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Abstract. Given a set Un = {0, 1, ..., n−1}, a collectionM of subsets of
Un that is closed under intersection and contains Un is known as a Moore
family. The set of Moore families for a given n, denoted by Mn, increases
very quickly with n, thus |M3| is 61 and |M4| is 2480. In [1] the authors
determined the number for n = 6 and stated a 24h- computation-time.
Thus, the number for n = 7 can be considered as an extremely difficult
technical challenge. In this paper, we introduce a counting strategy for
determining the number of Moore families for n = 7 and we give the
exact value : 14 087 648 235 707 352 472. Our calculation is particularly
based on the enumeration of Moore families up to an isomorphism for n
ranging from 1 to 6.

1 Introduction

The counting (and/or enumeration) of a large set of mathematical objects is
a pleasant challenge. This kind of exercise requires original algorithmic pro-
cesses, which involves a thorough knowledge of the properties of the objects to
be counted, efficient search data structures, but also, and above all, state-of-the-
art programming techniques. In this paper, our efforts have been concentrated
on the counting of Moore families generated by a given set Un = {0, 1, ..., n− 1}
. The concept of Moore family, or of closure operator (extensive, isotone and
idempotent function of 2Un in 2Un), or of implicational system, is applied in
numerous fields. For example, let’s consider mathematics research such as [2] for
algebra, computer science such as [3] for the theory of orders and lattices, [4] for
relational databases and finally [5] and [6] for data analysis. The name ’Moore
family’ was first used by Birkhoff in [7] referring to E.H. Moore ’s early century
research in [8]. Technically, a Moore family on Un, denoted by M, is a collection
of sets (or family) closed under intersection and containing Un (cf. figure 1).

The set of Moore families on Un, denoted Mn, is itself a closure system (a
closure system being the set of the fixed points of a closure operator). Thus,
the system composed of Moore families contains one maximum element (2Un :
all subsets of Un) and the intersection of two Moore families is a Moore family
itself. To get an overall view of the properties of this closure system, see [9].
Ordering the set of elements of a closure system by inclusion, we get a lattice
structure. Indeed, an inclusion ordering of the set of elements of a closure system
can generate a lattice structure.

In [10], Burosch considers the issue of counting Moore families as natural, so
he suggests an upper bound for that number. In this paper, we will complete
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Fig. 1. Two moore families : On the left, family {∅, {0}, {0, 1}, {2}, {0, 1, 2}} on the
set {0, 1, 2}. On the right, family {∅, {0}, {1}, {2}, {1, 2}, {2, 3}, {0, 1, 2, 3}} on the set
{0, 1, 2, 3}.

his survey using a new |Mn|-bound based on |Mn−1|. In 1998, Higuchi in [11]
calculated |M5| by a depth first search study of the covering graph of a Moore
family lattice structure. More recently, Habib and Nourine have evaluated in [1]
the size of M6. Their method is based on the existence of a bijection between
the set of Moore families and the ideals colorset of a colored poset composed of
boolean lattices. Thanks to an efficient algorithm of enumeration of order ideal
sets (cf. [12]), the authors managed to count M6 and stated that the process
would take 24h on a pentium III 600 MegaHertz (we note that the method
presented here compute this number M6 in around 120ms on a Core2quad Q9300
2,5 GigaHertz). The whole set of values of this counting is given in table 1.
Considering the exponential development of the results, the evaluation of the
number for n = 7 turned out to be a particularly difficult challenge.

Table 1. Known values of |Mn| on n ≤ 7

n |Mn| Référence

0 1

1 2

2 7

3 61

4 2 480

5 1 385 552 [11]

6 75 973 751 474 [1]

7 14 087 648 235 707 352 472 This paper

The rest of the paper is composed as follows. The second part is devoted to
the data structure and key points on which our calculation strategy was based:
symmetry concept, canonical form and maximal family. In the third part,
we will present the main algorithmic principles we have implemented. Then, in
the fourth part, we will deal with the technological aspects of the calculation
process (type of machine, performance, reliability index). As a conclusion, we
will put things into perspective.
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2 Strategy Elements

This part defines the essential elements of our calculation strategy. Firstly, we will
describe the coding used to store and process the Moore families. Then, we will
explain the various concepts used as the basis of this calculation strategy: The
symmetries between the families, the concept of canonical form as the identifier
of an equivalence class as well as the concept of maximal family based on the
recursive structure of the objects to be counted. The proofs of the propositions
are given in the appendix.

In the introduction, we have defined a Moore family on Un as a collection of
sets containing Un and closed by intersection. However for the reasons of conve-
nience that the reader will find in the course of reading, our entire algorithmic
process will concentrate on enumeration of families closed by union and contain-
ing the empty set. All the Moore families are in fact in bijection with this set.
Actually, for a family closed by union containing the empty set, one only has to
complement every set to obtain a Moore family (and vice-versa).

For example, the U3 family {{0}, {0, 1}, {0, 2}, {0, 1, 2}} corresponds to the
Moore family {∅, {1}, {2}, {1, 2}} and vice versa.

2.1 Encoding

Let us consider a Un = {0, ..., n−1} universe with n elements and a set E ⊆ Un.
E can be naturally encoded by its characteristic vector (for example, refer to
figure 2).

0 0 1 1 0 1 1

6 5 4 3 2 1 0

Fig. 2. For the universe U7 = {0, ..., 6}, the set {0, 1, 3, 4} is encoded by a 7 bit vector
b[] such that b[i] = 1 if and only if i ∈ {0, 1, 3, 4}

We can associate a decimal value to each subset of E by interpreting the
characteristic vector as a binary number. To be more precise, an integer between
0 and 2n−1 corresponds to each sub-set of {0, ..., n−1}. In the previous example,
the integer associated to the set {0, 1, 3, 4} is equal to the sum of 20+21+23+24

i.e. 27. By using these decimal values as set identifiers, we can also encode a set
family on a universe with n elements by a characteristic vector of 2n bits (for
example, refer to figure 3).

Finally, we associate an integer between 0 and 22n

with each family by inter-
preting the new vector as a binary number. For example, 131 is the identifier of
the family {∅, {0}, {0, 1, 2}}. As we will see, using such an encoding enables carry-
ing out normal operations on the sets by simple logic or arithmetic operations.

Two operations are essential in our counting process:
Testing whether a family contains the empty set and testing whether after

adding an E set to an F family closed by union, F remains closed by union. The
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Fig. 3. Let be a universe U3 = {0, 1, 2}, the family F = {∅, {0}, {0, 1, 2}} is encoded
by the 23 = 8 bits vector b[] where b[i] = 1 if and only if the set E belongs to F (i
being the integer associated with the set E)

first of the two tests becomes trivial when the proposed coding is used. In fact,
since the empty set is borne by the weakest bit, a family contains the empty set
if and only if the identifier of this family is an odd number. The second, more
difficult test requires verifying whether each element of F , the union of this
element with E is in F . Nevertheless, this test can be carried out by extracting
the following code:

for (i = 1 ; i < N ; i++ )
if ( ( F \& (1U<<i)) \&\& ! ( F \& (1U << (E | i) ) ) )
printf("F Union E is not union closed");

The for loop scans all the characteristic integers i of a set. The first part of
the test if (F&(1U << i)) verifies whether the set corresponding to the integer
i belongs to the F family. For this test, we create a vector made up of 0 except
of 1 at the position i using the (1U << i) expression and we carry out an and
logic with the F family. This test naturally gives ”true” as result if and only if
the i set belongs to F . The second part of the test verifies whether i∪E belongs
to the F family. Since the identifier of the E ∪ i set corresponds to the decimal
value of E|i, it is enough to carry out an and logic between F and a vector made
up of 0 except 1 at the E|i position.

2.2 Symmetry and Canonical Form

A permutation Φ on a finite set Un = {0, ..., n − 1} is a bijective function from
Un to Un. For convenience Φ is often represented by the sequence of its images
Φ(0), Φ(1), ..., Φ(n − 1). All the permutations on a Un set are marked by Symn.
For a set E ⊆ Un and Φ ∈ Symn, we use Φ(E) to mark the image of E by Φ
defined by :Φ(E) = {Φ(x)|x ∈ E}. Similarly, we simply use Φ(F) = {Φ(E)|E ∈
F} for all F ⊆ 2Un .

Example: Let F be the family {∅, {2}, {1, 2}, {0, 1, 2}} and Φ the permutation
1, 2, 0 then Φ(F) = {∅, {0}, {0, 2}, {0, 1, 2}}.

Using the concept of permutation we can divide all the families on Un into
equivalence classes. Thus we can say that two families belong to the same class if
they are the images of one another by a Symn permutation. The reference family
of each class is called the canonical form. We have used an identification of
the canonical form based on the properties of our encoding. Hence, the canonical
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Table 2. For F = {∅, {2}, {1, 2}, {0, 1, 2}} and each permutation Φ of Sym3, the image
of F by Φ and its identifier

PermutationΦ Φ(F) Identifier

012 {∅, {2}, {12}, {012}} 209
021 {∅, {1}, {12}, {012}} 197
102 {∅, {2}, {02}, {012}} 177
120 {∅, {0}, {02}, {012}} 163
210 {∅, {0}, {01}, {012}} 139
201 {∅, {1}, {01}, {012}} 141

Table 3. The number of Moore families up to an isomorphism and the average size
of classes for each value of n. The average size of classes increases drastically with n
(and tends to be close to n!) which proves that the set of all the Moore families on a
universe contains a large number of isomorphic objects.

n Number of Moore families up to isomorphism Average size of classes

1 2 1

2 5 1, 40

3 19 3, 21

4 184 13, 48

5 14664 94, 49

6 108 295 846 701, 54

form of a family F ⊆ 2Un is defined as the image by one of the permutations of
Symn having the smallest identifier.

Example: Let us consider F = {∅, {2}, {1, 2}, {0, 1, 2}} family on U3 as well as
the Sym3 set containing 6 permutations. As per table 2, the canonical form of
F is the {∅, {0}, {01}, {012}} family whose identifier is equal to 139.

Proposition 1. Let M be a Moore family on Un and Φ ∈ Symn be a permuta-
tion, then Φ(M) is a Moore family on Un.

The partitioning that exists on the set of families on Un also pertains to the set
of Moore families. Actually, as per the previous property, the image of a Moore
family by a permutation remains a Moore family. Therefore, it is possible to enu-
merate the Moore families by enumerating the representative of each equivalence
class and then by counting its images with the help of different permutations. In
general, the enumeration of a single representative per equivalence class is called
as ”enumeration of a set of combination objects up to an isomorphism”. This
strategy is often based on the observation that a large part of the combinatorial
explosion related to all the objects studied can be explained by the presence of
isomorphic objects. Table 3 shows that this situation is specially verified for the
set of Moore families. Let’s note that it’s common to use symmetry to decrease
combinatorial explosion (see for example [13,14]).
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Fig. 4. On left a Moore family on U3 (such that each element contains 2) associated
to two different Moore families on Un−1. In each case, the obtained family, on right, is
itself a Moore family.

2.3 Maximal Family

A Moore family M on Un can be divided into two parts. The part made up of
M sets containing the {n − 1} element (marked as Msup for the upper part)
and the additional part (marked as Minf for the lower part). The ∅ element is
duplicated in order to be included in both parts. Naturally M = Msup ∪Minf .
Besides, Msup and Minf are Moore families. The example in figure 4 proves
that there can be many compatible lower parts for a fixed upper part (i.e., their
combination gives a Moore family).

There is a unique maximal family for a given upper Msup family as all the
families compatible with Msup are the sub-families of the maximal family. To
be more specific:

Proposition 2. Let Msup be a Moore family on Un with n − 1 ∈ M for all
M ∈ Msup \ {∅}. Then there exists a unique Moore family Mmax on Un−1

compatible with Msup such that all Moore families on Un, whose the restriction to
its elements containing n−1 corresponds to Msup, can be written Msup∪Minf ,
with Minf ⊆ Mmax.

We can make two remarks : First, The maximal family can be defined as Mmax =
{M ∈ 2Un−1 | M ∪ M ′ for all M ′ ∈ M}. Second the maximal family correspond
to the set of the quasi-closed sets that don’t contain {n − 1}.

The maximal family associated to the Msup family given in figure 4, for
example, is a family made up of {∅, {0}, {1}, {0, 1}} elements. We can verify
whether the two compatible families given in figure 4 are the sub-families of
this family.
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Algorithm 1. maximalFamily()
Data : V [2n] which corresponds to the family Msup

Result : V [2n] which corresponds to the family Msup ∪Mmax

begin
for (b = 2n − 1 to 0) do

V [b]← 1;
if V [] does not corresponds to a union closed family then

V [b]← 0;

return V [];

end

Remember, the encoding taken from a Moore family takes the form of a 2n bit
vector (we will use a 128 size vector to count the Moore families on U7). Naturally
the first 2n−1 bits encode for all the sets containing the n−1 element (i.e. Msup),
whereas the last 2n−1 bits encode for Minf . Therefore, our counting strategy
consists in generating only the upper parts of the vector, and determining the
maximal family that is compatible with each of these upper parts (which means
calculating the lower part of the vector). Algorithm 1 is a calculation process of
this unique family.

Proposition 3. Let Msup be a Moore family on Un (all its elements containing
n − 1), the algorithm 1 computes the maximal family Mmax compatible with
Msup and returns the vector which corresponds to the family Msup ∪Mmax.

There are multiple uses of the maximal family concept: Firstly, we have seen
that the counting of Moore families of U7 requires using a 128 bits vector. Un-
fortunately, integers on 128 bits are not convenient enough to handle directly.
Using maximal families enables dividing the calculation of Moore families into
two distinct and independent parts by using only the 64 bits vectors. Secondly, it
also enables reusing the calculations made while counting the Moore families on
Un−1 to count the Moore families on Un. Finally, it helps to highlight a natural
bound on the number of Moore families on Un according to this number on Un−1

(refer to proposition 4).

Proposition 4. Let Mn and Mn+1 be the sets of all Moore family respectively on
Un and Un+1 then we have | Mn+1 |≤ 2 ∗ | Mn |2.
The following section concentrates on the implementation of these concepts in
an algorithmic framework.

3 Algorithms

This section describes three different algorithms of counting the Moore families
on Un. The first algorithm is a näıve recursive algorithm that scans a tree repre-
senting the set of Moore families. The second algorithm introduces the concept
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Fig. 5. Binary tree corresponding to the exploration of algorithm 2

Algorithm 2. Moore1()
Data : V []: bit vector; k :integer

begin
if k = 0 then
|Mn| ← |Mn|+ 1;

else
Moore1(V [], k − 1);
V [k]← 1;
if V [] corresponds to an union closed family then

Moore1(V [], k − 1)

V [k]← 0;

end

of symmetry by storing the unique representative of each class in a hash table. A
”coefficient” variable associated to each class records the size of the class. Lastly,
the third algorithm integrates the concept of maximal family in the symme-
try concept. Note that only the last algorithm gives reasonable calculation time
for n = 7.

3.1 Näıve Algorithm

The algorithm 2 completes a recursive scan of the set of Moore families on Un.
The medium for this scan is a tree having Moore families as leaves. It stops
when a given set is present or absent in the family. The tree structure of Moore
families on U2 is given in figure 5. Thus the algorithm generates a new set at
every node and determines whether it can be added to the current family. If the
answer is ”No”, the process continues on the left branch with the same family.
Otherwise, the process is restarted on the right branch with a family integrating
the new element. When a leaf is reached, the value of a global variable (|Mn|),
counting the total number of families, increases.

Technically, the current family is stored in the V [] vector (initialised to 0)
which is updated from left to right. k corresponds to the position of the bit of
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V [], i.e. to the set which is likely to be inserted in the family. k initialised to 2n−1
decreases naturally till 0 which corresponds to a leave of the tree. In this way,
the sets are considered in a linear order whose first element is the {0, 1, ..., n−1}
set and the last element is the empty set.

3.2 Algorithm Using the Symmetries

The algorithmic principle given here integrates the concept of symmetries and
stores the canonical forms in a hash table by associating a coefficient to each
of these forms. Inserting a canonical form coupled with a c coefficient in the
table involves creating a new input if the form is not known or increasing the
coefficient of the existing form by c.

To calculate the canonical form of the Moore family M, the function
canonicalForm(M) generates M images by all the permutations of SymUn

and returns the image of the smallest identifier. These small values of n (at the
most 7) provide reasonable calculation time for a complexity of O(n!). Finally
we can notice that the problem of the canonical form calculation comes down to
the problem of graph isomorphism.

Our strategy can be represented using two algorithms:
The first fillV ector() (refer to algorithm 3) enables assigning bits to the V []
vector between the k and m positions in such a way thatV [] becomes a fam-
ily closed by union. It is an adaptation of the Moore1 algorithm for which
the stop bit (corresponding to a leave) can be parameterised. The second al-
gorithm (refer to algorithm 4) uses the information stored in the hash table at
each step to effectively construct the new vectors which can correspond to the
Moore families. At the end of the calculation, it is enough to only add the coeffi-
cients of each canonical form present in the latest table to find the total number
of families.

Let us note that the c coefficient associated to a V [] vector when it is inserted
in the hash table is the coefficient associated to the vector which was used when
the fillV ector() algorithm was called in Moore2 process.

Algorithm 3. fillV ector()
Data : V [] : bit vector; k,m : integers;

begin
if k = m− 1 then

myHashTable.add(canonicalForm(V []));

else
fillV ector(V [], k − 1);
V [k]← 1;
if V [] corresponds to an union closed family then

fillV ector(V [], k − 1);

V [k]← 0;

end
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Table 4. Sizes of the hashtable containing Moore families corresponding to different
values of n before and after reduction

n |H | before reduction |H | after reduction

2 7 5

3 46 19

4 916 184

5 140 463 14 664

6 770 413 085 108 295 846

Algorithm 4. moore2()
Data : n : integer;

Result : integer / number of Moore families on Un;

begin
H ′.add(V [] =< 0, 0, ..., 0, 0, 1 >);
H ← ∅;
i← 1;
while i ≤ n do

for V [] ∈ H ′ do
fillV ector(V [], 2i − 1, 2i−1);

i + +;
H ′ ← H ;

return ΣV []∈HV [].coefficient;

end

Table 4 recapitulates the size of the table containing the families generated for
each value of n. The size is given before and after the reduction. Naturally, we
can find the number of Moore families up to an isomorphism in the last column.
Finally, let us remember that the hash table before reduction is never constructed
since the reduction takes place with the help of the canonicalForm() function
as the process progresses.

3.3 Algorithm Using the Maximal Families

The algorithm shown here integrates the principle of maximal family (refer to the
previous section) with the concept of symmetry that we have just implemented.
At first, an adaptation of the previous algorithm is used to generate the vectors
representing the Msup families up to an isomorphism (the number of families
isomorphic to each of these families is stored in the c coefficient). Secondly, we
determine the associatedMinf maximal family for each Msup family. Let us note
that a Minf family is a Moore family on Un−1 and its weight p corresponds to
the number of Moore families included in this family. Hence, the counting of the
Moore families on Un corresponds to the sum of the product between the weights
and the coefficient of each selected family.
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Algorithm 5. leftPart()
Data : n : integer;

Result : H ;

begin
H ′.add(V =< 0, 0, ..., 0, 0, 1 >);
H ← ∅;
i← 1;
while i ≤ n− 1 do

for V ∈ H ′ do
FillV ector(V, 2i − 1 + 2n−1, 2i−1 + 2n−1);

n + +;
H ′ ← H ;

return H ;

end

The input of the maximalFamily() function is a V [] vector of 2n bits that
represents a Moore family on Un as all its elements contain the n − 1 element.
Therefore, all the bits of V [] included between 1 and 2n−1 − 1 are positioned
at 0. The function returns a vector of 2n−1 bits representing the Moore family
on Un−1 that corresponds to the maximal family associated to the considered
Moore family.

The leftPart() algorithm (refer to algorithm 5) generates vectors up to an
isomorphism corresponding to the Moore families on Un by considering only the
2Un \ 2Un−1 \ {n − 1} elements. The Moore2 algorithm given earlier is adapted
considering only the bits included between 2n − 1 and 2n−1 + 1.

Algorithm 6. moore3()
Data : n : integer; Mn−1;

Result : |Mn| the number of Moore family on Un;

begin
|Mn| ← 0;
H ← leftPart(n);
for V [] ∈ H do
|Mn| ← |Mn| + canonicalForm(maximalFamily(V [])).weight ∗
V [].coefficient;
V [2n−1]← 1;
|Mn| ← |Mn| + canonicalForm(maximalFamily(V [])).weight ∗
V [].coefficient;

retourner |Mn|;
end

The Moore3() algorithm (refer to algorithm 6) starts by generating the left
parts of the vectors by using the leftPart() algorithm. Two Moore families are
associated to each left part: one family containing the n−1 element and another
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not containing this element. Then the algorithm associates a maximal family
to each Moore family. The number of Moore families on Un are calculated by
accumulating the results of the coefficients of the Msup families by the weights
of corresponding Minf families as the process progresses. The algorithm uses a
Mn−1 dictionary containing the weights of Moore families on Un−1. The weight
of a family can be calculated with the help of the computeWeight() algorithm
(refer to algorithm 7) which functions conversely to the fillV ector() algorithm.

Algorithm 7. computeWeight()
Data : V [] : vector, k : integer;

Result : p;

begin
if k = 2n then

p← p + 1;

else
computeWeight(V [], k + 1);
V [k]← 0;
if V [] corresponds to a union closed family then

computeWeight(V [], k + 1)

end

In case of the calculation of number of Moore families on U7, the number of left
parts up to an isomorphism is 108295846 (it corresponds to the number of Moore
families on U6 up to an isomorphism). We find 118540742 maximal families and
108295846 maximal families up to an isomorphism. In other words, each Moore
family on U6 is, at least one time, a maximal family of a family on U7.

4 Technical Aspects

4.1 Implementation

This program is written in C, compiled with Gcc version 4 for Linux 64 bits.
We have used the OpenMP parallel programming library. The main calculation
lasted 11 hours on a 2.5 GHz Core2 Q9300. The verification lasted 9 hours on
a 1.86 GHz double Xeon E5320 (University of Bogotá). The calculation was
simultaneously done on a 2.3 GHz Opteron 8356 quadruplet (LIMOS).

4.2 Reliability

The question of reliability is of primordial importance for any result involving
a large number of computer calculations. In this case, the authors would like to
highlight the following points:
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– The result complies with the previous estimations of one of the authors
(between 1, 2.1019 and 1, 7.1019) based on an extrapolation of data for n ≤ 6.

– There is no specific code at n = 7 and no special threshold between n = 6
and n = 7 (for example, size of integers used)

– The same program gives good results for n ranging from 1 to 6 (number of
Moore families and the families reduced by isomorphism).

– The code was executed on numerous occasions on different architectures
(Intel and AMD).

– The program was compiled with three stable compilers (Gcc v. 4.1, 4.2
and 4.3) and various options on different operating systems (Ubuntu and
CentOS).

– The result remained stable at each modification of the size available for the
hash tables. Let us note that the modification in the table size badly disrupts
the time required for the calculation to complete.”

– The result remains unchanged by replacing the canonical form based on the
smallest representative of the equivalence class with a canonical form based
on a larger representative.

5 Conclusion

The problem of enumerating the Moore families in the n order is a complex issue
for which there is no known formula. Even the absence of such a formula has not
been proved. Numerous combinatory problems fall in the same case. For example,
the number of monotonous Boolean functions known as the Dedekind number.
An often supported approach to comprehend such formulae involves counting
the number of objects for the first values of n using a systematic procedure.
We can find such integer sequences on the well-known On-line Encyclopaedia of
Integer Sequences. Our work thus had a dual-objective: Not only enriching the
already-known sequence for the number of Moore families, but also highlighting
the new properties of the set of Moore families.

In this article, we have proved that we can calculate the search objects without
enumerating all of them. Therefore, there is a smaller frame of objects (the Moore
families on Un up to an isomorphism in which all the sets include n − 1) from
which the total number can be deduced. In other words, for each object of the
frame it is sufficient to calculate its associated maximal family (a Moore family
on Un−1) and calculate its weight (i.e. the number of Moore families included).
This enumeration is carried out only once even if the maximal family is found
many times. Since the result is stored in a hash table that uses the identifier of
the maximal family as its input, we can also affirm that each Moore family on
Un−1 appears at least once as a maximal family.

The possibility of predicting how many times each family on Un−1 appears as
maximal family of a family on Un will bring us significantly close to finding a
general formula, if any such formula exists.



Counting of Moore Families for n=7 85

Acknowledgment

We are grateful to Bernhard Ganter to have pointed out the misprint on the
Integer Sequence Encyclopedia, and consequently confirmed our results on the
number of Moore families up to isomorphism.

References

1. Habib, M., Nourine, L.: The number of moore family on n=6. Discrete Mathemat-
ics 294, 291–296 (2005)

2. Cohn, P.: Universal Algebra. Harper and Row, New York (1965)
3. Davey, B.A., Priestley, H.A.: Introduction to lattices and orders, 2nd edn. Cam-

bridge University Press, Cambridge (1991)
4. Demetrovics, J., Libkin, L., Muchnik, I.: Functional dependencies in relational

databases: A lattice point of view. Discrete Applied Mathematics 40(2), 155–185
(1992)

5. Duquenne, V.: Latticial structure in data analysis. Theoretical Computer Sci-
ence 217, 407–436 (1999)

6. Ganter, B., Wille, R.: Formal concept analysis. Mathematical Foundation. Springer,
Heidelberg (1999)

7. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)
8. Moore, E.: Introduction to a form of general analysis. Yale University Press, New

Haven (1910)
9. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and

implicational systems on a finite set: a survey. Discrete Applied Mathematics 127,
241–269 (2003)

10. Burosh, G., Demetrovics, J., Katona, G., Kleitman, D., Sapozhenko, A.: On the
number of databases and closure operations. Theoretical Computer Science 78,
377–381 (1991)

11. Higuchi, A.: Note:lattices of closure operators. Discrete Mathematics 179, 267–272
(1998)

12. Medina, R., Nourine, L.: Algorithme efficace de génération des ideaux d’un ensem-
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Appendix

Proposition 1. Let M be a Moore family on Un and Φ ∈ Symn be a permuta-
tion, then Φ(M) is a Moore family on Un.

Proof. Let us show that Φ(M) is a Moore family.

– ∅ ∈ M, Φ(∅) = ∅ thus ∅ ∈ Φ(M).
– Let M1 and M2 ∈ M and Φ(M1) and Φ(M2) ∈ Φ(M). We have Φ(M1) ∪

Φ(M2) = Φ(M1 ∪ M2) by definition of Φ(). Since M is closed M1 ∪ M2 ∈
Φ(M). Then Φ(M1 ∪ M2) ∈ Φ(M).

So ∀Φ(M1) and Φ(M2) ∈ Φ(M), Φ(M1) ∪ Φ(M2) ∈ Φ(M).
Φ(M) contains the empty set and is closed by union, Φ(M) is a Moore family.

	


Proposition 2. Let Msup be a Moore family on Un with n − 1 ∈ M for all
M ∈ Msup \ {∅}. Then there exists a unique Moore family Mmax on Un−1

compatible with Msup such that all Moore families on Un, whose the restriction to
its elements containing n−1 corresponds to Msup, can be written Msup∪Minf ,
with Minf ⊆ Mmax.

Proof. Let M be a Moore family on Un with M = Msup ∪Minf .
A) Let us show that for any Moore family M′

inf on Un−1 with M′
inf ⊆ Minf

then Msup ∪M′
inf is a Moore family.

– ∅ ∈ M′
inf , then ∅ ∈ Msup ∪M′

inf ;
– Let M1 and M2 ∈ Msup ∪M′

inf ; 3 cases can occur :
1. If M1 and M2 ∈ Msup, since Msup is a Moore family M1 ∪M2 ∈ Msup

and then M1 ∪ M2 ∈ Msup ∪M′
inf ;

2. If M1 and M2 ∈ M′
inf , since M′

inf is a Moore family M1∪M2 ∈ M′
inf

and then M1 ∪ M2 ∈ Msup ∪M′
inf ;

3. If M1 ∈ Msup et M2 ∈ M′
inf . Since M′

inf ⊆ Minf and since for all M
∈ Minf , M1∪M2 ∈ Msup (M ∪M1 contains n) then M1∪M2 ∈ Msup.
And so M1 ∪ M2 ∈ Msup ∪M′

inf ;

B) Let us show that for all Moore families M′
inf and M′′

inf on Un−1 such
that Msup ∪ M′

inf and Msup ∪ M′′
inf are Moore families then C(M′

inf ∪
M′′

inf ) ∪Msup is a Moore family with C an union closed operator.

– ∅ ∈ M′
inf , then ∅ ∈ C(M′

inf ∪M′′
inf ) ∪Msup;

– Let M and M ′ ∈ C(M′
inf ∪M′′

inf ) ∪Msup; The only difficult case corre-
sponds to the case M ∈ Msup and M ′ ∈ C(M′

inf ∪M′′
inf )\M′

inf \M′′
inf .

Since M′
inf and M′′

inf are Moore families then there exists m1 in M′
inf

and m2 in M′′
inf such that M ′ = M1 ∪ M2 and :
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1. if M1 ∈ M′
inf then ∀M ∈ Msup we have M ∪ M1 ∈ Msup;

2. if M2 ∈ M′′
inf then ∀M ∈ Msup we have M ∪ M2 ∈ Msup;

And since Msup is a Moore family M1∪M2∪M = M ′∪M belongs to Msup

We conclude that for all couple of elements M and M ′ in C(M′
inf ∪M′′

inf )∪
Msup, M∪M ′ belongs to Msup. So C(M′

inf ∪M′′
inf )∪Msup is a Moore family.

From B) we have that the set of all compatible Moore families with a given
family Msup owns only one maximal element denoted Mmax such that for all
families Minf included in or equal to Mmax, the join of Msup and Minf is a
Moore family. 	


Proposition 3. Let Msup be a Moore family on Un (all its elements containing
n), the algorithm 1 computes the maximal family Mmax compatible with Msup

and returns the vector which corresponds to the family Msup ∪Mmax.

Proof. First of all let us say the the order in which element are considered follows
the property : Let M ∈ 2Un , for all M ′ ∈ 2Un the element M ∪ M ′ is processed
before M . If M ′ ⊂ M we have M = M ∪ M ′.

Let Mmax be a Moore family produced by the algorithm. Let us show that
Mmax is a Moore family and is maximal. By construction Mmax is a Moore
family. Consider the following assertion: to each step of the algorithm, if a set
M ∈ 2Un is not added to Mmax then Msup ∪Mmax ∪M is not a Moore family.
Let us demonstrate the assertion reductio ad absurdum : Suppose that there
exists a set M �∈ Mmax such that Msup ∪Mmax ∪ M is a Moore family. Then
there exists a set M ′ processed before M , and a set M ′′ processed after M with
M ′′ = M ∪M ′. Which is in contradiction with the process’ computational order.
Absurd. 	


Proposition 4. Let Mn and Mn+1 be the sets of all Moore family respectively on
Un and Un+1 then we have | Mn+1 |≤ 2 ∗ | Mn |2.
Proof. Each family M ∈ Mn is going to produce two superior families Msup1 =
{M ∪n | M ∈ M}∪∅ and Msup2 = {M ∪n | m ∈ M}∪∅ \n. Therfore, the set
Msupn+1 of all families Msup contains 2∗ | Mn | elements. In the worst case the
maximal family associated to each family Msup ∈ Msupn+1 is the Moore family
2Un of weight | Mn |. So | Mn+1 |≤ 2 ∗ | Mn |2. 	
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