

Lecture Notes in Artificial Intelligence 5986
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Léonard Kwuida Barış Sertkaya (Eds.)

Formal
Concept Analysis
8th International Conference, ICFCA 2010
Agadir, Morocco, March 15-18, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Léonard Kwuida
Zurich University of Applied Sciences, School of Engineering
Technikumstrasse 9, 8401 Winterthur, Switzerland
E-mail: kwuida@gmail.com

Barış Sertkaya
SAP Research Center Dresden
Chemnitzer Strasse 48, 01187 Dresden, Germany
E-mail: baris.sertkaya@sap.com

Library of Congress Control Number: 2010921136

CR Subject Classification (1998): I.2, G.2.1-2, F.4.1-2, D.2.4, H.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-11927-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11927-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

This volume contains selected papers presented at ICFCA 2010, the 8th Inter-
national Conference on Formal Concept Analysis. The ICFCA conference series
aims to be the prime forum for dissemination of advances in applied lattice and
order theory, and in particular advances in theory and applications of Formal
Concept Analysis.

Formal Concept Analysis (FCA) is a field of applied mathematics with its
mathematical root in order theory, in particular the theory of complete lattices.
Researchers had long been aware of the fact that these fields have many potential
applications. FCA emerged in the 1980s from efforts to restructure lattice theory
to promote better communication between lattice theorists and potential users
of lattice theory. The key theme was the mathematical formalization of con-
cept and conceptual hierarchy. Since then, the field has developed into a growing
research area in its own right with a thriving theoretical community and an in-
creasing number of applications in data and knowledge processing including data
visualization, information retrieval, machine learning, sofware engineering, data
analysis, data mining in Web 2.0, analysis of social networks, concept graphs,
contextual logic and description logics.

ICFCA 2010 took place during March 15–18, 2010 in Agadir, Morocco. We
received 37 high-quality submissions out of which 17 were chosen as regular
papers in these proceedings after a competitive selection process. Less mature
works that were still considered valuable for discussion at the conference were
collected in the supplementary proceedings. The papers in the present volume
cover advances in various aspects of FCA ranging from its theoretical foundations
to its applications in numerous other fields. In addition to the regular papers,
this volume also contains four keynote papers arising from the seven invited talks
given at the conference. We are also delighted to include a reprint of Bernhard
Ganter’s seminal paper on his well-known algorithm for enumerating closed sets.
The high quality of both regular and keynote papers was the result of the hard
work of the authors, invited speakers and the reviewers.

We wish to thank the members of the Program Committee and the members
of the Editorial Board for their involvement that ensured the scientific quality
of this volume. We would also like to thank the external reviewers for their
valuable comments. Additional thanks go to the organization Committee and to
the Institut Supérieur d’Informatique Appliquée et de Management (ISIAM) for
sponsoring the conference and hosting it. Finally we wish to thank the Confer-
ence Chair Rokia Missaoui and her team for the tremendous amount of work
they put before and during the conference to make it a real success.

March 2010 Léonard Kwuida
Barış Sertkaya

Organization

The International Conference on Formal Concept Analysis is the annual confer-
ence and principal research forum in the theory and practice of Formal Concept
Analysis. The inaugural International Conference on Formal Concept Analy-
sis was held at the Technische Universität Darmstadt, Germany in 2003. Suc-
ceeding ICFCA conferences were held at the University of New South Wales in
Sydney, Australia 2004, Université d’Artois, Lens, France 2005, Institut für Al-
gebra, Technische Universität Dresden, Germany 2006, Université de Clermont-
Ferrand, France 2007, Université du Québec à Montréal, Canada 2008 and Darm-
stadt University of Applied Sciences, Darmstadt, Germany 2009. ICFCA 2010
took place in Agadir, Morocco with the committees below.

Executive Committee

Conference Chair

Rokia Missaoui Université du Québec en Outaouais, Canada

Local Chair
Ameur Boujenoui Telfer School of Management, University of

Ottawa, Canada

Conference Organizing Committee

Omar Abahmane Université du Québec en Outaouais, Canada
Souad Bennani Institut Supérieur d’Informatique Appliquée et de

Management (ISIAM), Agadir, Morocco
Lahcen Boumedjout Université du Québec en Outaouais, Canada
Aziz Bouslikhane Institut Supérieur d’Informatique Appliquée et de

Management (ISIAM), Agadir, Morocco
Jamal Elachmit Institut Supérieur d’Informatique Appliquée et de

Management (ISIAM), Agadir, Morocco

Conference Proceedings

Program Chairs

Léonard Kwuida Zurich University of Applied Sciences, School of
Engineering, Winterthur, Switzerland

Barış Sertkaya SAP Research Center Dresden, Germany

VIII Organization

Editorial Board
Peter Eklund University of Wollongong, Australia
Sébastien Ferré Université de Rennes 1, France
Bernhard Ganter Technische Universität Dresden, Germany
Robert Godin Université du Québec à Montréal, Canada
Sergei O. Kuznetsov Higher School of Economics, Moscow, Russia
Raoul Medina LIMOS, Université Clermont-Ferrand 2, France
Rokia Missaoui Université du Québec en Outaouais, Canada
Sergei Obiedkov Higher School of Economics, Moscow, Russia
Uta Priss Napier University, Edinburgh, UK
Sebastian Rudolph Karlsruhe Institute of Technology, Germany
Stefan E. Schmidt Technische Universität Dresden, Germany
Gerd Stumme University of Kassel, Germany
Rudolf Wille Technische Universität Darmstadt, Germany
Karl Erich Wolff University of Applied Sciences, Darmstadt,

Germany

Program Committee

Mike Bain University of New South Wales, Sydney, Australia
Jaume Baixeries Université du Québec à Montréal, Canada
Peter Becker The University of Queensland, Brisbane, Australia
Radim Belohlavek Binghamton University - State University of

New York, USA
Sadok Ben Yahia Faculty of Sciences of Tunis, Tunisia
Jean-François Boulicaut INSA Lyon, France
Claudio Carpineto Fondazione Ugo Bordoni, Italy
Frithjof Dau SAP Research CEC Dresden, Germany
Vincent Duquenne ECP6-CNRS, Université Paris 6, France
Alain Gély LITA, Université Paul Verlaine, Metz, France
Joachim Hereth DMC GmbH, Germany
Wolfgang Hesse Philipps-Universität Marburg, Germany
Tim B. Kaiser SAP AG, Germany
Derrick G. Kourie University of Pretoria, South Africa
Markus Krötzsch Karlsruhe Institute of Technology, Germany
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Léonard Kwuida Zurich University of Applied Sciences, School of

Engineering, Winterthur, Switzerland
Lotfi Lakhal Université Aix-Marseille, France
Wilfried Lex Universität Clausthal, Germany
Engelbert Mephu Nguifo LIMOS, Université de Clermont Ferrand 2, France
Lhouari Nourine LIMOS, Université de Clermont Ferrand 2, France
Jean-Marc Petit LIRIS, INSA Lyon, France
Alex Pogel New Mexico State University, Las Cruces, USA
Sandor Radeleczki University of Miskolc, Hungary
Camille Roth CNRS/EHESS, Paris, France

Organization IX

Jürg Schmid Universität Bern, Switzerland
Andreja Tepavčević University of Novi Sad, Serbia
Petko Valtchev Université du Québec à Montréal, Canada
Vilem Vychodil Binghamton University - State University of

New York, USA
Serhyi Yevtushenko Luxoft, Ukraine

External Reviewers
Mikhail A. Babin Higher School of Economics, Moscow, Russia
Löıc Cerf INSA Lyon, France
Heiko Reppe Technische Universität Dresden, Germany
Chris Schulz University of Pretoria, South Africa
Branimir Seselja University of Novi Sad, Serbia
Gregor Snelting Karlsruhe Institute of Technology, Germany
Fritz Venter University of Pretoria, South Africa
Denny Vrandecic Karlsruhe Institute of Technology, Germany

Table of Contents

Invited Talks

About the Enumeration Algorithms of Closed Sets 1
Alain Gély, Raoul Medina, and Lhouari Nourine

Mathematics: Presenting, Reflecting, Judging . 17
Rudolf Wille

The Role of Concept, Context, and Component for Dependable
Software Development . 34

Vasu Alagar, Mubarak Mohammad, and Kaiyu Wan

Statistical Methods for Data Mining and Knowledge Discovery 51
Jean Vaillancourt

Regular Contributions

Formal Concept Analysis of Two-Dimensional Convex Continuum
Structures . 61

Rudolf Wille

Counting of Moore Families for n=7 . 72
Pierre Colomb, Alexis Irlande, and Olivier Raynaud

Lattice Drawings and Morphisms . 88
Vincent Duquenne

Approximations in Concept Lattices . 104
Christian Meschke

Hardness of Enumerating Pseudo-intents in the Lectic Order 124
Felix Distel

On Links between Concept Lattices and Related Complexity
Problems . 138

Mikhail A. Babin and Sergei O. Kuznetsov

An Algorithm for Extracting Rare Concepts with Concise Intents 145
Yoshiaki Okubo and Makoto Haraguchi

Conditional Functional Dependencies: An FCA Point of View 161
Raoul Medina and Lhouari Nourine

Constrained Closed Datacubes . 177
Sébastien Nedjar, Alain Casali, Rosine Cicchetti, and Lotfi Lakhal

XII Table of Contents

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 193
Sébastien Ferré

An Approach to Exploring Description Logic Knowledge Bases 209
Felix Distel

On Categorial Grammars as Logical Information Systems 225
Annie Foret and Sébastien Ferré

Describing Role Models in Terms of Formal Concept Analysis 241
Henri Mühle and Christian Wende

Approaches to the Selection of Relevant Concepts in the Case of Noisy
Data . 255

Mikhail Klimushkin, Sergei Obiedkov, and Camille Roth

Concept Analysis as a Framework for Mining Functional Features from
Legacy Code . 267

Amal El Kharraz, Petko Valtchev, and Hafedh Mili

Concept Neighbourhoods in Lexical Databases . 283
Uta Priss and L. John Old

A Survey of Hybrid Representations of Concept Lattices in Conceptual
Knowledge Processing . 296

Peter Eklund and Jean Villerd

History

Two Basic Algorithms in Concept Analysis . 312
Bernhard Ganter

Author Index . 341

About the Enumeration Algorithms of
Closed Sets

Alain Gély1, Raoul Medina2, and Lhouari Nourine2

1 Université Paul Verlaine - Metz
IUT de Metz - Département STID

Ile du Saulcy
57045 Metz Cedex 1

alain.gely@univ-metz.fr
2 Université Blaise Pascal – LIMOS

Campus des Cézeaux,
63173 Aubière Cedex, France
{medina,nourine}@isima.fr

Abstract. This paper presents a review of enumeration technics used
for the generation of closed sets. A link is made between classical enumer-
ation algorithms of objects in graphs and algorithms for the enumeration
of closed sets. A unified framework, the transition graph, is presented. It
allows to better explain the behavior of the enumeration algorithms and
to compare them independently of the data structures they use.

1 Introduction

Generation algorithms of combinatorial objects is an important problem in data
mining, artificial intelligence and discrete mathematics. The combinatorial ob-
jects considered in this paper are maximal cliques of a graph, maximal bicliques
of a bipartite graph and closed itemsets of a binary relation. Indeed, any binary
relation can be seen as a bipartite graph where concepts are maximal bicliques
of this graph.

There exists several algorithms which generates maximal bicliques of a bipar-
tite graph using polynomial space [2,4,11,17,27] . For instance, Next-Closure [11]
uses linear space to enumerate the closed sets of a closure operator (this algo-
rithm is more general than the problem of enumerating all maximal bicliques
of a bipartite graph since it can be applied with any closure operator). In for-
mal concept analysis, several algorithms which construct the concept lattices
(or Galois lattice) of a context have been proposed such as Lindig algorithm
[20]. Data mining domain produced numerous algorithms for the enumeration of
closed itemsets of a collection of transactions [23,24,28,29,31,32,33]. The family
of closed itemsets is usually smaller than the family of itemsets: the search space
is thus reduced.

Given a bipartite graph G = (U, V, E), all algorithms in [2,11,29,23] have a
worst case complexity of O(|U |2×|V |) per maximal biclique: all those algorithms
are polynomial delay. However, their practical behaviour may differ. Since they

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Gély, R. Medina, and L. Nourine

are used in different domains where the amount of data is quite important, some
requirements on their practical behaviours are expected. Several comparative
studies, based on benchmark data, have been made in [9,18,31].

Those experimental studies effectively show that there exist behavior differ-
ences between these algorithms. This leads to the following question: where does
the difference come from since they all have the same theoretical time com-
plexity? Corollary questions might be: Do some particular data structures allow
to improve efficiency? Is the enumeration order significant? Are the theoretical
complexities over estimated for some algorithms?

One can already notice that it might be possible that all these aspects might
interact. How to know where the efficiency difference comes from? From the data
structures they use? From the order in which they generate the objects?

We propose a generic approach to the enumeration problem which allows us to
overcome the differences in data structures and concentrate on the enumeration
order of the maximal bicliques. This approach relies on the transition graph
H(G) = (C(G), T) of maximal cliques of a graph G, where C(G) is the set of
maximal cliques of G and (C, C′) ∈ T if there is a transition function from C to
C′. Given two maximal cliques C and C′ of G, we say that a transition exists
between C and C′ if C′ can be obtained from C using a simple transformation
which we will define later.

We show that classical algorithms can be seen as searches of this transition
graph. The differences are explained by the way of testing if an edge of H(G)
belongs to the covering tree defined by the algorithm as well as by the way
this covering tree is searched. We will define the covering trees and searches
associated by the two algorithms of Johnson et al[17] and Tsukiyama et al[27].

We will study the impact of the choice of transitions to consider in the covering
tree. By modifying the way of choosing an element, a more or less important
number of edges of H(G) will never be tested. This is equivalent to finding
a partial graph of H(G) with less edges than H(G) but allowing to reach all
maximal bicliques of G [13].

Simulating a search of H(G) can be done in several ways using the same data
structure. We will see that, using the same data structure, significant differ-
ences of behavior might appear which might explain the difference of behavior
of known algorithms. Once those differences put forward, we will try to ana-
lyze them in order to find which particular properties might explain them. Once
those properties are identified, they can be used to improve existing algorithms
(or improve their analysis), but also to improve the way usual benchmarks are
described.

In this paper, we chose the formalism of graph theory in order to show the
link between the enumeration of maximal cliques, maximal bicliques and closed
itemsets.

We first recall some basis on enumeration problems and their associated com-
plexities. Then we focus on the enumeration of closed sets by using the link
between maximal cliques, maximal bicliques and closed itemsets.

About the Enumeration Algorithms of Closed Sets 3

2 Enumeration Problems

In this paper we will focus on the maximal cliques enumeration problem which
is stated as follows:

Problem: Maximal Cliques Enumeration

Instance: A graph G = (V, E).
Question: Generate all maximal cliques of G.

In this section, we recall some principle on enumeration problems: their link with
decision problems, their complexities and common technics used for enumerating
objects.

2.1 From Decision Problems to Enumeration Problems

Complexity analysis of enumeration problems takes into account the size of the
output. This differs from classical optimization problems which have an output
size identical to the input size. In the case of enumeration problems, the size of
the output is usually exponential in the size of the input. As a consequence, the
complexity of algorithms solving enumeration problems will be exponential. In
order to analyze and classify these problems, the size of the output is also taken
into account. This is clearly the case when considering the decision problem
associated to an enumeration problem.

For instance, the decision problem associated to the Maximal Cliques Enu-
meration problem is stated as follows:

Problem: Maximal Cliques of a graph

Instance: A graph G = (V, E) and a collection H ⊆ 2V .
Question: Does C(G) = H?, where C(G) is the set of maximal cliques of G

The complexity of enumerating maximal cliques depends on the complexity of
its associated decision problem. Usually, generating a solution as well as testing
if an object is a solution is supposed to be done in polynomial time. Often, the
decision problem is in CO-NP. For instance, it is easy to test if a subset of V is
a maximal clique of G which do not belong to H. Thus, the main difficulty of an
enumeration problem is to check if all objects have been generated (i.e. to test
if C(G) ⊆ H?).

If the decision problem is polynomial then the algorithm which solves it will
return either an answer ”yes” or a solution which does not belong to H. We thus
add this new solution to H and apply the decision problem solver again until we
find the complete set of maximal cliques. This gives an enumeration algorithm
which has a polynomial time complexity.

The related counting problem is to compute the number of maximal clique of a
given graph. Clearly there is no connection between enumeration problems and
their associated counting problem. For example, the problem of counting the
number of maximal cliques of a graph is #P-complete while the enumeration
problem is polynomial (see [19,30] for counting problems).

4 A. Gély, R. Medina, and L. Nourine

2.2 Complexity Analysis

In this section, we recall the time complexities associated to enumeration algo-
rithms. We consider an enumeration problem with input data of size n and the
total number of objects to enumerate is N .

Polynomial time complexity. An enumeration algorithm has a polynomial
time complexity if its time complexity is in O((n + N)k), with k a constant.

Polynomial time complexity per object. An algorithm is said to have a
polynomial time complexity per object if its time complexity is in O(nk × N),
with k a constant.

In other words, when dividing the overall time complexity of the algorithm
by the number of generated objects we obtain an order of magnitude which is
polynomial in the size of the input. Such time complexity is also called amortized
polynomial time complexity.

In a similar way, an algorithm is said to have a linear time complexity per
object if its overall complexity is in O(n × N). An algorithm with an overall
complexity of O(N) is said to have an amortized constant complexity.

Be careful however: having a polynomial time complexity per object does not
necessarily mean that between two consecutive objects we have a polynomial
time.

Note that algorithms with polynomial time complexity and polynomial time
complexity per object are also called output polynomial or polynomial total
time [17].

Polynomial delay complexity algorithms. A polynomial delay complexity
algorithm is an algorithm which has the following properties:

– Computation of the first object is done in polynomial time according to the
size n of the input.

– Between two consecutive enumerated objects there is a polynomial time
according to the size n of the input.

– After the computation of the last object, the algorithm halts in polynomial
time according to the size n of the input.

Any enumeration algorithm which is polynomial delay is also polynomial. The
polynomial delay property is interesting when enumerating a list of objects.
Indeed, if a process has to be applied on each generated object, then a pipeline
process can be put in place: the first generated objects are processed while
there are still objects to generate. Such pipeline process cannot be applied on
enumeration algorithms which do not have this polynomial delay property.

Imposed output order enumeration. Another interesting property for enu-
meration algorithms is to enumerate the objects in a specific order: for instance
according to the lexicographic order, according to the size of the objects, etc.

About the Enumeration Algorithms of Closed Sets 5

This property is sometimes incompatible with the polynomial delay property.
For instance, Johnson et al [17] proved that it is not possible to have a polynomial
delay algorithm which enumerates the maximal cliques of a graph in the reverse
lexicographic order (unless P = NP).

For similar reasons, it is not possible to have a polynomial delay algorithm
which enumerates the maximal cliques in a descending order of their sizes (un-
less P = NP).

Polynomial space complexity. We distinguish two families of enumeration
algorithms: those requiring a polynomial space and those requiring an exponen-
tial space.

Algorithms requiring an exponential space may benefit from stored informa-
tions which is not the case for polynomial space algorithms. This avoids to redo
some computations and obtain a better time complexity. For instance, for the
problem of enumerating the closed sets of a closure system, the best algorithm
using an exponential space [22] has a time complexity which is quadratic per
enumerated objects (but it is not polynomial delay) while the best algorithms
using a polynomial space have a time complexity which is cubic per enumerated
object (and it is also polynomial delay).

2.3 Enumeration Technics

Main idea of the different enumeration technics is to guarantee that when enu-
merating combinatorial objects, each object is enumerated only once. This sec-
tion presents different classical enumeration technics.

Lexicographic order. The first idea that arises when one has to enumerate
objects is to define a total order among those objects. If such a total order can be
found, then it is always possible to define a lexicographic order (the dictionary
order) on these objects.

Once the total order is chosen, we can associate to each object a function
NEXT () which returns the next object to enumerate in the lexicographic order.

The time complexity of an algorithm based on a lexicographic order depends
on the computation of the first object and on the cost of the NEXT () function.

Gray code. A Gray code is a way of enumerating the objects such that the
difference between two consecutive objects is ”small”. The exact definition of
”small” difference depends on the context. Let C be a collection of combinatorial
objects and f a proximity relation defined over C. A Gray code of C exists if and
only if G = (C, f) admits an hamiltonian path or circuit. Here, the difficulty is
to prove the existence of such hamiltonian path and then to find an algorithm
which searches this path (for a survey on Gray codes see [25]).

Backtrack. The backtrack enumeration technique comes from the divide and
conquer paradigm. The idea is to split a family F of objects to enumerate in
two object families Fπ and Fπ, according to a property π, such that:

6 A. Gély, R. Medina, and L. Nourine

– Objects in Fπ satisfy the property π.
– Objects in Fπ do not satisfy the property π.

The same process can be recursively applied to split the families Fπ and Fπ

in smaller families until having families of size 1 (or families that can be easily
enumerated).

Backtrack algorithms face two problems:

– Splitting the family F in two might break the structure of the family. For
instance, if we split a lattice in two there is no particular reason to obtain
two lattices.

– Testing, at each step, if a family F contains an object to generate might
be difficult. Should the test be polynomial, one would obtain immediately a
polynomial algorithm.

3 Closed Sets Enumeration

In this section, we consider the problem of enumerating all closed sets: the time
complexity is thus dependent on the number of closed sets.

Given a set X , this enumeration is done using a closure operator usually de-
fined over an implication cover or a context. Usually, when the main focus is on
algorithmic properties, either the reduced context (i.e. the context correspond-
ing to the family of irreducible elements of F) or a non redundant (possibly
minimum) family of implications are considered.

In the following, we focus on algorithmic methods for the enumeration of
maximal bicliques of a bipartite graph (in other words, concepts of a context).
We study those algorithms using a larger framework: the enumeration of the
maximal cliques of an arbitrary graph. Indeed, we will show that from this
problem it is straightforward to reduce to the maximal bicliques enumeration
problem.

This general framework also allows us to put forward similarities existing in
methods that were discovered independently.

3.1 Definitions

A graph or undirected graph Gis a pair G = (V, E), where V is a finite set of
vertices and E is a set of edges. The neighborhood of a vertex v is denoted by
Γ (v) = {u ∈ V s.t. uv ∈ E}.

Definition 1. A clique of G = (V, E) is a set of vertices C ⊆ V , such that for
any v1 and v2 in C, the edge (v1, v2) belongs to E.

A clique C of G is maximal if and only if for any x ∈ V \C, C ∪x is not a clique.
The set of all maximal cliques of G is denoted by C(G). When no ambiguity is

possible, we simply denote this family by C. Whenever a total order on maximal
cliques is necessary, we denote Ci the ith clique of C(G).

About the Enumeration Algorithms of Closed Sets 7

Definition 2. A bipartite graph G, denoted by G = (U, V, E) is a graph (U ∪
V, E) such that U and V are stable sets.

Definition 3. Let G = (U, V, E) be a bipartite graph. A biclique of G is a pair
(X, Y), X ⊂ U and Y ⊂ V such that for any x ∈ X, y ∈ Y we have (x, y) ∈ E.

A biclique (X, Y) is said maximal if, for any x ∈ (U \ X) (resp. y ∈ (V \ Y)),
the set (X ∪ {x}, Y) (resp (X, Y ∪ {y})) is not a biclique.

If a biclique (X, Y) is not maximal, we say that it is absorbed by another
biclique (X1, Y1) (denoted by (X, Y) ⊆ (X1, Y1)) if and only if (X ⊆ X1 and
Y ⊆ Y1) or (X ⊆ Y1 and Y ⊆ X1).

Previous definitions match the definitions of a context (a relation between
objects and attributes) and of a concept (a maximal biclique). The notion of
implication appears with the absorption of a biclique by another biclique.

The set of maximal bicliques of G is denoted by B(G).

Problem transformation. The problem of enumerating the maximal bicliques of
a bipartite graph G = (U, V, E) is equivalent to the problem of enumerating the
maximal cliques of G′ = (U ∪ V, E′), where E′ = E ∪ {(x, y) | x, y ∈ U and
x �= y} ∪ {(x, y) | x, y ∈ V and x �= y}.

This transformation, used for instance in [21] consists of replacing the two sta-
bles U and V by cliques: maximal cliques of G′ correspond to maximal bicliques
of G.

3.2 A Formalism for the Enumeration of Cliques: The Transition
Graph

In this section, we introduce the transition graph of the maximal bicliques of
a graph. This structure allows to extend and to unify several algorithms and
extend results of [21]. While in [21] the focus was on efficiency, our aim is to have
a unified framework in order to compare the behavior of enumeration algorithms.

Let G be a graph, we denote by H(G) = (C(G), T) the (oriented) transition
graph of maximal cliques of G. Vertices of H(G) are maximal cliques of G and
its edges are possible transition between two cliques. Given two maximal cliques
C and C′ of G, there exists a transition between C and C′ if C′ can be com-
puted from C by a simple transformation (the transition function which will be
defined below).

3.3 A Lexicographic Transition Function

The definition of the graph H(G) requires to choose a transition function. If no
particular knowledge on properties of the graphs is given, the transition function
can only use lexicographic properties (information on the labels of the vertices).

Moreover, the transition function should be chosen such that the transition
graph H(G) has ”good” properties. In particular, since we want to use this graph
as the support for the enumeration, it is necessary that this graph be strongly
connected in order to reach all maximal cliques during the search of the graph.

8 A. Gély, R. Medina, and L. Nourine

Consider a graph G = (V, E) with V = {1, . . . , n}. Given a clique C of G and
a vertex i �∈ C, we denote Ki(C) the lexicographically smaller maximal clique
induced by the vertices (C ∩ {1, . . . , i − 1} ∩ Γ (i)) ∪ {i, . . . , n}.

This set of vertices corresponds to the common prefix from 1 to i−1 between
C and Γ (i) extended with vertices greater or equal to i. One can notice that
vertices lower to i form a clique, but the completion of this clique with vertices
greater than i is not necessarily a maximal clique of G.

There are two cases:

– Ki(C) is a maximal clique of the graph G.
– Ki(C) is a non maximal clique of the graph G. In this case, one can notice

that the vertices that need to be added in order to obtain a maximal clique
are necessarily lower to the vertex i which are not in C.

Given two cliques C and C′ of G, a transition is possible between C and C′ if
there exists a vertex i �∈ C such that Ki(C) = C′. In other words, there exists a
transition from C to C′ if Ki(C) is the lexicographically smaller maximal clique
of G having C ∩ {1, 2, . . . , i − 1} ∩ Γ (i) as prefix.

The operator Ki, using only lexicographic and simple operations (intersection,
clique completion), is the one we use as transition function in the remaining of
the paper.

The usage of lexicographic properties is frequent and is at the core of Next-
Closure [11], a simple and efficient algorithm for the enumeration of closed sets.
The use of the transition graph allows to compare the behavior (as well as
the properties) of Next-closure [11] and Tsukiyama et al [27] algorithm for the
enumeration of maximal cliques.

3.4 Transition Graph Properties

Given a graph G = (V, E), we define the transition graph H(G) = (C(G), T) of
maximal cliques of G by :

1. C(G) the set of maximal cliques of G
2. (C, C′) belongs to T if there exists a transition between C and C′ using Ki.

Consider C and C′ two maximal cliques such that there exists a transition from
C to C′. Then there exists a unique i �∈ C such that C′ = Ki(C). Indeed, for
i < j, it is impossible to have i in Kj(C) since i �∈ C.

Since the vertex i is unique, we associate it to each edge (C, C′) allowing the
transition from C to C′, denoted by Label(C, C′) = i.

Example 1. Consider the graph G in figure 1. Note that the graph H(G) is not
symmetric since (245, 123) ∈ T and (123, 245) �∈ T .

We recall some properties of the transition graph already proved in [14,15]:

– H(G) is strongly connected
– C0, the lexicographically smallest maximal clique can be reached by transi-

tion from any maximal clique

About the Enumeration Algorithms of Closed Sets 9

1

2 3

45

6

126
234

123

245

6
3

1
4

4

3

1

5

245

5

234

4

123

6

126

(a) (b) (c)

Fig. 1. (a) A graph G. (b) The transition graph of maximal cliques of G. (c) A covering
tree of (b).

– A maximal clique admits at most n outgoing edges with n the number of
vertices of G.

– Computation of a transition can be done in O(m), with m the number of
edges of G.

Those properties allow us to consider any search of H(G) as the enumeration
of maximal cliques of a graph. As a consequence, the time complexity of the
enumeration depends on the number of transitions searched in order to reach
once all maximal cliques, i.e. O(mn) by maximal clique (in the worst case, all
transitions are searched with a cost of O(m) per transition). We recognize here
the classical complexities associated to these problems.

Moreover, classical algorithms for enumerating the maximal cliques can be
seen as particular instances of searches of the transition graph [15], simplifying
their study and comparison.

– The algorithm of Johnson et al [17], which enumerates the maximal cliques
in the lexicographic order with a polynomial delay time complexity but using
an exponential space, corresponds to a search which is very close to a breadth
first search (explaining the exponential space required).

– The algorithm of Tsukiyama et al [27], which enumerates the maximal cliques
in no particular order, using a polynomial delay time complexity and using
a polynomial space, corresponds to a depth first search (explaining the poly-
nomial space required).

These two algorithms search a covering tree of the transition graph defined as
follows:

Let T (G) = (C(G), Tb) be a partial graph of H(G) such that (C, C′) ∈ Tb,
with Label(C, C′) = 1, if and only if

1. C′ = Ki(C),
2. C′ ∩ 1, . . . , i is a maximal clique in Gi, the restriction of G to its first i

vertices,

10 A. Gély, R. Medina, and L. Nourine

3. C is the lexicographically smallest maximal clique of G containing C ∩
{1, · · · , i − 1}.

This covering tree has an interesting property: the sequence of labels of a path
from C0 (the lexicographically smallest maximal clique) to any other clique C is
ascending (see Fig. 1(c) for an example of such covering tree).

3.5 Transition Graph and Enumeration of Maximal Bicliques

We have seen that the problem of enumerating the maximal bicliques of a bipar-
tite graph can be reduced to the problem of enumerating the maximal cliques
of a graph. In this section, we study this particular case. Figure 2 shows an
example of transformation of a bipartite graph (a) into a graph (b) such that
the maximal bicliques of (a) are exactly the maximal cliques of (b).

In the remaining of the paper, by hypothesis, we suppose that vertices of G′

are ordered such that given v ∈ V and for any u ∈ U , we have v < u. In other

5 6 7 8

1 2 3 4 V

U

5 6 7 8

1 2 3 4

(a) (b)

1234,56

123,568

13,5678

135678

123456

123568

8

7

4

72

(c) (d)

Fig. 2. (a) A bipartite graph G; by hypothesis, vertices of U have labels lexicograph-
ically greater than those of vertices of V . (b) the graph G′. (c) concept lattice of G.
(d)H(G′).

About the Enumeration Algorithms of Closed Sets 11

words, any vertex of V precede any vertex of U in the order. This property allows
us to take advantage of the lexicographic properties which arise in numerous
enumeration algorithms and to exhibit similarities between the enumeration of
maximal cliques and the enumeration of maximal bicliques.

Under the labeling hypothesis of the vertices of U and V , we show that the
covering graph of the concept lattice of G is a partial graph of H(G). This allows
to consider enumeration algorithms based on a search of this lattice as simple
particular cases of searches of the transition graph.

Property 1. Let C0, C1, . . . , Ck be a path of H(G′) such that Label(Ci, Ci+1) ∈
U for all 0 ≤ i < k. Then for any u ∈ U , u ∈ Ci implies u ∈ Ci+1, i.e.
C1 ∩ U ⊆ C2 ∩ U ⊆ . . . ⊆ Ck ∩ U .

Proof. Let u ∈ Ci ∩ U with 0 ≤ i < k. We show that u ∈ Ci+1 ∩ U . Suppose
that Label(Ci, Ci+1) = l and Ci+1 = Kl(Ci).

If u ≤ l then u ∈ Ci ∩ {1, . . . , l} and thus u ∈ Kl(Ci).
If u > l. Suppose that u �∈ Ci+1. Then there exists x ∈ Ci+1 such that

(u, x) �∈ E. Clearly, Ci+1 ∩ V ⊆ Ci ∩ V ⇒ x �∈ V .
Thus x ∈ U , leading to a contradiction since for any x, y ∈ U , we have

(x, y) ∈ E.
�

Recall that given two maximal bicliques B1 = (X1, Y1) and B2 = (X2, Y2), we
have B1 < B2 in the concept lattice if and only if X1 ⊆ X2 (or, respectively
Y2 ⊆ Y1).

By definition, the maximal cliques of a graph are incomparable relatively to
the inclusion. We define an order on the maximal cliques in order to recover the
natural order of maximal bicliques of a bipartite graph.

Definition 4. Let C and C′ be two maximal cliques of a graph G′. We say that
C is lesser than C′, denoted by C <⊆ C′, if C ∩ U ⊆ C′ ∩ U .

We denote by ≺⊆ the covering relation.

Next proposition shows that if a maximal biclique covers another maximal bi-
clique in the concept lattice then there exists a transition in H(G′) between the
corresponding maximal cliques.

Proposition 1. Let H(G) = (C(G′), T) be the transition graph of maximal
cliques of G′ = (U ∪ V, E′) and C, C′ two maximal cliques of G′ such that
C ≺⊆ C′. Then (C, C′) ∈ T .

Proof. Recall that a maximal biclique of a bipartite graph G is uniquely deter-
mined by one of its parts. In the same way, we can uniquely determine a maximal
clique of G′ by the set of its vertices in U (resp. V).

Since C ≺⊆ C′, we have C ∩ U ⊆ C′ ∩ U and C′ ∩ V ⊆ C ∩ V . Let X =
(C′ ∩ U) \ (C ∩ U) and i the smallest vertex of X . Then we have:

12 A. Gély, R. Medina, and L. Nourine

– (i, j) ∈ E′ for all j ∈ C ∩ U (by construction).
– (i, j) �∈ E′ for all j ∈ (C′ \ C) ∩ V . Indeed, let C′′ = Ki(C). Then C′′ �= C

since j ∈ C′′ and j �∈ C′. Moreover, we have C′ ∩V ⊂ C′′ ∩V ⊂ C ∩V . This
implies C �≺⊆C′

Thus C ∩ V ∩ Γ (i) = C′ ∩ V et C′ = Ki(C).
�

From proposition 1, we deduce that the covering graph of the concept lattice of
a bipartite graph G is a partial graph of H(G′), the transition graph of maximal
cliques of G′. Moreover, note that this covering graph uses only labels from only
one of the two sets of vertices of the bipartite graph. This allows us to consider
any enumeration algorithm based on the concept lattice as a particular instance
of a search of H(G′).

3.6 Maximal Bicliques Enumeration - Insights

A classical enumeration algorithm for closed sets using a closure operator is Next-
closure [11]. It enumerates all closed sets using a variation of the lexicographic
order called lectic order. We recall the definition of this lectic order which is also
used by the datamining algorithm LCM [28].

Definition 5. Let A and B be two sets of elements totally ordered. The set A
is lectically lower than the set B (denoted by A <lec B) if the smallest differing
element belongs to B.

More formally, there exists i ∈ B\A such that A ∩ {1, 2, . . . , i − 1} = B ∩
{1, 2, . . . , i − 1}

For instance, the family of sets {a, ab, b, c, cd, ce} (given in the classical
lexicographic order) will be ordered {c, ce, cd, b, a, ab} in the lectic order.

The lectic order, if it differs on the way sets containing a particular element
are enumerated, remains an order based on the labels of the vertices. In the lexi-
cographic order, sets containing the smallest element are first enumerated, while
in the lectic order sets that do not contain this element are first enumerated.

A classical presentation of Next-Closure is the one given by algorithm 1. In
this algorithm, we denote by A <i B if A is lectically lower than B and the
smallest difference is the element i. This implementation has the advantage to
be concise and easy to implement.

On line 3 of the algorithm 1, one can notice the similarity with the algorithm
of Tsukiyama et al [27] on maximal cliques:

– Next-closure computes the closure of (A ∩ {1, 2, ..., i − 1}) ∪ i
– [27] tries to complete (A ∩ {1, 2, ..., i − 1}) ∪ i to obtain a maximal clique.

Whenever Next-Closure rejects a set because of an inappropriate label,
Tsukiyama algorithm will test a non valid transition in the transition graph.

Next proposition shows that the algorithm of Tsukiyama et al enumerates
maximal bicliques of a bipartite graph in the lectic order over U .

About the Enumeration Algorithms of Closed Sets 13

Algorithm 1. Next-closure algorithm
Data: J a set of elements
C(), a closure operator over J
A ⊆ J a closed set
Result: B, the closed set which is the immediate successor of A in the lectic

order.
begin

K = J\A, sorted by ascending order1

for i ∈ K do2

B ← C((A ∩ {1, 2, ..., i− 1}) ∪ i)3

if X <i B then4
Return B

end

end

end

Proposition 2. The algorithm of Tsukiyama et al [27] enumerates maximal
bicliques of G = (U, V, E) in the lectic order of elements in U .

Proof. Let G′ constructed from G by transforming U and V as cliques and T (G′)
the covering tree of H(G′) used by the algorithm of Tsukiyama.

Recall that, by hypothesis, v < u for all v ∈ V , u ∈ U .
Let C and C′ be two maximal cliques such that there exists a path between

C and C′ in T (G′) and u ∈ U . The sequence of labels from C to C′ is ascending.
Moreover, we can use only labels of U and we have the property that if u ∈ C,
then u ∈ C′.

If we restrict to U , whenever the algorithm considers a clique, all maximal
cliques containing vertices of U with smaller labels have already been enumer-
ated, which corresponds to the lectic order.
�

Indeed, Next-Closure and Tsukiyama algorithm use the same basis which is the
lectic enumeration. Applied to the enumeration of maximal cliques of a graph
G′ constructed from the bipartite graph G, the two algorithms are identical.

Next-Closure is the basis of numerous studies which aim to adapt or extend
it. For instance, we can cite the work of Huaigo Fu and Engelbert Mephu Nguifo
[9,10,8] around Scaling-Next-closure, a parallel version of Next-closure, the work
of R. Emilion, G. Lambert and G. Lévy [6] to apply Next-closure to non binaries
relations, allowing the use of Next-Closure on maximal and stochastic lattices
which are an extension of concept lattice [5].

The strength of Next-Closure (simplicity of the implementation, arbitrary
closure operator, enumeration of closed sets in a particular order without the
need to store them, ...) is also its major drawback, in its original version, since
it cannot take advantage of supplementary informations. Particularly, by using
lexicographic properties rather than structural properties, the efficiency of Next-
Closure depends on the labeling of the elements.

14 A. Gély, R. Medina, and L. Nourine

There exist methods to re-label the set J in order to gain some practical
efficiency. In [12], the authors show that it is more efficient to label the elements
in such a way that for i, j ∈ J and given a closure operator C(), if C(i) < C(j),
then i > j.

For instance, with such a labeling, Next-Closure does not compute any useless
closed set in the case of distributive lattices. The algorithm has then a complexity
of O(m) per closed set for such lattices.

Still in [12] the authors show that the complexity of Next-closure becomes
O(ω(U).m) per closed set when considering a chain decomposition of U , where
ω(U) is the width of the order (U,≤).

All the above mentioned ameliorations come from a knowledge easily work-
able: the knowledge of some implications. Testing and rejecting a closure in
Next-Closure relatively to a vertex i means that there exists a vertex j, j < i,
whose label should not appear. This is equivalent to, when applying the operator
Ki() on this closed set, not obtaining a maximal clique (the element j will not
be present); the transition is not valid.

This information is given by the order induced by the elements of the bipartite
graph and can be seen as an implication i → j.

Knowing unitary implications (those having a single element as antecedent)
allows to:

– sort the elements in order to avoid that an element which implies another
one has a greater label.

– not testing all transitions, but only those for which no element with a smaller
label is implied.

It is this property which is used in algorithms such as [2,20] in order to avoid
testing all possible labels for the transitions. In this sense, those algorithms do
no explore all the possible transitions of H(G′).

A good knowledge of structural properties of a closure system (lattices classes,
filter notion implications, etc...) could lead to amelioration of classical algorithms
of graph theory for the enumeration of maximal cliques. Following these two
tracks (historical and structural) should allow a better understanding of the
behavior of the algorithms and, in a second step, consider ameliorations.

4 Future Work

In this paper, we use H = (C(G), T) the transition graph of maximal cliques of a
graph G defined in [15]. We therefore showed the link between lattice algorithms
and classical graph algorithms following the work of A. Berry [1]. Next step is to
study the properties of H(G) for particular classes of graphs. Indeed, some graph
classes have better time complexities for the enumeration of maximal cliques (see
for instance [3]). Does H(G) have additional structural properties in such cases?

We have seen that H(G) is not symmetrical, but that any clique can be
reached from C0. Does H(G) have an hamiltonian path? Algorithms [17] and

About the Enumeration Algorithms of Closed Sets 15

[27] search only edges (C, C′) with label i in H(G) such that C ∩ {1, . . . , i − 1}
∩ Γ (i) ∪ {i} is a maximal clique of Gi. The transition graphs H(G) has other
paths. Does that allow to have an hamiltonian path (at least for particular classes
of graphs)?

One can also notice that the transition graph of maximal cliques of G depends
on the labeling of vertices of G. Can we find a ”good” labeling of the vertices of
G such that H(G) has interesting properties? If this is the case, it might indicate
that such labeling correspond to some properties of G that should be studied.

A refined complexity analysis of Next-Closure algorithm [11] shows that its
time complexity is in O(ω(U).m) [12]. Another challenging problem would be to
obtain an O(m) algorithm using polynomial space.

Finally, this transition graph is also valid for the enumeration of stables or of
minimal covers of edges. Can we extend it to other combinatorial objects such as
the minimal transversals of an hypergraph? The answer to this questiondefined
in seems to be difficult. Many work has been done in the FCA community [19,26]
as well as in the graph theory community [7,16] without success for the moment.

References

1. Berry, A., McConnell, R.M., Sigayret, A., Spinrad, J.: Very Fast Instances for
Concept Generation. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis.
LNCS (LNAI), vol. 3874, pp. 119–129. Springer, Heidelberg (2006)

2. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Math. Sci.
Hum. 96, 31–47 (1986)

3. Cay, Y., Kong, M.C.: Generating all maximal cliques and related problems for
certain perfect graphs. Congressus Numerantium 90, 33–55 (1992)

4. Chein, M.: Algorithme de recherche de sous-matrice première d’une matrice. Bull.
Math. R. S. Roumanie 13 (1969)

5. Diday, E., Emilion, R.: Maximal and stochastic galois lattices. Discrete Applied
Mathematics 127, 271–284 (2003)

6. Emilion, R., Lambert, G., Lévy, G.: Algorithms for general galois lattice building.
Technical report, CERIA, Université Paris IX Dauphine (2001)

7. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms 21(3), 618–628 (1996)

8. Fu, H.: Algorithmique des Treillis de concepts: Application á la fouille de données.
PhD thesis, Université d’Artois, France (2005)

9. Fu, H., Fu, H., Njiwoua, P., Mephu Nguifo, E.: A comparative study of fca-based su-
pervised classification algorithms. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI),
vol. 2961, pp. 313–320. Springer, Heidelberg (2004)

10. Fu, H., Mephu Nguifo, E.: A parallel algorithm to generate formal concepts for
large data. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 394–
401. Springer, Heidelberg (2004)

11. Ganter, B.: Two basic algorithms in concept analysis. Technical report, Technische
Hoschule Darmstadt (1984)

12. Ganter, B., Reuter, K.: Finding all closed sets: a general approach. Order 8 (1991)
13. Gely, A.: Algorithmique combinatoire: Cliques, Bicliques et systèmes implicatifs.

PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France (2005)

16 A. Gély, R. Medina, and L. Nourine

14. Gély, A., Nourine, L.: Algorithmique d’énumération: Cliques, bicliques, itemset
fermés. Revue I3: Information - Interaction - Intelligence, numéro Special (Juin
2007)

15. Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and bi-
cliques. Discrete Applied Mathematics 157(7), 1447–1459 (2009)

16. Eiter, T., Gottlob, G., Makino, K.: New results n monotone dualization and gen-
erating hypergraph transversals. SIAM J. on Computing 32(2), 514–537 (2003)

17. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27, 119–123 (1988)

18. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating
concept lattices. Journal of Experimental and Theoritical Artificial Intelligence
(JETAI) 14(2/3), 189–216 (2002)

19. Kuznetsov, S., Obiedkov, S.: Some decision and counting problems of the
Duquenne-Guigues basis of implications. Discrete Applied Mathematics 156(11),
1994–2003 (2008)

20. Lindig, C.: Fast concept analysis. In: Stumme, G. (ed.) Working with Conceptual
Structures - Contributions to ICCS 2000, pp. 235–248 (2000)

21. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

22. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information Pro-
cessing Letters 71, 199–204 (1999)

23. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Item-
sets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1999)

24. Pei, J., Han, J., Mao, R.: Closet: an efficient mining algorithm for mining frequent
closed itemsets. In: Proc. of ACM-SIGMOD, International Workshop on Data Min-
ing and Knowledge Discovery (DMKD 2000), Dallas (May 2000)

25. Savage, C.: A survey of combinatorial (Gray) codes. SIAM Review 39(4), 605–629
(1997)

26. Sertkaya, B.: Some Computational Problems Related to Pseudo-intents. In: Ferré,
S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 130–145. Springer,
Heidelberg (2009)

27. Tsukiyama, S., Ide, M., Aiyoshi, M., Shirawaka, I.: A new algorithm for generating
all the independent sets. SIAM J. Computing 6, 505–517 (1977)

28. Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm: An efficient algorithm for enumer-
ating frequent closed item sets. In: ICDM 2003 - Proc. of Workshop on Frequent
Itemset Mining Implementations, FIMI (2003)

29. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient mining for algorithms for
frequent/closed/maximal itemsets. In: ICDM 2004 - Proc. of Workshop on Frequent
Itemset Mining Implementations, FIMI (2004)

30. Valiant, L.: Lcm ver. 2: The complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing 8(3) (1979)

31. Wang, J., Han, J., Pei, J.: Closet+: Searching for the best strategies for mining
frequent closed itemsets. In: Proc. of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington D.C. (August 2003)

32. Zaki, M.J., Hsiao, C.-J.: Charm: an efficient algorithm for closed itemset mining.
In: 2nd SIAM International Conference on Data Mining, Arlington (April 2002)

33. Zaki, M.J., Hsiao, C.-J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transaction on Knowledge and Data Engineering 17(4),
462–478 (2005)

Mathematics
Presenting, Reflecting, Judging�

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. To understand what it means to present, to reflect, and to
discuss mathematics, mathematics shall in the first place be character-
ized in connection of Peirce’s classification of the inquiring sciences. The
threefold view of the universal categories of Peirce suggests to orientate
the expositions
– for presenting on the self-image of mathematics

(as a First),
– for reflecting on the relationship of mathematics to the real world

(as a Second), and
– for judging on the sense, meaning and connection of mathematics

(as a Third).
These expositions support the following basic thesis: sense and meaning
of mathematics finally lie in the fact, that mathematics may effectively
support the rational communication of human beings.

Contents
1. Mathematics in the context of the inquiring sciences
2. Presenting Mathematics (as a First)
3. Reflecting Mathematics (as a Second)
4. Judging Mathematics (as a Third)
5. Mathematics for supporting rational communication.

1 Mathematics in the Context of the Inquiring Sciences

If one wants to understand better what it means to represent, to reflect, and
to judge mathematics, then it does not suffice to take only mathematics under
consideration, instead, one has also to see mathematics in its impact across its
boundaries. In the frame of science such a view can be taken from the clas-
sification of the inquiring sciences which has been presented and explained by
the American scientist and philosopher Charles Sanders Peirce in 1904 in his
”Intellectual Autobiography” [Pe04] (see next page). Peirce understands this
classification as a correction of Comte’s classification of sciences of which he
takes over above all the idea of an arrangement of the sciences according to the
decreasing degree of abstraction. Peirce’s classification of sciences is arranged in
such a manner that each science
� This article is an English version of the German publication [Wi05b].

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 17–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

18 R. Wille

• should be related in its general principals exclusively on the sciences which
are erected above it, and

• should be related in its examples and special facts on the sciences which are
presented below it.

For instance, the physical geometry refers to the 3-dimensional Euclidean vector
space of mathematics as a general principal which allows every imaginable spa-
tial form in deductive clearness ideal to construct (cf. [Hu92], p.19). Conversely,
Mathematics uses the spatial structures of the physical geometry to concretize
significantly existing mathematical structures and to abstract new theory pro-
moting structures.

According to Peirce, mathematics is the most abstract science and the only
hypothetic science. Mathematics ”investigates solely the consequences of hy-
potheses, without considering that they correspond to anything real or not” (s.
[Pe04], p.71f); here the consequences of hypotheses are understood as condition-
als, where mathematics ”does not take over responsibility for the truthness of
the appertaining premise, however for the appertaining conclusions, which can
be necessarily drawn out of such premises” (s. [Pe11]; p.458).

Characteristic for modern mathematics is, according to Peirce, that the re-
search of mathematicians is founded on the same forms of thinking (as numbers,
geometric figures, functions, and set structures), which makes possible for math-
ematicians to develop together a (coherent) cosmos of forms of potential reality.
The ultimate aim, which mathematics is approaching in the long run, is for
Peirce the discovery of the real potential world, in which the actual existence is
nothing more as an arbitrary locality ([Pe92]; p.121).

Directly after mathematics Peirce lists the scientific philosophy as the most
general science of the actual reality, which studies

• what is immediately present (phenomenology),
• what should be and what not (normative science),
• what is reality as regularity (metaphysics).

Mathematics: Presenting, Reflecting, Judging 19

The phenomenology explores the universal qualities of phenomenons in its imme-
diate character. The normative sciences generally treat the conformity of things
with regard to its purposes:

• the esthetics view those thinks whose purposes incarnate qualities of feeling,
• the ethics view those thinks whose purposes lie in the action,
• the logic views those thinks whose purpose is to represent something.

For a deeper understanding of mathematics, in particular the insight in its re-
lationship to the (philosophical) logic is necessary, because mathematics gains
its relation to the world especially by the connection of mathematical and logi-
cal thinking (cf. [Wi01c]). This connection is based on the relation of potential
and actual reality. Therefore, according to Peirce, logic can take over the given
knowledge of mathematics in all its generality and base on it logical principles.
For Peirce all necessary logical conclusions are mathematical conclusions, i.e. it
is performed as an observation of something which is equivalent to a mathemat-
ical diagram ([Pe92]; p.116). How mathematical diagrams can represent math-
ematical conclusions, that Peirce has tried to show above all by his existential
graphs [Pe93].

Also phenomenology, esthetics, and ethics are in fruitful connection to math-
ematics, in particular about their principles which are finding applications in
logic. From phenomenology with its doctrine of the three universal categories of
firstness, secondness, and thirdness Peirce deduces three kinds of logical conclu-
sions: the abduction, the induction, and the deduction.

• The abduction creates out of the horizon of self-understanding a hypothesis
as a First.

• The induction confirms a hypothesis about actual facts as a Second.
• The deduction concludes a hypothesis from valid premises on the basis of

logical laws as a Third.

This means: the deduction proves that something must be the case; the induc-
tion shows that something is actually effective; and the abduction assumes that
something might be the case.

Esthetics deliver for the logic determinations of that, what is a purpose in
itself (as a First), admirable and desirable under all thinkable circumstances.
The ethics clarifies for the logic which purposes (as a Second) a human may
choose reasonably enough in different situations. Logic is therewith compelled to
show which means of representation (as a Third) are available for the fulfillment
of such purposes (cf. [Oe93]; p.113).

The universal categories of firstness, secondness, and thirdness are for Peirce
the most general forms of thought of the phenomenology and therewith also of
the philosophy, which makes the universal categories in particular meaningful
for mathematics. Therefore their characterization shall be shortly given here:

• Category ”the First” is the Idea of that which is such as it is regardless of
anything else. That is to say, it is a Quality of Feeling.

20 R. Wille

• Category ”the Second” is the Idea of that which is such as it is as being
Second to some First, regardless of anything else and in particular regardless
of any law, although it may conform to a law. That is to say, it is Reaction
as Phenomenon.

• Category ”the Third” is the Idea of that which it is as being a Third, or a
Medium, between a Second and its First. That is to say, it is Representation
as an element of the Phenomenon.

Understanding mathematics means, according to the universal categories of
Peirce, to comprehend mathematics

• in the sense of firstness, i.e. how mathematics is, as itself, regardless of any-
thing else,

• in the sense of secondness, i.e. how mathematics is, in relationship to the
real world, regardless as anything else,

• in the sense of thirdness, i.e. how mathematics is, in its embedding in the
real world.

These threefold understandings can be made explicit on the base of communi-
cation forms to present, to reflect, and to judge mathematics. With that , the
concern about general mathematics can be also made more clear, by which it
is important to obtain a more conscious self-understanding of mathematics, a
better relationship to the world, and deeper senses, meanings, and connections
about mathematical activities in total ([Wi01a]; p.3).

2 Presenting Mathematics (as a First)

The self-understanding of mathematics expresses itself in the respective teaching-
and research-activities of mathematicians as well as in their productions. From
basic meanings for mathematics, the respective abstract semantics have been
extended in the 20th century from the number-, function-, figure-semantics to
the semantics on set structures.

In special publications mathematics is presented in a restrictive conventional-
ized language which is, as a common language, considerably presented by linear
sequences of signs and refers to the semantics of set structures. The restrictive
conventions are results of the strive of mathematicians towards consent and co-
herence of greatest possible size; this has convincingly presented by Susanne
Prediger in [Pr01]. How strongly those restrictions are usually be handled, that
shall be shown by example 1.

The text of the example 1 describes the beginning of the second section of the
research article ”Restructuring lattice theory: an approach based on hierarchies
of concepts” [Wi82]. This text presents the mathematical contents to be imparted
by the conventions of the present mathematics, and is therefore founded on the
semantics of set structures. There are linguistically defined by sets the basic
mathematical notions: (formal) context, concept, extent, intent, subconcept, and
superconcept and established the relation with the mathematical theory of Galois

Mathematics: Presenting, Reflecting, Judging 21

connections, which is used with the takeover of a basic proposition of this theory.
Also with the further expositions, the article follows established mathematical
conventions, first of all the basic pattern of ”definition - theorem - proof”, and
lays the foundation for a mathematical theory of concept lattices.

In university teaching and in expert lectures, mathematics is presented as a
rule also in conventional technical language, which is however often supported
by diagrams and pictures. The diagrams and pictures indicate that the human
thinking, also that of mathematicians, is finally holistic. Example 2 shows a
diagram of a formal context (G,M,I) with which generally for two formal concepts
(A,B) and (C,D) of (G,M,I) their

• infimum (A ∩ C, (A ∩ C)′) (greatest common subconcept) and
• supremum ((B ∩ D)′, B ∩ D) (smallest common superconcept)

22 R. Wille

can be visualized. Such ”rectangle-diagrams” have been manifoldly proven in de-
velopment and imparting of the mathematical theory of concept lattices
(cf. [GW96]).

In the expert communication of directly cooperating mathematicians, math-
ematics is presented diagrammatically in a considerable extent. In such a case
the diagrammatic visualization follows rarely given conventions, but they follow
most immediately out of the desire to make holistic figures of thinking graphi-
cally and with that more explicit. An impressive example comes from the well-
known mathematician Zvonimir Janko: he developed for his research about finite
simple groups elaborated diagram-representations of group-theoretical structure-
connections, which made his discoveries explicit in such a way that his assistant
could translate for Janko those diagrams in a conventional scientific language.

In the compartment-exceeding communication, a successful presentation of
mathematics is possible only then, when the persons concerned become al-
ready accustomed in a field of mathematics and its semantics. Experiences show
that such an acclimation is very time-consuming for non-mathematicians (cf.
[Wi01b]). Therefore the educational socialization would absolutely be aimed in
the fundamental semantics of mathematics - especially the ones of the 20th cen-
tury. For acclimatizing in the actual semantics of set structures the entering with
the theory of concept lattices has been proven extremely well both in university-
like and also school-like courses and while doing so the multifarious possibilities
of applications have motivated and convinced the learner.

Mathematics: Presenting, Reflecting, Judging 23

3 Reflecting Mathematics (as a Second)

To reflect the connection of mathematics to the real world, this means first of all
to understand mathematical thinking as abstraction of logical thinking as it is
practised in mathematics. On such reflexions the research program of restructur-
ing mathematics was based at the Technical University Darmstadt since 1978 (s.
[Wi01b]). Under the up to now tackled restructurings of subareas, the restruc-
turing of lattice theory has been proved most effectively. These restructuring is
based on the mathematization of concept, the basic unit of logical thinking [Se01]
as it is shown in the example 1. An extensive discussion of this mathematization
can be read in [Wi05a]. In total it is astonishing how much lattice-theoretic think-
ing could be logically activated about the correspondence between the mathe-
matical order relations and the logical subconcept-superconcept-relation based
on formal contexts (s. for instance [Wi87], [SW00], [Wi00b], [Wi02a]).

Furthermore it is to reflect how new patterns of thinking can be generated
with the growing potentials of mathematics, which mathematize present logi-
cal patterns. The most research of applied mathematics develops and secures
mathematizations. This is also right for the theory of concept lattices as applied
lattice theory. Thus, in the last decade the traditional logic with its doctrines of
concept, judgment and conclusion as so-called ”contextual logic” is successfully
mathematized on the basis of the theory of concept lattices (s. [Wi96], [Wi97],
[Pr98], [MSW99], [GW99], [Wi00a], [Wi03], [Da03], [Wi04a], [DK05]).

Finally, it has also to be reflected which mathematical structures and pro-
cedures can be used constructively in the real world to produce normatively
logical relationships. Such relationships are first of all realized in systems as for
instance in systems of numbers, measurements, technologies, and organizations
(cf. [Fi88]). Mathematical structures and procedures are inserted in great di-
versity for construction and utilization of such systems. Also concept lattices,
understood as mathematized concept systems, are applied many-sidedly in the
real world, first of all to make logical connections transparent and rational (s.
for instance [Ek04]).

An interesting type of application of concept lattices is the support of em-
pirically founded theory building in the sense of [Ke94] and [SC96] (s. also
[SWW01]). As an example of such an application, it shall be briefly described
the concept analytic support of a Phd-project in musicology about the the theme
”Simplicity. Genesis and change of a conceptual landscape in the music esthetics
of the 18th century” (cf. [Ma00]). 270 historical sources served as a foundation of
the theory building process, the content of which was derived with a normative
vocabulary of more than 400 text attributes to the theme ”simplicity”. With the
help of the obtained stock of data, a multitude of thematically determined con-
cept lattices was formed as representatives of local parts of theories, which could
be aggregated to larger theory pieces with the TOSCANA-Software [KSVW94]
(developed for concept lattices). With such aggregations the thematical con-
cept lattices were proved and eventually improved, therewith the theory process
proceedingly wins and could reach to a convincing conclusion (cf. [MW99]).

24 R. Wille

The basic difference between the mathematical thinking of ideal objects and
the logical thinking of real objects has always to be made consciously for all
relations of mathematics to the real world. Otherwise it threatens a dangerous
sense deflation as E. Husserl elaborated in his late writings about the ”crisis of
the European sciences” [Hu92]. For example, the objects of modern Euclidean
geometry are ”limit forms”, hence ideal objects which are not allowed to be
identified with real objects. Already Aristotle viewed space and time continua
not consisting of points, but points form only boundaries (”limit forms”) of
continua. How this view can be reflected and explained is elaborated in [Wi04b].

4 Judging Mathematics (as a Third)

Being embedded into the real world, this gives mathematics its actual sense
and meaning. Therefore, judging mathematics has to be primarily related to the
purposes which should be fulfilled by the logical realizations of mathematics.
For judging mathematics the normative sciences, i.e. esthetics, ethics, and logic,
are basic.

1. The esthetics guides to judge mathematical patterns of thinking and their
logical realizations thereupon, how far they are themselves admirable and desir-
able in connection with the given purpose. In general, Peirce defines something
as admirable (”esthetically good”) if it consists of a manifold of parts, the con-
nection of which gives the whole a simple positive quality of feeling ([Pe03b];
p.201). Such a quality of feeling is very confidential for Mathematicians; they
experience again and again when a mathematical network of problems disperses
into a right, transparent whole. Andrew Wiles has impressively described his
breakthrough to the ultimate solution of Fermat’s-Problem: ”Suddenly, totally
unexpectedly, I had this incredible revelation. Nothing I’ll ever do again will
...” at the moment tears welled up and Wiles was choking with emotion. What
Wiles realized at that fateful moment was ”so indescribably beautiful, it was so
simple and so elegant ... and I just stared in disbelief.” To point out the high
status of admire and of desire in mathematics, Paul Erdös spoke with pleasure
of ”THE BOOK”, the book in which, according to Erdös, God preserves the
perfect proofs of mathematical theorems(s. [AZ98]).

The foundational efforts in mathematics towards the simple whole has layed
down, respectively, in the valid recognized semantics of mathematics. Thus, the
today dominant semantics of set structures makes possible, by the simplicity
and generality of the mathematical concept of sets, a standardization of theory-
building and therefore an increase of desirable connections (cf. [Bo74]). Since
sets can be understood as mathematical abstractions of concepts, mathematics
can be effectively integrated by a semantics of set structures into a conceptually
developed world. With such an integration into the world, the sense critical
judgment of mathematics has to be started.

Concept lattices, described by (esthetically) well drawn line diagrams, deliver
a wealth of examples for sense causing integration of mathematical structures
in the real world (s. for instance [Wi00b]). This shall be demonstrated here by

Mathematics: Presenting, Reflecting, Judging 25

only one small example out of the music area: The inscribed line diagram of
Example 3 represents a concept lattice of a formal context, the objects of which
are the tonalities of the C-major diatonic scale and the attributes of which are
the C-major and -minor triads (a tonality as object has a triad as attribute
if this tonality belongs to that triad exactly when the tonality is contained in
the triad). The diagram supports the inclusion of the harmonic structure of the
C-major diatonicism including its mirror symmetry at the tone d; for instance,
one sees (almost with one look) the cyclic-harmonic major-minor-relationships
C - a - F - d - G - e - C.

2. The ethics deliver arguments to look about mathematical patterns of think-
ing and their logical realizations in response to how far they may be chosen
sensibly enough in view of the purpose. According to Peirce, ethics win such ar-
guments by ”the study of right actions standing in correspondence with purposes
which we are willing to accept well-considered ([Pe03a]; p.386). The validity of
such argumentative statements can only be secured according to ”the rational
foundation of the ethics” of Karl Otto Apel [Ap76] by rational argumentation in

26 R. Wille

the respective community of communication. The thereby postulated ”a priori of
the community of communication as sense critical condition of possibility and va-
lidity” concerns the arguing members in a double manner: ”Who namely argues,
that one presumes already two things: First a ’real community of communica-
tion’, which receives each member by a process of socialization, and secondly
an ’ideal community of communication’ which in principle would be capable
to understand adequately the sense of the arguments and to judge definitively
their truth” ([Ap76]; p.429). Consequence of such an understood a priori of the
community of communication is to strive to the effect that in the real commu-
nity of communication always a more on the ideal community of communication
is realized.

In the real community of communication of mathematicians consists - as al-
ready mentioned - a successful strive towards consensus and coherence of greatest
possible size. Therefore the most mathematicians see practically no difference be-
tween the real and the ideal community of communication and have the opinion
that mathematical statements can be principally judged ”right” or ”false”. How-
ever, the possibility of yet not recognized paradoxes, which could bring with it
certain corrections in the understanding of mathematics, is not impossible ac-
cording to many mathematicians. Also the value of mathematical concept- and
theory-buildings, mathematicians could be judged thoroughly different.

In interdisciplinary communities the judgment of mathematics and its ap-
plications are frequently not easy. Since in this case the purposes relate with
actions even beyond mathematics, the forms of mathematical thinking have
to be functionally examined with respect to their logical realizations. For this,
transdisciplinary methodologies are often missing (s. for instance [Wi02b]) and,
respectively, the attention about such methodologies.

An important methodology for examining the adequateness of mathematical
models, which is unfortunately not much recognized, deliver the representational
measurement theory with its representation-, uniqueness-, and meaningfulness
theorem (s. first of all [KLSW71]). These measure-theoretical theorems deliver
criteria with which the modelling of real vector spaces can be proved as ade-
quate (meaningful). Unfortunately, this proof was performed - as for instance in
applications of multivariant statistics (for example: factor analysis) - only sel-
dom so that the inadequate use of mathematical models infrequently become
recognized. The reputed statistician Louis Gutman even writes in [Gu77] that
in the books on factor analysis after 70 years of research there is not listed even
a unique established empirical piece of knowledge (cf. [Wi95]), Excursion 1).
That multivariant procedures can be replaced by more adequate, this show for
instance the extensive applications of formal concept analysis in the case of the
evaluation of repertory tests, with which N. Spangenberg and K. E. Wolff have
successfully supported the treatments of anorectic patients [SW93].

3. The logic makes it possible to judge mathematical patterns of thinking and
their logical realizations thereupon how far means of representation are available
for them to fulfill the given purposes. The formal concepts and concept lattices
offer themselves as basic mathematical patterns of thinking because they are

Mathematics: Presenting, Reflecting, Judging 27

mathematizations of concepts and concept hierarchies, the basic structures of
human thinking. Conversely, the concepts and concept hierarchies are under-
stood as logical realizations of their mathematizations.

To make this connection between logic and mathematics more close, the con-
ception of a dyadic mathematics is discussed in [Wi04c] which is based on formal
concepts instead of sets. In this way it can - at least initially - be elucidated how
mathematical patterns of thinking of a dyadic order theory, contextual mathe-
matical logic, dyadic algebra, and dyadic geometry may be judged in connection
with their logical realization as means of legitimate purpose representation. How
far this approach can be extended to larger parts of mathematics, this has to be
further explored.

At least by an example it should be demonstrated how mathematical patterns
of thinking can fulfill a given purpose by logical representations. As example a
research project shall be chosen which has been performed by the Darmstadt
”research group of concept analysis” in the 90th together with the Department
of Building and Housing of the State of ”Nordrhein-Westfalen”. The task was
to develop a prototype of an information system about laws and regulations
concerning building constructions which may support first of all architects. The
system should be realized with the program TOSCANA [KSVW94] which is
based of the theory of formal concept analysis [GW96]. The main purpose of
that system was defined to be a support for the planing department and building
control office as well as for people that are entitled to present building projects
to the office in order to enable these groups to consider the laws and techni-
cal regulations in planing, controlling, and implementing building projects (cf.
[KSVW94], [EKSW00], [Wi05b]).

The commonly acquired data basis comprised 156 documents about build-
ing laws and regulations and furthermore 216 search words (concerning build-
ing parts and demands), between those 5.895 relevant relationships were de-
termined in its contens [EKSW00]. As mathematical structure the explorat-
ing system takes as a basis a context with 156 formal objects (logically: doc-
uments), 216 formal attributes (logically: building parts and demands), and
5.895 object-attribute-pairs (logically: relevant relation between document and
building-part/demand). By exploration questions concerning the data basis it
should first of all be clarified which documents have to be considered concerning
a special building task. To make the answering of such questions possible, a large
number of conceptual questioning structures were deduced from the elaborated
data context by falling back on the mathematical theory of subcontexts. It was
decisive that the concept lattices of the selected subcontexts and - if possible
- also their combinations by good readable line diagrams could be represented
and therewith could master the main purpose of the exploration system.

Example 4 shows such a concept lattice which is suitable as conceptual ques-
tioning structure what is being underlined by the following experience: For test-
ing the readability of the line diagram in Example 4, a secretary was included

28 R. Wille

into the discussion during a working session of the ministry. The secretary be-
came exceedingly surprised when she noticed that in the line diagram the 51
of the building regulations of ”Nordrhein-Westfalen” (”BauONW51”) stands on
the concept with the inscription ”toilet” and must therefore be applied only for
building toilets. She could not understand that, for instance, ”wash- and bath-
rooms” must not be equipped for handicapped peoples. Also the experts were
astonished, but could only determine explicitly, after reading again 51, the re-
lation to the toilet. Only after an extensive discussion, the experts came to the
conclusion that by a more general legal point of views also an application of 51 to
the ”wash- and bathroom” should be demanded. Finally, 51 was also assigned to
the ”the consulting- and common room”, so that 51 became in the diagram the
place of the concept with the inscription ”KhBauVo27” (cf. [Wi95]). Besides the
positive readability, the example makes clear how sometimes first by a process
of combinations of mathematical and logical thinking harmonic representations
are reached.

Finally, it is still generally to be held that for the sense-critical judgment
of mathematics - as also for the normative sciences - Peirce’s pragmatism is a
fruitful basic idea. The pragmatic maxime, which is central for him, signifies

Mathematics: Presenting, Reflecting, Judging 29

that the rational content of meaningful thinking consists of the conceivable im-
pressions and effects which may quite probably also have practical consequences
[Pe68]. According to this maxime, the determination of sense and meaning of
mathematics is genuinely related to its embedding in the real world.

5 Mathematics for Supporting Rational Communication

In the article ”communicative rationality, logic, and mathematics” [Wi02c] the
following thesis is explained and substantiated:

Sense and meaning of mathematics finally lie in the fact that mathemat-
ics is able to support the rational communication of humans.

The self-understanding of mathematics, which is for the theme ”presenting math-
ematics” of central meaning, can be only formed in the community of mathe-
maticians in the frame of controlled rational communication; for this mathe-
matics itself carries decisively the communication about new ideas and results.
The far-reaching development of mathematics, which grows out of itself, suc-
ceeds first of all so impressive because consent and coherence have the highest
priority for mathematicians. This leads to a very restrictive technical language
and extremely rigid semantics of mathematics, which facilitates the rational
communication about mathematics. Comprehensive thinking in mathematics is
supported in particular by mathematical diagrams and pictures.

To understand mathematical thinking as abstraction of logical thinking is
basic for the theme ”reflecting mathematics”, which, first of all, asks about the
relationship of mathematics to the real world. Since human thinking is primarily
related to the actual realities and activates therefore logical forms of thinking,
mathematics support the rational communication of humans if mathematical
patterns of thinking can be logically interpreted. The semantics of set struc-
tures in mathematics allow the elementary relationship between mathematics
and logic that sets are interpretable as extents of concepts. Finally, based on
this relationship, a high percentage of established mathematizations concerning
the real world can therefore be moved up to the support of rational communi-
cation about the real world.

Sense, meaning, and connection of mathematical doing are central categories
for the evaluation of integrating mathematics in the real world for the theme
”judging mathematics”. Since the sense-critical judgment of mathematics re-
lates primarily to the rational purposes, which the mathematized realities shall
fulfill according to meaning and connection, mathematics can effectively support
the rational understanding about such purposes and about the appertaining re-
alizations. In the sense of the a priori of the community of communication it
is even aspired that mathematics can contribute by a suitable transdisciplinary
methodology also to interdisciplinary communication, for which suitable repre-
sentations of logical structures would be provided in an extensive extent.

30 R. Wille

References

[AZ98] Aigner, M., Ziegler, G.M.: Proofs from THE BOOK. Springer, Berlin
(1998)

[Ap76] Apel, K.-O.: Das Apriori der Kommunikationsgesellschaft und die Grund-
lagen der Ethik. Zum Problem einer rationalen Begründung der Ethik
im Zeitalter der Wissenschaft. In: Apel, K.-O. (ed.) Transformation der
Philosophie. Bd.2. Suhrkamp-Taschenbuch Wissenschaft 165, Frankfurt,
pp. 358–435 (1976)

[Bo74] Bourbaki, N.: Die Architektur der Mathematik. In: Otte, M. (Hrsg.) Math-
ematiker über die Mathematik, pp. 140–159. Springer, Berlin (1974)

[Da03] Dau, F.: The logic system of concept graphs with negation (and relation-
ship to predicate logic). LNCS (LNAI), vol. 2892. Springer, Heidelberg
(2003)

[DK05] Dau, F., Klinger, J.: From formal concept analysis to contextual logic.
FB4-Preprint, TU Darmstadt (2005)

[Ek04] Eklund, P. (ed.): ICFCA 2004. LNCS (LNAI), vol. 2961. Springer, Heidel-
berg (2004)

[EKSW00] Eschenfelder, D., Kollewe, W., Skorsky, M., Wille, R.: Ein Erkundungssys-
tem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems.
In: [SW00], pp. 254–272

[Fi88] Fischer, R.: Mittel und System: Zur sozialen Relevanz der Mathematik.
Zentralblatt für die Didaktik der Mathematik 20(1), 20–28

[GW96] Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundla-
gen. Springer, Heidelberg (1996)

[GW99] Ganter, B., Wille, R.: Contextual attribute logic. In: Tepfenhart, W., Cyre,
W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 401–414. Springer,
Heidelberg (1999)

[Gu77] Guttman, L.: What is not what in statistics. The Statistician 26, 81–107
(1977)

[Hu92] Husserl, E.: Die Krisis der europäischen Wissenschaften und die tranzen-
dentale Phänomenologie. In: Husserl, E. (ed.) Gesammelte Schriften 8. Fe-
lix Meiner Verlag, Hamburg (1992)

[Ke94] Kelle, U.: Empirisch begründete Theoriebildung. Zur Logik und Method-
ologie interpretativer Sozialforschung. Deutscher Studienverlag, Weinheim
(1994)

[KSVW94] Kollewe, W., Skorsky, M., Vogt, F., Wille, R.: TOSCANA - ein Werkzeug
zur begrifflichen Analyse und Erkundung von Daten. In: Wille, R., Zick-
wolff, M. (Hrsg.) Begriffliche Wissensverarbeitung - Grundfragen und Auf-
gaben, pp. 267–288. B.I.-Wissenschaftsverlag, Mannheim (1994)

[KLSW71] Krantz, D., Luce, R.D., Suppes, P., Tversky, A.: Foundations of measure-
ment, vol. 1, 2, 3. Academic Press, San Diego (1871, 1989, 1990)

[Ma00] Mackensen, K.: Simplizität. Genese und Wandel einer musikästhetischen
Kategorie des 18. Jahrhunderts. Bärenreiter, Kassel (2000)

[MW99] Mackensen, K., Wille, U.: Qualitative text analysis supported by concep-
tual data systems. Quality & Quantity 33, 135–156 (1999)

[MSW99] Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by
conceptual graphs and formal concept analysis. In: Tepfenhart, W., Cyre,
W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 423–441. Springer,
Heidelberg (1999)

Mathematics: Presenting, Reflecting, Judging 31

[Oe93] Oehler, K.: Charles Sanders Peirce. Verlag C. H. Beck, München (1993)
[Pe03a] Peirce, C.S.: Aus den Pragmatismus-Vorlesungen. In: Peirce, C.S. (ed.)

Schriften zum Pragmatismus und Pragmatizismus. Herausgegeben von K.-
O. Apel. Suhrkamp-Taschenbuch Wissenschaft 945. Frankfurt, pp. 337–426
(1991)

[Pe03b] Peirce, C.S.: The three normative sciences. In: Peirce, C.S. (ed.) Edited
by the Peirce Edition Project (1893-1913), vol. 2, pp. 196–207. Indiana
University Press, Bloomington (1998)

[Pe04] Peirce, C.S.: Eine intellekte Autobiographie. In: Peirce, C.S. (ed.) Semiotis-
che Schriften I. Herausgebenen und übersetzt von Ch. Kösel und H. Pape.
Wissenschaftliche Buchgesellschaft, Darmstadt, pp. 64–75 (2000)

[Pe11] Peirce, C.S.: A sketch of logical critics. In: Peirce, C.S. (ed.) Edited by the
Peirce Edition Project (1893-1913), vol. 2, pp. 451–462. Indiana University
Press, Bloomington (1998)

[Pe68] Peirce, C.S.: Über die Klarheit unserer Gedanken. Einleitung, Übersetzung,
Kommentar von K. Oehler. Klostermann, Frankfurt (1968)

[Pe92] Peirce, C.S.: Reasoning and the logic of thinks. In: Ketner, K.L. (ed.)
with an introduction by Ketner, K.L., Putnam, H. Havard Univ. Press,
Cambridge (1992)

[Pe93] Peirce, C.S.: Konventionen und Regeln der Existentiellen Graphen. In:
Peirce, C.S. (ed.) Phänomen und Logik der Zeichen. Herausgegeben und
übersetzt von H. Pape. Suhrkamp-Taschenbuch Wissenschaft 425, 2, Aufl.,
Frankfurt, pp. 139–155 (1993)

[Pr98] Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur
Restrukturierung der mathematischen Logik. Dissertation, TU Darmstadt.
Shaker Verlag, Aachen (1998)

[Pr01] Prediger, S.: Mathematik als kulturelles Produkt menschlicher
Denktätigkeit und ihr Bezug zum Individium. In: Lengnink, K., Prediger,
S., Siebel, F. (Hrsg.) Mathematik und Mensch: Sichtweisen der Allge-
meinen Mathematik, pp. 21–36. Verlag Allgemeine Wissenschaft, Mühltal
(2001)

[Se01] Seiler, T.B.: Begreifen und Verstehen. Ein Buch über Begriffe und Bedeu-
tungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)

[SW93] Spangenberg, N., Wolff, K.E.: Datenreduktion durch Formale Begriffsanal-
yse von Repertory Grids. In: Scheer, J.W., Catina, A. (Hrsg.) Einführung in
die Repertory Grid-Technik. Bd.2: Klinische Forschung und Praxis, Bern,
pp. 38–54 (1993)

[SWW01] Strahringer, S., Wille, R., Wille, U.: Mathematical support for empirical
theory building. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS
(LNAI), vol. 2120, pp. 169–186. Springer, Heidelberg (2001)

[SW93] Spangenberg, N., Wolff, K.E.: Datenreduktion durch Formale Begriffsanal-
yse von Repertory Grids. In: Scheer, J.W., Catina, A. (Hrsg.) Einführung in
die Repertory Grid-Technik. Bd.2: Klinische Forschung und Praxis, Bern,
pp. 38–52 (1993)

[SC96] Strauss, A., Corbin, J.: Grounded Theory: Grundlagen qualitativer Sozial-
forschung. Beltz, Weinheim (1996)

[SW00] Stumme, G., Wille, R. (Hrsg.): Begriffliche Wissensverarbeitung: Metho-
den und Anwendungen. Springer, Heidelberg (2000)

[Th93] Thamm, S.: Kurs ”Formale Begriffsanalyse” - Eine Brücke zwischen for-
malem und inhaltlichem Denken. Staatsexamensarbeit, TH Damstadt
(1993)

32 R. Wille

[Wi82] Wille, R.: Restructuring lattice theory: an approach based on hierarchies
of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht
(1982)

[Wi86] Wille, R.: Mathematik für Sozialwissenschaftler. Vorlesungsskript, TH
Darmstadt 1986/87

[Wi87] Wille, R.: Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille,
R., Wolff, K.E. (Hrsg.) Beiträge zur Begriffsanalyse, pp. 161–211. B.I.-
Wissenschaftsverlag, Mannheim (1887)

[Wi95] Wille, R.: Begriffsdenken: Von der griechischen Philosophie bis zur
Künstlichen Intelligenz heute. In: Diltheykastanie, Ludwig-Georgs-
Gymnasium, Darmstadt, pp. 77–109 (1995)

[Wi96] Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s
pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–
281. Marcel Dekker, New York (1996)

[Wi97] Wille, R.: Concept Graphs and Formal Concept Analysis. In: Lukose, D.,
Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS 1997. LNCS
(LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

[Wi00a] Wille, R.: Contextual logic summary. In: Stumme, G. (ed.) Working with
conceptual structures: Contributions to ICCS 2000, pp. 265–276. Shaker-
Verlag, Aachen (2000)

[Wi00b] Wille, R.: Begriffliche Wissensverarbeitung: Theorie und Praxis. Infor-
matik Spektrum 23, 357–369 (2000)

[Wi01a] Wille, R.: Allgemeine Mathematik - Mathematik für die Allgemeinheit. In:
Lengnink, K., Prediger, S., Siebel, F. (Hrsg.) Mathematik und Mensch:
Sichtweisen einer Allgemeinen Mathematk, pp. 3–19. Verlag Allgemeine
Wissenschaft, Mühltal (2001)

[Wi01b] Wille, R.: Lebenswelt und Mathematik. In: Hauskeller, C., Liebert, W.,
Ludwig, H. (Hrsg.) Wissenschaft verantworten: soziale und ethische Orien-
tierung in der Technischen Zivilisation, pp. 51–68. Agenda-Verlag, Münster
(2001)

[Wi01c] Wille, R.: Mensch und Mathematik: Logisches und mathematisches
Denken. In: Lengnink, K., Prediger, S., Siebel, F. (Hrsg.) Mathematik und
Mensch: Sichtweisen einer Allgemeinen Mathematk, pp. 139–158. Verlag
Allgemeine Wissenschaft, Mühltal (2001)

[Wi02a] Wille, R.: Begriffliche Wissensverarbeitung in der Wirtschaft. Information
- Wissenschaft und Praxis (Organ der Deutschen Gesellschaft für Informa-
tionswissenschaft und Informatiospraxis e.V.), vol. 53, pp. 149–160 (2002)

[Wi02b] Wille, R.: Transdisziplinarität und Allgemeine Wissenschaft. In: Krebs,
H., Gehrlein, U., Pfeifer, J., Schmidt, J.C. (Hrsg.) Perspektiven interdiszi-
plinärer Technikforschung: Konzepte, Analysen, Erfahrungen, pp. 73–84.
Agenda-Verlag, Münster (2002)

[Wi02c] Wille, R.: Kommunikative Rationalität, Logik und Mathematik. Mathe-
matische Semesterberichte 49, 167–183 (2002)

[Wi03] Wille, R.: Conceptual content as information - basics for conceptual judg-
ment logic. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS
(LNAI), vol. 2746, pp. 1–15. Springer, Heidelberg (2003)

[Wi04a] Wille, R.: Implicational concept graphs. In: Wolff, K.E., Pfeiffer, H.D.,
Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 52–61.
Springer, Heidelberg (2004)

Mathematics: Presenting, Reflecting, Judging 33

[Wi04b] Wille, R.: Sind unsere Vorstellungen von Raum und Zeit richtig? Oder:
Besteht ein Kontinuum aus Punkten? In: Hefendehl-Hebeker, L., Huss-
mann, S. (eds.) Mathematikdidaktik: Zwischen Fachorientierung und Em-
pirie, pp. 266–279. Franzbecker Verlag, Hildesheim (2003)

[Wi04c] Wille, R.: Dyadic mathematics - abstractions from logical thought. In:
Denecke, K., Erné, M., Wismath, S.L. (eds.) Galois connections and appli-
cations, pp. 453–498. Kluwer, Dordrecht (2004)

[Wi05a] Wille, R.: Formal Concept Analysis as mathematical theory of concepts and
concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal
Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg
(2005)

[Wi05b] Wille, R.: Mathematik - präsentieren, reflektieren, beurteilen. In: Lengnink,
K., Siebel, F. (Hrsg.) Mathematik - präsentieren, reflektieren, beurteilen,
pp. 3–19. Verlag Allgemeine Wissenschaft, Mühltal (2005)

The Role of Concept, Context, and Component for
Dependable Software Development

∗

Vasu Alagar1, Mubarak Mohammad1, and Kaiyu Wan2

1 Concordia University, Montreal, Canada
{alagar,ms moham}@cse.concordia.ca
2 East China Normal University, Shanghai, PRC

kywan@cs.ecu.edu.cn

Abstract. Software that impact our lives are embedded in the environment in
which we act and hence our security and safety are dependent on its flawless
functioning. An assessment of dependability of such embedded software systems
includes an assessment of the process to develop the system and the system’s
observable properties. Dependability criteria depend on the domain in which the
software system is to serve. Thus, it should be formulated from domain concepts.
Concepts in the domain should be analyzed to construct components. A compo-
nent of the system may function as expected in one context of application and
may fail to function as expected in another context. The system is dependable
if the services resulting from every interaction between system components sat-
isfy the dependability criteria in every context of operation. This paper explores
the roles of concept analysis and context in determining dependability criteria at
the domain level, the role of domain models in an automatic derivation of com-
ponents and component-based systems, and the integrated role of context and
components in the construction of context-aware and service-oriented systems.

1 Introduction

A software system is dependable if it delivers the results for which it was designed
and no adverse effects are felt in the environment during and after the delivery of the
results. Software that impact our lives are embedded in the environment in which we
act and hence its behavior should remain dependable. It is the goal of this paper to
craft the role of concept and context in formulating a dependability criterion, the re-
lationship between concept and a software component and the role of a context-aware
component-based development (CBD) in a convincing assessment of dependability in
the deployed software.

In literature the terms dependability and trustworthiness are used interchangeably.
Without trusting the behavior of a system it cannot be depended upon. Conversely, a
system is regarded as dependable only if it is trustworthy. Let us review some exam-
ples of software systems that we depend upon in our lives. Embedded software that
drive smart medical devices and on-line health care systems are prime examples. They

∗
This research is supported by a Research Grant from Natural Sciences and Engineering Re-
search Council of Canada.(NSERC)

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 34–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Role of Concept, Context, and Component for Dependable Software Development 35

bring enormous benefits, but when they malfunction or fail the patients are in peril.
Safety, security, and privacy are the attributes that determine trust in such applications.
In the sector of on-line finance and E-commerce, the system can be trusted only if it is
secure, provides timely service, enforces obligations, and affords privacy. In transporta-
tion domain, aircrafts have autopilots installed in them, which once initialized will take
away the control of a pilot, resulting in cruising pleasure and occasionally resulting in
a severe accident. Safety, security, reliability, and availability are all essential attributes
to ensure trust in such systems. In the energy sector, large power grids and nuclear
power plants should be safe-guarded and protected without fail. Without a direct evi-
dence of safety and security software that monitors and manages these systems cannot
be trusted. These examples illustrate the types and severity of risks that vary from one
sector (domain) to another sector. So the first lesson we learn is that dependability crite-
ria is to be composed from attributes that primarily include safety, security, reliability,
and availability. Since attributes are related to concepts and in turn concepts belong to
a domain of application we learn the second lesson that the dependability criterion is
domain-dependent and should be formulated from domain concepts. What is deemed
as dependable for health care domain may not be relevant to transportation domain,
and what is accepted as dependable for ground transportation may not be acceptable as
sufficiently dependable for air transportation.

Once the application domain of a large complex system is prescribed, dependability
is to be articulated at the requirements level and evaluated at the entire system level. It is
natural therefore to include the essential critical properties of the domain in formulating
the dependability criteria. It may be theoretically infeasible to know all of the properties
that are critical. Making an exhaustive list of such properties may pose a problem for the
system developer in the assessment of those properties in the system. To be practical,
the dependability property must involve only the essential claims and the formulated
dependability property must be formally verified in the system. Formal verification is
a daunting task. If there are risks, notwithstanding the verified properties, they must
be made explicit to users of the system in order that clients may understand it and
determine how well they want to trust the system. In particular, for software in privacy
and safety-critical domains the dependability argument must be in the form of direct
evidence that is verifiable and can be audited by a third party who needs not be an expert.

Software is but one part of the entire system. A component of the software may
function as expected in one context of application and may fail to function as expected
in another context [7,10]. So, it is essential to integrate with software components the
contexts in which they are to be used. Towards that, a software system is viewed as the
sum of three parts, the software unit S with which the client will have a direct interac-
tion, its embedding Ei (its development framework and third party components), and
the environment Eo in which it will be deployed. An application within a domain has a
specific context of application. The features of Ei will lead to determining those internal
contexts which impact the generation of services of the components in S. The features
of Eo will prescribe the external contexts in which the services of S are to be provided.
The external contexts also form the basis of context-awareness of the system. The de-
pendability attributes must be determined in that context, the closure of the internal and
external contexts, and a dependability case should be formulated. This argument should

36 V. Alagar, M. Mohammad, and K. Wan

be an expression φ that includes the global context information, the critical properties of
the software, assumptions on its embedding, its environmental constraints, and a direct
evidence that the specified properties are satisfied. This dependability argument will
have to be resolved by a rigorous proof that M |= φ, where M is the model composed
of S, Ei and Eo.

During system development external contexts may not change, however some new
internal contexts may be generated which in conjunction with other internal contexts
may modify the set of internal contexts. The essence of dependable development is to
ensure that the property φ remains invariant through the development cycle. Thus the
initial model M undergoes several refinements, say M1, M2, . . . , Mk, where M = M1
and Mi is a refinement of Mi−1. Typically a refinement is a conservative extension of
structure and behavior, adding more details while conservatively extending the original
behavior. Let φ1 = φ. For refinement M2 we need to construct an evidence φ2 such
that M2 |= φ2 and prove φ2 ⇒ φ1. Then it follows that M2 |= φ1(= φ). That is, the
dependability criterion is satisfied by the model M2. In general, for successive refine-
ments M2, . . . , Mk, of M(= M1) we need to construct evidences φi, 2 ≤ i ≤ k such
that Mi |= φi, 2 ≤ i ≤ k and provide a proof of φi ⇒ φi−1. With this proof we can
claim that the implemented system Mk satisfies the dependability criterion formulated
at the domain level. The proofs of φi ⇒ φi−1, i = 2, . . . , k form the chain of evidence
that the system is constructed without losing the stated dependability property. The con-
struction of this chain of evidence is the most challenging problem in the development
of dependable systems. We believe that understanding the roles of component, context,
and concept and skilfully exploiting their triangular web of interactions we may break
the complexity barrier in the development of dependable systems. We sketch these de-
tails in the rest of the paper.

2 Basic Concepts - Concept, Context, Component

According to OED [15] the term “concept” means an abstract idea and is derived from
the Latin word conceptum meaning “something conceived”. Traditional philosophical
view has lead to view concept as a pair (extent, intent), where the extent consists of
all objects belonging to the concept and intent is the set of all attributes shared by
the objects. Because of the inherent difficulty in determining all objects that belong
to a concept and identifying all the attributes shared by them, concept classification
and analysis takes place within a specific context. But the notion of context itself is
not defined. Formal Concept Analysis (FCA) [8] provides a framework for structuring,
analyzing, and visualizing concepts and concept hierarchies. For further discussion it
is sufficient that we agree that FCA requires a priori knowledge of context and a set of
objects of some relevance in that context.

According to OED the term “context” means the circumstances that form the setting
for an event, statement, or idea. A circumstance is a condition involving, in general,
different types of entities. As an example, the setting for a “seminar event” is a con-
dition involving entities speaker, topic, time, location. When each entity is assigned a
value from the domain associated with that entity, and if the condition is met then the
seminar is to be held. A common social usage of the word context is illustrated in OED

The Role of Concept, Context, and Component for Dependable Software Development 37

by the quotation “I wish honorable gentlemen would have the fairness to give the en-
tire context of what I did say, and not pick out detached words.(Cobden, Speeches 46,
1849, quoted in the OED)”. Although the word context has been used for a long time in
many scientific descriptions, literary essays, and in philosophical discourses, its mean-
ing was always left to the reader’s understanding. In one of the earlier papers, Clark and
Carlson [5] state that

Context has become a favorite word in the vocabulary of cognitive psycholo-
gists and that it has appeared in the titles of a vast number of articles. They then
complain that the denotation of the word has become murkier as its uses have
been extended in many directions and deliver the now widespread opinion that
context has become some sort of “conceptual garbage can”.

Context is studied as a formal object for logical reasoning in Artificial Intelligence. In-
tensional Logic [6,18], a family of mathematical formal systems that permits expres-
sions whose value depends on hidden context, came into being from research in natural
language understanding. According to Carnap [3], the real meaning of a natural lan-
guage expression whose truth-value depends on the context in which it is uttered is its
intension. The extension of that expression is its actual truth-value in the different possi-
ble contexts of utterance, where this expression can be evaluated. Basically, intensional
logics add dimensions to logical expressions, and non-intensional logics can be viewed
as constant in all possible dimensions, i.e. their valuation does not vary according to
their context of utterance. Intensional operators are defined to navigate in the context
space. In order to navigate, some dimension and tags (or indexes) are required to provide
placeholders along dimensions. These dimension tags, along with the dimension names
they belong to, are used to define the context for evaluating intensional expressions.

Based upon an intuitive understanding, context was freely used to describe different
computing scenarios. However, when system developers were faced with the develop-
ment of large complex systems which must be context-aware it was necessary to invent
some form of working definition of context. Context sensing, context representation,
contextual analysis, and contextual interpretation are necessary steps in developing
pervasive computing applications, sensory networks and mobile computing, Human-
Computer Interaction (HCI), semantic web, knowledge-based systems, and analysis of
computer programs. Without some working definition of context such systems can not
be designed. This necessity has lead to many ad hoc but useful technical working defi-
nitions of the notion of context.

Following the intensional logic paradigm in which dimensions and tags were used to
describe contexts, Wan [19] formalized context as a typed relation, introduced a syntax
for it, and provided a set of operators. Based on it a context calculus was developed and
a context toolkit has been implemented. This toolkit can be used as a “plug-in” for the
applications cited above.

Component is a software engineering concept. The notion of component provides a
means to model an entity which provides services to its environment and may require
services from its environment. The two types of services are provided services and
required services. Provided services are the results of operations performed within a
component. Required services are the prerequisite services that the component needs

38 V. Alagar, M. Mohammad, and K. Wan

in order to provide its services. The notion of interface provides a means to specify the
services that are provided and required by the component.

A service must fulfill the service contract. The notion of contract provides a pow-
erful mechanism to specify and enforce safety, security, reliability, and availability re-
quirements. At design time, contract specification is the basis for a formal validation
of dependability requirements to ensure that there are no contradicting dependability
requirements, and a formal verification that the design of component respects the de-
pendability requirements. At run-time, contract implementation enforces the depend-
ability requirements in the behavior of a component. In order to provide an evidence of
dependability the implemented services should satisfy the following properties:

– safety: services do not cause danger to the environment.
– security: there is no unauthorized access or improper alteration to information.
– reliability: correct services are provided despite any failure.
– availability: services are provided with no interruption.

If the services provided by a component satisfy all the above properties at different
contexts of invoking the component we say the component is dependable. A system
is composed with many components that interact among themselves. If the services
resulting from every interaction satisfy the above properties in every context of sys-
tem’s operation we say the system is dependable. Therefore, it is necessary to construct
contexts and integrate them with components in the system, and the dependability cri-
terion φ is formulated at the requirements level to capture safety, security, reliability,
and availability requirements. Since the requirements originate from the application
domain, concepts in the domain should be analyzed to construct components that are
dependable at different contexts. This is the context of our current research.

3 Concepts in Contexts

In this section we give a brief outline of the context formalism from Wan [19] and give
a logical contextual reasoning on concept classes, viewed as the knowledge referenced
by contexts.

3.1 Context Definition

Several notable works on context formalization have been surveyed in [1]. With neither
an abstract nor a concrete representation of context, these papers discuss different kinds
of logic for reasoning with context. Motivated by system and language requirements
Wan [19] modeled context as a typed relation. This formalization retains the first class
status of contexts and logical reasoning ability, the twin principles of McCarthy [11].
The advantage of Wan’s formalism is that contexts have a representation (structure) and
a semantics based on the knowledge enveloped by the context. Concepts defined within
a specific context, as in FCA, can be viewed as a world of knowledge whose pointer is
the specific context.

In order to define a context Wan [19] started with a set of dimensions and their
associated types. Context is a multi-dimensional object, as can be inferred from a com-
puting perspective. Naturally dimensions and their types for contexts arise from the

The Role of Concept, Context, and Component for Dependable Software Development 39

Table 1. Context Operators and their Precedence

operator name symbol meaning
Projection ↓ Domain Restriction
Hiding ↑ Range Restriction
Union 	 Set Union
Intersection
 Set Intersection
Difference � Set Difference
Override ⊕ Function overwrite
Undirected Range � Range of simple contexts with same domain
Directed Range ⇀ Range of simple contexts with same domain

domain of interest. Therefore we define a typing function τ : DIM → T , which as-
sociates with every dimension in the set DIM = {X1, X2, . . . , Xn} a type from the set
T = {T1, T2, . . . , Tn}. Let τ(Xi) = Ti, Ti ∈ T . Define a context c as an aggregation
of ordered pairs (Xj, vj), where Xj ∈ DIM, and vj ∈ τ(Xj). In principle, DIM may
be infinite. We deal only with finite contexts. So, it is sufficient to let DIM be finite.
We use the notation [X1 : v1, . . . , Xk : vk], instead of the strict mathematical notation
{(X1 �→ v1), . . . , (Xk �→ vk)} for contexts. For a context c = [X1 : v1, . . . , Xk : vk],
we also write (Xi, vi) ∈ c, for i = 1, . . . , k. In the rest of the paper by context we
mean a finite non-empty context in which all dimensions are distinct, and omit explicit
reference to τ unless our discussion demands it.

Context Modification. Context operators are defined on a set of contexts of a specific
type τ . These operations provide a means for constructing and modifying contexts dy-
namically. The context operators include standard binary set operators that take contexts
as operands and return a context. An essential set of operators is given in Table 1. In the
table, the operators within a rectangular box have equal precedence while the rectangu-
lar boxes are arranged in decreasing order of precedence. Formal definitions are given
in Wan [19].

3.2 Two Algebraic Structures

Following the notation of McCarthy [11] we write ist(c, P) to mean that P is true in
context c. We write W(c) to denote the set of propositions that are true in context c.
That is, W(c) = {P | P ∈ P ∧ ist(c, P)}. The set W

∗
(c) denotes the closure of W(c).

We define two kinds of partial orders on the set S of contexts.

Generality of First Kind. Suppose for contexts c1, c2 ∈ S, the world W(c2) referenced
by c2 is a restricted subset of the information in the world W(c1) referenced by c1. The
restriction is often imposed by constraints on the entity described in the world W(c1).
Then the information in the world W(c2) is more precise or special than the information
W(c1). This kind of sub-setting can be realized either semantically or syntactically. In
the former case, a logical expression may be used. An example is W(c1) is the set of
students and W(c2) is the set of married students. In the case of syntactic sub-setting,
more dimensions are added to the set dim(c1) such that the world referenced by new

40 V. Alagar, M. Mohammad, and K. Wan

contexts obtained by the addition of dimensions do not go outside W(c1). Formally a
context c2 is constructed such that dim(c2) = dim(c1) ∪ D, where D ⊂ DIM , D ∩
dim(c1) = ∅, such that W(c2) ⊂ W(c1) . Thus, the additional dimensions in the set
dim(c2)\dim(c1) have no extraneous influence on the information along the dimensions
in the set dim(c1), instead it can only constrain it. An example is the context c2 =
[GPS : Newyork, TIME : 10, NS : 12, EW : 3] with c1 = [GPS : Newyork, TIME : 10],
with the interpretation that every event happening in context c2 can be seen from context
c1. Hence, if P is a valid formula in W

∗
(c2) then it is possible to prove in context c1

that P is true in context c2. We define such a relationship between contexts as visible.
Formally, a context c2 ∈ S is said to be visible from context c1 ∈ S, written c1 � c2,
if c1 � c2 and W

∗
(c2) ⊂ W

∗
(c1). Hence it follows that ist(c2, P) ⇒ ist(c1, ist(c2, P))

if c1 � c2. The relation � is a reflexive partial order on the set S. For the poset (S,�)
maximal, minimal, greatest, and least elements are defined in the usual manner.

Generality of Second Kind Let c1, c ∈ S, dim(c1) ⊂ dim(c). Suppose the world W(c1)
referenced by c1 contains information about one entity and the world W(c2) referenced
by any context c2, dim(c2) ⊆ dim(c) \ dim(c1), contains information about another
entity not related to the first one. Then we can conclude that

– the context c = c1 � c2 references the world W(c) = W(c1) ∪ W(c2), where
W(c1) ∩ W(c2) = ∅, W

∗
(c1) ⊂ W

∗
(c), and W

∗
(c2) ⊂ W

∗
(c),

– every formula P1 that is valid in c1 is valid in c, and
– every formula P2 that is valid in c2 is valid in c.

Moreover we can also conclude that if a formula P is valid in c then P is valid in either
c1 or in c2. It may not be valid in both. We say context c is more general than c1 and
write c � c1. It is easy to see that c � c2. From the discussion above it follows that
if c � c1, and c � c2 then ist(c, P) ⇒ ist(c1, P) ∧ ist(c2, P)). The relation � is a
irreflexive partial order on the set S. For the poset (S, �) maximal, minimal, greatest,
and least elements are defined in the usual manner.

3.3 Reasoning

We let the worlds referenced by contexts to be formalized in propositional logic and
give rules for reasoning within a context. For predicate logic worlds we have developed
a set of rules, not included in this paper.

Distributes on Logical Connectives

◦ ∈ {∧,∨,→} :
ist(c, P) ◦ ist(c, Q)

ist(c, P ◦ Q)
(1)

◦ ∈ {∧,→} :
ist(c, P ◦ Q)

ist(c, P) ◦ ist(c, Q)
(2)

ist(c, ist(c′, P) ∨ Q)
ist(c, ist(c′, P)) ∨ ist(c, Q)

(3)

The Role of Concept, Context, and Component for Dependable Software Development 41

Modes Ponen : Logical inference:

ist(c, P → Q), ist(c, P)
ist(c, Q)

(4)

The following two lifting rules allow a valid formula in one context to become valid in
another context.

Enter Entering from a context c′:

ist(c′, ist(c, P))
ist(c, P)

(5)

Exit Exiting from a context c:
ist(c, P), c′ � c
ist(c′, ist(c, P))

(6)

Formal System. With the set S(τ) of simple contexts (contexts with distinct dimensions)
we associate a tuple W(τ) = {〈L(τ), F(τ), I(τ)〉}, where F(τ) is a set of facts and I(τ)
is a set of inference rules, both expressed in the language L(τ). Assume that P is a set
of propositions and P ⊂ L(τ). The transitive closure of all formulas derived from F(τ)
is the world W

∗
(τ) describable by the contexts in S(τ). W(τ) is a formal system.

4 Concepts in Components

In this section we discuss the construction of dependability criteria and the derivation
of components from domain concepts.

4.1 Formulating Dependability Criteria

According to Jackson et al.,[10] “it might make sense to demand dependability from a
car in its entirety, it makes less sense to demand the same of a large software system”.
Yet, for many models of modern day cars that are equipped with thousands of embedded
systems proving dependability is not an easy task. However, we can at least define
dependability in terms of safety, security, reliability, and availability. For a software
system of large complex application it is much harder to define a metric that can be a
measure of its dependability. A modest goal should be to include particular properties in
the dependability criteria and include rigorous methods for assessing the dependability
criteria during software system development. Regardless of the size and complexity of
the system, the properties to be included in dependability criteria are independent of
any development method and hence must be determined at the domain level. Contexts
that are pertinent to the concepts and their interpretations should also be constructed
at the domain level. Failing to include context may lead to unsafe systems. Example 1
illustrates this point.

42 V. Alagar, M. Mohammad, and K. Wan

Example 1. This example is taken from [1], and perhaps the starting point for a formal
treatment of context by McCarthy [11]. MYCIN [16] was introduced as a computer-
based medical consultation system in 1976. Among the many types of users of MYCIN,
physicians could use it on treating bacterial infections of the blood. When MYCIN was
given the information “the patient has Chlorae Vibrio” it recommended two weeks of
tetracycline treatment and nothing else. What it did not reveal was that there is massive
dehydration during the course of the treatment. While the administration of tetracycline
would cure the bacteria, the patient would perish long before that due to diarrhea.

The moral is that context must be included with services. We discuss the design aspects
of this integration in Section 4. An important aspect of domain analysis should be to
identify and represent relationship between concepts. Failing to do so will lead to unsafe
software systems. Here is an example taken from [10].

Example 2. Emergency care units may have a dozen or more different medical devices
connected to the same patient. These devices are designed and developed in isolation,
but they form an accidental system (that is, a system constructed without conscious in-
tent) whose components interact through the patients physiology and through the cog-
nitive and organizational faculties of the attending physicians and nurses. Each device
typically attempts to monitor and support the stabilization of some parameter (heart
rate, breathing, blood chemistry) but it does so in ignorance of the others even though
these parameters are physiologically coupled. The result can be suboptimal whole-body
stabilization and legitimate concern that faults in a device, or in its operation, may
propagate to other devices. Because they are designed in isolation, the devices have
separate operator interfaces and may present similar information in different ways and
require similar operations to be performed in different ways, thereby inviting operator
errors. A consequence of accidental system construction is that components may come
to be used in contexts for which they were not designed and in which properties (typi-
cally internal failures and response to external faults) that were benign in their original
context become more serious.

In summary, the dependability criteria construction requires the following activities.

1. Identification of critical concepts for inclusion in the dependability criteria.
2. Formalization of the relationship between critical concepts and their attributes.
3. Analysis of included concepts to remove redundancy and contradictions.
4. Formulation of the criteria as a formal expression.

4.2 A Formal Model of Dependable Components and Systems

We formally describe components and the systems composed from them in a language,
called Trustworthy Architecture Description Language (TADL) [12,13]. In TADL, a
component definition includes functional, structural, and non-functional (trustworthi-
ness) specifications. Figure 2 depicts the structure of TADL for defining trustworthy
component and component-based systems. The main building blocks of TADL struc-
ture are given below.

The Role of Concept, Context, and Component for Dependable Software Development 43

– Component definition: A component provides and requests services through public
interfaces. Also, it defines attributes that define local value-type properties.

– Architecture definition: A component can be primitive or composite. The compo-
nents of a composite component are connected using connectors. An architecture
specifies a set of connectors along with attachment specifications for the connec-
tors. It also defines structural constraints. A component can have multiple possible
architectures. A component-based system is a composition of components with a
predefined architecture or set of possible architectures.

– Safety contract: A contract defines the safety requirements that govern the interac-
tions that occur at the interfaces of a component. Also, it defines time constraints
that regulate the service requests and responses so that the reactions of a compo-
nent respect any timeliness requirements. Predictability specification ensures that
component reactions are precisely defined. For every service request there should
be at least one defined response.

– Security mechanism: The security mechanism is based on role-based security ac-
cess control. The mechanism restricts access of services and data parameters to
authorized users only. Security policies are defined and associated with service def-
initions. A service request is executed only if its corresponding security policy is
satisfied. Also, a service response is executed only if its corresponding security
policy is satisfied.

– Reliability and availability: The definitions of reliability and availability are based
on frequency and duration of service failures and repair durations. A failure is a
deviation from the correct service behavior. It is indicated by a violation to the
functional or non-functional requirements including those of safety and security.
A repair is a change from the state of service failure to the state of correct ser-
vice. Based on the frequency and severity of service failures the acceptable level of
reliability is defined. Based on the duration of service failure time the acceptable
level of availability is defined. The component implementation and maintenance
should guarantee the repair time. The failures, repairs, and the acceptable levels of
reliability and availability are formally defined in the component contract.

In order to verify that components satisfy a contract we need to specify the behavior
of each component as well as their combined behavior. We model the behavior as an
extended timed automata. The timed automata specification includes safety properties,
security policies, and failure and repair specification [13]. This enables us to use a
formal model checking procedure to verify safety, security, reliability, and availability
in one unified approach. We use UPPAAL [2] model checker. We provide an automatic
approach for generating component behavior using a model transformation technique.

4.3 Transforming Concepts to Components

A domain is a set of applications that share similar requirements, capabilities, and data.
Domain engineering is the set of activities that define, model, construct and catalogue a
set of artifacts specific to the domain. The artifacts include a model, architectures, com-
ponents, applications, contexts of operations, and dependability criteria. Domain engi-
neering is an important first step in developing software systems. At the core of domain

44 V. Alagar, M. Mohammad, and K. Wan

engineering, domain analysis is used to capture and classify the domain knowledge. It
identifies the requirements that are common for all products in the domain as well as
the requirements that are specific to each product. The collected requirements must in-
clude the required functionality, the context of operation for each functionality, and the
dependability criteria that must be satisfied by the operations. For example, the domain
of automotive industry deals with designing, manufacturing, and marketing motor vehi-
cles. A car, for example, contains many control systems such as cruise control, cooling
and heating, stability control, anti-lock braking, and fingerprint-based security systems.
Domain analysis provides an understanding of each system, its interactions with other
systems, the constituent components in a system, their functional and dependability re-
quirements, the context of operation for each function, and the data and events stored
and communicated between them. The results of the domain analysis is a domain model
which consists of knowledge about the domain and all its applications and its reusable
components. This knowledge can be stored in a knowledge base which contains vocab-
ulary of the domain anatomy. This knowledge forms the foundation based on which
software systems are developed.

From the domain model, a domain architecture is developed to form the basis for all
domain products. The architecture is further refined to define the constituent reusable
components. Domain applications are designed based on the domain architecture and
developed by reusing existing domain components. Thus, domain analysis plays a key
role in developing dependable systems. As a result, finding an effective method for do-
main analysis becomes a necessary task for building dependable systems. Although the
importance of domain analysis was recognized in the literature [14,4] no formal method
was put forth for domain analysis for constructing dependable component-based sys-
tems. FCA may have the potential to provide a formal basis for domain analysis and
domain modeling.

Application

Domain

Entitiy Requirement

Functional Nonfunctinoal

Safety

Security

Availability

Reliability

Data

Constraint

Other Nonfunctinal

n
1

n
n

n
1

n

n

nn

1 n

Concept

hasProperty

Sub Class of

Cardinality

Legend

External Entitiy

is Part of

Fig. 1. An ontology for domain analysis

The Role of Concept, Context, and Component for Dependable Software Development 45

Interface
Type

User

Role

Privilege

Data
Parameter

Event Type

Group

Architecture
Type

Connector
Type

Connector
Role Type

Component
Type

Package

 Contract

Security Mechanism

Software Elements

Architecture Definition

Configuration
Hardware
Component

Component Definition

System Definition

System
Element

Constraint Attributename Class

Aggregation

Association
Inheritance

0: n

0 : n

0 : n

n : n

1: n

1 : 1

1 : n

0 : n

1 : n

1 : 1

1 : n

n : n
n : n

n : n

1 : 1

0 : n

1 : n 1 : n

1 : n

n : n

0: n

1 : n

1 : n

0 : n

0 : n

Logical Grouping

1 : n Cardinality

1 : 1

n : n

n : n

n : n

n : 1

n : n

Safety
Property

Time
Constraint

Service

Data
Constraint

Contract
Type

Security
Policy

ReliabilityFailureAvailability Repair

 Reliability and Availability

Fig. 2. TADL Structure

During domain analysis, FCA techniques are used to extract domain objects and
their attributes. Then, formal contexts are built, where each formal context is a triple
(G, M, I) such that G is the set of objects, M is the set of attributes, and I ⊆ G × M
is a binary relation. Formal contexts are used to build concept lattices which contain
the formal concepts of the domain. Then, the reduced labeling [8] technique is used
to reduce the lattice. Finally, formal concepts are extracted from the lattice to define
ontology concepts.

Mohammad [13] designed an ontology, shown in Figure 1, for representing the
knowledge captured during domain analysis. Using the tool Protege [17] an analysis of
the ontology is done. When creating the ontology, using the tool the OWL [9], language
specification is automatically created. This specification is an XML file which is then
transformed to a component architecture in the XML version of TADL, the language
that describes the architecture shown in Figure 2.
Table 2 gives the rules for mapping the elements of Figure 1 to TADL.

46 V. Alagar, M. Mohammad, and K. Wan

Table 2. Transformation Rules: Concept Models to Components in TADL

Domain Model TADL Annotation
Element Element
Entity Component part-of relation mapped to

composite components; sub-class-of relation
is mapped to a separate component

Data Attributes associated with components
Functional Service from has-property relation component
Requirement that provides the service and interface are created;

from requests-property relation, the component
that requests the service and interface are created;
a connector is created for every request-property

Non-functional contract logical expressions - manually done
Constraints service constraints logical expressions - manually done

5 Contexts in Components

Contexts are associated with concepts and concepts can be transformed to components.
The dependability criteria that involves critical concepts must be satisfied by the com-
ponents that correspond to those concepts. It is natural that we want the property “if
concept X is in context c and concept X is transformed to a component S and MS is
its behavior model1 then MS |= φ, where φ is the dependability criterion formulated at
the domain level”. The component will function correctly in a certain context, say c′.
Hence we can assert that ist(c′, MS). We know that ist(c, φ). A proof of dependability
can be crafted as follows when context c′ is more general than context c.
Case 1: Generality of first kind The development method ensures that c � c′.

– [1.] Prove MS ⇒ φ in context c′. Now we can assert ist(c′, MS ⇒ φ).
– [2.] ist(c′, MS) is already asserted.
– [3.] By Modes Ponen we infer ist(c′, φ)
– [4.] The property of c � c′ implies ist(c, ist(c′, φ)).

The conclusion is that it is possible to prove in context c that φ is valid in context c′.
Case 2: Generality of second kind The development method ensures that c � c′.

– [1.] c′ = c � c̄, dim(c) ∩ dim(c̄) = ∅.
– [2.] The property c � c′ implies that ist(c, φ) ⇒ ist(c′, φ)
– [3.] ist(c′, MS) is already asserted. Still we need to prove MS ⇒ φ in context c′.

Such a proof is by no means easy. In order to make dependability claim during design
we need to have an architecture in which contexts are also first class architectural el-
ements, and carry on the logic of context within the component formalism. Motivated
by this we have extended Figure 2 with context inclusion. The extended architecture
is quite expressive, in that several families of systems can be developed. Among them
context-aware systems (CAS) are most important. Ubiquitous computing applications
belong to this family. In this section we highlight those mechanisms that are special to
CAS architecture.

1 Ms denotes both the model and behavior.

The Role of Concept, Context, and Component for Dependable Software Development 47

5.1 Concepts of CAS

Context-aware systems include a heterogeneous environment including people, sen-
sory devices, and actuators. The three major types of interactions are people-system,
actuator-system, sensor-system. They are not necessarily independent. Diverse relations
of intrinsically complex properties of the environmental entities will produce complex
system behavior. Developing such a system, a dependability criteria of it, and assess-
ing it in the system are challenging tasks. Understanding the concepts and following
the methodology discussed in earlier sections will certainly maximize the chances of a
correct assessment of the system.

We must introduce concepts governing human behavior from cognitive science dis-
cipline, concepts on sensors from the electronics and communications engineering,
concepts on actuators from mechanical engineering discipline, and concepts on aware-
ness from human psychology. In addition, the development of a context-aware system
for a specific application will require concepts pertinent to that application domain.
Thus developing a context-aware is more difficult than developing a safety-critical
application.

There is a distinction between awareness as interpreted in the study of biological psy-
chology, and awareness that we demand in context-aware systems. In the former case
awareness does not necessarily imply understanding. However, in designing computer
systems that are expected to be aware, we insist that the system not only understands
but remembers (1) its internals such as computing resources, computational states, and
policies for state change, and (2) its externals, that may include physical devices and
humans. We call the internal monitoring of the system as self-awareness and the exter-
nal monitoring as context-awareness. Self-awareness is at the system level and is com-
posed from the policies that guarantee dependable response for every stimulus from
users. That is, users must be aware and be convinced that they get dependable service.
Hence it is essential to include the concepts on privacy, satisfaction, and expectation
with people at the domain level. Such concepts may become part of the dependabil-
ity criteria.

Moving down to the level of components we need components that correspond to
sensors, users, contexts, and actuators. Figure 3 presents a software architecture for
context-aware systems. In the architecture we combine users with sensors into sensor
mechanism component, and combine users with actuators into environment component.
The reactivity mechanism is responsible for performing the reactions and adaptations
in the environment. As an example, if the domain is a set of household appliances the
sensor mechanism collects data from them and reactivity mechanism controls their be-
havior subject to dependability criteria. Notice that not all the components shown in
Figure 3 are obtainable from domain models. This shows the limitation of domain anal-
ysis and the importance of inventing architecture level elements that promote software
engineering principles, such as coupling, cohesion, and hiding. Service mechanism im-
plements services that are fed as reactions, and the adaptation mechanism uses security
and safety policies from the dependability criteria in different internal and external con-
texts to trigger appropriate services and reactions. The most important function of CAS
is adaptation which we discuss next.

48 V. Alagar, M. Mohammad, and K. Wan

Stimulus

Sensor

Connector

Translator

1

1

1

1

1

1

Dimension

Context

Box

Context
Manager

Context
Calculus

Box
Calculus

Software
Component

Interface

Service

1

n

1

n n

Adaptation

Policy

SafetySecurity

Hardware
Component

Actuator

Translator

Connector

Data Store

Reactivity Mechanism Service Mechanism Context Mechanism Sensor Mechanism

Adaptation Mechanism

1

1

1

1

1

1

n

n

n

n

n

1

n

n

n

n

n

1

1

n n

n

n

n

n

sense

transmittrigger

transmit

store/read

read

trigger

class

Association
Aggregation

1 : nCardinality

Fig. 3. A software architecture for Context-Aware Systems

5.2 Adaptation Mechanism

The execution pattern of context-aware systems can be modeled using reactivity, a re-
lation between awareness and adaptation. A reaction is an event that causes a change
in the environment. Context changes stimulate the system to perform new adaptations.
Sensors collect context information and send it (after being transformed and built) to
context adaptation. The adaptation mechanism is responsible for calculating the suit-
able reactions for a context. When a context is built, its relevant adaptation reaction is
triggered instantaneously. A context may have several possible reactions. In order to
achieve predictability, mutually exclusive policies are defined to select the appropriate
reaction. We are developing a logic of adaptation, related with the logic of contexts, to
formalize service adaptations at different contexts.

Safety, security, and privacy are three special types policies that will regulate adap-
tations. Safety policies restrict adaptations in order to ensure that the environment re-
ceives only reactions that do not damage the environmental entities. Security policies
regulate service adaptations and restrict access to context information. Such restric-
tion is essential because context-aware systems are widely used in open environments.
Hence, a security policy is defined in terms of context security and adaptation secu-
rity. Context security means that a user u will receive information in a context c only
if ist(c, Au), where Au is the authorization policy. Adaptation security means that the
system will adapt only to the extent for which the user is authorized. As an example,
if there is no privacy law governing the individual receiving the service both the user
identity and the service type may be made public.

The Role of Concept, Context, and Component for Dependable Software Development 49

6 Conclusion

In this paper we have made an attempt to piece together many issues and bring out their
significance in the development of dependable systems. Research in dependable sys-
tems has just begun. As stated in the report [10] a look at the warranty and disclaimer in-
formation at the following Web pages Adobe2, Apple3, Microsoft4, and Google5 should
convince us that we have a long way to go before making any of the commonly used
software as dependable as we wish them to be.

We are living in an era of ubiquitous computing. Computers affect our lives because
we depend on their services. This is a sufficient reason to regard dependable system
development as the most important research issue in computing. Dependability criteria
lacks a universal definition. It is dependent on the domain in which the software system
is to serve. Studying the domain, and analyzing its concepts the dependability criteria
should be constructed. Having a dependability criterion in itself is not useful, it must be
proved in the system design, implementation, and deployment. This in turn requires a
rigorous method that takes us from the domain model to system model and system im-
plementation. In spite of all the care and rigor in building a system that can be verified
to satisfy dependability criteria, it is likely that security vulnerabilities in the deploy-
ment environment can greatly undermine dependability case. As such a system, taken
as a whole in its operational environment, should be protected, audited periodically, and
managed well.

References

1. Akman, V., Surav, M.: Steps toward formalizing context. AI Magazine 17(3), 55–72 (1996)
2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini,

F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)
3. Carnap, R.: Meaning and Necessity. Chicago University Press (1947)
4. Christensen, S.R.: Software reuse initiatives at lockheed. CrossTalk 8(5), 26–31 (1995)
5. Clark, H.H., Carlson, T.B.: Context for comprehension. In: Long, J., Baddeley, A. (eds.)

Attention and Performance IX, pp. 313–330. Lawrence Erlbaum Associates, Hillsdale (1981)
6. Dowty, D., Wall, R., Peters, S.: Introduction to Montague Semantics. Studies in Linguistics

and Philosophy, vol. 11. Springer, Heidelberg (1980)
7. Franklin, M.J.: Challenges in ubiquitous data management. In: Informatics - 10 Years Back.

10 Years Ahead, pp. 24–33. Springer, Heidelberg (2001)
8. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Hei-

delberg (1999)
9. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: Owl 2:

The next step for owl. Web Semantics: Science, Services and Agents on the World Wide
Web 6(4), 309–322 (2008)

10. Jackson, D., Thomas, M., Millett, L.: Software for dependable systems: Sufficient evidence?
Technical report, Committee on Certifiably Dependable Software Systems, National Re-
search Council (2007)

2 http://www.adobe.com/products/eula/warranty/
3 http://www.apple.com/legal/sla/macosx.html
4 http://www.microsoft.com/windowsxp/home/eula.mspx
5 http://desktop.google.com/eula.html

50 V. Alagar, M. Mohammad, and K. Wan

11. McCarthy, J., Buvac, S.: Formalizing context (expanded notes). Technical report (1994)
12. Mohammad, M., Alagar, V.: TADL - an architectural description language for trustworthy

component-based systems. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA
2008. LNCS, vol. 5292, pp. 290–297. Springer, Heidelberg (2008)

13. Mohammad, M.S.: A Formal Component-Based Software Engineering Approach for De-
veloping Trustworthy Systems. Phd thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada (2009)

14. Neighbors, J.M.: The Draco approach to constructing software from reusable components.
IEEE Transactions of Software Engineering 10(5), 564–574 (1984)

15. Oxford University (Oxford english dictionary), http://www.oed.com/
16. Shortliffe, E.H.: Computer-Based Medical Consultations: MYCIN. Elsevier, Amsterdam

(1976)
17. Stanford University: Protege. Stanford University and University of Manchester (2009),

http://protege.stanford.edu/
18. Thomason, R.H.: Formal Philosophy: Selected Papers of Richard Montague. Yale University

Press (1974)
19. Wan, K.: Lucx: Lucid enriched with context. Phd thesis, Department of Computer Science

and Software Engineering, Concordia University, Montreal, Canada (2006)

http://www.oed.com/
http://protege.stanford.edu/

Statistical Methods for Data Mining and
Knowledge Discovery

Jean Vaillancourt

UQO, Gatineau, QC J8X 3X7, Canada

Abstract. This survey paper aims mainly at giving computer scientists
a rapid bird’s eye view, from a mathematician’s perspective, of the main
statistical methods used in order to extract knowledge from databases
comprising various types of observations. After touching briefly upon the
matters of supervision, data regularization and a brief review of the main
models, the key issues of model assessment, selection and inference are
perused. Finally, specific statistical problems arising from applications
around data mining and warehousing are explored. Examples and appli-
cations are chosen mainly from the vast collection of image and video
retrieval, indexation and classification challenges facing us today.

1 Introduction

Data mining for the purpose of knowledge discovery has been around for decades
and has enjoyed great interest and a flurry of research activity in just about every
field within the scientific community. The purpose here is to broach the topic
from a mathematician’s perspective with a view towards understanding what
exactly can be said and concluded, when using some of the more sophisticated
statistical tools to extract knowledge from large data bases.

The statistical techniques used currently in data mining practice often come
from the great statistical toolbox built out of problem solving issues arising in
other fields and taught in the standard science curriculum. They require several
hypotheses to be checked and tested. These hypotheses reflect in large part the
basic character of the data under study and it is vital to assess whether or not
these hypotheses are valid in order to draw any inference from our data mining
endeavor. This is especially true when using the more sophisticated and complex
statistical estimators and tests.

In this survey paper I first give a rapid bird’s eye view of the main statistical
methods used in order to extract knowledge from databases comprising various
types of observations. After touching briefly upon the matters of supervision,
data regularization and a brief review of the main models, the key issues of
model assessment, selection and inference are perused. Finally, specific statistical
problems arising from applications around data mining and warehousing are
explored. Ten years of collaboration with experts in image and video retrieval,
indexation and classification, as well as in formal concept analysis, color my
choice of examples and applications; however, the statistical methods discussed
are, now as ever, universal.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 51–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 J. Vaillancourt

In spite of this ambitious program, the style of this paper is purposefully light
and equations will be kept to a minimum. Extensive references to the literature
should yield ample compensation for this shortcoming, as the goal here is to
supply the mathematical intuition behind the choice of methods rather than the
precise formulas which can be found elsewhere, for instance in the few main refer-
ences brought forward next. No claim is made as to the novelty of the statistical
methods described here. The originality of the paper lies instead in the choice
and presentation of the material, inasmuch as it displays the aforementioned
heavy personal bend towards applications in imaging.

The main sources used in producing this survey comprise first and foremost,
the excellent book [1] of Hastie, Tibshirani and Friedman. Friedman’s take on the
link between data mining and statistics [2] provides a complementary treatment
of the interface between the two fields as it stood fourteen years ago, a treat-
ment that is still relevant today, particularly in the light of Hand’s paper [3]
and Friedman’s comments [4] on classifier methodology. The emphasis in these
sources is put on supervised learning as it affords a wealth of existing statistical
techniques to be used in specific applications and to be compared in performance
under precise conditions.

To understand the distinction between supervised and unsupervised learning,
a simple classification example from the field of content-based image search may
be helpful. The goal pursued in this field is the automatic identification and
labeling of images containing a variety of objects, some of interest and some not,
as well as noise from several sources linked to distance, media related distorsion
or even physical features of the image collection device. The ultimate goal is
of course the retrieval of images containing objects in a prespecified class with
some degree of success. In [5] Sarifuddin et al. propose a framework whereby
certain objects of interest are sought within a structured database of pictures,
using similarity measures based solely on the color characteristics within the
image. Here the target population is the database itself, the search is done on
the whole database but interest lies on the top five to ten hits, so fluctuations
are observed between the competing search algorithms. A training subset of
images is used for computational purposes and learning is achieved through
similarity measurements with the rest of the database. The algorithms proposed
there have the feature of predicting a new top hit (the outcome of the learning
experiment) whenever the training set (the input) is changed, with some measure
of the error, thus yielding opportunities for making credible and scientifically
defensible inferences on the whole database. This last ability for meaningful
prediction expresses the presence of supervision and allows for a probability (or
sample) space to be defined with rigor. Many image, video and metadata bases
possess these features : collections of highway camera readings of licence plates
on rear views of cars and lists of persons of interest in police work, standardized
DNA databanks, virtual museum collections, topographic maps and handwritten
zipcodes on surface mail are but a few examples. They tend to be well structured
for searching, grow (relatively) slowly and require frequent access.

Statistical Methods for Data Mining and Knowledge Discovery 53

By contrast, just attempt searching the web (or some other database not
specifically structured with content-based image search in mind) through your
favorite search engine by way of some bit of text (in image search parlance this is
called semantic information). An excellent survey of the most popular systems
including Diogenes, ImageRover, WebSeek and Atlas WISE can be found in
Kherfi, Ziou and Bernardi [6]. The result is a collection of images that do not
constitute an outcome in the inferential sense above, since the database is for all
intent and purposes infinite and the sample space is defined with a new ambiant
distribution upon every iteration of the algorithm as every new search receives no
quantifiable predictive benefit from the previous ones. This inability to predict
new outcomes with statistical measurements of accuracy typifies unsupervised
learning and data mining in general.

Unsupervised learning offers limited avenues to measure rigorously the valid-
ity of inferences or to compare learning methods with some degree of scientific
credibility. By enriching association rule analysis with inherent graphical and
hierarchical structures, formal concept analysis (FCA) (Ganter and Wille [7])
provides a stepping stone towards this end through the systematic process of
generating ontologies. Our main reference for FCA here is Valtchev, Missaoui
and Godin [8]. It is as much a choice of convenience (it is still current as an
overview) as a personal one.

The next section reviews the various choices afforded to the data analyst when
selecting a statistical learning model. The matters of identifying the possibility
of supervision, the presence in the data of linearity, the need for grouping or
regularization, and finally the key issues of model assessment and selection, as
well as that of inference and testing, are briefly touched upon. The last sec-
tion delves into ancillary issues relating to the organization of data into shapes
amenable to statistical treatment, with an eye on image and video sources for
illustrating purposes.

2 Statistical Teaser

Let us begin by reviewing some basic definitions and notation used throughout
this paper. The terminology is described in the context of supervised learning,
but we will keep the same terms when switching to unsupervised learning, even
though this context will require some clarification when interpreting the results.

Good statistics ideally starts with good data collected with a view to an end.
Data usually comes in the form of a set of input (independent or predictor) vari-
ables, which we control or are able to measure; and a set of output (dependent
or response) ones, which are observed. Some of them will be quantitative mea-
surements, some not (called factors or qualitative or even categorical variables).
Throughout this paper, the variables will be noted by uppercase letters (X for
input and Y for output, with real, vector, matrix or even functional values as
required by the context) and their values by lowercase ones (similarly).

Predicting quantitative outputs is called regression and qualitative outputs,
(statistical) classification. In both cases, whatever the technique of choice (more

54 J. Vaillancourt

on this later), supervised learning is achieved through a predictive model of the
form Y = f(X, ε) where ε is a random error and f is an unknown function to
be chosen or estimated from the observed (raw) data (xi, yi) for i = 1, 2, . . . , n.
The function will usually be selected according to some optimization (scoring)
principle, from a simple family allowing the algebraic or numerical isolation of
the error.

Keep in mind that while a classification problem can always be reformulated
as a regression one using indicator (dummy) variables, their number (one per
class of values per variable) grows very rapidly. As a result many techniques are
specially devised to deal with estimation in that context. We shall nevertheless
focus on the regression side of statistics in this section in order to keep it short.

The classical least squares linear regression known to all is just the case
f(X, ε) = g(X) + ε with g in a restricted set of nice functions and estimated
to some ĝ that minimizes the sum of squares or errors

∑n
i=1 ‖yi − g(xi)‖2 as

a function of g. Here ‖ · ‖ denotes some appropriate norm. The basic examples
where g is itself a linear function or a polynomial (possibly in many variables,
in which case the xi’s are vector, matrix or even function valued) are the most
commonly used models around, even when the input is time dependent (where
the theory is already rich and complex from a mathematical point of view, see
Solo [9]) or time and space dependent, as are some current models for video
segmentation (see for instance Cremers [10]). The target value in this case is
simply the conditional expectation E(Y |X).

This basic idea has been expanded to richer families of functions g than linear
ones (such as piecewise polynomials, splines, wavelets or the directional mappings
used in projection pursuit regression) but we shall not dwell on these methods in
this least squares context since their implementation challenges are not key to our
purpose here. All of these so-called regularization methods aim at approximating
the true (unknown and nonlinear) function g of the input data in order to ensure
a better fit of the model to the (usually highly nonlinear) output data. The
interested reader may read Wahba [11] for more on splines, Daubechies [12] on
wavelets and our main reference [1] for a thorough review of projection pursuit
and the statistical side of neural networks in general.

Another direction for development which has shown great results in several
areas of application including satellite imaging is the use of mappings f(X, ε)
that are not linear in ε. Recall that segmentation algorithms are a crucial part
of the automatic systems used in modeling and processing image data. These
algorithms parse out each image into smaller ones (the content of which tends
to be simpler), thus enhancing the discriminating power of the searching tools
by increasing the spread (or variety) of visual features extracted and used for
identification. These features normally include color, texture and shape, as well
as some dynamical measurements in the case of video databases. The statisti-
cal comparison of unsupervised segmentation algorithms on structured image
databases was initiated by Graffigne et al. in [13] and [14]. The two main classes
of methods studied were the bayesian ones (in the variational context of energy
minimization later used to great effect by Bentabet et al. in [15] and by Jodouin

Statistical Methods for Data Mining and Knowledge Discovery 55

et al. in [16]), pionneered in the works of Grenander [17] and Geman and Ge-
man [18] ; and hierarchical Markov random field based methods (first used for
image analysis by Besag in a series of papers starting with [19] through to [20]).
In both cases the methods were used in order to decrease the large size of the
optimization problem posed by image segmentation — to see just how slow the
process is, even when a Gibbs sampler is used to accelerate the process, read
Gibbs [21]. In much of the research done on image segmentation and restoration,
the noise source is assumed to affect the image additively. This is simply not the
case in SAR imaging, since the noise (speckle) does not behave additively — this
is borne out both by analyzing the shortcomings of linear methods like Fourier
transforms (see DeGraaf [22]) and by noticing the (undesirable) heteroscedastic
behavior of the residuals when modeling with additive noise, a tell tale sign of
lack of fit from a statistical point of view. Proper modeling calls for nonlinear
dependency in the noise, like the multiplicative noise used for instance in [15]
and [16] where very good fit is attained. This last approach, when combined
with hierarchical (multi-resolution) Markov methods, is state of the art and also
affords rigorous mathematical tracking.

Refinenements of this basic least squares regression method abound in the lit-
erature and lead to the construction of alternative (often better fitted) estimates
to the above ĝ. The target value in most of the classes of alternatives mentioned
below will usually no longer have the simple closed form of a conditional expec-
tation and require some numerical effort in order to reach an approximate value.

As a first refinement, the square function in the previous example can be
replaced by some other loss function, for instance, through the addition of a
penalty term like the weight decay used in projection pursuit, neural networks
or shrinkage methods (like ridge regression), if the outputs are quantitative.

Explicit probabilistic modeling offers another collection of techniques. If the
data collection is to be repeated often and rapidly, the observer may choose to
weight the data unequally according to some a priori distribution on the outputs
(as in the bayesian approach, useful with both types of outputs) or according to
a well chosen mixture of distributions on the whole data (which has shown great
success in many applications including image selection, as in Bouguila, Ziou and
Vaillancourt [23] where the bayesian framework and a clever choice of mixtures
are combined to great effect). Detecting the presence of a mixture in data has
been adressed in Walther [24]. Mixture modeling offers a natural framework to
locate common features like data clusters and to discriminate between classes of
output values.

Likelihood based methods constitute a third refinement (actually more of an
alternative) to classical least squares regression by imposing a statistical frame-
work into the model Y = f(X, ε) from the get-go. They constitute a large body
of statistical literature (see Severini [25] for a good overview), give meaning-
ful (statistically interpretable) results even with small sample sizes, are based on
the likehood principle respected even by bayesian posterior decision analysis (see
section 4.4 in Berger [26]), and their asymptotics are tractable rigorously (see
Prakasa Rao [27]). They perform very well in complex mathematical contexts

56 J. Vaillancourt

like that of computer vision, as displayed in Amit and Geman [28] and further
in Amit and Trouvé [29].

A fourth refinement consists in preselecting target areas in the space of input
values and applying some local method, such as local regression, density estima-
tion and the many methods relying on measures of similarity, nearest neighbors,
clustering or kernel functions at each point of interest in that space. These meth-
ods require particular care and attention when used on high dimensional data
as they then tend to show much sensitivity to additional data and lose both ac-
curacy (minimal bias) and precision (minimal spread) against the other classes
of methods. Combining them with judiciously chosen distributional restrictions
from those in the previous paragraphs is the usual way out. This approach has
been used successfully in the context of image retrieval, indexation and sorting.
For example, the importance of statistical mixtures of Dirichlet distributions in
computerized image searches was first brought forward in [23] after a series of
papers (listed therein) on particular aspects of the subject. Similarity measures
have also played a central role in proper mathematical frameworks for image se-
lection and the reader should consult Missaoui et al. [30] and Sariffudin et al. [5]
for some simple and convincing examples. Finally on this issue, everything you
ever wanted to know about the basic statistical aspects of kernel estimators can
be found in Devroye [31]. On the computational side of things, these methods
often (but not always, see [23] and [30]) turn out to be impracticable because of
excessive cost.

The fifth and final class of alternatives (and the most commonly handled in
computer science practice) require some systematic selection of a subset of the
input data (for instance, when using shrinkage); of a boundary within the data
to break the problem down to smaller size (using separating hyperplanes to find
good linear boundaries or support vector machines to find nonlinear ones or
else tree-based methods to break the space into a few partially ordered blocks);
or of a small subset of certain combinations of the whole input data (principal
component regression, projection pursuit and neural network methods fall in this
class). All three approaches work by decreasing the size or the dimensionality
of the space of input variables while preserving what the observer believes to be
the core features of interest. With extremely large databases, they tend to be
the wise way to go.

Armed with this rich collection of models, the experimenter now comes to the
matter of model selection and assessment. Selection consists in estimating the
performance of each model contemplated with the purpose of choosing the best;
assessment, in estimating the predictive power of each model on new data. The
key issue at this point is not to decide right away whether or not your model
of choice is the best for the data at hand (no model ever outperforms all others
in all situations anyway) but rather to check how good is your data to start
with. A good training set often has more impact on the quality of the results
of the inferential selection and assessment process than the sophistication and
complexity of the models chosen for comparative purposes.

Statistical Methods for Data Mining and Knowledge Discovery 57

If your data set of interest is very large, common practice consists in sepa-
rating it in three parts, one serving the purpose of the training set, one used to
select the model of choice through a validating estimation of the prediction error
(the validation set) and one for the final assessment of the predictive ability of
the chosen model on new data (the test set). This allows for accurate measure-
ments of bias and variability. When this is not the case, one needs to generate
pseudo-observations to compensate. This is usually done by way of resampling
techniques known as jackknifing and bootstrapping (see Efron [32] for the sim-
plest contexts), as well as the derivatives of the bootstrap known as bagging
(bootstrap aggregating, due to Breiman [33]) and boosting (see [1]). These last
two methods are amenable to nonlinear function estimation and any choice of loss
function. They display remarkable performance in tests and benchmarks against
most other methods mentioned thus far. They also tend to be robust against
many distributional alternatives, a reassuring characteristic when dealing with
large heterogeneous data sets. The basic idea behind their use is that averaging
amongst several predictors should decrease the variability of the results while
maintaining bias to a minimum. Applying the various models to several data
sets will of course make the results more credible, especially when combined
through the construction of a random forest, (a double randomization technique
involving both bootstrapping of the data and random selection of the subset of
most interesting variables) which can be rigorously analyzed (see Breiman [34]).

Model selection now becomes a matter of chosing a loss function relevant to
the nature of the data (usually a measure of distance like the sum of squares
or a measure of entropy like the sum of log-likelihoods) and then estimating
the parameters associated with each model under purview in order to minimize
(at least approximately) the corresponding expected loss. A trade off between
accuracy (small bias and spread) and parcimony (as few parameters as possible)
will usually be included in the loss function or the optimization scheme itself.
The importance of parcimony is convincingly made by Besse et al. [35] and we
concur with them that simpler models, whether they involve neural networks,
mixtures, support vector machines or any other sophisticated tools, combined
with resampling, generally constitute a better choice from both efficiency and
reliability standpoints, than complex interpretative ones with large numbers of
parameters to be estimated.

3 Unsupervised Learning and Statistics: Some Challenges

We now turn to the context of unsupervised learning and data mining, urging
the reader to consult Besse et al. [35] as well as chapter 14 of Hastie, Tibshirani
and Friedman [1]. At the risk of being repetitive, keep in mind that any infor-
mation held by the scientist about the data prior to mining (or snooping), must
be incorporated in the experimental design leading to data collection in order to
have some hope of checking statistical hypotheses. These informations are usu-
ally available in the presence of supervision and at least some of the statistical
hypotheses can be checked.

58 J. Vaillancourt

In (unsupervised) data mining one usually cannot afford this level of control
over data collection, since the data warehouses are usually assembled before the
experimentation is devised, a pity. The choice of the training set is often the only
latitude left at our disposal and it should be done with some care and attention
towards ensuring that some statistical inference can be made. Nevertheless, as
long as the conclusions drawn from the experiment are formulated with the
proper reserve, selecting methods with a proven record of quality remains the
sensible thing to do.

Many of the early developments in data mining methodology stemmed from
incursions into exploratory data analysis (EDA) that predated data mining and
were based on key ideas already in the statistical literature at the time. These
incursions were championned in the mid sixties simultaneously, independently
and along completely different methodological approaches by Tukey (see [36] for
the history of this branch of EDA) using (and reinventing) robust statistics and
by the French school of EDA inspired by classical geometry and initiated with
the proposal by Escofier (in his 1965 doctoral thesis) of correspondance analysis
as we know it today (see Benzécri [37] for a history of this branch of EDA).

For a statistician, unsupervised learning consists in estimating the proba-
bility distribution of the input variable X (usually valued in a space of large
dimension) based on the (vector, matrix or even functional valued) observations
x1, x2, . . . , xn. There is no output variable since the focus here is understanding
the data and discovering pertinent subsets rather than predicting outcomes.

In low dimensions, non parametric density estimators (see Devroye [31]) will
usually provide sufficient insight into the data to satisfy the user. The large di-
mension of the space in data mining makes these density estimators unreliable;
however, they can still be used to get estimates for the one dimensional marginal
distributions (margins) of the input X . Once the margins have been estimated,
the problem at hand becomes equivalent to the determination of an appropriate
copula for the distribution of X given its margins. A copula is a multidimen-
sional distribution on the unit cube of the space of values of X with uniform one
dimensional margins. This provides a first strategy to extract knowledge from
the observations, since copulas are currently well researched (if at times contro-
versial, see Genest and Rémillard [38]). As copulas comprise all the information
within a distribution given the margins, they are a powerful tool indeed but
determining them explicitly in high dimension remains difficult for now.

One gets around this issue by finding instead the most frequent values (sta-
tistical modes) of X within the data base, since a large enough number of them
will cover the most significant regions of the distribution. This approach greatly
reduces dimensionality, is easier to implement and has become the very popular
technique of association rule mining. Alternatively, one bypasses the probabil-
ity model and, using a measure of distance or similarity on the data, looks
for agregated clouds of data points through one of the many clustering algo-
rithms available. Again one is faced with classical methods that quickly find
their limits in high dimensional space unless supported by one of the data re-
duction techniques mentioned in section 2 (our fifth class of alternatives). For

Statistical Methods for Data Mining and Knowledge Discovery 59

example, Bouguila [39] combines clustering with mixtures to generate a rich class
of models and then uses marginal likelihood for succesful model selection.

The first attempts at setting the probability distribution on the (oriented)
relations between input observations instead of the observations themselves led
to the creation of statistical implicative analysis, recently surveyed by Gras and
Kuntz in [40]. Since the number of such relations grows like the square of the
size of the database, it suffers the same challenges as unaided clustering algo-
rithms do. The twin needs to enrich the set of relations and to reduce the speed
of growth of the pertinent or good subsets leads to formal concept analysis
(FCA). According to Valtchev, Missaoui and Godin [8], FCA has demonstrated
cost-effectiveness, adaptability and user-friendliness in a variety of settings. In-
corporating statistical structure to FCA will likely be the next stage to making
it step from a very useful mathematical tool for structuring knowledge, to a
privileged methodology for drawing rigorous inference from large and complex
data warehouses.

References

1. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
Springer Series in Statistics (2001)

2. Friedman, J.H.: Data Mining and Statistics: What’s the Connection? Keynote pre-
sentation at 29th Symposium on Interface: Computer Science and Statistics (1997),
http://www-stat.stanford.edu/~jhf/

3. Hand, D.: Classifier technology and the illusion of progress. Statist. Sci. 21(1), 1–14
(2006)

4. Friedman, J.H.: Comment on classifier technology and the illusion of progress.
Statist. Sci. 21(1), 15–18 (2006)

5. Sarifuddin, M., Missaoui, R., Vaillancourt, J., Hamouda, Y., Zaremba, M.: Anal-
yse statistique de similarité dans une collection d’images. Revue des Nouvelles
Technologies de l’Information 1(1), 239–250 (2003)

6. Kherfi, M.L., Ziou, D., Bernardi, A.: Image retrieval from the world wide web:
issues, techniques and systems. ACM Computing Surveys 36(1), 35–67 (2004)

7. Ganter, B., Wille, R.: Formal concept analysis, mathematical foundations.
Springer, Heidelberg (1999)

8. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge and
data discovery: new challenges. In: Proc. Second Int. Conf. Formal Concept Anal-
ysis, Sydney, Australia, pp. 352–371 (2004)

9. Solo, V.: Topics in advanced time series analysis. Lecture notes in mathematics,
vol. 1215, pp. 165–328. Springer, Heidelberg (1986)

10. Cremers, D.: Bayesian approach to motion-based image and video segmentation.
In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417,
pp. 104–123. Springer, Heidelberg (2007)

11. Wahba, G.: Spline models for observational data. SIAM, Philadelphia (1990)
12. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)
13. Graffigne, C., Heitz, F., Perez, P., Preteux, F.J.: Hierarchical Markov random field

models applied to image analysis: a review. In: Proc. SPIE, vol. 2568, pp. 2–17
(1995)

14. Graffigne, C.: Stochastic modeling in image segmentation. In: Proc. SPIE,
vol. 3457, pp. 251–262 (1998)

http://www-stat.stanford.edu/~jhf/

60 J. Vaillancourt

15. Bentabet, L., Jodouin, S., Ziou, D., Vaillancourt, J.: Road vectors update using
SAR imagery: a snake-based approach. IEEE Trans. on Geoscience and Remote
Sensing 41(8), 1785–1803 (2003)

16. Jodouin, S., Bentabet, L., Ziou, D., Vaillancourt, J., Armenakis, C.: Spatial
database updating using active contours for multi-spectral images: application with
Landsat 7. ISPRS J. of Photogrammetry and Remote Sensing 57, 346–355 (2003)

17. Grenander, U.: Lectures in pattern theory, vol. I, II and III. Springer, New York
(1981)

18. Geman, D., Geman, S.: Stochastic relaxation, Gibbs distributions and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Math. Intell. 6(6), 721–741 (1984)

19. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy.
Statist. Soc., B 36, 192–236 (1974)

20. Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Statist. Soc., B 48,
259–302 (1986)

21. Gibbs, A.L.: Bounding the convergence time of the Gibbs sampler in Bayesian
image restoration. Biometrika 87(4), 749–766 (2000)

22. DeGraaf, S.R.: SAR imaging via modern 2-D spectral estimation methods. IEEE
Trans. on Image Processing 7(5), 729–761 (1998)

23. Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised learning of a finite mixture
model based on the Dirichlet distributions and its applications. IEEE Trans. Image
Processing 13(11), 1533–1543 (2004)

24. Walther, G.: Multiscale maximum likelihood analysis of a semiparametric model,
with application. Ann. Stastist. 29(5), 1297–1319 (2001)

25. Severini, T.: Likelihood methods in statistics. Oxford Univ. Press, Oxford (2001)
26. Berger, J.O.: Statistical decision theory and bayesian analysis. Springer, Heidelberg

(1980)
27. Prakasa Rao, B.L.S.: Asymptotic theory of statistical inference. John Wiley, Chich-

ester (1987)
28. Amit, Y., Geman, D.: A computational model for visual selection. Neural Compu-

tation 11, 1691–1715 (1998)
29. Amit, Y., Trouvé, A.: POP: Patchwork of parts models for object recognition.

Intern. J. Comp. Vision 75(2), 267–282 (2007)
30. Missaoui, R., Sarifuddin, M., Vaillancourt, J.: Similarity measures for an efficient

content-based image retrieval. In: IEE Proc. Vision, Image and Signal Processing,
vol. 152(6), pp. 875–887 (2005)

31. Devroye, L.: A course in density estimation. Birkhauser Verlag, Basel (1987)
32. Efron, B.: The jackknife, the bootstrap and other resampling plans. SIAM,

Philadelphia (1982)
33. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
34. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
35. Besse, P., Le Gall, C., Raimbault, N., Sarpy, S.: Data mining et statistique, avec

discussion. Journal de la Société Francaise de Statistique 142, 5–35 (2001)
36. Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading (1977)
37. Benzécri, J.P.: Histoire et préhistoire de l’analyse des données. Dunod (1982)
38. Genest, C., Rémillard, B.: Comments on T. Mikosh’s paper Copulas: tales and

fact. Extremes 9, 27–36 (2006)
39. Bouguila, N.: A model based approach for discrete data clustering and feature

weighting using MAP and stochastic complexity. IEEE Trans. Knowledge and Data
Engineering 21(12), 1649–1664 (2009)

40. Gras, R., Kuntz, P.: An overview of the statistical implicative analysis (SIA) de-
velopment. Studies in computational intelligence, vol. 127, pp. 11–40 (2008)

Formal Concept Analysis of
Two-Dimensional Convex Continuum Structures

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. This paper offers an approach of developing an order-
theoretic structure theory of two-dimensional convex continuum struc-
tures. The chosen approach is based on convex planar continua and their
subcontinua as primitive notions. In a first step convex planar continua
are mathematized and represented by ordered sets. In a second step
‘points’ are deduced as limits of continua by methods of Formal Concept
Analysis. The convex continuum structures extended by those points give
rise to complete atomistic lattices the atoms of which are just the small-
est points. Further research is planned to extend the approach of this
paper to higher dimensional conti-nuum structures.

Contents

1. Introduction
2. Convex Planar Continua
3. Two-Dimensional Convex Continuum Structures
4. Concept Lattices Derived from Ordered Sets
5. Conceptual Extensions of Convex Continuum Structures.

1 Introduction

Philosophically, a continuum is in its total a phenomenon which preserves its
whole across possible cuts and borders. In particular, space and time can be
understood as such continua. According to Aristotle in his physics lecture, a
continuum is an unlimited complete continuity which cannot be dismantled into
indivisible parts ([Ar95]; p.616). This paper offers an approach of developing an
order-theoretic structure theory of two-dimensional convex continuum structures
which can be obtained by mathematizing convex planar continua in the sense of
Aristotle. The one-dimensional case has been published in [Wi08].

2 Convex Planar Continua

Phenomenologically, a convex planar continuum is an unlimited convex continu-
ous plane which can always be divided into two convex planar subcontinua by a
so-called (unlimited) straight linear cut. Two straight linear cuts divide a convex
planar continuum into three or four convex planar subcontinua; those pairs of cuts
are called “parallel cuts” in the first case and “crossing cuts” in the second case.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 61–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 R. Wille

���������
���������

Fig. 1. The diagrams show two convex planar continua each represented by the inner
area of a rectangle: the first is divided into three subcontinua by two parallel cuts and
the second into two opposite pairs of subcontinua by two crossing cuts

In the case of two parallel cuts, there exist always three further straight linear
cuts parallel to the given two cuts so that each of the three subcontinua is
divided by one of the three further cuts into two smaller subcontinua. This has
as consequence that between two parallel cuts there are always infinitely many
further parallel cuts and therefore also infinitely many ”parallel” subcontinua.

In the case of two crossing cuts, there exist always two further straight linear
cuts so that each of those cuts divides one of the two opposite pairs of the
four subcontinua into four further subcontinua, but does not cut into the other
opposite pair of subcontinua. This procedure of dividing two opposite pairs of
four subcontinua can also be infinitely repeated such that each opposite pair of
subcontinua is divided into infinitely many further subcontinua.

An infinite collection of straight linear cuts in which every two cuts are parallel
can be understood as an isomorphic copy of a linear continuum as described in
[Wi08]. An infinite collection of crossing cuts of which every three cuts divide
the underlying continuum into three pairs of opposite subcontinua has a center
through which all cuts of the collection are passing. Such a center shall be called
an “infinitesimal hole”.

:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:·· ··:

··

· ·

���������

··

··

�
�
�
�
�
�
�
�
��

·· ··

··

· ·

���������

··

··

�
�

�
�

�
�

�
�

��

:

:

.

.

...

...

...

...
. . .

. . .

···

···

Fig. 2. The left diagram represents a subcontinuum structured by a dense bundle of
parallel cuts in a convex planar continuum and the right diagram represents a sub-
continuum structured by a dense bunch of cuts all of which pass through the same
infinitesimal hole of the underlying convex planar continuum

Formal Concept Analysis of Two-Dimensional Convex Continuum Structures 63

A convex planar continuum shall fulfill, in addition to the already explained
properties, the following three axioms:

1. Each convex subcontinuum contains infinitely many infinitesimal holes.
2. For every two infinitesimal holes h1 and h2, there exists exactly one straight

linear cut which is passing through h1 and h2.
3. For each straight linear cut and each infinitesimal hole h through which the

cut c is not passing, there exists exactly one straight linear cut d which passes
through h and is parallel to c.

Each convex planar subcontinuum C̃Sub2 is uniquely characterized by the
entirety Cut(C̃Sub2) of all straight linear cuts which do not divide the sub-
continuum. Obviously, such a subcontinuum C̃Sub2 is contained in another
convex planar subcontinuum C̃Ŝub2 if and only if Cut(C̃Ŝub2) is contained
in Cut(C̃Sub2).

3 Two-Dimensional Convex Continuum Structures

A “convex planar continuum” C̃S2 can be properly mathematized to become
a suitable ordered set CS2 := (CS2,≤) as follows: CS2 comprises all convex
planar subcontinua CSub2 together with itself as subset, where the order re-
lation ≤ between those elements is defined by CSub2 ≤ ĈSub2 if and only if
Cut(ĈSub2) ⊆ Cut(CSub2) and CSub2 ⊆ CS2. Mathematically, such ordered
set CS2 is called a “Two-Dimensional Convex Continuum Structure”.

There are two basic types of mathematical quotient structures of CS2 (as
already indicated in Fig. 2):

1. the type CS2|| of a “dense bundle of parallel cuts” and
2. the type CS2X of a “dense bunch of cuts passing through the same infinites-

imal hole”.

Definition 1. A “two-dimensional convex continuum structure” is mathemati-
cally defined as an infinite ordered set CS2 := (CS2,≤) satisfying the following
conditions:

(1) CS2 is a
∨

-semilattice with greatest element 1 and without a smallest element;
(2) the ∧-irreducible elements of CS2 form infinitely many (unorganized)

pairs {Ćj , C̀j} of disjoint linearly ordered dense chains without greatest and
smallest element, where ćj ∨ c̀j = 1 for all ćj ∈ Ćj and c̀j ∈ C̀j (j ∈ J);

(3) each such pair {Ćj , C̀j} has infinitely many “fitting pairs” {c�jk, c�jk} with
c�jk ∈ Ćj and c�jk ∈ C̀j (also called “fitting cuts”) each of which has 1 as its
supremum where the intervals [c�jk,1] and [c�jk,1] are maximal according to
the property that c�jk and c�jk have no common lower bound in CS2;
furthermore, c�j ∧ c�j = d�j ∧ d�j implies c�j = d�j , c�j = d�j for all c�j , d�j ∈ Ćj

and c�j , d�j ∈ C̀j (j ∈ J);
(4) two different fitting pairs {c�j , c�j } and {d�j , d�j } give rise to three (||) or four (X)

further elements each two of which have no common lower bound;
in the three element case (||), there are three further pairs of elements so that
each of the three elements is the join of two from the six further elements;

64 R. Wille

in the four element case (X), there are four further pairs of elements so that
each of the four elements is the join of two from the eight further elements;

(5) the basic elements described in (4) are infinitely extended by further fitting
pairs leading to infinite refinements to get “dense bundles of parallel fitting
pairs” and “dense bunches of fitting pairs through the same infinitesimal hole”;
in the dense bundle case (||), parallel fitting pairs are refined in one dimension;
in the dense bunch case (X), centring fitting pairs are refined in pathing
through a fixed center (cf. Fig. 2);

(6) the term “infinitesimal hole” stands for the infinitely dense bunches of all
fitting pairs pathing through a fixed imaginary location;
for every two infinitesimal holes h1 and h2, there exists exactly one fitting
pair of elements which is pathing through h1 and h2;
for every fitting pair c and each infinitesimal hole through which the fitting
pair is not pathing, there exists exactly one fitting pair d which passes
through h and is parallel to c.

♦
Example 1. The ordered two–dimensional real vector space R2 gives rise to
the two-dimensional convex continuum structure CR2 := (CR2 ,⊆). The set CR2

has the non-empty open convex subsets of R2 as elements. In this ordered set,
the greatest element is the set R2 and the supremum operation is determined
by the open convex hull of the set-theoretic union. The ∧-irreducible elements
of CR2 are the open half-plains having an unlimited straight line as boundary;
two such half-plains with the same unlimited straight line as boundary form a
“fitting pair” {c�j , c�j } of elements in CR2 .

4 Concept Lattices Derived from Ordered Sets

Formal Concept Analysis [GW99] shall be activated now to make mathematically
explicit that points, according to Aristotle [Ar95], can be understood as limits
of continua; such limits cannot be part of continua. The extension by points
will be performed by using a general method of Formal Concept Analysis which
mathematically establishes the transfer from ideas to concepts in the sense of
the structure-genetic psychology of Jean Piaget [Pi59]. The mathematization of
this transfer is grounded on ordered sets C := (C,≤) of preconceptual ‘ideas’
(cf. [SW86]). For analysing the general method we have to refer to the Basic
Theorem of Concept Lattices which therefore shall be recalled here (see also
[Wi08]):

Basic Theorem on Concept Lattices. [Wi82] Let K := (G, M, I) be a formal
context. Then B(K) is a complete lattice, called the concept lattice of K, whose
infima and suprema can be described as follows:∧

t∈T

(At, Bt) = (
⋂
t∈T

At, (
⋃
t∈T

Bt)II),
∨
t∈T

(At, Bt) = ((
⋃
t∈T

At)II ,
⋂
t∈T

Bt).

In general a complete lattice L is isomorphic to B(K) if and only if there exist
mappings γ : G → L and μ : M → L such that γG is

∨
-dense in L (i.e.

Formal Concept Analysis of Two-Dimensional Convex Continuum Structures 65

L = {
∨

X | X ⊆ γG}), μM is
∧

-dense in L (i.e. L = {
∧

X | X ⊆ μM}), and
gIm ⇐⇒ γg ≤ μm for g ∈ G and m ∈ M ; in particular, L ∼= B(L, L,≤) and,
if the set J(L) for all

∨
-irreducible elements is bigvee-dense in L and the set

M(L) for all
∧

-irreducible elements is bigwedge-dense in L, then we have that
L ∼= B(K).

The process of concept building models formal objects by filters of C and formal
attributes by ideals of C (cf. [SW86]). A filter of C is a non-empty subset F of
C, for which a ∈ F and a ≤ b imply b ∈ F and a, c ∈ F guarantees the existence
of some d ∈ F with d ≤ a, c ; an ideal of C is dually defined to the filter1. This
modelling leads to the derived context K(C) := (F(C), I(C), Δ) for which F(C)
is the set of all non-empty filters F of C and I(C) is the set of all ideals I of C
with FΔI : ⇐⇒ F ∩ I �= ∅; hence a filter as ‘object’ has an ideal as ‘ attribute’
if and only if filter and ideal have at least one idea in common. Important are
the ideal-maximal filters F in F(C) for which an ideal I exists in I(C) sothat
F is a maximal filter having the property F ∩ I = ∅; F is named an I-maximal
filter and, furthermore, if I is a maximal ideal with F ∩ I = ∅ then I is called
an F -opposite. As dual notions we have filter-maximal ideals, F -maximal ideals,
and I-opposites. The set of all ideal-maximal filters is denoted by F0(C) and
the set of all filter-maximal ideals is denoted by I0(C). The following theorem
informs about meaningful structural properties of the concept lattice of K(C)
(cf. [Ur78],[SW86],[Ha92]):

Theorem 1. [Wi08] The ordered set C of ideas is naturally embedded by the map
ι : x �→ ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I}) into the concept lattice of the
derived context K(C) where ι(x∧y) = ι(x)∧ι(y) resp. ι(x∨y) = ι(x)∨ι(y) if x∧y
resp. x∨ y exists in C; in B(K(C)), the set of all

∨
-irreducibles J(B(K(C)))(=

γF0(C)) is
∨

-dense and the set of all
∧

-irreducibles M(B(K(C)))(= μI0(C))
is

∧
-dense, i.e., B(K(C)) ∼= B(F0(C), I0(C), Δ).

Proof. For x ∈ C, ({F ∈ F(C) | x ∈ F}, {I ∈ I(C) | x ∈ I}) is a formal concept
of the formal context K(C). This can be concluded from [x) ∈ {F ∈ F(C) | x ∈
F} = {(x]}Δ and (x] ∈ {I ∈ I(C) | x ∈ I} = {[x)}Δ. Now, with the equivalences
x ≤ y ⇐⇒ (x] ⊆ (y] ⇐⇒ {(x]}Δ ⊇ {(y]}Δ ⇐⇒ γ[x) ≤ γ[y), it follows that
ι is an order embedding of C into B(K(C)). ι is ∧- resp. ∨-preserving which
immediately follows by the equivalences x ∧ y ∈ F ⇐⇒ x ∈ F and y ∈ F resp.
x ∨ y ∈ I ⇐⇒ x ∈ I and y ∈ I.

Now, let F0 be an ideal-maximal filter of C with an F0-opposite I. Since γF0
has the extent {F ∈ F(C) | F0 ⊆ F}, γF0 ∧ μI has the extent {F ∈ F(C) | F0 ⊂
F}. Thus γF0 is

∨
-irreducible and has γF0 ∧ μI as its unique lower neighbour;

this yields γF0 ∈ J(B(K(C))) and hence γF0(C) ⊆ J(B(K(C))). Conversely,
let b be a

∨
-irreducible formal concept of B(K(C)). By the Basic Theorem on

Concept Lattices b must be an object concept, i.e., there is an F ∈ F(C) with
b = γF . For the unique lower neighbour c of b there exists, by the Lemma of
Zorn, a maximal formal concept d with c ≤ d and b �≤ d. It follows that d is
1 Filters und ideals represent dual processes of convergence of ordered ideas.

66 R. Wille∧
-irreducible in B(K(C)) and is therefore an attribute concept by the Basic

Theorem; hence there is an I ∈ I(C) with d = μI. Because of γF ∧ μI = c, F is
I-maximal and so F ∈ F0(C) which proves γF0(C) = J(B(K(C))). Dually, we
obtain M(B(K(C))) = μI0(C).

Finally let F be an arbitrary filter of C. For each element a ∈ C \ F and its
principal ideal (a] there is an (a]-maximal filter Fa with F ⊆ Fa by the Lemma
of Zorn. It follows that Fa ∈ F0(C) and F =

⋂
a∈C\F Fa for all a ∈ C \ F and

hence γF =
∨

a∈C\F γFa. Therefore we can conclude with the Basic Theorem
that γF0(C) is

∨
-dense in B(K(C)). Dually we obtain that μI0(C) is

∧
-dense

in B(K(C)). �

5 Conceptual Extension of Convex Continuum Structures

Theorem 1 yields a general method to derive from an ordered set of preconcep-
tual ideas a concept lattice in which every formal concept is the supremum of∨

-irreducible concepts and the infimum of
∧

-irreducible concepts. For applying
Theorem 1 to two-dimensional convex continuum structures (introduced in Defi-
nition 1), the ideal-maximal filters and filter-maximal ideals of those continuum
structures are determined by the following lemma.

Lemma 1. Let CS2 be a two-dimensional convex continuum structure. In the
ordered set CS2, the dense chains Fj := Cj ∪{1} (j ∈ J) are the ‘extreme’ ideal-
maximal filters and their complements Ij := CS2 \ Fj (j ∈ J) are the ‘extreme’
filter-maximal ideals. Other ideal-maximal filters Fcj of CS2 are represented by
the fitting cuts {c⊥j , c	j } of CS2 (j ∈ J), each passing through a fixed infinitesimal
hole which is determined by adding another fitting cut {c�

j , c�
j } through the same

hole; further fitting cuts through such a hole, each combined with the underlying
cut {c⊥j , c	j , }, yield four types of subcontinua c⇀

j ∧ c⊥j ∧ c�j , c↼
j ∧ c⊥j ∧ c�j , c⇁

j ∧
c	j ∧ c�j , and c↽

j ∧ c	j ∧ c�j (see Fig. 3). The four types of these filters can be
defined as follows:

Fc⇀
j

:= {x ∈ Cj | ∃ c⇀
j ∈ C⇀

j , c⊥j ∈ C⊥
j , c�j ∈ C�

j , d�
j ∈ D �

j : x ≥ c⇀
j ∧ c⊥j ∧ c�j ∧ d�

j > o},
Fc↼

j
:= {x ∈ Cj | ∃ c↼

j ∈ C↼
j , c⊥j ∈ C⊥

j , c�j ∈ C�
j , d�

j ∈ D �
j : x ≥ c⇁

j ∧ c	j ∧ c�j ∧ d�
j > o},

Fc⇁
j

:= {x ∈ Cj | ∃ c⇁
j ∈ C⇁

j , c	j ∈ C	
j , c�j ∈ C�

j , d�
j ∈ D �

j : x ≥ c↼
j ∧ c⊥j ∧ c�j ∧ d�

j > o},
Fc↽

j
:= {x ∈ Cj | ∃ c↽

j ∈ C↽
j , c	j ∈ C	

j , c�j ∈ C�
j , d�

j ∈ D �
j : x ≥ c↽

j ∧ c	j ∧ c�j ∧ d�
j > o};

the corresponding filter-maximal ideals of CS2 can be defined as follows:

Ic⇀
j

:= {x ∈ C⊥
j | ∃ x̄ ∈ C⊥

j : x ≤ x̄ < c⊥j \ c⇀
j } and Ic�j

:= {y ∈ Cj | y ≤ c	j },
Ic⇁

j
:= {x ∈ C	

j | ∃ x̄ ∈ C	
j : x ≤ x̄ < c	j \ c⇁

j } and Ic⊥j
:= {y ∈ Cj | y ≤ c⊥j },

Ic↼
j

:= {x ∈ C⊥
j | ∃ x̄ ∈ C⊥

j : x ≤ x̄ < c⊥j \ c↼
j } and Ic�j

:= {y ∈ Cj | y ≤ c	j },
Ic↽

j
:= {x ∈ C	

j | ∃ x̄ ∈ C	
j : x ≤ x̄ < c	j \ c↽

j } and Ic⊥j
:= {y ∈ Cj | y ≤ c⊥j }.

Formal Concept Analysis of Two-Dimensional Convex Continuum Structures 67

�����
�����

�����
�����

c⊥j ∧ c�j c⊥j ∧ c�j

c�j ∧ c�j c�j ∧ c�j

c⇀
j

c⇁
j c↽

j

c↼
j

c⇀
j ∧ c⊥j ∧ d�

j

Ic�
j

Ic⊥
j
∧ c�j

�
�

��

����
					

Fig. 3. The diagram indicates how an ideal-maximal filter can be constructed within
the two-dimensional convex continuum structure CS2. Each interior of the two circles
represents a two-dimensional convex continuum structure which is divided by cuts into
four subcontinua, respectively. In the left diagram two further cuts allow to notify a
triangular element of each of the four defined ideal-maximal filters. The right diagram
sketches in the upper-left how the filter converges to an infinite hole by using centring
cuts and parallel cuts to form smaller and smaller triangles.

Proof. Since CS2 is the disjoint union of Fj and Ij for each j ∈ J , Fj is
Ij − maximal and Ij is Fj -maximal. For each fitting cut {c⊥j , c	j } through a
fixed infinitesimal hole, there are four further decompositions of CS2 into the
disjunct components

1) Fc⇀
j

, Ic⇀
j

, Ic�i
, 2) Fc↼

j
, Ic↼

j
, Ic⊥i

, 3) Fc⇁
j

, Ic⇁
j

, Ic�i
, 4) Fc↽

j
, Ic↽

j
, Ic⊥i

,

respectively. The first component is always an ideal-maximal filter according to
the second and to the third component; conversely, the second and the third
component are filter-maximal ideals according to the first component.

Now , let F∗ be an ideal-maximal filter in the ordered set CS2 which is different
from the already identified ideal-maximal filters. Let {c⊥j , c	j } be a fitting cut
of CS2. Then there exists a filter basis of subcontinua in F∗ which belongs
completely to one side of the fitting cut. It follows that there are infinitely many
disjoint fitting cuts between the chosen fitting cut and the subcontinua of the
fixed filter basis. This has as consequence that such a filter basis is completely
separated from the fitting cuts and the infinitesimal holes. Therefore, the theory
of two-dimensional convex continuum structures shall be restricted to the ideal-
maximal filters which are in the boundary of fitting cuts and infinitesimal holes.

�
Theorem 2. In the concept lattice of the formal context K(CS2) :=
(F(CS2), I(CS2), Δ) of a two-dimensional convex continuum structure CS2,

(1) ι(1) (= γFj ∨ γFk if j �= k) is the greatest element of B(K(CS2)),
(2) γF0(CS2) is the set of all atoms of B(K(CS2)) which are created by the

extreme ideal-maximal filters Fj and the quadruples of ideal-maximal
filters Fc⇀

j
, Fc↼

j
, Fc⇁

j
, Fc↽

j
lying on the boundary of an infinitesimal hole

and on the boundary of a fitting cut passing through that hole,

68 R. Wille

(3) μI0(CS2) is the set of all ∧-irreducible elements which disintegrates into
an infinite collection of dense chains forming together a dense cylinder,

(4) the quadruples of atoms on the boundaries of infinitesimal holes which
belong to a fitting cut {c⊥, c	} and its associated cut always generate
isomorphic ∨-semilattices consisting of 9 elements; furthermore, each atom
representing an extreme ideal-maximal filter together with a corresponding
pair of atoms belonging to Fc⇀

j
, Fc↼

j
, or Fc⇁

j
, Fc↽

j
always generate

isomorphic ∨-semilattices consisting of 4 elements (see Fig. 4),
(5) two quadruples of atoms on the boundaries of infinitesimal holes which

belong to a fitting cut {c⊥, c	} generate two isomorphic ∨-semilattices
consisting of 9 elements which combine to a third isomorphic ∨-semilattice
directly above the two considered quadruples; the third ∨-semilattice can
also be constructed out of two 4-element ∨-semilattices contained in
infinitesimal holes belonging to two extreme ideal-maximal filters
(see Fig. 5).

Proof. (1): I ∈ {Fj}Δ ∩ {Fk}Δ (if j �= k) implies I = (1] = CS2. Therefore
ι(1) = γFj ∨ γFk and ι(1) is the greatest element of B(K(CS2)).
(2): By Theorem 1, γF0(CS2) is

∨
-dense in B(K(CS2)) and consists exactly of

the
∨

-irreducible formal concepts of K(CS2). Hence, by Lemma 1, the formal
concepts in γF0(CS2) are exactly the atoms of B(K(CS2)), which are con-
structed by the extreme ideal-maximal filters and by the ideal-maximal filters
collected as quadruples in the derived infinitesimal holes.
(3): By Theorem 1, μI0(CS2) is

∧
-irreducible in B(K(CS2)) and consists ex-

actly of the
∧

-irreducible formal concepts of K(CS2). By Lemma 1, each of
these

∧
-irreducible concepts lies in one of the infinitely mainy dense chains

[γFj , ι(1)[. Since b =
∧
{μI ∈ [γFj , ι(1)[| μI ≥ b} ∨

∧
{μ[γFk, ι(1)[| μI ≥ b},

[γFj , ι(1)[∪[γFk, ι(1)[is the set of all ∧-irreducible formal concepts of K(CS2)
(j �= k).
(4): A quadruple of atoms in an infinitesimal hole determined by a fitting cut
and an associated cut corresponds to the quadruple of disjoint subcontinua cre-
ated by the chosen fitting cut and its associated cut. The suprema of those
subcontinua obviously represent the 9-element ∨-semilattice generated by the
considered quadruple of atoms. Two atoms, which correspond to two adjacent
subcontinua, and the atom at the end of the fitting cut between the two adja-
cent subcontinua, which represents an extreme ideal-maximal filter, lead to the
4-element ∨−lattice.
(5): The pairs of 4-element ∨-lattices are isomorphic to pairs of ∨-sublattices
the atoms of which correspond with the atoms of the considered 9-element ∨-
sublattice. �

Since the two-dimensional convex continuum structure CS2 is embeddable into
the concept lattice B(K(CS2)) by Theorem 1, that concept lattice yields for
the two-dimensional convex continuum structure an extended conceptual coher-
ence which is made explicit in several aspects by Theorem 2. Most important
for the theme of this paper is that the atoms of B(K(CS2)) represent ‘point

Formal Concept Analysis of Two-Dimensional Convex Continuum Structures 69

Fig. 4. The diagram above sketches a concept lattice (F(CS2), I(CS2), Δ) by visualiz-
ing how a subsemilattice is generated by a quadruple of ideal-maximal filters Fc⇀

j
, Fc↼

j
,

Fc⇁
j

, Fc↽
j

which is generated as the infimum of the two four-element subsemilattices
of the corresponding ∧-irreducible boundary

concepts’, which have each other formal concept as supremum by (2). By (4),
each fitting cut of the two-dimensional convex continuum structure gives rise
to four cut-limiting point concepts the supremum of which may be viewed as a
point in the common sense. (5) describes how point concepts can be represented
as limits of continua. These hints shall suffice to demonstrate the fruitfulness of
the concept-analytic method and support Aristotle’s conception of continua.

70 R. Wille

Fig. 5. The diagram above sketches a concept lattice (F(CS2), I(CS2), Δ) by visualiz-
ing how a subsemilattice is generated by two quadruples of ideal-maximal filters Fc⇀

j
,

Fc↼
j

, Fc⇁
j

, Fc↽
j

and Fd⇀
j

, Fd↼
j

, Fd⇁
j

, Fd↽
j

which is also generated as the infimum of
the two four-element subsemilattices of the corresponding ∧-irreducible boundary

Formal Concept Analysis of Two-Dimensional Convex Continuum Structures 71

References

[Ar95] Aristoteles Werke in deutscher Übersetzung. Bd. 11: Physikvorlesung. 5. Aufl.
Akademie Verlag, Berlin (1995)

[GW99] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

[Ha92] Hartung, G.: A topological representation of lattices. Algebra Universalis 29,
273–299 (1992)

[La86] Laugwitz, D.: Zahlen und Kontinuum. B.I.-Wissenschaftsverlag, Mannheim
(1986)

[Pi59] Piaget, J.: La formation du symbole chez l’enfant-imitation, jeu et rêve - Image
et représentation. Delachaux et Niestlé S.A., Neuchâtel (1959)

[SW86] Stahl, J., Wille, R.: Preconcepts and set representations of contexts. In: Gaul,
W., Schader, M. (eds.) Classification as a tool of research, pp. 431–438. North-
Holland, Amsterdam (1986)

[Ur78] Urquhart, A.: A topological representation theory for lattices. Algebra Uni-
versalis 8, 45–58 (1978)

[Wi82] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht
(1982)

[Wi08] Wille, R.: Formal Concept Analysis of one-dimensional continuum structures.
Algebra Universalis 59, 197–208 (2008)

Counting of Moore Families for n=7

Pierre Colomb1, Alexis Irlande2, and Olivier Raynaud1

1 Université Blaise Pascal, Campus Universitaire des Cézeaux, 63173 Aubière, France
2 Universidad Nacional de Colombia, Bogota, Colombia

Abstract. Given a set Un = {0, 1, ..., n−1}, a collectionM of subsets of
Un that is closed under intersection and contains Un is known as a Moore
family. The set of Moore families for a given n, denoted by Mn, increases
very quickly with n, thus |M3| is 61 and |M4| is 2480. In [1] the authors
determined the number for n = 6 and stated a 24h- computation-time.
Thus, the number for n = 7 can be considered as an extremely difficult
technical challenge. In this paper, we introduce a counting strategy for
determining the number of Moore families for n = 7 and we give the
exact value : 14 087 648 235 707 352 472. Our calculation is particularly
based on the enumeration of Moore families up to an isomorphism for n
ranging from 1 to 6.

1 Introduction

The counting (and/or enumeration) of a large set of mathematical objects is
a pleasant challenge. This kind of exercise requires original algorithmic pro-
cesses, which involves a thorough knowledge of the properties of the objects to
be counted, efficient search data structures, but also, and above all, state-of-the-
art programming techniques. In this paper, our efforts have been concentrated
on the counting of Moore families generated by a given set Un = {0, 1, ..., n− 1}
. The concept of Moore family, or of closure operator (extensive, isotone and
idempotent function of 2Un in 2Un), or of implicational system, is applied in
numerous fields. For example, let’s consider mathematics research such as [2] for
algebra, computer science such as [3] for the theory of orders and lattices, [4] for
relational databases and finally [5] and [6] for data analysis. The name ’Moore
family’ was first used by Birkhoff in [7] referring to E.H. Moore ’s early century
research in [8]. Technically, a Moore family on Un, denoted by M, is a collection
of sets (or family) closed under intersection and containing Un (cf. figure 1).

The set of Moore families on Un, denoted Mn, is itself a closure system (a
closure system being the set of the fixed points of a closure operator). Thus,
the system composed of Moore families contains one maximum element (2Un :
all subsets of Un) and the intersection of two Moore families is a Moore family
itself. To get an overall view of the properties of this closure system, see [9].
Ordering the set of elements of a closure system by inclusion, we get a lattice
structure. Indeed, an inclusion ordering of the set of elements of a closure system
can generate a lattice structure.

In [10], Burosch considers the issue of counting Moore families as natural, so
he suggests an upper bound for that number. In this paper, we will complete

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 72–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Counting of Moore Families for n=7 73

{0}

{0,1}

{0,1,2}

{2}

{}

{2}{1}
{0}

{2,3}

{0,1,2,3}

{}

{1,2}

Fig. 1. Two moore families : On the left, family {∅, {0}, {0, 1}, {2}, {0, 1, 2}} on the
set {0, 1, 2}. On the right, family {∅, {0}, {1}, {2}, {1, 2}, {2, 3}, {0, 1, 2, 3}} on the set
{0, 1, 2, 3}.

his survey using a new |Mn|-bound based on |Mn−1|. In 1998, Higuchi in [11]
calculated |M5| by a depth first search study of the covering graph of a Moore
family lattice structure. More recently, Habib and Nourine have evaluated in [1]
the size of M6. Their method is based on the existence of a bijection between
the set of Moore families and the ideals colorset of a colored poset composed of
boolean lattices. Thanks to an efficient algorithm of enumeration of order ideal
sets (cf. [12]), the authors managed to count M6 and stated that the process
would take 24h on a pentium III 600 MegaHertz (we note that the method
presented here compute this number M6 in around 120ms on a Core2quad Q9300
2,5 GigaHertz). The whole set of values of this counting is given in table 1.
Considering the exponential development of the results, the evaluation of the
number for n = 7 turned out to be a particularly difficult challenge.

Table 1. Known values of |Mn| on n ≤ 7

n |Mn| Référence
0 1
1 2
2 7
3 61
4 2 480
5 1 385 552 [11]
6 75 973 751 474 [1]
7 14 087 648 235 707 352 472 This paper

The rest of the paper is composed as follows. The second part is devoted to
the data structure and key points on which our calculation strategy was based:
symmetry concept, canonical form and maximal family. In the third part,
we will present the main algorithmic principles we have implemented. Then, in
the fourth part, we will deal with the technological aspects of the calculation
process (type of machine, performance, reliability index). As a conclusion, we
will put things into perspective.

74 P. Colomb, A. Irlande, and O. Raynaud

2 Strategy Elements

This part defines the essential elements of our calculation strategy. Firstly, we will
describe the coding used to store and process the Moore families. Then, we will
explain the various concepts used as the basis of this calculation strategy: The
symmetries between the families, the concept of canonical form as the identifier
of an equivalence class as well as the concept of maximal family based on the
recursive structure of the objects to be counted. The proofs of the propositions
are given in the appendix.

In the introduction, we have defined a Moore family on Un as a collection of
sets containing Un and closed by intersection. However for the reasons of conve-
nience that the reader will find in the course of reading, our entire algorithmic
process will concentrate on enumeration of families closed by union and contain-
ing the empty set. All the Moore families are in fact in bijection with this set.
Actually, for a family closed by union containing the empty set, one only has to
complement every set to obtain a Moore family (and vice-versa).

For example, the U3 family {{0}, {0, 1}, {0, 2}, {0, 1, 2}} corresponds to the
Moore family {∅, {1}, {2}, {1, 2}} and vice versa.

2.1 Encoding

Let us consider a Un = {0, ..., n−1} universe with n elements and a set E ⊆ Un.
E can be naturally encoded by its characteristic vector (for example, refer to
figure 2).

0 0 1 1 0 1 1

6 5 4 3 2 1 0

Fig. 2. For the universe U7 = {0, ..., 6}, the set {0, 1, 3, 4} is encoded by a 7 bit vector
b[] such that b[i] = 1 if and only if i ∈ {0, 1, 3, 4}

We can associate a decimal value to each subset of E by interpreting the
characteristic vector as a binary number. To be more precise, an integer between
0 and 2n−1 corresponds to each sub-set of {0, ..., n−1}. In the previous example,
the integer associated to the set {0, 1, 3, 4} is equal to the sum of 20+21+23+24

i.e. 27. By using these decimal values as set identifiers, we can also encode a set
family on a universe with n elements by a characteristic vector of 2n bits (for
example, refer to figure 3).

Finally, we associate an integer between 0 and 22n

with each family by inter-
preting the new vector as a binary number. For example, 131 is the identifier of
the family {∅, {0}, {0, 1, 2}}. As we will see, using such an encoding enables carry-
ing out normal operations on the sets by simple logic or arithmetic operations.

Two operations are essential in our counting process:
Testing whether a family contains the empty set and testing whether after

adding an E set to an F family closed by union, F remains closed by union. The

Counting of Moore Families for n=7 75

1 0 0 0 0 0 1

7 6 5 4 3 2 1

1

0

Fig. 3. Let be a universe U3 = {0, 1, 2}, the family F = {∅, {0}, {0, 1, 2}} is encoded
by the 23 = 8 bits vector b[] where b[i] = 1 if and only if the set E belongs to F (i
being the integer associated with the set E)

first of the two tests becomes trivial when the proposed coding is used. In fact,
since the empty set is borne by the weakest bit, a family contains the empty set
if and only if the identifier of this family is an odd number. The second, more
difficult test requires verifying whether each element of F , the union of this
element with E is in F . Nevertheless, this test can be carried out by extracting
the following code:

for (i = 1 ; i < N ; i++)
if ((F \& (1U<<i)) \&\& ! (F \& (1U << (E | i))))
printf("F Union E is not union closed");

The for loop scans all the characteristic integers i of a set. The first part of
the test if (F&(1U << i)) verifies whether the set corresponding to the integer
i belongs to the F family. For this test, we create a vector made up of 0 except
of 1 at the position i using the (1U << i) expression and we carry out an and
logic with the F family. This test naturally gives ”true” as result if and only if
the i set belongs to F . The second part of the test verifies whether i∪E belongs
to the F family. Since the identifier of the E ∪ i set corresponds to the decimal
value of E|i, it is enough to carry out an and logic between F and a vector made
up of 0 except 1 at the E|i position.

2.2 Symmetry and Canonical Form

A permutation Φ on a finite set Un = {0, ..., n − 1} is a bijective function from
Un to Un. For convenience Φ is often represented by the sequence of its images
Φ(0), Φ(1), ..., Φ(n − 1). All the permutations on a Un set are marked by Symn.
For a set E ⊆ Un and Φ ∈ Symn, we use Φ(E) to mark the image of E by Φ
defined by :Φ(E) = {Φ(x)|x ∈ E}. Similarly, we simply use Φ(F) = {Φ(E)|E ∈
F} for all F ⊆ 2Un .

Example: Let F be the family {∅, {2}, {1, 2}, {0, 1, 2}} and Φ the permutation
1, 2, 0 then Φ(F) = {∅, {0}, {0, 2}, {0, 1, 2}}.

Using the concept of permutation we can divide all the families on Un into
equivalence classes. Thus we can say that two families belong to the same class if
they are the images of one another by a Symn permutation. The reference family
of each class is called the canonical form. We have used an identification of
the canonical form based on the properties of our encoding. Hence, the canonical

76 P. Colomb, A. Irlande, and O. Raynaud

Table 2. For F = {∅, {2}, {1, 2}, {0, 1, 2}} and each permutation Φ of Sym3, the image
of F by Φ and its identifier

PermutationΦ Φ(F) Identifier
012 {∅, {2}, {12}, {012}} 209
021 {∅, {1}, {12}, {012}} 197
102 {∅, {2}, {02}, {012}} 177
120 {∅, {0}, {02}, {012}} 163
210 {∅, {0}, {01}, {012}} 139
201 {∅, {1}, {01}, {012}} 141

Table 3. The number of Moore families up to an isomorphism and the average size
of classes for each value of n. The average size of classes increases drastically with n
(and tends to be close to n!) which proves that the set of all the Moore families on a
universe contains a large number of isomorphic objects.

n Number of Moore families up to isomorphism Average size of classes
1 2 1
2 5 1, 40
3 19 3, 21
4 184 13, 48
5 14664 94, 49
6 108 295 846 701, 54

form of a family F ⊆ 2Un is defined as the image by one of the permutations of
Symn having the smallest identifier.

Example: Let us consider F = {∅, {2}, {1, 2}, {0, 1, 2}} family on U3 as well as
the Sym3 set containing 6 permutations. As per table 2, the canonical form of
F is the {∅, {0}, {01}, {012}} family whose identifier is equal to 139.

Proposition 1. Let M be a Moore family on Un and Φ ∈ Symn be a permuta-
tion, then Φ(M) is a Moore family on Un.

The partitioning that exists on the set of families on Un also pertains to the set
of Moore families. Actually, as per the previous property, the image of a Moore
family by a permutation remains a Moore family. Therefore, it is possible to enu-
merate the Moore families by enumerating the representative of each equivalence
class and then by counting its images with the help of different permutations. In
general, the enumeration of a single representative per equivalence class is called
as ”enumeration of a set of combination objects up to an isomorphism”. This
strategy is often based on the observation that a large part of the combinatorial
explosion related to all the objects studied can be explained by the presence of
isomorphic objects. Table 3 shows that this situation is specially verified for the
set of Moore families. Let’s note that it’s common to use symmetry to decrease
combinatorial explosion (see for example [13,14]).

Counting of Moore Families for n=7 77

{0,1,2}

{1,2}{0,2}

{}

{0,1}

{0}

{}

{0}

{}

(union)

{0,1,2}

{1,2}{0,2}

{}

{0,1}

{0}

{0,1,2}

{1,2}{0,2}

{}

{0}

+

(union)
+

Fig. 4. On left a Moore family on U3 (such that each element contains 2) associated
to two different Moore families on Un−1. In each case, the obtained family, on right, is
itself a Moore family.

2.3 Maximal Family

A Moore family M on Un can be divided into two parts. The part made up of
M sets containing the {n − 1} element (marked as Msup for the upper part)
and the additional part (marked as Minf for the lower part). The ∅ element is
duplicated in order to be included in both parts. Naturally M = Msup ∪Minf .
Besides, Msup and Minf are Moore families. The example in figure 4 proves
that there can be many compatible lower parts for a fixed upper part (i.e., their
combination gives a Moore family).

There is a unique maximal family for a given upper Msup family as all the
families compatible with Msup are the sub-families of the maximal family. To
be more specific:

Proposition 2. Let Msup be a Moore family on Un with n − 1 ∈ M for all
M ∈ Msup \ {∅}. Then there exists a unique Moore family Mmax on Un−1
compatible with Msup such that all Moore families on Un, whose the restriction to
its elements containing n−1 corresponds to Msup, can be written Msup∪Minf ,
with Minf ⊆ Mmax.

We can make two remarks : First, The maximal family can be defined as Mmax =
{M ∈ 2Un−1 | M ∪ M ′ for all M ′ ∈ M}. Second the maximal family correspond
to the set of the quasi-closed sets that don’t contain {n − 1}.

The maximal family associated to the Msup family given in figure 4, for
example, is a family made up of {∅, {0}, {1}, {0, 1}} elements. We can verify
whether the two compatible families given in figure 4 are the sub-families of
this family.

78 P. Colomb, A. Irlande, and O. Raynaud

Algorithm 1. maximalFamily()
Data : V [2n] which corresponds to the family Msup

Result : V [2n] which corresponds to the family Msup ∪Mmax

begin
for (b = 2n − 1 to 0) do

V [b]← 1;
if V [] does not corresponds to a union closed family then

V [b]← 0;

return V [];
end

Remember, the encoding taken from a Moore family takes the form of a 2n bit
vector (we will use a 128 size vector to count the Moore families on U7). Naturally
the first 2n−1 bits encode for all the sets containing the n−1 element (i.e. Msup),
whereas the last 2n−1 bits encode for Minf . Therefore, our counting strategy
consists in generating only the upper parts of the vector, and determining the
maximal family that is compatible with each of these upper parts (which means
calculating the lower part of the vector). Algorithm 1 is a calculation process of
this unique family.

Proposition 3. Let Msup be a Moore family on Un (all its elements containing
n − 1), the algorithm 1 computes the maximal family Mmax compatible with
Msup and returns the vector which corresponds to the family Msup ∪Mmax.

There are multiple uses of the maximal family concept: Firstly, we have seen
that the counting of Moore families of U7 requires using a 128 bits vector. Un-
fortunately, integers on 128 bits are not convenient enough to handle directly.
Using maximal families enables dividing the calculation of Moore families into
two distinct and independent parts by using only the 64 bits vectors. Secondly, it
also enables reusing the calculations made while counting the Moore families on
Un−1 to count the Moore families on Un. Finally, it helps to highlight a natural
bound on the number of Moore families on Un according to this number on Un−1
(refer to proposition 4).

Proposition 4. Let Mn and Mn+1 be the sets of all Moore family respectively on
Un and Un+1 then we have | Mn+1 |≤ 2 ∗ | Mn |2.

The following section concentrates on the implementation of these concepts in
an algorithmic framework.

3 Algorithms

This section describes three different algorithms of counting the Moore families
on Un. The first algorithm is a näıve recursive algorithm that scans a tree repre-
senting the set of Moore families. The second algorithm introduces the concept

Counting of Moore Families for n=7 79

01

1

000

1

01

1

0

1

0 0 0

Fig. 5. Binary tree corresponding to the exploration of algorithm 2

Algorithm 2. Moore1()
Data : V []: bit vector; k :integer
begin

if k = 0 then
|Mn| ← |Mn|+ 1;

else
Moore1(V [], k − 1);
V [k]← 1;
if V [] corresponds to an union closed family then

Moore1(V [], k − 1)

V [k]← 0;

end

of symmetry by storing the unique representative of each class in a hash table. A
”coefficient”variable associated to each class records the size of the class. Lastly,
the third algorithm integrates the concept of maximal family in the symme-
try concept. Note that only the last algorithm gives reasonable calculation time
for n = 7.

3.1 Näıve Algorithm

The algorithm 2 completes a recursive scan of the set of Moore families on Un.
The medium for this scan is a tree having Moore families as leaves. It stops
when a given set is present or absent in the family. The tree structure of Moore
families on U2 is given in figure 5. Thus the algorithm generates a new set at
every node and determines whether it can be added to the current family. If the
answer is ”No”, the process continues on the left branch with the same family.
Otherwise, the process is restarted on the right branch with a family integrating
the new element. When a leaf is reached, the value of a global variable (|Mn|),
counting the total number of families, increases.

Technically, the current family is stored in the V [] vector (initialised to 0)
which is updated from left to right. k corresponds to the position of the bit of

80 P. Colomb, A. Irlande, and O. Raynaud

V [], i.e. to the set which is likely to be inserted in the family. k initialised to 2n−1
decreases naturally till 0 which corresponds to a leave of the tree. In this way,
the sets are considered in a linear order whose first element is the {0, 1, ..., n−1}
set and the last element is the empty set.

3.2 Algorithm Using the Symmetries

The algorithmic principle given here integrates the concept of symmetries and
stores the canonical forms in a hash table by associating a coefficient to each
of these forms. Inserting a canonical form coupled with a c coefficient in the
table involves creating a new input if the form is not known or increasing the
coefficient of the existing form by c.

To calculate the canonical form of the Moore family M, the function
canonicalForm(M) generates M images by all the permutations of SymUn

and returns the image of the smallest identifier. These small values of n (at the
most 7) provide reasonable calculation time for a complexity of O(n!). Finally
we can notice that the problem of the canonical form calculation comes down to
the problem of graph isomorphism.

Our strategy can be represented using two algorithms:
The first fillV ector() (refer to algorithm 3) enables assigning bits to the V []
vector between the k and m positions in such a way thatV [] becomes a fam-
ily closed by union. It is an adaptation of the Moore1 algorithm for which
the stop bit (corresponding to a leave) can be parameterised. The second al-
gorithm (refer to algorithm 4) uses the information stored in the hash table at
each step to effectively construct the new vectors which can correspond to the
Moore families. At the end of the calculation, it is enough to only add the coeffi-
cients of each canonical form present in the latest table to find the total number
of families.

Let us note that the c coefficient associated to a V [] vector when it is inserted
in the hash table is the coefficient associated to the vector which was used when
the fillV ector() algorithm was called in Moore2 process.

Algorithm 3. fillV ector()
Data : V [] : bit vector; k,m : integers;
begin

if k = m− 1 then
myHashTable.add(canonicalForm(V []));

else
fillV ector(V [], k − 1);
V [k]← 1;
if V [] corresponds to an union closed family then

fillV ector(V [], k − 1);

V [k]← 0;

end

Counting of Moore Families for n=7 81

Table 4. Sizes of the hashtable containing Moore families corresponding to different
values of n before and after reduction

n |H | before reduction |H | after reduction
2 7 5
3 46 19
4 916 184
5 140 463 14 664
6 770 413 085 108 295 846

Algorithm 4. moore2()
Data : n : integer;
Result : integer / number of Moore families on Un;
begin

H ′.add(V [] =< 0, 0, ..., 0, 0, 1 >);
H ← ∅;
i← 1;
while i ≤ n do

for V [] ∈ H ′ do
fillV ector(V [], 2i − 1, 2i−1);

i + +;
H ′ ← H ;

return ΣV []∈HV [].coefficient;

end

Table 4 recapitulates the size of the table containing the families generated for
each value of n. The size is given before and after the reduction. Naturally, we
can find the number of Moore families up to an isomorphism in the last column.
Finally, let us remember that the hash table before reduction is never constructed
since the reduction takes place with the help of the canonicalForm() function
as the process progresses.

3.3 Algorithm Using the Maximal Families

The algorithm shown here integrates the principle of maximal family (refer to the
previous section) with the concept of symmetry that we have just implemented.
At first, an adaptation of the previous algorithm is used to generate the vectors
representing the Msup families up to an isomorphism (the number of families
isomorphic to each of these families is stored in the c coefficient). Secondly, we
determine the associated Minf maximal family for each Msup family. Let us note
that a Minf family is a Moore family on Un−1 and its weight p corresponds to
the number of Moore families included in this family. Hence, the counting of the
Moore families on Un corresponds to the sum of the product between the weights
and the coefficient of each selected family.

82 P. Colomb, A. Irlande, and O. Raynaud

Algorithm 5. leftPart()
Data : n : integer;
Result : H ;
begin

H ′.add(V =< 0, 0, ..., 0, 0, 1 >);
H ← ∅;
i← 1;
while i ≤ n− 1 do

for V ∈ H ′ do
FillV ector(V, 2i − 1 + 2n−1, 2i−1 + 2n−1);

n + +;
H ′ ← H ;

return H ;
end

The input of the maximalFamily() function is a V [] vector of 2n bits that
represents a Moore family on Un as all its elements contain the n − 1 element.
Therefore, all the bits of V [] included between 1 and 2n−1 − 1 are positioned
at 0. The function returns a vector of 2n−1 bits representing the Moore family
on Un−1 that corresponds to the maximal family associated to the considered
Moore family.

The leftPart() algorithm (refer to algorithm 5) generates vectors up to an
isomorphism corresponding to the Moore families on Un by considering only the
2Un \ 2Un−1 \ {n − 1} elements. The Moore2 algorithm given earlier is adapted
considering only the bits included between 2n − 1 and 2n−1 + 1.

Algorithm 6. moore3()
Data : n : integer; Mn−1;
Result : |Mn| the number of Moore family on Un;
begin
|Mn| ← 0;
H ← leftPart(n);
for V [] ∈ H do
|Mn| ← |Mn| + canonicalForm(maximalFamily(V [])).weight ∗
V [].coefficient;
V [2n−1]← 1;
|Mn| ← |Mn| + canonicalForm(maximalFamily(V [])).weight ∗
V [].coefficient;

retourner |Mn|;
end

The Moore3() algorithm (refer to algorithm 6) starts by generating the left
parts of the vectors by using the leftPart() algorithm. Two Moore families are
associated to each left part: one family containing the n−1 element and another

Counting of Moore Families for n=7 83

not containing this element. Then the algorithm associates a maximal family
to each Moore family. The number of Moore families on Un are calculated by
accumulating the results of the coefficients of the Msup families by the weights
of corresponding Minf families as the process progresses. The algorithm uses a
Mn−1 dictionary containing the weights of Moore families on Un−1. The weight
of a family can be calculated with the help of the computeWeight() algorithm
(refer to algorithm 7) which functions conversely to the fillV ector() algorithm.

Algorithm 7. computeWeight()
Data : V [] : vector, k : integer;
Result : p;
begin

if k = 2n then
p← p + 1;

else
computeWeight(V [], k + 1);
V [k]← 0;
if V [] corresponds to a union closed family then

computeWeight(V [], k + 1)

end

In case of the calculation of number of Moore families on U7, the number of left
parts up to an isomorphism is 108295846 (it corresponds to the number of Moore
families on U6 up to an isomorphism). We find 118540742 maximal families and
108295846 maximal families up to an isomorphism. In other words, each Moore
family on U6 is, at least one time, a maximal family of a family on U7.

4 Technical Aspects

4.1 Implementation

This program is written in C, compiled with Gcc version 4 for Linux 64 bits.
We have used the OpenMP parallel programming library. The main calculation
lasted 11 hours on a 2.5 GHz Core2 Q9300. The verification lasted 9 hours on
a 1.86 GHz double Xeon E5320 (University of Bogotá). The calculation was
simultaneously done on a 2.3 GHz Opteron 8356 quadruplet (LIMOS).

4.2 Reliability

The question of reliability is of primordial importance for any result involving
a large number of computer calculations. In this case, the authors would like to
highlight the following points:

84 P. Colomb, A. Irlande, and O. Raynaud

– The result complies with the previous estimations of one of the authors
(between 1, 2.1019 and 1, 7.1019) based on an extrapolation of data for n ≤ 6.

– There is no specific code at n = 7 and no special threshold between n = 6
and n = 7 (for example, size of integers used)

– The same program gives good results for n ranging from 1 to 6 (number of
Moore families and the families reduced by isomorphism).

– The code was executed on numerous occasions on different architectures
(Intel and AMD).

– The program was compiled with three stable compilers (Gcc v. 4.1, 4.2
and 4.3) and various options on different operating systems (Ubuntu and
CentOS).

– The result remained stable at each modification of the size available for the
hash tables. Let us note that the modification in the table size badly disrupts
the time required for the calculation to complete.”

– The result remains unchanged by replacing the canonical form based on the
smallest representative of the equivalence class with a canonical form based
on a larger representative.

5 Conclusion

The problem of enumerating the Moore families in the n order is a complex issue
for which there is no known formula. Even the absence of such a formula has not
been proved. Numerous combinatory problems fall in the same case. For example,
the number of monotonous Boolean functions known as the Dedekind number.
An often supported approach to comprehend such formulae involves counting
the number of objects for the first values of n using a systematic procedure.
We can find such integer sequences on the well-known On-line Encyclopaedia of
Integer Sequences. Our work thus had a dual-objective: Not only enriching the
already-known sequence for the number of Moore families, but also highlighting
the new properties of the set of Moore families.

In this article, we have proved that we can calculate the search objects without
enumerating all of them. Therefore, there is a smaller frame of objects (the Moore
families on Un up to an isomorphism in which all the sets include n − 1) from
which the total number can be deduced. In other words, for each object of the
frame it is sufficient to calculate its associated maximal family (a Moore family
on Un−1) and calculate its weight (i.e. the number of Moore families included).
This enumeration is carried out only once even if the maximal family is found
many times. Since the result is stored in a hash table that uses the identifier of
the maximal family as its input, we can also affirm that each Moore family on
Un−1 appears at least once as a maximal family.

The possibility of predicting how many times each family on Un−1 appears as
maximal family of a family on Un will bring us significantly close to finding a
general formula, if any such formula exists.

Counting of Moore Families for n=7 85

Acknowledgment

We are grateful to Bernhard Ganter to have pointed out the misprint on the
Integer Sequence Encyclopedia, and consequently confirmed our results on the
number of Moore families up to isomorphism.

References

1. Habib, M., Nourine, L.: The number of moore family on n=6. Discrete Mathemat-
ics 294, 291–296 (2005)

2. Cohn, P.: Universal Algebra. Harper and Row, New York (1965)
3. Davey, B.A., Priestley, H.A.: Introduction to lattices and orders, 2nd edn. Cam-

bridge University Press, Cambridge (1991)
4. Demetrovics, J., Libkin, L., Muchnik, I.: Functional dependencies in relational

databases: A lattice point of view. Discrete Applied Mathematics 40(2), 155–185
(1992)

5. Duquenne, V.: Latticial structure in data analysis. Theoretical Computer Sci-
ence 217, 407–436 (1999)

6. Ganter, B., Wille, R.: Formal concept analysis. Mathematical Foundation. Springer,
Heidelberg (1999)

7. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)
8. Moore, E.: Introduction to a form of general analysis. Yale University Press, New

Haven (1910)
9. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and

implicational systems on a finite set: a survey. Discrete Applied Mathematics 127,
241–269 (2003)

10. Burosh, G., Demetrovics, J., Katona, G., Kleitman, D., Sapozhenko, A.: On the
number of databases and closure operations. Theoretical Computer Science 78,
377–381 (1991)

11. Higuchi, A.: Note:lattices of closure operators. Discrete Mathematics 179, 267–272
(1998)

12. Medina, R., Nourine, L.: Algorithme efficace de génération des ideaux d’un ensem-
ble ordonné. Compte rendu de l’Académie des sciences, Paris T.319 série I, pp.
1115–1120 (1994)

13. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324
(1998)

14. Ganter, B.: Finding closed sets Under Symmetry. FB4-PrePrint 1307, TH Darm-
stadt (1990)

86 P. Colomb, A. Irlande, and O. Raynaud

Appendix

Proposition 1. Let M be a Moore family on Un and Φ ∈ Symn be a permuta-
tion, then Φ(M) is a Moore family on Un.

Proof. Let us show that Φ(M) is a Moore family.

– ∅ ∈ M, Φ(∅) = ∅ thus ∅ ∈ Φ(M).
– Let M1 and M2 ∈ M and Φ(M1) and Φ(M2) ∈ Φ(M). We have Φ(M1) ∪

Φ(M2) = Φ(M1 ∪ M2) by definition of Φ(). Since M is closed M1 ∪ M2 ∈
Φ(M). Then Φ(M1 ∪ M2) ∈ Φ(M).

So ∀Φ(M1) and Φ(M2) ∈ Φ(M), Φ(M1) ∪ Φ(M2) ∈ Φ(M).
Φ(M) contains the empty set and is closed by union, Φ(M) is a Moore family.

�

Proposition 2. Let Msup be a Moore family on Un with n − 1 ∈ M for all
M ∈ Msup \ {∅}. Then there exists a unique Moore family Mmax on Un−1
compatible with Msup such that all Moore families on Un, whose the restriction to
its elements containing n−1 corresponds to Msup, can be written Msup∪Minf ,
with Minf ⊆ Mmax.

Proof. Let M be a Moore family on Un with M = Msup ∪Minf .
A) Let us show that for any Moore family M′

inf on Un−1 with M′
inf ⊆ Minf

then Msup ∪ M′
inf is a Moore family.

– ∅ ∈ M′
inf , then ∅ ∈ Msup ∪ M′

inf ;
– Let M1 and M2 ∈ Msup ∪ M′

inf ; 3 cases can occur :
1. If M1 and M2 ∈ Msup, since Msup is a Moore family M1 ∪M2 ∈ Msup

and then M1 ∪ M2 ∈ Msup ∪ M′
inf ;

2. If M1 and M2 ∈ M′
inf , since M′

inf is a Moore family M1∪M2 ∈ M′
inf

and then M1 ∪ M2 ∈ Msup ∪ M′
inf ;

3. If M1 ∈ Msup et M2 ∈ M′
inf . Since M′

inf ⊆ Minf and since for all M
∈ Minf , M1 ∪M2 ∈ Msup (M ∪M1 contains n) then M1 ∪M2 ∈ Msup.
And so M1 ∪ M2 ∈ Msup ∪M′

inf ;

B) Let us show that for all Moore families M′
inf and M′′

inf on Un−1 such
that Msup ∪ M′

inf and Msup ∪ M′′
inf are Moore families then C(M′

inf ∪
M′′

inf) ∪ Msup is a Moore family with C an union closed operator.

– ∅ ∈ M′
inf , then ∅ ∈ C(M′

inf ∪M′′
inf) ∪ Msup;

– Let M and M ′ ∈ C(M′
inf ∪ M′′

inf) ∪ Msup; The only difficult case corre-
sponds to the case M ∈ Msup and M ′ ∈ C(M′

inf ∪M′′
inf)\M′

inf \M′′
inf .

Since M′
inf and M′′

inf are Moore families then there exists m1 in M′
inf

and m2 in M′′
inf such that M ′ = M1 ∪ M2 and :

Counting of Moore Families for n=7 87

1. if M1 ∈ M′
inf then ∀M ∈ Msup we have M ∪ M1 ∈ Msup;

2. if M2 ∈ M′′
inf then ∀M ∈ Msup we have M ∪ M2 ∈ Msup;

And since Msup is a Moore family M1∪M2∪M = M ′∪M belongs to Msup

We conclude that for all couple of elements M and M ′ in C(M′
inf ∪M′′

inf)∪
Msup, M∪M ′ belongs to Msup. So C(M′

inf ∪M′′
inf)∪Msup is a Moore family.

From B) we have that the set of all compatible Moore families with a given
family Msup owns only one maximal element denoted Mmax such that for all
families Minf included in or equal to Mmax, the join of Msup and Minf is a
Moore family.
�

Proposition 3. Let Msup be a Moore family on Un (all its elements containing
n), the algorithm 1 computes the maximal family Mmax compatible with Msup

and returns the vector which corresponds to the family Msup ∪ Mmax.

Proof. First of all let us say the the order in which element are considered follows
the property : Let M ∈ 2Un , for all M ′ ∈ 2Un the element M ∪ M ′ is processed
before M . If M ′ ⊂ M we have M = M ∪ M ′.

Let Mmax be a Moore family produced by the algorithm. Let us show that
Mmax is a Moore family and is maximal. By construction Mmax is a Moore
family. Consider the following assertion: to each step of the algorithm, if a set
M ∈ 2Un is not added to Mmax then Msup ∪Mmax ∪M is not a Moore family.
Let us demonstrate the assertion reductio ad absurdum : Suppose that there
exists a set M �∈ Mmax such that Msup ∪ Mmax ∪ M is a Moore family. Then
there exists a set M ′ processed before M , and a set M ′′ processed after M with
M ′′ = M ∪M ′. Which is in contradiction with the process’ computational order.
Absurd.
�

Proposition 4. Let Mn and Mn+1 be the sets of all Moore family respectively on
Un and Un+1 then we have | Mn+1 |≤ 2 ∗ | Mn |2.

Proof. Each family M ∈ Mn is going to produce two superior families Msup1 =
{M ∪n | M ∈ M}∪∅ and Msup2 = {M ∪n | m ∈ M}∪∅ \n. Therfore, the set
Msupn+1 of all families Msup contains 2∗ | Mn | elements. In the worst case the
maximal family associated to each family Msup ∈ Msupn+1 is the Moore family
2Un of weight | Mn |. So | Mn+1 |≤ 2 ∗ | Mn |2.
�

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 88–103, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Lattice Drawings and Morphisms

Vincent Duquenne

Equipe Combinatoire et Optimisation,
CNRS & Université Pierre et Marie Curie,
175 rue du Chevaleret, 75013 Paris, France

duquenne@math.jussieu.fr

Abstract. Let L → H be a lattice homomorphism and let a “readable” drawing
of H be given. It is natural to make use of it to try getting a clear(er) drawing of
L. Hence, the following question is explored: How the knowledge of the
congruence lattice Con(L) of L can help in getting “better” drawings of L? This
will be done by proposing rank shelling procedures of (M(Con(L),≤) and will
be illustrated with examples coming either from math. or social sciences.

Keywords: Lattice drawing, lattice homomorphism, congruence lattice.

1 Introduction

Since the very beginning of FCA (“Formal Concept Analysis” see [20], [16]) and
more generally of the use of lattices (and orders) in Data Analysis (see [6], [10] and
the applications quoted therein), the question of getting “good” / “readable” lattice
drawings has been crucial. Whenever one sustains the claim that lattices
are instrumental to decipher structures (associations, implications) extracted from
data, better get understandable structures. Otherwise their promotion will be …
hazardous.

A main evident difficulty, the lattice size can explode exponentially (regarding its
input). A second one comes from the arbitrariness of “observed” lattices, so that the
methods which are adapted for highly structured lattices encountered in math. cannot
be of help. Here, we are dealing with arbitrary finite lattices. Besides this, defining
precisely what could be a “good” drawing is not that easy, and will never receive a
unique answer. It depends on the data nature and size, on its degree of structuring, and
these questions are certainly context sensitive (depending on scientific contexts etc).

Now, this need for lattice drawings has been addressed specifically and this in two
directions. Recently in the way of Automated Lattice Drawing (see [14]) by using
attraction / repulsion forces, but all along the development of FCA, by using much
more structural approaches based on several lattice decompositions (see [23], some of
them already present in [20]). This structural attitude has been followed in developing
our program GLAD (see [9]) in which nested line diagrams ([16] p. 75) and gluing
decompositions ([22], [16] p. 195) have been implemented since the mid-eighties.
This is also the direction followed here, with the proposal of new iterated shelling
decompositions which are dependent on the global structure of the congruence lattice.

 Lattice Drawings and Morphisms 89

2 Congruence Emergency Toolkit

From classical sources (for Lattice Theory see [2], [17] and FCA see [16]), we will
shortly extract a minimal set of notions and properties that are required in the sequel.

Homomorphisms are “structure preserving maps between algebraic structures”.
Hence for lattices, they should preserve the two operations and the order relation.
For two lattices (L1,≤,∨,∧) and (L2,≤,∨,∧), ϕ:L1 → L2 is a (lattice) homorphism iff

φ(x∧y)=φ(x)∧φ(y) and φ(x∨y)=φ(x)∨φ(y) hold for all x,y∈L1.
Through x≤y ⇔ x=x∧y⇒φ(x)=φ(x)∧φ(y)⇒ φ(x)≤φ(y), φ must actually be isotone.

A lattice homomorphism ϕ:L1 → L2 quotients L1 by a congruence Φ defined by
xΦy iff φ(x)=φ(y) for x,y∈L1. Φ is an equivalence on L1 that respects the substitution
properties: xΦy and uΦv implies x∧uΦy∧v and x∨uΦy∨v, for x,y,u,v∈L1. Now let
xΦy, xΦx and xΦy ⇒ x=x∧xΦx∧y, and similarly xΦx∨y holds, so that xΦy implies
x∧yΦx∨y, and the Φ-classes are convex intervals of L1. x/Φ denotes the class of x.

Surjective homomorphisms and congruence relations express the two sides of a
single phenomenon -depending on which side of the arrow the focus is- which is
made precise through the so-called homomorphism theorems (see [2] and [17] p. 16):
for a surjective homomorphism ϕ:L1 → L2, the quotient lattice L/Φ:=(x/Φ⏐ x∈L) is
isomorphic to L2 ; of particular importance here as it gives to drawings a “coherence
of inheritance”: for a congruence Θ on a lattice L, the congruence lattice of
L/Θ:=(x/Θ⏐ x∈L) is isomorphic with the interval [Θ,1] of the congruence lattice of L.

Let Con(L) be the congruence lattice of a lattice L, ordered by set inclusion (as
subsets of L×L). Con(L) is a 01-sublattice of the partition lattice Part(L). Moreover
(see [15]) Con(L) is distributive (quite a strong property among other algebras).

When Con(L)={0,1} L is called simple. When Con(L) has a single atom, its zero
element (identity) cannot be expressed as the meet of others, in which case L is called
subdirectly irreducible. Otherwise, when there are several atoms Θj(j∈J) in Con(L),
thanks to distributivity, the identity can be expressed as its minimal expression in
meet-irreducible elements (meet of all the meet-irreducible congruences that are
perspective to the Θj(j∈J) in Con(L)). In this case, L is called subdirectly reducible
and is a subdirect product of the irreducible factors L/Θj(j∈J), as it can be identified
as a sublattice of their product which projects surjectively onto the factors L/Θj(j∈J).

Some notations will be needed for dealing concretely with congruences. Let L be a
lattice, J:=J(L) and M:=M(L) its sets of join- and meet-irreducible elements, and
(J,M,≤) be its standard context (table). For j∈J and m∈M, j↑m means that m is
maximal not above j, dually m↓j that j is minimal not below m, in which case they are
weakly perspective. A pair of elements in J∪M is weakly projective if there exists a
path of alternating weak perspectivities between them (ex: j1↑m1↓j2↑m2↓j3↑m3...).

How to calculate Con(L)? (see [21] p. 280, [14] and http://www.latdraw.org/ for a
program). For m∈M let m/≈ be its weakly projective closure in J∪M. (M(Con(L)),≤)
is isomorphic to the ordered set (by dual inclusion) of all weakly projective closure of
m∈M (in words, this is just the consequence of “heredity of not collapsing”).

Finally, congruences on a lattice L are represented into the Hasse diagram of L
(representing its cover relation obtained by transitive reduction of (L,≤), while the

90 V. Duquenne

latter is reconstructed by transitive closure). Lattice homomorphism corresponds to
homomorphism of the covering relation, hence their importance here for diagrams.

3 On Frattini Congruences

As a motivating example let consider the permutohedron Perm(4), that is the set of all
permutations on {1,2,3,4} rooted at 1234 (see Fig. 1), and ordered by transposing
adjacent elements (other orders are sometimes considered). The structure of Perm(n)
was extensively studied (see [12], with subsequent papers in literature on weak orders
and multinomial lattices) up to characterizing iteratively its standard context
(J(Perm(n)),M(Perm(n)),≤) out of (J(Perm(n-1)),M(Perm(n-1)),≤) through a simple
copy-and-paste procedure, which could also iteratively characterize the arrow-graph
expressing the weak-perspectivities between its join- and meet-irreducible elements.

This permitted the construction of the congruence lattice Con(Perm(4)) (see Fig. 2)
through a characterization of its ordered set of meet-irreducible elements /
congruences (M(Con(Perm(4))),≤), thanks to distributivity. From its structure it could
be derived that it has 2**(n-2)=4 minimal elements (see [12], p. 80) so that Perm(4) is
a subdirect product with as many hence four irreducible factors. In Fig. 2, these
minimal meet-irreducible congruences are labelled by “I”,”K”,”M”, and ”O”.
Consequently, Perm(4) has four subdirectly irreducible factors that are defined by the
order filter that they generate in (M(Con(Perm(4))),≤), namely:

 IEJCFL, MENCFL, KGJCFL and OGNCFL, respectively.
CLAIM 1. The notion of subdirect product is clear and neat (but requires training
since one must characterize which is the sublattice of the product see [21]). The
uniqueness of … “subdirect product of irreducible factors” provides some reassuring
canonicity. But despite this, in such situations as above where the factors of Perm(4)
share a lot of attributes (“C”,”F”,”L” globally and more pairwise), they will not help
in obtaining “understandable” drawings of Perm(4), since the product of factors
becomes so big compared with Perm(4) (4×6=24 / 11 meet-irreducibles in Perm(4)).

Here we will call Frattini congruence of a lattice the intersection of its coatomistic
(lower covers of the unit) congruences, just like a Frattini sublattice (see [18]) of a
lattice is the intersection of its maximal proper sublattices (beware that in literature
another definition involving congruences on sublattices was also considered).

The interest of our Frattini congruences will be better understood if we first
examine under which conditions on L its congruence lattice Con(L) is Boolean, that is
–being already distributive- when its Frattini congruence equals identity in Part(L).
This is the case: iff the weak-projectivity relation on J(L)∪M(L) is symmetric, iff the
arrow-graph of weak-perspectivities on J(L)∪M(L) is the disjoint union of strongly
connected components, iff L is a subdirect product of simple factors. These lattices
are called weakly-modular and comprise modular, hence distributive, and relatively
complemented lattices which do have Boolean congruence lattices.

These above conditions express that for such a lattice L, M(L) and J(L) are
mutually splitted into blocks of pairwise symmetrically weakly-projective elements,
and that otherwise any pair of elements belonging to two distinct blocks are not
weakly-projective (nor –perspective). Here is a harsh contrast, between what we will
call full symmetric wp-dependence (within the blocks) and full wp-independence.

 Lattice Drawings and Morphisms 91

Fig. 1. Decomposition of the permutohedron Perm(4) by its Frattini / Glivenko congruence
(congruence classes are colored with single lines, while they are connected with double lines)

Fig. 2. The congruence lattice of the permutohedron Perm(4) was initially (see [12]) calculated
and derived through characterizing of the set of its meet-irreducible elements: (M(Perm(4)),≤)

92 V. Duquenne

Fig. 3. The permutohedron Perm(5) (order-) embedded into a product of chains: 5x4x3x2

Fig. 4. The permutohedron Perm(5) quotiented by its Frattini / Glivenko congruence

 Lattice Drawings and Morphisms 93

CLAIM 2. Considering the Frattini congruence ΦL of an arbitrary L will similarly
identify those meet / join-irreducible elements –think of objects / attributes in data
analysis- that are fully wp-dependent / independent. Moreover Considering L/ΦL , and
drawing L according to an “understandable” drawing of L/ΦL would clarify L.

Coming back to our motivating example Perm(4), let denote by Φ its Frattini
congruence (also known as Glivenko congruence for such complemented lattice and
interpreted as “sharing the same complement”). Φ(Perm(4)) is a Boolean lattice 2**3.
Fig. 1 provides quite a clarified drawing of Perm(4)/Φ along this Boolean lattice
(compare with [14] p. 127 which is very similar in shape although it was obtained
through a completely different à la spring embedder method). Similarly, Fig. 3
provides an (order) embedding of Perm(5) into a product of chains (compare with
[16] p. 56), while Fig. 4 gives a more symmetric view of Perm(5) through the
decomposition by its Frattini congruence into a Boolean 2**4 quotient lattice.

It may seem reasonable that this method can clarify lattices coming from math, just
by respecting the symmetries like the left-right symmetry of the rooted Perm(n). But
dealing with arbitrary lattices coming out of FCA & data analysis, a real question is:
Will such decompositions by Frattini congruences clarify lattices coming from data?

A first illustration coming from social networks is given in Fig. 5. The original
study (see [19]) focus on global structures of overlapping relations among Brazilian
youth organizations and their projects, during the so-called “1992 impeachment
movement”. The data is a small 29×8 context (binary relation / matrix). Let us call for
short L its concept (/ Galois) lattice. Its congruence lattice Con(L) (see Fig. 6) shows
that L is subdirectly irreducible, and that its unique atom is equal to its Frattini
congruence ΦL. The quotient lattice L/ΦL is isomorphic to a 2×3 product of chains,
while interestingly the five remaining attributes that are collapsed by ΦL belong to the
top class: the complex structure of wp-dependency among these attributes is simply
unfolded downwards by the three wp-independent attributes “C”,“F”,“G” into a quite
simple distributive product of chains. Of course, it would be interesting that the
specialists could interpret these facts regarding their knowledge on associations.

A second application comes from the pedagogy of mathematics (see [4]) and is
represented in Fig. 8. The data was previously analyzed through implications and
gluing decompositions (see [11]). The congruence lattice (see Fig. 7) is just a bit more
complex, with the grafting a three element chain below the Frattini congruence. Here
again as before L/ΦL is a distributive lattice generating a clear split between wp-
independent / dependent attributes and simplifying drastically the drawing.

A third example comes from a study on partial Down syndrome in genetics (see [5]
and [13]), where the data describes young patients in terms of triplication of genetic
bands in Chromosome 21. The quotient lattice L/ΦL is again distributive, and
interestingly the attributes which are collapsed by ΦL belong to the top class that
corresponds to the center of Chromosome 21, which is unfolded at left / right, with a
bifurcation for the latter, generating the three dimensional quotient lattice.

Hence, Frattini congruences ΦL help in clarifying these three small examples, but
they share that ΦL are not far away from the identity in their congruence lattices, and
all quotient lattices are distributive. What can be done with more complex examples?

94 V. Duquenne

Fig. 5. A lattice coming from a study (see [19]) on Brazilian youth (organizations × projects).
Its Frattini congruence quotients the lattice onto a simple distributive 2 × 3 product of chains,
by collapsing together five pairwise weakly-projective attributes within the top class

Fig. 6. Its congruence lattice splits three “independent” / five weakly-projective attributes

 Lattice Drawings and Morphisms 95

Fig. 7. A congruence lattice from a study ([4,11]) on math. teaching. The data describes
whether children master properties of natural numbers and operations (addition, counting…).
The aim is to evaluate implications between them, and locate the children in the lattice.

Fig. 8. The Frattini congruence generates a similar split between attributes and quotients into a
distributive lattice that therefore reveals a simple hierarchy between “independent” attributes

96 V. Duquenne

Fig. 9. A congruence lattice coming from genetics, with its meet irreducible elements. The data
describes patients in terms of triplication of genetic bands in Chromosome 21 (see [5,13]).

Fig. 10. Its Frattini congruence collapses the left “a” & center “cd…kl” of chromosone 21
within the top class while remaining bands unfold & project the lattice on a distributive factor

 Lattice Drawings and Morphisms 97

4 Nested Congruences and Diagrams

Our motivating example will this time come from math. and even closer from “FCA
on math”. In his paper on “subdirect product decomposition of concept lattices” (see
[21]) R. Wille gave a nice drawing from an example describing homomorphisms of
partial algebras by abstract properties. It was imitated in Fig. 11. It could be said that
the drawing of this lattice –say L- is clear, constructed under the control of (M(L),≤)
by applying the parallel law of additive line diagrams (see [16] p. 76).

This lattice was certainly chosen because it is a subdirect product of four
irreducible factors which are not too complex, and is reconstructed by a kind of fusion
(see [21] p. 229) of their scaffoldings which are some kind of distinguished generating
subsets (for the notion of partial sub-semilattice). We bettered this by showing that it
is also a same kind of fusion of the (minimal for this kind of construction through
partial subsemilattices) factor meet-cores (see [7] , [8] Th. 4 p. 137).

CLAIM 3. If these (re)constructions of a subdirect product L are clear on an abstract
level and can be programmed, they don’t help for clarifying the drawing of L because
the product of the factors is generally big, and these fusion procedures are complex
(see [7] p. 229-233) since carrying all the projections of L onto the factors.

To try going a bit further, Con(L) and (M(Con(L)),≤) have been represented in
Fig. 12. (M(Con(L)),≤) has four minimal elements, as expected, (“j”,”g”,”h”,”f”). The
Frattini congruence ΦL generates a quotient lattice L/ΦL (see Fig. 13) which is
Boolean and meet-generated along maximal elements of M(Con(L)),≤): “a”,”b”,”d”.
Now, seven attributes are left, so that in such situation where Con(L) is far away from
being Boolean, we propose to reiterate the process along a “shelling procedure”.

For M:=M(L), let (M, ≥) be the preorder induced on M by the weakly projective
closure: m1 ≥ m2 ⇔ m1/≈ ⊇ m2/≈. The equivalence classes of this preorder are
ordered isomorphically to (M(Con(L)),≥). Let us call in short MR:={Mr / r=1,2,…}
shelling partition of M that is obtained by a “rank down shelling” of (M(Con(L)),≥):

M1=max(M, ≥), M2=max(M \ M1, ≥),…,Mr=max(M \ ∪{Ms/s=1,r-1}, ≥).

CLAIM 4. The “rank down shelling” of (M(Con(L)),≥) procedure leads to define:
- A canonical representation of L, by drawings which refine a drawing of the Frattini
quotient L/ΦL by refining the classes iteratively along the shelling partition MR.
- A canonical presentation of the “standard context” (J(L),M(L),≤) of L (see Fig. 15)
with the arrow graph of weak perspectivities, which is quotiented into strongly
connected components by the map M(L) → M(Con(L)). The elements m∈M are
ordered from left to right along the shelling partition MR, and J(L) and M(L) are
permuted so that the strongly connected components be connected into the context.
The claim is that these (re)presentations put what is clear (full wp-independence /
dependence…) in front line, and nest the remaining complexity in a canonical order.

Such a “canonical” drawing is represented in Fig. 13. To get an even more readable
drawing, we erased in Fig. 14 the nested boxes –as is often done for “nested line
diagrams”-, and distinguish / reconstruct the three shelling levels by using three
different distances between attributes m∈M and their unique upper covers m* in L.

98 V. Duquenne

Fig. 11. A subdirectly reducible lattice L coming from mathematics (description of homo-
morphisms on partial algebra see [21], from which the lattice drawing has been borrowed)

Fig. 12. The order (M(Con(L)),≤) has four minimal elements so that L is the subdirect product
of four irreducible factors (capturing respectively all attributes above “j”, “g”, “h” and “f”)

 Lattice Drawings and Morphisms 99

Fig. 13. A canonical presentation of L by “rank down shelling” of (M(Con(L)),≥): the Frattini
congruence ΦL generates a quotient lattice L/ΦL which is Boolean and meet-generated along:
“a”,”b”,”d” (first level of boxes). The L/ΦL-classes are refined the same way at the next level.

Fig. 14. The same canonical presentation of L by “rank down shelling” of (M(Con(L)),≥),
where the drawing is simplified by removing boxes and lines as often done for nested line
diagrams. The three shelling levels can be easily identified by using three different distances.

100 V. Duquenne

↕ x x x x x x x x X 1
x ↕ x ↓ x x x X x X J1 2
x x ↕ x ↓ x ↓ ↓ ↓ X 3
x x x ↕ ↕ x x X ↓ X 4
x x ↑ x ↕ ↓ 5

↑ x x x x ↕ x ↓ J2 6

↑ x x x x x ↕ x X 7

↑ x x x x x x ↕ x X 8
x ↑ x x x x x ↕ X 9
x x x ↑ ↑ x x x ↕ J3 10
 M1 M2 M3
a b d c e i g h f j

Fig. 15. A canonical presentation of the “standard context” (J(L),M(L),≤) with the arrow graph
along the rank down shelling of (M(Con(L)),≥), which defines the partition (M1,M2,M3). J(L)
and M(L) have been permuted so that the graph strongly connected components be connected.
There are obviously no up-arrows (down-arrows) above (left of) the subtables JrxMr (r=1,2,3).

5 On the “Importance of Morphisms”

This question has been advocated for our present and pragmatic concerns regarding
lattice drawing clarification, but it was raised initially at the general level of
philosophy of mathematics. There, many authors (see [1] p. 209) have agreed that:

“From Dedekind, through Noether, and the work of Eilenberg and Mac Lane, the
fact has clearly emerged that mathematical structure is determined by a system of
objects and their mappings, rather than by any specific features of mathematical
objects viewed in isolation. To a great degree, the structural approach in modern
mathematics is characterized by increased attention to (system of) mappings, and the
idea that mathematical objects are determined by their ‘admissible’ transformations.”

Moreover, as attested by G. Birkhoff (see [3, p. 773], among S. Mac Lane, N.
Bourbaki etc), in half of a century, this shift developed widely with enthusiasm to
reformulate algebra and even to call for rethinking the foundations of mathematics:

“The tidal wave generated by enthusiasm about abstract algebra had wider
repercussions. (…) The "universal" approach to algebra, which I had initiated in
the 1930's and 1940's stressing the role of lattices, was developed much further in
two important books by Cohn and Grätzer. In a parallel development, Lawvere (1965)
proposed "The category of categories as a foundation for mathematics," beginning
with the statement: ‘In the mathematical development of recent decades one sees clearly
the rise of the conviction that the relevant properties of mathematical objects are
those which can be stated in terms of their abstract structure rather than in
terms of the elements which the objects were thought to be made of. The question
thus naturally arises whether one can give a foundation for mathematics (…) in which
classes and membership in classes do not play any role.‘ ”

 Lattice Drawings and Morphisms 101

Now, this abstract movement could have been wild and dominating in the 70’s. At
the end of a lecture, I remember a great professor asking “why don’t you embed this
into Category Theory?”, which has had terrified me for twenty years, up to relaxing
only after seeing it as leading in a “list of best stupid questions in Mathematics”.

Here, more modestly, it has been advocated and illustrated that congruence
relations and lattices -although abstract- can be instrumental in taming the complexity
of lattice drawings. This has been done through a series of claims and examples.

A first motivating example has been the permutohedron Perm(n), on which the
Frattini congruence defines a Boolean lattice of classes, each of which can be
interpreted as putting together lattice elements sharing the same complements. This
decomposition gives new views / perspectives of Perm(n). To get such interpretable
congruence that gives new insights of a lattice should be most useful for data analysis.

Hence, three examples from social sciences and genetics demonstrate that the
Frattini congruence can help in extracting –hopefully big- distributive factors that are
helpful in simplifying lattice drawings thanks to the nice properties of distributivity.

For more complex examples for which congruence lattices depart from being
Boolean, we introduced a procedure of rank down shelling of (M(Con(L)),≥), that
decomposes congruence classes iteratively along a chain of nested congruences. The
kind of drawing clarification that can be obtained is illustrated on an example coming
from math. The general idea behind this procedure is to put what is clear, the contrast
between full weakly projective dependence / independence in front line, and to nest
the remaining complexity in a linear order of such embedded contrasts, which is
determined by the congruence lattice global structure: all the morphisms are
collectively used to shape an appropriate … morphology to the lattice. This hierarchy
of contrasts is very close to the “hierarchy of contradictions” often met in philosophy:
this follows a balanced claim for more “concreteness & abstraction, nothing less!”.

6 Added in Proofs

Congruences can be used for formalizing dualities like identification / distinction via
the collapsing / splitting of lattice elements -under the substitution properties and both
operation respects. Hence, the above rank down shelling procedure gives priority to
distinction (splitting). But there are situations where identification (collapsing) should
prevail…This leads to consider a dual up shelling procedure scanning through the
order (M(Con(L)),≥) –as well as the induced preorder (M, ≥)- from bottom to top.

The resulting drawing is represented in Fig. 15, based on the up shelling partition
of M(L): M1=ghfj, M2=cei, M3=abd. As compared with Fig. 13, the “boxes” should
now be more easily read from the smaller (inside) to the bigger (outside). If the two
drawings are not that different (in this particular case), here the priority is to collapse
pairs “having no other consequences” for collapsing, by considering them as similar.
The shelling procedure provides a canonical ordering of such similarities. Comparing
the two logic of distinction / identification should now be done on appropriate data...

102 V. Duquenne

Fig. 15. Another canonical presentation of L by “rank up shelling” of (M(Con(L)),≥). Here the
shelling partition is: M1=min(M, ≥), M2=min(M \ M1, ≥),…,Mr=min(M \ ∪{Ms/s=1,r-1}, ≥).

Acknowledgments

A preliminary draft of this work on lattice drawings was presented at Institut Henri
Poincaré, Paris, 04/2009, for the meeting: “Pretty Structure, Existential Polytime and
Polyhedral Combinatorics (Celebrating Jack Edmonds 75th birthday)”,
http://www.ecp6.jussieu.fr/images/celabrating%20Jack%20Edmonds%20Birth.pdf .
Happy birthday Jack! Thanks to you and the other Waterloo survivors –Henry Crapo
and Adrian Bondy- reunified these days in Paris around so interesting discussions.

Thanks are also due to the referees for their remarks and comments. In particular a
proposal has been to drop out our assumption of homomorphism surjectivity, with the
following motivation: for an homomorphism φ:L → H and a “nice” drawing of H, it is
possible that removing the elements of H \ φ(L) makes the drawing becoming “ugly”.
This extension would give more flexibility and should be explored … in the future.

References

[1] Awodey, S.: Structure in Mathematics and Logic: a categorical perspective. Philosophia
Mathematica 4, 209–237 (1996)

[2] Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloq. Publ,
vol. 25. Amer. Math. Soc., New York (1967) (1st edn. 1940)

 Lattice Drawings and Morphisms 103

[3] Birkhoff, G.: Current Trends in Algebra. The American Mathematical Monthly 80, 760–
782 (1973)

[4] Charron, C.: Ruptures et continuités dans la construction des nombres, Phd Thesis,
Université Paris V-René Descartes, Paris (1998)

[5] Delabar, J.M., Theophile, D., Rahamani, Z., Chettouh, Z., Blouin, J.L., Prieur, M., Noel,
B., Sinet, P.M.: Molecular mapping of twenty-four features of Down Syndrome on
chromosome 21. European Journal of Human Genetics 1, 114–124 (1993)

[6] Duquenne, V.: What can lattices do for experimental designs? Mathematical Social
Sciences 11, 243–281 (1986)

[7] Duquenne, V.: Contextual implications between attributes and some representation
properties for finite lattices. In: Ganter, B., Wille, R., Wolff, K.E. (eds.) Beitrage zur
Begriffsanalyse, Mannheim, pp. 213–239 (1987)

[8] Duquenne, V.: On the core of finite lattices. Discrete Mathematics 88, 133–147 (1991)
[9] Duquenne, V.: GLAD (General Lattice Analysis & Design): a FORTRAN program for a

glad user, ORDAL 96 (Rival, I. (ed.), Ottawa, http://www.csi.uottawa.ca
[10] Duquenne, V.: Latticial structures in Data Analysis, ORDAL 96: Order and decision-

making (Rival, I. (ed.), Ottawa and Theoretical Computer Science 217, 407–436 (1999),
http://www.csi.uottawa.ca

[11] Duquenne, V.: What can lattices do for teaching math.? In: Diatta, J., Eklund, P.,
Liquière, M. (eds.) CLA 2007, pp. 72–87 (2007) posted at CEUR-WS proceedings 331,

 http://ftp.informatik.rwth-aachen.de/Publications/
 CEUR-WS/Vol-331/

[12] Duquenne, V., Cherfouh, A.: On permutation lattices. Mathematical Social Sciences 27,
73–89 (1993)

[13] Duquenne, V., Chabert, C., Cherfouh, A., Delabar, J.-M., Doyen, A.-L., Pickering, D.:
Structuration of phenotypes / genotypes through Galois lattices and implications. In:
Mephu Nguifo, E., et al. (eds.) Proc. of ICCS 2001-CLKDD 2001, Stanford 07/2001.
Applied Artificial Intelligence, vol. 17, 21-32, pp. 243–256 (2003)

[14] Freese, R.: Automated lattice drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI),
vol. 2961, pp. 112–127. Springer, Heidelberg (2004), http://www.latdraw.org/

[15] Funayama, N., Nakayama, T.: On the distributivity of a lattice of lattice-congruences.
Proc. Imp. Acad. Tokyo 18, 553–554 (1942)

[16] Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer,
Berlin (1999)

[17] Grätzer, G.: The congruences of a finite lattice: a proof-by-picture approach. Birkhäuser,
Basel (2006)

[18] Koh, K.-M.: On the Frattini sublattice of a lattice. Algebra Universalis 1, 104–116 (1971)
[19] Mische, A., Pattison, P.: Composing a civic arena: Publics, projects, and social settings.

Poetics 27, 163–194 (2000)
[20] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:

Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)
[21] Wille, R.: Subdirect decomposition of concept lattices. Algebra Universalis 17, 275–287

(1983)
[22] Wille, R.: Complete tolerance relations of concept lattices. In: Eigenthalet, G., et al. (eds.)

Contributions to General Algebra, pp. 397–415. Wien, Hölder (1985)
[23] Wille, R.: Lattices in data analysis: how to draw them with a computer. In: Rival, I. (ed.)

Algorithms and order, pp. 33–58. Kluwer Academic Publisher, Dordrecht (1989)

Approximations in Concept Lattices�

Christian Meschke

Institut für Algebra, TU Dresden, Germany
Christian.Meschke@tu-dresden.de

Abstract. Motivated by Rough Set Theory we describe an interval
arithmetic on complete lattices. Lattice elements get approximated by
approximations which are pairs consisting of a lower and an upper ap-
proximation. The approximations form a complete lattice again. We de-
scribe these lattices of approximations by formal contexts. Furthermore,
we interpret the result for concept lattices as restricting the scope to a
subcontext of interesting objects and attributes.

1 Introduction

Given a large, possibly infinite formal context (G, M, I) one usually has to handle
a very large number of concepts which often yields to overloaded, unreadable
order diagrams of the concept lattice. One practicable way to solve this problem
is to use nested line diagrams. To build such a nested line diagram one splits
the attribute set M into two not necessarily disjoint subsets M1 and M2, and
embeds the concept lattice of (G, M, I) into the direct product of the concept
lattices of the two subcontexts (G, M1, I ∩ G × M1) and (G, M2, I ∩ G × M2).
The higher readability follows from the edge saving method to draw the direct
product by copying the diagram of the second concept lattice into each node of
the first one. Hence, when looking at the nested line diagram one has to look
inside the big nodes when one is interested in the attributes from M2, and one
has to look at the outer lattice when one is interested in the attributes from M1.

Just looking at the outer lattice of such a nested line diagram is equivalent
to picking a subset N ⊆ M of interesting attributes and looking at the concept
lattice B(G, N, I ∩ G × N). What we are going to do is to additionaly pick a
subset H ⊆ G of interesting objects. Obviously, the restriction to the subcontext
(H, N, I ∩ H × N) yields to a smaller concept lattice, but one loses information
about the interesting objects and attributes. An implication between interesting
attributes that holds in (G, M, I) also holds in (H, N, I ∩H ×N). But an impli-
cation A → B that holds in the subcontext does not necessarily have to hold in
(G, M, I). One calls an object x less general than y in the context (G, M, I), if x
has every attribute that y has. This gives rise to the object quasiorder defined by

x � y :⇐⇒ xI ⊇ yI .

If for x, y ∈ H the object x is less general than y in (G, M, I), the object x is
also less general than y in the extracted context (H, N, I ∩ H × N). Hence, the
� Supported by the DFG research grant no. GA 216/10-1.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 104–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximations in Concept Lattices 105

object quasiorder of (H, N, J) is a quasiorder extension of the object quasiorder
of (G, M, I) restricted to H .

In summary we make the unsurprising observation that the restriction to the
subcontext (H, N, I ∩H ×N) yields to the negative side effect of losing informa-
tion from (G, M, I) about the interesting objects and attributes. In order to avoid
these problems we describe a familiar, but slightly more sophisticated method of
restricting ourselves to interesting objects and attributes. It is based on so-called
approximations in the concept lattice of (G, M, I). Thereby, approximations are
pairs of concepts consisting of a lower and an upper approximation.

2 Approximations

In this section we describe so-called approximations in complete lattices. Let
L = (L,≤) be a complete lattice and let K be a kernel system and let C be a
closure system in L, i.e., for every S ⊆ K and T ⊆ C it holds that

∨
S ∈ K

and
∧

T ∈ C. Furthermore, let �· and !·" be the respective kernel1 and closure
operators. Hence, for x ∈ L it holds that

�x =
∨

{k ∈ K | k ≤ x} and !x" =
∧

{c ∈ C | x ≤ c}.

We call �x the lower approximation of x and !x" the upper approximation
of x. Furthermore, we call the pair (�x , !x") the approximation generated
by x.

As an example from Rough Set Theory one can take for L the powerset lattice
(P(U),⊆) where the set U is the so-called universe. The approximations result
from an equivalence relation ∼ on U which usually describes indiscernibility of
objects. For X ⊆ U the approximations are defined as follows:

�X := {u ∈ U | ∀v ∼ u : v ∈ X},
!X" := {u ∈ U | ∃v ∼ u : v ∈ X}.

In this example, the kernel system equals the closure system. They consist ex-
actly of those subsets of U that are the union of ∼ equivalence classes, the
so-called crisp sets. It is well known that in this example the generated ap-
proximations (�X , !X") (with X ⊆ U) form a lattice if one orders them by
component-wise set inclusion.

In the case where L is a powerset lattice and where �· and !·" are arbitrary
kernel and closure operators, the generated approximations do not necessarily
form a lattice. In [2] Ganter suggested to investigate the complete sublattice
of K ×C that is generated by the generated approximations (�X , !X"). Hence,
this sublattice of approximations might contain pairs that are not generated
by a subset of U , see also [5]. It is now an obvious step forward to investigate
this approach for arbitrary complete lattices L. Since K and C form complete
1 Instead of using the terms kernel system and kernel operator it is quite common to

use interior system and interior operator instead.

106 C. Meschke

lattices, also K×C does. Thereby, infimum and supremum of a subset {(kt, ct) ∈
K × C | t ∈ T } are given by∨

t∈T

(kt, ct) =
(∨
t∈T

kt, !
∨
t∈T

ct"
)
,

∧
t∈T

(kt, ct) =
(
�
∧
t∈T

kt ,
∧
t∈T

ct

)
.

Definition 1. The complete sublattice Γ := ΓK,C of K × C that is generated
by the pairs (�x , !x") with x ∈ L is called the lattice of approximations.
The kernel k is called the bottom and the closure c is called the top of an
approximation (k, c).

The notion of an approximation yields to an interval arithmetic on the complete
lattice L. The following Section 3 investigates so-called maximal approximations
and the role of complete tolerance relations, which yields to a better understand-
ing and to a further generalisation of the approximations. In [2] the author gave a
contextual representation of Γ for the special case where L is a power set lattice
(P(U),⊆). He therefore used so-called P -products which are the formal concept
analytic way to describe subdirect products of complete lattices. In Section 5 we
propose a similar contextual representation for our more general case and dis-
cuss properties of the so-called concept approximations and of its representing
context. Section 4 provides the needed notions and propositions from Formal
Concept Analysis.

3 Maximal Approximations

Even though the approximations (k, c) are defined to be special pairs of lattice
elements, one automatically interprets them as intervals

[k, c] = {x ∈ L | k ≤ x ≤ c}.

in L. The reason for this interpretation is the simple fact that the bottom of
an approximation is alway less or equal than the top. In other words one can
say that ΓK,C is a subset of the order relation ≤. We say an approximation is
contained in another one if its interpretation as an interval is a subset of the
interval interpretation of the other approximation. Formally this containment
order � on ΓK,C is defined by

(k1, c1) � (k2, c2) :⇐⇒ [k1, c1] ⊆ [k2, c2].

We call the maximal elements of the ordered set (ΓK,C ,�) the maximal approx-
imations. Dually, we call an approximation minimal if it is a minimal element
of (ΓK,C ,�). An approximation (k, c) with k = c is called crisp. Obviously,
crisp approximations are always minimal and minimal approximations are al-
ways generated by a lattice element. One can easily show using Zorn’s lemma

Approximations in Concept Lattices 107

that every approximation is contained in a maximal approximation. We will
receive this result as a byproduct of the observation that the maximal approx-
imations interpreted as intervals are the blocks of a complete tolerance relation
on L.

Definition 2 ([3]). A binary relation Θ ⊆ L × L is called a complete toler-
ance relation on L if it is reflexive, symmetric and compatible with suprema
and infima, i.e., for which xtΘyt (t ∈ T) always implies

(
∧
t∈T

xt)Θ(
∧
t∈T

yt) and (
∨
t∈T

xt)Θ(
∨
t∈T

yt).

Hence, a binary relation is a congruence relation iff it is transitive and a complete
tolerance relation. If Θ is a complete tolerance relation on L, we define for a ∈ L

aΘ :=
∧

{x ∈ L | aΘx} and aΘ :=
∨

{x ∈ L | aΘx}.

The intervals [a]Θ := [aΘ, (aΘ)Θ] are called the blocks of Θ.

Proposition 1. The blocks of a complete tolerance relation Θ are precisely the
maximal subsets X of L with xΘy for all x, y ∈ X.

Proof. See [3] Proposition 55.
�

In our setting of a given kernel system K and a given closure system C in L we
get a canonical tolerance relation ΘK,C by

x ΘK,C y :⇐⇒ ∃(k, c) ∈ ΓK,C : {x, y} ⊆ [k, c].

The following propositions clarify the role of this tolerance relation ΘK,C .

Proposition 2. For x, y ∈ L it holds that

x ΘK,C y ⇐⇒ (�x ∧ y , !x ∨ y") ∈ ΓK,C .

Hence, for k ∈ K and c ∈ C with k ≤ c it holds that

k ΘK,C c ⇐⇒ (k, c) ∈ ΓK,C .

In other words one can write

ΓK,C = (K × C) ∩ ≤ ∩ ΘK,C .

Proof. The second statement directly follows from the first. The backward di-
rection of the first statement holds trivially. Let x ΘK,C y. Hence, there is an
approximation (k, c) with {x, y} ⊆ [k, c]. Then it holds that

(�x ∧ y , !x ∨ y") =
(
(k, c) ∨ (�x ∧ y , !x ∧ y")

)
∧ (�x ∨ y , !x ∨ y").

�

108 C. Meschke

Proposition 3. The relation ΘK,C is a complete tolerance relation. The blocks
of ΘK,C are precisely the intervals [k, c] where (k, c) is a maximal approximation.

Proof. Obviously ΘK,C is symmetric and reflexive. Let (xt, yt) ∈ ΘK,C for t ∈ T .
Then for every t ∈ T there is an approximation (kt, ct) with {xt, yt} ⊆ [kt, ct].
Since ∨

t∈T

(kt, ct) =
(∨

t∈T

kt, !
∨
t∈T

ct"
)

is an approximation with{∨
t∈T

xt,
∨
t∈T

yt

}
⊆

[∨
t∈T

kt, !
∨
t∈T

ct"
]

it follows (
∨

t∈T xt) ΘK,C (
∨

t∈T yt). Dually one shows that ΘK,C is compatible
with the infimum. Let X := [k, c] be an interval belonging to a maximal approx-
imation (k, c) and let y be a lattice element fulfilling x ΘK,C y for all x ∈ X . We
show that y ∈ X follows which implies by Proposition 1 that X is a block. From
Proposition 2 we get that (�k ∧ y , !k ∨ y") is an approximation. Hence, also

(k, c) ∨ (�k ∧ y , !k ∨ y") = (k, !c ∨ !k ∨ y"")

is an approximation as well. Since (k, c) is maximal we infer c = !c ∨ !k ∨ y""
which implies y ≤ c. Dually one shows k ≤ y. Altogether we get y ∈ X . For the
backward direction one takes a block X = [k, c] of ΘK,C and shows that (k, c) is
a maximal approximation. With Proposition 2 one can argue that k is a kernel,
that c is a closure and that (k, c) is an approximation. The maximality of (k, c)
follows from Proposition 1.
�

For a given complete tolerance relation the least elements of the blocks always
form a kernel system. Dually, the greatest elements form a closure system. These
two systems are isomorphic to each other, which allows to define a canonical
order on the blocks and to factorise L (see [3]). Obviously, the kernel and closure
system given by the blocks of ΘK,C are subsystems of K and C, respectively.
We call Θ a (K, C)-tolerance on L if it is a complete tolerance relation on L
satisfying xΘ ∈ K and xΘ ∈ C for every x ∈ L. The (K,C)-tolerances form a
closure system on L × L, i.e., they are closed under intersections.

Proposition 4. The relation ΘK,C is the smallest (K, C)-tolerance.

Proof. By Proposition 2 it suffices to show that every approximation is con-
tained in every (K, C)-tolerance, i.e., ΓK,C ⊆ Θ for every (K, C)-tolerance Θ.
One proves this by first showing that every generated approximation (�x , !x")
belongs to Θ. Afterwards one easily shows that Θ is closed under the supremum
and infimum as it is defined on K × C.
�

One can think of the tolerance ΘK,C as having the role to ensure that bottom
and top of an approximation do not differ too much. If one wants to define on
its own what not too much means one can use the following generalisation of the
notion of an approximation.

Approximations in Concept Lattices 109

Definition 3. Let L be a complete lattice, let K be a kernel system in L, let C
be a closure system in L and let Θ be a (K, C)-tolerance. We put

ΓK,C,Θ := (K × C) ∩ ≤ ∩ Θ

and call the pairs from ΓK,C,Θ the (K, C, Θ)-approximations. The notions bot-
tom, top, containment order, maximal, minimal and crisp are defined analogously
to the case of approximations where Θ = ΘK,C .

Proposition 5. ΓK,C,Θ is a complete sublattice of K ×C. For x, y ∈ L it holds
that

xΘy ⇐⇒ (�x ∧ y , !x ∨ y") ∈ ΓK,C,Θ.

The blocks of Θ are precisely the intervals [k, c] where (k, c) is a maximal (K, C, Θ)-
approximation.

Proof. Let (kt, ct) ∈ ΓK,C,Θ (t ∈ T) and let

(k, c) :=
∨
t∈T

(kt, ct) =
(∨

t∈T

kt, !
∨
t∈T

ct"
)
.

It obviously holds that (k, c) ∈ K × C ∩ ≤. Since Θ is a complete tolerance
it follows (

∨
kt,

∨
ct) ∈ Θ. Hence there is a block [x, y] containing k and

∨
ct.

Since furthermore Θ is a (K, C)-tolerance we infer y ∈ C which implies c ≤ y
and hence (k, c) ∈ Θ. Dually one shows that ΓK,C,Θ is closed under arbitrary
infima. The rest can be shown similarly to the proofs of the Propositions 2
and 3.
�

If K = L and C = L, it follows ΓK,C,Θ = Θ ∩ ≤ for every complete tolerance
relation Θ on L. Thus, if one additionally chooses Θ to be the universal relation
L×L, it follows that the set of (K, C, Θ)-approximations equals the order relation
of L:

ΓK,C,Θ = ΓL,L,L×L = ≤ .

4 Bonds and Block Relations

This section lists needed notions and propositions from Formal Concept Analysis.
For a more detailed insight we refer the reader to [3]. Let K = (G, M, I) and
L = (H, N, J) be formal contexts. A relation B ⊆ G × N is called a bond from
K to L if every row of (G, N, B) is an intent of L and every column of (G, N, B)
is an extent of K. The set of all bonds from K to L is a closure system on
G× N . The respective closure operator is denoted by (·)β . Hence, for a relation
T ⊆ G × N the closure T β is the smallest bond from K to L that contains T .

Lemma 1. For A ⊆ G and B ⊆ N it holds that

AII × BJJ ⊆ (A × B)β .

110 C. Meschke

Proof. Let R be a bond from K to L with A×B ⊆ R. It holds that AII ⊆ ARR

and B ⊆ AR. Thus, it follows BJJ ⊆ ARJJ = AR and

AII × BJJ ⊆ ARR × AR ⊆ R.

�

The complete tolerance relations discussed in Section 3 have special bonds as its
contextual counterpart, the so-called block relations. A relation J ⊆ G × M is
called a block relation of the formal context (G, M, I) if it is a self-bond that
contains I, i.e., if J is a bond from (G, M, I) to (G, M, I) with I ⊆ J .

Proposition 6. The lattice of all block relations of (G, M, I) is isomorphic to
the lattice of all complete tolerance relations on the concept lattice B(G, M, I).
The map κ assigning to any complete tolerance relation Θ the block relation
defined by

gκ(Θ)m :⇐⇒ γgΘ(γg ∧ μm) (⇐⇒ (γg ∨ μm)Θμm))

is an isomorphism. Conversely,

(A, B)κ−1(J)(C, D) ⇐⇒ A × D ∪ C × B ⊆ J

yields the complete tolerance to a block relation J .

Proof. See [3] Theorem 15.
�

Corollary 1. For a set U the lattice of all tolerance relations on the power set
lattice (P(U),⊆) is isomorphic to the lattice itself. The map τ assigning to any
subset X ⊆ U the complete tolerance relation τ(X) defined by

(A, B) ∈ τ(X) :⇐⇒ A ∩ X = B ∩ X

is an isomorphism. Hence, every complete tolerance on a power set lattice is a
congruence.

Proof. Follows from Proposition 6 since the block relations of the context (U, U, �=)
are precisely the relations JX with X ⊆ U where

JX := {(x, y) ∈ U × U | x = y implies x ∈ X}.

That τ is indeed an isomorphism is an elementary deduction from the definition
of κ−1.
�

5 Concept Approximations

In this section we study the approximations from Section 2 on concept lattices.
Obviously one can describe a kernel system K in a complete lattice by supremum-
dense subsets of K, i.e., by subsets T ⊆ K with

K =
{∨

S | S ⊆ T
}
.

Approximations in Concept Lattices 111

In the case of concept lattices we restrict ourselves to the kernel systems that
are describable by object concepts. Since for a given concept it is always possible
to extend the contexts object set in such a way that the concept is an object
concept, this restriction is not a proper one regarding to the aim of describing
arbitrary kernel systems in complete lattices. Dually we restrict ourself to closure
systems given by subsets of the contexts attribute set.

Hence, we have the situation described in Section 1 where (G, M, I) is a
universal context and where (H, N, I∩H×N) is a subcontext called selection.
Thereby the elements from H and from N are called the interesting objects
and attributes, respectively. The subset H ⊆ G yields to a kernel operator �· H

on B(G, M, I) in the following canonical way:

�(A, B) H := ((A ∩ H)II , (A ∩ H)I).

Dually, N ⊆ M yields to a closure operator via

!(A, B)"N := ((B ∩ N)I , (B ∩ N)II).

In order to shorten our notations we define for sets A, B and for a relation R

RA,B := R ∩ A × B.

Remark 1. For a concept (A, B) ∈ B(G, M, I) the following three statements
are equivalent:

(a) (A, B) is a kernel regarding to �· H , i.e., �(A, B) H = (A, B),
(b) B is an intent of (H, M, IH,M),
(c) (A, B) is the supremum of object concepts γh with h ∈ H .

Dually, the following three statements are equivalent:

(d) (A, B) is a closure regarding to !·"N , i.e., !(A, B)"N = (A, B),
(e) A is an extent of (G, N, IG,N),
(f) (A, B) is the infimum of attribute concepts μn with n ∈ N .

Hence, the kernel system KH and the closure system CN are the sets

KH := {(EII , EI) | E ⊆ H} and
CN := {(F I , F II) | F ⊆ N}.

Ordered with the subconcept-superconcept order KH and CN are obviously iso-
morphic to the concept lattices of (H, M, IH,M) and of (G, N, IG,N), respectively.
We denote the respective lattice of approximations with

ΓH,N := ΓKH ,CN .

We call the pairs of concepts from ΓH,N concept approximations. For E ⊆ H
and F ⊆ N we define

�E, F � := ((EII , EI), (F I , F II)).

112 C. Meschke

Obviously, the pairs of the form �E, F � are exactly the pairs consisting of kernel
in the first and a closure in the second component. It holds that

KH × CN = {�E, F � | E ⊆ H and F ⊆ N}
= {�E, F � | E ∈ Ext(H, M, IH,M) and F ∈ Int(G, N, IG,N)},

and for Et ∈ Ext(H, M, IH,M) and Ft ∈ Int(G, N, IG,N) it holds that∧
t∈T

�Et, Ft� =
�⋂

t∈T

Et,
(⋃
t∈T

Ft

)II ∩ N
�
,

∨
t∈T

�Et, Ft� =
�(⋃

t∈T

Et

)II ∩ H,
⋂
t∈T

Ft

�
.

But which pairs of the form �E, F � are concept approximations? The bottom
of a concept approximation �E, F � is a subconcept of the top, i.e, it holds that

(EII , EI) ≤ (F I , F II).

This is equivalent to (E, F) being a preconcept, i.e., E×F ⊆ I. But not all pairs
�E, F � where (E, F) is a preconcept are concept approximations. Analogously
to the approximations on complete lattices where certain complete tolerance
relations played an important role, it will be certain block relations that play that
role for the concept approximations. We call a relation J with I ⊆ J ⊆ G×M a
(H, N)-block relation if it is a bond from (G, N, IG,N) to (H, M, IH,M). Hence,
(H, N)-block relation are always block relations and the classical block relations
are precisely the (G, M)-block relations.

Proposition 7. The lattice of all (H, N)-block relations is isomorphic to the
lattice of all (KH , CN)-tolerances on the concept lattice B(G, M, I). The map κ
assigning to any (KH , CN)-tolerance Θ the (H, N)-block relation defined by

gκ(Θ)m :⇐⇒ γgΘ(γg ∧ μm) (⇐⇒ (γg ∨ μm)Θμm))

is an isomorphism. Conversely,

(A, B)κ−1(J)(C, D) ⇐⇒ A × D ∪ C × B ⊆ J

yields the (KH , CN)-tolerance to a (H, N)-block relation J . For A ⊆ G and
B ⊆ M the pair (A, B) is a concept of (G, M, J) if and only if [(BI , B), (A, AI)]
is a block of κ−1(J).

Proof. Obviously Proposition 7 is a mild generalisation of Proposition 6 and
we just have to show that κ and κ−1 are well-defined. Let Θ be a (KH , CN)-
tolerance and let J := κ(Θ) be the corresponding block relation. By [3] Corollary
57 the blocks of J are the intervals of the form [(BI , B), (A, AI)] where (A, B)
is a concept of (G, M, J). Hence, we get (BI , B) ∈ KH and (A, AI) ∈ CH . By
Remark 1 we get that B is an intent of (H, M, IH,M) and that A is an extent of
(G, N, IG,N) for every (A, B) ∈ B(G, M, J). Hence, J is a (H, N)-block relation.

Approximations in Concept Lattices 113

Let now J be a (H, N)-block relation, let Θ := κ−1(J) be the corresponding
complete tolerance relation and let (A, B) ∈ B(G, M, I). Then

(C, D) := (A, B)Θ

is the greatest concept from B(G, M, I) with A × D ∪ C × B ⊆ J which is
equivalent to A×D ⊆ J and C ×D ⊆ J . The first condition holds trivially since
(C, D) is a superconcept of (A, B) and hence A ⊆ C = DI ⊆ DJ . Thus (C, D) is
the greatest superconcept of (A, B) satisfying the second condition C × B ⊆ J ,
which directly yields to C = BJ . Hence, (C, D) = (BJ , BJI) is a closure from
CN because BJ ∈ Ext(G, N, IH,N). Dually one shows that (A, B)Θ ∈ KH . The
rest follows from [3] Corollary 57.
�

Lemma 2. The relation R ⊆ G × M defined by

R :=
⋃

(A,B)∈B(G,M,I)

(B ∩ N)I × (A ∩ H)I

satisfies I ⊆ R and Iβ = Rβ, where (·)β denotes the bond closure operator for
bonds from (G, N, IG,N) to (H, M, IH,M). Hence, Rβ is the smallest (H, N)-block
relation.

Proof. For (g, m) ∈ I there is some (A, B) ∈ B(G, M, I) with (g, m) ∈ A × B.
From g ∈ A = BI ⊆ (B∩N)I and m ∈ B = AI ⊆ (A∩H)I it follows (g, m) ∈ R.

Let T be a bond with I ⊆ T . We show R ⊆ T : For every (A, B) ∈ B(G, M, I)
it holds that

(B ∩ N)I × (A ∩ H)I = (AI ∩ N)I × (BI ∩ H)I

= AIG,N IG,N × BIH,M IH,M

⊆ (A × B)β

⊆ Iβ ⊆ T β = T .

Thereby the first inclusion follows from Lemma 1. Hence, a bond contains I iff
it contains R.
�

H IH,M

M

G IG,N

N

IH,N

Iβ

Fig. 1. The context AH,N . Thereby Iβ denotes the smallest bond from (G, N, IG,N) to
(H,M, IH,M) containing I . For technical reasons we have to think of G and H as being
replaced by disjoint copies. Analogously for M and N .

114 C. Meschke

Theorem 1. ΓH,N is isomorphic to the concept lattice of the context AH,N dis-
played in Figure 1. An isomorphism is given by

ϕ : B(AH,N) −→ ΓH,N

(A, B) �−→ �A ∩ H, B ∩ N�.
A pair of concepts �E, F � where E ⊆ H and F ⊆ N is a concept approximation
if and only if E × F ⊆ I and F I × EI ⊆ Iβ.

Proof. One can prove this Theorem 1 by showing that AH,N is the P -fusion
of the two P -contexts ((H, M, IH,M), αH) and ((G, N, IG,N), αG), where P :=
B(G, M, I),

αH(A, B) := (A ∩ H, (A ∩ H)I) and αN (A, B) := ((B ∩ N)I , B ∩ N).

For this approach one needs Lemma 2. For details regarding P -fusions and P -
contexts see [3]. We leave out the details of the proof since Theorem 1 is a special
case of Theorem 2.
�

It turns out that the bonds Iβ and IH,N correspond one-to-one to the maximal
and to the minimal concept approximations, respectively. In order to describe
this we have to refresh two basic notions from Formal Concept Analysis. The
context (H, N, IH,N) is called a dense subcontext of (G, M, I) if γ[H] is

∨
-

dense and μ[N] is
∧

-dense in B(G, M, I). The context (H, N, IH,N) is called a
compatible subcontext of (G, M, I) if the pair (A ∩ H, B ∩ N) is a concept of
(H, N, IH,N) for every concept (A, B) of (G, M, I).

Proposition 8. The maximal concept approximations are precisely the pairs of
the form (

(BI , B), (A, AI)
)

= �BI ∩ H, AI ∩ N�
where (A, B) ∈ B(G, M, Iβ). The mapping (A, B) �→

(
(BI , B), (A, AI)

)
is an

order-embedding of B(G, M, Iβ) into ΓH,N . It is an isomorphism if and only if
the selection (H, N, IH,N) is a dense subcontext of (G, M, I).

Proof. The mentioned equivalence follows from [3] Corollary 57 (3.). Hence,
the mapping is well-defined. That it is an order-embedding is elementary: for
(Ai, Bi) ∈ (G, M, Iβ) it holds that

(A1, B1) ≤ (A2, B2) ⇐⇒
(
(BI

1 , B1), (A1, A
I
1)
)
≤

(
(BI

2 , B2), (A2, A
I
2)
)
.

The rest is obvious, since (H, N, IH,N) is dense in (G, M, I) iff KH = CN =
B(G, M, I) holds.
�

Proposition 9. For every (E, F) ∈ B(H, N, IH,N) the pair �E, F � of con-
cepts is a concept approximation. The approximations of the form �E, F � where
(E, F) is a concept of (H, N, IH,N) are precisely the minimal concept approxima-
tions. Furthermore, an approximation �E, F � is crisp if and only if (F I , EI) ∈
B(G, M, I).

Approximations in Concept Lattices 115

Proof. Let (E, F) ∈ B(H, N, IH,N). Using Theorem 1 it suffices to show that
E×F ⊆ I and F I ⊆ EI ⊆ Iβ . The first item obviously holds. The second follows
from Lemma 1:

F I × EI = (EI ∩ N)I × (F I ∩ H)I = EIG,N IG,N × F IH,M IH,M ⊆ (E × F)β ⊆ Iβ .

Let �E, F � be a concept approximation. W.l.o.g. we assume E ∈ Ext(H, M, IH,M)
and F ∈ Int(G, N, IG,N). If �E, F � is not minimal, there is an approximation
�Q, R� with

(EII , EI) ≤ (QII , QI) ≤ (RI , RII) ≤ (F I , F II)

where at most one of the two outer inequations is a proper <. Hence, it follows
E � Q or F � R which implies E × F � Q × R ⊆ IH,N . Thus, (E, F) is not
a concept of (H, N, IH,N). Let us otherwise suppose that �E, F � is minimal and
that (E, F) /∈ B(H, N, IH,N). Then there is a concept (Q, R) ∈ B(H, N, IH,N)
with E × F � Q × R. We know from above that �Q, R� is an approximation.
It holds that QI ⊆ EI and RI ⊆ F I . Equality of the first subset relationship
implies

E = EIH,M IH,M = EII ∩ H = QII ∩ H = Q.

Dually, the equality F I = RI implies F = R. Hence, �Q, R� is a concept approxi-
mation that is properly contained in �E, F �. But this contradicts the minimality
of �E, F �. The characterisation of the crisp concept approximations directly fol-
lows from �E, F � =

(
(EII , EI), (F I , F II)

)
.
�

Proposition 10. The subcontext (H, N, IH,N) is dense in AH,N if and only if
it is a compatible subcontext of (G, M, I).

Proof. Lemma 2 from [4] says that (H, N, IH,N) is dense in AH,N iff the following
three equations hold:

(i) Ext(H, M, IH,M) = Ext(H, N, IH,N),
(ii) Int(G, N, IG,N) = Int(H, N, IH,N), and
(iii) Iβ =

⋃
{F I × EI | (E, F) ∈ B(H, N, IH,N)}.

Let (H, N, IH,N) be a compatible subcontext of (G, M, I). Then (i) and (ii)
obviously hold. Furthermore, for the relation R from our Lemma 2 it holds that

R =
⋃

(E,F)∈B(H,N,IH,N)

F I × EI .

If we show that R already is a bond, it follows (iii). For m ∈ M it holds that

mR =
⋃

{F I | (E, F) ∈ B(H, N, IH,N) and m ∈ EI} = (mI ∩ H)IG,N IG,N .

The second equality follows from the fact that (mI ∩ H, (mI ∩ H)I ∩ N) is a
concept of (H, N, IH,N) with the property that for every (E, F) ∈ B(H, N, IH,N)
with m ∈ EI it holds that

F I ⊆ ((mI ∩ H)I ∩ N)I = (mI ∩ H)IG,N IG,N .

116 C. Meschke

Dually one shows that gR is an intent of (H, M, IH,M). Hence, R is indeed a bond.
Let now (H, N, IH,N) be a subcontext fulfilling (i), (ii) and (iii). We show that
(H, N, IH,N) is a compatible subcontext of (G, M, I) by applying Proposition
35 from [3]. Analogously to the previously mentioned one gets from (iii) that
mIβ

= (mI ∩ H)IG,N IG,N . For n ∈ N it follows

nI ⊆ nIβ

= ((nI ∩ H)I ∩ N)I ⊆ (nII ∩ N)I = nI ,

which yields to nIβ

= nI . Let h ∈ H and m ∈ M with (h, m) /∈ I. Then by (i)
there is an attribute n ∈ N with mI ∩H ⊆ mI ∩H and (h, m) /∈ I. This implies

mI ⊆ mIβ

= (mI ∩ H)IG,N IG,N ⊆ (nI ∩ H)IG,N IG,N = nI .

Dually one can prove that (H, N, IH,N) also fulfills the second condition of [3]
Proposition 35.
�

Proposition 11. There is a natural embedding of B(H, N, IH,N) into ΓH,N .
The mapping

ψ : B(H, N, IH,N) −→ ΓH,N

(E, F) �−→ �E, F �
is an order embedding. Furthermore, ψ is an isomorphism if and only if (H, N,
IH,N) is a compatible subcontext of (G, M, I).

Proof. That ψ is well-defined follows from Proposition 9. Obviously ψ is order-
preserving. That it is also order-reversing is elementary: for two concepts (E1, F1)
and (E2, F2) of (H, N, IH,N) with ψ(E1, F1) ≤ ψ(E2, F2) it follows F I

1 ⊆ F I
2

which implies E1 = F I
1 ∩H ⊆ F I

2 ∩H = E2. Thus it follows (E1, F1) ≤ (E2, F2).
The inverse isomorphism of ϕ from Theorem 1 maps every concept approxima-
tion �E, F � where w.l.o.g. E is an extent of (H, M, IH,M) and F is an intent of
(G, N, IG,N) to the concept

ϕ−1(�E, F �) := (E # F I , EI # F)

of AH,N . Hence, in order to finish our proof it suffices to show by Proposition
10 that (H, N, IH,N) is a dense subcontext of AH,N if and only if the mapping

χ : B(H, N, IH,N) −→ B(AH,N)
(E, F) �−→ (E # F I , EI # F)

is surjective. Let (H, N, IH,N) be dense in AH,N and let (E # F I , EI # F) be
an arbitrary concept of AH,N . We have to show that (E, F) is a concept of
(H, N, IH,N). Let � denote the incidence relation of AH,N . Since (H, N, IH,N)
is dense it follows

E # F I = (E # F I)�� = E��,

Approximations in Concept Lattices 117

which implies

EI # F = (E # F I)� = E� = EI # EIH,N .

Hence, it follows F = EIH,N . Dually one shows F IH,N = E. Let now χ be
surjective and let (A, B) be a concept of AH,N . Then there is a concept (E, F)
of (H, N, IH,N) with (A, B) = (E # F I , EI # F). It follows that

(A ∩ H)� = E� = EI # EIH,N = EI # F = B = A�.

Dually one shows (B ∩ N)� = B�. Hence, by [3] Propostion 39 (H, N, IH,N) is
a dense subcontext of AH,N .
�

In the following we answer the question on how to integrate the further gen-
eralised (K, C, Θ)-approximations from Section 3 in the previously described
contextual representation. As Theorem 2 will show, the obvious answer is to
replace the block relation Iβ by arbitrary (H, N)-block relations.

Definition 4. Let J be a (H, N)-block relation and let ΘJ := κ−1(J) be the
corresponding (KH , CN)-tolerance (see Proposition 7). We put

ΓH,N,J := ΓKC ,HN ,ΘJ

and call the pairs from ΓH,N,J the (H, N, J)-approximations.

Increasing the block relation J obviously yields to greater but viewer maximal
approximations, which again yields to increasing ΓH,N,J .

H IH,M

M

G IG,N

N

IH,N

J

Fig. 2. The context AH,N,J , where J is a (H,N)-block relation

Theorem 2. ΓH,N,J is isomorphic to the concept lattice of the context AH,N,J

displayed in Figure 2. An isomorphism is given by

ϕ : B(AH,N,J) −→ ΓH,N,J

(A, B) �−→ �A ∩ H, B ∩ N�
The inverse isomorphism is the mapping that maps every (H, N, J)-approximation
�E, F � where w.l.o.g. E ∈ Ext(H, M, IH,M) and F ∈ Int(G, N, IG,N) to

ϕ−1(�E, F �) := (E # F I , EI # F).

118 C. Meschke

♦ ♥ ♠ ♣ 7 8 9 Q K 10 A ♦J ♥J ♠J ♣J
♦7 × × × × × × × × × × × ×
♦8 × × × × × × × × × × ×
♦9 × × × × × × × × × ×
♦Q × × × × × × × × ×
♦K × × × × × × × ×
♦10 × × × × × × ×
♦A × × × × × ×
♥7 × × × × × × × × × × × ×
♥8 × × × × × × × × × × ×
♥9 × × × × × × × × × ×
♥Q × × × × × × × × ×
♥K × × × × × × × ×
♥10 × × × × × × ×
♥A × × × × × ×
♠7 × × × × × × × × × × × ×
♠8 × × × × × × × × × × ×
♠9 × × × × × × × × × ×
♠Q × × × × × × × × ×
♠K × × × × × × × ×
♠10 × × × × × × ×
♠A × × × × × ×
♣7 × × × × × × × × × × × ×
♣8 × × × × × × × × × × ×
♣9 × × × × × × × × × ×
♣Q × × × × × × × × ×
♣K × × × × × × × ×
♣10 × × × × × × ×
♣A × × × × × ×
♦J × × × ×
♥J × × ×
♠J × ×
♣J ×

♦7 ♥7 ♠7 ♣7

7

♦8 ♥8 ♠8 ♣8

8

♦9 ♥9 ♠9 ♣9

9

♦Q ♥Q ♠Q ♣Q

Q

♦K ♥K ♠K ♣K

K

♦10 ♥10 ♠10 ♣10

10

♦A

♦

♥A

♥

♠A

♠

♣A

♣

A

♦J

♥J

♠J

♣J

Fig. 3. The formal context (G, M, I) to the Skat example. Thereby Q stands for queen,
K for king, A for ace and J for jack. The corresponding concept lattice has 40 concepts
and is displayed on the right side. Note that the object concept of♣J equals its attribute
concept. The same holds for the other jacks. Hence, we do not have to label these
concepts twice.

Proof. By [3] Theorem 32 the incidence relation � of AH,N is a closed subrela-
tion in the sum context of (H, M, IH,M) and (G, N, IG,N). Hence, B(AH,N,J) is
isomorphic to a complete sublattice S of the direct product of B(H, M, IH,M)(∼=
KH) and of B(G, N, IG,N) (∼= CN). An isomorphism is given via (see [3]
Theorem 31)

ϕ̂ : B(AH,N,J) −→ S

(A, B) �−→
(
(A ∩ H, B ∩ M), (A ∩ G, B ∩ N)

)
=

(
(A ∩ H, (A ∩ H)I), ((B ∩ N)I , B ∩ N)

)

Approximations in Concept Lattices 119

♦ ♥ ♠ ♣ Q 10 ♠J
♦7 × × × × × × × × × × × × × × × ×
♦Q × × × × × × × × × × × × ×
♥7 × × × × × × × × × × × × × × × ×
♥Q × × × × × × × × × × × × ×
♠7 × × × × × × × × × × × × × × × ×
♠Q × × × × × × × × × × × × ×
♣7 × × × × × × × × × × × × × × × ×
♣Q × × × × × × × × × × × × ×
♥J × × × ×
♠J × × ×

× × × × × × × × × × × × × × × ×
× ⊗ × × × × × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × × × × × × ×
× ⊗ × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × ×

× × × × × × × × × × × × × × × ×
× ⊗ × × × × × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × × × × × × ×
× ⊗ × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × ×

× × × × × × × × × × × × × × × ×
× ⊗ × × × × × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × × × × × × ×
× ⊗ × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × ×

× × × × × × × × × × × × × × × ×
× ⊗ × × × × × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × × × × × × ×
× ⊗ × × × × × × × × × ×
× ⊗ ⊗ × × × × × × × × ×
× ⊗ ⊗ ⊗ × × × × × × ×

⊗ ⊗ ⊗ ⊗ × × × × ×
⊗ ⊗ ⊗ ⊗ ⊗ × × × ×
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × ×

⊗ ×

♦7 ♥7 ♠7 ♣7

7

♦Q ♥Q ♠Q ♣Q

Q

10♦ ♥ ♠ ♣

♥J

♠J

Fig. 4. The context AH,N for our Skat example. We just labelled the interesting objects
and attributes, which causes no problems since every concept approximation is of the
form �E, F � with E ⊆ H and F ⊆ N . The circled crosses ⊗ mark the pairs from Iβ

that do not belong to I . Note that the concept lattice of (G, M, Iβ) is isomorphic to the
lattice of all blocks; see Proposition 7. The right side shows a diagram of the concept
lattice of (G, M, I), where just the interesting objects and attributes are labelled. The
nodes having a filled lower half correspond to kernels. Closures are labelled by nodes
that have a filled upper half. The 12 ellipse correspond to the blocks and hence to the
maximal concept approximations.

Hence, for E ∈ Ext(H, M, IH,M) and F ∈ Int(G, N, IG,N) it holds that(
(E, EI), (F I , F)

)
∈ S ⇐⇒ (E # F I , EI # F) ∈ B(AH,N,J)

⇐⇒ E × F ⊆ IH,N and F I × EI ⊆ J

120 C. Meschke

⇐⇒ (EII , EI) ≤ (F I , F II) and
(EII , EI)κ−1(J)(F I , F II)

⇐⇒ �E, F � ∈ ΓH,N,J .

Thereby the equivalence prior to the last one follows from Proposition 7 with the
help of Lemma 1. Hence, S is isomorphic to ΓH,N,J and the mapping ϕ indeed
is an isomorphism.
�

The attribute implications A → B with A, B ⊆ N that hold in AH,N,J are
precisely the implications that hold in (G, N, IG,N). Hence, these implications
are precisely the attribute implications between interesting attributes that hold
in the universal context (G, M, I). The dual statements holds for the interesting
objects.

We close this section with a corollary from Proposition 7. It is a characterisa-
tion of the (K, C, Θ)-approximations for the case where L is a power set lattice.

Corollary 2. Let K be a kernel system and C be a closure system on a set U .
This means that K and C are a kernel system and a closure system in the power
set lattice L := (P(U),⊆). Furthermore, let

R := {u ∈ U | {u} ∈ K and U \ {u} ∈ C}

be the set of so-called robust elements. Then the following statements hold:

(1) A pair (X, Y) ∈ K×C is an approximation iff X is a subset of Y and Y \X
does not contain a robust element.

(2) Let τ(S) for S ⊆ U be the complete congruence relation on L from Corollary
1 defined by

(A, B) ∈ τ(S) :⇐⇒ A ∩ S = B ∩ S.

Then τ(S) is a (K, C)-tolerance on L if and only if S ⊆ R. Since every
complete tolerance relation on L is of the form τ(S) this characterises the
(K, C)-tolerances.

♦ ♥ ♠ ♣ Q 10 ♠J
♦7 × × × ×
♦Q × × × ×
♥7 × × × ×
♥Q × × × ×
♠7 × × × ×
♠Q × × × ×
♣7 × × × ×
♣Q × × × ×
♥J ×
♠J ×

♦7,♦Q

♦

♥7,♥Q

♥

♠7,♠Q

♠

♣7,♣Q

♣

Q,10

♠J

♥J,♠J

Fig. 5. The selection (H,N, IH,N) and its concept lattice B(H,N, IH,N)

Approximations in Concept Lattices 121

♦7 ♥7 ♠7 ♣7

♦Q ♥Q ♠Q ♣Q

Q

10♦ ♥ ♠ ♣

♥J

♠J

♠J

Fig. 6. The lattice of approximations ΓH,N for our Skat example. The corresponding
context AH,N is displayed in Figure 4. One reads the diagram as follows. Obviously the
nodes represent the concept approximations �E,F �. Similar to the reduced labelling
of concept lattices, the elements from E are precisely the objects whose label can be
found on the nodes below �E, F �. Thereby below means that one can reach this node
by going downwards along line paths in the diagram. Dually, the attributes from F
are precisely the attributes labelling nodes above. As an example we take a look at
the one unlabelled node at the very right. It represents the concept approximation
�E, F � =

(
(EII , EI), (F I , F II)

)
with E = {♣7, ♣Q} and F = {10, ♣, ♣J}.

(3) Let S ⊆ R. Then a pair (X, Y) ∈ K × C is a (K, C, τ(S))-approximation iff
X ⊆ Y and (Y \ X) ∩ S = ∅.

Proof. Statement (1) is from [5]. It is a special case of (3): By (2) τ(R) is the
smallest (K, C)-tolerance and hence by Proposition 4 it holds that ΘK,C = τ(R).
Statement (3) follows from (2) since for X ⊆ Y the equivalences

(X, Y) ∈ τ(S) ⇐⇒ X ∩ S ⊇ Y ∩ S ⇐⇒ X ⊆ Y ∩ S ⇐⇒ (Y \ X) ∩ S = ∅

hold. For S ⊆ U the blocks of τ(S) are precisely the intervals of the form

[T, (U \ S) ∪ T] = [T, U \ (S \ T)],

where T ⊆ S. If S ⊆ R it follows T ∈ K and U \ T ∈ C for every T ⊆ S. Hence,
τ(S) is a (K, C)-tolerance. If we otherise assume that τ(S) is a (K, C)-tolerance,
it follows that {x} ∈ K (put T := {x}) and U \ {x} ∈ C (put T := S \ {x}) for
every x ∈ S.
�

122 C. Meschke

6 An Example

Our example is a toy example. It deals with the German card game Skat. Skat
is a three player game that is played with a card deck consisting of 32 cards.
These 32 cards are the objects of the context (G, M, I) displayed in Figure 3.
The attributes and the incidence relation are chosen in such a way that the
object quasiorder reflects the cards standard hierarchy. This means that for two
cards x and y it holds

xI ⊇ yI

if and only if card y beats card x. With standard we mean that just the four jacks
are trump. Hence, one can think – with one little exception – of (G, M, I) as
a scaled context resulting from a many-valued context with the two attributes
suite and value. Thereby the values diamonds ♦, hearts ♥, spades ♠ and clubs
♣ of the attribute suit are scaled nominally. The values of the second attribute
value are scaled ordinally with the exception of the jacks. A jack is always trump
which means that this card is above every non-jack in the cards hierarchy. The
reader should note that furthermore the 10 beats the king of the same suit.

To start a Skat game each of the three players receives ten playing cards.
The two remaining cards form the so-called skat and the player who wins the
bidding process is allowed to use these two additional cards to build an improved
combination of ten cards to play against his two opponents. From a players point
of view the subset H of interesting cards might for instance be the ten cards he
received at the beginning. Or maybe the interesting objects are the twelve cards
he owns after winning the bidding for the skat. In order to receive a small lattice
ΓH,N of approximations we chose the pretty regular set of playing cards

H := {♦7, ♦Q, ♥7, ♥Q, ♠7, ♠Q, ♣7, ♣Q, ♥J, ♠J}.

The choice of N might appear artificial, too. We took

N := {♦, ♥, ♠, ♣, Q, 10, ♠J}

which can be interpreted as coarsening the scale. The player might just be in-
terested in the following questions: What is the suit of a given card? Is it weaker
or equal than a queen or a 10 (of the same suit)? Is it weaker or equal than
the jack of spades? The resulting selection (H, N, IH,N) and its concept lattice
is displayed in Figure 5. The Figures 4 and 6 show the context AH,N and the
corresponding lattice of approximations ΓH,N .

Note that in our example the block relation Iβ is relatively small, which yields
to a relatively small number of concept approximations. It is for instance possible
that the number of approximations exceeds the number of concepts of (G, M, I).
But since the inequality

|ΓH,N | ≤ |B(H, M, IH,M)| · |B(G, N, IG,N)|

trivially holds, it follows that relatively small subcontexts tend to result in lat-
tices of approximations that are noticeably smaller than the concept lattice
B(G, M, I).

Approximations in Concept Lattices 123

7 Conclusion

We introduced and discussed approximations in complete lattices and described
them via formal contexts. Furthermore, we interpreted the result as restricting
the view from a formal context to a subcontext without losing implicational
knowledge about the selected objects and attributes.

References

1. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

2. Ganter, B.: Lattices of Rough Set Abstractions as P -Products. In: Medina, R.,
Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 199–216. Springer,
Heidelberg (2008)

3. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer, Heidelberg (1999)

4. Ganter, B.: Relational galois connections. In: Kuznetsov, S.O., Schmidt, S. (eds.)
ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 1–17. Springer, Heidelberg (2007)

5. Meschke, C.: Robust Elements in Rough Set Abstractions. In: Ferré, S., Rudolph,
S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 114–129. Springer, Heidelberg
(2009)

6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Dordrecht (1991)

Hardness of Enumerating Pseudo-intents in the
Lectic Order

Felix Distel

Theoretical Computer Science, TU Dresden, Germany
felix@tcs.inf.tu-dresden.de

Abstract. We investigate the complexity of enumerating pseudo-intents
in the lectic order. We look at the following decision problem: Given a
formal context and a set of n pseudo-intents determine whether they are
the lectically first n pseudo-intents. We show that this problem is coNP-
hard. We thereby show that there cannot be an algorithm with a good
theoretical complexity for enumerating pseudo-intents in a lectic order.
In a second part of the paper we introduce the notion of minimal pseudo-
intents, i. e. pseudo-intents that do not strictly contain a pseudo-intent.
We provide some complexity results about minimal pseudo-intents that
are readily obtained from the previous result.

1 Introduction

The so-called stem base or Duquenne-Guigues Base from Formal Concept Anal-
ysis (FCA, [5]) plays an important rôle within FCA [6]. It has applications both
within FCA as well as other fields such as Description Logics (DL) (in particular
in knowledge base completion [1]). Therefore it is not surprising that it has been
of major interest in the FCA community since its introduction.

In order to compute the Duquenne-Guigues Base of a formal context one
must compute its pseudo-intents. The most well known algorithm for computing
pseudo-intents is the Next-Closure-Algorithm [4]. It produces all concept intents
and all pseudo-intents of a given formal context in a lexicographic order (called
the lectic order). Another less well known algorithm has been introduced in
2007 [9,10]. It computes concept intents and pseudo-intents by starting with a
set containing a single attribute and then incrementally adding attributes.

Both algorithms compute not only pseudo-intents but also concept intents.
It is not difficult to see that the number of concept intents can be exponential
in the number of pseudo-intents. As an example consider a series of contexts
Kn = (Gn, Mn, In) where Mn = {1, . . . , n} and all subsets of Mn with cardinality
n − 2 are object intents. This context has 1

2n(n − 1) objects and n attributes.
The pseudo-intents of Kn are exactly the sets of cardinality n − 1. All sets of
cardinality less than n−1 are concept intents. This means that there are 2n−n−1
concept intents while there are only n pseudo-intents. The case n = 4 is shown
in Table 1.

This shows that there is a problem with the known algorithms for computing
pseudo-intents. In many practical applications such as attribute exploration or

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 124–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hardness of Enumerating Pseudo-intents in the Lectic Order 125

Table 1. A Formal Context with 4 Pseudo-intents and 24 − 4− 1 Concept Intents

1 2 3 4
g1 X X
g2 X X
g3 X X
g4 X X
g5 X X
g6 X X

knowledge base completion one is not interested in concept intents but only in
pseudo-intents. Yet, the above example shows that in the worst case the time
needed to enumerate all pseudo-intents can be exponential in the size of the
output, i. e. the number of pseudo-intents, when using one of the two known
algorithms.

This raises the question whether it is theoretically possible to find more ef-
ficient algorithms for computing pseudo-intents. It is known that the number
of pseudo-intents can be exponential in the size of the incidence relation of the
context [7]. From this it immediately follows that there cannot be an algorithm
that enumerates pseudo-intents in polynomial time in the size of the input (which
would be the incidence relation).

For problems where the size of the output can be large in the size of the
input other measures of complexity have been developped. One possibility is
to take into account not only the size of the input, but also the size of the
output. An algorithm is said to run in output polynomial time if it enumerates
the solutions in time polynomial in the size of the input and the output. In
previous work a relationship between the problem of enumerating pseudo-intents
and the so-called transversal hypergraph problem (TransHyp, [2]) has been
discovered. TransHyp is known to be in coNP but so far no hardness result
has been shown. It is most likely not coNP-hard because it can be solved in
no(log n) time [3]. It is also not known whether TransHyp is in P. It has been
shown that pseudo-intents cannot be enumerated in output-polynomial time
unless TransHyp is in P [11,12].

For someone who wants to apply attribute exploration in practice the most
interesting measure of complexity is the delay between the computation of one
pseudo-intent and the next. During this time the expert must wait unproduc-
tively for the next question to show up. With the known algorithms the delay
can be exponential in the size of the input – and even in the size of the output.
An enumeration algorithm is said to run with polynomial delay if the time be-
tween the enumeration of one solution and the next is polynomial in the size of
the input.

The central question in this paper is whether it is possible to enumerate
pseudo-intents in the lectic order with polynomial delay. We prove that the
problem of checking whether a given set of n pseudo-intents is the set of the

126 F. Distel

lectically first n pseudo-intents is coNP-hard. We conclude, it is impossible
to enumerate pseudo-intents in the lectic order with polynomial delay unless
P = NP.

In a second part of the paper we look at a subclass of the class of pseudo-
intents that we call minimal pseudo-intents. We show that it is tractable to check
whether a given set is a minimal pseudo-intent. We also provide an algorithm
that given a context will output a minimal pseudo-intent in polynomial time.
We show that, surprisingly, it is not even possible to enumerate minimal pseudo-
intents in output polynomial time unless P = NP.

2 Preliminaries

We briefly introduce the basic notions of formal concept analysis. A formal
context is a tuple (G, M, I) where G and M are finite sets and I ⊆ G × M is
a binary relation. The elements of G are called objects and elements of M are
called attributes. FCA provides two derivation operators that are both denoted
by ·′. For a set of objects A ⊆ G one defines A′ = {m ∈ M | ∀g ∈ A : gIm}.
Analogously, for a set B ⊆ M one defines B′ = {g ∈ G | ∀m ∈ B : gIm}.
Applying the two derivation operators successively yields the closure operators
·′′. The ·′′-closed subsets of M are called concept intents, while the ·′′-closed
subsets of G are called concept extents. A concept intent A is called object intent
if it can be written as the closure of a singleton set A = {g}′, g ∈ G. Given a
context (G, M, I) and a set A ⊆ M one can check in time polynomial in the
size of I and A whether A is a concept intent. The following Lemma is common
knowledge in FCA.

Lemma 1. A set of attributes A ⊆ M is a concept intent if and only if it can be
written as an intersection of object intents, i. e. there is a set B ⊆ G such that

A =
⋂

g∈B

{g}′.

An interesting research area in FCA are dependencies between sets of attributes.
The simplest form of such a dependency is an implication A → B, A, B ⊆ M .
A set of attributes D ⊆ M respects A → B if A �⊆ D or B ⊆ D. A → B holds
in the context (G, M, I) if all object intents respect A → B.

Let L be a set of implications. We say that A → B follows semantically from
L if and only if each subset D ⊆ M that respects all implications from L also
respects A → B. L is an implicational base for (G, M, I) if it is

– sound, i. e. all implications from L hold in (G, M, I), and
– complete, i. e. all implications that hold in (G, M, I) follow from L.

In [6] a minimum cardinality base, which is called the Duquenne-Guigues-Base,
has been introduced. The premises of the implications in the Duquenne-Guigues-
Base are so-called pseudo-intents. P ⊆ M is a pseudo-intent if P is not a concept
intent and Q′′ ⊆ P holds for every pseudo-intent Q that is a proper subset of P .

Hardness of Enumerating Pseudo-intents in the Lectic Order 127

The Duquenne-Guigues-Base consists of all implications P → P ′′, where P is a
pseudo-intent.

The well-known algorithm Next-Closure computes all pseudo-intents and con-
cept intents in the lectic order [4]. The lectic order is defined as follows. Let a
strict total order < on the set M of attributes be given. Let A, B ⊆ M be two
sets of attributes. Define

A < B :⇔ ∃i ∈ B − A : A ∩ {j ∈ M | j < i} = B ∩ {j ∈ M | j < i}.

If A < B holds then we say that A is lectically smaller than B.

3 Enumerating Pseudo-intents in a Lectic Order

We have seen that the delay between the computation of two pseudo-intents is
important. The two known algorithms do not have good theoretical properties.
Both of them compute not only pseudo-intents, but also concept intents. For a
given context the number of concept intents can be exponential in the number of
pseudo-intents. That means that in the worst case, the algorithm would compute
an exponential number of concept intents before the next pseudo-intent shows
up. We ask whether it is possible to come up with an algorithm that behaves
better. The answer is, if we require that the pseudo-intents be computed in the
lectic order then there cannot be an algorithm with polynomial delay unless
P = NP. We prove this by examining the following decision problem.

Problem 1 (Lectically first pseudo-intents (FirstPI)). Input: A formal context
K = (G, M, I) and pseudo-intents P1, . . . Pn.
Question: Are P1, . . . , Pn the n lectically first pseudo-intents of K?

The dual problem to FirstPI would be “Given a formal context K and pseudo-
intents P1, . . . , Pn check if P1, . . . , Pn are not the lectically first pseudo-intents
of K.”. This problem can be characterized as follows.

Proposition 1. P1,. . . , Pn are not the n lectically first pseudo-intents of K iff
there is a set Q ⊆ M such that

1. Q is lectically smaller than Pj for some j ∈ {1, . . . , n}, and
2. Q is not a concept intent, and
3. for all i ∈ {1, . . . , n} either Pi �⊆ Q or P ′′

i ⊆ Q.

Proof. if: Because Q is not a concept intent there must be a pseudo-intent P of
K such that P ⊆ Q but P ′′ �⊆ Q. Because of 3 it holds that P /∈ {P1, . . . , Pn}. P
is lectically smaller than Pj because Q is lectically smaller than Pj and P ⊆ Q.
Thus P1, . . . , Pn are not the lectically smallest pseudo-intents of K.

only if: Let P be a pseudo-intent that is lectically smaller than Pj , for some
j ∈ {1, . . . , n} but not contained in {P1, . . . , Pn}. Then Q = P satisfies the three
conditions 1 to 3.

128 F. Distel

Lemma 2 (Containment in coNP). FirstPI is in coNP.

Proof. We show that the dual problem of FirstPI can be decided in non-
deterministic polynomial time.

Whether a set Q ⊆ M satisfies conditions 1 to 3 from Proposition 1 can
be checked in time polynomial in the size of K and P1, . . . , Pn. In order to
decide whether P1, . . . , Pn are not the lectically first pseudo-intents of K one
can non-deterministically guess a subset Q ⊆ M and then check in polynomial
time whether it satisfies 1 to 3. Hence the dual problem of FirstPI is in NP

and thus FirstPI is in coNP.

For our hardness proof we use a reduction from the tautology problem, the
prototypical coNP-complete problem.

Problem 2 (Tautology). Input: A boolean DNF-formula f(p1, . . . , pm) =
(x11∧· · ·∧x1l1)∨· · ·∨(xk1∧· · ·∧xklk), where xij ∈ {p1, . . . , pm}∪{¬p1, . . . ,¬pm}.
Question: Is f a tautology?

Tautology is coNP-complete, even with the restriction that f be in DNF.
This is because f is a tautology iff ¬f is unsatisfiable. If f is in DNF then ¬f
can be transformed to CNF in linear time. Checking if ¬f is unsatisfiable is the
dual problem of the Satisfiability Problem for boolean CNF formulae, which is,
of course, NP-complete.

We prove that FirstPI is harder than Tautology by reduction. Let an
instance f of Tautology be given. Let f be the DNF-formula f(p1, . . . , pm) =
D1∨· · ·∨Dk, where Di = (xi1∧· · ·∧xili) and xij ∈ {p1, . . . , pm}∪{¬p1, . . . ,¬pm}
for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , li}. We define a context K as follows.

Let M be the set M = {α1, . . . , αm, t1, . . . , tm, f1, . . . fm}. We define a total
order < on the elements of M as follows

α1 < · · · < αm < t1 < f1 < · · · < tm < fm.

For every i ∈ {1, . . . , k} define a set

Ai = M − {fj | pj occurs in Di as a positive literal}
− {tj | pj occurs in Di as a negative literal}
− {αj | pj occurs in Di}

and furthermore for every i ∈ {1, . . . , k} and every j ∈ {1, . . . , m} let Fij and
Tij be the sets Tij = Ai −{fj, αj}, Fij = Ai −{tj , αj}. Define the set of objects
G to be G = {u1, . . . , u2m} ∪ {gTij | i ∈ {1, . . . , k}, j ∈ {1, . . . , m}} ∪ {gFij | i ∈
{1, . . . , k}, j ∈ {1, . . . , m}}. The relation I is defined so that every object gTij

has all the attributes that are contained in the set Tij and analogously for gFij .
Furthermore I is such that every singleton set {ti} or {fi} occurs as the concept
intent of some ui. More formally, we define

I ={(u2i−1, ti) | i ∈ {1, . . . , m}} ∪ {(u2i, fi) | i ∈ {1, . . . , m}}
∪ {(gFij , x) | i ∈ {1, . . . , k}, j ∈ {1, . . . , m}, x ∈ Fij}
∪ {(gTij , x) | i ∈ {1, . . . , k}, j ∈ {1, . . . , m}, x ∈ Tij}.

Hardness of Enumerating Pseudo-intents in the Lectic Order 129

Table 2. Context K

α1 . . . αm t1 f1 t2 f2 . . . tm fm

u1 X
... · · ·
... · · ·
u2m X
gT11 T11

...
...

gT1m T1m

...
...

gTk1 Tk1

...
...

gTkm Tkm

gF11 F11

...
...

gF1m F1m

...
...

gFk1 Fk1

...
...

gFkm Fkm

There are 2mk + 2m objects and 3m attributes, so the size of the context is
O(m2k + m2). As sets P1, . . . , Pm we define Pi = {ti, fi} for all i ∈ {1, . . . , m}.

The reduction may look complicated at first glance. The basic ideas in the
design of the reduction are the following.

– Any assignment of truth values φ corresponds naturally to a subset of
{t1, f1, . . . , tm, fm}, namely the set

Sφ := {ti | φ(pi) = true} ∪ {fi | φ(pi) = false}. (1)

– If φ makes Di true then Sφ is a subset of Ai.
– If Sφ is a subset of Ai then Sφ is a concept intent.

To formally prove that this is a reduction from Tautology to FirstPI we need
to show two things. First, we need to show that what we have obtained is really
an instance of FirstPI and second, we need to show that f is a “Yes”-instance
of Tautology if and only if (K, {P1, . . . , Pm}) is a “Yes”-instance of FirstPI.

Lemma 3. (K, {P1, . . . , Pm}) is an instance of FirstPI

Proof. All we have to show is that all Pi are pseudo-intents. Note that all strict
subsets of Pi are concept intents in K (this is because all singleton subsets {ti}

130 F. Distel

and {fi} are object intents of some ui). To see that αi ∈ P ′′
i and thus P ′′

i �= Pi

consider the sets Ar for r ∈ {1, . . . , k}. If Pi = {ti, fi} ⊆ Ar then by definition of
Ar pi does not occur in Di. Therefore αi ∈ Ar. Let s ∈ {1, . . . , m} be an index
of some set Trs. If Pi ⊆ Trs then Pi ⊆ Ar and i �= s. Then αi ∈ Ar holds and
because i �= s it follows that αi ∈ Trs = Ar − {fs, αs} Analogously αi ∈ Frs

if Pi ⊆ Frs. Therefore all objects that have all attributes from Pi also have αi

as an attribute and thus αi ∈ P ′′
i . Therefore P ′′

i �= Pi must hold. Hence Pi is a
pseudo-intent. Therefore (K, {P1, . . . , Pm}) is an instance of FirstPI.

We show that K has a pseudo-intent that is lectically smaller than P1 if and only
if f is not a tautology. Let φ be an assignment that maps all pi to a truth value
in {true, false}. Let Sφ be defined as in (1). Note that Sφ contains exactly one
element of {ti, fi} for every i ∈ {1, . . . , m}.

Lemma 4. There is some i ∈ {1, . . . , k} for which Sφ ⊆ Ai if and only if
f(φ(p1), . . . , φ(pm)) = true.

Proof. only-if : Let φ be such that Sφ ⊆ Ai. Then by definition of Ai it holds
that fj �∈ Sφ, and thus φ(pj) = true, for all pj that occur as positive literals in
Di (we have removed fj from Ai). Analogously, φ(pj) = false for all pj that
occur as negative literals. Hence all literals in Di evaluate to true and therefore
both Di and the whole formula evaluate to true.

if: Now let φ be an assignment that makes f true. Since f is in DNF it
evaluates to true iff at least one of the k implicants evaluates to true. Let Di for
some i ∈ {1, . . . , k} be an implicant that evaluates to true. Then φ(pj) = true
for all pj that occur as positive literals Di and φ(pj) = false for all pj that
occur as negative literals in Di. By definition of Ai and Sφ this implies Sφ ⊆ Ai.

Lemma 5. If Sφ ⊆ Ai then Sφ can be written as

Sφ =
⋂

j∈{1,...,m}
φ(pj)=true

Tij ∩
⋂

j∈{1,...,m}
φ(pj)=false

Fij

Proof. We denote the right-hand side of the above equation by R. By definition
Sφ does not contain fj if φ(pj) = true. Thus Sφ ⊆ Ai −{fj, αj} = Tij for all pj

for which φ(pj) = true. Likewise, Sφ ⊆ Ai − {tj, αj} = Fij for all pj for which
φ(pj) = false. Thus Sφ ⊆ R. To prove the other inclusion consider some x ∈ R.
For every j ∈ {1, . . . , m} it holds that αj �∈ Fij and αj �∈ Tij . If φ(pj) = true
then R ⊆ Tij , otherwise R ⊆ Fij . So in either case αj �∈ R. Therefore x �= αj

holds for all j ∈ {1, . . . , m}. Assume that x = tj for some j. Then φ(pj) = true
must hold, for otherwise R would be a subset of Fij which does not contain
tj . Now φ(pj) = true implies x = tj ∈ Sφ. The case x = fj for some j can be
treated analogously. Thus for every x ∈ R it holds that x ∈ Sφ and thus R ⊆ Sφ.
Hence Sφ = R.

Lemma 6. f is a tautology if and only if for all assignments φ the set Sφ is a
concept intent of K.

Hardness of Enumerating Pseudo-intents in the Lectic Order 131

Proof. Let us start by proving the if -direction. Assume that there is an as-
signment φ that makes f false. From Lemma 4 it follows that Sφ �⊆ Ai for all
i ∈ {1, . . . , k}. But then no object in G has all the attributes in Sφ because every
object intent is either a singleton set or a subset of some Ai. Therefore S′′

φ = M
and thus Sφ is not a concept intent. This contradicts the assumption and thus
f must be a tautology.

For the only if -direction assume that there is some φ for which Sφ is not a
concept intent. We know that the intersection of concept intents is also a concept
intent. This implies in particular that Sφ cannot be written as the intersection
of object intents. From Lemma 5 it follows that Sφ �⊆ Ai for all i ∈ {1, . . . , k}.
But then Lemma 4 shows that φ makes f false. This is a contradiction to the
assumption that f is a tautology. Therefore Sφ must be a concept intent for
all φ.

Lemma 7. P1, . . . , Pm are the lectically smallest pseudo-intents of K if and
only if for all assignments φ the set Sφ is a concept intent in K.

Proof. only-if -direction: Assume that some Sφ is not a concept intent. Then Sφ

has a subset P ⊆ Sφ which is a pseudo-intent. Obviously P is lectically smaller
than P1. Also P must be different from all the Pi because Sφ does not include
any of the Pi. This is a contradiction to the assumption that P1, . . . , Pm are the
lectically smallest pseudo-intents of K.

if -direction: Let Q ⊆ M be a set of attributes that is lectically smaller than P1.
If Q would contain some αi then it would be lectically larger than P1. Therefore
Q must be a subset of {t1, f1, . . . , tm, fm}. If there is some i ∈ {1, . . . , m} such
that Pi ⊆ Q then αi ∈ P ′′

i −Q and thus P ′′
i �⊆ Q. Therefore Q is not equal to Pi

or a pseudo-intent. If Pi �⊆ Q for all i ∈ {1, . . . , m} then define:

φt(pi) =

⎧⎪⎨⎪⎩
true ti ∈ Q

false fi ∈ Q

true otherwise
φf (pi) =

⎧⎪⎨⎪⎩
true ti ∈ Q

false fi ∈ Q

false otherwise

Both φt and φf are well-defined since Q cannot contain both ti and fi for any
i. With φt and φf defined as above it holds that Q = Sφt ∩Sφf

. Since all Sφ are
concept intents the intersection of Sφt and Sφf

must also be a concept intent.
Therefore Q cannot be a pseudo-intent.

Theorem 1 (Hardness of FirstPI). FirstPI is coNP-hard.

Proof. From Lemma 6 and Lemma 7 it follows that P1,. . . ,Pm are the lectically
first pseudo-intents in K if and only if f is a tautology. Since the reduction can
be done in polynomial time it follows that FirstPI is coNP-hard.

Corollary 1. FirstPI is coNP-complete.

What does this mean for the problem of enumerating pseudo-intents in the lectic
order? Assume that there is an algorithm A that given a context enumerates its

132 F. Distel

pseudo-intents in the lectic order and with polynomial delay. That means that
there is a polynomial p(|G|, |M |) such that the delay between the computation
of one pseudo-intent and the next is bounded by p(|G|, |M |). Here |M | denotes
the number of attributes and |G| denotes the number of objects in the context.

In order to solve FirstPI for an input ((G, M, I), {P1, . . . , Pn}) we can con-
struct a new algorithm A′ from A. A′ lets A run for time n · p(|G|, |M |). After
that time A will have computed the lectically first n pseudo-intents (and possibly
some more, but these are not interesting). If these lectically first n pseudo-intents
are identical to P1, . . . , Pn then A′ returns “Yes”, otherwise it returns “No”.
The runtime of A′ is bounded by n · p(|G|, |M |) and thus polynomial in the size
of the input. Since FirstPI is coNP-hard, it cannot be solved in polynomial
time unless P = NP.

Theorem 2. Pseudo-intents cannot be enumerated in the lectical order with
polynomial delay, unless P = NP.

4 Minimal Pseudo-intents

4.1 Introducing Minimal Pseudo-intents

We say that P is a minimal pseudo-intent of K if P is a pseudo-intent of K and
P does not contain any other pseudo-intent of K. An equivalent definition is the
following.

Definition 1 (Minimal Pseudo-Intent). A minimal pseudo-intent of a con-
text is a set P ⊆ M such that

– P is not a concept intent, and
– every strict subset S ⊂ P is a concept intent.

Minimal pseudo-intents play a special rôle among the pseudo-intents of a given
context. While the Duquenne-Guigues base is the most well known implication
base, a given formal context K may have other implication bases. There may even
be several implication bases with minimal cardinality. Minimal pseudo-intents
are important since they have to occur as premises in all bases of a context, not
just in the Duquenne-Guigues base.

To clarify this assume that L is a set of implications of the context K. Let P
be a minimal pseudo-intent of K. Assume that L does not contain an implication
whose left-hand side is P . Since all strict subsets of P are concept intents, there
can be no implication C → D in L where C ⊆ P but D �⊆ P . But then P → P ′′

does not follow from L and thus L is not a concept intent.

Lemma 8. If L is an implication base of a given context K = (G, M, I) and P is
a minimal pseudo-intent of K then L contains an implication P → D, D ⊆ M ,
whose premise is P .

Hardness of Enumerating Pseudo-intents in the Lectic Order 133

This shows that any algorithm that computes an implication base for a con-
text inevitably has to compute all minimal pseudo-intent. This makes them an
interesting subject for further research.

Given a context K = (G, M, I) and a set of attributes P ⊆ M it is not hard to
tell whether P is a minimal pseudo-intent. By definition, P is a minimal pseudo-
intent if and only if it is not a concept intent and all its strict subsets are concept
intents.

Lemma 9. All strict subsets of P are concept intents if and only if all sets
P \ {m}, m ∈ P , are concept intents.

Proof. Assume that all sets of the form P \ {m}, m ∈ P , are concept intents.
Let S � P be a strict subset. S can be written as the intersection

S =
⋂

m∈P\S

(P \ {m}).

Since the intersection of concept intents is itself a concept intent S must be a
concept intent. This proves the “if”-direction. The “only if”-direction is trivial.

Because of Lemma 9 we do not need to check for all strict subsets of P whether
they are pseudo-intents. To test if P is a minimal pseudo-intent it suffices to
perform n + 1 checks, namely checking whether each of the n sets P \ {m},
m ∈ P , is a concept intent and whether P itself is not a concept intent. Since
checking whether a given set is a concept intent can be done in polynomial time
it can be checked in polynomial time whether P is a minimal pseudo-intent. By
comparison the best known algorithm to check whether a set P is a pseudo-intent
runs in coNP [8,7].

4.2 Finding Minimal Pseudo-intents

Not only do the two algorithms Next Closure and Incremental Construction
have an exponential delay in between the computation of one pseudo-intent and
the next. One may even have to wait for some time exponential in the size
of the context until even the first pseudo-intent is computed. This raises the
question whether there can be an algorithm that finds at least one pseudo-intent
in polynomial time. To the best knowledge of the author no such algorithm
has yet been published. Lemma 9 gives us an idea for a minimal algorithm
(Algorithm 1) that finds one minimal pseudo-intent in polynomial time.

The idea is the following. We start with the full attribute set M and check
whether all its strict subsets are concept intents using Lemma 9. If they are all
concept intents then the context has no pseudo-intents. If one of them is not a
concept intent then it either contains a pseudo-intent or is a pseudo-intent itself.
Then we continue by checking whether that subset has a subset that is not a
concept intent and so on.

Lemma 10 (Soundness of Algorithm 1). Let K be a context. If K has a
pseudo-intent then Algorithm 1 returns a minimal pseudo-intent S upon
termination.

134 F. Distel

Algorithm 1. Algorithm for finding one minimal pseudo-intent
1: Input: K = (G, M, I)
2: S := M
3: repeat
4: finished := true
5: for all m ∈ S do
6: if S \ {m} is not a concept intent then
7: S := S \ {m}
8: finished := false
9: exit for-loop

10: end if
11: end for
12: until finished
13: if S = M then
14: print K has no pseudo-intent
15: else
16: return S
17: end if

Proof. Algorithm 1 remains in the repeat-loop until the variable finished is
true. This means that upon termination for all m ∈ S the set S \ {m} is a
concept intent. Otherwise finished would have been set to false in one of the
iterations of the inner for-loop. It follows from Lemma 9 that all strict subsets
of S are concept intents. If S �= M then S is itself not a concept intent (this has
been checked in the previous iteration of the repeat-loop). Then S is a minimal
pseudo-intent.

On the other hand if Algorithm 1 terminates with S = M then both M and
all of its subsets are concept intents. Thus K does not have any pseudo-intents.

Lemma 11 (Termination of Algorithm 1). Algorithm 1 terminates after at
most |M | iterations of the repeat-loop. The total runtime is bounded by O(|G| ·
|M |3).

Proof. The algorithm starts with S = M . In each iteration of the repeat-loop
one element is removed from S. The algorithm terminates if S is the empty set.
Therefore it must terminate after at most |M | iterations.

In each iteration of the repeat-loop the for-loop is entered at most |S| < |M |
times. Inside the for-loop the algorithm checks whether S \ {m} is a concept
intent. This check can be done in time of order O(|G||M |). Thus, the total
runtime is bounded by O(|G||M | · |M | · |M |).

This shows that not only is it possible to check in polynomial time whether a
given set of attributes is a minimal pseudo-intent, it is also possible to find an
arbitrary minimal pseudo-intent in polynomial time. This raises hopes that it
might be possible to compute at least the minimal pseudo-intents in polynomial
time. Unfortunately, this is not the case, as we will see by examining the following
problem.

Hardness of Enumerating Pseudo-intents in the Lectic Order 135

Problem 3 (All minimal pseudo-intents (AllMPI)). Input: A formal context
K = (G, M, I) and pseudo-intents P1, . . . , Pn.
Question: Are P1, . . . , Pn all minimal pseudo-intents of K?

Lemma 12 (Containment in coNP). AllMPI is in coNP.

Proof. We already know that checking whether a set Q ⊆ M is a minimal
pseudo-intent can be done in polynomial time (Lemma 9). So to decide whether
P1, . . . , Pn are not all the minimal pseudo-intents one can non-deterministically
guess a set Q ⊆ M such that Q /∈ {P1, . . . , Pn} and then check in polynomial
time whether it is a minimal pseudo-intent. Thus the dual problem of AllMPI

can be decided in non-deterministic polynomial time. Therefore AllMPI is
in coNP.

Lemma 13 (Hardness of AllMPI). AllMPI is coNP-hard.

Proof. We use the same reduction as for Theorem 1. Given an instance of Tau-

tology, i. e. a propositional formula f in disjunctive normal form, let K be the
context from Table 2, constructed as in Section 3. We show that P1 = {t1, f1},
. . . , Pm = {tm, fm}, Pm+1 = {α1}, P2m = {αm} are all the minimal pseudo-
intents of K iff f is a tautology.

It has already been shown in the proof of Theorem 1 that P1,. . . ,Pm are
minimal pseudo-intents. The empty set ∅ is a concept intent in K. In K all
objects intents g′ for some g ∈ G are such that αi ∈ g′ if and only if {ti, fi} ⊆
g′. Therefore, {ti, fi} is contained in {αi}′′ = P ′′

m+i. Thus Pm+1,. . . , P2m are
also minimal pseudo-intents. We can use the first three steps of the proof of
Theorem 1.

We claim that P1,. . . ,P2m are all minimal pseudo-intents of K iff for all assign-
ments φ the set Sφ is a concept intent in K. only-if : Assume that some Sφ is not
a concept intent. Then Sφ must contain some minimal pseudo-intent P ⊆ Sφ.
The definition of Sφ (1) shows that Sφ does not contain αi, and it contains either
ti or fi but not both, for all i ∈ {1, . . . , n}. Thus Sφ does not contain any of the
P1,. . . , P2m, and therefore it must be a new minimal pseudo-intent.

if : Let Q ⊆ M be a set of attributes. If Q contains some αi then Q cannot
be a minimal pseudo-intent. Therefore Q is a subset of {t1, f1, . . . , tm, fm}. In
Lemma 7 it is shown that Q cannot be a pseudo-intent if the hypothesis holds.
Thus there cannot be another minimal pseudo-intent.

Together with Lemma 6 this proves that P1, . . . , P2m are all minimal pseudo-
intents of K iff f is a tautology. Thus AllMPI is coNP-hard.

Corollary 2. AllMPI is coNP-complete.

Corollary 3. Given a context K the set of all minimal pseudo-intents of K
cannot be computed in output-polynomial time unless P = NP.

Proof. Assume that there was an algorithm A that takes K as its input and
enumerates the set P of all minimal pseudo-intents in output-polynomial time.
Let n be the number of pseudo-intents. This means that there is a polynomial

136 F. Distel

p(|G|, |M |, |P|) such that for all contexts K = (G, M, I) the runtime of A is
bounded by p(|G|, |M |, |P|).

Then we can construct an algorithm A′ that decides AllMPI as follows.
Given a context K and a set of minimal pseudo-intents {P1, . . . , Pn} A′ runs A
on K for at most p(|G|, |M |, n) steps. If A does not terminate then there must be
more than n minimal pseudo-intents, so A′ return “No”. If A terminates then A′

compares the output of A to {P1, . . . , Pn}. If they are identical then A′ return
“Yes”, otherwise “No”. The runtime of A′ is bounded by a polynomial in |G|,
|M | and |P|.

Note that this does not yield a complexity result for the problem of computing all
pseudo-intents. That is unless it can be shown that the total number of pseudo-
intents of a context is bounded by a polynomial in the number of its minimal
pseudo-intents. We conjecture that this is not the case.

5 Conclusion

In this work we have proved that the problem FirstPI of determining whether
a given set of pseudo-intents is the set of lectically first pseudo-intents of a given
context is coNP-complete. This helped us to prove that enumerating pseudo-
intents in the lectic order is not tractable unless P = NP. From the results of
previous work it only followed that enumerating pseudo-intents (in any order) is
not tractable unless TransHyp is in P.

In the second section of the paper we have introduced minimal pseudo-intents.
They play a special rôle because they occur in any implication base of a con-
text, not only in the Duquenne-Guigues base. In many ways they are easier to
handle than general pseudo-intents. For example we have shown that given a set
of concept intents it is tractable to check whether it is a minimal pseudo-intent.
Furthermore, one can find one minimal pseudo-intent in polynomial time. How-
ever, we have shown that the set of minimal pseudo-intents of a context cannot
be computed in output polynomial time.

Future work. We conjecture that the lectic order is a source of complexity in
the enumeration process. We therefore suggest that in order to develop efficient
algorithms for computing pseudo-intents the FCA community should try to find
alternatives to the lectic order. An idea might be incremental algorithms in the
style of Obiedkov et al. [10]. Perhaps, it is also possible to compute all pseudo-
intents by starting with the full set of attributes and then deleting attributes
similar to Algorithm 1.

References

1. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic
knowledge bases using formal concept analysis. In: Proc. of the 20th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press/The MIT Press (2007)

Hardness of Enumerating Pseudo-intents in the Lectic Order 137

2. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems.
In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

3. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms 21(3), 618–628 (1996)

4. Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Fachbereich
Mathematik, TU Darmstadt, Darmstadt, Germany (1984)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1997)

6. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)

7. Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base.
Journal of Universal Computer Science 10(8), 927–933 (2004)

8. Kuznetsov, S.O.: Counting pseudo-intents and #P-completeness. In: Missaoui, R.,
Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 306–308.
Springer, Heidelberg (2006)

9. Kuznetsov, S.O., Obiedkov, S.A.: Algorithms for the construction of concept lat-
tices and their diagram graphs. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001.
LNCS (LNAI), vol. 2168, pp. 289–300. Springer, Heidelberg (2001)

10. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. Annals of Mathematics and Artificial Intelligence 49(1-4), 77–99
(2007)

11. Sertkaya, B.: Some computational problems related to pseudo-intents. In: Ferré, S.,
Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 130–145. Springer,
Heidelberg (2009)

12. Sertkaya, B.: Towards the complexity of recognizing pseudo-intents. In: Dau, F.,
Rudolph, S. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 284–292. Springer, Heidelberg
(2009)

On Links between Concept Lattices and Related
Complexity Problems

Mikhail A. Babin and Sergei O. Kuznetsov

State University Higher School of Economics,
Myasnitskaya 20, 101000 Moscow, Russia
mikleb@yandex.ru, skuznetsov@hse.ru

Abstract. Several notions of links between contexts – intensionally re-
lated concepts, shared intents, and bonds, as well as interrelations thereof
– are considered. Algorithmic complexity of the problems related to re-
spective closure operators are studied. The expression of bonds in terms
of shared intents is given.

1 Introduction

In many applications one has to deal with data about a system changing in time.
To analyze this dynamics one has to track similarities between different states of
the system. The change of data makes the knowledge about the system change
too. When one uses Formal Concept Analysis as the underlying mathematical
model to describe this kind of dynamics, one needs to have tools for finding
“similar” concepts in two concept lattices and “links” between similar concepts
in them. For example, in [8] the study of dynamics of a scientific community
is based on finding similar concepts of contexts that represent same community
at different time. Similarity of concepts play important role in an earlier model
of a network of concepts based on multicontexts [11]. In this paper we consider
several notions that reflect links between concepts lattices, such as intensionally
related concepts, shared intents, and bonds. We study algorithmic complexity
of the problems related to computing closures and maximally related concepts.
We also study the relation between shared intents and bonds.

The paper is organized as follows. In Section 2, we introduce basic definitions
and discuss intensionally related concepts. In Section 3 we study shared intents
of two contexts and study some important complexity problems related to shared
intents. We also show that shared intents are related to bonds between contexts.

2 Intentionally Related Concepts

First we recall some basic notions of Formal Concept Analysis (FCA) [10,2].
Let G and M be sets, called the set of objects and the set of attributes, re-

spectively. Let I be a relation I ⊆ G × M between objects and attributes: for
g ∈ G, m ∈ M , gIm holds iff the object g has the attribute m. The triple

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 138–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Links between Concept Lattices and Related Complexity Problems 139

K = (G, M, I) is called a (formal) context. Formal contexts are naturally rep-
resented by cross tables, where a cross for a pair (g, m) means that this pair
belongs to the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then the
Galois connection is given by the following derivation operators :

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B. For g ∈ G and m ∈ M
the sets {g}′ and {m}′ are called object intent and attribute extent, respectively.
The set of attributes B is implied by the set of attributes D, or an implication
D → B holds, if all objects from G that have all attributes from the set D also
have all attributes from the set B, i.e., D′ ⊆ B′.

The operation (·)′′ is a closure operator [2], i.e., it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆ M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are
closed sets. Since the closed sets form a closure system or a Moore space [1],
the set of all formal concepts of the context K forms a lattice, called a concept
lattice and usually denoted by B(K) in FCA literature.

Let K1 = (G1, M, I1), K2 = (G2, M, I2), . . . , Kr = (Gr, M, Ir) be contexts
with common attribute set M . Denote by (·)i the derivation operator in con-
text Ki. A tuple of r concepts (A1, B1), (A2, B2), . . . , (Ar, Br)) of corresponding
contexts K1, K2, . . . , Kr are called intentionally related [8] if

(
⋂

1≤i≤r

Ai)11 = A1

(
⋂

1≤i≤r

Ai)22 = A2

· · ·
(

⋂
1≤i≤r

Ai)rr = Ar

So any intentionally related concepts are uniquely defined by the set
⋂

1≤i≤r Ai.
Consider an operator (·)∗, defined as X∗ = X11 ∩X22 ∩ . . .∩Xrr for X ⊆ M .

Proposition 1. Let K1 = (G1, M, I1), K2 = (G2, M, I2), . . . , Kr = (Gr, M, Ir)
be contexts with common attribute set M . Then the operator (·)∗ has the following
properties:
(1) (X∗)ii = X ii, for any X ⊆ M and 1 ≤ i ≤ r.
(2) (·)∗ is a closure operator.

Proof. (1) Indeed, (X∗)ii = (
⋂

1≤j≤r Xjj)ii, since X ⊆ Xjj for any 1 ≤ j ≤ r

it follows that X ⊆
⋂

1≤j≤r Xjj and hence X ii ⊆ (X∗)ii. On the other hand⋂
1≤j≤r Xjj ⊆ X ii, therefore (X∗)ii ⊆ X ii.

140 M.A. Babin and S.O. Kuznetsov

(2) It is not hard to check that this operator is a closure operator:
1. X ⊆ Y ⇒ X ii ⊆ Y ii, for 1 ≤ i ≤ r ⇒ X∗ ⊆ Y ∗ (monotony)
2. X ⊆ X∗(was proved above) (extensity)
3. X∗∗ =

⋂
1≤j≤r (X∗)jj =

⋂
1≤j≤r Xjj = X∗ (idempotency)

�

The situation is easily extended to the case where contexts K1, K2, . . . , Kr have
different sets of attributes M1, M2, . . . , Mr. One defines M :=

⋃r
i=1 Mi and

proceeds like above.
Having the closure operator (·)∗, one can compute all intentionally related

concepts by standard algorithms (Norris, Next Closure, Close-by-One, etc.).

3 Concepts with Shared Intents

As in the previous section, let K1 = (G1, M, I1), K2 = (G2, M, I2), . . . , Kr =
(Gr, M, Ir) be contexts with common attribute set M , (·)i denotes the derivation
operator in Ki for 1 ≤ i ≤ k. A set A ⊆ M is called shared intent for contexts
K1, K2, . . . , Kr if it is an intent for every context Ki, i.e. Aii = A.

Since for any context the set of all its intents generates a closure system,
the set of all shared intents also generates a closure system. Let us denote the
corresponding closure operator by (·)S .

Theorem 2. The problem
INPUT Formal contexts K1 = (G1, M, I1), K2 = (G2, M, I2), . . . , Kr =

(Gr, M, Ir) with common attribute set M , and a set X ⊆ M .
OUTPUT The closure XS of X .

can be solved in O(|M |
∑

1≤i≤r |Gi|) time.

Proof. Consider sets Si = {g′ | g ∈ Gi, X ⊆ g′} ∪ {M}, 1 ≤ i ≤ r. Denote by⋂
Si =

⋂
A∈Si

A. We will keep invariant that for every 1 ≤ i ≤ r, any shared
intent that contains X can be obtained by intersection of some elements of Si.

Suppose that there exists an attribute m ∈ M such that for some 1 ≤ i ≤ r one
has m ∈

⋂
Si. Then, since every shared intent that contains X can be obtained

by intersection of some elements of Si, every shared intent that contains X have
to contain m. Hence, if for some 1 ≤ j ≤ r there is an element A ∈ Sj which does
not contain m, we can update Sj by removing this element while keeping the
invariant. When no such removal can be done, we try to find another element
m ∈ M that is contained in all elements of some Si, and so on. Since M is finite,
at some step there is no such m ∈ M . This means that any element m ∈ M
either belongs to every element of any Si, 1 ≤ i ≤ r or it does not belong to some
element of Si for every 1 ≤ i ≤ r. Hence

⋂
S1 =

⋂
S2 = . . . =

⋂
Sr, X ⊆

⋂
S1

and
⋂

S1 is contained in any shared intent that contains X i.e.
⋂

S1 = XS .

On Links between Concept Lattices and Related Complexity Problems 141

GetClosure(X)
1 answer ← X
2 for i← 1 to r
3 do remove all rows from I [i] that do not contain X
4 for i← 1 to r
5 do for m← 1 to |M |
6 do if not answer [m]
7 then if I [i][j][m] = true for all 1 ≤ j ≤ |Gi|
8 then answer [m]← true

9 push m in shared-attributes
10 else for each 1 ≤ j ≤ |Gi| such that not I [i][j][m]
11 do push (j, i) in not-in[m]
12 counter [i][m]← counter [i][m] + 1
13 while shared-attributes not empty
14 do pop m from shared-attributes
15 while not-in[m] not empty
16 do pop (object-index , context-index) from not-in [m]
17 for i← 1 to |M |
18 do if not I [i][context-index][object-index]
19 then counter [context-index][i] ←

← counter [context-index][i] −1
20 if counter [context-index][i] ≤ 0

and not answer [i]
21 then answer [i] = true

22 push i in shared-attributes
23 return answer

Fig. 1. Pseudocode of the algorithm for computing (·)S

Here I[i] is a binary table representation of relation Ii, counter [i][m] is the
number of objects g of Gi for which gIim does not hold, shared-attributes and
not-in[m] can be implemented as stacks or as any other data structure, with
operations “pop” any object from it and “push” any object in it in O(1) time.

�

The problem of finding a maximal cardinality closed set wrt. (·)′ and (·)∗ is
trivially polynomial: one just checks all object intents and finds the largest one.
In contrast to that, a similar problem of finding a maximal size shared intent
different from M (in practical data analysis this may correspond to the largest
similarity of two contexts) for operator (·)S is NP-complete, as shown in the
following

Proposition 3. The problem
INPUT Two formal contexts K1 = (G1, M, I1), K2 = (G2, M, I2), and inte-

ger 0 ≤ k ≤ |M |.
QUESTION Does there exist a set X such that X = XS , X ⊂ M and

|X | ≥ k?
is NP -complete.

142 M.A. Babin and S.O. Kuznetsov

Proof. By Theorem 2 X = XS can be checked in polynomial time, so the prob-
lem is in NP . For proving NP -hardness we reduce a well-known NP -complete
problem – minimal set cover (MSC) to this one. The MSC problem is formulated
as follows [4]:

INPUT Finite set S, some set of its subsets P := {S1, S2, . . . , Sm}, Si ⊆ S,
and integer k.

QUESTION Does there exist a subset T ⊆ P such that
⋃

X∈T X = S and
|T | ≥ k?

Consider an arbitrarily finite set S = {s1, s2, . . . , sn}, a set of its subsets
P := {S1, S2, . . . , Sm}, Si ⊆ S for all 1 ≤ i ≤ m, and an integer 0 ≤ k ≤ |P|. Let
us define sets M = {m1, m2, . . . , m|S|, m|S|+1, m|S|+2, . . . , m|S|+|P|} and G1 =
{g1

1, g
1
2 , . . . , g

1
|P|}. Now construct context K1 = (G1, M, I1), where I1 is defined

as follows: g1
i I1mj for j ≤ |S| iff sj /∈ Si and g1

i I1mj for j > |S| iff j − |S| �= i.
Then covers of S are in one-to-one correspondence with intents of K1 that do
not contain any mi ∈ M for i ≤ |S|. Moreover, for any set cover of size N , the
corresponding intent has size |P| − N .

Now let us construct context K2 = (G2, M, I2), where G2 = {g2
1, g

2
2 , . . . , g

2
|P|},

I2 is defined as follows: for g2
i , where 1 ≤ i ≤ |P|, g′i = M \ (S∪{m|S|+i}). Obvi-

ously, the set of all intents of this context is exactly the set of all subsets M that
are disjoint with S. Hence there is one-to-one correspondence between the set of
shared intents of K1 and K2 excluding M , and set of all set covers. Moreover
the minimal covers correspond to maximal shared intents, and maximal shared
intents correspond to minimal covers. The reduction is proved, its polynomiality
is obvious. �

It is interesting to know how large can be the context for the set of all shared
intents? The answer is given by the following proposition:

Proposition 4. There exist two contexts K1 and K2 such that the set of max-
imal (by inclusion) their shared intents is exponential in size of K1 and K2.

Proof. Consider finite set S = {s1, s2, . . . , s3n}, and set of its subsets P =⋃
0≤i≤n−1 {{s3i+1, s3i+2}, {s3i+1, s3i+3}, {s3i+2, s3i+3}}. There are 3n minimal

covers of S, since for any 0 ≤ i ≤ n − 1 the subset {s3i+1, s3i+2, s3i+3} can be
covered only in three ways, using exactly 2 elements from P . So, if we construct
contexts K1 and K2 like in Proposition 3 according to such S and P , then there
are 3n maximal (by cardinality, and hence by inclusion) shared intents of K1
and K2. �

Corollary. There exist two contexts K1 and K2 such that the minimal number
of objects in the context representing (·)S is exponential in sizes of K1 and K2.

3.1 Bonds as Shared Intents

In [2] the following definition of a bond was given

Definition 5. Let K1 = (G1, M1, I1) and K2 = (G2, M2, I2) be contexts. A rela-
tion I ⊆ G1 ×M2 is called a bond from K1 = (G1, M1, I1) to K2 = (G2, M2, I2)
if mI is extent of K1 for any m ∈ M2, and gI is intent of K2 for any g ∈ G1.

On Links between Concept Lattices and Related Complexity Problems 143

Recall some definitions from [2]. The direct product of contexts K1 =
(G1, M1, I1) and K2 = (G2, M2, I2) is given by

K1 × K2 := (G1 × G2, M1 × M2,∇)

with (g1, g2)∇(m1, m2) ⇔ g1I1m1 or g2I2m2.

Contranominal scale N c
S is the context (S, S, �=)

Proposition 6. A relation B ⊆ G1 × M2 is a bond from context K1 =
(G1, M1, I1) to context K2 = (G2, M2, I2) iff B is a shared intent of contexts
N c

G1
× K2 and (K1 × N c

M2
)d.

Proof. Let B ⊆ G1 × M2 be a shared intent of N c
G1

× K2 = (G1 × G2, G1 ×
M2,∇2) and (K1 × N c

M2
)d = (G1 × M2, M1 × M2,∇1)d. Since B is an intent of

N c
G1

× K2, one has

B =
⋂

(u,h)∈B∇2

{(g, m) | (u, h)∇2(g, m)}

=
⋂
u

⋂
h∈H(u)

({(u, m) | hI2m} ∪ {(g, m) | g �= u}),

where (g, m) ∈ G1 × M2,
⋂

u is taken over all u such that (u, h) ∈ B∇2
for

some h, and H(u) = {h | (u, h) ∈ B∇2}. Hence if g = u for some u taking part
in intersection

⋂
u we have gB =

⋂
h∈H(u) hI2 , i.e. gB is closed in K2, and if

g �= u for all u taking part in
⋂

u then gB = M2. Similarly, since B is intent of
(K1 × N c

M2
)d, we can prove that mB is closed in context K1 for any m ∈ M2.

Let B ⊆ G1 × M2 be a bond from context K1 to context K2. Then uB is
closed in K2 for any u ∈ G1. Denote H(u) = (uB)I2 , then uB =

⋂
h∈H(u) hI2 .

Consider

D =
⋂
u

⋂
h∈H(u)

({(u, m) | hI2m} ∪ {(g, m) | g �= u}).

Above we showed that this set is an intent of both N c
G1

×K2 and (K1 ×N c
M2

)d,
i.e., a shared intent of these contexts. Then gD = gB for any g ∈ G1 and
mD = mB for any m ∈ M2, hence D = B, and B is a shared intent of N c

G1
×K2

and (K1 × N c
M2

)d. �

Corollary. The closure operator for bonds of contexts K1 = (G1, M1, I1) and
K2 = (G2, M2, I2) can be computed in O((|G1| · |G2| + |M1| · |M2|) · |M2||G1|)
time.

Proof. Apply Proposition 6 and Theorem 2.

144 M.A. Babin and S.O. Kuznetsov

Conclusion

We considered several definitions that relate concepts of different contexts, such
as intentionally related concepts, shared intents, and bonds. The types of links
between concepts of different contexts are important for the study of context
dynamics. Algorithmic complexity of problems related to corresponding closure
operators was studied. We showed that bonds may be described in terms of
shared intents. As further research we would like to find an answer to the question
raised in [9] on whether bonds have natural concise context representation.

Acknowledgments

The authors would like to thank Sergei Obiedkov for helpful discussions. The
second author was supported by the project of the Russian Foundation for Basic
Research, grant no. 08-07-92497-NTsNIL a.

References

1. Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Providence (1967)
2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Berlin (1999)
3. Ganter, B.: Lattices of Rough Set Abstractions as P -Products. In: Medina, R.,

Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 199–216. Springer,
Heidelberg (2008)

4. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)

5. Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Prob-
lems. Order 18(4), 313–321 (2001)

6. Kuznetsov, S.O.: On the Intractability of Computing the Duquenne-Guigues Base.
Journal of Universal Computer Science 10(8), 927–933

7. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)

8. Kuznetsov, S.O., Obiedkov, S.A., Roth, C.: Reducing the Representation Complex-
ity of Lattice-Based Taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS
2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)

9. Krötzsch, M., Malik, G.: The Tensor Product as a Lattice of Regular Galois Con-
nections. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS
(LNAI), vol. 3874, pp. 89–104. Springer, Heidelberg (2006)

10. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

11. Wille, R.: Conceptual Structure of Multicontexts. In: Eklund, P., Mann, G.A., Ellis,
G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 23–39. Springer, Heidelberg
(1996)

An Algorithm for Extracting Rare Concepts
with Concise Intents

Yoshiaki Okubo and Makoto Haraguchi

Division of Computer Science
Graduate School of Information Science and Technology

Hokkaido University
N-14 W-9, Sapporo 060-0814, Japan
{yoshiaki,mh}@ist.hokudai.ac.jp

Abstract. This paper presents an algorithm for finding concepts (clo-
sures) with smaller supports. As suggested by the study of emerging
patterns, contrast sets or crossover concepts, we regard less frequent and
rare concepts.

However, we have several difficulties when we try to find concepts
in those rare concepts. Firstly, there exist a large number of concepts
closer to individual ones. Secondly, the lengths of intents become longer,
involving many attributes at various levels of generality. Consequently,
it becomes harder to understand what the concepts mean or represent.

In order to solve the above problems, we make a restriction on for-
mation processes of concepts, where the formation is a flow of adding
attributes to the present concepts already formed. The present concepts
work as conditions for several candidate attributes to be added to them.
Given such a present concept, we prohibit adding attributes strongly
correlated with the present concept. In other words, we add attributes
only when they contribute toward decreasing the supports of concepts to
some extent. As a result, the detected concepts has lower supports and
consist of only attributes directing at more specific concepts through the
formation processes.

The algorithm is designed as a top-N closure enumerator using branch-
and-bound pruning rules so that it can reach concepts with lower supports
by avoiding useless combination of correlated attributes in a huge space of
concepts. We experimentally show effectiveness of the algorithm and the
conceptual clarity of detected concepts because of their shorter length in
spite of their lower supports.

1 Introduction

In these decades, much attention is paid for the study of Formal Concept Anal-
ysis and closure enumeration [1,2]. Many effective enumeration engines, [4,5,6,7]
for instance, have been developed to have frequent closures (intents of larger ex-
tents). All of these are concerned with relatively frequent closures. This is simply
based on the idea that everything valuable is frequent to some extent and non-
frequent closures are exceptional and minor ones and are therefore disregarded.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 145–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 Y. Okubo and M. Haraguchi

On the other hand, in the research area of data mining, namely association
rule mining, rather less frequent and rare patterns in their occurrences, that may
not necessarily be closures, are considered significant under some conditions. For
instance, emerging patterns [8,9], and contrast sets [10,11] are concerned with
less frequent and even rare patterns, given some conditions. More precisely, the
conditions are given by the selection of databases from some family of databases,
and the patterns to be detected are required to have lower support (frequency)
in one database, DB1, and higher support in another database DB2. It is thus
expected to have non-frequent patterns at least in one database DB1. Namely,
the study of emerging patterns [8,9] makes emphasis on the emergence of patterns
in the sense that patterns may indicate some important changes when they
appear with higher support in DB2 than in DB1.

In contrast to emerging patterns and contrast sets, the authors have consid-
ered an intent X over two intents, A and B, such that X is a common generaliza-
tion (join) of smaller subconcepts of A and B, respectively, where the smallness
of concepts is simply the smallness of extent size [12]. We called such an X a
crossover of A and B. The intuition behind the definition is that, even when the
corresponding extent is smaller and rare, it may show some hidden connection
among major concepts from some unusual viewpoints, and is therefore worth
examining. The implemented algorithm, which is designed based on a branch-
and-bound strategy and is tested for an incident relation made from document-
term data, succeeded to find “term” and “condition” concept over “Commercial
Banks” concept and “Visual Basic” concept. Although most documents about
commercial banks and Visual Basic do not have the attribute specified by “term”
and “condition”, at least their smaller set of documents are concerned with the
same concept of “term” and “condition”. Note that, as the corresponding parts
of crossover concept are small in both “Commercial Banks” and “Visual Basic”,
the concept is never emerging patterns nor contrast set. However, we consider
that there may exist some hidden and non-standard inter-concept relationship
between the concepts.

This paper is also concerned with the detection of concepts with smaller and
rare extents. However, it is an obvious general fact that intents become longer as
the extents are smaller. According to our past experiments on crossover concepts,
the length of intent of 11 documents (0.002 support in the incident relation of
11, 000 documents and 1, 223 attribute terms) was 111 where the extent size was
tried to be maximized under the constraint that length of intent must be over
50. As is easily imagined, it is a hard task to check the meaning of concepts of
over 100 attributes. We found its meaning by checking the original documents
to see that the detected concept is subsumed by more general concept, “terms
and condition”, that also un-covers many objects in “Commercial Bank” and
“Visual Basic”.

From the above observation, we particularly consider in this paper the follow-
ing standpoint and research goals:

An Algorithm for Extracting Rare Concepts with Concise Intents 147

General standpoint:
A concept consisting of less number of more general attributes is more un-
derstandable and preferable. At the same time, we require those concepts
to have smaller support (less number of objects in their extents). We regard
them as valuable concepts to be examined.

Development of strategy and algorithms to find them:
As the number of less frequent concepts is huge in general, standard enumer-
ation approach will not work. We therefore direct our attention to optimiza-
tion algorithms for maximizing/minimizing evaluation of extents/intents
under some constraints about intents/extents.

Based on the above, we introduce in this paper a special class of concepts,
Concise and Rare Concepts (CRC for short), and present a top-down search
algorithm to find them effectively. The intuitive idea and the rough definition of
CRCs are as follows:

– Any concept can be defined as a general concept satisfying some specific con-
straints. This can be considered as a standard top-down concept definition
style [13].

– So, we arrange attributes of an intent A by the decreasing order of their
support. Any intent is thus viewed as an ordered set of attributes.

– Then, we interpret a given concept as a definitional context based on which
less frequent attributes are added to form more specific concept working as
a next context.

– When the supports of the corresponding two concepts change a little, we
ignore the added attribute for the specific concept, since it can be approxi-
mated by the general concept. This is a one-step formation from general to
specific ones.

– The degree of admissible support change is given by a parameter, δ. CRC is
then defined as the last concept of a chain of one-step formations starting
from the closure of empty attribute set.

– In order to exclude too many individual concepts, we set the second parameter,
ε , and we impose a constraint that any significant CRC must be maximal in
the partially ordered set of concepts with their supports less than ε.

Even when we consider only significant CRC in the above sense, there we still
have a lot of CRCs, depending on the parameters. So we restrict the number of
output CRC by a monotone evaluation function for intents of CRCs. Each intent
is evaluated by the minimum support of its attributes.

Preference of CRCs:
As the minimum support of attributes of CRC is greater, we regard the CRC
more general and preferable in our linear ordering based on the evaluation
function.

Final output CRCs:
We compute only Top-N CRCs with respect to the evaluation, where N is
a natural number given as the third parameter.

148 Y. Okubo and M. Haraguchi

The algorithm for the above can enjoy a branch-and-bound pruning technique,
and is quite effective even for incident relation of over 10, 000 objects and 1, 000
attributes.

In the literature [16], a framework of Rare Itemset Mining has been discussed.
The rareness in the framework is also defined based on support of itemsets,
where an itemset corresponds to a set of attributes in our case. However, since
they do not take any semantics of rare itemsets into account, we are forced to
extract many meaningless itemsets according to the framework. Furthermore,
the algorithm presented in [16] can be viewed as an extension of APRIORI [3],
it would not be able to work with reasonable computation time for large scale
data.

A framework for finding formal concepts satisfying given constraints has also
been discussed in D-Miner. We can, however, impose constraints based on only
sizes of extents and intents. Any semantics of concepts is out of their interests.
Moreover, as will be mentioned later, the computational performance of their
algorithm is insufficient for extracting rare concepts we try to detect, even if we
do not care any semantics.

With the help of closed itemset miners, e.g. LCM [7] and D-Miner [15], therefore,
we can obtain formal concepts. Such systems are, however, not helpful for finding
our rare concepts. Given a parameter minsup, they can usually enumerate all
frequent closed itemsets in the sense that their supports are greater than or equal
to minsup. If we try to find our rare concepts with those miners, we have to give
a quite small value of minsup. As a well known fact, under such a low minsup,
frequent closed itemset miners are quite useless because the number of frequent
closures is enormous.

Although the notion and the method presented in this paper is just the begin-
ning, the authors believe that it can be extended so as to find crossover concepts,
contrast sets and emerging patterns more effectively. In Concluding Remarks,
we discuss some possible approaches towards this direction.

Now in Section 2, we present our problem more precisely, and present our
algorithm in details in Section 3. In Section 4, some experimental results will be
shown to demonstrate the ability of our algorithm. In fact, it succeeds to find a
CRC with 9 general terms, including “contact”, “UK”, “application”, “2001” and
“update” with low frequency. But, “contact”, “UK”, “application” and “update”
for another year except “2001” is not outputted. This will motivate us to check
if something unusual things about “contact”, “UK”, “application” and “update”
in ”2001” happen in the data set.

2 Concise Rare Concepts

As has discussed just above, we especially try to extract rare formal concepts
in the sense that their extents are relatively small. The authors expect that
such rare concepts might provide us a chance to perceive a hidden relationship
between major (large) concepts.

An Algorithm for Extracting Rare Concepts with Concise Intents 149

Let (G, M, I) be a formal context. For a set of attributes A ⊆ M , the number
of objects in G which are concerned with A is called the support of A and is
denoted by support(A), that is, support(A) = |A′|.

Our rareness of formal concept is simply evaluated by size of the extent, that
is, its support.

Definition 1. (Rareness of Formal Concept)
Let (X, A) be a formal concept and ε a rareness threshold. The concept is said
to be ε-rare if and only if |X | = support(A) ≤ ε.

From the theoretical property of formal concepts, as extents become smaller or
rare, their intents tend to be larger. However, if the intent of a concept consists of
many attributes, it is difficult to adequately interpret a meaning of the concept.
In particularly, if the intent includes many specific attributes, the meaning is
even unclearer. It might be practically worthless to extract such concepts with
unclear meanings. From this point of view, the authors consider that concepts to
be extracted must own concise intents in the sense that they consist of general
attributes for high interpretability. In order to formalize such concepts, we define
a notion of generality of intents.

The support of an attribute is regarded as a measure of generality of the
attribute. Based on the notion of support, we define generality of intents.

Definition 2. (Generality of Intents)
Let (X, A) be a formal concept of (G, M, I). A generality of the intent, denoted
by generality(A), is defined as

generality(A) = min
a∈A

{support(a)}.

If the intent consists of general attributes, its generality becomes high. We expect
that it is fairly easy to interpret concepts with such intents. For a concept, on
the other hand, if several attributes in the intent have lower supports (that is,
specific), it gives a low generality value of the intent. It seems difficult to obtain
an understandable interpretation of the concept, even if its intent is relatively
compact.

From the definition, for any sets of attributes A, B ⊆ M , if A ⊆ B (that is,
A′′ ⊆ B′′), then we have generality(A′′) ≥ generality(B′′). That is, the function
generality is monotone decreasing.

For a formal concept, in general, its intent is exactly identified by a subset of
the intent. Therefore, such a subset can work as a brief equivalent representation
of the intent. With the help of the subset, it is expected we can obtain more
adequate meaning of the concept easily. When we present the concept to users,
it would be better for clearness to provide the subset rather than the original
intent. Such a useful subset is defined as a generator of the intent.

Definition 3. (Generator of Intent)
Let (X, A) be a formal concept. For a set of attributes B ⊆ A , if B′′ = A, then
B is called a generator of A.

150 Y. Okubo and M. Haraguchi

It is noted here that we have various generators of A. Since a generator can
be viewed as one of the concept definitions, such a generator would be desired
to be compact and understandable with general attributes for the same reason
above. However, we are particularly interested in rare formal concepts with small
extents which tend to have larger intents and also larger generators. In order to
extract interesting rare concepts with understandable compact generators, we
impose a restriction on our generators.

As has been mentioned just above, a generator can work as a concept def-
inition. For example, for a formal concept (X, A) of (G, M, I), let us assume
B = {b1, . . . , bk} be a generator of A, that is, B ⊆ A and B′′ = A. The ex-
tent X is uniquely identified by the attributes in the generator. Here we pay
our attention to the identification process of X by assuming the attributes in B
step-by-step. Suppose the attributes in B are linearly ordered as b1 ≺ · · · ≺ bk.
The first attribute b1 identifies the set of objects {b1}′. By assuming b2 with
b1, then, {b1}′ is reduced to {b1, b2}′. Adding the next attribute iteratively, we
finally obtain the following sequence of object sets:

{b1}′ ⊇ {b1, b2}′ ⊇ · · · ⊇, {b1, b2 . . . , bk−1}′ ⊇ {b1, b2 . . . , bk}′ = X

Thus, the initial set of objects, {b1}′, is gradually reduced to X , as each attribute
is added. The authors claim here that the behavior of this reduction process af-
fects interpretability (or understandability) of the concept definition. More con-
cretely speaking, for a consecutive sets of objects in the sequence, {b1, . . . , bi−1}′
and {b1, . . . , bi−1, bi}′, if they are almost the same, the attribute bi has no signifi-
cant role in characterizing the concept. Therefore, we consider such an attribute
bi redundant in the concept definition. Redundant attributes are undesirable
because it makes the meaning of the concept unclear. In other words, if the
generator B provides a clear definition of the concept, some certain degree of
reduction should be observed for each consecutive pair in the above sequence of
object sets. This requirement on generators is formalized as follows.

Definition 4. (δ-Generator of Intent)
Let (X, A) be a formal concept of (G, M, I) and B = {b1, . . . , bk} a generator of
A. Given a minimum reduction threshold δ (0 ≤ δ < 1), for any bi ∈ B such that
1 ≤ i < k, if

support({b1, . . . , bi+1})
support({b1, . . . , bi})

≤ 1 − δ,

then B is called a δ-generator of A.

For a δ-generator B, by assuming each attribute of B in the underlying order,
the set of objects concerned with the attributes previously assumed is reduced
by at least (100 × δ) %. Therefore, the parameter δ directly affects the size
of generator to be obtained. If a higher δ is given, δ-generators become more
compact. It should be noted here that under some parameter settings of δ, we
have no δ-generator for a concept.

In the definition of δ-generators, the ordering of attributes in the generator
is also important. Let us assume any attribute set to be ordered. If a generator

An Algorithm for Extracting Rare Concepts with Concise Intents 151

consists of n attributes, there exist n! possible orderings on them. For exam-
ple, however, for attributes a1, a2 and a3, even if {a1, a2, a3} is a δ-generator,
{a1, a3, a2} might not. Thus, in order to obtain our δ-generator, we need to ex-
tract an adequate ordering among the possibilities. Needless to say, it is quite
impractical to examine all of them. According to our intuition, therefore, we im-
pose a constraint on the ordering to be considered. More precisely, the authors
suppose that the attributes of a generator we can clearly interpret the mean-
ing should be arranged in general-to-specific order. That is, we only accept a
δ-generator {b1, . . . , bk} such that

support(b1) ≥ · · · ≥ support(bk).

In what follows, our δ-generators are assumed to meet the requirement.
Based on the above discussion, we can now summarize our problem of ex-

tracting Top-N Concise Rare Concepts.

Definition 5. (Top-N Concise Rare Concept Problem)
Let (G, M, I) be a formal context, δ a minimum reduction threshold and ε a
rareness threshold. Then, the problem of Top-N rare formal concepts is to find
the set of maximal formal concepts (X, A) satisfying the following two conditions:

Constraints :
(X, A) is ε-rare, that is, |X | = support(A) ≤ ε and has a δ-generator of A.

Preference :
The value of generality(A) is in the top N among such ones.

We discuss below our algorithm for finding Top-N CRCs.

3 Finding Top-N Concise Rare Concepts with
Depth-First Branch-and-Bound Search

In this section, we present an algorithm for finding Top-N concise rare concepts.
It is based on a depth-first branch-and-bound search inspired by a family of
efficient maximum clique algorithms [18,19,20] and can be viewed as a modified
version of those presented in [23,24,25].

3.1 Basic Search Strategy

Let (G, M, I) be a formal context. For each formal concept (X, A) of the context,
there always exists a set of attributes B ⊆ M such that B′ = X and B′′ = A.
Therefore, by applying the derivation operator to each subset of M , we can
completely enumerate all formal concepts of (G, M, I).

Let us consider a linear ordering ≺ on M = {m1, . . . , m|M|}, simply defined
as mi ≺ mj iff i < j. It is assumed that for each subset B ⊆ M , the elements in
B is ordered based on ≺.

152 Y. Okubo and M. Haraguchi

For a subset of M , Bi = {bi1 , . . . , bik
}, the last element bik

is denoted by
tail(Bi). Furthermore, the set of first � elements, {bi1 , . . . , bi�

}, is called the �-
prefix of Bi and is referred to as prefix(Bi, �), where 0 ≤ � ≤ k and prefix(Bi, 0)
is defined as φ.

We introduce here a partial ordering on 2M , ≺s, as follows.

Definition 6. (Partial Ordering on 2M)
Let Bi and Bj be subsets of M . Then Bi precedes Bj , denoted by Bi ≺s Bj , iff
Bi is a |Bi|-prefix of Bj, that is, Bi = prefix(Bj , |Bi|). If Bj is an immediate
successor of Bi, then Bj is called a child of Bi.

It can be easily observed that the partially ordered set (2M ,≺s) forms a tree
with the root node φ, called a set enumeration tree. For example, given a set of
attributes M = {a, b, c, d, e}, we have a set enumeration tree shown in Figure 1.

 abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

 ab ac ad ae bc bd be cd ce de

 a b c d e

 φ

Fig. 1. Set Enumeration Tree

For each (non-leaf) subset B ⊆ M in the tree, its child is simply obtained as
B ∪ {b}, where tail(B) ≺ b. Thus, every subset of M can be generated system-
atically without any duplications, starting with the empty set. More concretely
speaking, all of the subsets can be explored in depth-first or breadth-first manner.
We adopt the former in our search, since we can enjoy some effective pruning
techniques as will be discussed later.

With the help of the set enumeration tree, we can easily obtain all formal
concepts. For each subset B ⊆ M , we compute the extent B′ and the intent B′′

to obtain a formal concept (B′, B′′), where B can work as a generator of the

An Algorithm for Extracting Rare Concepts with Concise Intents 153

intent. In particularly, by arranging the attributes of M in descending order of
their support values, that is, general-to-specific order, we can examine all of the
possible generators meeting our requirement discussed in the previous section.

Our targets are maximal rare concepts with Top-N concise intents. Therefore,
once we find a subset B ⊆ M can produce a rare concept in our depth-first search,
any C such that B ≺s C does not need to be explored. We can immediately
backtrack without examining any children of B.

According to the above basic strategy, our search for finding rare formal con-
cepts with Top-N concise intents can be summarized as follows. We examine
each (ordered) generator B ⊆ M in a depth-first manner based on the ordering
≺s, starting with the initial subset φ. During the search, we maintain a list which
stores rare formal concepts with Top-N concise intents already found. That is,
the list keeps tentative Top-N concepts. For a generator B ⊆ M , we first check
whether B is a δ-generator or not. If yes, we compute its corresponding formal
concept (B′, B′′), and then check its rareness. If it is rare, then the tentative
Top-N list is adequately updated for the concept. That is, the intent B′′ has a
generality value better than or equal to that of the N -th concept in the tenta-
tive list, (B′, B′′) is newly registered to the list and then backtrack. Otherwise,
(B′, B′′) is just discarded as out of our targets and then we backtrack. If the
concept is not rare, a child of B is generated and the same procedure is recur-
sively performed for the child. The procedure is iterated in depth-first manner
until no generator remains to be examined.

3.2 Pruning Useless Search Branches

In order to efficiently compute our rare concepts with Top-N concise intents, we
must avoid to examine useless generators (sets of attributes) which can never
produce our targets. We present here some pruning techniques by which unnec-
essary search branches are not expanded.

Excluding Non-δ-Generators:

Basically speaking, for a generator B ⊆ M , a child of B can be obtained as
B ∪ {b}, where b ∈ M and tail(B) ≺ b. We call such a b an extensible candidate
for B. The set of extensible candidates for B is referred to as cand(B), that is,
cand(B) = {b ∈ M | tail(B) ≺ b}.

Since each attribute in cand(B) expands a search branch from B, hopeless
candidates should be removed from cand(B). Recall here that we are especially
interested in only δ-generators. If a generator B is not a δ-generator, any gen-
erator C such that B ≺s C is also not a δ-generator. In that case, we do not
have to examine any children of B in our depth-first search. For an attribute
b ∈ cand(B), therefore, if

sup(B ∪ {b})
sup(B)

> 1 − δ,

154 Y. Okubo and M. Haraguchi

then we can remove b from cand(B) as an useless attribute. After removing such
useless b’s from cand(B), we actually use the remaining attributes to expand
search branches from B.

Avoiding Generation of Duplicate Formal Concepts:

A formal concept of (G, M, I) can be obtained from various sets of attributes
in M (i. e. generators). Needless to say, generating duplicate concepts should
be avoided for efficient computation. In order to realize it, we need to exclude
redundant generators which produce identical concepts and do not need to be
examined. We can observe the following simple property of formal concepts based
on which we can identify such redundant generators.

Observation 1
Let B be a subset of M . For any attribute b ∈ B′′\B, (B ∪ {b})′′ = B′′ holds.
That is, the corresponding formal concepts of B ∪ {b} and B are identical.

Proof:
Let b be an attribute such that b ∈ B′′\B. From a property of the derivation
operator, (B ∪ {b})′ = B′ ∩ {b}′. Moreover, since b ∈ B′′, B′ ⊆ {b}′. Therefore,
we have (B ∪ {b})′ = B′ and then (B ∪ {b})′′ = B′′.

From this observation, when we expand B with an attribute b ∈ B′′\B, we have
an identical concept (B′, B′′). This means that B∪{b} can never be a δ-generator
of B′′ unless we assume δ = 0. However, since the parameter setting of δ = 0 is
quite nonsense, it is clear that any attribute b ∈ B′′\B should be removed from
cand(B).

Branch-and-Bound Pruning Based on Tentative Top-N Concepts:

Since our target concepts must own the intents with Top-N values of generality,
we can exclude any generator which has no possibility of producing those Top-N
intents. Such useless generators can be identified based on the tentative Top-N
concepts already found in our search.

Let α be the N -th generality value of the Top-N intents already (tentatively)
found. That is, the actual (final) N -th value is at least α. Assume we are now
examining a generator B.

If generality(B′′) < α, then for any child C of B, generality(C′′) < α, be-
cause the function generality is monotone decreasing. Since the children can
never produce Top-N intents, there is no need to expand B and we can imme-
diately backtrack.

3.3 Pseudo-code of Algorithm

Based on the above idea, we can design a depth-first branch-and-bound algorithm
for finding Top-N concise rare formal concepts. A pseudo-code of our algorithm
is presented in Figure 2.

An Algorithm for Extracting Rare Concepts with Concise Intents 155

Input :
(G, M, I) : a formal context where
γ : a minimum reduction threshold
ζ : a rareness threshold
N : an integer for Top-N

Output :
CRC : the set of Top-N maximal concise rare concepts

procedure main() :
CRC ← φ ;
current min = 0 ;
Arrange the attibutes of M in support descending order ;
TopNCRCFind(φ, M , CRC, 0) ;
return CRC;

procedure TopNCRCFind(B, Cand, CRC) :
Branch ← Cand\{b ∈ Cand | support(B∪{b})

support(B)
> 1− γ};

for each b ∈ Branch such that tail(B) ≺ b in predefined order do
begin

if CRC tentatively contains N-th ones and conciseness(B′′) < current min then
break;

endif
CRC ← (B, (B ∪ {b})′, (B ∪ {b})′′) ;
if support((B ∪ {b})′) ≤ ζ then

TopNListUpdate(CRC, CRC) ;
else

TopNCRCFind(B ∪ {b}, Cand\{b}, CRC) ;
endif

e
¯
nd

procedure TopNListUpdate(CRC, CRC) :
CRC ← CRC ∪ {CRC} ;
if CRC tentatively contains N-th ones then

current min← N-th intent value ;
Remove M -th ones from CRC such that N < M ;

endif

Fig. 2. Algorithm for Finding Top-N Concise Rare Concepts

4 Preliminary Experimental Results

In this section, we present our preliminary experimental results. Our system has
been implemented in C and run on a PC with Intel Core2 Duo E9300 (1.2GHz)
and 1GB main memory.

4.1 Dataset

In our experimentation, we have tried to extract Top-N concise rare concepts
from a dataset called BankSearch.

156 Y. Okubo and M. Haraguchi

The dataset BankSearch has been released as a benchmark for web doc-
ument clustering [14]. It consists of web documents (HTML sources) in 11
categories, “Commercial Banks”, “Building Societies”, “Insurance Agencies”,
“Java”, “C/C++”, “Visual Basic”, “Astronomy”, “Biology”, “Soccer”, “Motor
Sport” and “Sport”. Since each category includes 1, 000 documents, the total
number of documents in the dataset is 11, 000.

As a preprocess, we have first converted each HTML source into a plane
text by removing HTML tags. From the text documents, adjectives and adverbs
provided in WordNet [22] have been eliminated. Furthermore, we have removed
a set of stopwords as well. After Stemming Process with Porter stemmer [21],
we have obtained 1, 219 terms as attributes by removing too frequent and too
infrequent ones. It should be noted here that the category information is never
treated as attributes explicitly.

4.2 Extracted Concise Rare Concepts

We present here some concise rare concepts we have actually extracted.
Under the parameter settings, δ = 0.8 and ε = 30, we have tried to find

Top-10 CRCs. One of the extracted concepts is as follows:

Extent:
{2575, 2669, 7062, 7065, 7073, 10009}

Intent:
{page, e, show, develop, manage, team, busy,

account, insurance, article, issue, board}

δ-Generator:
{page, team, account, insurance, article}

The extent is represented as a set of document IDs. The documents 2575 and
2669 belong to the category of “Insurance Agencies”. 7062, 7065 and 7073 are in
“Biology” and 10009 in “Motor Sport”. That is, this is an instance of crossover
concepts.

The concept is evaluated as the 2nd place and the evaluation value of the intent
is 1373. The extent consists of just 6 documents and the intents 12 attributes
(terms), where 5 of them are the elements of a δ-generator. The attributes in
the intent are listed in general-to-specific order.

The δ-generator tells us that these documents are mainly characterized by
the 5 terms. In fact, all of the documents are concerned with topics in which
“insurance” is important. Thus, the generator would be helpful for understanding
the concept.

As another example, we have had a CRC extracted under the parameter
settings, δ = 0.5 and ε = 20.

Extent:
{230, 620, 748, 3020, 3148, 3261, 4105, 7065, 7267, 9011}

An Algorithm for Extracting Rare Concepts with Concise Intents 157

Intent:
{page, site, make, 02, contact, UK, e, 2001, application, update, access,
support}

δ-Generator:
{page, make, 02, contact, UK, e, 2001, application, update}

Table 1. Computation Time for BankSearch

ε = 10
δ Computation Time (sec.)

0.5 0.75
0.6 0.53
0.7 0.51
0.8 0.43
0.9 0.43

ε = 20
δ Computation Time (sec.)

0.5 0.64
0.6 1.05
0.7 0.49
0.8 0.43
0.9 0.40

ε = 30
δ Computation Time (sec.)

0.5 0.57
0.6 0.51
0.7 0.47
0.8 0.49
0.9 0.39

ε = 40
δ Computation Time (sec.)

0.5 0.64
0.6 0.47
0.7 0.47
0.8 0.47
0.9 0.40

ε = 50
δ Computation Time (sec.)

0.5 0.63
0.6 0.49
0.7 0.49
0.8 0.51
0.9 0.45

158 Y. Okubo and M. Haraguchi

It should be noted here that we have not obtained a similar generator for another
year, e.g. 2000. This implies that something about contact, UK, application and
update happens particularly in 2001. Using this valuable information as a trigger,
we might be able to analyze this concept more deeply and precisely.

In addition to those concepts above, we have obtained an interesting CRC. Its
extent consists of just 5 documents in the categories, “Astronomy”, “Biology”
and “Motor Sport”. The intent contains 108 attributes. Needless to say, it is
quite difficult to obtain a clear meaning of the concept only from those many
attributes. However, the concept can be characterized by a very compact gener-
ator with just 6 attributes, as our system has outputted. The generator would
be a great help in clearly understanding the concept.

4.3 Computational Performance

Computational performance of our algorithm is summarized in Table 1.
Our algorithm took less that 1 second for all problems except just one (ε = 20

and δ = 0.6). Thus, our restricted formation process of concepts can make the
computation very efficient, still keeping the clearness of concepts.

As is well known, the intent of a formal concept is an equivalent notion of
closed itemset in the field of Data Mining [17]. With the help of closed itemset
miners, e.g. LCM [7] and D-Miner [15], therefore, we can obtain formal concepts.
Such systems are, however, not helpful for finding our rare concepts. Given a
parameter minsup, they can usually enumerate all frequent closed itemsets in
the sense that their supports are greater than or equal to minsup. If we try to
find our rare concepts with those miners, we have to give a quite small value of
minsup. As a well known fact, under such a low minsup, frequent closed itemset
miners are quite useless because the number of frequent closures is enormous.
In fact, we have verified that these famous excellent miners cannot enumerate
frequent closures in reasonable time (within 6 hours) even under a minsup value
larger than our rareness threshold. This is a remarkable advantage of our method.

5 Concluding Remarks

We discussed in this paper a problem of finding Top-N concise rare concepts and
designed a depth-first branch-and-bound algorithm for the problem. Although
it is well known that rare concepts provide us valuable information, they in gen-
eral tend to have longer intents which make meanings of the concepts unclear.
In order to solve this issue, we imposed a restriction on our formation process
of concepts so that we can obtain more understandable concepts. Our prelimi-
nary experimental results showed that extracted concepts are conceptually clear
in the sense that they can be characterized by δ-generators with general at-
tributes. Furthermore, our restricted formation brought us efficient computation
of concepts, still keeping their interpretability.

In our experimentation, we verified that crossover concepts can be detected by
our algorithm. However, the current formalization is not only for such crossover
concepts. Such a tailored algorithm is currently under investigation.

An Algorithm for Extracting Rare Concepts with Concise Intents 159

Furthermore, one might claim that our formation process of concepts is too
restrictive. It is actually true that the pre-defined ordering on attributes strongly
affects which kind of concepts we can detect. In order to make our method more
useful, we have to further investigate the ordering from various viewpoints as
well as generality of attributes.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations, 284
p. Springer, Heidelberg (1999)

2. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis – Foundations
and Applications. LNCS (LNAI), vol. 3626, 348 p. Springer, Heidelberg (2005)

3. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: Proc. of the ACM SIGMOD Int’l Conf. on Manage-
ment of Data, pp. 207–216 (1993)

4. Lakhal, L., Stumme, G.: Efficient Mining of Association Rules Based on Formal
Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)

5. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Min-
ing Frequent Closed Itemsets. In: Proc. of the 9th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining - KDD 2003, pp. 236–245 (2003)

6. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent Pattern Mining - Current Status
and Future Directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

7. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient Mining Algorithm for
Frequent/Closed/Maximal Itemsets. In: Proc. of IEEE ICDM 2004 Workshop -
FIMI 2004 (2004),
http://sunsite.informatik.rwth-aachen.de/

verb+Publications/CEUR-WS//Vol-126/

8. Dong, G., Li, J.: Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. In: Proc. of the 5th ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining - KDD 1999, pp. 43–52 (1999)

9. Alhammady, H., Ramamohanarao, K.: Using Emerging Patterns and Decision
Trees in Rare-Class Classification. In: Proc. of the 4th IEEE Int’l Conf. on Data
Mining - ICDM 2004, pp. 315–318 (2004)

10. Bay, S.D., Pazzani, M.J.: Detecting Group Differences: Mining Contrast Sets. Data
Mining and Knowledge Discovery 5(3), 213–246 (2001)

11. Novak, P.K., Lavrac, N.: Supervised Descriptive Rule Discovery: A Unifying Survey
of Contrast Set, Emerging Pattern and Subgroup Mining. The Journal of Machine
Learning Research Archive 10, 377–403 (2009)

12. Li, A., Haraguchi, M., Okubo, Y.: Implicit Groups of Web Pages as Constrained
Top-N Concepts. In: Proc. of the 2008 IEEE/WIC/ACM Int’l Conf. on Web In-
telligence and Intelligent Agent Technology Workshops, pp. 190–194 (2008)

13. Nebel, B.: Reasoning and Revision in Hybrid Representation. Springer, Heidelberg
(1989)

14. Sinka, M.P., Corne, D.W.: A Large Benchmark Dataset for Web Document Clus-
tering. In: Soft Computing Systems: Design, Management and Applications. Series
of Frontiers in Artificial Intelligence and Applications, vol. 87, pp. 881–890 (2002)

15. Besson, J., Robardet, C., Boulicaut, J.: Constraint-Based Concept Mining and Its
Application to Microarray Data Analysis. Intelligent Data Analysis 9(1), 59–82
(2005)

http://sunsite.informatik.rwth-aachen.de/verb+Publications/CEUR-WS//Vol-126/
http://sunsite.informatik.rwth-aachen.de/verb+Publications/CEUR-WS//Vol-126/

160 Y. Okubo and M. Haraguchi

16. Szathmary, L., Napoli, A., Valtchev, P.: Towards Rare Itemset Mining. In: Proc.
of the 19th IEEE Int’l Conf. on Tools with Artificial Intelligence - ICTAI 2007, pp.
305–312 (2007)

17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

18. Tomita, E., Kameda, T.: An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique with Computational Experiments. Journal of Global Optimiza-
tion 37, 95–111 (2007)

19. Tomita, E., Seki, T.: An Efficient Branch and Bound Algorithm for Finding a
Maximum Clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS
2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)

20. Fahle, T.: Simple and Fast: Improving a Branch-and-Bound Algorithm for Maxi-
mum Clique. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
485–498. Springer, Heidelberg (2002)

21. Porter, M.F.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)
22. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. MIT Press, Cam-

bridge (1998)
23. Haraguchi, M., Okubo, Y.: An Extended Branch-and-Bound Search Algorithm for

Finding Top-N Formal Concepts of Documents. In: Washio, T., Satoh, K., Takeda,
H., Inokuchi, A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 276–288. Springer,
Heidelberg (2007)

24. Haraguchi, M., Okubo, Y.: A Method for Pinpoint Clustering of Web Pages with
Pseudo-Clique Search. In: Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.)
Federation over the Web. LNCS (LNAI), vol. 3847, pp. 59–78. Springer, Heidelberg
(2006)

25. Okubo, Y., Haraguchi, M.: Finding Conceptual Document Clusters with Improved
Top-N Formal Concept Search. In: Proc. of the 2006 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence - WI 2006, pp. 347–351 (2006)

Conditional Functional Dependencies:
An FCA Point of View

Raoul Medina and Lhouari Nourine

Université Blaise Pascal – LIMOS
Campus des Cézeaux,

63173 Aubière Cedex, France
{medina,nourine}@isima.fr

Abstract. Conditional Functional Dependencies (CFDs) are Functional
Dependencies (FDs) that hold on a fragment relation of the original
relation. In [17], the hierarchy between CFDs, association rules and some
other dependencies have been shown.

This paper exhibits the relation between CFDs and FCA. Given a
many-valued relation we define a labeled lattice which gives a synthetic
representation of the hierarchy of dependencies. Moreover, a formal con-
cept in the nominal scaling of the relation is an instance of a closed set
in the labeled lattice. Pure CFDs correspond to edges in this labeled
lattice. We exhibit a monotone function on CFDs allowing search and
pruning strategies. We also show that transitive edges induce redundant
CFDs.

1 Introduction

Dependency theory is one of the major subjects of database theory and has been
traditionally used to optimize queries, prevent invalid updates and to normalize
databases. Originally, dependency theory has been developed for uninterpreted
data and served mainly database conception purposes [10]. The Functional De-
pendencies introduced by Codd were generalized to Equality Generating De-
pendencies (EGD) [4]. In [3], dependencies over interpreted data (i.e. equality
requirements are replaced by constraints of an interpreted domain) were in-
troduced and generalized the EGDs into Constraint-Generating-Dependencies
(CGD). In [7], the authors present a particular case of CGDs: Conditional Func-
tional Dependencies (CFDs), for data cleaning purposes. CFDs are dependencies
which hold on instances of the relations. Constraint used in CFDs is the equality
and allows to fix particular constant values for attributes. Basically, CFDs can be
viewed as FDs which hold on a fragment relation of the original instance relation,
this fragment relation being characterized by the constraints to be applied on
the attributes. Those constraints represent a selection operation on the relation.
All these works focused mainly on implication analysis and axiomatizability.

Discovery of dependencies existing in an instance of a relation received consid-
erable interest as it allowed automatic database analysis. Knowledge discovery
and data mining [1], database management [6],[9], reverse engineering [19] and

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 161–176, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 R. Medina and L. Nourine

query optimization [20] are among the main applications benefiting from efficient
dependencies discovery algorithms. New dependencies on instances of relations
were defined. We cite (among others): Association Rules (AR) [1] which are
dependencies holding on particular values of attributes, and Approximate Func-
tional Dependencies (AFD) [16] which are FDs which almost hold on a given
relation. Note that AFDs have also applications in database design [11]. For
those latter dependencies, several measures of approximateness were defined,
expressing the interest of the dependency.

Recently, we have shown in [17] that there exists a hierarchy among those
dependencies: FDs and CFDs are the union of ARs, AFD are the union of ap-
proximate AR. As a consequence, CFDs can be used as a synthetic representation
of ARs.

In this paper, we present CFDs from a lattice point of view. We define a
labeled lattice in which CFDs correspond to cover edges of the lattice. We present
some properties of this lattice and show the link between this lattice and the
traditional concept lattice of a relation. We show that a concept (in the FCA
sense [14]) is an instance of a closed set in the labeled lattice. As a consequence,
we show that the lattice of CFDs is a synthetic representation of the concept
lattice.

The paper is organized as follows: in section 2 we recall definitions and results
on CFDs. Section 3 presents the labeled lattice of CFDs and some properties
of this lattice. Section 4 presents the link between the lattice of CFDs and
traditional concept lattice of a relation. Section 5 discusses the results of our
paper.

2 Background, Definitions and Preliminary Results

2.1 Definitions

Let R be a relation schema defined over a set of attributes Attr(R). The domain
of each attribute A ∈ Attr(R) is denoted by Dom(A). For an instance r of R, a

r A B C D E F
t1 a0 b0 c0 d0 e0 f0

t2 a1 b1 c1 d0 e1 f1

t3 a1 b1 c2 d1 e2 f2

t4 a2 b1 c2 d1 e2 f3

t5 a2 b1 c2 d2 e3 f4

t6 a2 b2 c3 d3 e4 f5

t7 a3 b3 c4 d3 e4 f5

t8 a4 b0 c5 d4 e5 f6

t9 a5 b2 c6 d5 e6 f7

t10 a6 b3 c7 d6 e7 f8

Fig. 1. An instance relation r of the schema R

Conditional Functional Dependencies: An FCA Point of View 163

tuple t ∈ r and X a sequence of attributes, we use t[X] to denote the projection
of t onto X .

An FD X → Y , where X, Y ⊆ Attr(r), is satisfied by r, denoted by r �
X → Y , if for all pairs of tuples t1, t2 ∈ r we have: if t1[X] = t2[X] then
t1[Y] = t2[Y]. In other words, all pairs of tuples agreeing on attributes X will
agree on attributes Y .

A CFD ϕ defined on R is a pair (X → Y, Tp), where (1) X → Y is a standard
FD, referred to as the FD embedded in ϕ; and (2) Tp is a tableau with attributes
in R, referred to as the pattern tableau of ϕ, where for each A ∈ Attr(R) and
each pattern tuple tp ∈ Tp, tp[A] is either:

– a constant ’a’ in Dom(A),
– an unnamed variable * that draws values from Dom(A),
– or an empty variable ⊥ which indicates that the attribute does not contribute

to the pattern (i.e. A �∈ X ∪ Y). 1

For any constant a of an attribute we have: ⊥ ≤ a ≤ * . We define the pattern
intersection operator
 of two tuples as:

t1
 t2 = tp such that ∀A ∈ Attr(r),

⎧⎪⎨⎪⎩
tp[A] = t1[A], if t1[A] ≤ t2[A]
tp[A] = t2[A], if t1[A] > t2[A]
tp[A] = ⊥ , otherwise.

We define the pattern restriction to attributes X of a tuple t, denoted by t(X)
as:

t(X) = tp such that ∀A ∈ Attr(r),

{
tp[A] = t[A], if A ∈ X

tp[A] = ⊥ , otherwise.

The pattern restriction to attributes X for a pattern tableau, denoted by ΠX(Tp)
is:

ΠX(Tp) = {tp(X) | tp ∈ Tp}
We define a subsumption operator � over pattern tuples t1 and t2:

t1 � t2 if and only if ∀A ∈ Attr(R), t1[A] ≤ t2[A].

In other words, t1 � t2 if and only if t1
 t2 = t1. We define the special tuple
Top as the tuple with value * on all attributes, i.e. tp � Top for any pattern
tuple tp.

An instance r of R satisfies the CFD ϕ, denoted by r � ϕ, if for each tuple
tp in the pattern tableau Tp of ϕ, and for each pair of tuples t1, t2 in r, if
t1(X) = t2(X) , tp(X), then t1(Y) = t2(Y) , tp(Y). In other words, a CFD is
an FD satisfied by a fragment relation.

A pattern tuple tp defines a fragment relation of r:

rtp = {t ∈ r | tp � t}.
1 In [12], empty variables are not present in the pattern tableau.

164 R. Medina and L. Nourine

We will denote by rTp the fragment relation containing all tuples of r satisfying
at least one of the patterns in Tp. Note that given a CFD (X → Y, Tp), we thus
have rTp � X → Y and r − rTp �� X → Y .

A pattern tableau can thus be seen as a selection query on a relation returning
a fragment of the relation. Two pattern tableaux will be said equivalent if and
only if they return the same fragment relation.

Lemma 1 (see [17]). For any pattern tableau TP there exists an equivalent
pattern tableau TPConst such that pattern tuples in TPConst contain either constant
or empty variables.

Consequence of previous lemma is that, without loss of generality, we will focus
on CFDs which tableaux contain only constant or empty attributes. In [17], we
show how to generate all equivalent tableaux from such constant tableaux.

Example 1. In the relation r of Figure 1, A → B is a CFD which holds on
the fragment relation {t1, t2, t3, t7, t8, t9, t10}. Its constant pattern tableau is:
{ (a0,⊥,⊥,⊥,⊥,⊥), (a1,⊥,⊥,⊥,⊥,⊥), (a3,⊥,⊥,⊥,⊥,⊥),

(a4,⊥,⊥,⊥,⊥,⊥), (a5,⊥,⊥,⊥,⊥,⊥), (a6,⊥,⊥,⊥,⊥,⊥) }

2.2 X-Complete Relations

Using the intersection operator over tuples we could build the tuples lattice of a
relation. A closed tuple will thus subsume all tuples agreeing on the same values,
i.e. the values of non empty variables in the closed tuple. This notion of set of
tuples agreeing on the same values for a given set of attributes X has already
been defined in database theory for horizontal decomposition purposes [11] or
for FDs discovery [16]. We thus use their definition to define the different closure
operators we use in this paper.

Definition 1 (X-complete property [11]). The relation r is said to be X-
complete if and only if ∀ t1, t2 ∈ r we have t1[X] = t2[X].

In other words, a relation is X-complete if all tuples agree on the attributes X .
Note that they might also agree on other attributes: this constitutes the pattern
of r.

In [17], several definitions based on X-complete relations were used. We recall
them briefly in the following table.

Definition Notation Formal definition
X-Complete pattern γ(X, r)
 {t ∈ r} with r is X-complete
X-complete horizontal
decomposition RX(r) {r′ ⊆ r | r′ is X-complete}
Set of X-patterns Γ (X, r) {γ(X, r′) | r′ ∈ RX(r)}.
Closure operator θ(X, r) {A ∈ Attr(r) | ∀tp ∈ Γ (X, r), tp[A] �= ⊥ }

Definition 2 (X-closed relation). An X-complete fragment relation r′ ⊆ r is
said X-closed if θ(X, r′) = X.

Conditional Functional Dependencies: An FCA Point of View 165

Using the closure operator θ(X, r) , we can trivially characterize FDs2.

Property 1 (See [17]). Let A �∈ X . We have r � X → A (i.e. X → A is an FD of
r) if and only if A ∈ θ(X, r).

Note that the closure operator θ(X, r) is equivalent to the closure of a set of
attributes X using FD of r.

Proposition 1 (see [17]). Let r′ ⊆ r. Then r′ is X-complete if and only if r′

is θ(X, r)-complete.

A consequence is that X and θ(X, r) define the same X-complete horizontal
decomposition of r. This leads to the following corollary.

Corollary 1 (see [17]). Γ (X, r) = Γ (θ(X, r), r).

Example 2. In the relation of figure 1, the fragment relation {t3, t4} is D-complete.
Its pattern is γ(D, {t3, t4}) = (⊥,b1,c2,d1,e2,⊥). The set of all D-patterns is:
{ (⊥,⊥,⊥,d0,⊥,⊥), (⊥,b1,c2,d1,e2,⊥), (a2,b1,c2,d2,e3,f4), (⊥,⊥,⊥,d3,e4,f5),

(a4,b0,c5,d4,e5,f6), (a5,b2,c6,d5,e6,f7), (a6,b3,c7,d6,e7,f8)}.
The closure of D in r is θ(D, r) = D.

2.3 Hierarchy of Dependencies

Here we recall the relation between CFDs and other usual dependencies (see [17]
for details).

FDs: An FD X → A can be seen as a CFD (X → A, tp) where tp is a single
tuple with no constants, i.e. tp = Top(X ∪ {A}). In other words, r � X → A if
and only if rX→A = r (and thus rX �→A = ∅).

ARs: An AR is a dependency (X1 = b1) ∧ · · · ∧ (Xk = bk) → (A = a)
meaning that for any tuple t ∈ r, if t[X1] = b1 and · · · and t[Xk] = bk then
t[A] = a. An AR can be expressed using a CFDs which tableau consists of a
single pattern tuple containing only constant or empty values.

Theorem 1 (Hierarchy [17]). Let r be a relation, X ⊆ Attr(r), A ∈ Attr(r)\
X and Tp = {tp ∈ Γ (X, r) | tp[A] �= ⊥ }. The following assertions are equivalent:

1. (X → A, Tp) is a CFD of r
2. X → A is an FD of rTp

3. For any r′ ∈ RX(rTp), (X → A, γ(X, r′)) is an AR of r

Theorem 1 leads to a hierarchy among those dependencies:

– an AR (X → A, tp) is a dependency that holds on at least one fragment
relation of r which is X-complete.

2 Note that this closure operator is the same that the one obtained using the agree
sets [5].

166 R. Medina and L. Nourine

– a CFD (X → A, Tp) is a dependency that holds on some fragment relations
of r which are X-complete. It can thus be viewed as the union of ARs holding
on those fragment relations.

– an FD is a dependency that holds on all fragment relations of r which are
X-complete. It can thus be viewed as the union of ARs holding on all those
fragment relations.

Definition 3 (Y-Valid and Y-Invalid X-complete pattern tuples). Given
r′ an X-complete fragment relation of r. Its corresponding X-complete pattern
tuple tp = γ(X, r′) is said to be Y-valid towards Y if and only if attributes Y
are defined in tp.
We denote by Tp(X → Y) the set of all Y-valid X-complete pattern tuples. More
formally: Tp(X → Y) = {tp ∈ Γ (X, r) | ∀A ∈ Y, tp[A] �= ⊥ }.
Dually, we denote by Tp(X �→ Y) the set of all Y-invalid X-complete pattern
tuples: Tp(X �→ Y) = Γ (X, r) − Tp(X → Y).

In [17], a classification of dependencies was done using A-Valid and A-Invalid
X-complete pattern tuples. The following table summarizes this classification.

Dependency Type Tp(X → A) ? Tp(X �→ A) ?
X �→ A Tp(X → A) = ∅
X → A Pure AR | Tp(X → A) |= 1 | Tp(X �→ A) |≥ 1

Pure CFD | Tp(X → A) |≥ 2 | Tp(X �→ A) |≥ 1
FD Tp(X �→ A) = ∅

We recall that a CFD is said to be a pure AR if its pattern tableau contains only
a single pattern tuple (i.e this CFD corresponds to a unique AR). A CFD is said
to be a pure CFD if it is the union of at least two ARs and does not generalize
into an FD (see [17] for details).

3 The X-Complete Partitions Lattice

3.1 Labeled Lattice of Closed Sets

In this section, we show that considering closed sets θ(X, r) is sufficient to com-
pute all CFDs.

Definition 4 (Generator and minimal generator). Given Y ⊆ Attr(r), a
subset X ⊆ Y is said to be a generator of Γ (Y, r) if and only Γ (X, r) = Γ (Y, r).
It is said to be a minimal generator if and only if there does not exist Z ⊂ X
such that Γ (Z, r) = Γ (Y, r). By extension, we also say that X is a minimal
generator of θ(X, r).

Next Theorem states that if we consider CFDs which left-part is a closed set,
then the remaining CFDs could be obtained by computing the generators of
these closed sets.

Conditional Functional Dependencies: An FCA Point of View 167

Theorem 2. Let r be a relation, X, Y ⊆ Attr(r) such that X∩Y = ∅. We have:
r � (X → Y, Tp(X → Y)) if and only if r � (θ(X, r) → Y, Tp(X → Y)).

Proof. Follows directly from Corollary 1.
�
Generating CFDs of the form (θ(X, r) → Y, Tp(X → Y)) is thus sufficient.
Indeed, all other CFDs can be found as (Z → Y, ΠZ(Tp(X → Y))) where Z is a
generator of θ(X, r). Moreover, if Z �= θ(X, r) then θ(Z, r) → θ(X, r) − Z is an
FD. As a consequence, all closed sets of the relation r (defined with the operator
θ(X, r)) are potential antecedent of a CFD. We could thus consider the lattice
of closed sets of r as the search space for CFDs.

Theorem 3 (Transitivity). Let X ⊂ Y ⊂ Z be subsets of attributes. Then

Tp(X → Z) = Tp(X → Y) ∩ ΠX(Tp(Y → Z))

Proof. Let tp ∈ Tp(X → Z). We show that rtp belongs both to rTp(X→Y) and
rTp(Y →Z). Since tp ∈ Tp(X → Z), rtp is X-complete and Z-complete. And from
X ⊂ Y ⊂ Z we deduce that rtp is also Y -complete. Thus rtp ⊆ rTp(X→Y) and
rtp ⊆ rTp(Y →Z).

Now, consider tp ∈ Tp(X → Y) ∩ ΠX(Tp(Y → Z)). We show that rtp ⊆
rTp(X→Z). Since tp ∈ Tp(X → Y)∩ΠX (Tp(Y → Z)), we have rtp is X-complete,
Y -complete and Z-complete. Thus, rtp ⊆ rTp(X→Z).
�
Example 3. Let us consider the CFD D → B. The CFD D → B is a ”transitive”
CFD since we have D → E and DE → BC. Thus, the tableau of D → B can be
computed from the tableaux of D → E and DE → BC as follows: Tp(D → B) =
Tp(D → E)∩ΠD(Tp(DE → BC)). We obtain Tp(D → B) = { (⊥,⊥,⊥,d1,⊥,⊥),
(⊥,⊥,⊥,d2,⊥,⊥), (⊥,⊥,⊥,d4,⊥,⊥), (⊥,⊥,⊥,d5,⊥,⊥), (⊥,⊥,⊥,d6,⊥,⊥)} (see Fig-
ure 2 for the tableaux of D → E and DE → BC).

From Theorems 3 we deduce that ”transitive” CFDs can be computed from
CFDs of the form (θ(X, r) → θ(Y, r) \ θ(X, r), Tp(X → Y)) such that θ(Y, r)
covers θ(X, r) in the lattice of closed sets of r.

Definition 5 (Tableau of a closed set). Given a closed set X of r, we denote
by Tp(X) the set of pattern tuples of all X-complete partitions which are X-closed.
More formally: Tp(X) = {tp ∈ Γ (X, r) | ∀A �∈ X, tp[A] = ⊥ }.
Note that the tableau of a closed set might be empty. In this case, the tableau
contains only one tuple (⊥,⊥,⊥,⊥,⊥,⊥).

Example 4. For the relation in figure 1, the tableau of the closed set BC is:
Tp(BC) = { (⊥,b1,c2,⊥,⊥,⊥)}. The closed set DE has an empty tableau: Tp(DE)
= { (⊥,⊥,⊥,⊥,⊥,⊥)}.

Definition 6 (X-complete partitions lattice). Let L(r, θ) be the lattice of
closed sets of a many-valued relation r wrt. Closure operator θ. The lattice of
X-complete partitions is L(r, θ) completed with two labeling functions: Tp(X)
for a closed set X, Tp(X → Y \ X) for an edge (X, Y) of the Hasse diagram of
L(r, θ).

168 R. Medina and L. Nourine

ABC
(a2 ,b1 ,c2 ,⊥,⊥,⊥)

AB
(a1 ,b1 ,⊥,⊥,⊥,⊥)

A
(a2 ,⊥,⊥,⊥,⊥,⊥)

∅
(⊥,⊥,⊥,⊥,⊥,⊥)

B
(⊥,b0 ,⊥,⊥,⊥,⊥)
(⊥,b1 ,⊥,⊥,⊥,⊥)
(⊥,b2 ,⊥,⊥,⊥,⊥)
(⊥,b3 ,⊥,⊥,⊥,⊥)

BC
(⊥,b1 ,c2 ,⊥,⊥,⊥)

BCDE
(⊥,b1 ,c2 ,d1 ,e2 ,⊥)

ABCDEF
(�, �, �, �, �, �)

DEF
(⊥,⊥,⊥,d3 ,e4 ,f5)

DE
(⊥,⊥,⊥,⊥,⊥,⊥)

D
(⊥,⊥,⊥,d0 ,⊥,⊥)

(a0 ,b0 ,⊥,⊥,⊥,⊥)
(a2 ,b1 ,⊥,⊥,⊥,⊥)
(a2 ,b2 ,⊥,⊥,⊥,⊥)
(a3 ,b3 ,⊥,⊥,⊥,⊥)
(a4 ,b0 ,⊥,⊥,⊥,⊥)
(a5 ,b2 ,⊥,⊥,⊥,⊥)
(a6 ,b3 ,⊥,⊥,⊥,⊥)

(a0 ,⊥,⊥,⊥,⊥,⊥)
(a1 ,⊥,⊥,⊥,⊥,⊥)
(a3 ,⊥,⊥,⊥,⊥,⊥)
(a4 ,⊥,⊥,⊥,⊥,⊥)
(a5 ,⊥,⊥,⊥,⊥,⊥)
(a6 ,⊥,⊥,⊥,⊥,⊥)

(⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥)

(⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥)

(⊥,b0 ,c0 ,⊥,⊥,⊥)
(⊥,b1 ,c1 ,⊥,⊥,⊥)
(⊥,b2 ,c3 ,⊥,⊥,⊥)
(⊥,b3 ,c4 ,⊥,⊥,⊥)
(⊥,b0 ,c5 ,⊥,⊥,⊥)
(⊥,b2 ,c6 ,⊥,⊥,⊥)
(⊥,b3 ,c7 ,⊥,⊥,⊥)

(⊥,b0 ,c0 ,⊥,⊥,⊥)
(⊥,b1 ,c1 ,⊥,⊥,⊥)
(⊥,b2 ,c3 ,⊥,⊥,⊥)
(⊥,b3 ,c4 ,⊥,⊥,⊥)
(⊥,b0 ,c5 ,⊥,⊥,⊥)
(⊥,b2 ,c6 ,⊥,⊥,⊥)
(⊥,b3 ,c7 ,⊥,⊥,⊥)

(a0 ,b0 ,c0 ,⊥,⊥,⊥)
(a1 ,b1 ,c1 ,⊥,⊥,⊥)
(a1 ,b1 ,c2 ,⊥,⊥,⊥)
(a2 ,b2 ,c3 ,⊥,⊥,⊥)
(a3 ,b3 ,c4 ,⊥,⊥,⊥)
(a4 ,b0 ,c5 ,⊥,⊥,⊥)
(a5 ,b2 ,c6 ,⊥,⊥,⊥)
(a6 ,b3 ,c7 ,⊥,⊥,⊥)

(⊥,⊥,⊥,d1 ,⊥,⊥)
(⊥,⊥,⊥,d2 ,⊥,⊥)
(⊥,⊥,⊥,d3 ,⊥,⊥)
(⊥,⊥,⊥,d4 ,⊥,⊥)
(⊥,⊥,⊥,d5 ,⊥,⊥)
(⊥,⊥,⊥,d6 ,⊥,⊥)

(⊥,⊥,⊥,d0 ,e0 ,⊥)
(⊥,⊥,⊥,d0 ,e1 ,⊥)
(⊥,⊥,⊥,d1 ,e2 ,⊥)
(⊥,⊥,⊥,d2 ,e3 ,⊥)
(⊥,⊥,⊥,d4 ,e5 ,⊥)
(⊥,⊥,⊥,d5 ,e6 ,⊥)
(⊥,⊥,⊥,d6 ,e7 ,⊥)

(⊥,⊥,⊥,d0 ,e0 ,⊥)
(⊥,⊥,⊥,d0 ,e1 ,⊥)
(⊥,⊥,⊥,d2 ,e3 ,⊥)
(⊥,⊥,⊥,d3 ,e4 ,⊥)
(⊥,⊥,⊥,d4 ,e5 ,⊥)
(⊥,⊥,⊥,d5 ,e6 ,⊥)
(⊥,⊥,⊥,d6 ,e7 ,⊥)

(⊥,b0 ,c0 ,d0 ,e0 ,⊥)
(⊥,b1 ,c1 ,d0 ,e1 ,⊥)
(⊥,b1 ,c2 ,d2 ,e3 ,⊥)
(⊥,b2 ,c3 ,d3 ,e4 ,⊥)
(⊥,b3 ,c4 ,d3 ,e4 ,⊥)
(⊥,b0 ,c5 ,d4 ,e5 ,⊥)
(⊥,b2 ,c6 ,d5 ,e6 ,⊥)
(⊥,b3 ,c7 ,d6 ,e7 ,⊥)

(⊥,⊥,⊥,d0 ,e0 ,f0)
(⊥,⊥,⊥,d0 ,e1 ,f1)
(⊥,⊥,⊥,d1 ,e2 ,f2)
(⊥,⊥,⊥,d1 ,e2 ,f3)
(⊥,⊥,⊥,d2 ,e3 ,f4)
(⊥,⊥,⊥,d4 ,e5 ,f6)
(⊥,⊥,⊥,d5 ,e6 ,f7)
(⊥,⊥,⊥,d6 ,e7 ,f8)

Fig. 2. The X-complete partitions lattice of relation r. Label of a closed set represents
the set of formal concepts which are particular instances of this global concept. Label
of an edge (X, Y) represents the tableau of the CFD X → Y .

Figure 2 shows the lattice of X-complete partitions for the relation r in figure 1.

Property 2. Let X be a closed set in r. For any Y ⊆ Attr(R) \ X we have:
Tp(X) ∩ Tp(X → Y) = ∅.

Previous property states that a pattern tuple present in the tableau of a closed
set X cannot be present in the tableau of a CFDs having X as antecedent.

Proposition 2. Let X be a closed set and Y1, · · · , Yk be all closed sets covering
X. Then we have:

r = rTp(X) ∪
⋃

i∈1..k

rTp(X→Yi)

Conditional Functional Dependencies: An FCA Point of View 169

Proof. It is immediate to see that r ⊇ rTp(X) ∪
⋃

i∈1..k rTp(X→Yi). Let us prove
that r ⊆ rTp(X) ∪

⋃
i∈1..k rTp(X→Yi).

Consider r′ ∈ RX(r). Let us show that γ(X, r) ∈ Tp(X)∪
⋃

i∈1..k Tp(X → Yi).
If γ(X, r′) = X then it is straightforward that γ(X, r′) ∈ Tp(X). Suppose that
γ(X, r′) �= X , then we distinguish two cases:

– ∃j ∈ 1..k such that γ(X, r′) = Yj . Thus γ(X, r′) ∈ Tp(X → Yj).
– γ(X, r′) = Z with Z �= Yj for any j ∈ 1..k. There thus exists j ∈ 1..k such

that X ⊂ Yj ⊂ Z. Since γ(X, r′) ∈ Tp(X → Z) and by Theorem 3 we thus
have γ(X, r′) ∈ Tp(X → Yj).
�

Consequence is that a closed set X splits the relation in two parts: rTp(X) where
X is never antecedent of a CFD or of an AR and the remaining of the relation
where X is always antecedent of a CFD.

3.2 Simplified Labeled Lattice

In this section we show that some redundancy appears in the labeling of the
lattice and we propose a simplified labeling to avoid such redundancy.

Theorem 4 (Monotony). Let X be a closed set and r a many-valued relation.
Then for any Y ⊆ Attr(R) such that X ⊆ Y we have :

∀A ∈ Attr(R) \ Y, rTp(X→A) ⊆ rTp(Y →A)

Proof. Let tp be a pattern in Tp(X → A). We show that rtp is partitioned into
several Y -complete fragment relations that belong to rTp(Y →A). Clearly, rtp is
X ∪ A-complete. Thus Γ (Y, rtp) ⊆ Tp(Y → A).
�

A CFD is an FD which holds on a fragment relation of the original relation.
Theorem 4 states that whenever we add attributes Y in the antecedent part
of a CFD X → A, if the new CFD X ∪ Y → A still holds then the fragment
relation rTp(X∪Y →A) on which it holds can be partitioned in two: the fragment
relation rTp(X→A) of the original CFD and a new fragment relation rTp(X∪Y →A)\
rTp(X→A). Only this latter fragment relation adds non redundant information
for the understanding of the new CFD X ∪ Y → A. The idea of the simplified
labeling of the X-complete partitions lattice is thus to label edges of the lattice
only with this new information. Note that rTp(X∪Y →A) \ rTp(X→A) ⊆ rTp(X �→A).
The simplified label to use is thus the patterns of Tp(X ∪ Y → A) which selects
tuples in rTp(X �→A).

Another redundancy appears when a pattern tuple in the tableau of a CFD
X → Y selects a single tuple (i.e. the fragment relation has size 1).

Proposition 3. Let (X → Y, Tp(X → Y)) be a CFD of r and tp ∈ Tp(X → Y)
such that rtp = {t}. Then for any CFD Z → W such that X ⊆ Z, we have
t(Z) ∈ Tp(Z → W).

170 R. Medina and L. Nourine

In other words, X is a local key for the fragment relation defined by tp. The
tuple selected by tp will thus appear in any CFD which antecedent contains X .

Definition 7 (Simplified X-complete partitions lattice). The simplified
X-complete partitions lattice is obtained by removing in the label of edges of the
X-complete partition lattice, pattern tuples according to Theorem 4 and Propo-
sition 3.

Figure 3 represent the simplified X-complete partitions lattice of the relation of
Figure 1.

ABC
(a2 ,b1 ,c2 ,⊥,⊥,⊥)

AB
(a1 ,b1 ,⊥,⊥,⊥,⊥)

A
(a2 ,⊥,⊥,⊥,⊥,⊥)

∅
(⊥,⊥,⊥,⊥,⊥,⊥)

B
(⊥,b0 ,⊥,⊥,⊥,⊥)
(⊥,b1 ,⊥,⊥,⊥,⊥)
(⊥,b2 ,⊥,⊥,⊥,⊥)
(⊥,b3 ,⊥,⊥,⊥,⊥)

BC
(⊥,b1 ,c2 ,⊥,⊥,⊥)

BCDE
(⊥,b1 ,c2 ,d1 ,e2 ,⊥)

ABCDEF
(�, �, �, �, �, �)

DEF
(⊥,⊥,⊥,d3 ,e4 ,f5)

DE
(⊥,⊥,⊥,⊥,⊥,⊥)

D
(⊥,⊥,⊥,d0 ,⊥,⊥)

(a2 ,b1 ,⊥,⊥,⊥,⊥)
(a2 ,b2 ,⊥,⊥,⊥,⊥)*

(a0 ,⊥,⊥,⊥,⊥,⊥)*
(a1 ,⊥,⊥,⊥,⊥,⊥)
(a3 ,⊥,⊥,⊥,⊥,⊥)*
(a4 ,⊥,⊥,⊥,⊥,⊥)*
(a5 ,⊥,⊥,⊥,⊥,⊥)*
(a6 ,⊥,⊥,⊥,⊥,⊥)*

(⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥)

(⊥,⊥,⊥,⊥,⊥,⊥) (⊥,⊥,⊥,⊥,⊥,⊥)

(⊥,b0 ,c0 ,⊥,⊥,⊥)*
(⊥,b1 ,c1 ,⊥,⊥,⊥)*
(⊥,b2 ,c3 ,⊥,⊥,⊥)*
(⊥,b3 ,c4 ,⊥,⊥,⊥)*
(⊥,b0 ,c5 ,⊥,⊥,⊥)*
(⊥,b2 ,c6 ,⊥,⊥,⊥)*
(⊥,b3 ,c7 ,⊥,⊥,⊥)*

(⊥,b0 ,c0 ,⊥,⊥,⊥)*
(⊥,b1 ,c1 ,⊥,⊥,⊥)*
(⊥,b2 ,c3 ,⊥,⊥,⊥)*
(⊥,b3 ,c4 ,⊥,⊥,⊥)*
(⊥,b0 ,c5 ,⊥,⊥,⊥)*
(⊥,b2 ,c6 ,⊥,⊥,⊥)*
(⊥,b3 ,c7 ,⊥,⊥,⊥)*

(a1 ,b1 ,c2 ,⊥,⊥,⊥)*

(⊥,⊥,⊥,d1 ,⊥,⊥)
(⊥,⊥,⊥,d2 ,⊥,⊥)*
(⊥,⊥,⊥,d3 ,⊥,⊥)
(⊥,⊥,⊥,d4 ,⊥,⊥)*
(⊥,⊥,⊥,d5 ,⊥,⊥)*
(⊥,⊥,⊥,d6 ,⊥,⊥)*

(⊥,⊥,⊥,d0 ,e0 ,⊥)*
(⊥,⊥,⊥,d0 ,e1 ,⊥)*
(⊥,⊥,⊥,d1 ,e2 ,⊥)

(⊥,⊥,⊥,d0 ,e0 ,⊥)*
(⊥,⊥,⊥,d0 ,e1 ,⊥)*
(⊥,⊥,⊥,d3 ,e4 ,⊥)

Fig. 3. The simplified X-complete partitions lattice of relation r. Pattern tuples marked
with ”*” select single tuples.

Conditional Functional Dependencies: An FCA Point of View 171

4 Link with FCA

4.1 Nominal Scaling and Global Concepts

A concept lattice is defined over a binary relation while the labeled lattice is
defined over a many-valued relation. Some scaling has to be done in order to
compare both lattices. Since our intersection operator on tuples is defined using
the equality of values, the scaling we use is the classical nominal scaling of a
many-valued relation: to each combination (attribute, value of attribute) cor-
responds a column in the resulting binary relation. Each line correspond to a
tuple of the many-valued relation. An entry of the relation is equal to 1 if the
corresponding tuple has the corresponding value for the given attribute in the
many-valued relation. Otherwise, the entry equals to 0 (see [14] for more details
on nominal scaling).

Given a many-valued relation r, we denote by r(0,1)the corresponding binary
relation obtained by a nominal scaling.

Note that we could use a class equivalence operator to define our intersection
operator on tuples: in this case, the nominal scaling should be considered over
equivalence classes. One can easily check the following property.

Property 3. A fragment relation r′ ⊆ r is a maximal X-complete relation such
that θ(X, r′) = X if and only if (γ(X, r′), r′) is a concept of r(0,1).

Previous property states that there is a one-to-one correspondence between
X-complete relations which are X-closed and concepts of the scaled relation:
γ(X, r′) is the intent while the list of tuples in the X-complete relation corre-
spond to the extent. In the remaining of this paper, we thus use the notation
(γ(X, r′), r′) to design formal concepts of r(0,1). According to the definition of
Tp(X), this leads immediately to the following property.

Property 4. Given a concept (γ(X, r′), r′) of r(0,1), there exists a closed set X of
r such that γ(X, r′) ∈ Tp(X).

In other words, a concept of r(0,1)is an instance of a closed set of r. Closed sets of
the labeled lattice can thus be seen as global concept of the many-valued relation,
formal concepts being just particular cases of such global concepts. Note that
Tp(X) might be empty (for instance, for the closed set DE in our example). In
this case, no formal concept corresponds to this global concept. Consequence is
that for those global concepts X with empty tableaux, any combination (present
in the relation) of values of X will be the antecedent of an exact AR in the scaled
relation.

Property 5. Let X be a closed set of r such that Tp(X) is empty. Then, for any
tuple t ∈ r, there exists A ∈ Attr(R) \ X such that t[X] → t[A] is an exact
association rule of r.

On the other extremity, a global concept X might have a tableau which se-
lects the entire many-valued relation. In this case, any combination of values
of X defines a formal concept in r(0,1). Such closed sets are called strong global
concepts.

172 R. Medina and L. Nourine

Property 6. Let X be a closed set of r such that rTp(X) = r. Then for any tuple
t ∈ r, t[X] is a closed set in r(0,1)and t belongs to the extent of the formal
concept defined by t[X].

Note that given a strong concept X and for any attribute A �∈ X , Tp(X → A)
is empty. In other words, there does not exist any exact association rule which
antecedent is a combination of values of X . This leads to the definition of the
strength of a global concept.

Definition 8. Given a global concept (X, Tp(X)), the strength of X, denoted by
strength(X), is the number of formal concept of r(0,1)which are instances of X
divided by the total number of combination of values of X present in the relation.
More formally:

strength(X) =
| Tp(X) |
| Γ (X, r) |

The strength of a global concept is an indicator which does not take into account
the support of a formal concept. Another indicator could be also the frequency
of a concept, which takes into account how many tuples verify a given concept.

Definition 9. Given a global concept (X, Tp(X)), the frequency of X, denoted
by freq(X) is the probability, given a tuple t ∈ r, that t[X] is a formal concept
of r(0,1):

freq(X) =
| rTp(X) |

| r |

4.2 Association Rules and Approximate Association Rules

In [17], we have shown the hierarchy existing among ARs and CFDs, and also
among approximate ARs and approximate FDs. The following properties show
the link between ARs and edges of the labeled lattice and approximate ARs and
global concepts.

Property 7. Given a global concept (X, Tp(X)). Then, for any tuple t in r such
that t(X) ∈ Tp(X) and for any attribute A �∈ X , the implication t[X] → t[A] is
an approximate AR.

In other words, a global concept is the union of approximate ARs. If the tableau
of a global concept is empty, this global concept defines only exact ARs.

Theorem 5 (ARs computation). The set of all exact ARs can be computed
from the tableaux associated to edges of the labeled lattice.

Proof. Immediate, from Theorems 1 and 2.
�

In other words, a CFD is the union of exact ARs. If the tableau of an edge
X → A is empty, then for any tuple t of r, t[X] → t[A] is an approximate AR.

We have seen in the previous section (theorem 4) that given X ⊂ Y and for
any A �∈ Y we have rTp(X→A) ⊆ rTp(Y →A). The labeling of the lattice could thus

Conditional Functional Dependencies: An FCA Point of View 173

be simplified by labeling the edge Y → A with the pattern tuples of Tp(Y →
A) which select tuples in rTp(X �→A). We have seen that this labeling removes
redundancy.

In a similar way, Proposition 3 shows that some pattern tuples in the tableau
of a CFD X → Y play the role of local keys in the nominal scaling of the relation:
the pattern tuple selects a single tuple in the relation. This tuple will thus appear
in the tableaux of all CFDs which antecedent contains X : again this corresponds
to some redundancy that could be removed from the labeling of the lattice. In
the Figure 3, pattern tuples which select a single tuple are marked with a ”*”:
such pattern tuples should thus appear only once in the lattice.

The simplified labeled lattice is thus the X-complete partition lattice with
some redundancy removed in the labeling. This raises the following question.

Question 1 (Non redundant ARs). Does the set of ARs defined by the tableaux of
the simplified labeled lattice define a non-redundant basis of ARs of the relation.

In other words, do we have removed all redundancy in the simplified labeled
lattice ? This is still an open question for the moment.

Should the answer to the question be positive, this would give us a depth first
search and pruning strategy to generate frequent non redundant AR. Indeed,
given a closed set X and an attribute A �∈ X , we know that Tp(X → A) defines
ARs of the form X → A. New non redundant ARs of the form Y → A would
then be found in rTp(X �→A). Thus, searching for these new non redundant ARs
should be done only in this fragment relation: this reduces the size of the relation
where to search for new ARs. Moreover, if this fragment relation has a size lower
than the minimal desired support we would already know that no new frequent
AR of the form Y → A could be found in it: we could stop the depth first search.

4.3 Dealing with Binary Relations

Traditional FCA considers only positive values of the binary relation. To obtain
a labeled lattices which is isomorphic to the traditional concept lattice, it is thus
sufficient to consider only positive values by replacing negative values with ⊥.
Note that in this case, the labels of all edges of the obtained lattice are empty
and the tableaux of the closed sets contains only positive values. If both positive
and negative values are considered in the labeled lattice, the CFDs and FDs
obtained represent a basis of positive, negative and mixed association rules of
the relation. In [18], mixed ARs are inferred from positive and negative ARs.

5 Discussion and Conclusion

In this paper we have presented the lattice of X-complete partitions of a many-
valued relation. We have shown the link between this lattice and the concept
lattice of the nominal scaling of the relation. Formal concepts are instances of
closed sets in the labeled lattice which in turn can be seen as the union of several
formal concepts. The labeled lattice can thus be seen as a synthetic representation

174 R. Medina and L. Nourine

of all formal concepts holding in the relation. Closed sets of this lattice could
thus be seen as global concepts of the relation. Moreover, edges of this labeled
lattice represent a cover of CFDs holding in the many-valued relation. As a
consequence, this lattice is also a synthetic representation of CFDs and ARs.

It should be noted that the aim of this paper is to present a structural
framework which represents classical objects of FCA (at the value level) and to
”compile” those objects at the attribute level. No algorithms were provided to
construct this lattice of X-complete partitions or CFDs using this lattice. Inter-
est of generating this lattice is not clear for the moment; main interest of this
lattice is to understand the underlying properties of CFDs and global concepts.

Some authors have proposed extensions of FCA by taking into account some
semantic in the values of attributes [8,13,15]. In all those cases, the obtained
concept lattice define formal concepts at the value level. One should note that
the lattice of X-complete partitions of a many-valued relation could be used to
work at the attribute level for such extensions of FCA. A global concept (defined
at the attribute level) is the merging of formal concepts (defined at the values
level and taking into account some form of semantics).

We have presented several properties of this labeled lattice, such as the
monotony existing on the fragment relation on which CFDs implying the same
attribute hold. Given a CFD X → A, this monotony property leads naturally
to a search strategy for finding new informative CFDs of the form Y → A (with
X ⊂ Y): these new CFDs are to be searched in the fragment relation on which
the CFD X → A does not hold.

Next steps in our investigations is to answer the open question stated in this
paper: does the set of ARs defined by the tableaux of the simplified lattice define
a non redundant basis of ARs of the relation ? Should the answer be negative,
this would indicate that some form of redundancy still remain in the simplified
labeled lattice and thus, a more simplified labeling should be proposed. Should
the answer to the question be positive, this would give us a direct search and
pruning strategy to find a non redundant basis of ARs in the relation.

Other dependencies such as multivalued dependencies (MVD) where defined
on many-valued relations. In [2], a closure operator for computing such depen-
dencies as well as a lattice representation of those dependencies is proposed. An
interesting question would be to investigate if such dependencies could be in-
ferred directly in our lattice of X-complete partitions. Do some global concepts
of our lattice represent antecedents of MVDs ?

Another interesting lead is to consider other scaling for the many-valued re-
lation (see [14] for some other possible scalings). The lattice of X-complete par-
titions can be seen as the merging of formal concepts of the concept lattice in
a single closed set. Different scalings could lead to other concept lattices (the
chosen scaling introducing more semantics). Could the obtained formal concepts
be merged in a global concept defined over attributes rather than values of at-
tributes ? Our guess is that this merging operation is always possible (eventually
by generating ”empty” global concepts as it is the case with nominal scaling).

Conditional Functional Dependencies: An FCA Point of View 175

However, could such merging be explained in terms of X-complete partitions ?
Will such scalings preserve the hierarchy between ARs and FDs ?

Acknowledgements

The authors wish to express their grateful acknowledgement to the anonymous
referees for their constructive remarks and comments which helped improved
clarity of the paper.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. Baixeries, J., Balcàzar, J.-L.: A lattice representation of relations, multivalued
dependencies and armstrong relations. In: ICCS 2005, International Conference on
Conceptual Structures (2005)

3. Baudinet, M., Chomicki, J., Wolper, P.: Constraint-generating dependencies. J.
Comput. Syst. Sci. 59(1), 94–115 (1999)

4. Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating depen-
dencies. SIAM J. Comput. 13(1), 76–98 (1984)

5. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of armstrong rela-
tions for functional dependencies. Journal of the ACM 31, 30–46 (1984)

6. Bell, S., Brockhausen, P.: Discovery of data dependencies in relational databases.
Technical Report LS-8 Report-14, University of Dortmund (1995)

7. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: ICDE, pp. 746–755 (2007)

8. Chaudron, L., Maille, N.: Generalized formal concept analysis. In: Ganter, B.,
Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 357–370. Springer,
Heidelberg (2000)

9. Chomicki, J., Marcinkowski, J.: On the computational complexity of minimal-
change integrity maintenance in relational databases. In: Bertossi, L., Hunter, A.,
Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 119–150. Springer,
Heidelberg (2005)

10. Codd, E.F.: Further normalizations of the database relational model. In: Rustin,
R. (ed.) Data Base Systems, pp. 33–64. Prentice-Hall, Englewood Cliffs (1972)

11. De Bra, P., Paredaens, J.: An algorithm for horizontal decompositions. Inf. Process.
Lett. 17(2), 91–95 (1983)

12. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. ACM Trans. Database Syst. 33(2) (2008)

13. Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In: Gan-
ter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 371–385.
Springer, Heidelberg (2000)

14. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations.
Springer, Heidelberg (1999)

15. Gugish, R.: Many-valued context analysis using descriptions. In: Delugach, H.S.,
Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 157–168. Springer,
Heidelberg (2001)

176 R. Medina and L. Nourine

16. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algo-
rithm for discovering functional and approximate dependencies. The Computer
Journal 42(2), 100–111 (1999)

17. Medina, R., Nourine, L.: A unified hierarchy for functional dependencies, condi-
tional functional dependencies and association rules. In: Ferré, S., Rudolph, S.
(eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 98–113. Springer, Heidelberg
(2009)

18. Missaoui, R., Nourine, L., Renaud, Y.: Generating positive and negative exact rules
using formal concept analysis: Problems and solutions. In: Medina, R., Obiedkov,
S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 169–181. Springer, Heidelberg
(2008)

19. Petit, J.-M., Toumani, F., Boulicaut, J.-F., Kouloumdjian, J.: Towards the reverse
engineering of denormalized relational databases. In: ICDE, pp. 218–227. IEEE
Computer Society, Los Alamitos (1996)

20. Weddell, G.E.: Reasoning about functional dependencies generalized for semantic
data models. ACM Transactions on Database Systems 17(1), 32–64 (1992)

Constrained Closed Datacubes

Sébastien Nedjar, Alain Casali, Rosine Cicchetti, and Lotfi Lakhal

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS UMR 6166, Aix-Marseille Université

I.U.T. d’Aix en Provence, Avenue Gaston Berger,
13625 Aix en Provence Cedex1, France
firstname.lastname@lif.univ-mrs.fr

Abstract. This paper focuses on borders and lossless representations for
Constrained Datacubes of database relations, which can represent many-
valued contexts. The final goal is to optimize both storage space and
computation time. First we study the succinct representation through
the borders Lower / Upper and Upper� / Upper. However, these bor-
ders are not information-lossless. Therefore, by using the concept of
cube closure, from a FCA perspective, we define three new information
lossless representations for Constrained Datacubes: the L-Constrained
Closed Datacube, the U �-Constrained Closed Datacube and the U ��-
Constrained Closed Cube. The latter is obtained by using the constrained
closed tuples along with the border Upper� from which redundancy is
discarded in order to obtain an optimal representation. Finally, we eval-
uate experimentally the size of the introduced representations. The re-
sults are strongly emphasizing the idea that the latest structure is, to
the best of our knowledge, the smallest representation of Constrained
Datacubes.

1 Introduction and Motivation

The Datacube [1] is a key concept for data warehouse management. Precomput-
ing all the possible aggregates at various levels of granularity makes it possible
to handle Datacubes and efficiently answer Olap queries. Several variations
of the concept of Datacubes can be found in the recent research. The Con-
strained (Convex) Datacube concept was introduced in [2] to unify the Dat-
acubes which are computed and pruned with monotone and/or anti-monotone
constraints [3, 4]. For instance, Iceberg Datacubes are partial Datacubes inspired
by frequent patterns. They capture only sufficiently significant trends by enforc-
ing minimal threshold constraints over measures [5]. Window Datacubes can be
seen as extending the previous ones by restricting measures to a given range
[2]. In the latest context, users are provided with trends fitting in a particular
“window”. Emerging Cube [6–8] captures trends growing significant in a time
frame. Dually, in the same time reference, the Emerging Cube emphasizes the
vanishing trends. This kind of knowledge is central to multidimensional analysis
of Olap.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 177–192, 2010.
� Springer-Verlag Berlin Heidelberg 2010

178 S. Nedjar et al.

Being a convex space the Constrained Datacube can be represented using one
of the following couple of borders: (i) either the Lower and Upper borders [2], (ii)
or the Upper� and Upper borders [7]. The choice of borders addresses different
issues:

(i) when determining if an unknown tuple belongs to the Constrained Dat-
acube, the borders are used as a minimal compact representation of the
Constrained Datacube; and

(ii) Nedjar [9] proposes a method based on the borders and on a probabilis-
tic counting for calibrating the thresholds (linked to a constraint). As a
consequence, we can nearly determine the size of a Constrained Datacube,
without computing it.

However, not any couple of borders provide an information lossless representation
because the associated measure values can no longer be derived. Often, the size
of the Constrained Datacube is huge. A sound structure for reducing its size is
necessary.

This paper focuses on information lossless representations of the Constrained
Datacube which optimize both storage space and computation time. The main
contributions are twofold:

(i) in retrieving the associated measure value: using the concept of cube closure
[10], we propose three information-lossless representations: the L-Constrai-
ned Closed Datacube, the U �-Constrained Closed Datacube and the U ��-
Constrained Closed Datacube. These structures contain the borders (L; U),
(U �; U) and (U ��; U) respectively. U ��, called the Reduced Upper� border,
is achieved by discarding all the redundancies from U �. We show that the
border U �� is the smallest information to be appended to the constrained
closed tuples in order to achieve a lossless representation. We emphasize that
these innovative structures can be easily adapted to the binary context. The
reduced binary representation is also new.

(ii) in comparing the size of the borders L, U � and U ��: We perform experiments
using classical data sets in data mining and data warehousing. Interesting
results yield: when compared to L, U � brings a systematic gain with a factor
varying from 1.35 to 275 and the border U �� is obviously more compact.

The article is organized as follows. In Section 2, we resume the characterization
of the Constrained Datacube and its representations with borders. Section 3 is
devoted to the cube closure operator. The three information lossless represen-
tations based on the cube closure are detailed in Section 4 and the experiments
are described in Section 5.

2 Constrained Datacube Framework

Let us consider a database relation r (which can represent a many-valued context
[11]) with a set of attributes dimensions D (denoted by D1, D2, . . . , Dn) and
a set of measures (noted M). The Constrained Datacube characterization fits

Constrained Closed Datacubes 179

in the more general framework of the cube lattice of the relation r: CL(r) [12].
The latter is a suitable search space which is to be considered when computing
the Datacube of r. It organizes the tuples, possible solutions of the problem,
according to a generalization / specialization order, denoted by �g [13]. These
tuples are structured according to the attributes dimensions of r which can be
provided with the value ALL [1]. Moreover, we append to these tuples a virtual
tuple which only encompasses empty values in order to close the structure. Any
tuple of the cube lattice generalizes the tuple of empty values. For handling the
tuples of CL(r), the operator + is defined. This operator is a specification of the
meet operator applied to the cube lattice framework [12]: provided with a couple
of tuples, it yields the most specific tuple in CL(r) which generalizes the two
operands. Dually, the Product operator, noted •, is a specification of the join
operator in our framework. the Product of two tuples yields the most general
tuple which specializes the two operands.

Example 1. Let us consider the relation Document (cf. Table 1) giving the
quantities of books sold by Type, City, Publisher and Language. In CL(Docu-

ment), let us consider the sales of Novels in Marseilles, whatever the publisher
and language are, i.e. the tuple (Novel, Marseilles, ALL, ALL). This tuple is spe-
cialized by the two following tuples of the relation: (Novel, Marseilles, Collins,
French) and (Novel, Marseilles, Hachette, English). Furthermore, (Novel, Mar-
seilles, ALL, ALL) �g (Novel, Marseilles, Collins, French) exemplifies the gener-
alization order between tuples. Moreover we have (Novel, Marseilles, Hachette,
English) + (Novel, Marseilles, Collins, French) = (Novel, Marseilles, ALL, ALL),
and (Novel, Marseilles, ALL, French) • (ALL, Marseilles, Collins, ALL) = (Novel,
Marseilles, Collins, French).

Table 1. Relation example Document

Type City Publisher Language Quantity

Novel Marseilles Collins French 400
Novel Marseilles Hachette English 100

Textbook Paris Hachette French 100
Textbook Marseilles Collins English 300

Essay Paris Collins French 200

Definition 1 (Measure function). Let f be an aggregation function (Sum,

Count, Min, Max ...), r a database relation and t a tuple (or cell) of CL(r).
We denote by fval(t, r) the value of the aggregation function f associated to the
tuple t in CL(r).

Example 2. If we consider the Novel sales in Marseilles, for any Publisher and
Language, i.e. the tuple (Novel, Marseilles, ALL, ALL) of CL(Document) we
have: SUMval((Novel, Marseilles, ALL, ALL), Document) = 500.

180 S. Nedjar et al.

In the remainder of this section, we study the cube lattice structure faced with
conjunctions of monotone and anti-monotone constraints according to the gen-
eralization order. We show that this structure is a convex space which is called
Constrained Datacube. We propose condensed representations (with borders) of
the Constrained Datacube with a twofold objective: defining the solution space
in a compact way and deciding whether a tuple t belongs or not to this space.

We take into account the monotone and anti-monotone constraints the most
used in database mining [4]. They are applied on:

– measures of interest like pattern frequency, confidence, correlation. In these
cases, only the dimensions of D are necessary;

– aggregates computed from measures of M and using statistic additive func-
tions (Sum, Count, Min, ...).

We recall the definitions of convex space, monotone and/or anti-monotone con-
straints according to the generalization order �g.

Definition 2 (Convex Space). Let (P ,≤) be a partial ordered set, C ⊆ P
is a convex space if and only if ∀x, y, z ∈ P such that x ≤ y ≤ z and x, z ∈
C then y ∈ C. Thus C is bordered by two sets: (i) an “Upper set”, noted U , defined
by U = max≤(C), and (ii) a “Lower set”, noted L and defined by L = min≤(C).

Definition 3 (Monotone/anti-monotone constraints).

1. A constraint Const is monotone according to the generalization order if and
only if: ∀t, u ∈ CL(r) : [t �g u and Const(t)]⇒ Const(u).

2. A constraint Const is anti-monotone according to the generalization order if
and only if: ∀t, u ∈ CL(r) : [t �g u and Const(u)]⇒ Const(t).

Notations: We note cmc (camc respectively) a conjunction of monotone con-
straints (anti-monotone respectively) and chc an hybrid conjunction of con-
straints.

Example 3. In the multidimensional space of our relation example Document

(cf. Table 1), we would like to know all the tuples for which the measure value
is greater than or equal to 200. The constraint “Sum(Quantity) ≥ 200” is anti-
monotone. If the amount of sales by Type, City and Publisher is greater than
200, then the quantity satisfies this constraint at a more aggregated granularity
level e.g. by Type and Publisher (all the cities merged) or by City (all the types
and publishers together). In a similar way, if we aim to know all the tuples for
which the quantity is lower than 400, the underlying constraint “Sum(Quantity)
≤ 400” is monotone.

Theorem 1. The cube lattice with monotone and/or anti-monotone constraints
(const) is a convex space which is called Constrained Datacube, CD(r) = {t ∈
CL(r) such that const(t)}. Any tuple belonging to the Constrained Datacube is
called a constrained tuple.

In [2] we give different variants of Datacubes and their characterization as Con-
strained Datacube. For each one, we give the Sql query which computes it.

Constrained Closed Datacubes 181

2.1 Borders [L;U]

The characterization of the Constrained Datacube as a convex space makes it
possible to know whether a tuple satisfies or not the constraint conjunction by
only knowing the classical lower and upper borders [L; U] [2] of the Constrained
Datacube. Actually if a conjunction of anti-monotone constraints holds for a tu-
ple of CL(r) then any tuple generalizing it also respects the constraints. Dually if
a tuple fulfills a monotone constraint conjunction, then all the tuples specializing
it also satisfy the constraints.

Definition 4 (Borders [L; U]). The Constrained Datacube can be represented
by the borders: U which encompasses the maximal constrained tuples and L which
contains all the minimal constrained tuples according to �g.{

L = min�g ({t ∈ CL(r) | cmc(t) ∧ camc(t)})
U = max�g({t ∈ CL(r) | cmc(t) ∧ camc(t)})

Proposition 1. The borders [L; U] are a condensed representation for the Con-
strained Datacube: ∀ t ∈ CL(r), t is a constrained tuple if and only if ∃(l, u) ∈
(L, U) such that l �g t �g u. In other words, t is a constrained tuple if and only
if it belongs to the “range” [L; U].

Table 2. Border U of the Constrained
Datacube

(Essay, Paris, Collins, French)
(ALL, ALL, Hachette, ALL)
(Textbook, Marseilles, Collins, English)
(Novel, Marseilles, Collins, French)

Table 3. Border L of the Constrained
Datacube

(ALL, ALL, Hachette, ALL)
(Essay, ALL, ALL, ALL)
(ALL, Paris, ALL, ALL)
(Textbook, ALL, ALL, ALL)
(ALL, ALL, ALL, English)
(ALL, Marseilles, ALL, French)
(Novel, ALL, Collins, ALL)
(Novel, ALL, ALL, French)

Example 4. With our relation example Document, Tables 3 and 2 gives the bor-
ders [L; U] for the Constrained Datacube provided with the constraints Sum(Qu-
antity) ∈ [200, 400]. Provided with the borders, we know that the tuple (Essay,
ALL, Collins, French) is a constrained tuple because it specializes the tuple (Es-
say, ALL, ALL, ALL) which belongs to the border L while generalizing the tuple
(Essay, Paris, Collins, French) of the border U . Furthermore, the tuple (ALL,
Marseilles, Hachette, ALL) is not a constrained tuple. Even if it specializes the
tuple (ALL, ALL, Hachette, ALL) which belongs to the border L, it does not
generalize any tuple of the border U .

182 S. Nedjar et al.

2.2 Borders [U�;U]

In this section, we present another condensed representation of the Constrained
Datacube: the borders [U �; U] [7]. This representation is based on the maximal
tuples satisfying the anti-monotone constraint without verifying the monotone
one.

Definition 5 (Borders [U �; U]). The Constrained Datacube can be represented
through two borders: U (cf. theorem 1) and U � encompassing all the maximal
tuples not satisfying the monotone constraint but satisfying the anti-monotone
constraint. Thus, we have:{

U � = max�g({t ∈ CL(r) | ¬cmc(t) ∧ camc(t)})
U = max�g({t ∈ CL(r) | cmc(t) ∧ camc(t)})

Example 5. With our relation example Document, Table 4 gives the border U �

for the Constrained Datacube provided with the constraints Sum(Quantity) ∈
[200, 400] (the border U is given in Table 2). For instance, the tuple (ALL,
ALL, Collins, French) belongs to U � because the number of French books pub-
lished by Collins is greater than the given minimal threshold and all the tuples
specializing (ALL, ALL, Collins, French), and satisfying the anti-monotone con-
straint, do not verify the monotone constraint. This is why the quoted tuple is
maximal.

Table 4. Border U � of the Constrained Datacube

(ALL, ALL, Collins, French)
(ALL, Marseilles, Collins, ALL)
(Novel, Marseilles, ALL, ALL)

With the following proposition, we are provided with a simple mechanism
to know whether a tuple is a constrained tuple or not by using the borders
[U �; U].

Proposition 2. The borders [U �; U] are a condensed representation for the Con-
strained Datacube: ∀ t ∈ CL(r), t is a constrained tuple if and only if ∀ l ∈ U �,
l �g t and ∃u ∈ U such that t �g u. Thus t is a constrained tuple if and only if
it belongs to the “range” [U �; U].

Example 6. With our relation example, the tuple (Essay, ALL, Collins, French)
is a constrained tuple because it generalizes the tuple (Essay, Paris, Collins,
French) which belongs to the border U and does not generalize any tuple of the
border U �. Moreover (ALL, Marseilles, ALL, ALL) is not constrained because it
generalizes the tuple (Novel, Marseilles, ALL, ALL) of the border U �.

Constrained Closed Datacubes 183

3 Cube Closure

The cube connection [10] is a couple of functions rc = (λ, σ), such that λ is
defined from the cube lattice of r to the power set lattice of T id(r) and σ is
the dual function of λ. We show that rc is a special case of Galois connec-
tion between two lattices [11]. Hence, we obtain a closure operator over CL(r)
under r.

Definition 6 (Cube Connection). Let Rowid : r → N∗ be a mapping which
associates each tuple with a single positive integer and T id(r) = {Rowid(t) such
that t ∈ r} (i.e. the set of the tuple identifiers of the relation r). Let λ and σ be
two functions defined as follows:

λ : CL(r) → 〈P(T id(r)),⊆〉
t �→ ∪{Rowid(t′) ∈ T id(r) such that t �g t′ and t′ ∈ r}

σ : 〈P(T id(r)),⊆〉 → CL(r)

P �→
{

+{t ∈ r such that Rowid(t) ∈ P}
(∅, . . . , ∅) otherwise.

where P(T id(r)) stands for the power set of the tuple identifers of the relation
r (Tid(r)).

Proposition 3. The cube connection rc = (λ, σ) is a Galois connection between
the cube lattice of r and the power set lattice of T id(r).

Definition 7 (Cube Closure). Let T ⊆ CL(r) be a set of tuples, the Cube
Closure operator C : CL(r) → CL(r) according to T can be defined as follows:

C(t, T) = σ ◦ λ(t) = (∅, . . . , ∅) +
∑
t′∈T,

t�gt′

t′

where the operator
∑

has a very same semantics as the operator +.

Since rc = (λ, σ) is a Galois connection, C = σ ◦ λ, is a closure operator [11].

Let us consider all the tuples t′ in T . Let us aggregate them together by using
the operator

∑
. We obtain a new tuple which generalizes all the tuples t′ and

which is the most specific one. This new tuple is the closure of t.

Example 7. We achieve the closure of the tuple (Novel, ALL, ALL, ALL) in the
relation Document by aggregating all the tuples which specialize it by using
the operator +. C((Novel, ALL, ALL, ALL), Document)= (∅, . . . , ∅) + (Novel,
Marseilles, Collins, French) + (Novel, Marseilles, Hachette, English) = (Novel,
Marseilles, ALL, ALL).

Definition 8 (Measure function compatible with the cube closure). A
measure function, fval, relative to an aggregate function f , from CL(r) → R is
compatible with the closure operator C over T if and only if ∀t, u ∈ CL(r), it
satisfies the three following properties:

184 S. Nedjar et al.

1. t �g u ⇒ fval(t, T) ≥ fval(u, T) or fval(t, T) ≤ fval(u, T),
2. C(t, T) = C(u, T)⇒ fval(t, T) = fval(u, T),
3. t �g u and fval(t, T) = fval(u, T)⇒ C(t, T) = C(u, T).

This function is an adaptation of the weight function introduced in [14] for any
closure system of the power set. For example the measure functions Count and
Sum are compatible with the Cube Closure operator.

Thus in the same spirit as in [14], we can give another definition of the cube
closure operator using the previous measure functions. The Cube Closure oper-
ator according to T can be defined as follows:

C(t, T) = t • {t′ ∈ Atom(CL(r)) : fval(t, T) = fval(t • t′, T)}.

4 Structures of Constrained Closed Datacubes

The idea behind our representation is to remove redundancies existing within
Constrained Datacubes. Actually certain tuples share a same semantics while
others are more aggregated. In fact the ones and others are built up by aggre-
gating the very same tuples of the original relation but at different granularity
levels. Thus a single tuple, the most specific of them, can stand for the whole
set. The Cube Closure operator is intended for computing this representative
tuple.

Definition 9 (Constrained Closed Tuple). Let t ∈ CL(r) be a tuple, t is a
constrained closed tuple if and only if :

1. t is a constrained tuple;
2. C(t, r) = t.

Of course the closure of any constrained tuple is a constrained closed tuple
because, by its very definition, it is the most specific among all the tuples which
generalize it. Thus it is necessarily equal to its own closure.

Example 8. The tuple (ALL, Marseilles, ALL, English) is a constrained closed
tuple because:

1. (ALL, Marseilles, ALL, English) is a constrained tuple.
2. C((ALL, Marseilles, ALL, English), Document) = (ALL, Marseilles, ALL,

English).

Unfortunately, the set of constrained closed tuples is not a lossless representation
of the Constrained Datacube because for certain tuples it is not possible to decide
whether they are constrained or not. They are all the tuples more general than
the most general constrained closed tuples. For instance, let us consider the set
of all constrained closed tuples (T) in Table 5. The tuples (ALL, Marseilles,
Collins, French) and (ALL, ALL, Collins, French) share the same closure on T
: (Novel, Marseilles, Collins, French) which is a constrained closed tuple. The
former tuple is also constrained while the latter is not constrained.

Constrained Closed Datacubes 185

In order to achieve a lossless representation, we combine on the one hand the
set of constrained closed tuples from which the measure values can be retrieved
and on the other hand the borders which delimit the space of solutions. However,
the border U is already included in the closed tuple set, because the elements of
U are the most detailed (specific) constrained tuples. Thus they are necessarily
closed tuples.

4.1 L-Constrained Closed Datacubes

In this section, we introduce the L-Constrained Closed Cube which includes
both (i) the set of constrained closed tuples and (ii) the lower border L. This
approach is in the same spirit as the one proposed in [15] in the context of
transaction databases and which encompasses the constrained closed patterns
and the Lower border (L).

For reason of simplicity we use, from now on, t instead of (t, fval(t, r)) to
indicate a complete tuple with its dimension values and its measure.

Definition 10 (L-Constrained Closed Datacubes)
The L-Constrained Closed Datacube is defined as follows: LCCD(r) = {t ∈
CL(r) such that t is a constrained closed tuple} ∪ L.

Example 9. The L-Constrained Closed Datacube is represented through Table 5
giving the set of constrained closed tuples and Table 3 which proposes the lower
border L.

Table 5. Set of constrained closed tuples

Constrained Closed Tuple Sum(Quantity)

(Novel, Marseilles, Collins, French) 400
(Textbook, ALL, ALL, ALL) 400
(ALL, Marseilles, ALL, English) 400
(ALL, Paris, ALL, French) 300
(Textbook, Marseilles, Collins, English) 300
(ALL, ALL, Hachette, ALL) 200
(Essay, Paris, Collins, French) 200

In order to prove that the L-Constrained Closed Datacube is a lossless rep-
resentation for the Constrained Datacube, we introduce a lemma. It shows that
for any constrained tuple, we can compute its cube closure from either r or the
L-Constrained Closed Datacube, and of course obtain the same result. Due to
second equation of the measure function compatible with the cube closure, if two
tuples have a similar cube closure, they have a similar value for the aggregative
function.

186 S. Nedjar et al.

Lemma 1. For all constrained closed tuples t, C(t, LCCD(r)) = C(t, r)

Proof. t is an constrained closed tuple then C(t, r) = (∅, . . . , ∅) +
∑

t′ = t such
that t′ ∈ r and t �g t′. Thus C(t, LCCD(r)) = (∅, . . . , ∅) +

∑
t′ such that

t′ = (∅, . . . , ∅) +
∑

v, v ∈ r, t′ �g v and t �g t′. Thus C(t, LCCD(r)) =
(∅, . . . , ∅)+

∑∑
v such that v ∈ r and t �g v. Due to the additivity property of∑

, we have C(t, LCCD(r)) = (∅, . . . , ∅) +
∑

v = C(t, r) with v ∈ r and t �g v.
��

The following proposition makes sure that the L-Constrained Closed Datacube
is a lossless representation for the Constrained Datacube.

Proposition 4. The L-Constrained Closed Datacube is a lossless representation
for the Constrained Datacube: ∀ t ∈ CL(r), t is a constrained tuple if and only
if C(t, LCCD(r)) ∈ LCCD(r).

Proof. If t is constrained, we know that t′ = C(t, r) has a measure equal to the
one of t. Since t is constrained t′ is also constrained. Thus t′ is a constrained
closed tuple according to proposition 1:

C(t′, r) = C(t′, LCCD(r)) = C(t, LCCD(r))

Thus we have C(t, LCCD(r)) ∈ LCCD(r). ��

If t is not constrained then �l ∈ L such that l �g t and thus for all constrained
closed tuple t′ such that t �g t′. Since the closure of a tuple is the sum of all the
tuples specializing it and t is not specialized by tuples of L then C(t, {t′ ∈ CL(r)
such that t′ is a constrained closed tuple}) is not a constrained closed tuple. ��

Example 10. For instance, let us derive the sum of quantity of books sold for the
tuple (ALL, Marseilles, Collins, French). We know that this tuple is a constrained
tuple because it is in the range [L; U] (cf. Tables 3 and 2). By computing its
cube closure over LCCD(Document), we obtain the tuple (Novel, Marseilles,
Collins, French). Since the value of the Sum function of the previous tuple is 400,
we make sure that the value of the Sum function of (ALL, Marseilles, Collins,
French) is 400 and thus retrieve the expected result.

4.2 U�-Constrained Closed Datacubes

In this section, we introduce a new structure: the U �-Constrained Closed Dat-
acubes. It includes both (i) the set of constrained closed tuples and (ii) the
border U �. From definition 8, we can provide another characterization of the
tuples of the border U �: they are closed tuples satisfying the anti-monotone
constraint, but not the monotone constraint.

Definition 11 (U �-Constrained Closed Datacube). The U �-Constrained
Closed Datacube is defined as follows: U �CCD(r) = {t ∈ CL(r) such that t
is a constrained closed tuple} ∪ U �.

Constrained Closed Datacubes 187

Example 11. The U �-Constrained Closed Datacube is represented through Table
5 giving the set of constrained closed tuples and Table 4 which proposes the upper
border U �.

In order to prove that the U �-Constrained Closed Datacube is a lossless repre-
sentation for the Constrained Datacube we introduce two propositions. The first
one shows that for any constrained tuple, we can compute its cube closure from
either r or the U �-Constrained Closed Datacube, and of course obtain the same
result. The second one shows that two tuples having a same cube closure have
a same measure.

Lemma 2. For all constrained closed tuples t, C(t, U �CCD) = C(t, r)

Proof. The proof is similar as the one of lemma 1 by replacing the border L
by U �.

Proposition 5. The U �-Constrained Closed Datacube is a lossless representa-
tion for the Constrained Datacube: ∀ t ∈ CL(r), t is a constrained tuple if and
only if: C(t, U �CCD(r)) ∈ U �CCD(r)\U �.

Proof. If t is constrained, we know that t′ = C(t, r) has a measure equal to the
one of t. Since t is constrained t′ is also constrained. Thus t′ is a constrained
closed tuple, according to proposition 1 :

C(t′, r) = C(t′, U �CCD(r)) = C(t, U �CCD(r))

Thus we have C(t, U �CCD(r)) ∈ U �CCD(r). ��

If t is not constrained then ∃u ∈ U � such that t �g u and thus for all the
constrained closed tuples t′, t �g t′. Since the closure of a tuple is the sum
of all the tuples specializing it and t is only specialized by tuples of U � then
C(t, U �CCD(r)\U �) /∈ U �CCD(r)\U �. ��

Example 12. Let us derive the measure of (Novel, ALL, Collins, French). We
know that this tuple is constrained because it is in the range [U �; U] (cf. Tables
4 and 2). By computing its cube closure over U �CCD(r)(Document), we obtain
the tuple (Novel, Marseilles, Collins, French). Since the value of the Sum function
of the previous tuple is 400, we make sure that the value of the Sum function

of (Novel, ALL, Collins, French) is 400 and thus retrieve the expected result.

4.3 U��-Constrained Closed Datacubes

In the previous section, we have shown that the border U � must be appended to
the constrained closed tuples in order to achieve an information-lossless repre-
sentation of the Constrained Datacube. By making use of the cube closure, we
simplify the border U � by discarding all the redundancies that it can encompass.
By this way, we obtain a new lossless representation: the U ��-Constrained Closed
Datacube.

188 S. Nedjar et al.

Definition 12 (Redundant Closed Tuple). For all tuple t ∈ U �, t is a re-
dundant closed tuple if and only if:

C(t, U �CCD(r)\{t}) = t

Let us notice that the above definition is proposed in the same spirit as the elim-
ination of redundant attributes when computing minimal covers for functional
dependencies.

Example 13. The tuple (ALL, Marseilles, Colins, ALL) is a redundant closed
tuple because C((ALL, Marseilles, Colins, ALL), U �CCD(Document)\{(ALL,
Marseilles, Colins, ALL)}) = (∅, . . . , ∅) + (Novel, Marseilles, Collins, French) +
(Textbook, Marseilles, Collins, English) = (ALL, Marseilles, Colins, ALL).

Definition 13 (U �� Border). The Reduced Border U � is defined as follows :

U �� = {t ∈ U � such that t is not a redundant closed tuple}

Example 14. With our example, the Reduced Border U �� encompasses a single
tuple: (Novel, Marseilles, ALL, ALL). The other tuples of U � are discarded (cf.
definition 12).

Let us recall that, like all the tuples of U �, all the tuples of U �� satisfy the
anti-monotone constraint. If we consider the lattice L which encompasses all the
constrained closed tuples satisfying the anti-monotone constraint, the tuples of
U �� are the meet-irreducible elements of L which do not verify the monotone
constraint.

Definition 14 (U ��-Constrained Closed Datacube). The U ��-Constrained
Closed Datacube, noted U ��CCD, is defined as follows: U ��CCD(r) = {t ∈
CL(r) such that t is a constrained closed tuple} ∪ U ��.

Example 15. With our relation example, the U ��-Constrained Closed Datacube
is composed of the constrained closed tuples given in Table 5, and the border
U ��.

The following proposition shows that removing redundant closed tuples from
the border U � does not alter the closure computation for the constrained closed
tuples. Thus the U ��-Constrained Closed Datacube is a lossless representation
for the U ��-Constrained Closed Datacube and by transitivity it is a lossless
representation for the Constrained Datacube (cf. proposition 6).

Lemma 3. ∀ t ∈ U ��CCD(r), C(t, U ��CCD(r)) = C(t, U �CCD(r)).

Proof. The proof is similar as the one of lemma 1 by replacing the border L by
U ��.

Proposition 6. The U ��-Constrained Closed Datacube is a lossless representa-
tion for the Constrained Datacube: ∀ t ∈ CL(r), t is a constrained tuple if and
only if C(t, U ��CCD(r)) is a constrained closed tuple.

Constrained Closed Datacubes 189

Proof. The tuples discarded from U � does not alter the closure computation for
the constrained closed tuples because they are not Meet irreducible. ��

Example 16. Let us derive the value of the Sum function of the tuple (Novel,
ALL, Collins, French). We know that this tuple is possibly constrained because it
generalizes the tuple (Novel, Marseilles, Collins, French) of U . By computing its
cube closure over U ��CCD(Document), we obtain the tuple (Novel, Marseilles,
Collins, French). Since this closed tuple is a constrained closed tuple, and its
value for the measure is 400, we can assert that the value for the Sum of (Novel,
ALL, Collins, French) is 400.

Concerning the tuple (ALL, Marseilles, ALL, ALL), we can say that this
tuple is possibly a constrained tuple because it generalizes the tuple (Textbook,
Marseilles, Collins, English) belonging to the border U . However, its cube closure
over U ��CCD(Document), i.e. the tuple (ALL, Marseilles, ALL, ALL), does
not belong to the set of contrained closed tuples (cf. Table 5), this is why we
can say that (ALL, Marseilles, ALL, ALL) is not a constrained tuple.

5 Experimental Evaluations

In order to validate the lossless representations based on the cube closure (cf .
section 4), we perform experiments to evaluate only the size of the borders
Lower (L), Upper � (U �) and Reduced Upper� (U ��). Remark that the constrained
closed tuples remains the same over the three proposed representations. For this
purpose, we use classical data sets1,2. We choose real and synthetic data sets.
Their characteristics are reported in Table 6. They are:

– the data set of census Pumsb extracted from “Pumsb sample file”,
– the real data set SEP85L containing weather conditions at various weather

stations or lands from December 1981 to November 1991. This weather data
set has been frequently used in calibrating various cube algorithms [13],

– the synthetic data sets T10I4D100K and T40I10D100K, built up from sale
data.

Table 6. Data Sets

Name #Tuples #Attributes #Values

Pumsb 49 046 74 2 113
SEP85L 1 015 367 9 7 175
T10I4D100K 100 000 10 1 000
T40I10D100K 100 000 40 1 000

1 http://fimi.cs.helsinki.fi/
2 http://cdiac.ornl.gov/ftp/ndp026b/SEP85L.DAT.Z

http://fimi.cs.helsinki.fi/
http://cdiac.ornl.gov/ftp/ndp026b/SEP85L.DAT.Z

190 S. Nedjar et al.

In our experiments, for computing the border U �, we choose the algorithm
Mafia [16] because of its efficiency and availability. In order to evaluate the size
of the border L, we use the algorithm Mctr [17].

We choose to consider two distinct thresholds minimal (MinThd) and max-
imal (for the anti-monotone and monotone constraints). For any data set, the
minimal threshold remains similar during all the experiments. This threshold
has a value slightly lower than the lowest value of the maximal threshold. More-
over the latter varies in a range appropriated to each data set. By this way, we
obtain significant results (neither too low nor too high). We propose a presenta-
tion both graphic and quantitative for the evaluation of the number of elements
in the borders.

MinThd |L| |U �| |U ��|
90 2 693 259 0
80 11 876 3 145 0
70 39 905 11 737 0
60 131 179 37 388 0
55 409 167 92 221 0
50 1 052 671 193 939 8099

Fig. 1. Experimental Results for Pumsb

MinThd |L| |U �| |U ��|
0.1 20 020 3 506 0

0.08 25 256 4 298 0
0.04 33 235 8 958 0
0.02 70 474 20 078 0
0.01 182 218 43 282 9 084

Fig. 2. Experimental Results for SEP85L

In any case, the border U � is significantly more reduced than L. For instance,
for real data sets, in the most critical cases when the threshold is very low and
borders are large, the size of U �� is very small and of course more reduced than
U �. By increasing the threshold, the border size obviously decreases. We establish
that the gain factor provided by U � when compared to L is even more important.
In such cases, U �� has a null size which means that the U ��-Constrained Closed
Datacube only encompasses the constrained closed tuples. The experiments run
on synthetic data confirm and enlarge these results with a gain factor varying
from 76 to 275 (T40I10D100K) or 25 to 55 (T40I10D100K) for U �. As previously

Constrained Closed Datacubes 191

MinThd |L| |U �| |U ��|
1.00 70 611 370 0
0.50 161 617 585 0
0.25 255 762 1 592 3
0.15 295 668 2 399 43
0.10 344 651 4 054 220
0.01 9 755 344 127 264 86 137

Fig. 3. Experimental Results for T10I4D100K

MinThd |L| |U �| |U ��|
1.5 270 289 4 947 0
1.0 519 679 21 217 0
0.8 792 785 27 066 9 473
0.5 2 165 949 65 815 41 193

Fig. 4. Experimental Results for T40I10D100K

indicated, U �� has a size systematically null when the threshold is high. When
compared to the size of U �, the gain factor is around 1.5 in the worse cases (when
the two thresholds are very close).

6 Conclusion

The borders Lower / Upper and Upper� / Upper are possible representations
of a convex space, which is the case of any Datacube computed with monotone
and/or anti-monotone constraints. However, this convex structure does not make
possible to retrieve the value of the aggregative function of a tuple which belongs
to the solution space. This is why, we have proposed three information lossless
structures based on the cube closure operator [10]: the L-Constrained Closed
Datacube, U �-Constrained Closed Datacube and the U ��-Constrained Closed
Datacube. The latter is built up from the U �-Constrained Closed Datacube,
from which we have discarded the redundancies in the U � border. Experimental
evaluations comparing the size of the three mentioned representation have shown
that the size of the U ��-Constrained Closed Datacube is really smaller than the
other ones.

An interesting prospect of the presented approaches is to find a method which,
given the size of the Constrained Datacube [9], chooses the best algorithm for
computing the Constrained Closed Datacube.

192 S. Nedjar et al.

References

1. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

2. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Convex cube: Towards a unified
structure for multidimensional databases. In: Wagner, R., Revell, N., Pernul, G.
(eds.) DEXA 2007. LNCS, vol. 4653, pp. 572–581. Springer, Heidelberg (2007)

3. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

4. Pei, J., Han, J., Lakshmanan, L.V.S.: Pushing convertible constraints in frequent
itemset mining. Data Min. Knowl. Discov. 8(3), 227–252 (2004)

5. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg
cubes. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Confer-
ence, pp. 359–370. ACM Press, New York (1999)

6. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Emerging cubes for trends analysis
in olap databases. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007.
LNCS, vol. 4654, pp. 135–144. Springer, Heidelberg (2007)

7. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Emerging cubes: Borders, size
estimations and lossless reductions. Information Systems 34(6), 536–550 (2009)

8. Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Reduced representations of emerg-
ing cubes for olap database mining. IJBIDM 5(1), 268–300 (2010)

9. Nedjar, S.: Exact and approximate sizes of convex datacubes. In: Pedersen, T.B.,
Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 204–215.
Springer, Heidelberg (2009)

10. Casali, A., Nedjar, S., Cicchetti, R., Lakhal, L.: Closed cube lattices. Annals of
Information Systems 3(1), 145–164 (2009); New Trends in Data Warehousing and
Data Analysis

11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

12. Casali, A., Cicchetti, R., Lakhal, L.: Cube lattices: A framework for multidimen-
sional data mining. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia
(2003)

13. Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: How to summarize the se-
mantics of a data cube. In: Lochovsky, F.H., Shan, W. (eds.) VLDB, pp. 778–789.
Morgan Kaufmann, San Francisco (2002)

14. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

15. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Morik,
K., Rastogi, R. (eds.) ICDM, pp. 35–42. IEEE Computer Society, Los Alamitos
(2004)

16. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: A maximal
frequent itemset algorithm. IEEE Trans. Knowl. Data Eng. 17(11), 1490–1504
(2005)

17. Casali, A., Cicchetti, R., Lakhal, L.: Extracting semantics from data cubes us-
ing cube transversals and closures. In: Getoor, L., Senator, T.E., Domingos, P.,
Faloutsos, C. (eds.) KDD, pp. 69–78. ACM, New York (2003)

Conceptual Navigation in RDF Graphs with
SPARQL-Like Queries

Sébastien Ferré

IRISA, Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France

ferre@irisa.fr

Abstract. Concept lattices have been successfully used for information
retrieval and browsing. They offer the advantage of combining querying
and navigation in a consistent way. Conceptual navigation is more flexi-
ble than hierarchical navigation, and easier to use than plain querying.
It has already been applied to formal, logical, and relational contexts,
but its application to the semantic web is a challenge because of in-
ference mechanisms and expressive query languages such as SPARQL.
The contribution of this paper is to extend conceptual navigation to the
browsing of RDF graphs, where concepts are accessed through SPARQL-
like queries. This extended conceptual navigation is proved consistent
w.r.t. the context (i.e., never leads to an empty result set), and com-
plete w.r.t. the conjunctive fragment of the query language (i.e., every
query can be reached by navigation only). Our query language has an
expressivity similar to SPARQL, and has a more natural syntax close to
description logics.

1 Introduction

With the growing amount of available resources in the Semantic Web (SW),
it is a key issue to provide an easy and effective access to them, not only to
specialists, but also to casual users. The challenge is not only to allow users to
retrieve particular resources (e.g., flights), but to support them in the exploration
of a domain knowledge (e.g., which are the destinations? Which are the most
frequent? With which companies and at which price?). We call the first mode
retrieval search, and, following Marchionini [Mar06], the second mode exploratory
search. The latter is generally supported by faceted search [ST09].

Conceptual navigation, based on Formal Concept Analysis (FCA) [GW99],
also supports exploratory search by guiding users from concept to concept [CR96,
DE08, Fer09]. The concept lattice plays the role of an exploration space, where
each concept can be reached either by entering a query, or by following navigation
links between concepts. At each step of the navigation, the set of navigation links
is organized as a summary of the extent of the current concept, and provides
insight and feedback about the context, and thus supports exploratory search.
This solves the dilemma between using an expressive query language that is
difficult to use (e.g., Boolean queries), and an intuitive but rigid navigation
structure (e.g., file hierarchies).

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 193–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

194 S. Ferré

Languages of the SW, on the one hand, are more expressive than FCA, w.r.t.
both the representation language (e.g., RDFS vs formal context) and the query
language (e.g., SPARQL vs sets of attributes). Extensions of FCA such as Logical
Concept Analysis (LCA) with relations [FRS05] or Relational Concept Analysis
(RCA) [HHNV07] get closer to SW languages but each extension still misses large
fragments of expressivity: e.g., LCA misses cycles in queries, RCA misses disjunc-
tion. On the other hand, querying languages for the SW (e.g., SPARQL [PAG06],
OWL-QL [FHH04]), while expressive, are difficult to use, even for specialists, and
do not provide enough feedback to satisfy exploratory search. Indeed, even if
users have a perfect knowledge of the syntax and semantics of the query lan-
guage, they may be ignorant about the application vocabulary, i.e., the ontology.
If they also master the ontology or if they use a query assistant (e.g., Protégé1),
the query will be syntactically correct and semantically consistent w.r.t. the on-
tology but can still produce no result (e.g., it makes sense to ask for a flight from
Rennes to Agadir, but it happens there is none). Faceted search systems such as
Slashfacet [HvOH06] or BrowseRDF [ODD06] rely on actual data instead of an
ontology to assist users in their search. They do support exploratory search but
with limited expressivity compared to SW query languages. For instance, they
allow neither for cycles in queries, nor for general disjunction and negation.

The contribution of this paper is to adapt and extend conceptual navigation to
the Semantic Web. We propose a navigation process that (1) is based on a query
language whose expressivity is similar to SPARQL, and (2) has a natural and
concise notation (similar to N32), and that is (3) consistent (no dead-end) and
(4) complete (every query can be reached by navigation). The last two points give
a formal basis to conceptual navigation, and make it a real alternative, rather
than a complement, to querying. Our approach builds upon, and is compatible
with, existing techniques for designing and storing ontologies, reasoning, as well
as querying languages and their implementations.

We first give basics of the Semantic Web (Section 2), and Logical Information
Systems (Section 3) from which our extension starts. We then detail our proposal
for conceptual navigation in the Semantic Web, separating the static part (user
interface as a local view on the concept lattice, Section 4), and the dynamic
part (user interactions as navigation links between concepts, Section 5). A few
perspectives are discussed before concluding (Section 6).

2 Basics of the Semantic Web

The Semantic Web is founded on several representation languages, such as RDF,
RDFS, and OWL, which provide increasing inference capabilities [HKR09]. The
two basic units of these languages are resources and triples. A resource can
be either a URI (Uniform Resource Identifier), a literal (e.g., a string, a num-
ber, a date), or a blank node, i.e., an anonymous resource. A URI is the ab-
solute name of a resource, i.e., an entity, and plays the same role as URL
1 See http://protege.stanford.edu/
2 See http://www.w3.org/DesignIssues/Notation3.html

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 195

w.r.t. web pages. Like URLs, a URI can be a long and cumbersome string
(e.g., http://www.w3.org/1999/02/22-rdf-syntax-ns#type), so that it is of-
ten denoted by a qualified name (e.g., rdf:type). A triple (s, p, o) is made of
3 resources, and can be read as a simple sentence, where s is the subject, p
is the verb (called the predicate), and o is the object. For instance, the triple
(ex:Bob,rdf:type,ex:man) says that “Bob has type man”, or simply “Bob is
a man”. Here, the resource ex:man is used as a class, and rdf:type is used as
a property, i.e., a binary relation. The triple (ex:Bob,ex:friend,ex:Alice)
says that “Bob has friend Alice”, where ex:friend is another property. The
triple (ex:man,rdfs:subClassOf,ex:person) says that “man is subsumed by
person”, or simply “every man is a person”. The set of all triples of a knowledge
base form a RDF graph. A RDF graph that uses the OWL vocabulary to define
classes and properties is generally called an ontology.

RDF(S) introduces a vocabulary of resources to represent the membership to
a class (rdf:type), subsumption between classes (rdfs:subClassOf) and be-
tween properties (rdfs:subPropertyOf), the domain (rdfs:domain) and range
(rdfs:range) of properties, the meta-classes of classes (rdfs:Class) and of
properties (rdf:Property), etc. OWL introduces additional vocabulary to rep-
resent complex classes and properties: e.g., restrictions on properties, intersection
of classes, inverse property. The variant OWL-DL is the counterpart of Descrip-
tion Logics (DL) [BCM+03], where resources are individuals, classes are con-
cepts, and properties are roles. Each language comes with a semantics, and the
richer the vocabulary is, the more expressive and the more complex the inference
is. In this paper, we do not make any strong assumption on the vocabulary.

Query languages provide on SW knowledge bases the same service as SQL
on relational databases. They generally assume that implicit triples have
been inferred and added to the base. The most well-known query language,
SPARQL [PAG06], reuse the SELECT FROM WHERE shape of SQL queries, using
graph patterns in the WHERE clause. For instance, twin siblings can be retrieved
by the following query:

SELECT ?x ?y FROM <ex.rdf> WHERE { { ?x ex:mother ?z. ?y ex.mother
?z. ?x ex:birthdate ?d. ?y ex:birthdate ?d } FILTER (?x != ?y) }

Two persons ?x and ?y are twins if they share a same mother and a same
birthdate, and are different. The FILTER condition is necessary because nothing
prevents two variables to be bound to a same resource.

There exists a mapping from RCA to DL [HHNV07], or equivalently from
RCA to OWL-DL. In short, it maps objects to resources, attributes to classes,
the incidence relation to the property rdf:type, each context of a Relational
Context Family (RCF) to a class, and each relation of the RCF to a property.
Formal concepts are mapped to defined OWL classes, and subconcept links are
mapped to the property rdfs:subClassOf. This suggests that the SW standard
formats based on XML can be used to represent and share FCA data, both formal
contexts and formal concept lattices. Therefore, every algorithm or system that
works on SW data does work on FCA data. Conversely, a challenge for FCA is

196 S. Ferré

to stretch its algorithms and systems so that they work on SW data [RKH07].
Previous work have mostly focused on the use of FCA to support the design
of ontologies: e.g., implication basis for description logics [BD08], acquisition of
OWL axioms based on attributed exploration [VR08]. The contribution of this
paper is the extension of FCA-based conceptual navigation to the semantic web.
We take Logical Information Systems (LIS) [Fer09] as a starting point because
they share, at a lower level, expressive query languages and inference.

3 Basics of Logical Information Systems

We here recall the basics of Logical Information Systems (LIS) because we
start from the structure of its user interface and interactions to conceptual
navigation on RDF graphs. LIS instantiate both the conceptual navigation
paradigm [Fer09], and the faceted search paradigm [ST09]3. LIS user interface
gives a local view of the concept lattice, centered on a concept called the focus.
The local view is made of three parts: (1) the query, (2) the extent, and (3) the
index. The query is a logical formula. The extent is the set of objects that are
matched by the query, along the principles of logical concept analysis [FR04].
The extent identifies the focus concept. Finally, the index is a finite subset of the
logic that is restricted to formulas that match at least one object in the extent.
The index plays the role of a summary or inventory of the extent, showing which
kinds of objects there are, and how many of each kind there are.

The query can be modified in three ways. To query by formula is to directly edit
the query, which requires expertise or luck from the user. To navigate is to select
formulas in the index in order to make the query more specific (moving down-
ward in the lattice) or more general (moving upward in the lattice). To query
by examples is to select a set of objects in the extent, which leads to the concept
whose intent (the new query) is the conjunction of all properties shared by the
selected objects. In the three cases, the modification of the query entails the up-
date of the extent, hence updating the focus concept and the index. By definition
of the index, no navigation link (a selection in the index) can lead to an empty
result. Conversely, because the navigation structure is a lattice rather than a hier-
archy, all valid conjunctions of formulas can be reached by navigation, and in any
order. Contrary to querying by formula, navigation only requires from the user to
recognize the meaning of formulas in the index, in the context of the application.

4 User Interface: Local View

The extension of the LIS framework to the semantic web applies to the query lan-
guage and navigation modes, highly improving expressivity and flexibility when
browsing a dataset. In this section, we redefine the LIS notion of local view. This
comprises the definition of queries and their extents, and the summarization index
over extents. Navigation links are defined in Section 5 on top of the local view.
3 See Chapters 3, 4, 5, 8, and 9 of this book.

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 197

We consider the dataset to be a RDF graph [PAG06], which may include both
explicit and implicit facts (i.e., triples) through reasoning. In this paper, we do
not make the distinction between the two. In practice, the implicit facts may be
materialized in a preprocessing stage, or infered on demand. We assume pairwise
disjoint infinite sets of URIs (U), blank nodes (B), and literals (L). The set of
resources is defined as R = U ∪B ∪ L.

Definition 1 (RDF graph). An RDF graph is defined as a set of triples
(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where s is the subject, p is the pred-
icate, and o is the object.

RDF vocabulary for genealogy. For illustration purposes, we consider RDF graphs
about genealogical data. The URIs of this domain are associated to a namespace
gen:. This prefix is omitted if there is no ambiguity. Resources can be persons,
events, places or literals such as names or dates. Persons belong either to the class
of men or to the class of women, may have a firstname, a lastname, a sex, a father, a
mother, a spouse, a birth, and a death. A birth or a death is an event that may have
a date and a place. Places can be described as parts of larger places. OWL axioms
may be used to enforce some invariants, e.g., the property spouse is symmetrical,
the property father is functional, and the property part is transitive.

Figure 1 shows the user interface of our prototype, applied to the genealogy
of George Washington4. It reflects the structure of a local view with the query at
the top, the extent at the left, and the index at the center and right. The query
selects “male persons whose lastname is Washington”. There are 17 answers in
the extent: e.g., George Washington. The central index shows that 7 of them
have a known birth’s place, and that 11 of them are known to be married. The
right index shows their distribution in a taxonomy of locations, according to
their birth’s place. The hidden tabs give their distribution according to their
birth’s year or firstname.

4.1 Queries and Extensions

A SPARQL query can be used to define the focus of a local view. For instance,
a local view that puts the focus on the set of “women whose some parent was
born in Virginia in 1642” can be defined by the following SPARQL query.

SELECT ?x
WHERE { ?x rdf:type gen:woman. ?x gen:parent ?p. ?p gen:birth ?b.

?b gen:date 1642. ?b gen:place ?l. gen:VA gen:part ?l. }

In LIS, a query must necessarily define a set of resources, i.e., a mono-dimensional
relation. This implies that we only need SPARQL queries with a single variable
in the SELECT clause. This also means that our queries are analogous to OWL
complex classes. In fact, the above query can be expressed in the description
logic SHOIN that backs OWL-DL:

Woman � ∃parent .∃birth.(∃date .{1642} � ∃place .∃part−.{VA}).
4 Downloadable at http://www.irisa.fr/LIS/ferre/camelis/camelis2.html

198 S. Ferré

Fig. 1. A local view: query (top), extension (left), and index (center and right). The
query selects male persons whose lastname is Washington.

The advantages of the DL syntax is that it is more concise, and that it avoids the
use of variables. LIS do not require from end-users the ability to write queries,
but they do require from them to understand queries. Ideally, the queries should
be understandable with little, if any, learning. We think that the DL syntax is
closer to this objective than the SPARQL syntax, provided that mathematical
symbols are replaced by words, of course. At the same time, SPARQL has more
expressive patterns (e.g., cycles).

We propose a new language for querying RDF graphs, where query results are
sets of resources. Therefore, the expressions of this language are called complex
classes, and make use of complex properties, derived from basic properties.

Definition 2 (complex property). A complex property is any of:
p : the property p itself,
p of the inverse of the property p,
p with the symmetric closure of the property p,
trans P the transitive closure of the complex property P (“transitively P”),
opt P the reflexive closure of the complex property P (“optionally P”).

Applying the three closures, opt trans p with, defines an equivalence rela-
tion, while opt trans P defines a partial ordering if P is antisymmetric, and a

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 199

pre-order otherwise. In the following, we use in as an abbreviation for the com-
plex property opt trans part of.

Definition 3 (complex class). Let V be an infinite set of variables, disjoint
with the set of resources R. For every resource r ∈ R, variable v ∈ V , URI u ∈ U ,
complex property P , and complex classes C, C1, C2, the following expressions are
also complex classes (in decreasing priority for operators):

r | ?v | ? | a u | P C | not C1 | C1 and C2 | C1 or C2.

Compared to DL languages, the complex class r corresponds to the nominal {r},
the anonymous variable ? corresponds to the top concept �, the expression P C
corresponds to a qualified existential restriction ∃P.C (simply a restriction from
now on), the expression a u corresponds to a concept name, the and corresponds
to concept intersection �, the or corresponds to concept union �, and not cor-
responds to concept complement ¬. The addition of variables ?v allows for the
expression of cyclical graph patterns, like in SPARQL. The notation p : is remi-
niscent of the notation of valued attributes. For example, in the expression name
: "John", name is the attribute, and "John" is the value. The expression can
be read “has name John”, or “whose name is John”. The above query can now
be written:

a woman and parent : birth : (date : 1642 and place : in VA)

A semantics for our language, and a practical way to compute answers to
queries in this language, is obtained by defining a translation to one-dimensional
SPARQL queries. Graph patterns are given in the abstract syntax (constructs:
AND, UNION, FILTER) defined in [PAG06], rather than the (equivalent) con-
crete SPARQL syntax, for the sake of simplicity and because it provides a nec-
essary extension for translating negation (construct: MINUS). The empty graph
pattern is denoted by 1.

Definition 4. Let C be a complex class. The SPARQL translation of C is de-
fined by

Γ (C) = SELECT ?x WHERE f(g)

where x ∈ V is a fresh variable not occurring in C, and (g, f) = γ(x, C) (f is a
function). The table below defines γ by induction on complex classes and complex
properties. γ(x, C) returns a graph pattern g, and a graph pattern modifier f ,
that together represent the fact that x is an instance of the complex class C.
γ(x, Pα, y) is a graph pattern representing the complex property P between x
and y, under the relation closure α. α is a subset of {?, +}, where ? (resp. +)
denotes the reflexive (resp. transitive) closure of a binary relation. For every i ∈
N, we assume (gi, fi) = γ(x, Ci).

200 S. Ferré

expression graph pattern graph pattern modifier
r 1 λg.(g FILTER ?x = r)
?v 1 λg.(g FILTER ?x = ?v)
? 1 λg.g
a u (?x, rdf:type, u) λg.g
P C g1 AND g2 f2

where y is a fresh variable, g1 = γ(x, P ∅, y), (g2, f2) = γ(y, C)
C1 and C2 g1 AND g2 λg.(f2(f1(g)))
not C1 1 λg.(g MINUS f1(g1))
C1 or C2 1 λg.(g AND (f1(g1) UNION f2(g2)))
p : (?x, pα, ?y)
p of (?y, pα, ?x)
p with (?x, pα, ?y) UNION (?y, pα, ?x)
opt P γ(x, P {?}∪α, y)
trans P γ(x, P {+}∪α, y)

Compared to SPARQL, our language is restricted to one-dimensional rela-
tions, which makes the SPARQL contruct OPT irrelevant. This restriction is
balanced to some extent by navigation (see end of Section 4.2). SPARQL al-
lows for variables in predicate position, which is not directly possible in our
language, but indirecly possible through the reification of triples. However, our
language has native general negation, and reflexive/transitive closure. Perez et
al. have shown that general negation is expressible in SPARQL, but in a very
cumbersome way [PAG06].

We can now define the second part of a local view, the extent. It is simply
defined as the answers to the SPARQL translation of the query.

Definition 5 (extent). Let C be a complex class. The extent of C, noted
ext(C), is the set of resources that are answers to its SPARQL translation Γ (C).
Every element of the extent is called an instance of the complex class C.

The extent of a query determines the focus concept the query leads to. The
definition and the computation of the intent of this concept is not necessary in
our framework. The intensional part of the local view is played by the index.

4.2 Summarization Index

The third part of the local view is the index which serves as a summary of the
extent. Every index term is a descriptor of some or all resources in the extent.
Therefore, every index term can be seen either as part of the intent of the focus
concept, when shared by all instances; or as a refinement of the query, when
shared by some of the instances.

Definition 6 (index term and intent term). Let q be a complex class repre-
senting the query of a local view, and C be a complex class that contains only vari-
ables that also occur in q. C is an index term of q, which we note C ∈ index (q),

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 201

if ext(q and C) �= ∅. C is an intent term of q, which we note C ∈ int(q), if
ext(q and not C) = ∅.

The number of index terms can be infinite, but in practice only a limited subset
is presented to the user at any given time. Initially, a small index is presented,
and then the user can expand it in a controlled way to see more index terms.

Instead of presenting the index terms as a flat list, they can be organized
into a partial ordering ≤ that reflects subsumption relationships between them.
Figure 1 shows how this partial ordering can be rendered as trees of complex
classes. The number at the left of each index term is its count. Figure 1 gives on
the right side the number of male Washington born in each place. This partial
ordering needs not be complete w.r.t. subsumption because it does not affect
query answering. The guiding criteria to design this partial ordering is that it
should: be intuitive to users (i.e., they can anticipate the infered subsumptions),
provide enough structure to the index, and be of practical complexity.

In the illustrations of this paper, we use RDFS inference through the proper-
ties rdfs:subClassOf and rdfs:subPropertyOf. In the partially ordered index,
every class is placed under its superclasses. For instance, a woman ≤ a person
≤ a thing. Every property is placed under its superproperties, and also under
its different closures. For instance, father of ≤ parent of ≤ trans parent
of. From this ordering of complex properties, restrictions can also be ordered:
P1 C1 ≤ P2 C2 ⇐⇒ P1 ≤ P2 ∧ C1 ≤ C2. For instance, father of a man
≤ parent of a person. Every index term is placed under the anonymous vari-
able ?, which then plays the role of the root of the whole index. Similarly, all
restrictions in the form P C are grouped under P ?.

We have noted above that a reflexive and transitive complex property, i.e., in
the form of opt trans P , is a partial ordering. This partial ordering can be used
to organize the index because the following subsumption holds for every complex
property P , and every resources r1, r2: opt trans P r1 ≤ opt trans P r2 ⇐⇒
r1 ∈ ext(opt trans P r2). This is illustrated in Figure 1, on the right side, by
the birthplace of male Washington’s (recall that in = opt trans part of):
e.g., birth : place : in Westmorland ≤ birth : place : in VA, because
Westmorland ∈ ext(in VA) (“Westmorland is in VA”). Therefore, the tree under
the index term birth : place : in ? forms a taxonomy of locations, even if
each location is represented in the RDF graph as a resource, and not as a class.
Similarly, a descendancy chart of the ancestors of the selected people is obtained
under the index term opt trans parent : ?, showing under each individual
its children, and this recursively.

The index alleviates to some extent our restriction to one-dimensional queries.
Assume the SPARQL query SELECT ?x ?y WHERE { ?x rdf:type gen:man .
?x gen:mother ?y }. By setting the query to a man, and by expanding the
index term mother : ?, the index gives the list of mothers of a man, and for
each mother, how many male children she has. A highlighting mechanism allows
to select a man in the extent to discover who is his mother; and symmetrically, to
select a mother in the index to discover which are her children. This presentation
is also more compact than a listing of all pairs (man, mother).

202 S. Ferré

5 User Interaction: Navigation Links

A local view is determined by its query. The query determines the extent and
the index as presented above. By default, the user is initially presented with the
local view of the most general query ?, whose extent is the set of all resources
defined in the dataset. In their search for information, users need to change the
focus, i.e., to change the current query. In retrieval search, users are looking for
a particular set of resources, and try and find the query whose extent matches
this set of resources. For instance, to answer the question “Which women are
married to a Washington?”, we can use the query a woman and married with
lastname : Washington. In exploratory search, users are looking for patterns
in data rather than for particular resources. For instance, if users is interested in
the birthplace of people having lastname “Washington”, they can set the query
to lastname : Washington, and then explore the index under the index term
birth : place : in ?. They obtain a natural hierarchy of places, where each
place is annotated by the proportion of the Washington’s that were born in this
place. The index also informs about their birthdates, ancestors, descendants, etc.

A well informed user can of course directly type in queries. However, as ex-
plained in the introduction, this requires not only to have good knowledge of
the query language (syntax and semantics) and of the domain-specific vocabu-
lary (e.g., man, place), but also of the contents of the dataset if one wants to
avoid empty results. This is paradoxical as the less we know a dataset, the more
we need to search in it. We propose to define navigation graphs whose nodes
are queries, hence local views, and whose edges are navigation links that users
can follow.

Definition 7 (navigation graph). A navigation link is a triple (q l q′),
where q is the source query, q′ is the target query, and l is the label of the
navigation link. A navigation graph G is a set of navigation links that is deter-
ministic, i.e., if (q l q′1) and (q l q′2) are 2 navigation links of G, then q′1 ≡ q′2
(≡ denotes query equivalence).

Definition 8 (local links). Let G be a navigation graph, and q be a query. The
local links of q in G, noted LinksG(q), is the set of navigation links in G whose
source query is q. A navigation graph G is locally finite iff LinksG(q) is finite
for every complex class q.

In the following, we first define the different kinds of navigation links, i.e., the
navigation modes. Then a navigation graph is proved consistent, i.e., never leads
to empty results. Finally, a locally finite navigation graph is proved complete,
e.g., can lead to arbitrary queries/local views. These two navigation graphs define
bounds between which every navigation graph is both consistent and complete.

5.1 Navigation Modes

There are only three navigation modes: zoom-in, naming, and reversal. Each
navigation mode determines the target query in function of the source query

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 203

and an additional argument. A zoom-in applies to a complex class, a naming
applies to a variable name (generated or user-given), and a reversal applies to
a part of the source query. If we see the query in its SPARQL form, the zoom-
in extends the graph pattern, while the reversal changes the variable in the
SELECT clause. The naming makes a variable of the SPARQL query visible in
the LIS query.

Definition 9 (zoom-in). Let q be a query, and C be a complex class. A triple
(q [zoom-in C] q′) is a zoom-in navigation link iff q′ = (q and C).

Zoom-in is mostly useful when the extent of the resulting query is strictly smaller
and not empty. This is obtained when using index terms that are not intent
terms. This useful distinction can be made visible in the interface by different
renderings (e.g., font-color), and annotations (e.g., count).

Naming works similarly to zoom-in, but applies to a fresh variable, i.e., not
occurring in the initial query, while zoom-in is expected to apply to variables
already occurring in the source query.

Definition 10 (naming). Let q be a query, and ?v be a variable. A triple
(q [naming ?v] q′) is a naming navigation link iff the variable v does not occur
in q, and q′ = (q and ?v).

Naming does not change the extent, because it produces a query that is equiva-
lent to the initial query, but it introduces a new variable in the query, and hence
in the index. Subsequent zoom-in navigation links on these variables allow to
form cycles in the graph pattern of the query.

Reversal does not change the graph pattern, but it changes the variable that
appear in the SELECT clause. Indeed, in a LIS query, the focus is only on one
variable, and it is useful to change this focus. Therefore, a reversal changes the
extent, and hence the focus. A difficulty is that not all variables in the SPARQL
pattern appear in its corresponding LIS query. In a reversal navigation link, the
new variable is implicitly designated by a part of the query: i.e., an occurrence
of a complex class or complex property in the query. Reversal is undefined when
the part of the query is in the scope of union or complement.

Definition 11 (reversal). Let q be a query, and e be a part of q. A triple
(q [reversal e] q′) is a reversal navigation link iff e does not occur in the
scope of a union or complement, and q′ = ρ(?, q). The following table de-
fines ρ(q′, C) by induction on the complex class C. The underlined part indicates
in which part of the query the selected element e stands. The first parameter q′

is used as an accumulator in the building of the target query.

complex class C result of ρ(q′, C)
P C′ when σ(P) = subject ρ(q′, P C′)
P C′ when σ(P) = object ρ(q′, P C′)
P C′ ρ(P−1 q′, C′)
C1 and C2 ρ(q′ and C2, C1)
C1 and C2 ρ(q′ and C1, C2)
otherwise q′ and C

204 S. Ferré

This definition needs a definition for the inverse of a complex property (P−1),
and for what a complex property refers to, whether the subject or the object of
the property (σ(P)). The following table provides these definitions by induction
on complex properties:

complex property P inverse P−1 reference (σ(P))
p : p of object
p of p : subject
p with p with subject
opt P opt P−1 σ(P)
trans P trans P−1 σ(P)

We illustrate reversal with two examples, starting with the query already
presented earlier: q = a woman and parent : birth : (date : 1642 and
place : in VA).

– q [reversal place :] place of (birth of parent of a woman and
date : 1642) and in VA
new focus on “where in Virginia a parent of a woman was born in 1642”

– q [reversal 1642] 1642 and date of (place : in VA and birth of
parent of a woman)
new focus on “the date 1642 of the birth in VA of a parent of a woman”

We now define a generic navigation graph, parameterized by a vocabulary of
complex classes.

Definition 12 (C-navigation graph). Let C be a set of complex classes, called
vocabulary. The C-navigation graph G defines for every source query q the set
of local navigation links, LinksG(q), as follows:
- a zoom-in link for each C ∈ index (q) ∩ C;
- a zoom-in link for each not C s.t. C ∈ C \ int(q);
- a naming link for one fresh variable;
- and a reversal link for each part of q not occurring in a union or complement.

5.2 Navigation Consistency

We first define consistency for navigation links and navigation graphs.

Definition 13 (navigation consistency). A navigation link (q l q′) is consis-
tent w.r.t. a dataset iff it preserves the existence of answers, i.e., ext(q) �= ∅ implies
ext(q′) �= ∅. A navigation graph is consistent iff its links are all consistent.

A zoom-in link is consistent if it applies to an index term or to the complement
of non-intent term of the query, so that every index term represents one or two
consistent navigation links. All naming and reversal links are consistent.

Lemma 1. Let q be a query. For every complex class C ∈ index (q), the navi-
gation link (q [zoom-in C] q′) is consistent; and for every complex class C /∈
int(q), the navigation link (q [zoom-in not C] q′) is consistent.

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 205

Proof. By definition of index (q), int(q), and navigation link consistency. �

Lemma 2. Let q be a query, and v be a variable not occurring in q. The navi-
gation link (q [naming ?v] q′) is consistent.

Proof. As ?v does not occur in q, q′ = q and ?v is equivalent to q and ?, which
is equivalent to q. �

Lemma 3. Let q be a query, and e be a part of the query q not occurring in the
scope of a union or complement. The navigation link (q [reversal e] q′) is
consistent.

Proof. It can be proved that the source and target query of a reversal link de-
fine the same SPARQL query, up to the renaming of variables, and the possible
replacement of the variable in the SELECT clause. If the source query q has
answers, this implies that every variable in the conjunctive part of the graph
pattern (not in the scope of an union or complement pattern) has substitution
values. Therefore, the new variable in the SELECT clause has substitution val-
ues. Hence, the target query q′ also has answers. �

Theorem 1. For every vocabulary C, the C-navigation graph is consistent.

Proof. This is a direct consequence of previous definitions and lemmas. �

This implies that, given that the initial query has answers, a user who only
follows navigation links in the navigation graph will never fall in a dead-end,
which is a frequent cause of frustration in information systems.

5.3 Navigation Completeness

A navigation graph is complete if every query is reachable from the query ?.

Definition 14 (navigation completeness). A navigation graph G is com-
plete iff for every query q whose extent is not empty, there exists a finite sequence
of navigation links (q0 l1 q1 ...qn−1 ln qn), where q0 = ?, qn = q, and for
every i ∈ [1, n], (qi−1 li qi) is a navigation link of G. We call such a sequence,
a navigation path.

For practical use, a navigation graph has to be locally finite, i.e., only a finite set
of local navigation links are suggested in any local view. Under this constraint we
define a vocabulary for which completeness is achieved for conjunctive queries,
i.e., queries without unions and with complements restricted to terms in C.

A number of semantic web query languages are equivalent to conjunctive
queries, and provide neither negation nor disjunction (e.g., OWL-QL [FHH04]).
In our approach, negation and disjunction can still be introduced at any step of
a navigation by editing the query by hand.

Theorem 2 (locally-finite conjunctive-complete navigation graph). Let
C be a finite vocabulary of complex classes containing at least resources (URIs,
literals), variables, and unqualified restrictions P ?. The C-navigation graph G
is locally-finite and complete for conjunctive queries.

206 S. Ferré

Proof. For every query q, the set of local navigation links LinksG(q) is finite
because in a given dataset (1) there is a finite number of URIs, and hence of
properties, (2) only literals present in the extent belong to the index, and this
extent is always finite, and (3) only variables occurring in q belong to the index.

For completeness, it suffices to prove that for every complex classes q0, and C
such that C is a conjunctive query and ext(q0 and C) �= ∅, there exists a path
in G from q0 to q1 = q0 and C. In particular, setting q0 = ? and C = q, we
obtain that there exists a path from ? to (? and q), which is equivalent to q.
We proceed by induction on the complex class C:

C = r: there is a path (q0 [zoom-in r] q1) (because r ∈ C)
C =?v, ?v ∈ q0: there is a path (q0 [zoom-in ?v] q1) (because ?v ∈ C)
C =?v, ?v /∈ q0: there is a path (q0 [naming ?v] q1)
C =?: q1 = q0 and ? ≡ q0
C = a u: C ≡ rdf:type u (Definition 4)
C = P C′: (1) there is a path (q0 [zoom-in P ?] q0 and P ? [reversal ?]

P−1 q0 and ? ≡ P−1 q0), (2) there is path from P−1 q0 to
(P−1 q0 and C′) by induction on C′, (3) there is a path (P−1 q0 and C′

[reversal q0] q0 and P C = q1). Induction in (2) is justified because
(P−1 q0 and C′) is a reversal of q1, and every reversal link is consistent.

C = C1 and C2: (1) q1 ≡ (q0 and C1) and C2 (associativity), (2) there is a
path from q0 to q2 = (q0 and C1) by induction on C1, (3) there is a path
from q2 to (q2 and C2) by induction on C2. The induction in (2) is justified
because q2 is more general than q1, and hence ext(q2) �= ∅.

C = not C1, C1 ∈ C: there is a path q0 [zoom-in not C1] q1. �

In the index, the set of resources can be seen as the list of answers to the query,
and can be presented page by page, like in web search engines. The set of proper-
ties is organized into a subsumption hierarchy that can be expanded on demand
by users. Instead of showing up to 12 complex properties for every basic prop-
erty p, only p : and p of can be displayed. Their various closures are accessible
by toggling each closure on/off when applying zoom-in (see check-boxes in Fig-
ure 1). The vocabulary used to compute the index and local navigation links
in our prototype is richer than the base vocabulary of Theorem 2, in order to
provide richer summaries of query results. The index also contains the hierar-
chy of classes (a u), and the user can expand restrictions recursively, i.e., each
P ? is refined into P C, where C is derived in the same way the main index is
derived from ?. Zoom-in is performed by double-clicking an index term, naming
is performed by pushing a button that generates a fresh variable, and reversal
is performed by clicking on a content word of the query (e.g., resource, vari-
able, class, property). The interface offers three short-hand navigation links on
index terms (semi-colon is used to compose navigation links): [home] (resets the
query to ?), [pivot C] = [home; zoom-in C], [cross P C] = [zoom-in
P C; reversal C].

Then, the above query a woman and parent : birth : (date : 1642
and place : in VA) is accessible from ? through the following navigation
path: [zoom-in a woman; cross parent : ?; cross birth : ?; zoom-in

Conceptual Navigation in RDF Graphs with SPARQL-Like Queries 207

date : 1642; zoom-in place : in VA; reversal a woman]. After selecting
women, the user moves to their parents, and then to the birth of their parents.
By expanding recursively index terms, the user discovers birthdates and birth-
places, and select a date (1642), and a place (in VA). Finally, the user comes
back to the point of view of women, now restricted to those whose some parent
was born in 1642 in Virginia.

A more complex query with a cycle and a restricted complement is: a
person and ?X and birth : date : ?D and mother : mother of (not
?X and birth : date : ?D), which retrieves people with a twin sibling. It
can be reached through the navigation path: [zoom-in a person; naming
?X; cross birth :; cross date :; naming ?D; reversal ?X; cross
mother :; cross mother of; zoom-in not ?X; cross birth :; cross
date :; zoom-in ?D; reversal ?X].

6 Conclusion

We have defined local views over RDF graphs that serve both for summariza-
tion and navigation. Each loval view provides a set of local links that users
can follow to reach other local views. The navigation graph induced by local
views is both consistent and conjunctive-complete. Compared to existing con-
ceptual navigation systems, our query language adds variables, binary relations
between objects, negation and disjunction, thus covering most of the expressivity
of SPARQL. Compared to SW query languages, we provide the same benefits
as faceted search, i.e., exploratory search, but a larger fragment of the query
language is reachable by navigation. Furthermore, consistency and completeness
of navigation are proved formally.

Preliminary results from a user evaluation shows that all subjects could an-
swer simple questions, like “Which men were born in 1659?”; and at least half
of the subjects could answer complex questions involving variables, negation
or disjunction, like “Which women have a mother whose death’s place is not
Warner Hall?” or “Who was born the same year as his/her spouse?”. The simple
questions match the expressivity of other faceted search systems, while complex
questions are beyond their scope.

References

[BCM+03] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F.: The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, Cambridge (2003)

[BD08] Baader, F., Distel, F.: A finite basis for the set of EL-implications holding
in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS
(LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008)

[CR96] Carpineto, C., Romano, G.: A lattice conceptual clustering system and
its application to browsing retrieval. Machine Learning 24(2), 95–122
(1996)

208 S. Ferré

[DE08] Ducrou, J., Eklund, P.: An intelligent user interface for browsing and
search MPEG-7 images using concept lattices. Int. J. Foundations of
Computer Science 19(2), 359–381 (2008)

[Fer09] Ferré, S.: Camelis: a logical information system to organize and browse
a collection of documents. Int. J. General Systems 38(4) (2009)

[FHH04] Fikes, R., Hayes, P.J., Horrocks, I.: OWL-QL - a language for deduc-
tive query answering on the semantic web. J. Web Semantic 2(1), 19–29
(2004)

[FR04] Ferré, S., Ridoux, O.: An introduction to logical information systems.
Information Processing & Management 40(3), 383–419 (2004)

[FRS05] Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal con-
cept analysis and logical information systems. In: Dau, F., Mugnier, M.-
L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 166–180.
Springer, Heidelberg (2005)

[GW99] Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foun-
dations. Springer, Heidelberg (1999)

[HHNV07] Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: A proposal for
combining formal concept analysis and description logics for mining re-
lational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS
(LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007)

[HKR09] Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, Boca Raton (2009)

[HvOH06] Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser
for heterogeneous semantic web repositories. In: Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 272–285. Springer, Heidelberg
(2006)

[Mar06] Marchionini, G.: Exploratory search: from finding to understanding.
Communications of the ACM 49(4), 41–46 (2006)

[ODD06] Oren, E., Delbru, R., Decker, S.: Extending faceted navigation to RDF
data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 559–572. Springer, Heidelberg (2006)

[PAG06] Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 30–43. Springer, Heidelberg (2006)

[RKH07] Rudolph, S., Krötzsch, M., Hitzler, P.: Quo vadis, CS? - on the (non)-
impact of conceptual structures on the semantic web. In: Priss, U., Polov-
ina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 464–467.
Springer, Heidelberg (2007)

[ST09] Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic taxonomies and faceted
search. The information retrieval series. Springer, Heidelberg (2009)

[VR08] Völker, J., Rudolph, S.: Lexico-logical acquisition of OWL-DL axioms. In:
Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933,
pp. 62–77. Springer, Heidelberg (2008)

An Approach to Exploring Description Logic
Knowledge Bases

Felix Distel

Theoretical Computer Science, TU Dresden, Germany
felix@tcs.inf.tu-dresden.de

Abstract. This paper is the successor to two previous papers published
at the ICFCA conference. In the first paper we have shown that in the
Description Logics EL and ELgfp, the set of general concept inclusions
holding in a finite model always has a finite basis. An exploration for-
malism that can be used to obtain this basis was presented in the second
paper. In this paper we show how this formalism can be modified such
that counterexamples to GCIs can be provided in the form of ABox-
individuals. In a second part of the paper we examine which description
logics can be used for this ABox.

1 Introduction

Description Logics (DLs) are a formalism for representing knowledge that has
gained international recognition during the last decade [3]. They play a signif-
icant role in the Semantic Web Community, in particular because of the OWL
language which is essentially a variant of an expressive DL [10].

A DL knowledge base usually consists of two parts. The first part, the TBox
is used to describe the terminology of the knowledge base. It contains general
concept inclusion (GCIs), i. e. statements of the form C � D. Here C and D
are concept descriptions written using a set of so-called concept constructors,
concept names and role names. Different DL languages use different concept
constructors. However, all DL languages provide a formal, well-defined model
based semantics for the concept descriptions. A model i = (Δi, ·i) consists of a
set Δi and a function ·i that maps concept descriptions C to subsets Ci ⊆ Δi.
The second part of the knowledge base is the ABox. It contains knowledge about
individuals. One can for example assert that an individual Henry belongs to the
concept Father or that there is a hasChild role leading from Henry to Jane.

Henry Jane Troy

Peter Bridget

Female,Mother MaleMale,Father

Male,Father Female

hasChild

hasChild

hasChild

hasChild

Fig. 1. A Model of a Family of Three Generations

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 209–224, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

210 F. Distel

An important aspect are the open world semantics of ABoxes. If it is not stated
that Henry is a Father then it is not assumed that Henry is not a Father.

Writing knowledge bases can be a difficult process, in particular because ex-
perts in the domain of the knowledge base are usually not experts in DL. In
order to help them to find the right GCIs to add to their TBox, one approach is
to use a formalism that is inspired by attribute exploration from Formal Con-
cept Analysis (FCA) [9]. In the formalism that has been presented in a previous
ICFCA Paper [6] it is assumed that the domain of the knowledge base can be
represented as a DL model, and that this model is completely known to a human
expert. In this formalism the expert does not have to come up with GCIs herself.
Instead the system suggests GCIs that she can either add to the TBox, or reject
by providing a counter-example. This approach is often referred to as knowledge
base completion.

Let us assume that the domain was represented by the model of a family of
three generations from Figure 1. The system might come up with a GCI like
Father � Male � ∃hasChild.�, i. e. “Every father is male and has a child.”
The expert would obviously accept this GCI and add it to the knowledge base.
If, however, the system comes up with the GCI Father � Mother, i. e. “Every
father is a mother”, then the expert would reject it and add e. g. Henry as a
counter-example.

The GCIs from the example are written in the lightweight description logic
EL. EL is less expressive than most other standard DLs but has the advantage
that standard reasoning tasks are tractable [8]. This is one of the reasons why
tractable extensions of EL are used for large scale biomedical ontologies such as
SNOMED [12] and the Gene Ontology [13].

Our algorithm from the previous ICFCA paper also uses a tractable exten-
sion of EL, ELgfp, which allows the algorithm to generate concept descriptions
that are cyclic. The major weakness of our previous algorithm is the way in
which counter-examples are provided. It uses connected submodels which use a
closed-world semantics. The submodel is extended every time the expert pro-
vides a counter-example. Let us assume the expert wants to state that Henry is
a counter-example to the GCI Father � Mother. Assume that the expert only
adds Henry, but not Jane or Peter, to the submodel and says that Henry is a
Father but not a Mother. Because of the closed world semantics the algorithm
would assume that Henry does not have children which would make Henry a
counter-example to the GCI Father � hasChild.�. This is unwanted because
Father � hasChild.� does hold in the domain. The only way to avoid this effect
is to add not only Henry, but also all of his direct or indirect role successors, in
this case his children and grandchildren.

So the expert would need to add a lot more information than is actually needed
to make Henry a counter-example without creating unwanted artefacts. This is
inconvenient and can only be overcome by allowing open-world-semantics. In the
DL-world the natural datastructure to keep track of individuals which provides
an open-world semantics is an ABox. This paper will present an approach how
to extend the algorithm from the previous paper to work with ABoxes as the

An Approach to Exploring Description Logic Knowledge Bases 211

underlying datastructure. We will introduce minimal possible consequences as
a central notion. Since this is ongoing work some important questions remain
open, e. g. if and how minimal possible consequences can be computed effectively.

Due to space restrictions we cannot introduce Formal Concept Analysis. We
assume that the reader is familiar with the basic notions from this field.

Related Work: There are two other works important works that try to combine
FCA and DL. The work by Baader et al. provides a knowledge base completion
formalism that also uses ABoxes as the underlying datastructure [7]. However,
their algorithm does not perform knowledge base completion with respect to
arbitrary GCIs written in a language like EL. Instead they only allow conjunc-
tions of previously defined concepts. The second approach by Rudolph can be
used to compute a basis for the GCIs of a given DL model. The main difference
compared to our approach lies in the way the GCIs are computed. While we
construct a context on the fly, adding only a few interesting attributes at a time,
Rudolph’s approach successively increases role depth and adds all attributes up
to a certain depth [11].

2 Preliminaries

The Description Logic EL. Due to space restrictions we can only give a brief
introduction to the DLs EL and ELgfp. EL concept descriptions are generated
from a finite set NC of concept names and a finite set Nr of role names as follows.

– concept names and the top concept � are EL-concept descriptions;
– if C, D are EL-concept descriptions and r is a role name, then C � D and
∃r.C are EL-concept descriptions.

The tuple Σ = (NC ,Nr) is called the signature of the concept description.
A EL model i = (Δi, ·i) consists of a finite set Δi, the so-called domain of

the model, and an interpretation function ·i mapping role names r to relations
ri ⊆ Δi ×Δi and concept descriptions C to their extensions such that

�i = Δi, (C1 � C2)i = Ci
1 ∩ Ci

2, and

(∃r.D)i = {d ∈ Δi | ∃e ∈ Di such that (d, e) ∈ ri}.

Note that it suffices to define the interpretation function for role names and
concept names. The interpretations of more complex concept descriptions can
then be derived, recursively. Subsumption and equivalence between EL-concept
descriptions is defined in the usual way, i.e., C is subsumed by D (written C � D)
iff Ci ⊆ Di for all models i, and C is equivalent to D (written C ≡ D) iff C � D
and D � C.

TBoxes and ABoxes. A GCI is a statement of the form C � D, where C
and D are concept descriptions. We say that a GCI C � D holds in a model i if
Ci ⊆ Di holds. Note that this is not the same as subsumption. An equivalence

212 F. Distel

statement is a statement of the form A ≡ D, where A is a concept name and D
a concept description. A ≡ D is said to hold in i if Ai = Di.

TBoxes are sets of equivalence statements and GCIs. They fall into three
categories.

– Acyclic TBoxes contain only equivalence statements where the left-hand side
is not used in the concept description on the right-hand side implicitly or
explicitly.

– Cyclic TBoxes contain only equivalence statements
– General TBoxes contain arbitrary GCIs.

A model i is said to be a model of a TBox T if all statements from T hold in i. In
the case of cyclic TBoxes there exists also the notion of greatest-fixpoint-models.
Informally, a model i is a greatest-fixpoint model of T if the interpretations of
all concept names in i are maximal among all other models of T with the same
domain. A more formal definition can be found in [2].

An ABox A is a set of concept assertions and role assertions, where a role
assertion is of the form r(a, b) and a concept assertion is of the form A(a),
with r a role name, A a concept name, and a and b so-called individual names.
A model i = (Δi, ·i) of an ABox A is a model where ·i is extended to map
individual names a to individuals ai ∈ Δi such that a ∈ Ai for all concept
assertions A(a) ∈ A and (a, b) ∈ ri for all role assertions r(a, b) ∈ A.

The Description Logic ELgfp. ELgfp is the extension of EL by cyclic concept
definitions interpreted with greatest fixpoint (gfp) semantics. In ELgfp, we as-
sume that the set of concept names is partitioned into the set Nprim of primitive
concepts and the set Ndef of defined concepts. We only allow concept definitions
of the form

B0 ≡ P1 � . . . � Pm � ∃r1.B1 � . . . � ∃rn.Bn (1)

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for �.

Definition 1 (ELgfp-concept description). A ELgfp-concept description is a
tuple (A, T) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

Let i = (Δi, ·i) be a model. The extension (A, T)i of (A, T) in i is the set assigned
to A by the gfp-model of T based on i. Subsumption and equivalence between
ELgfp-concept descriptions is defined as in the case of EL-concept descriptions.
It is easy to see that acyclic ELgfp-concept descriptions (i.e., ones where the
TBox component is acyclic) correspond exactly to EL-concept descriptions.

It is difficult to obtain a good intuition about greatest-fixpoint semantics.
Fortunately, there is an alternative characterization. Given a model i and an
individual x ∈ Δi we can define the set of concept names assigned to x as
namesi(x) = {A ∈ Nprim | x ∈ Ai}. We denote the set of all r-successors of x in
i by xri = {y ∈ Δi | (x, y) ∈ ri}.

An Approach to Exploring Description Logic Knowledge Bases 213

For TBoxes that contain only concept definitions of the form (1) we introduce
notations similar to those for models. For a defined concept B we denote by
namesT (B) the set of all primitive concept names P1, . . . , Pk that occur in the
definition of B in T . For a defined concept B1 and a role name r we denote by
B1rT the set of all defined concept names B2 for which the term ∃r.B2 occurs
in the definition of B1 in T . A simulation from a normalized TBox T to a model
i is a relation ζ ⊆ Ndef ×Δi where

(S1) namesT (B) ⊆ namesi(x) for all pairs (B, x) ∈ ζ. , and
(S2) for all role names r ∈ Nr, all pairs (B, x) ∈ ζ and all E ∈ BrT there is

some y ∈ xri such that (E, y) ∈ ζ holds.

The following theorem enables us to check instance without using greatest fix-
points explicitly [1].

Lemma 1. Let C = (AC , TC) be an ELgfp-concept description. Let i = (Δi, ·i)
be a model and x ∈ Δi an individual. Then it holds that x ∈ Ci iff there is a
simulation ζ from TC to i that contains (AC , x).

Given a set of GCIs B, we say that the GCI C � D follows from B if C � D
holds in all models in which all GCIs from B hold. We say that B is a basis for
the ELgfp-GCIs holding in i if B is

– sound for i, i. e. it contains only GCI that hold in i, and
– complete for i, i. e. any ELgfp-GCI holding in i follows from B.

3 Results from Previous Work

Exploration as a method for knowledge base completion relies on the existence
of an expert with complete knowledge about the domain of the knowledge base.
For practical purposes we assume that the domain of the knowledge base (“the
real world”) can be represented as a model i of the final (complete) knowledge
base. In this and the previous work i is called the background model. The goal
of an exploration is to find a basis for the set of GCIs holding in i.

In doing this we face two major challenges: First, for most DLs it is not
trivial to find a basis, even when the background model is known. Second, since
the complete background model is unknown to the algorithms, the algorithm
must gradually gain information about the background model by querying the
expert. The first challenge has been adressed in [5] while a solution for the
second problem is proposed in [6]. The purpose of this section is to recapitulate
important notions from these two publications.

3.1 Model-Based Most Specific Concepts

Suppose we want to compute a basis for the GCIs holding in the model i from
Figure 1. Suppose furthermore that we have decided (for example by using the
algorithm described in [6]) that the ELgfp-concept description Father is an in-
teresting premise for a GCI. We might add any of the GCIs Father � Male,

214 F. Distel

or Father � Male � ∃hasChild.� to the basis. However, if we decide to add
the first one and later find out that we need to add also the second to ensure
completeness we obtain redundance (because the first GCI follows from the lat-
ter). In an exploration setting this would mean that we would ask two questions
where one would be enough. To avoid redundant questions, the idea is to be as
specific as possible when choosing the right-hand side of a GCI. For the descrip-
tion logic ELgfp model-based most specific concepts are what we need to find
these conclusions.

Definition 2 (Model-Based Most Specific Concept). Let i = (Δi, ·i) be
a finite model and X ⊆ Δi a set. The ELgfp-concept description C is the most
specific ELgfp-concept of X in i if it is the least ELgfp-concept description such
that X ⊆ Ci. By least ELgfp-concept description we mean that every other
ELgfp-concept description C̄ satisfying X ⊆ C̄i also satisfies C � C̄.

It is justified to speak of the model-based most specific concept (mmsc) because
the model-based most specific concept is unique up to equivalence. We use the
notation X i to denote the mmsc of X . Mmsc for the description logic ELgfp
exist for all models i = (Δi, ·i) and all sets X ⊆ Δi and can be computed
effectively [5].

Lemma 2. Let i be a model, X, Y ∈ Δi sets of objects and let C, D be ELgfp-
concept descriptions. Then the following statements hold

1. X ⊆ Y ⇒ X i � Y i

2. C � D ⇒ Ci ⊆ Di

3. X ⊆ X ii

4. Cii � C
5. X i ≡ X iii

6. Ci = Ciii

7. X ⊆ Ci ⇔ X i � C.

This lemma from [5] shows that GCIs of the form C � Cii play a special rôle.

Lemma 3. Let C, D be ELgfp-concept descriptions and i a finite ELgfp-model.
Then C � Cii holds in i. If C � D holds in i, then C � D follows from
{C � Cii}.
We have seen that mmsc can help to reduce redundancy. They are therefore
useful when it comes to constructing finite sets of axioms for a given model.

3.2 An Algorithm for Axiomatizing a Given Model

In [6] an algorithm has been presented that can be used to axiomatize a given
(known) model i (Algorithm 1). Given a finite model i as input Algorithm 1 will
always terminate. Upon termination it will have produced a set Πn of so-called
premises Pk such that

Bn := {
�

Pk � (
�

Pk)ii | Pk ∈ Πn}

is a basis for the GCIs holding in i.
The algorithm uses the notation

�
U , where U is a set of concept descriptions,

to denote the concept
�

U :=
�

D∈U D.

An Approach to Exploring Description Logic Knowledge Bases 215

Algorithm 1. Computing a basis for an a priori given model i

1: Input: finite model i = (Δi, ·i)
2: M0 := NC , S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0
4: while Pk �= null do
5: Πk+1 := Πk ∪ {Pk}
6: Mk+1 := Mk ∪ {∃r.(

�
Pk)ii | r ∈ Nr}

7: Sk+1 := {{C} → {D} | C, D ∈Mk+1, C � D}
8: k := k + 1
9: if Mk = Mk−1 = Pk then

10: Pk := null
11: else
12: Pk := lectically next set of attributes that respects all implications in

{Pj → P
′′k
j | 1 ≤ j < k} and Sk

13: end if
14: end while

It uses some elements of FCA, in particular the next-closure algorithm. The
connection between FCA and DL is made by so-called induced contexts. What
we call induced contexts in this work are formal contexts whose attributes are
concept descriptions and whose set of objects is the domain Δi of a finite model
i. More formally, let i be a finite ELgfp-model and M a finite set of ELgfp-
concept descriptions. The context induced by M and i is the formal context
K = (G, M, I), where G = Δi and I = {(x, C) | C ∈ M and x ∈ Ci}.

There are infinitely many possible concept descriptions and thus infinitely
many possible attributes for an induced context. The most important idea in
the construction of Algorithm 1 was that the set of attributes was not fixed
in the beginning. Instead a new set of attributes Mk is generated during each
iteration. The notation ·′′k denotes the ·′′-operator from FCA computed in the
context Kk, where Kk denotes the context induced by Mk and i.

3.3 Exploration Using Submodels

Of the two main challenges that we have identified, the second one was construct-
ing a set of axioms in a situation where the background model is not known to
the algorithm. The only way to gain information about the model is to ask the
expert. In [6] an algorithm has been presented that uses the familiar exploration
principle. It generates a GCI and asks the expert whether this GCI holds in
the background model. If so, the GCI is added to the set of axioms. Otherwise
the expert is asked to provide a counterexample. Now the question is in what
form these counterexamples should be provided. In [6] the counterexamples are
provided in the form of connected submodels of the background model.

Thereby a submodel j of a model i is a model such that Δj ⊆ Δi and Cj =
Ci ∩Δj for all concept names C and rj = ri ∪ (Δj ×Δj) for all role names r.
j is called a connected submodel if and only if for every x ∈ Δi and all r ∈ Nr

if x ∈ Δj then all r-successors of x are also in Δj . Whenever a GCI is refuted

216 F. Distel

the expert is asked to provide a new model ij that we call the working model.
It is required to extend the previous working model ij−1, to be a connected
submodel of i and to contain a counterexample. Similar to Algorithm 1 it has
been shown that this algorithm always terminates and produces a basis for the
set of implications holding in i.

4 Replacing Models by ABoxes

4.1 Possible Consequences

We consider a setting where (instead of a connected submodel of the background
model i) the expert provides a knowledge base consisting of an ABox A and a
TBox T . For now, the background model i should be a model of the ABox A
that contains the counterexamples and the TBox T . Given A and T what can
be said about the GCIs that hold in i? First, there are the GCIs that hold in
every model of A and T . These are the GCIs which are already known to hold
in i. Therefore they are not interesting for a completion formalism.

On the other hand, there are the GCIs that hold in at least one model of
A and T . Since the background model i is unknown, it is possible that i is
one of these models in which the GCI holds. So these GCIs are the ones we
are interested in. Provided an ELgfp-concept description C we define the set of
concept descriptions D that are possible consequences of C to be

pcA,T (C) = {D | ∃j model of A and T : Cj ⊆ Dj}.

Notice, that we do not make any requirements with respect to the language of
the ABox A and the TBox T , except that they have a model-theoretic semantics
with models as defined in Section 2. It may be different from ELgfp. The certain
and possible consequences, however, are expressed in ELgfp.

Now, suppose we want to present to the expert a GCI C � D whose left-hand
side is C. It does not make sense to ask this question, unless D is a possible
consequence of C. Otherwise the answer would certainly be “No”. So we have
to choose D among the possible consequences of C.

Once the expert accepts a GCI, the algorithm should not have to generate
another GCI with the same premise. This is why we introduce the notion of
minimal possible consequences. D is said to be a minimal possible consequence
of C if D ∈ pcA,T (C) and D is minimal in pcA,T (C) with respect to �. The
set of all minimal possible consequences of C is denoted by mpcA,T (C). Unlike
mmsc minimal possible consequences need not be unique up to equivalence. We
will mostly be interested in GCIs over a fixed signature Σ. We introduce the
notation pcΣ

A,T (C) for the set of all possible consequences that are expressed
using only the signature Σ. Analogously, we define mpcΣ

A,T (C).
Those who are familiar with [7] will find that the K(·)-operator computes

minimal possible consequences for the special case of a logic that allows only for
conjunction.

An Approach to Exploring Description Logic Knowledge Bases 217

4.2 Adapting the Exploration Algorithm

It is not yet known if (or rather for which logics) minimal possible consequences
exist. This is work in progress and will not be considered here. For now, we
assume that the knowledge bases considered here are written in a logic for which
the existence of minimal possible consequences is guaranteed. We also assume
that there exists an oracle to compute a minimal possible consequence for a
given ELgfp-concept description C.

We show that under these assumptions Algorithm 1 requires only subtle mod-
ifications in order to function with ABoxes as underlying datastructure. The
modified algorithm is presented as Algorithm 2. We assume that there is a back-
ground model i which is known to the expert. The input consists of a TBox T0
and an ABox A0 (instead of a model). We require that i is a model of the T0
and A0. The signature of the initial knowledge base is denoted by Σ0.

The modification with respect to Algorithm 1 primarily consists in the addi-
tion of a second while-loop. Informally, the purpose of this inner while-loop is to
find the proper conclusion Dk to a given premise

�
Pk. Since i is not explicitly

given it is not possible to directly compute (
�

Pk)ii like in Algorithm 1.
Before we start to prove completeness, let us first clarify a few details about

Algorithm 2. First of all, note that while the newly acquired GCIs (i. e. the Pk

found in the algorithm) are formulated in ELgfp we do not specify the logic of the
underlying ABox and TBox. Using two different languages may seem unnatural
at first, but is, unfortunately, necessary. This will become clear in Section 5.

In Line 19 prM (C) denotes the projection of a concept description C to a
set of concept descriptions M , i. e. the set prM (C) = {D ∈ M | C � D}. The
following lemma about projections in induced contexts has been proved in [4].

Lemma 4. Let U ⊆ M be any set of attributes in a context K induced by i and
M . Then U ′′ = prM

(
(
�

U)ii
)
.

A last remark concerns the changing signatures. In Line 8 the expert is asked to
provide a new TBox Tj and ABox Aj . We allow that new concept names that
are not present in Σ0 are used in Tj and Aj . The motive behind this is that
in certain logics new concept names are necessary to express that an individual
is a counterexample to a GCI (cf. Section 5.2). Allowing new concept names
yields one problem: It is not clear how to interpret the new concept names in
the background model. In other words i is not a model of Tj and Aj . That is
why we introduce the notion of a representation of a model. Tj and Aj are called
a representation of i if there is a model ι of Tj and Aj such that

– Δi = Δι, and
– for all ELgfp-concept descriptions over the smaller signature Σ0 it holds that

Ci = Cι.

Once the expert has accepted a GCI, the algorithm should not need to consider
the same premise Pk again. Lemma 5 shows why this is indeed the case.

Lemma 5. Whenever Algorithm 2 leaves the inner while-loop (Lines 6 to 10)
it holds that D ≡ (

�
Pk)ii.

218 F. Distel

Algorithm 2. The ABox Exploration Algorithm
1: Input: ABox A0, TBox T0 with signature Σ0

2: M0 := Nprim, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk �= null do
5: Obtain D ∈ mpcΣ0

Tj ,Aj
(
�

Pk) from oracle
6: while expert refutes

�
Pk � D do

7: j := j + 1
8: Ask the expert for a new knowledge base (Tj ,Aj) that extends (Tj−1,Aj−1),

and is a representation of i.
9: Obtain D ∈ mpcΣ0

Tj ,Aj
(
�

Pk) from oracle
10: end while
11: Dk = D
12: Πk+1 := Πk ∪ {Pk}
13: Mk+1 := Mk ∪ {∃r.Dk | r ∈ Nr}
14: Sk+1 := {{C} → {E} | C, E ∈Mk+1, C � E}
15: k := k + 1
16: if Mk = Mk−1 = Pk then
17: Pk := null
18: else
19: Pk := lectically next set of attributes that respects all implications in

{Pl → prMk
(Dl) | 1 ≤ l < k} and Sk

20: end if
21: end while

Proof. The algorithm will only leave the inner while-loop when the expert states
that

�
Pk � D holds in i. This means that (

�
Pk)i ⊆ Di is true. Lemma 2

implies that (
�

Pk)ii � D. Because Aj and Tj are a representation, there must
be a model ι of Aj and Tj such that for all ELgfp-concept descriptions C over the
smaller signature Σ0 it holds that Ci = Cι. Since

�
Pk and (

�
Pk)ii use only the

signature Σ0 it follows that (
�

Pk)ι = (
�

Pk)i ⊆ (
�

Pk)iii = ((
�

Pk)ii)ι. This
shows that (

�
Pk)ii is a possible consequence of

�
Pk. Since D is minimal among

the possible consequences of
�

Pk we obtain D � (
�

Pk)ii. Thus D ≡ (
�

Pk)ii.

Theorem 1 (Completeness). Assume that Algorithm 2 terminates after the
n-th iteration of the outer while loop. Then the set of GCIs B = {

�
Pk � Dk |

0 ≤ k ≤ n} is complete for the background model i.

Proof. We prove completeness by showing that Algorithm 2 finds exactly the
same GCIs as Algorithm 1 initialised with the full background model i. This is
done by induction. Let Pk, Πk, Mk and Sk represent the outputs of Algorithm 1.
Let Pk, Πk, Mk and Sk represent the respective outputs of Algorithm 2. We
prove by induction over k that

Pk = Pk, Πk = Πk, Mk = Mk, Sk = Sk (2)

Base Case: The case k = 0 is trivial. Step Case: Assume that (2) holds for
all k < k0. Part 1. Πk0 = Πk0 , Mk0 = Mk0 , Sk0 = Sk0 follow immediately

An Approach to Exploring Description Logic Knowledge Bases 219

from the induction hypothesis and Lines 5-7 in Algorithm 1 and Lines 12-14
in Algorithm 2. Part 2. We show that Pk0 = Pk0 . To do this, we only need to
show that prMk0

(Dl) = P
′′k0
l for all 1 ≤ l < k0 (see Line 12 of Algorithm 1

and Line 19 of Algorithm 2). Lemma 4 shows that P
′′k0
l = prMk0

(
(
�

Pl)ii
)
.

By induction hypothesis and Part 1 we obtain P
′′k0
l = prMk0

(
(
�

Pl)ii
)
. Then

Lemma 5 proves that prMk0
(Dl) = P

′′k0
l for all 1 ≤ l < k0, and therefore

Pk0 = Pk0 .
This finishes the induction proof. So we have shown that Pk = Pk for all

k ∈ {1, . . . , n}. Lemma 5 proves Dk = (
�

Pk)ii = (
�

Pk)ii. Hence the set
of GCIs B that is found by Algorithm 2 is exactly the same as the set Bn

that Algorithm 1 computes with the full background model i as input. Since
Algorithm 1 is complete, Algorithm 2 must also be complete.

Termination, however, is more difficult. If the algorithm does not get stuck in
the inner while-loop (Lines 6 to 10) then it is guaranteed to terminate. This
is because outside the inner while loop it behaves just like Algorithm 1, and
Algorithm 1 terminates. In summary, there remain two issues to be adressed: The
existence and computation of minimal possible consequences and termination of
the above algorithm.

5 Which Language Should Be Used for the Knowledge
Base?

So far we have not said anything about the description logic in which the knowl-
edge base should be written. Algorithm 2 does not make any explicit require-
ments except that minimal possible consequences should exist. Of course, the
whole algorithm only makes sense if it can terminate. In this section we try to
find out for which logics this is the case.

The most natural choice for the logic of the knowledge base is ELgfp. Unfortu-
nately, ELgfp is not suitable, because it is not expressive enough to express that
an individual is a counterexample to a given GCI C � D. Intuitively, this is be-
cause ELgfp does not provide any form of negation. For example, it is impossible
to state in ELgfp that Henry from the model from Figure 1 is not an instance of
Mother. Therefore, it is impossible to state that Henry is a counter-example to
the GCI Father � Mother. Because the expert cannot describe counter-examples
the algorithm cannot terminate if ELgfp is used for the knowledge base.

5.1 ELgfp with Negated Concept Assertions

We have seen that we require at least some weak form of negation in the un-
derlying knowledge base, or else the algorithm cannot terminate. On the other
hand, we do not want to make the language of the knowledge base unnecessarily
complicated. A simple extension are negated concept assertions.

A negated concept assertion is a statement of the form ¬C(a), where C is a
concept description. The semantics of negated concept assertions is defined in

220 F. Distel

a straightforward way. Let A be an ABox that contains role assertions, concept
assertions and negated concept assertions. An interpretation i is a model of A
if and only if for all concept assertions C(a) in A it holds that ai ∈ Ci, and
for all negated concept assertions ¬C(a) it holds that ai /∈ Ci, and for all role
assertions r(a, b) it holds that (ai, bi) ∈ ri.

In the setting that we consider in this subsection we are given a background
model i. The concept assertions and negated concept assertions occurring in
A shall use ELgfp-concept descriptions over Σ0, the signature of i. We do not
explicitly use a TBox, but TBoxes are, of course, implicitly present within the
ELgfp-concept descriptions. Allowing (unfoldable) TBoxes explicitly would not
result in more expressivity. Obviously in this setting counterexamples do exist
and are easy to describe. To turn an individual a into a counterexample to a GCI
C � D we simply need add C(a) and ¬D(a) to the ABox. However, there can still
be situations (i. e. background models) where the algorithm cannot terminate.

Consider the background model i depicted in Figure 2. Let the signature be
NC = {P, Q} and Nr = {r}. Assume that A is an ABox that has i as its model.
Clearly, if A is empty then any interpretation is a model and thus any concept
description D is a possible consequence of P . In particular this means that {x}i

is not minimal among the possible consequences of P .
If A is not empty, then there is exactly one individual present in A because

of the unique names assumption and because there is only one individual in
the background model. We denote this individual by a. Let A contain the con-
cept assertions T1(a), . . . , Tt(a), and the negated concept assertions ¬F1(a),. . . ,
¬Ff (a), and possibly a single role assertion r(a, a). For every concept description
Fk that occurs in a negated concept assertion we can define the Q-depth dFk

of
Fk. By dFk

we denote the minimal role depth at which Q appears in Fk. Define
d = 1 + max1≤k≤f dFk

.
Now, look at the model ι depicted in Figure 3. The model ι is obtained from

i by attaching to x a sequence of nodes vk, k ∈ {1, . . . , d} where each node is
connected to its successor by the role r. The last of these new nodes vd is in
Qι. Clearly, the role assertion r(a, a) holds in ι. All positive concept assertions
from A hold in ι because they hold in i and i is a submodel of ι. All negated
concept assertions Nk(a) from A also hold in ι, because Q occurs in Nk at a
role depth less than d, but there is no path of length less than d leading from x
to an individual in Qι. Therefore ι is a model of A. It holds that x ∈ Eι, with
E = (AE , TE) where TE is defined as

TE = {AE ≡ P � ∃r.AE � ∃r.∃r . . . ∃r︸ ︷︷ ︸
d times

.Q}.

x

r

P

Fig. 2. The model i used in Section 5.1

An Approach to Exploring Description Logic Knowledge Bases 221

x v1 v2 vd

r

r rP Q

Fig. 3. The model ι used in Section 5.1

Thus E is a possible consequence for P . In particular this proves that {x}i = P ii

is not a minimal possible consequence of P .
Now assume that the algorithm has reached a point where Pk = {P}. The

condition required to leave the inner-while loop is that the expert accepts the
GCI P � D where D is a minimal possible consequence for P . We have seen that
this can only be the case if D = P ii (Lemma 5). But this can never happen, as for
no ABox – be it empty or non-empty – P ii is a minimal possible consequence
of P . Hence, for our purposes negated concept assertions are an insufficient
extension to EL.

5.2 EL with ⊥ and General TBoxes

The bottom concept ⊥ is a concept constructor whose semantics is defined as
⊥i = ∅. We suggest to use EL with the bottom concept ⊥ and general TBoxes
(from now on denoted as EL⊥) as the DL for the knowledge base. First of all,
this logic is a fragment of EL++, a well-supported, tractable DL that is used in
many applications such as SNOMED.
EL⊥ is a minimal extension of EL in which it is possible to provide coun-

terexamples. Consider for example the model from Figure 1. The model con-
tains a counter-example to the GCI Father � Mother, namely the individual
Henry. To describe this counter-example in EL⊥ we have to express that Henry
is not an instance of Mother. We can do this by extending the signature of the
knowledge base by adding a new concept name THenry. Then we add the GCI
THenry � Mother � ⊥ to the TBox and Father(Henry) and THenry(Henry) to the
ABox. This implies that Henry, as an ABox-individual, must be an instance of
Father, yet it cannot be an instance of Mother. Notice, that we need to extend
the signature of the TBox, in order to describe the counterexample.

Termination is Possible. Regarding termination of Algorithm 2 one can ask
two questions. First, is it possible that an expert with an optimal strategy of
providing counterexamples can force the algorithm to terminate? And second,
is it possible to modify the algorithm such that it terminates, even if the expert
uses a suboptimal strategy? While the second question is part of ongoing work,
we can give the answer to the first question for EL⊥.

We have seen in Section 4.2 that Algorithm 2 terminates if and only if it does
not get stuck in the inner while loop (Lines 6 to 10). It will leave the inner while
loop when D ≡ (

�
Pk)ii holds. That means, the expert can force the algorithm

to terminate if she can come up with an ABox Aj and a TBox Tj such that
(
�

Pk)ii is the only minimal possible consequence of
�

Pk.

222 F. Distel

Let i be the background model that is known to the expert and Σ0 = (NC ,Nr)
its signature. We prove that enforcing termination is possible by providing a
construction for such ABox and TBox from i and Aj−1 and Tj−1. For every x ∈
Δi extend the signature Σj−1 by concept names Tx and Fx. Add an individual
ax for every x ∈ Δi. Tj is obtained from Tj−1 by adding statements

Tx � Fx � ⊥ for all x ∈ Δi, (3)

A � Fx for all A ∈ NC with x �∈ Ai, (4)

∃r.
�
{Fy | y ∈ xri} � Fx for all r ∈ Nr. (5)

Aj is obtained from Aj−1 by adding the following statements

A(ax) for every x ∈ Δi and for every A ∈ NC with x ∈ Ai, (6)

r(ax, ay) for every r ∈ Nr and for all x, y ∈ Δi with (x, y) ∈ ri, (7)
Tx(ax) for every individual x ∈ Δi. (8)

The concept Tx intuitively represents the properties that x does have while
Fx represents the properties that x does not have. In the following we shall prove
that for any arbitrary concept description C over the signature Σ0 the concept
Cii is the only minimal possible consequence with respect to Aj and Tj .

Lemma 6. Aj and Tj are a representation of i.

Proof. We have assumed that Aj−1 and Tj−1 are representations of the back-
ground model i. That means, there is a model ι of Aj−1 and Tj−1 such that ι
restricted to Σ0 is identical to i. We can further extend ι to a model ῑ by defining
T ῑ

x = {x} and F ῑ
x = Δi \ {x}. Then ῑ is a model of Aj and Tj (it is simple to

check that each of the statements (3) to (8) holds in ῑ). This shows that Aj and
Tj are a representation of i.

Lemma 7. Let C be any ELgfp-concept description over the signature Σ0. Cii

is a possible consequence of C with respect to Aj and Tj.

Proof. We have already seen that ῑ is a model of Aj and Tj . Since C and Cii

use only the signature Σ0 (and not the new concept names Fx and Tx, x ∈ Δi)
it holds that Ci = C ῑ and Ciii = (Cii)ῑ. Lemma 2 states that Ci = Ciii and
thus C ῑ = (Cii)ῑ. Thus Cii is a possible consequence of C in Ai and Ti.

Lemma 8. Let C = (AC , TC) be an ELgfp-concept description over the signature
Σ0. Let x ∈ Δi be an individual. If there is a model ι of Aj and Tj such that
aι

x ∈ Cι then x ∈ Ci holds.

Proof. Let ι be a model such that aι
x ∈ Cι. From Lemma 1 it follows that there

is a simulation ζCι from TC to ι such that (AC , aι
x) ∈ ζCι. Define ζCi as follows:

ζCi = {(B, y) | ∃z ∈ Δι : z /∈ F ι
y and (B, z) ∈ ζCι}.

An Approach to Exploring Description Logic Knowledge Bases 223

To prove that ζCi is a simulation from TC to i that contains (AC , x) one must
prove (S1), (S2) and (AC , x) ∈ ζCi. Due to space restrictions we only show the
interesting part (S2). Let r ∈ Nr be a role name, (B, y) ∈ ζCi and E ∈ BrTC .
By definition of ζCi there is some z ∈ Δι such that z /∈ F ι

y and (B, z) ∈ ζCι.
Because ζCι is a simulation there must be some z̄ ∈ zri such that (E, z̄) ∈ ζCι.

Suppose that for all ȳ ∈ yri it holds that (E, ȳ) /∈ ζCi. This implies that
z̄ ∈ F ι

ȳ for all ȳ ∈ yri. But Tj contains the statement ∃r.
�
{Fȳ | ȳ ∈ yri} � Fy .

The above proves z̄ ∈ (
�
{Fȳ | ȳ ∈ yri})ι and thus z ∈ (∃r.

�
{Fȳ | ȳ ∈ yri})ι ⊆

F ι
y . This contradicts z /∈ F ι

y . We have shown by contradiction that (S2) holds.
Together with the omitted steps this proves that ζCi is a simulation from TC to
i such that (C, x) ∈ ζCi. Lemma 1 shows that x ∈ Ci.

Lemma 9. Let C = (AC , TC) be an ELgfp-concept description over the signature
Σ0. Let x ∈ Δi. If x ∈ Ci holds then Aj , Tj |= C(ax)

Proof. We need to show that for any model ι of Aj and Tj it holds that aι
x ∈ Cι.

Because of x ∈ Ci there must be a simulation ζCi from TC to i containing (AC , x).
Define ζCι = {(B, aι

y) | (B, y) ∈ ζCi}. As above, we omit the proofs for (S1) and
(AC , aι

x) ∈ ζCι. We only prove the interesting step (S2). Let r ∈ Nr be a role
name, let (B, aι

y) ∈ ζCι, and let B̄ ∈ BrTC . (B, aι
y) ∈ ζCι implies (B, y) ∈ ζCi.

Because ζCi is a simulation there is some ȳ ∈ yri such that (B̄, ȳ) ∈ ζCi. The
latter implies that (B̄, aι

ȳ) ∈ ζCι. ȳ ∈ yri implies that Aj contains a statement
r(ay , aȳ) and therefore aι

ȳ ∈ aι
yrι. This proves (S2). From Lemma 1 and the fact

that ζCι is a simulation it then follows that aι
x ∈ Cι. Since ι was an arbitrary

model it follows that Aj , Tj |= C(ax).

Theorem 2. Let C be any ELgfp-concept description. Cii is the only minimal
possible consequence of C with respect to Aj and Tj.

Proof. Lemma 7 proves that Cii is a possible consequence of C with respect
to Aj and Tj . Let D be another possible consequence of C. That means there
is a model ι of Aj and Tj such that Cι ⊆ Dι. From Lemma 9 it follows that
aι

x ∈ Cι for all x ∈ Ci and thus also aι
x ∈ Dι. But then Lemma 8 implies that

x ∈ Di for all x ∈ Ci, i. e. Ci ⊆ Di. Because most specific concepts are minimal
with respect to � we obtain that Cii � D. This proves that Cii is the the only
minimal possible consequence of C with respect to Aj and Tj .

6 Summary and Open Questions

We have shown that the model exploration algorithm from [6] can be adapted
to a new setting. In this new setting, the counter-examples for the rejected GCIs
are stored in an ABox instead of a model.

In order to adapt the algorithm we have introduced the notion of minimal
possible consequences. We have seen that minimal possible consequences can be
used to replace model-based most specific concepts in our new setting. We have
presented an exploration algorithm (Algorithm 2) and proved its completeness.

224 F. Distel

We have pointed out that not all DL languages are suitable to describe counter-
examples. It is crucial that this language provides negation or disjointness.

This is ongoing work, and the questions of termination and the existence
of minimal possible consequences remain open. Termination has partly been
addressed in this paper. We have seen that an expert with an optimal strategy
can force the algorithm to terminate if EL⊥ is used for the knowledge base.
However, termination is not guaranteed if the expert uses a different strategy.

Existence of minimal possible consequences, has not been addressed in this
work. The author is currently working on a modified tableau algorithm which
might be used to compute minimal possible consequences for EL⊥.

References

1. Baader, F.: Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In: Proc. of IJCAI 2003,
pp. 319–324. Morgan Kaufmann, San Francisco (2003)

2. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. of IJCAI 2003, pp. 319–324. Morgan Kaufmann, San Francisco (2003)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

4. Baader, F., Distel, F.: Exploring finite models in the description logic ELgfp. LTCS-
Report 08-05, Chair for Automata Theory, TU Dresden (2008)

5. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite
model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933,
pp. 46–61. Springer, Heidelberg (2008)

6. Baader, F., Distel, F.: Exploring finite models in the description logic ELgfp. In:
Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548. Springer,
Heidelberg (2009)

7. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic
knowledge bases using formal concept analysis. In: Proc. of the IJCAI 2007. AAAI
Press/The MIT Press (2007)

8. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1997)

10. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)

11. Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D.,
Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer,
Heidelberg (2004)

12. Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference terminol-
ogy for health care. J. of the American Medical Informatics Association, 640–644
(1997); Fall Symposium Supplement

13. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics 25, 25–29 (2000)

On Categorial Grammars as Logical
Information Systems

Annie Foret and Sébastien Ferré

IRISA, Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France

foret@irisa.fr, ferre@irisa.fr

Abstract. We explore different perspectives on how categorial gram-
mars can be considered as Logical Information Systems (LIS) both
theoretically, and practically. Categorial grammars already have close
connections with logic. We discuss the advantages of integrating both
approaches. We consider more generally different ways of connecting
computational linguistic data and LIS as an application of Formal Con-
cept Analysis.

1 Introduction

This paper adresses computational linguistic data, with a focus on categorial
grammars, also called type logical grammars, that are used for syntax analysis,
and are of interest for their lexicalization, their logical formulation, their (logical)
semantic interface, and some learnability properties [Kan98]. These grammar
formalisms, that refer to ideas by Adjukiewicw in 1935, were refined by Lam-
bek (the grammars can be based on Lambek calculus [Lam58] or on Pregroups
[Lam99]). Type logical grammars can be viewed as the assignment of properties
to words. The properties are expressed in the underlying logic, depending on the
framework version. For example, in the Lambek grammars [Lam58], the logic is
a non-commutative (the order of words matter) intuitionistic linear logic, that
bears close connections with lambda-calculus, functional application and seman-
tics. As a simplified example, a noun such as ”John” can be assigned a basic for-
mula N , and a transitive verb such as “likes” can be assigned a type N \ S / N ,
meaning that it lacks a group of type N (a noun) on its left and another group
of type N , on its right to produce a sentence (of type S). Parsing in this context
amounts to a logic deduction that a type string entails the distinguished type S.
With rules similar to Modus Ponens, the concatenation of a transitive verb, such
as ”likes” with a noun on its right has a type sequence that entails the type of
an intransitive verb (N \ S), because N \ S / N, N entails N \ S ; if the string
is next concatenated with a noun on its left, we get a sentence, because N, N \ S
entails S. The construction of a particular grammar for a given language is a
difficult task, to cover a large variety of linguistic phenomenon, and yield the
appropriate structures via a good property assignment to words.

A type logical grammar is reminiscent of formal contexts with words as ob-
jects, and logical types as attributes. The design and control of such grammars

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 225–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

226 A. Foret and S. Ferré

can benefit from querying, updating and navigating tools in FCA [FR04]. This
has already been practically undertaken for prototypes in a pregroup toolbox
(for building and parsing grammars of natural languages) [BFar] where words
are the objects of a Logical Information System (LIS) and properties of words
are logical formulas. However, logical types were merely represented as strings,
which do not account for the logic underlying logical types.

After background sections on Logical Information Systems and on Categorial
Grammars, we shall discuss some modelling approaches and different ways of
connecting computational linguistic data and LIS. In particular, we shall define
a LIS logic that models pregroup types, a version of categorial grammars.

2 Logical Information Systems

Logical Information Systems (LIS) are based on Logical Concept Analysis
(LCA) [FR04]. LCA is an extension of Formal Concept Analysis that allows
to use logical formulas for rich object descriptions and expressive queries.

The LCA framework [FR04] applies to logics with a set-valued semantics
similar to description logics [BCM+03]. It is sufficient here to define a logic
(see [FR04] for a detailed presentation) as a pre-order of formulas. The pre-
ordering is the logical entailment, called subsumption: e.g., an interval included
in another one, a string matching some regular expression, a graph being a
subgraph of another one.

Definition 1 (logic). A logic is a pre-order LT = (L,�T), where L is a set of
formulas, T is a customizable parameter of the logic, and �T is a subsumption
relation that depends on T . The relation f �T g reads “f is more specific than g”
or “f is subsumed by g”, and is also used to denote the partial ordering induced
from the pre-order.

The parameter T helps to take into account domain knowledge that may change
over time: e.g., an ontology, a taxonomy. In the following, for simplicity, we
consider it as a set of subsumption axioms f ≺ g: e.g., cat ≺ animal , Quebec ≺
Canada . In addition to the logic and its axioms, the logical context constitutes
the third level of knowledge. It defines a set of objects along with their logical
description, and a finite subset of formulas, called vocabulary, that is used for
navigation.

Definition 2 (logical context). A logical context is a tuple
K = (O,LT , X, d), where O is a finite set of objects, LT is a logic, X ⊆ L is a
finite subset of formulas called the navigation vocabulary, and d ∈ (O → LT) is
a mapping from objects to logical formulas. For any object o, the formula d(o)
denotes the description of o.

Each object is described by a single formula for genericity reasons. Even if a
description is often in practice a set of properties, it can also be a sequence of
properties or any other data structure. The definition of a vocabulary is necessary

On Categorial Grammars as Logical Information Systems 227

because there is often an infinite set of formulas (e.g., intervals, strings). The
choice of a relevant vocabulary depends on both the logic and object descriptions.
The elements of the vocabulary are called features.

Logical contexts make up the core of Logical Information Systems
(LIS) [FR04], so that we need both update and information retrieval opera-
tions on them. There are update operations for the addition of an axiom, the
creation of a new object along with its description, and the showing of a formula
as a navigation feature. The filling of a context is the successive addition of a
set of objects, defining the updatable part of the context. There are also update
operations for removing axioms, modifying the description of objects, removing
objects, and hiding formulas.

A key feature of LIS, shared by other concept-based information sys-
tems [GMA93, DVE06], is to allow the tight combination of querying and nav-
igation. The principle is that, instead of returning a ranking of all the answers
to the query, the system returns a set of query increments that suggest to users
relevant ways to refine the query, i.e., navigation links between concepts, until a
manageable amount of answers is reached. There are two information retrieval
operations on logical contexts: one to compute the query answers, and another
to compute the query increments from those answers.

A query is a logical formula, and its answers are defined as the extent of this
formula, i.e., the set of objects whose description is subsumed by this formula.

Definition 3 (extent). Let K be a logical context, and q ∈ L be a query for-
mula. The extent of q in K is defined by K.ext(q) = {o ∈ O | d(o) �T q}.

The increments of a query q are the features that are frequent in the extent of q,
i.e., the features whose extent shares objects with the extent of q. Those incre-
ments are partially ordered by subsumption, and should be presented so to users
because this gives a more comprehensive view. For instance, if the vocabulary
contains continents, countries, and regions, it is better to display them as a tree
rather than a flat list. Moreover, it is not necessary to compute and display all of
them at once; continents should be displayed first, and could then be expanded
on demand to display countries, etc. These increments provide feedback on the
current query and answers, as well as several forms of navigation [Fer09]. LIS
have been implemented as a user application, Camelis1. It has a dedicated in-
terface showing the current query, the extent and the tree of increments (see a
screenshot in Figure 2). It can manage logical contexts with up to 10,000 objects
and hundreds of features per object. LIS have been applied to many kinds of
data, and most noticeably to the management of a collection of > 5000 pho-
tos [Fer09], which can be browsed and updated in terms of time, location, event,
persons, and objects. In the following of this paper, screenshots show Camelis
where the query box is at the top, the extent is presented as a list of object
names at the right, and increments are shown as an expandable tree on the left.

Another important aspect about LIS is genericity w.r.t. the logic. It is not fixed
a priori, and can be plugged in to cope with application specificities. However,
1 http://www.irisa.fr/LIS/ferre/camelis

228 A. Foret and S. Ferré

designing and implementing a logic is a difficult task that cannot be achieved
by application designers in general. This is why we have developed a toolbox
of logic components, called logic functors [FR04, FR06], that can be assembled
into arbitrarily complex logics at a high level. For an application designer, the
assembling process is similar to assembling data types in programming (e.g.,
integers, strings, lists, arrays, maps).

Definition 4 (logic functor). A logic functor is a function F that takes
logics L1, ...,Ln as arguments (n ≥ 0), returns a composed logic LT =
F(L1, ...,Ln). As for any logic, one has LT = (L,�T), but L (resp. �T) is
function of the sets of formulas (resp. subsumption) of arguments logics.

Thanks to annotations attached to logic functors by their designers, composed
logics can be automatically checked for correctness w.r.t. semantics. Another ad-
vantage of logic functors is to address the well-known trade-off between efficiency
and genericity of logical reasoning. The efficiency comes from the specificity of
functors that allows to use dedicated data structures and algorithms, and the
genericity comes from the ability to compose them. This is similar to natural
languages where a finite number of different words can be combined in an infin-
ity of sentences. Of course, the expressivity is limited by the available functors
(resp. words), but new functors (resp. words) can always be invented.

LogFun
2 is a toolbox of logic functors [FR06] that can be used in Camelis.

It contains a few dozens of logic functors, some of which are grouped in the
following categories:

1. Concrete domains: Int (integers), Float (floating-point numbers), Time
(hours, minutes, seconds), Date (day, month, year), Char (characters, and
classes such as letters, vowels, digits), String (strings, and string patterns
such “contains”, “begins with”), Atom (the classical atoms), Taxo (custom
taxonomies);

2. Algebraic structures: Unit (null value), Top(L1) (add a top formula),
Prod(L1,L2) (pairs), Sum({Lk}k) (alternative), Interval(L1) (intervals),
Enum(L1) (enumerations), Segment(L1) (segments, e.g., a period of time),
Multiset(L1) (conjunctive multisets), Motif(L1) (complex motifs over se-
quences, as used in bioinformatics), Option(L1) = Sum(Unit,L1) (op-
tional value), List(L1) = Top(Option(Prod(L1,List(L1)))) (lists, and list
prefixes), Vector(L1) = Option(Prod(L1,Vector(L1))) (vectors), Tree(L1)
= Top(Prod(L1,List(Tree(L1)))) (n-ary trees, and tree prefixes), Prop(L1)
(Boolean propositions);

3. Dedicated logics: complex combinations of logic functors represent the types
of various programming languages: Java, Caml, Mercury.

Note how some logic functors are defined from other functors. Sometimes, those
definitions are recursive like in List, Vector, and Tree, thus allowing the rep-
resentation of recursive data structures. In Section 5, we define a dedicated logic
to represent pregroup types, in order to describe words, phrases, and sentences.
2 http://www.irisa.fr/LIS/ferre/logfun/.

On Categorial Grammars as Logical Information Systems 229

3 Categorial Grammars

We first consider categorial grammars in general: these are lexicalized grammars,
involving an alphabet Σ, a set of types Tp that is usually generated from a set
of primitive types Pr and given connectives, and a system of rules on types (a
“type calculus”) defining a derivation relation � on types.

3.1 Categorial Grammars and Their Languages

Definition 5 (Categorial grammar). Given a set Tp called the set of types :
a categorial grammar is a structure G = (Σ, I, S) where: Σ is a finite alphabet
(the words in the sentences); I : Σ �→ Pf(Tp) is a function that maps a finite set
of types from each element of Σ (the possible categories of each word); S ∈ Pr
is the main type associated to correct sentences.

Given a relation on Tp∗ called the derivation relation on types : a sentence
v1 . . . vn then belongs to the language of G, written L(G), provided its words vi

can be assigned types Xi whose sequence X1 . . .Xn derives S according to the
derivation relation on types.

3.2 AB and Lambek Grammars

We now give the deduction rules for classical categorial grammars, also known
as AB-grammars.

Definition 6. An AB-grammar is a categorial grammar G = (Σ, I, S), such
that its set of types is constructed from Pr, using two binary connectives / , \ :

Tp ::=Pr | Tp \ Tp | Tp / Tp
and its language is defined using two deduction rules:

A, A \ B � B (Backward elimination, written \ e)
B / A, A � B (Forward elimination, written / e)

For example, using \ e, the string of types (N, N \ S) associated to
“John swims” entails S, the type of sentences. Another typical example is
(N, ((N \ S) / N), N)) associated to “John likes Mary”, where the right part as-
sociated to “likes Mary” (((N \ S) / N), N) entails (N \ S), which combined on
the left with the type of “John” : (N, N \ S) entails S, are above. AB-grammars
are the basis of a hierarchy of type-logical or Lambek-like grammars. These ex-
tensions usually provide more type flexability, and turn the type calculus into
an actual (substructural) logic system, in the range of linear and intuitionnistic
logics. The associative Lambek calculus has been introduced in [Lam58], we
refer to [Bus97] for details on this calculus and its non-associative variant.

3.3 Pregroups

The pregroup formalism has been introduced recently [Lam99] as a simplifica-
tion of Lambek calculus [Lam58]. It is considered theoretically for the syntax
modeling of various natural languages and also practically with parsers [DP05,
Oeh04, Béc07] and sofware tools for grammar construction [BF09].

230 A. Foret and S. Ferré

Definition 7. A pregroup (or PG in short) is a structure (P,≤, ·, l, r, 1) such
that (P,≤, ·, 1) is a partially ordered monoid3 and l, r are two unary operations
on P that satisfy for all a ∈ P : ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara.

Example 1. Groups are a special case of pregroups, for which the left and right
adjoint are the same (the group inverse).

Algebraic properties and iterated adjoints. In a pregroup, we have :
(XY)l = Y lX l and (XY)r = Y rXr;
(X l)r = X and (Xr)l = X
1l = 1r = 1

Iterated left and right adjoints can be written using integer exponents by:
p(n−1) = (p(n))l and p(n+1) = (p(n))r, we write p for p(0).

Note also that if X ≤ Y then Y l ≤ X l and Y r ≤ Xr (order-reversing)

Definition 8 (Pregroup grammars and languages). A pregroup grammar
(PG-grammar in short) based on a finite poset (P,≤) is a categorial grammar
G = (Σ, I, s), taking as set of types:

Tp=Cat(P,≤)={p(i1)
1 · · · p(in)

n | 0≤k≤n, pk ∈ P ∧ ik ∈ Z}

The language L(G) of a PG-grammar G = (Σ, I, s), based on a finite poset
(P,≤) is the set of strings, that can be assigned a string of types deriving s in
the free pregroup on (P,≤):
L(G) = {v1 . . . vn ∈ Σ∗ : ∀i, 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 . . .Xn ≤ s}

Buszkowski has proposed a sequent calculus, written SAdj below, that char-
acterizes the free pregroup derivation relation, in which the cut rule can be
eliminated [Bus01a]

Definition 9 (The Sequent calculus of Adjoints SAdj). Let (P,≤) be an
ordered set of primitive types, system SAdj is made of the following rules, where
p, q ∈ P , n, k ∈ Z and X, Y, Z ∈ Cat(P,≤):

X ≤ X (Id)
X ≤ Y Y ≤ Z

(Cut)
X ≤ Z

XY ≤ Z
(AL)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AR)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDL)

Xq(k)Y ≤ Z

X ≤ Y q(k)Z
(INDR)

X ≤ Y p(k)Z

q ≤ p if k is even, and p ≤ q if k is odd

3 We briefly recall that a monoid is a structure < M, ·, 1 >, such that · is associative
and has a neutral element 1 (∀x ∈M : 1 ·x = x · 1 = x). A partially ordered monoid
is a monoid M, ·, 1) with a partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c · a ≤
c · b ∧ a · c ≤ b · c.

On Categorial Grammars as Logical Information Systems 231

The languages generated by PG-grammars based on finite posets are the
context-free languages [Bus01b], (without the empty string).

We carry on with a previous formal example.

Example 2. Let Σ = {a, b} and G′
PG = (Σ, I ′, s), with assignments of types (on

Pr = {s, x}):

G′
PG

a �→ sxl

�→ sxlsl

b �→ x

We have L(G′
PG) = {anbn | n ≥ 1}

3.4 Interpreting One Type System in Another

Some links between categorial frameworks can be reflected in the logical system.
We explain such a link, that is also illustrated in next example.

Free pregroup interpretation. We associate with each formula C of the Lambek
Calculus L or its non-associative version NL, an element [[C]] in a free pregroup
FP defined by:
[[A]] = A if A is a primitive type,
[[C1 \ C2]] = [[C1]]r[[C2]]
[[C1 / C2]] = [[C1]][[C2]]l

[[C1 • C2]] = [[C1]][[C2]].
The notation extends to sequents by:
[[A1, . . . , An]] = [[A1]] · · · [[An]].

The following property states that the free pregroup FP is a model for L (hence
for NL):
if Γ �L C then [[Γ]] ≤FP [[C]].

Note however that the converse does not hold [Bus01b]:
(a.b) / c �� a.(b / c) with [[(a.b) / c]] = [[a.(b / c)]] = a.b.cl

(p / ((p / p) / p)) / p �� p with [[(p / ((p / p) / p)) / p]] = ppllpllplpl ≤ p
It is of interest to keep in parallel a type and its interpretation or projection

in another framework, for example to guide and control the design of a grammar
or to compare formalisms.

3.5 A Detailed Example

We now detail a linguistic example as a pregroup grammar, and a possible link
with other type grammars.

Example 3. Let P1 = {c, ns, π3, s1, o, s, s} denote a set primitive types ordered
by ns ≤ π3, ns ≤ o, s1 ≤ s, s ≤ s, let Tp = Cat(P1,≤) denote the set of types.
We consider the following PG-grammar G1 = (Σ1, I1, s) based on (P1,≤) for
a fragment of English, such that: Σ1 = {a , The , catches , heron , fish}
I1(The) = I1(a) = {nsc

l}, I1(heron) = I1(fish) = {c}, I1(catches) = {π r
3 s1 ol}

232 A. Foret and S. Ferré

(the type assignment is inspired from [BL01, Lam06]). The following sentence
belongs to L(G1), because the string of types derives s1 ≤ s (the type assign-
ments are below each word, underlinks indicate contractions of types, such as
X cl c Y ≤ X Y or X ol ns Y ≤ X Y , because of the preorder relation ns ≤ o):

sentence: The heron catches a fish
types: (ns cl) c (π3

r s1 ol) (ns cl) c

using primitive types and order postulates as follows:
c = count noun (heron, fish)

ns ≤ π3 ns = singular noun phrase (John)
πk = kth personal subject pronoun (π3=he/she/it)

ns ≤ o o = direct object
s1 ≤ s ≤ s s1 = statement in present tense

s = declarative sentence (the tense does not matter)
s = indirect sentence

Using the [[.]] translation to Lambek calculus L, this sentence is also parsed in L:

s1

ns

The
ns / c

heron
c

π3 \ s1

catches
(π3 \ s1) / o

ns

a
ns / c

fish
c

where types ns, π3, o . . . are to be replaced with complex types such that:
ns � π3, ns � o, and s1 � s � s.

4 Modelling Approaches

Before we detail different approaches, we give a general view on integrating per-
spectives. We shall discuss some possible perspectives relating LIS and some
aspects of NLP (Natural Language Processing), with a focus on categorial
grammars.

On Categorial Grammars as Logical Information Systems 233

The following table sums up what can be taken as object, and what as prop-
erty. A syntax-pos tag is a general syntactic category of words, such as Deter-
miner, Noun, Verb. A macrotype is a more refined syntactic category, such as
“transitive verb in present tense”, “plural noun”.

Object Property Relevance (-/+)
word syntax-pos tag - weak no actual pre-

order/hierarchy
word categorial type + logic preorder/hierarchy
type word - similarity on words, lemmati-

zation ... ; semantic subsump-
tion...

macrotype categorial type + logic preorder/hierarchy
sequence of words categorial type + logic preorder/hierarchy

In fact, LIS do not force to separate these views, it is quite flexible w.r.t.
heterogeneity and partial knowledge; for example, we can consider words and
sequences of words together, even if the sequences are not all typed in the sense
of parsing (whereas words are typed). This is illustrated in figure 1, where various
informations are gathered for words, sentences and types (indicating in particular
an example of use of this assignment to a word in a sentence). Such a combination
may be fruitful to explore words in context (corpus fragments).

Such modellings of objects and properties (1) can be discussed with respect
to some other aspects: formal context (2), set of features (3), navigation links
(4), clusters (5), association rules (6).

4.1 Words as Objects and POS Tags as Properties

A direct application is to consider that the information attached to words, such
as part-of-speech (POS) tags, are like attributes. For example, when common
POS tags are associated to words, as in figure 2, a typical use is as in figure 3: the
query selects the objects, whose property mot (word) contains ”grand” (french
for ”big”), and whose property cat contains ”adv” (for adverbs, with different
subclasses in this context).

4.2 Macrotypes as Objects

This has been used as a stage to control a conversion of a lexicon in one format,
into a lexicon in another format, using macrotypes [BF09].

Below is a typical line of a file describing a context, for a conversion of
tags in Lefff 4 (a large-scale morphological and syntactic lexicon for French),
here a macrotype ”det” is intended to be converted into a categorial type ”d”

4 Lefff stands for: “Lexique des Formes Fléchies du Français / Lexicon of French
inflected forms”[see http://alpage.inria.fr/s̃agot/lefff-en.html]

234 A. Foret and S. Ferré

Fig. 1. A toy grammar, with additional informations, as a LIS context

Fig. 2. Words with their categories, from a fragment of Lefff3

On Categorial Grammars as Logical Information Systems 235

Fig. 3. Words with their categories, from a fragment of Lefff3: selection of adverbs
containing ”grand”

(type is "d.") while keeping another information: the Lambek version of the
macrotype (chaineL is "n/n").

mk "det" class is "macro", type is "d.", chaineL is "n/n;"

4.3 Categorial Types and Concepts

We now give a toy example, to illustrate an application to the construction and
maintenance of categorial grammars.

Example 4. We consider two mini-grammars Gfr G′
fr, that differ in the treat-

ment of type t0.

Gfr =

⎧⎨⎩
w0, w

′
0 �→ t0

w1 �→ t1, t2
w2 �→ t0

where

⎧⎨⎩
t0 = N
t1 = N (1)S

t2 = N (1)SN (−1)
s.t.

⎧⎨⎩
[[t0]] = N
[[t1]] = N \ S
[[t2]] = N \ S / N

we take w0 = John, w′
0 = he w1 = eats, w2 = apples, in which case, the se-

quence ”w0.w1.w2” is a sentence that receives type S after a logical derivation.
This grammar is described by: d(w0) = d(w′

0) = t0; d(w1) = t1 ∧ t2; d(w2) = t0
Let G′

fr be defined as Gfr except for w′
0 such that w′

0 �→ t′0 with axiom
t0 ≤ t′0 (note that w0 �→ t0 ≤ t′0).

The advantage of G′
fr over Gfr is to reject w2.w1.w

′
0 ; this is because

t0 ≤ t′0, but not the converse, which prevents the type cancellation on w1.w
′
0

(”he” cannot be the object of a verb, whereas ”apples” can).
These words appear with a few others in figure 4.

Another view is to take more advantage of the logic nature of categorial
grammars. This point is developed in next section.

236 A. Foret and S. Ferré

�
t3

�
t1

eats
�

t0

apples,John

�
t’0

he
�

t2

catches

�

Fig. 4. Concept Lattice of a toy categorial grammar

5 Categorial Grammars as Logical Contexts

Pregroup types are a good example of representations that cannot easily be
split into binary attributes. From Definition 3.3, a pregroup type has the form
p
(i1)
1 . . . p

(in)
n . In other words, it is a string of simple types, where each simple

type is made of a basic type and an exponent representing iterated adjoints.
In order to apply Camelis to the organisation, search and exploration of a

collection of words, group of words and sentences according to their pregroup
types, we need to define a logic for representing and reasoning on them. First,
we have to take into account the fact that basic types form a partially ordered
set. If we search for words having type o (object), we should retrieve words
having type n (nouns) because of the axiom n ≤ o (nouns can be used as
objects). To this purpose, we choose the logic functor Taxo, which is dedicated
to the representation of customizable taxonomies, i.e., partially ordered sets
of terms. Here, terms are the basic types, and the partial ordering is specified
by users through axioms. Second, we have to take into account the ordering
and adjacency of simple types. If we search for words whose type starts with
π(1)s (verbs), we should retrieve words with types such as π

(1)
3 s1 (intransitive

verbs conjugated for the third person, and at present tense), or π
(1)
1 s1 o(−1)

(transitive verbs conjugated for the first person, at present tense). The logic
functor Motif has been designed for handling such patterns over strings and
sequences, and was originally applied to biological sequences [FK04]. This logic
functor is parameterized by a logic for the sequence elements, here simple types.
As a simple type is a pair made of a basic type and an integer exponant, the logic

On Categorial Grammars as Logical Information Systems 237

for simple types can be defined as Prod(Taxo,Int). Finally, a logic for pregroup
types can be defined by simply composing logic functors out of our toolbox,
as follows.

Pregroup = Motif(Prod(Taxo,Int))

The predefined syntax parser and printer are overloaded to the standard no-
tation of pregroup types. Pregroup types used for describing words are distin-
guished from patterns by enclosing them in square brackets. The type [s] repre-
sents a sentence, whereas the type pattern s represents any word that generates
a sentence given appropriate arguments (e.g., a verb). A prefix (resp. suffix) pat-
tern can be expressed by using only the opening (resp. closing) bracket. The type
pattern [π(1)s represents verbs, both transitive and intransitive, for any person,
and at any tense.

In the application, the logic Pregroup is used as the value domain of the
distinguished attribute pgtype (see screenshots).

In figure 5, we get words that can be seen as ”objects”, however this requires
the use of axioms, because no word has type ”o” (indeed, the query type is
"o" return no object) whereas ”o” is ”required” by transitive verbs on their
right hand side to yield a sentence. The highlighting shows that four of these
words have in fact ”n” as an explicit type. In figure 6, two transitive verbs are
selected because they match the pgtype in the query whereas it is not in their
explicit assignment. The pgtype of the two words specifies the tense and the

Fig. 5. A toy grammar as a LIS context: pgtype [o] vs pgtype [n]

238 A. Foret and S. Ferré

Fig. 6. A toy grammar as a LIS context: selection of transitive verbs

person, while the query does not. The highlighted verb is also intransitive, as
exhibited by the increments.

The situation is similar for the query: pgtype[s], in a LIS context with sen-
tences as objects, following a categorial pregroup assignment as well. Using the
same toy grammar as previously, this query returns two sentences ”John eats
apples” and ”The heron catches a fish”, with property pgtype[s1]; this is be-
cause the axiom reflecting the pregoup logic (s1 ≤ s) has been used to answer
this query.

A further use of categorial logic can be made, implementing completely the
pregroup calculus ≤P G as the subsumption relation between types assigned to
words (this can also hold for groups of words, or sentences, using this ≤P G
derivation). Another step is to consider the pregroup calculus as a logic functor,
so as to combine it with other logic-calculus (in the sense of LIS). This has been
studied in [For07]. The use of general axioms in related formalisms is discussed
by [Bus02]. In particular, in the associative Lambek calculus, this may lead to
an undecidable extension, whereas this addition of axioms preserves polynomial
decidability in the non-associative version.

6 Conclusion

This paper has exposed how categorial grammars (such as pregroups) can
be considered as Logical Information Systems (LIS) both theoretically, and

On Categorial Grammars as Logical Information Systems 239

practically. On the one hand, the lexicalized nature of these grammars enables
to consider them as a kind of dictionary attaching properties to words; this
gives rise to a first modelling via attributes. On the other hand, the logical na-
ture of this linguistic framework enables to go beyond this first modelling, and
take full advantage of Logical Concept Analysis, with better representation and
propagation of properties.

On the computational linguistic side, such a combination is useful for the cre-
ation, control and query of linguistic grammars and prototypes such as the con-
struction of pregroup grammars [BF09]. On the one hand, prototypes have been
created manually in a controlled way, with mixed information as LIS contexts.
On the other hand automatic conversions between LIS and grammars–possibly
large as those obtained from Lefff for French–are helpful. On the logical infor-
mation system side, the case of categorial grammars illustrates the strength and
elegance of composing and defining logic functors .

This study suggests some extensions of LIS, that would be useful for the design
of categorial grammars, and linguistic data in general. For example, considering
macro-types as intermediary object/properties, we propose to build a three-level
LIS, or more generally cascading LIS as a finite sequence of logical information
systems, where the set of objects of a context is part of the logic of the previous
context.

Other future perspectives concern the extension of (1) the kind of objects and
informations (heterogeneous data, XML structured sentences), and (2) the query
language and logic functors (in particular a pregroup functor based on pregroup
inference), as well as (3) ways of integrating learning approaches for augmenting
algorithmically the linguistic information.

References

[BCM+03] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F. (eds.): The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, Cambridge (2003)

[Béc07] Béchet, D.: Parsing pregroup grammars and Lambek calculus using par-
tial composition. Studia Logica 87(2/3) (2007)

[BF09] Bechet, D., Foret, A.: Ppq: a pregroup parser using majority composition.
In: Proceedings of Parsing with Categorial Grammars, ESSLLI workshop,
Bordeaux, France, July 20-24 (2009)

[BFar] Béchet, D., Foret, A.: A pregroup toolbox for parsing and building gram-
mars of natural languages. Linguistic Analysis Journal 36 (to appear)

[BL01] Bargelli, D., Lambek, J.: An algebraic approach to french sentence struc-
ture. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, p. 62. Springer, Heidelberg (2001)

[Bus97] Buszkowski, W.: Mathematical linguistics and proof theory. In: van Ben-
them, J., ter Meulen, A. (eds.) Handbook of Logic and Language, ch. 12,
pp. 683–736. North-Holland Elsevier, Amsterdam (1997)

[Bus01a] Buszkowski, W.: Cut elimination for the lambek calculus of adjoints.
In: New Perspectives in Logic and Formal Linguisitics, Proceedings Vth
ROMA Workshop, Bulzoni Editore (2001)

240 A. Foret and S. Ferré

[Bus01b] Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote,
P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099,
p. 95. Springer, Heidelberg (2001)

[Bus02] Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Language
and Grammar. Studies in Mathematical Linguistics and Natural Lan-
guage, pp. 77–93. CSLI Publications (2002)

[DP05] Degeilh, S., Preller, A.: Efficiency of pregroup and the french noun
phrase. Journal of Language, Logic and Information 14(4), 423–444
(2005)

[DVE06] Ducrou, J., Vormbrock, B., Eklund, P.W.: FCA-based browsing and
searching of a collection of images. In: Schärfe, H., Hitzler, P., Øhrstrøm,
P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 203–214. Springer,
Heidelberg (2006)

[Fer09] Ferré, S.: Camelis: a logical information system to organize and browse
a collection of documents. Int. J. General Systems 38(4) (2009)

[FK04] Ferré, S., King, R.D.: BLID: an application of logical information sys-
tems to bioinformatics. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI),
vol. 2961, pp. 47–54. Springer, Heidelberg (2004)

[For07] Foret, A.: Pregroup calculus as a logical functor. In: Leivant, D., de
Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 147–161. Springer,
Heidelberg (2007)

[FR04] Ferré, S., Ridoux, O.: An introduction to logical information systems.
Information Processing & Management 40(3), 383–419 (2004)

[FR06] Ferré, S., Ridoux, O.: Logic functors: A toolbox of components for build-
ing customized and embeddable logics. Research Report RR-5871, IN-
RIA, 103 p. (March 2006)

[GMA93] Godin, R., Missaoui, R., April, A.: Experimental comparison of naviga-
tion in a Galois lattice with conventional information retrieval methods.
International Journal of Man-Machine Studies 38(5), 747–767 (1993)

[Kan98] Kanazawa, M.: Learnable Classes of Categorial Grammars. Studies in
Logic, Language and Information. Center for the Study of Language and
Information (CSLI) and The European association for Logic, Language
and Information (FOLLI), Stanford, California (1998)

[Lam58] Lambek, J.: The mathematics of sentence structure. American Mathe-
matical Monthly 65 (1958)

[Lam99] Lambek, J.: Type grammar revisited. In: Lecomte, A., Perrier, G.,
Lamarche, F. (eds.) LACL 1997. LNCS (LNAI), vol. 1582, p. 1. Springer,
Heidelberg (1999)

[Lam06] Lambek, J.: Pregroups and natural language processing. The Mathemat-
ical Intelligencer 28(2) (2006)

[Oeh04] Oehrle, R.: A parsing algorithm for pregroup grammars. In: Moortgat,
M., Prince, V. (eds.) Proc. of Intern. Conf. on Categorial Grammars,
Montpellier (2004)

Describing Role Models in Terms of Formal
Concept Analysis

Henri Mühle1 and Christian Wende2

Technische Universität Dresden
1Institut für Algebra

Henri.Muehle@tu-dresden.de
2Lehrstuhl für Softwaretechnologie

c.wende@tu.dresden.de

Abstract. In the past years Software Engineering has experienced sev-
eral difficulties in modularising crosscutting aspects, like shared, dynamic
or scattered behavior of object-oriented systems. One approach to over-
come these difficulties is to encapsulate such behavior in separate mod-
ules, called role models. Role composition provides means to compose
coherent, executable software systems from such role models.

This paper focuses on creating a concept-based framework for repre-
senting role models. Applying several order-theoretic theorems, Formal
Concept Analysis allows for checking the role models and role model com-
position for consistency and analysing quantitative characteristics of the
system design, like size estimation. Another benefit is the ability of For-
mal Concept Analysis to visualize data and their relations. This provides
mechanisms for tracing the lifecycle of role-playing objects at run-time
and, thus, for learning about role changes and relations between roles.

Keywords: Formal Concept Analysis, Role Modeling, Concept-driven
Framework, System Representation.

1 Introduction

During the past twenty years, Software Engineering has evolved from procedu-
ral development towards more and more conceptual approaches ranging from
modular design to object-oriented development. However, it has turned out that
certain aspects cannot be handled properly. E. g. if the same behaviour is scat-
tered throughout the code or has to be executed right before or right after a
certain method is called, standard object-orientation needs to work this around
using code duplication over and over again. Another issue that is to be addressed
is the dynamic sharing of certain behavior among different objects. Whenever
there exists a kind of behavior that can be accessed by different classes, it appears
useful to encapsulate this behavior in a particular object. Due to inheritance
restrictions it is not always possible to solve this problem in standard object
orientation. Since such a kind of behavior can be interpreted as role behavior it
appeared necessary to extend object orientation towards role orientation [7].

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 241–254, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

242 H. Mühle and C. Wende

Role modeling, however, needs to cope with several difficulties, such as check-
ing for consistency of the role models or representing the system’s run-time state.
Our approach provides a theoretical formalization of role models and role model
composition and, thus, contributes to a better understanding of what is neces-
sary to solve these problems. This helps the development of more complete and
robust role modeling approaches than are available at the moment.

In this paper, we thus contribute (1) a static representation for role models
and role model composition using Formal Concept Analysis, (2) a representation
of the dynamic run-time state of a role-based software system using template
contexts and (3) approaches for the exploitation of these formal representations
to leverage role modeling.

In Sect. 2 we give a short introduction to both – role modeling and Formal
Concept Analysis. Then, we show in Sect. 3 how to statically represent basic
role models and role composition using appropriate formal contexts. We extend
this approach for representing the run-time state of role-based software systems.
Afterwards, in Sect. 4 we discuss the benefits of using FCA for role modeling and
in Sect. 5 we give an outlook towards future work and conclude our approach.

2 Delivering the Basics

As introduced in [7] a ”role model is an object-oriented model of an object
structure and represents a bounded part of the real world or of an interesting
concept. It models patterns of collaborating objects as a similar structure of
collaboration roles” [7, p. 71]. In other words, ”a role model is the description of
a (possibly infinite) set of object collaborations using role types” [8, p. 3].

A definition for roles themselves can amongst others be found in [5]: ”A role
of an object is a set of properties which are important for an object to be able
to behave in a certain way expected by a set of other objects.” In collecting
various definitions of the concept role, however, Friedrich Steimann concludes
that there are three possible views onto this concept: ”roles as named places of
a relationship, roles as a form of generalization and/or specialization, and roles
as separate instances joined to an object” [10, p. 5].

In our approach we will more or less refer to all three views. Since roles always
appear in a context, or in Reenskaug’s words a collaboration [7, p. 64] – which is
even more comprehensible, due to the terminology from Formal Concept Analysis
– they need to be reckoned as named places in a relationship. Furthermore, roles
shall always extend or at least modify the behavior of an object, thus they kind
of specialize this object. And last but not least, a role shall be regarded as a
separate instance for making their application more flexible.

To the best of our knowledge, Steimann was the first author who introduced
an approach to role modeling using partial orders. He contributed a modeling lan-
guage, called Lodwick, which basically maintains a type hierarchy (N,≤NN),
consisting of a set of natural types N along with an inheritance hierarchy≤NN ,
a role hierarchy (R,≤RR), consisting of a set of role types R along with an in-
heritance hierarchy≤RR as well and a relation <NR ⊆ N ×R, describing which

Describing Role Models in Terms of Formal Concept Analysis 243

natural type is able to play which role type, which he calls role-filler relationship.
Another important fact is the inheritance of the role-filler relationship. Steimann
states, ”that a type n fills a role r if there is a supertype n′ of n that fills a subrole
r′ of r” [10, p. 13]. This means that each supertype of a given natural type n plays
at least the same roles as n does. Likewise, n is able to play with every role type
r each subrole of r. Lodwick furthermore allows dynamic modeling of instances
and is able to represent the whole lifecycle of a role-modeled system. For a detailed
introduction, see [10, pp. 11-16].

The role modelling used in our approach is inspired by the role-oriented pro-
gramming language ObjectTeams/Java [4]. ObjectTeams introduces a package-
like data structure, called team, to denote role models. Teams are designed as
containers for role classes which can be instantiated themselves. Hence, they
fulfill the same functionality as Reenskaug’s collaborations. Furthermore, roles
themselves are distinguished in their ”playability”. Roles that can be played
directly by natural types (or as in ObjectTeams/Java: base types) are called
bound roles, while roles which cannot, are called unbound roles. However, in
this paper we will focus only on bound roles since the benefits of role modeling
stem from the composition towards ”ordinary” type hierarchies. Unbound roles
do not occur in this composition, but may be useful for abstraction or interaction
between other roles and can in our approach be regarded as attributes of bound
roles. The binding of roles in ObjectTeams/Java is specified via a role-play
relation which corresponds to Steimann’s role-filler relationship.

Example 1. One of the greatest contributions of role modeling is the ability to
encapsulate behavior which should be shared among interacting objects and
distributed to different parts of the software system. Roles are a dynamic clas-
sification concept for objects: They can be acquired and abandoned. Thus, role
modeling has a highly dynamic semantics. For illustration, let us imagine an
exemplary role model as shown in Fig. 1. The model consists of three base types
(Student, Professor and AssistantProfessor), two role types (Lecturer and
Participant) contained in a Lecture, a role-play relation, as well as some de-
scribing attributes. Such role-play relations are typically augmented by a number
of constraints: A student can participate in multiple lectures, as well as a profes-
sor can hold several lectures – but never at the same time. While being student
of different branches may be valid – even at the same time. Such additional role-
play constraints will not be addressed in this paper, but in our future work. A
possible way of applying FCA would be the usage of many-valued contexts to de-
scribe multiple role-play and detect changes and consistency via using a suitable
scaling. An overview of possible role-play constraints can be found in [8].

To superimpose several role models in accordance to the role-play relation to a
combined system the technique of role composition is used. This technique de-
scribes the merging of role and base types and is applied by introducing relations
between these which describe the ability of role-play between these types. Dur-
ing system run-time the behavior of the base type instances is, thus, augmented
by role behavior.

244 H. Mühle and C. Wende

Lecturer
material:Collection

Participant
material:Collection
grade:int

Lecture

Lecturer
material:Collection

Participant
material:Collection
grade:int

Professor
name:String
faculty:String

AssistantProfessor
evalDate:Date

Student
name:String
studID:int

<<playedBy>>

<<playedBy>>

Fig. 1. Example role model Lecture

A formal representation for role models, as intended in this paper, needs to
provide means for role model checking, e. g. for checking consistency of role
models and role model composition. Furthermore, such a representation needs
to cope with the dynamics of role models at run-time. Role modeling can benefit
from the mathematic formalization, several knowledge deduction algorithms and
the easy adaptability of Formal Concept Analysis. It has proven a value in lots
of applications, e. g. in restructuring and refactoring software systems [9] or in
class hierarchy design [3]. This work, as well as [10], were the main influences
towards this paper. While [9] and [3] propose different styles of modeling software
systems with the use of appropriate contexts, [10] created a basic language for
representing role models in an order-theoretic way. Thus, in this paper we try
to merge both approaches.

Formal Concept Analysis emerged as an approach to restructure Lattice The-
ory, that was introduced by Garrett Birkhoff in the early 1940s (e. g. [1]). The
basic elements of Formal Concept Analysis are called formal contexts, which
are triplets (G, M, I) consisting of a set G of objects, a set M of attributes and
a relation I ⊆ G ×M , which describes the incidence of objects and attributes.
This structure comes along with a very simple and intuitive representation: the
cross table. From such tables one can now derive a set of concepts that are valid
in the world represented by the formal context. The idea hereby is the following:
a maximal set of objects whose elements have a maximal set of attributes in com-
mon, form – together with this maximal set of attributes – a (formal) concept.
I. e. a formal concept is a pair (A, B), with A ⊆ G, B ⊆ M, A′ = B, B′ = A,
where

A′ := {m ∈M | ∀ g ∈ A : gIm}

B′ := {g ∈ G | ∀ m ∈ B : gIm}

A is then called extent, B is called intent of the concept (A, B).
To relate these concepts to each other, one introduces a partial order on the

set of all concepts via

Describing Role Models in Terms of Formal Concept Analysis 245

(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1)

and can hence construct a concept hierarchy or – due to its properties – a
concept lattice representing relationships or commonalities between certain
concepts. It shall be noted that for each object g ∈ G exists a smallest concept
γg having g in its extent. Dually, for each attribute m ∈ M exists a largest
concept μm having m in its intent [2].

3 Representing Role Models and Role Composition as
Formal Contexts

In this paper, we create a representation of role models and, thus, start with
giving a formal representation of the role model itself.

As we have seen in Sect. 2 a role model consists of a set R of role types, a set
B of base types and a certain relation P between role and base types which is
often referred to as role-play relation. Thus, we define a role model as follows:

Definition 1. Let R be a set of role types and B a set of base types. Let
further be P ⊆ B × R a relation between base and role types. The triplet C :=
(B, R, P) is then called simple (formal) role model.

For the purpose of this paper simple role models are sufficient so in the following
we omit the particle simple1.

As one can see, a formal role model already turns out to be a formal context.
With the objects being the base types of the role model, each concept describes
the roles which can be played by a set of base types. An interesting field of
future research will be the application of certain techniques of Formal Concept
Analysis – e. g. attribute exploration – to gain knowledge about implicit relations
between different roles that are not yet modeled or to check the model itself for
correctness.

3.1 Static Modeling of Role Models and Role Model Composition

In role models, base classes, roles and their relations are used to specify parts of
the software system. In our framework we are going to provide means to repre-
sent these elements using formal contexts. To reflect the characteristic property
that role and base types belong to two parallel modeling hierarchies [10], we need
to regard them as objects of two different formal contexts. Following the ideas of
Godin and Valtchev in [3] it turns out to be useful to take the attributes of base or
role types in the role model as attributes of the formal context representing base
or role types respectively. This gives us the advantage that the class hierarchies

1 This notion arose because in [6] a formal role model was defined as a quintuple
(B, Rb, Ru, P, A) bearing some further information on the system which is not nec-
essary for the scope of this paper. (cf. [6, pp. 29-30]).

246 H. Mühle and C. Wende

of both role and base types are preserved in the concept lattice of the respective
context.

When describing a role model composition, however, it is necessary to keep
the information of both – base and role – contexts in one single context. Thus,
we need to construct a suitable combination of these two contexts. To realise
such composition we use the role-play relation as a kind of mapping between
role and base types. So the attributes of the base types are added to the intent
of the role type they play. As we will see later, this combination enables us to
check for several properties of the whole system.

Definition 2. Let C = (B, R, P) be a formal role model, let MB, MR be sets of
attributes and IB ⊆ B ×MB, IR ⊆ R×MR relations that describe the incidence
of types and attributes. The formal context KC := (G, M,∇) with

G := Ḃ ∪ Ṙ

M := ṀB ∪ ṀR

∇ := IB ∪ IR ∪Δ
where

Δ :=
{
(r, m) | ∃ b ∈ B : bPr ∧ bIBm

}
⊆ R×MB

is then called static composition context of C.

The dot-notation used is the same as proposed in [2, p. 38] for conceptual scaling
and is meant to guarantee the disjointness of the corresponding sets. It can be
seen as a mapping which replaces the set B by the set of tuples {b} ×B, where
b is used as a literal pointing out that a type t ∈ B is indeed a base type2.

Example 2. Let us again consider the example from Fig. 1. If we construct the
static composition context as given in Def. 2 we obtain the cross table and the
corresponding concept lattice depicted in 2.

Interpreting the concepts in this lattice, we see that AssistantProfessor is a
subconcept of Professor3 (which is due to the subtype-relationship). Further-
more, Participant is a subconcept of Student, as well as Lecturer is a subconcept
of AssistantProfessor (and hence Professor). As we see, a concept describing a
role type is a subconcept of a concept describing a base type if the base type is
in role-play relationship with the role type. In [6, p. 51] there is a proven theorem
that states that there exists an equivalence between the subconcept relation and
the role-play relation if the context of the base types is atomistic4 and clarified5.

2 Accordingly, Ṙ := {r} ×R, ṀB := {b} ×Mb and ṀR := {r} ×MR.
3 Being exact, one would have to say, ”We see that the concept belonging to the

object AssistantProfessor is a subconcept of the concept belonging to the object
Professor.”. For improving the readability, we omit this lengthy notation and keep
on using the – slightly inexact – short form.

4 A formal context (G, M, I) is called atomistic if for each object b ∈ B no object
b̃ ∈ B exists with γb̃ < γb.

5 A formal context (G, M, I) is called clarified if γg = γh ⇒ g = h for all g, h ∈ G
and dually for the attributes.

Describing Role Models in Terms of Formal Concept Analysis 247

∇lec

na
m

e
fa

cu
lt
y

ev
al

D
at

e
st

ud
ID

m
at

er
ia

l
gr

ad
e

Professor × ×
AssistantProfessor × × ×
Student × ×
Lecturer × × × ×
Participant × × ×

Participant Lecturer

Student Assistant-
Professor

Professor

Fig. 2. Cross table and concept lattice of the static composition context of Lecture

We will present a slightly modified version of this theorem in Sect. 4 and state
its impact on role modeling.

Concluding this section, we shall remark that the representation of a system
{Ck | k ∈ K} of role models can be done likewise6. Each role model is then rep-
resented by an appropriate composition context (Gk, Mk,∇k). The whole system
will then be modeled by joining the composition contexts in the following way

(G, M,∇) :=
⋃

k∈K

(Gk, Mk,∇k)

3.2 Representation of the Dynamic Run-Time State of a Role-Based
Software System

Until now we have only modeled a static representation of role models and role
model composition. That means that we have declared the role and base types
which participate in the model and how they interact. However, for gaining
knowledge about the lifecycle of instances of base types in our modeled system,
we have to add the instance names to the extents of the respective concepts
in the context describing the role composition. With such enriched contexts we
are able to observe the lifecycle of each base type instance in a sequence of
concept lattices.

The first step in this process is to encode the role-play relation directly in
the set of concepts. Therefore it is necessary to extend the set of objects of the
static composition context by each role-base-combination. The incidence relation
of such a context should then be adapted so that each role-base-combination has
all the attributes belonging to either of the types.

Definition 3. Let C = (B, R, P) be formal role model and KC = (G, M,∇) the
static composition context of C. The formal context K̃C := (G̃, M̃, ∇̃) with

G̃ := Ḃ ∪ Ṙ ∪ P

M̃ := M

∇̃ := IB ∪ IR ∪ Δ̃B ∪ Δ̃R

6 K is an arbitrary set of indices.

248 H. Mühle and C. Wende

where
Δ̃B :=

{(
(b, r), m

)
| bIBm, b ∈ B

}
⊆ P ×MB

Δ̃R :=
{(

(b, r), m
)
| rIRm, r ∈ R

}
⊆ P ×MR

is called template context of C.

We expressed the extension from static composition contexts to template contexts
by introducing a new concept γ(b, r) in K̃C whenever γr is a subconcept of γb in
KC. This idea is illustrated in Fig. 3. The name ”template context” is derived from
the fact that the respective concept lattice can be seen as a template for the con-
cept lattices of certain dynamic composition contexts. These dynamic composition
contexts are introduced in Def. 4. For further clarification, see also Thm. 2.

KC :

r

b

	

K̃C :

(b, r)

r

b

Fig. 3. The replacement schema which adds a concept for each role-base-pair in the
template context

Let T ⊆ N describe the run-time of the system. Then, let It be the set of all
active instances of the system at the moment t ∈ T . For each base type b ∈ B
may It

b describe the set of all instances of type b at the time t ∈ T . Analogously,
It

r shall describe the active instances at the time t ∈ T that play the role r ∈ R.
Obviously the following holds ⋃

b∈B

It
b = It

⋃
r∈R

It
r ⊆ It

An instance i ∈ It
b ∩ It

r has access to all the attributes of its base type b and of
the played role r. So it appears natural to define a dynamic composition context
as follows:

Definition 4. Let C = (B, R, P) be a formal role model, K̃C the proprietary
template context and t ∈ T a certain point of time. Let It be the set of all active
instances at the point of time t, It

b be the set of all active instances of type b ∈ B
and It

r be the set of all active instances playing the role r ∈ R. Then, the context
K̃t

C
:=

(
G̃t, M̃ t, ∇̃t

)
with

G̃t := Ḃ ∪ Ṙ ∪ It

M̃ t := M̃

∇̃t := IB ∪ IR ∪ Δ̃t
B ∪ Δ̃t

R

Describing Role Models in Terms of Formal Concept Analysis 249

∇̃lec

na
m

e
fa

cu
lt
y

ev
al

D
at

e
st

ud
ID

m
at

er
ia

l
gr

ad
e

Professor × ×
AssistantProfessor × × ×
Student × ×
Lecturer ×
Participant × ×
ProfLecturer × × ×
AssProfLecturer × × × ×
StudParticipant × × × ×

StudParticipant AssProf-
Lecturer

Prof-
Lecturer

Assistant-
Professor

Participant
Student Professor

Lecturer

Fig. 4. Cross table and concept lattice of the template context of Lecture

is called dynamic composition context. Thereby
Δ̃t

B :=
{
(i, m) | ∃ b ∈ B : i ∈ It

b ∧ bIBm for m ∈ MB

}
Δ̃t

R :=
{
(i, m) | ∃ r ∈ R : i ∈ It

r ∧ rIRm for m ∈MR

}
Example 3. Let us again consider the example role model in Fig. 1. The template
context and its concept lattice is shown in Fig. 4.

Let us think of a professor Aßmann playing the role of the Lecturer and
two students Mühle and Wende who participate in this lecture. We get as ini-
tial7 sets of instances I0 = {Aßmann, Mühle, Wende}, I0

Professor = {Aßmann},
I0

Participant = {Mühle, Wende} and so on. Thus, the initial concept lattice of the
dynamic composition context is depicted in Fig. 5.

Mühle,Wende

Aßmann Assistant-
Professor

Participant Student Professor

Lecturer

Fig. 5. Initial concept lattice of the dynamic composition context K̃0
C

As we see the two lattices in Fig. 4 and Fig. 5 are pretty similar. We will
discuss the relation between these two types of formal contexts in Sect. 4.2 and
sketch how they can be used for visualisation and analysis.
7 I. e. t = 0.

250 H. Mühle and C. Wende

4 Contribution to Role Modeling

After introducing a formal representation of statics and dynamics for role models
in terms of Formal Concept Analysis we will now discuss the contributions of
our approach for role modeling.

4.1 Correctness of Role-Based System Specifications

Based on our static representation for role models and their superimposition in
composition contexts we can now check the role-based system specifications for
conflicts.

Let us first think about the example from Fig. 2. We notice that this context is
not atomistic at all because AssistantProfessor is a subconcept of Professor. So
the assumption of the theorem in [6, p. 51] is violated, the conclusion, however,
holds. This motivates the easing of the assumptions as presented in Thm. 1.
Consider the following modification of this example.

Example 4. When allowing the AssistantProfessor to play the Participant role
as well, we receive the slightly modified role model in Fig. 6.

Constructing the concept lattice of the according composition context, we see
that due to the subtype-relation between Professor and AssistantProfessor,
Professor is now a super-concept of Participant, even though a Participant
cannot be played by a Professor.

The difference between the role models in Fig. 1 and Fig. 6 is that in the modi-
fied example a subtype (AssistantProfessor) is playing a role (Participant),
which its supertype (Professor) does not. This motivates the distinction be-
tween role models that allow this case and such that do not.

Definition 5. Let C = (B, R, P) be a formal role model and let (B, B,≤B) be a
context describing the inheritance relationship on the base types. C is then called
extending if there exist (at least) two base types b1, b2 ∈ B with b1 ≤B b2 and
γb1 < γb2 (in B(B, R, P)). C is called non-extending if it is not extending.

Lecturer
material:Collection

Participant
material:Collection
grade:int

Lecture

Lecturer
material:Collection

Participant
material:Collection
grade:int

Professor
name:String
faculty:String

AssistantProfessor
evalDate:Date

Student
name:String
studID:int

<<playedBy>>

<<playedBy>>

Fig. 6. Modified example role model Lecture

Describing Role Models in Terms of Formal Concept Analysis 251

∇′
lec

na
m

e
fa

cu
lt
y

ev
al

D
at

e
st

ud
ID

m
at

er
ia

l
gr

ad
e

Professor × ×
AssistantProfessor × × ×
Student × ×
Lecturer × × × ×
Participant × × × × × ×

Participant

Student Lecturer

Assistant-
Professor

Professor

Fig. 7. Cross table and concept lattice of the modified role model from Fig. 6

As we have seen in Sect. 2 the role-play relation is inherited down the inheritance
hierarchy of the base types. I. e. for two base types b1 ≤B b2 the intents {b1}′
and {b2}′ of the concepts γb1 resp. γb2 are at least greater or equal. Adding a
role r to {b2}′ means that it is immediately inherited to {b1}′. However, adding
a role r to {b1}′ does not affect {b2}′. I. e. it holds {b2}′ ⊂ {b1}′ which means
γb1 < γb2.
So, whenever one finds two base types b1 and b2 with b1 ≤B b2 and γb1 < γb2
one knows that there exists at least one role type r ∈ R that can be played by
b1 but not by b2. Thus b1 extends the role-play of b2.

With this definition, we can extend the theorem from [6, p. 51]:

Theorem 1. Let C = (B, R, P) be a non-extending role model and KC =
(G, M,∇) the composition context to C. Let the context (B, MB, IB) of base
types further be clarified. Then for all b ∈ B, r ∈ R holds

γr ≤ γb⇔ bPr

Proof. ”⇐”: Clear by the definition of ∇.
”⇒”: Be b ∈ B, r ∈ R, with γr ≤ γb, thus {b}′ ⊆ {r}′. Assume that (b, r) /∈ P .
By definition of ∇ there have to exist base types bn for each n ∈ {b}′, with bnPr.
This means that

{b}′ =
⋂

n∈{b}′
{bn}′

which leads with the basic theorem of Formal Concept Analysis [2, p. 20] to

γb =
∨

n∈{b}′
γbn

Thus, γbn ≤ γb for each n ∈ {b}′. This can, again by the construction of
(G, M,∇), only be true if each of the bn describe a subtype of the base type
b. Since C is non-extending, it has to be γbn = γb. Since (B, MB, IB) is clarified,
bn = b which leads to a contradiction having bnPr and (b, r) /∈ P at the same
time. ��

252 H. Mühle and C. Wende

This theorem can now be used to check the role model for correctness. Whenever
the corresponding composition context is specifying, the role-play relation is not
modeled properly. This does not only allow the detection of conflicts at modeling
time but also helps to estimate the impact of changes during the evolution of
role-based system specifications.

4.2 Visualisation and Analysis of System Dynamics at Run-Time

In the same way as Steimann’s modeling language Lodwick is able to present
snapshots of the system (i. e. it delivers all necessary information on the system,
e. g. the union of all active instances, all base and role types and the according
role-play), our approach does. But in contrast to Lodwick which represents
these snapshots only as sets, we are able to present concept lattices, covering the
whole system at the certain point of time. The visualisation via concept lattices
gives an intuitive, clearly arranged and comprehensive diagrammatic schema of
the relations between the system’s objects. However, it is hardly possible to
compute the concept lattice of each dynamic composition context for each point
of time. The concept lattice is rather seen as a means to visualize parts of the
system on-demand, as an above-mentioned snapshot. Additionally, one would
not likely demand to see the whole lattice but only the relevant parts of it,
e. g. the order ideal8 of a certain concept containing all active instances of the
according type. Future work will show how such visualisation mechanisms will
be applied.

Another benefit of the presented modeling approach is the following: When
we compare the lattices Fig. 4 and Fig. 5 we see that the concept lattice of
the dynamic composition context can be embedded into the concept lattice of
its template context. The following theorem stems from [6] and describes the
relation of these two lattices in more detail.

Theorem 2. Let C = (B, R, P) be a formal role model, K̃C the proprietary tem-
plate context and K̃t

C
a dynamic composition context at the point of time t ∈ T .

Then, B
(
K̃t

C

)
can be embedded order- and (even more) join-preserving in B

(
K̃C

)
.

So, already at role modeling time, we can give an upper bound for the cardinality
of the set of concepts that are valid. There will be no point of the system’s
run-time, when more concepts will be necessary to form the concept lattice of
the dynamic composition context than allowed by the number of concepts of
the according template lattice. This helps to estimate at modeling time how
much space is required for representing the dynamic composition context during
run-time.

As role modeling was intended to handle dynamic and shared behavior, it is
natural that role types adapt and change certain behavior of base types. This
can be reached by redefining methods of the base type in playable role types. In
our approach, we defined a formal context by using type attributes only. Godin
8 In an ordered set (V,≤), an order ideal (a] for a ∈ V is defined as (a] := {v ∈ V |

v ≤ a}.

Describing Role Models in Terms of Formal Concept Analysis 253

and Valtchev have, however, shown how to create formal contexts preserving the
type hierarchy using type methods [3, p. 9]. With adapting our approach towards
type methods, we gain further benefits, as sketched below.

Example 5. Assume a base type Professor implementing a method scribbleOn-
Board(). How the actual scribbling is performed depends on the role this profes-
sor is playing. As a Lecturer – maybe under time pressure – the scribbling would
probably be less neat than usually. In an appropriate context describing the dy-
namic role model using type methods the according concepts’ intents would then
share an attribute scribbleOnBoard. If an instance of the base type Professor lies
in the order ideal of the concept Lecturer it follows that the Professor’s method
scribbleOnBoard has to be dispatched by the according method of Lecturer.

A more detailed elaboration of this approach, as well as establishing further
theorems offer lot of material for future research.

5 Conclusion

In this paper we contributed a formal representation for role models and the
statics and dynamics of role model composition. This representation is directly
applicable in a computational framework for analysing role-based systems and
their specifications. We introduced fundamental theorems for checking role-based
system specifications for conflicts and to represent the run-time state of a role-
based system using dynamic composition contexts. These composition contexts
were applied for visualising the run-time state and, thus, for modeling the life-
cycle of instances of base types. We are thus able to identify role changes and
type polymorphism.

Another task that is to be done is the extension of our attribute-based ap-
proach towards a method-based one. As sketched in the last section such an
approach will help to identify role polymorphism and method dispatch.

To support role-based system engineering practically, future work will have
to provide an implementation and evaluation of the feasibility of the presented
approach in an integrated software modeling and analysis tool. This also includes
tooling to realise the checking and visualisation proposed in this paper.

As we stated earlier, there are open fields in exploiting the context structure
of the role model itself as well as applying context constructions for role-play
constraints.

Acknowledgments

We would like to thank Uwe Aßmann and Bernhard Ganter who supported this
work with their valuable suggestions and fruitful discussions. This work was
partially funded by the EC in the FP7 project MOST.

254 H. Mühle and C. Wende

References

1. Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25. American Mathe-
matical Society (1940)

2. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen.
Springer, Heidelberg (1996)

3. Godin, R., Valtchev, P.: Formal Concept Analysis-Based Class Hierarchy Design
in Object-Oriented Software Development. In: Ganter, B., Stumme, G., Wille, R.
(eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 304–323. Springer,
Heidelberg (2005)

4. Herrmann, S.: A Precise Model for Contextual Roles: The Programming Language
ObjectTeams/Java. Applied Ontology 2(2), 181–207 (2007)

5. Kristensen, B.B., Østerbye, K.: Roles: Conceptual Abstraction Theory and Practi-
cal Language Issues. Theory and Practice of Object Systems 2(3), 143–160 (1996)

6. Mühle, H.: Modellierung rollenbehafteter Typhierarchien unter Verwendung der
Formalen Begriffsanalyse. Diplomarbeit, Technische Universität Dresden (2009)

7. Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects: The Ooram Software
Engineering Method. Manning Publications (1996)

8. Riehle, D., Gross, T.: Role Model-based Framework Design and Integration, pp.
117–133. ACM Press, New York (1998)

9. Snelting, G., Tip, F.: Understanding Class Hierarchies using Concept Analysis.
ACM Trans. Program. Lang. Syst. 22(3), 540–582 (2000)

10. Steimann, F.: On the Representation of Roles in object-oriented and conceptual
Modelling. Data Knowledge Engineering 35(1), 83–106 (2000)

Approaches to the Selection of Relevant
Concepts in the Case of Noisy Data

Mikhail Klimushkin1, Sergei Obiedkov1, and Camille Roth2

1 Higher School of Economics, Moscow, Russia
klim.mikhail@gmail.com, sergei.obj@gmail.com

2 CAMS (CNRS/EHESS), Centre d’Analyse et de Mathématique Sociales
EHESS, 54 Bd Raspail, F-75006 Paris, France

roth@ehess.fr

Abstract. Concept lattices built on noisy data tend to be large and
hence hard to interpret. We introduce several measures that can be used
in selecting relevant concepts and discuss how they can be combined
together. We study their performance in a series of experiments.

1 Introduction

Formal Concept Analysis (FCA) as a categorization method aims at grouping
objects described by common attributes. In this framework, a category is more
precisely defined as a maximal set of objects sharing a maximal set of attributes.
Such groupings are then gathered in a hierarchical, lattice-based structure which
straightforwardly exhibits various relationships between categories and their sub-
and super-categories. As such, this approach provides an ideal formalization of
categories in terms of concepts as they are traditionally defined philosophically,
i.e., concepts extensionally described by sets of entities and intensionally de-
scribed by attribute sets.

The taxonomical structure of a given domain is therefore frequently expected
to be naturally revealed by applying FCA to an empirical description of its ob-
jects and their attributes. However, in spite of these strong theoretical
foundations, the translation of empirical data into clean and relatively readable
structures remains a common issue. Indeed, FCA induces a potentially dread-
ful combinatorial complexity and the structures obtained even from small-sized
datasets can become prohibitively huge. In this respect, noise constitutes a pri-
mary factor of complication as it favors the existence of many similar but distinct
concepts, which may excessively inflate the lattice with superfluous information
to the cost of significantly impaired readability.

Hence, displaying interesting patterns while removing useless and cumbersome
information constitutes a crucial task when assuming a noisy dataset. Such pat-
terns are admittedly those which are or would be the only ones to be found
in an ideally clean (non-noisy) dataset. This issue has seemingly received little
attention in the FCA literature, apart from methods targeted at simplifying lat-
tices [1,2,5,6,10]. In this paper, we design noise filtering criteria to specifically

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 255–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

256 M. Klimushkin, S. Obiedkov, and C. Roth

account for the likeliness of a concept to exist because of noise rather than to
reflect essential features of the underlying taxonomy. To proceed, we essentially
aim at appraising the diverse efficacy of such indices on basic datasets altered
by simple noise effects.

The paper is organized as follows: in Sect. 2, we recall the principles and
notations of FCA. Section 3 introduces the various indices and their rationale,
while Sect. 4 describes their application on noisy contexts and comments the
corresponding results.

2 FCA Definitions and Related Work

Before proceeding, we briefly recall the FCA terminology [3]. Given a (formal)
context K = (G, M, I), where G is called a set of objects, M is called a set of
attributes, and the binary relation I ⊆ G×M specifies which objects have which
attributes, the derivation operators (·)I are defined for A ⊆ G and B ⊆ M
as follows:

AI = {m ∈ M | ∀g ∈ A : gIm};

BI = {g ∈ G | ∀m ∈ B : gIm}.

In words, AI is the set of attributes common to all objects of A and BI is the
set of objects sharing all attributes of B.

If this does not result in ambiguity, (·)′ is used instead of (·)I . The double
application of (·)′ is a closure operator, i.e., (·)′′ is extensive, idempotent, and
monotonous. Therefore, sets A′′ and B′′ are said to be closed.

A (formal) concept of the context (G, M, I) is a pair (A, B), where A ⊆ G,
B ⊆ M , A = B′, and B = A′. In this case, we also have A = A′′ and B = B′′.
The set A is called the extent and B is called the intent of the concept (A, B).

A concept (A, B) is a subconcept of (C, D) if A ⊆ C (equivalently, D ⊆ B).
In this case, (C, D) is called a superconcept of (A, B). We write (A, B) ≤ (C, D)
and define the relations ≥, <, and > as usual. If (A, B) < (C, D) and there is
no (E, F) such that (A, B) < (E, F) < (C, D), then (A, B) is a lower neighbor
of (C, D) and (C, D) is an upper neighbor of (A, B); notation: (A, B) ≺ (C, D)
and (C, D) (A, B).

The set of all concepts ordered by ≤ forms a lattice, which is denoted by B(K)
and called the concept lattice of the context K. The relation ≺ defines edges in
the covering graph of B(K). The meet and join in the lattice are denoted by ∧
and ∨, respectively.

3 Indices for Concept Selection

3.1 Stability

The stability index describes the proportion of subsets of objects of a given
concept whose closure is equal to the intent of this concept [6]. In other words,
it is meant to capture how much a concept intent depends on particular objects

Approaches to the Selection of Relevant Concepts in the Case of Noisy Data 257

of the extent: should some objects be removed from the concept extent, would
the concept intent remain the same? In an extensional formulation, the index
specifies how much a concept extent depends on intent attributes.

We thus distinguish between intensional and extensional stability indices σi

and σe:

σi(A, B) =
|{C ⊆ A | C′ = B}|

2|A|

σe(A, B) =
|{D ⊆ B | D′ = A}|

2|B|

The intent of a concept with a high intensional stability index would be likely
to exist even if we ignore several of its objects: it does not disappear if the
intent of some of its objects is modified, e.g., if these objects lose some of the
properties of this concept. Put differently, concepts relying on noisy objects and,
therefore, not typical of a realistic category, are more likely to be unstable.
Similarly, extensional stability helps isolating concepts that appear because of
noisy attributes.

Given the covering graph of a concept lattice, computing stability for all
concepts can be done using the algorithm presented in [9]. This algorithm is
essentially quadratic in the number of concepts in the lattice, which may be pro-
hibitively expensive for large lattices. On the other hand, this algorithm needs a
lattice as input, and generation of lattices for very large datasets may be imprac-
tical, anyway. Hence, it would be useful to develop an algorithm that generates
only stable concepts directly from the input context (perhaps, giving up on the
exact computation of stability and computing only approximate estimates).

Below, we mainly rely on intensional stability, which we denote by σ for the
sake of clarity.

3.2 Concept Probability

A concept that covers fewer objects is normally less intensionally stable than
a concept covering more objects. Still, these rather specific concepts can corre-
spond to interesting associations that should not be ignored in the analysis. To
give such specific concepts a chance of surviving the stability test, we need to
normalize the stability index. To this end, we introduce the notion of concept
probability. The idea is that if a concept has low probability, but is still observed
in the data, it may reflect an interesting dependency and should be taken into
account.

The relation between the presence of some patterns and some simple features
of 01-matrices has received some attention in the literature, mainly by apprais-
ing how some patterns could be artifactual with respect to a particular a priori
knowledge on the structure of such matrices. These studies focus in particu-
lar on the effect of matrix marginals—i.e., the distributions of sums of rows
and columns—on patterns. For instance, the so-called configuration model of
[8] assumes a null-model of random matrices conserving only original marginals;
then, estimates the probability of some statistical features, generally related to

258 M. Klimushkin, S. Obiedkov, and C. Roth

the topology of the matrix interpreted as the adjacency matrix of a graph. Closer
to FCA, [4] later proposed to estimate whether frequent itemsets could be due to
chance by, again, relating their presence to marginals: patterns are subsequently
said to be artifactual if they are found in comparable proportions in the original
data and its randomized version.

The notion of concept probability essentially follows a relatively similar line
of reasoning. For m ∈ M , denote by pm the probability of an arbitrary object
having the attribute m. For B ⊆ M , define pB, the probability of an arbitrary
object having all attributes from B, by

pB =
∏

m∈B

pm,

thus assuming the mutual independence of attributes. By denoting n = |G|, we
obtain the following formula for the probability of B being closed:

p(B = B′′) =
n∑

k=0

p(|B′| = k, B = B′′) =

=
n∑

k=0

⎡⎣(n

k

)
pk

B(1 − pB)n−k
∏

m �∈B

(1− pk
m)

⎤⎦
To see the reasoning behind the formula, note that, for |B′| = k and B = B′′,

we need that

1. There are k objects that have all attributes from B;
2. Each of the other n− k objects does not have at least one attribute from B;
3. No attribute outside B belongs to all the k objects.

There are
(
n
k

)
variants to choose k objects. The probability that each of the

chosen k objects has all attributes from B is pk
B, and the probability that each of

the other n−k objects does not have at least one attribute from B is (1−pB)n−k.
The probability that not all of the k chosen objects have an attribute m is
(1− pk

m); hence the probability that none of the attributes outside B belongs to
all the k objects is

∏
m �∈B(1 − pk

m). Therefore, the joint probability of |B′| = k
and B = B′′ is (

n

k

)
pk

B(1− pB)n−k
∏

m �∈B

(1− pk
m).

By summing over k, we obtain the complete formula for the probability of an
attribute set B being closed, which is given above.

Again, one can regard this as “intensional probability” of a concept and define
“extensional probability” dually (as the probability of an object subset being
closed).

It can be easily seen that it is possible to compute
(

n
k+1

)
pk+1

B (1− pB)n−(k+1)

from
(
n
k

)
pk

B(1 − pB)n−k using a constant number of multiplication operations,
while

∏
m �∈B(1 − pk

m) requires O(|G||M |) multiplications. Thus, computing the
(intensional) probability of one concept involves O(|G|2|M |) multiplication
operations.

Approaches to the Selection of Relevant Concepts in the Case of Noisy Data 259

Fig. 1. Separation index s(A, B) corresponds to the ratio between the green central
area |A| × |B| and the total area covered by intents of every object of A and extents
of every attribute of B

3.3 Separation

The separation index is meant to describe how well a concept sorts out the ob-
jects it covers from other objects and, jointly, how well it sorts out the attributes
it covers from other attributes of the context.1

Put differently, it indicates the significance of the difference between the ob-
jects covered by a given concept from other objects and, at the same time,
between its attributes and other attributes.

To do so, the separation index s is defined as the ratio between the area
covered in the context by a concept (A, B) and the total area covered by its
objects and attributes (see Fig. 1 for an illustration):

s(A, B) =
|A||B|∑

g∈A

|g′|+
∑
m∈B

|m′| − |A||B|

Obviously, s(A, B) can be computed in O(|G|+ |M |) time (assuming that object
intents and attribute extents are pre-computed).

4 Reconstruction of Noisy Datasets

4.1 Noisy Contexts

We understand noise in all generality as a measurement discrepancy between
an empirical (real) setting and what a given dataset says about it. Empirical
data may be noisy for various reasons: it can be due for instance to a lack
of precision in collecting or building the dataset by mistakenly adding extra
attributes to some objects or omitting some objects in describing the extent
covered by some attribute. Noise can also be understood as exceptions to a rule,
when attempting to exhibit clear-cut joint object-attribute categories, i.e., noisy
objects or attributes. We therefore distinguish two different types of noise:
1 A similar motivation is behind “relevant bi-sets” described in [2], but our approach

is different.

260 M. Klimushkin, S. Obiedkov, and C. Roth

(Type I) — either by altering every cell value in the context with some prob-
ability;

(Type II) — or by adding to the original context a given number or proportion
of completely random objects or attributes.

4.2 Example Contexts

We used four simple contexts with rather basic structures. This includes a chain-
based lattice (300 objects, 6 attributes), an antichain-based lattice (300 objects,
12 attributes), and two more elaborate structures respectively built upon 300 and
400 objects and 6 and 4 attributes. The corresponding lattices are represented
in Fig. 2.

Every concept of these lattices contains many identical objects, often charac-
terized by only a handful of attributes, sometimes, only one attribute.

Context 1 (chain) Context 2 (anti-chain)

Context 3 Context 4

Fig. 2. Original contexts

Approaches to the Selection of Relevant Concepts in the Case of Noisy Data 261

Context 1, With Noise

type I type II
separation s stability σ

2% 10% 20%

Fig. 3. Noisy instances of context 1 (chain lattice) with various filtering strategies.
Three first lattices, from left to right: type-I noise using respectively 2, 10 and 20%
noise, together with separation (left) or stability (middle lattices). The ideal result
(not shown in the picture) is achieved by the combination of stability and probability
σ(A,B) − k · p(B = B′′) . Rightmost lattice: type-II noise using 20% object addition
and stability-based pruning.

In each of these contexts, we uniformly introduce noise (type I or type II),
which leads to the appearance of many new concepts, and then try to find the
concepts of the original context among the concepts of the noisy context using
various combinations of the indices discussed above.

4.3 Results

Context 1—Chain Lattice. Stability is relatively successful at dealing with
type I-noise, with only a few discrepancies with the original lattice and up to
20% of perturbation (correctly selecting the original six intents among 56 intents
of the noisy lattice)—see Fig. 3. On the contrary, separation indices are much
less effective, even with only 2% of noise.

The best result (not shown in Fig. 3) is achieved with the combination of
intensional stability and probability σ(A, B)−k ·p(B = B′′). With appropriately
chosen value of k ≥ 0, it makes it possible to completely restore the original
structure even with 20% of noise (in this case, we had k = 0.0005).

The relevance of stability is confirmed when examining contexts altered with
type II-noise, both when random objects or random attributes are introduced
(using intensional stability in the former case and extensional stability in the
latter case). This should not come as a surprise, since intensional (extensional)

262 M. Klimushkin, S. Obiedkov, and C. Roth

Context 2, With Noise

type I
stability σ

10%

separation s

stability and
separation σ · s 20%

stability,
separation, and

probability
σ + k1 · s− k2 · p

type II stability σ 40%

Fig. 4. Noisy instances of context 2 (antichain lattice) with various filtering strategies.
Four top lattices, from top to bottom: type I noise using respectively 10, 10, 20, and
20% noise; together with stability, separation, the product of stability and separation,
and the sum of weighted stability, separation, and probability. Bottommost lattice: type
II-noise using 40% object addition and stability-based pruning.

Approaches to the Selection of Relevant Concepts in the Case of Noisy Data 263

Context 3, With Noise of Type I

stability σ

5% 10%

separation s

5% 20%

σ + k1 · s− k2 · p
10% 20%

Fig. 5. Instances of context 3 with type I-noise and various filtering strategies. Top
lattices: filtering lattices with contexts at 5% and 10% noise, using stability. Middle
lattices: filtering with separation with 5% and 20% noise level. Bottom lattices: filtering
with a combination of the three criteria with 10% and 20% noise level.

264 M. Klimushkin, S. Obiedkov, and C. Roth

Context 4, With Noise of Type I

stability σ separation s

10%

Fig. 6. Instances of context 4 with type I-noise at 10%, filtering with stability (left) or
separation (right)

stability is defined specifically to address the case of noisy objects (attributes)
added to the otherwise clean context (that is, exactly type II-noise).

Context 2—Antichain Lattice. As regards type-I noise, when the noise is
relatively limited (10%, which yields 324 concepts), separation is quite equivalent
to stability: separation produces more faithful lattices, while stability yields more
readable structures. When using thresholds on both stability and separation, the
lattice exhibits exactly the same structure as the original. At 20% of noise (786
concepts), this does not work anymore. Yet, stability normalized by probability
remarkably yields the original structure again (see Fig. 4).

As regards type-II noise, as with the chain lattice case, stability is robust,
even with 40% of noise (268 concepts in the noisy lattice).

Context 3. This context features several concepts which are either super- or
sub-categories in distinct parts of the lattice. Context 3 therefore significantly
diverges from the previous prototypical cases.

As regards type I-noise, stability performs relatively well: it perfectly yields
the original structure at 5% noise (36 concepts) and remains close to this bench-
mark at 10% (52 concepts) and even 20% (63 concepts) noise (see Fig. 5, top).

On the other hand, separation yields comparatively unconvincing results, from
just 5% of noise (see Fig. 5, middle). Combining stability with separation and
probability allows us to achieve better results (see Fig. 5, bottom).

As usual, stability works just fine for type II-noise, even with 40% of noise.

Approaches to the Selection of Relevant Concepts in the Case of Noisy Data 265

Context 4. This lattice eventually offers a mix of sub- and super-concepts
intertwined in a somewhat balanced manner. Stability, again, is the only criterion
that yields the exact original structure. Separation, when used alone or in various
combinations with stability, produces a slightly different structure, as shown in
Fig. 6 (this applies, e.g., when using the sum or the product of σ and s).

Again, type II noise can be perfectly filtered out by stability alone.

4.4 Conclusion

On the whole, stability is remarkably effective at sorting out type II-noise. Since
the most stable concepts are usually those which are the least affected by in-
dividual objects or attributes, the success of this criterion should be relatively
unsurprising. Still, stability proves to be significantly helpful for type I-noise as
well. Unlike type II-noise, type I-noise might make some original concepts dis-
appear (in which case, none of the methods described in the paper is sufficient
to reconstruct such concepts). However, the probability for a stable concept to
disappear or become significantly less stable because of type I-noise is quite
low, especially if the noise is relatively limited.2 Additional experiments could
help characterize this probability more precisely, thus explaining why stability
behaves well even for type I-noise.

Separation is founded on a different rationale and, therefore, can be used only
as an auxiliary criterion when dealing with noise. A notable exception is given by
anti-chain-like parts of lattices, which can be efficiently reconstructed with sep-
aration. In other cases, it is less effective than stability. One of its shortcomings
is that concepts with similar extents and intents tend to have similar separation
indices. As a result, separation-based filtering prunes groups of similar concepts
(Fig. 4). It seems promising to combine separation and stability, as they reduce
each other’s drawbacks.

Similarly, probability is not a self-sufficient criterion for filtering noise. Low
or high probability of a concept does not say much of its importance. It can only
correct other indices, serving a normalizing measure for stability or separation.
It seems that the most promising combination is σ+k1 ·s−k2 ·p, where k2 < 0.2.
Such criterion seems able to reconstruct the original structure where stability
and separation alone are not sufficient. Learning appropriate values for k1 and
k2 can be done separately for different datasets. It remains to study the best
ways to automatically learn these coefficients.

A next step would consist in validating these approaches on empirical data
and theoretical interpretation of the performance of various combinations of the
indices on different structures. It would also be interesting to see how the indices
behave when noise is introduced in a non-uniform way. Automated learning of the
best performing combinations (e.g., with evolutionary programming) is another
research direction. This would most likely require defining a distance between
two lattices, so as to be able to precisely evaluate the quality of reconstructing
original lattices.

2 We are grateful to the anonymous reviewer for this remark.

266 M. Klimushkin, S. Obiedkov, and C. Roth

Acknowledgements

The first two authors were supported by the Scientific Foundation of the State
University–Higher School of Economics (projects 08-04-0022 and 10-04-0017).
The second author was also supported by the Russian Foundation for Basic
Research (project 08-07-92497-NTsNIL a). Line diagrams were produced with
Concept Explorer (http://conexp.sourceforge.net/), a software tool developed
by Serhiy Yevtushenko.

References

1. Bayardo Jr., R., Goethals, B., Zaki, M. (eds.): Proc. of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations (FIMI 2004). CEUR-WS.org (2004)

2. Boulicaut, J.F., Besson, J.: Actionability and formal concepts: A data mining per-
spective. In: Medina, Obiedkov [7], pp. 14–31

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

4. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining re-
sults via swap randomization. ACM Trans. Knowl. Discov. Data 1(3), 14 (2007)

5. Jay, N., Kohler, F., Napoli, A.: Analysis of social communities with iceberg and
stability-based concept lattices. In: Medina, Obiedkov [7], pp. 258–272

6. Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity of
lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007.
LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)

7. Medina, R., Obiedkov, S. (eds.): ICFCA 2008. LNCS (LNAI), vol. 4933. Springer,
Heidelberg (2008)

8. Newman, M.E.J., Strogatz, S., Watts, D.: Random graphs with arbitrary degree
distributions and their applications. Physical Review E 64(026118) (2001)

9. Roth, C., Obiedkov, S., Kourie, D.G.: Towards concise representation for tax-
onomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R.
(eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

10. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)

Concept Analysis as a Framework for Mining
Functional Features from Legacy Code

Amal El Kharraz, Petko Valtchev, and Hafedh Mili

Dépt. d’Informatique UQAM, C.P. 8888,
Succ. Centre-Ville, Montréal H3C 3P8, Canada

ekharraz@iro.umontreal.ca, valtchev.petko@uqam.ca, mili.hafedh@uqam.ca

Abstract. Legacy OO applications typically implement a set of func-
tional features which, in the absence of aspect-oriented techniques to
separately develop and maintain them, end up embodied in the same
class hierarchies. We identified three types of design techniques used
to implement that embodiment: a) multiple inheritance– or simulations
thereof, b) aggregation/delegation, and c) what we referred to as ad-hoc
implementation. We are interested in identifying and isolating software
artifacts that implement distinct functional features. Here, we explore the
use of concept analysis to detect ad-hoc implementations of functional
features. We present the principles underlying our overall approach, a
formalization of the problem in terms of concept analysis, a method for
identifying functional features based on the construction and exploration
of the concept latice, and the results of an experimental validation study.

1 Introduction

Legacy software, i.e. software whose development predates the latest trends in
software engineering, typically implements a collection of functional features,
identified either at requirement or at maintenance steps. For instance, assume a
legacy information system where the same Employee class is used by both payroll
and production planning functionalities. The former requires the support of data
and function members pertaining to salary base, number of hours worked, etc.,
whereas the latter would emphasize on representing skills, shifts, number of
hours worked, etc. We are interested in developing techniques for identifying
functional features in legacy OO code for cases where several features affect
the same classes. Minimally, this should help us understand the mechanics of
a legacy application and maintain a given feature without interfering with the
other ones. This should also be helpful whenever a refactoring of the application
is to be performed to repackage features in a way so that they can be (further)
developed and maintained separately, and intertwined on demand.

Ideally, our abstraction and packaging technique should allow us to realize dif-
ferent functional features in distinct software artifacts that we can develop, main-
tain, and compose at will [1]. The techniques provided by the OO paradigm en-
able the separation of object-specific features – by encapsulating them in classes

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 267–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 A. El Kharraz, P. Valtchev, and H. Mili

– but do not adequately separate features that affect or crosscut a distinct sub-
set of the application classes. Aspect-oriented software development (AOSD)
was meant to address this problem by proposing artifacts that help untangle
requirement types that OO abstractions could not. However, absent such tech-
niques, designers have to cope with multiple functional features by means of
conventional OO language constructs or design idioms. For instance, they may
rely on multiple inheritance (either built-in or itself emulated through design
tricks), delegation, or, alternatively, decide to use an ad-hoc implementation
with no specific discipline for packaging of the functional features. In order to
identify functional features, our overall strategy is to automatically detect such
programming and design idioms within the legacy code. In this paper, we focus
on ad-hoc implementations of multiple functional features and discuss a formal
concept analysis-based approach for the detection of instances thereof.

In the remainder of the paper, section 2 discusses the concept of functional
feature and provides a working definition thereof to guide a critical examination
of the problem of identifying functional features in legacy code. Section 3 narrows
the focus on ad-hoc implementations of multiple functional features and the
detection of instances thereof. Section 4 presents a dedicated feature mining
method while the results of an experimental study are discussed in section 5.
Related work is summarized in section 6.

2 Characterizing Functional Features

We understand a functional feature as a slice or “subset” of an OO application
that addresses a cohesive subset of its functional requirements. A functional re-
quirement, as opposed to a non-functional one, deals with the 〈input,output〉
relationship implemented by the software. The non-functional part of the soft-
ware requirements would specify the various conditions imposed on the produc-
tion of the output. It has been observed that the elements of an OO application
contributing to a functional feature will exhibit stronger “cohesion” than the
elements of the application as a whole[2]. Going back to our Employee example,
the payroll feature would typically rely on attributes such as salary scale and
number of hours worked, and on functions that access those attributes to com-
pute the corresponding salary/wages. Similarly, a production planning feature
would rely on attributes such as skill sets, work schedule, and number of hours
worked, and on functions that access such attributes to schedule an employee to
work on a particular shift, doing a particular task.

Our overall study is aimed at developing methods for identifying sets of classes,
attributes and methods that might support the implementation of a distinct
functional feature. In one approach [3], code slicing was used to extract the
classes, data members, and methods– actually, statements in the method bodies–
that contributed to the return value of a particular function (e.g., computing the
wage of an employee). In the line of work presented here, we ignore code-level
relationships that may be output by a dynamic analysis of the application source
code (e.g. as represented in call graphs, references, etc.) and limit our focus to

Mining Functional Features from Legacy Code with FCA 269

the sole information that may be extracted from class signatures (methods and
attributes) as an input for the identification of functional features.

Before talking identification, we have to examine the way multiple functional
features manifest within the same code base, i.e. consider how a developer might
handle several features and interweave them into a single class hierarchy. The
separate development and/or packaging of functional features within the same
classes/class hierarchies has been extensively studied for the past two decades.
In fact, techniques built on top of the OO paradigm for handling of the so called
separation of concerns have proliferated (see e.g. [4,5,6,7]). They have come to be
collectively referred to as aspect-oriented development techniques, named after
the Kiczales et al’s aspect-oriented programming [8]. However, in the absence
of these techniques, developers have to resort to design and coding patterns to
implement several functional features within the same class hierarchy.

We identified three categories of such implementations. The first one employs
multiple inheritance: Each functional feature is represented by its own class
hierarchy and a class combining several features simply inherits them from the
corresponding classes. In the second pattern, features are interweaved by means
of aggregation: A separate class (hierarchy) represents each functional feature
whereas a multi-feature class has an aggregated class for each possessed feature
whom it delegates the feature-related services. The third pattern, hereafter called
ad-hoc implementation, refers to situations where no care was taken to separate
the functional features, i.e. no specific structural regularity can be observed
involving class relationships like the specialization/aggregation in the previous
cases (see an example in Fig. 1.c). In the corresponding classes, the state and
behavior of multiple functional features are directly ”inlined” in the class with
no structural boundaries between them. Nevertheless, even in such structurally
unconstrained implementations, some regularities may still be observed, when
nothing else, at least in breaking the design rules of thumb.

Fig. 1 shows some Java patterns for implementing multiple functional fea-
tures. In the intended application, we want to implement the concept of a
PartTimeStudent, which combines the features (behavior) of a Student and a
Worker. In the first case (Fig. 1.a) the class PartTimeStudent implements the
interfaces Student and Worker, i.e. it gets no implementation for the comprised
methods. In Fig. 1.b, PartTimeStudent inherits from the class Student and imple-
ments the interface Worker. In the third case (Fig. 1.c), the class PartTimeStudent
supports the functionalities of Student and Worker through a combination of im-
plementation inheritance, and delegation.

Naturally, when studying a legacy application, it is not known beforehand
whether it embodies different functional features, and if it does, which of the
above implementation approaches has been used. Therefore, both the pres-
ence/absence of functional features, and the composition technique(s) used to
intertwine them, are target hypotheses for our methods. In a separate branch
of this study, we proposed techniques for identifying functional features imple-
mented with multiple inheritance and aggregation [9] as depicted in Fig. 1. In
this paper, we focus on ad-hoc implementations of multiple functional features.

270 A. El Kharraz, P. Valtchev, and H. Mili

+getDegree() : string

«interface»
Student

+getDegree() : string
+getPosition() : string

-degree : string
-position : string

PartTimeStudent

+getPosition() : string

«interface»
Worker

implements

a. One class implementing two interfaces

+getPosition() : string

-position : string

PartTimeStudent

+getPosition() : string

«interface»
Worker

implements

b. One class inheriting from one class and implementing an interface

+getDegree() : string

-degree : string

Student

+getPosition() : string

-worker : Worker

PartTimeStudent

+getPosition() : string

«interface»
Worker

implements

c. One class inheriting from one class, aggregating an other and implementing its interface

+getDegree() : string

-degree : string

Student

+getPosition() : string

-position : string

WorkerImp

implements

0..1 1

string getPosition() {
 return worker.getPosition();
}

Fig. 1. Some Java patterns for implementing multiple functional features

3 Ad-Hoc Implementations of Multiple Functional
Features

By ad-hoc implementation we refer to cases where the developer took no special
measure to separate the artifacts implementing a particular functional feature
from the rest of the class hierarchy. In this case, class members that implement
the feature– e.g., related to skills, shifts, number of hours worked, for produc-
tion planning– are simply in-lined in the classes supporting the feature. How,
then, do we recognize that a given set of class members (data and function)
contribute to a functional feature? In previous work of the third author, with
promising results [3], def-use graphs and code slicing were used to identify the
set of classes and members that contribute to computing a single quantity (e.g.
an employee’s salary). Short of performing a fine-grained code analysis, we rely
here on signature-level manifestations of features occurrences.

The basic premise of our approach is that a functional feature might be rep-
resented either intensionally or extensionally. In the first case, the members
contributing to a functional feature will be factored into dedicated classes or in-
terfaces (as shown in Fig. 1). These being available throughout the application,
the corresponding feature can then be taken advantage of by inheritance or del-
egation wherever necessary. In contrast, the extensionally represented functional
features occur in an expanded form: The contributing members must be defined

Mining Functional Features from Legacy Code with FCA 271

-horsepower : int
-torque : int

Engine

-compressionRatio : float

TurboI4Engine

-angle : float

V6Engine

-numberSeats : int
-numberDoors : int

Chassis

-foldingBackSeat : bool

Sedan

-hasThirdRow : bool

StationWagon

a. The engine hierarchy b. The chassis hierarchy

-horsepower : int
-torque : int
-numberSeats : int
-numberDoors : int

Car

-compressionRatio : float

TurboI4Car

-angle : float

V6Car

-foldingBackSeat : bool

TurboI4Sedan

-hasThirdRow : bool

TurboI4StationWagon

-foldingBackSeat : bool

V6Sedan

-hasThirdRow : bool

V6StationWagon

c. One possible classification: first by engine type, then by chassis
type

-horsepower : int
-torque : int
-numberSeats : int
-numberDoors : int

Car

-foldingBackSeat : bool

Sedan

-hasThirdRow : bool

StationWagon

-compressionRatio : float

TurboI4Sedan

-compressionRatio : float

TurboI4StationWagon

-angle : float

V6Sedan

-angle : float

V6StationWagon

d. An alternative classification: first by chassis type, then engine
type

Fig. 2. Supporting multiple functional aspects with state multiplication

at every place of the class hierarchy/tree– or class forest– where the feature
is applied. Consequently, the key to recognizing that a set of function/data
members embodies a functional feature is to have that set occur in several places.

Consider first a special case of ad-hoc implementation –that we call state mul-
tiplication– to understand the intuition behind this concept before moving to a
more general characterization thereof. State multiplication is best understood
in the context of a situation where several features are to be combined, each
coming in different flavors. For instance, cars come in many body types, includ-
ing sedans, coupe, station wagon, etc. and have various power plants. Figs. 2.a
and 2.b show what the respective hierarchies might look like. A given car will
thus have a combination of both features. Figs. 2.c and 2.d show two possible
car classifications. To clarify our use of “state multiplication”, consider the class
Car, which in both Figs. 2.c and 2.d includes the sum of the “state variables” of
the chassis and engine components (all combinations are present).

Yet is such a design plausible? Most likely, if a developer is given the Chassis

and Engine type hierarchies beforehand, she/he will try to combine them, by
using either aggregation or multiple inheritance. In contrast, hierarchies such
as the ones in Figs. 2.c and 2.d could well result from a step-wise design, i.e.
starting with the first feature of the problem space, and then specializing the
leaf nodes of the class hierarchy based on the second feature.

In [9], the cases of state multiplication were shown to have precise characteriza-
tions, e.g. cartesian or tensor product of feature hierarchies, that lend themselves
to efficient factorization algorithms (e.g. see [10]). Yet in real-world applications,
such exhaustive –hence easy to factorize– feature combinations are unlikely to

272 A. El Kharraz, P. Valtchev, and H. Mili

Resource

-serialNumber
-model
-capabilities
-schedule

Machinery

-assemblyLine

MachineTool

-licenseClass

RollingStock

-ssn
-name

Personnel

-department

Manager

-capabilities
-schedule

ShopFloorStaff

-assemblyLine

MachineOperator

-licenseClass

Driver

Fig. 3. General case of ad-hoc implementation

occur. Indeed, perfect symmetry may be broken due to a core functionality em-
bodied by the supporting class hierarchy. Moreover, some combinations might
be impossible, impractical, or simply prove to be economical no-starters, e.g. no
demand for a station wagon with a turbo-I4 engine.

Instead, we focus on a more general case as depicted in Fig 3. A functional fea-
ture is recognized by the occurrence of a structural pattern of data and function
members in different places in the hierarchy, that –we guess– impart a particular
behavior on the classes to which they attach. In this case, the functional fea-
ture represents what it means to be a production resource: Such a resource has
capabilities and a schedule; it specializes into assembly line resources (machine
tools and operators), and transportation ones (rolling stock and drivers).

In summary, we hypothesize that a pattern of data and function members
that occurs in many places of a legacy application code will, most likely, reflect
a functional feature, which, albeit supported by multiple occurrences, would
have not been identified as such by the developer. Recurring patterns are typi-
cally mined out by means of factorization techniques such as the ones based on
formal concepts analysis (FCA) [11] the we explore below. FCA makes emerge
conceptual abstractions out of a collection of individuals with properties hence
it perfectly fits the tasks of analysis/refactoring of OO applications [12,13].

4 Detecting Functional Feature Occurrences

We recall the typical translation of a class hierarchy in FCA terms and list the
differences with the functional feature detection problem before presenting an
appropriate encoding thereof and the ensuing mining method.

4.1 Concepts Analysis of OO Class Hierarchies

(Formal) concepts analysis (FCA) [11] addresses the construction of conceptual
abstractions, or concepts, out of a collection of individuals described in terms
of properties. The concepts, which are basically intentionally described clusters,
emphasize commonalities in the descriptions of participating individuals. Hence
FCA is particularly suitable for the discovery of cohesive groups of entities as
the ones sought in class hierarchy analysis [13].

Mining Functional Features from Legacy Code with FCA 273

+m1()

+m2()

+m4()

c1

+m1()

+m3()

+m5()

c2

c3

+m1()

+m2()

c4

+m1()

+m3()

c6

+m2()

c5

+m3()

Fig. 4. Left: Initial classes (top) and encoding as context (bottom); Right: The con-
cept lattice of the context

In FCA, concepts emerge from a (formal) context K = (E, P, I) where E is
the entity set (formal objects), P the property set (formal attributes) and I (the
incidence relation) associates E to P : (e, p) ∈ I when entity e owns property
p. Fig. 4 (in the bottom-left part) provides an example of a context1 where
entities are classes and properties are class function members as drawn in the
class diagram in the same Fig. 4 (in the top-left part). Noteworthily, instead of
the standard has-member relationship, we used for I an alternative encoding of
the class hierarchy that we present below. The concept lattice of the context, L,
is also drawn in Fig. 4 (on the right). For instance, assuming OO refactoring
goals [13], a straightforward interpretation of concept 5 in Fig. 4 could be to
suggest the design of a new class/interface to host the declaration of m1().

Yet in the feature mining problem as discussed above, the mapping between
the class hierarchy components and the elements of a FCA context is all but
immediate while the interpretation of the potential concepts is even less so.
Indeed, while for refactoring it is crucial to spot common specifications of a set
of classes, which puts the emphasis on the members of an individual class, in
the present settings, an occurrence of a target feature may be scattered across
several classes. Hence the formal objects from the context must be associated to
sets of classes rather than to individual classes (with the ensuing increase in the
size of the search space for potential feature occurrences).

In a different vein, one might think of exploiting the graph structure of the
class hierarchy: the specialization/aggregation links connect classes into a graph
while class members provide labels. Furthermore, functional features would cor-
respond to subgraphs of identical structure (i.e. isomorphic) and partially over-
lapping labels. In such settings, the identification of functional features could be
approached as a repeating subgraphs mining problem. Yet, although tempting,
this approach is inherently limited as the isomorphism between occurrences of

1 Empty cells being denoted –unconventionally– by 0.

274 A. El Kharraz, P. Valtchev, and H. Mili

a functional feature is an overly strong hypothesis. Indeed, such a symmetry
cannot be reasonably assumed, not least out of the very same reasons that for-
bid the perfect state multiplication case. Thus, the only way out seems to lay
in a dedicated encoding of the hierarchy to enable a reliable detection of all
functional features occurrences (i.e. no false negatives) at a reasonable cost.

4.2 Encoding Class Hierarchies for Functional Feature Mining

Since the occurrences we look for manifest themselves as sets of data/function
members, the attribute dimension of our intended translation to FCA is fixed
beforehand. This means the functional features will appear in concept intents, as
sub-sets thereof. As to the context entities, the natural candidates for that role
are subsets of classes from the hierarchy. Yet due to the exponential size of the
resulting search space (in the number of all classes), a more compact occurrence
representation must be found.

There are various manners to restrict the family of class subsets to effectively
examine by means of an FCA-based mining method. For instance, one may
require that all classes in a candidate occurrence belong to the same branch
of the hierarchy (thus excluding sets like {c1, c2, c4} or {c3, c6} of the above
diagram). Conversely there are several ways of associating class members to a
set of classes. For instance, in OO refactoring applications of FCA, classes are
mapped to formal objects, class members to formal attributes, and incidence to
the traditional has-member relationship.

As a good trade-off between precision and search space size, we propose to
identify any occurrence with the minimal common super-class(es) of all the
classes in the occurrence. This amounts to processing only subsets of classes that
represent complete sub-hierarchies of the initial hierarchy, or, technically speak-
ing, downsets of the specialization order. Moreover, we only consider downsets
that are rooted in a unique class, i.e. subsets made of a root class and all its
subclasses. As a result, each formal object can be assimilated to a class from the
hierarchy (but represents all its subclasses as well).

In turn, the objects-to-attributes incidence in the context goes to the opposite
of the inheritance mechanism: A class is related to its own members as well as to
the members of all its sub-classes. The class diagram and the context in Fig. 4
(on the left) show an example of the resulting encoding.

To formalize the above constructs, assume a set of classes C with a universal
class �, a hierarchy H = 〈C,≤〉, a set of members M and a membership relation
I ⊆ C ×M (cIm, or (c, m) ∈ I iff the class c defines the method m). Here, we
assume identity on methods of identical signatures.

A functional feature is a subset of members N ⊆ M whereas a (valid) occur-
rence thereof is a pair [A, N] where a set of classes A ⊆ M is such that:

– the members incident to A cover N : N ⊆ {m|∃c ∈ A, cIm}, and
– no class is redundant in A since it exclusively contributes at least one member

from N : ∀c ∈ A, (∃m ∈ N : ∀c̄ ∈ A, c̄ �= c ⇒ (c̄, m) �∈ I).

For instance, ({c1, c5}, {m2, m3}) and ({c1, c4}, {m2, m3}) are valid occurrences
of {m2, m3} whereas ({c1, c3, c5}, {m2, m3}) is not. Obviously, we can only hope

Mining Functional Features from Legacy Code with FCA 275

to detect features with at least two occurrences. Please observe that the above
property is only a necessary condition as many sub-sets of M that satisfy it
clearly do not qualify as functional features.

To restrict the set of candidate occurrences, we shall further require that in-
stead of being scattered throughout the entire hierarchy occurrences represent
entire sub-hierarchies. First, an occurrence will be canonically represented by
its roots, i.e. the minimal common predecessors of its classes: roots([A, N]) =
min({c|∀c̄ ∈ A, c̄ ≤ c}). To simplify our constructs, we assume a single-
inheritance hierarchy H, which means roots([A, N]) are invariably singletons.
For instance, roots([{c1, c5}, {m2, m3}]) = {c1} and roots([{c1, c4}, {m2, m3}])
= {�} (� is the universal class, Object in Java). Moreover, we assume non-
trivial occurrences [A, N] to have roots different from�, whereas two occurrences
[A1, N1] and [A2, N2] are independent if roots([A1, N1]) �= roots([A2, N2]).

As indicated above, we focus on complete occurrences [A, N], i.e. where A
represents a sub-hierarchy of H while N gathers the member sets of all classes
from A. In such cases, the occurrence comprises its root, roots([A, N]) ⊆ A. Yet
the roots of an arbitrary occurrence need not to belong to its class set.

To formalize the underlying link, we define a component relation on top of H,
M and I. The new relation works dually to the inheritance mechanism hence
its name: the anti-inheritance of H, M and I is defined as follows: J ⊆ C ×M
as cJm iff (1), cIm or (2), ∃c̄ ≤ c with c̄Im. J is the incidence in the context
K = (C, M, J) and will be used as a derivation operator (i.e. we shall write
cJ). In Fig. 4, the incidence relation in the context (bottom) is exactly the anti-
inheritance of the class diagram (top). For instance, c1 is incident to m3() since
the latter is defined in a sub-class of the former (c5).

For instance, in an arbitrary occurrence [A, N], c ∈ roots([A, N]) implies
N ⊆ cJ , whereas in a complete one N = cJ . Obviously, the context K comprises
all objects corresponding to complete occurrences from the hierarchy.

Now the potential functional features targeted here correspond to groups of
at least two independent –yet possibly non complete– occurrences of the same
member set N . Due to the specific nature of concept intents, i.e. intersections of
the initial class J-images, only maximal N can be identified (hence the manual
removal of co-occurring but unrelated members from N may prove necessary).

Moreover, the potential features N are characterized by a distinct struc-
tural pattern within the lattice of K, L, around the underlying concept (X, Y)
(Y = N). On the one hand, the roots of all the occurrences of N within H
belong to X and, what is more, are among its minima, min(X). As we require
at least two independent occurrences, this forces |min(X)| ≥ 2. On the other
hand, we want to avoid the examination of spurious candidates corresponding to
re-occurring parts of the actual features. For instance, there is no point in consid-
ering the occurrences of assemblyLine corresponding to the classes MachineTool

and MachineOperator in Fig. 3 as both of them are simply parts of the occurrences
of the same larger feature.

To that end, we require that interesting concepts are not part of a chain in
the lattice following the set inclusion between recursive parts of the same actual

276 A. El Kharraz, P. Valtchev, and H. Mili

occurrence (due to the monotony of J with respect to ≤). In mathemati-
cal terms, this amounts to concept (X, Y) not possessing a direct predecessor,
(X1, Y1), with the same number of minimal concepts in its extent (|min(X)|
= |min(X1)|).

In our example, the concepts 2, 4, 5, and 6 satisfy the above conditions. For
instance, 5 has four classes in its extent, all of them minima, whereas both of
its immediate predecessors, 4 and 6, have three minimal concepts. In contrast,
8 fails the test since among the four concepts in its extent, three are minima,
the same number as its immediate predecessor 6. The overall interpretation
of the example is: There are two functional features, {m1, m2} and {m1, m3},
both having three independent occurrences. Their combination {m1, m2, m3}
is a compound feature that occurs twice while their intersection, {m1} has no
independent occurrences, hence it is delicate to decide whether it represents a
feature of its own.

4.3 Mining Features Out of the Concept Lattice

Assume now a software piece P with a class hierarchy H = 〈C,≤〉, member set
M and incidence relation I. A context K = (C, M, J) is induced where J is the
anti-inheritance as defined above. To extract the target functional features, we
analyze the concept lattice of K, L. At a pre-processing step, for each concept
n = (X, Y) from L, the minimal classes in its extent, min(X), are calculated.

The mining algorithm as shown below takes the concept lattice L as input
and outputs the list of candidates (CandFeatureList hereafter). For each con-
cept (X, Y), from the lattice top (TL) downwards, the algorithm checks the
interestingness conditions, i.e. at least two classes in min(X) and no immediate
predecessor concept with the same number of minimal classes. Concepts satis-
fying both conditions are kept in CandFeatureList for further examination.

Input: concept lattice L
Output: feature candidates CandFeatureList
ListConcept← children(TL)
CandFeatureList← ∅
while ListConcept �= ∅ do

(X, Y)← extract(ListConcept)
if |min(X)| > 1 then

add((X, Y), CandFeatureList)
foreach (X, Y) ∈ children((X, Y)) do

add((X, Y), ListConcept)
if (|min(X)| = |min(X)|) then

remove((X,Y), CandFeatureList)

5 Preliminary Experiments

To validate our approach, we implemented the algorithm from section 4.3 and
carried out an experimental study whose setup and outcome are presented below.

Mining Functional Features from Legacy Code with FCA 277

Table 1. “Vital” data about the tested software packages

Software # LOC # Classes/Interf. # Methods

FreeMind 65490 712 4785
JavaWebMail 10707 95 1079
JHotDraw 9419 171 1229
JReversePro 9656 87 663
Lucene 15480 196 1270

5.1 Experimental Settings

We applied our mining tool to a number of open-source Java applications. The
selected software covers a wide range of application areas: a graphical editing
framework (JHotDraw), a tool for reverse engineering compiled Java code (JRe-
versePro), a web mail client (JavaWebMail), an information retrieval framework
(Lucene), and a mind mapping tool (FreeMind). The applications have differ-
ent maturity levels, going from version 0.7.1 for FreeMind, to version 5.1, for
JHotDraw. This, combined with the type of the application– system-type appli-
cations versus domain applications– meant that the applications did not have
the same design quality. Table 1 provides some quantitative data about these
systems: lines of code, number of classes/interfaces and of methods.

We used Eclipse’s JDT API to analyze the legacy code in order to extract
class signatures (the set of public data members and public functions) and class
relationships. The latter comprise extension relationships between classes, be-
tween interfaces, implements relationships between classes and interfaces, and
aggregation relationships between classes (i.e. cases where class A has a data
member whose type is a class B). We excluded from our analysis the code that
comes from common libraries. For example, when analyzing the JHotDraw ap-
plication the JComponent class was ignored, even though some JHotDraw classes
inherit from it. As we shall see, such cases can be filtered out easily.

5.2 Experimental Results

Table 2 shows the size of the lattice as discussed in section 4.2 (in the 2nd column
labeled # conc.), the total number of candidate features (# cand.), i.e. concepts
satisfying the interestingness criteria, and the number of candidate features with
at least two methods. Table 2 also quantifies the outcome of a manual examina-
tion of the candidate features which were found to fall into four categories (pre-
sented in details below): features inherited from an interface/superclass (I/C)
or acquired by delegation (D) jointly account for known ones (# known feat.).
Unknown features (# unknown feat.) are split into ad-hoc (ad-hoc) or “different
structures” implementation (DS).

Implementation per inheritance covers candidate features involving an
implemented interface or a superclass. These satisfy the properties in section 4,
yet do not represent a recognizable functional feature, or one worth packaging.

278 A. El Kharraz, P. Valtchev, and H. Mili

Table 2. Output metrics for the experimental set of software systems

Software # conc. # cand. # >= 2 meth. # known feat. # unknown feat.
I/C D ad-hoc DS

FreeMind 1403 167 103 15 8 60 14
JavaWebMail 713 49 36 10 0 26 0
JHotDraw 581 174 147 21 2 13 1
JReversePro 116 19 10 1 0 9 0
Lucene 98 66 47 14 3 15 4

+draw() : void

-presentationFigure : Figure

GraphicalCompositeFigure

+add(in fig : Figure) : Figure

CompositeFigure

+draw() : void

AbstractFigure

+draw() : void

«interface»
Figure

1

-presentationFigure 0..1

void draw(Graphics g) {
 presentationFigure.draw(g);
}

Fig. 5. JHotDraw: Inheritance-based implementation (left) and delegation (right)

An interesting case is one where we “inadvertently” misled the algorithm by
forcing classes from external libraries to be discarded. As a result, in a number
of cases, the algorithm signaled several independent occurrences of a “feature”,
whereas, as it turned out after a manual examination, the underlying set of mem-
bers were actually inherited from a common external superclass that was ignored.
For instance, in JHotDraw, the methods getPreferredSize(), getMinimumSize()

appear in the classes ToolButton, StandardDrawingView, and Filler (see dia-
gram on the left in Fig. 5) which have no common superclass in the local class
hierarchy. However, if one follows their respective specialization links beyond
JHotDraw, one reaches the Java Swing JComponent class. Noteworthily, such
cases are easily eliminated by a post-process scanning of candidate classes for
common ancestors.

Deliberate implementations of multiple features These are candidates
that did correspond to actual functional features, yet ones that developers had
deliberately captured as such, and that our algorithm caught. Indeed, the algo-
rithm was designed to skip the most popular coding patterns used to design and
package functional features (see Fig.1), in particular, cases of features packaged
as interfaces. For example, JHotDraw has the interface DrawingView, which is
implemented by StandardDrawingView and NullDrawingView, and thus, a-fortiori,
StandardDrawingView and NullDrawingView will implement a substantial set of
common methods. Yet our algorithm ignored this case, as it should. However,

Mining Functional Features from Legacy Code with FCA 279

Fig. 6. A case of ad-hoc multiple feature implementation in JHotDraw

one case escaped us– and the algorithm– and is illustrated in Fig. 5, on the
right. In fact, while our algorithm takes care of inheritance (if A inherits from
B, A and B cannot be counted as independent occurrences), and the implements

relationship (if A and B implement the interface C, A and B cannot be counted
as independent occurrences), it misses subtleties about their combination, e.g.
that implements relationships are inherited: if A extends B, and B implements
C, then A also implements C. Because of this omission, the algorithm presented
us with the methods of interface Figure as occurring independently in Figure

and GraphicalCompositeFigure.
Admittedly, the case in Fig.5 can be easily fixed. However, we do expect that

less mature frameworks than JHotDraw might have “imperfect” implementations
of delegation where the component and the composite do not, explicitly– directly
or indirectly, as in Fig. 5– implement the same interface.

Ad-hoc implementations of functional features These correspond to the
focus of our approach. The algorithm identified a number of situations where
two or more classes shared a significant subset of their API without there being
any relationship between them, either directly (inheritance) or indirectly, via a
common implemented interface. This is a case where a developer, who probably
recognized the behavioral similarity, was disciplined enough to choose the same
method signatures in both places, but stopped short of formalizing that similarity
by formalizing it into a common interface, or a common ancestor.

Fig. 6 shows an example. In JHotDraw, the DrawApplet class is to execute
the application in a browser (Applet), DrawApplication in a window (Frame).
The methods in classes DrawApplet and DrawApplication are exactly identical,
the same for the sub classes JavaDrawApplet and JavaDrawApp. Here the de-
velopers could have gathered the shared methods in a common superclass of
DrawApplet and DrawApplication, named, say, DrawCreation in order to achieve
better factorization. A sort of extreme example is shown in Fig. 7: the depicted

280 A. El Kharraz, P. Valtchev, and H. Mili

+getNextToken() : Token
#jjFillToken() : Token
+ReInit(in stream : CharStream) : void
+ReInit(in stream : CharStream, in lexState : int) : void
+setDebugStream(in ds : PrintStream) : void

StandardTokenizerTokenManager

+getNextToken() : Token
#jjFillToken() : Token
+ReInit(in stream : CharStream) : void
+ReInit(in stream : CharStream, in lexState : int) : void
+setDebugStream(in ds : PrintStream) : void

QueryParserTokenManager

Fig. 7. Another case of ad-hoc multiple feature implementation in Lucene 1.4

classes have identical APIs (there are no methods except the ones shown). Thus,
both classes embody what it means to be a token manager, applied to the parsers
of the Lucene query and of the the input text, respectively.

Different structures of functional features The feature can be recognized
by the occurrence of a structural pattern of function members in different places
in a hierarchy such as the one in Fig. 3, or the feature is the set of methods
scattered across a set of classes. These may take a variety of forms. For space
limitation reasons, we skip the presentation of this category.

6 Related Work

The recent work on feature location (after 2000) can be roughly divided into
three broad categories (see e.g. [14]): 1) methods based on lexical analysis of the
source code (e.g. the Aspect Mining Tool [15], and to some extent, FEAT [16]
and [2,17,18]); 2) methods based on a static analysis of the code, using structures
such program dependency graphs, call graphs, and the like (e.g. [19], [20]); and
3) methods based on a dynamic analysis of the code, using things such as event
or execution traces (e.g. [21,22,23]); this is a summary characterization as most
approaches involve some mix of techniques (e.g. lexical and static/type analysis,
or static and dynamic). Our approach falls in the static category, because we
perform feature identification based on class signatures. However, our method is
much simpler to implement as it does not involve complex static analyses.

In terms of focus, most of the existing work focuses on aspect-like features
which tend to correspond to infrastructure or architectural services. This in-
fluences both the granularity of the analysis– method code– and the type of
patterns that we look for– for example, performing a fan-in analysis [19] or look-
ing for code clones [20]. Our definition of functional features corresponds best to
features in [21], which embody externally visible behavior of the objects.

Finally, FCA has been used by a number of methods (e.g. [21,23,18]) as it
provides an elegant formalism for identifying cohesive sets of items in the context
of a degenerate (many-to-many) relationships. Our use of FCA is perhaps closest
to that in [21], which clusters code units based on their participation in features.
A major difference, however, between our method and theirs is that, Eisenbarth

Mining Functional Features from Legacy Code with FCA 281

et al rely on the input of a human expert to, a) specify the features we are
looking for, and b) design execution scenarios that exercise those features. In
our case, the identification of the feature is, in and of itself, an output of our
algorithm. The difference between the two methods is similar to that between
supervised learning– the case of [21]– and unsupervised learning– our case.

7 Conclusion and Future Work

AOSD improves upon OO development by providing programming abstractions
that enable us to separate a wider range of functional requirements into their own
development artifacts. Our work deals with the identification of such functional
features in legacy OO applications. Minimally, this identification should make
it easier to understand and maintain the application. Ideally, this could be the
first step toward aspect refactoring.

In our work on mining functional features from OO code we explore various
hypotheses about how developers, absent AOSD abstractions, would implement
several functional features within the same code base. In this paper, we studied
the case of an ad-hoc implementation of multiple functional features, which cor-
responds to situations where the developer did not realize the presence of these
different features, or simply, did not know any better. Our approach for recog-
nizing such features consists in identifying groups of class members (methods
and attributes) that occur in separate places in the class hierarchy. The results
of the preliminary experiments suggest that our method detects both ad-hoc
and deliberate implementations of features. Generally speaking, the algorithm
proved to be a powerful abstraction mechanism for identifying regularities– and
irregularities– in the design. Our work continues on refining the algorithm by
taking advantage of the structure of the data, and by relaxing our definition of
feature to be able to handle “near occurrences”.

References

1. Mili, H., Sahraoui, H., Lounis, H., Mcheick, H., ElKharraz, A.: Concerned about
separation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 247–
261. Springer, Heidelberg (2006)

2. Marcus, A., Poshyvanyk, D.: The conceptual cohesion of classes. In: Proc. of ICSM
2005, pp. 133–142 (2005)

3. Dagenais, B., Mili, H.: Slicing functional aspects out of legacy code, 10 p. (2008)
(submitted)

4. Hailpern, B., Ossher, H.: Extending objects to support multiple interfaces and
access control. IEEE Trans. Softw. Eng. 16, 1247–1257 (1990)

5. Aksit, M., Bergmans, L., Vural, S.: An object-oriented language-database inte-
gration model: The composition-filters approach. In: Lehrmann Madsen, O. (ed.)
ECOOP 1992. LNCS, vol. 615, pp. 372–395. Springer, Heidelberg (1992)

6. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure ob-
jects). In: Proc. of ACM OOPSLA 1993, vol. 28, pp. 411–428 (1993)

282 A. El Kharraz, P. Valtchev, and H. Mili

7. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N degrees of separation: multi-
dimensional separation of concerns. In: Proc. of ICSE 1999, pp. 107–119 (1999)

8. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C., Maeda, C., Mendhekar,
A.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

9. Elkharraz, A., Mili, H., Valtchev, P.: Mining functional aspects from legacy code.
In: Proc. of ICTAI 2008, pp. 403–412. IEEE Comp. Soc., Los Alamitos (2008)

10. Aurenhammer, F., Hagauer, J., Imrich, W.: Cartesian graph factorization at loga-
rithmic cost per edge. Computational Complexity 2, 331–349 (1992)

11. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin (1999)

12. Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of Class
Hierarchies based on Concept (Galois) Lattices. TAPOS 4, 117–134 (1998)

13. Godin, R., Valtchev, P.: Formal concept analysis-based normal forms for class hier-
archy design in OO software development. In: FCA: Foundations and Applications,
pp. 304–323. Springer, Heidelberg (2005)

14. Revelle, M., Poshyvanyk, D.: An exploratory study on assessing feature location
techniques. In: ICPC 2009, Vancouver, BC, Canada (2009)

15. Hannemann, J., Kiczales, G.: Overcoming the prevalent decomposition of legacy
code. In: Workshop on Advanced Separation of Concerns, ICSE 2001, Toronto
(2001)

16. Robillard, M., Murphy, G.: Concern graphs:finding and describing concerns using
structural program dependencies. In: Proc of ICSE 2002, pp. 406–416 (2002)

17. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural
language program analysis to locate and understand action-oriented concerns. In:
Proc. of AOSD 2007, USA, pp. 212–224. ACM, New York (2007)

18. Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with information
retrieval for concept location in source code. In: Proc. of ICPC 2007, pp. 37–48
(2007)

19. Marin, M., van Deursen, A., Moonen, L.: Identifying aspects using fan-in analysis.
In: Proc. of WCRE 2004, USA, pp. 132–141. IEEE Computer Society, Los Alamitos
(2004)

20. Shepherd, D., Gibson, E., Pollock, L.: Design and evaluation of an automated
aspect mining tool. In: Proc. Intl. Conf. on Soft. Eng. Research and Practice (2004)

21. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Trans. Software Eng. 29, 210–224 (2003)

22. Breu, S., Krinke, J.: Aspect mining using event traces. In: Proc. of ASE 2004,
Washington, DC, USA, pp. 310–315. IEEE Computer Society, Los Alamitos (2004)

23. Tonella, P., Ceccato, M.: Aspect mining through the formal concept analysis of
execution traces. In: Proc. of WCRE 2004, pp. 112–121 (2004)

Concept Neighbourhoods in Lexical Databases

Uta Priss and L. John Old

Edinburgh Napier University, School of Computing
j.old@napier.ac.uk
www.upriss.org.uk

Abstract. This paper discusses results from an experimental study of concept
neighbourhoods in WordNet and Roget’s Thesaurus. The general aim of this re-
search is to determine ways in which neighbourhood lattices can be derived in
real time from a lexical database and displayed on the web. In order to be readable
the lattices must not be too large, not contain overlapping concepts or labels and
must be calculated within seconds. Lattices should, furthermore, not be too small
and they should contain sufficient complexity to be interesting for the viewer. For
these purposes the sizes of the lattices of different types of concept neighbour-
hoods have been calculated. Using the size information should help with the task
of on-line generation of the lattices.

1 Introduction

Concept neighbourhoods are a means of extracting smaller-sized formal contexts from
a larger formal context whose concept lattice is too large to be viewed as a whole.
The corresponding neighbourhood lattices consist of a concept and its neighbours. Ro-
get’s Thesaurus (RT) is an example for which the extraction of concept neighbourhoods
has been studied in some detail (Priss & Old, 2004 and 2006). An on-line interface at
www.roget.org lets users explore concept neighbourhoods of Roget’s Thesaurus in
real-time. The algorithm for constructing the neighbourhoods uses a number of heuris-
tics which ensure that the lattices are neither oversized, nor trivial.

The goal of our current research is to implement a similar interface for WordNet
(Fellbaum, 1998) and potentially for other lexical databases in the future. Previous re-
search has shown that the formation of concept neighbourhoods and the establishment
of heuristics for generating reasonably-sized lattices depend on the structure of the un-
derlying resources. For example, Dyvik’s (2004) method for constructing a thesaurus
from a bilingual corpus (which is very similar to our method of building concept neigh-
bourhoods) does not work so well if a bilingual dictionary is used instead of a corpus
(Priss & Old, 2005). The reason for this is that the translational relations between words
in a corpus show more diversity than in a dictionary. Thus, even if a lexical database
has a similar hierarchical structure to Roget’s Thesaurus, the algorithms for form-
ing concept neighbourhoods may require some adjustment. Furthermore, if a database
such as WordNet contains a variety of semantic and lexical relations, it seems reason-
able to attempt to incorporate these existing relations into the formation of concept
neighbourhoods.

WordNet (Fellbaum, 1998) is a lexical database which groups words into synsets of
synonyms (or near synonyms). Each synset belongs to a part of speech (noun, verb,

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 283–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.upriss.org.uk
www.roget.org

284 U. Priss and L. John Old

adjective, adverb) and can participate in several part-of-speech-dependent semantic and
lexical relations. For example, the semantic relations for nouns are IS-A relations (hy-
pernymy/hyponymy) and several types of part-whole relations (meronymy). In con-
trast to semantic relations which are defined between synsets, lexical relations (such as
antonymy) are defined between words. This is because the designers of WordNet took
a psychological perspective and decided that antonymy is dependent on word associ-
ations. For example, in the synset “large, big”, “large” is an antonym of “small” and
“big” is an antonym of “little” because people tend to associate these. From a logi-
cal perspective it can be argued that antonymy simply expresses a form of contrast or
opposition that can be applied to the whole synset. Therefore in our applications we
sometimes generalise a lexical relation (between two words from different synsets) into
a semantic relation (between all words of the two synsets). Alternatively it is also pos-
sible to treat a semantic relation between two synsets as a lexical relation between all
words of the two synsets.

WordNet has been used in many research projects and has been visualised in a
number of formats. Probably the most well-known visualisation is the one at visu-
althesaurus.com, which employs Java-applets to draw networks around words using
WordNet’s semantic relations and the spring-embedder algorithm. This visualisation
differs from our research because it does not result in lattices, but in networks, which
completely ignore the hierarchical structure of WordNet’s relations. WordNet has been
used in several Formal Concept Analysis projects for example by Hotho et al. (2003) as
a means for improving text clustering by exploiting WordNet’s semantic relations and
by Martin & Eklund (2005) for adding hypernymic concepts in a lattice of a semantic
file system. But in these projects both WordNet and FCA are just tools used for other
purposes and, again, this kind of research differs from what we are intending to do.

Also of interest are studies that compare WordNet and Roget’s Thesaurus (for ex-
ample, Old (2003)). Kennedy & Szpakowicz (2008) discover that different editions of
Roget’s Thesaurus are quite similar to each other and to WordNet with respect to the cal-
culation of semantic similarity and their usage in language-based information retrieval
enhancement methods. Therefore it should be expected that concept neighbourhoods
extracted from Roget’s Thesaurus and WordNet are similar in structure and size.

Section 2 discusses requirements of an on-line interface for concept neighbourhoods.
Section 3 introduces the notions of concept neighbourhoods and neighbourhood lattices
in more detail. Section 4 presents examples of concept neighbourhoods from WordNet.
Section 5 discusses experimental results that were conducted on the WordNet database
and in comparison with Roget’s Thesaurus.

2 An On-Line Interface for Concept Neighbourhoods

Creating an on-line interface that generates concept neighbourhoods on the fly poses a
number of challenges. Both WordNet and Roget’s Thesaurus (RT) contain more than
100,000 words. It would therefore be inefficient to generate all neighbourhood lattices
in advance and store them as image files. Furthermore, an interface should allow for a
certain amount of flexibility. It should offer choices of semantic relations to be included,
degrees of size restrictions, and so on, because there are many possibilities for creating

Concept Neighbourhoods in Lexical Databases 285

concept neighbourhoods, and users may have different interests and preferences. The
idea is to create an interface similar to Dyvik’s (2004) semantic mirrors interface, which
allows users to choose different data sources, thresholds and limits.

The technology we are using at the moment consists of MySQL databases of Word-
Net and RT and the FcaStone1 software, which uses Graphviz2 for computing the graph
layouts. The database for RT was created by the second author (based on work de-
scribed by Sedelow & Sedelow (1993)). The WordNet database is built using WordNet
SQL Builder3.

Requirements for generating on-line lattices are that the lattices should:

– be easy to read, not too large, and not too complex so that they are viewable without
major zooming or scrolling;

– contain no overlapping nodes or labels;
– be generated within seconds.

Addressing the last requirement first: FcaStone’s performance declines sharply when
one tries to compute lattices with more than 100 concepts, but smaller lattices can be
computed within seconds. Because lattices with more than 50 concepts are not very
readable anyway, the main limit for the size of the lattices is readability, not software
performance.

Nodes and labels should not overlap. An automatically generated layout of a lattice
needs to determine the placement of the concepts, and also the placement of the labels.
Since Graphviz does not provide a separate option for placing labels, we are represent-
ing each concept as a box which contains the attributes in the top half and the objects in
the bottom half (as in Figure 1). Both attributes and objects are limited to 30 characters.
If there are more objects or attributes, the string is truncated at the 30th character and
dots (...) are inserted at the end. In that way, it can be guaranteed that neither concepts,
nor labels overlap anywhere.

To some degree the readability depends on the structure of the lattice. Because of
the placement of the labels inside the concept boxes, only up to 10 concepts (or less in
smaller browser windows) can be displayed side by side. Graphviz sometimes draws
the edges slightly curved, not straight, and in longer anti-chains and crowns, the edges
may touch each other or overlap and become difficult to trace. Thus, lattices with the
same number of concepts can have very different readability: a lattice with 20 concepts
which are arranged in 4-5 levels may be easier to read than a lattice with 20 concepts
which contains an anti-chain with more than 10 concepts.

3 Concept Neighbourhoods and Neighbourhood Lattices

A concept neighbourhood is extracted by starting with one item (word, term or concept)
and then retrieving other items the first item is related to and so on. This is called the
plus operator (Priss & Old, 2004) and is usually applied to a formal context of objects

1 http://fcastone.sourceforge.net
2 http://www.graphviz.org
3 http://wnsqlbuilder.sourceforge.net

http://fcastone.sourceforge.net
http://www.graphviz.org
http://wnsqlbuilder.sourceforge.net

286 U. Priss and L. John Old

710:2:1 Sleep

repose; silken repose; sleepry...

710:13:1 Sleep

get some shuteye; pound the ea...

407:1:3 Death

eternal rest; eternal sleep; r...

422:2:5 Insensibility; 709:1:4...

sleep

267:8:2 Quiescence

slumber

Fig. 1. A neighbourhood lattice in RT for the word “sleep”

and attributes, such as words and their translations into another language, words and
their sense numbers in Roget’s Thesaurus, or documents and their classification codes.
The complete formal context of a lexical database might contain more than 100,000
rows and columns. This is too large to build a readable lattice diagram. Starting with
one object or attribute the plus operator is usually applied for a fixed number of times,
because if the plus operator is applied an unlimited number of times the neighbour-
hood might grow until it encompasses the complete or nearly complete lexical database.
Apart from stopping the plus operator after a fixed number of steps, it is also possible
to apply several restriction methods (Priss & Old, 2004) in order to prevent the concept
neighbourhoods from becoming too large.

A plain n-m-neighbourhood starts with an object and has the plus operator applied
(2n − 2)-times to obtain the set of objects and (2m − 1)-times to obtain the set of
attributes. Thus, a 2-1-neighbourhood of WordNet or RT consists of all the words in the
synsets of a word and the senses of the original word. A 2-2-neighbourhood consists
of all the words in the synsets of a word and all of their senses. Figure 1 shows a 2-1-
neighbourhood lattice for the word “sleep” in RT. The plus operator was applied twice:
first, to find all the senses of “sleep” (as formal attributes) and then one more time to find
other words (as formal objects) which have the same senses. The senses are described
numerically as “Category number:Paragraph number:Synset number” followed by the
head word of the category. For example, “710:2:1” and “710:13:1” are two senses, both
belonging to the category “Sleep”. The layout and design of the lattice was generated
automatically as described in the previous section.

4 Concept Neighbourhoods in WordNet

WordNet contains many different types of relations. Therefore there are many possibil-
ities for creating different types of neighbourhood lattices. One possibility is to ignore

Concept Neighbourhoods in Lexical Databases 287

114024882

slumber

115273626

nap

113962765

eternal rest; eternal sleep; q...

200014742

catch some z’s; kip; log z’s

202701445

sleep

114025993

sopor

Fig. 2. A lattice of a plain 2-1 neighbourhood in WordNet for the word “sleep”

the semantic relations completely and simply generate plain neighbourhoods exactly as
in RT by taking a word, its synsets, all other words in these synsets, their other synsets
and so on.

Figure 2 shows the 2-1 neighbourhood for “sleep” in WordNet. The senses are rep-
resented by their index numbers. The fact that both RT (in Figure 1) and WordNet
contain the words “eternal rest, eternal sleep” in the same sequence in the neighbour-
hood of “sleep” is not a coincidence because when WordNet was started, the WordNet
lexicographers used RT as one of their sources. Thus, WordNet was influenced by RT.
Otherwise, the two neighbourhoods only share the words “rest” and “slumber”. In other
examples we looked at, it also seemed to be the case that only very few words are shared
between the WordNet and RT neighbourhoods. We have not yet explored this more sys-
tematically, but it might be of interest to calculate the intersection between the WordNet
and RT neighbourhoods because they might highlight core synonyms of each word. But
that is left for future research.

A 2-1 neighbourhood will only have some interesting structure if the synsets (repre-
senting the different senses of a word) have intersections of more than one word. In RT,
synsets seem to be fairly large and the synsets corresponding to different senses tend to
have larger intersections. In WordNet, however, the synsets tend to be smaller and tend
to intersect only in one, sometimes two words. In Figure 2, the only intersection other
than “sleep” is the word “slumber” which occurs in two synsets. The reason for this dif-
ference between WordNet and RT may be that the lexicographers who create WordNet
can view all synsets (senses) of a word when they edit the data. Synsets can be created
in a similar manner as traditional dictionaries where the senses of a word are carefully
distinguished and balanced. It may be that too much overlap between synsets is deliber-
ately avoided by WordNet’s lexicographers. In Roget’s Thesaurus, the different senses
of a word are only visible in the index, which was created (for the original edition)
after the construction of the thesaurus was finished. Roget would not have been able
to deliberately control the overlap between synsets. Therefore 2-1-neighbourhoods of

288 U. Priss and L. John Old

physical condition; physiologi...

sopor

period; period of time; time p...

nap

death

eternal rest; eternal sleep; q...

rest

catch some z’s; kip; log z’s

accommodate; admit; hold

sleep

slumber

Fig. 3. A lattice of a hypernymy neighbourhood in WordNet

polysemous words (especially nouns) in WordNet are often anti-chains whereas in RT
their 2-1-neighbourhoods tend to have more interesting structures. For WordNet other
means of creating neighbourhood lattices need to be investigated.

Another possibility is to incorporate WordNet’s semantic relations into the building
of neighbourhood lattices. One difficulty with this approach is that all parts of speech
in WordNet have different types of semantic relations and require different approaches.
For nouns and verbs the hypernymy relation can be used as follows: the words of the
synsets belonging to all senses of a word are taken as formal objects and the words
of the hypernymic synsets are the formal attributes. The relation between objects and
attributes is the semantic relation between synsets and their hypernymic synsets but
treated as a lexical relation between the words in the synsets. We call this the hy-
pernymy neighbourhood because it is based on the hypernymy relation. A hyponymy
neighbourhood is formed by using hyponymy, and so on. Adjectives and adverbs do
not have a hypernymy relation in WordNet, but their “similarity” relation can be used
in the same manner.

Figure 3 shows an example of a hypernymy neighbourhood of “sleep” in WordNet.
Figure 4 displays the corresponding synsets and their hypernymy relation in WordNet.
The example shows that most synsets are maintained as extensions or intensions in a
hypernymy neighbourhood. The extensions/intensions are only different from Word-
Net synsets if the synsets share words (as discussed above for plain neighbourhoods) or
share hypernyms. For example, in Figure 3, the left-most concept has the extension “so-
por, slumber, sleep” which is not a synset in WordNet. This extension emerges because
the two left-most synsets in Figure 4 have the same hypernymic synset. In our opinion,
WordNet synsets that share words or hypernyms exhibit implicit structures (in the sense
of Sedelow’s (1998) “inner structure analysis”), which are detected and visualised when
forming hypernymy neighbourhoods. The lattice in Figure 3 is more similar to the RT
lattice than the one in Figure 2. But according to our experimental results (see next
section), hypernymy neighbourhoods are not in general more similar to RT lattices than
plain 2-1 neighbourhood lattices.

Unfortunately, the hypernymy neighbourhoods of most nouns tend to be uninterest-
ing because they tend to be fairly small and predominantly form anti-chains. Hypernymy

Concept Neighbourhoods in Lexical Databases 289

quietus; rest; sleep

sleep; sopor sleep; slumber

death

nap; sleep

admit; hold

sleep

rest

sleep; slumber
catch some z’s
kip; log z’s

eternal rest
eternal sleep

physiological state
physical condition
physiological condition time period

period; period of time accommodate

Fig. 4. WordNet’s Hypernymy Relation

sopor

rest

period; period of time; time p...

nap

death

eternal rest; eternal sleep; q...

rest

catch some z’s; kip; log z’s

accommodate; admit; hold

sleep

slumber

physical condition; physiologi...

Fig. 5. A Neighbourhood Lattice with Identity in WordNet

neighbourhoods of verbs reveal more structures. The difference between nouns and verbs
might be caused either by a structural difference or by the fact that two different lexi-
cographers are responsible for nouns and verbs in WordNet who might use different
strategies for implementing hypernymy relations.

Apart from synsets sharing words or hypernyms, it might also be interesting to iden-
tify words which occur both as objects and attributes in the same neighbourhood. In
Figure 3, the word “rest” occurs both as an attribute and an object (under the attribute
“death”, but not visible in the Figure because the objects are truncated to 30 characters).
An identity relation can be added to the formal context which inserts a cross wherever
an object equals an attribute. The result is shown in Figure 5. Another possibility would
be to insert crosses whenever there is a substring match between the words in a neigh-
bourhood (matching “rest” and “eternal rest”). These options need to be explored in
more detail, but some preliminary analysis indicates that unfortunately, for nouns in
WordNet, there is not a significant overlap between objects and attributes.

5 Experimental Results

In order to obtain a better idea as to what kinds of neighbourhood lattices might be most
promising for WordNet, we calculated the number of concepts for plain 2-1, plain 2-2
and hypernymy neighbourhoods in WordNet. For comparison we also calculated plain

290 U. Priss and L. John Old

Table 1. The words with the largest neighbourhood lattices in WordNet and RT and their number
of concepts

WN: hypernymy WN: plain 2-1 WN: plain 2-2 RT: 2-1 top in both
pass 36 44 582 65 yes
break 39 46 543 44
take 31 37 657 34
run 34 39 497 79 yes
hold 31 39 490 47
set 29 37 336 86 yes
draw 28 30 464 29
check 27 31 469 52
make 23 32 549 34
get 26 28 530 46
cut 28 36 296 118 yes
go 22 30 561 55 yes
give 26 28 469 17
place 28 28 321 42
point 28 29 302 51
rise 40 42 236 40
return 28 26 280 40
turn 23 24 293 87 yes

2-1 and plain 2-2 neighbourhoods in RT. For our test data we chose a list of 45,000
frequently used words. From this list 26,000 words occur in WordNet and 21,000 in
RT. The list includes names, placenames and so on, not all of which occur in WordNet
and RT. Because the list does not include phrases or compound words, it contains only
about 1/4 of the words in WordNet and RT. But phrases and compound words tend to
be less polysemous and can be expected to generate smaller concept neighbourhoods.
Thus, our test data contains all the interesting words. Because not all nouns and verbs
have hypernyms in WordNet and adjectives and adverbs do not have hypernyms at all,
only about 17,000 words are used for the hypernymy neighbourhoods.

Table 1 shows the words with the largest neighbourhood lattices in WordNet and
RT. The words are sorted by their average ranking in WordNet hypernymy, plain 2-1
and plain 2-2 neighbourhoods. The largest hypernymy and plain 2-1 neighbourhood
lattices contain about 40 concepts in WordNet and can be graphically displayed. The
largest plain 2-2 neighbourhood lattice in WordNet (for the word “take”) contains 657
concepts. In the three types of concept neighbourhoods in WordNet that we looked at,
the words tend to be ranked in similar positions.

Table 1 also shows the sizes of the RT plain 2-1 neighbourhood lattices of these
words. There is slightly less agreement between the WordNet and RT rankings. The last
column “top in both” indicates which words have the largest neighbourhood lattices
both in WordNet and RT. The word “pass” is among the 5 largest lattices in all types of
neighbourhoods. On the other hand, “turn” which has the second largest neighbourhood
lattice in RT has much smaller neighbourhood lattices in WordNet.

Concept Neighbourhoods in Lexical Databases 291

Table 2. The adjectives with the largest neighbourhood lattices in RT

RT: plain 2-1 RT: plain 2-2 rank
vile 48 227 1
fixed 43 201 0.89
soft 43 147 0.77
hard 32 179 0.73
easy 40 126 0.69
proper 32 152 0.67
sad 23 172 0.62

Table 3. The adjectives with the largest neighbourhood lattices in WordNet

WN: plain 2-1 WN: plain 2-2 rank
hard 14 81 0.83
grim 9 122 0.82
easy 10 106 0.79
fresh 12 86 0.78
big 13 74 0.77
tight 11 86 0.75
soft 14 55 0.73
strong 9 78 0.64
awful 11 56 0.62
just 10 61 0.61
substantial 8 55 0.51

A comparison with Old (2003, p. 183) shows that the words with the largest neigh-
bourhood lattices also tend to be the most polysemous words, i.e. the ones with the most
senses. This is of course not surprising because the senses are used for the construction
of neighbourhoods. Although individual words can slightly differ with respect to the
sizes of their neighbourhood lattices in WordNet and Roget, all of the words with large
neighbourhood lattices have some verb senses and tend to be of Anglo-Saxon origin.
This is true not just for the words in Table 1, but in general. Words which have only noun
or adjective senses have much smaller neighbourhood lattices both in RT and WordNet.

Tables 2 and 3 show a listing just for adjectives. The rank in the tables is calculated
as the average of (size of lattice)÷(max size of lattice in this neighbourhood type). It
is interesting to observe that many negative adjectives have large neighbourhood lat-
tices. The largest one in RT is “vile”; in WordNet “hard” and “grim”. Among the top
ten largest 2-2 neighbourhood lattices for adjectives in RT are “abominable”, “obnox-
ious”, “odious”, “contemptible” and “despicable”. For some reason their lattices are
slightly smaller in the 2-1 neighbourhoods and therefore not in Table 2. The adjec-
tives that have large lattices across all neighbourhood types tend to be short words of
Anglo-Saxon origin.

In addition to looking at the words with the largest neighbourhood lattices, we also
looked at the size distributions. Figure 6 shows the number of lattices with up to 25
concepts for the three types of neighbourhoods in WordNet and the plain 2-1 neigh-
bourhoods in RT. The number of lattices of size 1 is not a good indication of anything

292 U. Priss and L. John Old

Fig. 6. Number of lattices with up to 25 concepts

because as mentioned before the data sets used for the different tests have different
sizes. The set used for RT is smaller than the one used for WordNet. The hypernymy
set is smallest because not all words in WordNet have hypernyms. Many of the words
with lattice size 1 are proper nouns, abbreviations and other specialised terms. It is to
be expected that names and proper nouns have small lattices. There are however some
surprises. For example the plain 2-2 neighbourhood lattice of “Adam” in WordNet con-
tains 40 concepts. The reason for this is that “Adam” is a synonym of “ecstasy” and
“go” as a hyponym of the drug “mdma”. Because “go” is very polysemous, the 2-2
neighbourhood for “Adam” is large too. But such kind of effects are anomalies and
indicate homographic or metaphoric word use.

Figure 6 shows that lattices are largest using the plain 2-2 neighbourhoods (which is
not surprising because the plus operator is used one more time). The plain 2-1 lattices
in RT are larger than in WordNet. The hypernymy neighbourhood lattices are smallest.
Figure 6 indicates that the size of the lattices has an impact on the distribution. Normally
one might expect to see some kind of power law distribution, which is common for
linguistic phenomena (and has been shown to apply to neighbourhood closure lattices
in RT by Priss & Old (2006)). But lattices of size 3 are much rarer than lattices of size
2 or 4. This is because as mentioned above many of the lattices have the shape of an
anti-chain or crown. But the only possibility to form a lattice with 3 concepts is as a
chain, which corresponds to a subset relation among the synsets and is very rare.

Table 4 shows the percentages of lattices with fewer than 6 concepts, between 6 and
45, and more than 45 concepts. Having fewer than 6 concepts is undesirable because

Concept Neighbourhoods in Lexical Databases 293

Table 4. The percentages of lattices with different sizes

WN:hypern WN: 2-1 WN: 2-2 RT: 2-1
smaller than 6 90% 91% 52% 68%
between 6 and 45 10% 9% 42% 31%
larger than 45 0% 0% 6% 1%

such lattices may not be very interesting. On the other hand, for specialised terms,
proper nouns, and so on, it may be unavoidable to have a small lattice. Lattices with
6 to 45 concepts should be viewable. If 45 concepts is too large, restriction can be
applied (Priss & Old, 2004), which removes most concepts that are meet- and join-
irreducible and reduces the number of concepts without changing the core structure of
the lattice. Lattices with more than 45 concepts are most likely not readable and require
restriction.

Table 4 indicates that in the case of WordNet a good strategy might be to create plain
2-2 neighbourhoods for most words except for the 6% for which the lattices have more
than 45 concepts. For such words, hypernymy or plain 2-1 neighbourhoods should be
chosen, which are guaranteed to have smaller lattices. It should be noted that this does
not imply that the hypernymy relation should never be used. It is possible to combine the
hypernymy and plain 2-2 neighbourhoods. Also different strategies might be necessary
for the different parts of speech. For RT, plain 2-2 neighbourhoods are suitable for 68%
of the words, whereas plain 2-1 neighbourhoods should be used for 31% of the words.
A restricted plain 2-1 neighbourhood should be used for the remaining 1%.

From an implementation viewpoint, the sizes of the lattices should be stored in a
look-up table. This can be calculated while the database is off-line, so it does not matter
if this is slow. We have not yet calculated the sizes for all words in WordNet and RT,
but as mentioned before, the entries which have not been included in our test data tend
to be phrases and compound words which tend to have smaller lattices. Thus, most
likely our list of the 6% of words with large plain 2-2 neighbourhoods is a complete or
nearly complete listing for WordNet. Our list of 31% of the words for RT will also be
nearly complete. Our previous approach to limiting the size of the lattices with respect
to our on-line RT interface has been to use heuristics derived from the number of objects
and attributes of the context. Using a look-up table instead of heuristics seems to be a
better approach because it is more precise while still requiring about the same amount
of computational resources.

6 Conclusion

The main result of this paper is that we have extended our concept neighbourhood
modelling from Roget’s Thesaurus to WordNet. We have conducted a number of exper-
iments, both with respect to looking at individual examples of words, but also obtaining
a distribution of the sizes of neighbourhood lattices of different types. The results show
that there are differences between parts of speech and between WordNet and RT. A fea-
sible approach to determining in advance which type of neighbourhood to use for which
word appears to be to calculate the sizes of the neighbourhood lattices once, and store

294 U. Priss and L. John Old

them as a look-up table in the database. We have not yet calculated these numbers for
all words and all types of semantic relations but it appears that words with large lattices
in one type also have large lattices in other types. Verbs of Anglo-Saxon origin tend to
have the largest lattices. The data about the lattice sizes which we have calculated so
far appears sufficient to prevent the construction of oversized neighbourhood lattices.
Users of the on-line interface4 can still be given some flexibility to experiment with dif-
ferent types of neighbourhood lattices. Only the construction of oversized lattices needs
to be avoided.

It might be of linguistic interest to conduct a more detailed analysis of the data that
we have collected so far. It might indicate a classification of words according to their
types of neighbourhoods or offer more insights into the structure of synonymy and other
semantic relations. Also, if a word behaves differently across different neighbourhoods,
such anomalies might highlight interesting facts or errors in the data. But such analyses
are left for future research.

Other plans for future research include: extending this research to other lexical
databases; investigating the use of faster algorithms; and improving and testing the user
interface of our website. A further idea is to investigate whether there are other indica-
tors than number of concepts that can be used to determine how readable the lattices
are. For example, for the same number of concepts, lattices that have about the same
width as height might be more readable than lattices that are “short” and “wide”. Our
experimental data suggests that “tall” and “narrow” lattices are unlikely with respect
to WordNet and RT. One indicator for width might be the degree of sparseness of the
formal context.

References

1. Dyvik, H.: Translations as semantic mirrors: from parallel corpus to wordnet. Language and
Computers 49(1), 311–326 (2004); Rodopi

2. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. MIT Press, Cambridge
(1998)

3. Hotho, A., Staab, S., Stumme, G.: Explaining text clustering results using semantic struc-
tures. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS
(LNAI), vol. 2838, pp. 217–228. Springer, Heidelberg (2003)

4. Kennedy, A., Szpakowicz, S.: Evaluating Roget’s Thesauri. In: Proc. of ACL 2008, HLT,
Columbus Ohio, USA, pp. 416–424. Association for Computational Linguistics (2008)

5. Martin, B., Eklund, P.: Applying Formal Concept Analysis to Semantic File Systems Lever-
aging Wordnet. In: Proceedings of the 10th Australasian Document Computing Symposium
(2005)

6. Old, L.J.: The Semantic Structure of Roget’s, A Whole-Language Thesaurus. PhD Disserta-
tion. Indiana University (2003)

7. Priss, U., Old, L.J.: Modelling Lexical Databases with Formal Concept Analysis. Journal of
Universal Computer Science 10(8), 967–984 (2004)

4 The interface for RT is currently at http://www.ketlab.org.uk/roget.html. The
WordNet interface will also be added to that site in the near future.

http://www.ketlab.org.uk/roget.html

Concept Neighbourhoods in Lexical Databases 295

8. Priss, U., Old, L.J.: Conceptual Exploration of Semantic Mirrors. In: Ganter, B., Godin, R.
(eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 21–32. Springer, Heidelberg (2005)

9. Priss, U., Old, L.J.: An application of relation algebra to lexical databases. In: Schärfe, H.,
Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 388–400. Springer,
Heidelberg (2006)

10. Sedelow, S., Sedelow, W.: The Concept concept. In: Proceedings of the Fifth International
Conference on Computing and Information, Sudbury, Ontario, Canada, pp. 339–343 (1993)

11. Sedelow Jr., W.A.: Computer-based planning technology: an overview of inner structure
analysis. In: Sixth Annual Conference on New Technology and Higher Education: Acqui-
sition, Integration, and Utilization (1988)

A Survey of Hybrid Representations of Concept
Lattices in Conceptual Knowledge Processing

Peter Eklund1 and Jean Villerd2

1 School of Information Systems and Technology
University of Wollongong, Australia

peklund@uow.edu.au
2 LORIA – INRIA Nancy - Grand Est Research Centre

Nancy, France
jean.villerd@loria.fr

Abstract. A feature of Formal Concept Analysis is the use of the line
diagram of the concept lattice to visualize a conceptual space. The line
diagram is a specialized form of Hasse diagram labeled with the object
extents and the attribute intents. The line diagram is usually drawn so
that its rendering maximizes symmetry and minimizes edge crossings.
Further the line diagram is usually layered hierarchically from top to
bottom. Variations of the line diagram are frowned upon in the mathe-
matical treatment of Formal Concept Analysis but hybrid presentations
of concept lattices have practical value when used in an appropriate
application context. This paper surveys previous work on using line dia-
grams and further explores hybrid visual representations of concept lat-
tices. It identifies connections to other visual information techniques in
data mining and information visualisation that can be used to enhance
Formal Concept Analysis applications.

1 Introduction

In the last three decades Formal Concept Analysis (FCA) [30] has grown in pop-
ularity as a method for data analysis and knowledge representation. One reason
is the ability to visualize an information space as a concept lattice or line dia-
gram. Consider the formal context in Fig. 1 and its corresponding line diagram.
Fig. 1 presents subtle differences from the standard diagrammatic representation
of the line diagram, it includes the use of graduated color on the vertices repre-
senting the cardinality of the object extents (the vertex at the top of the lattice
being darkest and the bottom node of the lattice being the lightest). This is a
minor departure from the conventions of line diagram drawing and this paper
explores other more radical ideas. Our purpose with this survey is to look at
hybrid visual representations of concept lattices because we believe experimen-
tation in this direction will lead to innovations that enhance the application of
Conceptual Knowledge Processing (CKP) [32] for knowledge and data discovery.
As well as being useful in various applications, we argue that these departures
are sanctioned by Wille’s vision of CKP.

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 296–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Survey of Hybrid Representations of Concept Lattices 297

Table 1. Methods for Conceptual Knowledge Processing as per Wille [32], in this paper
we focus on those methods which touch on line diagrams of a concept lattice, namely
those arrowed (→) and in bold, (line diagrams are also significantly used in conceptual
scaling, methods M3.1–M.3.6)

Conceptual Knowledge Processing Method Name Reference

Representing a Context by a Cross Table (M1.1)
Clarifying a Context (M1.2)
Reducing a Context (M1.3)

→ Representation of a Concept Hierarchy by a Line Diagram (M1.4)
→ Checking a Line Diagram of a Concept Hierarchy (M1.5)

Dualizing a Concept Hierarchy (M1.6)
Generating Concepts (M2.1)

→ Generating All Concepts Within a Line Diagram (M2.2)
Determining All Concepts of a Context (M2.3)
Determining a Context from an Ordered Collection of Ideas (M2.4)
Conceptual Scaling of a Context (M3.1)
Conceptual Scaling of a Many-valued Context (M3.2)
Nominal Scaling of a Many-valued Context (M3.3)
Ordinal Scaling of a Many-valued Context (M3.4)
Interordinal Scaling of a Many-valued Context (M3.5)
Contraordinal Scaling of a Many-valued Context (M3.6)
Concept Classification of Objects (M4.1)
Many-valued Classification of Objects (M4.2)

→ Partitioning Attributes of a Context (Nested Line Diagrams) (M5.1)
Atlas-Decomposition of a Concept Hierarchy (M5.2)
Concept Patterns in a Concept Hierarchy (M5.3)
Juxtaposition of Contexts with Common Object Collection (M6.1)
Aggregation Based on Object Families (M6.2)

→ TOSCANA-Aggregation of Concept Hierarchies (M6.3)

Identifying a Concept (M7.1)
Identifying Concept Patterns (M7.2)
Determining the Attribute Implications of a Context (M8.1)
Determining Many-valued Attribute Dependencies (M8.2)
Attribute Exploration (M9.1)
Concept Exploration (M9.2)
Discovering Association Rules (M9.3)
Retrieval with Contexts and Concept Hierarchies (M10.1)

→ Retrieval with a TOSCANA-System (M10.2)

Theory Building with Concept Hierarchies (M11.1)
Theory Building with TOSCANA (M11.2)
Conceptual Graphs Derived from Natural Language (M12.1)
Derivation of Judgments from Power Context Families (M12.2)

2 Representing Line Diagrams

Because this paper concentrates on diagrams from Conceptual Knowledge Pro-
cessing (CKP) we recap Wille’s [32] methods and focus on methods that involve

298 P. Eklund and J. Villerd

sm
al

l
m

ed
iu

m
la

rg
e

n
ea

r

fa
r

m
o
o
n
(s

)

n
o

m
o
o
n

Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×
Pluto × × ×

Fig. 1. A cross-table containing information about the planets and the corresponding
line diagram of the concept lattice induced by the formal context

visualizing concept lattices. Wille generalizes CKP from Formal Concept Anal-
ysis (FCA), FCA being the mathematization of CKP. Table 1 lists the methods
of CKP showing that the analysis framework has formalized methods, processes
and algorithms. Referring to Table 1 we consider only the highlighted methods,
those that relate to line diagrams of the concept lattice and elaborate each in
turn. The description of the methods is abbreviated from Wille [32] with our
commentary.

2.1 Representation a Concept Hierarchy by a Line Diagram (M1.4)

Concepts are represented by circles so that upward line segments between them
indicate a sub-superconcept relation. Every circle representing a concept gener-
ated by an object/attribute has attached from below/above the name of that
object/attribute. The labels of object and attribute names allow one to read
off the extension and intension of each concept from the line diagram. Start-
ing from any given concept, the extension/intension of a concept consists of all
those objects/attributes the names of which are attached to a circle belonging
to a downward/upward path of line segments [32].

2.2 Checking a Line Diagram of a Concept Hierarchy (M1.5)

A line diagram represents a concept hierarchy iff the line diagram satisfies: (1)
each circle starting a downward line segment must have attached an object name;
(2) each circle starting an upward line segment must have attached an attribute
name; (3) an object g has an attribute m in the given context iff the names of g
and m are attached to the same circle or there is an upward path of line segments
from the circle with the name of g to the circle with the name of m; (4) The
Basic Theorem on Concept Lattices holds: namely the lattice is complete [32].

A Survey of Hybrid Representations of Concept Lattices 299

The conditions on (M1.4) and (M1.5) relate to drawing line diagrams and
are quite strict as to what constitutes a line diagram of a concept lattice. In
[32], Wille describes algorithmic methods for Conceptual Knowledge Processing
including an algorithmic description for generating the line diagram in (M2.2).
ConImp [2] was developed in the mid-80s and is the progenitor FCA program
but has no capability for lattice rendering, the program is used to manipulate
formal contexts and compute concept listings from which a line diagram can
be then be drawn by hand. Because ConImp had no automatic mechanism for
rendering line diagrams, it encouraged a craft of lattice drawing and certain
conventions emerged to inform the process of drawing the line diagram of a
concept lattice. Drawing a concept lattice became somewhat of a art with its
own conventions and is the main reason that the methods (M1.4), (M1.5) and
(M2.2) from Table 1 are codified in the prescriptive way Wille describes.

2.3 Generating All Concepts within a Line Diagram: (M2.2)

First, represent the concept having the full object set as its extension by a small
circle and attach (from above) the names of all attributes that apply to all these
objects. Secondly, choose from the remaining attributes the extension of which
are maximal, draw for each of them a circle below, link them to the parent circle
by a line segment, and attach (from above) the corresponding attribute names.
Then determine all intersections of the extensions of the existing concepts and
represent the concepts generated by those intersections by small circles with their
respective line segments representing the subconcept-superconcept-relationships.
Perform analogously until all attributes are treated. Finally, attach each object
name (from below) to that circle from which upward paths of line segments
lead exactly to those circles with attached names of attributes applying to the
respective object ([33], p.64ff.) [32].

Taken in combination (M1.4) (M1.5) and (M2.2) provide prescriptive de-
tail about the graphical elements to use in the construction of the line diagram,
namely small circles and line segments, labels of attributes and objects. It also
codifies a top-to-bottom rendering of the conceptual hierarchy. On the other
hand, the methods say nothing about layout or the length of line segments.
Despite small-scale success with hand-drawing line diagrams. the process of cre-
ating and laying-out a line diagram has frustrated full automation, “... up
to now, no universal method is known for drawing well readable line diagrams
representing concept hierarchies. For smaller concept hierarchies, the method of
Drawing an Additive Line Diagram (see [33], p.75) often leads to well-structured
line diagrams. This is the reason that quite a number of computer programs for
drawing concept hierarchies use that method (e.g. Anaconda, Cernato, Con-

Exp, Elba)”[32]. The result is that drawing line diagrams can only be partially
automated and the diagrams improved by direct manipulation by humans.

2.4 Drawing Line Diagrams

In practice two main approaches for drawing line diagrams can be identified.
The first approach is a vector-based method that uses the notion of additive line

300 P. Eklund and J. Villerd

diagram [33] and aims to optimize the interpretability of the diagram with re-
spect to the original context. Attribute and/or object concepts – the labeled
circles described in (M1.4) – are drawn first, determining the positions of the re-
maining concepts. The second approach considers the line diagram as a directed
graph, and adapts existing graph drawing techniques for producing aesthetics
diagrams by, among other things, minimizing edge crossings and maximizing
symmetry. In this case the order relation between concepts is the only informa-
tion taken into account, and all concepts are of the same importance.

Additive line diagrams approach. Ganter and Wille [33] specify an additive
line diagram associated to a concept lattice B(G, M, I) with the help of two
functions:

1. A representation function rep : B(G, M, I) → P(X) that assigns to each
concept a subset of a representation set X . This function must preserve the
partial order of the lattice, i.e. ci
 cj ⇔ rep(ci) ⊆ rep(cj) for two concepts
ci and cj. Commonly, the attribute set M is used as the representation set
and then we have rep(c) = Int(c).

2. A grid projection vec : X → R2 assigning a real vector with a positive y
coordinate to each element of X (commonly to each attribute). Then the
position of a concept c on the plane follows pos(c) = n +

∑
x∈rep(c) vec(x)

where the vector n is used to shift the location of the lattice on the display.

Additive line diagrams have the advantage of being tunable through the choice
of the representation set, and the technique produces a great number of parallel
edges, that in turn improves readability.

Force-directed approach. A common graph drawing technique used in the
second approach is the force-directed method. The basic idea is to use a physical
analogy to model the graph drawing problem. A system of forces is applied to the
vertices, which move until a configuration that minimizes the potential energy
of the system is reached. An advantage of this method is that it often reveals
symmetries existing in the graph. A well-known implementation of this method
is Eades’ Spring embedder model [12], in which two types of forces operate. An
attraction force, which makes edges act as springs, that follows a logarithmic
force law; and a repulsion force which makes vertices act like positive electrical
point charges that repel each other to avoid overlapping, following an inverse-
square force law.

In particular, following these ideas Freese [19] proposed a force-directed
method for drawing lattices. In order to preserve the top-to-bottom render-
ing, the y coordinates of the vertices/concepts are computed w.r.t. their depth
in the lattice, using a layering approach. Then the forces only impact the x
coordinates. The attraction force acts between comparable concepts, so that a
concept remains close to its predecessors, and the repulsion force acts between
incomparable concepts of the same layer in order to avoid overlapping. Cole [4,6]
combined the force-directed and the additive approaches and introduced several
metrics that quantify the goodness of a diagram layout.

A Survey of Hybrid Representations of Concept Lattices 301

In the layout strategies mentioned above, no semantics is attached to the
length of the edges nor to the distances between concepts in general, and nothing
is said about this in (M1.4) (M1.5) and (M2.2). However, one can anticipate
a layout strategy where the distances between vertices reflect inversely on the
similarity between concepts. This can be done using Kamada and Kamai’s force
directed approach [22] that modifies the Spring embedder model by removing the
repulsion force and extending the attraction force to all pairs of vertices, i.e. a
spring is attached to all pairs of vertices, whenever an edge exists between the
two vertices or not. The attraction force follows Hooke’s law, so that the force
exerted on the vertices is proportional to the difference between the spring’s
rest length and the actual distance between the vertices. Each iteration refines
the layout of the graph, until the system converges to a state of minimal energy.
Although the system may fall into a local optimum, the final layout is intended to
provide a faithful representation of the distances between vertices. This approach
can also be applied in Multidimensional scaling (MDS) where the layout of high-
dimensional objects in a low-dimensional projection is the goal.

Several similarity measures between formal concepts have been proposed, in-
cluding [23,27,21] and some have been applied and studied in [8]. These are
based on the symmetric difference between sets and differ in the type of sets
involved (extents and/or intents), and in their sensitivity (local dissimilarity or
general similarity involving all the objects and/or attributes of the context).
Note that all these metrics are distances, a nice property for layout. To our
knowledge, only Hannan and Pogel [21] used distance for the purposes of lay-
out as is shown in Fig. 2. In their work, the distance between two concepts ci

and cj is the cardinal of the symmetric difference between respective extents, i.e.
d(ci, cj) = |Ext(ci)"Ext(cj)| = |(Ext(ci)\Ext(cj))∪(Ext(cj)\Ext(ci))| with the
aim to improve the layout of additive line diagrams by applying a force-directed
post-processing based on this distance. The final layout – an example of which
is Fig. 2 – shows a diagram in which, the more concepts share common objects
the closer they appear. Thus, considering two concepts drawn near one another,
the association rules between their respective intents may be of high confidence,
suggesting visual discovery of almost exact rules from layout.

The attributes (resp. contexts) considered so far are binary (i.e. one-valued
contexts). In order to handle many-valued contexts containing non-binary at-
tributes such as gender, colour, grade or age, a discretization process called con-
ceptual scaling is used (M3.2). The core idea is to transform the many-valued
context into a derived one-valued context according to a set of rules that de-
pends both on the nature of the many-valued attributes (nominal, ordinal or
numerical) and on some potential background knowledge about relations be-
tween their values. The conceptual scaling mechanism itself is out of the scope
of the present paper. However since it results in the creation of several new
binary attributes for each many-valued attribute, the number of concepts ex-
tracted from the derived one-valued context may grow exponentially (in the
worst case, 2min(|G|,|M|) concepts are extracted from a context with |G| objects
and |M | attributes), leading to unreadable line diagrams. The following section

302 P. Eklund and J. Villerd

Fig. 2. The concept lattice of the UCI zoological dataset of 101 animals and 15 binary
attributes. This lattice has 238 concepts. The concepts “milk” and “hair” are drawn
very near each other (the attribute labels overlap – extreme right), while the concept
“eggs” is repulsed from the pair – left. The rules “milk”→“hair” and “hair”→“milk”,
have confidence 95.1% and 90.6% resp. Visual clustering of “milk” and “hair” suggest
they are minor variations of one another (re-printed with permission).

deals with nested line diagrams, an alternative technique to represent and study
large contexts by partitioning the attributes.

2.5 Partition Attributes of a Context (Nested line diagrams (M5.1))

A concept hierarchy can be visualized as a nested line diagram constructed
as follows (cf. [33], p.75ff.): First, line diagrams of the concept lattices of the
subcontexts are prepared and ordered in a sequence of subcontexts. Then, the
line diagram being second in the sequence is copied into each circle of the line
diagram; next, the line diagram being third in the sequence is copied into each
circle of the line diagram second in the sequence and so on [32].

In ToscanaJ [1] histograms were used to represent object extents and cluster-
grams used to display attributes. A key question arising from (M5.1) is whether
is makes sense to embed a visualization of anything other than a line diagram
within a nested line diagram.

A Survey of Hybrid Representations of Concept Lattices 303

(a) chassis type line diagram (b) HDD capacity line diagram

(c) resulting nested line diagram

Fig. 3. A nested line diagram (c) built the from two subcontexts chassis types (a) and
HDD storage (b) Numbers represent extent cardinality

Nested line diagrams are particularly suited to contexts derived from many-
valued contexts. Fig. 3 shows the building of a nested line diagram from a many-
valued context containing computers as objects and two many-valued attributes
chassis type and HDD capacity (computed using ToscanaJ). Each of these
attributes has been scaled into a set of binary attributes that constitute two
subcontexts. Following the above instructions, the line diagrams of the two sub-
contexts are drawn (see Fig. 3(a) and 3(b)), and then the second is copied into
each circle of the first (Fig. 3(c)). One can easily observe the distribution of HDD
capacities along with the type of chassis. However, two limitations arise: (i) com-
bining more than two many-valued attributes may result in complex nested line
diagrams, useful for deep analysis but not suitable for a first-glance navigation;
(ii) the scaling pre-processing inevitably results in a loss of precision concerning

304 P. Eklund and J. Villerd

numerical attributes. Hence, values for the numerical attribute HDD capacity
have been gathered into two binary attributes, namely � 200MB and � 400MB
using an ordinal scale (M3.4). When the granularity is modified in this way, the
entire nested line diagram must be redrawn. Hybrid solutions to address both
these limitations will presented in Section 2.7 below.

2.6 Toscana-Aggregation of Concept Hierarchies (M6.3)

The idea of a Toscana-aggregation is to view a related system of concept hi-
erarchies metaphorically as a conceptual landscape of knowledge that can be
explored by a purpose-oriented combination and inspection of suitable selections
of the given concept hierarchies [32].

Groh [20] was the first to experiment with visual abstraction, using an ab-
breviated form of the line diagram for displaying flight routes in a network as
reported in [15]. Further, the conceptual landscape idea [31] was explored exten-
sively by Ducrou [9] and the results were a number of hybrid Toscana-systems.
Wille’s landscape metaphor can therefore be said to have significantly encour-
aged experimentation with visualization and line diagram abstraction.

FLIGHT

DAYS
TIME

TIME
DAYSFLIGHT

Innsbruck

Klagenfurt

FLIGHT
TIME
DAYS 7

FLIGHT

TIME

FLIGHT
TIME
DAYS

15.10 - 15.55
1583

DAYS

DAYS

FLIGHT
TIME
DAYS

FLIGHT
TIME

Salzburg

Vienna

Graz

Linz

7

1 - 7

1 - 71 - 5 , 7
15.30 - 16.15 18.25 - 19.05

549

591 597
10.25 - 11.20 17.15 - 18.10 19.05 - 20.00

547

10.45 - 11.30

2 - 5 , 7
07.50 - 08.40 10.20 - 11.35 15.35 - 16.45

21.50 - 22.25

540

6

072a070 077

416

1 - 5 , 7

1 - 6

590FLIGHT
TIME
DAYS

2980 2986

7

FLIGHT
TIME
DAYS

FLIGHT
TIME
DAYS

2984

12.30 - 13.00 21.40 - 22.05
1 - 7 1 - 7

1 - 7 1 - 7

2985

06.10 - 06.40 10.20 - 10.55 14.35 - 15.10
1 - 7 1 - 7

2981

Fig. 4. A diagram showing a representation of a relational power context family mod-
eling a network of airline flights in Austria. The network is depicted as a directed graph
and the labels on line segments as relations. The digraph is placed within a backdrop
map of Austria with the position of the vertices corresponding to the geo-coordinates
of Austrian cities.

2.7 Retrieval with a Toscana-System (M10.2)

The term Toscana-system appears to refer to a particular software framework
for Formal Concept Analysis, however it is intended by Stumme et al. [29] to
mean a general class of Formal Concept Analysis systems that formalize a dataset
into a context and to provide different points of view on the data by assisting

A Survey of Hybrid Representations of Concept Lattices 305

the user in building and applying different conceptual scales. With this idea in
mind we now look how various FCA-applications have dealt with visualization
and retrieval. Conceptual knowledge retrieval is often a process where humans
search for something with only a vague information need. Therefore humans
learn step by step how to specify what they are searching for. Line diagrams of
the activated scales are shown to the user who learns by inspecting them on how
to act further [32]. We show how the navigation facilities of line diagram can be
enhanced through their combination with non-FCA visualization techniques.

Line diagrams as a support for navigation. The powerful classification
ability of FCA has found many applications in information retrieval. Some of
them have been listed by [26]. Carpineto and Romano [3] argue that, in addition
to their classification behaviors for information retrieval tasks, concept lattices
can also support an integration of querying and browsing by allowing users
to navigate into search results. Nowadays, several Formal Concept Analysis-
based applications like Credo [3], MailSleuth [5,7] or SearchSleuth [8]
have been developed. Upstream research has studied the understandability of a
lattice representation by novice users [13,11]. A program called ImageSleuth

[10,14] further proposes an interactive Formal Concept Analysis-based image
retrieval system in which subjacent lattices are hidden. Users do not interact
with an explicit representation of a lattice. They navigate from one concept
to another by adding or removing terms suggested by the system. The same
design approach is followed in SearchSleuth [8] and also in [18]. This ensures
progressive navigation within the lattice (Wille’s method 10.2).

An hybrid approach to enhance readability. During the usability review
of MailSleuth in 2003, [13] encountered users who felt that the drawing con-
ventions for a lattice diagram were no different from a graph in mathematics.

Fig. 5. ImageSleuth: the interface presents only the extent of the current concept as
thumbnails and generalizations/specializations by removal/addition of attributes to
reach the upper and lower neighbors (shown to the top/bottom of the thumbnails).
Pre-defined scales (perspectives) are displayed on the left.

306 P. Eklund and J. Villerd

Fig. 6. A screenshot of the MailSleuth program

What makes this a lattice diagram and not a graph? In Hasse diagrams, line
segments (represent the cover relation) are unlabelled. It is well understood in
mathematics that a partially ordered set is transitive, reflexive and antisym-
metric and so to simplify the drawing of an ordered set (via its cover relation)
the reflexive and transitive edges are removed, and the directional arrows of the
relation are dropped. It is understood by convention in Mathematics that the
Hasse diagram is hierarchical with the edges pointing upward. In other words, if
x < y in the partially ordered set then x appears at a clearly lower point than
y in the diagram (M1.5). To insinuate structure to novices, the idea of a line
diagram with shaded layers was introduced in MailSleuth. The principle is
simple, with dark at the top and light at the bottom; the shades progressively
lighter as one moves from one level to the next (shown in Fig. 6). The top and
bottom elements of the lattice have also been replaced with icons indicating All
Mail and No Mail (when the bottom element is the empty set of objects).

Shading does not interfere with Formal Concept Analysis diagrammatic con-
ventions because it is a backdrop to the line diagram. It can also be turned off if
the line diagram is to be embedded in a printed document. However, the inter-
action of the layout algorithm and background layer shading fails (background
layers are not aligned) in line diagrams with high dimensionality. On the other
hand is possible to use the alignment of the background layers to guide the man-
ual layout process. Once layer shading is used, users are better able to explain
(and read) the line diagram from top-to-bottom and bottom-to-top.

A Survey of Hybrid Representations of Concept Lattices 307

Because MailSleuth deals with objects that are emails, it was natural to
replace vertices with a literal iconic representation relevant to the domain. In
the case where Derived Folders are unrealised, no vertex is drawn at all. Where
data is present, an envelope is used, the envelopes animate by “appearing to
lift” on rollover with drop shadowing. This helps suggest that vertices in the
line diagram can be moved and therefore manually adjusted by the user. Edge
highlighting has been used to emphasise relationships in line diagrams in both
ToscanaJ and in MailSleuth. This idea is used as a method to orient the
current vertex in the overall line diagram so that relationships can be identified.

In many Toscana-systems the set of objects in the extent is often replaced
with a number representing the cardinality of the extent (and/or the contingent),
this can extended to allow the edges of the line diagram to be labelled with the
ratio of object counts to approximate the idea of support in data mining.

Several strategies can be applied to reduce the number of vertices displayed to
avoid visual overloading. Iceberg lattices [28] and alpha lattices [25] are smaller
concept lattices retaining significant concepts that respect a threshold criterion
based on the extent cardinality. Another lattice reduction strategy is decompos-
ing the overall lattice into smaller sublattices, as done in ImageSleuth [10,14],
with this idea a partition of term space is achieved by a domain expert, attribute
filtering or object zooming.

2.8 A Hybrid Approach to Handle Numerical Attribute

Considering a many-valued context, we have seen that nested line diagrams
encounter two major limitations. First, combining more than two many-valued
attributes makes the nested line diagram unreadable. Secondly, while no informa-
tion is lost when building a line diagram from a binary context, the binarization
of numerical attributes leads to a loss of precision. An hybrid solution to address
these limitations is to partition the context into binary and nominal attributes
on the one hand, and ordinal and numerical attributes on the other hand. The
binary/nominal line diagram is drawn but its circles are not filled with the ordi-
nal/numerical line diagram. They are filled with a visualization that represents
proximities between objects w.r.t. ordinal and numerical attributes. For instance,
the circle labeled Desktop in Fig. 3(c) would contain 25 points that correspond
to the 25 objects in the extent of this concept. The points are drawn in such
a way that the distance between two points reflects the distance between the
two corresponding objects w.r.t. the numerical attribute HDD capacity. These
embedded visualizations can be drawn using a force-directed Multidimensional
scaling technique [24], which takes as input the Euclidian distances between
objects w.r.t. a given set of numerical attributes, and produces 2D embedding
of the objects. This solution addresses both the above limitations since (i) the
Euclidian distances can be computed w.r.t. any number of attributes; (ii) no
scaling pre-processing is required. Note that the previous scaling pre-processing
resulted in a predefined clustering of objects, whereas clusters of objects that
can appear in embedded visualizations may not be expected, providing new in-
sights into the data. However, this solution is not accurate when the number

308 P. Eklund and J. Villerd

Fig. 7. Hybrid representation associated to a many-valued context. The line diagram
left is built from the subcontext containing binary and nominal attributes. The objects
contained in the extent of the selected concept are shown on the right by an MDS
embedding that reflects their proximities w.r.t. numerical attributes.

of objects and binary/nominal attributes grows. Hence, embedded visualization
may become overcrowded and too small to be useful. A solution is to follow the
overview + detail paradigm that splits the screen into two views (see Fig. 7).
The overview shows the line diagram built from binary and nominal attributes,
while the detailed view shows the embedded visualization of the selected vertex
in the overview. The detailed view acts as a kind of magnifying glass on the
content (the extent) of the selected concept.

2.9 An Hybrid Approach to Provide Insights Concerning
Navigation Costs Regarding a Concept’s Neighbors

A final idea is to combine tag clouds with Formal Concept Analysis. This is shown
in Fig. 8. This shows a tagging and annotation system called the Virtual Museum
of the Pacific [17,16]. Here, any attributes that lead to the upper neighbors are
shown above the images, in this case male, melanesia and PNG and attributes
(when added) that lead to lower neighbors in the concept lattice are shown
below the images, in this example fishing, container, spiritual and magic.
The size of the attributes is determined by the size the extent of the concepts
that they lead to so the position and font size of upper and lower neighbors is
conditioned by the extent sizes of the formal concepts they lead to. For example,
in this case fishing is shown larger than container, spiritual and magic
since it is a smaller specialization while container and magic are the same size
and so have the same number of objects in their extents. The result is two tag
clouds, one for the attributes leading to upper neighbors and another for lower
neighbors.

A Survey of Hybrid Representations of Concept Lattices 309

Fig. 8. A screenshot of the Virtual Museum of the Pacific program showing upper and
lower neighbors of a formal concept as a tag cloud. The larger the lower neighbour, the
larger the extent of the resulting formal concept being navigated to (minimal change).
The larger the upper neighbor the greater the generalisation (maximal change).

3 Conclusion

This paper is a survey of visualization using line diagrams of concept lattices
but with specific purpose. We argue that in the strict understanding of Con-
ceptual Knowledge Processing variations of the standard techniques of line di-
agram drawing are supported. Further, that in various analytical contexts for
Knowledge and Data Discovery, these variations of useful. Our examples cover
the coloring of vertices to present the cardinality of formal concept extents; the
placement of vertices of the line diagram to reflect association rule confidence;
the use of icons for vertices, layer shading and abstractions of the line diagram
that conform to Wille’s landscape metaphors; and the use of iceberg lattices to
minimize visual clutter and using similarity measures to condition the length of
edges. Further, we have demonstrated the utility of showing only the concep-
tual neighborhood of the concept lattice and finally mixing this idea with the
traditional idea of an attribute tag-cloud.

References

1. Becker, P., Hereth Correia, J.: The ToscanaJ suite for implementing Conceptual
Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

310 P. Eklund and J. Villerd

2. Burmeister, P.: Formal concept analysis with conimp: Introduction to the basic
features. Technical report, TU-Darmstadt (1996),
http://www.mathematik.tu-darmstadt.de/~burmeister

3. Carpineto, C., Romano, G.: Exploiting the Potential of Concept Lattices for In-
formation Retrieval with CREDO. Journal of Universal Computer Science 10(8),
985–1013 (2004)

4. Cole, R.: Automatic layout of concept lattices using force directed placement and
genetic algorithms. In: Proc. of the 23th Australiasian Computer Science Confer-
ence, pp. 47–53. IEEE Computer Society, Los Alamitos (2000)

5. Cole, R., Eklund, P., Stumme, G.: CEM — A Program for Visualization and Dis-
covery in Email. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 367–374. Springer, Heidelberg (2000)

6. Cole, R.J., Ducrou, J., Eklund, P.: Automated layout of small lattices using layer
diagrams. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS
(LNAI), vol. 3874, pp. 291–305. Springer, Heidelberg (2006)

7. Cole, R.J., Eklund, P., Stumme, G.: CEM - a program for visualization and discov-
ery in email. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000.
LNCS (LNAI), vol. 1910, pp. 367–374. Springer, Heidelberg (2000)

8. Dau, F., Ducrou, J., Eklund, P.: Concept Similarity and Related Categories in
SearchSleuth. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI),
vol. 5113, pp. 255–268. Springer, Heidelberg (2008)

9. Ducrou, J.: Design for Conceptual Knowledge Processing: Case Studies in Ap-
plied Formal Concept Analysis. PhD thesis, School of Information Technology and
Computer Science, The University of Wollongong (2007)

10. Ducrou, J., Eklund, P.: An intelligent user interface for browsing and search MPEG-
7 images using concept lattices. Int. Journal of Foundations of Computer Sci-
ence 19(2), 359–381 (2008)

11. Ducrou, J., Eklund, P.: Faceted document navigation using conceptual structures.
In: Hitzler, P., Schärf, H. (eds.) Conceptual Structures in Practice, pp. 251–278.
CRC Press, Boca Raton (2009)

12. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

13. Eklund, P., Ducrou, J., Brawn, P.: Concept lattices for information visualization:
Can novices read line diagrams. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI),
vol. 2961, pp. 57–73. Springer, Heidelberg (2004)

14. Eklund, P., Ducrou, J., Wilson, T.: An intelligent user interface for browsing and
search MPEG-7 images using concept lattices. In: Yahia, S.B., Nguifo, E.M., Be-
lohlavek, R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 1–21. Springer, Hei-
delberg (2008)

15. Eklund, P., Groh, B., Stumme, G., Wille, R.: A contextual-logic extension of
toscana. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867,
pp. 453–467. Springer, Heidelberg (2000)

16. Eklund, P., Wray, T., Ducrou, J.: Web services and digital ecosystem support using
formal concept analysis. In: Spyratos, N. (ed.) The International ACM Conference
on Management of Emergent Digital EcoSystems (MEDES 2009). ACM Press, New
York (in press, 2009)

17. Eklund, P., Wray, T., Goodall, P., Bunt, B., Lawson, A., Christidis, L., Daniels,
V., Van Olffen, M.: Designing the Digital Ecosystem of the Virtual Museum of the
Pacific. In: 3rd IEEE International Conference on Digital Ecosystems and Tech-
nologies, pp. 805–811. IEEE Press, Los Alamitos (2009)

http://www.mathematik.tu-darmstadt.de/~burmeister

A Survey of Hybrid Representations of Concept Lattices 311

18. Ferre, S.: Camelis: a logical information system to organize and browse a collection
of documents. Int. J. General Systems 38(4) (2009)

19. Freese, R.: Automated lattice drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004)

20. Groh, B.: A Contextual-Logic Framework Based on Relational Power Context Fam-
ilies. PhD thesis, School of Information Technology, Griffith University (2002)

21. Hannan, T., Pogel, A.: Spring-based lattice drawing highlighting conceptual simi-
larity. In: Proceedings of the International Conference on Formal Concept Analysis,
ICFCA 2006, Berlin. LNCS, vol. 3974, pp. 264–279. Springer, Heidelberg (2006)

22. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. In-
formation Processing Letters 31(1), 7–15 (1989)

23. Lengnink, K.: Ahnlichkeit als Distanz in Begriffsverbänden. In: Wille, R., Stumme,
G. (eds.) Begriffliche Wissensverarbeitung: Methoden und Anwendungen, pp. 57–
71. Springer, Heidelberg (2001)

24. Morrison, A., Chalmers, M.: Improving Hybrid MDS with Pivot-Based Searching.
In: Proceedings of the 2003 IEEE Symposium on Information Visualization (Info
Vis 2003), pp. 85–90 (2003)

25. Pernelle, N., Ventos, V., Soldano, H.: ZooM: Alpha Galois Lattices for Conceptual
Clustering. In: Proc. of the Managing Specialization/Generalization Hierarchies
(MASPEGHI) Workshop (2003)

26. Priss, U.: Formal concept analysis in information science. Annual Review of Infor-
mation Science and Technology 40, 521–543 (2006)

27. Saquer, J., Deogun, J.S.: Concept aproximations based on rough sets and similarity
measures. Int. J. Appl. Math. Comput. Sci. 11, 655–674 (2001)

28. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing ice-
berg concept lattices with Titanic. Data & Knowledge Engineering 42(2), 189–222
(2002)

29. Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery in databases
using formal concept analysis methods. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS,
vol. 1510, pp. 450–458. Springer, Heidelberg (1998)

30. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel (1982)

31. Wille, R.: Conceptual landscapes of knowledge: A pragmatic paradigm for knowl-
edge processing. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Infor-
mation Age, pp. 344–356. Springer, Heidelberg (1999)

32. Wille, R.: Methods of conceptual knowledge processing. In: Missaoui, R., Schmidt,
J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 1–29. Springer, Heidelberg
(2006)

33. Wille, R., Ganter, B.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

L. Kwuida and B. Sertkaya (Eds.): ICFCA 2010, LNAI 5986, pp. 312–340, 2010.
© Springer-Verlag Berlin Heidelberg 2010

∗ A version of this preprint was published in German as part of the book "Beiträge zur Begriff-

sanalyse" (Ganter, Wille and Wolff, eds., BI-Wissenschaftsverlag 1987). Computer pro-
grams for FCA were already in use in 1984. The new algorithm was not only more efficient,
it could also be used to compute the "canonical base" of implications in a finite formal con-
text that had recently been discovered by J.L. Guigues and V. Duquenne.

∗

 Two Basic Algorithms in Concept Analysis 313

314 B. Ganter

 Two Basic Algorithms in Concept Analysis 315

316 B. Ganter

 Two Basic Algorithms in Concept Analysis 317

318 B. Ganter

 Two Basic Algorithms in Concept Analysis 319

320 B. Ganter

 Two Basic Algorithms in Concept Analysis 321

322 B. Ganter

 Two Basic Algorithms in Concept Analysis 323

324 B. Ganter

 Two Basic Algorithms in Concept Analysis 325

326 B. Ganter

 Two Basic Algorithms in Concept Analysis 327

328 B. Ganter

 Two Basic Algorithms in Concept Analysis 329

330 B. Ganter

 Two Basic Algorithms in Concept Analysis 331

332 B. Ganter

 Two Basic Algorithms in Concept Analysis 333

334 B. Ganter

 Two Basic Algorithms in Concept Analysis 335

336 B. Ganter

 Two Basic Algorithms in Concept Analysis 337

338 B. Ganter

 Two Basic Algorithms in Concept Analysis 339

340 B. Ganter

Author Index

Alagar, Vasu 34

Babin, Mikhail A. 138

Casali, Alain 177
Cicchetti, Rosine 177
Colomb, Pierre 72

Distel, Felix 124, 209
Duquenne, Vincent 88

Eklund, Peter 296
El Kharraz, Amal 267

Ferré, Sébastien 193, 225
Foret, Annie 225

Ganter, Bernhard 312
Gély, Alain 1

Haraguchi, Makoto 145

Irlande, Alexis 72

Klimushkin, Mikhail 255
Kuznetsov, Sergei O. 138

Lakhal, Lotfi 177

Medina, Raoul 1, 161
Meschke, Christian 104
Mili, Hafedh 267
Mohammad, Mubarak 34
Mühle, Henri 241

Nedjar, Sébastien 177
Nourine, Lhouari 1, 161

Obiedkov, Sergei 255
Okubo, Yoshiaki 145
Old, L. John 283

Priss, Uta 283

Raynaud, Olivier 72
Roth, Camille 255

Vaillancourt, Jean 51
Valtchev, Petko 267
Villerd, Jean 296

Wan, Kaiyu 34
Wende, Christian 241
Wille, Rudolf 17, 61

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	About the Enumeration Algorithms of Closed Sets
	Introduction
	Enumeration Problems
	From Decision Problems to Enumeration Problems
	Complexity Analysis
	Enumeration Technics

	ClosedSetsEnumeration
	Definitions
	A Formalism for the Enumeration of Cliques: The Transition Graph
	A Lexicographic Transition Function
	Transition Graph Properties
	Transition Graph and Enumeration of Maximal Bicliques
	Maximal Bicliques Enumeration - Insights

	Future Work
	References

	Mathematics Presenting, Reflecting, Judging
	Mathematics in the Context of the Inquiring Sciences
	Presenting Mathematics (as a First)
	Reflecting Mathematics (as a Second)
	Judging Mathematics (as a Third)
	Mathematics for Supporting Rational Communication
	References

	The Role of Concept, Context, and Component for Dependable Software Development
	Introduction
	Basic Concepts - Concept, Context, Component
	Concepts in Contexts
	Context Definition
	Two Algebraic Structures
	Reasoning

	Concepts in Components
	Formulating Dependability Criteria
	A Formal Model of Dependable Components and Systems
	Transforming Concepts to Components

	Contexts in Components
	Concepts of CAS
	AdaptationMechanism

	Conclusion
	References

	Statistical Methods for Data Mining and Knowledge Discovery
	Introduction
	Statistical Teaser
	Unsupervised Learning and Statistics: Some Challenges
	References

	Regular Contributions
	Formal Concept Analysis of Two-Dimensional Convex Continuum Structures
	Introduction
	Convex Planar Continua
	Two-Dimensional Convex Continuum Structures
	Concept Lattices Derived from Ordered Sets
	Conceptual Extension of Convex Continuum Structures
	References

	Counting of Moore Families for n=7
	Introduction
	StrategyElements
	Encoding
	Symmetry and Canonical Form
	Maximal Family

	Algorithms
	Na\"{ı}ve Algorithm
	Algorithm Using the Symmetries
	Algorithm Using the Maximal Families

	Technical Aspects
	Implementation
	Reliability

	Conclusion
	References

	Lattice Drawings and Morphisms
	Introduction
	Congruence Emergency Toolkit
	On Frattini Congruences
	Nested Congruences and Diagrams
	On the “Importance of Morphisms”
	Added in Proofs
	References

	Approximations in Concept Lattices
	Introduction
	Approximations
	Maximal Approximations
	Bonds and Block Relations
	Concept Approximations
	AnExample
	Conclusion
	References

	Hardness of Enumerating Pseudo-intents in the Lectic Order
	Introduction
	Preliminaries
	Enumerating Pseudo-intents in a Lectic Order
	Minimal Pseudo-intents
	Introducing Minimal Pseudo-intents
	Finding Minimal Pseudo-intents

	Conclusion
	References

	On Links between Concept Lattices and Related Complexity Problems
	Introduction
	Intentionally Related Concepts
	Concepts with Shared Intents
	Bonds as Shared Intents

	Conclusion
	References

	An Algorithm for Extracting Rare Concepts with Concise Intents
	Introduction
	ConciseRareConcepts
	Finding Top-N Concise Rare Concepts withDepth-First Branch-and-Bound Search
	Basic Search Strategy
	Pruning Useless Search Branches
	Pseudo-code of Algorithm

	Preliminary Experimental Results
	Dataset
	Extracted Concise Rare Concepts
	Computational Performance

	Concluding Remarks
	References

	Conditional Functional Dependencies: An FCA Point of View
	Introduction
	Background, Definitions and Preliminary Results
	Definitions
	X-Complete Relations
	Hierarchy of Dependencies

	The X-Complete Partitions Lattice
	Labeled Lattice of Closed Sets
	Simplified Labeled Lattice

	Link with FCA
	Nominal Scaling and Global Concepts
	Association Rules and Approximate Association Rules
	Dealing with Binary Relations

	Discussion and Conclusion
	References

	Constrained Closed Datacubes
	Introduction and Motivation
	Constrained Datacube Framework
	Borders [L;U]
	Borders [U^{#};U]

	CubeClosure
	Structures of Constrained Closed Datacubes
	L-Constrained Closed Datacubes
	U^{#}-Constrained Closed Datacubes
	U^{##}-Constrained Closed Datacubes

	Experimental Evaluations
	Conclusion
	References

	Conceptual Navigation in RDF Graphs with SPARQL-Like Queries
	Introduction
	Basics of the Semantic Web
	Basics of Logical Information Systems
	User Interface: Local View
	Queries and Extensions
	Summarization Index

	User Interaction: Navigation Links
	Navigation Modes
	Navigation Consistency
	Navigation Completeness

	Conclusion
	References

	An Approach to Exploring Description Logic Knowledge Bases
	Introduction
	Preliminaries
	Results from Previous Work
	Model-Based Most Specific Concepts
	An Algorithm for Axiomatizing a Given Model
	Exploration Using Submodels

	Replacing Models by ABoxes
	Possible Consequences
	Adapting the Exploration Algorithm

	Which Language Should Be Used for the Knowledge Base?
	\mathcal{EL}_{gfp} with Negated Concept Assertions
	\mahtcal{EL} with \bot and General TBoxes

	Summary and Open Questions
	References

	On Categorial Grammars as Logical Information Systems
	Introduction
	Logical Information Systems
	Categorial Grammars
	Categorial Grammars and Their Languages
	AB and Lambek Grammars
	Pregroups
	Interpreting One Type System in Another
	A Detailed Example

	Modelling Approaches
	Words as Objects and POS Tags as Properties
	Macrotypes as Objects
	Categorial Types and Concepts

	Categorial Grammars as Logical Contexts
	Conclusion
	References

	Describing Role Models in Terms of Formal Concept Analysis
	Introduction
	Delivering the Basics
	Representing Role Models and Role Composition as Formal Contexts
	Static Modeling of Role Models and Role Model Composition
	Representation of the Dynamic Run-Time State of a Role-Based Software System

	Contribution to Role Modeling
	Correctness of Role-Based System Specifications
	Visualisation and Analysis of System Dynamics at Run-Time

	Conclusion
	References

	Approaches to the Selection of Relevant Concepts in the Case of Noisy Data
	Introduction
	FCA Definitions and Related Work
	Indices for Concept Selection
	Stability
	Concept Probability
	Separation

	Reconstruction of Noisy Datasets
	Noisy Contexts
	Example Contexts
	Results
	Conclusion

	References

	Concept Analysis as a Framework for Mining Functional Features from Legacy Code
	Introduction
	Characterizing Functional Features
	Ad-Hoc Implementations of Multiple Functional Features
	Detecting Functional Feature Occurrences
	Concepts Analysis of OO Class Hierarchies
	Encoding Class Hierarchies for Functional Feature Mining
	Mining Features Out of the Concept Lattice

	Preliminary Experiments
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion and Future Work
	References

	Concept Neighbourhoods in Lexical Databases
	Introduction
	An On-Line Interface for Concept Neighbourhoods
	Concept Neighbourhoods and Neighbourhood Lattices
	Concept Neighbourhoods inWordNet
	Experimental Results
	Conclusion
	References

	A Survey of Hybrid Representations of Concept Lattices in Conceptual Knowledge Processing
	Introduction
	Representing Line Diagrams
	Representation a Concept Hierarchy by a Line Diagram (M1.4)
	Checking a Line Diagram of a Concept Hierarchy (M1.5)
	Generating All Concepts within a Line Diagram: (M2.2)
	Drawing Line Diagrams
	Partition Attributes of a Context (Nested line diagrams (M5.1))
	Toscana-Aggregation of Concept Hierarchies (M6.3)
	Retrieval with a Toscana-System (M10.2)
	A Hybrid Approach to Handle Numerical Attribute
	An Hybrid Approach to Provide Insights Concerning Navigation Costs Regarding a Concept’s Neighbors

	Conclusion
	References

	History
	TWO BASIC ALGORITHMS IN CONCEPT ANALYSIS
	CLOSURE SYSTEMS
	DEFINITION
	DEFINITIONS
	PROPOSITION
	LEEMA
	ALGORITHM
	EXAMPLE
	ALGORITHM (modified version of 1.5)
	EXAMPLE
	RPROPOSITION

	PSEUDO-CLOSED SETS
	PROPOSITION
	EXAMPLE
	THEOREM (cf. DUQUENNE & GUIGUES [2]):
	PROPOSITION
	PROPOSTION
	ALGORITHM

	APPLICATIONS IN CONCEPT ANALYSIS
	EXAMPLE
	ALGORITHM "NEXT CONCEPT"
	EXAMPLE
	PROPOSITION
	PROPOSITION

	REFERENCES

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

