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Abstract. This paper presents a new identity based key agreement pro-
tocol. In id-based cryptography (introduced by Adi Shamir in [29]) each
party uses its own identity as public key and receives his secret key from
a master Key Generation Center, whose public parameters are publicly
known.

The novelty of our protocol is that it can be implemented over any
cyclic group of prime order, where the Diffie-Hellman problem is sup-
posed to be hard. It does not require the computation of expensive bi-
linear maps, or additional assumptions such as factoring or RSA.

The protocol is extremely efficient, requiring only twice the amount of
bandwith and computation of the unauthenticated basic Diffie-Hellman
protocol. The design of our protocol was inspired by MQV (the most
efficient authenticated Diffie-Hellman based protocol in the public-key
model) and indeed its performance is competitive with respect to MQV
(especially when one includes the transmission and verification of cer-
tificates in the MQV protocol, which are not required in an id-based
scheme). Our protocol requires a single round of communication in which
each party sends only 2 group elements: a very short message, especially
when the protocol is implemented over elliptic curves.

We provide a full proof of security in the Canetti-Krawczyk security
model for key exchange, including a proof that our protocol satisfies
additional security properties such as forward secrecy, and resistance to
reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [29]. The goal
was to simplify the management of public keys and in particular the association
of a public key to the identity of its holder. Usually such binding of a public key
to an identity is achieved by means of certificates which are signed statements by
trusted third parties that a given public key belongs to a user. This requires users
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to obtain and verify certificates whenever they want to use a specific public key,
and the management of public key certificates remains a technically challenging
problem.

Shamir’s idea was to allow parties to use their identities as public keys. An
id-based scheme works as follows. A trusted Key Generation Center (KGC)
generates a master public/secret key pair, which is known to all the users. A user
with identity ID receives from the KGC a secret key SID which is a function of
the string ID and the KGC’s secret key (one can think of SID as a signature by
the KGC on the string ID). Using SID the user can then perform cryptographic
tasks. For example in the case of id-based encryption any party can send an
encrypted message to the user with identity ID using the string ID as a public
key and the user (and only the user and the KGC) will be able to decrypt it
using SID. Note that the sender can do this even if the recipient has not obtained
yet his secret key from the KGC. All the sender needs to know is the recipient’s
identity and the public parameters of the KGC. This is the major advantage of
id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned
with the task of id-based key agreement. Here two parties Alice and Bob, with
identities A, B and secret keys SA, SB respectively, want to agree on a common
shared key, in an authenticated manner (i.e. Alice must be sure that once the
key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish
a session) there is a smaller gain in using an id-based solution: indeed certificates
and public keys can be easily sent as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a signifi-
cant practical advantage (see e.g. [32]). Indeed known shortcomings of the public
key setting are the requirement of centralized certification authorities, the need
for parties to cross-certify each other (via possibly long certificate chains), and
the management of some form of large-scale coordination and communication
(possibly on-line) to propagate certificate revocation information. Identity-based
schemes significantly simplify identity management by bypassing the certifica-
tion issues. All a party needs to know in order to generate a shared key is its own
secret key, the public information of the KGC, and the identity of the commu-
nication peer (clearly, the need to know the peer’s identity exists in any scheme
including a certificate-based one).

Another advantage of identity-based systems is the versatility with which
identities may be chosen. Since identities can be arbitrary string, they can be
selected according to the function and attributes of the parties (rather than its
actual “name”). For example in vehicular networks a party may be identified
by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This
allows parties to communicate securely with the intended recipient even without
knowing its “true” identity but simply by the definition of its function in the
network.
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Finally, identities can also include additional attributes which are temporal
in nature: in particular an “expiration date” for an identity makes revocation of
the corresponding secret key much easier to achieve.

For the reasons described above, id-based KA protocols are very useful in
many systems where bandwith and computation are at a premium (e.g. sensor
networks), and also in ad-hoc networks where large scale coordination is unde-
sirable, if not outright impossible. Therefore it is an important question to come
up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal
of the concept of id-based cryptography, some early proposals for id-based key
agreement appeared in the literature: we refer in particular to the works of
Okamoto [24] (later improved in [25]) and Gunther [18]. A new impetus to this
research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [4]: starting with the work of Sakai et al.
[28] a large number of id-based KA protocols were designed that use pairings
as tool. We refer the readers to [5] and [10] for surveys of these pairing-based
protocols.

The main problem with the current state of the art is that many of these
protocols lack a proof of security, and some have even been broken. Indeed only
a few (e.g., [7,33]) have been proven according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-
based KAs require either groups that admit bilinear maps [7,33], or to work over
a composite RSA modulus [25].

This motivated us to ask the following question: can we find an efficient and
provably secure id-based KA protocol such that:

1. It that can be implemented over any cyclic group in which the Diffie-Hellman
problem is supposed to be hard. The advantages of such a KA protocol would
be several, in particular: (i) it would avoid the use of computationally expen-
sive pairing computations; (ii) it could be implemented over much smaller
groups (since we could use ’regular’ elliptic curves, rather than the ones that
admit efficient pairings computations for high security levels, or the group
Z∗

N for a composite N needed for Okamoto-Tanaka).
2. It is more efficient than any KA protocols in the public key model (such as

MQV [22]), when one includes the transmission and verification of certificates
which are not required in an id-based scheme. This is a very important point
since, as we pointed out earlier in this Section, id-based KA protocols are
only relevant if they outperform PKI based ones in efficiency.

Our new protocol presented in this paper, achieves all these features. It can
be implemented over any cyclic group over which the Diffie-Hellman problem
is assumed to be hard. In addition it requires an amount of bandwith and
computation similar to the unauthenticated basic Diffie-Hellman protocol. In-
deed our new protocol requires a single round of communication in which each
party sends just two group elements (as opposed to one in the Diffie-Hellman
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protocol). Each party must compute four exponentiations to compute the session
key (as opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in
[25]. While that protocol requires only two exponentiations, it works over Z∗

N

therefore requiring the use of a larger group size, which almost totally absorbs
the computational advantage, and immediately implies a much larger bandwith
requirement. Detailed efficiency comparisons to other protocols in the literature
are discussed in Section 5.

We present a full proof of security of our protocol in the Canetti-Krawczyk
security model. Our results hold in the random oracle model, under the Strong
Diffie-Hellman Assumption. We also present some variations of our protocol that
can be proven secure under the basic Computational Diffie-Hellman Assumption.
Our protocol can be proven to satisfy additional desirable security properties
such as perfect forward secrecy1, and resistance to reflection and key-compromise
impersonation attacks.

Our Approach. The first direction we took in our approach was to attempt to
analyze the id-based KA protocols by Gunther [18] and Saeednia [27]. They also
work over any cyclic group where the Diffie-Hellman problem is assumed to be
hard, but lack a formal proof of security. While the original protocols cannot be
shown to be secure, we were able to prove the security of modified versions of
them. Nevertheless these two protocols were not very satisfactory solutions for
the problem we had set out to solve, particularly for reasons of efficiency since
they required a large number of exponentiations, which made them less efficient
than say MQV with certificates. The security analysis of these modified Gunther
and Saeednia protocols will be included in the final version.

Our protocol improves over these two protocols by using Schnorr’s signatures
[30], rather than ElGamal, to issue secret keys to the users. The simpler structure
of Schnorr’s signatures permits a much more efficient computation of the session
key, resulting in less exponentiations and a single round protocol. Our approach
was inspired by the way the MQV protocol [22] achieves implicit authentication
of the session key. Indeed our protocol can be seen as an id-based version of the
MQV protocol.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the
paper.

Let N the set of natural numbers. We will denote with � ∈ N the security
parameter. The partecipants to our protocols are modeled as probabilistic Turing
machines whose running time is bounded by some polynomial in �. If S is a set, we

1 We can prove PFS only in the case the adversary was passive in the session that
he is attacking – though he can be active in other sessions. As proven by Krawczyk
in [21], this is the best that can be achieved for 1-round protocols with implicit
authentication, such as ours.
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denote with s
$← S the process of selecting an element uniformly at random from

S. A function is said to be negligible if it vanishes faster than any polynomial.
The security of our protocol is based on the Strong Diffie-Hellman Assump-

tion (SDH) [1], which is a variant of the standard Computational Diffie-Hellman
(CDH) [13] where the adversary is provided with an oracle that solves the deci-
sional problem.

Our new protocol is proven secure in the Canetti-Krawczyk (CK) [8,9] model
for key agreement, adapted to the identity-based setting. For lack of space we
defer the description of the assumptions and the model to the full version of the
paper.

3 The New Protocol IB-KA

Protocol setup. The Key Generation Center (KGC) chooses a group G of
prime order q (where q is �-bits long), a random generator g ∈ G and two
hash functions H1 : {0, 1}∗ → Zq and H2 : Zq × Zq → {0, 1}�. Then it picks a
random x

$← Zq and sets y = gx. Finally the KGC outputs the public parameters
MPK = (G, g, y, H1, H2) and keeps the master secret key MSK = x for itself.

Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s
signature [30] of the message m = ID under public key y. More specifically,
the KGC after verifying the user’s identity, creates the associated secret key as
follows. First it picks a random k

$← Zq and sets rID = gk. Then it uses the
master secret key x to compute sID = k+H1(ID, rID)x. (rID, sID) is the secret
key returned to the user. The user can verify the correctness of its secret key by
using the public key y and checking the equation gsID

?= rID · yH1(ID,rID).

A protocol session. Let’s assume that Alice wants to establish a session key
with Bob. Alice owns secret key (rA, sA) and identity A while Bob has secret
key (rB , sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message

〈A, rA, uA〉 to Bob. Analogously Bob picks a random tB
$← Zq, computes uB =

gtB and sends 〈B, rB , uB〉 to Alice. After the parties have exchanged these two
messages, they are able to compute the same session key Z = H2(z1, z2). In
particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utA

B .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utB

A .

It is easy to see that both the parties are computing the same values z1 =
g(tA+sA)(tB+sB) and z2 = gtAtB . The state of a user ID during a protocol session
contains only the fresh random exponent tID. We assume that after a session is
completed, the parties erase their state and keep only the session key.

Remark: In the next section we show that protocol IB-KA is secure under the
Strong Diffie-Hellman Assumption. However, in the full version of the paper we
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show how to modify IB-KA to obtain security under the basic CDH Assumption,
at the cost of a slight degradation in efficiency.

4 Security Proof

We prove the security of the protocol by a usual reduction argument. More
precisely we show how to reduce the existence of an adversary breaking the
protocol into an algorithm that is able to break the SDH Assumption with non-
negligible probability. The adversary is modeled as a CK attacker: in particular
it will choose a test session among the complete and unexposed sessions and will
try to distinguish between its real session key and a random one.

In our reduction we will make use of the General Forking Lemma, stated by
Bellare and Neven in [2]. It follows the original forking lemma of Pointcheval
and Stern [26], but, unlike that, it makes no mention of signature schemes and
random oracles. In this sense it is more general and it can be used to prove the
security of our protocol. We briefly recall it in the following.

Lemma 1 (General Forking Lemma [2]). Fix an integer Q ≥ 1 and a set
H of size |H | ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hQ

returns a pair (J, σ) where J ∈ {0, . . . , Q} and σ is referred as side output. Let
IG be a randomized algorithm called the input generator. Let accB = Pr[J ≥ 1 :
x

$← IG, h1, . . . , hQ
$← H ; (J, σ) $← B(x, h1, . . . , hQ)] be the accepting probability

of B.
The forking algorithm FB associated to B is the randomized algorithm that

takes in input x and proceeds as follows:

Algorithm FB(x)
Pick random coins ρ for B
h1, . . . , hQ

$← H

(J, σ) $← B(x, h1, . . . , hQ; ρ)
If J = 0 then return (0,⊥,⊥)
h′

1, . . . , h
′
Q

$← H

(J ′, σ′) $← B(x, h1, . . . , hJ−1, h
′
J , . . . , h′

Q, ; ρ)
If (J = J ′ and hJ 	= h′

J) then return (1, σ, σ′)
Else return (0,⊥,⊥).

Let frk = Pr[b = 1 : x
$← IG; (b, σ, σ′) $← FB(x)]. Then frk ≥ accB(accB

Q −
1

|H| ).

Theorem 1. Under the Strong-DH Assumption, if we model H1 and H2 as
random oracles, then protocol IB-KA is a secure identity-based key agreement
protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol IB-KA , then we
show how to build a solver algorithm S for the CDH problem.
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In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-DH Assumption.
B receives in input a tuple (G, g, U, V ), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(U, ·, ·) that on input (V̂ , Ŵ )
answers “yes” if (U, V̂ , Ŵ ) is a valid DDH tuple . The side output of B is σ ∈
G×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 + Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him Bob)

and the order number of the test session. If n is an upper bound to the
number of all the sessions initiated by A then the guess is right with
probability at least 1/n.

H2 queries On input a pair (z1, z2):
If H2[z1, z2] = ⊥: choose a random string Z ∈ {0, 1}� and store
H2[z1, z2] = Z
Return H2[z1, z2] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1; H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption. When A asks to corrupt party ID 	= B, then:

ctr ← ctr + 1; s $← Zq; r = gsy−hctr

If H1[ID, r] 	= ⊥ then bad← true
Store H1[ID, r] = hctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component of
Bob’s private key by picking a random kB

$← Zq and setting rB = gkB .
We observe that in this case B is not able to compute the corresponding
sB. However, since Bob is the user guessed for the test session, we can
assume that the adversary will not ask for his secret key.

Simulating sessions. First we describe how to simulate sessions different
from the test session. Here the main point is that the adversary is allowed
to ask session-key queries and thus the simulator must be able to produce
the correct session key for each of these sessions. The simulator has full
information about all the users’ secret keys except Bob. Therefore B
can easily simulate all the protocol sessions that do not include Bob,
and answer any of the attacker’s queries about these sessions. Hence we
concentrate on describing how B simulates interactions with Bob.
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Assume that Bob has a session with Charlie (whose identity is the string
C). If Charlie is an uncorrupted party this means that B will generate
the messages on behalf of him. In this case B knows Charlie’s secret key
and also has chosen his ephemeral exponent tC . Thus it is trivial to see
that B has enough information to compute the correct session key. The
case when the adversary presents a message 〈C, rC , uC〉 to Bob as coming
from Charlie is more complicated. Here is where B makes use of the oracle
DH(y, ·, ·) to answer a session-key query about this session. The simulator
replies with a message 〈B, rB , uB = gtB 〉 where tB is chosen by B. Recall
that the session key is H2(z1, z2) with z1 = g(sC+tC)(sB+tB) and z2 = utB

C .
So z1 is the Diffie-Hellman result of the values uCgsC and uBgsB , where
gsC = rCyH1(C,rC) and gsB = rByH1(B,rB) can be computed by the
simulator. Notice also that the simulator knows tB and kB (the discrete
log of rB in base g). Therefore it checks if H2[z1, z2] = Z where z2 = utB

C

and DH(y, uCgsC , z̄1) = “yes′′ where z1 = z1

(uCgsC )(kB+tB)H1(B,rB)−1 . If B
finds a match then it outputs the corresponding Z as session key for Bob.
Otherwise it generates a random ζ

$← {0, 1}� and gives it as response to
the adversary. Later, for each query (z1, z2) to H2, if (z1, z2) satisfies the
equation above it sets H2[z1, z2] = ζ and answers with ζ. This makes
oracle’s answers consistent.

In addition observe that the simulator can easily answer to state reveal
queries as it chooses the fresh exponents on its own.

Simulating the test session. Let 〈B, ρB, uB = gtB 〉 be the message from
Bob to Alice sent in the test session. We notice that such message may
be sent by the adversary who is trying to impersonate Bob. In this case
A may use a value ρB = gλB of its choice as the public component of
Bob’s private key (i.e. different than rB = gkB which B simulated and
for which it knows kB). B responds with the message 〈A, rA, uA = V 〉 as
coming from Alice. Finally B provides A with a random session key.

Run until A halts and outputs its decision bit

If H1[B, ρB] = ⊥ then set ctr← ctr + 1 and H1[B, ρB ] = hctr

If bad = true then return (0,⊥)

Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi

Let Z = H2(z1, z2) be the correct session key for the test session where
z1 = (uArAyH1(A,rA))(tB+λB+xhi) and z2 = utB

A .

If A has success into distinguishing Z from a random value it must necessarily
query the correct pair (z1, z2) to the random oracle H2. This means that
B can efficiently find the pair (z1, z2) in the table H2 using the Strong-DH
oracle.

Compute τ = z1
z2(uBρByhi )sA

= ρv
BWhi

Return (i, (τ, hi))
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Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V )
and accB be the accepting probability of B.2 Then we have that:

accB ≥ ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r for a corrupted party ID before corrupting it, in one of the H1

oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most Q queries to H1 and
corrupts at most Qc parties (and q > 2�) we have that

accB ≥ ε

n
− Qc(Q)

2�
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-DH As-
sumption. It receives in input a CDH tuple (G, g, U, V ) where U = gu, V = gv

and u, v are random exponents in Zq. S is also given access to a decision oracle
DH(U, ·, ·) that on input (V̂ , Ŵ ) answers “yes” if (U, V̂ , Ŵ ) is a valid DH tuple.

Algorithm SDH(U,·,·)(G, g, U, V )

(b, τ, τ ′) $← F
DH(U,·,·)
B (G, g, U, V )

If b = 0 then return 0 and halt
Parse σ as (τ, h) and σ′ as (τ ′, h′)
Return W = (τ/τ ′)(h−h′)−1

If the forking algorithm FB has success, this means that there exist random coins
ρ, an index J ≥ 1 and h1, . . . , hQ, h′

J , . . . , h′
Q ∈ Zq with h = hJ 	= h′

J = h′ such
that: the first execution of B(G, g, U, V, h1, . . . , hQ; ρ) outputs τ = ρv

BWh where
H1[B, ρB] = h; the second execution of B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h′

Q; ρ)
outputs τ ′ = (ρ′B′)vWh′

where H1[B′, ρ′B′ ] = h′. Since the two executions of
B are the same until the response to the J-th query to H1, then we must have
B = B′ and ρB = ρ′B′ . Thus it is easy to see that S achieves its goal by computing
W = (τ/τ ′)

1
h−h′ = guv.

Finally, by the General Forking Lemma, we have that if A has non-negligible
advantage into breaking the security of IB-KA , then S’s success probability is
also non-negligible.

4.1 Additional Security Properties of IB-KA

In addition to the notion of session key security, any key-agreement protocol
should satisfy other important properties. Below we describe the additional se-
curity properties enjoyed by IB-KA .
2 We say that B accepts if it outputs (J, σ) such that J ≥ 1.
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Forward secrecy. We say that a KA protocol has forward secrecy, if after a
session is completed and its session key erased, the adversary cannot learn it
even if it corrupts the parties involved in that session. In other words, learning
the private keys of parties should not jeopardize the security of past completed
sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only
past sessions in which the adversary was passive (i.e. did not choose the mes-
sages) are not jeopardized.

The following theorem (whose proof is deferred to the full version of the paper)
shows that the protocol IB-KA satisfies this notion of weak forward secrecy.

Theorem 2. Let A be a PPT adversary that is able to break the weak forward
secrecy of the IB-KA protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

Resistance to reflection attacks. A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity
(and the same private key). Though, at first glance, this seems to be only of
theoretical interest, there are real-life situations in which this scenario occurs.
For example consider the case when Alice is at her office and wants to establish
a secure connection with her PC at home, therefore running a session between
two computers with the same identity and private key.

The current proof actually does not work when the adversary sends a message
with the same value rB provided by the KGC (for which the simulator knows
the discrete logarithm kB , but cannot compute the corresponding sB). The issue
is that the knowledge of sB would be needed to extract the solution of the CDH
problem. We point out that a reflection attack using a value ρB 	= rB is captured
by the current proof. Moreover it is reasonable to assume that a honest party
refuses connections from itself that use a “wrong” key.

However it is possible to adapt the proof in this specific case. In particular we
can show that a successful run of the adversary enables the simulator to compute
gu2

instead of guv. As showed in [23] by Maurer and Wolf, such an algorithm
can be easily turned into a solver for CDH. For lack of space this is deferred to
the full version of the paper.

Resistance to Key Compromise Impersonation. Suppose that the adver-
sary learns Alice’s private key. Then, it is trivial to see that this knowledge
enables the adversary to impersonate Alice to other parties. A key compromise
impersonation (KCI) attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

To see that the protocol IB-KA is resistant to KCI attacks it suffices to observe
that in the proof of security, when the adversary tries to impersonate Bob to
Alice, we are able to output Alice’s private key whenever it is asked by the
adversary. It means that the proof continues to be valid even in this case.
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Ephemeral Key Compromise Impersonation. A recent paper by Cheng
and Ma [12] shows that our protocol is susceptible to an ephemeral key compro-
mise attack. Roughly speaking this attack considers the case when the adversary
can make state-reveal queries (in order to learn the ephemeral key of a user) even
in the test session. Though the paper is correct, we point out that this kind of
attack is not part of the standard Canetti-Krawczyk security model that is con-
sidered in this paper.

5 Comparisons with Other IB-KA Protocols

In this section we compare IB-KA with other id-based KA protocols from the
literature. In particular, we consider the protocol by Chen and Kudla [11] (SCK-
2) (which is a modification of Smart’s [31]) and two protocols proposed very
recently by Boyd et al. [6] (BCNP1, BCNP2).

For our efficiency comparisons we consider a security parameter of 128 and
implementations of SCK-2, BCNP1 and BCNP2 with Type 3 pairings3, which
are the most efficient pairings for this kind of security level (higher than 80).
Our protocol is assumed to be implemented in an elliptic curves group G with
the same security parameter. In this scenario elements of G and G1 need 256
bit to be represented, while 512 bits are needed for G2 elements and 3072 bits
for an element of GT . We estimate the computational cost of all the protocols
using the costs per operation for Type 3 pairings given by Chen et al. in [10].
The bandwidth cost is expressed as the amount of data in bits sent by each
party to complete a session of the protocol4. According to the work of Chen et
al. [10] SCK-2 is the most efficient protocol with a proof of security in the CK
model for all types of pairings. It is proved secure using random oracles under the
Bilinear Diffie-Hellman Assumption and requires one round of communication
with only one group element sent by each party. To be precise, we point out
that the protocol of Boyd et al. (BMP) [7] would appear computationally more
efficient than SCK-2, but unfortunately it works only in type 1 and type 4
pairings and is proven secure only in symmetric pairings. BCNP1 and BCNP2
are generic constructions based on any CCA-secure IB-KEM. When implemented
(as suggested by the authors of [6]) using one of the IB-KEMs by Kiltz [19], Kiltz-
Galindo [20] or Gentry [17] they lead to a two-pass single-round protocol with
(CK) security in the standard model. BCNP2 provides weak FS and resistance
to KCI attacks, while BCNP1 satisfies only the former property.

The results are summarized in Table 1 assuming protocols BCNP1 and BCNP2
to be implemented with Kiltz’s IB-KEM (the most efficient for this application
according to the work of Boyd et al. [6]). We defer to the original papers of SCK-
2 [11] and BCNP1, BCNP2 [6] for more details about these costs. As described
in the table, our protocol has a reasonable bandwidth requirement and achieves
the best computational efficiency among the other id-based KA protocols.
3 This classification of pairing groups into several types is provided by Galbraith

et al. in [15].
4 We do not consider the identity string sent with the messages as it can be implicit

and, in any way, appears in all the protocols.
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Table 1. Comparisons between IB-KA protocols

weak
KCI

Standard Efficiency
FS model Bandwidth Cost per party

BCNP1 � � � 768 56
BCNP2 � � � 1024 59
SCK-2 � � � 256 43
IB-KA � � � 512 6

Comparison with PKI-based protocols. We also compare our protocol
to MQV [22], and its provably secure version HMQV [21], which is the most
efficient protocol in the public-key setting. When comparing our protocol to
a PKI-based scheme, like MQV, we must also consider the additional cost of
sending and verifying certificates.

We measure the computation costs of the protocols in terms of the number of
exponentiations in the underlying group needed to compute the session key. If
the exponentiations is done with an exponent that is half the length of the group
size, then obviously we count it as 1/2 exponentiation. Also if an exponentiation
is done over a fixed basis, we apply precomputation schemes to speed up the
computation, e.g. [16].

Our protocol requires each party to send a single message consisting of two
group elements. To compute the session key, the parties perform 2 full expo-
nentiations over variable basis, and one half exponentiation over a fixed basis5.
For our security parameter, following [16], the latter half exponentiation can be
computed with less than 20 group multiplications, with a precomputation table
of moderate size.

In MQV, each party sends a single message consisiting of one group element,
and performs 1.5 exponentiations to compute the session key. Moreover, in HMQV
certificates are sent and verified. Here we distinguish two cases: the certificate is
based either on an RSA signature, or on a discrete-log signature, e.g. Schnorr’s.

In the RSA case, a short exponent e.g. e = 216 + 1, is typically used, and the
verification cost is basically equivalent to the cost of the half exponentiation with
precomputation in our protocol above. Therefore in this case, MQV is faster, but
by a mere half exponentiation. The price to pay however is a massive increase
in bandwidth to send the RSA signature (i.e. 3072 bits), and the introduction
of the RSA Assumption in order to prove security of the entire scheme. If we
use a Schnorr signature for the certificate, then MQV require sending two more
group elements, and therefore its bandwidth requirement is already worse than
our protocol (by one group element). The parties then must compute one full and
one half exponentiation, both with fixed basis6 to verify the certificate. This extra
computational cost can be compared to an additional half exponentiation, making
the computation requirement of MQV with Schnorr certificates equivalent to that
of our protocol.
5 Indeed since the input to the hash function H1 is randomized, we can set its output

length to be half of the length of the group size.
6 Though different basis, whichmeans that in order to apply precomputation techniques,

the parties need to maintain two tables.
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In conclusion, when comparing our protocol with MQV with certificates we
find that our protocol: (i) has comparable computational cost; (ii) has better
bandiwdth (by far in the case of RSA certificates) and (iii) simplifies protocol
implementation by removing entirely the need to manage certificates and to
interact with a PKI7.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

2. Bellare, M., Neven, G.: New Multi-Signature Schemes and a General Forking
Lemma. In: Proceedings of the 13th Conference on Computer and Communica-
tions Security – ACM CCS 2006. ACM Press, New York (2006)

3. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. SIAM
J. Comput. 32(3), 586–615 (2003); In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 213–615. Springer, Heidelberg (2001)

5. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In:
Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243.
Springer, Heidelberg (2005)

6. Boyd, C., Cliff, Y., Nieto, J.G., Paterson, K.G.: Efficient One-Round Key Exchange
in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

7. Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Au-
thenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 248–262. Springer, Heidelberg (2004)

8. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

9. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

10. Chen, L., Cheng, Z., Nigel, P.: Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec. 6(4), 213–241 (2007)

11. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from
Pairings. In: 16th IEEE Computer Security Foundations Workshop - CSFW 2003,
pp. 219–233. IEEE Computer Society Press, Los Alamitos (2003)

12. Cheng, Q., Ma, C.: Ephemeral Key Compromise Attack on the IB-KA protocol.
Cryptology Eprint Archive, Report 2009/568 (2009),
http://eprint.iacr.org/2009/568

13. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7 In the above, we did not account for the cost of verifying group membership for the
elements sent by the parties, which is necessary both in the case of MQV and our
protocol, and is the same in both protocols.

http://eprint.iacr.org/2009/568


178 D. Fiore and R. Gennaro

14. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Cryp-
tology ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org

16. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer,
Heidelberg (1994)

17. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

18. Gunther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

19. Kiltz, E.: Direct Chosen-Ciphertext Secure Identity-Based Encryption in the Stan-
dard Model with short Ciphertexts. Cryptology Eprint Archive, Report 2006/122
(2006), http://eprint.iacr.org/2006/122

20. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key Encap-
sulation Without Random Oracles. Cryptology Eprint Archive, Report 2006/034
(2006), http://eprint.iacr.org/2006/034

21. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

22. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient Protocol for Au-
thenticated Key Agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

23. Maurer, U., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

24. Okamoto, E.: Key Distribution Systems Based on Identification Information. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer,
Heidelberg (1988)

25. Okamoto, E., Tanaka, K.: Key Distribution System Based on Identification. Infor-
mation. IEEE Journal on Selected Areas in Communications 7(4), 481–485 (1989)

26. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

27. Saeednia, S.: Improvement of Gunther’s identity-based key exchange protocol. Elec-
tonics Letters 31(18), 1535–1536 (2000)

28. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Sym-
posium on Cryptography and Information Security, Okinawa, Japan (2000)

29. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985)

30. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

31. Smart, N.P.: An identity-based authenticated key-agreement protocol based on the
Weil pairing. Electronics letters 38, 630–632 (2002)

32. Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryp-
tosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th
Conference on USENIX Security Symposium, p. 15. USENIX Association (2003)

33. Wang, Y.: Efficient Identity-Based and Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/108 (2005),
http://eprint.iacr.org/2005/108/

http://eprint.iacr.org
http://eprint.iacr.org/2006/122
http://eprint.iacr.org/2006/034
http://eprint.iacr.org/2005/108/

	Making the Diffie-Hellman Protocol Identity-Based
	Introduction
	Preliminaries
	The New Protocol IB-KA 
	Security Proof
	Additional Security Properties of IB-KA 

	Comparisons with Other IB-KA Protocols
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




