any other
pattern. This is motivated by some kind of Occam’s razor, preferring programs
with few rules.

instance Rateable Hypo where

rate h = numberOfPartitions h

numberOfPartitions :: Hypo -> RatingData

numberOfPartitions h = liftM length $

foldM leastPatterns $ allRules h

where

154 M. Hofmann, E. Kitzelmann, and U. Schmid

leastPatterns [] p = return [p]

leastPatterns (p1:ps) p2 = do

p1gtp2 <- match ‘on‘ lhs p1 p2

p2gtp1 <- match ‘on‘ lhs p2 p1

if p1gtp2 then return (p2:ps)

else if p2gtp1 then return (p1:ps)

else liftM (p1:)(leastPatterns ps p2)

Covering rules are rated with regard to the longest chain of function calls they are
in, so preferring rules causing less nested function calls. To compute the length
of this longest path in the call dependencies, always a CallDep is required.

instance Rateable (CallDep ,CovrRule) where

rate (cd,cr) = return.length (longestPath (name cr) cd)

3.6 The Synthesis Monad

For searching a space of hypotheses we need to maintain a data structure rep-
resenting this search space. In each step, the best hypothesis w.r.t to a certain
heuristic is selected and from it an appropriate rule, again w.r.t an a priori
defined heuristic is chosen. Refining one rule results in multiple sets of rules,
because multiple refinement operators are used and each operator may result
itself in multiple rules.

So let r be a rule and ρ1 . . . ρn are refinement operators, then are ρi(r) the
rules resulting in applying ρi to r. If R is the set of all rules occurring in any
hypothesis h, then is H the set of all hypotheses, with H included in the powerset
of R, where each h is treated as a set of rules. Applying the refinement operators
to a rule r in R results in R′ = R \ {r} ∪ {ρ1(r), . . . , ρn(r)}, thus changing H to
H ′ = H \ {h|r ∈ h} ∪ {hi|hi = h \ {r} ∪ ρi(r)} for i = 1 . . .n.

This makes the implementation of our search approach lack elegance when
compared to breadth-first search combinators proposed by Spivey (18; 19), where
the space for breadth-first search can be defined as an infinite list. Katayama
for example efficiently uses this approach (20; 7), because he is able to define his
search space intensionally a priori.

Following the current implementation, this is not applicable for us. Hypotheses
represent partial or unfinished programs, so our search space changes over time,
because refinement operators may but need not finish a hypotheses. Rather it
is refined to multiple, also unfinished, successor hypotheses. Thus, refining one
rule may affect multiple hypotheses and change the ordering in the search space
after each step.

Therefore we need to pull the whole search space explicitly through all our
computations. Again, we use a stateful transformer on top of our C monad.

data Igor = Igor { iodata :: IOData

, searchSpace :: HSpace}

type I a = StateT Igor C a

Porting IgorII from Maude to Haskell 155

modifyHS :: (HSpace -> HSpace) -> IM()

modifyHS f = modify (\ igor@(Igor _ sp _) ->

igor{searchSpace = f sp})

modifyIO ::(IOData -> IOData) -> IM()

modifyIO f = modify (\ igor@(Igor io _ _) ->

igor{iodata = f io})

The data structure Igor bundles the data structures IOData, known from sec-
tion 3.4 to manage the various IO examples and HSpace, a priority queue on
hypotheses w.r.t. to their heuristical rating. HSpace also supports efficient ac-
cess to hypotheses by their rules to facilitate updating hypotheses after one
refinement step. Igor serves as state for the monad I. The functions modifyHS
and modifyIO allow us to modify HSpace and IOData inside I.

The main loop returns a list of equivalent programs inside I, w.r.t. the given
heuristic, explaining the IO examples of the target function. Each program con-
sists of a list of declarations Decl where each Decl defines one function by at
least one Rule. First it fetches the currently best hypotheses, extracts the call
dependencies and the unfinished rules from this hypothesis. If there are no open
rules in all candidate hypotheses, the loop is exited and the candidate hypothe-
ses are returned as result. Otherwise one rule is chosen for refinement, refined
using the call dependencies and thus modifying the search space. After all, the
loop is entered again.

type Prog = [Decl]

enterLoop :: I [Prog]

enterLoop = do

chs <- currentBestHypos

(deps ,crs) <- chooseOneHypo chs

if (null crs) then stopWith chs

else chooseOneRule crs >>= refine deps >> enterLoop

Finally, refine computes all refinements, introduced in Section 2, of the given
unfinished rule with refineRule and propagates the result, a set of all possible
refinements, to the whole search space and updates all affected hypotheses with
propagate.

refine :: CallDep -> CovrRule -> I ()

refine cd cr =

refineRule cd cr >>= (modifyHS .) . propagate $ cr

refineRule :: CallDep -> CovrRule -> IM [(CovrRules ,[Call])]

refineRule cd cr = do

parts <- partition cr

cllfs <- callFunction cd cr

subfs <- inventSubfunction cr

return $ parts ++ subfs ++ cllfs

156 M. Hofmann, E. Kitzelmann, and U. Schmid

4 Empirical Results

To test our new implementation (in the following named as Igor 2H) against the
old we have chosen some usual example problems on lists. As usually, they incor-
porate different recursions patterns, simple linear as in last or mutual recursive
as in odd/even. Most of the problems suggest for inventing auxiliary function as
e.g. lasts, repeatlst, sort, reverse, oddpos but only reverse explicitly needs to it
to be solvable.

Most of the problems have the usual semantics on lists and can be found in
a standard library of a functional Language. Table 1 shows a short explanation
of each of them nevertheless.

Table 1. Problem descriptions

add is addition on Peano integers,
append appends two lists,
drop drops the first n elements of a list,
evenpos are all elements in a list which index is even,
init are all elements but the last of a list,
last is the last element in a list,
last maps last over a list of lists,
length is the length of a list as Peano integer,
odd/even defines odd and even mutually recursive on Peano integers,
oddpos are all elements in a list which index is odd,
repeatfst overwrites all elements in a list with the first,
repeatlst overwrites all elements in a list with the last,
reverse reverses a list,
shiftl shifts all elements in a list one position to the left,
shiftr shifts all elements in a list one position to the right,
sort sorts a list of Peano integers using insertion into a sorted list,
swap changes the position of two consecutive elements in a list,
switch changes the position of the first and the last element,
take takes the first n elements from a list, and
weave merges two lists into one by alternating their elements.

The tests were run on a laptop with a 1.6Ghz Intel Pentium processor with
2GB RAM using Ubuntu 8.10. Igor2.2 with Maude 2.4 and version 0.5.9.4 of
the Haskell implementation have been used. All programs as well as the used
specification and a batch file for the Haskell implementation can be down-
loaded from our webpage3.

Keeping in mind that Maude is an interpreted language and Igor 2H is
compiled, it is not surprising that the new implementation is faster. A speedup
by the factor of 10 or more in most of the cases is more than expected, though.
Table 2 shows all runtimes and the approximte ratio of old to new.
3 http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

Porting IgorII from Maude to Haskell 157

Table 2. Runtimes on different problems in seconds

Igor 2 Igor 2H
Igor 2

Igor 2H

�

Igor 2 Igor 2H
Igor 2

Igor 2H

�

add 0.236 0.076 3 repeatfst 0.052 0.004 13
append 46.338 0.080 579 repeatlst 0.100 0.004 25
drop 0.084 0.004 21 reverse 0.617 0.032 19
evenpos 0.056 0.004 14 shiftl 0.084 0.008 11
init 0.024 0.004 6 shiftr 0.308 0.020 15
last 0.024 0.001 24 sort 0.148 0.012 12
lasts 6.744 0.020 337 swap 0.108 0.008 14
length 0.028 0.001 28 switch 2.536 0.036 70
odd/even 0.080 0.004 20 take 1.380 0.012 115
oddpos 18.617 0.048 388 weave 0.348 0.036 13
� rounded to nearest proper fraction

5 Conclusion

We introduced the new program design of our system Igor 2, which has been
ported from Maude to Haskell. We described how, for our purpose neces-
sary, features of the homoiconic language Maude can be simulated in Haskell

using a stateful monad transformer. Although we can not model Maude’s full
reflexive capabilities, we can simulate all functionality necessary in our use case.
With our new implementation we paved the way to use higher-order context
during our synthesis and extract information from types and their classes usable
as background knowledge. Keeping our new implementation as close as possible
to our old, it was possible to keep all features of our system as e.g. termination
by construction of both synthesised programs and Igor 2-algorithm, minimal-
ity of generalisation, using arbitrary user-defined data types and background
knowledge, and others.

For the future we plan to utilise universal properties of higher-order func-
tions such as fold, map and filter to introduce certain recursion schemes as
programming patterns when applicable. In this context we will make use of type
information which is now accessible. Furthermore, it should be promising to re-
consider the current algorithm to make use of lazy data structures to better take
advantage of the benefits of lazy evaluation. Memoization could also be helpful
to avoid propagating the change of a rule over the whole search space.

References

[1] Hofmann, M.: Automatic Construction of XSL Templates – An Inductive Pro-
gramming Approach. VDM Verlag, Saarbrücken (2007)

[2] Biermann, A.W., Kodratoff, Y., Guiho, G.: Automatic Program Construction
Techniques. The Free Press, NY (1984)

[3] Summers, P.D.: A methodology for LISP program construction from examples.
Journal ACM 24, 162–175 (1977)

158 M. Hofmann, E. Kitzelmann, and U. Schmid

[4] Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An expla-
nation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

[5] Kitzelmann, E.: Data-driven induction of recursive functions from I/O-examples.
In: Kitzelmann, E., Schmid, U. (eds.) Proceedings of the ECML/PKDD 2007
Workshop on Approaches and Applications of Inductive Programming (AAIP
2007), pp. 15–26 (2007)

[6] Olsson, R.J.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

[7] Katayama, S.: Systematic search for lambda expressions. In: van Eekelen,
M.C.J.D. (ed.) Revised Selected Papers from the Sixth Symposium on Trends
in Functional Programming, TFP 2005, vol. 6, pp. 111–126. Intellect (2007)

[8] Quinlan, J.R.: Learning first-order definitions of functions. Journal of Artificial
Intelligence Research 5, 139–161 (1996)

[9] Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of
the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, pp.
368–381 (1990)

[10] Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Spe-
cial issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

[11] Flener, P.: Inductive Logic Program Synthesis with Dialogs. In: Muggleton, S. (ed.)
Proceedings of the 6th International Workshop on Inductive Logic Programming,
Stockholm University, Royal Institute of Technology, pp. 28–51 (1996)

[12] Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Inverse narrowing for the induc-
tion of functional logic programs. In: Freire-Nistal, J.L., Falaschi, M., Ferro, M.V.
(eds.) Joint Conference on Declarative Programming, pp. 379–392 (1998)

[13] Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education, New York
(1997)

[14] Kitzelmann, E.: Analytical inductive functional programming. In: Hanus, M. (ed.)
LOPSTR 2008. LNCS, vol. 5438, pp. 87–102. Springer, Heidelberg (2009)

[15] Sheard, T., Jones, S.P.: Template metaprogramming for Haskell. In: Chakravarty,
M.M.T. (ed.) ACM SIGPLAN Haskell Workshop 2002, pp. 1–16. ACM Press, New
York (2002)

[16] Wadler, P.: The essence of functional programming. In: Conference Record of
the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Albequerque, New Mexico, pp. 1–14 (1992)

[17] King, D., Wadler, P.: Combining monads. Mathematical Structures in Computer
Science, pp. 61–78 (1992)

[18] Spivey, J.M.: Combinators for breadth-first search. J. Funct. Program. 10(4), 397–
408 (2000)

[19] Spivey, M., Seres, S.: The algebra of searching. In: Proceedings of a symposium
in celebration of the work of. MacMillan, Basingstoke (2000)

[20] Katayama, S.: Efficient exhaustive generation of functional programs using monte-
carlo search with iterative deepening. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI
2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Heidelberg (2008)

Automated Method Induction:
Functional Goes Object Oriented

Thomas Hieber and Martin Hofmann

University Bamberg - Cognitive Systems Group,
Feldkirchenstr. 21, 96050 Bamberg, Germany

thomas-wolfgang.hieber@stud.uni-bamberg.de,
martin.hofmann@uni-bamberg.de

http://www.uni-bamberg.de/kogsys/

Abstract. The development of software engineering has had a great
deal of benefits for the development of software. Along with it came a
whole new paradigm of the way software is designed and implemented -
object orientation. Today it is a standard to have UML diagrams trans-
lated into program code wherever possible. However, as few tools really
go beyond this we demonstrate a simple functional representation for
objects, methods and object-properties. In addition we show how our in-
ductive programming system IgorII cannot only understand those basic
notions like referencing methods within objects or using a simple proto-
col called message-passing, but how it can even learn them by a given
specification - which is the major feature of this paper.

1 Introduction

IgorII is a system for synthesizing recursive functional programs, which learns
potentially recursive functions solely from input/output (I/O) examples. Since
IgorII is naturally based in functional programming, the main focus of this
paper lies on finding a way to use IgorII for program inference in an object
oriented background, which requires to express the behaviour of objects and
method calls by I/O examples. In order to do so, it is necessary to find a way to
express object oriented programs in a functional way and as mainstream software
for daily use is commonly not created with functional programming languages it
is about time to raise the question whether it is possible to adapt object oriented
language features to a functional, Inductive Programming setting.

In addition, it is necessary to enable an object oriented programmer to pro-
vide input to the synthesis system as unobtrusive as possible. For this purpose,
an interface for Eclipse will allow a programmer to use annotations in order to
provide input for our induction process, thus seamlessly integrating with soft-
ware engineering tools like Rational Software Architect (RSA). More practical
concerns regarding the plug-in itself can be found in [1].

In this paper we will be introducing the concept of Constructor Term Rewrit-
ing Systems (CTRS) with respect to IgorII and how it can be used in order

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 159–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.uni-bamberg.de/kogsys/

160 T. Hieber and M. Hofmann

to construct a simple algebra to represent object orientation in a functional en-
vironment. After this we are going to show some examples to demonstrate how
this can be done practically with the help of IgorII. The last chapter takes one
step further explaining how this approach has been integrated in a prototype
plug-in for the Eclipse IDE.

2 Status Quo

In the past 30 years, many different inductive programming (IP) systems have
been developed, many of them sharing a functional approach. The extraction of
programs from input/output examples started in the the seventies and has been
greatly influenced by Summers’ [2] paper on the induction of LISP programs.
After the great success of Inductive Logical Programming (ILP) on classification
learning in the nineties, research on IP shifted more to this area. Prominent ILP
systems for IP are for example Foil [3], Golem [4] or Progol [5] - systems
which make use of Prolog and predicate logic.

Later, the functional approach was taken up again by the analytical ap-
proaches IgorI [6], and IgorII [7] [8] and by the evolutionary/generate-and-test
based approaches Adate [9] and MagicHaskeller [10].

All in all you can subsume the concern of Inductive Programming as the
search for algorithms which use as little additional information as possible to
generate correct computer programs from a given minimal specification consist-
ing of input/output examples. Similar to classifier learning, IP systems can be
characterised by a preference and a restriction bias [11].

At the same time functional languages have had to face the development
in programming paradigms which led to many approaches to support object
orientation. Established functional languages have their own object oriented ex-
tensions like OCaml [12] or OOHaskell ([13]). Additionally there are various
approaches to include an object system in a functional language without chang-
ing the type system or the compiler (see e.g. [13] for a Haskell related overview).

For our purpose we do not need such sophisticated techniques (yet), therefore
we content ourselves with taking on a quite näıve and very simplified perspective,
though sufficient for our case, and treat objects merely as tuples.

On the other hand there are some very powerful tools for object oriented
programmers which support automated code-generation to a certain extent and
the community for Automated Software Engineering is very productive to take
this even further. In this context it is inevitable to have a look at program
synthesis since we ideally do not want to stop at automatically generating class
files from UML diagrams like IBM’s RSA, or generate a GUI by ‘WYSIWYG‘
editors such as NetBeans or Visual Studio.

3 Constructor Term Rewriting

For our purpose it shall be sufficient to define a functional program as a set of
equations consisting of pairs of terms over a many-sorted signature Σ . We are

Automated Method Induction: Functional Goes Object Oriented 161

going to adapt the common nomenclature as used in [14] when describing the
concepts below using terms and term rewriting. A signature is defined as a set
of function symbols Σ and a set of variables X which are used to form terms.
In other words, terms over Σ and X are denoted TΣ(X) whereas variable free
terms (ground-terms) are just labelled TΣ . Since Σ is many-sorted, all our terms
are typed.

One important differentiation to be alert of is that function symbols can ei-
ther be datatype constructors or (user-)defined functions. In this fashion Σ =
C ∪ F , C ∩ F = ∅, where C contains the constructors and F the defined func-
tion symbols. Our inductive programming system IgorII represents result pro-
grams as a set of recursive equations (rules) over a signature Σ. These rules
consist of a left-hand side (lhs) and a right-hand side (rhs). While a rhs consists
of regular Σ terms TΣ(X), the lhs has the form F (p1, ..., pn) and is called the
function head with F ∈ F being the name of the function implemented by the
current rewrite rule (plus some others). The pi ∈ TC(X) consist of constructors
and variables only.

V ar(t) are all variables of a Term t. The constructor terms pi on the lhs of
an equation may contain variables and are called pattern. All variables on the
rhs of an equation are required to occur in the pattern on the lhs. We say that
such variables are bound (or unbound otherwise). A substitution is a function
σ : X → TΣ(X). For our purpose, we write it in postfix and extend it to terms
replacing all contained variables simultaneously. So tσ is the result of applying
the substitution σ to term t, i.e., applying σ to each v ∈ V ar(t). If s = tσ, then
t is called a generalization of s and we say that t subsumes s and s matches
t by σ, respectively. Given two terms t1 and t2 and a substitution σ such that
t1σ = t2σ, we say that t1 and t2 unify. Given a finite set of terms S = s, s′, s′′, ...
then there exists a term t which subsumes all terms in S and which itself is
subsumed by any other term also subsuming all terms in S. The term t is called
the least general generalisation (lgg) [15] of the terms in S. To generalise a lggs
to a set of equations, we tacitly treat the equal sign as a constructor symbol
with the lhs and the rhs as arguments.

The operational semantics of a set of equations in the above mentioned form
are best described in terms of a term rewriting system (TRS). An equation can be
read as a simplification (or rewrite) rule replacing a term matching the lhs by the
rhs. TRS which equations have the above described form are called constructor
term rewriting systems (CTRS). From now on, we use the terms equation and
rule as well as equation set and CTRS interchangeably throughout the paper,
depending on the context. Let i be the vector i1, ..., in. Evaluating an n-ary
function F for an input i consists of repeatedly rewriting the term F (i) w.r.t.
the rewrite relation R implied by the CTRS until the term is in normal form,
i.e., cannot be rewritten further. A sequence of (in)finitely many rewrite steps
t0 →R t1 →R ... is called derivation. If a derivation starts with term t and results
in a normal form s this is written t

!−→R s. We say that t normalises to s and
call s the normal form of t. In order to define a function on a domain (a set of
ground terms) by a CTRS, no two derivations starting with the same ground

162 T. Hieber and M. Hofmann

term may lead to different normal forms, i.e., normal forms must be unique.
A sufficient condition for this is that no two lhss of a CTRS unify; this is a
sufficient condition for a CTRS to be confluent. A CTRS is terminating if each
possible derivation terminates. A sufficient condition for termination is that the
arguments/inputs of recursive calls strictly decrease within each derivation and
w.r.t. a well founded order.

Each rewrite rule may be augmented with a condition that must be met to
apply the conditional rule. A term rewriting system or constructor system is
called conditional constructor term rewriting system (CCTRS) respectively if it
contains at least one conditional rule. A condition is an ordered conjunction of
equality constraints vi = ui with vi, ui ∈ T(X). Each ui must be grounded if the
lhs of the rule is instantiated and if all equalities vj = uj with j < i evaluate
to true, then ui evaluates to some ground normal form. For the vi must hold
(i) either the same as for the ui or (ii) vi may contain unbound variables but
then it must be a constructor term. In the first case also vi evaluates to some
ground normal form and the equality evaluates to true if both normal forms are
equal. In the second case the equality evaluates to true if vi and the ground
normal form of ui unify. Then the free variables in vi are bound and may be
used in the following conjuncts and the rhs of the rule. We write conditional
rules in the form: l → r ⇐ v1 = u1, ..., vn = un. The ! indicates negation, thus
!(vi = ui) holds if both normal forms do not unify. Rules without a condition
are called unconditional. If we apply a defined function to ground constructor
terms F(i1, ..., in), we call the ii inputs of F . If such an application normalises
to a ground constructor term o we call o output. A CCTRS is terminating if all
rewriting processes end up in a normal form. In order to implement functions
the outputs are required to be unique for each particular input vector. This is
the case if the TRS is confluent.

4 Igor

IgorII is a prototype for constructing recursive functional programs from few
non-recursive, possibly non-ground example equations describing a subset of the
input/output (I/O) behaviour of a function to be implemented. For all of the
example specifications in IgorII the signatures of the following functions shall
be established:

[] :→ List (1)
cons : Element × List→ List (2)

s : Nat → Nat (3)
0 :→ Nat (4)

t :→ Boolean (5)
f :→ Boolean (6)

Automated Method Induction: Functional Goes Object Oriented 163

Here is a simple example of how the list-function even would be presented to
the system as I/O examples. Please note that constructor symbols and function
names are in lower case, variables in upper case.

even(0) = t
even(s(0)) = f
even(s(s(0))) = t
even(s(s(s(0)))) = f
even(s(s(s(s(0))))) = t

The induction of a correct program in IgorII is organised as a best-first search.
During a search, a hypothesis is a set of equations entailing the example equa-
tions but potentially with unbound variables in the right-hand side. Starting
from an initial hypothesis, successively the best hypothesis, w.r.t. some prefer-
ence bias, is selected and an unfinished rule is chosen and replaced by its successor
rules. This is continued until the current best hypothesis does not contain any
unbound variables.

Initial Rule. The initial hypothesis contains one rule per target function. This
rule is a least general generalisation (lgg) of the example equations. The lgg for
the previous even-examples is:

even (N) = B

Without getting into theoretical details, it should be sufficient to know for now
that constructor symbols or sub-terms occurring at the same position in all
equations are kept, everything else is substituted by variables. We say, that the
rule covers all previous examples, because the pattern on the lhs subsumes each
lhs of the examples. Of course, this rule is not a functional program, because it
contains an unbound variable on the rhs. To remedy this, the initial hypothesis
is stepwise re-defined. For this purpose, IgorII employs three transformation
operators:

1. The I/O examples belonging to the open initial rule are partitioned into
subsets and for each subset, a new initial rule (with a more specific pattern,
or left-hand side, than the original rule) is computed.

2. If the open rhs has a constructor as root, i.e., does not consist of a sin-
gle unbound variable, then all sub-terms containing unbound variables are
treated as sub-problems. A new auxiliary function is introduced for each
such sub-term.

3. The open right-hand side is replaced by a (recursive) call to a defined func-
tion. The arguments of the call may be computed by new auxiliary functions.
Hence, computing the arguments is considered as a new sub-problem.

Splitting an open rule. The first operator partitions the I/O examples belonging
to a rule into subsets such that the patterns of the resulting initial rules are
disjoint and more specific than the pattern of the original rule. Finding such a
partition is done as follows:

164 T. Hieber and M. Hofmann

A position in the pattern p with a variable resulting from generalising the
corresponding sub-terms in the subsumed example inputs is identified. This im-
plies that at least two of the subsumed inputs have different constructor symbols
at this position. Now all subsumed inputs are partitioned such that all of them
with the same constructor at this position belong to the same subset. Together
with the corresponding example outputs this yields a partition of the example
equations whose inputs are subsumed by p. Since more than one position may
be selected, different partitions leading to different sets of new initial rules may
result.

Introducing (Recursive) Function Calls and Auxiliary Functions. In cases (2)
and (3) auxiliary functions are invented. This includes the generation of I/O-
examples from which they are induced. For case (2) this is done as follows:
Function calls are introduced by matching the currently considered outputs,
i.e., those outputs whose inputs match the pattern of the currently considered
rule, with the outputs of any defined function. If all current outputs match, the
rhs of the current unfinished rule can be set to a call of the matched defined
function. The argument of the call must map the currently considered inputs to
the inputs of the matched function. For case (3), the example inputs of the new
defined function also equal the currently considered inputs. The outputs are the
corresponding sub-terms of the currently considered outputs.

Terms matching the lhs of a rule, where a variable can subsume any sub-term
of the accordant type, can be replaced by the rhs of this rule. This procedure is
repeated until the term does not match any more lhs.

Example. Using the data type specification and the I/O examples given below,
we will sketch the IgorII algorithm by developing a solution for the list-function
even. Starting from the initial rule

even(N) = B

The IgorII algorithm successively develops a solution that is correct and com-
plete w.r.t. the I/O examples using the previously described operators.

In the first step, the example set is partitioned w.r.t. root constructor symbol
in the first argument.

even(0) = t
even(s(N)) = B

The second rule now covers all examples but the first one. In a second step,
again a partition is introduced. Now the constructor symbol of the first subterm
below the root position discriminates the I/O examples.

even(0) = t
even(s(0)) = f
even(s(s(N))) = B

Automated Method Induction: Functional Goes Object Oriented 165

The first and the second rule are the base cases of the target function, both cov-
ering only one I/O example. The third rule, becoming the recursive call, covers
the rest. Following the second partition of the rule set, an auxiliary function is
introduced since the rhs contains a constructor symbol:

even(0) = t
even(s(0)) = f
even(s(s(N))) = sub1(s(s(N)))
sub1(s(s(N)) = even(N)

This result computed by IgorII is a correct and complete w.r.t. the I/O exam-
ples, recursive solution to the problem.

Up to this point it should be clear how in the context of a CTRS, IgorII

develops a correct functional solution from a set of non–recursive I/O examples.
What is left to do now is how we can manage to encapsulate the functional
flavour in an object oriented protocol since we are trying to bring those two
paradigms together.

5 Igor and Object Orientation

In order to model object oriented processes in a functional way we are going to
use two Constructor Term Rewriting Systems (CTRSs). This is done for quite
a simple purpose: encapsulation. One CTRS will be employed to model object
orientation as a simple protocol, the other one will be used to encapsulate the
problem domain as described in section 3. This is as much as we need to under-
stand for now as we are going to come back to that later on.

The two CTRSs are going to be defined like this:

COO : Σ = F ∪ C ∪ {D},X , E (7)

CP : Σ′ = F ′ ∪ C′,X ′, E ′ (8)

The first equation describes the object oriented protocol which will be introduced
in this section. One main difference to the second one has to be remarked, since
D represents a constant which will be used as place holder for terms over COO

The second equation defines the CTRS describing terms in the problem do-
main. They shall be related to each other in a way that CP is a proper Sub
CTRS of COO.

The concepts Super Constructor Term Rewriting System (COO) and Sub Con-
structor Term Rewriting System (CP) shall be defined like this:

Definition 1. CP is a Sub CTRS of COO (CP ⊂ COO), iff

Σ′ ⊂ Σ s.t. F ′ ⊂ F and C′ ⊂ C
X ′ ⊂ X
E ′ ⊂ E

166 T. Hieber and M. Hofmann

Definition 2. COO is a Super CTRS of CP , iff

CP ⊂ COO

5.1 The Super CTRS

Since the aim of this paper is to define an algebraic definition of a simple object
oriented protocol, the major part of this section is concerned with the Super
CTRS and how it models object orientation. Before we proceed it is important
to point out that it is not in the focus of this work to create a full-scale model of
object orientation. Rather have we singled out a couple of interesting mechanics
and put them together to a tiny fragment of object orientation, the one which is
concerned with identifying methods and properties in an object and interacting
with them.

For this we establish the already known concepts of methods and properties
(a.k.a. member-variables) along with a protocol we call message-passing, which
is used by objects in order to interchange data. The relevant parts contained in
the protocol will now be described by relating them to Σ of COO. For this we
need the constant D, constructors C and the functions F themselves.

data :→ Data (9)

Data will be treated as constant throughout the object oriented protocol, since
it is used to have it as wild card for terms of the problem domain it should be
self evident that it strictly consists of terms in CP , in other words TΣ′(X ′). This
is also the actual trick which makes the two domains independent of each other,
which should become clear in the course of this section.

The definition of an object in our algebra would look like this:

object : Identifier × PropList × MethodList → Object (10)

The constructor’s arguments are the object’s Identifier, a List of properties (ob-
ject resident member variables) and a List of (object resident) methods. Later
on it is going to be of importance whether an object contains a method or not
- this is specified with the help of this constructor.

As the object constructor needs a list of properties to be provided it is time
to find out how they can be constructed.

property : Identifier × Data → Property (11)

Just like before, a property must be labelled with an Identifier, the value on
the other hand seems rather obscure. Data is used to abstract the information
contained within the property. This is a crucial section in this protocol since it
is the ‘wrapper‘ for our Sub CTRS. So, whenever Data is used it should be clear
that it is the ‘packaging‘ for terms of our problem domain and the only way
to combine it with the object oriented protocol. Because it is intended to draw
a clear distinction between the two CTRSs it is important to understand that

Automated Method Induction: Functional Goes Object Oriented 167

using Data on the level of object oriented communication is more than enough
and all to be aware of at this stage.

There are two more constructors left to define, the first is the one for a Method :

method : Identifier × Message →Method (12)

As it is already evident that a method will have to be identified later on, an
Identifier needs to be declared for it as done for Object and Property. The second
argument is called Message and this is the important part in our protocol when
it comes to object interaction. As soon as an object needs to call a method or
get the value of a property on any other object (or even itself), it will send a
Message which contains some kind of data.

The nature of the data becomes clear looking at the constructor of the
Message:

message : Data →Message (13)

As seen in the Property constructor the actual nature of the data transported
between objects is abstracted. And this should be quite self evident now since it
has been the intention to keep the object oriented protocol strictly apart from
the actual data processed with it’s help. It is not necessary to know what is inside
Data, since the only concern for now is how to transport it from one object to
another.

This brings us to the concept of message-passing. The idea behind it is quite
literal the exchange of messages, whenever we are trying to access an object’s
property or call one of it’s methods. Before it is possible to call a function or
a property’s value they have to be looked up in the target objects’ property
list/method list.

This can be done by the two following functions:

Match method : Identifier × MethodList →Method (14)

Match prop : Identifier × PropList → Property (15)

For convenience, things are sped up now since it is not hard understanding how to
access to the two lists containing the target object’s methods/properties. And for
now it is not a problem as it is our main focus to clarify how to access a method
or a property given a random object. Those functions should demonstrate that a
positive match of identifiers within an object’s method/property list will return
the method/property we are trying to address and raise an exception otherwise.

All that is left to do is to request either the value of it, or call it with a list of
method arguments.

It has just been mentioned that the part where the method/property list from
an object are extracted - so this is the formal approach in our protocol:

Call : Object × Identifier × Message →Message (16)

168 T. Hieber and M. Hofmann

Up to now the development of signatures in COO has been delivered and it is
intriguing to find out how to proceed further, since the protocol is far away from
being complete. The major part of the work left to do will be carried out by
IgorII, who will take those signatures and induce the according functions with
the help of some simple I/O examples.

5.2 The Sub CTRS

As already pointed out, the Sub CTRS is entirely separated from the object-
oriented message protocol. This means that it can encapsulate virtually anything
without interfering with the Super CTRS. And this is where the beauty of our
approach lies in since we have now successfully separated the way to represent a
problem domain structurally from the way it is represented semantically. Since
IgorII can only understand functional problem specifications it seems quite
rational to have them represented using only terms over a functional algebra –
in this case it is CP .

6 Examples

In section 5 the introduction of two CTRSs has been used in order to define
a simple object-oriented protocol encapsulating a functional problem domain.
However, only signatures have been defined by now. And in order to receive the
mechanics of the object-oriented methods like Match method, Match prop and
Call the inductive programming system IgorII is going to be used to infer those
methods just from a few I/O examples. When constructing I/O examples for the
system, we use the signatures defined in section 5, which we will include again
below:

Match method : Identifier × MethodList →Method (17)

method : Identifier × Message →Method (18)

The first method to infer is Match method, however, in order to express an
unsuccessful match, an exception shall be defined beforehand in the following
manner:

exc : →Method (19)

Mind that the constant exception has not been defined earlier, it is just a place-
holder for any kind of imaginable procedure to capture a ‘no-match‘. Apart from
that, the matching process is passed a variable as identifier as well as a list of
methods which of course would have been taken from an existing object. In case
the requested identifier is matched by a resident method within the method list,
the according method is returned, otherwise an exception is thrown.

Automated Method Induction: Functional Goes Object Oriented 169

The examples for the method itself read as follows:

match_method(Id1 []) = exc
match_method(Id2 []) = exc

match_method(Id1 cons(method(Id1 msg) [])) = method(Id1, msg)
match_method(Id1 cons(method(Id2 msg) [])) = exc
match_method(Id2 cons(method(Id1 msg) [])) = exc
match_method(Id2 cons(method(Id2 msg) [])) = method(Id2, msg)

[...]

IgorII takes those examples and constructs the following set of equations:

1) match_method(Id1 []) = exc

2) sub1(Id1 cons(method(Id2 msg) Restlist)) =
Id1 <== !(Id1 = Id2)

3) sub2(Id1 cons(method(Id2 msg) Restlist)) =
Restlist <== !(Id1 = Id2)

4) match_method(Id1 cons(method(Id2 msg) Restlist)) =
match_method(sub1(Id1 cons(method(Id2 msg)
sub2(Id1 cons(method(Id2 msg) Restlist)))))
<== !(Id1 = Id2)

5) match_method(Id1 cons(method(Id2 msg) Restlist)) =
method(Id1 msg) <== (Id1 = Id2)

The same result is returned for Match method, which will be left out here since
it is almost identical to Match method. Moving one step further we are going to
find out whether the Call method can be induced as easily - the answer is yes!

Remember the signature of Call :

Call : Object × Identifier × Message →Message (20)

Now it has been demonstrated that IgorII can not only understand, but also
induce the simple object—oriented protocol which is reason enough to try and
insert some terms from the problem domain into our specification. For this the
example from section 4 is used, so the functional I/O examples for even will be
encapsulated within an object oriented specification. As the signature requests
an actual Object to be part of the call, it is going to be inserted as the variable
O of the type Object. This is enough for our purpose here, since it is never used
and remains constant within all our examples.

170 T. Hieber and M. Hofmann

Call(O even message(0)) = message(t)
Call(O even message(s(0))) = message(f)
Call(O even message(s(s(0)))) = message(t)
Call(O even message(s(s(s(0))))) = message(f)
Call(O even message(s(s(s(s(0)))))) = message(t)

The result is as straightforward as before, but notice how the message-passing
is used consistently:

1) call(O even message(0)) = message(t)

2) call(O even message(s(0))) = message(f)

3) call(O even message(s(s(X1)))) =
call(sub19 message(s(s(X1))))

4) sub19(message(s(s(X1)))) = message(X1)

Here it is clearly evident that the object-oriented terms do not obstruct IgorII

in any way, an explanation as to why will be given shortly. Another more com-
plex example has the system induce an operator which is very famous in object
orientation - the iteration. For the sake of readability those examples are not
wrapped in messages and within calls. That this is no big problem will be clear
at the end of this section, so bear with us for now and just look at the example:

iterate([]) = []
iterate(cons(A [])) = cons(call(A))
iterate(cons(A cons(B []))) = cons(call(A) cons(call(B) []))
iterate(cons(A cons(B cons(C [])))) =
cons(call(A) cons(call(B) cons(call(C) [])))

The very abstract idea is that a rather abstract Call (which could be any defined
method) is applied to every object within a list. As expected, IgorII comes up
with a recursive solution to this problem:

1) iterate([]) = []

2) iterate(cons(Object Restlist)) =
cons(sub1(cons(Object Restlist)) sub2(cons(Object Restlist)))

3) sub1(cons(Object Restlist)) = call(Object)

4) sub2(cons(Object Restlist)) =
iterate(sub5(cons(Object Restlist)))

5) sub5(cons(Object Restlist)) = Restlist

Automated Method Induction: Functional Goes Object Oriented 171

As mentioned before have we reduced the complexity of our Call signature in
order to increase readability of the examples. One question when dealing with
all the object-orientation might have been urging all the time: Isn’t this a lot of
overhead?

Therefore we are going to combine the signatures of Object, Call, Message
and Method, generating a Call of the signature:

Call : Object × Identifier × Message →Message (21)

Into the call (lines 1–8), an Object (line 3) is inserted, containing an identifier
OId, an (empty) property list and two methods even and odd (all in line 3).
When we would now call the function even (line 5) with a Message containing
a singleton list as argument (line 7) it would look like this:

1: (
2: # <-- Object: Identifier x PropList x MethodList
3: (OId [] cons((even bool ([] [])) (odd bool ([] []))))
4: # <-- Identifier
5: even
6: # <-- Message
7: message(0
8:)
9: # <-- Message
10: = message(t)

This looks very bloated and one might wonder if all this is prone to slow down
IgorII during the synthesizing? For this let us have a look how it anti-unifies
the terms gradually:

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(0))

)
= message(f)

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(succ(0)))

)
= message(t)

after anti-unification:

(
(OId [] cons((even bool ([] [])) (odd bool ([] []))))
even
message(succ(t))

)

172 T. Hieber and M. Hofmann

Looking at those examples you find the answer to the question if the protocol’s
overhead is impeding the system and at the same time you get the key aspect of
all the examples and the increasing complexity: it doesn’t matter! From this
it will also be plain to understand why the iteration example has been kept quite
simple with no message-passing involved at all. It would just be additionaly code
around the problem specification itself. And that is the one which matters to
IgorII, since it does not even use the terms from COO in any way.

7 AutoJAVA

All the theory so far has clarified the fact that a functional inductive program-
ming system as IgorII can be confronted with problems outside the functional
context. You may have noticed that we are still delivering the problems in a
functional way, since this is the only format the system can understand. But
it should be obvious that after successfully modeling a very small protocol of
object oriented flavour we could enlarge this tiny model into a larger one, much
more like a real object oriented protocol.

In order to use our findings in a practical way, a prototype plug-in for eclipse
was designed which was aimed to enable a programmer to characterise the be-
haviour of a function in an abstract way (I/O examples) and having IgorII

create a program from this specification, which would be wrapped into our COO
1.

8 Conclusion

Not only have we successfully modelled objects, methods, properties and mes-
sages - we also had igor synthesize all of them. So machine learning approaches
have been used in order to have a system learn how to describe generic pro-
cesses within programming languages. We provided a showcase of how functional
programming can be combined with object orientation. The prototype plug-in
AutoJAVA should prove this to be true and opens up many paths for future ex-
pansion. As the problem specification can be embedded within the annotations
of a program’s method an entry point for large-scale applications such as IBMs
RSA has been created. A developer can annotate his UML diagrams and have
those annotations transferred into the auto-generated code, so you could imag-
ine Igor using the specification during the code generation filling in a method’s
implementation.

All in all there has to be said that even though the results presented in this
paper do not seem very novel or breathtaking. But they nevertheless show that
by enabling functional programs to deal with object orientation we can play to
the strengths of both paradigms. It feels like that we have created a foundation
for some more thorough steps which might gradually improve the methodology
and finally result in a larger scale prototype which actually produces Java code
instead of functional programs.
1 See more on http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

Automated Method Induction: Functional Goes Object Oriented 173

References

1. Hieber, T.: Transportation of the JEdit plug-in ProXSLbE to eclipse. Technical
report, Otto Friedrich University of Bamberg (2008)

2. Summers, P.D.: A methodology for LISP program construction from examples.
Journal of the ACM 24(1), 161–175 (1977)

3. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

4. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of
the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, pp.
368–381 (1990)

5. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

6. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

7. Kitzelmann, E.: Data-driven induction of recursive functions from I/O-examples.
In: Kitzelmann, E., Schmid, U. (eds.) Proceedings of the ECML/PKDD 2007 Work-
shop on Approaches and Applications of Inductive Programming (AAIP 2007),
pp. 15–26 (2007)

8. Hofmann, M., Kitzelmann, E.: I/o guided detection of list catamorphisms – towards
problem specific use of program templates in ip. In: Proceedings of the ACM SIG-
PLAN 2010 Workshop on Partial Evaluation and Program Manipulation (PEPM
2010) (to appear, 2010)

9. Olsson, R.J.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

10. Katayama, S.: Systematic search for lambda expressions. In: van Eekelen, M.C.J.D.
(ed.) Revised Selected Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, vol. 6, pp. 111–126. Intellect (2007)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education, New York
(1997)

12. Rémy, D., Vouillon, J.: Objective ML: An effective object-oriented extension to
ML (1998); A preliminary version appeared in the proceedings of the 24th ACM
Conference on Principles of Programming Languages (1997)

13. Kiselyov, O., Laemmel, R.: Haskell’s overlooked object system. CoRR (2005); in-
formal publication

14. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

15. Plotkin, G.: A note on inductive generalisation. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence 5, pp. 153–163. Edinburgh University Press, Edinburgh (1969)

Recent Improvements of MagicHaskeller

Susumu Katayama

University of Miyazaki
1-1 W. Gakuenkibanadai, Miyazaki, Miyazaki 889-2155, Japan

skata@cs.miyazaki-u.ac.jp

Abstract. MagicHaskeller is our inductive functional programming li-
brary based on systematic search. In this paper we introduce two recent
improvements to MagicHaskeller, i.e. 1) clarification and extension to
arbitrary-rank polymorphism of its algorithm, and 2) efficiency improve-
ment in its filtration algorithm that removes redundancy in the search
results.

1 Introduction

Inductive functional programming deals with the problem of automatically gen-
eralizing ambiguous program specifications such as a set of input/output (I/O)
pairs to concrete functional programs. There are three mainstream inductive
functional programming systems: Igor 1/2 system developed at University of
Bamberg which implements an analytical approach that quickly generates pro-
grams by analyzing given I/O pairs [Kitzelmann(2007)], ADATE system by
Roland Olsson which applies an evolutionary approach resembling to multistart
local search to program synthesis under monomorphic settings [Olsson(1995)],
and our MagicHaskeller system [Katayama(2005b)] which first enumerates type-
correct expressions systematically and picks up an expression that satisfies the
specification.

Research on inductive functional programming has started about forty years
ago, but we have to say that no fully-automated usable system has been devel-
oped yet. We think one of the reasons is that unbiased search without guidance
was not realistic because computers were not powerful enough when the research
started, and as a result the steady approach of starting with simple systematic
search and adding heuristics one by one has not been considered enough.

Indeed, when searching systematically and exhaustively, the number of pro-
grams explodes exponentially in the limit as the program size increases, but other
search-based approaches should also suffer from the same explosion, unless the
search is adequately biased for each problem. Then, how can you choose an ad-
equate heuristic evaluation function for computer programs? The percentage of
inputs for which correct outputs are returned might be a good candidate, but it
has not been evaluated in comparison with non-heuristic search. Our concern is
that use of heuristics has been taken for granted, and until recently systematic
search has not been paid attention to.

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 174–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Recent Improvements of MagicHaskeller 175

Based on the above speculation, we decided the following policy for develop-
ing MagicHaskeller as an algorithm for exhaustive search for programs under
Hindley-Milner type system:

1. we should first implement systematic exhaustive search as efficiently as
possible;

2. then we may add heuristics one by one if necessary, carefully confirming their
effectiveness, extending the class of programs that can be synthesized with
small amount of computational complexity.

If a research field is immature and researchers are working on toy problems,
use of heuristics without discretion can easily lead to some kind of search bias
around the known answers and make it difficult to evaluate the work objectively.
MagicHaskeller can avoid this common pitfall by avoiding heuristics and sticking
to systematic search.

MagicHaskeller is still under development, and there is lots of room for im-
provements. One major issue we consider is that although we insist it searches
systematically and exhaustively, we have not done enough theoretical discussion
on such a property, and it is questionable if our papers have successfully per-
suaded their readers to believe they are really exhaustive. As a first step to solve
this problem, we gave a proof-theoretic re-interpretation to the algorithm, and
as its side effect, extended the type system to support arbitrary-rank polymor-
phism. Also, we introduce research on efficiency improvement in its filtration
algorithm that removes redundancy in the search results.

The organization of the rest of this paper is as follows: first in Section 2, we
further introduce MagicHaskeller. Each of the following two sections describe
the two new improvements, and Section 5 concludes the whole paper.

2 MagicHaskeller: Inductive Functional Programming
System by Systematic Search

2.1 Policy

MagicHaskeller[Katayama(2005b)] is an implementation of systematic exhaus-
tive generation of programs. Another feature of MagicHaskeller is that it is de-
signed with usability in mind, and usually all you have to do for synthesizing
expressions is just to write a boolean function which specifies the program to
be generated, that is a higher-order function that returns True if the correct
program is given as an argument. Also, the user can use the general-purposed
primitive set the library provides, and usually there is no need to tailor the
library for each synthesis. The reason we think usability is important is just
because we think using an automatic programming system must be easier than
writing the target program directly.

2.2 Library and Use Cases

[Katayama(2006)] introduced the earliest library interface to MagicHaskeller.
Also, the paper showed some interesting use cases which were made possible

176 S. Katayama

by the introduction of the library interface, such as finding recursive defini-
tions from closed-form solutions, use of user-defined types, interaction with
QuickCheck[Claessen and Hughes(2000)]. Because they are quite useful for
quickly giving a good picture of the tool, this section is devoted also for in-
troducing some of them, adapted to the current library definition.

The most typical and easy way to use the library is under the environ-
ment of Glasgow Haskell Compiler interactive (GHCi). Tables 2–3 show exam-
ple uses of the library. Most API functions reside in module MagicHaskeller,
and useful predefined functions are defined in module MagicHaskeller.LibTH
(Table 1). Unless you are doing something special, you should first run
MagicHaskeller.LibTH.init075, which sets the generic primitive set that
includes all the constructors and paramorphisms of lists, natural numbers,
booleans, and Maybe monad, and then execute printAny (or printOne if you
want to measure the execution time) with an argument which specifies the pro-
gram you want, that is a predicate (i.e. a boolean function) that takes a program
and returns True if the program satisfies your need. For example, Table 2 shows
an example of generating a generalized program that takes "abc" as input and
returns "abcba" as output, and shows that it returns "abcdcba" for "abcd".

The fact that the specification is not limited to I/O pairs is an advantage of
generate-and-test approaches like MagicHaskeller, and it can, for example, find
recursive definitions from a closed-form solution. Table 3 shows an example of
finding a recursive definition of function f that satisfies

f(n) =
φn − (1− φ)n

√
5

,

φ =
1 +

√
5

2
.

Since we have not implement refactoring, it is still difficult to see what are
generated as f at a glance, but it is actually the fibonacci function!

If you do not feel bothered, you can specialize the primitive component library
to speed up the search. Table 4 shows an example of using only 0, successor
function, the paramorphism of natural numbers, and addition.

2.3 Algorithm

The algorithm behind MagicHaskeller is defined in [Katayama(2005a)] and its
updated version [Katayama(2007)]. Although those papers define it without am-
biguity by referring to pieces of code in Haskell, for some unknown reasons it
is often misunderstood. The most common misunderstanding I hear is that the
algorithm first generates all the possible expressions, including ill-typed ones,
and then filters out those incorrect programs, though actually the algorithm
never generate such ill-typed programs, nor even ill-typed subexpressions. For
this reason, in this paper I try defining it in a different way in later sections, i.e.,
in relation to intuitionistic logic via Curry-Howard isomorphism.

For now, I give an intuitive explanation of the algorithm behind
MagicHaskeller.

Recent Improvements of MagicHaskeller 177

Table 1. Some of the useful predefined functions defined in MagicHaskeller.LibTH

{-# LANGUAGE TemplateHaskell #-}
module MagicHaskeller .LibTH (module MagicHaskeller.LibTH , module MagicHaskeller) where
import MagicHaskeller

initialize , init075 :: IO ()
initialize = do setPrimitives (list ++ nat ++ mb ++ bool ++

$ (p [| (hd :: (→) [a] (Maybe a), (+) :: Int → Int → Int) |]))
setDepth 10

init075 = do setPG $ mkMemo075 (list ++ nat ++ mb ++ bool ++
$ (p [| ((+) :: Int → Int → Int) |]))

setDepth 10

-- Specialized memoization tables. Choose one for quicker results.
mall, mlist, mlist′, mnat, mlistnat :: ProgramGenerator pg ⇒ pg

mall = mkPG (list ++ nat ++ mb ++ bool ++ $(p [| (hd :: (→) [a] (Maybe a), (+) :: Int → Int → Int) |]))
mlist = mkPG list

mlist′ = mkPG list′

mnat = mkPG (nat ++ $(p [| (+) :: Int → Int → Int |]))
mlistnat = mkPG (list ++ nat ++ $(p [| (+) :: Int → Int → Int |]))

hd :: [a] → Maybe a

hd [] = Nothing

hd (x :) = Just x

mb, nat, list′, list, bool, boolean, eq, lists :: [Primitive]
mb = $(p [| (Nothing :: Maybe a, Just :: a → Maybe a, maybe :: a → (b → a) → (→) (Maybe b) a) |])

nat = $(p [| (0 :: Int , succ :: Int → Int, nat para :: (→) Int (a → (Int → a → a) → a)) |])

-- Nat paramorphism
nat para :: Integral i ⇒ i → a → (i → a → a) → a

nat para i x f = np (abs i)
where np 0 = x

np i = let i′ = i − 1
in f i′ (np i′)

list′ = $(p [| ([] :: [a], (:) :: a → [a] → [a], foldr :: (b → a → a) → a → (→) [b] a) |])
list = $(p [| ([] :: [a], (:) :: a → [a] → [a], list para :: (→) [b] (a → (b → [b] → a → a) → a)) |])

-- List paramorphism
list para :: [b] → a → (b → [b] → a → a) → a

list para [] x f = x

list para (y : ys) x f = f y ys (list para ys x f)

bool = $(p [| (True, False, iF :: (→) Bool (a → a → a)) |])

iF :: Bool → a → a → a

iF True t f = t

iF False t f = f

boolean = $(p [| ((&&) :: Bool → Bool → Bool,

(‖) :: Bool → Bool → Bool,
not :: Bool → Bool) |])

eq = $(p [| ((≡) :: Int → Int → Bool, (�≡) :: Int → Int → Bool,
(≡) :: Char → Char → Bool, (�≡) :: Char → Char → Bool,
(≡) :: Bool → Bool → Bool, (�≡) :: Bool → Bool → Bool,

(≡) :: [Int] → [Int] → Bool, (�≡) :: [Int] → [Int] → Bool,
(≡) :: [Char] → [Char] → Bool, (�≡) :: [Char] → [Char] → Bool,

(≡) :: [Bool] → [Bool] → Bool, (�≡) :: [Bool] → [Bool] → Bool) |])
lists = $(p [| (map :: (a → b) → (→) [a] [b],

(++) :: [a] → [a] → [a],
filter :: (a → Bool) → [a] → [a],
concat :: [[a]] → [a],
concatMap :: (a → [b]) → (→) [a] [b],
length :: (→) [a] Int,

replicate :: Int → a → [a],
take :: Int → [a] → [a],
drop :: Int → [a] → [a],
takeWhile :: (a → Bool) → [a] → [a],
dropWhile :: (a → Bool) → [a] → [a],
lines :: [Char] → [[Char]],
words :: [Char] → [[Char]],
unlines :: [[Char]] → [Char],
unwords :: [[Char]] → [Char],
reverse :: [a] → [a],
and :: [Bool] → Bool,
or :: [Bool] → Bool,

any :: (a → Bool) → (→) [a] Bool,
all :: (a → Bool) → (→) [a] Bool,
zipWith :: (a → b → c) → (→) [a] ((→) [b] [c])) |])

reallyall :: ProgramGenerator pg ⇒ pg

reallyall = mkPG (list ++ bool ++ boolean ++ eq ++ lists)

178 S. Katayama

Table 2. The simplest example. From the actual output, qualifications like GHC.Types.,
MagicHaskeller.LibTH. are removed for avoiding clutter.

Prelude> :set +s

Prelude> :m +MagicHaskeller.LibTH

Prelude MagicHaskeller.LibTH> init075

(0.02 secs, 4438028 bytes)

Prelude MagicHaskeller.LibTH> printOne (\f -> f "abc" == "abcba")

\a -> list_para a (\b c -> c) (\b c d e f -> b : d (b : e) e) [] a

(14.61 secs, 6331014756 bytes)

Prelude MagicHaskeller.LibTH> printAny (\f -> f "abc" == "abcba")

\a -> list_para a (\b c -> c) (\b c d e f -> b : d (b : e) e) [] a

\a -> list_para a (\b c -> c) (\b c d e f -> b : d (b : e) e) [] []

\a -> list_para a (\b c -> b) (\b c d e f -> b : d f (b : f)) a []

\a -> list_para a (\b c -> b) (\b c d e f -> b : d f (b : f)) [] []

^CInterrupted.

Prelude MagicHaskeller.LibTH> (\a -> list_para a (\b c -> c) (\b c d e f ->

b : d (b : e) e) [] a) "abcd"

"abcdcba"

(0.00 secs, 538152 bytes)

Prelude MagicHaskeller.LibTH> xss <- filterFirst (\f -> f "abc" == "abcba")

(0.00 secs, 536428 bytes)

Prelude MagicHaskeller.LibTH> let (e,f):_ = concat xss

(0.00 secs, 618488 bytes)

Prelude MagicHaskeller.LibTH> pprint e

"\\a -> list_para a (\\b c -> c) (\\b c d e f -> b : d (b : e) e) [] a"

(6.75 secs, 2712408304 bytes)

Prelude MagicHaskeller.LibTH> f "abcd"

"abcdcba"

(0.00 secs, 0 bytes)

1. When expressions with the same type as or more general type than
∀a1 . . . ak.A1 → · · · → Am → B are requested, it replaces a1, ..., ak with
new type constructors G1, ... , Gk to obtain the monomorphic type M =
(A1 → · · · → Am → B)[G1/a1, . . . , Gk/ak]. Then, find expressions whose
types unify with M , by calling 2.

2. When expressions whose types unify with A1 → · · · → Am → B are re-
quested, it first adds A1 . . .Am to the list of available types, and try to
generate expressions whose types unify with B.

3. In order to generate expressions whose types unify with B (where B is not
a functional type), it does the following for each T of the list of available
types:

– Let X1 → · · · → Xn → Y = T (where n can be 0). However, if Y is just
a type variable, replace it with b, Xn+1 → b, Xn+1 → Xn+2 → b, ... and
try all of them, where b, Xn+1, Xn+2, ... are fresh type variables.1

1 Because there are infinite number of alternatives, depth-first search is not adequate
here.

Recent Improvements of MagicHaskeller 179

Table 3. Finding recursive definitions from closed-form solution. Again, qualifications
like GHC.Num., MagicHaskeller.LibTH. are removed.

Prelude> :set +s

Prelude> :m +MagicHaskeller.LibTH

Prelude MagicHaskeller.LibTH> init075

(0.02 secs, 4433280 bytes)

Prelude MagicHaskeller.LibTH> let phi = (1 + sqrt 5) / 2

(0.00 secs, 1891844 bytes)

Prelude MagicHaskeller.LibTH> let pred f n = (f :: Int->Int) n == round

((phi^n - (1-phi)^n) / sqrt 5)

(0.00 secs, 1065584 bytes)

Prelude MagicHaskeller.LibTH> printOne (\f -> all (pred f) [0..9])

\a -> nat_para a (\b c -> c) (\b c d e -> c e (d + e)) (succ 0) 0

(14.96 secs, 5997624872 bytes)

Prelude MagicHaskeller.LibTH> printAny (\f -> all (pred f) [0..9])

\a -> nat_para a (\b c -> c) (\b c d e -> c e (d + e)) (succ 0) 0

\a -> nat_para a (\b c -> c) (\b c d e -> c e (e + d)) (succ 0) 0

\a -> nat_para a (\b c -> c) (\b c d e -> c (d + e) d) (succ 0) 0

\a -> nat_para a (\b c -> c) (\b c d e -> c (e + d) d) (succ 0) 0

\a -> nat_para a (\b c -> b) (\b c d e -> c e (e + d)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c e (d + e)) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c (d + e) d) 0 (succ 0)

\a -> nat_para a (\b c -> b) (\b c d e -> c (e + d) d) 0 (succ 0)

\a -> nat_para a (\b c -> c) (\b c d e -> c (d + e) (succ d)) 0 0

\a -> nat_para a (\b c -> c) (\b c d e -> c (e + d) (succ d)) 0 0

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) (e + d)) 0 0

\a -> nat_para a (\b c -> b) (\b c d e -> c (succ e) (d + e)) 0 0

^CInterrupted.

Prelude MagicHaskeller.LibTH> map (\a -> nat_para a (\b c -> c) (\b c d e ->

c e (d + e)) (succ 0) 0) [0..20]

[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

(0.00 secs, 2212352 bytes)

Prelude MagicHaskeller.LibTH> xss <- filterFirst (\f -> all (pred f) [0..9])

(0.04 secs, 14194704 bytes)

Prelude MagicHaskeller.LibTH> let (e,f):_ = concat xss

(0.00 secs, 0 bytes)

Prelude MagicHaskeller.LibTH> pprint e

"\\a -> nat_para a (\\b c -> c) (\\b c d e -> c e (d + e)) (succ 0) 0"

(10.34 secs, 3651214948 bytes)

Prelude MagicHaskeller.LibTH> map f [0..20]

[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

(0.00 secs, 542668 bytes)

– Try to unify Y and B; if they do not, the search (of the current branch)
fails and mzero, or the empty set, is returned; if they do unify, their most
general unifier substitution is computed.

– Then the algorithm has to generate subexpressions; if X1 . . . Xn did not
include type variables it could just recursively call 2, but they usually
do, so it has to apply the current substitution to X1, recursively call
2 to obtain the resulting substitution, then apply it to X2, recursively

180 S. Katayama

Table 4. Limiting the search space by replacing the primitive component library

Prelude> :set +s

Prelude> :m MagicHaskeller.LibTH

Prelude MagicHaskeller.LibTH> init075

(0.02 secs, 4438024 bytes)

Prelude MagicHaskeller.LibTH> setPG $ mkMemo075 (nat ++ $(p [| (+) ::

Int -> Int -> Int |]))

(0.08 secs, 19774144 bytes)

Prelude MagicHaskeller.LibTH> let phi = (1 + sqrt 5) / 2

(0.01 secs, 1845520 bytes)

Prelude MagicHaskeller.LibTH> let pred f n = (f :: Int->Int) n == round

((phi^n - (1-phi)^n) / sqrt 5)

(0.01 secs, 1817232 bytes)

Prelude MagicHaskeller.LibTH> printOne (\f -> all (pred f) [0..9])

\a -> nat_para a (\b c -> c) (\b c d e -> c e (d + e)) (succ 0) 0

(9.25 secs, 3454396104 bytes)

Table 5. Interpretation of alternatives and combinations, &c. S ⊃ T means the pri-
oritized set T is a subset of S. The last rule is enough to explain all the rest, though
they are provided for pedagogical purposes.

rules interpretations
B1

A
· · · Bn

A
[|A|] =

L
n

i=1[|Bi|] = [|B1|] ⊕ · · · ⊕ [|Bn|]

x1 :: B1 · · · xn :: Bn

x1 ⊗ ... ⊗ xn :: A
[|A|] ⊃ [|B1 . . . Bn|] = [|B1|]〈⊗〉 . . . 〈⊗〉[|Bn|]

x :: B
f x :: A

[|A|] ⊃ fmap f [|B|] = liftM1 f [|B|]

x :: A
[|A|] ⊃ return x = liftM0 x

x11 :: B11 · · · x1n1 :: B1n1

fx11...x1n1 :: A

...

xn1 :: Bm1 · · · xmnm
:: Bmnm

fxm1...xmnm
:: A

[|A|] =
L

m

i=1 liftMni
f [|Bi1|] . . . [|Bini

|]

call 2 ... until Xn. We have to pass the current substitution to traverse
X1 . . . Xn.

The above search is conducted in the breadth-first manner using a variant of
Spivey’s monad for breadth-first search[Spivey(2000)], though it can easily be
replaced with another search strategy such as depth-first search and depth-bound
search by just replacing the monad to be used. Also, the algorithm memoizes
subexpression calls for efficiency. The function to be memoized takes the list of

Recent Improvements of MagicHaskeller 181

Table 6. A simple rule set for generating λ expressions.

x :: A, Γ � e :: B
→R

Γ � λx.e :: A → B

where x does not appear as a label in Γ

Γ, f :: A1 → ... → An → B � e1 :: A1 ... Γ, f :: A1 → ... → An → B � en :: An

Ax+→L
Γ, f :: A1 → ... → An → B � fe1...en :: B

where B is not a function type

Table 7. Inference rules in question

Axiom
Γ ; x :: A � x :: A

where A is not a functional type

Γ ; � e1 :: A Γ ; y :: B � e2 :: C
→L

Γ ; f :: A → B � e2[fe1/y] :: C

Γ, x :: A;x :: A � e :: B
Cont

Γ, x :: A; � e :: B

where A is not a functional type

Γ, x :: A; � e :: B
→R

Γ ; � λx.e :: A → B

where x does not appear as a label in Γ

available types and the requested type, and returns the monadic value repre-
senting breadth-first search, holding the lists of expressions, the required substi-
tutions, and the fresh variable generator. In order for the memoization table to
hit often, the type variable names are normalized and the same types in the list
of available types are put together.

2.4 Reducing the Amount of Generated Expressions

Since the number of programs bloats exponentially as the program size increases,
how to slow down such bloating is a key to making a useful generate-and-test
approach. Because MagicHaskeller challenges this problem while sticking to ex-
haustive search, what it can do is quite limited: to minimize the double-counting
of semantically equivalent but still syntactically different expressions.

There have been two approaches to this issue taken by MagicHaskeller:

– not generating expressions that are theoretically known to be equivalent
to another one that are already generated, by not generating reducible

182 S. Katayama

expressions (except that η-long expressions are generated) and opti-
mizable expressions which can be detected by simple pattern match
[Katayama(2005a)],

– detecting the redundancy by execution with random arguments
[Katayama(2008)] — this is discussed in detail in Section 4.

2.5 Efficiency Comparisons

[Hofmann et al.(2009)Hofmann, Kitzelmann, and Schmid] worked on com-
parisons between recent inductive programming approaches including
MagicHaskeller, and the work is specialized to inductive functional program-
ming and continued at the website of inductive-programming.org. One inter-
esting point they show is that the efficiency of MagicHaskeller competes well
against other approaches, although it does not use any heuristics. For ex-
ample, according to [Hofmann et al.(2009)Hofmann, Kitzelmann, and Schmid],
MagicHaskeller outperforms ADATE, FFOIL, and FLIP on most problems,
though it falls behind Igor 2 and GOLEM. Also, according to the website,
the old stand-alone version (which means the version with all optimizations)
of MagicHaskeller behaves the best of the four major IFP systems, namely,
ADATE, Igor 1, Igor 2, and MagicHaskeller, for about one-third of the bench-
marks against which it was evaluated, and outperforms ADATE for more than
half of them. Considering that Igor and GOLEM require many examples while
MagicHaskeller as a generate-and-test approach requires much less — usually
one or some — examples, we could say MagicHaskeller does well enough.

Of course, it is true that an exhaustive search approach should be sensitive
to exponential bloat. However, actually this sensitivity also applies to heuristic
approaches unless the heuristics successfully exploit the problem structure for
guiding search, because there is no free lunch. Until someone finds some useful
heuristics for searching for interesting programs, the systematic approach that
try hard to avoid double-counting can be the best generate-and-test approach
for general purposes, though for a specific purpose another method can be the
best.

3 Exhaustive Program Generation by Interpretation of
Herbelin’s LJT Variant

3.1 Introduction

In TFP2005 symposium we presented an algorithm to generate a stream of all
the possible expressions with a given type from a given set of expressions by
using breadth-first search [Katayama(2005a)], and since then the algorithm has
been released and updated as a generate-and-test style inductive functional pro-
gramming system, called MagicHaskeller. The research, started as an antithesis
to heuristic approaches that tends to ignore systematic search, has attracted
some positive-minded scientists, while its lack in enough formalization has been

Recent Improvements of MagicHaskeller 183

a source of difficulty in understanding and theoretically manipulating the algo-
rithm.

In the same year of 2005 Augustsson released Djinn, that generates one
or some functional programs with the given type, based on theorem prov-
ing by Roy Dyckhoff’s LJT [Dyckhoff(1992)] (a.k.a. G4ip by Hudelmaier
[Hudelmaier(1992)]). That has driven us to work on formalization of our ex-
haustive search algorithm, though Dyckhoff’s LJT cannot straightforwardly be
applied to exhaustive program/proof generation because it replaces equivalent
expressions for making its ⊃⇒4 rule efficient, but actually replacing equivalent
expressions corresponds to several proofs, and thus should multiply the number
of proofs.

As the matter of fact, there is also a correspondence between auto-
matic proof and the algorithm behind MagicHaskeller. This on-going research
starts with monadic interpretation of each rule of a variant of Herbelin’s
LJT[Herbelin(1995)] in combination of Spivey’s algebraic framework for combi-
natorial search [Spivey(2006)], and aims at associating our algorithm presented
at [Katayama(2005a)] with generation of the stream of all the proofs for the
given proposition.

3.2 Basic Ideas

It is well known that there is a correspondence, called Curry-Howard corre-
spondence, between values in a type and proofs of a proposition. Automatic
proof systems such as Coq and Agda take advantage of this correspondence, and
(usually with human helps) they can generate a program that satisfies a given
specification specified as a type by generating a proof tree, just in the same way
as they generate a proof of a given proposition.

What MagicHaskeller does for generating programs is essentially the same
thing, except that it only supports Hindley-Milter type system, and it generates
an infinite stream of expressions exhaustively, from small ones to large ones.
The algorithm behind MagicHaskeller, as specified in [Katayama(2005a)], can
be viewed as interpretation of the rule set of Herbelin’s LJT, i.e., it interprets a
sequent as a monadic proof search or a prioritized infinite set of its proofs, and
an inference rule as set inclusion of its premise by its conclusion.

We use Spivey’s monad for combinatorial search[Spivey(2006)]. By using his
algebraic interface, we can easily implement combinatorial search using the bind
operator for combinations or set comprehension and plus operator ⊕ for alter-
native selectionsor direct sum. Also, search failure or the empty set is denoted
with zero, and a unit set with the primary priority can be created with return
function. Hence, when generating proofs of some proposition, if the proposi-
tion matches conclusions of plural inference rules, we only need to generate
proofs of premises of such rules and compute the direct sum of such processes
(which means backtracking when generating a single proof), and if the proposi-
tion matches the conclusion of an inference rule which has plural premises, we
only need to generate proofs of the premises and compute the direct product
of such processes. In general, such alternation and combination of proof tree

184 S. Katayama

generation can be interpreted in the way shown in Table 5, where [|X |] denotes
the monadic value holding the infinite stream of proofs of X , and 〈⊗〉 denotes
a multiplication, whose definition is dependent on how to construct a pair of
proofs. 〈⊗〉 can be defined in Haskell as follows using monadic operators defined
in [Spivey(2006)]:

x 〈⊗〉y = x λa → y λb → return (a ⊗ b)
i.e.

x 〈⊗〉y = liftM2 (⊗) x y

3.3 A Simple, But More Concrete Example

Let us consider a more concrete and more interesting inference rule set, with
which we can indeed generate an infinite set of λ-expressions. Consider the in-
ference rule set shown in Table 6.

We assume that each premise is not a list but a set.
The rule set can be used to infer the types of λ-expressions. Also, it can be

used to mechanically generate a proof of a proposition by matching from the
bottom to the top, and we are interested in generating the infinite set of all the
proofs.

The proviso for Ax+→L rule is added in order to permit only η-long normal
form and identify η-equivalent proofs. This limitation does not only limit the
unnecessary search space expansion by η-equivalent program generations when
generating programs (proofs) from the bottom to the top, but also make imple-
mentation simpler and more efficient by preventing the proposition to be proved
from matching plural conclusions of inference rules.

In order to show the implementations, we first define a datatype of
λ-expressions:

data Expr = Expr :$Expr -- function application
| Lambda Var Expr -- lambda abstraction
| V Var -- variable

Then, the rule set can be interpreted as follows.

[|Γ " A→ B|] = 〈λx.〉([|x :: A, Γ " B|]) (1)

[|Γ"B|] =
⊕

f ::T∈Γ

[|Γ ; f :: T"B|], if B is not a function type. (2)

[|Γ ; f :: A1 → ... → An → B"B|] = wrapn (
return(V f) 〈:$〉 [|Γ"A1|] 〈:$〉 ... 〈:$〉 [|Γ"An|]

) (3)
[|Γ ; f :: T"B|] = zero, if T does not return B. (4)

We assume 〈:$〉 is left associative. zero means the empty set. 〈λu.〉(m) means
mapping λ-abstraction by u of each element of m, i.e.

〈λu.〉 (m) = fmap (Lambda u) m
or

〈λu.〉 (m) = m (return ◦ Lambda u)

Recent Improvements of MagicHaskeller 185

Rule→R is straightforwardly interpreted to Equation 1. As for the non-functional
case corresponding to Ax+→L, the interpretation should be the ⊕ sum of all
the possible choices of f ∈ Γ as in Equation 2, that return the same type as the
requested one.

We silently insert the wrap operation from [Spivey(2006)], that pushes the
search process deeper in the search tree, into the product operation, which cor-
responds to function application. This is done because we regard the search depth
as the program (proof) size, measured by the number of function
applications.2

3.4 A Variant of of Cut-Free LJT for Program Generation

The rule set shown in Table 6 can equivalently be translated to the rule set shown
in Table 7. This rule set is Herbelin’s cut-free LJT[Herbelin(1995)], except that
there are provisos that prevent η-equivalent expressions from being generated.

Herbelin’s LJT is a variant of the intuitionistic sequent calculus LJ that only
permits one proof that correspond to one λ-expression. In Herbelin’s LJT some
kind of duplicate proofs that correspond to the same λ-expressions are disabled
by preparing a special place for the current assumption called stoup. (A stoup
is placed between ; and " in the inference rules shown in Table 7.)

Also we use cut-free calculus for this research, because we do not like to expand
the search space, i.e., we do not introduce local variables by let expressions. This
should not be a problem for now, because we cannot generate large programs
anyway.

In addition, as mentioned in the previous section, we stick to η-long expres-
sions, which is forced by the provisos for the Axiom rule and Cont rule.

Finally, we omit rules for ∨, ∧, ⊥, and ∃. As for ∀L and ∀R, we start with
the rule set without them and then extend it.

Figure 1 an example of how the rule set generates an expression having the
given type, and how it infers the type of a λ-expression.

3.5 Interpretation of the Rule Set

In this section we assign an interpretation to each inference rule and the whole
rule set. Compared to other rule sets, interpretation of LJT is somewhat easier
because the conclusion of each rule is exclusive each other and matches only one
pattern. (except that there are alternative choices for x :: A in the Cont rule).

Table 8 shows the interpretation of each inference rule in Table 7, based on
the interpretation policy specified in Table 5. The Axiom rule does not have
any premise, thus the variable name in the stoup is just returned. The →L rule
branches the proof tree, hence we recursively generate proof trees and combine
them using liftM2. The Cont rule has exactly one premise and hence interpreta-
tion with fmap applies, but the function to be mapped in this case is the identity.
2 The wrap operation can be included in 〈:$〉, though for efficiency it should be applied

as soon as the arity is known.

186 S. Katayama

Axiom
Γ ; z :: A � z :: A

Cont
Γ ; � z :: A

Axiom
Γ ; y :: B � y :: B

Cont
Γ ; � y :: B

Axiom
Γ ; v :: C � v :: C →L

Γ ;w :: B → C � wy :: C →L
Γ ; x :: A → B → C � xzy :: C

Cont
Γ ; � xzy :: C

definition of Γ
x :: A → B → C, y :: B, z :: A; � xzy :: C →R

x :: A → B → C, y :: B; � λz.xzy :: A → C →R
x :: A → B → C; � λyz.xzy :: B → A → C →R

; � λxyz.xzy :: (A → B → C) → B → A → C

where Γ = x :: A → B → C, y :: B, z :: A

Fig. 1. An example of how the rule set without quantification works

Table 8. Interpretation of each rule

rules interpretations
Axiom [|Γ ; x :: A�A|] ⊃ return(V x)
→L [|Γ ; A→B�C|] ⊃ liftM2(λe2e1.e2[fe1/y]) [|Γ ; B�C|] [|Γ ;�A|]
Cont [|Γ, x :: A;� B|] ⊃ [|Γ, x :: A; x :: A � B|]
→R [|Γ ;� A → B|] ⊃ 〈λu.〉([|u :: A, Γ ;� B|])

where u does not appear in Γ

The→R rule also has exactly one premise, and the resulting interpretation fmaps
λ-abstraction to the interpretation of the premise.

Then, we collect each alternative that can result in each possible sequent
pattern. Firstly, if its stoup is filled with a non-functional type, only the Axiom
rule may be used for the current sequent. It can be applied only when the type of
the conclusion and the stoup are the same, thus we have the following equations:

[|Γ ; x :: A"A|] = return(V x), unless A is a functional type (5)
[|Γ ; x :: A"B|] = zero, unless A is a functional type or A = B (6)

If the stoup is filled with a functional type, only the →L rule applies, and it
always applies.

[|Γ ; f :: A→B"C|] = liftM2(λe2e1.e2[fe1/y]) [|Γ ; y :: B"C|] [|Γ ;"A|] (7)

If the stoup is empty and the succedent is not a functional type, only the Cont
rule applies. However, because the Cont rule has options in which antecedent to
choose, this type of sequent is interpreted as the union of those alternatives.

[|Γ ;" B|] =
⊕

(x::A)∈Γ

[|Γ ; x :: A " B|], unless B is a functional type (8)

Finally, if the stoup is empty and the succedent is a functional type, only the
→R rule applies. Thus,

[|Γ ;" A→ B|] = 〈λx.〉[|x :: A, Γ ;" B|]

Recent Improvements of MagicHaskeller 187

where x does not appear in Γ .
The interpretation [|Γ ;" X|] given here does not exactly correspond to

[|Γ " X|] defined by Equations 1–2, because when generating subexpressions the
former generates the first argument last and the last argument first, but the
latter generates the first argument first and the last argument last. Those in-
terpretations are equivalent if the search monad is implemented as a stream of
bags rather than a stream of lists, but still they are different in efficiency — for
example, if we are using assumption Int → Char → Bool and expression with
type Char cannot actually be generated, the last-argument-first order is more
efficient because it can prune unnecessary branches earlier, but if the assumption
is Char → Int → Bool the first-argument-first order is more efficient. The actual
implementation of MagicHaskeller uses the first-argument-first order.

3.6 Interpretation of Rule Sets with ∀s

In this section, we augment the rule set with ∀ rules in order to support paramet-
ric polymorphism. Table 9 shows the Curry-style variant of the ∀ rules of LJT.
[Katayama(2005a)] generates expressions in Curry-style rather than in Church-
style, and we follow the policy also in this paper.

Table 9. ∀ rules in Curry style

Γ ;x :: A(a) � E :: B
∀L

Γ ; x :: ∀s.A(s) � E :: B

Γ ;� x :: A(T)
∀R

Γ ;� x :: ∀s.A(s)

where T does not appear in Γ .

One problem in generating programs from rule sets with quantification is to
which type to instantiate existential variables, and that happens exactly when
applying the ∀L rule. [Katayama(2005a)] decides the type by the unification
algorithm. This can be viewed as an intuitionistic version of SLD resolution, and
[Kiselyov(2005)] also does similar thing for generating single expression having
a given type.

Unification algorithm is stateful in that it updates and passes current substi-
tution over recursive calls and that such substitution backtracks the branches.
For this reason, in order to adopt the ∀L rule we have to change the type of
[|·|] accordingly, or wrap the monad for search with the state monad trans-
former [Liang et al.(1995)Liang, Hudak, and Jones] that implicitly carries the
current substitution. The actual implementation adopted by [Katayama(2005a)]
is the latter, carrying the fresh variable ID at the same time. Given the type of
the search monad m and that of the state, i.e., the current substitution Subst,
the state-holding version of the search monad STS m can be defined as follows:

188 S. Katayama

STS m a = StateT Subst m a

= Subst→ m(a× Subst)
return(STS m) x σ = returnm(x, σ)

(f (STS m) g) σ = fσ m uncurry g

zero(STS m) σ = zerom

(f ⊕(STS m) g) σ = fσ ⊕m gσ

Also, we introduce two kinds of type variables: existential ones denoted by
a, b, ... ∈ V to which type expressions can be assigned as a result of unifica-
tion, and universal ones denoted by T, U, ... ∈ U which behaves as constants
during unification. Those variables are introduced during ∀L and ∀R rules:

[|Γ ; x :: ∀s.A(s) " y :: B|] = [|Γ ; x :: A(a) " y :: B|]
[|Γ ;" x :: ∀s.A(s)|] = [|Γ ;" x :: A(T)|]

where a is a fresh existential variable not appearing in Γ , and T is a fresh
universal variable not appearing in Γ .

In addition, we have to modify the interpretation rules accordingly to the
introduction of unification. Firstly, if the stoup is filled by something which is
neither a function nor an existential variable, only the Axiom rule can apply.
Then, whether it applies or not depends on whether unification succeeds or fails.

[|Γ ; x :: A " B|] = zero,

unless A is a functional type or an existential variable,
nor do A and B unify;

[|Γ ; x :: A " B|]σ = returnm(x, τ ◦ σ),
if A is neither a functional type nor an existential variable,
and if τ is the MGU of A and B

If there is a function in the stoup, only →L rule applies, but because the proof
tree branches at →L rules, we have to apply the substitution from one branch
to the conclusion type of the other branch. Also note that we should compute
the second premise first and then the first one, thus we can prune search failures
earlier because the second premise often fails.

[|Γ ; f :: A→ B " C|] = liftM2(λe2e1.e2[fe1/y])[|Γ ; y :: B " C|] (λσ.[|Γ ;" σA|]σ)

Things become a little complicated if an existential type variable is in the stoup,
because it can become functional and non-functional. In this case we try both
cases and connect them with ⊕. Thus,

[|Γ ; x :: a " B|]σ = returnm(x, τ ◦ σ)⊕ [|Γ ; x :: b→ c " B|]({a �→ b → c} ◦ σ),
if a ∈ V and τ is the MGU of a and B

where b and c are fresh existential type variables not appearing in Γ or B.

Recent Improvements of MagicHaskeller 189

Finally, other two rules can be used without changes. Therefore,

[|Γ ;" B|] =
⊕

(x::A)∈Γ

[|Γ ; x :: A " B|], unless B is a functional type;

[|Γ ;" A→ B|] = 〈λx.〉[|x :: A, Γ ;" B|]

where x does not appear in Γ .

3.7 Summary

The algorithm behind MagicHaskeller is described in a new proof theoretic way.
The new description sheds a clearer light on the algorithm, and should make
the algorithm easier to manipulate. In fact, the type system is extended from
Hindley-Milner system to enable arbitrary-rank polymorphism, though we do
not have empirical experience under higher-rank situations. Yet, we have not
presented the structural rules for bundling the variables with the same type,
which are useful for efficient implementation, especially in combination with
memoization.

Our recent work on removing semantically equivalent expressions
[Katayama(2008)] requires more complicated implementation, and we have not
proved the exhaustiveness under such circumstances. We hope that further for-
malization will reinforce this line of research.

4 Quick Filtration of Semantically Equivalent Expressions
in Program Search Results

4.1 Introduction

In [Katayama(2008)] we have proposed a Las Vegas algorithm for removing all
the semantically equivalent programs except one by Monte-Carlo search within
the program space, for the purposes of

– speeding up exhaustive search by bootstrapping,
– improving the readability of search results (like search engines such as Google

which bundle “similar pages”)
– providing guesses on how quickly the search space bloats

The results of applying the proposed filtration algorithm to MagicHaskeller were
impressing – the algorithm’s estimation of the number of functions with type
∀ a. [a] → [a] which consist of nil, cons, and foldr, and is constructed with λ-
abstractions and 10 or less function applications was below a hundred. Moreover,
even when we used a set of tens of library functions as the primitive set, there
were only hundreds of functions with type ∀ a. [a] → [a] , which is constructed
with λ-abstractions and 7 or less function applications. Those interesting re-
sults suggest a new possibility of search-based non-heuristic inductive functional
programming.

190 S. Katayama

On the other hand, the filtration algorithm requires more computational cost
than that is expected from the fewness of the final result, because it is dependent
on execution of huge amount of expressions generated. Especially to our regret, if
the set of programs to be filtered is not very redundant, i.e., if it does not include
a lot of semantically equivalent expressions (e.g. when using the primitive set
with only constructors and induction functions), program generation with such
filtration costs more time than that without it. Hence we improve the efficiency
of the filtration algorithm.

4.2 The Old Algorithm

Monte-Carlo algorithms are randomized algorithms whose final results may be
inaccurate, while Las Vegas algorithms always yield the correct answers if they
halt, though their computational costs are random and unknown before execu-
tion. It is often the case that a Monte-Carlo algorithm can be converted into a
Las Vegas algorithm by repetition until the correct answer is obtained, especially
when we can tell if the obtained result is correct or not.

Our algorithm presented in [Katayama(2008)] is based on a similar idea,
though we cannot exactly decide if the obtained infinite stream exhaustively
include semantically different expressions. Here is the rough sketch of the filtra-
tion algorithm presented in [Katayama(2008)]:

– let Sd the search result until depth d; define equivalence by a random point
set r: f ∼r g

def⇔ ∀p ∈ r.f(p) = g(p);
– generate a stream of random point sets {rd}d=0,1,...;
– compute the quotient set Sd / ∼rd

and the complete set of representatives;
expressions without uniqueness proof will simply be dropped;

– use iterative deepening, and refine ∼rd
at each iteration by letting rd ⊂ rd+1;

thanks to the deepening, dropped but distinct expression will resurrect.

The above algorithm requires at least nb times of executions when filtering n
expressions for computing the depth b, because each expression has to be ex-
ecuted for b or more random points. Obviously this is inefficient and rather
deteriorates the efficiency, because the number of expressions exponentially in-
creases as the iteration goes deeper. For this reason, when applying this filter to
subexpressions during program generation for efficiency, [Katayama(2008)] uses
a more efficient filter which permits minor redundancy that uses only a small
fixed number of random points per expression, and then apply the above ineffi-
cient but not redundancy-permitting filter to the final result. Its idea is that the
set of expressions is already thinned up by the efficient filter when the inefficient
filter is applied, and thus the usage of the inefficient filter is not the bottleneck
any longer.

By using this two-staged filtration, the total computational cost using a rich
primitive set have reduced from the original algorithm not using such filtration
and the one using only the above inefficient filter. However, when using minimal
primitive sets that consist of constructors and induction functions, the algorithm
using the two-staged filtration is still slower than the original algorithm without
filtration. In this research we seek more efficient filtration process.

Recent Improvements of MagicHaskeller 191

4.3 The Improved Algorithm

We focus on improving the execution time of filtration (which includes that of the
generated (sub)expressions) rather than that of program synthesis, because the
time profiling reports show that most of the total computation time is comprised
of that part. Two-staged filtration is dependent on iterative deepening, and when
new expressions are generated, expressions at the shallower nodes in the search
tree are re-executed with a different random point set as the argument, and
re-categorized into new equivalence classes based on it, along with the newly
generated expressions. The new improved algorithm omits the re-execution.

Given the set of expressions before filtration at depth d as xd, the resulting set
yd of expressions at depth d after the first filtration of the two-staged filtration
was

y0 = pick(S0 / ∼r0)
yd = pick((Sd / ∼rd

)\∼rd−1
(Sd−1 / ∼rd−1))

where pick is a function that collects representatives from equivalence classes, \r

is an operator for set subtraction by using the equivalence defined by the point
set r, and Sd =

⋃d
i=0 xi.

The new algorithm computes yd as

yd = pick(⋃d
i=0((xd−i / ∼ri)\∼ri

(Sd−i−1 / ∼ri)) ∪ x0 / ∼rd

)

The ideas are:

– the computation of Sd / ∼rd
costs |Sd||rd| because rd includes all the points

in ri|i<d; thus we want to use r0 instead of rd for computing xd;
– Because ri|i>0 is a refinement of r0, representatives of xd−i / ∼r0 |i>0 should

fall into different equivalence classes of xd−i / ∼ri |i>0, and in order to avoid
duplicates we subtract Sd−1 / ∼r0 .

Also, by starting with small number of random points, we can keep the random
values small at first, by which we can expect edge and corner cases to be checked
often.

4.4 Experimental Results

Table 10 shows some results on the mnat primitive set and the reallyall primitive
set defined in Table 1. mnat consists only of 0, successor function, and addition
and paramorphism for natural numbers. reallyall is rather a large primitive set
consisting of 5 boolean operations, 12 instances of (in)equality predicates, and
24 list operations taken from the Standard Prelude. All the experiments are
conducted using the same parameters as [Katayama(2008)] on Intel Pentium D
2.8.GHz machine running Linux 2.6.24.

The proposed filter requires less time for generating more programs than the
old filter.

192 S. Katayama

Table 10. Experimental results. (o.m. means out of memory, and ∞ means no result
in an hour.)

time (sec) number of programs at each depth
generating Int → Int from the mnat primitive set until depth 10.

not filtered (redundant) 3.5 2 2 6 22 78 326 1506 7910 44806 283014
with old Filter 2 ∞ 2 2 3 4 12 27 62 146 448 N/A

with old Filter 1 + Filter 2 24 2 2 3 4 12 27 28 107 282 842
with the new filter 11 2 2 3 4 12 27 52 109 321 1009

generating [Char] → [Char] from the reallyall primitive set until depth 9.
not filtered (redundant) o.m. 2 5 42 225 1755 12228 98034 771730 N/A

with old Filter 2 o.m. 2 1 3 13 21 113 299 1082 N/A
with old Filter 1 + Filter 2 72 2 1 3 12 21 98 264 981 3692

with the new filter 51 2 1 5 18 35 160 422 1611 6256

4.5 Related Work

Evaluating semantical equivalence of syntactically different expressions by sup-
plying random arguments is not a new idea. [Martin(1971)] discussed a method
that guesses the equivalence of two algebraic expressions by evaluating them
using finite field arithmetic.

Monte-Carlo search for program errors is called random testing in the field of
software engineering, and forms a lively research field. Especially, QuickCheck
[Claessen and Hughes(2000)] is an outstandingly famous random testing library
for Haskell, and our filtration algorithm borrows their idea on how to generate
functions randomly.

5 Conclusions

This paper introduced MagicHaskeller, our inductive functional programming
library based on systematic search, and two recent improvements. The first one
was proof theoretic re-interpretation of the algorithm behind MagicHaskeller,
as an exhaustive algorithm for generating all the proofs of the given proposi-
tion under a variant of Herbelin’s LJT. As a result of the first work, the algo-
rithm has become clearer and easier to manipulate, and extended to the type
system supporting arbitrary-rank polymorphism. The second improvement has
been brought to efficiency of its filtration algorithm that removes redundancy in
the search results.

Acknowledgements

This work was supported by JSPS KAKENHI 21650032.

Recent Improvements of MagicHaskeller 193

References

[Claessen and Hughes(2000)] Claessen, K., Hughes, J.: QuickCheck: a lightweight tool
for random testing of Haskell programs. In: ICFP 2000: Proceedings of the 5th
ACM SIGPLAN International Conference on Functional Programming, pp. 268–
279. ACM, New York (2000)

[Dyckhoff(1992)] Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic 57, 795–807 (1992)

[Herbelin(1995)] Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-
style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994.
LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

[Hofmann et al.(2009)Hofmann, Kitzelmann, and Schmid] Hofmann, M., Kitzelmann,
E., Schmid, U.: A unifying framework for analysis and evaluation of inductive
programming systems. In: Proceedings of the Second Conference on Artificial
General Intelligence (2009)

[Hudelmaier(1992)] Hudelmaier, J.: Bounds on cut-elimination in intuitionistic propo-
sitional logic. Archive for Mathematical Logic 31, 331–354 (1992)

[Katayama(2006)] Katayama, S.: Library for systematic search for expressions and
its efficiency evaluation. WSEAS Transactions on Computers 12(5), 3146–3153
(2006)

[Katayama(2005a)] Katayama, S.: Systematic search for lambda expressions. In: Sixth
Symposium on Trends in Functional Programming, pp. 195–205 (2005)

[Katayama(2008)] Katayama, S.: Efficient exhaustive generation of functional pro-
grams using monte-carlo search with iterative deepening. In: Ho, T.-B., Zhou,
Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 199–210. Springer, Hei-
delberg (2008)

[Katayama(2005b)] Katayama, S.: MagicHaskeller (2005b),
http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

[Katayama(2007)] Katayama, S.: Systematic search for lambda expressions. In: Trends
in Functional Programming, vol. 6, pp. 111–126, Intellect (2007)

[Kiselyov(2005)] Kiselyov, O.: Reversing haskell typechecker: converting from unde-
fined to defined (2005),
http://okmij.org/ftp/Haskell/types.html#de-typechecker

[Kitzelmann(2007)] Kitzelmann, E.: Data-driven induction of recursive functions from
input/output-examples. In: AAIP 2007: Proceedings of the Workshop on Ap-
proaches and Applications of Inductive Programming, pp. 15–26 (2007)

[Liang et al.(1995)Liang, Hudak, and Jones] Liang, S., Hudak, P., Jones, M.P.: Monad
transformers and modular interpreters. In: POPL 1995: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (1995)

[Martin(1971)] Martin, W.A.: Determining the equivalence of algebraic expressions by
hash coding. Journal of the Association for Computing Machinery 18(4), 549–558
(1971)

[Olsson(1995)] Olsson, R.: Inductive functional programming using incremental pro-
gram transformation. Artificial Intelligence 74(1), 55–81 (1995)

[Spivey(2000)] Spivey, M.: Combinators for breadth-first search. Journal of Functional
Programming 10(4), 397–408 (2000)

[Spivey(2006)] Spivey, M.: Algebras for combinatorial search. In: Workshop on Math-
ematically Structured Functional Programming (2006)

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html
http://okmij.org/ftp/Haskell/types.html#de-typechecker

Author Index

Estruch, V. 117

Ferri, C. 117

Henderson, Robert 74
Hernández-Orallo, J. 117
Hieber, Thomas 159
Hofmann, Martin 140, 159

Jeuring, Johan 93

Katayama, Susumu 174
Kitzelmann, Emanuel 50, 140
Koopman, Pieter 25

Mitchell, Neil 1

Plasmeijer, Rinus 25

Ramı́rez-Quintana, M.J. 117
Rodriguez Yakushev, Alexey 93

Schmid, Ute 140

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Papers
	Deriving a Relationship from a Single Example
	Introduction
	Contributions

	Our Derivation Scheme
	Correctness
	Predictability
	Scheme Roles

	Deriving Instances
	Output
	Input
	DSL
	Restrictions for Predictability

	Implementing derive
	Guessing Constant Leafs
	Lists
	Folds
	Application
	Instance

	Results
	Limitations of Automatic Derivation
	Practical Experiences
	Timing Properties

	Related Work
	Deriving Type Classes
	Specifying Type Classes
	Deriving Relationships

	Conclusions and Future Work

	Synthesis of Functions Using Generic Programming
	Introduction
	The Generate and Test Approach to Synthesis Functions
	Partial Specification of the Functions
	Automatic Test Systems
	Selecting Functions with an Automatic Test System

	Generic Synthesis of Functions
	Generic Programming
	Generic Generation of Instances of a Data type
	Transforming Syntax Trees to Functions

	Selecting Candidate Solutions
	Keppler's Third Law
	Synthesizing Primitive Recursive Functions
	Synthesizing Lambda Expressions
	Related and Future Work
	Conclusions

	Regular Papers
	Inductive Programming:A Survey of Program Synthesis Techniques
	Introduction
	Basic Inductive Programming Concepts
	The Analytical Functional Approach
	Summers' Pioneering Work
	Early Variants and Extensions
	From Lisp to Term Rewriting Systems
	Igor2—Combining Search and Analytical Techniques
	Discussion

	Inductive Logic Programming
	Preliminaries
	Overview
	Generality Models and Refinement Operators
	Automatic Programming Systems
	Discussion

	Functional Generate-and-Test Approaches
	Genetic Programming
	ADATE
	Systematic Enumeration of Programs
	Discussion

	Conclusions and Further Research

	Incremental Learning in Inductive Programming
	Introduction
	Previous Work
	Incremental Learning Mechanism
	Implementation
	Review of MagicHaskeller
	Differences between MagicLisper and MagicHaskeller
	Example Usage of MagicLisper

	Incremental Learning Experiments
	Method and Results
	Analysis

	Limitations and Further Work
	Limitations of the Simple Methodology
	Overcoming the Limitations
	Managing an Expanding Background Knowledge

	Conclusion

	Enumerating Well-Typed Terms Generically
	Introduction
	The Spine View
	Case Analysis on Types
	The Spine Representation of Values
	A View for Producers
	Generalized Algebraic Datatypes
	Existential Types and Consumer Functions
	Existential Types and Producer Functions

	An Improved Spine View: Support for Existential Types
	The Existential Case for Producer Functions
	The Existential Case for Consumer Functions
	Handling Type Representations
	Equality of Type Representations
	Type Codes and Dependently Typed Programming

	Application: Enumeration Applied to Simply Typed Lambda Calculus
	Representing the Simply Typed Lambda Calculus
	Breadth First Search Combinators
	Generic Enumeration
	Term Enumeration in Action

	Related Work
	Conclusions

	Generalisation Operators for Lists Embedded in a Metric Space
	Introduction
	Framework
	Distance-Based Inductive Operators
	Minimality

	Inductive Operators for Lists
	Metric Space, Pattern Languages and Cost Functions
	Notation and Previous Definitions
	Single List Pattern Language (\mathcal{L}_0)
	Multiple List Pattern Language (\mathcal{L}_1)

	Conclusions and Future Work

	Porting IGORII from MAUDE to HASKELL
	Introduction
	Igor2 and Maude
	The Igor2-Algorithm
	Igor2's Use of Maude's Term Rewriting and Homoiconic Capabilities

	Igor2 in Haskell
	Expressions, Types, and Terms
	Specification Context
	Using Terms
	Rules, Hypotheses, and Other Data Types
	Comparing Rules and Hypotheses
	The Synthesis Monad

	Empirical Results
	Conclusion

	Automated Method Induction:Functional Goes Object Oriented
	Introduction
	Status Quo
	Constructor Term Rewriting
	Igor
	Igor and Object Orientation
	The Super CTRS
	The Sub CTRS

	Examples
	AutoJAVA
	Conclusion

	Recent Improvements of MagicHaskeller
	Introduction
	MagicHaskeller: Inductive Functional Programming System by Systematic Search
	Policy
	Library and Use Cases
	Algorithm
	Reducing the Amount of Generated Expressions
	Efficiency Comparisons

	Exhaustive Program Generation by Interpretation of Herbelin's LJT Variant
	Introduction
	Basic Ideas
	A Simple, But More Concrete Example
	A Variant of of Cut-Free LJT for Program Generation
	Interpretation of the Rule Set
	Interpretation of Rule Sets with s
	Summary

	Quick Filtration of Semantically Equivalent Expressions in Program Search Results
	Introduction
	The Old Algorithm
	The Improved Algorithm
	Experimental Results
	Related Work

	Conclusions

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

