
Usable Optimistic Fair Exchange

Alptekin Küpçü and Anna Lysyanskaya

Brown University, Providence, RI, USA
{kupcu,anna}@cs.brown.edu

Abstract. Fairly exchanging digital content is an everyday problem. It has been
shown that fair exchange cannot be done without a trusted third party (called the
Arbiter). Yet, even with a trusted party, it is still non-trivial to come up with an
efficient solution, especially one that can be used in a p2p file sharing system with
a high volume of data exchanged.

We provide an efficient optimistic fair exchange mechanism for bartering dig-
ital files, where receiving a payment in return to a file (buying) is also considered
fair. The exchange is optimistic, removing the need for the Arbiter’s involvement
unless a dispute occurs. While the previous solutions employ costly cryptographic
primitives for every file or block exchanged, our protocol employs them only once
per peer, therefore achieving O(n) efficiency improvement when n blocks are ex-
changed between two peers. The rest of our protocol uses very efficient cryp-
tography, making it perfectly suitable for a p2p file sharing system where tens
of peers exchange thousands of blocks and they do not know beforehand which
ones they will end up exchanging. Therefore, our system yields to one-two orders
of magnitude improvement in terms of both computation and communication (80
seconds vs. 84 minutes, 1.6MB vs. 100MB). Thus, for the first time, a provably
secure (and privacy respecting when payments are made using e-cash) fair ex-
change protocol is being used in real bartering applications (e.g., BitTorrent) [14]
without sacrificing performance.

1 Introduction

Fairly exchanging digital content is an everyday problem. A fair exchange scenario
commonly involves Alice and Bob. Alice has something that Bob wants, and Bob has
something that Alice wants. A fair exchange protocol guarantees that at the end either
each of them obtains what (s)he wants, or neither of them does (see [40] for more details
and examples).

In this paper, we consider a general file exchange (bartering) scenario, inspired by
the BitTorrent [22] peer-to-peer file sharing protocol. Alice has several files (BitTorrent
blocks) of interest to Bob, and Bob has several files (blocks) of interest to Alice. They
do not know ahead of time how many or which blocks they will end up exchanging.
They want to perform a fair exchange: Alice should get Bob’s file (block) if and only
if Bob gets Alice’s file (block). In a signature fair exchange [4,3,2], there is a verifica-
tion mechanism (i.e., the public key) that enables the sender to verifiably encrypt the
signature so that the receiver can check that the encrypted signature verifies. No such ef-
ficient verifiable encryption method is currently known for exchanging files. Therefore,
a compensation is required after the fact if one of the parties cheat. In our scenario, we

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 252–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Usable Optimistic Fair Exchange 253

are assuming that Alice/Bob will be equally happy to get a payment in return to her/his
file. Thus, exchanging a file with a payment (buying) is also considered fair, as in some
previous works [4,8,18,37,36].

One of the hardest points in creating a usable optimistic fair exchange protocol suit-
able for p2p file sharing applications is that the peers to contact and the content to
exchange are not pre-defined. BitTorrent clients keep connecting to different peers to
obtain different blocks. Fault-tolerance issues, connectivity problems, and availability
of data blocks are all factors affecting from whom which block should be obtained. Our
protocol uniquely addresses these issues by removing the need to know what content to
exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escrow of a payment (e.g., e-
coin) to Bob first. Then, they exchange encrypted files. Afterward, Alice sends Bob an
escrow of her key with her signature on the escrow. Then, Bob sends Alice the key to
his file. Finally, Alice sends Bob the key to her file. Since Bob has a verifiable escrow
of an e-coin and an escrow of a key before he sends his key to Alice, he is protected.
In the worst case, if Alice does not provide the correct key and the key escrow contains
garbage, Bob can go to the Arbiter and obtain Alice’s payment. The escrow of the
payment cannot contain garbage, because it was formed using a verifiable escrow. After
the exchange of the verifiable escrow, the rest of our protocol can be repeated as many
times as necessary to exchange multiple files (even if the number and content of the
files were not known in advance), unless there is a dispute.

We provide two versions of the protocol: In the first one (the one described briefly
above) only one party provides a verifiable escrow. This version requires the use of
timeouts for dispute resolution purposes. We provide another version that needs both
parties to provide verifiable escrows but requires no timeouts. Both versions are very
efficient since they use only one (resp. two) expensive primitives (verifiable escrow
and payment) regardless of the number of files exchanged. We stress the fact that our
timeouts can be very large (e.g., one day or week) to allow for unexpected situations in
which the participants act honestly (e.g., network failure), and thus require very loose
synchronization (e.g., one hour difference), and users can freely participate in other
exchanges without waiting for the timeout.

Previous Work: It is well-known that a fair exchange protocol is impossible without
a trusted third party (TTP) [43] (called the Arbiter) that ensures that Alice cannot take
advantage of Bob, and vice versa. Without loss of generality, Alice will have to send
the last message of the protocol, and we want to protect Bob in case she chooses not to
do so. Without an arbiter, gradual release type of protocols where parties send pieces
to each other in rounds can provide only weaker forms of fairness, and are much less
efficient [11,13].

Luckily, the impossibility result [43] does not require that the Arbiter be involved
in each transaction, but simply that the Arbiter exists. If Alice and Bob are both well-
behaved, there is no need for the Arbiter to do anything (or even know an exchange
took place). Micali [39], Asokan, Schunter and Waidner [2], and Asokan, Shoup and
Waidner [4,3] investigated this optimistic fair exchange scenario in which the Arbiter
gets involved only in case of a dispute. Two such protocols [4,30] were analyzed in [46]
(see also [7]).

254 A. Küpçü and A. Lysyanskaya

Asokan, Shoup and Waidner (ASW) [4] gave the first provably secure and com-
pletely fair optimistic exchange protocol for exchanging digital signatures. Later on,
Belenkiy et al. [8] gave a protocol for buying digital content in exchange for e-cash,
building on top of the ASW protocol. They provided an optimization for the Arbiter
so that, unlike in the ASW protocol, the amount of work that the Arbiter is required to
do depends only logarithmically on the size of the file. They also assume there is an
additional TTP (which we call the Tracker) that provides a means of verification that
the file actually contains the right content (e.g., using hashes). Such entities certifying
hashes already exist in current BitTorrent systems [22].

Belenkiy et al. [8] used e-cash (introduced by Chaum [20]), in particular, endorsed
e-cash [18] in their constructions. The reason is that other forms of payments (signatures
or electronic checks used in [4,37]) do not provide any privacy. In our protocols, any
form of payment can be employed, but we will also use endorsed e-cash in our sample
instantiation since it is efficient and anonymous.

Contributions: We present the most efficient fair exchange known to us, where the ef-
ficiency is comparable to a simple unfair exchange if performed multiple times between
the same pair of users, even when peers do not know beforehand which blocks they
will end up exchanging. Using the best previous work (Belenkiy et al. barter protocol
[8]), n pairs of blocks can be exchanged using n transactions, each of which requires
a costly step involving expensive cryptographic primitives (a verifiable escrow and an
e-coin). Our contribution is a very efficient fair exchange protocol using which this
can be done with only one (or two if we do not want to employ timeouts) step in total
that involves the same expensive primitives (verifiable escrow and payment). This is a
property that is unique to our protocol: Instead of employing the costly primitives for
every file or block that is exchanged, we employ them once per peer, even when peers
do not know beforehand which blocks they will end up exchanging. Then, exchang-
ing multiple files/blocks between peers involves only very efficient cryptography (i.e.,
symmetric- and public-key encryption, and digital signatures). In a real setting where
BitTorrent peers exchange thousands of blocks with only tens of peers, there is one or
two orders of magnitude improvement in terms of both computation and communication
(80 seconds vs. 84 minutes computational overhead and 1.6MB vs. 100MB communi-
cation overhead for a 2.8GB file —for detailed numbers, see Section 3.2). This means
that, with no (i.e., neglectable) efficiency loss, our fair exchange protocol can be used
to exchange files instead of the unfair protocol currently used by BitTorrent or similar
file sharing protocols.

We stress the fact that the timeouts used for dispute resolution purposes in one of our
protocols can be very large (e.g., one day or week) to allow for unexpected situations in
which the participants act honestly (e.g., network failure), and thus require very loose
synchronization (e.g., one hour difference), and users can freely participate in other
exchanges without waiting for the timeout.

We take the idea of using verifiable escrow from ASW [4], and the subprotocols of
Belenkiy et al. [8] that increase the efficiency of the Arbiter (proving and disproving
keys). The Arbiter does absolutely no work in our protocols, as long as no dispute
occurs. Our protocols can make use of any type of payments, but we will show an
instantiation using e-cash since it also provides privacy. Our performance evaluation

Usable Optimistic Fair Exchange 255

numbers will use endorsed e-cash [18] as the payment mechanism. Note that other (non-
anonymous) forms of payments (e.g., electronic checks [21]) will be more efficient.

Our additional contribution is definitional. We give a general definition of fair ex-
change of digital content (not just digital signatures) provided that it can be verified
using some verification algorithm (defined in Section 2.2). Furthermore, our fairness
definition covers polynomially many exchanges between an honest party and an ad-
versary controlling polynomially-many other participants (see [27] for an example fair
exchange protocol that is fair for a single exchange but stops being fair in a multi-user
setting). We then prove our protocol’s security based on this definition. We sum up the
most important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following condition (wait-
ing for at most one timeout period if timeouts are used, or without waiting at all if no
timeouts are used), as long as at least one of the trading parties (Alice and Bob) is
honest:

– Either Alice and Bob both get their corresponding files,
– Or Alice gets Bob’s file and Bob gets Alice’s payment (turns into a buy protocol in

effect),
– Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding efficiency:

– An honest user can reuse her e-coin for other exchanges without waiting for the
completion of the protocol.

– The overhead of our costly step – verifiable escrow and e-cash – is constant O(1),
instead of linear O(n) as in previous best results, when n files or blocks are ex-
changed.

Already, the Brownie Project [14] is using our protocols in their BitTorrent deployment.

2 Definitions

Barter is an exchange of two items, which are digital files in our case. We assume that
the reader is familiar with encryption and signature schemes, and hash functions.

2.1 Notation

An escrow is a ciphertext under the public key of some trusted third party (TTP). A
verifiable escrow [4,19,15] means that the recipient can verify that the contents of the
ciphertext satisfy some relation (therefore stating that the ciphertext contains the ex-
pected content). A contract (a.k.a. label, condition, or tag) attached to such a ciphertext
defines the conditions under which the TTP should decrypt and give away the encrypted
secret [47]. The label is public and it is integrated with the ciphertext in a such way that
it cannot be modified. We will use EArb(a;b) to denote an escrow of the secret a un-
der the Arbiter’s public key, with the contract b. Similarly, VEArb(a;b) will denote a
verifiable escrow.

256 A. Küpçü and A. Lysyanskaya

Any payment protocol that can efficiently be verifiably escrowed and is secure can
be used in our protocols. Furthermore, if privacy is desired, the payments should be
anonymous as in e-cash [20]. We provide an instantiation using endorsed e-cash [18]
(which is an extension of compact e-cash [17]), since it satisfies all these requirements.
Endorsed e-cash splits a coin into an unendorsed coin (denoted coin′) and endorsement
(denoted end). One can think of coin′ as an encrypted coin and end as the key. One
can check if the endorsement end in a given verifiable escrow [19] matches the given
unendorsed coin coin′ (without learning the endorsement end). Furthermore, given only
the unendorsed part coin′, no other party (except the owner) can come up with a valid
endorsement end. Endorsed e-cash moreover has the ability to catch double-spenders.
Hence, if one uses two different coin′,end pairs trying to spend the same coin twice,
(s)he will be caught (and, since her identity is revealed, can be punished). Note that if
a party tries to deposit the same coin twice (using the same coin′,end pair), the oper-
ation can easily be denied by checking against a list of past transactions. Lastly, only
matching coin′,end pairs can be linked, unendorsed coins and endorsements prepared
for different exchanges remain unlinkable.

Wherever used, KP will denote a symmetric key of a party P, generated through
an encryption scheme’s key generation algorithm. We let c = EncK(f) denote that the
ciphertext c is an encryption of the plaintext f under the symmetric key K. Similarly,
f = DecK(c) will denote that the plaintext f is the decryption of the ciphertext c under
the symmetric key K. Our protocol can make use of any secure symmetric encryption
scheme (see the book by Katz and Lindell [33] for definitions and constructions).

Let pkP and skP denote public and secret keys for a party P. Then signsk(x) will
denote a signature on x under the secret key sk which can be verified using the corre-
sponding public key pk. Our protocol can make use of any secure public-key encryption
scheme [24,28] and any secure signature scheme [31].

Furthermore, let Hk be a family of (universal one-way) hash functions [41], where k
is the security parameter, and let hash be a hash function uniformly choosen from the
family Hk of hash functions. Then, hx = hash(x) will denote that hx is the hash of x
under the hash function hash. We now introduce a definition we frequently use in the
paper.

Definition 1. We say that a key K decrypts correctly, or is the correct key with respect
to a plaintext hash h f and a ciphertext c, if the plaintext f ′ = DecK(c) has the property
hash(f ′) = h f .

Finally, a negligible probability denotes a probability that is a negligible function of the
security parameter (e.g., the key-length of an encryption scheme). A negligible function
of n is a function which is smaller than any inverse polynomial over n with n > N for
sufficiently large N (e.g., neg(n) = 2−n).

2.2 (Optimistic) Fair Exchange

In this section we will give a general definition of fair exchange. Unlike in ASW, our
definitions will not be specific to signature exchange, and we will consider polynomially-
many exchanges between an honest user and an adversary controlling polynomially-
many other users. Furthermore, we separate and clearly define the roles of all trusted

Usable Optimistic Fair Exchange 257

parties. While providing models and definitions for a general framework of (optimistic)
fair exchange applicable to a broad range of protocols, we will also show its extensions
to our case.

MODEL: The model is adapted from the ASW definition [4], with clarifications and
generalizations. There are three players; Alice and Bob exchanging two digital items,
and the Arbiter1 for conflict resolution. All players are assumed to be polynomial time
interactive Turing machines. We make no assumption about the underlying network
capability.2 Any message that does not confirm with the protocol specification will
be discarded by the honest parties. Any input which does not verify according to the
protocol will be resolved as stated by the protocol or the protocol will be aborted if
no resolution is applicable. It is important that the Arbiter resolves conflicts on the
same exchange atomically.3 Thus, it will only interact with either Alice or Bob at any
given time instance, until that interaction ends as specified by the protocol.4 Sensitive
communication (e.g., exchange of decryption keys for files or endorsement of an e-coin)
will be carried out over a secure (and possibly authenticated) channel (e.g., SSL can be
used to connect to the Arbiter, a secure key exchange with no public key infrastructure
can be used for the communication between Alice and Bob).

For protocols using a timeout5, we assume that the adversary cannot prevent the
honest party from reaching the Arbiter before the timeout. If no timeouts are defined,
we assume the adversary cannot prevent the honest party from reaching the Arbiter
eventually. Hence, the honest party is assumed to be able to reach the Arbiter as defined
by the protocol. Even with timeouts, this is not an unrealistic assumption since our
timeouts can be large (e.g., one day or week).

In our model, we have two additional players, namely the Tracker (also in [4,8,22])6

providing verification algorithms, and the Bank dealing with monetary parts of the
system.

SETUP PHASE: Before the fair exchange protocol is run, we assume there is a setup
phase. In this one-time pre-exchange phase, the Arbiter generates his public-private
key pair (for the (verifiable) escrow schemes) and publishes his public key(s) so that
both Alice and Bob obtain it. Optionally, the Arbiter may learn public keys of Alice
and Bob in the setup phase, but our focus is on the case where the Arbiter does not
need to know anything (and learns almost nothing) about Alice or Bob. The adversary

1 One of the TTPs in ASW.
2 Clients will have a local message timeout mechanism like the TCP timeout, which is small

(e.g., one minute). The receiver deals with a message timeout exactly as it would deal with a
non-verifying input.

3 We present a trade-off between non-atomicity and performance of the Arbiter later on.
4 For ease of the Arbiter to find the correct exchange, a random exchange ID can be incorporated

into the messages. Since this is only a minor implementation efficiency issue, we do not want
to complicate our definitions with that.

5 This is not the message timeout, it is the timeout specified by the protocol, which is generally
much longer (e.g., one day or week).

6 ASW has the corresponding TTP in their file exchange scheme. In their signature exchange
protocol, the public key infrastructure providing the public keys can be seen as the Tracker.

258 A. Küpçü and A. Lysyanskaya

cannot interfere with the setup phase.7 In the setup phase, the Bank and the Tracker
also generate their public-private key pairs and publish their public keys.

Definition 2. Let SP denote the security parameters of the system (e.g., key lengths of
the primitives used). Let PP denote all the public values in the system, including SP,
public keys of the trusted parties, and possibly some public parameters. Let PPGen(SP)
be the randomized procedure which generates the public values given the security pa-
rameters. Then, define our PP = (pkarb,pkbank,pktracker , timeout,SP, and additional pa-
rameters for primitives used).

From now on, we need to talk about multiple exchanges taking place. Alice has files

f (1)
A , .., f (n)

A to be exchanged with Bob, and Bob has f (1)
B , .., f (n)

B to be exchanged with
Alice (n is a polynomial in SP).8 In general, we can consider these files as some
strings in {0,1}∗, therefore consider fair exchange of anything that is verifiable. With-
out loss of generality, the Tracker gives Alice a verification algorithm V

f
(i)
B

for each file

f (i)
B , and Bob a verification algorithm V

f
(i)
A

for each file f (i)
A before the exchange takes

place.
Assume that the content to be exchanged and associated verification algorithms are

output by a generation algorithm Gen(SP) that takes the security parameters as input
and outputs some content to be exchanged, with associated verification algorithms, and
possibly some public information about the content. This procedure involves a trusted
party H and the Tracker. The parties trust the Tracker in that any input accepted by that
verification algorithm will be the content they want. In other words, they are going to be
happy with any content that verifies under that verification algorithm. In particular, the
content generation process is trusted. The adversary cannot generate “junk” files and
ask the Tracker to create verification algorithms for them. BitTorrent forum sites and
ratings provide a level of defense against this in practice.

Definition 3. Content and verification algorithms are secure if ∀ PPT adversaries A
and ∀ auxiliary inputs z∈ {0,1}poly(SP) we have (over the randomness of the generation
algorithms, the adversary, and possibly the verification algorithms)

Pr[PP← PPGen(SP);(f (1)
H ,V

f
(1)
H

,pub
f
(1)
H

, .., f (n)
H ,V

f
(n)
H

,pub
f
(n)
H

)← Gen(SP);

(f (1)
A , .., f (n)

A)← A(V
f
(1)
H

,pub
f
(1)
H

, ..,V
f
(n)
H

,pub
f
(n)
H

,PP,z) :

∃i ∈ [1..n] | (V
f
(i)
H

(f (i)
H) 	= accept∨V

f
(i)
H

(f (i)
A) = accept)] = neg(SP)

The definition above models the case in which the files to be exchanged cannot
be found by the adversary by some other means9 (and hence exchanging files makes

7 This is the standard trusted setup assumption that says Alice and Bob have the correct public
key of the Arbiter.

8 Note that Alice or Bob can represent multiple entities controlled by the adversary.
9 We assume that the adversary cannot just “guess” an honest participant’s file, in which case

the exchange is trivially unfair.

Usable Optimistic Fair Exchange 259

sense for the adversary), even with the help of associated verification algorithms and
public information10.

To provide evidence on the generality and applicability of our definition, we present
several example verification algorithms for various tasks. For example, a file verifica-
tion can be performed using hashes. So, each verification algorithm V

f
(i)
A

for Alice’s

file f (i)
A contains the definition of hash function used –hash–11, and the hash value

h
f
(i)
A

= hash(f (i)
A). The ith verification algorithm computes the hash of the given input

according to the description of the hash function, and accepts it if and only if the com-
puted hash matches h

f
(i)
A

. As another example, consider the ASW signature exchange

protocol, in which each verification algorithm contains the signature scheme’s descrip-
tion11, the signature public key of Alice pkA

11, and the message mi to be signed. When
it receives a signature as input, the ith verification accepts the signature if and only if it
is a valid signature on message mi under the public key pkA using the signature scheme.
As yet another example, an e-coin verification algorithm can take a coin to verify, and
use the Bank’s public key while verifying the non-interactive proofs given. Such an
algorithm is a part of the specification of every e-cash scheme (e.g., see [18,17]). Ver-
ifiable encryption schemes (e.g., [19]) and, in general, proof systems also specify a
verification algorithm in their definitions. Such algorithms can be used directly in a
fair exchange protocol, satisfying our definition as long as they are secure according to
Definition 3.

To summarize, in the setup phase, public values are generated using PPGen(SP).
The files and the verification algorithms are generated jointly by the Tracker and some
trusted content generator (e.g., movie distributor) using the Gen(SP) procedure. In the
context of BitTorrent, this means that we trust the content generator about the content,
and the Tracker about the verification algorithms. A “highly rated” BitTorrent user will
be trusted about the content, or alternatively, comments on the forum sites will warn
against bogus content. From now on, we assume the content and the verification algo-
rithms used are secure and trusted.

Definition 4. Fair Exchange Protocol: A fair exchange protocol is composed of three
interactive algorithms: Alice running algorithm A, Bob running algorithm B, and the
Arbiter running the trusted algorithm T. The content and verification algorithms used
need to be secure according to Definition 3. The security of the exchange is then defined
in terms of completeness (when Alice and Bob are both honest) and fairness (when
either Alice or Bob is malicious).

COMPLETENESS for a (non-optimistic) fair exchange states that the interactive run of
A, B and T by honest parties results in A getting B’s files and B getting A’s files (assum-
ing an ideal network):

10 For example, if movies are being exchanged, a lot of information is publicly available about
such a movie file, such as actors, length, and release date. But these do not enable people to
come up those movie files.

11 Possibly different for each verification algorithm.

260 A. Küpçü and A. Lysyanskaya

Pr[(f (1)
B , .., f (n)

B)← A(f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)
T (skarb)←→

B(f (1)
B , .., f (n)

B ,V
f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f (1)
A , .., f (n)

A)] = 1

where the notation describes that A, B and T can all communicate (in a three-way in-

teraction) following the protocol, and at the end A outputs f (i)
B and B outputs f (i)

A for all
i : 1..n.

OPTIMISTIC COMPLETENESS for an optimistic fair exchange states that the inter-

active run of A and B by honest parties results in A getting f (i)
B and B getting f (i)

A for
all i : 1..n (the Arbiter’s algorithm T is not involved, assuming an ideal network). A
protocol satisfying optimistic completeness also satisfies completeness. Our optimistic
completeness definition is:

Pr[(f (1)
B , .., f (n)

B) ← A(f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)↔
B(f (1)

B , .., f (n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f (1)
A , .., f (n)

A)] = 1

Fairness states that at the end of the protocol, either Alice and Bob both get content
that passes the verification algorithms given to them, or neither Alice nor Bob gets
anything that passes the verification, in each of the n exchanges, even when one of them
is malicious.12 This definition is easy to satisfy using a (non-optimistic) fair exchange
protocol since Alice and Bob can both hand their files to the Arbiter, and then the
Arbiter can send Bob’s files to Alice and Alice’s files to Bob, if they pass respective
verifications. Thus, below, we will define the more interesting case; fairness for an
optimistic fair exchange. It is important to note that the ASW definition of fairness
applies only to a single exchange, whereas our definition covers polynomially-many
exchanges between an honest party and other players all controlled by the adversary.

FAIRNESS: We have an honest player H, and an adversarial player A . The honest
player runs algorithm A in exchanges where he plays the role of Alice, algorithm B in
exchanges where he plays the role of Bob, and the Arbiter runs the algorithm T , all

as defined by the protocol. H has files f (1)
H , .., f (n)

H to be exchanged with the adversary,

and A has f (1)
A , .., f (n)

A to be exchanged with H. The adversary is assumed to control all
other players, and hence all interactions of the honest player are with parties controlled
by the adversary, which is the worst possible scenario covering multiple exchanges.

First there is the trusted setup phase as explained above, getting the security param-
eters as input, generating secure content and verification algorithms, along with some
associated public information, and giving the appropriate values to each party. Since
the setup phase is trusted, ∀i : 1..nV

f
(i)
H

,V
f
(i)
A

,PP are trusted. Then parties proceed with

the fairness game explained below, the honest party outputting X and the adversary
outputting Y . At the end of the game, we require the fairness condition holds on X ,Y ,
the verification algorithms V

f
(1)
H

,V
f
(1)
A

, ..,V
f
(n)
H

,V
f
(n)
A

, and the public values PP with high

probability against all PPT adversaries A , and all polynomially-long auxiliary inputs.

Pr [Setup; FairnessGame: FairnessCondition] = 1 − neg(SP)
12 On the contrary, completeness definition only deals with honest participants.

Usable Optimistic Fair Exchange 261

FAIRNESS GAME: There are three types of interaction in our fairness game. Type 1
interactions are between H and A . Type 2 interactions are between H and T . Type 3
interactions are between A and T .13 The adversary can arbitrarily interleave type 1,2,3
interactions, but cannot prevent type 2 interactions from happening until the timeout if
timeouts are used, or eventually otherwise. The game ends when the honest party H
produces its final output (including aborts and resolutions) in all the started protocols.
Without loss of generality, in the fairness game we assume both parties want to ex-

change different content in different exchanges (∀i 	= j f (i)
H 	= f (j)

H and f (i)
A 	= f (j)

A and

∀i, j f (i)
H 	= f (j)

A).14

FAIRNESS CONDITION: Recall that the honest party’s output was X and the adversary’s
output was Y at the end of the fairness game. A general fairness condition would be
∀i : 1..n [∃x ∈ X : V

f
(i)
A

(x) = accept⇔∃y ∈ Y : V
f
(i)
H

(y) = accept] meaning that either

H and A both get what they want or both don’t, in each exchange.
Our protocol with payments has a very straightforward generalization of the fairness

property. Our fairness condition states that either they both parties get each other’s file,
or one of them gets the other’s file whereas the other gets his payment, or they both get
nothing at each exchange. We believe that a broad range of optimistic fair exchange
protocols can adapt the definition above using straightforward extensions whenever
necessary.

TIMELY RESOLUTION: Lastly, as pointed out by ASW [4], an optimistic fair exchange
protocol must provide timely resolution: Alice and Bob must be able to have disputes
resolved within a finite and limited time. In our protocol without timeouts, resolution
is immediate. In our protocol with timeouts, we guarantee resolution at the timeout
(which is finite and fixed). We furthermore show that timeouts do not render our sys-
tem less usable (Alice and Bob can freely participate in other exchanges without wait-
ing for the timeout), and so in general we can use our more efficient protocol with
timeouts.

3 Efficient Optimistic Barter Protocol

3.1 Barter with Timeouts

We will show a particular instantiation of our protocol, using endorsed e-cash [18] as
the payment and hashes as the file verification algorithms. Full version of our

13 In the implementation, T may need to have a way to differentiate which one of Alice and Bob
he is talking to, which can easily be done in our protocols without learning who Alice and Bob
are. When necessary, using one-way function values whose pre-image is known by only one
of the parties will suffice.

14 If the honest party already has the adversary’s file, the exchange will be trivially fair due to
the completeness property. If the adversary already has the honest party’s file, then there is no
hope for fairness since the adversary can just abort the protocol but he already has the file.
Similar arguments hold for exchanging the same file multiple times.

262 A. Küpçü and A. Lysyanskaya

paper discusses generalizations to our protocols [35]. Before the protocol begins, we
assume Alice has withdrawn an e-coin from the Bank. Every time Alice and Bob
wants to exchange two files (every time before step 2 of the protocol below), Alice
generates her fresh key KA and Bob generates his fresh key KB for a symmetric encryp-
tion scheme. Alice and Bob both have their files (fA, fB), have the encrypted versions of
their files (cA = EncKA(fA),cB = EncKB(fB)), have the hashes of their files and encryp-
tions (Alice has h fA = hash(fA),hcA = hash(cA), and Bob has h fB = hash(fB),hcB =
hash(cB)). Besides, the Tracker provides them with the respective verification algo-
rithms: Alice gets h fB , Bob gets h fA .15 Everyone uses the same time zone (e.g., GMT),
and the timeout is a globally known parameter16. If anything goes wrong prior to step
5 (no resolution protocol is applicable), the protocol will be aborted. The protocol pro-
ceeds as follows (summarized in Figure 1):

1. Alice creates a fresh public-secret key pair pkA,skA for a signature scheme. Al-
ice sends a fresh unendorsed e-coin coin′ to Bob, along with a verifiable escrow
v = VEArb(end;pkA) of the endorsement end, labeled with the signature scheme’s
public key.

2. Alice sends Bob ciphertext cA of her file.17 Bob calculates hcA = hash(cA).18

3. Bob sends Alice ciphertext cB of his file. Alice calculates hcB = hash(cB).
4. Alice sends Bob an escrow e = EArb(KA;h fA ,h fB ,hcA ,hcB , time) and her signature

s = signskA(e) on that escrow. The escrow e should encrypt a key and should be
labeled with four hash values h fA ,h fB ,hcA ,hcB , and a time value. If any of the hash
values do not match Bob’s knowledge of those values, or if the time value is de-
viated too much from Bob’s knowledge of the time (e.g., almost one timeout dif-
ference), then Bob aborts.19 Moreover, if the signature s on the escrow e does not
verify with the public key pkA sent in step 1 as part of the verifiable escrow v, Bob
aborts the protocol.

5. Bob sends Alice his key KB. Alice checks if the key KB decrypts the ciphertext
cB correctly. If not, Alice does not proceed with the next step, and runs AliceRe-
solve, although she might have to run it again just after the timeout to be able to
resolve.

6. Alice sends Bob her key KA. Bob checks if the key KA decrypts the ciphertext cA

correctly. If not, he runs BobResolve; he must do so before the timeout.20

15 We are abusing the notation by using hash values as verification algorithms provided by the
Tracker hoping that the actual verification procedure of hashing the files and comparing the
result with values given by the Tracker is obvious.

16 It can easily be a per-exchange parameter known to (or agreed by) both parties.
17 Alice and Bob can use their choice of (symmetric) encryption schemes (not necessarily the

same). This only requires us to add the definition of the encryption scheme used to the mes-
sages exchanged.

18 These will be Merkle hashes [38] for efficiency reasons.
19 We do not require tight synchronization. So, for example, the time value can just contain hours,

and not minutes and seconds.
20 Bob can run BobResolve immediately after a message timeout. He need not wait for a long

time for Alice.

Usable Optimistic Fair Exchange 263

Fig. 1. Our Barter Protocol with Timeouts

Once step 1 is com-
pleted, cheap steps 2-
6 can be repeated to
exchange more files,
as long as no dis-
pute occurs. Alice and
Bob need not know
beforehand how many
or which files/blocks
to exchange. When-
ever they decide to ex-
change blocks (before every step 2), it is enough for them to just obtain their hashes
from the Tracker. Actually, in BitTorrent, once you ask for hash of a file, the Tracker
provides you with the hashes of all the blocks in that file already. Thus, connecting the
Tracker for each block is not necessary in real life.

Below we present the resolution protocols in case of a dispute between Alice and
Bob. The Arbiter never gets involved in a transaction unless there is a dispute.

BobResolve. Bob needs to contact the Arbiter before the timeout for resolution (current
time < time in escrow e + timeout), since otherwise the Arbiter is not going to honor
his request. Assuming Bob resolves before the timeout, he provides the Arbiter with
the escrow e and signature s that he received in step 4, and also the verifiable escrow v
he received in step 1 from Alice. The escrow e should be labeled with four hash values
h fA ,h fB ,hcA ,hcB , and a time value. The verifiable escrow v should be labeled with a public
key pkA for a signature scheme. If the labels of the escrows are ill-formed, the Arbiter
will not honor the request. The Arbiter checks the signature s using the public key in
the verifiable escrow v, and if it verifies, he asks Bob to present his correct key KB that
verifies using the VerifyKey protocol in [8] (i.e., it decrypts a ciphertext with hash hcB to
a plaintext with hash h fB). If Bob succeeds in giving the correct key, the Arbiter stores
the key KB, decrypts the escrow e and hands in the key KA from the escrow to Bob.
Bob checks if KA decrypts Alice’s file fA correctly. If not, he proves this to the Arbiter
using the technique in [8] and gets the endorsement end in the verifiable escrow v from
the Arbiter.21 Notice that only Bob may succeed in the BobResolve protocol with the
Arbiter because any other party will fail to provide the correct key matching hashes of
Bob’s files). The subprotocols from [8] can be found in the full version of our paper [35].

AliceResolve. When Alice contacts the Arbiter for resolution, she asks for Bob’s key
KB. If such a key exists, then the Arbiter sends KB to her.22 KB has already been verified,

21 The Arbiter can abort this trade forgetting the KB in such a case. This is not necessary ac-
cording to our definition (and can even be considered unfair), but it can be used as a way to
punish cheating Alice even more. In the worst case, if non-atomicity of the Arbiter is allowed
for efficiency reasons, Alice can obtain KB before Bob proves KA to be incorrect, effectively
turning our protocol into a buy protocol.

22 If the Arbiter is allowed to be non-atomical for efficiency reasons, then he needs to ask Alice
for her key KA, verifying it using the VerifyKey protocol in [8] before giving her KB. This
represents a tradeoff between the atomicity and efficiency of the Arbiter, which can be resolved
arbitrarily, although it can also be used as a tougher punishment for cheaters.

264 A. Küpçü and A. Lysyanskaya

so Alice does not need to perform any further action. If such a key does not exist yet,
Alice should come back after the timeout. If, even after the timeout KB does not exist,
then Alice is assured that it will never exist, and can consider that particular trade as
aborted.

3.2 Efficiency Analysis

The efficiency of Alice’s and Bob’s parts in the protocol can be further improved, as
we show in the full version of our paper [35], although this would require the Arbiter
to perform more work. Since such trusted third parties can become the bottlenecks of
the system, we prefer having the least amount of work to be done by the Arbiter, and
let users perform slightly more work instead.

We consider a concrete instantiation of our protocol using endorsed e-cash [18],
Camenisch-Shoup verifiable escrow [19], AES encryption [25], DSS signatures [42],
and RSA-OAEP public key encryption for (non-verifiable) escrow [10]. Our protocol
has only neglectable overhead over just doing an unfair exchange. Sending the cipher-
texts in steps 2 and 3 just corresponds to sending the files in any (even unfair) ex-
change.23 The keys sent in steps 5 and 6 are extremely short messages (16 bytes each
for 128-bit AES keys). For a fair exchange, step 4 is still very cheap since the only
primitives used are an ordinary (non-verifiable) escrow (just a public key encryption),
and a signature (A DSS signature created using a 1024-bit key is about 40 bytes, while
an RSA-OAEP encryption with a 1024-bit key is about 128 bytes).

Assuming IO and CPU can be overlapped, encryption of files will not add any time.
Furthermore, signatures and escrows take only a few milliseconds. The most time con-
suming step is sending the blocks themselves, which has to be done in any case (and
encryption does not increase size). The only real overhead is the first step, where the
verifiable escrow (and endorsed e-cash, if used) is costly (see below).

Our protocol, in addition to guaranteeing fair barter efficiently, is optimized for
multi-barter situations. One such situation is a file sharing scenario as in BitTorrent
[22,8]. The peers Alice and Bob are expected to have a long-term barter relationship.
Hence, step 1 needs to be carried out only once per peer, and remaining cheap
steps 2-6 would be repeated for each block, whereas previous protocols required
a costly step like step 1 to be performed for each block. This greatly amortizes the
costly step 1 in our protocol, when multiple blocks (or files) are exchanged, even when
the files/blocks to be exchanged are not pre-defined (they need to be defined only
before each execution of step 2).

To give some numbers, consider an average BitTorrent file of size 2.8GB made up
of about 2,500 blocks [32]. Using previous optimistic fair exchange protocols, this re-
quires 2,500 costly steps (one per block). Our C++ implementation using endorsed
e-cash [18] and Camenisch-Shoup verifiable escrow [19] takes about 2 seconds of com-
putation for step 1 (most of which is the verifiable escrow) on an average computer
(2GHz). This corresponds to 2500×2seconds = 84 minutes of computation overhead.
Considering a BitTorrent client that connects to about 40 peers, using our protocol,

23 We can in general assume that the I/O and CPU can be pipelined so that the encryption will
not add more time to uploading the files.

Usable Optimistic Fair Exchange 265

this overhead becomes just 80 seconds. Our network overhead is similarly neglectable
(around 40KB per peer, almost all of which is the one-time cost of step 1, about half
of it being endorsed e-cash). This corresponds to about 2500× 40KB = 100 MB total
overhead using previous schemes, and only 1.6 MB total overhead using our scheme
(for a 2.8GB file).

As for the Arbiter, he checks a signature, sometimes decrypts a (verifiable) escrow,
and performs the VerifyKey protocol of Belenkiy et al. [8]. The signature check and
ordinary escrow decryption takes only milliseconds, the verifiable escrow decryption,
when necessary, can take a few hundred milliseconds. The bottleneck is the data that
the Arbiter needs to download for the VerifyKey protocol, which is about 22chunks×
16KB = 352KB [8]. An important point to note is that the amount of data the Arbiter’s
needs to download is independent of the size of the file that is being exchanged.24

Without considering distributed denial of service (DDoS) attacks, let us provide
some numbers for evaluation. To have an idea, consider a p2p system of 1,700,000
users, exchanging 2.8GB files on the average [32]. Exchanging two such files means
exchanging 5.6GB of data. If 1% of all users are malicious, this can correspond to
17,000 exchanges requiring an arbiter at a given time (where one user is honest and the
other is malicious. If both of them are malicious, this number reduces to half of it). We
said, in case of a dispute, a peer should upload 352KB of data to the Arbiter. Assume
that the same upload speed is used when trading files and contacting the Arbiter. If we
assume the worst case scenario where the Arbiter can handle only one user at a time
and every user is active at all times, this requires having 2 arbiters; with 10% malicious
user ratio, we need 11 arbiters. Under the very realistic assumption that an arbiter can
handle 25 users at a time (e.g., assuming 25 times as fast download speed of the Arbiter
as the upload speed of the users [23]), we will need 1 arbiter in this system (even with
10% malicious user ratio). When we use our protocol without timeouts, these numbers
will double (but if our arbiter can handle 25 users at a time, we still need only 1 arbiter).
Some more efficiency evaluation, limitations and possible solutions, a generalized ver-
sion of our protocols, security proofs and privacy discussion can be found in the full
version of this paper [35]. The full version also includes the version of our protocol that
does not require timeouts.

4 Conclusion

There already are many scenarios where peers trade content [22,32]. These systems
unfortunately rely on the honesty of the peers for providing fairness, partly because of
the high cost incurred by the previous fair exchange protocols [2,3,4,5,8,18,40]. Our
protocols uniquely limit the use of the costly primitives (verifiable escrow and e-cash)
to once (or twice) per peer, as opposed to per file/block. We have shown in Section
3.2 that there are one or two orders of magnitude efficiency gains over previous pro-
tocols. Besides, most of the existing systems already rely on similar trusted parties
[2,3,4,5,8,17,18,20,22,32,40,43]. Therefore, for the first time, by using our protocols,
such bartering systems will experience almost no performance loss, while the benefit

24 Merkle proofs are logarithmic in number of the blocks in the file, but are much smaller in size
than the data blocks themselves in practice.

266 A. Küpçü and A. Lysyanskaya

of providing fairness guarantees will be very noticeable indeed (e.g., see [8] for how
the use of fair exchange can solve the free-riding problem of BitTorrent). Already, the
Brownie Project [14] is adopting our protocols in their BitTorrent deployment.

References

1. Asokan, N., Janson, P.A., Steiner, M., Waidner, M.: The state of the art in electronic payment
systems. IEEE Computer 30, 28–35 (1997)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: CCS
(1997)

3. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair exchange.
In: IEEE Security and Privacy (1998)

4. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communications 18(4), 591–610 (2000)

5. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signatures. In: CCS
(1999)

6. Avoine, G., Vaudenay, S.: Optimistic Fair Exchange Based on Publicly Verifiable Secret
Sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108,
pp. 74–85. Springer, Heidelberg (2004)

7. Backes, M., Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Compositional analysis of
contract-signing protocols. Theoretical Computer Science 367(1-2), 33–56 (2006)

8. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A., Rachlin, E.:
Making P2P Accountable without Losing Privacy. In: WPES (2007)

9. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.: Incentivizing
Outsourced Computation. In: NetEcon (2008)

10. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

11. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing contracts.
IEEE Transactions on Information Theory 36(1), 40–46 (1990)

12. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference (1979)
13. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,

vol. 1880, p. 236. Springer, Heidelberg (2000)
14. Brownie Project, http://cs.brown.edu/research/brownie
15. Camenisch, J., Damgård, I.: Verifiable Encryption, Group Encryption, and Their Appli-

cations to Group Signatures and Signature Sharing Schemes. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, p. 331. Springer, Heidelberg (2000)

16. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to
Win the Clonewars: Efficient Periodic N-times Anonymous Authentication. In: CCS (2006)

17. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

18. Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. IEEE Security and Pri-
vacy (2007)

19. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete log-
arithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer,
Heidelberg (2003)

20. Chaum, D.: Bling signatures for untraceable payments. In: CRYPTO (1982)
21. Chaum, D., den Boer, B., van Heyst, E., Mjolsnes, S., Steenbeek, A.: Efficient offline elec-

tronic checks. In: EUROCRYPT (1990)

http://cs.brown.edu/research/brownie

Usable Optimistic Fair Exchange 267

22. Cohen, B.: Incentives build robustness in bittorrent. In: Kaashoek, M.F., Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

23. Cohen, L.: Testimony of Larry Cohen, President of Communications Workers of America
(May 2007)

24. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adap-
tive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p.
13. Springer, Heidelberg (1998)

25. Daemen, J., Rijmen, V.: The Design of Rijndael: AES–the Advanced Encryption Standard.
Springer books (2002)

26. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In:
USENIX Security (2004)

27. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic Fair Exchange in a Multi-user Setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

28. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing
(2000)

29. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure under the RSA
Assumption. Journal of Cryptology 17(2), 81–104 (2004)

30. Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 449. Springer, Heidelberg (1999)

31. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attack. SIAM Journal on Computing (1988)

32. Iosup, A., Garbacki, P., Pouwelse, J., Epema, D.H.J.: Correlating Topology and Path Char-
acteristics of Overlay Networks and the Internet. In: GP2PC (2006)

33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press,
Boca Raton (2007)

34. Küpçü, A., Lysyanskaya, A.: Optimistic Fair Exchange with Multiple Arbiters. Cryptology
ePrint Archive, Report 2009/069 (2009), http://eprint.iacr.org/2009/069

35. Küpçü, A., Lysyanskaya, A.: Usable Optimistic Fair Exchange. Cryptology ePrint Archive,
Report 2008/431 (2008), http://eprint.iacr.org/2008/431

36. Lindell, Y.: Legally Enforceable Fairness in Secure Two-Party Computation. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg (2008)

37. Markowitch, O., Saeednia, S.: Optimistic fair exchange with transparent signature recovery.
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, p. 329. Springer, Heidelberg (2002)

38. Merkle, R.: A digital signature based on a conventional encryption function. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

39. Micali, S.: Simultaneous Electronic Transactions. U.S. Patent, No. 5,666,420 (1997)
40. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC (2003)
41. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications.

In: STOC (1989)
42. NIST. Digital Signature Standard (DSS). FIPS, PUB 186-2 (2000)
43. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted third party.

Technical Report, TUD-BS-1999-02 (1999)
44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)
45. Shamir, A.: How to Share a Secret. ACM Communications (1979)
46. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing protocols. Theo-

retical Computer Science 283(2), 419–450 (2002)
47. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.

In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg
(1998)

http://eprint.iacr.org/2009/069
http://eprint.iacr.org/2008/431

	Usable Optimistic Fair Exchange
	Introduction
	Definitions
	Notation
	(Optimistic) Fair Exchange

	Efficient Optimistic Barter Protocol
	Barter with Timeouts
	Efficiency Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

