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Abstract. We describe a high-speed software implementation of the ηT

pairing over binary supersingular curves at the 128-bit security level.
This implementation explores two types of parallelism found in modern
multi-core platforms: vector instructions and multiprocessing. We first
introduce novel techniques for implementing arithmetic in binary fields
with vector instructions. We then devise a new parallelization of Miller’s
Algorithm to compute pairings. This parallelization provides an algo-
rithm for pairing computation without increasing storage costs signifi-
cantly. The combination of these acceleration techniques produce serial
timings at least 24% faster and parallel timings 66% faster than the best
previous result in an Intel Core platform, establishing a new state-of-the-
art implementation of this pairing instantiation in this platform.

Keywords: Efficient software implementation, vector instructions,
multi-core architectures, bilinear pairings, parallelization.

1 Introduction

The computation of bilinear pairings is the most expensive operation in Pairing-
based Cryptography, especially for high levels of security. For this reason, im-
plementations must employ all the resources found in the target platform to
obtain maximum efficiency. A resource being increasingly introduced in comput-
ing platforms is parallelism, in the form of vector instructions (data parallelism)
and multiprocessing (task parallelism). This trend is observed even in the em-
bedded space, with proposals of resource-constrained multi-core architectures
and vector instruction sets for multimedia processing in portable devices.

This work describes a high-performance implementation of the ηT pairing [1]
over binary supersingular curves at the 128-bit security level which employs these
two forms of parallelism in a very efficient way. The target platform is the Intel
Core architecture [2], the most popular 64-bit computing platform. Our main
contributions are:
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– Novel techniques for implementing arithmetic in binary fields: we explore
powerful SIMD instructions to accelerate arithmetic in binary fields. We
focus on the SSE family of vector instructions, but the same techniques
can be employed with other SIMD instruction sets such as Altivec and the
upcoming AMD SSE5.

– Parallelization of Miller’s Algorithm to compute pairings: we develop a
simple algorithm for parallel pairing computation which does not increase
storage costs. Our parallelization is independent of the underlying pairing in-
stantiation, allowing a parallel implementation to reach scalability in a vari-
able number of processors unrelated to the pairing mathematical definition.
This parallelization provides good scalability in fields of small characteristic.

– Static load balancing technique: we present a simple technique to balance
the costs of parallel pairing computation between the available processing
units. The technique is successfully applied for latency minimization, but
its flexibility allows the implementation to determine controlled non-optimal
partitions of the algorithm.

– Experimental results: speedups of parallel implementations over serial imple-
mentations are estimated and experimentally verified for platforms up to 8
processors. We also obtain an approximation of the performance up to 32
processing units and compare our serial and parallel execution times with
the current state-of-the-art implementations with the same parameters.

The results of this work can improve serial and parallel implementations of pair-
ings. The parallelization may be important to reduce the latency of pairing
computation in two scenarios: (i) desktop-class processors running real-time ap-
plications with strict response time requirements; (ii) embedded multiprocessor
architectures with weak processing units. The availability of parallel algorithms
for application in these scenarios is suggested as an open problem by [3] and [4].
Our features of flexible load balancing and small storage overhead are critical
for the second scenario, because they can support static scheduling schemes for
compromises between pairing computation time and power consumption; and
memory capacity is commonly restricted in embedded devices.

2 Finite Field Arithmetic

In this section we will represent the elements of F2m using a polynomial basis. Let
f(z) be an irreducible binary polynomial of degree m. The elements of F2m are
the binary polynomials of degree at mostm−1. A field element a(z) =

∑m−1
i=0 aiz

i

is associated with the binary vector a = (am−1, . . . , a1, a0) of length m. In a
software implementation, these bit coefficients are packed and stored in an array
(a[0], . . . , a[n− 1]) of n W -bit words, where W is the word size of the processor.
For simplicity, we assume that n is always even.

2.1 Vector Instruction Sets

Vector instructions, also called SIMD (Single Instruction, Multiple Data) be-
cause they operate in several data objects simultaneously, are widely supported
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in recent families of processor architectures. The number, functionality and ef-
ficiency of these instructions have been improved with each new generation of
processors, and natural applications include multimedia processing, scientific ap-
plications or any software with high arithmetic density. Some well-known SIMD
instruction sets are the Intel MMX and SSE [5] families, the Altivec extensions
introduced by Apple and IBM in the Power architecture specification and AMD
3DNow. Instruction sets supported by current technology are restricted to 128-
bit registers and provide simple orthogonal operations across 8, 16, 32 or 64-bit
data units stored inside these registers, but future extensions such as Intel AVX
and AMD SSE5 will support 256-bits registers with the added inclusion of a
heavily-anticipated carry-less multiplier [6].

The Intel Core microarchitecture is equipped with several vector instruction
sets which operate in 16 architectural 128-bit registers. A small subset of these
instructions can be used to implement binary field arithmetic, some found in the
Streaming SIMD Extensions 2 (SSE2) and others in the Supplementary SSE3
instructions (SSSE3). The SSE2 instruction set is also supported by the recent
VIA Nano processors, AMD processors since the K8 family and Intel processors
since the Pentium 4.

A non-exhaustive list of SSE2 instructions relevant for our work is given be-
low. Each instruction described will be referred in the algorithms by the short
mnemonic which follows the instruction opcode:

– MOVDQU/MOVDQA (load/store): implements load/store between unaligned/
aligned memory addresses and registers. In our implementation, all allo-
cated memory is stored in 128-bit aligned base addresses so that the faster
MOVDQA instruction can always be used.

– PSLLQ/PSRLQ (��8,��8): implements bitwise left/right shifts of a pair of 64-
bit integers while shifting in zero bits. This instruction does not propagate
bits from the lower 64-bit integer to the higher 64-bit integer, thus additional
shifts and additions are required to implement bitwise shifts of 128-bit values.

– PSLLDQ/PRLLDQ (�8,�8): implements byte-wise left/right shifts of a 128-bit
register. Since this instruction propagates bytes from the lower half to the
higher half of a 128-bit register, this instruction is preferred over the previous
one when the shift amount is a multiple of 8. Thus shifts by multiples of 8
bits should be used whenever possible. The latency of this instruction is 2
cycles in the first generation of Core 2 Conroe/Merom (65nm) processors
and 1 cycle in the more recent Penryn/Wolfdale (45nm) microarchitecture.

– PXOR/PAND/POR (⊕,∧,∨): implements bitwise XOR/AND/OR of two 128-bit
registers. These instructions have a high throughput, reaching 3 instructions
per cycle when the operands are registers and there are no dependencies
between consecutive operations.

– PUNPCKLBW/PUNPCKHBW (interlo/interhi): interleaves the lower/higher bytes
in a register with the lower/higher bytes of another register.

We also find application for powerful but often-missed SSSE3 instructions:

– PALIGNR (�): takes registers ra and rb, concatenate their values, and pull
out a 128-bit section from an offset given by a constant immediate; in other
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words, implements a right byte-wise shift with propagation of shifted out
bytes from ra to rb. This instruction can be used to implement a left shift
by s bytes with the immediate (16 − s).

– PSHUFB (lookup or shuffle depending on functionality): takes registers of bytes
ra = a0, a1, . . . , a16 and rb = b0, b1, . . . , b16 and replaces ra with the per-
mutation ab0 , ab1 , . . . , ab16 ; except that it replaces ai with zero if the most
significant bit of bi is set. A powerful use of this instruction is to perform 16
simultaneous lookups in a 16-byte lookup table. This can be easily done by
storing the lookup table in ra and the lookup indexes in rb. Intel introduced
a specific Super Shuffle Engine in the latest microarchitecture to reduce the
latency of this instruction from 3 cycles to 1 cycle.

Alternate vector instruction sets present functional analogues of these instruc-
tions. In particular, the PSHUFB permutation instruction is implemented as VPERM
in Altivec and as PPERM in SSE5, although the PPERM instruction is reportedly
more powerful as it can also operate at bit level. SIMD instructions are critical
for the performance of binary field arithmetic and can be easily accessed with
compiler intrinsics. In the remainder of this section, the optimization techniques
applied during the implementation of each field operation are detailed. We will
describe algorithms in terms of vector operations using the mnemonics defined
above so that algorithms can be easily transcribed to other target platforms.
Specific instruction choices based on latency or functionality will be focused on
the SSE family.

2.2 Squaring

Since the square of a finite field element a(z) ∈ F2m is given by a(z)2 =
∑m−1

i=0 aiz
2i = am−1z

2m−2 + · · ·+ a2z
4 + a1z

2 + a0, the binary representation of
a(z)2 can be computed by inserting a zero bit between each pair of consecutive
bits on the binary representation of a(z). This operation can be accelerated by
introducing a lookup table as discussed in [7]. This method can be improved
further if the table lookups can be executed simultaneously. This way, for an im-
plementation which processes 4 bits per iteration, squaring can be implemented
mainly in terms of permutation instructions which convert groups of 4 bits (nib-
bles) to the corresponding expanded bytes. The proposed optimization is shown
in Algorithm 1. The algorithm receives a field element a stored in a vector of n
64-bit words (or n

2 128-bit values) and expands the input into a double-precision
vector t which can be reduced modulo f(z). At each iteration of this algorithm,
a 128-bit value a[2i] is loaded from memory and separated by a bit mask into
two registers containing the low nibbles (aL) and the high nibbles (aH). Each
group of nibbles is then expanded from 4 bits to 8 bits by a parallel table lookup.
The proper order of bytes is restored by interleaving instructions which pick al-
ternately the lower or higher bytes of aL or aH to form two consecutive 128-bit
values (t[2i], t[2i+ 1]) produced as the result.
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Algorithm 1. Proposed implementation of squaring in F2m .
Input: a(z) = a[0..n− 1].
Output: c(z) = c[0..n − 1] = a(z)2 mod f(z).
1: � Store in table the squares u(z)2 of all 4-bit polynomials u(z).
2: table← 0x5554515045444140,0x1514111005040100
3: mask ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F
4: for i← 0 to n

2
− 1 do

5: a0 ←load(a[2i])
6: aL ← a0 ∧mask, aL ←lookup(table, aL)
7: aH ← a0 ��8 4, aH ← aH ∧mask, aH ←lookup(table, aH)
8: t[2i]←store(interlo(aL, aH)), t[2i + 1]←store(interhi(aL, aH))
9: end for

10: return c = t mod f(z)

2.3 Square Root

Given an element a(z) ∈ F2m , the field element c(z) such that c(z)2 = a(z) mod
f(z) can be computed by c(z) = aeven +

√
z · aodd mod f(z), where aeven repre-

sents the concatenation of even coefficients of a(z), aodd represents the concatena-
tion of odd coefficients of a(z) and

√
z is a constant depending on the irreducible

polynomial f(z) [8]. When f(z) is a suitable trinomial f(z) = zm + zt + 1 with
odd exponents m, t,

√
z has the sparse form

√
z = z

m+1
2 +z

t+1
2 and multiplication

by this constant can be computed with shifts and additions only.
This algorithm can also be implemented with simultaneous table lookups. Al-

gorithm 2 presents our implementation of this method with vector instructions.
The algorithm processes 128 bits of a in each iteration and progressively sep-
arates the coefficients of a[2i] in even or odd coefficients. First, a permutation
mask is used to divide a[2i] in bytes of odd index and bytes of even index. The
bytes with even indexes are stored in the lower 64-bit part of a0 and the bytes
with odd indexes are stored in the higher 64-bit part of a0. The high and low
nibbles of a0 are then divided into aL and aH and additional lookup tables are
applied to further separate the bits of aL and aH into bits with odd and even
indexes. At the end of the 128-bit section, a0 stores the interleaving of odd and
even coefficients of a packed into groups of 4 bits. The remaining instructions in
the 128-bit sections separate the even and odd coefficients into u and v, which
can be reordered and multiplied by

√
z inside the 64-bit section. We implement

these final steps in 64-bit mode to avoid expensive shifts in 128-bit registers.

2.4 Multiplication

Two different strategies are commonly considered for the implementation of mul-
tiplication in F2m . The first one consists in applying the Karatsuba algorithm [9]
to divide the multiplication in sub-problems and solve each problem indepen-
dently [7] (for a(z) = A1z

�m/2� +A0 and b(z) = B1z
�m/2� +B0):

c(z) = a(z)·b(z) = A1B1z
m+[(A1+A0)(B1+B0)+A1B1+A0B0]z�m/2�+A0B0.
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Algorithm 2. Proposed implementation of square root in F2m .
Input: a(z) = a[0..n− 1], exponents m and t of trinomial f(z).
Output: c(z) = c[0..n − 1] = a(z)

1
2 mod f(z).

1: � Permutation mask to divide a 128-bit value in bytes with odd and even indexes.
2: perm← 0x0F0D0B0907050301,0x0E0C0A0806040200
3: � Tables to divide a low/high nibble in bits with odd and even indexes.
4: sqrtL ← 0x3332232231302120,0x1312030211100100
5: � Table to divide a high nibble in bits with odd and even indexes (sqrtL � 2).
6: sqrtH ← 0xCCC88C88C4C08480,0x4C480C0844400400
7: � Bit masks to isolate bytes in lower or higher nibbles.
8: maskL ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F
9: maskH ← 0xF0F0F0F0F0F0F0F0,0xF0F0F0F0F0F0F0F0

10: c[0 . . . n− 1]← 0, h← n+1
2

, l ← t+1
128

, s1 ← m+1
2

mod 64, s2 ← t+1
2

mod 64
11: for i← 0 to n

2
− 1 do

12: a0 ←load(a[2i]), a0 ←shuffle(a0, perm)
13: aL ← a0 ∧maskL, aL ←lookup(sqrtL, aL),
14: aH ← a0 ∧maskH , aH ← aH ��8 4, aH ←lookup(sqrtH , aH)
15: a0 ← aL ∨ aH , aL ← a0 ∧maskL, aH ← a0 ∧maskH

16: u← store(aL), v ← store(aH)
17: � From now on, operate in 64-bit registers.
18: aeven ← u[0] ∨ u[1]� 4, aodd ← v[1] ∨ v[0]� 4
19: c[i]← c[i]⊕ aeven

20: c[i + h− 1]← c[h + i− 1]⊕ (aodd � s1)
21: c[i + h]← c[h + i]⊕ (aodd � (64− s1))
22: c[i + l]← c[i + l]⊕ (aodd � s2)
23: c[i + l + 1]← c[i + l + 1]⊕ (aodd � (64− s2))
24: end for
25: return c

The second one consists in applying a direct algorithm like the comb method
proposed by López and Dahab in [10]. Conventionally, the series of additions
involved in this method are implemented through additions over sub parts of a
double-precision vector. In order to reduce the number of memory accesses dur-
ing these additions, we employ n registers. These registers simulate the series of
memory additions by accumulating consecutive writes, allowing the implemen-
tation to reach maximum XOR throughput. We also employ an additional table
T1 analogue to T0 which stores u(z) · (b(z) � 4) to eliminate shifts by 4, as
discussed in [10]. Recall that shifts by multiples of 8 bits are faster in the target
platform. We assume that the length of operand b[0..n−1] is at most 64n−7 bits;
if necessary, terms of higher degree can be processed separately at relatively low
cost. The implemented LD multiplication algorithm is shown as Algorithm 3.
The element a(z) is processed in groups of 8 bits separated by intervals of 128
bits. This avoids shifts of the register vector since a 128-bit shift can be emulated
by referencing mi+1 instead of mi. The multiple precision shift by 8 bits of the
register vector (�8) is implemented with 15-byte shifts with carry propagation
(�) of register pairs.
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Algorithm 3. LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n− 1], b(z) = b[0..n − 1].
Output: c(z) = c[0..n − 1].
Note: mi denotes the vector of n

2
128-bit registers (r(i−1+n/2), . . . , ri).

1: Compute T0(u) = u(z) · b(z), T1(u) = u(z) · (b(z)� 4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k← 56 downto 0 by 8 do
4: for j ← 1 to n− 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u)
8: m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)
9: end for

10: (rn−1 . . . , r0)← (rn−1 . . . , r0) � 8
11: end for
12: for k← 56 downto 0 by 8 do
13: for j ← 0 to n− 2 by 2 do
14: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
15: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
16: mj/2 ← mj/2 ⊕ T0(u)
17: mj/2 ← mj/2 ⊕ T1(v)
18: end for
19: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) � 8
20: end for
21: return c = (rn−1 . . . , r0) mod f(z)

2.5 Modular Reduction

Efficient modular reduction depends on the format of the trinomial or pen-
tanomial f(z). In general, it’s better to choose f(z) such that bitwise shifts
amounts are multiples of 8 bits. If the non-null coefficients of f(z) are located in
the lower words of the array representation of f(z), consecutive writes into mem-
ory can also be accumulated into registers to avoid redundant memory writes. We
illustrate these optimizations with modular reduction by f(z) = z1223+z255+1 in
Algorithm 4. The algorithm receives as input a vector of n 128-bit elements and
reduces this vector by accumulating four memory writes at a time in registers.
Note also that shifts by multiples of 8 bits are used whenever possible.

2.6 Inversion

For inversion in F2m we implemented a variant of the Extended Euclidean Algo-
rithm for polynomials [7] where the length of each temporary vector is tracked.
Since this algorithm requires flexible left shifts by arbitrary amounts, we im-
plemented the full algorithm in 64-bit mode. Some Assembly in the form of a
compiler intrinsic was used to efficiently count the number of leading 0 bits to
determine the highest set bit.
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Algorithm 4. Proposed modular reduction by f(z) = z1223 + z255 + 1.
Input: t(z) = t[0..n− 1] (vector of 128-bit elements).
Output: c(z) mod f(z) = c[0..n − 1].
Note: The accumulate function R(r3, r2, r1, r0, t) executes:

s← t��8 7, r3 ← t��8 57
r3 ← r3 ⊕ (s�8 64)
r2 ← r2 ⊕ (s�8 64)
r1 ← r1 ⊕ (t�8 56)
r0 ← r0 ⊕ (t�8 72)

1: r0, r1, r2, r3 ← 0
2: for i← 19 downto 15 by 4 do
3: R(r3, r2, r1, r0, t[i]), t[i− 7]← t[i− 7]⊕ r0

4: R(r0, r3, r2, r1, t[i− 1]), t[i− 8]← t[i− 8]⊕ r1

5: R(r1, r0, r3, r2, t[i− 2]), t[i− 9]← t[i− 9]⊕ r2

6: R(r2, r1, r0, r3, t[i− 3]), t[i− 10]← t[i− 10] ⊕ r3

7: end for
8: R(r3, r2, r1, r0, t[11]), t[4]← t[4]⊕ r0

9: R(r0, r3, r2, r1, t[10]), t[3]← t[3]⊕ r1

10: t[2]← t[2]⊕ r2, t[1]← t[1]⊕ r3, t[0]← t[0]⊕ r0

11: r0 ← m[9]�8 64, r0 ← r0 ��8 7, t[0]← t[0]⊕ r0

12: r1 ← r0 �8 64, r1 ← r1 ��8 63, t[1]← t[1]⊕ r1

13: r1 ← r0 ��8 1, t[2]← t[2]⊕ r1

14: for i← 0 to 9 do c[2i]← store(t[i])
15: c[19]← c[19] ∧ 0x7F
16: return c

2.7 Implementation Timings

In this section, we present our timings for finite field arithmetic. We implemented
arithmetic in F21223 with irreducible trinomial f(z) = z1223 + z255 + 1. This
field is suitable for instantiations of the ηT pairing over supersingular binary
curves at the 128-bit security level [4]. The C programming language was used
in conjunction with compiler intrinsics for accessing vector instructions. The
chosen compiler was GCC version 4.1.2 because it generated the fastest code
from vector intrinsics, as already observed by [4]. The differences between our
implementations in the 65nm and 45nm processors can be explained by the
lower cost of the PSLLDQ and PSHUFB instructions in the newer generation after
the introduction of the Super Shuffle Engine by Intel.

Field multiplication was implemented by a combination of one instance of
Karatsuba and the LD method depicted as Algorithm 3. Karatsuba’s splitting
point was at 632 bits and the divide-and-conquer steps were also implemented
with vector instructions. Note that our binary field multiplier precomputes two
tables of 16 rows, while the multiplier implemented in [4] precomputes a single
table. This increase in memory consumption is negligible when compared to the
total memory capacity of the target platform.
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Table 1. Comparison of different software implementations of finite field arithmetic
in two Intel Core 2 platforms. All timings are reported in cycles. Improvements are
computed in comparison with the previous fastest result in a 65nm platform, since the
related works do not present timings for field operations in a 45nm platform.

Operation
Implementation a2 mod f a

1
2 mod f a · b mod f a−1 mod f

Hankerson et al. [4] 600 500 8200 162000
Beuchat et al. [11] 480 749 5438 –
This work (Core 2 65nm) 160 166 4030 149763
Improvement 66.7% 66.8% 25.9% 7.6%
This work (Core 2 45nm) 108 140 3785 149589

3 Pairing Computation

Miller’s Algorithm for pairing computation requires a rich mathematical frame-
work. We briefly present some definitions and point the reader to more complete
treatments of the subject presented in [12,13].

3.1 Preliminary Definitions

An admissible bilinear pairing is an efficiently computable map e : G1 × G2 →
GT , where G1 and G2 are additive groups of points in an elliptic curve E and GT

is a related multiplicative group. Let P,Q be r-torsion points. The computation
of a bilinear pairing e(P,Q) requires the construction and evaluation of a function
fr,P such that div(fr,P ) = r(P ) − r(O) at a divisor D which is equivalent to
(Q)−(O). Miller constructs fr,P in stages by using a double-and-add method [14].
Let gU,V : E(Fqk) → Fqk be the line equation through points U and V . If
U = V , the line gU,V is the tangent to the curve at U . If V = −U , the line gU

is the shorthand for gU,−U . A Miller function is any function fc,P with divisor
div(fc,P ) = c(P ) − (cP ) − (c − 1)(O), c ∈ Z. The following property is true for
all integers a, b ∈ Z [13, Theorem 2]:

fa+b,P (D) = fa,P (D) · fb,P (D) · gaP,bP (D)
g(a+b)P (D)

. (1)

Direct corollaries are:

(i) f1,P (D) = 1.
(ii) fa,P (D) = fa−1,P (D) · g(a−1)P,P (D)

gaP (D) .
(iii) f2a,P (D) = fa,P (D)2 · gaP,aP (D)

g2aP (D) .

Miller’s Algorithm is depicted in Algorithm 5. The work by Barreto et al. [13]
later showed how to use the final exponentiation of the Tate pairing to eliminate
the denominators involved in the algorithm and to evaluate fr,P at Q instead
of the divisor D. Additional optimizations published in the literature focus on
minimizing the latency of the Miller loop, that is, reduce the length of r while
keeping its low Hamming weight [1,15,16].
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Algorithm 5. Miller’s Algorithm [14].

Input: r =
∑log2(r)

i=0 ri2
i, P , D = (Q + R)− (R)

Output: fr,P (D).

1: T ← P , f ← 1
2: for i = �log2(r)	 − 1 downto 0 do
3: f ← f2 · gT,T (Q+R)g2T (R)

g2T (Q+R)gT,T (R)

4: T ← 2T
5: if ri = 1 then
6: f ← f · gT,P (Q+R)gT+P (R)

gT+P (Q+R)gT,P (R)

7: T ← T + P
8: end if
9: end for

10: return f

3.2 Related Work

In this work, we are interested in parallel algorithms for pairing computation
with no static limits on scalability, or more precisely, algorithms in which the
scalability is not restricted by the mathematical definition of the pairing. Prac-
tical limits will always exist when: (i) the communication cost is dominant;
(ii) the cost of parallelization is higher than the cost of computation.

Several works already developed parallel strategies for the computation of
pairings achieving mixed results. Grabher et al. [3] analyzes two approaches:
parallel extension field arithmetic, which gives good results but has a clear limit
on scalability; a parallel Miller loop strategy for two processors, where lines
3-4 for all iterations in Miller’s Algorithm are precomputed by one processor
and both processors compute in parallel the iterations where ri = 1. Because r
frequently has a low Hamming weight, this strategy results in performance losses
due to unbalanced computational costs between the processors.

Mitsunari [17] observes that the different iterations of the algorithm can be
computed in parallel if the points T of different iterations are available and
proposes a specialized version of the ηT pairing over F3m for parallel execution
in 2 processors. In this version, all the values (xP

1
3

i
, yP

1
3

i
, xQ

3i
, yQ

3i) used for
line evaluation in the i-th iteration of the algorithm are precomputed and the
Miller loop iterations are divided in sets of the same size. Hence load balancing is
trivially achieved. Since the cost of cubing and cube root computation is small,
this approach achieves good speedups ranging from 1.61 to 1.76 at two different
security levels. However, it requires significant storage overhead, since 4 · (m+1

2 )
field elements must be precomputed and stored. This approach is generalized
and extended in the work by Beuchat et al. [11], where results are presented for
fields of characteristic 2 and 3 at the 128-bit security level. For characteristic 2,
the speedups achieved by parallel execution reach 1.75, 2.53 and 2.57 for 2, 4,
and 8 processors, respectively. For characteristic 3, the speedups reach 1.65, 2.26
and 2.79, respectively. This parallelization represents the current state-of-the-art
in parallel implementations of cryptographic pairings.
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Cesena and Avanzi [18,19] propose a technique to compute pairings over trace
zero varieties constructed from supersingular elliptic curves and extensions with
degrees a = 3 or a = 5. This approach allows a pairing computation to be packed
in a short parallel Miller loops by the action of the a-th power of Frobenius. The
problem with this approach is again the scalability limit (restricted by the exten-
sion degree a). The speedup achieved with parallel execution in 3 processors is
1.11 over a serial implementation of the ηT pairing at the same security level [19].

3.3 Parallelization

In this section, a parallelization of Miller’s Algorithm is derived. This paral-
lelization can be used to accelerate serial pairing implementations or improve
the scalability of parallel approaches restricted by the pairing definition. This
formulation is similar to the parallelization presented by [17] and [11], but our
method focuses on minimizing the number of points needed for parallel execu-
tions of different iterations of the algorithm. This allows us to eliminate the
overhead of storing 4(m+1

2 ) precomputed field elements.
Miller’s Algorithm computes fr,P in log2(r) iterations. For a parallel algo-

rithm, we must divide these log2(r) iterations between some number π of pro-
cessors. To achieve this, first we need a simple property of Miller functions [16,20].

Lemma 1. Let P,Q be points on E(Fq), D ∼ (Q) − (∞) and fc,P denote a
Miller function. For all integers a, b ∈ Z, fa·b,P (D) = fb,P (D)a · fa,bP (D).

We need this property because Equation (1) just divides a Miller’s Algorithm
instance computed in log2(r) iterations in two instances computed in at least
log2(r) − 1 iterations. If we could represent r as a product r0 · r1, it would be
possible to compute fr,P in two instances of log2(r)

2 iterations. Since for some
pairing instantiations, r is a prime group order, we write r in the simple and
flexible form 2wr1 + r0, with w ∼

log2(r)
2 . This way, we can compute:

fr,P (D) = f2wr1+r0,P (D) = f2wr1,P (D) · fr0,P (D) · g(2wr1)P,r0P (D)
grP (D)

. (2)

The previous Lemma provides two choices to further develop f2wr1,P (D):

(i) f2wr1,P (D) = fr1,P (D)2
w · f2w,r1P (D).

(ii) f2wr1,P (D) = f2w,P (D)r1 · fr1,2wP (D).

The choice can be made based on efficiency: (i) compute w squarings in the
extension field F

∗
qk and a point multiplication by r1; (ii) compute an exponentia-

tion to r1 in the extension field and a point multiplication by 2w (or w repeated
point doublings). In the general case, the most efficient strategy will depend on
the curve and embedding degree. The higher the embedding degree, the higher
the cost of exponentiation in the extension field in comparison with point mul-
tiplication in the elliptic curve. If r has low Hamming weight, the two strategies
should have similar costs. We adopt the first strategy:

fr,P (D) = fr1,P (D)2
w · f2w,r1P (D) · fr0,P (D) · g(2wr1)P,r0P (D)

grP (D)
. (3)
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This formula is clearly suitable for parallel execution in π = 3 processors, since
each Miller function can be computed in log2(r)

2 iterations. For our purposes,
however, r will have low Hamming weight and r0 will be very small. In this case,
fr,P can be computed by two Miller functions of approximately log2(r)

2 iterations.
The parameter w can be adjusted to balance the costs in both processors (w
extension field squarings with a point multiplication by r1).

This formula can also be applied recursively for fr1,P and f2w,r1P to develop
a parallelization suitable for any number of processors. Observe that π also does
not have to be a power of 2, because of the flexible way we write r to exploit
parallelism. An important detail is that a parallel implementation will only have
significant speedups if the cost of the Miller loop is dominant over the communi-
cation overhead or the parallelization overhead. It is also important to note that
the higher the number of processors, the higher the number of squarings and
the smaller the constants ri involved in point multiplication. However, applying
the formula recursively can increase the size of the integers which multiply P ,
because they will be a product of ri constants. Thus, the scalability of this algo-
rithm for π processors depends on the cost of squarings in the extension field, the
cost of point multiplications by ri in the elliptic curve and the actual length of
the Miller loop. Fortunately, these parameters are constant and can be statically
determined. If P is fixed (a private key, for example), the multiples riP can also
be precomputed and stored with low storage overhead.

3.4 Parallel ηT Pairing

In this section, the performance gain of a parallel implementation of the ηT

pairing over a serial implementation is investigated following the analysis by [4].
Let E be a supersingular curve with embedding degree k = 4 defined over

F2m with equation E/F2m : y2 +y = x3 +x+ b. The order of E is 2m +1±2
m+1

2 .
A quartic extension is built over F2m with basis {1, s, t, st}, where s2 = s + 1
and t2 = t+ s. Let P,Q ∈ E(F2m) be r-torsion points. An associated distortion
map ψ from E(F2m)[r] to E(F24m) is defined by ψ : (x, y) → (x+ s2, y+ sx+ t).
For this family of curves, Barreto et al. [1] defined the optimized ηT pairing:

ηT : E(F2m)[r] × E(F24m)[r] → F
∗
24m ,

ηT (P,Q) = fT ′,P ′(Q′)M , (4)

with Q′ = ψ(Q), T ′ = (−v)(2m −#E(F2m)), P ′ = (−v)P , M = (22m − 1)(2m +
1 ± 2

m+1
2 ) for a curve-dependent parameter v ∈ {−1, 1}.

At the 128-bit security level, the base field must havem = 1223 bits [4]. Let E1

be the supersingular curve with embedding degree k = 4 defined over F21223 with
equation E1(F21223) : y2 + y = x3 + x. The order of E1 is 5r = 21223 + 2612 + 1,
where r is a 1221-bit prime number. Applying the parallel form developed in
Section 3.3, the pairing computation can be decomposed in:

fT ′,P ′(Q′)M =
(

f2612−w,P ′(Q′)2
w · f2w,2612−wP ′(Q′) · g2612−wP ′,P ′(Q′)

gT ′P ′(Q′)

)M

.
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Since squarings in F24m and point duplication in supersingular curves require
only binary field squarings and these can be efficiently computed, the cost of
parallelization is low, but further improvements are possible. Barreto et al. [1]
proposed a closed formula for this pairing based on a reversed-loop approach with
square roots which eliminates the extension field squarings in Miller’s Algorithm.
Beuchat et al. [21] encountered further algorithmic improvements and proposed
a slightly faster formula for the ηT pairing computation. We can obtain a parallel
algorithm directly from the parallel formula derived above by excluding the in-
volved extension field squarings and simply dividing the loop iterations between
the processors. This algorithm is shown as Algorithm 6. In this algorithm, each
processor i starts the loop from the wi counter, computing wi squarings/square
roots of overhead. Without extension field squarings to offset these operations,
it makes sense to assign processor 1 the first line evaluation and to increase the
loop parts executed by processors with small wi. The total overhead is smaller
because extension field squarings are not needed and point arithmetic in binary
supersingular curves can be computed with inexpensive squarings and square
roots. Observe that the combining step can be implemented in at least two dif-
ferent ways: (i) serial combining of results with (π − 1) serial extension field
multiplications executed in one processor; (ii) parallel logarithmic combining of
results with latency of �log2(π)� extension field multiplications. We adopt the
parallel strategy for efficiency.

3.5 Performance Analysis

Now we proceed with performance analysis of Algorithm 6. Processor 1 has an
initialization cost of 3 multiplications and 2 squarings. Processor i has a paral-
lelization cost of 2wi squarings and 2wi square roots. Additional parallelization
overhead is �log2(π)� extension field multiplications to combine the results. A
full extension field multiplication costs 9 field multiplications. Each iteration of
the algorithm executes 2 square roots, 2 squarings, 1 field multiplication and 1
extension field multiplication. Exploring the sparsity of Gi, this extension field
multiplication costs 6 field multiplications. The final exponentiation has a cost
of 26 multiplications, 7 finite field squarings, 612 extension field squarings and
1 inversion. Each extension field squaring costs 4 finite field squarings [21].

Let m̃, s̃, r̃, ĩ be the cost of finite field operations: multiplication, squaring,
square root and inversion, respectively. For our efficient implementation of finite
field F21223 in an Intel Core 2 65nm processor, we have r̃ ≈ s̃, m̃ ≈ 25s̃ and
ĩ ≈ 37m̃. From these ratios, we will illustrate how to compute the optimal wi

values which balance the computational cost between processors. Let cπ(i) be
the computational cost of a processor 0 < i ≤ π while executing its portion of
the parallel algorithm. For π = 2 processors:

c2(1) = (3m̃+ 2s̃) + (7m̃+ 4s̃)w2 = 80s̃+ (186s̃)w2

c2(2) = (4s̃)w2 + (7m̃+ 4s̃) (611 − w2) .

Naturally, we always have w1 = 0 and wπ+1 = 611. Solving c2(1) = c2(2)
for w2, we can obtain the optimal w2 = 309. For π = 4 processors, we solve
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Algorithm 6. Proposed parallelization of the ηT pairing (π processors).
Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m [r]), starting point wi for processor i.
Output: ηT (P, Q) ∈ F

∗
24m .

1: yP ← yP + 1− δ
2: parallel section(processor i)
3: if i = 0 then
4: ui ← xP + α, vi ← xQ + α
5: g0i ← ui · vi + yP + yQ + β
6: g1i ← ui + xQ, g2i ← vi + x2

P

7: Gi ← g0i + g1is + t
8: Li ← (g0i + g2i) + (g1i + 1)s + t
9: Fi ← Li ·Gi

10: else
11: Fi ← 1
12: end if
13: xQi ← (xQ)2

wi , yQi ← (yQ)2
wi

14: xP i ← (xP )
1

2wi , yP i ← (yP )
1

2wi

15: for j ← wi to wi+1 − 1 do
16: xP i ← √xP i, yP i ← √yP i, xQi ← xQ

2
i , yQi ← yQ

2
i

17: ui ← xP i + α, vi ← xQi + α
18: g0i ← ui · vi + yP i + yQi + β
19: g1i ← ui + xQi

20: Gi ← g0i + g1is + t
21: Fi ← Fi ·Gi

22: end for
23: F ← ∏π

i=0 Fi

24: end parallel
25: return F M

c4(1) = c4(2) = c4(3) = c4(4) to obtain w2 = 158, w3 = 312, w4 = 463. Observe
that by solving a simple system of equations it is always possible to balance
the computational cost between the processors. Furthermore, the latency of the
Miller loop will always be equal to cπ(1). Let c1(1) be the cost of a serial imple-
mentation of the main loop, par be the parallelization overhead and exp be the
cost of final exponentiation. Considering the additional �log2(π)� extension field
multiplications as parallelization overhead and 26m̃+(7+2446)s̃+ ĩ as the cost
of final exponentiation, the speedup for π processors is the ratio between the
cost of the serial implementation over the cost of the parallel implementation:

s(π) =
c1(1) + exp

cπ(1) + par + exp
=

77 + 179 · 611 + 3978
cπ(1) + 225�log2(π)� + 3978

.

Table 2 presents speedups estimated by our performance analysis. Note that
our efficient implementation of binary field arithmetic in a 45nm processor has
a bigger multiplication-to-squaring ratio, concentrating higher computational
costs in the main loop of the algorithm. This explains why the speedups should
be higher in the 45nm processor.
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Table 2. Estimated speedups for our parallelization of the ηT pairing over supersingu-
lar binary curves at the 128-bit security level. The optimal partitions were computed
by a Sage1 script.

Number π of processors
Estimated speedup s(π) 1 2 4 8 16 32
Core 2 65nm 1.00 1.90 3.45 5.83 8.69 11.48
Core 2 45nm 1.00 1.92 3.54 6.11 9.34 12.66

4 Experimental Results

We implemented the parallel algorithm for the ηT pairing over our efficient binary
field arithmetic in two Intel Core platforms: an Intel Core 2 Quad 65nm platform
running at 2.4GHz (Platform 1) and a dual quad-core Intel Xeon 45nm proces-
sor running at 2.0GHz (Platform 2). The parallel sections were implemented
with OpenMP2 constructs. OpenMP is an application programming interface
that supports multi-platform shared memory multiprocessing programming in
C, C++ and Fortran. We used a special version of the GCC 4.1.2 compiler
included in Fedora Linux 8 with OpenMP support backported from GCC 4.2
and SSSE3 support backported from GCC 4.3. This way, we could use both
multiprocessing support and fast code generation for SSE intrinsics.

The timings and speedups presented in Table 3 were measured on 104 execu-
tions of each algorithm. We present timings in millions of cycles to ignore differ-
ences in clock frequency between the target platforms. From the table, we can
observe that real implementations can obtain speedups close to the estimated
speedups derived in the previous section. We verified that threading creation
and synchronization overhead stayed in the order of microseconds, being negli-
gible compared to the pairing computation time. Timings for π > 4 processors
in Platform 1 and π > 8 processors in Platform 2 were measured through a
high-precision per-thread counter measured by the main thread. These timings
might be an accurate approximation of future real implementations, but memory
effects (such as cache locality) or scheduling influence may impose penalties.

Table 3 shows that the proposed parallelization presents good scalability. We
improve the state-of-the-art serial and parallel execution times significantly. The
fastest timing for computing the ηT pairing obtained by our implementation
was 1.51 milliseconds using all 8 cores of Platform 2. The work by Beuchat et al.
[11] reports a timing of 3.08 milliseconds in a Intel Core i7 45nm processor
clocked at 2.9GHz. Note that we obtain a much faster timing with a lower clock
frequency and without requiring the storage overhead of 4 · (m+1

2 ) field elements
present in [11], which may reach 365KB for these parameters and be prohibitive
in resource-constrained embedded devices.

1 SAGE: Software for Algebra and Geometry Experimentation,
http://www.sagemath.org

2 Open Multi-Processing, http://www.openmp.org

http://www.sagemath.org
http://www.openmp.org
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Table 3. Experimental results for serial/parallel executions of the ηT pairing. Times
are presented in millions of cycles and the speedups are computed by the ratio between
execution times of serial implementations over execution times of parallel implementa-
tions. The columns marked with (*) present estimates based on per-thread data.

Number of threads
Platform 1 – Intel Core 2 65nm 1 2 4 8* 16* 32*
Hankerson et al. [4] – latency 39 – – – – –
Beuchat et al. [11] – latency 26.86 16.13 10.13 – – –
Beuchat et al. [11] – speedup 1.00 1.67 2.65 – – –
This work – latency 18.76 10.08 5.72 3.55 2.51 2.14
This work – speedup 1.00 1.86 3.28 5.28 7.47 8.76
Improvement 30.2% 32.9% 39.9% – – –
Platform 2 – Intel Core 2 45nm 1 2 4 8 16* 32*
Beuchat et al. [11] – latency 23.03 13.14 9.08 8.93 – –
Beuchat et al. [11] – speedup 1.00 1.77 2.54 2.58 – –
This work – latency 17.40 9.34 5.08 3.02 2.03 1.62
This work – speedup 1.00 1.86 3.42 5.76 8.57 10.74
Improvement 24.4% 28.9% 44.0% 66.2% – –

5 Conclusion and Future Work

In this work, we proposed novel techniques for exploring parallelism during the
implementation of the ηT pairing over supersingular binary curves in modern
multi-core computers. Powerful vector instructions of the SSE family were shown
to accelerate considerably the arithmetic in binary fields. We obtained significant
performance in computing the ηT pairing, using an efficient implementation of
field multiplication, squaring and square root computation. The optimizations
improved the state-of-the-art timings of this pairing instantiation at the 128-bit
security level by 24% and 30% in two different Intel Core processors.

We also derived a parallelization of Miller’s Algorithm to compute pairings.
This parallelization is generic and can be applied to any pairing algorithm or
instantiation. The construction also achieves good scalability in the symmetric
case and this scalability is not restricted by the definition of the pairing. We illus-
trated the formulation when applied to the ηT pairing over supersingular binary
curves and validated our performance analysis with a real implementation. The
experimental results show that the actual implementation could sustain perfor-
mance gains close to the estimated speedups. Parallel execution of the ηT pairing
improved the state-of-the-art timings by at least 28%, 44% and 66% in 2, 4 and
8 cores respectively. This parallelization is suitable for embedded platforms and
can be applied to reduce computation latency when response time is critical.

Future work can adapt the introduced techniques for the case F3m . Improve-
ments to the parallelization should focus on minimizing the serial region and
parallelization cost. The proposed parallelization should also be applied to an
optimal asymmetric pairing setting, where parallelization costs are clearly higher.
Preliminary data for the R-ate pairing [16] over Barreto-Naehrig curves at the
128-bit security level points to a 10% speedup using 2 processor cores.
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