

Lecture Notes in Computer Science 5985
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Josef Pieprzyk (Ed.)

Topics in Cryptology –
CT-RSA 2010

The Cryptographers’ Track at the RSA Conference 2010
San Francisco, CA, USA, March 1-5, 2010
Proceedings

13

Volume Editor

Josef Pieprzyk
Macquarie University
Department of Computing
Sydney, NSW 2109, Australia
E-mail: josef@science.mq.edu.au

Library of Congress Control Number: Applied for

CR Subject Classification (1998): E.3, D.4.6, K.6.5, C.2, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-11924-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11924-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0

Preface

The RSA Conference is an annual event that attracts hundreds of vendors and
thousands of participants from industry and academia. Since 2001, the confer-
ence has included an academic Cryptographers’ Track (CT-RSA). This year was
the 10th anniversary of CT-RSA. Since its conception, the CT-RSA conference
has become a major avenue for publishing high-quality research papers. The
RSA conference was held in San Francisco, California, during March 1–5, 2010.

This year we received 94 submissions. Each paper got assigned to three refer-
ees. Papers submitted by the members of the Program Committee got assigned
to five referees. In the first stage of the review process, the submitted papers were
read and evaluated by the Program Committee members and then in the second
stage, the papers were scrutinized during an extensive discussion. Finally, the
Program Committee chose 25 papers to be included in the conference program.
The authors of the accepted papers had two weeks for revision and preparation
of final versions. The revised papers were not subject to editorial review and the
authors bear full responsibility for their contents. The submission and review
process was supported by the iChair conference submission server. We thank
Matthiew Finiasz and Thomas Baignères for letting us use iChair. The confer-
ence proceedings were published by Springer in this volume of Lecture Notes in
Computer Science.

The Program Committee invited two distinguished researchers to deliver their
keynote talks. The first speaker was Bart Preneel from Katholieke Universiteit
Leuven, Belgium. His talk was entitled “The First 30 Years of Cryptographic
Hash Functions and the NIST SHA-3 Competition.” The second speaker was
Craig Gentry from IBM Research, USA who gave a talk on “Computing on
Encrypted Data.”

There are many people who contributed to the success of the 10th edition of
CT-RSA. First we would like to thank the authors of all papers (both accepted
and rejected) for submitting their papers to the conference. A special thanks
to the members of the Program Committee and the external referees who gave
their time, expertise and enthusiasm in order to ensure that each paper received
a thorough and fair review. We are thankful to Vijayakrishnan Pasupathinathan
for taking care of the iChair server. I thank the CT-RSA Steering Committee
for giving me an opportunity to serve as the Program Chair. Last but not least,
I would like to thank the RSA conference team, especially Bree LaBollita, for
their help.

March 2010 Josef Pieprzyk

CT-RSA 2010

The 10th Cryptographers’ Track at the RSA Conference

The Mascone Center, San Francisco, California, USA
March 1–5, 2010

Program Chair

Josef Pieprzyk Macquarie University, Australia

Program Committee

Joonsang Baek Institute for Infocomm Research, Singapore
Josh Benaloh Microsoft Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Colin Boyd QUT, Australia
Xavier Boyen Stanford University, USA
Alex Dent RHUL, UK
Christophe Doche Macquarie University, Australia
Orr Dunkelman Weizmann Institute, Israel, ENS, France
Serge Fehr CWI, The Netherlands
Marc Fischlin Darmstadt University of Technology,

Germany
Goichiro Hanaoka AIST, Japan
Stanis�law Jarecki UC, Irvine, USA
Jonathan Katz University of Maryland, USA
Aggelos Kiayias University of Connecticut, USA
Kwangjo Kim KAIST, Korea
Miros�law Kuty�lowski Wroclaw University of Technology, Poland
Helger Lipmaa Cybernetica AS, Estonia
Stefan Lucks University of Weimar, Germany
Tal Malkin Columbia University, USA
Ilya Mironov Microsoft Research, USA
David Naccache ENS, France
Giuseppe Persiano University of Salerno, Italy
Vincent Rijmen K.U. Leuven, Belgium, TU Graz, Austria
Matt Robshaw France Telecom, France
Kazue Sako NEC, Japan
Berry Schoenmakers Eindhoven University, The Netherlands
Ron Steinfeld Macquarie University, Australia
Huaxiong Wang NTU, Singapore

VIII Organization

Steering Committee

Masayuki Abe NTT, Japan
Marc Fischlin Darmstadt University of Technology,

Germany
Tal Malkin Columbia University, USA
Ron Rivest MIT, USA
Moti Yung Google Inc. and Columbia University, USA

External Reviewers

Abdalla, Michel
Alford, Amy
Avanzi, Roberto
Blömer, Johannes
Brzuska, Christina
Choi, Seung Geol
Chow, Sherman
Chu, Cheng-Kang
Crampton, Jason
Dachman-Soled, Dana
Dagdelen, Özgür
D’Arco, Paolo
Etrog, Jonathan
Farashahi,

Reza Rezaeian
Farshim, Pooya
Fleischmann, Ewan
Forler, Christian
Furukawa, Jun
Galdi, Clemente
Gallais, Jean-Francois
Gierlichs, Benedikt
Gogolewski, Marcin
Golicz, Mateusz
Gonzalez, Juan
Gorantla, Choudary
Gordon, Dov
Gorski, Michael
Gros̈chädl, Johann

Guo, Jian
Hinek, Jason
Isshiki, Toshiyuki
Izu, Tetsuya
Jiang, Shaoquan
Kiltz, Eike
Kizhvatov, Ilya
Klonowski, Marek
Konidala, Divyan M.
Koshiba, Takeshi
Krzywiecki, �Lukasz
Kubiak, Przemys�law
Lehmann, Anja
Liu, Joseph K.
Liu, Xiaomin
Marcello, Sandra
Marchwicki, Karol
Matsuda, Takahiro
Masucci, Barbara
Müller, Volker
Nikolić, Ivica
Nogami, Yasuyuki
Olsen, Josh
Onete, Maria Cristina
Pehlivanoglu, Serdar
Poschmann, Axel
Qiu, Ying
Raykova, Mariana
Sakai, Yasuyuki

Schmitd, Jörn-Marc
Schröder, Dominique
Seurin, Yannick
Shao, Jun
Shin, Sungmok
Standaert,

Francois-Xavier
Stehlé, Damien
Stevens, Marc
Strumiński, Tomasz
Sugita, Makoto
Szymański, Piotr
Tadaki, Kohtaro
Takagi, Tsuyoshi
Tartary, Christophe
Teranishi, Isamu
Tillich, Stefan
Vercauteren, Frederik
Wan, Andrew
Wee, Hoeteck
Wu, Hongjun
Wu, Mu-En
Yang, Guomin
Yen, Sung-Ming
Yoneyama, Kazuki
Yoo, Myunghan
Zagórski, Filip
Zhou, Hong-Sheng

Table of Contents

Invited Talk

The First 30 Years of Cryptographic Hash Functions and the NIST
SHA-3 Competition . 1

Bart Preneel

Public-Key Cryptography

Errors Matter: Breaking RSA-Based PIN Encryption with Thirty
Ciphertext Validity Queries . 15

Nigel P. Smart

Efficient CRT-RSA Decryption for Small Encryption Exponents 26
Subhamoy Maitra and Santanu Sarkar

Resettable Public-Key Encryption: How to Encrypt on a Virtual
Machine . 41

Scott Yilek

Plaintext-Awareness of Hybrid Encryption . 57
Shaoquan Jiang and Huaxiong Wang

Speed Records for NTRU . 73
Jens Hermans, Frederik Vercauteren, and Bart Preneel

High-Speed Parallel Software Implementation of the ηT Pairing 89
Diego F. Aranha, Julio López, and Darrel Hankerson

Refinement of Miller’s Algorithm Over Edwards Curves 106
Lei Xu and Dongdai Lin

Probabilistic Public Key Encryption with Equality Test 119
Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong

Efficient CCA-Secure PKE from Identity-Based Techniques 132
Junzuo Lai, Robert H. Deng, Shengli Liu, and Weidong Kou

Anonymity from Asymmetry: New Constructions for Anonymous
HIBE . 148

Léo Ducas

Making the Diffie-Hellman Protocol Identity-Based 165
Dario Fiore and Rosario Gennaro

X Table of Contents

On Extended Sanitizable Signature Schemes . 179
Sébastien Canard and Amandine Jambert

Side-Channel Attacks

Unrolling Cryptographic Circuits: A Simple Countermeasure Against
Side-Channel Attacks . 195

Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and
Jean-Luc Danger

Fault Attacks Against emv Signatures . 208
Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi

Revisiting Higher-Order DPA Attacks: Multivariate Mutual Information
Analysis . 221

Benedikt Gierlichs, Lejla Batina, Bart Preneel, and
Ingrid Verbauwhede

Differential Cache-Collision Timing Attacks on AES with Applications
to Embedded CPUs . 235

Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and
Malte Wienecke

Cryptographic Protocols

Usable Optimistic Fair Exchange . 252
Alptekin Küpçü and Anna Lysyanskaya

Hash Function Combiners in TLS and SSL . 268
Marc Fischlin, Anja Lehmann, and Daniel Wagner

Improving Efficiency of an ‘On the Fly’ Identification Scheme by
Perfecting Zero-Knowledgeness . 284

Bagus Santoso, Kazuo Ohta, Kazuo Sakiyama, and
Goichiro Hanaoka

Cryptanalysis

Linear Cryptanalysis of Reduced-Round PRESENT 302
Joo Yeon Cho

Dependent Linear Approximations: The Algorithm of Biryukov and
Others Revisited . 318

Miia Hermelin and Kaisa Nyberg

Practical Key Recovery Attack against Secret-IV Edon-R 334
Gaëtan Leurent

Table of Contents XI

Rebound Attacks on the Reduced Grøstl Hash Function 350
Florian Mendel, Christian Rechberger, Martin Schläffer, and
Søren S. Thomsen

Symmetric Cryptography

The Sum of CBC MACs Is a Secure PRF . 366
Kan Yasuda

On Fast Verification of Hash Chains . 382
Dae Hyun Yum, Jin Seok Kim, Pil Joong Lee, and Sung Je Hong

Author Index . 397

The First 30 Years of Cryptographic Hash
Functions and the NIST SHA-3 Competition

Bart Preneel

Katholieke Universiteit Leuven and IBBT
Dept. Electrical Engineering-ESAT/COSIC,

Kasteelpark Arenberg 10 Bus 2446, B-3001 Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. The first designs of cryptographic hash functions date back
to the late 1970s; more proposals emerged in the 1980s. During the 1990s,
the number of hash function designs grew very quickly, but for many
of these proposals security flaws were identified. MD5 and SHA-1 were
deployed in an ever increasing number of applications, resulting in the
name “Swiss army knifes” of cryptography. In spite of the importance
of hash functions, only limited effort was spent on studying their formal
definitions and foundations. In 2004 Wang et al. perfected differential
cryptanalysis to a point that finding collisions for MD5 became very
easy; for SHA-1 a substantial reduction of the security margin was ob-
tained. This breakthrough has resulted in a flurry of research, resulting
in new constructions and a growing body of foundational research. NIST
announced in November 2007 that it would organize the SHA-3 compe-
tition, with as goal to select a new hash function family by 2012. From
the 64 candidates submitted by October 2008, 14 have made it to the
second round. This paper presents a brief overview of the state of hash
functions 30 years after their introduction; it also discusses the progress
of the SHA-3 competition.

1 Early History and Definitions

Cryptographic hash functions map input strings of arbitrary (or very large)
length to short fixed length output strings. In their 1976 seminal paper on public-
key cryptography [31], Diffie and Hellman identified the need for a one-way hash
function as a building block of a digital signature scheme. The first definitions,
analysis and constructions for cryptographic hash functions can be found in
the work of Rabin [74], Yuval [99], and Merkle [60] of the late 1970s. Rabin
proposed a design with a 64-bit result based on the block cipher DES [37], Yu-
val showed how to find collisions for an n-bit hash function in time 2n/2 with
the birthday paradox, and Merkle’s work introduced the requirements of col-
lision resistance, second preimage resistance, and preimage resistance. In 1987,
Damg̊ard [26] formalized the definition of collision resistance, and two years later
Naor and Yung defined a variant of seoncd preimage resistant functions called
Universal One Way Hash Functions (UOWHFs) [66] (also known as functions

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 B. Preneel

offering eSEC [79]). In 2004 Rogaway and Shrimpton [79] formally studied the
relations between collision resistance and several flavors of preimage resistance
and second preimage resistance. Hash functions should also destroy the algebraic
structure of the signature scheme; typical examples are the Fiat-Shamir heuris-
tic [36] and Coppersmith’s attack on the hash function in X.509 Annex D [24]
that was intended for use with RSA [77] (this attack breaks the signature scheme
by constructing message pairs (x, x′) for which h(x) = 256 · h(x′)). This devel-
opment resulted in the requirement that hash functions need an ‘ideal’ behavior
which would allow them to instantiate the theoretical concept of random oracles
(see e.g. Bellare and Rogaway [10]). Constructions of MAC algorithms based on
hash functions (such as HMAC) have resulted in the requirement that the hash
function can be used to construct pseudo-random functions, which has a.o. been
studied by Bellare et al. [8,6].

This paper is organized as follows. Section 2 describes brute force attacks and
generic constructions for iterated hash functions, while Sect. 3 gives an overview
of three types of hash function constructions. Section 4 presents the status of
NIST’s SHA-3 competition 1 year after the submission deadline and presents
the planning for the future. Our concluding remarks are presented in Sect. 5. As
cryptographic hash functions have become a rich subject, we don’t attempt to
be complete in this short contribution. We mostly provide some pointers to the
literature, with an emphasis on very early work and on the most recent results.

2 Generic Analysis and Design

2.1 Brute Force Attacks

For an ideal hash function with a hash result of bitlength n, finding a (second)
preimage takes Θ(2n) evaluations of the hash function. However, if one considers
multiple targets, then the expected cost to find a (second) preimage for one of
these 2t targets is reduced to Θ(2n−t) (note that for t = n/2 this corresponds to
Θ(2n/2)). If one intends to find a (second) preimage for all 2t targets, one can
apply Hellman’s time-memory tradeoff [42]: after a precomputation of Θ(2n),
additional (second) preimages can be found at a cost of Θ(22n/3); this method
requires a storage of Θ(22n/3). Wiener provides a detailed analysis in the full
cost model [96]. The answer to this degradation in security is to parameterize
the hash function with a salt (also known as spice, tweak or key) [60], so that
each application can get a different function.

For an n-bit hash function, collisions can be found in time Θ(2n/2); there exist
algorithms with low memory that are highly parallellizable [92]. This shows that
for long term collision resistance (10 years or more), a hash result of 192 or 256
bits is required.

In practice, collision resistance is much harder to achieve than (second) preim-
age resistance. Simon [84] also proved that there is no black box reduction from
preimage resistance to collision resistance. Fortunately, only few applications
need collision resistance: the most notable ones are digital signatures (where

The First 30 Years of Cryptographic Hash Functions 3

either the signer or the verifier can cheat) and binding commitments. It is im-
portant however to understand that circumventing the requirement of collision
resistance is harder than expected (see for example the attack on the RMX mode
in [40]).

2.2 Iterated Hash Functions

From the first designs (including the Rabin function [74]), it was understood that
a hash function h should be constructed by iterating a compression function f
with fixed size inputs. The input is first padded such that the length of the input
is multiple of the block length. Next it is divided into t blocks x1 through xt.
The hash result is then computed as follows:

H0 = IV (1)
Hi = f(xi, Hi−1) i = 1, 2, . . . t (2)

h(x) = g(Ht) . (3)

Here IV is the abbreviation of Initial Value, Hi is called the chaining variable,
and the function g is called the output transformation. While many MAC algo-
rithms have an output transformation, this is a relatively new feature for hash
functions. However, it is easy to see that the absence of an output transformation
leads to an extension attack, that is, one can compute h(x||y) from h(x) and y
(without knowing x), which is undesirable for some applications.

In two articles presented at Crypto’89, Damg̊ard [27] and Merkle [61] show
under which conditions collision resistance of the compression function f is suffi-
cient to obtain collision resistance of the function h. The standard way to satisfy
these conditions is to fix the IV and to append the message length at the end;
Lai and Massey [54] coined the name Merkle-Damg̊ard strengthening for this
construction.1 Naor and Yung [66] obtained similar results for Universal One-
Way Hash Functions, which is the eSEC variant of a second preimage resistant
hash function. Lai and Massey [54] present a necessary and sufficient condition
for ideal second preimage resistance of an iterated hash function (that is, finding
a second preimage takes about 2n evaluations of the compression function f);
unfortunately later on their result turned out to be incorrect.

During the last five years, a number of limitations have been identified for
these iterated constructions, for example the work on long-message second preim-
ages by Dean [28] and Kelsey and Schneier [51], the multicollisions by Joux [47]
and the herding attack by Kelsey and Kohno [50]. The (surprising) implication
of the multicollision attack is that the concatenation of two iterated hash func-
tions (h(x) = h1(x)||h2(x)) is as most as strong as the strongest of the two;
more precisely, if the result of hi has bitlength ni, the cost of a collision attack
on h is at most n1 · 2n2/2 + 2n1/2 (here we assume w.l.o.g. that n1 ≤ n2). This

1 Some authors refer to any linear iterated hash function as described above as “the
Merkle-Damg̊ard construction,” which is clearly not appropriate since this approach
dates back to the earlier work by Rabin in 1978 [74].

4 B. Preneel

complexity is much lower than one would expect intuitively, that is 2(n1+n2)/2.
On the other hand, a large number of improvements have been proposed to
these constructions including work by Andreeva et al. (ROX [2]), Bellare and
Ristenpart (EMD [9]), Biham and Dunkelman (HAIFA [15], see also [19]), and
Yasuda [98]. Maurer et al. [59] generalize the concept of indistinguishability to
indifferentiability from random oracles. Coron et al. [25] have studied how the
Merkle-Damg̊ard construction can be modified to satisfy indifferentiability from
random oracles. Other work in this direction can be found in [13,65].

Merkle has introduced the so-called Merkle trees [60] for constructing digital
signature schemes. Damg̊ard has shown that the domain of a collision resistant
compression function can also be extended by a tree construction [27]; an opti-
mized version was proposed by Pal and Sarkar [68]. While the tree construction
offers increased parallelism, it has the unfortunate property that for every size
of the tree one obtains a different hash function, which is undesirable from an
interoperability point of view.

3 Hash Function Constructions

During the 1980s, the need for an efficient and secure hash function was well
understood (see for example the note presented at Eurocrypt’86 [70]). In the
late 1980s and early 1990s a large number of designs was created; about 50
proposals were known in 1993, but and at least two thirds of them were broken
(see the PhD thesis of the author for the status at that time [71]). After fifteen
years of cryptanalysis, very few of those early schemes remain secure. Since then,
about hundred new hash function designs have been proposed; 64 of these have
been submitted to the SHA-3 competition (cf. Sect. 4). Many of them have not
survived for long either.

Next we describe the status of the three main classes of hash functions: hash
functions based on block ciphers, hash functions based on modular arithmetic
and dedicated hash functions.

3.1 Hash Functions Based on Block Ciphers

The first constructions for hash functions were all based on block ciphers, more
in particular based on DES [37]. This approach has several advantages: the
design and evaluation effort of a block cipher can be reused, and one may obtain
very compact implementations. However, it may well be that a block cipher has
weaknesses in the key schedule which have only very limited impact on its use
for encryption, but which may be undesirable when it is used in a hash function
construction. Examples are the weak keys of DES [64] and the key schedule
weaknesses of AES-192 and AES-256 [16,17].

After cryptanalysis of several proposals, a more systematic approach for crypt-
analysis has been used by Preneel et al. [72] and for security proofs in the ideal
cipher model by Winternitz [97], Black et al. [18] and Stam [87]. The more diffi-
cult problem is how to construct hash functions with a result that is larger than

The First 30 Years of Cryptographic Hash Functions 5

the block length, since most block ciphers have a block length of 64 or 128 bits,
which is clearly not sufficient to obtain collision resistance. This area turned
out to be very difficult; substantial progress has been made from the point of
view of cryptanalysis (e.g. Knudsen et al. [52]) and design (e.g. MDC-2 [20,88],
Merkle [61] and Hirose [43]). Recent work by Rogaway and Steinberger [80] and
Stam [86] has studied constructions based on permutations. It is fair to state
that we are improving our understanding of the problem on how to construct
hash functions from small building blocks; on the other hand, it is not clear that
the most efficient hash functions can be designed by starting from a block cipher.

3.2 Hash Functions Based on Arithmetic Primitives

Public key cryptology, and in particular modular arithmetic, has also been a
source of inspiration for hash function constructions. This has resulted in hash
functions with a security proof based on number theoretic assumptions such as
factoring and discrete logarithm. One example is the construction by Bellare
et al. [8] based on the discrete logarithm problem in a group of large prime
order. An interesting construction is VSH [23], for which finding collisions is
provably related to factoring; however, due to structural properties identified
a.o. by Saarinen [81], VSH does not have the properties expected from a general
purpose hash function. In the area of ‘ad hoc’ constructions, a large number
of proposals was broken; eventually MASH-1 and MASH-2 were standardized
in ISO/IEC 10118-4 [46]; they use squaring and raising to the power 28 + 1
respectively. Schemes based on additive or multiplicative knapsacks offer attrac-
tive performance results. However, in spite of theoretical support (e.g. Ajtai’s
work [1]), practical constructions have not fared well until now: see for example
the attack by Patarin [69] on an additive knapsack scheme, the attack by Tillich
and Zémor [90] on the LPS hash function [22] and the cryptanalysis by Grass et
al. [41] of the 1994 scheme of Tillich and Zémor [89].

3.3 Dedicated Hash Functions

The limitations of block cipher based hash functions resulted in a series of de-
signs from scratch. These hash functions were among the first algorithms to be
designed to be efficient in software on microprocessors rather than in hardware
implementations. The Binary Condensing Algorithm [91] and MD2 of Rivest [49]
use 8-bit to 8-bit S-boxes, while N-Hash [63] is based on 8-bit additions. The first
32-bit proposals date back to the beginning of the 1990s and include MD4 [75],
MD5 [76] and Snefru [62]. Around the same time, differential cryptanalysis of
block ciphers was developed by Biham and Shamir [14]; they applied these tech-
niques to cryptanalyze N-hash and Snefru.

MD5 was proposed by Rivest in 1991 as a strengthened version of MD4. As
it was optimized for software implementations, MD5 was about 10 times faster
than DES in software. Moreover, MD5 was available without any licenses and
it was easier to export than an encryption algorithm. As a consequence, MD5

6 B. Preneel

was adopted very quickly in many applications.2 Unfortunately, weaknesses were
identified early on: in 1992, den Boer and Bosselaers [30] found collisions for the
compression function and in 1996, Dobbertin found collisions for MD5 but with
a random IV rather than the fixed IV from the specifications [32]; his attack
combined differential attacks with techniques such as continuous approximations
and genetic programming. In 2004, Wang et al. [93,94,95] made a breakthrough
with enhanced differential attacks that combine improved differential paths with
clever message modification techniques. Optimized versions of their attacks can
find collisions for MD5 in milliseconds [85] and collisions for MD4 by hand. It is
important to point out that MD4 and MD5 have a 128-bit result: this implies
that a brute force collision search with a budget of US$ 100,000 would find a
collision in a few days [92]. In spite of these weaknesses, it was still unexpected to
some that Sotirov et al. [85] announced on December 31, 2008 that they managed
to create a rogue CA certificate using MD5; such a certificate makes it possible
to impersonate any website on the Internet. While their attack required some
cryptanalytic improvements (as CAs insert a serial number into the message
before signing), the main surprise seems that more than four years after the
announcements by Wang et al., the most popular CAs had not yet removed
MD5 from their offerings.

NIST (National Institute for Standards and Technology, USA) was apparently
not confident in the security of MD5 and proposed in 1993 a strengthened ver-
sion of it called SHA (Secure Hash Algorithm) with a 160-bit result; it is now
frequently called SHA-0. In 1995, NIST discovered a certificational weakness in
SHA-0 (no details were published), which resulted in a new release of the stan-
dard published under the name SHA-1 [38]. In 2002, NIST published three new
hash functions with longer hash results that are commonly called SHA-2: SHA-
256, SHA-384 and SHA-512 [39]. In December 2003, SHA-224 has been added in
a change notice to [39]. In 1998 Chabaud and Joux [21] showed how collisions for
SHA-0 can be found in 261 steps compared to 280 for a brute force attack. Wang
et al. [93,95] present a major improvement in 2005 by showing that finding a
collision for SHA-0/SHA-1 takes only 239/269 steps. The best collision attack for
SHA-0 by Manuel and Peyrin [57] takes only 233 steps. For SHA-1 the situation
is more complex: at least four teams have announced improved collision attacks
with complexity between 252 and 263; however, at this stage no one has found
a collision and there is some doubt about the complexities of these attacks. On
the other hand, Joux and Peyrin have found collisions for 70 (out of 80) steps
of SHA-1 in time 239 (4 days on a PC) [48].

There are still some older proposals that have withstood cryptanalysis, such
as RIPEMD-160 [33] and Whirlpool [5] (both designs have been included in
ISO 10118 [46], together with SHA-1 and SHA-2); for the most recent status of
attacks on Whirlpool, see [55]. Moreover, early cryptanalysis of the SHA-2 family
suggests that this second generation functions has a substantial security margin
against collision attacks (the results by Indesteege et al. [45] and Sanadhya and
Sarkar [82] can only break 24 out of 64 steps of SHA-256).

2 In 2005, there were about 800 uses of MD5 in Microsoft Windows.

The First 30 Years of Cryptographic Hash Functions 7

However, the breakthrough collision attacks on MD5 and SHA-1 have resulted
in a serious concern about the robustness of our current hash functions. With
the exception of the recent rogue CA attack of [85], the practical impact of these
attacks has so far been rather limited, as most applications rely on (second)
preimage resistance rather than collision resistance. For MD2, Knudsen et al. [53]
find preimages in time 273. Leurent [56] has shown that preimages for MD4 can
be found in 2102 steps, and Sasaki and Aoki have developed a shortcut preimage
attack for MD5 [83] with complexity 2123. Preimage attacks for SHA-1 seem to
be completely beyond reach today: the best attack by Aoki et al. [4] works for
48 out of 80 steps). Somewhat surprisingly, preimages for SHA-256 can be found
faster than brute force for 43 out of 64 steps [3].

In view of these developments, the cryptographic community agrees that we
need new hash functions that offer an adequate security margin for the next 30
years or more; in view of this it would be prudent to develop alternatives for SHA-
2. This has motivated NIST to call for an open competition; this is a procedure
commonly used in cryptography, a.o. for the block ciphers DES and AES; there
were also the European competitions NESSIE [73] and eSTREAM [78] as well as
the Japanese Cryptrec initiative [44]. While the industry is currently migrating
to SHA-256 as a replacement for MD5 and SHA-1, some players seem to be
waiting for SHA-3.

4 The NIST SHA-3 Competition

After two open workshops and a public consultation period, NIST has published
on November 2, 2007 an open call for contributions for SHA-3, a new crypto-
graphic hash family [67]. The deadline for the call for contributions was October
31, 2008. A SHA-3 submission needs to support hash results of 224, 256, 384
and 512 bits to allow substitution for the SHA-2 family. It should work with
legacy applications such as DSA and HMAC. Designers should present detailed
design documentation, including a reference implementation, optimized imple-
mentations for 32-bit and 64-bit machines; they should also evaluate hardware
performance. If an algorithm is selected, it needs to be available worldwide with-
out royalties or other intellectual property restrictions.

Even if preparing a submission required a substantial effort, NIST received 64
submissions. Early December 2008, NIST has announced that 51 designs have
been selected for the first round. Five of the 13 rejected designs have been pub-
lished by their designers (see [35]); it is perhaps not surprising that four of these
five designs have been broken very quickly. From the 51 Round 1 candidates,
about half were broken in early July 2009. This illustrates that designing a secure
and efficient hash function is a challenging task.

On July 24, 2009, NIST announced that 14 algorithms have been selected for
Round 2, namely Blake, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl,
Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD and Skein. By mid Septem-
ber 2009, several of these algorithms have been tweaked, which means that small
modifications have been made that should not invalidate earlier analysis. The

8 B. Preneel

majority of these designs use an iterated approach as described in Sect. 2.2 or
a variant thereof: four Round 2 candidates (Blue Midnight Wish, Grøstl, Sha-
bal, and SIMD) use a modification of the Merkle-Damg̊ard construction with
a larger internal memory, also known as a wide-pipe construction, and three
use the HAIFA approach [15] (Blake, ECHO, and SHAvite-3). Five candidates
(CubeHash, Fugue, Hamsi, Keccak, and Luffa) use a (variant of a) sponge con-
struction [13]. Several designs (ECHO, SHAvite-3, Fugue, and Grøstl) employ
AES-based building blocks; the first two benefit substantially from the AES in-
structions that will be offered in the 2010 Intel Westmere processor (see [12] for
details). The hash functions Blue Midnight Wish, CubeHash, Blake and Skein
are of the ARX (Addition, Rotate, XOR) type; they derive their non-linearity
from the carries in the modular addition.

About half the Round 1 candidates originate from Europe, one third from
North America, and one in six from Asia; two designs are from the Southern
Hemisphere. Note that this is only an approximation as some algorithms have
designers from multiple components and some designers have moved. A very
large part of the Round 1 cryptanalysis was performed by researchers in Europe.
In Round 2, 9 out of 16 (64%) of the designs are European, while 3 are from
North America and 2 from Asia.

Two designs were expected for Round 2 but did not make it. MD6 by Rivest
was probably not selected because of the slower performance; moreover, an error
was found by the designer in the proof of security against differential attacks.
Lane was probably removed because of the rebound attack on its compression
function in [58]; it should be pointed out that this attack has a very high memory
complexity, which makes it questionable whether it is more efficient than a brute
force attack.

Two designs in Round 1 had remarkable security results: SWIFFT admits an
asymptotic proof of security against collision and preimage attacks under worst-
case assumptions about the complexity of certain lattice problems; the collision
and preimage security of FSE can be reduced to hard problems in coding theory.
However, both designs are rather slow; moreover, they require additional building
blocks to achieve other security properties.

It is notably difficult to make reliable performance comparisons; all the
Round 2 candidates have a speed that varies between 5 and 35 cycles per byte.
It should be pointed out that due to additional implementation efforts, the best
current SHA-2 implementations have a speed of about 15 cycles/byte; it will
thus become more difficult for SHA-3 to be faster than SHA-2. The reader is
referred to the SHA-3 Zoo and eBASH for security and performance updates;
these sites are maintained by the ECRYPT II project [35].

The following tentative time line has been announced for the remainder of
the competition: NIST intends to select approximately 5 finalists in Q4 of 2010.
The third and final conference will take place in early 2012; it will be followed
by an announcement of the decision in Q2 of 2012. Overall, it seems that there
are many interesting candidates and the review and selection process will be

The First 30 Years of Cryptographic Hash Functions 9

extremely challenging. As a consequence of this competition, both the theory
and practice of hash functions will make a significant step forward.

5 Concluding Remarks

During the last five years, we have seen a cryptographic meltdown in the security
of widely used hash functions. Fortunately the practical implications have been
limited, as most applications rely on (second) preimage resistance rather than
on collision resistance. However, we have learned that upgrading cryptographic
algorithms is always more difficult than anticipated. This is surprising, since
in software implementations cryptographic algorithms are typically negotiated
during the first phase of the protocol; Bellovin and Rescorla [11] explain the
shortcomings of TLS in this context.

We can only regret that SHA-1 was not designed with 128 or 160 steps in-
stead of 80; this would have avoided many of the problems we face today. While
RIPEMD-160 seems a more secure alternative, its adoption is still limited: most
users are upgrading to SHA-256, because of the longer hash result.

During the last five years, the theory and practice of cryptographic hash
functions has advanced substantially. In view of this, one can expect that the
SHA-3 competition will result in a robust hash function with a good performance.
It is essential that the selection is not driven too much by performance; sufficient
attention should be paid to the assurance in the security evaluation (that is, how
easy or hard is the analysis of the design). Finally, note that (except for some
tweaks), the design of SHA-3 will reflect the state of the art in 2008, rather than
the state of the art in 2012.

For the long term, we face the challenging problem to design an efficient hash
function for which the security can be reduced to a mathematical problem that
is elegant and/or better understood.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings 28th
ACM Symposium on the Theory of Computing, pp. 99–108 (1996)

2. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving it-
erated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 130–146. Springer, Heidelberg (2007)

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

4. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced
SHA-0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

5. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function. NESSIE submis-
sion (September 2000)

6. Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

10 B. Preneel

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

8. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

9. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

11. Bellovin, S.M., Rescorla, E.K.: Deploying a new hash algorithm. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS 2006, The
Internet Society (2006)

12. Benadjila, R., Billet, O., Gueron, S., Robshaw, M.J.B.: The Intel AES instructions
set and the SHA-3 candidates. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 162–178. Springer, Heidelberg (2009)

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

14. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

15. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. In:
Proceedings Second NIST Hash Functions Workshop 2006, Santa Barbara, CA,
USA (August 2006)

16. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES variants with up to 10 rounds. IACR
Eprint 2009/374, August 19 (2009)

17. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

18. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–355. Springer, Heidelberg (2002)

19. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Joux, A.: On the security of iterated
hashing based on forgery-resistant compression functions. IACR Eprint 2009/077,
February 6 (2009)

20. Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas, S.M., Meyer, C.H.,
Oseas, J., Pilpel, S., Schilling, M.: Data Authentication Using Modification Detec-
tion Codes Based on a Public One Way Encryption Function, U.S. Patent Num-
ber 4,908,861, March 13 (1990)

21. Chabaud, F., Joux, A.: Differential collisions: an explanation for SHA-1. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer,
Heidelberg (1998)

22. Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions from ex-
pander graphs. In: Proceedings Second NIST Hash Functions Workshop 2006,
Santa Barbara, CA, USA (August 2006)

23. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

The First 30 Years of Cryptographic Hash Functions 11

24. Coppersmith, D.: Analysis of ISO/CCITT Document X.509 Annex D. IBM
T.J. Watson Center, Yorktown Heights, N.Y., 10598, Internal Memo, June 11
(1989) (also ISO/IEC JTC1/SC20/WG2/N160)

25. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

26. Damg̊ard, I.B.: Collision free hash functions and public key signature schemes. In:
Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216.
Springer, Heidelberg (1988)

27. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

28. Dean, R.D.: Formal aspects of mobile code security, PhD thesis, Princeton Univer-
sity (January 1999)

29. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer,
Heidelberg (2008)

30. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

31. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on In-
formation Theory IT-22(6), 644–654 (1976)

32. Dobbertin, H.: The status of MD5 after a recent attack. CryptoBytes 2(2), 1–6
(Summer 1996)

33. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996), http://www.esat.kuleuven.ac.be/~bosselae/ripemd160

34. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) Eurocrypt 2008. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

35. ECRYPT II, The SHA-3 Zoo,
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

36. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

37. FIPS 46, Data Encryption Standard, Federal Information Processing Standard,
NBS, U.S. Department of Commerce (January 1977) (revised as FIPS 46-1(1988);
FIPS 46-2(1993), FIPS 46-3(1999))

38. FIPS 180-1, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., April 17 (1995)

39. FIPS 180-2, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-2, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., August 26 (2002) (Change notice 1
published on December 1, 2003)

40. Gauravaram, P., Knudsen, L.R.: On randomizing hash functions to strengthen
the security of digital signatures. In: Joux, A. (ed.) EUROCRYPT 2008. LNCS,
vol. 5479, pp. 88–105. Springer, Heidelberg (2009)

41. Grassl, M., Ilic, I., Magliveras, S., Steinwandt, R.: Cryptanalysis of the Tillich-
Zémor hash function, IACR Eprint 2009/376, July 30 (2009)

42. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. on Informa-
tion Theory IT-26(4), 401–406 (1980)

http://www.esat.kuleuven.ac.be/~bosselae/ripemd160
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

12 B. Preneel

43. Hirose, S.: Some plausible constructions of double-block-length hash functions.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

44. Imai, H., Yamagishi, A.: “Cryptrec”. In: van Tilborg, H.C.A. (ed.) Encyclopedia
of Cryptography and Security, pp. 119–123 (2005)

45. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other
non-random properties for step-reduced SHA-256. In: Avanzi, R.M., Keliher, L.,
Sica, F. (eds.) SAC 2009. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

46. ISO/IEC 10118, Information technology – Security techniques – Hash-functions,
Part 1: General (2000); Part 2: Hash-functions using an n-bit block cipher al-
gorithm (2000); Part 3: Dedicated hash-functions (2003); Part 4: Hash-functions
using modular arithmetic (1998)

47. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

48. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer,
Heidelberg (2007)

49. Kaliski Jr., B.S.: The MD2 Message-Digest algorithm, Request for Comments
(RFC) 1319, Internet Activities Board, Internet Privacy Task Force (April 1992)

50. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

51. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

52. Knudsen, L.R., Lai, X., Preneel, B.: Attacks on fast double block length hash
functions. Journal of Cryptology 11(1), 59–72 (Winter 1998)

53. Knudsen, L.R., Mathiassen, J.E., Muller, F., Thomsen, S.S.: Cryptanalysis of MD2.
Journal of Cryptology, 19 p. (in print, 2010)

54. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

55. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full Whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

56. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 412–428. Springer, Heidelberg (2008)

57. Manuel, S., Peyrin, T.: Collisions on SHA-0 in one hour. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 16–35. Springer, Heidelberg (2008)

58. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full Lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

59. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

60. Merkle, R.: Secrecy, Authentication, and Public Key Systems. UMI Research Press
(1979)

61. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

62. Merkle, R.: A fast software one-way hash function. Journal of Cryptology 3(1),
43–58 (1990)

The First 30 Years of Cryptographic Hash Functions 13

63. Miyaguchi, S., Iwata, M., Ohta, K.: New 128-bit hash function. In: Proceedings
4th International Joint Workshop on Computer Communications, Tokyo, Japan,
July 13–15, pp. 279–288 (1989)

64. Moore, J.H., Simmons, G.J.: Cycle structure of the DES for keys having palin-
dromic (or antipalindromic) sequences of round keys. IEEE Transactions on Soft-
ware Engineering 13, 262–273 (1987)

65. Naito, Y., Yoneyama, K., Wang, L., Ohta, K.: How to confirm cryptosystems secu-
rity: the original Merkle-Damg̊ard is still alive! In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 382–398. Springer, Heidelberg (2009)

66. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings 21st ACM Symposium on the Theory of Computing,
pp. 387–394 (1990)

67. NIST SHA-3 Competition, http://csrc.nist.gov/groups/ST/hash/
68. Pal, P., Sarkar, P.: PARSHA-256 – A new parallelizable hash function and a multi-

threaded implementation. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp.
347–361. Springer, Heidelberg (2003)

69. Patarin, J.: Collisions and inversions for Damg̊ard’s whole hash function. In:
Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp.
307–321. Springer, Heidelberg (1995)

70. Pinkas, D.: The need for a standardized compression algorithm for digital signa-
tures. In: Ingemarsson, I. (ed.) Abstracts of Papers: Eurocrypt 1986, A Workshop
on the Theory and Application of Cryptographic Techniques, May 20-22, 1986,
p. 7 (1986)

71. Preneel, B.: Analysis and design of cryptographic hash functions. Doctoral Disser-
tation, Katholieke Universiteit Leuven (1993)

72. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

73. Preneel, B.: NESSIE project. In: van Tilborg, H.C.A. (ed.) Encyclopedia of Cryp-
tography and Security, pp. 408–413 (2005)

74. Rabin, M.O.: Digitalized signatures. In: Lipton, R., DeMillo, R. (eds.) Foundations
of Secure Computation, pp. 155–166. Academic Press, New York (1978)

75. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

76. Rivest, R.L.: The MD5 message-digest algorithm. Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force (April 1992)

77. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications ACM 21, 120–126 (1978)

78. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.
Springer, Heidelberg (2008)

79. Rogaway, P., Shrimpton, T.: Cryptographic hash function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004)

80. Rogaway, P., Steinberger, J.P.: Constructing cryptographic hash functions from
fixed-key blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
433–450. Springer, Heidelberg (2008)

81. Saarinen, M.-J.O.: Security of VSH in the real world. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 95–103. Springer, Heidelberg (2006)

http://csrc.nist.gov/groups/ST/hash/

14 B. Preneel

82. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-2. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 91–103. Springer, Heidelberg (2008)

83. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2008. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2008)

84. Simon, D.: Finding collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

85. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009)

86. Stam, M.: Beyond uniformity: better security/efficiency tradeoffs for compression
functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008)

87. Stam, M.: Blockcipher based hashing revisited. In: Dunkelman, O. (ed.) Fast Soft-
ware Encryption. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

88. Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

89. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

90. Tillich, J.-P., Zémor, G.: Collisions for the LPS expander graph hash function. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 254–269. Springer,
Heidelberg (2008)

91. Van Heurck, P.: Trasec: Belgian security system for electronic funds transfers.
Computers & Security 6, 261–268 (1987)

92. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of Cryptology 12(1), 1–28 (1999)

93. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

94. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

95. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

96. Wiener, M.J.: The full cost of cryptanalytic attacks. Journal of Cryptology 17(2),
105–124 (2004)

97. Winternitz, R.: A secure one-way hash function built from DES. In: Proceedings
IEEE Symposium on Information Security and Privacy, pp. 88–90. IEEE Press,
Los Alamitos (1984)

98. Yasuda, K.: How to fill up Merkle-Damg̊ard hash functions. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer, Heidelberg (2008)

99. Yuval, G.: How to swindle Rabin. Cryptologia 3, 187–189 (1979)

Errors Matter: Breaking RSA-Based PIN
Encryption with Thirty Ciphertext Validity

Queries

Nigel P. Smart

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom

nigel@cs.bris.ac.uk

Abstract. We show that one can recover the PIN from a standardized
RSA-based PIN encryption algorithm from a small number of queries to a
ciphertext validity checking oracle. The validity checking oracle required
is rather special and we discuss whether such oracles could be obtained
in the real world. Our method works using a minor extension to the ideas
of Bleichenbacher and Manger, in particular we obtain information from
negative, as well as positive, responses from the validity checking oracle.

1 Introduction

Despite advances in provably secure cryptographic systems over the last decade
or so, there are still a large number of systems deployed which do not use provably
secure algorithms. This is mainly due to legacy reasons, and the problems of
replacing or updating already deployed systems. In this paper we focus on a
particular example of a non-provably secure encryption method based on RSA,
namely the PIN encryption method in the EMV card payment system. EMV
(Europay, Mastercard, Visa) is an industrial consortium which develops card
payment standards for the banking industry. The chip-and-pin system used in
most credit card payment systems is the main example deployed instantiation
of their standards.

The RSA algorithm, being the earliest public key algorithm, was deployed in
a number of systems before the advent of the provable security methodology.
Probably the most famous example was the early adoption of the PKCS-v1.0
encryption method employed in SSL. This was famously attacked by Bleichen-
bacher [2], who used a ciphertext validity checking oracle, for the PKCS-v1.0
padding scheme, to recover the underlying RSA plaintext for a given challenge.
The number of queries required by Bleichenbacher was very large; [2] claims 220

queries needed to break an RSA key size as used in SSL.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 15–25, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 N.P. Smart

With the advent of provably secure systems such as OAEP [1] it appeared
that RSA based systems could be deployed in a provably secure manner. How-
ever, Manger [7] showed how an extension to Bleichenbacher’s attack could be
deployed against RSA-OAEP when the ciphertext validity checking oracle re-
turned different error messages when it failed for different events (similar data
can be obtained via timing attacks on poor implementations). In particular the
OAEP padding scheme when applied to RSA can result in two possible errors
occurring on decrypting an invalid ciphertext. The first error is that upon in-
verting the RSA function one obtains a number which is too large for the OAEP
padding mechanism. The second error is that the OAEP padding mechanism re-
turns an invalid ciphertext result. The security proof for OAEP assumes that the
first error does not occur. But Manger, using an oracle which tells him whether
the first error occurs as opposed to the second, managed to break the RSA-
OAEP scheme, again with a number of ciphertext queries which was linear in
(but strictly larger than) the bit-size of the public key. For example [7] claims
1100 queries were needed to break a 1024-bit RSA message, and 2200 queries
for a 2048 bit message.

In our paper we take a similar approach to Manger, in that we look at one
out of a possible set of failure events. We examine the PIN encryption method
in the EMV standard [4,5]. This method is used to RSA encrypt four digit PIN
numbers from a trusted terminal to a smart card. The smart card then decrypts
the RSA ciphertext, recover the PIN and checks it against it’s internally held
PIN value. On decrypting the RSA ciphertext the card performs three validity
checks. We assume, much as Manger does, that the failure or success of one of
these checks, leaks to the attacker.

We then adapt the method of Bleichenbacher and Manger to this situation.
In particular a number of simplifications can be performed. Firstly we are not
interested in recovering the full RSA plaintext, we only care about the underlying
PIN. Luckily, for the attacker, each PIN defines a distinct interval of possible
RSA plaintexts. So our goal is to determine which of 10000 possible intervals the
plaintext lies in. Secondly, and much for the same reason, we are able to use the
failure of an oracle query to reduce the possibilities for the underlying PIN. In
the Bleichenbacher and Manger attacks only positive oracle responses are used
to reduce the space of underlying plaintexts.

We end the paper by discussing the practical impact of our attacks, and
point out that it is highly unlikely that our method will provide a means for
an attacker to obtain PINs for the EMV system. However, our work does once
again point out the need for old legacy systems to be replaced with new ones
(EMVCo is already engaged in a process to update their standards due to the
need to increase key sizes). In addition our method of using negative responses
from the validity checking oracle may be useful in other applications.

2 PIN Encryption Method

We assume an RSA modulus N of t bits in length, where t is a precise multiple of
eight. We write k = t/8 for the number of bytes in N . In this section we outline

Errors Matter: Breaking RSA-Based PIN Encryption 17

how PIN encryption and verification is performed in the EMV standard [4,5]
(the same method is used in the equivalent ISO standard [6]) First we cover the
creation of the PIN block, then we discuss how an RSA message is formatted,
and finally we discuss verification. Full details can be found in [4,5]. For later
use we write

f(a, b, u, r) = a · 28(k−1) + b · 28(k−9) + u · 28(k−17) + r

where a is a one-byte value, b and u are eight bytes values and r is a k− 17 byte
value.

PIN Block Format: A PIN block is defined to be a sequence of eight bytes,
or equivalently sixteen nibbles. A PIN is assumed to be a sequence of between
four and twelve integers in the range ’0’ to ’9’. The PIN block is then defined to
be (in nibbles)

C N P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

where

– C is the number 2.
– N encodes the length of the PIN, i.e. it is a number between 0 and 12.
– P is a PIN digit between 0 and 9.
– F is a filler digit of 15 (i.e. the nibble with all ones set).

In the common case of a four digit PIN, P1‖P2‖P3‖P4, then the value of the PIN
block (as an integer) is given by

b = 2 · 260 + 4 · 256 + (P1 · 212 + P2 · 28 + P3 · 24 + P4) · 240 + (240 − 1)

= (261 + 258 + 240 − 1) + (P1 · 212 + P2 · 28 + P3 · 24 + P4) · 240.

RSA Message Format: Before encrypting a PIN the encryptor obtains an
8-byte nonce u from the decryptor. This is used to avoid replay attacks. The
encryptor then generates the pin block b and creates a k − 17 byte random
number r. The message m is then created as

m = f(127, b, u, r).

The encryptor then generates

c = me (mod N)

and sends c to the verifier.

PIN Verification: The verifier, who knows the RSA secret key d, on obtaining
a ciphertext c′ first obtains the underlying RSA plaintext m′, via

m′ = cd (mod N).

Then the verifier recovers the values of a′, b′, u′, r′ from the equation

m′ = f(a′, b′, u′, r′).

18 N.P. Smart

Then he performs the following tests:

1. Return fail if u �= u′, i.e. the nonce recovered is not equal to the nonce sent.
2. Return fail if a′ �= 127.
3. Return fail if the PIN in the PIN block b′ is not equal to the expected PIN.

We call the above tests Test 1, Test 2, and Test 3 in what follows. Note, that no
mention is made in [4] of checking whether the PIN block is formatted correctly,
only that the recovered PIN is correct.

In this paper we consider the situation when Test 2 is always executed for
every ciphertext passed to the verifier and the attacker can determine whether
the Test 2 returns fail or not. Later in Section 4 we shall discuss how realistic
this is.

We note that there is a trivial attack on the PIN system, given a card one
could run through all 10000 possible PIN blocks, obtain 10000 nonces, and then
form 10000 ciphertexts. Each ciphertext is then passed to the card for checking,
until one is returned as valid, in which case the attacker has determined the
correct PIN. However, as we shall discuss later, the card has mechanisms built
into it to protect against checking too many invalid PIN numbers. Hence, the
question is how; few challenge ciphertexts are needed to recover a PIN?

3 The “Attack”

Our method is a simple extension of the methods of Bleichenbacher [2] as ap-
plied to the PKCS-v1.0 encryption scheme, and the method of Manger [7] as
applied to the PKCS-v1.2 OAEP encryption scheme. In the original methods of
Bleichenbacher and Manger the attacker is given a validity oracle which given
a ciphertext returns whether the underlying plaintext lies in a given range (the
range depending on the padding scheme being used). The attacker uses the
positive responses from the oracle to essentially half the interval in which the
plaintext behind a target ciphertext lies.

The main difference in our attack is that since we are only trying to determine
one of a small number of PINs, rather than recovering the whole text, we are
able to make use of negative results from our validity oracle. This comes at the
expense of increasing the number of possible intervals for our target message.
However, this does not result in an exponential blow-up since we have a small
number of ranges in which a valid ciphertext could lie.

We describe our method in a bottom-up fashion by first describing Algorithm
1. This takes as input an interval [a, b], and an integer s such that we know
bounds L and U such that

L ≤ s ·m (mod N) ≤ U,

for a message m ∈ [a, b]. The algorithm works by evaluating all integers r such
that

L ≤ s ·m− r ·N ≤ U,

Errors Matter: Breaking RSA-Based PIN Encryption 19

which leads to

s · a− U ≤ s ·m− U ≤ r ·N ≤ s ·m− L ≤ s · b− L,

since m ∈ [a, b]. Then we deduce new bounds on m, for each of these values of
r, from

L + r ·N ≤ s ·m ≤ U + r ·N.

Algorithm 1. UpdateInterval(a, b, L, U, s,N)
Input: a, b, L, U, s,N
Output: A list of intervals, List
List← {}
for r from �(s · a− U)/N� to �(s · b− L)/N� do

a′ ← max(a, �(L + r ·N)/s�)
b′ ← min(b, �(U + r ·N)/s�)
if a′ ≤ b′ then

List← List ∪ {[a′, b′]}
return List

To describe the our next Algorithm 2, we assume we have an oracleO which on
input of an RSA ciphertext c′ will return whether the underlying RSA message
m′ lies in the interval [L,U], for specific fixed integers L and U . Algorithm 2
takes as input a ciphertext c a list of intervals List, for which we know that the
underlying message m lies in one of the intervals contained in List, and a “test”
integer s.

Algorithm 2. UpdateList(List, s, c, N, e)
Input: List, s, c, N, e
Output: A new list of intervals, List′

List′ ← {}
c′ = se · c (mod N)
flag ← O(c′)
forall [a, b] ∈ List do

if flag then
List′ = List′ ∪ UpdateInterval(a, b,L,U , s, N)

else
List′ = List′ ∪ UpdateInterval(a, b, 0,L, s, N)
List′ = List′ ∪ UpdateInterval(a, b,U , N, s,N)

return List′

Notice that UpdateList will create at most two intervals for every one in List
if the oracle returns false. This is the main difference between our method and
that of Bleichenbacher and Manger. However, this only works due to the nature
of the underlying message we are trying to recover. It may appear that the size of
List′ could become very large if UpdateList is repeatedly called, but we control

20 N.P. Smart

the size of List′ using another list of intervals TList, which contains one interval
for each PIN number. The TList is created by Algorithm 3 which takes as input
the value of the nonce u which underlies in the target ciphertext c. In Algorithm
3 we assume that PINs are four digits in length. Notice, that all the intervals
created are distinct.

Algorithm 3. CreateTList(u, k)
Input: u, k
Output: TList
TList← {}
forall p1, p2, p3, p4 ∈ [0, 9] do

b← the PIN block for this PIN.
a← f(127, b, u, 0)
b← f(127, b, u, 28(k−17))
TList← TList ∪ {[[a, b], [p1, p2, p3, p4]]}

return TList

To filter the intervals we then use Algorithm 4. This takes a set of intervals
List for which one contains the target message, and a list TList of intervals
which contain the PINs. It then forms two new lists List′ and TList′. Clearly
if Algorithm 4 ever finds returns TList′ containing only one element, then we
have found the PIN.

Algorithm 4. Filter(List, TList)
Input: List, TList
Output: List′, TList′

List′ ← {}, TList′ ← {}
forall [a, b] ∈ List do

flag ← false
forall [[a′, b′], P IN] ∈ TList do

if a′ ≤ b and a ≤ b′ then
TList′ ← TList′ ∪ {[[a′, b′], P IN]}
flag ← true

if flag then
List′ ← List′ ∪ {[a, b]}

return List′, TList′

In Algorithm 5 we describe the main method, which takes as input a cipher-
text c corresponding to a PIN encryption (and the corresponding nonce u) and
outputs the corresponding PIN. In this algorithm we choose the value of s to use
in the call to the oracle so as to hopefully half the number of possible messages
on each call to the oracle. For a particular value of r we require that

L ≤ s ·m− rN ≤ U

Errors Matter: Breaking RSA-Based PIN Encryption 21

Algorithm 5. Main(c, u, N, e)
Input: c

Output: PIN
TList←CreateTList(u, k)
b0 ← the pin block corresponding to the PIN: 0, 0, 0, 0
b9 ← the pin block corresponding to the PIN: 9, 9, 9, 9
a← f(127, b0, u, 0)
b← f(127, b9, u, 28(k−17))
List← {[a, b]}
r ← 0
while #TList > 1 do

a← min{a : [a, b] ∈ List}
b← max{b : [a, b] ∈ List}
r ← max(r + 1, �(2 · b · (U − L)/(b− a)− L)/N�)
s← �(L+ r ·N)/b�
if s ≤ �(U + r ·N)/a� then

List←UpdateList(List, s, c,N, e)
List, TList←Filter(List, TList)

PIN ← TList[1][1]
return PIN

and so we must have

�(L+ r ·N)/b� ≤ s ≤ �(U + r ·N)/a	,
which explains the choice of s in Algorithm 5. However, the key is the choice
of r.

If we assume an oracle call is successful then the range of the new maximum
possible interval is given by (U − L)/s. Which given our above bound on s is
upper bounded by

b

(U − L
L+ r ·N

)
.

But we really want this last value to be less than (b − a)/2. Thus we require

b

(U − L
L+ r ·N

)
≤ b− a

2
,

which implies

r ≥ 2 · b · (U − L)/(b − a)− L
N

.

To run the algorithm, which works for any oracle O, although possibly not very
efficiently, we need to specify the values of L and U , which depend on precise
validity checking oracle O that we use.

3.1 Experimental Results

We assume the validity checking oracle simply returns true if the leading byte
of the plaintext is equal to 127, and it returns false otherwise. This means that

22 N.P. Smart

our values for L and U are given by

L = 127 · 28(k−1),

U = 127 · 28(k−1) + 28(k−1) − 1.

If we use the parameters for RSA keys as defined in the EMVCo specification,
then we find that the RSA key size is only 896 bits, i.e. k = 112. This is the size
of the RSA modulus for the chip-and-pin cards public key.

We ran a series of 1000 experiments to emulate the above attack and recorded
how many oracle queries were needed to recover the PIN. The percentages can
be found in Table 1. Notice, that the number of oracle queries is incredibly
low by modern cryptographic standards (even for a modulus of 896 bits). The
reason is that although the message appears to be padded with a large amount
of randomness, this randomness is not mixed in with the plaintext (like it would
be with OAEP). In particular the combination of this with the small number
of possible plaintexts (i.e. 10000) leads to a highly reduced number of oracle
queries.

Table 1. Percentage of attacks with a given number of oracle queries

Range % Range % Range %
0− 4 0.0 5− 9 0.3 10− 14 6.9

15− 19 25.9 20− 24 28.2 25− 29 13.7
30− 34 7.4 35− 39 4.6 40− 44 3.0
45− 49 2.5 50− 54 0.3 55− 59 1.3
60− 64 1.2 65− 69 0.6 70− 74 0.4
75− 79 0.5 80− 84 0.1 85− 89 0.0
90− 94 0.1 95− 99 0.1 100− 104 0.2

105− 109 0.1 110− 114 0.1 115− 119 0.4
120− 124 0.1 125− 129 0.1 130− 134 0.2
135− 139 0.1 140− 144 0.1 ≥ 145 1.5

So we see that 75% of all PINs can be recovered with less than 30 calls to the
oracle.

4 Practical Attack Considerations

We now consider what are the practical consequences of the above analysis.
Firstly we consider how the information which our oracle provides may (or may
not) be obtained in real life. Then we consider, assuming the oracle is available,
how one can obtain the required number of oracle queries.

4.1 Is the Oracle Practical?

Upon performing the RSA decryption function the card needs to execute three
validity checking steps as explained earlier. The EMV standard [4] mentions

Errors Matter: Breaking RSA-Based PIN Encryption 23

these in the order 1, 2, 3 as specified earlier, however no warnings are given that
executing them in a different order will make a difference to the security. A PIN
encryption passes only if all tests pass.

In [8] the tests are given in a different order, namely 2, 1, 3. Indeed it might be
tempting to implement the padding checking algorithm in this order with Test 2
before the other operations since then one is dealing with the leading byte first.

In performing three tests there are two basic ways this can be done. The first
method tests the three conditions individually in sequence and aborts on the
first occurrence of a failure, we call this the “individual” method. In the second
method, one tests all three conditions and then returns failure at the end, we
call this the “aggregate” method. The aggregate method is usually considered
“best practice” since it avoids any timing analysis which could result from the
individual method. However, any padding test is susceptible to a possible simple
power analysis style attack in which the attacker observes whether the test passes
or fails.

In the following table we give for each method of testing, and each order
of the tests whether the timing analysis or simple power analysis could result
in an attack against PIN encryption. We make no claim as to whether such
an attack could be carried out in practice, only that it is possible if such an
implementation choice is made. In all cases we ignore the trivial attack which
requires 10000 ciphertext queries.

Order Method Timing SPA
1, 2, 3 Individual - -
1, 3, 2 Individual - -
2, 1, 3 Individual � �

2, 3, 1 Individual � �

3, 2, 1 Individual - -
3, 1, 2 Individual - -
1, 2, 3 Aggregate - �

1, 3, 2 Aggregate - �

2, 1, 3 Aggregate - �

2, 3, 1 Aggregate - �

3, 2, 1 Aggregate - �

3, 1, 2 Aggregate - �

We note that if Test 2 is not performed first in the individual method then it
is highly unlikely for the attacker to be able to apply the Bleichenbacher/Manger
style attack above, since the card is highly likely to abort after performing Test
1. This means that is would be better practice to implement the individual test
method in the order 1, 2, 3, rather than the aggregate test. However, it is clear
from our analysis that any card which executes Test 2, for every ciphertext
passed to it, is susceptible assuming a suitable side-channel.

24 N.P. Smart

4.2 Can One Obtain This Many Queries?

So from now on we assume that an attacker can obtain access to an oracle which
tells him whether Test 2 passes or fails for a particular ciphertext. The card
usually has two counters within it; a PIN try counter n and a PIN decipherment
error counter m. The card which will lock as soon as n invalid PINs have been
tested (or m decryption errors have occured) in a row. According to sources
within the industry, the value of m is usually quite large and is independent of
n, i.e. decrementing m does not decrement n, hence the PIN try counter only
applies upon a valid decryption. In particular the PIN try counter is decremented
only on the failure of what we called Test 3, whilst the PIN decipherment counter
is decremented on failure of Test 1 or Test 2. The value of n is not stated in the
standard but in the field it is generally set to be equal to three, whilst the use of
a value for m is not alluded to at all within the standard. Thus according to our
sources it is plausible to be able to query the card with many invalid ciphertexts
before it locks out.

In the following we however assume the most pessimistic situation for the
attacker, in that we assume that a PIN decipherment error is treated as a PIN
try error and that the value of the PIN try counter is set to three. This means an
attacker can execute at most two invalid ciphertext queries for every valid PIN
number entered by the user. It is not unreasonable, given how most people use
their cards, to assume that this can be increased to four, since users are used to
things “going wrong” (for example by entering their PIN incorrectly). Hence at
a electronic point of sale terminal they would not treat as suspicious the request
for a second PIN entry request.

Hence, obtaining 30 such ciphertext queries for attacking a particular user
would only be possible if one was able to find a user who repeatedly used his
card at the attackers terminal. Such an attack might be economic for a high
net-worth individual, but would still require around 7-8 such visits to obtain the
PIN with a 75% chance of success. Alternatively, a high through-put supermarket
could easily blame a software glitch for requiring all customers in one day to enter
their PINs three times. This would give a total of 6 such queries per card. With
enough customers passing through the door one would expect at least one PIN
to be recovered within a few hours of trading.

5 Conclusion

We have presented a variant of Bleichenbacher and Manger’s method to attack
PIN encryption via RSA. The attack can be considered highly theoretical, since
implementing it in practice would require a lot of work and would require the
card to provide a validity checking oracle for Test 2. What is interesting however
is the small number of oracle queries which result in a full PIN recovery.

In some sense theoretically our method could be improved. Information the-
oretically we are only trying to recover 13.28 bits of information, since we are
trying to recover a 10000 bit PIN number. Each oracle query returns one bit of
information, i.e. does a certain multiple of the message lie in a given interval?

Errors Matter: Breaking RSA-Based PIN Encryption 25

It would be interesting whether the attack could be improved, for example by
a better choice of parameters or by using a different oracle, so as to reduce the
number of oracle queries even further.

However, finally we note that PIN encryption from the keypad to the card is
not implemented in many geographic locations. For example it was decided in
the UK chip-and-pin system to not implement PIN encryption so as to enable
cheaper cards, but we note that this comes at an expense in security as the
attacks on unencrypted PINs in [3] point out.

Acknowledgments

The author was partially supported by the eCrypt-2 Network of Excellence, and
a Royal Society Wolfson Merit Award.

References

1. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

2. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

3. Drimer, S., Murdoch, S.J., Anderson, R.: Thinking inside the box: system-
level failures of tamper proofing. In: IEEE Symposium on Security and Privacy,
pp. 281–295 (2008)

4. EMV. Integrated circuit card specifications for payment systems, Book 2. Security
and Key Management. Version 4.2 (June 2008), www.emvco.com

5. EMV. Integrated circuit card specifications for payment systems, Book 3. Applica-
tion Specification. Version 4.2 (June 2008), www.emvco.com

6. ISO 9564-2. Banking – Personal Identification Number management and security –
Part 2: Approved algorithm(s) for PIN encipherment (2005), www.iso.org

7. Manger, J.: A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS # 1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001)

8. Radu, C.: Implementing electronic card payment systems. Artech House Publishers
(2002)

www.emvco.com
www.emvco.com
www.iso.org

Efficient CRT-RSA Decryption for Small
Encryption Exponents

Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India
{subho,santanu r}@isical.ac.in

Abstract. Consider CRT-RSA with the parameters p, q, e, dp, dq, where
p, q are secret primes, e is the public encryption exponent and dp, dq are
the private decryption exponents. We present an efficient method to se-
lect CRT-RSA parameters in such a manner so that the decryption be-
comes faster for small encryption exponents. This is the most frequently
used situation for application of RSA in commercial domain. Our idea
is to choose e and the factors (with low Hamming weight) of dp, dq first
and then applying the extended Euclidean algorithm, we obtain p, q of
same bit size. For small e, we get an asymptotic reduction of the order
of 1

3
in the decryption time compared to standard CRT-RSA parame-

ters for large N = pq. In case of practical parameters, with 1024 bits N
and e = 216 + 1, we achieve a reduction of more than 27%. Extensive
security analysis is presented for our selected parameters and benchmark
examples are also provided.

Keywords: RSA, CRT-RSA, Key Generation, Efficient Decryption,
Primes, Exponents.

1 Introduction

Till date, RSA [17] is the most important public key cryptosystem in academics
as well as commercial domain. Given the wide application of RSA, an impor-
tant area of research is to explore how one can implement the encryption and
decryption operations of RSA efficiently. The encryption and decryption opera-
tions (modular exponentiations) are based on modular square and multiplication
of large integers. The overall cost of exponentiation depends on the bit pattern
of the encryption and decryption exponents. In this paper we present certain
strategies to choose the RSA exponents in such a manner so that the cost of
decryption gets reduced significantly compared to the existing methods.

To explain our contribution more clearly, let us first present the RSA public
key cryptosystem. By li, we denote the number of bits in an integer i, i.e.,
li = �log2 i� when i is not a power of 2 and li = log2 i + 1, when i is a power of
2. In RSA, we need a large integer N such that N = pq, where p, q are primes.
For better security practice, the primes are so chosen that lp = lq = lN

2 . The
encryption and decryption exponents are denoted by e, d and they are chosen in

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 26–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient CRT-RSA Decryption for Small Encryption Exponents 27

such a manner that ed ≡ 1 mod φ(N), where φ(N) = φ(pq) = (p−1)(q−1). This
φ(.) is the well known Euler’s totient function. In general, e,N are distributed
as the public key and d is kept secret.

For encryption, the plaintext is managed in such a manner so that it can be
expressed as M1,M2, . . . ∈ ZN and the encryption operation is Ci = M e

i mod N ,
for i = 1, 2, The ciphertext Ci can be communicated through the public
channel and it can be decrypted by the valid receiver as Mi = Cd

i mod N .
The cost of modular exponentiation can be reduced if one can reduce e, d.

However, as ed > φ(N), we have le + ld ≥ lN and one cannot make both e, d
small. Consider that one likes to make the decryption process faster. Then the
secret decryption exponent d has to be made small. However, Wiener [25] showed

that when d < N
1
4

3 one can factor N efficiently making RSA insecure. This result
has been improved by Boneh and Durfee [4] till the upper bound N0.292.

To reduce the cost of encryption, one can take a small e. It has been pointed
out by Coppersmith [6], that RSA with very small e, e.g., e = 3, is not se-
cure. On the other hand, it is believed that little larger encryption exponents
are quite secure, as example it is a common practice to use e = 216 + 1. In
such a case, d becomes quite large, i.e., of the order of N , and the decryption
process will be much less efficient than the encryption. As an approach to make
RSA decryption faster in such a scenario, Wiener [25] proposed the application
of Chinese Remainder Theorem (CRT) as described earlier by Quisquater and
Couvreur [16]. This is known as CRT-RSA. Our final result will explain how the
designed parameters in this paper will provide substantial improvement in the
decryption phase of CRT-RSA while the encryption exponent is small (this is
the most popular commercial scenario). However, at this point let us motivate
how we can improve the basic RSA with our idea. This will help in building the
background of this work.

In the basic RSA, after choosing e, if one determines p, q first, then in most
of the cases d will be O(N). However, without deciding the primes first, one
may choose a large factor of d, say d1 and then try to find out the primes.
In such a case d = d1d2, where the designer has no control over the choice
of d2. For some ciphertext C, the decryption can be done as Ψ = Cd1 mod N
followed by M = Ψd2 mod N . Consider that d1 is chosen in such a manner so that
there are very few ones in its bit pattern. Then the number of multiplications
will be reduced significantly while calculating Ψ = Cd1 mod N . Our strategy
to find these parameters properly using Extended Euclidean Algorithm (EEA),
to analyse the security of these parameters and the advantages related to the
speed-up of our proposal are presented in Section 2.

For a quick reference, we present the famous square and multiply algorithm
for modular exponentiation in Algorithm 1. If one looks at the step 4, it is clear
to note that the number of multiplications required is equal to the number of
ones in the binary pattern of y. If the number of multiplications can be reduced,
then the process becomes faster and also consumption of power is less. Thus our
idea above in choosing d1 with few ones in the binary pattern provides signifi-
cant improvement. Note that there may be some special purpose algorithms for

28 S. Maitra and S. Sarkar

Algorithm 1. The fast square and multiply algorithm for modular exponentiation

Input: x, y, N
Output: xy mod N
z = y, u = 1, v = x;1

while z > 0 do2

if z ≡ 1 mod 2 then3

u = uv mod N ;4

end
v = v2 mod N ; z = � z

2
� ;5

end
return u.6

exponentiation that may work efficiently in some specific cases, but in general,
the fast square and multiply strategy presented in Algorithm 1 is considered
to be the most efficient and popular for modular exponentiation. Thus, while
analysing the advantage of our proposal, we will consider this algorithm as the
benchmark.

For any integer i, let the number of ones in its binary form be wi. Calculation
of xy mod N requires ly many squares and wy many multiplications. Consider-
ing the square and multiplication operation of large integers are of same time
complexity [15, Section 14.18], the calculation of xy mod N needs ly +wy many
multiplications following Algorithm 1. In average case, one may consider wy = ly

2
and hence the total cost of calculating xy mod N is around 3

2 ly many modulo
multiplications.

An alternative approach of RSA decryption is by Chinese Remainder Theo-
rem, which is popular as CRT-RSA [16,25]. The encryption technique is similar
to the standard RSA, but the decryption process is little different. Instead of one
decryption exponent as in standard RSA, here one needs two decryption expo-
nents (dp, dq) where dp ≡ d mod (p− 1) and dq ≡ d mod (q− 1). To decrypt the
ciphertext C, one needs to calculate both Cp ≡ Cdp mod p and Cq ≡ Cdq mod q.
From Cp, Cq one can get the plaintext M by the application of CRT. The CRT-
RSA decryption is 4 times faster than standard RSA on an average using the
schoolbook multiplication. However, with the large size integers, it may be useful
to try the Karatsuba multiplication and in such a case CRT-RSA decryption is
around 3 times faster than standard RSA on an average.

Later, in our discussion, it will analyse the decryption process of RSA as well
as CRT-RSA for small encryption exponent. The average number of modular
multiplications for both the situations are same which is 3lN

2 . In the case of
RSA, the operations are with lN bit integers, but for CRT-RSA the operations
are with lN

2 bit integers. This provides the advantage of CRT-RSA over RSA in
terms of execution efficiency. However, one should note that the secret primes
p, q need to be available at the decryption side.

Boneh described the meet-in-the middle attack [3] on CRT-RSA, where one
can factor N in time and space O(min{√dp,

√
dq}). Jochemsz and May [11]

pointed out that it is not secure to use the CRT decryption exponents smaller

Efficient CRT-RSA Decryption for Small Encryption Exponents 29

than N0.073. So far, there is no serious threat to CRT-RSA when e is small (but
not very small). In such a case, dp, dq will be O(

√
N). Similar to our approach in

the standard RSA case, we will try to construct dp, dq in such a manner so that
we will have some controlled factors of both dp, dq with less number of ones that
will help to speed-up CRT-RSA. This is presented in Section 3 with associated
efficiency measure and security analysis. We also present examples for explaining
our idea. Further, in Appendix A, benchmark examples are presented as (e,N)
pairs for possible attempts to analyse the security.

Since the Extended Euclidean Algorithm (EEA) is used frequently in our
paper, let us briefly discuss how do we exploit it. The readers are referred to [19,
Chapter 5] for a detailed discussion on EEA. Given two relatively prime positive
integers a, b, one can find a unique pair of integers xi, yi such that axi− byi = 1,
where (i − 1)b < xi < ib and (i − 1)a < yi < ia for i ≥ 1. For maintaining
the bit-sizes of several parameters, we will consider the case i = 2. In fact, one
can get x1, y1 such that 0 < x1 < b and 0 < y1 < a using EEA and then get
xi = x1 + (i− 1)b, yi = y1 + (i− 1)a.

There are related works on optimizing RSA or CRT-RSA parameters using
EEA for efficient encryption and decryption [9,20,21] and some of these proposals
have been revisited [10,22] due to cryptanalytic results [7,1]. However, none of
these proposals [9,10,20,21,22] consider small e around the value of 216 + 1,
which is the most popular in commercial RSA applications. In [20, Section 7], it
has been commented that “our variants can not provide better performance than
RSA-CRT”. In our strategy, we can take care of such small encryption exponents
and still provide significant improvement during the decryption process. We
follow similar kind of strategy has also been used in [21, Section 4.1, Scheme-A].
However, the strategy of [21] did not concentrate on small e and the low weight
factors dp1 , dq1 of dp, dq. This is the idea that helped us to accommodate fast
encryption with small e, as well as efficient decryption with small weight factors
of the CRT-RSA decryption exponents dp, dq.

Remark 1. With respect to RSA/CRT-RSA public key cryptosystem, there are
two aspects of efficiency, one is the efficiency in the key generation phase and
the other is the efficiency during the encryption or decryption process.

Experimental results in support of our claim shows that one can write simple
programs to generate the RSA keys efficiently using our Algorithms 2, 3. We
have implemented the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on a
Compaq laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB
RAM and 2 MB Cache. Our strategies require some more steps of EEA than the
standard RSA/CRT-RSA key generation algorithms and our proposals are in a
similar line to the proposals of [9,10,21] which are efficient and unlike [20] where
costly operations like factorization are required in the key generation process.
However, we have not tried to present optimized implementation for the key
generation part and only outlined proof of concept implementation to justify
the efficiency of the key generation process.

30 S. Maitra and S. Sarkar

Our main contribution in this paper is to show (by exactly counting the
number of arithmetic operations) that the keys generated by our methods pro-
vide significant improvement in the decryption process without compromising
security.

ROAD MAP. After the introductory discussion in this section, we get into our
contributions in Sections 2, 3. Section 2 presents our proposal for RSA, while
Section 3 identifies the improvements in case of CRT-RSA. Each of these sec-
tions are organized as follows. We start with our algorithm to generate the
RSA/CRT-RSA keys, followed by the comparison of efficiency in the decryption
process considering the keys generated from our strategies with the standard
RSA/CRT-RSA decryption for small encryption exponents; then we explain a
comprehensive security analysis for our proposals and conclude each section with
examples and experimental details. The conclusion of this paper is presented in
Section 4.

2 Our RSA Key Generation Algorithm

Let us present our proposal towards the key generation algorithm for standard
RSA in Algorithm 2.

Algorithm 2. Our RSA key generation algorithm

Input: e, the encryption exponent and b, the bit size of the prime p.
Output: primes p, q and decryption exponent d such that d1|d and wd1 is low.
Choose a random prime p with lp = b such that gcd(e, p− 1) = 1;1

Choose an odd d1 with low weight (we will later discuss in exact detail how this2

weight should be determined) such that led1 = lp;
Choose a random integer k such that k < e;3

if gcd(ed1, k(p− 1)) �= 1 go to step 2;4

Using EEA find d2, y with k(p− 1) < d2 < 2k(p− 1) and ed1 < y < 2ed1 such5

that ed1d2 − k(p− 1)y = 1;
if y + 1 is not prime go to step 2;6

Report p, q = y + 1 and d1, d2 where d = d1d2;7

It is clear that Algorithm 2 is a probabilistic polynomial time algorithm in
log2 N . Note that ed1 has lp many bits. Since ed1 < y < 2ed1, y can be of lp or lp+
1 many bits. One can assume that y is distributed uniformly at random in ed1 <
y < 2ed1 for uniformly random choices of e, d1, k, p (we have also checked it with
detailed experiments). Thus, following Prime Number Theorem [19, Chapter
5], y + 1 will be prime on an average of order of lp many iterations of steps 2
to 6. If one requires some more properties on the primes, such that p−1

2 , q−1
2

are also primes, then one may incorporate checking for the additional properties
in Algorithm 2. Given that it is efficient to obtain such primes from random
choices, we also assume that those kinds of primes will be captured using our
algorithm. We have also confirmed that from actual implementations. It is also

Efficient CRT-RSA Decryption for Small Encryption Exponents 31

not guaranteed that Algorithm 2 will provide p, q of same bit size; in fact lq = lp
or lp + 1. However, with a few attempts of Algorithm 2, it is possible to get p, q
of same bit size.

2.1 Efficiency of Decryption Process

Now let us analyse the efficiency of our strategy in the decryption process. For
the analysis, let us consider that each of p, q are of lN

2 many bits where N = pq
(the analysis will change very little if lq = lp + 1).

Since, led1 = lN
2 , we have ld1 = lN

2 − le or lN
2 − le + 1. For our analysis, let us

assume ld1 = lN
2 − le. Since k(p− 1) < d2 < 2k(p− 1), we have ld2 = lk + lN

2 or
ld2 = lk + lN

2 ± 1. Let us consider ld2 = lk + lN
2 for the analysis.

The decryption process can be written as Cd mod N = (Cd1)d2 mod N . To
calculate Cd1 mod N , we need lN

2 − le many square and wd1 many multiplication
operations. Let Cd1 mod N = Ψ . To calculate Ψd2 mod N , we require lk + lN

2
many square and wd2 many multiplications. If one assumes that d2 is selected
uniformly at random among all the lk+ lN

2 bit integers, then on an average, wd2 =
lk
2 + lN

4 . Thus, the total number of multiplications (considering modulo square
and multiplication operations are of same time complexity for large integers)
under this scenario is (lN

2 −le+wd1)+(lk + lN
2 + lk

2 + lN
4) = 5

4 lN−le+wd1 + 3
2 lk ≤

5
4 lN − le + wd1 + 3

2 le (as k < e) = 5
4 lN + 1

2 le + wd1 .
As we have discussed in the introduction, on an average, RSA decryption

requires 3
2 lN many modular multiplications. Thus, in asymptotic sense, i.e., when

wd1 and le are negligible with respect to lN , we get a reduction of 1− 5
4 lN
3
2 lN

= 1
6 ,

which is more than 16%.
In practical scenario, one can take lN = 1024, for e = 216 + 1, le = 17 and

wd1 = 40. Later, in Section 2.2, we will discuss that taking a low weight d1
will not pose any security problem given the state-of-the-art literature in RSA
cryptanalysis. Thus, in such a case the advantage is 1− 5

4 ·1024+ 1
2 ·17+40

3
2 ·1024

> 0.13.
Since all the exponentiation operation are modular, one needs to study how

the modN part in the calculation of v2 mod N or uv mod N can be done effi-
ciently, where u, v ∈ ZN . It has been pointed out by A. K. Lenstra [12] that
the operation becomes efficient when N is of the form N = 2lN−1 + t for some
positive integer t which is significantly smaller than N . It has been pointed out
that one may get 30% improvement for encryption and decryption with 1024-bit
RSA moduli [12].

One should note, that the idea of putting large number of zeros in N [12]
works well for application in standard RSA. In the proposal of [12], N of the
form 21024± t has been considered where t is not much smaller than 2500. Thus,
in such a case, the upper half of the bits in N are zero (except the MSB). The
CRT-RSA decryption can be made faster in this manner when one can put a
large number of zeros in the secret primes. However, it is well known that if
half of the bits of p is known from any side, then N can be factorized easily [6].
Putting large number of zeros in p, q is not recommendable and hence the idea

32 S. Maitra and S. Sarkar

of [12] cannot be exploited for CRT-RSA. Our work provides improvement from
a different direction that that of [12], where we do not use any constraint on N .
Thus, our strategy can be exploited to achieve efficiency in the CRT-RSA case
as described in Section 3.

2.2 Security Analysis

Below we discuss the existing attacks to show that the RSA parameters obtained
from our scheme are quite secure.

Wiener’s Attack and its extensions: Here, | e
N − k

d | = k
d ×

p+q−1− 1
k

N > k
d · q

N .
Wiener’s [25] attack will be successful if | e

N − k
d | < 1

2d2 . Thus, Wiener’s attack
fails if k

d · q
N >> 1

2d2 i.e., when 2kd >> N
q , which is true in our case as we

consider d as O(N). Similar kind of attacks by Verheul and Tilborg [23] and
Weger [24] do not work too.

Boneh-Durfee attack: Since for our method e << p + q so Boneh-Durfee
attack [4] does not work.

We have ed = 1+k(N+1−p−q). In our case d = d1d2. So 1+k(N+1−p−q) ≡
0 mod (ed1). Hence p+ q ≡ (k−1 +N +1) mod ed1. As both p+ q and ed1 are of
O(
√
N), one can find out p+q easily when both d1 and k are known. Since k < e

and e is small integer one can try every integer in [1, . . . , e − 1] as k. However,
the attack won’t be successful unless d1 is known. By proper choice of d1, we
will guarantee that it cannot be exhaustively searched in a complexity less than
factoring N with the state of the art knowledge [13].

Number Field Sieve (NFS) [13] is the fastest known factorization algorithm
that requires around 286 time complexity to factor a 1024-bit RSA modulus.
When lN = 1024 and e = 216 + 1 then ld1 = 1024

2 − le = 512 − 17 = 495. Now
consider wd1 = 40. Each of the MSB and LSB of d1 is 1. Since,

(493
38

)
> 2190,

searching d1 is impractical.
There are certain partial key exposure attacks [2,8] based on knowledge of

some bits of the secret decryption exponent d. In a similar line, consider that
either the lower half or the upper half in the bit pattern of d1 may be available
to the attacker. Even in such a scenario, we like that the other half of d1 cannot
be exhaustively searched with a complexity less than factoring the modulus
N . Since,

(246
19

)
> 294, this is taken care of. Further, the lattice based attack

presented in [8] won’t work as long as d2 is not known to the adversary.

2.3 Examples and Particulars of Implementation for Key
Generation

For experimental purposes, we use the platform as described in Remark 1.

Example 1. The inputs to Algorithm 2 are lp = b = 512, e = 216 + 1.
We randomly choose the prime p of 512 bits with the constraint that

gcd(e, p− 1) = 1 as follows:

Efficient CRT-RSA Decryption for Small Encryption Exponents 33

847205460424859582487889752058166099091428851930531629496028764242
160145011739875744620255404095292245891970903680259683351879377738
1140474200874986542199.

Then we have randomly chosen d1 such that led1 = 512 and wd1 = 40 with the
constraint that the number of ones in the most and least significant halves in
the binary pattern of d1 are same, i.e., 20. The chosen d1 is:

102293463546648504580289435168314948630699642425687808094621289371
273311618345723486110611869088161370573818822349743058252796127669
122872201082699779.

Next select a random integer k = 21779, less than e, such that gcd(ed1, k(p −
1)) = 1. Following Algorithm 2, we get a 512-bit prime q = y + 1 as

813347925471624864680951745206872883877507604627989327018260472828
311899048468816546162234995165446935237022263499963739953592490244
5388498746028926875923 and d2 as
223855930001644376325253133442247995966531195057464799385618009604
666245935787332604396665192270084148437208562517281947809925070356
636225159650747515085144375. �
We have also experimented with 100 many runs of Algorithm 2, with e = 216 +1
and lp = b = 512. We found that in each run, on an average,

the loop upto step 3, i.e., random choice of k is executed 441 times and among
them

the loop upto step 5, i.e., when gcd(ed1, k(p − 1)) = 1, and y is selected by
EEA is executed 287 times,

before finding a prime q = y+1. The average time for execution of Algorithm 2
is 3.01 seconds for generation of RSA parameters when lp = 512, i.e., with RSA
moduli of 1023 or 1024 bits.

3 Our CRT-RSA Key Generation Algorithm

Like the discussion after Algorithm 2 in the previous section, one can note that
Algorithm 3 is a probabilistic polynomial time algorithm in log2 N and one may
put further constraints on the choice of the primes p, q. This will be demonstrated
in Example 3.3, Section 3.3 later.

3.1 Efficiency of Decryption Process

Now, we compare the decryption process with the keys available from Algo-
rithm 3 with that of standard CRT-RSA. For the analysis, consider that p, q
are of lN

2 many bits where N = pq. Let the encryption exponent e has le many
bits. Then lN

2 − le ≤ ldp , ldq ≤ lN
2 and in most of the cases, the correspond-

ing decryption exponents dp, dq will be of O(
√
N) and thus lN

2 bit long. To

34 S. Maitra and S. Sarkar

Algorithm 3. Our CRT-RSA key generation algorithm

Input: e, the encryption exponent and b, such that the bit size of primes p, q
are b or b + 1.

Output: primes p, q and decryption exponents dp, dq such that dp1 |dp, dq1 |dq

and wdp1
, wdq1

are low.
Choose an odd dp1 with low weight such that ledp1

= b;1

Choose a random integer kp such that kp < e;2

if gcd(edp1 , kp) �= 1 go to step 2;3

Using EEA find dp2 , y with kp < dp2 < 2kp and edp1 < y < 2edp1 such that4

edp1dp2 − kpy = 1;
if y + 1 is not prime go to step 2;5

Report dp = dp1dp2 , p = y + 1;6

In a similar manner from step 1 to step 5, generate q, dq = dq1dq2 ;7

calculate Cdp mod p one needs lN
2 many squares and wdp many multiplications.

In average case wdp = 1
2 × lN

2 = lN
4 . Hence total cost of calculating Cdp mod p

is around lN
2 + lN

4 = 3lN
4 many modular multiplications. Similarly to calcu-

late Cdq mod q one needs 3lN
4 many modular multiplications. So total cost in

decryption will be 2× 3lN
4 = 3lN

2 many modular multiplications.
In Algorithm 3 we have ldp1

= lN
2 − le or ldp1

= lN
2 − le + 1. For our anal-

ysis we take ldp1
= lN

2 − le. Since kp < dp2 < 2kp, ldp2
is lkp or lkp + 1. For

our analysis we take ldp2
= lkp . Now Cdp mod p = (Cdp1)dp2 mod p. To calculate

Cdp1 mod p, we need lN
2 − le many square and wdp1

many multiplication opera-
tions. LetCdp1 mod p = Ψ . To calculateΨdp2 mod p, one requires lkp many square
andwdp2

many multiplication operations. If we assume dp2 is selected uniformly at

random among all the lkp bit integers, then on an averagewdp2
=

lkp

2 . Considering
modular square and multiplication operations of large integers take equal amount
of time, to calculateCdp mod p in our proposed method requires (lN

2 − le+wdp1
)+

(lkp +
lkp

2) = lN
2 −le+wdp1

+
3lkp

2 ≤ lN
2 −le+wdp1

+ 3
2 le (as kp < e) = lN

2 + le
2 +wdp1

many multiplication operations. Similarly total number of multiplications in our
proposed method to calculateCdq mod q will be≤ lN

2 + le
2 +wdq1

. Hence total num-
ber of multiplications in our decryption algorithm will be≤ lN + le +wdp1

+wdq1
.

Thus, in asymptotic sense, i.e., when le, wdp1
, wdq1

are negligible with respect
to lN , we get a reduction of 1− lN

3
2 lN

= 1
3 , which is 33%.

In practical scenario, one can take lN = 1024, for e = 216 + 1, le = 17
and wdp1

= wdq1
= 40. Later, in Section 3.2, we will discuss that taking a

low weight dp1 , dq1 will not pose any security problem given the state-of-the-
art literature in CRT-RSA cryptanalysis. Thus in such a case the advantage is
1− 1024+17+40+40

3
2 ·1024

> 0.27.
Application of CRT in the final step is considered negligible [5] compared

to the calculations Cdp mod p and Cdq mod q. Thus we also ignore this in our
comparison.

Efficient CRT-RSA Decryption for Small Encryption Exponents 35

3.2 Security Analysis

Below we discuss the existing attacks to show that the CRT-RSA parameters
obtained from our scheme are quite secure.

Let N = pq be an lN -bit RSA modulus with lp = lq = lN
2 . Further let

edp ≡ 1 mod (p− 1) and edq ≡ 1 mod (q − 1) with le = α · lN , ldp = ldq = β · lN ,
where 0 ≤ α ≤ 1, 0 < β ≤ 1

2 . Then N can be factored in polynomial time if any
of the following holds: (i) β < 3

8 − α
2 [14], (ii) β < 2

5 − 2
5α [1]. For our case, e is

small, e.g., e = 216 + 1. Hence dp, dq are O(
√
N), i.e., β = 1

2 . Thus the attacks
presented in [14,1] will not work in this case.

The following results have been noted in [2] towards CRT-RSA cryptanalysis.
(i) Suppose an attacker knows the bits of dp except δ · lN many LSBs. Then N
can be factored in polynomial time of lN if δ < 1

4 − α. (ii) Suppose an attacker
knows the bits of dp, except δ · lN many MSBs. Moreover e is small such that
kp, kq < e can be searched easily. Then N can be factored in polynomial time of
lN if δ < 1

4 .
Now ldp is lN

2 +lkp−le or lN
2 +lkp−le±1. For the analysis, let us take ldp = lN

2
considering e to be small. To resist the attack of [2], we need that attacker can
not guess the bits either in the most significant half or in the least significant
half of dp as well as dq. It is evident from Algorithm 3 that dp2 or dq2 are very
small for small e and thus the security depends on proper choices of dp1 and dq1 .
When e = 216 + 1 and lN = 1024, then ldp1

≥ 495; also both the MSB and LSB
of dp1 are 1. Since

(246
19

)
> 294, one can choose wdp1

= wdq1
= 38 + 2 = 40 (the

term 2 is added as the MSB and LSB of dp, dq will be 1) to resist the exhaustive
search in a complexity lesser than factorization of 1024 RSA moduli. Thus, we
take equal weights in the most significant as well as least significant halves of
dp, dq.

Additionally, this kind of choice resists the attack on the CRT exponents with
low Hamming weight as explained in [10, Section 6] following the idea of [18].

Since we are concentrating on small e, the attacks of [11,9] will not be appli-
cable in our case.

In our strategy, when e is small then dp (respectively dq) has a small factor
dp2 (respectively dq2). In any method, when e is chosen first, then the choice of
dp, dq cannot be controlled and thus they may well have small factors. We do
not know about any result that small factors of dp, dq may pose any security
problem.

One may be tempted to choose dp1−dq1 small for storage advantage. However,
we like to point out that this will not be secure. We have edp = 1+kp(p−1), edq =
1+kq(q−1). So edp1dp2−1+kp = kpp, edq1dq2−1+kq = kqq, as dp = dp1dp2 and
dq = dq1dq2 . Multiplying the above two equations and letting c = dp1 − dq1 we
get e2dp2dq2d

2
p1

+(ekpdq2 +edp2kq−e2dp2cdq2−edp2−edq2)dp1−ekpcdq2 +ecdq2−
kpkqN + kpkq − kp − kq + 1 = 0. When the attacker knows dp2 , kp, dq2 , kq and c,
he can easily find out dp1 by solving the equation f(x) = e2dp2dq2x

2 +(ekpdq2 +
edp2kq−e2dp2cdq2−edp2−edq2)x−ekpcdq2 +ecdq2−kpkqN+kpkq−kp−kq+1 = 0.
For small e, dp2 , kp, dq2 , kq will be small. So the attacker may find these values

36 S. Maitra and S. Sarkar

by exhaustive search. Thus, in the actual design c = dp1 − dq1 should be large
enough so that finding c becomes impractical by exhaustive search.

3.3 Examples and Particulars of Implementation for Key
Generation

For experimental purposes, we use the platform as described in Remark 1.

Example 2. We present a CRT-RSA instance using Algorithm 3 with e = 216+1.
We have randomly chosen dp1 such that ledp1

= 512 and wdp1
= 40 with the

constraint that the number of ones in the most and least significant halves in
the binary pattern of dp1 are same, i.e., 20. The chosen dp1 is:

102293456496754618341709078015421268153969046507892664922920034955
925842141431161981364290471083690664777355356746224652785850825705
003374223397355533.

Next we have selected a positive random number < e as kp = 54515 such that
gcd(edp1 , kp) = 1. Following Algorithm 3, we get a 512-bit prime p = y + 1 as

925033577483624877758165052473985025208424615264973702445966391820
817633431628968129548056952716209571439174251182484580505109292574
2548406715055486703856 and dp2 = 75221.

Similarly we take dq1 , kq as follows:

102293456533596799533979645583141977741546722478596953904473697357
070095357444492336688712334648145778909836599063413260673906211787
330520931518384129 and 11196.

Note that ledq1
= 512 and wdq1

= 40 with the constraint that the number of ones
in the most and least significant halves in the binary pattern of dq1 are same,
i.e., 20.

Following Algorithm 3, we get a 512-bit prime q = y + 1 as

768900896708435189755637933211774630106969688312038422848958947910
746505548944466899924298761003966055781597674856981830820957014932
8201677211506439303703 and dq2 = 12841. �
We have experimented with 100 many runs of Algorithm 3, with e = 216 +1 and
b = 512. We found that in each run, on an average,

the loop upto step 2, i.e., random choice of kp is executed 404 times and
among them

the loop upto step 4, i.e., when gcd(edp1 , kp) = 1, and y is selected by EEA
is executed 328 times,

before finding the prime p = y + 1. The average time for execution of Algo-
rithm 3 is 2.87 seconds for the generation of one prime p when lp = 512, i.e.,
with RSA moduli of 1023 or 1024 bits. Similar effort is required to generate q.

Efficient CRT-RSA Decryption for Small Encryption Exponents 37

As we have discussed earlier that one may incorporate some other properties
while generating the primes. Below we show how Algorithm 3 runs when we
put additional constraints on the primes p, q such that p−1

2 , q−1
2 are primes too.

These primes p−1
2 , q−1

2 are well known as Sophie-Germain primes.
In these cases the algorithm has to try more to get such primes. With e =

216 + 1 and b = 512, we find that for Example 3.3,
the loop upto step 2, i.e., random choice of kp is executed 77548 (respectively

99405) times and among them,
the loop upto step 4, i.e., when gcd(edp1 , kp) = 1, and y is selected by EEA

is executed 62907 (respectively 80752) times,
before finding the prime p = y + 1 (respectively q = y + 1). The time for

execution of Algorithm 3 in this case took 501.59 and 673.29 seconds for the
generation of p, q respectively.

Example 3. We present a CRT-RSA instance using Algorithm 3 with e = 216+1
with the constraint on the primes p, q such that p−1

2 , q−1
2 are also primes.

We have randomly chosen dp1 such that ledp1
= 512 and wdp1

= 40 with the
constraint that the number of ones in the most and least significant halves in
the binary pattern of dp1 are same, i.e., 20. The chosen dp1 is:

102293651756383964719249763767825082839022557563711539885076457266
765922065218356942848525482843805498444447334594562620436894433026
411062425379688577.

Next we have selected a positive random number < e as kp = 33590 such that
gcd(edp1 , kp) = 1. Following Algorithm 3, we get a 512-bit prime p = y + 1 as

727862074791789395606221345367926924815994724017345979624853944736
179643852050698341585477384703082422810995907154907717369105794657
6945718295285214847502 and dp2 = 36469. One may check that q−1

2 is also
prime.
Similarly we take dq1 , kq as follows:

102295029660628890489918025067861937988247526555436922234444277690
560935916262878224630012547147030418168005660727122770496341597038
718898720334685185 and 13004.

We have ledq1
= 512 and wdq1

= 40 with the constraint that the number of ones
in the most and least significant halves in the binary pattern of dq1 are same,
i.e., 20.

Following Algorithm 3, we get a 512-bit prime q = y + 1 as

531678559043465386818958737467715785374713011680390835904134133561
334127847795387114662741967351527830145417114716152248449117639457
0117314674466654414246 and dq2 = 10313. One can verify that q−1

2 is a prime
too. �

38 S. Maitra and S. Sarkar

Some benchmark examples of (e,N) pairs, generated from Algorithm 3, are
presented in Appendix A so that one may use them for cryptanalytic attempt
on our proposal.

4 Conclusion

Use of small encryption exponent involving CRT in the decryption phase is the
most popular scenario in commercial RSA applications. In this paper we have
presented a proposal for making the CRT-RSA decryption process efficient for
small encryption exponents. The decryption exponents designed by our strategy
make the modular exponentiations faster as well as less power consuming. We
first introduce our method for standard RSA and then based on that idea we
explain how the CRT-RSA parameters can be chosen for efficient decryption. We
obtain an asymptotic reduction of the order of one-third in the decryption time
compared to standard CRT-RSA parameters for large N ; further we provide
examples for a reduction of more than 27% for practical parameters with 1024
bits N and e = 216 + 1.

Extensive security analysis is presented to study our algorithms. It is evident
from the research history in cryptology that even after a careful security analysis,
the security claims are mostly conjectures and the weaknesses are often identified
at a later stage. This is the reason, we present some benchmark challenges that
can be studied to cryptanalyse our proposals.

Acknowledgments. The second author likes to acknowledge the Council of
Scientific and Industrial Research (CSIR), India for supporting his research fel-
lowship. The authors also like to thank Mr. Sourav Sen Gupta of University of
Washington, USA for comments and suggestions on the working draft of this
paper.

References

1. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

2. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

3. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

5. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
6. Coppersmith, D.: Small Solutions to Polynomial Equations and Low Exponent

Vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)
7. Durfee, G., Nguyen, P.: Cryptanalysis of the RSA schemes with short secret ex-

ponents from Asiacrypt 1999. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 14–29. Springer, Heidelberg (2000)

Efficient CRT-RSA Decryption for Small Encryption Exponents 39

8. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial Key Exposure Attacks on
RSA up to Full Size Exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

9. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292. Springer,
Heidelberg (2005)

10. Galbraith, S., Heneghan, C., McKee, J.: Tunable Balancing RSA,
http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf

11. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

12. Lenstra, A.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

13. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Springer, Heidelberg (1993)

14. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

15. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

16. Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electronic Letters 18, 905–907 (1982)

17. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of ACM 21(2), 158–164 (1978)

18. Stinson, D.R.: Some baby-step-giant-step algorithms for the low Hamming weight
discrete logarithm problem. Math. Comp. 71(237), 379–391 (2001)

19. Stinson, D.R.: Cryptography - Theory and Practice, 2nd edn. Chapman &
Hall/CRC, Boca Raton (2002)

20. Sun, H.M., Yang, C.T.: RSA with Balanced Short Exponents and Its Application
to Entity Authentication. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
199–215. Springer, Heidelberg (2005)

21. Sun, H.-M., Wu, M.-E.: Design of Rebalanced RSA-CRT for Fast Encryp-
tion. In: Proceedings of Information Security Conference, pp. 16–27 (2005),
http://eprint.iacr.org/2005/053

22. Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the Design of Rebalanced RSA-CRT,
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf

23. Verheul, E., van Tilborg, H.: Cryptanalysis of less short RSA secret exponents.
Applicable Algebra in Engineering, Communication and Computing 18, 425–435
(1997)

24. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13, 17–28 (2002)

25. Wiener, M.: Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

Appendix A: Benchmark Examples for Cryptanalytic
Attempts

Below we present five different instances of N , given e = 216 +1. In all the cases,
wdp1

= wdp2
= 40. These are presented as benchmarks so that one can try break-

ing CRT-RSA with the parameters chosen using our method in Algorithm 3.

http://www.isg.rhul.ac.uk/~sdg/full-tunable-rsa.pdf
http://eprint.iacr.org/2005/053
http://www.cacr.math.uwaterloo.ca/techreports/2005/cacr2005-35.pdf

40 S. Maitra and S. Sarkar

855398352237073412716218121635194102527292401715607683237039879922
317496856299650405143065833482807696542968023880322994352319995652
967672335099796217233424978476627589929604200661735618599518621875
429304978707188321893775838972782578010455846303070636125200694975
49910437863841930016986937230562360427858251,

930412242256895544481992170826518986814066108745285822273264641353
956279470179182490126105358364600907324667628623107126823595881339
504797664359687169871060975856794551162714619637365693141396910031
863444527898163347946202335990125784576876633619951362001187978576
18932259597976894649886065105858600942341999,

743153980437527544127335867611126292244134485655138732073045901112
230527514294692190525018388457997240467014409897028172724983091441
058281003906345619909423281661472927928751345648969327645329250966
186173840280677674043584456891932185739026173129428644725837232026
60031594832645765609847087222538519252259113,

952899385498349342218942740944227285253587263575430161924962463935
952773301824104133623732704241580906474914510495902212644903068094
801830705283143360110638975814524729332763075084410231853992420138
221732468907940148452249471921095405154105761877163026396720446635
71312528455407908594733169616486132276307403,

612715260253266569659325301263541266984755706890486537339344836225
485135826118263240672515333231584345574314700523848595633505943588
499675118100562122265088272633964220894470488132932044492143411355
638349532698115878566844317379541787287345823403740481231662884386
04736925226361690706921817605624859257747581.

Resettable Public-Key Encryption:
How to Encrypt on a Virtual Machine

Scott Yilek

Department of Computer Science and Engineering,
University of California at San Diego,

9500 Gilman Drive, La Jolla, CA 92093, USA
syilek@cs.ucsd.edu

Abstract. Typical security models used for proving security of deployed
cryptographic primitives do not allow adversaries to rewind or reset hon-
est parties to an earlier state. Thus, it is common to see cryptographic
protocols rely on the assumption that fresh random numbers can be
continually generated. In this paper, we argue that because of the grow-
ing popularity of virtual machines and, specifically, their state snapshot
and revert features, the security of cryptographic protocols proven under
these assumptions is called into question. We focus on public-key encryp-
tion security in a setting where resetting is possible and random numbers
might be reused. We show that existing schemes and security models are
insufficient in this setting. We then provide new formal security models
and show that making a simple and efficient modification to any existing
PKE scheme gives us security under our new models.

1 Introduction

In the past few decades, cryptographers have modeled numerous cryptographic
primitives and protocols in order to argue about their security. Because of
this, we have strong tools to securely execute just about any desirable task.
These tools include symmetric and public-key encryption, message authentica-
tion codes, digital signatures, key exchange protocols, and more. Moreover, the
security guarantees are provable by reductions from problems conjectured to be
difficult.

A typical security model has an adversary playing a game against an envi-
ronment which may contain multiple honest parties. As the adversary interacts
with the environment and time progresses, the states of the honest parties con-
tinually change to reflect events that take place. For example, if an adversary is
executing an interactive protocol with an honest party (call her Alice) and the
adversary sends a message to Alice, then Alice’s next message will be a func-
tion of her current state, which will itself be a function of the past messages
she has received from the adversary. This essentially means that an adversary
cannot ‘take back’ messages and try others, effectively rewinding the protocol
and resetting Alice’s state.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 41–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

42 S. Yilek

Modeling security of protocols in this way is natural because it fits our un-
derstanding of how the world works. The complex states of our computers are
constantly changing every time we click a mouse or receive a packet from the
network. Thus, it seems perfectly reasonable that protocols proven secure in this
model will continue to be secure in the foreseeable future. However, as we argue
in this paper, this may not be the case because of the increasing popularity of
virtual machines.

Virtual Machines. In the past few years, it has become common for systems
to run on virtual machines. In short, a virtual machine (VM) is software that
emulates a real machine. A VM consists of a virtual machine monitor (or hy-
pervisor) which can emulate multiple virtual computers that can have varying
instruction sets and run multiple operating systems. The VM monitor will then
share the physical machine’s resources among the virtual machines, translat-
ing machine instructions and acting as a simulator for the underlying operating
systems.

It is especially common for servers to run on virtual machines. This will likely
become even more typical in the future given the rising popularity of cloud
computing services like Amazon’s Elastic Compute Cloud (EC2) [1]. In this
service, a user buys some compute time and receives access to a virtual machine
on one of Amazon’s servers. Within that VM, the user can run a fully functional
OS and, in particular, run a web server for his or her business.

Thus far, virtual machines have often been seen as being beneficial to security.
Because VMs provide a type of sandbox, they have been used to test potentially
malicious code [13] and isolate web browsers from the rest of the system to
mitigate the effects of browser vulnerabilities [14]. VMs have also been used to
more easily create large honeypots [22]. Despite this, the focus of this paper is
on how VMs can be detrimental to security. The reason, which also happens to
be one of the most useful features of VMs, is the ability to take state snapshots.

State Snapshots. Virtual machines allow a user to take a snapshot of the
current system state. This snapshot contains the contents of all the virtual ma-
chine’s disks and the contents in memory at the time of the snapshot. At a later
point in time, the VM can be reverted back to this previous state and restarted.
To see why this may be useful, consider the following scenario. Alice, a system
administrator, is running an important web server on a virtual machine, and
at some point in time there is a crash or some other major problem. Instead of
spending time diagnosing the problem and getting the system working again, Al-
ice can instead revert the VM back to a ‘good state’ for which she has a snapshot.
In other words, Alice takes a snapshot of the system when things are running
smoothly, and then reverts back to this state whenever things go wrong. In this
scenario, the server has effectively traveled back in time; program variables and
other state that may have been in memory are now active again. Thus, if an
adversary is attacking Alice’s server and can make it crash (using, for example,
a DoS attack), he essentially has the ability to rewind the server.

Resettable Public-Key Encryption: How to Encrypt on a VM 43

Virtual machine state snapshots can also help protect against malware when
web browsing. A user who is concerned about their machine being compromised
from visiting a malicious website can run a web browser inside of a virtual
machine and take a snapshot of the fresh machine state with a browser window
open and ready for a URL. Then, if the user visits a malicious site, he can
simply “blow away” the current state of the machine and revert back to the
fresh, uncompromised state captured in the snapshot to visit another website.
Thus, every time the user wants to visit an important or potentially malicious
website, he can do so starting from a fresh state.

Though seemingly useful, state snapshots on VMs raise some important issues.
What happens to our supposedly secure cryptographic tools in a setting with
resets? Are they still secure? Researchers have examined these questions before
for zero-knowledge [12,21,3] and identification protocols [8], where the motivation
was smart cards that cannot keep internal state. However, the growing popularity
of virtual machines means we need to ask these questions for a wider range of
cryptographic primitives.

To see why reset attacks can have negative effects on cryptographic protocols,
consider a common assumption in cryptography: it is possible to continually
generate fresh and unbiased random numbers. This is an assumption made in
nearly every cryptographic protocol. It is, however, considered reasonable since
pseudorandom number generators (PRNGs) are well-studied both in theory and
practice (c.f., [20,16]). In deployed systems, PRNGs are often implemented in
software and consist of numerous state variables and arrays that are occasionally
seeded with entropy and used to generate pseudorandom numbers. For example,
in OpenSSL [2], the software PRNG has a 1023-byte array (entropy pool) that
is supposed to contain high entropy data from a variety of sources, as well as
some variables with counters and other important state. At a high level, when
random bytes are requested, data from the entropy pool and information in the
state variables is continually mixed together using a cryptographic hash function
and the result is the output of the PRNG. However, these arrays and variables
will be captured by a state snapshot since they reside in memory. If the machine
is later reset, the PRNG could output a string of “random” bytes that it already
outputted sometime in the past before the machine was reset. These un-fresh
coins might then be used in a cryptographic operation with potentially disastrous
consequences.

Garfinkel and Rosenblum point out that this threat exists in theory [17]. Then,
in recent work [24], Ristenpart and Yilek show the threat is in fact a problem
in practice. They demonstrate attacks on both servers and clients run inside
of virtual machines utilizing snapshots and resets. Attacking servers, they show
that resetting a web server running Apache with mod ssl leads to randomness
reuse in DSA signing and thus secret key compromise. They then show that if
a client runs a web browser inside of a virtual machine (as described above)
to protect against malware, in particular resetting the virtual machine between
browsing sessions, then the browser will send the same secret random keying
material to two different websites. So, if from a saved state a user (Alice) visits

44 S. Yilek

a malicious site inside of the virtual machine, then resets the machine back to
the saved state and visits her bank, the same secret key material will be sent by
the browser to both the malicious site and the bank! An adversary in control of
the malicious site can then compromise Alice’s banking session.

Our Results. Due to the danger posed by virtual machines, we propose build-
ing cryptographic primitives that are more resilient in the face of randomness
reuse. In this paper, we focus on one particular primitive, public-key encryption,
and make the following contributions. First, we provide formal security defini-
tions to model public-key encryption security in the face of resetting attacks.
Second, we show that existing PKE schemes and their common security notions
IND-CPA [18] and IND-CCA [23] are insufficient when such resetting attacks
are possible. Third, we show that, perhaps somewhat surprisingly, a small and
efficient modification can be made to any existing PKE scheme secure under
the typical notions (e.g., IND-CCA) in order to ensure security against resetting
attacks. Our modification does not rely on random oracles [10], requires no extra
assumptions, and is very efficient.

A Closer Look. The generally accepted “right” notion of security for public-
key encryption is indistinguishability under chosen-ciphertext attack (IND-CCA).
Though this is a strong notion of security, it fails to suffice in a setting where
randomness may be reused. At a high level, the reason is that for many schemes,
given a ciphertext and the corresponding plaintext it is often possible to learn
some of the coins (or some useful function of the coins) used to encrypt the
message. If another ciphertext is generated using those same coins, it may be
possible for an adversary to learn parts of the underlying plaintext. More specif-
ically, consider an encryption scheme that applies a trapdoor one-way function
to a random value r and then concatenates H(r)⊕m and G(r ‖m). This scheme
is known to be IND-CCA secure if H and G are modeled as random oracles [10].
Now, if another message m′ is encrypted using the same coins r, then m′ will
be xor’d with the same pad H(r), and anyone who knows m will also know the
pad and be able to learn m′.

Since IND-CCA is insufficient for our setting, we develop a new notion of
security for PKE which we call IND-RA, for indistinguishability under resetting
attack. Our security notion is similar to IND-CCA except that we allow the
adversary to continually see encryptions under the same coins, as if the adversary
is repeatedly resetting a server and observing new encryptions. An important
aspect of our security definition is that we allow the adversary to see encryptions
under public keys of its choice and using coins that are not fresh. In particular,
the adversary could see a message encrypted under a public key for which it
knows the secret key, allowing it to decrypt the ciphertext; because of this,
it is important that in the process of decryption not too much information is
leaked about the coins used to create the ciphertext, meaning that randomness-
recovering encryption cannot meet our security definition. Allowing this power
in the definition is important because it models the possibility that a machine
sends an encrypted message to some user Bob, is reset by the adversary, and is

Resettable Public-Key Encryption: How to Encrypt on a VM 45

then forced to encrypt a message to the adversary using the same coins. We want
to ensure that even if this happens, the adversary does not learn any information
about Bob’s message. This is a strong security requirement, but nonetheless, we
are able to meet it.

We note that though our security notion provides seemingly the best possible
security guarantees for PKE under reset attacks, it may still be insufficient for
some applications. This is due to an inherent limitation in a model that allows
repeated randomness: if the same message is encrypted twice to the same public
key using the same randomness, the resulting ciphertexts will be identical. Thus,
plaintext equality may be leaked to an adversary, which could be problematic in
some applications. Therefore, we are not proposing IND-RA secure encryption
as a complete solution to virtual machine reset attacks. Instead, we believe that
IND-RA secure encryption should be used in conjunction with systems solutions,
some of which are discussed in [24]. In other words, similar to [6], our construc-
tions are a way to hedge against system failures; in our case, if the randomness
happens to be reused, then our schemes do not fail immediately, but instead still
provide some meaningful, provable security guarantees.

Previous Work. Resettability has been considered in cryptography in the
setting of zero-knowledge proof systems [12,21,3], the related area of identifica-
tion protocols [8], and multiparty computation [19]. Zero-knowledge proofs allow
a prover to prove an assertion to a verifier without revealing any information
other than whether or not the assertion is true. Proving the soundness1 and zero-
knowledge properties in a setting where provers and verifiers can rewind each
other is a difficult and interesting theoretical question. To see why, consider the
notion of resettable-soundness in the standard model, considered by [3]. Nearly
all known zero-knowledge proofs are designed specifically so that the ability to
rewind the verifier allows one to easily convince it of any statement; this is use-
ful for proving the zero-knowledge property. Yet, if we then give the prover that
same ability to rewind the verifier, it becomes problematic to prove soundness.
This problem has also been studied extensively in other models (c.f., [21]). How-
ever, to the best of our knowledge, no one has previously looked at practical and
deployed cryptographic primitives like public-key encryption in such a setting.

In the symmetric setting, Rogaway and Shrimpton [25] investigate secure key-
wrap and discuss how their techniques can apply to handle IV misuse, where IVs,
which should always be fresh, are reused (possibly because of a faulty imple-
mentation). Since IVs are typically counter variables or fresh random numbers,
investigating their reuse is similar to investigating the effect of a state reset.

Our work is also loosely related to public-key encryption with randomness
re-use [4] and stateful public-key encryption [9]. However, both are concerned
with making PKE schemes more efficient by reusing some, but not all random
coins and still require encrypting parties to have access to fresh and unbiased
randomness.

1 Informally, an interactive protocol is sound if it is difficult for a malicious prover to
convince the verifier that a false statement is true.

46 S. Yilek

Bellare et al. recently introduced hedged public-key encryption [6]. At a high
level, they present encryption schemes that are IND-CPA secure when the ran-
domness used to encrypt is good, while meeting a weaker notion they call IND-
CDA when the randomness is bad but the message/randomness pairs still have
high entropy. Interestingly, while their goal is similar to ours and reused ran-
domness could be considered “bad” randomness, their definitions do not appear
to apply to the resettability setting.

Paper Organization. In Section 2, we discuss important definitions and no-
tation that will be needed in the rest of the paper. In Section 3, we define our
new notion of security for public-key encryption that models resetting attacks.
In Section 4, we give constructions for schemes that meet our new notion of
security. For corrections and updates to this paper, please see [26].

2 Preliminaries

Notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For the
rest of the paper, let k ∈ N denote the security parameter and 1k its unary
encoding. Unless stated otherwise, all algorithms in this paper are randomized.
We use “PT” for polynomial-time.

Our security definitions use the code-based games from [11]. Security defi-
nitions are formulated by considering a game played with an adversary. Such
a game consists of procedures Initialize and Finalize as well as procedures
for handling oracle calls the adversary can make. At the start of the game,
Initialize is run and its output is given to the adversary. The adversary then
runs and may make oracle calls that are answered by the corresponding game
procedures. When the adversary halts with output w, that becomes the input
to the Finalize procedure and the resulting output of Finalize is called the
output of the game. We denote by GA ⇒ y the event that game G, when run
with adversary A, outputs y. Sometimes we let GA denote the event GA ⇒ true.

Public-key encryption. A public-key encryption scheme AE = (K, E ,D) is a
triple of PT algorithms. The randomized key generation algorithm K, on input
the security parameter 1k in unary, outputs a pair of keys (pk, sk). The random-
ized encryption algorithm E , on input public key pk and message m ∈ {0, 1}η(k),
outputs a ciphertext c. We let ρ(k) denote the number of coins E uses on mes-
sages of length η(k). Finally, the deterministic decryption algorithm D, on input
a secret key sk and ciphertext c, outputs either ⊥ in the case of failure, or
m ∈ {0, 1}η(k). We require that for all k ∈ N, all (pk, sk) outputted by K(1k)
and for all {0, 1}η(k), it is true that D(sk, E(pk,m)) = m.

We say the IND-advantage of an adversary A is

Advind
AE,A(k) = 2 · Pr

[
INDA

AE(k) ⇒ true
]− 1 ,

where the security game is found in Figure 1. To differentiate between chosen-
plaintext and chosen-ciphertext attacks, we consider adversary classes. Let ACPA

ind

Resettable Public-Key Encryption: How to Encrypt on a VM 47

proc. Initialize(k):

b←$ {0, 1} ; (pk, sk)←$ K(1k)
S ← ∅
Ret pk

proc. Dec(c):

If c ∈ S then return ⊥
Else return D(sk, c)

proc. LR(m0, m1):

c←$ E(pk, mb)
S ← S ∪ {c}
Return c

proc. Finalize(b′):

Ret (b = b′)

Fig. 1. Security game INDAE(k)

proc. Initialize(k):

K←$ Keysk

Ret 1k

proc. Fun(x):

Return Fun(K, x)

Game REALF (k)

proc. Finalize(a):

Ret a

proc. Initialize(k):

FunTab← ∅
Ret 1k

proc. Fun(x):

If FunTab[x] = ⊥ then
FunTab[x]←$ Rngk

Return FunTab[x]

Game RANDF (k)

proc. Finalize(a):

Ret a

Fig. 2. Security games for pseudorandom function security

be the class of all PT ind-adversaries making 1 LR query and 0 Dec queries.2

Let ACCA
ind be the class of all PT ind-adversaries making 1 LR query and any

number of Dec queries.
Finally, we let IND-XXX be the set of all PKE schemes AE such that

Advind
AE,A(k) is a negligible function in k for all A ∈ AXXX

ind , for XXX ∈ {CPA,
CCA}.
Pseudorandom Functions. Let Fun : Keysk × Domk → Rngk be a family of
functions indexed by a security parameter k. We say the PRF-advantage of a
prf-adversary D is

Advprf
Fun,D(k) = Pr

[
REALD

Fun(k) ⇒ 1
]

−Pr
[
RANDD

Fun(k) ⇒ 1
]
,

where the security games can be found in Figure 2. While Keysk, Domk, and
Rngk can be arbitrary finite sets, in this paper we will always consider families
of functions with Keysk = {0, 1}�(k), Domk = {0, 1}n(k), and Rngk = {0, 1}t(k)

for some polynomials
(·), n(·), and t(·).

2 Recall that it is well known that allowing multiple LR queries is equivalent by a
standard hybrid argument.

48 S. Yilek

proc. Initialize(k):

b←$ {0, 1} ; (pk∗, sk∗)←$K(1k)
r∗←$ {0, 1}ρ(k) ; S ← ∅
Ret pk∗

proc. Enc(pk, m):

c← E(pk, m; r∗)
Return c

proc. LR(m0, m1):

c← E(pk∗, mb; r∗)
S ← S ∪ {c}
Return c

proc. Dec(c):

If c ∈ S then return ⊥
Else return D(sk∗, c)

proc. Finalize(b′):

Ret (b = b′)

Fig. 3. Game RAAE(k)

3 Security Definition

Let AE = (K, E ,D) be a PKE scheme. Consider game RA in Figure 3. We say
an RA-adversary is one who plays game RA and makes one query to its LR
oracle, zero or more queries to the Enc oracle, and zero or more queries to the
Dec oracle. We then say the RA-advantage of an RA-adversary A is

Advra
AE,A(k) = 2 · Pr

[
RAA

AE(k) ⇒ true
]− 1 .

In game RA, the adversary is given a target public key pk∗ and can make
queries to three oracles. It can query the LR oracle with messages m0 and
m1. In response, the adversary receives the encryption of mb under the target
public key pk∗ using the coins r∗ chosen by Initialize. The adversary is also
given an Enc oracle which takes as input a public key pk and message m. The
oracle returns the encryption of m under public key pk, again using the coins r∗

chosen in Initialize. It is important that the adversary can choose the public
key pk. In particular, the adversary can query Enc with a public key for which
it knows the corresponding secret key. Notice the game is similar to IND, but
with the addition of the Enc oracle so that the adversary can continually see
messages encrypted under the same coins used by LR. This is how we model
resetting attacks. The adversary can also query a Dec oracle with a ciphertext
(not returned by LR) and receive its decryption. Finally, the adversary outputs
a guess bit.

Equality Patterns. As we mentioned above, if there are no restrictions on
the LR queries that an ra-adversary A can make, then A can trivially win the
game. To see this, consider an ra-adversary that first queries Enc(pk∗,m) and
then queries LR(m,m′), where m,m′ ∈ {0, 1}η and m �= m′. The Enc query
will give the adversary the encryption of m under coins r∗, and the LR query
will give the adversary either the encryption of the same message m under the
same coins r∗, or it will give the adversary the encryption of m′ under coins r∗.
Clearly the adversary only needs to compare the two oracle answers and guess
0 if they are the same and guess 1 otherwise.

Resettable Public-Key Encryption: How to Encrypt on a VM 49

This attack is an inherent limitation of the resettable PKE setting, since for
fixed coins encryption becomes a deterministic function. (It is also similar to
limitations in the setting of deterministic PKE [5].) Nevertheless, as we said
earlier, we are interested in achieving the best security possible in this situation.
Therefore, we consider security against all adversaries “that don’t trivially win”.
This informal notion is captured formally by the following definition:

Let A be an RA-adversary making LR query (m,m′) and q queries (pk1,m1)
to (pkq,mq) to Enc. Then we say that A is equality-pattern respecting if for
all i ∈ [q], pki = pk∗ if and only if mi �∈ {m,m′}. In other words, an equality-
pattern respecting adversary never queries Enc on the target public key pk∗

and a message that appears in its LR query.

Adversary Classes. To differentiate between various kinds of attacks, we use
classes of adversaries. LetAXXX

ra be the class of all PT equality-pattern respecting
adversaries that make one LR query and make 0 Dec queries if XXX = CPA
and 0 or more Dec queries if XXX = CCA.

Finally, let RA-XXX be the set of all PKE schemes AE such that Advra
AE,A(k)

is a negligible function in k for all A ∈ AXXX
ra , for XXX ∈ {CPA,CCA}.

Alternative Definitions. We could instead consider a more complex defini-
tion in which there is more than one randomness r∗ under which the adversary
gets to see encryptions. Additionally, we could also allow the adversary more
than one LR query. We present this more complex definition in Appendix 4 and
show that security under it is implied by security under the simpler definition
given in this section.

Relation to IND. Now that we have formally defined resettable security for
public-key encryption, it is useful to compare it to indistinguishability under
chosen plaintext and chosen-ciphertext attacks, the typical notions of security
for PKE. First, it is easy to see that any scheme that is RA-XXX is also IND-
XXX, since RA is identical to IND except for the additional Enc oracle. Thus,
any IND-adversary can easily be turned into an RA-adversary making zero Enc
oracle queries. Second, we prove the following:

Proposition 1. For XXX ∈ {CPA,CCA}, if there exists a scheme AE that is
IND-XXX secure, then there exists scheme AE that is IND-XXX secure but is
not RA-XXX secure. �

Proof. We will prove for XXX=CCA, but the proof easily extends to the CPA
setting. Let AE = (K, E ,D) be an arbitrary IND-CCA scheme. We construct a
new PKE schemeAE = (K, E ,D) such thatAE is still in IND-CCA, butAE is not
in RA-XXX. The scheme AE has encryption algorithm E(pk,m; r ‖K ‖K ′) that
outputs c1‖c2‖c3, where c1 = E(pk,K ‖K ′; r), c2 = K⊕m and c3 = MACK′(c2).
The IND-CCA security of AE follows from the well-known KEM/DEM compo-
sition theorem of [15]. We can construct an ra-adversary A with advantage 1
against AE . Adversary A, upon receiving target public key pk∗, queries the Enc
oracle with (pk∗, 0η(k)) and immediately learns K from the response, since K is
xor’d with all 0s. Then, A queries LR(m0,m1) for unique messages m0 and m1

50 S. Yilek

(which do not equal the string of all zeroes). A can then use K to decrypt the
response and win the game. �

Discussion. There are a few important aspects of our security definition that
require more discussion.

First, as shown in Proposition 1, our definition is stronger than previous
notions of security. Since we are concerned about random coins being reused, one
might ask why we even need a new definition and do not just use deterministic
public-key encryption [5], eliminating the coins altogether. The reason is that
we still want our schemes to meet the previous definitions (i.e., IND-CCA) to
ensure they have as much security as possible, and it is well-known that no
deterministic scheme can ever be IND-CCA (or IND-CPA) secure.

Second, we allow the adversary to give arbitrary public keys to the Enc oracle
and see the resulting ciphertexts under those keys and the reused coins. As
mentioned in the introduction, this is important to model the situation in which
a machine is reset and then an encryption is sent to the adversary; we want to
make sure other encryptions using the same coins still maintain their privacy.
This aspect of our definition resembles a similar ability allowed in the definition
of stateful PKE [9].

Third, one might wonder what our equality pattern restriction means in prac-
tice. It simply reflects the fact that if a message is encrypted twice using the
same public key and the same coins, then the resulting ciphertexts will be the
same. An adversary observing the two ciphertexts will know that the underlying
plaintexts are the same. This attack is unavoidable in the resettability setting,
and whether or not it is a problem will depend on the application.

4 Achieving IND-RA Security

In this section we show that we can make a simple and efficient modification to
any IND-XXX PKE scheme and immediately get an RA-XXX secure scheme.
Our transformation relies only on the existence of pseudorandom functions and
thus we do not require the random oracle model [10]. This means that if we take
a PKE scheme that is IND-XXX secure in the standard model, our modified
scheme will be RA-XXX secure in the standard model.

Let AE = (K, E ,D) be a PKE scheme and let Fun : Keysk ×Domk → Rngk be
a family of functions with Keysk = {0, 1}ρ(k), Domk = {0, 1}n(k), and Rngk =
{0, 1}ρ(k). The domain size {0, 1}n(k) should be large enough to encode any public
key generated from K(1k) and a message in {0, 1}η(k). We build a PKE scheme
AE = (K, E ,D) from AE and F as follows. Key generation and decryption are
the same as in AE , and E(pk,m; r) computes r̄ ← Fun(r, (pk ‖m)) and returns
E(pk,m; r̄).

Theorem 1. If AE is IND-XXX and Fun is a secure PRF, then AE is RA-
XXX. �

Resettable Public-Key Encryption: How to Encrypt on a VM 51

proc. Enc(pk, m):

r̄ ← Fun(r∗, (pk ‖m))
c← E(pk, m; r̄)
Return c

proc. LR(m0, m1): Game G0

r̄ ← Fun(r∗, (pk∗ ‖mb))
c← E(pk∗, mb; r̄)
S ← S ∪ {c}
Return c

proc. Enc(pk, m):

r̄←$ {0, 1}ρ(k)

c← E(pk, m; r̄)
Return c

proc. LR(j, m0, m1): Game G1

r̄←$ {0, 1}ρ(k)

c← E(pk∗, mb; r̄)
S ← S ∪ {c}
Return c

Fig. 4. Games for the proof of Theorem 1. The procedures Initialize, Finalize, and
Dec are omitted for brevity.

Proof. Let AE be constructed from Fun and AE as above. Let A ∈ AXXX
ra be an

efficient RA-adversary attacking AE . We assume that A never makes duplicate
queries to the Enc oracle; this is without loss because all such queries will return
the same response. It is easy to see that this fact combined with the fact that A
is equality-pattern respecting means that every query A makes to Enc and LR
results in a unique combination of pk and m; the game will never encrypt the
same message twice under the same public key. Now, denote by G0 the game
RA defined in Section 3. Thus by definition,

Advra
AE,A(k) = 2 · Pr

[
GA

0
]− 1 .

Now consider game G1. The relevant procedures from games G0 and G1 are
shown in Figure 4. In G0, oracles LR and Enc use Fun to derive the randomness
used to encrypt since this is what AE does. However, in G1, those oracles choose
fresh random coins and use those to encrypt the messages. We claim that these
games appear close to adversary A by showing there exists an efficient prf-
adversary B such that

Pr
[
GA

0
]− Pr

[
GA

1
] ≤ Advprf

Fun,B(k) .

The adversary B, attempting to decide if it is in the real or random world,
flips a bit b and chooses a target public key pk∗ by running the key generation
algorithm. B then runs A just as in G0 and G1. On Enc and LR queries, B uses
its Fun oracle to derive the randomness for encryption; in the case of the LR
query, B encrypts the message corresponding to the bit b that it chose. In the
CCA case, B answers Dec queries simply by using the secret key sk∗ (which it
knows because it chooses pk∗ and sk∗). When A eventually outputs a guess bit
b′, B outputs 1 if b = b′ and 0 otherwise. We can see that when B is in the ‘real’
world (i.e., its Fun queries are answered using Fun), it perfectly simulates G0 for
A, while if B is in the ‘random’ world (i.e., its Fun queries are answered with
random range points) then it perfectly simulates G1 for A. The claim follows.

52 S. Yilek

We then claim that there exists an efficient ind-adversary C such that

Advind
AE,C

(k) = 2 · Pr
[
GA

1
]− 1 .

The ind-adversary C is given a target public key pk∗ and access to an LR oracle
to which it can make a single query. In the CCA setting it also has access to a
Dec oracle. Adversary C runs A as in G1, answering its oracle queries as follows.
On A’s single LR query, C simply answers with its own LR oracle. In the CCA
setting C answers A’s Dec queries using its own Dec oracle. On Enc queries
from A, C encrypts the messages itself using fresh randomness and returns the
resulting ciphertexts to A. At the end of execution, C outputs the same bit that
A guesses. It is easy to see that C perfectly simulates the G1 game for A and
the claim follows.

Combining the above equations we can see that

Advra
AE,A(k) = 2 · Pr

[
GA

0
]− 1

≤ 2 · (Advprf
Fun,B(k) + Pr

[
GA

1
]
)− 1

≤ 2 ·Advprf
Fun,B(k) + Advind

AE,C
(k) . �

The existence of secure PRFs is implied by the existence of one-way functions
(which are necessary for PKE to exist), so we do not need any additional as-
sumptions. In practice, one would want to instantiate the PRF using HMAC [7]
or a block-cipher such as AES. Notice that in the random oracle model we can
replace Fun(r, (pk ‖m)) with H(r, pk,m), where H is a random oracle, since a
random oracle gives us a simple way to construct a PRF. Of course, if we did
so, we would lose the standard model guarantees.

Extensions. A natural question to ask is what happens to security if the same
randomness is used across multiple different primitives. For example, what if
some randomness r is used for public-key encryption, but then after a virtual
machine reset r is used for DSA signing? Formally modeling this situation is
an interesting open problem. However, we conjecture that our PRF approach in
this section will generalize and provide security in such a setting. Specifically, to
protect a primitive P against reused randomness, one would want to apply the
PRF not only to P’s inputs, but also to some unique value identifying P, e.g.,
an algorithm ID. This should guarantee that different primitives use distinct
randomness, even after a reset.

Acknowledgements

We would like to thank Barath Raghavan for originally expressing to us his con-
cern about the effects that resetting VMs might have on cryptographic primi-
tives. We would also like to thank Mihir Bellare, Thomas Ristenpart, and Daniele
Micciancio for providing useful feedback on an earlier version of this paper. Ad-
ditionally, we thank the CT-RSA 2010 anonymous referees for many useful com-
ments. Scott Yilek is supported by Daniele Micciancio’s NSF grant CNS–0831536
and Mihir Bellare’s NSF grant CNS–0627779.

Resettable Public-Key Encryption: How to Encrypt on a VM 53

References

1. http://aws.amazon.com/ec2/

2. http://www.openssl.org/

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd Annual Symposium on Foundations of
Computer Science – FOCS 2001, pp. 116–125. IEEE, Los Alamitos (2001)

4. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multi-recipient encryption
schemes: Efficient constructions and their security. IEEE Transactions on Informa-
tion Theory 53(11) (2007)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H.,
Yilek, S.: Hedged public-key encryption: How to protect against bad randomness.
In: ASIACRYPT 2009. LNCS, pp. 232–249. Springer, Heidelberg (2009)

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

8. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

9. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: How to en-
crypt with one 160-bit exponentiation. In: Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security – CCS 2006, pp. 380–389. ACM,
New York (2006)

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Proceedings of 1st ACM Conference on Computer and
Communications Security – CCS 1993, pp. 62–73. ACM, New York (1993)

11. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of
triple encryption. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 409–426. Springer, Heidelberg (2006)

12. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge.
In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting – STOC 2000, pp. 235–244. ACM, New York (2000)

13. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
2001 Workshop on Hot Topics in Operating Systems, pp. 133–138 (2001)

14. Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform for
web applications. In: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, pp. 350–364. IEEE, Los Alamitos (2006)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

16. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

17. Garfinkel, T., Rosenblum, M.: When virtual is harder than real: Security challenges
in virtual machine based computing environments. In: Proceedings of the 10th
Workshop on Hot Topics in Operating Systems – HotOS-X (May 2005)

http://aws.amazon.com/ec2/
http://www.openssl.org/

54 S. Yilek

18. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

19. Goyal, V., Sahai, A.: Resettably secure computation. In: EUROCRYPT 2009.
Springer, Heidelberg (2009)

20. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

21. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 542. Springer, Heidelberg (2001)

22. Provos, N.: A virtual honeypot framework. In: Proceedings of the 13th USENIX
Security Symposium, pp. 1–14 (2004)

23. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

24. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: Proceedings of the Network
and Distributed System Security Symposium – NDSS 2010. Internet Society (to
appear, 2010)

25. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: A provable-
security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)

26. Yilek, S.: Resettable public-key encryption: How to encrypt on a virtual machine.
Cryptology ePrint Archive, Report 2009/474 (2009),
http://eprint.iacr.org/2009/474

Appendix

A An Equivalent Security Definition

As we mentioned in Section 3, we can consider a more complicated security
game to capture IND-RA security. We give a more detailed discussion in [26],
but briefly compare the definitions here.

Let AE = (K, E ,D) be a PKE scheme. We say the RA-advantage of an ad-
versary A is

Advra
AE,A(k) = 2 · Pr

[
RA2A

AE(k) ⇒ true
]− 1 .

The security game RA2 can be found in Figure 5. In the game, the adversary is
given a target public key pk∗ and can make queries to three oracles. It can query
the LR oracle with index j and messages m0 and m1. In response, the adversary
receives the encryption of mb under the target public key pk∗ using the coins
indexed by j. The adversary is also given an Enc oracle which takes as input
a public key pk, index j, and message m. The oracle returns the encryption
of m under public key pk using the coins indexed by j. It is important that
the adversary can choose the public key pk. In particular, the adversary can
query Enc with a public key for which it knows the corresponding secret key.
With both the LR and Enc oracles, an adversary can continually see messages
encrypted under the same coins by repeatedly querying the same index. This is
how we model resetting attacks. Of course, the adversary can also see messages

http://eprint.iacr.org/2009/474

Resettable Public-Key Encryption: How to Encrypt on a VM 55

proc. Initialize(k):

b←$ {0, 1} ; (pk∗, sk∗)←$K(1k)
CoinTab← ∅ ; S ← ∅
Ret pk∗

proc. Enc(pk, j, m):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk, m; rj)
Return c

proc. LR(j, m0, m1):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk∗, mb; rj)
S ← S ∪ {c}
Return c

proc. Dec(c):

If c ∈ S then return ⊥
Else return D(sk∗, c)

proc. Finalize(b′):

Ret (b = b′)

Fig. 5. Game RA2AE(k)

encrypted under other coins by querying other indices. Finally, the adversary
can also query a Dec oracle with a ciphertext and receive its decryption.

Equality Patterns. For our alternate definition, we need a much more com-
plicated notion of equality patterns. Let A be any adversary that queries I
different indices to its LR and Enc oracles and makes qi queries to the LR
oracle with index i. Let Ei be the set of all messages m such that A makes query
Enc(pk∗, i,m). Let (mi,1

0 ,mi,1
1) to (mi,qi

0 ,mi,qi

1) be A’s LR queries for index
i ∈ [I]. Then, if for all i ∈ [I] and for all j �= k ∈ [qi],

mi,j
0 = mi,k

0 iff mi,j
1 = mi,k

1 ,

and for all i ∈ [I] and all j ∈ [qi]

mi,j
0 �∈ Ei ∧mi,j

1 �∈ Ei,

then we say that A is equality-pattern respecting.

Adversary Classes. To differentiate between various kinds of attacks, we use
classes of adversaries. LetAXXX

ra be the class of all PT equality-pattern respecting
adversaries that make 0 Dec queries if XXX = CPA and 0 or more Dec queries
if XXX = CCA.

It is easy to see that if we only consider adversaries that query LR once
and query LR and Enc on only a single randomness index, then the definition
becomes equivalent to the definition in Section 3. (CoinTab has only one entry,
which we call r∗ in the simpler definition.) To justify our use of the simpler
security game, we use hybrid arguments to prove the following two lemmas:

Lemma 1. Let AE be a PKE scheme and Aq,i ∈ AXXX
ra be an adversary querying

LR q times and querying LR and Enc on combined at most i different indices.
Then there exists an adversary Aq,1 ∈ AXXX

ra making at most q LR queries and
querying LR and Enc on only a single index, such that

56 S. Yilek

Advra
AE,Aq,i

(k) ≤ i ·Advra
AE,Aq,1

(k) ,

where the running time of Aq,1 is about the same as that of Aq,i. �

Lemma 2. Let AE be a PKE scheme and Aq,1 ∈ AXXX
ra be an adversary query-

ing LR q times and querying LR and Enc on combined at most 1 different
index. Then there exists an adversary A1,1 ∈ AXXX

ra making 1 LR query and
querying LR and Enc on only a single index, such that

Advra
AE,Aq,1

(k) ≤ q ·Advra
AE,A1,1

(k) ,

where the running time of A1,1 is about the same as that of Aq,1. �

Proof of Lemma 1 (Sketch). Let Aq,i be any equality pattern respecting adver-
sary making q queries to LR and querying LR and Enc on at most i different
randomness indices. We will build an adversary Aq,1 making at most q queries to
the LR oracle and querying LR and Enc on at most 1 randomness index. The
adversary Aq,1 runs Aq,i and guesses an index j ∈ {1, . . . , i}. It then uniformly
chooses coins r� for
 �= j and answers Enc and LR queries from Aq,i as follows.
On query Enc(pk, k,m), if k = j then Aq,1 replies with its own Enc oracle
and otherwise uses coins rk to answer the query. On query LR(k,m0,m1), if
k < j (resp. k > j) then Aq,1 replies with the encryption of m0 (resp. m1) under
coins rk; if k = j then Aq,1 replies using its own LR oracle. At the end of the
simulation, Aq,1 outputs the same guess bit as Aq,i. �
Proof of Lemma 2 (Sketch). Let Aq,1 be any equality pattern respecting ad-
versary making q queries to LR and querying LR and Enc on only a single
randomness index. We can build an adversary A1,1 making only a single LR
query. Adversary A1,1 guesses a query t ∈ {1, . . . , q} and answers the first t− 1
LR queries using its Enc oracle applied to m0, the tth query using its own LR
oracle, and the rest of the queries again using Enc, this time applied to m1. As
above, A1,1 outputs the same answer as Aq,1. �

Plaintext-Awareness of Hybrid Encryption

Shaoquan Jiang1 and Huaxiong Wang2

1 School of Computer Science and Engineering
University of Electronic Science and Technology of China

shaoquan.jiang@gmail.com
2 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

HXWang@ntu.edu.sg

Abstract. We study plaintext awareness for hybrid encryptions. Based
on a binary relation R, we define a new notion of PA2 (or R-PA2 for
short) and a notion of IND-CCA2 (or R-IND-CCA2 for short) for key
encapsulation mechanism (KEM). We define a relation RDEM from the
description of data encryption mechanism (DEM). We prove two com-
position results, which holds with or without (public) random oracles.

a. When KEM, with RDEM -PA2 and RDEM -IND-CCA2 security, com-
poses with a one-time pseudorandom and unforgeable (OT-PUE)
DEM, the resulting hybrid encryption is PA2 secure. OT-PUE is
weak and even unnecessarily passively secure and can be realized by
a one-time pad encryption followed by a pseudorandom function.

b. If KEM is RDEM -IND-CCA and DEM is passively secure and un-
forgeable, the hybrid encryption (KEM, DEM) is IND-CCA2 secure.

As an application, we show that DHIES, a public key encryption scheme
by Abdalla et al. [1] and now in IEEE P1361a and ANSI X.963, is PA2
secure. As another application, we prove that a hash proof system based
hybrid encryption is PA2. Consequently, this especially implies that the
concrete Kurosawa-Desmedt hybrid encryption (CRYPTO04) is PA2.

1 Introduction

Plaintext-awareness (PA) for an encryption system intuitively means that the
only way for one to generate a valid ciphertext is to apply the encryption algo-
rithm to a message. In other words, when one produces a ciphertext, he must
know the plaintext. ElGamal encryption is certainly not plaintext-aware since
for any public key (g, h), one can generate a valid ciphertext (A,B) by simply
taking A,B ← 〈g〉 (if d = logg h, then (A,B) is an encryption of m = A−dB
but DDH assumption asserts that m is unknown to its encrypter). PA has im-
portant applications in some security systems. For instance, Di Raimondo et al.
[18] uses the plaintext-awareness [17] of Cramer-Shoup [15] to prove the deni-
ability of SKEME key exchange protocol. Hybrid encryption [15] is a recently
proposed framework for constructing efficient public key encryption schemes. It
consists of a key encapsulation mechanism (KEM) and a data encryption mech-
anism (DEM). The former, based on the public key, encapsulates a temporary

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 57–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

58 S. Jiang and H. Wang

secret key and can be decapsulated only with the private key. The latter uses
the temporary key to encrypt the real data. The final ciphertext consists of the
ciphertexts generated by both mechanisms. The decryption works in the obvious
way. Note there are hybrid schemes in which KEM mixes with DEM or KEM is
based on a tag (e.g., [4,23,2,3]). In this paper, we will not consider this type of
hybrid encryption. Since a hybrid encryption is a new encryption paradigm, it
is interesting to study its plaintext-awareness, which is the task of this work.

1.1 Related Works

The notion of PA was first formally proposed by Bellare and Rogaway [9], while
the intuition can be dated back to [11,12]. The formalization [9] is in the ran-
dom oracle. Under their definition, PA plus IND-CPA does not imply IND-
CCA2. This is not very natural since if CCA2 attacker knows the plaintext of
his ciphertext, then decryption oracle should be useless and hence IND-CCA2 is
equivalent to IND-CPA. Bellare et al. [6] filled this gap by allowing ciphertext
eavesdropping. PA without random oracle was considered by Herzog et al. [21]
but in the key-registration setting, where any user owns a public key. Bellare et
al. [7] formalized plaintext-awareness in the classical setting (i.e., without a key
registration). They formalized three notions PA2, PA1 and PA0 and the adver-
sary goal is to forge a ciphertext for which he does not know the plaintext. PA2
admits adaptive chosen ciphertext attacks and eavesdropping attacks while PA1
and PA0 only admit adaptive chosen ciphertext attacks. PA1 differs from PA0
in that PA0 only allows one decryption query. Dent [17] showed that Cramer-
Shoup hybrid encryption is PA2 secure and this is the first proof of PA2 for
a practical encryption. His paper established some techniques for proving PA2.
Beyond this, PA of hybrid encryption is not well studied in the literature. Even
the result of Dent [17] is “not a practical tool” (quoted from [17]) for studying
PA2 of many practical schemes since it implicitly assumes that KEM and DEM
both are at least IND-CCA2. So to study PA2 for many practical schemes in
which KEM and DEM are not strongly secure, we have to look for new tools.
One of such practical schems is DHIES by Bellare et al. [1,10], which appeared
in standard drafts [5,13,19] and PA of DHIES was considered but unproved by
its authors. Regarding this, [1] states:

“In [10], a claim is made that DHIES should achieve plaintext awareness if
this hash function is modeled as a public random oracle and one assumes the
computational DH assumption. In fact, technical problems would seem to thwart
any possibility of pushing through such a result....”

1.2 Our Contribution

We define a new notion of PA2 with respect to a relation R (or R-PA2 for short)
for KEM, which is weaker than PA2. We also define a notion of IND-CCA2 with
respect to a relation R (or R-IND-CCA2 for short) for KEM, which turns out
to be an alternative of LCCA [4]. R-IND-CCA2 is weaker than IND-CCA2. We
associate relation RDEM with DEM and prove two composition results below.

Plaintext-Awareness of Hybrid Encryption 59

a. When KEM, with RDEM -PA2 and RDEM -IND-CCA2 security, composes
with a one-time pseudorandom and unforgeable (OT-PUE) DEM, the resulting
hybrid encryption is PA2 secure. OT-PUE is a weak notion and even does not
guarantee the passive security and can be realized by a one-time pad encryption
followed by a pseudorandom function.

b. If KEM is RDEM -IND-CCA and DEM is passively secure and unforgeable,
the hybrid encryption (KEM, DEM) is IND-CCA2 secure.

These compositions hold with or without a (public) random oracle. To show the
usefulness of these compositions, we consider two applications. As an application,
we prove that DHIES is PA2 secure in the public random oracle model, under
CDH and DHK assumptions and when DEM is OT-PUE. As another applica-
tion, we prove that a hash proof system based hybrid encryption is PA2 secure,
if it uses a computational universal2 projective hash family for an extractable
hard subset membership problem and DEM is OT-PUE and passively secure.
An important implication of this application is that the concrete Kurosawa-
Desmedt hybrid encryption [25] is PA2 secure. Two applications seem unlikely
to be proven PA2 under the results in Dent [17] since KEM of the former does
not appear to be IND-CCA2 and KEM of the latter is not IND-CCA2 [14].

2 Preliminaries

Notations. x ← S samples x uniformly random from a set S. For two ran-
dom variables X,Y over a finite set V , the probability distance between them is
Dist[X,Y]=1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]|. Function ε : N → R is negligible

if limn→∞ p(n)ε(n) = 0 for any polynomial p(n). We usually use negl(κ) to de-
note a negligible function. PPT means probabilistic polynomial time. Random
variables X ≈ Y means that they are computationally indistinguishable.

2.1 Diffie-Hellman Knowledge Assumption

p = 2q + 1 and q are large primes. G is the subgroup of Z∗
p of order q. g is a

generator of G. For any PPT adversaryH, there exists a PPT extractor H∗ such
that the experiment below terminates with 0 for probability 1− negl(κ).
Let a ← Zq, A = ga. Take r, r∗ ← {0, 1}∗ as a random tape respectively for H,
H∗. Input (p, g, A, r) to H and (p, g, A, r, r∗) to H∗. H can query H∗ as follows.

• H issues query (B,C) to H∗. H∗ responds with some b ∈ Zq to H. If Ba = C
but B �= gb, then the experiment terminates with output 1; otherwise, continue.

If the experiment does not terminate until H halts, the experiment outputs 0.

2.2 Simulatable Random Variable

Let V be a finite set and Z is a random variable over V .
 ∈ N. Φ : {0, 1}� → V
is a deterministic function and Φ∗ : V → {0, 1}� is a probabilistic function.
Then, Z is said to be simulatable by (Φ,Φ∗), if Dist[Z,Φ(U�)] = negl(κ) for

60 S. Jiang and H. Wang

U� ← {0, 1}� and Dist[Φ∗(z), U�(z)] = negl(κ) for any z ∈ V , where U�(z) is
uniformly distributed over

{
u� | Φ(u�) = z, u� ∈ {0, 1}�

}
. From the definition,

we can sample Z using U� by Z = Φ(U�), and recover the randomness used by
Φ to sample Z = z by computing Φ∗(z). The following fact is immediate.

Fact 1. Keep the notions above. Then Φ∗(Z) and U� are statistically close.

2.3 Hybrid Encryption and Key Encapsulation Mechanism

A hybrid encryption system [15] is a public key encryption system that consists
of two components: Key Encapsulation Mechanism (KEM) and Data Encryption
Mechanism (DEM). KEM generates a ciphertext c that encodes a secret key K.
DEM encrypts the data into a ciphertext e using K. The final ciphertext for the
hybrid encryption is (c, e). The decryption works in an obvious way. Formally, a
hybrid encryption PKE = (KEM,DEM) is defined as follows. KEM=(KEM.Gen,
KEM.Key, KEM.Enc, KEM.Dec) and DEM=(DEM.Enc, DEM.Dec). Initially, take
sp ← KEM.Gen(1κ) to generate system parameter sp.

KEM.Key(sp). Take (pk, sk) ← KEM.Key(sp) to generate public key pk and pri-
vate key sk.
KEM.Enc(pk). Take (K, c) ← KEM.Enc(pk) to generate session key K and ci-
phertext c that encapsulates K.
KEM.Dec(c). Given c, use sk to decapsulate K = KEM.Dec(sk, c).

DEM=(DEM.Enc, DEM.Dec) is a pair of a symmetric encryption/decryption
algorithms.
PKE works as follows. Run sp ← KEM.Gen(1κ), (pk, sk) ← KEM.Key(sp) to

generate public key pk and private key sk. To encrypt m, compute (K, c) ←
KEM.Enc(pk) and e ← DEM.Enc(K,m). The ciphertext is (c, e). To decrypt
(c, e) with sk, compute K = KEM.Dec(sk, c) and m = DEM.Dec(K, e).

2.4 Security of KEM

In this section, we introduce two security notions of KEM used in this work.

Chosen plaintext security (IND-CPA). Let sp ← KEM.Gen(1κ), (pk, sk)←
KEM.Key(sp), (K0, c) ← KEM.Enc(pk), b ← {0, 1},K1 ← K, where K is the
key space of encapsulation by KEM. KEM is IND-CPA if given (Kb, c), no PPT
adversary can guess b non-negligibly better than 1/2.

IND-CCA2 with Respect to a Relation. We now introduce a security notion
for KEM, called chosen ciphertext security with respect to a binary relation R
(or R-IND-CCA2 for short). This notion turns out to be an alternative formation
of LCCA by [4] and weaker than Constrained CCA in [22]. We keep our relation
based formulation for consistency with our relation based plaintext-awareness.

Let R ⊆ K × {0, 1}∗ be a binary relation. R-IND-CCA2 is defined through
a game between an attacker A and a challenger. Challenger samples sp ←
KEM.Gen(1κ), (pk, sk)← KEM.Key(sp), gives pk to A and answers his queries.

Plaintext-Awareness of Hybrid Encryption 61

– A can issue a challenge query at any time but just once. In turn, Challenger
takes (K0, c

∗)← KEM.Enc(pk), b← {0, 1}, K1 ← K and provides (Kb, c
∗) to A.

– A can issue a decryption query (c, α) at any time. Upon this, if c = c∗,
outputs ⊥; otherwise, he first computes K = KEM.Dec(sk, c). If (K,α) ∈ R,
return K to A; otherwise, return ⊥.

At the end of the game, A outputs guess b′ for b. He succeeds if b′ = b.
Denote the above game by ΓR. R-IND-CCA2 security is defined as follows.

Definition 1. R is a binary relation. A key encapsulation mechanism KEM is
said to be adaptive chosen ciphertext secure with respect to R (or R-IND-CCA2)
if Pr[Succ(A, ΓR)] = 1/2 + negl(κ) for any PPT adversary A.

2.5 Public Random Oracle

Public random oracle is an idealized object for hash function H : {0, 1}∗ →
{0, 1}�. Specifically, for any input x, H(x) is uniformly random in {0, 1}�, except
that the same input gets the same output. Algorithmically, it can be described
in a query model below. Keep a set H-list Ω, which is initially empty. Upon
any query x, if x was not recorded in Ω, take y ← {0, 1}� randomly and put
(x, y) into Ω. In any case, if (x, y) ∈ Ω for some y ∈ {0, 1}∗, return y as H(x).
This idealized object was first proposed in Bellare and Rogaway [8]. It was then
popularly used in the literature to prove the security for many practical systems.
In our work, we will sometimes adopt this model for plaintext-awareness. But
we should be careful since PA is defined in terms of a plaintext extractor, which,
upon a decryption query, plays as a decryption oracle to extract the plaintext
encrypted in a ciphertext while using an adversary’s knowledge only. That is,
the extractor’s code should be executable by the adversary himself. Especially,
the extractor can not choose the value of H(x) (since an adversary can not).
Thus, the extractor can not maintain H-oracle by himself. In other words, H
is non-programmable. In our work, H-oracle is maintained by a trusted third
party H. This is called a public random oracle model. Under this, when any
participant (e.g., extractor, adversary) wishes to compute H(x), he has to query
H. This model was previously adopted in [28], where they allow the simulator
to see the oracle inputs of the adversary. In our paper, we remove this condition
as our simulator sees the random tape of the adversary and all of his messages
received (thus his entire view) and so he can generate these H-queries himself.

2.6 Plaintext-Awareness

Plaintext-awareness essentially means that when one generates a ciphertext he
should know the plaintext. Bellare and Palacio [7] formalized three levels of
plaintext-awareness, denoted by PA0, PA1 and PA2. In the following, we will
introduce them, first in the standard model and then in the public random oracle
model. We will introduce a new notion of R-PA2 for KEM with relation R.

Plaintext-awareness for public key encryption in the standard model
PA2 essentially states that an adversary can not create a new ciphertext without

62 S. Jiang and H. Wang

knowing its plaintext, even if he has eavesdropped some other ciphertexts. The
formal definition is described using two games. In Game one, the adversary can
access to a real decryption oracle and an encryption oracle. The former captures
the CCA2 attack and the latter captures the eavesdropping attack. In our model,
eavesdropped ciphertexts are modeled as outputs of normal encryptions, which is
different from Bellare et al. [7] where they are generated by any PPT algorithm.
Our formulation is reasonable since a ciphertext without following the specifica-
tion does not have a security guarantee and so a normal encrypter is unlikely to
do so. In Game one, the adversary finally generates an arbitrary output (e.g. his
entire view). Game two is similar to Game one, except that the decryption oracle
is answered by a plaintext extractor, who is given the public key, the adversary’s
random tape and the ciphertext history generated by the encryption oracle. Es-
pecially, he is NOT given the decryption key. Finally, the encryption scheme is
said PA2 if no efficient algorithm can distinguish the adversary outputs in these
games. When a scheme is PA2, the extractor conceivably always extracts the
plaintext. Since the extractor only uses the adversary’s knowledge, the latter
should ‘know’ the plaintext since he can run the extractor’s code himself. In
both games, the adversary is not allowed to issue decryption queries with the
eavesdropped ciphertexts; otherwise, the scheme is not PA2 unless it is insecure.
Let S = (S.Gen, S.Key, S.Enc, S.Dec) be a public key encryption and κ be the
security parameter. The two games proceed as follows.

Game G0 :
sp ← S.Gen(1κ), (pk, sk)← S.Key(sp); Ω = {}.
Let rA, rP be the random tapes for PPT algorithms A and P , respectively.
Run A with input pk and coins rA and answer his queries until it halts.

• If A issues a decryption query with c for c �∈ Ω, computes m = S.Dec(sk, c)
and returns m to A. If c ∈ Ω, ignore it.

• If A issues an encryption query with a message distributionM, P takes m←
M, computes c = S.Enc(pk,m) and returns c to A. Update Ω = Ω ∪ {c}.

Finally, A outputs a string x.

Game G1 :
sp ← S.Gen(1κ), (pk, sk)← S.Key(sp);Ω = {}.
Let rA, rP , rA∗ be random tapes for PPT algorithms A, P and A∗, respectively.
Run A with input pk and coins rA and answer his queries below until it halts.

• If A issues a decryption query c for c �∈ Ω, compute m = A∗(pk, c, Ω, rA, rA∗)
and return m to A. If c ∈ Ω, ignore it.

• If A issues an encryption query with a message distribution M, P takes
m←M, computes and returns c = S.Enc(pk,m) to A. Update Ω = Ω∪{c}.

Finally, A outputs a string x.

Use out(Gi) to denote the output of A in Gi, i = 0, 1.

Plaintext-Awareness of Hybrid Encryption 63

Definition 2. A public-key encryption S is computationally PA2 secure if for
any PPT A, there exists a PPT A∗ such that out(G0) ≈ out(G1).

Plaintext-awareness in the public random oracle model. PA2 in the
public random oracle model is similar to PA2 in the standard model above, except
a public random oracle H is added into the games, where when any participant
(P , A, A∗, distinguisher, or challenger) wants to compute H(x), he sends x to
H and receives H(x). P could issue a H-query in order to compute a ciphertext;
the challenger could issue a H-query in order to answer the decryption query;
a out distinguisher may issue a H-query to maximize his advantage. H oracle
answers a H-query by maintaining a H-list as mentioned before. Denote G0,G1
in the public random oracle model by GH

0 ,GH
1 , respectively. Then, PA2 in the

public random oracle model is stated as follows.

Definition 3. H : {0, 1}∗ → {0, 1}� is a public random oracle. A public-key
encryption S is computationally PA2 secure in the public random oracle model if
for any PPT A, there exists a PPT A∗ such that out(GH

0) ≈ out(GH
1).

Plaintext-awareness for KEM with respect to a relation. The objective
of KEM is to encapsulate a secret key in the ciphertext. Hence, its PA2 def-
inition should naturally capture the following intuition: when one generates a
KEM ciphertext c, he should know the key encapsulated in it. However, we find
that this intuition is too strong to be useful since many practical KEMs do not
satisfy this. We thus relax it to the following: if one generates a ciphertext c
and knows partial information about the encapsulated key, he must know the
whole key. In our specification, partial information is interpreted as satisfying a
pre-defined binary relation R. Specifically, when the adversary submits a cipher-
text for decryption, he also submits a string α as a proof that he knows partial
information about the encapsulated key K. The decryption oracle decrypts K (if
any) and verifies if (K,α) ∈ R. If yes, the adversary is said to know the partial
information and is given K; otherwise, he is not given K. We call this relaxed
plaintext-awareness for KEM, R-PA2. As for public-key encryption, we formal-
ize R-PA2 in terms of two games. Let KEM be a key encapsulation mechanism
and K be the space of the encapsulated key. Let R ⊆ K × {0, 1}∗ be a binary
relation. We define two games Gi,R (i = 0, 1), parameterized by R.

Game G0,R :
sp ← KEM.Gen(1κ), (pk, sk)← KEM.Key(sp).
Let rA, rP be the random tapes for PPT algorithms A and P , respectively.
Run A with input pk and coins rA and answer his queries until it halts.

• If A issues a decryption query with (α, c), compute K = KEM.Dec(sk, c). If
K =⊥ or (K,α) �∈ R, then return ⊥; otherwise, return K to A.

• If A issues an encryption query, P computes (K, c) = KEM.Enc(pk) and
returns c.

Finally, A outputs a string x.

64 S. Jiang and H. Wang

Game G1,R :
sp ← KEM.Gen(1κ), (pk, sk)← KEM.Key(sp);Ω = {}.
Let rA, rP , rA∗ be random tapes for PPT algorithms A, P and A∗, respectively.
Run A with input pk and coins rA and answer his queries below until it halts.

• If A issues a decryption query with (α, c), A∗ computes and returns K to
A, where K = A∗(R, pk, α, c, Ω, rA, rA∗).

• If A issues an encryption query, P computes (K, c) = KEM.Enc(pk) and
returns c to A. Update Ω = Ω ∪ {c}.

Finally, A outputs a string x.

Now we are ready to formally state R-PA2.

Definition 4. A key encapsulation mechanism KEM is PA2 secure with respect
to a binary relation R (or R-PA2, for short) if for any PPT A, there exists a PPT
A∗ such that out(G0,R) ≈ out(G1,R).

R-PA2 for KEM in the public random oracle model. Similar to the
public key encryption case, we can define R-PA2 for KEM in the public random
oracle model, by adding public random oracle into games G0,R and G1,R. We
summarize the revised definition as follows.

Definition 5. Let H : {0, 1}∗ → {0, 1}� be a public random oracle. A key en-
capsulation mechanism KEM is PA2 secure with respect to a binary relation R (or
R-PA2, for short) in the public random oracle model if for any PPT A, there exists
a PPT A∗ such that out(GH

0,R) ≈ out(GH
1,R).

PA1/PA0. PA1/PA0 for these systems are simply defined by removing the
encryption oracle in the respective setting. That is, A looses the ability of eaves-
dropping ciphertexts. PA0 is a special case of PA1, where A is only allowed to
issue one decryption query.

Remark. In all of the PA definitions above, A outputs an arbitrary string and
PA is defined as indistinguishability of A’s outputs in two games. As stated in
Bellare [7], separating the attacker A and the distinguisher is important since
the extractor can obtain the coins of A but not that of the distinguisher.

2.7 One-Time Pseudorandom Unforgeable Encryption (OT-PUE)

One-time pseudorandom unforgeable encryption essentially states that the ci-
phertext is pseudorandom and unforageable, even if the adversary can issue a
single decryption query. Formally,

Let PUE = (PUE.Key,PUE.Enc, PUE.Dec) be a symmetric encryption. Consider
a game between an adversary A and a challenger.

Plaintext-Awareness of Hybrid Encryption 65

• A can issue a challenge query once with a message m. Challenger takes
K ← PUE.Key(1κ) and b ← {0, 1}. If b = 0, let c∗ = PUE.Enc(K,m);
otherwise, c∗ ← {0, 1}�, for
 = |PUE.Enc(K,m)|. Finally, return c∗ to A.

• Receiving c∗, A can issue a single query c �= c∗ to the challenger. If b = 0,
the latter returns m = PUE.Dec(K, c) (note: by default m =⊥ if c is invalid);
if b = 1, he simply returns ⊥.

At the end of the game, A outputs a guess bit b′ for b. Let Γb be the above game
when the challenge bit is b. The security definition is as follows.

Definition 6. A symmetric encryption scheme PUE is a one-time pseudoran-
dom unforgeable encryption (OT-PUE) if for any PPT adversary A, Pr[A(Γ0) =
1] = Pr[A(Γ1) = 1] + negl(κ). If the challenge query is removed, then a scheme
satisfying this is called one-time unforgeable encryption (or OT-UE for short).

Note that this notion is rather weak: it does not imply passive security. But on
the other hand, it is not hard to find an IND-CCA2 security scheme which is
not OT-PUE. Hence, it is not comparable with IND-CCA2.

OT-PUE vs One-Time Authenticated Encryption. One-time authenticated
encryption (OT-AE) was introduced in Hofheinz and Kiltz [22]. Essentially, an
encryption (E,D) is OT-AE if it is passively secure and unforgeable. In terms of
a game, adversary A first submits messages m0,m1 of equal length. Challenger
takes b← {0, 1} and returns c∗ = EK(mb). Then,A can make a single decryption
query c �= c∗. Challenger returns m = DK(c) if b = 0; ⊥ otherwise. Finally, A
outputs a guess bit b′ and succeeds if b′ = b. The following is simple.

Lemma 1. If symmetric encryption S is passively secure and OT-PUE, then it
is OT-AE.

3 Composition for Secrecy

Bellare et al. [7] showed that when a public encryption is IND-CPA and PA2,
it must also be IND-CCA2. This provides an alterative (i.e., via PA2) to prove
IND-CCA2 for a public encryption, especially for a hybrid encryption. Dent [17]
presented results for proving PA2 of a hybrid encryption, for which KEM is IND-
CCA2. In many practical hybrid encryptions, KEMs are not IND-CCA2. Hence,
we look for results suitable to prove IND-CCA2 of a hybrid encryption (via PA),
in which KEM is not necessarily IND-CCA2. Toward, we will prove that R-
IND-CCA2 KEM plus a proper DEM is an IND-CCA2 hybrid encryption. In the
next section, we will show KEM, with R-PA2 and R-IND-CCA2, plus a proper
DEM gives a PA2 hybrid encryption. Hence, R-PA2 KEM and R-IND-CCA2
are essential for a hybrid encryption to be both IND-CCA2 and PA2.

Let K be the key space of DEM, RDEM =
{

(K,α)|DEM.Dec(K,α) �=⊥,K ∈
K, α ∈ {0, 1}∗

}
. We show that if KEM is RDEM -IND-CCA2 and DEM is OT-AE,

then (KEM,DEM) hybrid encryption is IND-CCA2. This result is extended from

66 S. Jiang and H. Wang

Hofheinz and Kiltz [22, Theorem 3.1], where they require KEM is constrained
IND-CCA2 which is not hard to see stronger than RDEM -IND-CCA2. Our proof
strategy is as follows. If the theorem is wrong, we can build a RDEM -IND-
CCA2 attacker B that uses an IND-CCA2 attacker A as a subroutine. B mainly
needs to answer the decryption query (c, e) from A. The idea is to let B ask his
decapsulation oracle to decapsulate c and then uses the returned K to decrypt
e, except when c is in his challenge (Kb, c) he can not ask. However, in this
case, he can decrypt e using Kb. The formal proof can be found in the full
paper [24].

Theorem 1. Let DEM is OT-AE. If KEM is RDEM -IND-CCA2 in the ran-
dom oracle model (resp. standard model), then (KEM,DEM) hybrid encryption
is IND-CCA2 in the random oracle model (resp. standard model).

4 Composition for Plaintext-Awareness

In this section, we study the question: which type of plaintext-awareness for
KEM plus a reasonable DEM can guarantee PA2 of the hybrid encryption?
Dent [17] provided an answer, where KEM does not seem weaker than PA2.
In many practical schemes such as DHIES, the PA2 conidition for KEM is too
strong. We hence look for a suitable composition that works with a weak KEM.

We present a composition theorem, where KEM is only RDEM -PA2. We show
that, if KEM is RDEM -PA2 and RDEM -IND-CCA2 and DEM is pseudorandom
and unforgeable, then the hybrid encryption is PA2. The impact of this result can
be stated as follows: if we want to study PA2 of hybrid encryption (KEM, DEM),
we only need to study KEM’s R-PA2 and R-IND-CCA2 properties.

To prove the result, we need to construct a PA2 extractor A∗ that answers
an adversary A’s decryption query (c, e). Our idea is, A∗ can internally simulate
RDEM -PA2 game of KEM and use its KEM extractor B∗ to extract the key K
in c and then use K to decrypt e. In doing so, we must be careful about two sub-
tle issues. Firstly, the simulated RDEM -PA2 must be self-contained; otherwise,
we cannot guarantee the RDEM -PA2 attacker (say, B) outputs A’s decryption
query (c, e). To avoid this, we simulate the RDEM -PA2 game such that the view
of A is deterministic in the view of B. Secondly, for a decryption query (c, e)
by A such that c is output by encryption oracle of B, B∗ can not output K.
So how can A∗ decrypt e? This is not a problem since in this case K must
be computationally random in view of A and hence unforgeability of DEM im-
plies (K, e) �∈ RDEM . So A∗ can simply reject. The formal proof is in the full
paper [24].

Theorem 2. (KEM,DEM) is a hybrid encryption, where KEM is RDEM -PA2 in
the public random oracle model (resp. the standard model) and RDEM -IND-CCA2
in the random oracle model (resp. the standard model) and DEM is OT-PUE.
Then (KEM, DEM) is PA2 in the public random oracle model (resp. the standard
model).

Plaintext-Awareness of Hybrid Encryption 67

5 Applications

5.1 DHIES

DHIES public key encryption was proposed by Abdalla et al. [1]. The earlier
version appeared in [10]. It is now in the draft standards of IEEE P1361a and
ANSI X.963 [5,19]. In this section, we will prove its PA2 via composition results
obtained in previous sections. Our result also implies a new proof for IND-CCA2
under DHK and CDH assumptions in the random oracle model although IND-
CCA2 for DHIES is not new [1,15]. We first review DHIES. Let data encryption
mechanism of DHIES be DEM=(DEM.Enc, DEM.Dec). Its KEM, KEMhE, is
described as follows.

Let p = 2q + 1 and q be two large primes. g is a generator of order q in Z∗
p.

H : {0, 1}∗ ← {0, 1}κ is a hash function, where κ is the security parameter. So
its system parameter is sp=(p, g).

KEMhE.Key(sp). Let d ← Zq and h = gd. The public key is (p, g, h) and the
secret key is d.

KEMhE.Enc(pk). Take r ← Zq and compute u = gr. The ciphertext is u and
encapsulated key K = H(hr).

KEMhE.Dec(u). To decrypt u, compute K = H(ud).

Plaintext-Awareness. Using Theorem 2, we show that DHIES is PA2. Toward
this, we first show that KEMhE is RDEM -PA2. That is, we construct a KEMhE

key extractor without using d. Our idea is to deploy a DHK extractor as a
subroutine. More specifically, for decryption query (gt, e) by adversary A, if ht

was not queried to random oracle by A, then e is unlikely to be valid and hence
reject; if ht was queried by A, we can find it by issuing a DHK (gt, x) query for
each random oracle query x from A: since DHK extractor never errs, if x = ht

is Diffie-Hellman, then t can be extracted; otherwise, it can not output t (since
it does not exist). When t will be extracted, the decryption key H(ht) can be
computed by the extractor A∗ and hence the decryption will be correct. The
formal proof is available in the full paper [24].

Lemma 2. Let DEM be OT-UE. Then, under DHK assumption, KEMhE is
RDEM -PA2 secure in the public random oracle model.

Next, we show that KEMhE is RDEM -IND-CCA2 in the random oracle model.
The proof can be seen in the full paper.

Lemma 3. If DEM is OT-UE, then, under DHK and CDH assumptions, KEMhE

is RDEM -IND-CCA2 in the random oracle model.

From Theorem 2 and Lemmas 2, 3, we conclude the following theorem.

Theorem 3. Let DEM be OT-PUE. Then, under DHK and CDH assumptions,
DHIES is PA2 secure in the public random oracle model.

68 S. Jiang and H. Wang

IND-CCA2 (revisited). IND-CCA2 security of DHIES is not new. Abdalla et
al. [1] proved it under oracle Diffie-Hellman assumption and Cramer-Shoup [15]
implied a proof under a strong Diffie-Hellman assumption in the random oracle
model. From Lemma 3 and Theorem 1, when DEM is OT-PUE and passively
secure, we get a new proof under CDH and DHK assumptions in the random
oracle model.

5.2 Hash Proof System Based Hybrid Encryption

5.2.1 Hash Proof System

Now we introduce the hash proof system, which was initially introduced by
Cramer and Shoup [15]. To cater our use, we slightly modify the definition. We
also add a notion of extractability introduced in our separate paper.

(a) Hard Subset Membership Problem. A hard subset membership prob-
lem essentially is a problem, in which one can efficiently sample a hard instance.
More formally, a subset membership problem I is a collection {In}n∈N, where In

is a probability distribution for a random variable Λn that is efficiently sampled
by a polynomial time algorithm as follows.

• Generate a finite non-empty set Xn, Ln ⊆ {0, 1}poly(n) s.t. Ln ⊂ Xn, and
distribution D(Ln) over Ln and distribution D(Xn\Ln) over Xn\Ln.

• Generate a witness set Wn ⊆ {0, 1}poly(n) and a NP-relation Rn ⊆ Xn×Wn

such that x ∈ Ln if and only if there exists w ∈ Wn s.t. (x,w) ∈ Rn.
There exists a polynomial time algorithm that samples x according to D(Ln)
and outputs a witness w ∈ Wn s.t. (x,w) ∈ Wn. Further, there exists a
polynomial time algorithm that samples x according to D(Xn\Ln).

Denote Λn = (Xn, Ln,Wn, Rn, D(Ln), D(Xn\Ln)). I = {In}n∈N is a hard sub-
set membership problem if for Λn ← In, we have that x ← D(Ln) and
y ← D(Xn\Ln) are indistinguishable.

(b) Extractable Hard Subset Membership Problem. Now we introduce
a notion of extractability for I. A hard subset membership problem I = {In}n

is extractable if for any PPT adversary A, there exists a PPT extractor A∗ such
that the following experiment terminates with 0 for probability 1− negl(n).

Let Λ = (X,L,W,R,D(L), D(X\L))← In. Let desc(Λ) be the description of
Λ. Sample r, r∗ ← {0, 1}∗ as a random tape for A and A∗, respectively. Input
(desc(Λ), r) to A and (desc(Λ), r, r∗) to A∗. Then A can query A∗ as follows.

• A queries x ∈ X to A∗. A∗ responds with some w ∈ W to A. If x ∈ L but
(x,w) �∈W , the experiment terminates with output 1; otherwise, it continues.

If the experiment does not terminate until A halts, the experiment outputs 0.

(c) Projective Hash Functions. Let Λ = (X,L,W,R,D(L), D(X\L)) be
sampled from a subset membership problem In. Consider a function family

Plaintext-Awareness of Hybrid Encryption 69

〈H,K, X, L,G, S, α〉, which is described by desc(Λ) and λ ← {0, 1}n 1, where
G,S,K are finite, non-empty sets, H = {Hk | k ∈ K} is a set of hash functions
from X to G and α : K → S is a deterministic function. K is called a key space,
k ∈ K is called the projection key; S is called the projection space for α. The
family 〈H,K, X, L,G, S, α〉 is called a projective hash family (PHF) for Λ, if a
random instance of it is determined by desc(Λ) and a uniformly random string
λ and if Hk(x) for x ∈ L, is uniquely determined by α(k) and x. It is called an
efficient PHF, if α(k) and Hk(x) are both polynomially computable for any (k, x)
and if Hk(x) can be polynomially computable from x,w, α(k) for (x,w) ∈ R.
Now we define the following.

Definition 7. {In}n is a hard subset membership problem. Sample an instance
Λ = 〈X,L,W,R,D(L), D(X\L)〉 ← In. PHF = 〈H,K, X, L,G, S, α〉 is a pro-
jective hash family for Λ. PHF is computational universal2 if any PPT A has
a negligible advantage in the following game. Sample an instance of PHF by
desc(Λ) and λ← {0, 1}n. Take k ← K. Provide (λ, desc(Λ), α(k)) to A.

- A is given x1 ← D(X\L) and Hk(x1).
- A can adaptively issue an Evalu query with x ∈ X, where oracle Evalu

does the following. It first checks if x ∈ L (maybe in exponential time). If
yes, return Hk(x); otherwise ⊥.

- Throughout the game, A can come up with a challenge x2 ∈ X\L for x2 �= x1.
He receives Kb, where b ← {0, 1},K0 = Hk(x2) and K1 ← K. After query
x2, A can still query any x to Evalu.

At the end of game, A outputs a guess bit b′ for b. He succeeds if b′ = b.

If we only require (x2, α(k), Hk(x2)) to be indistinguishable from (x2, α(k), g)
for g ← G and any x2 ∈ D(X\L) (i.e., with access to Evalu oracle and without
obtaining (x1, Hk(x1)), then HPF is called smooth.

5.2.2 Key Encapsulation Mechanism [25,22]

Now we describe KEM from hash proof system [25]. Use KEMhps to de-
note it. Initially, take Λ = 〈X,L,W,R,D(L), D(X\L)〉 ← Iκ. Let PHF =
〈H,K, X, L,G, S, α〉 be the projective hash family for Λ. Sample an instance
(λ, desc(Λ)) from PHF . Then the system parameter sp = (λ, desc(Λ)).

KEMhps.Key(sp). Take k ← K and compute pk = (α(k), λ, desc(Λ)). Then pk is
the public key and k is the secret key.

KEMhps.Enc(pk). Take x← D(L) with witness w such that (x,w) ∈ W. The ci-
phertext is x and the encapsulated key is Hk(x). Note that a sender can compute
Hk(x) using x,w, pk.

KEMhps.Dec(k, x). To decrypt x, compute K = Hk(x) using (k, x).

1 Note here we require that in addition to desc(Λ), PHF can be described by a pa-
rameter λ← {0, 1}κ. The requirement λ← {0, 1}κ is not essential. It can be relaxed
as any simulatable variable (for results in this paper to hold).

70 S. Jiang and H. Wang

Plaintext-Awareness. The following lemma essentially states that KEMhps is
RDEM -PA2 if PHF is smooth and I is an extractable hard subset membership
problem. The formal proof is in the full paper.

Lemma 4. Let I = {Iκ}k∈N be an extracble hard subset membership prob-
lem. DEM is OT-UE. Let Λ = 〈X,L,W,R,D(L), D(X\L)〉 ← Iκ. PHF =
〈H,K, X, L,G, S, α〉 is a smooth projective hash family for Λ. α(k) for k ← K
is simulatable by (Φ1, Φ

∗
1) and x ← D(X\L) is simulatable by (Φ2, Φ

∗
2). Then,

KEMhps is RDEM -PA2.

The following lemma shows that the computational universal2 of HPF im-
plies RDEM -IND-CCA2 for KEMhps. Since RDEM -IND-CCA2 is weaker than
constrained-CCAs in [22], where it was shown that KEMhps is constrained CCA2
[22, Theorem 6.2], the following is implied by this.

Lemma 5. I = {Ik} is a hard subset membership problem. HPF is computa-
tional universal2 HPF for I. DEM is OT-AE. Then, KEMhps is RDEM -IND-
CCA2 secure.

From Lemmas 4, 5 and Theorem 2, we immediately have

Theorem 4. {Iκ} is an extractable hard subset membership problem. DEM is
OT-PUE. Λ = 〈X,L,W,R,D(L), D(X\L)〉 ← Iκ. PHF = 〈H,K, X, L,G, S, α〉
is computational universal2 for Λ. K ← G, x ← D(X\L), α(k) for k ← K, are
all simulatable. Then (KEMhps,DEM) is PA2.

5.2.3 Concrete Kurosawa-Desmedt Scheme [25]

Kurosawa and Desmedt [25] used the following KEM as an example for their
HPS based hybrid encryption. It is important since this hybrid encryption is
more efficient than Cramer-Shoup scheme. Denote its KEM by KEMkd.

- Description of Ik. Sample a prime p = 2q+1 where q is also a large prime.
Let G be the prime group of Z∗

p of order q. Take g1, g2 ← G. The set X =
{(gr1

1 , gr2
2) | r1, r2 ∈ Zq}. Language L is defined as L = {(gr

1, g
r
2) | r ∈ Zq}.

D(L) is defined as taking r ← Zq and outputting (gr
1, g

r
2). Similarly define

D(X\L). I is a hard subset membership problem from DDH assumption
by G. Also, based on DHK assumption, I is an extractable hard subset
membership problem.

- Description of PHF . Let G = S = G and K = {(x1, x2, y1, y2) |
x1, x2, y1, y2 ∈ Zq}. α(k) = (c, d) = (gx1

1 gx2
2 , gy1

1 gy2
2). Let hλ be a target colli-

sion resistent hash function, indexed by λ← {0, 1}κ. For (u1, u2) ∈ X , define
Hk(u1, u2) = ux1+y1τ

1 ux2+y2τ
2 , where τ = hλ(u1, u2). If (u1, u2) = (gr

1, g
r
2),

then Hk(u1, u2) = ux1+y1τ
1 ux2+y2τ

2 = (gx1+y1τ
1 gx2+y2τ

2)r = (cdτ)r = α(k)r .
Hence, this is a projective hash family for I. Further, it is known that
this hash family is computational universal2 [22, Lemma 6.3]. desc(Λ) =
(p, g1, g2). desc(PHF) = (λ, c, d, desc(Λ)). Besides, c, d are easily shown to
be simulatable (also see Dent [17]). Hence, PHF is an extractable and com-
putational universal2 projective hash family.

Plaintext-Awareness of Hybrid Encryption 71

Theorems 4 and the discussions above, we have

Theorem 5. Let DEM be OT-PUE and passively secure. hλ is target collision-
resistant. Then DHK and DDH assumptions, hybrid encryption (KEMkd,DEM)
is IND-CCA2 secure and PA2 secure.

Acknowledgements. The authors are grateful to anonymous referees for in-
valuable comments and for pointing out that an independent work by James
Birkett at RHUL also achieves PA2 for Korusawa-Desmedt scheme. S. Jiang
is supported by NSFCs (No. 60673075, 60973161) and UESTC Young Faculty
Plans. H. Wang is supported in part by the Singapore National Research Foun-
dation under Research Grant NRF-CRP2-2007-03 and the Singapore Ministry
of Education under Research Grant T206B2204.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-Secure Encryption for Messages
of Arbitrary Length. In: Public Key Cryptography 2009. LNCS, vol. 5443, pp.
377–392. Springer, Heidelberg (2009)

3. Abe, M., Kiltz, E., Okamoto, T.: Chosen Ciphertext Security with Optimal Ci-
phertext Overhead. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
355–371. Springer, Heidelberg (2008)

4. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for
Hybrid Encryption. J. Cryptology 21(1), 97–130 (2008)

5. American National Standards Institute (ANSI) X9.F1 subcommittee, ANSI X9.63
Public key cryptography for the Financial Services Industry: Elliptic curve key
agreement and key transport schemes, Working draft, January 8 (1999)

6. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

7. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-key Encryption with-
out Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 48–62. Springer, Heidelberg (2004)

8. Bellare, M., Rogaway, P.: Random Oracle is Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the 1st ACM Symposium on Computer and
Communication Security, CCS 1993, pp. 62–73 (1993)

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

10. Bellare, M., Rogaway, P.: Minimizing the use of random oracles in authen- ticated
encryption schemes. In: Han, Y., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334,
pp. 1–16. Springer, Heidelberg (1997)

11. Blum, M., Feldman, P., Micali, S.: Non-interactive zero knowledge and its ap-
plications. In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 103–112 (1988)

12. Blum, M., Feldman, P., Micali, S.: Proving security against chosen ciphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, Heidelberg (1990)

72 S. Jiang and H. Wang

13. Certicom Research, Standards for Efficient Crpytography Group (SECG) - SEC 1:
Elliptic Curve Cryptography. Version 1.0, September 20 (2000)

14. Choi, S., Herranz, J., Hofheinz, D., Hwang, J.Y., Kiltz, E., Lee, D.H., Yung, M.:
The Kurosawa-Desmedt Key Encapsulation is not Chosen-Ciphertext Secure. In-
formation Processing Letters 109(16), 897–901 (2009)

15. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing 33, 167–226 (2003)

16. Desai, A.: New Paradigms for Constructing Symmetric Encryption Schemes Secure
against Chosen-Ciphertext Attack. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 394–412. Springer, Heidelberg (2000)

17. Dent, A.: The Cramer-Shoup Encryption Scheme is Plaintext Aware in the Stan-
dard Model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
289–307. Springer, Heidelberg (2006)

18. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable Authentication and Key
Exchange. In: Proceedings of the 13th ACM Computer and Communication Secu-
rity, CCS 2006, pp. 400–409 (2006)

19. IEEE P1363a Committee, IEEE P1363a, Version D6, November 9, 2000. Standard
specifications for public-key cryptography

20. Goldwasser, S., Micali, S.: Probabilitic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

21. Herzog, J., Lizkov, M., Micali, S.: Plaintext Awareness via Key Registration. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg
(2003)

22. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

23. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg
(2009)

24. Jiang, S., Wang, H.: Plaintext-Awareness of Hybrid Encryption. Full version of
this work, http://sites.google.com/site/shaoquan0825

25. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

26. Kurosawa, K., Matsuo, T.: How to Remove MAC from DHIES. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 236–247.
Springer, Heidelberg (2004)

27. Möller, B.: A Public-Key Encryption Scheme with Pseudo-random Ciphertexts.
In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004.
LNCS, vol. 3193, pp. 335–351. Springer, Heidelberg (2004)

28. Pass, R.: On the deniability in the common reference string and random oracle
model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003)

29. Phan, D.H., Pointcheval, D.: About the Security of Ciphers (Semantic Security
and Pseudo-Random Permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC
2004. LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

http://sites.google.com/site/shaoquan0825

Speed Records for NTRU�

Jens Hermans		, Frederik Vercauteren	 	 	, and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
{jens.hermans,frederik.vercauteren,bart.preneel}@esat.kuleuven.be

Abstract. In this paper NTRUEncrypt is implemented for the first time
on a GPU using the CUDA platform. As is shown, this operation lends it-
self perfectly for parallelization and performs extremely well compared to
similar security levels for ECC and RSA giving speedups of around three
to five orders of magnitude. The focus is on achieving a high through-
put, in this case performing a large number of encryptions/decryptions
in parallel. Using a modern GTX280 GPU a throughput of up to 200000
encryptions per second can be reached at a security level of 256 bits. This
gives a theoretical data throughput of 47.8 MB/s. Comparing this to a
symmetric cipher (not a very common comparison), this is only around
20 times slower than a recent AES implementation on a GPU.

Keywords: NTRU encryption, Graphical Processing Unit, Paralleliza-
tion, CUDA.

1 Introduction

Graphical Processing Units (GPUs) have long been used only for the rendering
of games and other graphical applications. More recent GPUs are also used
for general purpose parallel programming, using new programming models. A
General Purpose GPU (GPGPU) contains a large number of processor cores
(240 for the GTX280 [23]) that run at frequencies that are mostly lower than
CPUs (1.2 GHz for the GTX280 GPU compared to 3.8 GHz for a recent Intel
Pentium 4 [18]). Compared to a CPU a GPU provides a much larger computing
power (several GFlops, or even TFlops for multiple GPUs) for specific parallel
applications, because of the large number of cores. The recent change towards
general scalar processor cores, that support 32- or 64-bit integer and bitwise
operations, offers a new opportunity to implement cryptographic applications
on GPUs.

� This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy).

�� Research assistant, sponsored by the Fund for Scientific Research - Flanders
(FWO).

� � � Postdoctoral Fellow of the Fund for Scientific Research - Flanders (FWO).

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 73–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 J. Hermans, F. Vercauteren, and B. Preneel

There are several cryptographic ciphers that have a high level of parallelism,
making them suitable for implementation on GPU. For performing a single en-
cryption/decryption GPUs might not be very well suited: there is a latency
compared to a CPU, because of the transfer of the data between main memory
and GPU memory. In many applications the focus is not on the latency of a
single cryptographic application, but on the throughput: one wants to perform
a large number of encryptions/decryptions as fast as possible. In the case of a
symmetric block cipher this will be the case when operating on a large block
of data (using a suitable block cipher mode). Asymmetric ciphers are not often
used in such a mode of operation, but more likely on servers that need to process
many different secured connections where a large number of asymmetric crypto-
graphic operations need to be performed. Currently cryptographic co-processors
are used to speed up these operations, but a GPU might provide an alterna-
tive for these co-processors. An advantage is the fact that GPUs are almost by
default present in modern computers and are also much underused. Another ad-
vantage is the flexibility: GPUs are easy to reprogram, making it an interesting
co-processor to add to large computing farms. The large power consumption of
the fastest GPUs is however a disadvantage, especially with a growing focus on
the energy performance of data centers. One of the most likely uses of GPUs
will be performing attacks on ciphers. GPUs have a very good computing power
/ price ratio, making them very economic for bulk computations. One can have
around 200 GFlops (around 1 TFlops theoretically) for less than AC500. In many
attacks multiple cryptographic operations need to be performed, or at least part
of these operations, so implementing and optimizing the original cryptographic
operation on GPU is also of great use for attacks.

The choice for NTRUEncrypt (in short: NTRU) as the cryptographic cipher
is less obvious: RSA [24] and ECC [7] are currently the respectively dominant
and rising ciphers. NTRU has a large potential as a future cipher, given the very
simple nature of it’s core operation: the convolution (compared to a modular
exponentiation for RSA and repeated squaring/doubling for ECC). This simple
operation makes it very suitable for embedded devices with limited computing
power, but also for parallelization, since a convolution can be split up over several
processors. NTRU also has a good (asymptotic) performance of O(N2) (or even
O(N logN) using FFT), compared to, for example, O(N3) for RSA. So, NTRU
is expected to outperform RSA and ECC at similar security levels, and NTRU
will also provide a good scalability for the future.

Because of these properties of NTRU, it was chosen as the cipher to be im-
plemented on a GPU in this paper. For this paper the ees1171ep1 parameter
set is used, a high security (k = 256, the symmetric key size in bits) param-
eter set as claimed in [27]. Besides this parameter set a special version using
product-form polynomials is also implemented. Product-form polynomials im-
prove performance even further. Taking this high security level into account,
NTRU performs very well when comparing with RSA (which would require a
15360 bit modulus) and ECC. For high througput applications a speedup of
three to five orders of magnitude is reached compared to RSA and ECC. The

Speed Records for NTRU 75

GPU implementation reaches a throughput of up to 200 000 encryptions per
second which is equivalent to a theoretical data throughput of 47.8 MB/s.

Organization. In Section 2 previous work on cryptography on GPUs and
NTRU implementations is discussed. Next, a brief introduction is given to the
NTRU cryptosystem in Section 3, especially on the parameter sets that have
been proposed in the literature. In Section 4 the basics of GPGPU programming
are explained, with a focus on the CUDA platform. This knowledge of NTRU
and CUDA is combined to make an optimized GPU implementation of NTRU
in Section 5. Finally the performance of the implementation is evaluated and
compared to other implementations and other ciphers in Section 6.

2 Related Work

There is already much software available for GPUs, ranging from simple linear
algebra packages to complex physical simulations. There has not been much de-
velopment of cryptographic applications for the GPU, until recently when GPUs
started supporting integer and bitwise operations. For example, AES was imple-
mented on GPU [20] [14] [8], offering a maximum throughput of 831 MBytes/s
(128 bit key, [20]).

RSA [24] has been implemented before the introduction of recent GPGPU
platforms, using the OpenGL API [21] and more recently using modern platforms
[26] [11], reaching up to 813 modular exponentiations (1024-bit integers) per
second [26]. GPUs are also used to launch attacks, for example elliptic curve
integer factoring [5] and brute force attacks, like for wireless networks [25].

There are no GPU implementations for NTRU. NTRU has however been
implemented on a variety of platforms, like embedded devices, FPGAs [3] and
custom hardware [1]. NTRU turns out to perform very well on devices with lim-
ited computing capabilities, given the simple nature of the convolution that is
the central encryption/decryption operation. Compared to other modern cryp-
tosystems like ECC, NTRU turns out to be very fast [19].

3 NTRUEncrypt

In this section the basics of NTRU are briefly introduced, based upon [2], to
which we refer for further, more complete, information.

Let Z denote the ring of integers and Zq the integers modulo q. NTRUEn-
crypt is a public-key cryptosystem that works with the polynomial ring P (N) =
Z[X]/(XN − 1) (and Pq(N) = Zq[X]/(XN − 1)), where N is a positive prime.
A vector from ZN (resp. ZN

q) can be associated with a polynomial by f =
(f0, f1, . . . , fN−1) =

∑N−1
i=0 fiX

i.
The multiplication of two polynomials h = f � g is defined as the cyclic

convolution of their coefficients:

hk = (f � g)k =
∑

i+j≡k mod N

fi · gj (0 ≤ k < N) (1)

which is the ordinary polynomial multiplication modulo XN − 1.

76 J. Hermans, F. Vercauteren, and B. Preneel

The polynomials used in NTRU are selected from several polynomial sets
Lf ,Lg,Lr and Lm. First the basic operations (key creation, encryption and
decryption) of NTRU are introduced and afterwards, in Section 3.1, the structure
of the polynomials and the parameter sets are discussed.

Key creation. The private key is a polynomial f , chosen at random from the
set Lf . Another polynomial g ∈ Lg is also chosen at random, but is not needed
anymore after key generation. From these polynomials the public key h can be
computed as

h = p � f−1
q � g mod q (2)

where f−1
q is the inverse of f in Pq(N) and p is a polynomial (usually 3 or X+2).

The polynomials f and g generally have small coefficients, while h has large
coefficients.

Encryption. The message m ∈ Lm can be encrypted by choosing a random
polynomial r ∈ Lr as a blinding factor and computing the ciphertext as

e = r � h + m mod q. (3)

In practical schemes the message is padded with random bits and masked. For
this paper, these steps are ignored, and only the computation of r�h+m mod q
is considered.

Decryption. Decryption can be done by convolving the ciphertext e with the
private key f

a ≡ e � f ≡ p � r � g + m � f mod q (4)

and next convolving by f−1
p mod p. By a careful choice of f it can be assured

that f−1
p = 1, so only a reduction mod p is needed.

One of the problems NTRU faces are decryption failures: the first step of the
decryption only computes a mod q and not a. The problem is that knowing a
mod q is not enough to know a mod p. The problem of decryption failures has
been studied extensively in [17]. In this paper it suffices to pick the coefficients of
a from (−q/2, q/2] and assume the probability of decryption failures is negligibly
low.

3.1 Parameter Sets

The parameter N must always be chosen to be prime, since composites allows
the problem to be decomposed [13]. The parameter q is mostly chosen as a power
of 2, to ease the computations modulo q. The parameter p must be relatively
prime to q, but it is not necessary that p is an integer, it can be a polynomial.
Popular choices for p are 3 and X + 2.

Speed Records for NTRU 77

Besides the parameters N, p, q there are the sets of polynomials Lf ,Lg,Lm,Lr

that have to be defined. The message space Lm is defined as Pp(N), since the
message is obtained during the decryption after reducing modulo p.

The other sets of polynomials are chosen as ternary (for p = 3) or binary (for
p = X + 2) polynomials.

Ternary polynomials. Define L(dx, dy) as the set of all ternary polynomials
that have dx coefficients set to 1 and dy coefficients set to−1 (all other coefficients
are 0).

One of the most natural choices for the polynomial sets is

Lf = {1 + p � F : F ∈ L(df , df)} , Lr = L(dr, dr) , Lg = L(dg, dg)

which is also used in the most recent standards draft [27]. The choice of Lf as
1 + p � F guarantees that f−1

p = 1.
For ternary polynomials p is set to 3.

Binary polynomials. Binary polynomials offer an alternative for ternary poly-
nomials and are much easier to implement in hardware and software. A disad-
vantage is that binary polynomials are by definition unbalanced, so f(1) �= 0.
As a consequence information on m, namely m(1), leaks.

In [12] the following parameters are used:

Lf = {1 + p � F : F ∈ L(df , df)} , Lr = L(dr , 0) , Lg = L(dg, 0)

Product-form polynomials. The central operation when encrypting is a con-
volution with a binary/ternary polynomial. The number of non-zero elements
in r ∈ Lr is crucial for the performance of the encryption operation. A smaller
number of non-zero elements will make the convolution faster (and lower mem-
ory usage, depending on the storage strategy) but will also degrade the security.
By taking

Lr = {r1 � r2 + r3 : r1 ∈ Lr1 , r2 ∈ Lr2 , r3 ∈ Lr3}

with dr1 , dr2 , dr3 � dr the convolution is still secure, since r1 � r2 + r3 still
contains roughly the same amount of randomness as a single random r [15]. For
our implementation dr1 = dr2 = dr3 = 5, so each polynomial ri has 10 non-zero
coordinates. The performance is however increased drastically. The convolution
t = r � h mod q can be computed in several steps as in [3]:

t1 ← r2 � h ; t2 ← r1 � t1 ; t3 ← r3 � h ; t← t2 + t3 mod q (5)

Since each of r1, r2, r3 have a low number of non-zero elements, the convolutions
in (5) are much faster, requiring less additions than r � h. Another advantage is
the lower storage requirement.

78 J. Hermans, F. Vercauteren, and B. Preneel

4 GPU Programming

4.1 The CUDA Platform

The CUDA programming guide [22] explains in detail all aspects of the platform
and programming model and was used as a basis for the following sections. The
GTX280 that was used for this paper is a GPU that belongs to the range of Tesla
Architecture GPUs from Nvidia. The Tesla architecture is based upon an array
of multiprocessors (30 for the GTX280) that each contain 8 scalar processors.
A multiprocessor is operated as a SIMT-processor (Single-Instruction, Multiple-
Thread): a single instruction uploaded to the GPU causes multiple threads to
perform the same scalar operation (on different data). The CUDA program-
ming model from Nvidia, that is used to program their GPUs, provides a C-like
language to program the GPU.

Programming model. As stated above, all programming is done using scalar
operations: one needs to program a single thread which will then be executed in
multitude on the GPU. Threads are grouped into blocks. All blocks together form
a ‘grid’ of blocks. Threads within the same block can use shared memory. Both
threads and blocks can be addressed in a multi-dimensional way. All scheduling
of instructions (threads) on the multiprocessors is hidden from the programmer
and is done on-chip. Threads are scheduled in warps of 32 threads. For optimal
performance divergent branching inside the same half-warp (16 threads) must
be avoided: each thread in a half-warp must execute the same instruction, other-
wise the execution will be serialized. If divergent branching occurs, one possible
strategy is to ensure that the thread ID for which divergence occurs coincides
with a change of half-warp.

Memory. A multiprocessor contains fast on-chip memory in the form of regis-
ters, shared memory and caches. Off-chip memory is also available in the form of
global memory and specialized texture and constant memory. The global mem-
ory is not cached. The GTX280 provides 1GB of off-chip memory.

Each of the memory types has specific features and caveats1:

– Global memory: as the global memory is off-chip there is a large perfor-
mance hit (hundreds of cycles). Another issue is that multiple threads might
access different global memory addresses at the same time, which creates a
bottle-neck and forces the scheduler to stop the execution of the block until
all memory is loaded. It is recommended to run a large number of blocks,
to ensure the scheduler can keep the multiprocessors busy, while memory
loading takes place. One way to avoid such large performance penalties are
coalesced memory reads, in which all threads from a half-warp access either
the same address or a block of consecutive addresses. In the case of loading
a single address the total cost is only one memory load.

1 Texture memory is not used in this paper, so details have been omitted.

Speed Records for NTRU 79

– Registers: care has to be taken to limit the number of registers per thread as
the registers are shared among all threads and blocks running on the same
multiprocessor.

– Shared memory: shared memory is stored in banks, such that consecutive
32 bits are stored in consecutive banks. When accessing shared memory one
needs to ensure that threads within the same warp access different banks, to
avoid ‘bank conflicts’. Bank conflicts result in serialization of the execution.

– Constant memory: the advantage of using constant memory is the presence
of a special read-only cache, which allows for fast access times.

Instructions. Almost all operations that are available in C can be used in
CUDA. CUDA only uses 32-bit (int, float) and 64-bit variables (long, double)
for arithmetic, other types are converted first. In this paper, we will refer to 32-
bit integers as ‘int’ (or just ‘integer’) and to 64-bit integers as a ‘long’. Integer
addition and bitwise operations take 4 clock cycles. 32-bit integer multiplication
takes 16 cycles. Integer division and modulo are expensive and should be avoided.

5 The Implementation

For the implementation the ees1171ep1 parameter set from [27] is used. This
parameter set (with ternary polynomials and N = 1171, p = 3, q = 2048 =
211, dr = 106) is one of the three strongest from the draft standard. Considering
the relatively young age of NTRU and recent attacks (e.g. [16]), it is better
to be rather conservative in the parameter choices and take one of the strong
parameter sets.

Two implementations were made: one using the default ternary polynomials,
the other using product-form ternary polynomials. In the last case dr1 = dr2 =
dr3 = 5.

The generation of random data (needed for encryption) is performed by the
CPU, although parallel implementations exist for CUDA. There are several rea-
sons for this choice: first of all it is the goal of this paper to compare the central
NTRU operation, the convolution, and not to compare choices of random num-
ber generators. By computing the random numbers beforehand on CPU, any
influence of the choice of the random generator is excluded. Second, one might
consider an attack strategy in which the opponent would explicitly choose r,
instead of using random numbers. Another advantage of performing the genera-
tion of r on CPU is exploiting the parallel computation by using both CPU and
GPU.

5.1 Operations

Both parallel encryption (two variants) and parallel decryption are implemented
on CUDA. The superscript i in mi denotes the i-th message that is used in the
parallel computation. The operations are defined as follows:

80 J. Hermans, F. Vercauteren, and B. Preneel

– Encryption: given ri ∈ Lr, hi and mi ∈ Lm (for i ∈ [0, P), with P the
number of parallel encryption operations) the kernel computes ei = ri � hi +
mi mod q. Two strategies for the public key are considered: one which uses
the same public key for all encryptions (∀i : hi = h) and one with different
public keys for every operation.

– Decryption: given ei and f , compute mi. The private key is the same for
all decryptions.

Key generation was not implemented, although situations exist where one would
like to generate multiple keys in parallel.

For encryption both ordinary and product-form ternary polynomials are used
as r.

The decryption operation can be written as

e � f ≡ e � (1 + p � F) ≡ e + (e � F) + (e � F)� 1 mod q (6)

where “�” is a left bit shift. Besides some extra scalar operations for each
coefficient, one can reuse the encryption algorithm. In the next sections only
encryption is discussed. The results section only includes results for the case
that F is an ordinary ternary polynomial. Because there was no performance
difference compared to encryption, decryption was not implemented for product-
form polynomials.

5.2 Memory Usage - Bit Packing

Since all data must be transferred from the main computer memory to the GPU
(device) memory, it is in the best interest to limit the amount of memory used.

One standard technique is bit packing. The ternary coefficients of r can be
encoded as 2 bits, of which 32 can be packed into a 64-bit long. The coefficients
of h are each 11 bit long, allowing for up to 5 coefficients to be stored in a long.
We however pack only 4 elements of h in a long. The extra unused bits come in
handy when performing an addition on the entire long, so that the overflow does
not corrupt one of the packed values stored higher in the bit array. Note that
although the polynomial m also has ternary coefficients we choose to store it
using 11 bits per element. This way, the result of the encryption e (which is mod
q) can be written in the same space as m, which results in a smaller memory
usage. In total 623 long’s are required to store h,m and r.

For the implementation with product-form polynomials the values of r1, r2
and r3 can be stored in a different way. Instead of encoding each ternary coef-
ficient as two bits, the indices of the non-zero coefficients are stored, as in [3].
Since each index is in [0, N − 1], �log2(N)� = 11 bits are needed to store each
index. These indices are again packed, but not aligned to 16 bit multiples, since
the access is sequential (see further). The memory consumption is only lowered
moderately to 592 longs, but the new structure of the convolution has a large
impact on the construction of the loops and thus the performance.

Since multiple encryption/decryption operations are performed, multiple mes-
sages m and blinds r need to be uploaded to the device. All variables are stored

Speed Records for NTRU 81

in one large array of long’s, e.g. a single mb is packed to 293 longs, with the total
array being 293×P long’s. Note that the time for bit packing the data on CPU
is not included in the timing results and that all host-memory is page-locked.

In the next sections and the algorithms in Appendix 7, we use the notation
xpacked,i to refer to the long containing the i-th element of the x polynomial
(which is denoted as xi). P (i) is used to denote the index of the long that con-
tains xi. When there is a reference to xi in the pseudo-code, the index calculation
and decoding are implicit.

5.3 Encoding

The coefficients of h are encoded as 11 bit integers, in the range [0, q − 1]. The
blind r, consisting of ternary coefficients, is encoded by mapping {0, 1,−1} to
2-bit values (which can be chosen arbitrarily). The message m also consists of
ternary coefficients, but for efficient computation, these are loaded in the memory
space that will contain the result e. Because of this, the ternary coefficients are
stored as 11-bit values in two’s complement (e.g. (−1)3 = 211 − 1).

5.4 Blocks, Threads and Loop Nesting

Parallelism is present at two levels: at the level of a single encryption, which is
split over multiple threads, and at the level of the parallel encryptions, which are
split over the blocks. When performing a single encryption, one needs to access
all elements rb

i , h
b
j and eb

k. Each block (block index denoted with the superscript
b) is responsible for doing a single encryption/decryption operation. To make
storing ek as efficient as possible, each thread is responsible of computing 4
coefficients of e, which implies that each thread writes only one long.

For the normal ternary polynomials, the algorithm executed by each thread
is presented in Algorithm 3. There is an implicit ‘outer loop’ that iterates over k
(the parallel threads). The middle loop (over i) selects the element from rb and
then uses simple branching and addition (no multiplications).

Algorithm 1 shows the algorithm for the product-form ternary polynomials.
The implicit outer loop is the same, but the computation inside is completely
different. The computation of r2 � h is split over all threads and the results are
stored (packed) in shared memory. Unlike the other convolutions in Algorithm
1, all threads need all indices of r2 � h and not just the k . . . k+ 3-th coefficients.

Since r1, r2 and r3 are stored using indices, the convolution algorithm is
different from that used for ordinary polynomials. Algorithm 2 describes part of
such a convolution. Again, only 4 coefficients of the result are computed, which
matches the division of the convolution among the threads.

5.5 Memory Access

Since the convolutions are very simple operations, using only addition and some
index-keeping operations, the memory access will be the bottleneck. One of the
solutions is to explicitly cache the elements of r and h in registers (the GPU

82 J. Hermans, F. Vercauteren, and B. Preneel

does not have a cache for global memory). Especially for r this turns out to
be a good strategy, since each long contains 32 coefficients, thereby reducing
the number of accesses to global memory with a factor 32. For h no significant
benefits were observed, so the caching was omitted. The main reason is that the
packed coefficients of h are less often accessed (many of the ri are zero) and
they are accessed in a more or less random pattern, so caching them for more
than one iteration (over i in Algorithm 3) makes no sense. There is however a
benefit from executing multiple threads in parallel: when thread t accesses hj ,
thread t+1 will at the same time access hj+4, which is always stored in the next
long. This means that memory access is coalesced, although bad alignment of
the memory blocks will prevent the full speedup.

For product-form polynomials the number of memory accesses is much lower:
the space used to store r is smaller. As r1,r2 and r3 are accessed only once, this
means a drop in memory access from 296 to 48 bytes per block. The number of
accesses to h also goes down: only the convolutions r2 � h and r3 � h need access
to h. r2 and r3 each have 10 non-zero coefficients, giving a total of 20 accesses to
h for each element in the result, so 20×1171 = 23420 longs per block, compared
to 2Ndr = 248252 longs per block for ordinary polynomials.

Note that the access to e is coalesced, since each thread accesses a consecutive
long.

5.6 Branching

Almost no divergent branching occurs during the execution of the algorithms. In
the case of normal polynomials branching on ri is not divergent, as each thread
has the same value for i. The only divergent branches are for the modulo compu-
tation. There is one aspect when using product-form polynomials in Algorithm
1 that might cause a performance hit: the thread synchronization. Since the in-
termediate result tshared is shared among all threads, all threads should wait for
the completion of that computation.

6 Results

In this section the results of the GPU implementations are compared to a simple
CPU implementation in C and other implementations found in the literature.
The CPU tests were performed on an Intel Core2 Extreme CPU, running at
3.00GHz. This processor has four cores, but only one of these cores is used as
the CPU implementation is not parallel. The GPU simulations were performed
on a GTX280. To verify that all implementations were correct, the output was
verified (with success) against a reference implementation in Magma [6].

Table 1 shows the results expressed as milliseconds per operation (or opera-
tions per second). Results for different hi are, obviously, only available for the
GPU when doing multiple (20000) operations in parallel. The times in Table 1
are the minimal times over 10 identical experiments. All results are expressed
as wall clock time, since this is the only way to be able to compare CPU and

Speed Records for NTRU 83

Table 1. Performance comparison of NTRU on an Intel Core2 CPU and a Nvidia
GTX280 GPU using ordinary and product-form ternary polynomials (N = 1171, q =
2048, p = 3)

Encryption (different hi) Encryption (same hi) Decryption
μs/op op/s μs/op op/s μs/op op/s

Ordinary
CPU - - 10.5 · 103 (95) 10.5 · 103 (95)
GPU, 1 op. - - 1.75 · 103 - 1.87 · 103 -
GPU, 20000 ops 41.3 24 213 40.0 25 025 41.1 24 331
Product-form
CPU - - 0.31 · 103 (3225.8) - -
GPU, 1 op. - - 0.16 · 103 - - -
GPU, ∼ 216 ops 4.58 218 204 4.51 221 845 - -

GPU. Taking the minimum time ensures that clearing of the cache or context
switches do not bias the results. Clearing of the cache and context switches de-
pend heavily on the environment in which the program is used, so it would not
be fair to include these in the measurements. Overall, the GPU times had a
small variance, so the difference between average time and minimal time was
negligible. The time for copying data from main to GPU memory is included in
the GPU performance figures.

The CPU implementation does not use any optimizations like bit packing and
just consists of a few nested loops. The CPU implementation only performs one
single encryption/decryption. Despite the fact that the CPU implementation is
not optimized, we use it as a rough basis for comparison for the GPU version.
The available performance results for previous implementations are for different
(less secure) parameter sets, which makes it very hard to compare.

From Table 1 it is clear that encryption and decryption have roughly the same
performance: the extra element-wise operations for decryption do not take much
time. This is also the reason that decryption was not implemented separately for
product-form ternary polynomials, since it would show the same performance.
Encryption with the same h is slightly faster than using different hi, although
an explanation for this has not been found2.

Figure 1 shows the subsequent gain in performance when increasing the num-
ber of parallel encryptions (for ordinary polynomials). Around 211 encryptions
the GPU approaches its maximum performance, larger numbers of parallel en-
cryptions yield only a slight improvement in the number of operations per second.

Table 1 shows that for all implementations, product-form polynomials are
much faster, as expected by the lower number of memory accesses in Section
5.5. The performance increases by almost a factor 10 compared to ordinary
polynomials. Again a small difference is observed between encryption with the
same and different hi.

2 The opposite result was expected. As h was not stored in constant memory, there
should be no benefit from caching.

84 J. Hermans, F. Vercauteren, and B. Preneel

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5
x 10

4

Number of parallel operations

op
er

at
io

ns
 /

s

Fig. 1. NTRU encryption operations per second using ordinary polynomials and the
same h (N = 1171, q = 2048, p = 3)

Table 2. Comparison of several NTRU, RSA and ECC implementations. The chosen
parameter set and claimed security level (k) is listed for all ciphers. The number of
operations per second is listed, together with the amount of data encrypted/decrypted
per operation (excluding all padding, headers...).

Platform (N, q, p) Enc/s Dec/s bit/op
FPGA [3] Xilinx Virtex 1000EFG860 @ 50 MHz (251, 128, X + 2) 193 ·103 - 251
Palm [3] Dragonball @ 20 MHz (C) Product form 21 11
Palm [3] Dragonball @ 20 MHz (ASM) (k < 80) 30 16
ARM C [3] ARM7TDMI @ 37 MHz 307 148
FPGA [1] Xilinx Virtex 1000EFG860 @ 500kHz (167, 128, 3) 18 8.4 250

(k 	 80)
C Intel Core2 Extreme @ 3.00GHz (1171, 2048, 3) 95 95 1756
CUDA GTX280 (1 op) (k = 256 [27]) 571 546
CUDA GTX280 (20000 ops) 24 ·103 24 ·103

C Intel Core2 Extreme @ 3.00GHz (1171, 2048, 3) 3.22 ·103 - 1756
CUDA GTX280 (1 op) Product form 6.25 ·103 -
CUDA GTX280 (∼ 216 ops) (k = 256 [27]) 218 ·103 -
RSA comparison
CUDA [26] Nvidia 8800GTS 1024 bit 813 1024
C++ [9] Intel Core2 @ 1.83GHz (k = 80 [4]) (14 ·103) 657 1024
CUDA [26] Nvidia 8800GTS 2048 bit 104 2048
C++ [9] Intel Core2 @ 1.83GHz (k = 112 [4]) (6.66 ·103) 168 2048
ECC comparison
CUDA [26] Nvidia 8800GTS (PointMul) ECC NIST-224 1.41 ·103

C [10] Intel Core2 @ 1.83 GHz (ECDSA) (k = 112 [4]) 1.86 ·103

Table 2 compares the CPU and GPU implementations with previous work
on NTRU and to some RSA and ECC implementations. A note of caution is
due, since the previous NTRU implementations use much lower security param-
eters and because the platforms that are used are totally different. Also note
that the amount of data encrypted per operation is different. As a very rough
extrapolation to convert the results for the other NTRU implementations to the

Speed Records for NTRU 85

security level of our implementation one can use the O(N2) asymptotic perfor-
mance of NTRU. This drastically lowers the performance measures for the other
NTRU implementations, ignoring even the increase of q and dr. For applications
with a focus on high throughput (many op/s), the CUDA implementation for
product-form polynomials outperforms all other NTRU implementations (taking
the higher security parameters and amount of data into account). The imple-
mentation with product-form polynomials gives a speed of more than 200 000
encryptions per second or 41.8 MByte/s. For applications that need to perform
a small number of encryptions with low latency, the parallelization of CUDA
does not give much speedup compared to the CPU. However, when comparing
NTRU with RSA and ECC, the speedup is large: up to 1300 times faster than
2048-bit RSA and 117 times faster than ECC NIST-224 when comparing the
number of encryptions per second (or up to 1113 times faster than 2048-bit
RSA when comparing the data throughput). In addition, the security level of
NTRU is much higher: when extrapolating to RSA and ECC with k = 256 bit
security, this would add an extra factor of around 10 for ECC and around 400 for
RSA (assuming O(N3) operations for RSA and ECC, where N is the length of a
message block). So, in this extrapolation, NTRU has a speedup of five orders of
magnitude compared to RSA and three orders of magnitude compared to ECC.
The results listed for RSA encryption on CPU are operations with a small public
key (e = 17), which allows for further optimization that has not been done for
the RSA GPU implementation.

7 Conclusion

In this paper NTRU encryption/decryption was implemented for the first time on
GPU. Several design choices, such as the NTRU parameters sets, are compared.
The exact implementation is analysed in detail against the CUDA platform,
explaining the impact of every choice by looking at the underlying effects on
branching, memory access, blocks & threads... Although the programming is
done in C, the CUDA model has its own specific ins and outs that take some
time to learn, making a good implementation not very straightforward.

Many external factors, like power consumption, cost, reprogrammability, con-
text (latency vs throughput), space... besides the speed of the cipher influence
the choice of platform. In areas in which reprogrammability, cost and throughput
are important and power consumption is of lesser importance, a GPU implemen-
tation is a very good option.

For 216 encryptions a peak performance of around 218 000 encryptions/s (or
4.58× 10−6 s/encryption) is reached, using product-form polynomials. This cor-
responds to a theoretical data throughput of 47.8 MB/s. The GPU performs at
its best when performing a large number of parallel NTRU operations. Paral-
lel NTRU implementations could serve well on servers processing many secured
connections or in various attack strategies in which many (partial) encryption
operations are needed. A single NTRU operation on GPU is still faster than a
(simple) CPU implementation, but the speedup is limited. Even then a GPU
might be interesting to simply move load off the CPU.

86 J. Hermans, F. Vercauteren, and B. Preneel

Comparing NTRU to other cryptosystems like RSA and ECC shows that
NTRU, at a high security level, is much faster than RSA (around five or-
ders of magnitude) and ECC (around three orders of magnitude). Even when
only performing a single operation NTRU is still faster by around a factor of
35 for 2048 bit RSA and 3 for ECC NIST-244. Because of the ways NTRU
can be parallelized, NTRU also clearly outperforms RSA and ECC for high-
throughput applications. So, both for low-latency (single operation) and high-
throughput (multiple operations) applications NTRU on GPU outperforms RSA
and ECC.

References

1. Atıcı, A.C., Batina, L., Fan, J., Verbauwhede, I., Yalçın, S.B.O.: Low-cost im-
plementations of NTRU for pervasive security. In: ASAP 2008, pp. 79–84. IEEE
Computer Society, Los Alamitos (2008)

2. ECRYPT AZTEC. Lightweight Asymmetric Cryptography and Alternatives to
RSA (2005)

3. Bailey, D.V., Coffin, D., Elbirt, A.J., Silverman, J.H., Woodbury, A.D.: NTRU in
Constrained Devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management. NIST special publication 800, 57 (2007)

5. Bernstein, D.J., Chen, H.C., Chen, M.S., Cheng, C.M., Hsiao, C.H., Lange, T.,
Lin, Z.C., Yang, B.Y.: The Billion-Mulmod-Per-Second PC. In: SHARCS 2009,
pp. 131–144 (2009)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: The User
Language. Journal of Symbolic Computation 24(3-4), 235–265 (1997)

7. Cohen, H., Frey, G., Avanzi, R.: Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, Boca Raton (2006)

8. Cook, D., Ioannidis, J., Keromytis, A.D., Luck, J.: Cryptographics: Secret key
cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 334–350. Springer, Heidelberg (2005)

9. Dai, W.: Crypto++: benchmarks, http://www.cryptopp.com/benchmarks.html
10. Ecrypt Ebats. ECRYPT benchmarking of asymmetric systems (2007),

http://www.ecrypt.eu.org/ebats/

11. Fleissner, S.: GPU-Accelerated Montgomery Exponentiation. In: Shi, Y.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487,
pp. 213–220. Springer, Heidelberg (2007)

12. Consortium for Efficient Embedded Security. Efficient embedded security standards
#1: Implementation aspects of NTRU and NSS, Version 1 (2002)

13. Gentry, C.: Key Recovery and Message Attacks on NTRU-Composite. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer,
Heidelberg (2001)

14. Harrison, O., Waldron, J.: AES Encryption Implementation and Analysis on Com-
modity Graphics Processing Units. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)

15. Hoffstein, J., Silverman, J.H.: Random small Hamming weight products with ap-
plications to cryptography. Discrete Applied Mathematics 130(1), 37–49 (2003)

http://www.cryptopp.com/benchmarks.html
http://www.ecrypt.eu.org/ebats/

Speed Records for NTRU 87

16. Howgrave-Graham, N.: A Hybrid Lattice-Reduction and Meet-in-the-Middle At-
tack Against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
150–169. Springer, Heidelberg (2007)

17. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of ntru
encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003)

18. Intel. Intel Pentium 4 - SL8Q9 Datasheet (2008)
19. Karu, P., Loikkanen, J.: Practical Comparison of Fast Public-key Cryptosystems

(2001), http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/
20. Manavski, S.A.: CUDA Compatible GPU as an Efficient Hardware Accelerator

for AES Cryptography. In: ICSPC 2007, November 2007, pp. 65–68. IEEE, Los
Alamitos (2007)

21. Moss, A., Page, D., Smart, N.P.: Toward Acceleration of RSA Using 3D Graph-
ics Hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

22. Nvidia. Compute Unified Device Architecture Programming Guide (2007)
23. Nvidia. GeForce GTX280 - GeForce GTX 200 GPU Datasheet (2008)
24. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-

tures and Public-Key Cryptosystems. Commun. ACM 21(2), 120–126 (1978)
25. Settings, M.: Password crackers see bigger picture. Network Security 2007(12), 20

(2007)
26. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryp-

tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

27. Whyte, W., Howgrave-Graham, N., Hoffstein, J., Pipher, J., Silverman, J.H.,
Hirschhorn, P.: IEEE P1363.1: Public Key Cryptographic Techniques Based on
Hard Problems over Lattices

Appendix

A Code Listings

Algorithm 1. Pseudo-code for a single NTRU encryption (product-form poly-
nomials)
1: b← blockID
2: k ← 4 ∗ threadID
3: Allocate etemp[0 . . . 3]← 0
4: Allocate tshared[0 . . . N − 1]
5: tshared[k . . . k + 3]← Convolve(hb, rb

2,+, rb
2,−, k, tshared[k . . . k + 3])

6: Synchronize threads
7: etemp[0 . . . 3]← Convolve(tshared, rb

1,+, rb
1,−, k, etemp[0 . . . 3])

8: etemp[0 . . . 3]← Convolve(hb, rb
3,+, rb

3,−, k, etemp[0 . . . 3])
9: for l = 0 to 3 do

10: eb
k+l ← mb

k+l + etemp[l] mod q
11: end for

http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/papers/

88 J. Hermans, F. Vercauteren, and B. Preneel

Algorithm 2. Pseudo-code for a single product-form convolution.
Convolve(h, r+, r−, k, t)
Require: h: an ordinary polynomial,

r+, r−: the positions of the +1 and −1 elements in the polynomial r,
t: result of the convolution,
k: offset of the results that need to be calculated.

Ensure: t[k . . . k + 3] = {h � r}k...k+3

1: k ← 4 ∗ threadID
2: for l = 0 to dr−1 − 1 do
3: i← r+

l

4: for δk = 0 to 3 do
5: t[k + δk]← t[k + δk] + h(k+δk−i mod N)

6: end for
7: end for
8: for l = 0 to dr−1 − 1 do
9: i← r−l

10: for δk = 0 to 3 do
11: t[k + δk]← t[k + δk]− h(k+δk−i mod N)

12: end for
13: end for
14: return t[k . . . k + 3] mod q

Algorithm 3. Pseudo-code for a sin-
gle NTRU encryption (ordinary poly-
nomials)
1: b← blockID
2: k ← 4 ∗ threadID
3: Allocate etemp[0 . . . 3]← 0
4: for i = 0 to 10 do
5: for l = 0 to 3 do
6: if P (i) �= P (i− 1) then
7: rcache ← rb

packed,i

8: end if
9: relem ← ri (from rcache)

10: j ← k + l − i mod N
11: if relem = 1 then
12: etemp[l]← etemp[l] + hb

j

13: end if
14: if relem = −1 then
15: etemp[l]← etemp[l]− hb

j

16: end if
17: end for
18: end for
19: for l = 0 to 3 do
20: eb

k+l ← mb
k+l + etemp[l] mod q

21: end for

Algorithm 4. Pseudo-code for a sin-
gle NTRU Decryption
Require: F : the private key (f = 1+ p �

F)
e: the encrypted message

1: k ← 4 ∗ threadID
2: Execute Algorithm 3, taking m = 0,

r = F and h = e and obtaining
t[0 . . . 3].

3: for l = 0 to 3 do
4: t[l]← t[l] + (t[l]� 1) + ek+l

5: tmp ← t[l] − p ∗ ((p−1 mod q) ∗
t[l]� log2 q)

6: (t[l] > q)⇒ (tmp← tmp + 1)
7: t[l]← tmp
8: end for

High-Speed Parallel Software Implementation of
the ηT Pairing

Diego F. Aranha1,	, Julio López1, and Darrel Hankerson2

1 University of Campinas
{dfaranha,jlopez}@ic.unicamp.br

2 Auburn University
hankedr@auburn.edu

Abstract. We describe a high-speed software implementation of the ηT

pairing over binary supersingular curves at the 128-bit security level.
This implementation explores two types of parallelism found in modern
multi-core platforms: vector instructions and multiprocessing. We first
introduce novel techniques for implementing arithmetic in binary fields
with vector instructions. We then devise a new parallelization of Miller’s
Algorithm to compute pairings. This parallelization provides an algo-
rithm for pairing computation without increasing storage costs signifi-
cantly. The combination of these acceleration techniques produce serial
timings at least 24% faster and parallel timings 66% faster than the best
previous result in an Intel Core platform, establishing a new state-of-the-
art implementation of this pairing instantiation in this platform.

Keywords: Efficient software implementation, vector instructions,
multi-core architectures, bilinear pairings, parallelization.

1 Introduction

The computation of bilinear pairings is the most expensive operation in Pairing-
based Cryptography, especially for high levels of security. For this reason, im-
plementations must employ all the resources found in the target platform to
obtain maximum efficiency. A resource being increasingly introduced in comput-
ing platforms is parallelism, in the form of vector instructions (data parallelism)
and multiprocessing (task parallelism). This trend is observed even in the em-
bedded space, with proposals of resource-constrained multi-core architectures
and vector instruction sets for multimedia processing in portable devices.

This work describes a high-performance implementation of the ηT pairing [1]
over binary supersingular curves at the 128-bit security level which employs these
two forms of parallelism in a very efficient way. The target platform is the Intel
Core architecture [2], the most popular 64-bit computing platform. Our main
contributions are:

� Supported by FAPESP under grant no. 2007/06950-0.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 89–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

90 D.F. Aranha, J. López, and D. Hankerson

– Novel techniques for implementing arithmetic in binary fields: we explore
powerful SIMD instructions to accelerate arithmetic in binary fields. We
focus on the SSE family of vector instructions, but the same techniques
can be employed with other SIMD instruction sets such as Altivec and the
upcoming AMD SSE5.

– Parallelization of Miller’s Algorithm to compute pairings: we develop a
simple algorithm for parallel pairing computation which does not increase
storage costs. Our parallelization is independent of the underlying pairing in-
stantiation, allowing a parallel implementation to reach scalability in a vari-
able number of processors unrelated to the pairing mathematical definition.
This parallelization provides good scalability in fields of small characteristic.

– Static load balancing technique: we present a simple technique to balance
the costs of parallel pairing computation between the available processing
units. The technique is successfully applied for latency minimization, but
its flexibility allows the implementation to determine controlled non-optimal
partitions of the algorithm.

– Experimental results: speedups of parallel implementations over serial imple-
mentations are estimated and experimentally verified for platforms up to 8
processors. We also obtain an approximation of the performance up to 32
processing units and compare our serial and parallel execution times with
the current state-of-the-art implementations with the same parameters.

The results of this work can improve serial and parallel implementations of pair-
ings. The parallelization may be important to reduce the latency of pairing
computation in two scenarios: (i) desktop-class processors running real-time ap-
plications with strict response time requirements; (ii) embedded multiprocessor
architectures with weak processing units. The availability of parallel algorithms
for application in these scenarios is suggested as an open problem by [3] and [4].
Our features of flexible load balancing and small storage overhead are critical
for the second scenario, because they can support static scheduling schemes for
compromises between pairing computation time and power consumption; and
memory capacity is commonly restricted in embedded devices.

2 Finite Field Arithmetic

In this section we will represent the elements of F2m using a polynomial basis. Let
f(z) be an irreducible binary polynomial of degree m. The elements of F2m are
the binary polynomials of degree at most m−1. A field element a(z) =

∑m−1
i=0 aiz

i

is associated with the binary vector a = (am−1, . . . , a1, a0) of length m. In a
software implementation, these bit coefficients are packed and stored in an array
(a[0], . . . , a[n− 1]) of n W -bit words, where W is the word size of the processor.
For simplicity, we assume that n is always even.

2.1 Vector Instruction Sets

Vector instructions, also called SIMD (Single Instruction, Multiple Data) be-
cause they operate in several data objects simultaneously, are widely supported

High-Speed Parallel Software Implementation of the ηT Pairing 91

in recent families of processor architectures. The number, functionality and ef-
ficiency of these instructions have been improved with each new generation of
processors, and natural applications include multimedia processing, scientific ap-
plications or any software with high arithmetic density. Some well-known SIMD
instruction sets are the Intel MMX and SSE [5] families, the Altivec extensions
introduced by Apple and IBM in the Power architecture specification and AMD
3DNow. Instruction sets supported by current technology are restricted to 128-
bit registers and provide simple orthogonal operations across 8, 16, 32 or 64-bit
data units stored inside these registers, but future extensions such as Intel AVX
and AMD SSE5 will support 256-bits registers with the added inclusion of a
heavily-anticipated carry-less multiplier [6].

The Intel Core microarchitecture is equipped with several vector instruction
sets which operate in 16 architectural 128-bit registers. A small subset of these
instructions can be used to implement binary field arithmetic, some found in the
Streaming SIMD Extensions 2 (SSE2) and others in the Supplementary SSE3
instructions (SSSE3). The SSE2 instruction set is also supported by the recent
VIA Nano processors, AMD processors since the K8 family and Intel processors
since the Pentium 4.

A non-exhaustive list of SSE2 instructions relevant for our work is given be-
low. Each instruction described will be referred in the algorithms by the short
mnemonic which follows the instruction opcode:

– MOVDQU/MOVDQA (load/store): implements load/store between unaligned/
aligned memory addresses and registers. In our implementation, all allo-
cated memory is stored in 128-bit aligned base addresses so that the faster
MOVDQA instruction can always be used.

– PSLLQ/PSRLQ (��8,��8): implements bitwise left/right shifts of a pair of 64-
bit integers while shifting in zero bits. This instruction does not propagate
bits from the lower 64-bit integer to the higher 64-bit integer, thus additional
shifts and additions are required to implement bitwise shifts of 128-bit values.

– PSLLDQ/PRLLDQ (�8,�8): implements byte-wise left/right shifts of a 128-bit
register. Since this instruction propagates bytes from the lower half to the
higher half of a 128-bit register, this instruction is preferred over the previous
one when the shift amount is a multiple of 8. Thus shifts by multiples of 8
bits should be used whenever possible. The latency of this instruction is 2
cycles in the first generation of Core 2 Conroe/Merom (65nm) processors
and 1 cycle in the more recent Penryn/Wolfdale (45nm) microarchitecture.

– PXOR/PAND/POR (⊕,∧,∨): implements bitwise XOR/AND/OR of two 128-bit
registers. These instructions have a high throughput, reaching 3 instructions
per cycle when the operands are registers and there are no dependencies
between consecutive operations.

– PUNPCKLBW/PUNPCKHBW (interlo/interhi): interleaves the lower/higher bytes
in a register with the lower/higher bytes of another register.

We also find application for powerful but often-missed SSSE3 instructions:

– PALIGNR (�): takes registers ra and rb, concatenate their values, and pull
out a 128-bit section from an offset given by a constant immediate; in other

92 D.F. Aranha, J. López, and D. Hankerson

words, implements a right byte-wise shift with propagation of shifted out
bytes from ra to rb. This instruction can be used to implement a left shift
by s bytes with the immediate (16− s).

– PSHUFB (lookup or shuffle depending on functionality): takes registers of bytes
ra = a0, a1, . . . , a16 and rb = b0, b1, . . . , b16 and replaces ra with the per-
mutation ab0 , ab1 , . . . , ab16 ; except that it replaces ai with zero if the most
significant bit of bi is set. A powerful use of this instruction is to perform 16
simultaneous lookups in a 16-byte lookup table. This can be easily done by
storing the lookup table in ra and the lookup indexes in rb. Intel introduced
a specific Super Shuffle Engine in the latest microarchitecture to reduce the
latency of this instruction from 3 cycles to 1 cycle.

Alternate vector instruction sets present functional analogues of these instruc-
tions. In particular, the PSHUFB permutation instruction is implemented as VPERM
in Altivec and as PPERM in SSE5, although the PPERM instruction is reportedly
more powerful as it can also operate at bit level. SIMD instructions are critical
for the performance of binary field arithmetic and can be easily accessed with
compiler intrinsics. In the remainder of this section, the optimization techniques
applied during the implementation of each field operation are detailed. We will
describe algorithms in terms of vector operations using the mnemonics defined
above so that algorithms can be easily transcribed to other target platforms.
Specific instruction choices based on latency or functionality will be focused on
the SSE family.

2.2 Squaring

Since the square of a finite field element a(z) ∈ F2m is given by a(z)2 =∑m−1
i=0 aiz

2i = am−1z
2m−2 + · · ·+ a2z

4 + a1z
2 + a0, the binary representation of

a(z)2 can be computed by inserting a zero bit between each pair of consecutive
bits on the binary representation of a(z). This operation can be accelerated by
introducing a lookup table as discussed in [7]. This method can be improved
further if the table lookups can be executed simultaneously. This way, for an im-
plementation which processes 4 bits per iteration, squaring can be implemented
mainly in terms of permutation instructions which convert groups of 4 bits (nib-
bles) to the corresponding expanded bytes. The proposed optimization is shown
in Algorithm 1. The algorithm receives a field element a stored in a vector of n
64-bit words (or n

2 128-bit values) and expands the input into a double-precision
vector t which can be reduced modulo f(z). At each iteration of this algorithm,
a 128-bit value a[2i] is loaded from memory and separated by a bit mask into
two registers containing the low nibbles (aL) and the high nibbles (aH). Each
group of nibbles is then expanded from 4 bits to 8 bits by a parallel table lookup.
The proper order of bytes is restored by interleaving instructions which pick al-
ternately the lower or higher bytes of aL or aH to form two consecutive 128-bit
values (t[2i], t[2i + 1]) produced as the result.

High-Speed Parallel Software Implementation of the ηT Pairing 93

Algorithm 1. Proposed implementation of squaring in F2m .
Input: a(z) = a[0..n− 1].
Output: c(z) = c[0..n − 1] = a(z)2 mod f(z).
1: � Store in table the squares u(z)2 of all 4-bit polynomials u(z).
2: table← 0x5554515045444140,0x1514111005040100
3: mask ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F
4: for i← 0 to n

2
− 1 do

5: a0 ←load(a[2i])
6: aL ← a0 ∧mask, aL ←lookup(table, aL)
7: aH ← a0 ��8 4, aH ← aH ∧mask, aH ←lookup(table, aH)
8: t[2i]←store(interlo(aL, aH)), t[2i + 1]←store(interhi(aL, aH))
9: end for

10: return c = t mod f(z)

2.3 Square Root

Given an element a(z) ∈ F2m , the field element c(z) such that c(z)2 = a(z) mod
f(z) can be computed by c(z) = aeven +

√
z · aodd mod f(z), where aeven repre-

sents the concatenation of even coefficients of a(z), aodd represents the concatena-
tion of odd coefficients of a(z) and

√
z is a constant depending on the irreducible

polynomial f(z) [8]. When f(z) is a suitable trinomial f(z) = zm + zt + 1 with
odd exponents m, t,

√
z has the sparse form

√
z = z

m+1
2 +z

t+1
2 and multiplication

by this constant can be computed with shifts and additions only.
This algorithm can also be implemented with simultaneous table lookups. Al-

gorithm 2 presents our implementation of this method with vector instructions.
The algorithm processes 128 bits of a in each iteration and progressively sep-
arates the coefficients of a[2i] in even or odd coefficients. First, a permutation
mask is used to divide a[2i] in bytes of odd index and bytes of even index. The
bytes with even indexes are stored in the lower 64-bit part of a0 and the bytes
with odd indexes are stored in the higher 64-bit part of a0. The high and low
nibbles of a0 are then divided into aL and aH and additional lookup tables are
applied to further separate the bits of aL and aH into bits with odd and even
indexes. At the end of the 128-bit section, a0 stores the interleaving of odd and
even coefficients of a packed into groups of 4 bits. The remaining instructions in
the 128-bit sections separate the even and odd coefficients into u and v, which
can be reordered and multiplied by

√
z inside the 64-bit section. We implement

these final steps in 64-bit mode to avoid expensive shifts in 128-bit registers.

2.4 Multiplication

Two different strategies are commonly considered for the implementation of mul-
tiplication in F2m . The first one consists in applying the Karatsuba algorithm [9]
to divide the multiplication in sub-problems and solve each problem indepen-
dently [7] (for a(z) = A1z

�m/2� + A0 and b(z) = B1z
�m/2� + B0):

c(z) = a(z)·b(z) = A1B1z
m+[(A1+A0)(B1+B0)+A1B1+A0B0]z�m/2�+A0B0.

94 D.F. Aranha, J. López, and D. Hankerson

Algorithm 2. Proposed implementation of square root in F2m .
Input: a(z) = a[0..n− 1], exponents m and t of trinomial f(z).
Output: c(z) = c[0..n − 1] = a(z)

1
2 mod f(z).

1: � Permutation mask to divide a 128-bit value in bytes with odd and even indexes.
2: perm← 0x0F0D0B0907050301,0x0E0C0A0806040200
3: � Tables to divide a low/high nibble in bits with odd and even indexes.
4: sqrtL ← 0x3332232231302120,0x1312030211100100
5: � Table to divide a high nibble in bits with odd and even indexes (sqrtL � 2).
6: sqrtH ← 0xCCC88C88C4C08480,0x4C480C0844400400
7: � Bit masks to isolate bytes in lower or higher nibbles.
8: maskL ← 0x0F0F0F0F0F0F0F0F,0x0F0F0F0F0F0F0F0F
9: maskH ← 0xF0F0F0F0F0F0F0F0,0xF0F0F0F0F0F0F0F0

10: c[0 . . . n− 1]← 0, h← n+1
2

, l ← t+1
128

, s1 ← m+1
2

mod 64, s2 ← t+1
2

mod 64
11: for i← 0 to n

2
− 1 do

12: a0 ←load(a[2i]), a0 ←shuffle(a0, perm)
13: aL ← a0 ∧maskL, aL ←lookup(sqrtL, aL),
14: aH ← a0 ∧maskH , aH ← aH ��8 4, aH ←lookup(sqrtH , aH)
15: a0 ← aL ∨ aH , aL ← a0 ∧maskL, aH ← a0 ∧maskH

16: u← store(aL), v ← store(aH)
17: � From now on, operate in 64-bit registers.
18: aeven ← u[0] ∨ u[1]� 4, aodd ← v[1] ∨ v[0]� 4
19: c[i]← c[i]⊕ aeven

20: c[i + h− 1]← c[h + i− 1]⊕ (aodd � s1)
21: c[i + h]← c[h + i]⊕ (aodd � (64− s1))
22: c[i + l]← c[i + l]⊕ (aodd � s2)
23: c[i + l + 1]← c[i + l + 1]⊕ (aodd � (64− s2))
24: end for
25: return c

The second one consists in applying a direct algorithm like the comb method
proposed by López and Dahab in [10]. Conventionally, the series of additions
involved in this method are implemented through additions over sub parts of a
double-precision vector. In order to reduce the number of memory accesses dur-
ing these additions, we employ n registers. These registers simulate the series of
memory additions by accumulating consecutive writes, allowing the implemen-
tation to reach maximum XOR throughput. We also employ an additional table
T1 analogue to T0 which stores u(z) · (b(z) � 4) to eliminate shifts by 4, as
discussed in [10]. Recall that shifts by multiples of 8 bits are faster in the target
platform. We assume that the length of operand b[0..n−1] is at most 64n−7 bits;
if necessary, terms of higher degree can be processed separately at relatively low
cost. The implemented LD multiplication algorithm is shown as Algorithm 3.
The element a(z) is processed in groups of 8 bits separated by intervals of 128
bits. This avoids shifts of the register vector since a 128-bit shift can be emulated
by referencing mi+1 instead of mi. The multiple precision shift by 8 bits of the
register vector (�8) is implemented with 15-byte shifts with carry propagation
(�) of register pairs.

High-Speed Parallel Software Implementation of the ηT Pairing 95

Algorithm 3. LD multiplication implemented with n 128-bit registers.
Input: a(z) = a[0..n− 1], b(z) = b[0..n − 1].
Output: c(z) = c[0..n − 1].
Note: mi denotes the vector of n

2
128-bit registers (r(i−1+n/2), . . . , ri).

1: Compute T0(u) = u(z) · b(z), T1(u) = u(z) · (b(z)� 4) for all u(z) of degree < 4.
2: (rn−1 . . . , r0)← 0
3: for k← 56 downto 0 by 8 do
4: for j ← 1 to n− 1 by 2 do
5: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
6: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
7: m(j−1)/2 ← m(j−1)/2 ⊕ T0(u)
8: m(j−1)/2 ← m(j−1)/2 ⊕ T1(v)
9: end for

10: (rn−1 . . . , r0)← (rn−1 . . . , r0) � 8
11: end for
12: for k← 56 downto 0 by 8 do
13: for j ← 0 to n− 2 by 2 do
14: Let u = (u3, u2, u1, u0), where ut is bit (k + t) of a[j].
15: Let v = (v3, v2, v1, v0), where vt is bit (k + t + 4) of a[j].
16: mj/2 ← mj/2 ⊕ T0(u)
17: mj/2 ← mj/2 ⊕ T1(v)
18: end for
19: if k > 0 then (rn−1 . . . , r0)← (rn−1 . . . , r0) � 8
20: end for
21: return c = (rn−1 . . . , r0) mod f(z)

2.5 Modular Reduction

Efficient modular reduction depends on the format of the trinomial or pen-
tanomial f(z). In general, it’s better to choose f(z) such that bitwise shifts
amounts are multiples of 8 bits. If the non-null coefficients of f(z) are located in
the lower words of the array representation of f(z), consecutive writes into mem-
ory can also be accumulated into registers to avoid redundant memory writes. We
illustrate these optimizations with modular reduction by f(z) = z1223+z255+1 in
Algorithm 4. The algorithm receives as input a vector of n 128-bit elements and
reduces this vector by accumulating four memory writes at a time in registers.
Note also that shifts by multiples of 8 bits are used whenever possible.

2.6 Inversion

For inversion in F2m we implemented a variant of the Extended Euclidean Algo-
rithm for polynomials [7] where the length of each temporary vector is tracked.
Since this algorithm requires flexible left shifts by arbitrary amounts, we im-
plemented the full algorithm in 64-bit mode. Some Assembly in the form of a
compiler intrinsic was used to efficiently count the number of leading 0 bits to
determine the highest set bit.

96 D.F. Aranha, J. López, and D. Hankerson

Algorithm 4. Proposed modular reduction by f(z) = z1223 + z255 + 1.
Input: t(z) = t[0..n− 1] (vector of 128-bit elements).
Output: c(z) mod f(z) = c[0..n − 1].
Note: The accumulate function R(r3, r2, r1, r0, t) executes:

s← t��8 7, r3 ← t��8 57
r3 ← r3 ⊕ (s�8 64)
r2 ← r2 ⊕ (s�8 64)
r1 ← r1 ⊕ (t�8 56)
r0 ← r0 ⊕ (t�8 72)

1: r0, r1, r2, r3 ← 0
2: for i← 19 downto 15 by 4 do
3: R(r3, r2, r1, r0, t[i]), t[i− 7]← t[i− 7]⊕ r0

4: R(r0, r3, r2, r1, t[i− 1]), t[i− 8]← t[i− 8]⊕ r1

5: R(r1, r0, r3, r2, t[i− 2]), t[i− 9]← t[i− 9]⊕ r2

6: R(r2, r1, r0, r3, t[i− 3]), t[i− 10]← t[i− 10] ⊕ r3

7: end for
8: R(r3, r2, r1, r0, t[11]), t[4]← t[4]⊕ r0

9: R(r0, r3, r2, r1, t[10]), t[3]← t[3]⊕ r1

10: t[2]← t[2]⊕ r2, t[1]← t[1]⊕ r3, t[0]← t[0]⊕ r0

11: r0 ← m[9]�8 64, r0 ← r0 ��8 7, t[0]← t[0]⊕ r0

12: r1 ← r0 �8 64, r1 ← r1 ��8 63, t[1]← t[1]⊕ r1

13: r1 ← r0 ��8 1, t[2]← t[2]⊕ r1

14: for i← 0 to 9 do c[2i]← store(t[i])
15: c[19]← c[19] ∧ 0x7F
16: return c

2.7 Implementation Timings

In this section, we present our timings for finite field arithmetic. We implemented
arithmetic in F21223 with irreducible trinomial f(z) = z1223 + z255 + 1. This
field is suitable for instantiations of the ηT pairing over supersingular binary
curves at the 128-bit security level [4]. The C programming language was used
in conjunction with compiler intrinsics for accessing vector instructions. The
chosen compiler was GCC version 4.1.2 because it generated the fastest code
from vector intrinsics, as already observed by [4]. The differences between our
implementations in the 65nm and 45nm processors can be explained by the
lower cost of the PSLLDQ and PSHUFB instructions in the newer generation after
the introduction of the Super Shuffle Engine by Intel.

Field multiplication was implemented by a combination of one instance of
Karatsuba and the LD method depicted as Algorithm 3. Karatsuba’s splitting
point was at 632 bits and the divide-and-conquer steps were also implemented
with vector instructions. Note that our binary field multiplier precomputes two
tables of 16 rows, while the multiplier implemented in [4] precomputes a single
table. This increase in memory consumption is negligible when compared to the
total memory capacity of the target platform.

High-Speed Parallel Software Implementation of the ηT Pairing 97

Table 1. Comparison of different software implementations of finite field arithmetic
in two Intel Core 2 platforms. All timings are reported in cycles. Improvements are
computed in comparison with the previous fastest result in a 65nm platform, since the
related works do not present timings for field operations in a 45nm platform.

Operation
Implementation a2 mod f a

1
2 mod f a · b mod f a−1 mod f

Hankerson et al. [4] 600 500 8200 162000
Beuchat et al. [11] 480 749 5438 –
This work (Core 2 65nm) 160 166 4030 149763
Improvement 66.7% 66.8% 25.9% 7.6%
This work (Core 2 45nm) 108 140 3785 149589

3 Pairing Computation

Miller’s Algorithm for pairing computation requires a rich mathematical frame-
work. We briefly present some definitions and point the reader to more complete
treatments of the subject presented in [12,13].

3.1 Preliminary Definitions

An admissible bilinear pairing is an efficiently computable map e : G1 × G2 →
GT , where G1 and G2 are additive groups of points in an elliptic curve E and GT

is a related multiplicative group. Let P,Q be r-torsion points. The computation
of a bilinear pairing e(P,Q) requires the construction and evaluation of a function
fr,P such that div(fr,P) = r(P) − r(O) at a divisor D which is equivalent to
(Q)−(O). Miller constructs fr,P in stages by using a double-and-add method [14].
Let gU,V : E(Fqk) → Fqk be the line equation through points U and V . If
U = V , the line gU,V is the tangent to the curve at U . If V = −U , the line gU

is the shorthand for gU,−U . A Miller function is any function fc,P with divisor
div(fc,P) = c(P) − (cP) − (c − 1)(O), c ∈ Z. The following property is true for
all integers a, b ∈ Z [13, Theorem 2]:

fa+b,P (D) = fa,P (D) · fb,P (D) · gaP,bP (D)
g(a+b)P (D)

. (1)

Direct corollaries are:

(i) f1,P (D) = 1.
(ii) fa,P (D) = fa−1,P (D) · g(a−1)P,P (D)

gaP (D) .
(iii) f2a,P (D) = fa,P (D)2 · gaP,aP (D)

g2aP (D) .

Miller’s Algorithm is depicted in Algorithm 5. The work by Barreto et al. [13]
later showed how to use the final exponentiation of the Tate pairing to eliminate
the denominators involved in the algorithm and to evaluate fr,P at Q instead
of the divisor D. Additional optimizations published in the literature focus on
minimizing the latency of the Miller loop, that is, reduce the length of r while
keeping its low Hamming weight [1,15,16].

98 D.F. Aranha, J. López, and D. Hankerson

Algorithm 5. Miller’s Algorithm [14].

Input: r =
∑log2(r)

i=0 ri2i, P , D = (Q + R)− (R)
Output: fr,P (D).
1: T ← P , f ← 1
2: for i = �log2(r)� − 1 downto 0 do
3: f ← f2 · gT,T (Q+R)g2T (R)

g2T (Q+R)gT,T (R)

4: T ← 2T
5: if ri = 1 then
6: f ← f · gT,P (Q+R)gT+P (R)

gT+P (Q+R)gT,P (R)

7: T ← T + P
8: end if
9: end for

10: return f

3.2 Related Work

In this work, we are interested in parallel algorithms for pairing computation
with no static limits on scalability, or more precisely, algorithms in which the
scalability is not restricted by the mathematical definition of the pairing. Prac-
tical limits will always exist when: (i) the communication cost is dominant;
(ii) the cost of parallelization is higher than the cost of computation.

Several works already developed parallel strategies for the computation of
pairings achieving mixed results. Grabher et al. [3] analyzes two approaches:
parallel extension field arithmetic, which gives good results but has a clear limit
on scalability; a parallel Miller loop strategy for two processors, where lines
3-4 for all iterations in Miller’s Algorithm are precomputed by one processor
and both processors compute in parallel the iterations where ri = 1. Because r
frequently has a low Hamming weight, this strategy results in performance losses
due to unbalanced computational costs between the processors.

Mitsunari [17] observes that the different iterations of the algorithm can be
computed in parallel if the points T of different iterations are available and
proposes a specialized version of the ηT pairing over F3m for parallel execution
in 2 processors. In this version, all the values (xP

1
3

i
, yP

1
3

i
, xQ

3i
, yQ

3i) used for
line evaluation in the i-th iteration of the algorithm are precomputed and the
Miller loop iterations are divided in sets of the same size. Hence load balancing is
trivially achieved. Since the cost of cubing and cube root computation is small,
this approach achieves good speedups ranging from 1.61 to 1.76 at two different
security levels. However, it requires significant storage overhead, since 4 · (m+1

2)
field elements must be precomputed and stored. This approach is generalized
and extended in the work by Beuchat et al. [11], where results are presented for
fields of characteristic 2 and 3 at the 128-bit security level. For characteristic 2,
the speedups achieved by parallel execution reach 1.75, 2.53 and 2.57 for 2, 4,
and 8 processors, respectively. For characteristic 3, the speedups reach 1.65, 2.26
and 2.79, respectively. This parallelization represents the current state-of-the-art
in parallel implementations of cryptographic pairings.

High-Speed Parallel Software Implementation of the ηT Pairing 99

Cesena and Avanzi [18,19] propose a technique to compute pairings over trace
zero varieties constructed from supersingular elliptic curves and extensions with
degrees a = 3 or a = 5. This approach allows a pairing computation to be packed
in a short parallel Miller loops by the action of the a-th power of Frobenius. The
problem with this approach is again the scalability limit (restricted by the exten-
sion degree a). The speedup achieved with parallel execution in 3 processors is
1.11 over a serial implementation of the ηT pairing at the same security level [19].

3.3 Parallelization

In this section, a parallelization of Miller’s Algorithm is derived. This paral-
lelization can be used to accelerate serial pairing implementations or improve
the scalability of parallel approaches restricted by the pairing definition. This
formulation is similar to the parallelization presented by [17] and [11], but our
method focuses on minimizing the number of points needed for parallel execu-
tions of different iterations of the algorithm. This allows us to eliminate the
overhead of storing 4(m+1

2) precomputed field elements.
Miller’s Algorithm computes fr,P in log2(r) iterations. For a parallel algo-

rithm, we must divide these log2(r) iterations between some number π of pro-
cessors. To achieve this, first we need a simple property of Miller functions [16,20].

Lemma 1. Let P,Q be points on E(Fq), D ∼ (Q) − (∞) and fc,P denote a
Miller function. For all integers a, b ∈ Z, fa·b,P (D) = fb,P (D)a · fa,bP (D).

We need this property because Equation (1) just divides a Miller’s Algorithm
instance computed in log2(r) iterations in two instances computed in at least
log2(r) − 1 iterations. If we could represent r as a product r0 · r1, it would be
possible to compute fr,P in two instances of log2(r)

2 iterations. Since for some
pairing instantiations, r is a prime group order, we write r in the simple and
flexible form 2wr1 + r0, with w ∼

log2(r)
2 . This way, we can compute:

fr,P (D) = f2wr1+r0,P (D) = f2wr1,P (D) · fr0,P (D) · g(2wr1)P,r0P (D)
grP (D)

. (2)

The previous Lemma provides two choices to further develop f2wr1,P (D):

(i) f2wr1,P (D) = fr1,P (D)2
w · f2w,r1P (D).

(ii) f2wr1,P (D) = f2w,P (D)r1 · fr1,2wP (D).

The choice can be made based on efficiency: (i) compute w squarings in the
extension field F∗

qk and a point multiplication by r1; (ii) compute an exponentia-
tion to r1 in the extension field and a point multiplication by 2w (or w repeated
point doublings). In the general case, the most efficient strategy will depend on
the curve and embedding degree. The higher the embedding degree, the higher
the cost of exponentiation in the extension field in comparison with point mul-
tiplication in the elliptic curve. If r has low Hamming weight, the two strategies
should have similar costs. We adopt the first strategy:

fr,P (D) = fr1,P (D)2
w · f2w,r1P (D) · fr0,P (D) · g(2wr1)P,r0P (D)

grP (D)
. (3)

100 D.F. Aranha, J. López, and D. Hankerson

This formula is clearly suitable for parallel execution in π = 3 processors, since
each Miller function can be computed in log2(r)

2 iterations. For our purposes,
however, r will have low Hamming weight and r0 will be very small. In this case,
fr,P can be computed by two Miller functions of approximately log2(r)

2 iterations.
The parameter w can be adjusted to balance the costs in both processors (w
extension field squarings with a point multiplication by r1).

This formula can also be applied recursively for fr1,P and f2w,r1P to develop
a parallelization suitable for any number of processors. Observe that π also does
not have to be a power of 2, because of the flexible way we write r to exploit
parallelism. An important detail is that a parallel implementation will only have
significant speedups if the cost of the Miller loop is dominant over the communi-
cation overhead or the parallelization overhead. It is also important to note that
the higher the number of processors, the higher the number of squarings and
the smaller the constants ri involved in point multiplication. However, applying
the formula recursively can increase the size of the integers which multiply P ,
because they will be a product of ri constants. Thus, the scalability of this algo-
rithm for π processors depends on the cost of squarings in the extension field, the
cost of point multiplications by ri in the elliptic curve and the actual length of
the Miller loop. Fortunately, these parameters are constant and can be statically
determined. If P is fixed (a private key, for example), the multiples riP can also
be precomputed and stored with low storage overhead.

3.4 Parallel ηT Pairing

In this section, the performance gain of a parallel implementation of the ηT

pairing over a serial implementation is investigated following the analysis by [4].
Let E be a supersingular curve with embedding degree k = 4 defined over

F2m with equation E/F2m : y2 +y = x3 +x+ b. The order of E is 2m +1±2
m+1

2 .
A quartic extension is built over F2m with basis {1, s, t, st}, where s2 = s + 1
and t2 = t + s. Let P,Q ∈ E(F2m) be r-torsion points. An associated distortion
map ψ from E(F2m)[r] to E(F24m) is defined by ψ : (x, y) → (x+ s2, y + sx+ t).
For this family of curves, Barreto et al. [1] defined the optimized ηT pairing:

ηT : E(F2m)[r]× E(F24m)[r] → F
∗
24m ,

ηT (P,Q) = fT ′,P ′(Q′)M , (4)

with Q′ = ψ(Q), T ′ = (−v)(2m−#E(F2m)), P ′ = (−v)P , M = (22m− 1)(2m +
1± 2

m+1
2) for a curve-dependent parameter v ∈ {−1, 1}.

At the 128-bit security level, the base field must have m = 1223 bits [4]. Let E1
be the supersingular curve with embedding degree k = 4 defined over F21223 with
equation E1(F21223) : y2 + y = x3 + x. The order of E1 is 5r = 21223 + 2612 + 1,
where r is a 1221-bit prime number. Applying the parallel form developed in
Section 3.3, the pairing computation can be decomposed in:

fT ′,P ′(Q′)M =
(
f2612−w,P ′(Q′)2

w · f2w,2612−wP ′(Q′) · g2612−wP ′,P ′(Q′)
gT ′P ′(Q′)

)M

.

High-Speed Parallel Software Implementation of the ηT Pairing 101

Since squarings in F24m and point duplication in supersingular curves require
only binary field squarings and these can be efficiently computed, the cost of
parallelization is low, but further improvements are possible. Barreto et al. [1]
proposed a closed formula for this pairing based on a reversed-loop approach with
square roots which eliminates the extension field squarings in Miller’s Algorithm.
Beuchat et al. [21] encountered further algorithmic improvements and proposed
a slightly faster formula for the ηT pairing computation. We can obtain a parallel
algorithm directly from the parallel formula derived above by excluding the in-
volved extension field squarings and simply dividing the loop iterations between
the processors. This algorithm is shown as Algorithm 6. In this algorithm, each
processor i starts the loop from the wi counter, computing wi squarings/square
roots of overhead. Without extension field squarings to offset these operations,
it makes sense to assign processor 1 the first line evaluation and to increase the
loop parts executed by processors with small wi. The total overhead is smaller
because extension field squarings are not needed and point arithmetic in binary
supersingular curves can be computed with inexpensive squarings and square
roots. Observe that the combining step can be implemented in at least two dif-
ferent ways: (i) serial combining of results with (π − 1) serial extension field
multiplications executed in one processor; (ii) parallel logarithmic combining of
results with latency of �log2(π)� extension field multiplications. We adopt the
parallel strategy for efficiency.

3.5 Performance Analysis

Now we proceed with performance analysis of Algorithm 6. Processor 1 has an
initialization cost of 3 multiplications and 2 squarings. Processor i has a paral-
lelization cost of 2wi squarings and 2wi square roots. Additional parallelization
overhead is �log2(π)� extension field multiplications to combine the results. A
full extension field multiplication costs 9 field multiplications. Each iteration of
the algorithm executes 2 square roots, 2 squarings, 1 field multiplication and 1
extension field multiplication. Exploring the sparsity of Gi, this extension field
multiplication costs 6 field multiplications. The final exponentiation has a cost
of 26 multiplications, 7 finite field squarings, 612 extension field squarings and
1 inversion. Each extension field squaring costs 4 finite field squarings [21].

Let m̃, s̃, r̃, ĩ be the cost of finite field operations: multiplication, squaring,
square root and inversion, respectively. For our efficient implementation of finite
field F21223 in an Intel Core 2 65nm processor, we have r̃ ≈ s̃, m̃ ≈ 25s̃ and
ĩ ≈ 37m̃. From these ratios, we will illustrate how to compute the optimal wi

values which balance the computational cost between processors. Let cπ(i) be
the computational cost of a processor 0 < i ≤ π while executing its portion of
the parallel algorithm. For π = 2 processors:

c2(1) = (3m̃ + 2s̃) + (7m̃ + 4s̃)w2 = 80s̃ + (186s̃)w2

c2(2) = (4s̃)w2 + (7m̃ + 4s̃) (611− w2) .

Naturally, we always have w1 = 0 and wπ+1 = 611. Solving c2(1) = c2(2)
for w2, we can obtain the optimal w2 = 309. For π = 4 processors, we solve

102 D.F. Aranha, J. López, and D. Hankerson

Algorithm 6. Proposed parallelization of the ηT pairing (π processors).
Input: P = (xP , yP), Q = (xQ, yQ) ∈ E(F2m [r]), starting point wi for processor i.
Output: ηT (P, Q) ∈ F

∗
24m .

1: yP ← yP + 1− δ
2: parallel section(processor i)
3: if i = 0 then
4: ui ← xP + α, vi ← xQ + α
5: g0i ← ui · vi + yP + yQ + β
6: g1i ← ui + xQ, g2i ← vi + x2

P

7: Gi ← g0i + g1is + t
8: Li ← (g0i + g2i) + (g1i + 1)s + t
9: Fi ← Li ·Gi

10: else
11: Fi ← 1
12: end if
13: xQi ← (xQ)2

wi , yQi ← (yQ)2
wi

14: xP i ← (xP)
1

2wi , yP i ← (yP)
1

2wi

15: for j ← wi to wi+1 − 1 do
16: xP i ← √xP i, yP i ← √yP i, xQi ← xQ

2
i , yQi ← yQ

2
i

17: ui ← xP i + α, vi ← xQi + α
18: g0i ← ui · vi + yP i + yQi + β
19: g1i ← ui + xQi

20: Gi ← g0i + g1is + t
21: Fi ← Fi ·Gi

22: end for
23: F ← ∏π

i=0 Fi

24: end parallel
25: return F M

c4(1) = c4(2) = c4(3) = c4(4) to obtain w2 = 158, w3 = 312, w4 = 463. Observe
that by solving a simple system of equations it is always possible to balance
the computational cost between the processors. Furthermore, the latency of the
Miller loop will always be equal to cπ(1). Let c1(1) be the cost of a serial imple-
mentation of the main loop, par be the parallelization overhead and exp be the
cost of final exponentiation. Considering the additional �log2(π)� extension field
multiplications as parallelization overhead and 26m̃+(7+ 2446)s̃+ ĩ as the cost
of final exponentiation, the speedup for π processors is the ratio between the
cost of the serial implementation over the cost of the parallel implementation:

s(π) =
c1(1) + exp

cπ(1) + par + exp
=

77 + 179 · 611 + 3978
cπ(1) + 225�log2(π)�+ 3978

.

Table 2 presents speedups estimated by our performance analysis. Note that
our efficient implementation of binary field arithmetic in a 45nm processor has
a bigger multiplication-to-squaring ratio, concentrating higher computational
costs in the main loop of the algorithm. This explains why the speedups should
be higher in the 45nm processor.

High-Speed Parallel Software Implementation of the ηT Pairing 103

Table 2. Estimated speedups for our parallelization of the ηT pairing over supersingu-
lar binary curves at the 128-bit security level. The optimal partitions were computed
by a Sage1 script.

Number π of processors
Estimated speedup s(π) 1 2 4 8 16 32
Core 2 65nm 1.00 1.90 3.45 5.83 8.69 11.48
Core 2 45nm 1.00 1.92 3.54 6.11 9.34 12.66

4 Experimental Results

We implemented the parallel algorithm for the ηT pairing over our efficient binary
field arithmetic in two Intel Core platforms: an Intel Core 2 Quad 65nm platform
running at 2.4GHz (Platform 1) and a dual quad-core Intel Xeon 45nm proces-
sor running at 2.0GHz (Platform 2). The parallel sections were implemented
with OpenMP2 constructs. OpenMP is an application programming interface
that supports multi-platform shared memory multiprocessing programming in
C, C++ and Fortran. We used a special version of the GCC 4.1.2 compiler
included in Fedora Linux 8 with OpenMP support backported from GCC 4.2
and SSSE3 support backported from GCC 4.3. This way, we could use both
multiprocessing support and fast code generation for SSE intrinsics.

The timings and speedups presented in Table 3 were measured on 104 execu-
tions of each algorithm. We present timings in millions of cycles to ignore differ-
ences in clock frequency between the target platforms. From the table, we can
observe that real implementations can obtain speedups close to the estimated
speedups derived in the previous section. We verified that threading creation
and synchronization overhead stayed in the order of microseconds, being negli-
gible compared to the pairing computation time. Timings for π > 4 processors
in Platform 1 and π > 8 processors in Platform 2 were measured through a
high-precision per-thread counter measured by the main thread. These timings
might be an accurate approximation of future real implementations, but memory
effects (such as cache locality) or scheduling influence may impose penalties.

Table 3 shows that the proposed parallelization presents good scalability. We
improve the state-of-the-art serial and parallel execution times significantly. The
fastest timing for computing the ηT pairing obtained by our implementation
was 1.51 milliseconds using all 8 cores of Platform 2. The work by Beuchat et al.
[11] reports a timing of 3.08 milliseconds in a Intel Core i7 45nm processor
clocked at 2.9GHz. Note that we obtain a much faster timing with a lower clock
frequency and without requiring the storage overhead of 4 · (m+1

2) field elements
present in [11], which may reach 365KB for these parameters and be prohibitive
in resource-constrained embedded devices.

1 SAGE: Software for Algebra and Geometry Experimentation,
http://www.sagemath.org

2 Open Multi-Processing, http://www.openmp.org

http://www.sagemath.org
http://www.openmp.org

104 D.F. Aranha, J. López, and D. Hankerson

Table 3. Experimental results for serial/parallel executions of the ηT pairing. Times
are presented in millions of cycles and the speedups are computed by the ratio between
execution times of serial implementations over execution times of parallel implementa-
tions. The columns marked with (*) present estimates based on per-thread data.

Number of threads
Platform 1 – Intel Core 2 65nm 1 2 4 8* 16* 32*
Hankerson et al. [4] – latency 39 – – – – –
Beuchat et al. [11] – latency 26.86 16.13 10.13 – – –
Beuchat et al. [11] – speedup 1.00 1.67 2.65 – – –
This work – latency 18.76 10.08 5.72 3.55 2.51 2.14
This work – speedup 1.00 1.86 3.28 5.28 7.47 8.76
Improvement 30.2% 32.9% 39.9% – – –
Platform 2 – Intel Core 2 45nm 1 2 4 8 16* 32*
Beuchat et al. [11] – latency 23.03 13.14 9.08 8.93 – –
Beuchat et al. [11] – speedup 1.00 1.77 2.54 2.58 – –
This work – latency 17.40 9.34 5.08 3.02 2.03 1.62
This work – speedup 1.00 1.86 3.42 5.76 8.57 10.74
Improvement 24.4% 28.9% 44.0% 66.2% – –

5 Conclusion and Future Work

In this work, we proposed novel techniques for exploring parallelism during the
implementation of the ηT pairing over supersingular binary curves in modern
multi-core computers. Powerful vector instructions of the SSE family were shown
to accelerate considerably the arithmetic in binary fields. We obtained significant
performance in computing the ηT pairing, using an efficient implementation of
field multiplication, squaring and square root computation. The optimizations
improved the state-of-the-art timings of this pairing instantiation at the 128-bit
security level by 24% and 30% in two different Intel Core processors.

We also derived a parallelization of Miller’s Algorithm to compute pairings.
This parallelization is generic and can be applied to any pairing algorithm or
instantiation. The construction also achieves good scalability in the symmetric
case and this scalability is not restricted by the definition of the pairing. We illus-
trated the formulation when applied to the ηT pairing over supersingular binary
curves and validated our performance analysis with a real implementation. The
experimental results show that the actual implementation could sustain perfor-
mance gains close to the estimated speedups. Parallel execution of the ηT pairing
improved the state-of-the-art timings by at least 28%, 44% and 66% in 2, 4 and
8 cores respectively. This parallelization is suitable for embedded platforms and
can be applied to reduce computation latency when response time is critical.

Future work can adapt the introduced techniques for the case F3m . Improve-
ments to the parallelization should focus on minimizing the serial region and
parallelization cost. The proposed parallelization should also be applied to an
optimal asymmetric pairing setting, where parallelization costs are clearly higher.
Preliminary data for the R-ate pairing [16] over Barreto-Naehrig curves at the
128-bit security level points to a 10% speedup using 2 processor cores.

High-Speed Parallel Software Implementation of the ηT Pairing 105

References
1. Barreto, P.S.L.M., Gailbraith, S., Ó hÉigeartaigh, C., Scott, M.: Efficient Pairing

Computation on Supersingular Abelian Varieties. Design, Codes and Cryptogra-
phy 42(3), 239–271 (2007)

2. Wechsler, O.: Inside Intel Core Microarchitecture: Setting new standards for
energy-efficient performance. Technology@Intel Magazine (2006)

3. Grabher, P., Groszschaedl, J., Page, D.: On Software Parallel Implementation of
Cryptographic Pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas
in Cryptography. LNCS, vol. 5381, pp. 34–49. Springer, Heidelberg (2009)

4. Hankerson, D., Menezes, A., Scott, M.: Identity-Based Cryptography, ch. 12, pp.
188–206. IOS Press, Amsterdam (2008)

5. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruc-
tion Set Reference, http://www.intel.com/Assets/PDF/manual/253666.pdf

6. Gueron, S., Kounavis, M.E.: Carry-Less Multiplication and Its Usage for Comput-
ing The GCM Mode. White paper, http://software.intel.com/

7. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Secaucus (2003)

8. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Transactions on Computers 53(8), 1047–1059 (2004)

9. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers (in Russian). Doklady Akad. Nauk SSSR 145, 293–294 (1962)

10. López, J., Dahab, R.: High-speed software multiplication in GF(2m). In: Roy, B.,
Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer,
Heidelberg (2000)

11. Beuchat, J., López-Trejo, E., Martínez-Ramos, L., Mitsunari, S., Rodríguez-
Henríquez, F.: Multi-core implementation of the Tate pairing over supersingular
elliptic curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

12. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient Implementation of Pairing-Based
Cryptosystems. Journal of Cryptology 17(4), 321–334 (2004)

13. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

14. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

15. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. on
Information Theory 52, 4595–4602 (2006)

16. Lee, H., Lee, E., Park, C.: Efficient and Generalized Pairing Computation on
Abelian Varieties. IEEE Trans. on Information Theory 55(4), 1793–1803 (2009)

17. Mitsunari, S.: A Fast Implementation of ηT Pairing in Characteristic Three on
Intel Core 2 Duo Processor. Cryptology ePrint Archive, Report 2009/032 (2009)

18. Cesena, E.: Pairing with Supersingular Trace Zero Varieties Revisited. Cryptology
ePrint Archive, Report 2008/404 (2008)

19. Cesena, E., Avanzi, R.: Trace Zero Varieties in Pairing-based Cryptography. In:
Conference on Hyperelliptic curves, discrete Logarithms, Encryption, etc. (2009),
http://inst-mat.utalca.cl/chile2009/Slides/Roberto_Avanzi_2.pdf

20. Vercauteren,F.:Optimalpairings.CryptologyePrintArchive,Report2008/096(2008)
21. Beuchat, J., Brisebarre, N., Detrey, J., Okamoto, E., Rodríguez-Henríquez, F.: A

Comparison Between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m . In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 297–315. Springer, Heidelberg (2008)

http://www.intel.com/Assets/PDF/manual/253666.pdf
http://software.intel.com/
http://inst-mat.utalca.cl/chile2009/Slides/Roberto_Avanzi_2.pdf

Refinement of Miller’s Algorithm Over Edwards
Curves

Lei Xu1,2 and Dongdai Lin1

1 State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 Graduate University of Chinese Academy of Sciences, Beijing, China

Abstract. Edwards gave a new form of elliptic curves in [1], and these
curves were introduced to cryptography by Bernstein and Lange in [2].
The Edwards curves enjoy faster addition and doubling operations, so
they are very attractive for elliptic curve cryptography.

In 2006, Blake, Murty and Xu proposed three refinements to Millers
algorithm for computing Weil/Tate pairings over Weierstraß curves. In
this paper we extend their method to Edwards curve and propose a
faster algorithm for computing pairings with Edwards coordinates, which
comes from the analysis of divisors of rational functions.

Keywords: Cryptography, bilinear pairing, Miller algorithm, twisted
Edwards curve.

1 Introduction

Bilinear pairing on elliptic curves are of great interests due to their application
in cryptography. It was first introduced by Alfred J.Menezes, Tatsuaki Okamoto
and Scott A.Vanstone to reduce the discrete logarithms of elliptic curves to fintie
fields([3]), which is known as the MOV attack. Frey and Rück([4]) also consider
this situation using Tate pairing instead of Weil pairing.

Recent work on bilinear pairing has considered their positive applications. Dan
Boneh and Matt Franklin proposed the first practical identity based encryption
scheme([5]), which was first described by Shamir([6]). And many interesting
applications of bilinear pairing are developed. Such as a one round protocol for
tripartite Diffie-Hellman key exchange by Antoine Joux([7]), a short signature
from Weil pairing by D.Boneh, B.Lynn and H.Shacham([8]) and so on.

Due to their various applications, a lot of effort has gone into efficient com-
puting of bilinear pairing. Miller propose the first effective algorithm to calculate
the bilinear pairing, which works in double-and-add manner([9]). And many im-
provements had been done to accelerate Miller’s algorithm, see [10] for a survey.

In 2007, Edwards generalized an example from Euler and Gauss and intro-
duced a new form of elliptic curve([1]). He showed that all elliptic curves over
number fields could be transformed to the shape x2 + y2 = c2(1 + x2y2) , with
(0, c) as neutral element and with simple and symmetric addition law. Bernstein
and Lange in [2] presented fast explicit formulas for addition and doubling in

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 106–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Refinement of Miller’s Algorithm Over Edwards Curves 107

projective coordinates on an Edwards curve. They also generalize the addition
law to the curve x2+y2 = c2(1+dx2y2), which covers more elliptic curves over fi-
nite field. In [11], Bernstein, Birkner, Joye, Lange, and Peters further generalized
the Edwards curve to cover all curves ax2 + y2 = 1 + dx2y2.

Compared with Weierstraß curves, Edwards curves enjoy more efficient addi-
tion and double operation. So discrete logarithm based systems such as Diffie-
Hellman key exchange or digital signatures that require efficient computation of
scalar multiples benefit from Edwards curve.

However, the situation becomes complicated when Edwards curve is in the
world of pairing based cryptography, where Miller’s algorithm needs a function
whose divisor is (P)+ (Q)− (P +Q)− (O), for input points P,Q and their sum
P + Q.

Until recently, little work was dedicated to the improvement of pairing com-
putation over Edwards curves. M. Prem Laxman Das and Palash Sarkar([12])
used birational equivalence to Weierstraß curves to calculate the bilinear pairing,
Sorina Ionica and Antoine Joux([13]) used a different map to curve of degree
3 and compute the 4-th power of the Tate pairing, which is faster than Das
and Sarkar’s algorithm. Christophe Aréne, Tanja Lange, Michael Naehrig, and
Christophe Ritzenthaler([14]) improved the computation of bilinear pairing on
Edwards curve and twisted Edwards curve in a way that is similar to [15]. [14]
also gives a geometric interpretation of the group law on Edwards curves and
concise formulas for the coefficients of the conic.

In this paper, we propose an efficient algorithm to compute bilinear pairing
over twisted Edwards curves. Our improvement comes from the consideration
of the different combinations of the divisors and is different from the previous
effort on pairing computation on Edwards curves.

The remainder of this paper is organized as follows: Section 2 recalls basic
properties of bilinear pairing and Edwards curves. Section 3 presents our im-
provements to the original Miller’s algorithm for twisted Edwards curves. In
Section 4 we compare the improved algorithms with the original algorithm and
give some detailed analysis. Section 5 gives the conclusion and some comments.

2 Background on Pairing and Twisted Edwards Curves

2.1 Bilinear Pairing and Miller’s Algorithm

Let E/K be an elliptic curve. Weil pairing and Tate pairing are the two most
important bilinear pairings.

Definition 1 (Divisor). A divisor is an element of the free abelian group (De-
noted by Div(E)) generated by the set of points of E(K).

Given a divisor D =
∑

P∈E nP (P), the degree of D is defined by deg(D) =∑
P∈E nP . The sum of divisor D is defined by sum(D) =

∑
P∈E nPP .

The divisor of degree 0 is a subgroup of Div(E) and is denoted by Div0(E).
The support of divisor D is the set of points P with nP �= 0.

108 L. Xu and D. Lin

For a nonzero rational function f over E, the corresponding divisor is defined
to be div(f) = ordP (f)(P). It can be proved that div(f) ∈ Div0(E), and
div(f) is called principal divisor. A characterization of principal divisors is :
D =

∑
P∈E nP (P) is principal iff deg(D) = 0 and sum(D) = O, where O is the

neutral element of the points group. The relation ∼ on Div0(E) is defined to be
D1 ∼ D2 iff D1 −D2 is principal.

If f is a nonzero rational function such that div(f) and D have disjoint sup-
ports, then the evaluation of f at D is defined by f(D) =

∏
P∈E f(P)np .

For more information on rational functions, divisors, and their relations, we
refer the readers to [16].

Let n be an integer which is prime to p = char(K) and E[n] = {P ∈
E(K)|nP = O}. Take P,Q ∈ E[n], there exist DP , DQ ∈ Div0(E) s.t. DP ∼
(P)− (O), DQ ∼ (Q)− (O). Let div(fP) = nDP , div(fQ) = nDQ, and suppose
that DP , DQ have disjoint supports, the Weil pairing is defined to be:

e(P,Q) =
fP (DQ)
fQ(DP)

Take a point S ∈ E s.t. DQ = (Q+S)− (S) and div(fP) have disjoint supports.
Then the Tate pairing is defined to be:

φn : E(K)[n]× (E(K)/nE(K)) !→ K∗/(K∗)n

φn(P,Q) = fP (DQ)

Here Q is the equivalence class in E(K)/nE(K) containing Q and fP (DQ) is
the equivalence class in K∗/(K∗)n.

An essential part in computing the Weil/Tate pairing is the evaluation of
rational function fP at some divisor D. Miller gave an efficient algorithm for
this calculation.

The main idea of Miller’s algorithm is to calculate fP (DQ) recursively. Specif-
ically, pick a random point S, and let DP = (P +S)−(S). Then div(fP) ∼ nDP .
For each integer k, there is a rational function fk s.t.

div(fk) = k(P + S)− k(S)− (kP) + (O).

In particular, fn = fP .
Let LP,Q be the line passing through points P,Q and LP be the vertical line

passing through point P . Then we have

div(Lk1P,k2P) = (k1P) + (k2P) + (−(k1 + k2)P))− 3(O)
div(LkP) = (kP) + (−kP)− 2(O).

So

div(fk1+k2) = div(fk1) + div(fk2) + div(Lk1P,k2P)− div(L(k1+k2)P).

In other words,
fk1+k2 = fk1ff2Lk1P,k2P /H(k1+k2)P .

The initial values are: f0 = 1 and f1 = LP,R/LP+R.

Refinement of Miller’s Algorithm Over Edwards Curves 109

Algorithm 1 describes Miller’s method(see [9] for details).

Algorithm 1. Miller’s Algorithm
Input: Elliptic curve E, integer n =

∑t
i=0 bi2i, bt �= 0, points P, Q ∈ E, order(P) = n

Output: f = fn(S)
f ← f1; Q← P ;
for j ← t− 1 down to 0 do

f ← f2 LQ,Q(S)

L2Q(S)
; Q← 2Q;

if bj = 1 then

f ← f1f
LQ,P (S)

LQ+P (S)
; Q← Q + P ;

end if
end for
return f

2.2 Twisted Edwards Curves

Bernstein et al. introduced the twisted Edwards curve in [11]. Here we give a
brief description.

For finite field K with character different from 2, the twisted Edwards curve
is defined as:

Ea,d : ax2 + y2 = 1 + dx2y2, where a, d ∈ K∗ and a �= d

The neutral element is O = (0, 1) and element O′ = (0,−1) has order two. It
also has two points at infinity, denoted by Ω1 = (1 : 0 : 0), Ω2 = (0 : 1 : 0).
Notice these two points are singular and have multiplicity two.

The addition law on points of the curve Ea,d is

(x1, y1) + (x2, y2) = (
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2
) (1)

It is proved in [11] that if a is a square and d is not a square, then formula (1)
is complete.

[11] also gives explicit formulae for twisted Edwards curves in projective co-
ordinates. In projective coordinates, twisted Edwards curve is defined as:

(aX2 + Y 2)Z2 = Z4 + dX2Y 2

For Z1 �= 0 the homogeneous point (X1 : Y1 : Z1) represents the affine point
(X1/Z1, Y1/Z1) on Ea,d.

Addition in Projective Twisted Coordinates. The following formulae compute
(X3 : Y3 : Z3) = (X1 : Y1 : Z1)+ (X2 : Y2 : Z2) in 10M+1S+2D+7add, where
the 2D are one multiplication by a and one by d:

A = Z1 · Z2;B = A2;C = X1 ·X2;D = Y1 · Y2;E = dC ·D;
F = B · E;G = B + E;X3 = A · F · ((X1 + Y1) · (X2 + Y2) · C ·D);
Y3 = A ·G · (D · aC);Z3 = F ·G.

110 L. Xu and D. Lin

Doubling in Projective Twisted Coordinates. The following formulae compute
(X3 : Y 3 : Z3) = 2(X1 : Y 1 : Z1) in 3M + 4S + 1D + 7add, where the 1D is a
multiplication by a:

B = (X1 + Y1)2;C = X2
1 ;D = Y 2

1 ;E = aC;F := E + D;H = Z2
1 ;

J = F · 2H ;X3 = (B · C ·D) · J ;Y3 = F · (E ·D);Z3 = F · J.

2.3 Bilinear Pairing Over Edwards Curves

In [14], the authors gave a geometry explanation for the addition law over twisted
Edwards curves and a method to construct rational function with divisor (P1)+
(P2)− (P3)− (O), which is essential for Miller’s algorithm.

Let hP1,P2 be the conic passing through Ω1, Ω2,O′, P1, P2;
1,P3 be the hori-
zontal line passing through P3;
2,O be the vertical line passing through O.

From [14], we have the following lemma:

Lemma 1. Let
1,
2, h be defined as above. Then

div(
1,P3) = (P3) + (−P3)− 2(Ω2) (2)
div(
2,O) = (O) + (O′)− 2(Ω1) (3)

div(hP1,P2) = (P1) + (P2) + (O′) + (−P3)− 2(Ω1)− 2(Ω2) (4)

It is easy to prove Corollary 1 with Lemma 1.

Corollary 1. Let
1,
2, h be the same as in Lemma 1. Then

hP1,P2

1,P3
2,O
= (P2) + (P2)− (P3)− (O) (5)

We get the Edwards edition of Miller’s algorithm(Algorithm 2).

Algorithm 2. Miller’s Algorithm for Twisted Edwards Curve
Input: Twisted Edwards curve Ea,d, integer n =

∑t
i=0 bi2i, bt �= 0, points P, S ∈

E, order(P) = n
Output: f = fn(S)
1: f ← f1; Q← P ;
2: for j ← t− 1 down to 0 do

3: f ← f2 hQ,Q(S)

�2,2Q(S)�1,O(S)

4: Q← 2Q
5: if bj = 1 then

6: f ← f1f
hQ,P (S)

�2,Q+P (S)�1,O(S)

7: Q← Q + P
8: end if
9: end for

10: return f

Refinement of Miller’s Algorithm Over Edwards Curves 111

3 Our Improvements

The main loop of Miller’s algorithm (i.e from line 2 to line 8 in Algorithm 2) takes
most of the running time. So we focus on the improvements of the operations in
the loop.

In 2006 Blake, Murty and Xu([17]) proposed a method to reduce the total
number of lines in Miller’s algorithm. Though this concept does not dramatically
decrease the cost of points adding, it is novel and can be applied to decrease the
number of field multiplications.

In this paper we extend their technique to twisted Edwards curves and achieve
some improvements.

Specifically, notice that in Miller’s algorithm for twisted Edwards curves
(Algorithm 2), only one bit of the integer n is considered in one iteration. If
we consider two consecutive bits at a time, we can achieve some improvements.

First we give a theorem which is fundamental to the improvements.

Theorem 1. Let Ea,d be a twisted Edwards curve and Q ∈ Ea,d with
order(Q) = n. Then1

1.

(
hQ,Q

1,2Q
2,O
)2

h2Q,2Q

2,4Q
1,O
=

h2
Q,Q

h−2Q,−2QhO,O

2.
hQ,Q

2,2Q
1,O
h2Q,P

2,2Q+P
1,O
=

hQ,Q
2,P

h2Q+P,−P
1,O

Proof. 1. The divisor of the rational function

(
hQ,Q

1,2Q
2,O
)2

h2Q,2Q

1,4Q
2,O

is

4(Q) + 2(−2Q)− 4(Ω1)− 4(Ω2) + 2(O′)
2(2Q) + 2(−2Q)− 4(Ω2) + 2(O) + 2(O′)− 4(Ω1)

+
2(2Q) + (−4Q)− 2(Ω1)− 2(Ω2) + (O′)

(4Q) + (−4Q)− 2(Ω2) + (O) + (O′)− 2(Ω1)

=
4(Q) + 2(−2Q)− 4(Ω1)− 4(Ω2) + 2(O′)

2(−2Q)− 2(Ω2) + 2(O) + 2(O′)− 2(Ω1) + (4Q)− 2(Ω2) + (O)− 2(Ω1)
=4(Q) + 2(−2Q)− 4(Ω1)− 4(Ω2) + 2(O′)+

1
2(−2Q) + (4Q)− 2(Ω1)− 2(Ω2) + (O′)

+

1
3(O) + (O′)− 2(Ω2)− 2(Ω1)

1 Notice that the fraction of divisor a/b means a− b.

112 L. Xu and D. Lin

The divisor 4(Q) + 2(−2Q) − 4(Ω1) − 4(Ω2) + 2(O′) corresponds to h2
Q,Q,

2(−2Q)+ (4Q)− 2(Ω1)− 2(Ω2)+ (O′) corresponds to h−2Q,−2Q and 3(O)+
(O′)− 2(Ω2)− 2(Ω1) corresponds to hO,O.
So we have

(
hQ,Q

1,2Q
2,O
)2

h2Q,2Q

2,4Q
1,O
=

h2
Q,Q

h−2Q,−2QhO,O
.

2. The divisor of the rational function

hQ,Q

2,2Q
1,O
h2Q,P

2,2Q+P
1,O

is

2(Q) + (−2Q)− 2(Ω1)− 2(Ω2) + (O′)
(2Q) + (−2Q)− 2(Ω2) + (O) + (O′)− 2(Ω1)

+
(2Q) + (P) + (−(2Q + P))− 2(Ω1)− 2(Ω2) + (O′)

(2Q + P) + (−(2Q + P))− 2(Ω2) + (O) + (O′)− 2(Ω1)
=2(Q) + (−2Q)− 2(Ω1)− 2(Ω2) + (O′)+

(P)
(2Q + P) + (−2Q)− 2(Ω1)− 2(Ω2) + (O′) + 2(O)

=2(Q) + (−2Q)− 2(Ω1)− 2(Ω2) + (O′)+
(P) + (−P)− 2(Ω2)

(2Q + P) + (−2Q) + (−P)− 2(Ω1)− 2(Ω2) + (O′) + 2(O)− 2(Ω2)

The divisor 2(Q) + (−2Q) − 2(Ω1) − 2(Ω2) + (O′) corresponds to hQ,Q,
(P)+(−P)−2(Ω2) corresponds to
1,P , (2Q+P)+(−2Q)+(−P)−2(Ω1)−
2(Ω2)+(O′) correponds to h2Q+P,−P , and 2(O)−2(Ω2) corresponds to
1,O.
So we have

hQ,Q

2,2Q
1,O
h2Q,P

2,2Q+P
1,O
=

hQ,Q
2,P

h2Q+P,−P
1,O
.

Next we describe the improvements using Theorem 1 in four different cases.

1. If two consecutive bits of n are “00”, then according to Algorithm 2, line 3
∼ 4 are executed twice.
The result of the execution is

f ← (f2 hQ,Q(S)

2,2Q(S)
1,O(S)

)2
h2Q,2Q(S)

2,4Q(S)
1,O(S)

Q← 4Q

Using the first formula of Theorem 1, the above operations are equal to

f ← f4 h2
Q,Q(S)

h−2Q,−2Q(S)hO,O(S)

Q← 4Q

Refinement of Miller’s Algorithm Over Edwards Curves 113

2. If two consecutive bits of n are “01”, then according to Algorithm 2, line 3
∼ 4 are executed twice, and line 6 ∼ 7 are executed.
The result of the execution is

f ← f1(f2 hQ,Q(S)

2,2Q(S)
1,O(S)

)2
h2Q,2Q(S)

2,4Q(S)
1,O(S)
h4Q,P (S)

2,4Q+P (S)
1,O(S)

Q← 4Q + P

In this case we have two ways to combine the divisor of the result rational
function f .
(a) Using the first formula of Theorem 1, the above operations are equal to

f ← f1f
4 h2

Q,Q(S)
h−2Q,−2Q(S)hO,O(S)

h4Q,P (S)

2,4Q+P
1,O(S)

Q← 4Q + P

(b) We can also use the second formula of Theorem 1, then the above oper-
ations are equal to

f ← f1(f2 hQ,Q(S)

2,2Q(S)
1,O(S)

)2
h2Q,2Q(S)
2,P (S)

h4Q+P,−P (S)hO,O(S)

Q← 4Q + P

3. If two consecutive bits of n are “10”, then according to Algorithm 2, line 3
∼ 7 are executed, and line 3 ∼ 4 are executed.
The result of the execution is

f ← (f1f
2 hQ,Q(S)

2,2Q(S)
1,O(S)

h2Q,P (S)

2,2Q+P (S)
1,O(S)

)2
h2Q+P,2Q+P (S)

2,4Q+2P (S)
1,O(S)

Q← 4Q + 2P

In this case we have two ways to combine the divisor of the result rational
function f .
(a) Using the first formula of Theorem 1, the above operations are equal to

f ← f2
1 f

4 h2
Q,Q(S)

22,2Q(S)
21,O(S)
h2

2Q,P (S)
h−(2Q+P),−(2Q+P)(S)hO,O(S)

Q← 4Q + 2P

(b) Using the second formula of Theorem 1, the above operations are equal
to

f ← (f1f2 hQ,Q(S)
2,P (S)
h2Q+P,−P (S)
1,O(S)

)2
h2Q+P,2Q+P (S)

2,4Q+2P (S)
1,O(S)

Q← 4Q + 2P

114 L. Xu and D. Lin

4. If two consecutive bits of n are “11”, then according to Algorithm 2, line 3
∼ 7 are executed twice.
The result of the execution is

f←f1(f1f
2 hQ,Q(S)
�2,2Q(S)�1,O(S)

h2Q,P (S)
�2,2Q+P (S)�1,O(S)

)2
h2Q+P,2Q+P (S)

�2,4Q+2P (S)�1,O(S)
h4Q+2P,P (S)

�2,4Q+3P (S)�1,O(S)

Q← 4Q + 3P

As in the cases “01” and “10”, we have two ways to combine the divisor of
the result rational function f .
(a) Using the first formula of Theorem 1, the above operations are equal to

f ← f3
1 f

4 h2
Q,Q(S)

22,2Q(S)
21,O(S)
h2

2Q,P (S)
h−(2Q+P),−(2Q+P)(S)hO,O(S)

h4Q+2P,P (S)

2,4Q+3P (S)
1,O(S)

Q← 4Q + 3

(b) Using the second formula of Theorem 1, the above operations are equal
to

f ← f1(f1f
2 hQ,Q(S)
2,P (S)
h2Q+P,−P (S)
1,O(S)

)2
h2Q+P,2Q+P (S)
2,P (S)
h4Q+3P,−P (S)hO,O(S)

Q← 4Q + 3

It is easy to derive the concrete algorithm from the above description(Algorithm
3). To consider two bits of n at a time, we represent n in 4-base. If the number
of bits of the integer n is odd, we initialize f with the first bit, otherwise we
use the first two bits to initialize f . And we use different method to combine
the divisor of f in different cases. The reasons to use different combinations are
shown in Section 4.

4 Analysis and Comparison

The cost of the algorithms calculating bilinear pairing over Edwards curves con-
sists of three parts: the cost of updating f , the cost of updating Q, and the cost
of evaluating hQ,R,
1,Q,
2,Q at some point S. Note that here we mainly make
comparison with the original Miller’s algorithm(Algorithm 2).

Without special treatment, the cost of updating Q in Algorithm 3 is no more
than that of Algorithm 2. And the cost of evaluating hQ,R,
1,Q,
2,Q at some
point S is also the same for the two algorithms2. So we focus on the cost of
updating f .

Let M denote the cost of finite field multiplication, S denote the cost of finite
field square and I denote the finite field inversion. Notice that there is always a
multiplication following an inversion.

Field inversion is much more expensive compared with multiplication. And
square is cheaper than multiplication. We set S = 0.8M and I > 8M. Because
2 If we take these costs in consideration, there may be room for further improvements.

Refinement of Miller’s Algorithm Over Edwards Curves 115

Algorithm 3. Improved Miller’s Algorithm for Edwards Curve
Input: Twisted Edwards curve Ea,d, integer n =

∑t
i=0 qi4i, qt �= 0, points P, S ∈

Ea,d, order(P) = n
Output: f = fn(S)

f ← f1, Q← P
if number of bits of n is even then

if qr = 2 then

f ← f2 hP,P (S)

�2,2P (S)�1,O(S)
, Q← 2P

end if
if qr = 3 then

f ← f2 hP,P (S)

�2,2P (S)�1,O(S)

h2P,P (S)

�2,3P (S)�1,O(S)
, Q← 3P

end if
end if
for j = t− 1 down to 0 do

if qj = 0 then

f ← f4 h2
Q,Q(S)

h−2Q,−2Q(S)hO,O(S)

Q← 4Q
end if
if qj = 1 then

f ← f1f
4 h2

Q,Q(S)

h−2Q,−2Q(S)hO,O(S)

h4Q,P (S)

�2,4Q+P �1,O(S)

Q← 4Q + P
end if
if qj = 2 then

f ← f2
1 f4 h2

Q,Q(S)

�22,2Q
(S)�21,O(S)

h2
2Q,P (S)

h−(2Q+P),−(2Q+P)(S)hO,O(S)

Q← 4Q + 2P
end if
if qj = 3 then

f ← f1(f1f
2 hQ,Q(S)�2,P (S)

h2Q+P,−P (S)�1,O(S)
)2 h2Q+P,2Q+P (S)�2,P (S)

h4Q+3P,−P (S)hO,O(S)

Q← 4Q + 3P
end if

end for
return f

the inversion operation is so expensive, we keep the middle result in fraction
form(f = a

b) to avoid the inversions.
First, we give a comparison of the effects of different combinations of divisor.

The result of different combinations is given in Section 3, and the cost of these
combinations is shown in Table 1.

From Table 1, it is easy to see that in the cases “01” and “10”, the first
combination save 1 M than the second. And in the case “11”, the second method
is faster than the first one(also save 1 M). There is only one way to combine the
divisor in the case “00”.

The construction of Algorithm 3 follows the above observations.

116 L. Xu and D. Lin

Table 1. Comparison of Different Combinations of Divisor of f

Method to combine the divisor case “00” case “01” case “10” case “11”
Using the first formula of 5S + 3M 4S + 7M 4S + 7M 4S + 11M
Theorem 1 = 7M = 10.2M = 10.2M = 14.2M
Using the second formula of 5S + 3M 4S + 8M 4S + 8M 4S + 10M
Theorem 1 = 7M = 11.2M = 11.2M = 13.2M

Specifically,

1. In the case “01” and “10”, use the first formula of Theorem 1 to combine
the divisor.

2. In the case “11”, use the second formula of Theorem 1 to combine the divisor.

Next, We compare Algorithm 2 and the original Miller’s algorithm(Algorithm
3). The result is showed in Table 2.

We remind that Algorithm 2 is slower than that of [14], where denominator
elimination was used. And we include the result of [14] in the last row of Table 2.

Table 2. Comparison of the Algorithms

case “00” case “01” case “10” case “11”
Algorithm 2 4S + 6M 4S + 10M 4S + 10M 4S + 14M

= 9.2M = 13.2M = 13.2M = 17.2M
Algorithm 3 5S + 3M 4S + 7M 4S + 7M 4S + 10M

= 7M = 10.2M = 10.2M = 13.2M
Method of [14] 2S + 2M 2S + 3M 2S + 3M 2S + 4M

= 3.6M = 4.6M = 4.6M = 5.6M

From Table 2, we can see that the improved Algorithm 3 is more efficient
than the original Algorithm 2 in all the four cases. And in the case “11”, the
new algorithm can save at most 4M per iteration. So if there are more “11”s in
the binary representation of integer n, Algorithm 3 will save more time.

Let n =
∑t

i=0 2ibi, suppose

Prob[bi = 1] = Prob[bi = 0] = 1/2, where 0 ≤ i < t,

and bi are mutually independent.
Then

Prob[bibi+1 = 00] = Prob[bibi+1 = 01] = Prob[bibi+1 = 10] =

Prob[bibi+1 = 11] = 1/4

So the total cost of Algorithm 3 is about 76.8% of that of Algorithm 2.

Refinement of Miller’s Algorithm Over Edwards Curves 117

5 Conclusion

In this paper we propose an improved Miller’s algorithm for twisted Edwards
curves. And we give a detailed analysis of the improvement. The savings in
the number of multiplication in the updating of f noted is important for the
performance of algorithms in the pairing based cryptosystems.

At the same time, we pay little attention to the calculation of 4Q+P, 4Q+2P,
and 4Q+3P . There may be faster methods to calculate these values than simple
additions and doubles. So it is possible to make our analysis result better.

Acknowledgements. We thank Professor Tanja Lange and the anonymous
reviewers for their precious comments.

References

1. Edwards, H.M.: A Normal Form for Elliptic Curves. Bulletin of the American
Mathematical Society 44, 393–442 (2007)

2. Bernstein, D.J., Lange, T.: Faster Addition and Doubleling on Elliptic Curves.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

3. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field. IEEE Transactions on Information Theory (1993)

4. Frey, G., Rück, H.G.: A Remark Concerning m-divisibility and the Discrete Log-
arithm in the Divisor Class Group of Curves. Mathematics of Computation 62,
865–874 (1994)

5. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

7. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)

8. Boneh, D., Lynn, B., Shacham, H.: Short Signature from the Weil Pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

9. Miller, V.S.: The Weil Pairing, and its Efficient Calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

10. Blake, I.F., Sroussi, G., Smart, P.N.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, Cambridge (2005)

11. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Ed-
wards Curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 389–405. Springer, Heidelberg (2008)

12. Das, M.P.L., Sarkar, P.: Pairing Computation on Twisted Edwards form Elliptic
Curves. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209,
pp. 192–210. Springer, Heidelberg (2008)

13. Ionica, S., Joux, A.: Another Approach to Pairing Computation in Edwards Co-
ordinates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 400–413. Springer, Heidelberg (2008)

118 L. Xu and D. Lin

14. Aréne, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster Pairing Computation.
Cryptology ePrint Archive, Report 2009/155 (2009)

15. Barreto, P.S., Lynn, B., Scott, M.: Efficient Implementation of Pairing-based Cryp-
tosystems. Journal of Cryptology 17, 321–334 (2004)

16. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer,
Heidelberg (1977)

17. Blake, I.F., Murty, V.K., Xu, G.: Refinements of Miller’s Algorithm for Computing
the Weil/Tate pairing. Journal of Algorithms 58, 134–149 (2006)

Probabilistic Public Key Encryption with
Equality Test

Guomin Yang1, Chik How Tan1, Qiong Huang2, and Duncan S. Wong2

1 Temasek Laboratories
National University of Singapore
{tslyg,tsltch}@nus.edu.sg

2 Department of Computer Science
City University of Hong Kong

duncan@cityu.edu.hk, csqhuang@student.cityu.edu.hk

Abstract. We present a (probabilistic) public key encryption (PKE)
scheme such that when being implemented in a bilinear group, anyone
is able to check whether two ciphertexts are encryptions of the same
message. Interestingly, bilinear map operations are not required in key
generation, encryption or decryption procedures of the PKE scheme,
but is only required when people want to do an equality test (on the
encrypted messages) between two ciphertexts that may be generated
using different public keys. We show that our PKE scheme can be used
in different applications such as searchable encryption and partitioning
encrypted data. Moreover, we show that when being implemented in a
non-bilinear group, the security of our PKE scheme can be strengthened
from One-Way CCA to a weak form of IND-CCA.

Keywords: Public Key Encryption, Adaptive Chosen Ciphertext At-
tacks, Ciphertext Comparability, Searchable Encryption, Bilinear Map.

1 Introduction

Consider an outsourced database, data are stored in encrypted form. In order
to maintain a good data structure, or extract some statistical information of the
data, data may need to be partitioned. However, classical encryption schemes
are not suitable for this purpose, since given a pile of ciphertexts, no one is
able to tell the relationships among encrypted messages without knowing the
decryption keys.

Searchable encryption (SE) schemes, introduced by Boneh et al. [7], and inten-
sively studied in [3,1,21] may be one candidate to solve the problem. Informally
speaking, in a searchable encryption scheme, a Tag TM can be generated with
respect to a message M and a key pair (PK,SK) (given TM and PK, one should
not be able to derive the message M). There is also a function Test′ such that
Test′(TM , C) returns 1 if and only if the ciphertext C is an encryption of M
under public key PK. So using the tag, one should be able to categorize the
ciphertexts according to the encrypted messages. However, this method has one

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 119–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 G. Yang et al.

shortcoming: the same message encrypted under different public keys cannot be
categorized into one cluster.

Another possible approach is to use deterministic encryption schemes, which
has been studied in recent years [3,5,6]. A PKE scheme is deterministic if the
encryption algorithm is deterministic, namely given the same public key and the
message, the encryption algorithm always outputs the same ciphertext. How-
ever, deterministic encryption suffers from the same problem that searchable
encryption does for our purpose.

In this paper, we formalize the notion of Ciphertext Comparability for public
key encryption schemes. We introduce a (probabilistic) public key encryption
scheme such that when being implemented in a bilinear group its ciphertexts
are publicly comparable. That is, given two ciphertexts C1 and C2 generated
under public keys PK and PK ′, respectively, there is a function Test such that
Test(C1, C2) returns 1 if and only if C1 and C2 are encryptions of the same
message, no matter PK = PK ′ or not. Our encryption scheme itself does not
invoke any bilinear map operation in key generation, encryption or decryption
procedures, only the Test function does. Further more, we show that when being
implemented in a non-bilinear group, our PKE scheme can achieve a higher level
of confidentiality, but at the cost of losing ciphertext comparability.

Related Work. Since the introduction of public key cryptography due to the
seminal paper of Diffie and Hellman [14], public key encryption schemes are in
the center of modern cryptography. Different types of PKE schemes with differ-
ent security goals have been constructed. For a long time, people were searching
for PKE schemes providing strong confidentiality, namely indistinguishability or
semantic security under chosen-ciphertext attacks (IND-CCA2) [24,15]. Nowa-
days there are many PKE schemes (e.g. [11,12,23,22,9,2,10,19,18,20]) achieving
IND-CCA2 security. A historical survey on PKE can be found in [13].

In [7], Boneh et al. presented the notion of public key encryption with keyword
search (PEKS) and several constructions that achieve semantic security. In a
PEKS scheme, Alice, with a key pair (pk, sk), can provide Bob with a trapdoor
TW , which is computed as a function of her secret key sk and any keyword W
of her choice. Using TW , it is possible to check, using a function Test′, whether
an arbitrary given ciphertext c is an encryption of W or not. The consistency
condition is that Test′(TW , c) returns 1 if and only if c is an encryption of W .
Otherwise, the trapdoor TW should not give any information about the real
encrypted message W ′ (besides W ′ �= W). Later, a general connection between
PEKS and (anonymous) IBE was given by Abdalla et al. [1]. Recently, Hofheinz
and Weinreb [20] presented a searchable public key encryption with decryption
(PEKSD) in the standard model.

In [3], Bellare et al. initiated the notion of deterministic public key encryption
where the encryption algorithm is deterministic. Deterministic encryption has
been shown to be a useful tool in many applications, e.g. fast (i.e. logarithmic
time) searching on encrypted data. This topic is further studied in [5,6].

As discussed in the introduction, if we are concerning encryptions generated
under one public key, both searchable encryption and deterministic encryption

Probabilistic Public Key Encryption with Equality Test 121

can be used to do equality tests among ciphertexts. However, we are interested
in a more general multi-key setting.

This work is different from the verifiable encryption considered by Camenisch
and Shoup in [8]. In a verifiable encryption scheme, the encrypter, who knows the
plaintext, is able to prove (in zero-knowledge) to a third party that the message
“encapsulated” in the ciphertext satisfies some property, e.g. the plaintext is the
discrete log of an element with respect to a base in a group. So after generating
the ciphertext, additional work is required from the encrypter in order to conduct
the proof. Our work does not require any extra effort from the encrypters after
generating the ciphertexts, and equality test can be performed just using the
ciphertexts.

Our Contributions. In this paper, we give the notion of ciphertext compara-
bility for public key encryption schemes, and present such a scheme. Our scheme
allows anyone to compare two ciphertexts and check if they are encryptions of
the same message, even though the ciphertexts may be generated using differ-
ent public keys. We show that when being implemented in a bilinear group,
our encryption scheme is one-way under chosen ciphertext attacks (as we will
see shortly, it is impossible to achieve IND-ATK type of security for encryption
schemes with ciphertext comparability) in the random oracle model. We show
that PKE schemes with ciphertext comparability can be used in many appli-
cations, such as constructing searchable encryption, and partitioning encrypted
data.

We then analyze the security of our encryption scheme when being imple-
mented in a non-bilinear group. We show that under the DDH assumption our
scheme achieves Weak Indistinguishability under Chosen Ciphertext Attacks
(W-IND-CCA2) in the random oracle model.

Paper Organization. In the next section, we give the definitions and security
models for public key encryption schemes with ciphertext comparability. Then
we give our construction of a PKE scheme with ciphertext comparability in Sec. 3
and show some of its applications in Sec. 4. In Sec. 5, we give the definition of
W-IND-ATK and prove that when being implemented in a non-bilinear group,
our PKE scheme can achieve W-IND-CCA2 security.

2 Definitions

A public key encryption scheme Π = (G, E ,D) consists of a triple of algorithms.
The key generation algorithm G takes a security parameter k ∈ N and outputs a
public/private key pair (pk, sk). The encryption algorithm E takes a message m
and the public key pk, and outputs a ciphertext c. The decryption algorithm D
takes sk and c as input, and outputs m or ⊥ (which indicates decryption failure).
The correctness requirement is that ∀k ∈ N and ∀m ∈ PtSp(k) , (pk, sk) ←
G(1k), m ← D(sk, E(pk,m)) where PtSp(k) is the plaintext space associated
to Π .

122 G. Yang et al.

We say that Π has Ciphertext Comparability with error ε for some function
ε(·) if there exists an efficiently computable deterministic function Test(·, ·) such
that for every k we have

1. Perfect Consistency: for every x ∈ PtSp(k)

Pr
[

(pk, sk)← G(1k), (pk′, sk′) ← G(1k), C ← E(pk, x)
C′ ← E(pk′, x): Test(C,C′) = 1

]
= 1

2. Soundness: for every polynomial time algorithm M

Pr
[

(C,C′, sk, sk′) ←M(1k), x← D(sk, C), x′ ← D(sk′, C′) :
x �= ⊥ ∧ x′ �= ⊥ ∧ x �= x′ ∧ Test(C,C′) = 1

]
≤ε(k)

In the above definition, consistency ensures that encryptions (even under dif-
ferent public keys) of the same message can be recognized. Soundness measures
the probability of false-hits (i.e. Test(C,C′) = 1 but C and C′ are encryptions
of different messages).

Sanity Check. In our definition for ciphertext comparability, the Test function
does not perform any sanity check on the ciphertexts, namely, we don’t specify
the output of Test when its input cannot be decrypted. We only require that when
the ciphertexts are real encryptions of messages, the function works properly.
On the other hand, checking whether a ciphertext is in the correct form without
using the private key is another problem out of the scope of this paper.

In the following, we review the classical notions of privacy for public key en-
cryption schemes, namely, indistinguishability under chosen plaintext and chosen
ciphertext attacks [17,24,15].

Definition 1 (IND-ATK [4]). Let Π = (G, E ,D) be a public key encryp-
tion scheme and let A = (A1,A2) be a polynomial-time adversary. For atk ∈
{cpa, cca1, cca2} and k ∈ N let

Advind−atk
A,Π

def= Pr
[

(pk, sk)← G(1k), (x0, x1, δ)← AO1
1 (pk), b← {0, 1},

y ← E(pk, xb), b′ ← AO2
2 (pk, x0, x1, δ, y) : b′ =b

]
−1

2

where x0 �= x1 ∧ |x0| = |x1| and
If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle for decrypting y.
We say that Π is secure in the sense of IND-ATK if Advind−atk

A,Π is negligible for
any A.

Unfortunately, indistinguishability based security notions are not applicable
to PKE schemes with ciphertext comparability. Given the challenge ciphertext
y and plaintexts x0, x1, an adversary A can compute another ciphertext

Probabilistic Public Key Encryption with Equality Test 123

y′ = E(pk, x1), and then return Test(y, y′) as her guess of the value b in the
IND-ATK games. The advantage of the adversary A is

Advind−atk
A,Π =

1
2
Pr[Test(y, y′) = 1|b = 1] +

1
2
Pr[Test(y, y′) = 0|b = 0]− 1

2

=
1
2

+
1
2
Pr[Test(y, y′) = 0|b = 0]− 1

2

=
1
2
(1− Pr[Test(y, y′) = 1|b = 0])

≥ 1
2
(1− ε(k))

As ciphertext comparability and indistinguishability are irreconcilable, we go
back to the one-way definition of privacy for public key encryption schemes.

Definition 2 (OW-ATK). Let Π=(G, E ,D) be a public key encryption scheme
and let A = (A1,A2) be a polynomial-time adversary. For atk ∈ {cpa, cca1, cca2}
and k ∈ N let

Advow−atk
A,Π

def= Pr
[

(pk, sk)← G(1k), δ ← AO1
1 (pk), x← PtSp(k)

y ← E(pk, x), x′ ← AO2
2 (pk, δ, y) : x′ = x

]
where

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle to decrypt y. We
say that Π is secure in the sense of OW-ATK if Advow−atk

A,Π is negligible for any
A.

A Simpler Definition of OW-CCA2. The following theorem states that the
OW-CCA2 definition can be simplified.

Theorem 1. In the case of OW-CCA2, the definition with O1 = Dsk(·) (denoted
Def1) is equivalent to that with O1 = ε (denoted Def2).

Proof. 1. Def1 ⇒ Def2: trivial.
2. Def2 ⇒ Def1: we prove that if a PKE scheme Π is secure under definition

Def2, it is also secure under definition Def1. First of all, an obvious fact is that
if Π is secure under definition Def2 then |PtSp(k)| > p(k) for any polynomial p.

The proof is by contradiction. Suppose there exists a polynomial-time adver-
sary A that breaks Π in Def1 with a non-negligible advantage, we construct
another polynomial-time adversary B that breaks Π in Def2 also with a non-
negligible advantage.
B is given (pk, y), where (pk, sk) ← G(1k), x ← PtSp(k), y ← E(pk, x). B

simulates the experiment of Def1 as follows: B gives pk to A as the public key,
and simulates O1 = Dsk(·) by asking its own decryption oracle. If O1 is queried

124 G. Yang et al.

with y, B makes a random guess on x and aborts the game. Otherwise, B gives
y to A after A finishes to query O1, and continues to simulate O2 = Dsk(·) in
Def1 by using its own decryption oracle. Finally, B outputs whatever A outputs.

Denote E the event A queries O1 with y. If E does not occur, then the simula-
tion is perfect. Since |PtSp(k)| > p(k) for any polynomial p, for any ỹ A queried
to O1, the probability that Dsk(ỹ) = x is negligible as x is randomly selected
from PtSp(k). So the probability that E occurs is negligible. �
The above theorem shows that the simplification does not weaken the definition
of security. On the other hand, it helps simplify the security proofs.

3 PKE with Ciphertext Comparability in Bilinear
Groups

Our construction is based on the Computational Diffie-Hellman (CDH) assump-
tion in bilinear groups. Let G1,G2 denote two groups of prime order q, and
e : G1×G1 → G2 a bilinear map between them. The map satisfies the following
properties:

1. Bilinear: For any U, V ∈ G1, and a, b ∈ Zq, we have e(Ua, V b) = e(U, V)ab;
2. Non-degenerate: If g is a generator of G1, then e(g, g) is a generator of G2;
3. Computable: there exists an efficient algorithm to compute e(U, V) for any

U, V ∈ G1.

Computational Diffie-Hellman (CDH) Problem: Fix a generator g of G1.
The CDH problem is as follows: given g, ga, gb as input where a, b are randomly
selected from Zq, compute gab. We say that CDH is intractable if all polynomial
time algorithms have a negligible advantage in solving CDH.

We build a public key encryption scheme with ciphertext comparability in a
bilinear group where CDH is intractable. Our construction uses a hash function
H : G

3
1 → {0, 1}k+�, where k and
 are security parameters such that elements

of G1 are represented in k bits and elements of Zq are represented in
 bits. Our
PKE with ciphertext comparability works as follows:

– G(1k): Select x← Z∗
q and compute y = gx. Set pk = y and sk = x.

– E(pk,m): To encrypt a plaintext m ∈ G∗
1 (def= G1\{1}), select r ← Z∗

q ,
compute U = gr, V = mr, W = H(U, V, yr) ⊕ m‖r. The ciphertext is
C = (U, V,W).

– D(sk, C): To decrypt a ciphertext C = (U, V,W), compute m‖r ←
H(U, V, Ux) ⊕ W . If (m ∈ G∗

1 ∧ r ∈ Z∗
q ∧ U = gr ∧ V = mr), return m;

otherwise, return ⊥.
– Test(C1, C2): Given two ciphertexts C1 = (U1, V1,W1) and C2 =

(U2, V2,W2), if e(U1, V2) = e(U2, V1), return 1; otherwise, return 0.

Theorem 2. The above PKE scheme has perfect consistency and perfect
soundness.

Probabilistic Public Key Encryption with Equality Test 125

Proof. The proof is straightforward, as follows:
1. Perfect Consistency. It is easy to see that for any (pk, sk)← G(1k), (pk′, sk′) ←
G(1k) and C ← E(pk,m), C′ ← E(pk′,m) where C = (gr,mr, W), C′ =
(gr′

,mr′
,W ′), we have

e(gr,mr′
) = e(gr′

,mr) = e(g,m)rr′

for any m ∈ G∗
1 and (r, r′) ∈ Z∗

q
2.

2. Perfect Soundness. Given two ciphertexts C=(gr,mr,W), C′=(gr′
, m′r′

,W ′),
we have

e(gr,m′r′
) = e(g,m′)rr′

, e(gr′
,mr) = e(g,m)rr′

then it must be true that e(g,m′)rr′ �= e(g,m)rr′
for any m �= m′ and (r, r′) ∈

Z
∗
q
2. �

Theorem 3. The PKE scheme above with message space G∗
1 is OW-CCA2 se-

cure in the random oracle model assuming CDH is intractable.

Proof. Let A be a PPT adversary attacking the OW-CCA2 security of the above
PKE scheme. Suppose that A runs in time t and makes at most qH hash queries
and qD decryption queries. Let AdvOW-CCA2

A (t, qH , qD) denote the advantage of
A in the OW-CCA2 experiment. We first consider the original game:

Game G0

1. x← Z∗
q , y = gx

2. m← G∗
1, r← Z∗

q , U
∗ = gr, V ∗ = mr, W ∗ = H(U∗, V ∗, yr)⊕ (m‖r)

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : On input a triple (U, V, Y) ∈ G3

1, a compatible random value is
returned, where by ‘compatible’ we mean that if the same input is asked
multiple times, the same answer will be returned. Note that a query to
this oracle is also issued when computing the challenge ciphertext or
simulating the decryption oracle.

– O2: On input a ciphertext (U, V,W), it runs the decryption algorithm
D to decrypt it using the secret key x.

Let X0 be the event that m′ = m in Game G0. In the following, let Xi be the
event that m′ = m in Game Gi for i = 1, 2, · · · . A’s winning probability in
Game Gi is Pr[Xi]. Next we modify Game G0 and obtain the following game.

Game G1

1. x← Z∗
q , y = gx, T = ∅

2. m← G∗
1, r← Z∗

q , U∗ = gr, V ∗ = mr, R∗ ← {0, 1}k+�, W ∗ = R∗ ⊕ (m‖r),
T = T ∪ {(U∗, V ∗, (U∗)x, R∗)}

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : On input (U, V, Y) ∈ G3

1, if there is an entry (U, V, Y, h) in the
hash table T , h is returned; otherwise, a random value h is selected and
returned, and (U, V, Y, h) is added into T .

126 G. Yang et al.

– O2: On input a ciphertext (U, V,W), a hash query on (U, V, Ux) is issued.
Suppose the answer is h ∈ {0, 1}k+�. Then m‖r is computed as h⊕W ,
and the validity check on whether U = gr and V = mr is performed. If
the check fails, ⊥ is returned; otherwise, m is returned.

Due to the idealness of the random oracle, Game G1 is identical to Game G0.
Thus Pr[X1] = Pr[X0]. In the next game, we further modify the simulation in
an indistinguishable way.

Game G2

1. x← Z∗
q , y = gx, T = ∅

2. m← G∗
1, r← Z∗

q , U∗ = gr, V ∗ = mr, W ∗ ← {0, 1}k+�,
T = T ∪ {(U∗, V ∗, (U∗)x,W ∗ ⊕ (m‖r))}

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : It is simulated in the same way as that in Game G1 except that

if A asks (U∗, ·, (U∗)x), the game is aborted. Let this event be E.
– O2: The same as that in Game G1 except that if A asks for decryption

of (U∗, V ∗,W ′) where W ′ �= W ∗, ⊥ is returned.

The challenge ciphertext generated in this game is identically distributed to that
in Game G1, as W ∗ is a random value in both Game G1 and Game G2. Also,
the simulation of O2 is perfect since W ∗ is uniquely determined by U∗ and V ∗.
Therefore, if event E does not occur, Game G2 is identical to Game G1. Next,
we show that event E occurs with negligible probability.

Lemma 1. Event E happens in Game G2 with negligible probability if CDH is
intractable.

Proof. Suppose that Pr[E] is non-negligible. We construct a PPT algorithm B to
break the CDH assumption. Given a tuple (g, ga, gc) ∈ G

3
1, B randomly selects

α← Z∗
q and R∗ ← {0, 1}k+�, then sets the public key y = ga and U∗ = gc, and

computes m = gα. It then adds (U∗, V ∗ = (U∗)α,#,#) into table T which is
initially empty, where # represents that the value is unknown. B invokes adver-
sary A on input (y, U∗, V ∗, R∗), where the challenge ciphertext (U∗, V ∗, R∗) has
the same distribution as that in Game G2. The oracles for A are simulated as
follows.

– OH : B simulates the oracle as described in Game G1, except that if A
makes a query on (U∗, ·, Z), B checks if e(g, Z) = e(y, U∗). If the equation
holds, B outputs Z and aborts the game.

– O2: On input (U, V,W), if the input is U = U∗, V = V ∗ and W �= R∗, B
returns ⊥. Otherwise, B searches T for an entry of the form (U, V, ·, ·). For
each item (U, V, Y, h), B computes m‖r = h⊕W and proceeds as follows.
1. If U = gr, V = mr and Y = yr, m is returned;
2. Otherwise,B continues to searchT for the next entry of the form (U, V, ·, ·).

If nothing is returned to A in the above loop for all entries (U, V, ·, ·) in T ,
B returns ⊥.

Probabilistic Public Key Encryption with Equality Test 127

Denote E′ the event that A queries OH on input (U∗, ·, gac). At the end of the
simulation, if E′ does not occur, B aborts with failure.

(Analysis): We first show that the decryption queries are simulated indistin-
guishably from Game G2. We separate all the decryption queries into two types:

1. Type 1: (U, V, Ua) has been queried toOH before a decryption query (U, V,W)
is issued. In this case, W is uniquely determined after (U, V, Ua) is queried
to OH . So the decryption oracle is simulated perfectly.

2. Type 2: (U, V, Ua) has never been queried to OH when a decryption query
(U, V,W) is issued. In this case, ⊥ is returned by the decryption oracle.
The simulation fails if (U, V,W) is a valid ciphertext. However, due to the
idealness of the random oracle, this happens with probability 1/2k+�.

Denote E2 the event that a valid ciphertext is rejected in the simulation. Then
we have

Pr[E2] ≤ qD

2k+�
.

If E2 does not happen, then the simulation is identical to Game G2, so
Pr[E′|¬E2] = Pr[E]. Then we have

Pr[E′] = Pr[E′|E2]Pr[E2] + Pr[E′|¬E2]Pr[¬E2]
≥ Pr[E′|¬E2]Pr[¬E2]
= Pr[E](1− Pr[E2])
≥ Pr[E]− Pr[E2]

Therefore,
AdvCDH

B ≥ Pr[E]− qD

2k+�

which is non-negligible. This completes the proof of Lemma 1. �
Since Game G1 and Game G2 are the same if event E does not occur, we
have,

|Pr[X1]− Pr[X2]| ≤ Pr[E].

Lemma 2. Pr[X2] is negligible under the CDH assumption.

Proof. Suppose that Pr[X2] is non-negligible. We construct a PPT algorithm B
to break the CDH assumption. Given a tuple (g, Û = gr, V̂ = mr) ∈ G

3
1, where

r ← Zq and m← G∗
1, B’s goal is to compute m. B randomly selects x← Z∗

q and
sets the public key y = gx. It then adds (U∗ = Û , V ∗ = V̂ , (U∗)x,#) into table
T which is initially empty, where # represents that the value is unknown. B ran-
domly selects R∗ ← {0, 1}k+� and invokes adversary A on input (y, U∗, V ∗, R∗).
B simulates the game by following the description of Game G2. Finally B out-
puts whatever A outputs. So we have

Pr[X2] ≤ AdvCDH
B .

�

128 G. Yang et al.

Therefore, we have

AdvOW-CCA2
A (t, qH , qD) = Pr[X0]

= Pr[X1]

≤ Pr[X2] + AdvCDH +
qD

2k+�

≤ 2AdvCDH +
qD

2k+�
.

This completes the proof of Theorem 3. �

4 Variants and Applications

Encrypting Long Messages. In our PKE scheme above, we assume that mes-
sages are elements of group G∗

1. To encrypt long messages, we can use a collision
resistant hash function H ′ : {0, 1}∗ → G

∗
1 and a pseudo-random bit generator

PRG [16]. We modify the scheme as follows:

– G(1k): Unchanged.
– E(pk,m): To encrypt a plaintext M ∈ {0, 1}∗, compute m← H ′(M). Select

r ← Z∗
q , compute U ← gr, V ← mr,K ← H(U, V, pkr) and W ← PRG(K)⊕

M‖r. The ciphertext is C = (U, V,W).
– D(sk, C): To decrypt a ciphertext C = (U, V,W), compute K ←

H(U, V, Usk), M‖r ← PRG(K) ⊕W , and m ← H ′(M). If (r ∈ Z∗
q ∧ U =

gr ∧ V = mr), return M ; otherwise, return ⊥.
– Test(C1, C2): Unchanged

It follows that the above (hybrid) encryption scheme also has ciphertext com-
parability. The perfect consistency is still maintained, however, the soundness is
no longer perfect, but is bounded by the collision probability of H ′.

Theorem 4. The modified PKE scheme above is OW-CCA2 secure assuming
H,H ′ are random oracles, PRG is a secure pseudo-random bit generator, and
CDH is intractable.

The proof essentially follows that of Theorem 3, we can replace the pseudo-
random bit string with a truly random string when generating the challenge
ciphertext. Since the adversary does not know the random seed of the PRG (due
to the CDH assumption and H is a random oracle), the difference between the
games is negligible provided PRG is a secure pseudo-random bit generator.

Searchable Encryption. A PKE scheme with ciphertext comparability is nat-
urally searchable. To generate a tag TM for message M , one can simply encrypt
M under any valid public key to generate a ciphertext C, and set TM = C. Then
using the Test function, anyone is able to search encryptions of the message M ,
even if they are generated using different public keys.

Partitioning Encrypted Data. In applications such as outsourced databases,
by using a PKE scheme with ciphertext comparability, the database administra-
tor is able to do a partition of the database according to the encrypted messages

Probabilistic Public Key Encryption with Equality Test 129

without any help from the message owners. These schemes may also be useful
in other similar applications such as collection and categorization of confidential
data through an agent.

5 Weak IND-CCA2 vs Ciphertext Comparability

In Sec. 2, we have shown that ciphertext comparability and indistinguishability
are irreconcilable. In this section, we are interested in the following question: if
we don’t need ciphertext comparability, or when being implemented in a non-
bilinear group, what kind of security level can our PKE scheme in Sec. 3 achieve?
The first security model we’d like to try is of course IND-CCA. Unfortunately,
our scheme is even not IND-CPA secure, as shown below.

Theorem 5. The PKE scheme in Sec. 3 with message space G∗
1 is not IND-CPA

secure.

Proof. We construct a PPT adversary A as follows. Given public key y, A com-
putes m0 = gr0 and m1 = gr1 for any two distinct r0 and r1 chosen arbitrarily
from Z∗

q . A sends (m0,m1) to the game simulator. After receiving the challenge
ciphertext c∗ = (U, V,W), A checks if V = U r0 . If yes, A returns 0; otherwise A
returns 1. The probability that A guesses correctly the value of b is 1. �
The above attack demonstrates the advantage the adversary can get from se-
lecting the challenge plaintexts. In the next, we define a different set of indistin-
guishability games where the adversary has no such power.

Definition 3 (W-IND-ATK). Let Π = (G, E ,D) be a public key encryp-
tion scheme and let A = (A1,A2) be a polynomial-time adversary. For atk ∈
{cpa, cca1, cca2} and k ∈ N let

Advw−ind−atk
A,Π

def= Pr

⎡⎣ (pk, sk)← G(1k), δ ← AO1
1 (pk),

(x0, x1) ← PtSp(k), b← {0, 1}, y← E(pk, xb),
b′ ← AO2

2 (pk, x0, x1, δ, y) : b′ = b

⎤⎦− 1
2

where x0 �= x1 ∧ |x0| = |x1| and
If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle for decrypting
y. We say that Π is secure in the sense of W-IND-ATK if Advw−ind−atk

A,Π is
negligible for any A.

W-IND-CCA2 Security of Our PKE. Interestingly, we can show that when
being implemented in a non-bilinear group, our PKE scheme given in Sec. 3 can
achieve W-IND-CCA2 security under the DDH assumption which is described
below.

130 G. Yang et al.

Decisional Diffie-Hellman (DDH) Problem. Fix a generator g of G1. The
DDH assumption claims that {g, ga, gb, Z} and {g, ga, gb, gab} are computation-
ally indistinguishable where a, b are randomly selected from Zq and Z is a random
element of G1.

Theorem 6. The PKE scheme in Sec. 3 with message space G∗
1 is W-IND-CCA2

secure in the random oracle model under the DDH assumption.

The proof is by contradiction. Suppose there exists an adversary who can break
the encryption scheme, we plant the DDH problem (g,m,U = gr, V = Z) into
the challenge ciphertext to the adversary, and simulate the decryption oracle in
a similar way as in the proof of Theorem 3. Then depending on Z = mr (i.e. Z
is in the “right” form) or Z ← G1 (Z is independent of m), the adversary would
have different probability in winning the game, so we can use the adversary to
solve the DDH problem. The detailed proof is deferred to the full version of the
paper.

Acknowledgement. We would like to thank the anonymous reviewers for their
comments and suggestions.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T.,
Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited:
Consistency properties, relation to anonymous IBE, and extensions. J. Cryptol-
ogy 21(3), 350–391 (2008)

2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

5. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryp-
tion: Definitional equivalences and constructions without random oracles. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer,
Heidelberg (2008)

6. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

7. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

8. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

Probabilistic Public Key Encryption with Equality Test 131

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptology 20(3), 265–294 (2007)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Dent, A.W.: A brief history of provably-secure public-key encryption. In:
Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 357–370. Springer,
Heidelberg (2008)

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1978)

15. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

16. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

18. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational diffie-hellman assumption. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

19. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

20. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

21. Hofheinz, D., Weinreb, E.: Searchable encryption with decryption in the standard
model. Cryptology ePrint Archive, Report 2008/423 (2008),
http://eprint.iacr.org/

22. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

23. Lucks, S.: A variant of the cramer-shoup cryptosystem for groups of unknown
order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 27–45. Springer,
Heidelberg (2002)

24. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

http://eprint.iacr.org/

Efficient CCA-Secure PKE from Identity-Based
Techniques

Junzuo Lai1, Robert H. Deng2, Shengli Liu1, and Weidong Kou3

1 Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200030, China

{laijunzuo,slliu}@sjtu.edu.cn
2 School of Information Systems,

Singapore Management University, Singapore 178902
robertdeng@smu.edu.sg

3 School of Computer Science and Technology
Xi Dian University, Xi’an 710071, China

kou_weidong@yahoo.com.cn

Abstract. Boneh, Canetti, Halevi, and Katz showed a general method
for constructing CCA-secure public key encryption (PKE) from any
selective-ID CPA-secure identity-based encryption (IBE) schemes. Their
approach treated IBE as a black box. Subsequently, Boyen, Mei, and Wa-
ters demonstrated how to build a direct CCA-secure PKE scheme from
the Waters IBE scheme, which is adaptive-ID CPA secure. They made di-
rect use of the underlying IBE structure, and required no cryptographic
primitive other than the IBE scheme itself. However, their scheme re-
quires long public key and the security reduction is loose. In this paper,
we propose an efficient PKE scheme employing identity-based techniques.
Our scheme requires short public key and is proven CCA-secure in the
standard model (without random oracles) with a tight security reduc-
tion, under the Decisional Bilinear Diffie-Hellman (DBDH) assumption.
In addition, we show how to use our scheme to construct an efficient
threshold public key encryption scheme and a public key encryption with
non-interactive opening (PKENO) scheme.

Keywords: Chosen Ciphertext Security, Public Key Encryption,
Identity-Based Encryption.

1 Introduction

Chosen-ciphertext security (CCA-security, for short) [31,16] is now considered as
a standard notion of security for public key encryption (PKE) in practice. There
have been several efficient PKE schemes shown to be secure in the random
oracle (RO) model [3]. Unfortunately, the RO model is heuristic, and a proof of
security in the RO model does not directly imply anything about the security
of a PKE scheme in the real world. In fact, it has been demonstrated that there
exist cryptographic schemes which are secure in the RO model but which are
inherently insecure when the random oracle is instantiated with any real hash

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 132–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 133

function [8,29,19,2]. Throughout this paper, we focus on PKE schemes whose
security are proven in the standard model (without random oracles).

Dolev, Dwork, and Naor [16] were the first to come up with a CCA-secure PKE
scheme in the standard model. Later Cramer and Shoup [11] proposed the first
practical CCA-secure PKE scheme in the standard model, under the Decisional
Diffie-Hellman (DDH) assumption. Interestingly, Elkind and Sahai [17] showed
that both techniques can be viewed as special cases of a single paradigm.

Canetti, Halevi, and Katz [9] presented a new paradigm for constructing CCA-
secure PKE schemes using IBE as a building block. The idea is to use, for each
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” for IBE encryption. In order to tie the IBE ciphertext to this
verification key, the ciphertext is signed using the corresponding signing key. If
the IBE scheme is selective-ID CPA secure then the resulting PKE scheme is
CCA secure. Boneh and Katz [6] further improved the efficiency of the scheme by
using a MAC instead of a one-time signature. Kiltz [25] showed that a tag-based
encryption (TBE) scheme is sufficient for the transformation in [9] to obtain a
CCA-secure PKE scheme.

Boyen, Mei, and Waters [7] showed how to build a direct CCA-secure PKE
scheme from the Waters IBE scheme [33]. Unlike the Canetti-Halevi-Katz (CHK)
scheme [9] and the Boneh-Katz (BK) scheme [6] that use IBE as a black box,
their approach is endogenous, very simple, and compact. They constructed a
CCA-secure PKE scheme, referred to as the BMW scheme, in which a cipher-
text consists of just three group elements without attached signature or MAC.
Compared with the CHK scheme and the BK scheme, the main difference is to
use the first two elements of the ciphertext to determine a one-time “identity”,
instead of a fresh random “identity” generated by a one-time signature as in
the CHK scheme or encapsulation as in the BK scheme. When proving secu-
rity of the scheme, they took advantage of the CPA security of the Waters IBE
scheme in the adaptive-ID security model (as opposed to the weaker selective-ID
model). The drawback of the BMW scheme, however, is that the user needs long
public key and the security is reduced only loosely to the Decisional Bilinear
Diffie-Hellman (DBDH) assumption. Note that, an inefficient security reduction
would imply either a lower security level or the requirement of larger key and
ciphertext sizes to obtain the same security level.

1.1 Hybrid Encryption

Cramer and Shoup [12,32] formalized the notion of hybrid encryption, where a
public key cryptosystem is used to encapsulate the (session) key of a symmetric
cipher which is subsequently used to conceal the data. This is also known as
the KEM/DEM approach. A folklore composition theorem (formalized in [12])
shows that if both KEM and DEM are CCA-secure then the hybrid encryp-
tion is CCA-secure. Kurosawa and Desmedt [27] came up with a hybrid en-
cryption scheme improving the performance of the Cramer-Shoup scheme both
in computational efficiency and in ciphertext length. Abe, Gennaro, Kurosawa
and Desmedt [1] established the Tag-KEM/DEM framework, and explained the

134 J. Lai et al.

security of Kurosawa-Desmedt scheme in this framework. Hofheinz and Kiltz
[21] presented another paradigm for constructing hybrid encryption with strictly
weakened KEM. The DDH assumption still is required for these extensions ex-
cept for one of Hofheinz and Kiltz’s schemes which depends on the n-linear DDH
assumption.

Kiltz [26] presented a practical CCA-secure KEM scheme whose security is
proven under the gap hashed Diffie-Hellman (GHDH) assumption. Cash, Kiltz
and Shoup [10] proposed CCA-secure hybrid encryption schemes under the com-
putational Diffie-Hellman (CDH) or hased Diffie-Hellman (HDH) assumption by
using the twin DH problem (which is also applicable to a wide range of crypto-
graphic primitives). Note that the CDH and HDH assumptions are weaker than
the DDH assumption. Based on Naor-Pinkas broadcast encryption (BE) scheme
[28], Hanaoka and Kurosawa [20] proposed more efficient CCA-secure hybrid en-
cryption schemes under the CDH or HDH assumption. Recently, Hofheinz and
Kiltz [22] proposed a practical CCA-secure hybrid encryption scheme whose se-
curity can be reduced to the assumption that factoring is intractable. However,
all these hybrid encryption schemes are not suited for constructing threshold
public key encryption and public key encryption with non-interactive opening
schemes.

1.2 Our Contribution

In this paper, we propose a more efficient PKE scheme employing identity-based
techniques. The proposed scheme has small public key size and is proven CCA-
secure in the standard model with a tight security reduction, under the DBDH
assumption. We follow a similar method in the proof simulation as that in the
CHK, BK and BMW schemes. After the step phase there is a certain set of well-
formed ciphertexts that the simulator can decrypt corresponding to “identities”
that the simulator knows the private keys. The remainder of the well-formed
ciphertexts, that the simulator cannot decrypt corresponding to “identities” for
which the simulator does not know the private keys, can be used as challenge
ciphertexts in the simulation.

Our scheme has the desirable property that it allows the validity of cipher-
texts to be checked publicly. Using this property, we extend our scheme to an
efficient threshold public key encryption scheme and an efficient PKE with non-
interactive opening (PKENO) scheme. An overview comparing the efficiency of
our PKE scheme to those of other PKE schemes employing identity-based tech-
niques is given in Table 1.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present some
definitions and a related complexity assumption. We describe and analysis our
PKE scheme in Section 3. In Section 4, we introduce two extensions of practical
interest to our PKE scheme. Finally, we state our conclusion in Section 5.

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 135

Table 1. Comparison of public key encryption schemes employing identity-based tech-
niques. “exp” denotes an exponentiation operation. (Some of the exponentiations are
actually multi-exponentiations.) “pr” denotes a pairing operation. The CHK [9] and
BK [6] schemes are instantiated with the first Boneh-Boyen IBE scheme from [4]. (Kiltz
[24] showed that the CHK transformation maps the first and second Boneh-Boyen IBE
schemes from [4] to nearly one single encryption scheme.)

Scheme PK size Encryption Decryption Ciphertext size TPKE PKENO
CHK[9] 3|G|+1|GT | 3 exp + Sig 1 exp + 1 pr + Ver 2|G|+1|GT |+vk+sig

√ √
BK[6] 3|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT |+com+tag × ×

BMW[7] 162|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT | √ √
Ours 4|G|+1|GT | 3 exp 1 exp + 1 pr 2|G|+1|GT |+1|Zp| √ √

2 Preliminaries

For a group G, we denote the size of a group-element representation as |G|. We
say that a function f(λ) is negligible if for every c > 0 there exists an λc such
that f(λ) < 1/λc for all λ > λc.

2.1 Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p and GT be a cyclic
multiplicative group of the same order p. A bilinear pairing is a map e : G×G →
GT with the following properties:

– Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗
p, we have e(ga

1 , g
b
2) = e(g1, g2)ab;

– Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) �= 1;
– Computability: There exists an efficient algorithm to compute e(g1, g2) for
∀g1, g2 ∈ G.

2.2 Complexity Assumption

Definition 1 (DBDH Problem). Given a group G of prime order p with gen-
erator g and elements ga, gb, gc ∈ G, e(g, g)z ∈ GT where a, b, c, z are selected
uniformly at random from Z∗

p. A fair binary coin β ∈ {0, 1} is flipped. If β = 1,
it outputs the tuple (g, ga, gb, gc, T = e(g, g)abc). If β = 0, it outputs the tu-
ple (g, ga, gb, gc, T = e(g, g)z). The Decisional Bilinear Diffie-Hellman (DBDH)
problem is to guess the value of β.

An adversary A has at least an ε advantage in solving the DBDH problem if

|Pr[A(ga, gb, gc, T = e(g, g)abc) = 1]− Pr[A(ga, gb, gc, T = e(g, g)z) = 1]| ≥ ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by A. We refer to the distribution on the left as PBDH and the one
on the right as RBDH .

136 J. Lai et al.

Definition 2 (DBDH assumption). We say that the (ε, t)-DBDH assumption
holds in a group G if no algorithm running in time at most t can solve the DBDH
problem in G with advantage at least ε.

2.3 Collision-Resistant Hashing

Formally, we say that a function H : X → Y is a target-collision resistant (CR)
hash function, if for all PPT A, AdvCR

A (λ) is negligible in λ, where AdvCR
A (λ) =

Pr[x, x′ ← A(H) : x′ �= x ∧H(x′) = H(x)].

2.4 Public Key Encryption

A public key encryption scheme is a tuple of algorithms described as follows:

KeyGen(λ). Takes as input a security parameter λ. It outputs a public/private
key pair (PK, SK).

Encrypt(PK,m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

Decrypt(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a plaintext message or the special symbol ⊥ meaning that the ciphertext is
invalid.

We insist that all public key encryption schemes satisfy the obvious correctness
condition (that decryption “undoes” encryption).

The strongest and commonly accepted notion of security for a public key
encryption scheme is that of indistinguishability against an adaptive chosen ci-
phertext attack (IND-CCA). It is defined using the following game between an
attack algorithm A and a challenger.

Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the public key PK to the adversary.

Query phase 1. The adversary A adaptively issues decryption queries C. The
challenger responds with Decrypt(SK, C).

Challenge. The adversary A submits two (equal length) messages m0,m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK,mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption queries
C, as in Query phase 1, but with the natural constraint that the adversary
does not request the decryption of C∗.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for β and wins the game
if β = β′.

We define A’s advantage in attacking the public key encryption scheme PKE
with the security parameter λ as AdvPKE

A (λ) = |Pr[β = β′]− 1
2 |.

Definition 3. We say that a public key encryption scheme PKE is (t, q, ε)-IND-
CCA secure, if for all t-time algorithms A making at most q decryption queries
have advantage at most ε in winning the above game.

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 137

2.5 Public Key Encryption with Non-interactive Opening

A public key encryption with non-interactive opening (PKENO) scheme is a
tuple of algorithms described as follows:

KeyGen(λ). Takes as input a security parameter λ. It outputs a public/private
key pair (PK, SK).

Encrypt(PK,m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

Decrypt(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a plaintext message or the special symbol ⊥ meaning that the ciphertext is
invalid.

Prove(SK, C). Takes as input a private key SK and a ciphertext C. It outputs
a proof π or the special symbol ⊥ meaning that the ciphertext is invalid.

Ver(PK, C,m, π). Takes as input a public key PK, a ciphertext C, a message m
and a proof π. It outputs a result res ∈ {0, 1}meaning accepted and rejected
proof, respectively. In particular 1 ← Ver(PK, C,⊥, π) must be interpreted
as the verifier being convinced that C is an invalid ciphertext.

We insist that all PKENO schemes satisfy the obvious correctness condition (that
decryption “undoes” encryption). In addition, we require, for a honestly gener-
ated key pair (PK, SK) and all ciphertexts C, 1 ← Ver(PK, C,Decrypt(SK, C),
Prove(SK, C)).

The notion of security for a PKENO scheme is indistinguishability against
chosen-ciphertext and prove attacks (IND-CCPA) and satisfies computational
proof soundness. IND-CCPA is defined using the following game between an at-
tack algorithm A and a challenger.

Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the public key PK to the adversary.

Query phase 1. The adversaryA adaptively issues decryption or proof queries
on C. The challenger responds with Decrypt(SK, C) or Prove(SK, C).

Challenge. The adversary A submits two (equal length) messages m0,m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK,mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption or
proof queries C, as in Query phase 1, but with the natural constraint that
decryption or proof queries on C∗ are not allowed.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for b and wins the game
if β = β′.

We define A’s advantage as AdvIND-CCPA
PKENO,A(λ) = |Pr[β = β′]− 1

2 |.
Definition 4. We say that a PKENO scheme is IND-CCPA secure, if for every
adversary A, the advantage AdvIND-CCPA

PKENO,A(·) is negligible.

Computational proof soundness is defined using the following game between an
attack algorithm A and a challenger.

138 J. Lai et al.

Setup. The challenger runs KeyGen(λ) to obtain a public/private key pair (PK,
SK). It gives the key pair (PK, SK) to the adversary.

Challenge. The adversary A submits a message m. The challenger sends C =
Encrypt(PK,m) to the adversary.

Output. The adversary A outputs (m′, π′).

We define A’s advantage in forging proof by Advsnd
PKENO,A(λ) = Pr[1 ← Ver(PK, C,

m′, π′) ∧m′ �= m].

Definition 5. We say that a PKENO scheme satisfies computational proof sound-
ness, if for every adversary A, the advantage Advsnd

PKENO,A(·) is negligible.

Definition 6. We say that a PKENO scheme is secure, if it is IND-CCPA secure
and satisfies computational proof soundness.

2.6 Threshold Public Key Encryption

A threshold public key encryption (TPKE) scheme is a tuple of algorithms de-
scribed as follows:

Setup(n, k, λ). Takes as input the number of decryption servers n, a threshold
k where 1 ≤ k ≤ n and a security parameter λ. It outputs a public key PK,
a verification key VK and private key SK = (SK1, . . . , SKn) which is a vector
of n private key shares. The verification key VK is used to check validity of
responses from decryption servers.

Encrypt(PK,m). Takes as input a public key PK and a message m. It outputs
a ciphertext.

ShareDecrypt(SKi, C). Takes as input a private key share SKi and a ciphertext
C. It outputs a decryption share μi = (i, dC,i) or the special symbol (i,⊥).

ShareVerify(VK, C, μi). Takes as input the verification key VK, a ciphertext C
and a decryption share μi. It outputs valid meaning that μi is a valid
decryption share of C or invalid.

Combine(PK,VK, C, {μ1, . . . , μk}). Takes as input the public key PK, the verifi-
cation key VK, a ciphertext C and k decryption shares μ1, . . . , μk. It outputs
a plaintext message or the special symbol ⊥.

We require, for all ciphertext C, ShareVerify(VK, C, ShareDecrypt(SKi, C)) =
valid. In addition, let μ1, . . . , μk are k distinct valid decryption shares of C,
where C = Encrypt(PK,m), then we require Combine(PK,VK, C, {μ1, . . . , μk}) =
m.

Security against chosen ciphertext attack is defined using the following game
between an attack algorithm A and a challenger.

Init. The adversary outputs a set S ⊂ {1, . . . , n} of k− 1 decryption servers to
corrupt.

Setup. The challenger runs Setup(n, k, λ) to obtain a triple (PK, VK, SK). It
gives PK, VK, and all (j, SKj) for j ∈ S to the adversary.

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 139

Query phase 1. The adversary A adaptively issues decryption queries (C, i).
The challenger responds with ShareDecrypt(SKi, C).

Challenge. The adversary A submits two (equal length) messages m0,m1. The
challenger selects a random bit β ∈ {0, 1}, sets C∗ = Encrypt(PK,mβ) and
sends C∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption queries
(C, i), as in Query phase 1, but with the natural constraint that the adver-
sary may not request the decryption of C∗.

Guess. The adversary A outputs its guess β′ ∈ {0, 1} for b and wins the game
if β = β′.

We define A’s advantage as AdvTPKE
A (λ) = |Pr[β = β′]− 1

2 |.
Definition 7. We say that a threshold public key encryption scheme TPKE is
secure, if for every adversary, the advantage AdvTPKE

A (·) is negligible.

3 The Proposed PKE Scheme

Our scheme is motivated by the recent signature scheme by Hohenberger and
Waters [23]. Recall that in the CHK, BK and BMW schemes, for each encryp-
tion, the encryptor first generates a one-time “identity”, and then encrypts the
message with respect to the “identity”. In the CHK and BK schemes, the one-
time “identity” is generated randomly by the encryptor; in the BMW scheme,
the first two elements of a ciphertext are hashed to form the one-time “identity”.
In our proposed PKE scheme, we make use of two “identities”. One “identity”
is generated randomly as in the CHK and BK schemes, while the other “iden-
tity” is generated based on the approach in the BMW scheme. The benefit of
doing this is twofold. Compared with the CHK and BK schemes, our ciphertexts
are short without attached signature or MAC; and compared with the BMW
scheme, our scheme has small public key size and is proven secure with a tight
security reduction.

Our scheme consists of the following algorithms:

KeyGen(λ). Given the security parameter λ, a bilinear map group system 〈p,G,
GT , e〉 is constructed. Pick a generator g of G, select random α, x, y, z ∈ Zp

and set g1 = gα, u = gx, v = gy, d = gz. Next, choose random element
g2 ∈ G. Finally, choose a collision-resistant hash function H : GT ×G → Zp.
The published public key is

PK = (p,G,GT , e, g,H, Z = e(g1, g2), u, v, d),

and the private key is SK = (gα
2 , x, y, z).

Encrypt(PK,m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute
C0 = m · Zs, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G

2 × Zp.

140 J. Lai et al.

Decrypt(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else output

C0/e(C1, g
α
2).

Theorem 1. The above public key encryption scheme is (t, q, ε) IND-CCA se-
cure, assuming the (t′, ε′)-DBDH assumption holds in G (the multiplicative group
of prime order p), where

t′ = t + O(q), ε′ ≥ ε− AdvCR
A − q/p.

Proof. Suppose there exists a (t, q, ε)-IND-CCA adversary A against our public
key encryption scheme. We are going to construct another PPT B that makes
use of A to solve the DBDH problem with probability at least ε′ and in the time
at most t′.
B is given as input a random 5-tuple (g, ga, gb, gc, T) that is either sampled

from PBDH (where T = e(g, g)abc) or from RBDH (where T is uniform and
independent in GT). Algorithm B’s goal is to output 1 if T = e(g, g)abc and 0
otherwise. Algorithm B runs A executing the following steps.

Setup. B chooses random xv, xd, yu, yv, yd ∈ Zp and sets g1 = ga, g2 = gb, u =
gbgyu , v = gbxvgyv , d = gbxdgyd . Then, choose a target-collision resistant
hash function H : GT ×G → Zp. The public key

PK = (p,G,GT , e, g,H, Z = e(g1, g2), u, v, d)

is passed to A. The private key is SK = (gα
2 = ga

2 = gab, x = b + yu, y =
bxv + yv, z = bxd + yd) which is unknown to B.

Query phase 1. When A issues decryption query on a ciphertext C = (C0, C1,
C2, r), B first computes t = H(C0, C1) and checks whether

e(C1, u
tvrd) = e(g, C2).

If not, output ⊥. Check whether t + rxv + xd = 0. If so, B aborts and
randomly outputs a bit, else chooses random γ ∈ Zp and computes

d1
C = g

−(tyu+ryv+yd)/(t+rxv+xd)
1 (utvrd)γ ,

d2
C = g

−1/(t+rxv+xd)
1 gγ .

Let γ̃ = γ − a
(t+rxv+xd) . Then we have

d1
C = ga

2 (utvrd)γ̃ , d2
C = gγ̃ .

Finally, B outputs
C0 · e(C2, d

2
C)/e(C1, d

1
C).

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 141

Challenge. The adversary A outputs two equal-length plaintexts (m0,m1). B
flips a fair coin, β ∈ {0, 1} and constructs the ciphertext as follows:
1. It computes

C∗
0 = mβ · T, C∗

1 = gc, t∗ = H(C∗
0 , C

∗
1).

2. Then, it sets r∗ = −(t∗ + xd)/xv and computes C∗
2 = (gc)(t

∗yu+r∗yv+yd).
3. Finally, return the ciphertext C∗ = (C∗

0 , C
∗
1 , C

∗
2 , r

∗).
Since C∗ = (mβ · T, gc, (ut∗vr∗

d)c, r∗), the challenge ciphertext is a valid
encryption of mβ with the correct distribution whenever T = e(g, g)abc =
e(g1, g2)c (as is the case when the input 5-tuple is sampled from PBDH). On
the other hand, when T is uniform and independent in GT (which occurs
when the input 5-tuple is sampled from RBDH) the challenge ciphertext C∗

is independent of β in the adversary’s view.
Query phase 2. A continues to adaptively issue decryption query C = (C0, C1,

C2, r), B performs the following steps:
1. Check if C = C∗. If so, output ⊥.
2. Check if C = (C0, C

∗
1 , C

∗
2 , r

∗) and H(C0, C1) = t∗. If so, B aborts and
randomly outputs a bit.
Note that, if A were able to produce such a ciphertext, this would repre-
sent a collision in the hash function H , and so the probability that this
event occurs is negligible.

3. Check if t + rxv + xd = 0 where t = H(C0, C1). If so, B aborts and
randomly outputs a bit, else B responds as in Query phase 1.

Observe that the values xv and xd are initially hidden by blinding
factors yv and yd, respectively.
When the adversary A issues decryption query C = (C0, C1, C2, r):
– if e(C1, u

tvrd) �= e(g, C2), B outputs ⊥ and do not leak any infor-
mation about either xv or xd.

– else e(C1, u
tvrd) = e(g, C2), B computes (d1

C = ga
2 (utvrd)γ̃ , d2

C = gγ̃)
and outputs

C0 · e(C2, d
2
C)

e(C1, d1
C)

= C0 · e(C2, g
γ̃)

e(C1, ga
2(utvrd)γ̃)

= C0 · e(C2, g)γ̃

e(C1, ga
2) · e(C1, utvrd)γ̃

=
C0

e(C1, ga
2)

.

So, the adversary could not obtain any information about either xv

or xd from the decryption queries.
For the challenge ciphertext, the adversary could obtain the informa-

tion that t∗+r∗xv +xd = 0. However, there are exactly p possible (xv, xd)
pairs that satisfy this equation and each of them are equally likely.
Thus, information-theoretically, the probability that t + rxv + xd = 0 is
at most 1/p.

Guess. The adversary A outputs a bit β
′
. B concludes its own game by out-

putting a guess as follows. If β
′
= β then B outputs 1 meaning T = e(g, g)abc.

Otherwise, it outputs 0 meaning T �= e(g, g)abc.

142 J. Lai et al.

The probability that B does not abort during the simulation is at most AdvCR
A +

q/p. When the input 5-tuple is sampled from PBDH (where T = e(g, g)abc) and
B does not abort then A’s view is identical to its view in a real attack game.
On the other hand, when the input 5-tuple is sampled from RBDH (where T is
uniform in GT) and B does not abort then the advantage that A wins the attack
game is 1/2. The running time of A is dominated by the paring computation in
response to A’s decryption queries.

This concludes the proof of Theorem 1.

4 Practical Extensions

In this section, we describe two interesting extensions to our PKE scheme. In
the following, we only present the extended schemes. Their security proofs can
be performed in a similar manner as in Section 3 and are therefore omitted.

4.1 Public Key Encryption with Non-interactive Opening

Public key encryption with non-interactive opening (PKENO) was recently in-
troduced in [13,14] as a means to enable publicly-verifiable decryption. In a
PKENO scheme, the receiver of a ciphertext C can, convincingly and without
interaction, reveal what the result was of decryption C, without compromising
the confidentiality of non-opened ciphertexts. The construction of PKENO can
be obtained by using public key encryption with witness-recovering decryption
(PKEWR) [30]. Here the receiver can efficiently reconstruct the “randomness”
that was used for encryption. This randomness then serves as the proof. Verifica-
tion performs re-encrypting using the randomness and the message. The proof is
valid if the result equals the ciphertext. The existing constructions of PKEWR
[30] in the standard model, however, are relatively inefficient since the ciphertext
size is linear in the message length.

Damg̊ard, Hofheinz, Kiltz and Thorbek [14] proposed two efficient construc-
tions of PKENO schemes. The first proposal is a generic construction and
resembles the CHK transformation [9]. The idea is to use, for each PKENO
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” for IBE encryption. The private key corresponding to the “iden-
tity” serves as the proof. Verification performs decryption using the private key.
The second proposal is a concrete scheme based on the CCA-secure key encapsu-
lation mechanism by Boyen, Mei and Waters [7]. Recently, Galindo [18] showed
the second scheme in [14] is insecure and proposed a fix based on direct CCA-
secure PKE from identity-based techniques by Boyen, Mei and Waters [7]. Their
scheme needs long public keys. Based on our PKE scheme, we propose a more
efficient PKENO scheme as detailed in the following.

KeyGen(λ). Given the security parameter λ, a bilinear map group system 〈p,G,
GT , e〉 is constructed. Pick a generator g of G, select random α, x, y, z ∈ Zp

and set g1 = gα, u = gx, v = gy, d = gz. Next, choose random element

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 143

g2 ∈ G. Finally, choose a collision-resistant hash function H : GT ×G → Zp.
The published public key is

PK = (p,G,GT , e, g,H, Z = e(g1, g2), u, v, d),

and the private key is SK = (gα
2 , x, y, z).

Encrypt(PK,m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute

C0 = m · Zs = m · e(g1, g2)s, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G2 × Zp.

Decrypt(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else output

C0/e(C1, g
α
2).

Prove(SK, C). Given SK = (gα
2 , x, y, z) and a ciphertext C = (C0, C1, C2, r),

compute t = H(C0, C1). Then check whether

(C1)tx+ry+z = C2.

If not, output ⊥, else randomly choose γ ∈ Zp and output π = (d1
C , d2

C) ∈ G2,
where

d1
C = gα

2 (utvrd)γ , d2
C = gγ .

Ver(PK, C,m, π). Given PK, a ciphertext C = (C0, C1, C2, r), a message m and
a proof π = (d1

C , d2
C), compute t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2), e(g, d1

C) = Z · e(utvrd, d2
C) and

m = C0 · e(C2, d
2
C)/e(C1, d

1
C).

If not, output 0, else output 1.

4.2 Threshold Public Key Encryption

In a threshold public key encryption (TPKE) scheme [15], the private key corre-
sponding to a public key is shared among a set of n decryption servers. In such a
scheme, a message is encrypted and sent to a group of decryption servers, in such
a way that the cooperation of at least k of them (where k is the threshold) is
necessary in order to recover the original message. In a non-interactive threshold
scheme, no communication is needed amongst the decryption servers perform-
ing the partial decryptions. Such schemes have many applications in situations
where one cannot fully trust a unique person, but possibly a pool of individuals.

144 J. Lai et al.

Recall that the Cramer-Shoup scheme [11] provides efficient CCA-secure en-
cryption without random oracles. The scheme requires that the private key be
used to check ciphertext validity during decryption. In a threshold environment
none of the decryption servers possess the private key needed to perform this va-
lidity check. Consequently, constructing a threshold version of the Cramer-Shoup
scheme is non-trivial.

Boneh, Boyen and Halevi [5] showed that CCA-secure threshold public key en-
cryption schemes (without random oracles) are easier to derive from selective-ID
CPA secure identity based encryption than from the Cramer-Shoup paradigm.
The main reason is that in the IBE-to-CCA transformation [9], the validity check
performed during decryption requires only the public key. Consequently, each de-
cryption server can check ciphertext validity on its own and only release a partial
decryption of valid ciphertexts. Note that the more efficient transformation of
Boneh and Katz [6] does not have this property and is thus less suitable for
threshold decryption.

Boyen, Mei and Waters [7] gave a very simple and efficient CCA-secure thresh-
old key encapsulation mechanism (KEM) based on the Boneh-Boyen IBE frame-
work. However, designing a full threshold PKE from a threshold KEM is not an
easy task. Let us have a glimpse on it. A standard (hybrid) PKE scheme can
be obtained by using the KEM to securely transport a random session key that
is fed into a symmetric encryption scheme to encrypt the plaintext message.
If both the KEM and the symmetric encryption scheme are chosen-ciphertext
secure, then the resulting hybrid PKE is also chosen-ciphertext secure. A sym-
metric encryption scheme secure against chosen-ciphertext attacks can be built
from relatively weak primitives, i.e. from any (one-time) symmetric encryption
scheme by essentially adding a MAC. Unfortunately, sharing a MAC is not trivial
in general, and will often lead to costly computations.

In our PKE scheme, the decryptor needs to verify the ciphertext before at-
tempting to decrypt it. This check is efficiently performed using a single expo-
nentiation in G, but requires knowledge of the private key (the exponents x, y, z).
In fact, the validity check could have been performed publicly, using additional
application of the bilinear map, by checking whether e(C1, u

tvrd) = e(g, C2).
Since under such a modification the ciphertext validity check no longer requires
the private key, our PKE scheme is suitable for non-interactive threshold de-
cryption. The following is the detailed construction of the threshold version of
our PKE scheme. It bears some resemblance to the threshold schemes in [5] due
to its roots in identity-based techniques.

Setup(n, k, λ). Given the security parameter λ, a bilinear map group system
〈p,G,GT , e〉 is constructed. Select random generators g, g2, u, v, d of G and a
random degree k− 1 polynomial f ∈ Zp[X]. Set α = f(0) ∈ Zp and g1 = gα.
Choose a collision-resistant hash function H : GT ×G → Zp. The published
public key is

PK = (p,G,GT , e, g,H, Z = e(g1, g2), g2, u, v, d).

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 145

For i = 1, . . . , n the secret key SKi of server i is defined as SKi = g
f(i)
2 . The

public verification key VK is the n-tuple (gf(1), . . . , gf(n)).
Encrypt(PK,m). Given PK and a message m ∈ GT , randomly choose s, r ∈ Zp

and compute

C0 = m · Zs = m · e(g1, g2)s, C1 = gs, C2 = (utvrd)s,

where t = H(C0, C1). Finally, output the ciphertext C = (C0, C1, C2, r) ∈
GT ×G2 × Zp.

ShareDecrypt(SKi, C). Given SKi and a ciphertext C = (C0, C1, C2, r), decryp-
tion server i computes t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2).

If not, output μi = (i,⊥), else randomly choose γ ∈ Zp and output the
decryption share μi = (i, (d1

C,i, d
2
C,i)), where

d1
C,i = SKi · (utvrd)γ , d2

C,i = gγ .

ShareVerify(VK, C, μi). Given VK = (h1, . . . , hn) where hi = gf(i), a cipher-
text C = (C0, C1, C2, r) and a decryption share μi = (i, (d1

C,i, d
2
C,i)) of the

ciphertext C, compute t = H(C0, C1). Then check whether

e(C1, u
tvrd) = e(g, C2) and e(g, d1

C,i) = e(hi, g2) · e(utvrd, d2
C,i).

If not, output invalid, else output valid.
Combine(PK,VK, C, {μ1, . . . , μk}). Given PK, VK, a ciphertext C = (C0, C1,

C2, r) and the partial decryptions μ1, . . . , μk, first check that all decryption
shares μi = (i, (d1

C,i, d
2
C,i)) bear distinct server indices i, and that they are

all valid, i.e., that all ShareVerify(VK, C, μi) = valid; otherwise output ⊥.
Without loss of generality, assume that the shares μ1, . . . , μk were generated
by the decryption servers i = 1, . . . , k, respectively. Then compute the La-
grange coefficients λ1, . . . , λk ∈ Zp so that α = f(0) =

∑k
i=1 λif(i), and

set

d1
C =

k∏
i=1

(d1
C,i)

λi , d2
C =

k∏
i=1

(d2
C,i)

λi .

Finally, output
C0 · e(C2, d

2
C)/e(C1, d

1
C).

5 Conclusions

We described an efficient CCA-secure public key encryption scheme whose per-
formance is competitive with previous CCA-secure public key encryption schemes
employing identity-based techniques. Our scheme is based on the identity-based
encryption schemes of Boneh and Boyen [4], and the signature scheme of Hohen-
berger and Waters [23]. In addition, we showed that our scheme is well suited
for constructing TPKE and PKENO schemes. In fact, our approach can be ap-
plied to obtain more efficient CCA-secure hierarchical identity based encryption
(HIBE) scheme based on the Waters CPA-secure HIBE scheme [33].

146 J. Lai et al.

Acknowledgement
We are grateful to the anonymous reviewers for their helpful comments. This
work is partially funded by National Natural Science Foundation of China (No.
60873229) and Shanghai Rising-star Program (No. 09QA1403000), and also sup-
ported in part by the Office of Research, Singapore Management University.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

2. Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proc. of ACM CCS 1993, pp. 62–73. ACM Press, New York
(1993)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

6. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

7. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Proc. of ACM CCS 2005, pp. 320–329. ACM Press, New-York
(2005)

8. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Model Revisited. In:
Proceedings of STOC 1998. ACM, New York (1998)

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

10. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Damg̊ard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer,
Heidelberg (2007)

14. Damg̊ard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-
interactive opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
239–255. Springer, Heidelberg (2008)

Efficient CCA-Secure Public Key Encryption from Identity-Based Techniques 147

15. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

16. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proc. of STOC
1991, pp. 542–552 (1991)

17. Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint
Archive, Report 2002/042 (2002), http://eprint.iacr.org/

18. Galindo, D.: Breaking and Repairing Damg̊ard et al. Public Key Encryption
Scheme with Non-interactive Opening. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 389–398. Springer, Heidelberg (2009)

19. Goldwasser, S., Tauman, Y.: On the (In)security of the Fiat-Shamir Paradigm. In:
Proc. of FOCS. IEEE, Los Alamitos (2003)

20. Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryp-
tion under theComputational Diffie-Hellman Assumption. In:Pieprzyk, J. (ed.)ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

21. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

22. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332.
Springer, Heidelberg (2009)

23. Hohenberger, S., Waters, B.: Realizing Hash-and-Sign Signatures under Standard
Assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350.
Springer, Heidelberg (2009)

24. Kiltz, E.: On the Limitations of the Spread of an IBE-to-PKE Transformation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 274–289. Springer, Heidelberg (2006)

25. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Ra-
bin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

26. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

27. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

28. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

29. Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

30. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC 2008, pp. 187–196. ACM, New York (2008)

31. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

32. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

33. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://eprint.iacr.org/

Anonymity from Asymmetry:
New Constructions for Anonymous HIBE

Léo Ducas

Ecole Normale Superieure, Paris
leo.ducas@ens.fr

Abstract. A Hierarchical Identity Based Encryption (HIBE) system is
anonymous if the ciphertext reveals no information about the recipi-
ent’s identity. create it. While there are multiple constructions for secure
HIBE, far fewer constructions exist for anonymous HIBE. In this paper
we show how to use asymmetric pairings to convert a large family of IBE
and HIBE constructions into anonymous IBE and HIBE systems. We also
obtain a delegatable-HVE which is a generalization of anonymous HIBE.

Keywords: Anonymity, Identity Based Encryption, HIBE, delegatable
Hidden Vector Encryption.

1 Introduction

In an Identity Based Encryption system (IBE) [Sha85, BF03] any string can
function as a public key. A master secret is used to generate private keys for
any public-key of interest. An extension of IBE, called Hierarchical-IBE [HL02,
GS02], allows for a hierarchy of identities where any path from the root to
a node can function as a public-key. An IBE or HIBE is said to be recipient
anonymous or simply anonymous if the ciphertext leaks no information about
the recipient’s identity. Both anonymous IBE and HIBE are building blocks for
encryption systems supporting searching on encrypted data [BCOP04, ABC+05,
SBC+07,BW07].

While there are several approaches to constructing an IBE using bilinear
maps [BF03], most constructions in the standard model are not recipient anony-
mous [CHK03,BB04,Wat05,BBG05] — there is a simple attack that can tell if a
given ciphertext is encrypted for a specific identity (the system in [Gen06] is an
exception). Oddly, by changing the type of pairing used, the anonymity attack
goes away. In particular, if one uses an asymmetric pairing e : G × Ĝ → Gt (as
discussed in the next section) then it is no longer known how to break anonymity
of the systems in [BB04,Wat05,BBG05]. However, it is not known how to prove
anonymous security of these systems from simple assumptions.

In this paper we resolve this issue and show that a small tweak to the sys-
tems in [BB04,Wat05,BBG05] can make them provably anonymous when using
asymmetric pairings. All our proofs are set in the standard model (i.e. without

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 148–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 149

relying on random oracles). In addition to hiding the recipient’s identity, cipher-
texts in our system also hide the public parameters under which the ciphertext
was created.

We are certainly not the first to construct an anonymous IBE or HIBE without
random oracles. Boyen and Waters [BW06] gave the first construction based on
the decision linear assumption. Other anonymous IBE systems were presented
in [Gen06,BW07, IP08, SW08]. Our IBE system is a little simpler than [BW06]
and relies on a weaker assumption than [Gen06]. A more substantial advantage
comes up in our HIBE.

The HIBE case. Consider a hierarchy of depth
. The anonymous HIBE system
in [BW06] generates secret keys of size proportional to
2 and ciphertext of
size proportional to
. Our system, which is derived from [BBG05], has secret
keys of size O(
) and constant size ciphertext. As in [BBG05], security relies
on a complexity assumption whose size is proportional to
. We note that very
recently Shi and Waters [SW08] used composite order groups to construct an
HIBE where private key size is O(
) and ciphertext size linear in
. Seo et al.
in [SKOS09] also used composite order groups to construct a compact anonymous
HIBE, with constant size ciphertext and linear size private keys. Ciphertexts in
our system are considerably shorter.

We note that our construction also gives a delegatable-HVE [BW07, SW08],
which is a generalization of anonymous HIBE. We present the system in
Section 5.1.

2 Anonymous IBE and HIBE: Definitions

We briefly review the definition of anonymous IBE and HIBE. A more detailed
definition can be found in [ABC+05]. In this paper we only consider CPA attacks,
and define both the selective-ID and adaptive-ID security games.

A public-key in an HIBE is a vector ID = (I1, . . . , Ik) representing an identity
at depth k of the hierarchy. We use
 to denote the maximum hierarchy depth.
The case
 = 1 is an IBE. An HIBE system consists of five algorithms: Setup
to generate public parameters PP and a master secret mk; Extract to generate
a secret key for an identity ID using the master key; Derive to generate a secret
for an identity ID = (I1, . . . , Ik) given a secret key for ID = (I1, . . . , Ik−1); and
Encrypt and Decrypt to encrypt and decrypt messages for identity ID.

We use Cλ,� to denote the finite set of all possible ciphertexts for a given
security parameters λ and maximum hierarchy depth
.

The following security games capture both semantic security and recipient
anonymity properties of the system. We begin with the selective-ID game be-
tween a challenger and adversary A. Both are given the security parameter λ as
input. For b = 0, 1 game Γ (b)(λ) is defined as follows:

– Initialization: The adversary sends to the challenger (
, ID∗) where
 > 0 is
the maximal hierarchy depth
 and ID∗ = (I∗1 , . . . , I

∗
k) is an identity that

A intends to attack (where k ≤
). When defining IBE security we require

 = 1.

150 L. Ducas

– Setup: The challenger runs Setup(λ,
) and sends PP to A.
– Phase 1: A issues up to qS private key queries where no query is a prefix of

ID∗. The challenger responds to the ith query IDi by sending A the output
of Extract(mk, IDi).

– Challenge: A outputs a message m∗. The challenger responds by choosing
a random ciphertext c

R← Cλ,� and sending c∗ to the challenger, where c∗ is
defined as

c∗ ←
{

Encrypt(PP, ID∗,m∗) if b = 0 (game Γ (0))
c if b = 1 (game Γ (1))

– Phase 2: The adversary continues to issue private-key queries subject to the
same restriction as in phase 1.

– Guess: Finally, A outputs a guess b′ ∈ {0, 1} for b.

For b = 0, 1 let Wb be the event that b = b′ in Game Γ (b) and define A’s
advantage as

AdvaIND-sIDCPA(λ) :=
∣∣Pr[W0]− Pr[W1]

∣∣.
Definition 1. We say that an HIBE system is selective-ID anonymous if for
all PPT A we have that AdvaIND-sIDCPA(λ) is a negligible function of λ.

Note that our definition of anonymity is a little stronger than usual [ABC+05].
We require that an encryption of m∗ for ID∗ under PP is indistinguishable from
a random ciphertext in Cλ,�. Consequently, not only does the ciphertext hide m∗

and ID∗, it also hides PP. Moreover, our definition implies that ciphertext length
must be independent of the depth of ID∗ in the hierarchy.

As usual, to define full-IBE security one modifies the game to allow the ad-
versary to specify ID∗ in the challenge step instead of at initialization.

3 Complexity Assumptions

3.1 Asymmetric Pairings

Let p be a prime and let G, Ĝ, and Gt be groups of order p. An asymmetric
pairing is a map e : G× Ĝ → Gt that is bilinear, non-degenerate, and efficiently
computable. The term asymmetric refers to the fact that the groups G and Ĝ

need not be the same.
It is well known that when G = Ĝ then the Decision Diffie-Hellman problem in

G is easy [Jou00]. However, when G and Ĝ are distinct and there is no efficiently
computable map from G to Ĝ then Decision Diffie-Hellman in G can still be hard.
This is partially the reason why the anonymity attacks on [BB04,Wat05,BBG05]
do not seem to apply when using an asymmetric pairing.

The assumption that DDH is hard in G is sometimes called the XDH assump-
tion. This assumption and its variants have been used in [Sco02,CHL05,ACd05,
BKM05]. In Sections 3.2 and 3.3 we state the specific assumptions we will use.

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 151

3.2 The Bilinear Diffie-Hellman Assumption

The BDH problem for a symmetric pairing e : G × G → Gt is stated as fol-
lows [Jou00,BF03]:

Given a tuple (g, ga, gb, gc) ∈ G4 as input, output e(g, g)abc ∈ Gt.

We extend the BDH problem to asymmetric bilinear groups by giving (g, ga, gc,

ĝ, ĝa, ĝb) ∈ G
3 × Ĝ

3 as input and asking for e(g, ĝ)abc ∈ Gt.

Asymmetric Decision BDH. Consider the following two distributions: For g ∈
G, ĝ ∈ Ĝ, a, b, c ∈ Zp, and T ∈ Gt chosen uniformly at random, define:

– PBDH :=
(
g , ga , gc , ĝ , ĝa , ĝb , e(g, ĝ)abc

) ∈ G3 × Ĝ3 ×Gt

– RBDH :=
(
g , ga , gc , ĝ , ĝa , ĝb , T

) ∈ G3 × Ĝ3 ×Gt

For an algorithm A we let AdvD-BDH
A be the advantage of A is distinguishing

these two distributions. That is,

AdvD-BDH
A =

∣∣Pr[A(D) = 1]− Pr[A(R) = 1]
∣∣

where D is sampled from PBDH and R is sampled from RBDH .
We say that an algorithm B that outputs a bit in {0, 1} has advantage

AdvD-BDH
B = ε in solving the Decision-BDH problem in (G, Ĝ) if∣∣Pr
[B(g , ga, gc, ĝ , ĝa, ĝb, e(g, ĝ)abc

)
= 0
]−Pr

[B(g , ga, gc, ĝ , ĝa, ĝb, T
)

= 0
]∣∣ ≥ε

where the probability is over the random choice of generator g ∈ G and ĝ ∈ Ĝ,
exponents a, b, c in Zp, T ∈ Gt, and the random bits used by B.

As usual, to state the assumption asymptotically we rely on a bilinear group
generator G that takes a security parameter λ as input and outputs the descrip-
tion of a bilinear group.

Definition 2. Let G be a bilinear group generator. We say that the Decision
BDH holds for G if, for all PPT algorithms A, the function AdvD-BDH

A (λ) is a
negligible function of λ.

3.3 Additional Assumptions

To prove the anonymity property of our systems, we will need a slightly stronger
assumption. Consider the following two distributions: For g ∈ G, ĝ ∈ Ĝ, a, b, c ∈
Zp, and T ∈ G chosen uniformly at random, define:

– DN :=
(
g , ga , gab, gc , ĝ , ĝa , ĝb , gabc

) ∈ G
4 × Ĝ

3 ×G

– DR :=
(
g , ga , gab, gc , ĝ , ĝa , ĝb , T

) ∈ G
4 × Ĝ

3 ×G

For an algorithm A we let AdvP-BDH
A be the advantage of A is distinguishing

these two distributions.

Definition 3. Let G be a bilinear group generator. We say that the Decision
P-BDH holds for G if, for all PPT algorithms A, the function AdvP-BDH

A (λ) is
a negligible function of λ.

152 L. Ducas

3.4 Discussion About the Assumptions

Intuitively, the Decision P-BDH assumption is a combination of the Decision
BDH-assumption used by the BB1 HIBE system, and the XDH-assumption (stat-
ing that Decision Diffie-Hellman problem is hard in one of the groups despite the
existence of the pairing). Indeed, the Decision P-BDH assumption implies both
assumptions via the following simple reductions: A Decision P-BDH instance(
g , ga , gab, gc , ĝ , ĝa , ĝb , T

)
can be solved using:

– a Decision BDH adversary A: run A(g , ga , gc , ĝ , ĝa , ĝb , e(T, ĝ)
)
;

– a Decision DH adversary A: run A(g , gab , gc , T
)
.

The existence of an efficiently computable homomorphism from Ĝ to G does not
contradict with our assumption, but is not required either for the construction
nor the security proof. Thus, the bilinear group of our system may be instantiated
by either type 2 or type 3 pairing on elliptic curves, as defined in [GPS06].

4 An Efficient Anonymous IBE

We first construct an IBE system that is anonymous under the P-BDH assump-
tion in asymmetric bilinear groups.

4.1 IBE Construction

We are given a bilinear map e : G × Ĝ → Gt over a bilinear group pair (G, Ĝ)
of prime order p, with respective generators g ∈ G

∗ and ĝ ∈ Ĝ
∗. The size of p is

determined by the security parameter.
Our IBE system works as follows:

Setup: To generate system parameters for an IBE, given bilinear groups
(G, Ĝ) with generators (g, ĝ), the setup algorithm first selects a random
(α, β, γ, δ, η) ∈ Zp

5, and sets: g1 = gα, g2 = gβ, h = gγ , f = gδ, t = gη,
and their analogues: ĝ1 = ĝα, ĝ2 = ĝβ , ĥ = ĝγ , f̂ = ĝδ, t̂ = ĝη. The public
parameters PP and the master secret mk are given by

PP =
(
g, g1, h, f, t, ĝ, ĝ2, ĥ

) ∈ G
5 × Ĝ

3

mk =(ĝ0 = ĝαβ, f̂ , t̂) ∈ Ĝ
3

Extract(mk, ID): To extract a private key dID for an identity ID = I ∈ Z∗
p the

authority holding the master key picks random r,R ∈ Zp and outputs

dID =
(

ĝ0 (ĥI f̂)r t̂R, ĝr, ĝR

)
∈ Ĝ

3

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 153

Encrypt(PP, ID,M). To encrypt a message M ∈ Gt under the public key ID =
I ∈ Z∗

p, pick a random s ∈ Zp and output

C =
(

M · e(g1, ĝ2)s, gs, (hI f)s, ts
)
∈ Gt ×G

3

Decrypt(dID, C). To decrypt a given ciphertext C = (A,B,C1, Z) ∈ Gt × G3

using the private key dID = (d0, d1, d2) ∈ Ĝ3, output

A · e(C1, d1) · e(Z, d2)
/

e(B, d0) ∈ Gt

The system in consistent. Indeed, for a valid ciphertext encrypted under the
identity ID = I to which the private key dID belongs, we have

A · e(C1, d1) · e(Z, d2)
e(B, d0)

= A · e(hI f, ĝ)sr · e(t, ĝ)sR

e(g, ĝ0)s · e(g, ĥI f̂)sr · e(g, t̂)sR
= A · 1

e(g1, ĝ2)s
= M

The system is closely related to the BB1 IBE system from [BB04]. The only dif-
ference is the additional element ts in the ciphertext and the additional blinding
value t̂R in the private key.

4.2 Security Reduction

The following theorem proves security of our system under the Decision P-BDH
assumption.

Theorem 1 (IBE security). Our IBE is selective-ID anonymous assuming
the Decision P-BDH assumption holds for the bilinear group generator G. In
particular, for all PPT algorithms B, the function AdvaIND-sIDCPA

B (λ) is a negli-
gible function of λ.

The proof proceeds by a hybrid argument across a number of games. Let CT =
(A,B,C1, Z) ∈ Gt × G3 denote the challenge ciphertext given to the adversary
during a real attack (game Γ (0) in Definition 1). Additionally, let R be a random
element of Gt and R′, R1 be random elements of G. We define the following
hybrid experiments, which differ in how the challenge ciphertext is generated:

– Game Γ : The challenge ciphertext is CT = (A ,B ,C1 , Z)
– Game Γ ′: The challenge ciphertext is CT′ = (R ,B ,C1 , Z)
– Game Γ0: The challenge ciphertext is CT0 = (R ,B ,C1 , R

′)
– Game Γ1: The challenge ciphertext is CT1 = (R ,B ,R1 , R′)

Game Γ is the same as game Γ (0) in Definition 1. Game Γ1 is the same as
game Γ (1) in Definition 1, where the adversary is given a random ciphertext.
Therefore,

AdvaIND-sIDCPA
B ≤ ∣∣Pr

[AΓ = 0
]− Pr

[AΓ1 = 0
]∣∣ .

To prove that Γ is indistinguishable from Γ1 we prove that each step of the
hybrid is indistinguishable from the next. We do so in a sequence of lemmas
whose proofs are given in the full version of this paper [Duc09].

154 L. Ducas

Lemma 1 (semantic security). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, there exist an algorithm B solving the Decision
P-BDH problem such that:∣∣∣Pr

[AΓ = 0
]− Pr

[
AΓ ′

= 0
]∣∣∣ ≤ AdvP-BDH

B

This proof is just the adaptation of the original BB1 security proof. The lemma
is stated using decision P-BDH problem, but, the proof is using decision BDH
problem, which is a weaker assumption.

Lemma 2 (anonymity, part 1). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, there exist an algorithm B solving the Decision
P-BDH problem such that:∣∣∣Pr

[
AΓ ′

= 0
]
− Pr

[AΓ0 = 0
]∣∣∣ ≤ AdvP-BDH

B

Lemma 3 (anonymity, part 2). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, there exist an algorithm B solving the Decision
P-BDH problem such that:∣∣Pr

[AΓ0 = 0
]− Pr

[AΓ1 = 0
]∣∣ ≤ AdvP-BDH

B

Thus, if there is no algorithm B that solve P-BDH problem with an advantage
better than ε, then, for all adversary A∣∣Pr

[AΓ = 0
]− Pr

[AΓ1 = 0
]∣∣ ≤ ∣∣∣Pr

[AΓ = 0
]− Pr

[
AΓ ′

= 0
]∣∣∣

+
∣∣∣Pr
[
AΓ ′

= 0
]
− Pr

[AΓ0 = 0
]∣∣∣

+
∣∣Pr
[AΓ0 = 0

]− Pr
[AΓ1 = 0

]∣∣
≤ 3 ε

Full IBE security. We proved that our system is anonymous under a CPA and
selective-ID attacks. It can be made fully secure using known tools.

First, to make the system chosen ciphertext secure one can use the results of
Canetti et al. [CHK04,BCHK07]. To construct an anonymous chosen-ciphertext
secure IBE we need a 2-level HIBE where the first level is anonymous, but the
second need not be. Following the BB1 HIBE construction, we can build a 2-level
HIBE which is anonymous relative to the first level, but not the second. We thus
obtain an anonymous chosen ciphertext secure IBE.

Second, to obtain full security against adaptive attacks (rather than selective
security), one can use random oracles or inefficient reductions. It is also possible
to apply the technique of Waters [Wat05] to our system to obtain an anonymous
fully secure IBE without random oracles.

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 155

HIBE. The original BB1 system extends to an HIBE by expanding f to a vector
f1, . . . , f�, one fi per level of the hierarchy. Unfortunately, we cannot use the
same method to extend our IBE to an anonymous HIBE. The problem is that
to enable key delegation, we must include the values f̂2, . . . , f̂� in private keys.
But providing these values breaks anonymity for all levels except the first one.
A different approach is needed to extend our anonymous IBE to an anonymous
HIBE. We develop this in the next section.

5 Anonymous Hierarchical IBE and Delegetable HVE

As before, we assume a bilinear group G and a map e : G× Ĝ → Gt, where G,
Ĝ and Gt have prime order p.

To extend our anonymous IBE to an anonymous HIBE we add f̂i terms to
the private keys to enable key delegation, but we blind them so as not to break
anonymity. We can then build an anonymous HIBE under the same compact
assumption as before, but the private key size now becomes quadratic in the
depth of the hierarchy. A similar problem was encountered in [BW06].

Another approach to making BB1 a (non-anonymous) HIBE was proposed
in [BBG05]. The construction uses a stronger assumption, but provides constant
size ciphertext, and constant pairing steps during decryption. Using this con-
struction, we can extend the anonymous IBE of the previous section to a very
efficient anonymous HIBE with short ciphertext, fast decryption, and linear size
private keys.

The two approaches we outlined above (linear keys with a strong assumption
and quadratic keys with a compact assumption) can be done simultaneously
to obtain a hybrid anonymous HIBE with good performance and relying on a
semi-compact assumption. This system is described in the full version of this
paper [Duc09], and we discuss several instantiations of this general construction
in Section 5.3.

From anonymous HIBE to delegatable HVE. A delegatable Hidden Vector En-
cryption system (dHVE) [BW07,SW08] can be viewed as an extension of anony-
mous HIBE. Messages in a dHVE of depth
 are encrypted depending on a prop-
erty vector v ∈ S�. We define tokens as being vectors in S∗�, with S∗ = S ∪ {∗},
the ∗ symbol being used as a wildcard. We also set a partial order on those
tokens: v ≥ w iff ∀1 ≤ i ≤ l, vi = wi ∨ vi = ∗.

A master authority provide public parameters PP allowing anyone to encrypt
with any property vector v ∈ S

�. With its master key mk, this authority must
also be able to extract keys for any token w ∈ S∗�. Knowing a key k for token w
should allow one to decrypt all messages encoded with property vectors v ≤ w,
otherwise no information should be leaked about the message m or the property
vector v used to encrypt it. Furthermore, anyone with a key k for a token w
should be able to delegate keys for any vectors w′ ≤ w. We refer to [SW08] for
the definition of security.

Any anonymous HIBE is also a dHVE where property vectors are used as iden-
tities and we only require keys for vectors of the form w = (v1, . . . , vk, ∗ , . . . , ∗)

156 L. Ducas

with v1 . . . vk �= ∗. To encrypt for an identity of depth k <
, the encryptor pads
the property vector with random values of S (or with a special token in S that
is not used in identity vectors).

Unfortunately, the construction from [BBG05] doesn’t give efficient way to
decrypt messages without knowing the exact identity of the recipient, even with
a private key for a higher identity in the hierarchy. Thus, our anonymizing tweak
on this system doesn’t lead to a proper dHVE.

5.1 A Delegatable HVE

Our system uses the property set S = Z∗
p and encode the wildcard ∗ by 0 ∈ Zp.

Convention and reindexation. For a token w, we note Sw (resp S̄w) the subset
of indexes such that wi �= ∗ (resp wi = ∗), and kw denotes |Sw|. Keys will be
seen as matrices of size (l + 2)× (kw + 2), indexed the following way:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 s1 · · · skw −1

−1 · · · · · · ·
0 · · · · · · ·
1 · · · · · · ·
...

...
...

...
...

 · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where s1 . . . skw are the naturally ordered elements of Sw. But for readability,
we can always consider for a given w that Sw = 1 . . .kw, by reordering rows and
columns of the considered matrices. With this new indexation, row −1 will be
called the decryption part (of the key), rows 0 . . .kw the rerandomization part,
and rows (kw + 1) . . .
 the delegation part.

Linear algebra notation. The description of our system is greatly simplified by
the use of notation from linear algebra. We will be using vectors and matrices
whose components are elements in the groups G or Ĝ. The sum of two such
matrices is defined by doing a cell by cell group product. We define the product
of a vector x = (x1 . . . xn) in (Zp)n with a vector g = (ĝ1 . . . ĝn) of Ĝn by:

(x1 . . . xn) · (g1 . . . gn) =
n∏

i=1

gxi

i ∈ Ĝ

This definition extends naturally to the product of matrices over Zp by matrices
over Ĝ. When we write those products, we will always place the matrices over Ĝ

on the right. Vector will be written in bold, and if v is a vector, then vi is its ith

component of v, and v|S is the restriction of v to its components of index in S:
[vi]i∈S (in the natural order). We will also use the plus sign over group matrices:

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 157

A + B corresponds the component by component group product. Last, when
writing block matrices, Id refers to the square identity matrix of the needed
dimension.

Using this notation, we can now describe the delegatable HVE system as
follows.

Setup(
): To generate system parameters for a dHVE of depth
, given bilinear
groups (G, Ĝ) with generators (g, ĝ), the setup algorithm first selects a ran-
doms α, β, γ, η ∈ Zp, δ ∈ (Zp)�, and set: g1 = gα, g2 = gβ , h = gγ , f = δ ·(g),
t = gη, and their analogues: ĝ1 = ĝα, ĝ2 = ĝβ, ĥ = ĝγ , f̂ = δ · (ĝ), t̂ = ĝη.
The public parameters PP and the master secret mk are:

PP =
(
g, g1, h, f , t, ĝ, ĝ2, ĥ

) ∈ G
4+l × Ĝ

3, mk = (ĝ0 = ĝαβ , f̂ , t̂) ∈ Ĝ
2+l

Extract(mk,w): We first suppose, using reindexation if necessary, that w is
of the form (w1 , . . . ,wk, ∗ , . . . , ∗). To generate private key dw, output the
matrix:

dw =

⎛⎝ddec
w
drer
w

ddel
w

⎞⎠ =

⎛⎝ 1 R1 0
0 R2 0
0 R3 Id

⎞⎠·Mw =

⎛⎝Mdec
w + R1 ·M rer

w
R2 ·M rer

w
Mdel

w + R3 ·M rer
w

⎞⎠∈ Ĝ
(l+2)×(2+kw)

where R1 ∈ (Zp)1×(k+1), R2 ∈ (Zp)(k+1)×(k+1), and R3 ∈ (Zp)(�−k)×(k+1)

are random matrices, and

Mw =

⎛⎝Mdec
w

M rer
w

Mdel
w

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĝ0

t̂ ĝ

ĥw1 f̂1 ĝ
...

. . .
ĥwk f̂k ĝ

f̂k+1
...
f̂�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In this matrix blanks correspond to cells containing the group identity ĝ0.
Unrolling the definition, and without reindexation we thus have:

ddec
w =

(
ĝ0 (r-1 · (w · ĥ + f̂)|Sw) tR-1 , r-1 · (ĝ) , ĝR-1

)
∈ Ĝ

1×(2+kw)

drer
w =

[
(rj · (w · ĥ + f̂)|Sw) tRj , rj · (ĝ) , ĝRj

]
j∈Sw∪{0}

∈ Ĝ
(1+kw)×(2+kw)

ddel
w =

[
f̂j (rj · (w · ĥ + f̂)|Sw) tRj , rj · (ĝ) , ĝRj

]
j∈S̄w

∈ Ĝ
(�−kw)×(2+kw)

for random R-1 . . .Ru in Zp and r-1 . . . r� in (Zp)kw .
The idea behind this definition of ddel

w is to embed the f̂i needed for delegation
in the private key, but blinded in a way that maintains their utility.

158 L. Ducas

Rerand(w, dw): We present a helper algorithm that will be useful for key
delegation.

If we have one valid key dw for a given token w, we can build another key
d′w for the same token w, that has the same distribution as the output of
algorithm Extract(mk,w), and independent from dw by re-randomization.
Once again, we invoke reindexation and suppose that w is of the form
(w1 , . . . ,wk, ∗ , . . . , ∗). Let R′

1 ∈ (Zp)1×(k+1), R′
2 ∈ (Zp)(k+1)×(k+1), and

R′
3 ∈ (Zp)(u−k−1)×(k+1) be random matrices. Note that this corresponds to

(k + 1)(
 + 2) random values in Zp, as in Extract. We build d′w by:

d′w =

⎛⎝ 1 R′
1 0

0 R′
2 0

0 R′
3 Id

⎞⎠ · dw =

⎛⎝ddec
w + R′

1 · drer
w

R′
2 · drer

w
ddel
w + R′

3 · drer
w

⎞⎠
Let R1, R2, R3 be the matrices giving the previous decomposition of dw:

dw =

⎛⎝ 1 R1 0
0 R2 0
0 R3 Id

⎞⎠ ·Mw

thus we have:

d′w =

⎛⎝ 1 R′
1 0

0 R′
2 0

0 R′
3 Id

⎞⎠·
⎛⎝ 1 R1 0

0 R2 0
0 R3 Id

⎞⎠·Mw =

⎛⎝Mdec
w + (R′

1 ·R2 + R1) ·M rer
w

R′
2 ·R2 ·M rer

w
Mdel

w + (R′
3 · R2 + R3) ·Mdel

w

⎞⎠
It is not hard to see that if R2 is full rank, then d′w is distributed as the output
of algorithm Extract(mk,w) . If R2 is not full ranked then d′w is distributed
differently (we then say that d′w is ill-formed), but since this happens with
probability about 1/p (which is negligible), d′w is then distributed statically
close to the distribution of Extract(mk,w).

Note that this difference arise between the real-world and the security
model, thus it will not appear in the security reduction.

Derive(w, dw,w′): The derivation algorithm only needs to answer when w ≥
w′ and can assume that dw is indeed a valid key for the token w.

It is sufficient to show a correct algorithm working only when kw′ =
kw + 1, and then do delegation step-by-step. Using reindexation, we can
also assume that w = (w1 , . . . ,wk, ∗ , . . . , ∗) and w′ = (w1 , . . . ,wk+1,
∗ , . . . , ∗)
Lets write the private key for dw as

dw =

⎛⎜⎜⎜⎝
D G1 · · · Gk−1 T
D0 G0,1 · · · G0,k−1 T0
...

...
. . .

...
...

D� G�,1 · · · G�,k−1 T�

⎞⎟⎟⎟⎠

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 159

First, we define dtemp
w (with one more column):

dtemp
w′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D G1 · · · Gk−1 T
D0 G0,1 . . . G0,k−1 T0
...

...
. . .

...
...

Dk−1 Gk−1,1 · · · Gk−1,k−1 Tk−1

ĥwkDk Gk,1 · · · Gk,k−1 ĝ Tk

Dk+1 Gk+1,1 . . . Gk+1,k−1 Tk+1

...
...

. . .
...

...
D� G�,1 · · · G�,k−1 T�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Also in this matrix, blanks correspond to cells containing the group identity
ĝ0.

Intuitively, we moved the highlighted line from the delegation part to the
re-randomization part of the key. Let R1, R2, R3 be the matrices giving the
previous decomposition of dw, and R′

1, R
′
2, R

′
3 for dtemp

w′ , we have:

R′
1 =

(
R1 0

)
, R′

2 =

⎛⎜⎜⎜⎝
0

R2
...
0

(R3)1 1

⎞⎟⎟⎟⎠ , R′
3 =

⎛⎜⎝ (R3)2 0
...

...
(R3)k−2 0

⎞⎟⎠
Note that if R2 rank is k + 1, then rank of R′

2 is k + 2, so if dw isn’t an ill-
formed key, dtemp

w′ isn’t ill-formed either. We can thus output Rerand(dtemp
w′),

which is a valid key following the same distribution as if it was directly
generated by Extract(mk,w′).

Encrypt(PP,v,M). To encrypt a message M ∈ GT under the property vector
v = (v1, . . . , v�) ∈ Z∗

p[
], pick a random s ∈ Zp and output

CT =
(
e(g1, ĝ2)s ·M, gs, (s) · (v · (h) + f), ts

)
∈ Gt ×G

2+�.

Decrypt(ddec
w ,w,CT). Consider the token w = (w1, . . . ,w�) associated to the

key dw. To decrypt a ciphertext CT = (A,B,C1, . . . , C�, Z) using the de-
cryption part of the private key ddec

w = (a0, [bi]i∈Sw
, z), output

M ′ = A · e(Z, z) ·
∏

i∈Sw

e(Ci, bi)
/
e(B, a0).

Correctness. We briefly check that decryption is correct. With the same nota-
tions as in Decrypt. Assuming w ≥ v, we have ∀i ∈ Sw, wi = vi.

160 L. Ducas

e(B, a0) = e(gs , ĝ0 r-1 · (w · ĥ + f̂)|Sw
)tR-1)

= e(gs , ĝ0) · e(gs , t̂R-1) ·
∏

i∈Sw

e(gs , (ĥwi f̂i)r-1,i)

= e(g0 , ĝ)s · e(ts , ĝR-1) ·
∏

i∈Sw

e((hwifi)s , ĝr-1,i)

= e(g0 , ĝ)s · e(Z, z) ·
∏

i∈Sw

e(Ci, bi)

If CT is the encryption of M under the public key ID, then A = e(g0, ĝ)s ·M ,
and hence we have M ′ = M .

5.2 Security Reduction

The following theorem proves security of our system under the Decision P-BDH
assumption.

Theorem 2 (dHVE security). Our dHVE is selective-ID anonymous assum-
ing the Decision P-BDH assumption holds for the bilinear group generator G. In
particular, for all PPT algorithms B and all
 > 0, the function AdvaIND-sIDCPA

B (λ)
is a negligible function of λ.

The proof proceeds by a hybrid argument across a number of games. Let CT =
(A,B,

[
Ci

]�
i=1, Z) in Gt×G3 denote the challenge ciphertext given to the adver-

sary during the selective-ID game Γ (0) of definition 1. Additionally, let R be a
random element of Gt, and R′ and [Ri]�i=1 be random elements of G. We define
the following hybrid games, which differ on what challenge ciphertext is given
to the adversary:

– Game Γ : The challenge ciphertext is CT =
(
A ,B ,

[
Ci

]�
i=1 , Z

)
– Game Γ ′: The challenge ciphertext is CT′ =

(
R ,B ,

[
Ci

]�
i=1 , Z

)
– Game Γn (n = 0 . . .
): The challenge is CTn =

(
R , B ,

[
Ri

]n
i=1

, [Ci]�i=n+1 , R′
)

Game Γ is the same as game Γ (0) in Definition 1. Game Γ� is the same as
game Γ (1) in Definition 1, where the adversary is given a random ciphertext.
Therefore,

AdvaIND-sIDCPA
B ≤ ∣∣Pr

[AΓ = 0
]− Pr

[AΓ� = 0
]∣∣ .

To prove that Γ is indistinguishable from Γ� we prove that each step of the
hybrid is indistinguishable from the next. We do so in a sequence of lemmas.

Lemma 4 (semantic security). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, there exist an algorithm B solving the Decision
P-BDH problem such that:∣∣∣Pr

[AΓ = 0
]− Pr

[
AΓ ′

= 0
]∣∣∣ ≤ AdvP-BDH

B

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 161

Lemma 5 (anonymity, part 1). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, there exist an algorithm B solving the Decision
P-BDH problem such that:∣∣∣Pr

[
AΓ ′

= 0
]
− Pr

[AΓ0 = 0
]∣∣∣ ≤ AdvP-BDH

B

Lemma 6 (anonymity, part 2). Let A be an adversary playing the
aIND-sIDCPA attack game. Then, for all n = 1 . . .
, there exist an algorithm B
solving the Decision P-BDH problem such that:∣∣Pr

[AΓn−1 = 0
]− Pr

[AΓn = 0
]∣∣ ≤ AdvP-BDH

B

Thus, if there is no algorithm B that solve P-BDH problem with an advantage
better than ε, there, for all adversary A making at most:∣∣Pr

[AΓ = 0
]− Pr

[AΓ� = 0
]∣∣ ≤ ∣∣∣Pr

[AΓ = 0
]− Pr

[
AΓ ′

= 0
]∣∣∣

+
∣∣∣Pr
[
AΓ ′

= 0
]
− Pr

[AΓ0 = 0
]∣∣∣

+
∑�

n=1

∣∣Pr
[AΓn−1 = 0

]− Pr
[AΓn = 0

]∣∣
≤ (2 +
) ε

Consequently, under the P-BDH assumption, game Γ is indistinguishable
from Γ�.

The proofs of those lemmas are given in the full version [Duc09]. �

5.3 Instantiations

We now compare several instantiations of the anonymous HIBE system and the
dHVE system that can be build using our techniques with other similar anony-
mous constructions. In the Hybrid system described in the full version [Duc09],
there is a parameter ω ∈ [0, 1] that we can also adjust to get different trade-off
in terms of hypothesis strength and performances. Its security rely on a stronger
assumption: Pn-BDH, which is also described in the full version. There are 3
noticeable values for ω: ω = 1 is not using mechanics of [BBG05] and can be
extended to our dHVE, ω = 0 provides constant size ciphertexts and linear keys,
last ω = 1/2 gives optimal key size and sublinear ciphertexts.

group order assumption key size ciphertext size
BB1based IBE prime P-BDH 3 4
BB1based dHVE (ω = 1) prime P-BDH ∼ �2 � + 3

Hybrid BBG-based HIBE prime P��1−ω�-BDH ≤ 3(� + �2ω) ∼ �ω

BBG based HIBE (ω = 0) prime P�-BDH ∼ 3� 4
Hybrid BBG-based HIBE (ω = 1/2) prime P�√��-BDH ∼ � ∼ √

�

dHVE from [SW08] composite composite-BDH ∼ �2 ∼ �
HIBE from [SKOS09] composite composite-BDH ∼ 3� 4

162 L. Ducas

Sizes are expressed in group elements. Number of pairings for decryption is
always bound by the ciphertext size. Our construction offers better efficiency by
a constant factor than previous results, depending on the chosen trade-off. Using
asymmetric pairing let us avoid composite groups, which are inevitably larger.
For elements of G (used in the ciphertext) the gain can be very substantial (1024
bits versus 170 bits to achieve common concrete security). However, the use of
type 2 or type 3 pairing doesn’t allow compact representation of Ĝ elements,so
that the improvement in private key size is not as significant (see [GPS06]).

6 Conclusions

We presented a technique for using asymmetric bilinear groups to add anonymity
to a family of non-anonymous HIBE systems. One of those HIBE naturally
extend to a delegatable HVE system. The resulting systems are more efficient
than several existing constructions for anonymous systems.

Acknowledgments

This work was done while the author was visiting Stanford University. I would
like to express my gratitude to Dan Boneh, who gave me precious advice all along
this work. Stanford University staff also deserves some thanks for welcoming me
at the Computer Science lab for this internship. Finally, I would like to thank
the anonymous reviewers for their wise comments on this paper.

References

[ABC+05] Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T.,
Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption re-
visited: Consistency properties, relation to anonymous IBE, and extensions.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer,
Heidelberg (2005)

[ACd05] Ateniese, G., Camenisch, J., deMedeiros, B.: Untraceable rfid tags via in-
subvertible encryption. In: Proceedings of the 12th ACM conference on
Computer and communications security (2005)

[BB04] Boneh, D., Boyen, X.: Efficient selective-ID identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[BCHK07] Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security
from identity-based encryption. SIAM Journal of Computing 36(5) (2007)

[BCOP04] Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key en-
cryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004)

Anonymity from Asymmetry: New Constructions for Anonymous HIBE 163

[BF03] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
SIAM Journal of Computing 32(3) (2003); Preliminary version In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

[BKM05] Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive key-
word searches over encrypted data. In: Qing, S., Mao, W., López, J.,
Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer,
Heidelberg (2005)

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554.
Springer, Heidelberg (2007)

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption
scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer,
Heidelberg (2003)

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[CHL05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. ePrint
Report 2005/060 (2005)

[Duc09] Ducas, L.: Anonymity from asymmetry: New constructions for anonymous
hibe (2009), http://www.eleves.ens.fr/home/ducas/publi/ahibe10/

[Gen06] Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464.
Springer, Heidelberg (2006)

[GPS06] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Cryptology ePrint Archive, Report 2006/165 (2006),
http://eprint.iacr.org/

[GS02] Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer,
Heidelberg (2002)

[HL02] Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 466. Springer,
Heidelberg (2002)

[IP08] Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime
order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 75–88. Springer, Heidelberg (2008)

[Jou00] Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838. Springer, Heidelberg (2000)

[SBC+07] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-
dimensional range query over encrypted data. In: SP 2007: Proceedings of
the 2007 IEEE Symposium on Security and Privacy (2007)

[Sco02] Scott, M.: Authenticated id-based key exchange and remote log-in with
simple token and pin number. ePrint Report 2002/164 (2002)

[Sha85] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985)

http://www.eleves.ens.fr/home/ducas/publi/ahibe10/
http://eprint.iacr.org/

164 L. Ducas

[SKOS09] Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In: Irvine: Pro-
ceedings of the 12th International Conference on Practice and Theory in
Public Key Cryptography (2009)

[SW08] Shi, E., Waters, B.: Delegating capabilities in predicate encryption sys-
tems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 560–578. Springer, Heidelberg (2008)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

Making the Diffie-Hellman Protocol
Identity-Based�

Dario Fiore1,		 and Rosario Gennaro2

1 Dipartimento di Matematica ed Informatica – Università di Catania, Italy
fiore@dmi.unict.it

2 IBM T. J. Watson Research Center – Hawthorne, New York 10532
rosario@us.ibm.com

Abstract. This paper presents a new identity based key agreement pro-
tocol. In id-based cryptography (introduced by Adi Shamir in [29]) each
party uses its own identity as public key and receives his secret key from
a master Key Generation Center, whose public parameters are publicly
known.

The novelty of our protocol is that it can be implemented over any
cyclic group of prime order, where the Diffie-Hellman problem is sup-
posed to be hard. It does not require the computation of expensive bi-
linear maps, or additional assumptions such as factoring or RSA.

The protocol is extremely efficient, requiring only twice the amount of
bandwith and computation of the unauthenticated basic Diffie-Hellman
protocol. The design of our protocol was inspired by MQV (the most
efficient authenticated Diffie-Hellman based protocol in the public-key
model) and indeed its performance is competitive with respect to MQV
(especially when one includes the transmission and verification of cer-
tificates in the MQV protocol, which are not required in an id-based
scheme). Our protocol requires a single round of communication in which
each party sends only 2 group elements: a very short message, especially
when the protocol is implemented over elliptic curves.

We provide a full proof of security in the Canetti-Krawczyk security
model for key exchange, including a proof that our protocol satisfies
additional security properties such as forward secrecy, and resistance to
reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [29]. The goal
was to simplify the management of public keys and in particular the association
of a public key to the identity of its holder. Usually such binding of a public key
to an identity is achieved by means of certificates which are signed statements by
trusted third parties that a given public key belongs to a user. This requires users
� A full version of this paper is available at http://eprint.iacr.org/2009/174

�� Work done while visiting NYU and IBM Research.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 165–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://eprint.iacr.org/2009/174

166 D. Fiore and R. Gennaro

to obtain and verify certificates whenever they want to use a specific public key,
and the management of public key certificates remains a technically challenging
problem.

Shamir’s idea was to allow parties to use their identities as public keys. An
id-based scheme works as follows. A trusted Key Generation Center (KGC)
generates a master public/secret key pair, which is known to all the users. A user
with identity ID receives from the KGC a secret key SID which is a function of
the string ID and the KGC’s secret key (one can think of SID as a signature by
the KGC on the string ID). Using SID the user can then perform cryptographic
tasks. For example in the case of id-based encryption any party can send an
encrypted message to the user with identity ID using the string ID as a public
key and the user (and only the user and the KGC) will be able to decrypt it
using SID. Note that the sender can do this even if the recipient has not obtained
yet his secret key from the KGC. All the sender needs to know is the recipient’s
identity and the public parameters of the KGC. This is the major advantage of
id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned
with the task of id-based key agreement. Here two parties Alice and Bob, with
identities A,B and secret keys SA, SB respectively, want to agree on a common
shared key, in an authenticated manner (i.e. Alice must be sure that once the
key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish
a session) there is a smaller gain in using an id-based solution: indeed certificates
and public keys can be easily sent as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a signifi-
cant practical advantage (see e.g. [32]). Indeed known shortcomings of the public
key setting are the requirement of centralized certification authorities, the need
for parties to cross-certify each other (via possibly long certificate chains), and
the management of some form of large-scale coordination and communication
(possibly on-line) to propagate certificate revocation information. Identity-based
schemes significantly simplify identity management by bypassing the certifica-
tion issues. All a party needs to know in order to generate a shared key is its own
secret key, the public information of the KGC, and the identity of the commu-
nication peer (clearly, the need to know the peer’s identity exists in any scheme
including a certificate-based one).

Another advantage of identity-based systems is the versatility with which
identities may be chosen. Since identities can be arbitrary string, they can be
selected according to the function and attributes of the parties (rather than its
actual “name”). For example in vehicular networks a party may be identified
by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This
allows parties to communicate securely with the intended recipient even without
knowing its “true” identity but simply by the definition of its function in the
network.

Making the Diffie-Hellman Protocol Identity-Based 167

Finally, identities can also include additional attributes which are temporal
in nature: in particular an “expiration date” for an identity makes revocation of
the corresponding secret key much easier to achieve.

For the reasons described above, id-based KA protocols are very useful in
many systems where bandwith and computation are at a premium (e.g. sensor
networks), and also in ad-hoc networks where large scale coordination is unde-
sirable, if not outright impossible. Therefore it is an important question to come
up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal
of the concept of id-based cryptography, some early proposals for id-based key
agreement appeared in the literature: we refer in particular to the works of
Okamoto [24] (later improved in [25]) and Gunther [18]. A new impetus to this
research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [4]: starting with the work of Sakai et al.
[28] a large number of id-based KA protocols were designed that use pairings
as tool. We refer the readers to [5] and [10] for surveys of these pairing-based
protocols.

The main problem with the current state of the art is that many of these
protocols lack a proof of security, and some have even been broken. Indeed only
a few (e.g., [7,33]) have been proven according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-
based KAs require either groups that admit bilinear maps [7,33], or to work over
a composite RSA modulus [25].

This motivated us to ask the following question: can we find an efficient and
provably secure id-based KA protocol such that:

1. It that can be implemented over any cyclic group in which the Diffie-Hellman
problem is supposed to be hard. The advantages of such a KA protocol would
be several, in particular: (i) it would avoid the use of computationally expen-
sive pairing computations; (ii) it could be implemented over much smaller
groups (since we could use ’regular’ elliptic curves, rather than the ones that
admit efficient pairings computations for high security levels, or the group
Z∗

N for a composite N needed for Okamoto-Tanaka).
2. It is more efficient than any KA protocols in the public key model (such as

MQV [22]), when one includes the transmission and verification of certificates
which are not required in an id-based scheme. This is a very important point
since, as we pointed out earlier in this Section, id-based KA protocols are
only relevant if they outperform PKI based ones in efficiency.

Our new protocol presented in this paper, achieves all these features. It can
be implemented over any cyclic group over which the Diffie-Hellman problem
is assumed to be hard. In addition it requires an amount of bandwith and
computation similar to the unauthenticated basic Diffie-Hellman protocol. In-
deed our new protocol requires a single round of communication in which each
party sends just two group elements (as opposed to one in the Diffie-Hellman

168 D. Fiore and R. Gennaro

protocol). Each party must compute four exponentiations to compute the session
key (as opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in
[25]. While that protocol requires only two exponentiations, it works over Z∗

N

therefore requiring the use of a larger group size, which almost totally absorbs
the computational advantage, and immediately implies a much larger bandwith
requirement. Detailed efficiency comparisons to other protocols in the literature
are discussed in Section 5.

We present a full proof of security of our protocol in the Canetti-Krawczyk
security model. Our results hold in the random oracle model, under the Strong
Diffie-Hellman Assumption. We also present some variations of our protocol that
can be proven secure under the basic Computational Diffie-Hellman Assumption.
Our protocol can be proven to satisfy additional desirable security properties
such as perfect forward secrecy1, and resistance to reflection and key-compromise
impersonation attacks.

Our Approach. The first direction we took in our approach was to attempt to
analyze the id-based KA protocols by Gunther [18] and Saeednia [27]. They also
work over any cyclic group where the Diffie-Hellman problem is assumed to be
hard, but lack a formal proof of security. While the original protocols cannot be
shown to be secure, we were able to prove the security of modified versions of
them. Nevertheless these two protocols were not very satisfactory solutions for
the problem we had set out to solve, particularly for reasons of efficiency since
they required a large number of exponentiations, which made them less efficient
than say MQV with certificates. The security analysis of these modified Gunther
and Saeednia protocols will be included in the final version.

Our protocol improves over these two protocols by using Schnorr’s signatures
[30], rather than ElGamal, to issue secret keys to the users. The simpler structure
of Schnorr’s signatures permits a much more efficient computation of the session
key, resulting in less exponentiations and a single round protocol. Our approach
was inspired by the way the MQV protocol [22] achieves implicit authentication
of the session key. Indeed our protocol can be seen as an id-based version of the
MQV protocol.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the
paper.

Let N the set of natural numbers. We will denote with
 ∈ N the security
parameter. The partecipants to our protocols are modeled as probabilistic Turing
machines whose running time is bounded by some polynomial in
. If S is a set, we

1 We can prove PFS only in the case the adversary was passive in the session that
he is attacking – though he can be active in other sessions. As proven by Krawczyk
in [21], this is the best that can be achieved for 1-round protocols with implicit
authentication, such as ours.

Making the Diffie-Hellman Protocol Identity-Based 169

denote with s
$← S the process of selecting an element uniformly at random from

S. A function is said to be negligible if it vanishes faster than any polynomial.
The security of our protocol is based on the Strong Diffie-Hellman Assump-

tion (SDH) [1], which is a variant of the standard Computational Diffie-Hellman
(CDH) [13] where the adversary is provided with an oracle that solves the deci-
sional problem.

Our new protocol is proven secure in the Canetti-Krawczyk (CK) [8,9] model
for key agreement, adapted to the identity-based setting. For lack of space we
defer the description of the assumptions and the model to the full version of the
paper.

3 The New Protocol IB-KA

Protocol setup. The Key Generation Center (KGC) chooses a group G of
prime order q (where q is
-bits long), a random generator g ∈ G and two
hash functions H1 : {0, 1}∗ → Zq and H2 : Zq × Zq → {0, 1}�. Then it picks a
random x

$← Zq and sets y = gx. Finally the KGC outputs the public parameters
MPK = (G, g, y,H1, H2) and keeps the master secret key MSK = x for itself.

Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s
signature [30] of the message m = ID under public key y. More specifically,
the KGC after verifying the user’s identity, creates the associated secret key as
follows. First it picks a random k

$← Zq and sets rID = gk. Then it uses the
master secret key x to compute sID = k+H1(ID, rID)x. (rID, sID) is the secret
key returned to the user. The user can verify the correctness of its secret key by
using the public key y and checking the equation gsID

?= rID · yH1(ID,rID).

A protocol session. Let’s assume that Alice wants to establish a session key
with Bob. Alice owns secret key (rA, sA) and identity A while Bob has secret
key (rB , sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message

〈A, rA, uA〉 to Bob. Analogously Bob picks a random tB
$← Zq, computes uB =

gtB and sends 〈B, rB , uB〉 to Alice. After the parties have exchanged these two
messages, they are able to compute the same session key Z = H2(z1, z2). In
particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utA

B .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utB

A .

It is easy to see that both the parties are computing the same values z1 =
g(tA+sA)(tB+sB) and z2 = gtAtB . The state of a user ID during a protocol session
contains only the fresh random exponent tID. We assume that after a session is
completed, the parties erase their state and keep only the session key.

Remark: In the next section we show that protocol IB-KA is secure under the
Strong Diffie-Hellman Assumption. However, in the full version of the paper we

170 D. Fiore and R. Gennaro

show how to modify IB-KA to obtain security under the basic CDH Assumption,
at the cost of a slight degradation in efficiency.

4 Security Proof

We prove the security of the protocol by a usual reduction argument. More
precisely we show how to reduce the existence of an adversary breaking the
protocol into an algorithm that is able to break the SDH Assumption with non-
negligible probability. The adversary is modeled as a CK attacker: in particular
it will choose a test session among the complete and unexposed sessions and will
try to distinguish between its real session key and a random one.

In our reduction we will make use of the General Forking Lemma, stated by
Bellare and Neven in [2]. It follows the original forking lemma of Pointcheval
and Stern [26], but, unlike that, it makes no mention of signature schemes and
random oracles. In this sense it is more general and it can be used to prove the
security of our protocol. We briefly recall it in the following.

Lemma 1 (General Forking Lemma [2]). Fix an integer Q ≥ 1 and a set
H of size |H | ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hQ

returns a pair (J, σ) where J ∈ {0, . . . , Q} and σ is referred as side output. Let
IG be a randomized algorithm called the input generator. Let accB = Pr[J ≥ 1 :
x

$← IG, h1, . . . , hQ
$← H ; (J, σ) $← B(x, h1, . . . , hQ)] be the accepting probability

of B.
The forking algorithm FB associated to B is the randomized algorithm that

takes in input x and proceeds as follows:

Algorithm FB(x)
Pick random coins ρ for B
h1, . . . , hQ

$← H

(J, σ) $← B(x, h1, . . . , hQ; ρ)
If J = 0 then return (0,⊥,⊥)
h′

1, . . . , h
′
Q

$← H

(J ′, σ′) $← B(x, h1, . . . , hJ−1, h
′
J , . . . , h

′
Q, ; ρ)

If (J = J ′ and hJ �= h′
J) then return (1, σ, σ′)

Else return (0,⊥,⊥).

Let frk = Pr[b = 1 : x $← IG; (b, σ, σ′) $← FB(x)]. Then frk ≥ accB(accB
Q −

1
|H|).

Theorem 1. Under the Strong-DH Assumption, if we model H1 and H2 as
random oracles, then protocol IB-KA is a secure identity-based key agreement
protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol IB-KA , then we
show how to build a solver algorithm S for the CDH problem.

Making the Diffie-Hellman Protocol Identity-Based 171

In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-DH Assumption.
B receives in input a tuple (G, g, U, V), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(U, ·, ·) that on input (V̂ , Ŵ)
answers “yes” if (U, V̂ , Ŵ) is a valid DDH tuple . The side output of B is σ ∈
G×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 + Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him Bob)

and the order number of the test session. If n is an upper bound to the
number of all the sessions initiated by A then the guess is right with
probability at least 1/n.

H2 queries On input a pair (z1, z2):
If H2[z1, z2] = ⊥: choose a random string Z ∈ {0, 1}� and store
H2[z1, z2] = Z
Return H2[z1, z2] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption. When A asks to corrupt party ID �= B, then:

ctr ← ctr + 1; s $← Zq; r = gsy−hctr

If H1[ID, r] �= ⊥ then bad← true
Store H1[ID, r] = hctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component of
Bob’s private key by picking a random kB

$← Zq and setting rB = gkB .
We observe that in this case B is not able to compute the corresponding
sB. However, since Bob is the user guessed for the test session, we can
assume that the adversary will not ask for his secret key.

Simulating sessions. First we describe how to simulate sessions different
from the test session. Here the main point is that the adversary is allowed
to ask session-key queries and thus the simulator must be able to produce
the correct session key for each of these sessions. The simulator has full
information about all the users’ secret keys except Bob. Therefore B
can easily simulate all the protocol sessions that do not include Bob,
and answer any of the attacker’s queries about these sessions. Hence we
concentrate on describing how B simulates interactions with Bob.

172 D. Fiore and R. Gennaro

Assume that Bob has a session with Charlie (whose identity is the string
C). If Charlie is an uncorrupted party this means that B will generate
the messages on behalf of him. In this case B knows Charlie’s secret key
and also has chosen his ephemeral exponent tC . Thus it is trivial to see
that B has enough information to compute the correct session key. The
case when the adversary presents a message 〈C, rC , uC〉 to Bob as coming
from Charlie is more complicated. Here is where B makes use of the oracle
DH(y, ·, ·) to answer a session-key query about this session. The simulator
replies with a message 〈B, rB , uB = gtB 〉 where tB is chosen by B. Recall
that the session key is H2(z1, z2) with z1 = g(sC+tC)(sB+tB) and z2 = utB

C .
So z1 is the Diffie-Hellman result of the values uCgsC and uBgsB , where
gsC = rCyH1(C,rC) and gsB = rByH1(B,rB) can be computed by the
simulator. Notice also that the simulator knows tB and kB (the discrete
log of rB in base g). Therefore it checks if H2[z1, z2] = Z where z2 = utB

C

and DH(y, uCgsC , z̄1) = “yes′′ where z1 = z1

(uCgsC)(kB+tB)H1(B,rB)−1 . If B
finds a match then it outputs the corresponding Z as session key for Bob.
Otherwise it generates a random ζ

$← {0, 1}� and gives it as response to
the adversary. Later, for each query (z1, z2) to H2, if (z1, z2) satisfies the
equation above it sets H2[z1, z2] = ζ and answers with ζ. This makes
oracle’s answers consistent.

In addition observe that the simulator can easily answer to state reveal
queries as it chooses the fresh exponents on its own.

Simulating the test session. Let 〈B, ρB, uB = gtB 〉 be the message from
Bob to Alice sent in the test session. We notice that such message may
be sent by the adversary who is trying to impersonate Bob. In this case
A may use a value ρB = gλB of its choice as the public component of
Bob’s private key (i.e. different than rB = gkB which B simulated and
for which it knows kB). B responds with the message 〈A, rA, uA = V 〉 as
coming from Alice. Finally B provides A with a random session key.

Run until A halts and outputs its decision bit

If H1[B, ρB] = ⊥ then set ctr← ctr + 1 and H1[B, ρB] = hctr

If bad = true then return (0,⊥)

Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi

Let Z = H2(z1, z2) be the correct session key for the test session where
z1 = (uArAyH1(A,rA))(tB+λB+xhi) and z2 = utB

A .

If A has success into distinguishing Z from a random value it must necessarily
query the correct pair (z1, z2) to the random oracle H2. This means that
B can efficiently find the pair (z1, z2) in the table H2 using the Strong-DH
oracle.

Compute τ = z1
z2(uBρByhi)sA

= ρv
BWhi

Return (i, (τ, hi))

Making the Diffie-Hellman Protocol Identity-Based 173

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V)
and accB be the accepting probability of B.2 Then we have that:

accB ≥ ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r for a corrupted party ID before corrupting it, in one of the H1
oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most Q queries to H1 and
corrupts at most Qc parties (and q > 2�) we have that

accB ≥ ε

n
− Qc(Q)

2�
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-DH As-
sumption. It receives in input a CDH tuple (G, g, U, V) where U = gu, V = gv

and u, v are random exponents in Zq. S is also given access to a decision oracle
DH(U, ·, ·) that on input (V̂ , Ŵ) answers “yes” if (U, V̂ , Ŵ) is a valid DH tuple.

Algorithm SDH(U,·,·)(G, g, U, V)

(b, τ, τ ′) $← F
DH(U,·,·)
B (G, g, U, V)

If b = 0 then return 0 and halt
Parse σ as (τ, h) and σ′ as (τ ′, h′)
Return W = (τ/τ ′)(h−h′)−1

If the forking algorithm FB has success, this means that there exist random coins
ρ, an index J ≥ 1 and h1, . . . , hQ, h′

J , . . . , h
′
Q ∈ Zq with h = hJ �= h′

J = h′ such
that: the first execution of B(G, g, U, V, h1, . . . , hQ; ρ) outputs τ = ρv

BWh where
H1[B, ρB] = h; the second execution of B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h

′
Q; ρ)

outputs τ ′ = (ρ′B′)vWh′
where H1[B′, ρ′B′] = h′. Since the two executions of

B are the same until the response to the J-th query to H1, then we must have
B = B′ and ρB = ρ′B′ . Thus it is easy to see that S achieves its goal by computing
W = (τ/τ ′)

1
h−h′ = guv.

Finally, by the General Forking Lemma, we have that if A has non-negligible
advantage into breaking the security of IB-KA , then S’s success probability is
also non-negligible.

4.1 Additional Security Properties of IB-KA

In addition to the notion of session key security, any key-agreement protocol
should satisfy other important properties. Below we describe the additional se-
curity properties enjoyed by IB-KA .
2 We say that B accepts if it outputs (J, σ) such that J ≥ 1.

174 D. Fiore and R. Gennaro

Forward secrecy. We say that a KA protocol has forward secrecy, if after a
session is completed and its session key erased, the adversary cannot learn it
even if it corrupts the parties involved in that session. In other words, learning
the private keys of parties should not jeopardize the security of past completed
sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only
past sessions in which the adversary was passive (i.e. did not choose the mes-
sages) are not jeopardized.

The following theorem (whose proof is deferred to the full version of the paper)
shows that the protocol IB-KA satisfies this notion of weak forward secrecy.

Theorem 2. Let A be a PPT adversary that is able to break the weak forward
secrecy of the IB-KA protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

Resistance to reflection attacks. A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity
(and the same private key). Though, at first glance, this seems to be only of
theoretical interest, there are real-life situations in which this scenario occurs.
For example consider the case when Alice is at her office and wants to establish
a secure connection with her PC at home, therefore running a session between
two computers with the same identity and private key.

The current proof actually does not work when the adversary sends a message
with the same value rB provided by the KGC (for which the simulator knows
the discrete logarithm kB , but cannot compute the corresponding sB). The issue
is that the knowledge of sB would be needed to extract the solution of the CDH
problem. We point out that a reflection attack using a value ρB �= rB is captured
by the current proof. Moreover it is reasonable to assume that a honest party
refuses connections from itself that use a “wrong” key.

However it is possible to adapt the proof in this specific case. In particular we
can show that a successful run of the adversary enables the simulator to compute
gu2

instead of guv. As showed in [23] by Maurer and Wolf, such an algorithm
can be easily turned into a solver for CDH. For lack of space this is deferred to
the full version of the paper.

Resistance to Key Compromise Impersonation. Suppose that the adver-
sary learns Alice’s private key. Then, it is trivial to see that this knowledge
enables the adversary to impersonate Alice to other parties. A key compromise
impersonation (KCI) attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

To see that the protocol IB-KA is resistant to KCI attacks it suffices to observe
that in the proof of security, when the adversary tries to impersonate Bob to
Alice, we are able to output Alice’s private key whenever it is asked by the
adversary. It means that the proof continues to be valid even in this case.

Making the Diffie-Hellman Protocol Identity-Based 175

Ephemeral Key Compromise Impersonation. A recent paper by Cheng
and Ma [12] shows that our protocol is susceptible to an ephemeral key compro-
mise attack. Roughly speaking this attack considers the case when the adversary
can make state-reveal queries (in order to learn the ephemeral key of a user) even
in the test session. Though the paper is correct, we point out that this kind of
attack is not part of the standard Canetti-Krawczyk security model that is con-
sidered in this paper.

5 Comparisons with Other IB-KA Protocols

In this section we compare IB-KA with other id-based KA protocols from the
literature. In particular, we consider the protocol by Chen and Kudla [11] (SCK-
2) (which is a modification of Smart’s [31]) and two protocols proposed very
recently by Boyd et al. [6] (BCNP1, BCNP2).

For our efficiency comparisons we consider a security parameter of 128 and
implementations of SCK-2, BCNP1 and BCNP2 with Type 3 pairings3, which
are the most efficient pairings for this kind of security level (higher than 80).
Our protocol is assumed to be implemented in an elliptic curves group G with
the same security parameter. In this scenario elements of G and G1 need 256
bit to be represented, while 512 bits are needed for G2 elements and 3072 bits
for an element of GT . We estimate the computational cost of all the protocols
using the costs per operation for Type 3 pairings given by Chen et al. in [10].
The bandwidth cost is expressed as the amount of data in bits sent by each
party to complete a session of the protocol4. According to the work of Chen et
al. [10] SCK-2 is the most efficient protocol with a proof of security in the CK
model for all types of pairings. It is proved secure using random oracles under the
Bilinear Diffie-Hellman Assumption and requires one round of communication
with only one group element sent by each party. To be precise, we point out
that the protocol of Boyd et al. (BMP) [7] would appear computationally more
efficient than SCK-2, but unfortunately it works only in type 1 and type 4
pairings and is proven secure only in symmetric pairings. BCNP1 and BCNP2
are generic constructions based on any CCA-secure IB-KEM. When implemented
(as suggested by the authors of [6]) using one of the IB-KEMs by Kiltz [19], Kiltz-
Galindo [20] or Gentry [17] they lead to a two-pass single-round protocol with
(CK) security in the standard model. BCNP2 provides weak FS and resistance
to KCI attacks, while BCNP1 satisfies only the former property.

The results are summarized in Table 1 assuming protocols BCNP1 and BCNP2
to be implemented with Kiltz’s IB-KEM (the most efficient for this application
according to the work of Boyd et al. [6]). We defer to the original papers of SCK-
2 [11] and BCNP1, BCNP2 [6] for more details about these costs. As described
in the table, our protocol has a reasonable bandwidth requirement and achieves
the best computational efficiency among the other id-based KA protocols.
3 This classification of pairing groups into several types is provided by Galbraith

et al. in [15].
4 We do not consider the identity string sent with the messages as it can be implicit

and, in any way, appears in all the protocols.

176 D. Fiore and R. Gennaro

Table 1. Comparisons between IB-KA protocols

weak
KCI

Standard Efficiency
FS model Bandwidth Cost per party

BCNP1 � � � 768 56
BCNP2 � � � 1024 59
SCK-2 � � � 256 43
IB-KA � � � 512 6

Comparison with PKI-based protocols. We also compare our protocol
to MQV [22], and its provably secure version HMQV [21], which is the most
efficient protocol in the public-key setting. When comparing our protocol to
a PKI-based scheme, like MQV, we must also consider the additional cost of
sending and verifying certificates.

We measure the computation costs of the protocols in terms of the number of
exponentiations in the underlying group needed to compute the session key. If
the exponentiations is done with an exponent that is half the length of the group
size, then obviously we count it as 1/2 exponentiation. Also if an exponentiation
is done over a fixed basis, we apply precomputation schemes to speed up the
computation, e.g. [16].

Our protocol requires each party to send a single message consisting of two
group elements. To compute the session key, the parties perform 2 full expo-
nentiations over variable basis, and one half exponentiation over a fixed basis5.
For our security parameter, following [16], the latter half exponentiation can be
computed with less than 20 group multiplications, with a precomputation table
of moderate size.

In MQV, each party sends a single message consisiting of one group element,
and performs 1.5 exponentiations to compute the session key. Moreover, in HMQV
certificates are sent and verified. Here we distinguish two cases: the certificate is
based either on an RSA signature, or on a discrete-log signature, e.g. Schnorr’s.

In the RSA case, a short exponent e.g. e = 216 + 1, is typically used, and the
verification cost is basically equivalent to the cost of the half exponentiation with
precomputation in our protocol above. Therefore in this case, MQV is faster, but
by a mere half exponentiation. The price to pay however is a massive increase
in bandwidth to send the RSA signature (i.e. 3072 bits), and the introduction
of the RSA Assumption in order to prove security of the entire scheme. If we
use a Schnorr signature for the certificate, then MQV require sending two more
group elements, and therefore its bandwidth requirement is already worse than
our protocol (by one group element). The parties then must compute one full and
one half exponentiation, both with fixed basis6 to verify the certificate. This extra
computational cost can be compared to an additional half exponentiation, making
the computation requirement of MQV with Schnorr certificates equivalent to that
of our protocol.
5 Indeed since the input to the hash function H1 is randomized, we can set its output

length to be half of the length of the group size.
6 Though different basis, whichmeans that in order to apply precomputation techniques,

the parties need to maintain two tables.

Making the Diffie-Hellman Protocol Identity-Based 177

In conclusion, when comparing our protocol with MQV with certificates we
find that our protocol: (i) has comparable computational cost; (ii) has better
bandiwdth (by far in the case of RSA certificates) and (iii) simplifies protocol
implementation by removing entirely the need to manage certificates and to
interact with a PKI7.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

2. Bellare, M., Neven, G.: New Multi-Signature Schemes and a General Forking
Lemma. In: Proceedings of the 13th Conference on Computer and Communica-
tions Security – ACM CCS 2006. ACM Press, New York (2006)

3. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. SIAM
J. Comput. 32(3), 586–615 (2003); In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 213–615. Springer, Heidelberg (2001)

5. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In:
Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243.
Springer, Heidelberg (2005)

6. Boyd, C., Cliff, Y., Nieto, J.G., Paterson, K.G.: Efficient One-Round Key Exchange
in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

7. Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Au-
thenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 248–262. Springer, Heidelberg (2004)

8. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

9. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

10. Chen, L., Cheng, Z., Nigel, P.: Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Sec. 6(4), 213–241 (2007)

11. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from
Pairings. In: 16th IEEE Computer Security Foundations Workshop - CSFW 2003,
pp. 219–233. IEEE Computer Society Press, Los Alamitos (2003)

12. Cheng, Q., Ma, C.: Ephemeral Key Compromise Attack on the IB-KA protocol.
Cryptology Eprint Archive, Report 2009/568 (2009),
http://eprint.iacr.org/2009/568

13. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7 In the above, we did not account for the cost of verifying group membership for the
elements sent by the parties, which is necessary both in the case of MQV and our
protocol, and is the same in both protocols.

http://eprint.iacr.org/2009/568

178 D. Fiore and R. Gennaro

14. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Cryp-
tology ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org

16. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer,
Heidelberg (1994)

17. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

18. Gunther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990)

19. Kiltz, E.: Direct Chosen-Ciphertext Secure Identity-Based Encryption in the Stan-
dard Model with short Ciphertexts. Cryptology Eprint Archive, Report 2006/122
(2006), http://eprint.iacr.org/2006/122

20. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key Encap-
sulation Without Random Oracles. Cryptology Eprint Archive, Report 2006/034
(2006), http://eprint.iacr.org/2006/034

21. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

22. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient Protocol for Au-
thenticated Key Agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

23. Maurer, U., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

24. Okamoto, E.: Key Distribution Systems Based on Identification Information. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer,
Heidelberg (1988)

25. Okamoto, E., Tanaka, K.: Key Distribution System Based on Identification. Infor-
mation. IEEE Journal on Selected Areas in Communications 7(4), 481–485 (1989)

26. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

27. Saeednia, S.: Improvement of Gunther’s identity-based key exchange protocol. Elec-
tonics Letters 31(18), 1535–1536 (2000)

28. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Sym-
posium on Cryptography and Information Security, Okinawa, Japan (2000)

29. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In:
Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985)

30. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

31. Smart, N.P.: An identity-based authenticated key-agreement protocol based on the
Weil pairing. Electronics letters 38, 630–632 (2002)

32. Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryp-
tosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th
Conference on USENIX Security Symposium, p. 15. USENIX Association (2003)

33. Wang, Y.: Efficient Identity-Based and Authenticated Key Agreement Protocol.
Cryptology ePrint Archive, Report 2005/108 (2005),
http://eprint.iacr.org/2005/108/

http://eprint.iacr.org
http://eprint.iacr.org/2006/122
http://eprint.iacr.org/2006/034
http://eprint.iacr.org/2005/108/

On Extended Sanitizable Signature Schemes�

Sébastien Canard1 and Amandine Jambert1,2

1 Orange Labs, 42 rue des Coutures, BP6243, 14066 Caen Cedex, France
2 IMB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Abstract. Sanitizable signature schemes allow a semi-trusted entity to
modify some specific portions of a signed message while keeping a valid
signature of the original off-line signer. In this paper, we give a new se-
cure sanitizable signature scheme which is, to the best of our knowledge,
the most efficient construction with such a high level of security. We also
enhance the Brzuska et al. model on sanitizable signature schemes by
adding new features. We thus model the way to limit the set of possible
modifications on a single block, the way to force the same modifications
on different admissible blocks, and the way to limit both the number
of modifications of admissible blocks and the number of versions of a
signed message. We finally present two cryptanalysis on proposals for
two of these features due to Klonowski and Lauks at ICISC 2006 and
propose some new practical constructions for two of them.

Keywords: Sanitizable signature, chameleon hash, accumulator scheme.

1 Introduction

Since the appearance of public key cryptography, signature schemes have been
one of the most widely studied cryptographic tool. Among some others, one of the
main security properties a signature scheme should verify is the integrity of the
message. However, in some cases, such as medical applications, secure routing or
content protection [1,5], it may be necessary for a designated semi-trusted entity
to delete or modify some parts of the signed message.

In this paper, we focus on sanitizable signature schemes (introduced in [1]
and later formalized in [2]) which permits a signer to produce a signature on a
document, which can be further modified, in a limited and controlled fashion,
by a designated semi-trusted “sanitizer”, with no interaction with the original
signer. Moreover, the signature on the resulting message should be verifiable as
a signature from the original signer. On the other hand, the sanitizer should be
able to modify only the sanitizable parts of the message, that is, the parts that
have been stated as modifiable/admissible by the signer.

1.1 Related Work

The first sanitizable signature scheme [1] makes use of chameleon hash func-
tions [8] and this is also the case for most of existing ones. The first problem with
� This work has been financially supported by the French Agence Nationale de la

Recherche and the TES Cluster under the PACE project.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 179–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 S. Canard and A. Jambert

this construction is the possibility to obtain some new sanitized messages from
two different ones, without the secret key of the sanitizer (i.e. it is forgeable).
Moreover, a judge is unable to decide whether a signature has been sanitized or
not. Thus, according to [2], the scheme is not accountable.

Canard et al. [5] fix both problems, in the context of trapdoor sanitizable
signature, by adding an extra modifiable block corresponding to the whole mes-
sage. The original message is used as a unique identifier to obtain accountability.
However, as the original message is obviously recognizable from a sanitized one,
this scheme is not transparent [2].

In [2], Brzuska et al. propose the first secure scheme (i.e. immutable,
transparent and accountable). They propose to add a tag (verifiably and pseudo-
randomly generated by the signer and randomly by the sanitizer) to each modifi-
able block. Thus, the signer can prove which one she constructed. Unforgeability
(and thus accountability) is reached thanks to the computation of a new tag per
message. This implies to compute a collision for each modifiable block, even if
this block has not been modified. Thus, this solution lacks of efficiency.

Yuen et al.[10] also give a solution in the standard model but without
accountability.

At ICISC’06, Klonowski and Lauks propose [7] several extensions of the saniti-
zation signature paradigm: force the sanitizer to construct less than l versions of
a message, modify at maximum k sanitizable blocks or limit the values available
for some blocks. However neither security model nor proofs are given.

1.2 Our Contribution

In this paper, we provide several contributions to sanitizable signature schemes.
We first extend in Section 4 the Brzuska et al. [2] model (see Section 2) by taking
into account the way to (i) limit block modifications in a set, (ii) secretly force
the same modifications on different admissible blocks (which can be different at
the beginning), (iii) limit the number of admissible blocks modifiable and (iv)
limit the number of versions of a signed message. We also give in Section 3 a
new sanitizable signature scheme without additional features which is, to the
best of our knowledge, the most efficient and secure construction. After that,
we show in Section 5 a cryptanalysis on two proposals for additional features
(ii) and (iii) due to Klonowski and Lauks [7]. Finally, we present in Section 6
practical constructions for the extensions (iii) and (iv) and show how the idea
from Klonowski and Lauks for (i) can be made secure.

2 Initial Model for Sanitizable Signatures

In the following, the size of the message (in bits) is denoted
 and a message is
divided (by the signer) into t blocks. The variable ADM includes, for each block
mi, i ∈ [1, t], the length
i of the corresponding i-th block (thus
 =

∑t
i=1
i)

and a subset of [1, t] corresponding to the ranks of the blocks modifiables by
the sanitizer (i.e. admissible). The variable MOD is a set of elements of the

On Extended Sanitizable Signature Schemes 181

form (i,m′
i). A value (i,m′

i) ∈ MOD if and only if the i-th block is modified
into m′

i during the sanitization. By misuse of notation, we denote i ∈ MOD if
∃m′

i/(i,m
′
i) ∈ MOD. We say that MOD matches ADM if ∀i ∈ MOD, i ∈ ADM.

2.1 Procedures and Correctness

A sanitizable signature scheme SS is composed of the following algorithms (each
of them may output an error ⊥), where λ is a security parameter.

– Setup takes as input 1λ and outputs the parameters param of the system.
In the following, we consider that λ is included into param.

– SigKeyGen (resp. SanKeyGen) on input param outputs the key pair
(pksig, sksig) for the signer (resp (pksan, sksan) for the sanitizer).

– Sign takes as input a message m of length
 divided into t blocks, the secret
key sksig , the public key pksan and the variable ADM. It outputs a sanitizable
signature σ on the message m. In the following, ADM is included into σ.

– Sanitize takes as input a message m, a sanitizable signature σ, the public
key pksig, the secret key sksan and the modifications MOD that the sanitizer
wants to do on m. It outputs a new signature σ′ and message m′.

– Verify permits to verify a signature σ on a message m with the public keys
pksig and pksan. It outputs true if the signature is correct and false otherwise.

– Proof takes as input a signature σ on a given message m, the secret key
sksig , the public key pksan and the set of message-signature pairs she has
produced (mi, σi)i=1,2,··· ,q. It outputs a proof π.

– Judge is a public algorithm which aims at deciding who has produced a
given signature. It takes as input (m, σ), a proof π from Proof and the
public keys pksig and pksan and outputs signer or sanitizer.

First, a sanitizable signature scheme needs to verify some correctness properties:

– Signing correctness says that a signature from Sign with the secret key
from SigKeyGen is accepted with an overwhelming probability by Verify.

– Sanitizing correctness says that a signature from Sanitize from a valid
signature with the secret key from SanKeyGen is accepted with an over-
whelming probability by Verify.

– Proof correctness says that for any sanitized message, the signer is able
to output a proof π, using Proof, such that Judge outputs sanitizer.

2.2 Security Requirements

According to Brzuska et al., a sanitizable signature scheme is secure if it veri-
fies the following security properties. Formal experiments are given in the table
below.

– Immutability. It is not possible for the sanitizer to modify non admissible
blocks of a signed message. In the corresponding experiment, the adversary
impersonates the sanitizer.

182 S. Canard and A. Jambert

– Transparency. Only the signer and the sanitizer are able to distinguish an
original signature from a sanitized one. During this experiment, the adver-
sary is given access to a Sign/Sanit oracle which on input a bit b outputs
either a sanitized signature if b = 0 (output by Sanitize) or a signed message
if b = 1 (output by Sign).

– Accountability. In case of an argument about the origin of a signature and
a message, the judge is able to correctly settle it.

Immutability: SuccSS
imm = Pr[1 ←− Exp

SS
imm] where Exp

SS
imm is as follows

– (pksig, sksig) ←− SigKeyGen(1λ)
– (pksan

∗, m∗, σ∗) ←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)
– Let (mi, ADMi, pksan,i) and σi for i ∈ [1, q] be the queries related to oracle Sign

– return 1 if Verify(m∗, σ∗, pksig, pksan
∗) = true and for all i = 1, 2, · · · , q we have

– pksan
∗ �= pksan,i or

– ∃ji /∈ ADMi such that m∗[ji] �= mi[ji]
Transparency: AdvSS

trans = Pr[1 ←− Exp
SS
trans] − 1/2 where Exp

SS
trans is as follows

– (pksig, sksig) ←− SigKeyGen(1λ)
– (pksan, sksan) ←− SanKeyGen(1λ)
– b ←− {0, 1}
– b′ ←− ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·),Sign/Sanit(·,·,·,sksig,sksan,b)(pksig, pksan)
– return 1 if b′ = b

Sanitizer Accountability: SuccSS
san−acc = Pr[1 ←− Exp

SS
san−acc] where Exp

SS
san−acc is as follows

– (pksig, sksig) ←− SigKeyGen(1λ)
– (pksan

∗, m∗, σ∗) ←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)
– Let (mi, ADMi, pksan,i) and σi for i ∈ [1, q] be the queries related to oracle Sign

– π ←− Proof(sksig, m∗, σ∗, m1, σ1, · · · , mq, σq, pksan
∗)

– return 1 if Verify(m∗, σ∗, pksig, pksan
∗) = true and

– (pksan
∗, m∗) �= (pksan,i, mi) for all i = 1, · · · , q and

– Judge(m∗, σ∗, pksig, pksan
∗, π) = signer

Signer Accountability: SuccSS
sig−acc = Pr[1 ←− Exp

SS
sig−acc] where Exp

SS
sig−acc is as follows

– (pksan, sksan) ←− SanKeyGen(1λ)
– (pksig

∗, π∗, m∗, σ∗) ←− ASanit(·,·,·,·,sksan)(pksan)
– Let (m′

i, σ′
i) for i = 1, 2, · · · , q be the answers from oracle Sanit.

– return 1 if Verify(m∗, σ∗, pksig
∗, pksan) = true and

– (pk∗sig, m∗) �= (pksig,i, m′
i) for all i = 1, · · · , q and

– Judge(m∗, σ∗, pk∗
sig, pksan, π∗) = sanitizer

2.3 Useful Tools

Signature Schemes. We need a signature scheme S = (KeyGen, Sign,
Verify) using a security parameter λ. The secret key is denoted ssk and the cor-
responding public verification key spk. The verification algorithm outputs true
if the signature is correct and false if not. The used signature scheme needs to
be existentially unforgeable against chosen message attacks (EU-CMA), that is
SuccSEU−CMA is negligible in the security parameter [6].

Chameleon Hash Schemes. We will use a chameleon hash scheme CH =
(Setup,Proceed,Forge) using a security parameter λ. Setup permits the
generation of the key pairs (chpk, chsk) on input 1λ. Proceed takes as input
the chameleon hash public key chpk, a message m and a random r and outputs
the hash value h of the message m. Forge, on input the chameleon hash secret
key chsk, the message m, the random r, the hash value h and a new message m′,
outputs a new random r′ such that h = Proceed(chpk,m′, r′).

On Extended Sanitizable Signature Schemes 183

A chameleon hash function is said strong (resp. weak) secure if it is both
uniform (the distribution of the output of Forge are indistinguishable from a
random [8,5]) and strong (resp. weak) collision resistant (it is impossible to find
a collision (m′, r′) on h = Proceed(chpk,m, r), only having access to h, m, r,
chpk and an oracle Forge (resp. to h, m, r, chpk)). We note SuccCHSCollRes (resp.
SuccCHWCollRes) the success of an adversary against strong (resp. weak) collision
and AdvCHUni the advantage of an adversary against uniformity.

Pseudorandom Generators. We use in the following a pseudorandom genera-
tor PRG mapping λ-bits to 2λ-bits and a pseudorandom function PRF mapping
λ-bits to λ-bits. We note AdvPRG

Pseudorand and AdvPRF
Pseudorand the advantages of an

adversary against pseudo-randomness and AdvPRG
OneWay the one-wayness of PRG.

Accumulator Schemes. An accumulator scheme [4,9,3] Acc permits to ac-
cumulate a large set of objects in a single short value, called the accumulator
and denoted Acc. Such scheme provides evidence that a given object belongs to
the accumulator by producing a witness w related to Acc and x by the relation
Acc = Acc(x,w). We denote x ∈ Acc, or (x,w) ∈ Acc, if x is accumulated in
Acc with the witness w. If someone reveals a value x together with a witness
w, she proves that the value x is truly accumulated in the accumulator Acc iff
Acc(x,w) = Acc. Such scheme is divided into several procedures including the
parameter generation which initializes the parameters, the accumulation phase to
accumulate values in a new accumulator and the witnesses computation phase.
Existing constructions provide the main security property of an accumulator
scheme, named the collision resistant one, which says [9] that this is infeasible
for an adversary, on input an accumulator Acc, to output a value and a witness
that this value is accumulated in Acc, while this is not the case. In the following,
we say that Acc is secure if SuccAcc

CR is negligible in the security parameter.

3 A New Construction in the Initial Model

3.1 High Level Description

Both [5] and [2] are based on Ateniese et al. [1], which works as follows. Let
m = m1‖m2‖ · · · ‖mt be the message to sign and IDm a random unique identifier.

– The Sign procedure consists in executing, for each admissible block mi,
CH.Proceed, with a random ri, to obtain hi. Then, the signer computes
a modified version m̃i of each block as either hi if i ∈ ADM or mi‖i oth-
erwise. Finally, she executes the signature algorithm on the message m̃ =
m̃1‖m̃2‖ · · · ‖m̃t, as s = S.Sign(ssk, IDm||t||pksan||m̃). The final sanitizable
signature σ on the message m is (s,R,ADM) where R = {ri : i ∈ ADM}.

– The Sanitize step from a message m = m1‖m2‖ · · · ‖mt to a message m′ =
m′

1‖m′
2‖ · · · ‖m′

t consists in using CH.Forge to obtain the new r′i for all
i ∈ ADM, so that the value hi (and thus the signature s) is unchanged after
the modification of the block message (mi to m′

i).

184 S. Canard and A. Jambert

This solution has two main problems. First, it is not accountable since a judge
can not decide whether a signature has been sanitized or not. We propose to use
a pseudorandom number TAG, instead of IDm, which is linked to the version of
the message and generated using both a PRG and a PRF [2]. Thus, the signer
can prove that she has correctly computed the tag, while being transparent.

Second, it is forgeable since it is possible to obtain a new sanitization from
two versions of the same message, without chsk. Let m = m1‖m2‖m3‖m4, m2
and m4 are sanitized into m′ = m1‖m′

2‖m3‖m′
4. We obtain (s, {r′2, r′4},TAG) from

(s, {r2, r4},TAG). Then everyone can obtain (s, {r′2, r4},ADM) on m1‖m′
2‖m3‖m4.

We add a final admissible block corresponding to the whole message [5]. As this
block is updated at each version, the attack does not work any more.

3.2 Definition of Procedures

More formally, our sanitizable signature scheme works as follows.

– SigKeyGen. This step consists in executing S.KeyGen to obtain (ssk, spk)
and in choosing randomly a secret key κ in {0, 1}λ for the PRF.

– SanKeyGen. This algorithm executes CH.Setup to obtain (sksan, pksan).
– Sign. First, the signer generates the variable ADM as defined in the model.

Let u be the number of modifiable parts in m. During this step, the signer
generates the tag TAG by computing x = PRF(κ,Nonce) where Nonce ∈
{0, 1}λ, and TAG = PRG(x). In order to compute the chameleon hash func-
tion, she randomly chooses r1, · · · , ru, rc in {0, 1}λ. Then, for each admissible
block, she executes what we call the (public) “reconstruction procedure”,
which takes as input the message m, TAG, the ri’s and the public key pksan.
It is divided into several steps.
1. Compute the values m̃i for each block:

∀i, m̃i =
{

hi = CH.Proceed(pksan,mi||i, ri) if mi ∈ ADM
mi||i else

2. Compute the final block : hc = CH.Proceed(pksan,TAG||m, rc).

After that, the signer signs the message m̃ = m̃1|| · · · ||m̃t||hc||pksan as s =
S.Sign(sksig , m̃). She finally obtains the sanitizable signature σ = (s, TAG,
Nonce, R, ADM) with R = {r1, · · · , ru, rc}. The signature and the message
are added to the signer’s database DB.

– Sanitize. The sanitizer uses the reconstruction procedure to obtain the
hi’s and hc. For all i ∈ MOD, she finds a collision on hi, using sksan.
She computes ∀j ∈ MOD, r′j = CH.Forge(sksan,mj ||j,m′

j ||j, hj) and r′c =
CH.Forge(sksan,TAG||m,TAG′||m′, hc), where Nonce′ and TAG′ are random
values. The sanitized signature is σ′ = (s,TAG′,Nonce′,R′,ADM) where the
set R′ = {r′1, · · · , r′u, r′c} (with r′j = rj if j /∈ MOD).

– Verify. The verifier executes the reconstruction procedure as described
above to obtain m̃ = m̃1|| · · · ||m̃t||hc||pksan. She finally returns the output
of S.Verify(pksig , s, m̃).

– Proof. The signer searches in DB an integer i ∈ [1, q] such that

CH.Proceed(pksan,TAG||m, rc) = CH.Proceed(pksan,TAGi||mi, rci) (1)

On Extended Sanitizable Signature Schemes 185

with TAGi = PRG(xi) for xi = PRF(κ,Noncei) and m �= mi. If it exists, it
outputs π = (pksig,TAGi,mi, rci , xi) else, it outputs ⊥.

– Judge. If π = ⊥, then it returns signer. Else, π = {pksig ,TAGi,mi, rci , xi}
and the algorithm checks if Equation (1) holds, with m �= mi and TAGi =
PRG(xi). If so it outputs sanitizer. If not, it outputs signer.

3.3 Security Considerations

Theorem 1. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random and CH is strong secure.

Proof. We prove that our scheme is immutable, transparent and accountable.

– The Immutability is reached thanks to the fact that non-admissible blocks
are directly signed with the EU-CMA signature scheme S. More formally
let ASS

Imm be an adversary against our scheme which, at the end of the
experiment, outputs a message m∗ and a public key pk∗san.
• It exists m∗

j �= mij for some j �∈ ADM. We can use ASS
Imm to break the

EU-CMA property of S. Each time ASS
Imm queries a sanitizable signature

from the signer, we use the signing oracle of S. At the end, ASS
Imm outputs

a valid new pair m∗, σ∗. As it exists m∗
j �= mij for some j �∈ ADM, the

underlying signed message m̃∗ and the corresponding signature s∗ give
us a forge on the signature scheme S.

• pk∗san �= pksani on all requests. We first recall that the message signed by
the signer is m̃ = m̃1|| · · · ||m̃t||hc||pksan. By assumption, the underlying
signed message m̃∗ is different from all queried m̃i on, at least, its last
part corresponding to pk∗san. All m̃i’s are signed using the signing oracle
while the output signed message is a forge. We have thus broken the
existential unforgeability of S.

As a consequence the probability of success of an adversary against the
immutability of our scheme is SuccSS

Imm ≤ SuccSEU−CMA.
– The Transparency is satisfied since the outputs of the signature and sani-

tization algorithms are similar, except in the construction of TAG and ri.
• Let us first focus on the ri’s. In this case, the transparency property

results in the distributional property of the chameleon hash function.
During a Sign procedure, the ri for the CH.Proceed algorithm are
chosen at random while during the Sanitize algorithm, the ri’s corre-
sponds to the outputs of CH.Forge. Thus, the probability of success of
the adversary in this case is the same as against the uniformity property
of the chameleon hash function, AdvCHUni.

• Regarding TAG, the signer chooses at each new signature a new pseudo-
random value Nonce and uses it to compute the value TAG thanks to
PRF and PRG. Thus, TAG is indistinguishable from a random value,
under the pseudorandomness of functions PRF and PRG.

As a conclusion, the advantage of an adversary against the transparency is
AdvSS

Trans ≤ AdvCHUni + AdvPRG
Pseudorand + AdvPRF

Pseudorand.

186 S. Canard and A. Jambert

– For the Signer-Accountability, there are two possibilities.
1. The adversary uses a collision generated by the sanitizer, and thus suc-

cessfully obtains a value x such that TAG = PRG(x). This is impossible
under the one-wayness of the function PRG.

2. The adversary uses a TAG she has constructed. To win the experiment,
the adversary has to generate a collision on the chameleon hash function,
which can happen with probability SuccCHCollRes.

As a consequence, the probability of success of the adversary ASS
sig−Acc is

SuccSS
sig−Acc ≤ SuccPRG

OneWay + SuccCHSCollRes.
– A successful adversary against the Sanitizer-accountability has to find a

correct collision on a message m, using the Proof algorithm. As m neces-
sary respects ADM, the signature s in σ is necessary a forge of the classical
signature scheme. As a consequence, the probability of success against the
Sanitizer-accountability is SuccSS

san−Acc ≤ SuccSEU−CMA. �

4 Model for Extended Sanitizable Signatures

4.1 Additional Features for Sanitizable Signatures

In this paper, we study in detail 4 additional features for sanitizable signature,
from which 3 have been introduced in [7]. These restrictions are set by the signer
and must be taken into account by the sanitizer.

– LimitSet: this feature permits the signer to force some admissible blocks of
a signed message to be modified only into a predefined set of sub-messages.
More precisely, during the Sign algorithm the signer may define for each
admissible block i a set Vi of available sub-messages. Then, the sanitizer
must use one element m′

i ∈ Vi during her sanitization of this block. For this
purpose, we introduce the set V = {Vi ⊂ {0, 1}�i : i ∈ ADM}. Each Vi defines
the set for the modifications of the block mi. If the signer does not want to
restrict the sanitizer in her modifications of the block mi, then Vi = {0, 1}�i.

– EnforceModif: with this feature, the signer forces the sanitizer to modify
similarly several admissible blocks. If one is modified by the sanitizer during
the Sanitize procedure, she must use the same modification for the other
admissible blocks designated by the signer. We introduce condm = {Si ⊂
[1, 2�] : ∀j ∈ Si, j ∈ ADM and ∀k �= i, j /∈ Sk}. Each set in condm corresponds
to a set of, at least, two admissible blocks which should be modified similarly.
Note that an admissible block can only belong to one set Si.

– LimitNbModif: the sanitizer should modify less than a number k, fixed by
the signer, out of the |ADM| admissible blocks. If the sanitizer modifies more
than k blocks, one of her secret key becomes available. condk is a condition
simply described by the integer k ∈ [1, |ADM|]. In case this feature is not
chosen by the signer, then k = |ADM|.

– LimitNbSanit: this feature limits the number of versions one sanitizer can
do from an original signed message. If the sanitizer does one extra sanitiza-
tion, one of her secret key becomes available. We here define condl, which

On Extended Sanitizable Signature Schemes 187

corresponds to an integer l. If l �=∞, then the sanitizer can only sanitize the
corresponding signed message l times. If l =∞, then, there is no restriction
on the number of sanitizations the sanitizer can do.

4.2 Modification of the Initial Model

We now modify the model of Brzuska et al. [2] to introduce the above new fea-
tures. We first study the case of the classical procedures for sanitizable signature
schemes Sign and Sanitize (as usual each of them output ⊥ in case of error).

– Sign takes as input a message m of length
 divided into t blocks, the secret
key sksig , the public key pksan and ADM. It outputs a sanitizable signature
σ on the message m and the variables V , condm, condk and condl as defined
above. This procedure may also output some secret data denoted s that
would be needed by the sanitizer. We denote s =⊥ if this is not relevant for
the signer in the scheme. In the following, ADM is included into σ.

– Sanitize takes as input a message m, a signature σ, the keys pksig and sksan,
the modifications MOD and furthermore the variables V , condm, condk and
condl, as defined above, and the secret data s. It outputs a new signature σ′,
the message m′ modified according to the different conditions and variables
V , condm, condk and condl defined by the signer.

Remark 1. Note that the different variables may not be used to verify the signa-
ture. In some cases, it may be necessary to keep these data secret. The verifier
may e.g. not know how many times the sanitizer can sanitize a message. What
is important is to detect a fraud, even if it may be simpler using the value l.

We now consider that the sanitization secret key sksan is divided into two parts.
The first one, usksan, is considered as the user secret key and can be retrieved in
case of fraud. It can be computed during a distinct procedure (e.g. some kind of
UserKeyGen procedure) or included into the SanKeyGen phase. The second
key, ssksan, is used to sanitize messages, as the sanitization secret key in the
initial model. We now introduce the new procedures.

– TestFraud is a public algorithm which on input the public keys pksig ,
pksan and a set DB of pairs (message, signature), checks if a fraud has been
done on the number of admissible blocks and/or on the number of versions
of message. It outputs either ⊥ is everything is ok, or usksan and a proof of
guilt π otherwise. We consider that π includes DB .

– VerifyFraud is a public algorithm which on input a proof π and a user
key usksan outputs either 1 if the proof π is valid, and 0 otherwise.

4.3 Relation between Security Properties

We now focus on the security properties that need to be modified to take into
account the above features. First of all, the accountability and the transparency
properties are not modified by the above additional features. However the oracles

188 S. Canard and A. Jambert

used in both experiment should be modified in order to consider the additional
input. For example, in the transparency experiment, the Sign/Sanit oracle
generates a sanitized signature for all values of the challenge bit b and this oracle
and the Sign one should be honest together (i.e. they cannot make more than
l sanitizations (for example) in total). Note that regarding the privacy property
(implied by transparency [2]), we need to slightly modify the corresponding
experiment to add in the LoRSanit oracle the choice of the Vi’s: for each
admissible part k ∈ ADM+, both initial and final messages should belong to the
randomly chosen set Vk. Thus, privacy is also induced by transparency in the
extended model. We now concentrate on immutability.

Extended immutability. Let us focus on the two first additional extensions
which modify the immutability property. In the new model, we add two new
conditions to the classical experiment (i) one modifiable part mi is not in the
set of acceptable values for that part (m′

i /∈ Vi) or (ii) two admissible blocks
from the same set element Si0 of condm (that is that are forced to be modified
accordingly) are different. Note that we have the following lemma.

Lemma 1. An Extended Immutable signature scheme is Immutable.

Proof. A successful adversaryA against the immutability experiment [2] outputs
(pksan

∗,m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan
∗) = true and for all i =

1, 2, · · · , q either pksan
∗ �= pksan,i or ∃ji �∈ ADMi|m∗[ji] �= mi[ji], so she directly

wins the Extended Immutability experiment above. �
Extended traceability. We now introduce a new security property which we
call “extended traceability”. This ensures that an adversary is not able to do
more modifications than stated by Sign, or to execute more sanitizations of the
same signed message than the sanitizer is allowed to, without being accused of.

In the corresponding experiment, the adversary outputs several valid pairs
(message, signature) under the same sanitizer public key such that TestFraud,
with as input this set of pairs, detects a fraud i.e. returns a pair (usksan, π). The
adversary wins the game if usksan is not part of the corresponding sanitizer
secret key or if VerifyFraud outputs 0.

Extended Immutability: SuccSS
ext−imm = Pr[1 ←− Exp

SS
ext−imm] where Exp

SS
ext−imm is:

– (pksig, sksig) ←− SigKeyGen(1λ)
– (pk∗san, m∗, σ∗, l∗, k∗,V∗) ←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)
– Let (mi, ADMi, pksan,i) and (σi,Vi, condmi

, condki
, condli

) for i ∈ [1, q] be the queries and
answers to and from oracle Sign.
– return 1 if Verify(m∗, σ∗, pksig, pk∗san) = true and for all i = 1, 2, · · · , q we have

– pk∗san �= pksan,i or
– ∃ji /∈ ADMi such that m∗[ji] �= mi[ji] or
– ∃j such that m∗[j] �∈ V ∗

j or
– ∃i0 such that ∃j, j′ ∈ Si0 such that m∗[j] �= m∗[j′].

Extended Traceability: SuccSS
ext−tra = Pr[1 ←− Exp

SS
ext−tra] where Exp

SS
ext−tra is:

– (pksig, sksig) ←− SigKeyGen(1λ)
– (pk∗san, DB∗ = {(m∗

p, σ∗
p), p = 1, · · · , n}) ←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

– If it exists p ∈ [1, n] such that Verify(m∗
p, σ∗

p , pksig, pk∗san) = false, then outputs 0
– (usksan, π) ←− TestFraud(pksig, pk∗san, DB∗)
– return 1 if usksan does not correspond to pk∗san, or

– VerifyFraud(π, usksan) = 0.

On Extended Sanitizable Signature Schemes 189

5 Cryptanalysis of Extended Sanitization Scheme

In this section, we review the paper of Klonowski and Lauks [7] and show that
their EnforceModif and LimitNbModif extensions are insecure.

5.1 The EnforceModif Extension

We first recall the proposal in [7]. We assume that the signer signs m = m1‖ · · · ‖mt

with d blocks mi1 , · · · ,mid
such that the sanitizer can modify similarly.

– Sign: the signer chooses at random x1, · · · , xt, r and computes, for all i ∈
[1, t], hi = gxi with g a public value. Then, she computes c = hm1

1 · · ·hmt
t gr

and a classical signature s on c. Finally, the signature σ is (c, r, s, h1, · · · , ht)
and the sanitizer is given a secret value s = xi1 + · · ·+ xid

.
– Sanitize: the sanitizer wants to modify the signed message m1‖ · · · ‖mt into

the new one m∗
1‖ · · · ‖m∗

t , with m = mi1 = · · · = mid
and m∗ = m∗

i1 = · · · =
m∗

id
. On input (c, r, s, h1, · · · , ht) and s, the sanitized signature is simply

(c, r∗, s, h1, · · · , ht) where r∗ = r + (m−m∗)s.
– Verify: from the signature σ = (c, r, s, h1, · · · , ht) and the message m =

m1‖ · · · ‖mt, one can verify that c = hm1
1 · · ·hmt

t gr and that s on c is valid.

In fact, from two different versions, with m and m∗ identically modified, one
can retrieve s and thus sanitize any message. In fact, if these blocks are the
only admissible ones, from the construction of the Sanitize, we have r∗ =
r + (m − m∗)s. As r, m, r∗ and m∗ are included into the signatures or the
messages and m �= m∗, one can compute s = r−r∗

m∗−m . Thus this scheme is not
accountable.

5.2 The LimitNbModif Extension

The solution proposed in [7] is based on polynomial interpolation: there is exactly
one polynomial of degree at most k going through k + 1 fixed points. Then, the
principle is to define a secret polynomial F of degree k, such that the sanitizer
key usksan = F (0). Each time the sanitizer sanitizes a block, a point of the
polynomial F leaks. Thus, when k + 1 blocks are modified, k + 1 points are
available, the secret polynomial can be interpolated and the sanitizer’s secret key
is retrieved. In [7], the basic sanitizable signature scheme is the one of Ateniese et
al. with a chameleon hash function not resistant to the key exposure attack. For
each modified block during the Sanitize procedure, a point on the polynomial
is chosen as the used key. Thus, as soon as a block is modified, a collision is
computed and the point leaks.

More precisely, their scheme works as follows. Let usksan be the sanitizer
secret key related to upksan = gusksan . During the Sign procedure, the sanitizer
chooses at random k values f1, · · · , fk and constructs the polynomial F (y) =
usksan +f1y+ · · ·+fky

k. She next computes {gi = gfi}i∈[1,k], where g is a public
generator, and sends it to the signer. The signer computes a sanitizable public

190 S. Canard and A. Jambert

key for each admissible block mi as zi = gF (i) = upksan · gi
1 · . . . · gik

k . She next
chooses an identifier for the message IDm and a random ri for each admissible
block. She uses the chameleon hash function and computes, for all i, m̃i =
Proceed(zi, m̄i = IDm‖mi‖i, ri) = zm̄i

i · gri(= gF (i)·m̄i+ri) if i ∈ ADM and
m̃i = mi‖i otherwise. The signature is σ = (IDm, t, {ri}∀i∈ADM, {zi}∀i∈ADM, s)
with s a classical signature on (IDm‖t‖upksan‖m̃1‖ · · · ‖m̃t).

During the Sanitize algorithm, for each block mj the sanitizer wants to
modify, she uses the secret key F (j) and computes a collision on m̃j . As the
function is weak against the key exposure attack, F (j) necessary leaks. Thus if
she modifies k+1 blocks, k+1 points of F (y) leaks and anybody can find usksan.

Again, this solution is not secure since, after one sanitization, the value F (i)
necessary leaks. As the knowledge of F (i) is enough to construct any collision
on m̃i, one can construct as many other sanitizations as she wants from only one
sanitization: the scheme is not accountable.

6 Constructions in the Extended Model

6.1 The LimitSet Extension

This feature has been nicely solved in [7] by the use of accumulators. It consists
in accumulating all possible modifications for a block into one accumulator. The
sanitizer is given the accumulator, the accumulated values and the corresponding
witnesses to prove that one value is truly accumulated. Then, the accumulator
is signed by the signer as a non admissible part of the message. During the
sanitization process, the sanitizer should have to give the accumulated value,
which is the new message block, and the corresponding witness, so that the
verifier can verify that the modified block is a valid message for the focused
admissible block.

– SigKeyGen. This step executes the SigKeyGen procedure of the initial
scheme, as described in Section 3. We thus obtain (ssk, spk) and a secret key
κ in {0, 1}λ for the PRF. Then it executes the initialisation algorithm of the
chosen accumulator scheme Acc.

– SanKeyGen. This algorithm is identical to the initial SanKeyGen.
– Sign. Let m = m1‖ · · · ‖mt be the message to be signed. The signer first

generates the variable ADM: she decides for each block i ∈ [1, t] whether the
block is admissible or not. There are then two cases:
1. the i-th block is not admissible (i /∈ ADM). The signer sets m̃i = mi‖i.
2. the i-th block is admissible (i ∈ ADM). There are two new cases:

(a) there are no restriction on the value for this block (we say that
i ∈ ADM−). The signer next chooses at random a value denoted
ri ∈ {0, 1}λ and computes m̃i = CH.Proceed(pksan,mi‖i, ri).

(b) the i-th message block should lie in a set of authorized values Vi

defined by the signer (we say that i ∈ ADM+). In this case, the signer
first initializes an empty accumulator Acci and, for each element
ak,i ∈ Vi, she accumulates it in Acci and computes the corresponding

On Extended Sanitizable Signature Schemes 191

witness wk,i. The set of all witnesses for the block i is denoted Wi =
{wk,i : k ∈ [1, |Vi|]}. Note that the value mi necessary lies in Vi for
obvious reasons. That is, it exists k0 such that mi = ak0,i. At the
end of this step, the signer defines m̃i = Acci.

In the following, we denote W0 = {wk0,i : i ∈ ADM+} the set of all witnesses
used by the signer for the message m, A = {Acci : i ∈ ADM+}, W = {Wi :
i ∈ ADM+} and R = {ri : i ∈ ADM−}.

The signer generates TAG = PRG(x) where x = PRF(κ,Nonce) with
Nonce ∈ {0, 1}λ. She computes (hc, rc) = CH.Proceed(pksan,TAG||m, rc)
and signs the message m̃ = m̃1|| · · · ||m̃t||hc||pksan as s = S.Sign(sksig , m̃).
Finally, the signature is σ = (s,TAG,Nonce,R∪ {rc},ADM,W0). The set of
authorized values for each admissible block V = {Vi : i ∈ ADM+} and the
corresponding set of all witnesses W (if they are not publicly computable)
are independently sent to the sanitizer.

– Sanitize. The sanitizer wanting to modify the message m to the message
m′ performs the following actions, for each block j ∈ [1, t]:

1. the j-th block is not admissible, the sanitizer does not do anything.
2. the j-th block is admissible. There are two new cases:

(a) if j ∈ ADM−, she computes r′j = CH.Forge(sksan,mj‖j,m′
j‖j, hj).

(b) if j ∈ ADM+, the sanitizer checks that the new block message m′
j ∈

Vj and finds the corresponding wk0,j in the set of all witnesses.

The sanitizer next sets W ′
0 = {wk0,j : j ∈ ADM+} the set of all used witnesses

for the new message m′ and by R′ = {r′i : i ∈ ADM−}.
She next chooses at random Nonce′ and TAG′ and uses sksan to find a col-

lision on the chameleon hash for the obtained message. That is, she recom-
putes hc and computes r′c = CH.Forge(sksan,TAG||m,TAG′||m′, hc). The
new sanitize signature is finally σ′ = (s,TAG′,Nonce′,R′ ∪ {r′c},ADM,W ′

0).
– Verify. The verifier executes the reconstruction procedure. For all i, she

defines m̃i as (i) Acc(mi, wi) if mi ∈ ADM+, (ii) hi if mi ∈ ADM− or (iii) mi||i
otherwise. Then the verifier computes hc = CH.Proceed(pksan,TAG||m, rc)
and verifies whether S.Verify(pksig, s, m̃) returns true or false.

– Proof and Judge are identical to our classical construction (cf. Section 3).

Theorem 2. Our scheme is secure if the signature scheme is EU−CMA, PRG
and PRF are pseudo-random, and CH is strong secure and Acc is secure.

Proof. Our scheme is ext-immutable, transparent, accountable and ext-traceable.

– In the Ext-Immutability experiment, A outputs (pk∗san,m
∗, σ∗, l∗, k∗,V∗).

Either pk∗san �= pksan,i or ∃ji /∈ ADMi such that m∗[ji] �= mi[ji]. That cases
lies on the chosen signature EU-CMA property, similarly as in the proof
of Immutability of our classical scheme (cf. Section 3). Or ∃j such that
m∗[j] �∈ V ∗

j . In that case, either m∗[j] has been added to the accumulator
of the i-th block and we can construct an adversary AS

EU−CMA against the
EU-CMA property in outputting the forgery on the message m̃∗. Or the

192 S. Canard and A. Jambert

adversary has find a value which has not been accumulated and we are able
to construct an adversary AAcc

CR against the collision resistance of Acc. The
success probability is finally Succset−SS

Ext−Imm ≤ SuccSEU−CMA + SuccAcc

CR .
– For the Transparency property, we remark that an original sanitizable

signature is (s,TAG,Nonce,R ∪ {rc},ADM,W0), while a sanitized one is
(s,TAG′,Nonce′,R′∪{r′c},ADM,W ′

0). As the used witnesses (in W0 and W ′
0)

are constructed in the same way for an original or a sanitized signature,
the transparency property relies on the classical parts of the signature and
the proof is identical to the proof in the classical case. The advantage of an
adversary is Advset−SS

Trans ≤ AdvCHUni + AdvPRG
Pseudorand + AdvPRF

Pseudorand.
– Both Accountability properties rely on the construction of the last block

of our construction hc: it depends on the construction of TAG and on the
incapability of the signer to obtain collisions on the chameleon hash. As ac-
cumulators are not implied on this part of the protocol, the proof is identical
as in the classical case. Thus, Succset−SS

sig−Acc ≤ SuccPRG
OneWay +SuccCHSCollRes and

Succset−SS
san−Acc ≤ SuccSEU−CMA. �

6.2 The LimitNbModif Extension

As in [7], our solution uses polynomial interpolation and a chameleon hash func-
tion CH weak against the key exposure attack. However, contrary to [7], we
use a second secure chameleon hash function CH. Thus, the sanitization phase
on the message mi requires the user to know both {F (i)}i∈MOD (keys for CH)
and the sanitizer secret key sksan (for CH). Thus, the leakage of F (i) does not
compromise the unforgeability any more.

More precisely, let usksan be the sanitizer secret key, related to the public key
upksan = gusksan .

– Sign. The signer executes the signature procedure as for our initial scheme
and obtains ADM, the value m̃, TAG,Nonce and R = {ri}i∈ADM. Then
she randomly chooses R∗ = {r∗i}i∈ADM. Meanwhile, the sanitizer randomly
chooses k values f1, · · · , fk and constructs F (y) = usksan + f1y+ · · ·+ fky

k.
She next computes the set {gi = gfi}i∈[1,k], where g is a public generator,
and sends it to the signer. After that, the signer computes the set {zi}i∈ADM

such that zi = upksan ·gi
1 ·. . .·gik

k (= gF (i)) and uses each zi as the public key of
CH to hide the corresponding ri: ∀i ∈ ADM, ti = CH .Proceed(zi, ri, r

∗
i) =

zri
i · gr∗i (= gF (i)·ri+r∗i). Finally, she classically signs the concatenation of m̃

and the {ti}i∈ADM: s̄ = S.Sign(sksig , m̃‖ti1‖ · · · ‖ti|ADM|) and obtains the sig-
nature σ̄ = {s̄, TAG,Nonce,R,R∗, {zi}i∈ADM,ADM}.

– Sanitize. The sanitizer computes, for each block mj she wants to modify,
a collision on m̃j thanks to sksan and a collision on tj thanks to F (j).

Remark 2. Note that the Sign process is suppose to be non-interactive. In the
above description, we can imagine than the sanitizer regularely publishes some
gi’s that can be used by the signer when necessary. In some other cases, such
as for content protection [5], the sanitizer is considered as on line during this
process, and thus can compute on line these gi’s.

On Extended Sanitizable Signature Schemes 193

With this method, the sanitizer can easily modify k blocks. As in [7], if she
modifies k + 1 blocks, k + 1 points of F (y) are available and usksan leaks. But
in our case, the collision resistance of CH already fixes the message. thus it does
not impact the security of the scheme any more.

Theorem 3. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random, CH (resp. CH) is strong (resp. weak) secure.

Proof. Our scheme is extended immutable, transparent and accountable for the
same reasons than our main scheme. For the ext-traceability there are two cases.
Either, the adversary outputs (pk∗san,DB∗ = {(m∗

p, σ
∗
p), p = 1, · · · , n}) such that

pk∗san does not correspond to usksan output by TestFraud. In our scheme,
this is checked by TestFraud. So the underlying success probability is 0. Or,
A outputs (pk∗san,DB∗ = {(m∗

p, σ
∗
p), p = 1, · · · , n}) such that TestFraud de-

tects a fraud (usksan, π) and that VerifyFraud outputs 0. This may happens
either if usksan is not the secret key corresponding to the public key of the san-
itizer, but this has already been studied, or if the polynomial F (y) obtained
through interpolation is such that gF (0) �= upksan. As only one polynomial of
degree n goes through n + 1 given point, and considering that the public key is
signed, an adversary able to modify this value can be used to construct an ad-
versary against the EU-CMA of the chosen signature. So the success probability
is SuccSS

Ext−trans ≤ SuccSEU−CMA. �

6.3 The LimitNbSanit Extension

In a nutshell, our system is based on a method which has been first proposed for
the e-cash purpose. It consists in using the soundness property of zero-knowledge
proofs of knowledge of a secret. Honest-verifier proofs are three-move protocols:
a commitment t based on random values, a question c and an answer s related
to the above random values, the question and the secret. The soundness of these
constructions ensures that given a single t, if someone is able to provide s and
s′ related to c and c′ s.t. c �= c′, then it is possible to retrieve the secret.

More precisely, our methodology works as follows. First, we use our main
sanitizable signature scheme described in Section 3. Let usksan be the sanitizer
secret key, related to the public key upksan = gusksan .

– Sign. The sanitizer chooses at random l values a1, · · · , al. She next com-
putes, for all i ∈ [1, l], the value ti = gai , with g a public generator.
Each value ti corresponds to a version number authorized by the signer.
The sanitizer next sends {ti}1≤i≤l to the signer. After that, the signer
chooses two random values α and ρ and constructs its own version num-
ber: t0 = upkρ

sang
α. Then the signer accumulates all the ti’s (including t0)

into one single accumulator Acc and executes the Sign procedure of our main
sanitizable signature scheme, using ρ as random for the final execution of the
chameleon hash function CH on the whole message, and adding Acc in the fi-
nal classical signature: she obtains σ. The signature is σ̄ = {σ, t0, α,Acc, w0}
with w0 the witness for t0. Finally, the witnesses of the accumulated values
are given to the sanitizer as the secret s.

194 S. Canard and A. Jambert

– Sanitize. The sanitizer executes the Sanitize procedure of main scheme.
Then she reveals a new ti and its corresponding witness, denoted wi, her
public key upksan and the value αi = ai−ρiusksan with ρi the pseudorandom
value output during the generation of the collision on the whole message.

With this method, the sanitizer can easily use the l different accumulated values.
However, if the sanitizer executes l+1 times this procedure, she has to use twice
the same accumulated value with her secret key usksan but with two different
random values ρi and ρj . It is thus possible to retrieve usksan.

Theorem 4. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random and CH is strong secure and Acc is secure.

Proof. Our scheme is ext-immutable, transparent and accountable for the same
reasons than our main scheme. The Ext-Traceability implies that A outputs
DB∗ under pk∗san such that TestFraud finds a fraud. In fact, A should either
embed more values in Acc, which breaks the security of Acc, or is able to
output a signature on a wrong accumulator and thus breaks the EU-CMA of the
signature scheme. In conclusion, SuccSS

Ext−trans ≤ SuccAcc

CR + SuccSEU−CMA. �

References

1. Ateniese, G., Chou, D.H., De Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

3. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credential. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

4. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

5. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

6. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17, 281–308 (1988)

7. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

8. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

9. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

10. Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In:
Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
80–97. Springer, Heidelberg (2008)

Unrolling Cryptographic Circuits: A Simple
Countermeasure Against Side-Channel Attacks

Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and Jean-Luc Danger

Institut TELECOM / TELECOM ParisTech, CNRS LTCI (UMR 5141)
Département COMELEC, 46 rue Barrault, 75 634 PARIS Cedex 13, France

Abstract. Cryptographic cores are used to protect various devices but
their physical implementation can be compromised by observing dynamic
circuit emanations in order to derive information about the secrets it con-
ceals. Protection against these attacks, also called side channel attacks
are major concern of the cryptographic community. Masking and dual-
rail precharge logic are promoted as its countermeasures but each has its
own vulnerabilities. In this article, we propose a simple countermeasure
which comprises unrolling rounds of a cryptographic algorithm such that
multiple rounds are executed per clock cycle. This will require a stronger
hypothesis on multiple bits due to deeper diffusion of the key. Results
show that it resist against correlation power analysis on Hamming dis-
tance and Hamming weight model if the datapath is cleared after each
operation. We also evaluated mutual information metric on the design
and results show that unrolled DES is less vulnerable.

Keywords: Data encryption standard, side-channel attack, architec-
tural countermeasure, mutual information metric.

1 Introduction

With the generalization of open networks, information society regards security
as a critical factor. Modern cryptographic algorithms which ensure security are
robust and free from practical cryptanalysis. However, other methods which
target the physical implementation of an algorithm can be deployed to break
the security. These attacks can be mounted by merely observing or perturbing
the targeted system. Observing the activity of the system and its correlation with
potential guesses can yield sensible information. Such attacks are better known
as Side Channel Attacks (SCAs) [1]. When a device is perturbed such that it
yields a non-nominal output, this together with expected output can lead to the
secret key. Such attacks are called as Differential Fault Analyses (DFAs) [2]. The
passive attacks that consist in observing the chip are difficult to protect since
the chip is even not aware of the attack. Therefore these attacks are considered
more critical.

SCAs try to recognize synchronous operations (rounds of cryptographic oper-
ations) in the leakage of a device. Then for a chosen round, the leakage is corre-
lated with some guesses to reveal secret information. It is possible to guess some

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 195–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 S. Bhasin et al.

key bits because the value of key remains same for one or a set of synchronous
operations. For example if we consider DES, cryptanalysis is impractical as we
need a huge number of plaintext or ciphertext. Whereas with power attacks only
the power consumption of a few hundreds of encryption are needed to break a
non-protected implementation. For instance in DPA contest [3], the participants
have demonstrated that DES could be broken in 141 traces in average. Therefore
it is essential to protect implementations against SCA.

State of the art countermeasures can be widely classified into two categories
i.e. information making and information hiding. Masking [4] countermeasures
rely on confusing the attacker. A random generated mask is used while running
the algorithm such as the mask affects the intermediate states without affecting
the end result. Owing to this technique, the attacker observes leakage corre-
sponding to mask and not the actual key bits. Although a nicely masked circuit
can resist first order SCA but higher order SCA can still compromise the security
of the design.

Information hiding as the name suggests hides the information from attacker.
The algorithm is implemented in such a way that leakage remains constant irre-
spective of the computations performed. Dual-rail precharge logic (DPL) [5] is a
countermeasure based on information hiding. The principle of this countermea-
sure is to generate a design equivalent and with opposite behaviour of the target
design such that every part of the circuit is perfectly balanced. This way the
activity of the doubled design remains constant. There are some countermea-
sures which combine hiding and masking techniques in order to achieve higher
level of security. The major problem of these countermeasures is that its hard to
design a perfectly balanced circuit. Even minor imbalance in space (unbalanced
dual nets) or time (early evaluation) can be exploited by sophisticated attacking
techniques to reveal sensitive information.

In [6], the effect of pipelining on security is studied. In this article, we in-
vestigate the other trend, namely pipelining less; this way, all registers become
unpredictable depending on the key (i.e. a hypothesis test involves too many
key hypotheses). The idea is to implement the design in such a way that the key
changes more than once during a synchronous operation. In other words, more
than one round of a cryptographic algorithm are executed in one synchronous
operation. The rest of the paper is organized as follows. Section 2 explains the
theory of the proposed countermeasure. It also details the implementation de-
tails of a fully unrolled DES. Section 3 evaluates fully unrolled DES against
the iterative DES using correlation power analysis (CPA [7]). Finally, section 4
concludes the paper.

2 Proposed Countermeasure

2.1 Rationale of the Countermeasure

In a cryptographic block product algorithm, data is ciphered by repeating a set
of operations with a different key value each time generated from the previous
key. These set of operations are called as rounds. The number of rounds are

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 197

chosen such that linear and differential cryptanalysis are more difficult than an
exhaustive key search. Normally, cryptographic circuits are designed to perform
either some operations of a round or the whole round in one clock cycle. Thus
the value of the key remains the same for one or more clock cycles. The attacker
can guess some of the key bits and correlate it with leakage acquired. A correct
guess will give a much higher correlation as compared to wrong guesses.

Most of the traditional SCA attacks target the registers where the result of
each round is stored. This is because the leakage from the register is high due
to its load and the leakage is synchronised to the clock. In combinatorial logic,
the leakage is low and spread over time. If the result of a round is stored in the
register at the end of each clock cycle, attacker can easily retrieve the subkey
by guessing and correlating. Now, if the key is changed more than once during
one clock cycle i.e. multiple rounds are executed per clock cycle the key used
for one round is further diffused deeper into the design and mixed with the
second key and so on. Thus exploiting this property we propose to design the
cryptographic coprocessors in such a way that it executes multiple rounds in one
clock cycle. We call this as unrolling the rounds of the algorithm. Also we define
unrolling factor as the number of rounds unrolled. An implementation unrolled
twice means that two rounds are performed at every clock cycle.

(a)

Plaintext
Round

Round
Output

Clock

K1

(b)

Round Round
Round
Output

Plaintext

Clock

Kn

n rounds

K1

Fig. 1. (a) Architecture of a iterative cryptographic algorithm. (b) Architecture of a
fully unrolled cryptographic algorithm.

Figure 1(a) shows the architecture of one round of a normal iterative crypto-
graphic algorithm while figure 1(b) shows the architecture of an unrolled cryp-
tographic algorithm. An idea of the difficulty to mount a side channel attack on
the unrolled version can be estimated from the following discussion. Suppose,

198 S. Bhasin et al.

(a) (b)

IP

FP

1 20 1 2 30

FP

8

in
p
u
t

LS

PC1◦FP

0 1 2

ou
tp

u
t

8

64

56

Parity bits

8×1

...

“Normal” “IP”

representation

pu
rely

com
bin

atorial
logic

IF

3→1 MUX

LR CD

Key schedule

Key schedule

Round logic

3→1 MUX 4→1 MUX

Round logic

Key scheduleRound logic

Round logic

Key schedule

Round 2:

Round 15:

Round 16:

...

Round 1:

(1)

(2)

Fig. 2. (a) Unrolled DES Architecture. (b) Floorplan of the ASIC implementing DES
iterative (1) and DES unrolled (2).

we have two implementations of a cryptographic algorithm: one iterative and
the other unrolled with an unrolling factor of 2 as shown in fig 1(a) and (b)
respectively. Let us see the signal and the noise when the attack is mounted on
1-bit. In the iterative design, the signal will be the sum of the power activity
of all the combinatorial gates and flip-flop involved in calculating that bit. The
noise shall be sum of power activity of other gates and flip-flops. In the unrolled
design, if we implement an attack on 1-bit in the first of the two rounds, the
signal will be the power activity of the gates involved only as the result is not
memorised. The noise shall be twice the previous value as components are dou-
bled. As explained before the power activity of a combinatorial gates is lesser
than the power activity of a register. This results in SNR reduction of more than
twice.

A rough evaluation of the theoretical complexity of this countermeasure in
terms of area is given by the unrolling factor. Thus a design unrolled twice
will have double the area of its original design as far as combinatorial part is
concerned. In terms of performance, the trade-off is almost the same as original
design. Unrolling factor of n will multiply the critical path by n times and thus
maximum frequency is reduced 1/n times. Since n rounds are executed per clock
cycle, N/n clock cycles are needed to execute the whole algorithm where N is
the total number of rounds. Thus the throughput is approximately the same

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 199

set_current_module des_datapath_combi_wrapper; # Internal constraints

set_current_instance [find -hier -inst I_REG_LR];

The following constraint (1+15 cycles allowed for the computation)

concerns the whole bus:

set_cycle_addition -from [get_info [lindex [find -port q] 0] bus] 15;

set_current_instance [find -hier -inst I_REG_CD];

set_cycle_addition -from [get_info [lindex [find -port q] 0] bus] 15;

set_current_module des_datapath_combi; # External constraint

set_false_path -from [find -port sel_left_not_right]; # Encrypt/Decrypt

Fig. 3. TCL timing constraints crafted for the “multi-cycle” DES combinatorial data-
path synthesis by Cadence bgx shell

for original and unrolled design. The practical results are better than the one
described below as some of the unnecessary components like multiplexers are
removed while unrolling. Thus the area is less than n times and the operating
frequency is more than 1/n times. We also point out that the unrolling does
not impact the possibility of the encrypting block to be used in any mode of
operation (CBC, CFB, OFB, etc.).

Fully unrolled DES implementation. An iterative architecture can be made
combinatorial, by removing its register transfers occurring during the rounds [8].
In the case of DES, the algorithm combinatorial depth is thus roughly increased
by a factor of sixteen, but the registers LR and CD remain frozen during sixteen
clock cycles, which makes up for the delay through the gates. The architecture,
based on that described in [9], and the floorplan are depicted in Fig. 2(a) and
(b). It is a special case of the so called brutal countermeasure mentioned in [10],
where the “glued blocks” actually make up the entire datapath. The inputs 1 of
the LR multiplexer and 2 of the CD multiplexer play the role of enable for the
corresponding registers. The key schedule consists in a sequence of pre-computed
circular shifts which can be implemented just by switching wires and requires
no logic. Such a technique is only valid for certain algorithms like DES and the
absence of logic in key schedule avoids leakage. Thus attacks like [11] cannot be
mounted anymore.

The synthesizers, in default mode, attempt to fit a timing path into one clock
cycle. To synthesize such a design there is need to relax the timing constraints.
In the combinatorial DES specific case, the logic driven by LR and CD has time
equivalent to sixteen clock cycles to execute. This piece of information cannot
be easily inferred, thus user constraints must be set. They basically consist in
specifying spare clock cycles for some timing arcs. The timing paths that are
concerned thus start at registers LR and CD, plus the Boolean signal originating
from the control that tells whether the current operation is a ciphering or a
deciphering , where the shifts can be interpreted left or right-wise. The “multi-
cycle” constraints listed in Fig. 3 express the fact that outputs of LR and CD
are sixteen times slower that the clock and that the signal to decide between
ciphering and deciphering is a false timing path. This last path is indeed never

200 S. Bhasin et al.

critical because the choice between encryption and decryption is not modified
during one computation. The key schedule can be implemented by mere routing
of wires, with no logic usage. Indeed, every round key in DES is obtained by
simply selecting the adequate bits from the 56 bit master key. However, this
peculiar property applies to DES only and cannot be generalized for all the
cryptographic algorithms.

3 Experimental Results

We implemented an iterative DES and a fully unrolled DES on SecMatV2:
an academic ASIC for security evaluation of cryptoprocessors implemented in
130 nm technology from STMicroelectronics. The placement constraint used for
both modules is that their placement density is 95%. Therefore we found that
iterative DES consumes an area of 24787 μm2 while the unrolled DES consumes
an area of 139816 μm2. The ratio in terms of surface is thus as low as 5.64
lower than expected i.e. 16, the unrolling factor which is due to removal of regis-
ters, removal of logic involved in the iteration management (multiplexers), round
boundaries optimization. Also the key schedule is completely dissolved in mere
routing which is a property specific to DES algorithm. In terms of performance
for a nominal operating frequency, the iterative DES needs almost 5 times more
time for single encryption. However, the operating frequency is not the maximal
operating frequency in this case.

The average side-channel curves for one DES encryption are shown in Fig. 4(a)
and 4(b) respectively for the iterative reference DES and the combinatorial in-
stance. It clearly appears in Fig. 4 that the variations increase during the en-
cryption.

Side-channel attacks can be roughly divided into two categories. On one hand
correlation attacks make the assumption of a known leakage model; several

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

A
ve

ra
ge

 +
/-

 s
ta

nd
ar

d
de

vi
at

io
n

[m
V

]

Time [ns]

R
ou

nd
 #

1

R
ou

nd
 #

2

R
ou

nd
 #

3

R
ou

nd
 #

4

R
ou

nd
 #

5

R
ou

nd
 #

6

R
ou

nd
 #

7

R
ou

nd
 #

8

...

11 ns

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200

A
ve

ra
ge

 +
/-

 s
ta

nd
ar

d
de

vi
at

io
n

[m
V

]

Time [ns]

35 ns

All 16 rounds

<1 ns >2 ns

Fig. 4. (a) Sequential iterative DES encryption signature, with the average variation
margin, for statistics collected on 10k measurements. (b) Average combinatorial DES
encryption signature, with the average variation margin, for statistics collected on 100k
measurements.

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 201

Table 1. Key recovery attack on the iterative reference DES using a CPA over 10K
traces

Sbox Key Lock t
SNR

Max CPA

index Actual Guessed 0 ≤ · ≤ 10 000 [%]
1 56 56 4 314 4.38603 8.40
2 11 11 7 848 3.94818 5.68
3 59 59 1 247 5.29027 6.81
4 38 38 3 555 5.09747 5.94
5 0 0 2 272 7.25941 8.86
6 13 13 3 868 4.52662 8.10
7 25 25 4 399 4.69634 6.28
8 55 55 273 6.81590 14.68

models corresponding to different values of the secret are devised. The model
that correlate the better with the concrete measurements discloses the secret.
On the other hand, template attacks divide into two steps. The first step is done
off-line; it consists in pre-characterizing the circuit in an almost blind fashion, for
as many representative values of the message and key inputs. Stochastic attacks
are a variant where the pre-characterization is made more simple by injecting
some partial knowledge about the target’s leakage. The second step is the on-
line attack proper. The attacker attempts to recognize the secret by matching
measurements obtained from a fixed albeit unknown secret key.

We show that correlation attacks are made very implausible on a fully combi-
natorial implementation, due to the signal’s desynchronization, even in the early
rounds (represented in Fig. 5). First of all, we apply the same attack that is
successful on the iterative reference implementation. It consists in a correlation
of the measurements with the consecutive values of the right datapath register
R0, that leaks L(initial : R0, f inal : L0 ⊕ f(R0,K1)) = |R0 ⊕ L0 ⊕ f(R0,K1)|.
The attack results on DES iterative and unrolled are shown in Tab. 1 and 2
respectively . Without any surprise, this attack completely fails on the combi-
natorial instance of DES, since the targeted transition has disappeared in the
unrolled implementation. We would like to emphasize that each time a encryp-
tion is done, the datapath should be cleared. This can be done like precharge in
DPL or by propagating random values without interference from the key. This
is because, if two consecutive computations are done then some correlation can
be found on the basis of previous computation.

3.1 Attack on the Unrolled DES

Now let us see a case when the previously described constraints are not respected
i.e. two encryption are done without clearing the datapath. We explore two
leakage models, namely the Hamming weight (HW) and the Hamming distance
(HD), on two neuralgic positions of the algorithm, namely the Feistel function
output (P1) and the round output right half (P2). We find that the HD on P1

202 S. Bhasin et al.

Table 2. Key recovery attack on the unrolled DES using a CPA over 100K traces

Sbox Key Lock t
SNR

Max CPA

index Actual Guessed 0 ≤ · ≤ 10 000 [%]
1 56 58 87 976 1.83827 3.25
2 11 21 75 073 3.04394 1.52
3 59 17 97 462 2.07826 2.69
4 38 25 71 369 1.63005 4.85
5 0 53 70 590 3.45533 2.18
6 13 26 99 982 3.01725 1.18
7 25 22 70 433 2.07131 3.37
8 55 47 74 552 2.78395 3.26

Table 3. Key recovery attack using the a CPA with a Hamming distance model (with
respect to the previous encryption) over 100K traces

Sbox Key Lock t
SNR

Max CPA

index Actual Guessed 0 ≤ · ≤ 100 000 [%]
1 56 56 16 557 2.20267 2.17
2 11 11 44 092 2.15008 2.09
3 59 59 36 090 2.50697 2.22
4 38 9 3 291 3.73242 5.01

5 0 0 27 164 1.96649 2.28
6 13 13 20 138 2.13591 2.65
7 25 25 17 862 2.11245 2.86
8 55 55 37 317 2.77701 2.75

f(R0, K1)

path #2

path #1

R1
.
= L0 ⊕ f(R0, K1)

(slow)

(fast)

L1
.
= R0

R2
.
= L1 ⊕ f(R1, K2)L2

.
= R1

P1

P2

R0

f(· , K1)

L0

f(· , K2)

Fig. 5. Notations used to describe the combinatorial DES leakage functions

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 203

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200

D
P

A
 [m

V
]

Time [ns]

Transition initial → final
at the output of R

Transition final → initial
at the input of R

Transition in datapath register R
HD round 1, sboxes 1, P1
HD round 2, sboxes 1, P1
HD round 3, sboxes 1, P1
HD round 4, sboxes 1, P1
HD round 5, sboxes 1, P1
HD round 6, sboxes 1, P1
HD round 7, sboxes 1, P1

Fig. 6. DPA covariance for the register transfer R0, and round correlations for the first
sbox outputs

completely discloses the key. The results are given in Tab. 3. We can see that for
all the eight broken substitution boxes, the signal-to-noise ratio (SNR) is much
smaller than for the case of the reference circuit. The results for the sbox 4
are printed in italics, because actually two keys are guessed simultaneously in
a unrolled implementation, due to a mathematical property of this sbox. The
fourth sbox S4 of DES has the following property: ∀x, y ∈ {0, 1}6, S4(x)⊕ S4(y)
and S4(x ⊕ 0x2f) ⊕ S4(y ⊕ 0x2f) are palindromic. This fact can be shown by
computing exhaustively the two expressions and comparing them.

Therefore, we have a remarkable Hamming distance conservation property:
∀x, y ∈ {0, 1}6, |S4(x)⊕S4(y)| = |S4(x⊕ 0x2f)⊕S4(y⊕ 0x2f)|. As a conclusion,
in a Hamming distance model, two keys are retrieved in pairs: the correct one
and one another (false), equal to the correct key translated by 0x2f.

To show that the correlations of the sboxes output (locus P1) are very dis-
rupted due to their combinatorial nature, we have computed the DPA peaks,
shown in Fig. 6. We favor DPA [12] over CPA [7], because, as explained in
the technical article [13], the covariance used by DPA extracts the activity of
some nets in the netlist, which is interesting for leakage characterization. As
for the CPA, it is more suitable for attacks, because the normalization by the
trace standard deviation corrects the fact that the leakage is not necessarily
maximum at the times where the side-channel is [14]. The DPA covariance
|f(R−1

r ,Kr+1) ⊕ f(Rr,Kr+1)| for all r ∈ [0, 6] are plotted in Fig. 6. We have
also added the transition in R0 between two consecutive messages, because it
indicates the computation beginning and its end. The beginning consists of the

204 S. Bhasin et al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 200 400 600 800 1000

M
ut

ua
l i

nf
or

m
at

io
n

[b
it]

Time [ns]

Round 1

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 50 100 150 200

M
ut

ua
l i

nf
or

m
at

io
n

[b
it]

Time [ns]

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8

Fig. 7. Mutual information metric for sequential (top) and combinatorial (bottom) DES

R0 register sampling at the rising edge of the clock. The end corresponds to
the other transition (final → initial), in the R0 register input latches, that are
transparent, and that dissipate even in the absence of a clock event. We observe
that the DPA covariances do not especially show peaks ordered in time. This in-
dicates the link between the data and the side-channel measurement is destroyed
as early as the first couple of rounds.

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 205

To conclude with the security analysis, we discuss briefly on the unsuitability
of other SCAs. Template attacks are expected to become less a concern as tech-
nology typical feature sizes shrink and characteristics dispersion increases [15].
Preliminary works on 130 nm technologies [16] suggest that the intra-die tech-
nological mismatches are the preponderant source of variation, surpassing the
imperfections of the logic style.

3.2 Evaluation Based on Mutual Information Metric

Mutual information analysis (MIA) has been introduced in [17] and further dis-
cussed in [18]. This analysis captures whatsoever dependence between measure-
ments and a leakage model. It is thus a tool suited for an information leakage
evaluation, as pointed out in [19]. The default leakage model does not assume
any device-specific knowledge. Therefore it considers plain dependency with one
sensitive and predicable word within the device. The notions of sensitivity and
predictability have been defined in [20]. Basically, a variable is sensitive if it de-
pends on one secret, and predictable if testing all the hypotheses for this variable
is computationally tractable. The leakage-agnostic approach is the one employed
in template attacks [21].

We have computed the mutual information (MI) between the right half of the
datapath for sbox #1 and each point of our experimental traces. The results are
plotted in Fig. 7 for the 80k traces of the iterative DES module and the 100k
traces of the unrolled one. In the iterative circuit, the MI is roughly the same
for each round. However, it depends on the round index for the combinatorial
circuit; therefore we represent a couple of them in Fig. 7. It appears clearly that
the sequential circuit is leaking more information about the first round than
the combinatorial. Hence the vulnerability is less significant for our proposed
countermeasure.

4 Conclusion and Perspectives

Information masking and hiding are two protection techniques against side-
channel attacks. We propose a new countermeasure which comprises unrolling
of rounds of a cryptographic algorithm to execute during a single clock. Results
show that unrolling is secure against power attacks with a constraint of clear-
ing the datapath after each encryption. We also evaluated mutual information
metric on the design and results show that unrolled DES is less vulnerable. Fur-
ther work involves testing this countermeasure with other algorithms like AES,
etc. Also it could be interesting to partially unroll the algorithm like the rounds
which are soft targets for an attacker.

Finally, we mention the potential advantage of algorithms unrolling against
some fault attacks; for instance, it is impossible to inject faults via a setup time
violation [22, 23, 24], produced by either under-powering or over-clocking the
unrolled module. The resistance of partially or completely unrolled architectures
against other DFAs is thus an interesting research direction.

206 S. Bhasin et al.

Acknowledgments

This work has been partly financed by the french national research agency
(ANR), through the ANR-07-ARFU-010 grant “SeFPGA” (Secured Embedded
FPGAs). We acknowledge interesting discussions and encouragements from Re-
naud Pacalet from the LabSoC laboratory of TELECOM ParisTech at Sophia-
Antipolis.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

3. TELECOM ParisTech SEN research group: DPA Contest (2008–2009),
http://www.DPAcontest.org/

4. Akkar, M.L., Giraud, C.: An Implementation of DES and AES Secure against Some
Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 309–318. Springer, Heidelberg (2001)

5. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: DATE 2004, Paris, France, pp.
246–251. IEEE Computer Society, Los Alamitos (2004)

6. Standaert, F.X., Örs, S.B., Preneel, B.: Power Analysis of an FPGA: Implem-
entation of Rijndael: Is Pipelining a DPA Countermeasure? In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer,
Heidelberg (2004)

7. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

8. Guilley, S., Chaudhuri, S., Sauvage, L., Danger, J.L., Beyrouthy, T.,
Fesquet, L.: Updates on the Potential of Clock-Less Logics to Strengthen Cryp-
tographic Circuits against Side-Channel Attacks. In: ICECS, Medina, Yasmine
Hammamet, Tunisia. IEEE, Los Alamitos (2009)

9. Guilley, S., Hoogvorst, P., Pacalet, R.: A Fast Pipelined Multi-Mode DES Architec-
ture Operating in IP Representation. Integration, The VLSI Journal 40, 479–489
(2007)

10. Roche, T., Tavernier, C.: Multi-Linear cryptanalysis in Power Analysis Attacks:
MLPA. In: WEWoRC 2009, Graz, Austria (2009)

11. Aabid, M.A.E., Guilley, S., Hoogvorst, P.: Template Attacks with a Power Model.
Cryptology ePrint Archive, Report 2007/443 (2007),
http://eprint.iacr.org/2007/443/

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Guilley, S., Hoogvorst, P., Pacalet, R., Schmidt, J.: Improving Side-Channel At-
tacks by Exploiting Substitution Boxes Properties. In Presse Universitaire de
Rouen et du Havre, ed.:BFCA, Paris, France, May 02-04, pp. 1–25 (2007),
http://www.liafa.jussieu.fr/bfca/books/BFCA07.pdf

http://www.DPAcontest.org/
http://eprint.iacr.org/2007/443/
http://www.liafa.jussieu.fr/bfca/books/BFCA07.pdf

Unrolling Cryptographic Circuits: A Simple Countermeasure Against SCAs 207

14. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N., Pacalet, R.: Silicon-level solu-
tions to counteract passive and active attacks. In: FDTC, 5th Workshop on Fault
Detection and Tolerance in Cryptography, pp. 3–17. IEEE-CS, Washington (2008),
Up-to-date version on HAL:
http://hal.archives-ouvertes.fr/hal-00311431/en/

15. Quisquater, J.J., Standaert, F.X.: Physically Secure Cryptographic Computations:
From Micro to Nano Electronic Devices. In: DSN, Workshop on Dependable and
Secure Nanocomputing (WDSN)., Edinburgh, UK, 2 pages. IEEE Computer Soci-
ety, Los Alamitos (2007) (invited talk)

16. Guilley, S., Flament, F., Pacalet, R., Hoogvorst, P., Mathieu, Y.: Security Evalua-
tion of a Balanced Quasi-Delay Insensitive Library. In: DCIS, Grenoble, France, 6
pages. IEEE, Los Alamitos (2008); Session 5D – Reliable and Secure Architectures,
full text in HAL: http://hal.archives-ouvertes.fr/hal-00283405/en/

17. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

18. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer,
Heidelberg (2009)

19. Veyrat-Charvillon, N., Standaert, F.X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

20. Standaert, F.X., Peeters, É., Rouvroy, G., Quisquater, J.J.: An Overview of Power
Analysis Attacks Against Field Programmable Gate Arrays. Proceedings of the
IEEE 94, 383–394 (2006) (invited paper)

21. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003)

22. Faurax, O., Tria, A., Freund, L., Bancel, F.: Robustness of circuits under delay-
induced faults: test of AES with the PAFI tool. In: IOLTS, Heraklion, Crete,
Greece, pp. 185–186. IEEE Computer Society, Los Alamitos (2007)

23. Selmane, N., Guilley, S., Danger, J.L.: Setup Time Violation Attacks on AES.
In: EDCC, The seventh European Dependable Computing Conference, Kau-
nas, Lithuania, pp. 91–96 (2008) ISBN: 978-0-7695-3138-0, doi:10.1109/EDCC-
7.2008.11

24. Khelil, F., Hamdi, M., Guilley, S., Danger, J.L., Selmane, N.: Fault Analysis Attack
on an FPGA AES Implementation. In: NTMS, Tangier, Morocco, pp. 1–5. IEEE,
Los Alamitos (2008)

http://hal.archives-ouvertes.fr/hal-00311431/en/
http://hal.archives-ouvertes.fr/hal-00283405/en/

Fault Attacks Against emv Signatures

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi2

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

2 École normale supérieure
Département d’informatique, Groupe de Cryptographie

45, rue d’Ulm, f-75230 Paris Cedex 05, France
{david.naccache,mehdi.tibouchi}@ens.fr

Abstract. At ches 2009, Coron, Joux, Kizhvatov, Naccache and Paillier
(cjknp) exhibited a fault attack against rsa signatures with partially
known messages. This fault attack allows factoring the public modulus
N . While the size of the unknown message part (ump) increases with the
number of faulty signatures available, the complexity of cjknp’s attack
increases exponentially with the number of faulty signatures.

This paper describes a simpler attack, whose complexity remains poly-
nomial in the number of faults; consequently, the new attack can handle
much larger umps. The new technique can factor N in a fraction of a sec-
ond using ten faulty emv signatures – a target beyond cjknp’s reach. We
also show how to apply the attack even when N is unknown, a frequent
situation in real-life attacks.

Keywords: Fault Attacks, Digital Signatures, rsa, iso/iec 9796-2, emv.

1 Introduction

rsa [20] is certainly the most widely used signature scheme. To sign a message
m with rsa, the signer first applies an encoding function μ to m, and then
computes the signature σ = μ(m)d mod N . To verify the signature, the receiver
checks that

σe = μ(m) mod N.

The Chinese Remainder Theorem (crt) is often used to reduce the signer’s
computational load. This is done by computing:

σp = μ(m)d mod p and σq = μ(m)d mod q

and the signature σ is computed from σp and σq by Chinese Remaindering.
In [2], Boneh, DeMillo and Lipton showed that rsa implementations can be

vulnerable to fault attacks (see also [15]). Assuming that the attacker can induce
a fault when σq is computed while keeping the computation of σp correct, one
gets

σp = μ(m)d mod p and σq �= μ(m)d mod q

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 208–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fault Attacks Against emv Signatures 209

and the resulting (faulty) signature σ satisfies

σe = μ(m) mod p and σe �= μ(m) mod q .

Whereby the attacker can then factor N by

gcd(σe − μ(m) mod N,N) = p . (1)

It is easy to see that Boneh et al.’s fault attack applies to any deterministic
rsa encoding, e.g. the Full Domain Hash (fdh) [1] encoding where σ = H(m)d

mod N and H : {0, 1}∗ �→ ZN is a hash function. The attack is also applicable
to probabilistic signature schemes where the randomizer used to generate the
signature is sent along with the signature, as in the PFDH signature scheme [7].

However, if the randomizer is only recovered when verifying the signature,
or if some part of the message is unknown, the attack is thwarted. For ex-
ample, consider a signature σ = (m‖r)d mod N . The random r is only re-
covered when verifying a correct signature. Given a faulty signature, the at-
tacker cannot retrieve r nor infer (m‖r) which would be necessary to compute
gcd(σe − (m‖r) mod N,N) = p.

At the ches 2009 conference, Coron, Joux, Kizhvatov, Naccache and Paillier
(cjknp) showed how to extend Boneh et al.’s attack to rsa signatures with par-
tially unknown messages (or unknown nonces) [4]. cjknp’s attack was illustrated
with a probabilistic variant of the iso/iec 9796-2 standard [13], as used in the
emv specifications [10]. In iso/iec 9796-2 the encoded message has the form:

μ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16
where m = m[1] ‖m[2] is split into two parts. cjknp show that if the unknown
part of m[1] is not too large (e.g. less than 160 bits for a 2048-bit rsa modulus),
then a single faulty signature allows to factor N as in Boneh et al.’s attack.
cjknp’s attack is based on a technique due to Herrmann and May [9] for finding
small roots of linear equations modulo an unknown factor p of N ; [9] is itself
based on Coppersmith’s technique [3] for finding small roots of polynomial equa-
tions using the lll algorithm [18]. In addition, [4] introduced a multi-fault attack
using an extension of Coppersmith’s attack. Multiple faults make it possible to
attack larger unknown message parts (umps). However, this comes at the cost
of a complexity exponential in the number of faults.

This paper describes a simpler multiple fault attack. The new attack’s com-
plexity is polynomial in the number of faulty signatures. This allows us to tackle
larger umps which were beyond [4]’s reach. For example, in a typical use case of
emv, ten faulty signatures are enough to factor N in a fraction of a second with
our new attack, whereas the attack in [4] was completely impractical in such a
situation.

Finally, we show that a similar technique can even recover N from a collection
of valid signatures, so that the attack can be applied to protocols in which public
rsa parameters are not available to outsiders, which do arise in practice (e.g.
proprietary banking cards or e-passports).

210 J-S. Coron, D. Naccache, and M. Tibouchi

2 Coron-Joux-Kizhvatov-Naccache-Paillier’s Attack

2.1 iso/iec 9796-2 Standard with Partially Unknown Message

[4] considers a randomized version of the iso/iec 9796-2 standard. iso/iec 9796-
2 is an encoding standard allowing partial or total message recovery [13,14]. The
encoding can be used with hash functions H : {0, 1}∗ → {0, 1}kh of various digest
sizes kh. When kh, the size of m and the size of N (denoted k) are all multiples
of 8, the iso/iec 9796-2 encoding of a message m = m[1] ‖m[2] is

μ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16
where m[1] consists of the k−kh−16 leftmost bits of m and m[2] represents the
remaining bits of m. In [14] it is required that kh ≥ 160. This is also the case
in the emv specifications [10]. We note that a practical forgery attack (without
faults) against iso/iec 9796-2 was recently described in [6], extending the attack
in [5]. However the attack is only practical when m[1] can be fully chosen by the
adversary, which is not the case in emv and in the randomized version of the
iso/iec 9796-2 standard considered in this paper.

More precisely, [4] considers a message m = m[1] ‖m[2] of the form

m[1] = α ‖ r ‖α′ , m[2] = data

where r is a message part unknown to the adversary (ump), α and α′ are strings
known to the adversary and data is some known or unknown string. The size
of r is denoted by kr and the size of m[1] is k − kh − 16 as required in iso/iec

9796-2. The encoded message is then

μ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16 (2)

Therefore both r and H(α ‖ r ‖α′ ‖data) are unknown; the total number of
unknown bits inside μ(m) is then kr + kh.

2.2 Single Fault Attack

[4] describes a fault attack against the previous signature scheme. More precisely,
one assumes that after injecting a fault the opponent has a faulty signature σ
such that:

σe = μ(m) mod p , σe �= μ(m) mod q . (3)

From (2) one can write

μ(m) = t + r · 2nr + H(m) · 28 (4)

where t is a known value. From (3) one gets:

σe = t + r · 2nr + H(m) · 28 mod p .

Fault Attacks Against emv Signatures 211

This shows that (r,H(m)) must be a solution of the equation

a + b · x + c · y = 0 mod p (5)

where a := t−σe mod N , b := 2nr and c := 28 are known. This bivariate equation
in x, y has a small root (x0, y0) = (r,H(m)). To solve this equation, one can use
a result by Herrmann and May [9] based on Coppersmith’s technique for finding
small roots of polynomial equations [3].

Coppersmith’s technique uses lll to obtain two polynomials h1(x, y) and
h2(x, y) such that

h1(x0, y0) = h2(x0, y0) = 0

holds over the integers. Then one computes the resultant between h1 and h2 to
recover the common root (x0, y0). To that end, one must assume that h1 and
h2 are algebraically independent. This ad hoc assumption makes the method
heuristic; nonetheless it turns out to work quite well in practice. Then, given the
root (x0, y0) one recovers the randomized encoded message μ(m) and factors N
by gcd.

Assuming that r < Nγ and H(m) ≤ N δ, for a balanced rsa modulus one
gets the condition:

γ + δ ≤
√

2− 1
2

∼= 0.207 (6)

This means that for a 1024-bit modulus N , the total size of the unknowns x0
and y0 can be at most 212 bits. For iso/iec 9796-2 signatures with kh = 160,
the unknown r can thus be at most 52 bits long.

2.3 Extension to Several Faults Modulo the Same Factor

[4] shows how to extend the attack to multiple faults, in order to improve the
bound on the ump’s size. More precisely, given
 faults, one gets a system of
equations:

ai + b · xi + c · yi = 0 mod p

for 1 ≤ i ≤
, where ai, b and c are known and xi and yi are unknown and
small. The goal being still to recover p. Note that we can assume that b = 1 by
multiplying the equations by b−1 mod N .

[4] considers a more general system where instead of known constants b and
c, one considers known bi and ci. More precisely, we are given
 different poly-
nomials

fu(xu, yu) = au + xu + cuyu (7)

where each polynomial fu has a small root (ξu, νu) modulo p with |ξu| ≤ X and
|νu| ≤ Y . Note that, as in the basic case, we re-normalized each polynomial fu

to equate the coefficient of xu in fu to one.
[4] shows how to extend Coppersmith’s attack to these multiple polynomial

equations, thereby obtaining a better bound on the ump size. Theoretically,
given a sufficiently large number of faults, the extended attack could tackle

212 J-S. Coron, D. Naccache, and M. Tibouchi

cases where γ + δ is asymptotically close to 1
2 . However, the attack’s complexity

grows exponentially with the number of faults
; hence aiming at γ + δ values
significantly higher than the single fault maximum of 0.207 is totally impractical.
We refer the reader to Table 2 illustrating how intractable the problem gets as
γ + δ approaches 1

2 .

3 A New Multiple Faults Attack

The previous attack is only applicable for a small number of faults because the
lattice dimension grows exponentially with the number of faults. This section de-
scribes a different attack that can take advantage of a large number of faults and
thus handle much longer umps. Indeed, in the new attack, the lattice dimension
remains equal to the number of faults, plus one.

As previously, we consider an encoding function given by equation (4)

μ(m) = t + r · 2nr + H(m) · 28

Given a set of faulty signatures σi such that:

σe
i = μ(mi) = t + ri · 2nr + H(mi) · 28 mod p

we get a set of equations of the form

Ai + B · xi + D · yi = 0 mod p

where Ai := t − σe
i mod N , B := 2nr and D := 28 are known. As in previous

section, we can assume that B = 1 by multiplying the equations by B−1 mod N .
This results in the following equations

ai + xi + c · yi = 0 mod p (8)

for 1 ≤ i ≤
, where
 is the number of faulty signatures. Note that as opposed
to equations (7) in the previous section, here we have a constant coefficient c, as
in our fault attack.1

The new attack is similar to the one in [16]. Applying lll [18] to the lattice
spanned by the columns of the following matrix⎛⎜⎜⎜⎜⎜⎜⎝

κa1 κa2 · · · κa� κN
1 0 · · · 0 0

1
. . .

...
...

. . . 0 0
1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

for a sufficiently large constant κ (as described in [17]), the attacker computes a
short vector (u1, . . . , u�) such that

�∑
i=1

ui · ai = 0 mod N

1 The attack in this section would not work with different ci’s.

Fault Attacks Against emv Signatures 213

This implies from (8)

�∑
i=1

ui · xi + c ·
(

�∑
i=1

ui · yi

)
= 0 mod p

Letting

α0 :=
�∑

i=1

ui · xi and β0 :=
�∑

i=1

ui · yi (10)

this gives:
α0 + c · β0 = 0 mod p

Therefore the vector (α0, β0) belongs to the lattice

L(c, p) =
{
(α, β) ∈ Z

2 | α + c · β = 0 mod p
}

(11)

Since the xi’s and yi’s are small, we see that if the ui’s are small, then (α0, β0) is
a short vector in the lattice L(c, p). More precisely, let v be a shortest non-zero
vector of L(c, p). If the ui’s are sufficiently small such that ‖(α0, β0)‖ < ‖v‖,
then by definition of v we must have α0 = β0 = 0. In this case we get:

�∑
i=1

ui · xi =
�∑

i=1

ui · yi = 0

which means that the known vector (u1, . . . , u�) is orthogonal (in Z) to the two
unknown vectors (x1, . . . , x�) and (y1, . . . , y�).

Actually, the lll reduction of lattice (9) yields many other vectors (ui) which
are orthogonal in Z to both (xi) and (yi). Assuming that we can generate
− 2
such vectors, we can then obtain a bi-dimensional lattice containing both vectors
x = (xi) and y = (yi). Let x′ and y′ be a basis of this lattice. Such basis can be
obtained by applying lll a second time to the lattice spanned by the columns
of: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ′u1,1 · · · κ′u1,�

...
...

κ′u�−2,1 · · · κ′u�−2,�

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for a sufficiently large constant κ′.

Consider now a vector v = (vi) that is orthogonal modulo N to both x′ and
y′, that is:

�∑
i=1

vi · x′
i = 0 mod N,

�∑
i=1

vi · y′i = 0 mod N

214 J-S. Coron, D. Naccache, and M. Tibouchi

Then since x and y belong to the lattice spanned by x′ and y′, we must have⎧⎨⎩x = α · x′ + β · y′

y = α′ · x′ + β′ · y′

for some α, α′, β, β′ ∈ Z. This implies:

�∑
i=1

vi · xi = 0 mod N,

�∑
i=1

vi · yi = 0 mod N

Then from equation (8) this gives:

�∑
i=1

vi · ai = 0 mod p (12)

Therefore gcd(
∑

i vi · ai, N) = p. Note that the previous computation can be
simplified by restricting ourselves to the three first components of x′ and y′; in
that case, one obtains a unique (up to a multiplicative constant) tri-dimensional
vector v orthogonal modulo N to both the first three components of x′ and the
first three components of y′. Then equation (12) still holds and as previously
gcd(

∑
i vi · ai, N) = p.

It remains to justify why we can have ‖(α0, β0)‖ < ‖v‖, where v is a shortest
non-zero vector of L(c, p). We provide an argument similar to [19] (see also [8]
for higher lattice dimensions). We define a lattice L(c, p) to be B-good if any
non-zero vector has a norm > B; we say that the lattice is B-bad otherwise.
Consider a fixed prime p. By definition of lattice L(c, p) in (11), the value of
c modulo p is determined by any non-zero vector in L(c, p). Since there are at
most 4B2 vectors in the disc of radius B, there are at most 4B2 lattices L(c, p)
which are B-bad. Therefore for a random c modulo p, the probability that a
lattice is B-bad is at most 4B2/p. Taking B :=

√
p/3, the probability that a

lattice is B-bad is then at most 1
2 .

Therefore a lattice is B-good with probability at least 1
2 . This implies that if

‖(α0, β0)‖ ≤ √p/3, then with probability at least 1
2 the vector (α0, β0) is shorter

than the shortest non-zero vector in L(c, p), which implies that α0 = β0 = 0 as
required.

Here we have considered a fixed p and a random c modulo p; however in
our attack c is a fixed integer and p is random; therefore the previous analysis
is heuristic only. More generally, if integers α0 and β0 have different sizes, we
obtain that α0 = β0 = 0 under the condition:

|α0| · |β0| < p

3
(13)

Using lll we expect to obtain vectors (ui) of norm roughly N1/�, where
 is the
number of faulty signatures (see [16]). Let X and Y be upper bounds for the
unknowns xi and yi. We thus obtain from (10)

|α0| ≤ N1/� ·X, |β0| ≤ N1/� · Y

Fault Attacks Against emv Signatures 215

From (13) we obtain the following bound

N2/� ·X · Y <
p

3

With X = Nγ and Y = N δ this yields approximately

2

+ γ + δ <
1
2

(14)

Therefore, for a large number of faults
 we obtain the same asymptotic bound
γ + δ < 1

2 as in [4]; however the lattice dimension in (9) is only
 + 1 instead of
being exponential in
 as in [4]. In Section 5 we provide the result of practical
simulations validating the attack. We then apply the new technique to the emv

specifications in Section 6.

4 Recovering Unknown Moduli

In many practical situations, the modulus N may not be available to the attacker.
While contrary to a basic cryptographic assumption, this is frequently the case in
proprietary applications. The technique described in the previous section can be
adapted to recover unknown moduli N from correct signatures when the public
exponent e is small. Once N has been recovered, one can then apply the fault
attack described in the previous section.

As previously, we consider an encoding function given by equation (4)

μ(m) = t + r · 2nr + H(m) · 28

Given a set of
 correct signatures σi such that

σe
i = μ(mi) = t + ri · 2nr + H(mi) · 28 mod N

we obtain a set of
 equations of the form

Ai + B · xi + D · yi = 0 mod N (15)

where Ai := t − σe
i , B := 2nr and D := 28 are known, but xi, yi and N are

unknown. Note that as opposed to the previous section, Ai is not reduced modulo
N ; therefore the bit-size of Ai is approximately e · log2 N .

As in the previous section, using lll we can find a short vector (ui) such that

�∑
i=1

ui ·Ai = 0

in Z. This implies from (15)

B ·
(

�∑
i=1

ui · xi

)
+ D ·

(
�∑

i=1

ui · yi

)
= 0 mod N.

216 J-S. Coron, D. Naccache, and M. Tibouchi

As previously, if the ui’s are sufficiently small, then we will have
∑

i ui · xi =∑
i ui · yi = 0 over Z. Then again, from
− 2 linearly independent vectors (ui)

one can recover a 2-dimensional lattice containing the two vectors (xi) and (yi).
We proceed by computing two vectors v1 and v2 which are both orthogonal in

Z to any vector in this bi-dimensional lattice. This implies that both vectors are
orthogonal in Z to the two vectors (xi) and (yi). Equation (15) implies that v1
and v2 are both orthogonal modulo N to the vector (Ai); therefore to recover N
we simply compute the gcd of their respective scalar products with the vector
(Ai).

Since the norm of the vector (Ai) is roughly Ne, we can expect (see [16]) to
find a vector (ui) of norm ∼= Ne/(�−1). Moreover, letting α0 =

∑
i ui · xi and

β0 =
∑

i ui · yi, as in the previous section we must have |α0| · |β0| < N
3 so that

α0 = β0 = 0 holds with good (heuristic) probability. This gives the following
approximate bound

N2e/(�−1) ·X · Y <
N

3
i.e. using the previous notations

2e

− 1

+ γ + δ < 1 (16)

and the required number of correct signatures:

 >
2e

1− γ − δ
+ 1

In other words, the number of required signatures is proportional to the public
exponent e; this means the modulus recovery technique is practical only for small
public exponents. We show in Section 5.2 that it then works well in practice.

5 Simulation Results

5.1 Multiple Fault Attack

We have simulated the fault attack described in Section 3 as follows: we first
generate a correct σp = μ(m)d mod p and a random σq ∈ Zq and then compute
the faulty signature σ using the crt. This mimics the process described in [4]
where concrete faults are injected into devices generating randomized iso/iec

9796-2 signatures.
Simulation results are summarized in Table 1. We compute the attack’s success

rate for γ + δ = 1
3 for 12, 13 and 14 faults. Theory predicts success with good

probability when
 > 12. Table 1 confirms this prediction for both balanced and
unbalanced γ and δ configurations

Table 2 provides a comparison with [4]’s multi-fault attack. For large
, the
new attack has the asymptotic condition γ + δ < 1

2 , identical to the theoretical
asymptotic bound of [4]’s multi-fault variant. It is however considerably easier

Fault Attacks Against emv Signatures 217

Table 1. Attack Simulation Results Using sage. Random 1024-bit moduli. Single
2.5 GHz Intel cpu core.

Number of faults � 12 13 14

Success rate with γ = δ = 1
6

13% 100% 100%
Success rate with γ = 1

4
, δ = 1

12
0% 100% 100%

Average cpu time (seconds) 0.19 0.14 0.17

to deal with cases where γ+δ approaches 1
2 with the new attack than it is in [4].

Namely, as illustrated in Table 2 when γ+ δ approaches 1
2 [4]’s lattice dimension

makes the attack completely impractical. In particular, we show in Section 6
that the new attack allows to attack emv signature formats that were beyond
[4]’s reach.

However we note that for smaller γ + δ values, [4] can be more practical since
it requires fewer faulty signatures; for example for γ + δ = 0.214 only 2 faulty
signatures are required instead of eight in the new attack. In other words, the
two techniques nicely complement each other and provide the attacker with a
toolbox allowing to adapt his technique to the target’s γ and δ configuration.

Table 2. Comparison of the new attack with [4] for a random 1024-bit modulus

γ + δ �new ωnew cpu time (new) �old ωold cpu time (old)
0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 —
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

Explanatory notes regarding Table 2: Table 2 provides, for several values
of γ + δ, the following information: the number of faulty signatures
new used in
our simulation, the corresponding lattice dimension ωnew, and the running time
of the new attack. For the attack described in [4], the table lists the minimal
lattice dimension ωold required to tackle the γ + δ values we consider and the
corresponding number of faulty signatures
old. We find ωold by exhaustive search
over parameters (
, t,m) with
 < 50, m < 80. For γ+δ = 0.214 and γ+δ = 0.23,
one can actually get away with slightly smaller lattice dimensions than indicated
in the table (120 and 378 instead of 126 and 462) at the price of more faults (7
and 13 respectively).

5.2 Recovering Unknown Moduli

We have also implemented the technique described in Section 4 to recover N from
correct signatures (when N is unknown to the attacker). As shown in Table 3

218 J-S. Coron, D. Naccache, and M. Tibouchi

Table 3. Modulus recovery simulation in sage. Random 1024-bit moduli and e = 3.
Single core 2.5 GHz Intel cpu.

Number of signatures � 10 11 12 13
Success rate with γ = δ = 1

6
2% 59% 61% 61%

Success rate with γ = 1
4
, δ = 1

12
2% 62% 64% 64%

Average cpu time (seconds) 0.20 0.21 0.25 0.31

the attack is quite practical for small public exponent (e) values. More precisely,
we give the success rates for γ+δ = 1

3 with 10 to 13 valid signatures for e = 3. In
this case, the theoretical bound (16) predicts that the technique should succeed
with good probability when
 > 10; this is well verified for both balanced and
unbalanced γ and δ configurations.

6 Application to emv Signatures

6.1 The emv Specification

emv is a collection of industry specifications for the inter-operation of payment
cards, pos terminals and atms. The emv specification [10] uses iso/iec 9796-
2 signatures to certify public-keys and to authenticate data. For instance, to
authenticate itself, the payment card must issue a signature on data provided by
the terminal. The signature algorithm is rsa with iso/iec 9796-2 using e = 3
or e = 216 + 1. The bit length of all moduli is always a multiple of 8. emv uses
special message formats; 7 different formats are used, depending on the message
type.

In the following, for clarity’s sake, we analyze one of these formats only:
the Offline Dynamic Data Authentication, Dynamic Application Data format,
described in Book 2, Section 6.5, Table 15, page 67 of the emv specifications
[10]. The signing entity is the Card. The message m to be signed has the format
m = m[1]‖m[2] with :

m[1] = 050116 ‖ LDD ‖ ICCDD ‖ BB16 · · · BB16
m[2] = data

where LDD is a byte identifying the length (in bytes) of the icc Dynamic Data
string ICCDD, and data is some data provided by the terminal. In general, the
icc Dynamic Data string has the following form:

ICCDD = LICCDN ‖ ICCDN ‖ ADD

where LICCDN is one byte identifying the length (in bytes) of the time-variant
icc Dynamic Number ICCDN, and ADD consists of LDD − LICCDN − 1 bytes
of Additional Dynamic Data to be signed. It is specified that one must have
2 ≤ LICCDN ≤ 8.

Fault Attacks Against emv Signatures 219

As mentioned in the emv specifications, the icc Dynamic Number can be an
unpredictable number or a counter incremented for every new signature. In a
typical use case (as described, for example, as part of emv Test 2CC.086.1 Case
07 [11]), ICCDN is a random 8-byte string generated by the card, and ADD is a
variable 8-byte string, encoded according to [12]. In this case, we have:

m[1] = 050116 ‖ 1116 ‖ 0816 ‖ ICCDN ‖ ADD ‖ BB16 · · · BB16
which can be rewritten as:

m[1] = X ‖ r ‖ BB16 · · · BB16
where X is a known value and r is a variable byte string of bit-size kr = 128.
This gives:

μ(m) = 6A16 ‖ X ‖ r ‖ BB16 · · ·BB16 ‖ H(m) ‖ BC16 (17)

where H(m) is a 160-bit digest of the encoded message m. Note that the no-fault
forgery attack from [6] does not apply because here m[1] cannot be controlled
by the adversary.

6.2 Fault Attack

The emv format for μ(m) given in (17) is the same as the one considered in [4]
and recalled in Section 2, and the same as the one considered in our new attack
in Section 3. In the particular use case described above, the string X is known
but the variables r and H(m) are unknown to the attacker. Therefore the total
number of unknown bits is:

kr + kh = 128 + 160 = 288

Hence, for a 1024-bit modulus N , we get:

γ + δ =
288
1024

≈ 0.28

which is well beyond the range of practical applicability of [4], as shown in Table
2. However, as shown in Table 2 our new attack will factor N in a fraction of a
second using about ten faulty signatures.

References

1. Bellare, M., Rogaway, P.: The Exact security of digital signatures: How to sign with
rsa and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. Journal of Cryptology 14(2), 101–119 (2001)

220 J-S. Coron, D. Naccache, and M. Tibouchi

3. Coppersmith, D.: Small solutions to polynomial equations, and low exponent vul-
nerabilities. Journal of Cryptology 10(4), 233–260 (1997)

4. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault attacks
on rsa signatures with partially unknown messages. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009),
eprint.iacr.org/2009/309

5. Coron, J.-S., Naccache, D., Stern, J.P.: On the security of RSA padding. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 1–18. Springer, Heidelberg (1999)

6. Coron, J.-S., Naccache, D., Tibouchi, M., Weinmann, R.P.: Practical cryptanalysis
of iso/iec 9796-2 and emv signatures. In: Halevi, S. (ed.) Advances in Cryptol-
ogy - CRYPTO 2009. LNCS, vol. 5677, pp. 428–444. Springer, Heidelberg (2009),
eprint.iacr.org/2009/203

7. Coron, J.-S.: Optimal security proofs for pss and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

8. Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: Universal padding schemes for
RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002)

9. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

10. emv, Integrated circuit card specifications for payment systems, Book 2. Security
and Key Management. Version 4.2 (June 2008), http://www.emvco.com

11. emv, EMVCo type approval terminal level 2 test cases. Version 4.2a (April 2009),
http://www.emvco.com

12. iso/iec 8825-1:2002, Information technology – ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distin-
guished Encoding Rules (DER) (2002)

13. iso/iec 9796-2, Information technology – Security techniques – Digital signature
schemes giving message recovery – Part 2: Mechanisms using a hash-funcion (1997)

14. iso/iec 9796-2:2002 Information technology – Security techniques – Digital signa-
ture schemes giving message recovery– Part 2: Integer factorization based mecha-
nisms (2002)

15. Joye, M., Lenstra, A., Quisquater, J.-J.: Chinese remaindering cryptosystems in
the presence of faults. Journal of Cryptology 21(1), 27–51 (1999)

16. Nguyen, P., Stern, J.: Cryptanalysis of a fast public key cryptosystem presented
at sac 1997. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp.
213–218. Springer, Heidelberg (1999)

17. Nguyen, P., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone
cryptosystem based on group factorization. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997)

18. Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring polynomials with rational coef-
ficients. In: Mathematische Annalen, vol. 261, pp. 513–534. Springer, Heidelberg
(1982)

19. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: rsa-oaep is secure under the
rsa assumption. Journal of Cryptology 17(2), 81–104 (2004)

20. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the acm, 120–126 (1978)

eprint.iacr.org/2009/309
eprint.iacr.org/2009/203
http://www.emvco.com
http://www.emvco.com

Revisiting Higher-Order DPA Attacks:
Multivariate Mutual Information Analysis

Benedikt Gierlichs1, Lejla Batina1,2, Bart Preneel1, and Ingrid Verbauwhede1

1 K.U. Leuven, ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
2 Radboud University Nijmegen, CS Dept./Digital Security group

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
lejla@cs.ru.nl

Abstract. Security devices are vulnerable to side-channel attacks that
perform statistical analysis on data leaked from cryptographic computa-
tions. Higher-order (HO) attacks are a powerful approach to break pro-
tected implementations. They inherently demand multivariate statistics
because multiple aspects of signals have to be analyzed jointly. How-
ever, most works on HO attacks follow the approach to first apply a
pre-processing function to map the multivariate problem to a univariate
problem and then to apply established 1st order techniques. We propose
a novel and different approach to HO attacks, Multivariate Mutual Infor-
mation Analysis (MMIA), that allows to directly evaluate joint statistics
without pre-processing. While this approach can benefit from a good
power model, it also works without an assumption. We present the first
experimental results for 2nd and 3rd order MMIA as well as state-of-
the-art HO attacks based on real measurements. A thorough empirical
evaluation confirms the advantage of the new approach: 3rd order MMIA
attacks require about 800 measurements to achieve 100% success while
state-of-the-art HODPA requires 1000 measurements to achieve about
40% success. As a consequence, the security provided by the masking
countermeasure needs to be reconsidered as 3rd and possibly higher or-
der attacks become more practical.

1 Introduction

Embedded devices such as smart cards, mobile phones, and RFID tags are be-
coming increasingly pervasive. In order to secure the applications, these devices
execute cryptographic algorithms and protocols to authenticate data and enti-
ties and to protect the confidentiality of sensitive data. An embedded device
is often physically accessible and it is very likely that such a device falls into
the hands of a malicious user. The physical accessibility has led to a number of
very powerful attacks that include physical tampering and side-channel attacks.
A typical example is Differential Power Analysis (DPA) [11]. The technique
explores weaknesses of implementations rather than algorithms, allowing an at-
tacker to extract the secret of a device by monitoring its power dissipation, if

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 221–234, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 B. Gierlichs et al.

no special countermeasures are taken. A successful DPA attack is subject to two
conditions: i) there exists an intermediate variable in the implementation that
is correlated with the power consumption and ii) this variable can be predicted
with knowledge of the plaintext (or ciphertext) and by guessing a small part of
the key and possibly other constants.

In order to protect devices against DPA, one can get rid of the second condi-
tion by data randomization or masking [4,8]. The idea is to conceal intermediate
values through addition or multiplication with random values, which makes it
impossible to correctly predict the intermediate variable.

However, this so-called 1st order masking succumbs to higher-order DPA at-
tacks (HODPA) as originally proposed by Messerges [13] and Chari et al. [2].
These HODPA attacks are based on the joint statistical properties of multiple
aspects of the signal, typically joint analysis of the power consumption at two
(or more) points in time. In this case one would think of multivariate analysis
but all established techniques [2,10,13,15,17,21] rely on a pre-processing step to
map the multivariate problem to a univariate problem before attacking the re-
sult with a standard DPA attack. The sole exception is a recent and independent
work by Prouff and Rivain [16], which we will address in Sect. 4.1.

HODPA attacks imply higher costs in terms of number of samples and compu-
tational complexity. In addition, the identification of points in time at which to
take the signals is a hard problem. Another common issue is the pre-processing
step: while this problem has been studied by many authors, finding the optimal
transformation is still an open problem. Furthermore, it is evident that none
of the solutions is generic as each pre-processing is tightly linked to a leakage
model, that is not always met in practice [18]. Eventually, it is unclear how the
pre-processing functions can be generalized for attacks of order higher than two
without accepting enormous drawbacks.

Our contribution solves all but one of the aforementioned problems. At CHES
2008 we introduced a side-channel distinguisher called Mutual Information Anal-
ysis (MIA) [7]. This 1st order attack is effective without any knowledge or re-
strictive assumption about the particular dependencies between processed data
and observable power consumption. Our proposal, Multivariate MIA (MMIA),
inherits this important property. Also the issue of pre-processing unravels be-
cause MMIA is explicitly multivariate, which furthermore allows to easily adapt
it to attacks of order higher than two. What remains is the problem of identifying
the points in time at which to take the signals. Our theory is confirmed by an
extensive empirical evaluation of MMIA, the approach of [16], and state-of-the-
art HODPA attacks against 1st and 2nd order masked software implementations
of a DES like mini-cipher.

This paper is organized as follows. In Sect. 2 we introduce our notation and
summarize related work on MIA, the masking countermeasure, and in particular
HODPA attacks. In Sect. 3 we discuss our motivation and formulate a generic 2nd

order attack problem, for which we present a sound solution in Sect. 4 and com-
pare it to the approach of [16]. Section 5 deals with the empirical evaluation of our
proposal and state-of-the-art HODPA attacks. We conclude our work in Sect. 6.

Revisiting Higher-Order DPA Attacks: MMIA 223

2 Preliminaries

A device performs a cryptographic computation Ek(x) under some key k from
a keyspace K = {0, 1}m. Since the key is unknown it is modeled as a random
variable (RV) K on K with a priori uniform probability mass function (PMF).
The information leakage of the device, due to its physical properties, is called
side-channel leakage. Side-channel key-recovery attacks exploit this side-channel
leakage to recover the key k. Typically, a differential attack consists of statisti-
cally analyzing the side-channel leakage related to a well chosen, key and input
dependent intermediate value of the computation Ek(x). We model this inter-
mediate value as a RV Wk on a spaceW = {0, 1}n where n is the word length of
the device. The corresponding side-channel leakage is denoted Lk. Non-profiled
side-channel attacks usually ignore the presence of noise and measurement inac-
curacy, and assume that the measurement of a physical observable (here power
consumption) provides direct access to the leakage Lk. In this idealized case Lk

exists on a space with at most 2n elements.
The central problem in differential attacks is to decide whether two RVs are

statistically (in-)dependent. The RV Lk is the measured side-channel leakage.
The other RV Pk′ is the predicted side-channel leakage of the same computation
that depends on a key guess k′, the input, and a leakage model. DPA attacks
apply a statistical test T (Lk,Pk′) for all key guesses k′ that measures whether
the RVs are statistically dependent or not. The value of k′ that leads to the
highest dependence is an adversary’s best guess. In this context, statistical tests
are frequently called distinguishers in the literature [19].

MIA’s core is the mutual information based distinguisher that implements the
test T by computing the mutual information values

I(Lk;Pk′) = H(Lk)− H(Lk|Pk′), (1)

between Lk and Pk′ for all key hypotheses k′. The value of k′ that leads to the
highest value of mutual information is an adversary’s best guess. In the above
formula H(·) denotes Shannon entropy. Throughout the paper we assume that the
sampling of probability distributions is sufficient such that entropy estimations
H(·) are good. In our experiments we apply our histogram method from [7] to
estimate said distributions.

2.1 Masking

A typical way to protect an implementation of a cryptographic algorithm against
such 1st order attacks is to mask the occurring intermediate values. Masking is
usually implemented by combining the intermediate values with random data
and by adapting the algorithm accordingly. The effect of masking is that each
intermediate value that is predictable by an attacker is pairwise uncorrelated to
the masked intermediate values that are actually processed.

In the following we formalize these notions. Let M denote a RV on W with
uniform PMF. Masking is implemented by replacing the intermediate value Wk

224 B. Gierlichs et al.

by Wk,M = Wk ◦M where ◦ is a suitable operation. In masked block cipher
implementations, for example, one often uses the exclusive-or operation and
replaces Wk by Wk,M = Wk ⊕ M. Non-linear operations that are typically
implemented as S-box tables S-box(Win

k) can be implemented with a recomputed
S-box such that Wout

k,M = S-box′(Win
k,M) = S-box(Win

k)⊕M, see Fig. 1 (left).
If M is a RV with uniform PMF, intermediate results Wk predictable by

an adversary (i.e. k′ = k) are not correlated to computed intermediate results
Wk⊕M. It follows that the actual leakage Lk,M of a masked value is independent
of any predictable leakage Pk and therefore I(Lk,M;Pk) = 0.

2.2 Higher-Order Attacks

The mounting point for 2nd order attacks is the fact that the side-channel leakage
Lk,M of a masked value depends on a predictable value Wk and an unpredictable
value M. The core idea is to jointly analyze the leakage of the masked value and
the mask (or a second value masked with the same mask) to establish a relation
to the predictable Wk or its predictable leakage Pk. In the example in Fig. 1
(left) one could for example combine the leakage LM of the mask at time τ1 with
the leakage Lk,M of the masked S-box output at time τ4.

Fig. 1. Left: Masked S-box lookup with recomputed S-box. Right: Schematic of 2nd

order DPA with pre-processing functions g and h that output correlated values.

2nd order DPA requires a suitable pre-processing that combines the leakage
of two masked RVs to construct a signal that is correlated to the unmasked
intermediate result (or a function thereof) and can be attacked with 1st order
DPA. More formally that is: one looks for functions g(LM,Lk,M) and h(Wk)
that yield highly correlated values [14], see Fig. 1 (right). These values can be
attacked with 1st order DPA.

Most proposals for the pre-processing do not consider the function h but
focus on a function g whose outputs are correlated with Pk. Such proposals
typically assume that the leakage at all relevant time instants approximately
follows the Hamming weight model and use Pearson’s correlation coefficient (ρ)
as distinguisher. More precisely and sticking to the above example, the adversary
evaluates

ρ(g(LM,Lk,M),HW(Wk′)) (2)

Revisiting Higher-Order DPA Attacks: MMIA 225

for all hypotheses k′. We provide background information on HODPA attacks in
Appendix 6. The state-of-the-art combining function is the normalized
product [17]

g(LM,Lk,M) = (LM − E(LM)) · (Lk,M − E(Lk,M)) (3)

where E(·) denotes expectation or the empirical mean. This combining function
was first hinted by Chari et al. [2] and more thoroughly analyzed by Prouff,
Rivain, and Bevan [17]. They showed that this combining function maximizes
the Pearson coefficient in Eq. (2) for the correct key guess k in the Hamming
weight model. We note, however, that this combining function is not necessarily
optimal, since it was not shown that wrong key guesses can not lead to similarly
high Pearson coefficients.

3 Motivation

An adversary faces three essential problems when mounting a HODPA:

1. How to identify the points of interest τj when the interesting intermediate
values leak?

2. How to model the power consumption at these points in time? This question
is particularly interesting as the power consumption model need not be the
same at several instants, e.g. while a random number generator is active vs.
during a table lookup.

3. How to choose the functions g and h for the pre-processing? This question is
particularly interesting because the answer is tightly linked to the previous
question.

In this paper we will not deal with the first problem but assume that the instants
τj are known.1 The same assumption is made in all related literature except
for [15].

In our view most previous work discusses 2nd and HODPA in specific contexts
and under restrictive assumptions, that are not always met in practice [15,18]
but the drawbacks have been accepted. In particular we point out that most
contributions assume i) the linear Hamming weight or distance model and im-
plicitly require them for the attack to work, due to the choice of g (and h where
applicable); and ii) that the leakage functions associated to the computation of
different intermediate results, where different parts of the device may be active,
are the same or very similar.

It is surprising that, while DPA and its higher-order variants have been pub-
lished more than 10 years ago, the problem of finding an optimal pre-processing
(except for very specific contexts) remains unsolved.

A weakness of earlier work is that tight link between leakage model(s) and
pre-processing. It is evident that a pre-processing tailored to specific leakage
functions looses all meaning if the leakage models are not met.
1 Some advice can be found in Appendix 6.

226 B. Gierlichs et al.

Two works that relax the above mentioned assumptions or that could be
accordingly adapted [1,14] deal with variants of template attacks [3], which con-
sider an adversary who is able to characterize the leakage function(s) of the
target device and the implementation as well as the electrical properties of the
measurement setup. The adversarial context of a profiled attack is, however, be-
yond the scope of this paper. The third work relaxing above assumptions is a
recent and independent paper by Prouff and Rivain [16], which we will address
in Sect. 4.1.

3.1 Problem Statement

We formulate a generic 2nd order DPA problem that relaxes all (but one) of
the above mentioned assumptions and requirements. Informally speaking, we
ask “what is possible” if i) the power models at the two (known) instants are
unknown and possibly substantially different, which implies ii) that the best
choice for g and h in the pre-processing is a priori unknown. Further, the sought
method should naturally extend to attacks of order greater than two. A sound
solution would be a powerful tool that allows successful HO attacks in a range of
scenarios otherwise resistant or inaccessible to standard attacks due to intrinsic
errors introduced in the pre-processing [2,10,13,15,18,21].

Formally, let Lτ1 denote the leakage of a masked value at time τ1 and Lτ2

denote the leakage of the corresponding mask (or a value masked with the same
mask) at instant τ2. Given leakage (Lτ1 ,Lτ2) determine k with non-negligible ad-
vantage over a random guess. Note that solving the problem does not necessarily
require a transformation step (i.e. a pre-processing).

4 Extending MIA to Multivariate Analysis

It is natural to look for methods that can solve the above stated problems with-
out transforming them to other problems while relying on possibly wrong as-
sumptions. In [7] we showed that MIA is a 1st order attack that works without
restrictive assumptions about the leakage function. We can thus use MIA to solve
the problem of unknown leakage functions at instants τ1 and τ2. Since MIA is
well suited to exploit dependencies between RVs without making a restrictive
assumption about how the RVs are related, it appears natural to also use this
technique to solve the second problem, i.e. combining the information contained
in Lτ1 and Lτ2 .

Our extension of MIA to a multivariate scenario is straight forward: one merely
computes the multivariate mutual information of three RVs

I(Pk′ ;Lk,M;LM) . (4)

In [5,6,12] it is shown that

I(X;Y;Z) = I(X;Y) − I(X;Y|Z) (5)

where both terms on the right hand side of the equation can be computed using
Eq. (1).

Revisiting Higher-Order DPA Attacks: MMIA 227

Depending on the source, Eq. (5) is either called multivariate mutual informa-
tion or mutual interaction. It is clear that Eq. (5) can have positive and negative
values depending on the relation between the arguments. For example, if X and
Y are independent but possibly related through Z as in our context, then

I(X;Y;Z) = I(X;Y) − I(X;Y|Z) = 0− I(X;Y|Z) ≤ 0

and one says that Z explains the (in-)dependence of X and Y. Note that the
choice of how to substitute the arguments is arbitrary, any combination works.
The MMIA key recovery attack decides for the key hypothesis k′ that mini-
mizes expression (4). For the more general case of nth order MMIA attacks one
computes

I(X1; . . . ;XN+1) = I(X1; . . . ;XN)− I(X1; . . . ;XN |XN+1) .

We want to emphasize that our proposal has one clear advantage: there is no
need to assume leakage functions neither to choose the functions g and h for the
pre-processing. This makes it generic and applicable in virtually any scenario.

4.1 Generalized MIA

Simultaneous but independent of this work, Prouff and Rivain proposed a dif-
ferent extension of MIA to multivariate analysis [16]. In the case of a 2nd order
attack they suggest to evaluate the classical formula for mutual information

I(Pk′ ; (Lk,M,LM)) (6)

between the predicted leakage and the pair of leakage observations. For nth

order attacks they suggest to compute I(X1; (X2, . . . ,XN+1)). We note that
this approach shares all the advantages over HODPA we pointed out for our
approach. In the next section we investigate how both approaches perform in
practice and how they compare to state-of-the-art HODPA.

5 Reality Check

We study our approach and confront its performance with HODPA using the
normalized product preprocessing [2,17] and the generalized MIA variant of [16]
in two scenarios.

We consider a Boolean masking scheme as for example described in [8] for DES
or triple-DES. For simplicity we focus on a representative mini-cipher consisting
of a masked S-box lookup of the first DES S-box (S1). In practice, we pre-
compute the values M = mi and Wk ◦M = S1(xi⊕ k)⊕mi for each encryption
i on a desktop computer and send them to the card, which successively moves
the values over its data-bus generating leakage LM and Lk,M. The data bus
is reset to 0x00 before and after each memory access. All attacks are provided
with the physical measurements of LM and Lk,M. Note that unmasked values
are never processed by the card and that M as well as Wk,M exist on {0, 1}4.

228 B. Gierlichs et al.

For our experiments we use an 8-bit RISC microcontroller based smartcard.
The power measurements represent the voltage drop over a 10Ω resistor inserted
in the smart-card’s GND. We implemented two scenarios: A) 1st order masking
exactly as described above; B) 2nd order masking, i.e. the S-Box output is con-
cealed by two masks M1 and M2 and the card generates leakage LM1 , LM2 , and
Lk,M1,M2 . In both scenarios the leakage of the device is very close to the linear
Hamming weight model and affected by little noise. Given the mask values, we
obtain Pearson coefficients ρ > 0.99.

We apply the MIA variants and HODPA assuming the Hamming weight leak-
age model. In this configuration the scenarios are very well suited to study the
impact of the pre-processing in HODPA, i.e. a potential loss of information,
versus the multivariate approaches without pre-processing. We also apply the
attacks without assuming the Hamming weight leakage model but instead as-
sume a generic leakage model, namely the identity function. In this configuration
our experiments allow to study how much an attack depends on a good leakage
model.

More precisely, all attacks target the same unmasked intermediate result
Wk = S1(X ⊕ k) which does not give rise to 1st order leakage. When as-
suming the Hamming weight leakage model we make leakage predictions of the
form Pk′ = HW(Wk′). Without this assumption predictions are of the form
Pk′ = Wk′ .

For the MIA variants the assumed leakage model further affects the number
of bins for the histograms which we use to estimate densities [7]. The densities
are required to compute entropy and mutual information values. When making
the Hamming weight assumption we use five bins, since the Hamming weight of
a 4-bit variable can take five distinct values, and otherwise we use sixteen bins,
since 24 = 16.

For HODPA we use the normalized product combining function (see Eq. (3))
and Pearson’s correlation coefficient.

Following the framework for the comparison of side-channel distinguishers [20]
we use the first-order success rate to assess the performance of the attacks. The
first-order success rate expresses the probability that, given n measurements,
the attack’s best guess is the correct key. For each scenario, we acquired a set
of 100 000 power curves using random masks and plaintexts. To evaluate the
attacks under the Hamming weight assumption in the 2nd order attack scenario,
for example, we split the set into 1000 subsets vi (i = 1, . . . , 1000) of 100 curves
and do the following:

for n := 10 to 100
counter ← 0

for i := 1 to 1000
i. select the first n curves from set vi

ii. run the attack for k′ ∈ {0, 1}6
iii. increase counter if attack successful

compute success rate for n curves as counter/1000 .

Revisiting Higher-Order DPA Attacks: MMIA 229

In other configurations the attacks require more measurements and we use less
subsets each containing more curves instead. In both scenarios a HODPA attack
is considered successful if the correct key guess leads to the highest correlation
coefficient in absolute terms, a MMIA attack (this paper) is considered successful
if the correct key guess minimizes the multivariate mutual information, and a
generalized MIA attack [16] is considered successful if the correct key guess
maximizes the mutual information.

Figure 2 shows the results of the 2nd order attacks in scenario A.

40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of samples

F
irs

t o
rd

er
 s

uc
ce

ss
 r

at
e

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of samples

F
irs

t o
rd

er
 s

uc
ce

ss
 r

at
e

Fig. 2. First-order success rates of 2nd order attacks: MMIA (solid), generalized MIA
(dash-dotted), HODPA (dotted), left: assuming a HW leakage model, right: assuming
an identity leakage model; the vertical line shall remind the reader that the X-axis’
scale is not the same

On the left hand side of the figure we show how the attacks perform under
the Hamming weight assumption. We can see that all three attacks perform
very similar. They require about 40 measurements to achieve a success rate of
50% and about 100 measurements to reach a success rate close to 100%. The
results for both MIA variants using the (correct) Hamming weight assumption
are particularly interesting as these attacks take uncertainty about the leakage
functions out of the equation and show the impact of sound joint statistics. The
fact that the HODPA performs similarly well in this experiment supports the
optimality claim for normalized product 2nd order DPA in the Hamming weight
model of [17].

On the right hand side of the figure we show how the attacks perform under the
assumption of an identity leakage model. We can see that all attacks are affected
by this change, but that the performance of both MIA variants decreases more
than the performance of HODPA. HODPA requires about 200 measurements
to reach a success rate close to 100% while both MIA variants require about
500 measurements. This observation can be explained by two facts. First, the
identity function and the Hamming weight of a 4-bit variable have a strong linear
correlation [16]. This explains why the performance of the HODPA decreases
not that much. Second, the MIA variants now use sixteen instead of five bins
for the histograms. Therefore more samples are required to obtain good density
estimations. This explains why the performance of both MIA variants decreases
similarly and quite drastically.

230 B. Gierlichs et al.

We conclude that each 2nd order attack that uses the correct power model
and sound joint statistics works very efficient. However, we remind that scenario
A is a somewhat easy target because device’s leakage almost perfectly follows
the Hamming weight model and because the noise level in the measurements is
low. In [16] it was shown that generalized MIA is less affected by an increase of
noise than HODPA. It is reasonable to assume that MMIA behaves similarly.

In scenario B we want to study how the MIA variants and HODPA scale with
respect to attacks of order greater than two, and extended scenario A to 2nd

order masking. The S-box output values are now concealed by two independent
random masks. The combining function of HODPA computes the normalized
product

(LM1 − E(LM1)) · (LM2 − E(LM2)) · (Lk,M1,M2 − E(Lk,M1,M2)) .

The MIA variants compute

I(LM1 ;LM2 ;Lk,M1,M2 ;Pk′) and I((LM1 ,LM2 ,Lk,M1,M2);Pk′)

respectively. Note that the leakage behavior of the card is still close to the
Hamming weight model and that the noise level is low.

Figure 3 shows our experimental results for the 3rd order attacks in scenario
B. On the left hand side of the figure we show how the attacks perform under

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of samples

F
irs

t o
rd

er
 s

uc
ce

ss
 r

at
e

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of samples

F
irs

t o
rd

er
 s

uc
ce

ss
 r

at
e

Fig. 3. First-order success rates of 3rd order attacks: MMIA (solid), generalized MIA
(dash-dotted), HODPA (dotted), left: assuming a HW leakage model, right: assuming
an identity leakage model

the Hamming weight assumption. We can see that both MIA variants perform
again very similar. They require about 800 measurements to achieve a success
rate close to 100%. HODPA performs significantly worse. Even using 1000 mea-
surements the attack merely achieves a success rate of about 40%. As before
the results for both MIA variants using the (correct) Hamming weight assump-
tion are particularly interesting because they allow us to focus on the impact
of sound joint statistics. The fact that HODPA performs significantly worse can
not be assigned to a wrong assumption in the leakage model and can therefore
be best explained by information loss during the pre-processing. Note that the
optimality claim of [17] only holds for 2nd order attacks.

Revisiting Higher-Order DPA Attacks: MMIA 231

On the right hand side of the figure we show how the attacks perform under
the assumption of an identity leakage model. We can see that the performance
of HODPA is only slightly decreased by this change. Using 1000 measurements
the attack achieves a success rate of about 30%. This observation supports our
theory that the efficiency of HODPA in a 3rd order attack scenario is mostly
limited by sub-optimal pre-processing. The impact of the change in the assumed
leakage model on the MIA variants is more visible but much weaker than in
scenario A. Both attacks require about 900 measurements to achieve close to
100% success. This rather minor increase (recall that both attacks now generate
histograms using sixteen instead of five bins) indicates that the large number
of samples is not required to estimate each separate density sufficiently well.
Instead, it is required to extract the complex interrelation from all of them at
once.

We conclude that an information theoretic approach using multivariate statis-
tics is clearly preferable over HODPA in attacks of order greater than two. While
the prevailing opinion is that the measurement cost of HO attacks grows expo-
nentially with the order of the attack [2,15,18], we demonstrate that attacks of
order up to three are realistic and practical.

6 Conclusion

Confronted with a new problem, one typically first tries to transform it into
another problem for which one knows the solution. HODPA attacks seem to be
such a problem. They inherently demand multivariate statistics because multiple
aspects of signals have to be analyzed jointly. However, most publications on HO-
attacks follow the approach to first apply a pre-processing function to map the
multivariate problem to a univariate problem and then to apply established 1st

order techniques. All proposed pre-processing functions have drawbacks that are
accepted at the price of an exponential growth of the measurement cost with the
attack order.

We propose a novel and different approach for HO attacks that does not suffer
from intrinsic errors but solves the initial problem directly. Further, we present
the first experimental results for the considered 2nd and 3rd order attacks based
on real measurements. The empirical evidence confirms the advantage of MMIA
over established HODPA in particular in 3rd order attack scenarios. Our results
also show that MMIA and generalized MIA [16] perform similar in practice. As a
consequence, the security provided by the masking countermeasure needs to be
reconsidered as 3rd and possibly higher order attacks become more practical. The
typically implemented combination of masking and temporal randomization [9]
should render attacks using either MIA variant more difficult.

Directions for further research are: a detailed comparison of MMIA and gen-
eralized MIA, combining functions for HODPA of order greater than two, and
methods for the identification of the interesting points in time without device
profiling step.

232 B. Gierlichs et al.

Acknowledgments and Disclaimer

This work was supported in part by the IAP Programme P6/26 BCRYPT of
the Belgian State, by FWO project G.0300.07, by the European Commission
under contract number ICT-2007-216676 ECRYPT NoE phase II, and by the
K.U. Leuven-BOF (OT/06/40).

The information in this document reflects only the author’s views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user therefore uses the information at its sole risk and
liability.

References

1. Agrawal, D., Rao, J.R., Rohatgi, P., Schramm, K.: Templates as Master Keys.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 15–29. Springer,
Heidelberg (2005)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg
(2003)

4. Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differential
Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Chichester (2006)

6. Fano, R.M.: Transmission of Information: A Statistical Theory of Communications.
MIT Press, Cambridge (1961)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

8. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

9. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

11. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. McGill, W.J.: Multivariate Information Transmission. Psychometrika (19), 97–116
(1954)

13. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 238–251. Springer, Heidelberg (2000)

Revisiting Higher-Order DPA Attacks: MMIA 233

14. Oswald, E., Mangard, S.: Template Attacks on Masking - Resistance Is Futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

15. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

16. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Informa-
tion Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-
A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer,
Heidelberg (2009)

17. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Transactions on Computers (58-6), 799–811 (2009)

18. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

19. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

20. Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

21. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

Appendix

A More Background on HODPA

Early works mentioned two essential options for the pre-processing: the prod-
uct of the two leaked values and the absolute value of their difference. The first
work showing a practical higher-order attack to defeat the masking countermea-
sure came from Messerges [13]. He assumed that the device leaks the Hamming
weight of intermediate values (i.e. Lk = HW(Wk)) and proposed to compute the
absolute difference |Lk,M−LM| in the pre-processing (abs-diff-DPA). Messerges
showed that, when focusing on a single bit,

|HW(Wk ⊕M)−HW(M)| = HW(Wk ⊕M⊕M) = HW(Wk) . (7)

Thus, the pre-processing reveals the unmasked Lk = HW(Wk) which can be
attacked with 1st order DPA. If one wants to attack more than a single bit
simultaneously Eq. (7) changes to

HW(Wk) = HW(Wk ⊕M) + HW(M)− 2 · HW((Wk ⊕M) ∧M) (8)

where ∧ denotes bitwise AND. However, an adversary cannot evaluate this func-
tion because Wk ⊕M and M are unknown.

The Hamming weight assumption was also used by Oswald et al. in [15].
They showed that the idea of Eq. (7) can still be used to attack multiple bits

234 B. Gierlichs et al.

although the equality no longer holds. For 8-bit variables, the Pearson correlation
coefficient (ρ) between the predictable HW(Wk) and the output of the abs-diff
pre-processing decreases to 0.24.

Chari et al. [2] suggested to use the product HW(Wk ⊕ M) · HW(M) in
the pre-processing (product-DPA). Their technique does not require the ideal
Hamming weight model but still makes some restrictive assumptions about the
leakage and power consumption behavior and is in practice more vulnerable
to deviations from the model. Waddle and Wagner [21] were the first to clearly
split higher-order attacks into pre-processing and attack step as we present them
here. They proposed a few variants of product-DPA that differ in complexity.
The work of Joye et al. [10] introduces a more theoretical approach to 2nd order
DPA. The authors analyzed single bit 2nd order abs-diff-DPA in the Hamming
weight model, as introduced by Messerges, and in the Hamming distance model.
They suggest to use a power of the absolute difference in the pre-processing,
which yields a slightly higher coefficient ρ [15].

B Identifying the Points of Interest

One approach towards identifying these instants may be to examine the empirical
variance of several power traces obtained during processing of constant input
data. In this case, the variance in the power traces is mostly caused by the
masking and thus reveals the points in time when masked values are processed.
Another approach is to select a small time window based on an educated guess
and to perform an exhaustive search over all pairs of time instants [15].

Differential Cache-Collision Timing Attacks
on AES with Applications to Embedded CPUs

Andrey Bogdanov1, Thomas Eisenbarth2, Christof Paar2, and Malte Wienecke2

1 Dept. ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium
andrey.bogdanov@esat.kuleuven.be

2 Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

{thomas.eisenbarth,christof.paar,malte.wienecke}@rub.de

Abstract. This paper proposes a new type of cache-collision timing at-
tacks on software implementations of AES. Our major technique is of
differential nature and is based on the internal cryptographic proper-
ties of AES, namely, on the MDS property of the linear code providing
the diffusion matrix used in the MixColumns transform. It is a chosen-
plaintext attack where pairs of AES executions are treated differentially.
The method can be easily converted into a chosen-ciphertext attack. We
also thoroughly study the physical behavior of cache memory enabling
this attack.

On the practical side, we demonstrate that our theoretical findings
lead to efficient real-world attacks on embedded systems implementing
AES at the example of ARM9. As this is one of the most wide-spread
embedded platforms today [7], our experimental results might make a
revision of the practical security of many embedded applications with
security functionality necessary. To our best knowledge, this is the first
paper to study cache timing attacks on embedded systems.

1 Introduction

Side-channel attacks and cache timing leakage. Though side-channel leak-
age seems to have been extensively used by state security agencies for decades
to obtain secret information [9], the idea of applying side-channel attacks to
implementations of cryptographic algorithms appeared in the scientific litera-
ture rather recently. The first side-channel attack published was timing analysis
proposed by Kocher [9] in 1996 where he observes the execution time of keyed
cryptographic algorithms to recover the key and points out the usefulness of
timing analysis applied to software implementations of block ciphers.

Probably the most widely known timing attacks on symmetric algorithms
belong to the class of cache timing attacks on block ciphers with S-boxes. This
is not least due to the literally ubiquitous usage of block ciphers, and first of
all, of the U.S. encryption standard AES [2] in the overwhelming majority of
security applications, both in PCs and embedded systems.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 235–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

236 A. Bogdanov et al.

As the name of cache timing attacks suggests, they utilize the particularities
of microcontrollers and microprocessors with cache memory which frequently
exhibit key-dependent timing. Cache timing attacks on many block ciphers with
S-boxes become possible since S-box invocations in software are often imple-
mented as indexed table look-up operations that can require different execution
times for different inputs due to RAM cache hits and misses. When the inputs
to S-boxes are key-dependent, this timing information frequently turns out suf-
ficient to recover the entire key. Today, several variants of cache timing attacks
on AES are known [4], [12], [5], [1].

Generally speaking, side-channel analysis methods strongly depend on a con-
crete implementation of the attacked cryptographic algorithm. There is also no
exception for cache timing attacks on AES where the choice of the optimal attack
method can greatly vary depending on the implementation at hand. For AES,
one can basically distinguish between first round and final round approaches:
While first round attacks [1], [5] tend to be applicable to large classes of imple-
mentations at the cost of more encryption samples required, final round attacks
[5] target only the T-box based 32-bit implementation [6] of AES having the ad-
vantage of being more efficient in this particular case. In this paper, we pursue
and expand the more generic approach of first round attacks.

Main idea of our attack. The major idea behind our new cache timing attack
is to choose pairs of plaintexts in a specific way, so that five AES S-boxes (one
in round 2 and four in round 3) process either pairwisely equal or pairwisely
distinct values in two adjacent AES executions. If for a plaintext pair the five
S-boxes process pairwisely equal values, it is called a wide collision.

In our attack, we measure the average time of every second AES execution
from each pair. We are interested in the average number c of S-box collisions (S-
box pairs processing equal values) between the two AES runs in a pair. If a wide
collision has occurred for a pair of plaintexts, c will be by 5 higher compared to c
when there is no wide collision. We hope to detect enough wide collisions against
the background if there are enough samples available. After this, we construct
four systems of nonlinear equations with respect to parts of the key which are
then resolved by brute force for the key recovery.

This technique becomes possible due to the fact that AES uses a maximum
distance separable (MDS) code to construct its diffusion matrix for MixColumns
operation. MDS codes are known to provide linear transforms with the maximum
possible branch number [6], which is 5 for the parameter choice of AES. Interest-
ingly enough, it is precisely the excellent cryptographic properties of AES, due
to the optimal selection of the diffusion matrix making it resistant to differential
and linear cryptanalysis, that enable our cache timing attack techniques.

Cache timing attacks and embedded security. Security in embedded sys-
tems is constantly and quickly becoming more crucial with the spread of embed-
ded devices in one’s everyday life. It is getting even more important in the age
of pervasive computing.

Differential Cache-Collision Timing Attacks on AES 237

Side-channel attacks have been known to impose a serious threat to embed-
ded systems such as smart cards or other embedded microcontrollers for the
last decade. However, as applied to symmetric key algorithms, the toolbox of
the attacker was mainly limited to techniques based on information leakage via
power consumption and electromagnetic radiation of the devices [11], [10]. At
the same time, timing analysis have been only very rarely utilized to analyze em-
bedded implementations of block ciphers, being mainly applied in the domain of
desktop and server PCs. This is partially due to the fact that many lightweight
and low-cost embedded systems have been providing hardware implementations
of symmetric key algorithms. Besides that, many lightweight platforms based
on 8-bit or 16-bit CPUs run at such low frequencies that microarchitectural
performance optimization such as caches are not necessary.

This apparent disregard of and disbalance against cache timing attacks in
the context of embedded security does not seem justified anymore though, since
the embedded landscape is rapidly changing nowadays. As the computing world
goes pervasive, a steadily growing number of embedded applications require more
computing power. 32-bit RISC ARM-type CPUs have become a standard choice
in many embedded applications such as banking and payment terminals, mo-
bile communications, JavaCard applications, mobile TV, multimedia, toll col-
lect systems, smart phones, electronic tachographs, PDAs etc. More and more
security-related functionality is being put into software instead of hardware. Even
some smart card microcontrollers are migrating towards powerful and universal
computing architectures based on an ARM core [16]. At the same time, ARM
microprocessors do have cache memory with nontrivial behavior and are as a
rule operated under multi-process operating systems such as Linux or Windows
Embedded/Mobile. As opposed to almost all lightweight 8-bit microcontrollers,
these two facts make many embedded systems vulnerable to cache timing at-
tacks, first of all those based on ARM-type CPUs.

Aiming to close this gap, we tackle the problem of applying cache timing
attacks to embedded devices at the example of ARM9 microprocessors. Our
findings presented in Table 2 show that our cache timing based techniques of
new type apply well to the OpenSSL software implementation of AES on ARM9.
This indicates that numerous real-world embedded applications relying on AES
and using ARM-type CPUs can turn out vulnerable to cache-timing attacks. This
might force us to reconsider the practical security of many embedded systems
currently in use. Furthermore, based on our results, we recommend to take the
threat of cache timing attacks into account when designing and evaluating new
embedded systems with security functionality.

Organization of this paper. The remainder of the paper is organized as
follows. In Section 2, the most relevant previous work is briefly outlined including
the advanced methods of expanded second-round attacks. Section 3 presents our
new differential attack technique based the diffusion properties of AES. We deal
with the physical cache behavior enabling our attack in Section 4. The attacked
embedded platform, its impact as well as our experiments and practical results
are provided in Section 5. We conclude in Section 6.

238 A. Bogdanov et al.

2 Previous Work on Cache-Collision Timing Attacks

In 1998 J. Kelsey et al. [8] analyzed the cache behavior of modern processors as a
side channel against ciphers with large lookup tables like S-boxes. This proposal
was established by D. Page [14] in the year 2002, who described and simulated a
theoretical attack on DES. The first real-world implementation of such an attack
was developed by Y. Tsunoo et al. [17] against DES and Triple-DES.

In general, cache attacks can be divided into three basic classes: trace driven,
access driven, and time driven attacks. In trace driven attacks, the adversary is
allowed to observe every single memory and cache access. Therefore, he knows
when and where a collision occurs [14]. The access driven attacks provide the
information which set of the cache is accessed by the cryptographic progress.
For this, the cache is filled with data of the attacker. After the encryption the
attacker checks which data is still present in the cache [13].

Attacks presented in this paper belong, however, to the class of the time
driven attacks. Here, information is obtained by observing the execution time
which is influenced by cache hits and cache misses. In this case, the attacker
can only capture the total execution time of the encryption and then make
a statistical evaluation to extract key-related information. The basic idea of
timing attacks was introduced by Kocher [9]. A considerably higher number of
encryption samples is needed compared to trace driven attacks. However, time-
driven attacks correspond to an attacker with most restricted attack potential
and are typically much more realistic, thus, being valid for numerous real-world
applications, especially on embedded systems.

The cache based timing techniques developed in this paper target implemen-
tations of the Advanced Encryption Standard (AES)[6]. AES is a symmetric
block cipher standardized by the National Institute of Standards and Technol-
ogy (NIST). Nowadays, it is the most used cipher. The algorithm behind AES,
Rijndael [6], was designed by J. Daemen and V. Rijmen. The most common ways
to implement the cipher are the straightforward implementation, which is used
on 8-bit microprocessors, and the 32-bit transformation table implementation.
The latter combines different round functions to five transformation tables, or
T-tables. During an encryption one table is used for the last round, the remain-
ing rounds are processed with the other four lookup tables. Since cache attacks
exploit the cache hits of lookup tables, the 32-bit T-box implementation is a well
suited target, because it offers five large lookup tables.

2.1 First-Round Attack

The first round attack is a basic attack which takes advantage of cache line
collisions evoked in the first round of the encryption. A cache line collision ap-
pears if two entries of the same cache line are accessed. Since the first round of
the 32-bit implementation is realized with four tables, only four input values of
the round p′i access the same table. For example, the values p′0, p′4, p′8, and p′12 are

Differential Cache-Collision Timing Attacks on AES 239

processed by the first transformation table T0. The first round input p′i itself
is computed by an XOR combination of the plaintext pi and the corresponding
key value ki:

p′i = pi ⊕ ki for 0 ≤ i < 16. (1)

With a cache line collision the adversary can create a relation between two
different key bytes. Such a collision is evoked if, for example, 〈p′i〉 = 〈p′j〉, for
i, j ∈ {0, 4, 8, 12} and i �= j, i.e., the most significant bits of the values are equal,
ignoring the (log2 γ) least significant bits, where γ indicates the number of table
entries in one cache line. The resulting relation is Δi,j = 〈ki ⊕ kj〉 = 〈pi ⊕ pj〉.
Using such relation the size of the key space is reduced from 2128 to 268 possible
keys, if γ = 8.

Since the execution time is influenced by cache hits, the cache line collisions
can be detected using statistic methods, like calculating the the average encryp-
tion time of a sample with the same relation Δi,j .

2.2 Second-Round Attack

The second round attack is based on the first round attack, but also considers
collisions between the first and the second round of the encryption. To do so,
the input values of the second round p′′ with access to the same transfomation
table are analyzed. For the first table T0 the following equations describe how
the input values are computed:

p′′0 = 2 • S[p′0]⊕ 3 • S[p′5]⊕ S[p′10]⊕ S[p′15]⊕ k16 (2)
p′′4 = 2 • S[p′4]⊕ 3 • S[p′9]⊕ S[p′14]⊕ S[p′3]⊕ k20 (3)
p′′8 = 2 • S[p′8]⊕ 3 • S[p′13]⊕ S[p′2]⊕ S[p′7]⊕ k24 (4)
p′′12 = 2 • S[p′12]⊕ 3 • S[p′1]⊕ S[p′6]⊕ S[p′11]⊕ k28 (5)

where S[x] and • stand for the AES S-box lookup for the value x and the finite
field multiplication in GF (28) as used in the AES. The key values ki are the key
bytes generated by the key scheduling algorithm. These values depend on the
initial key. For instance, the value k24 is equivalent to (S[k13]⊕k0⊕01(16)⊕k4⊕k8)
for AES-128. If a first round look up collides with a second round lookup, e.g.,
if 〈p′0〉 = 〈p′′8 〉, we gain the following equation:

〈p0 ⊕ k0〉 = 〈2 • S[p8 ⊕ k8]⊕ 3 • S[p13 ⊕ k13]⊕ S[p2 ⊕ k2]
⊕ S[p7 ⊕ k7]⊕ S[k13]⊕ k0 ⊕ 01(16) ⊕ k4 ⊕ k8〉 (6)

which leads to

〈p0〉 = 〈2 • S[p8 ⊕ k8]⊕ 3 • S[p13 ⊕ k13]⊕ S[p2 ⊕ k2]
⊕ S[p7 ⊕ k7]⊕ S[k13]⊕ 01(16) ⊕Δ4,8〉. (7)

The adversary can now divide a large sample of plaintexts and encryption times
into 232 sets considering every combination for the key values k2, k7, k8 and k13,

240 A. Bogdanov et al.

so that (7) is solved. The set with the correct key values should have the lowest
encryption time. In a similar way, the complete key can be extracted.

2.3 Expanded Second-Round Attack

O. Acıiçmez et al.[1] improved the idea of the second round attack and created a
chosen plaintext attack. For the expanded second round attack collisions between
the first and the second round are considered, e.g., as described in (6). The
difference in this attack is that the plaintext values p0, p2, p7, and p13 are fixed
for the entire sample. By combining all invariable parameters into one constant
c, (6) is simplified to:

〈p0〉 = 〈2 • S[p8 ⊕ k8]⊕ c〉. (8)

Since p0 is a fixed value as well, the appearance of a cache line collision depends
only on the value of 〈p8〉, i.e., γ values of p8 evoke a cache collision. The adver-
sary takes advantage of this fact by collecting a sample of encryption time and
plaintext, where the fixed values remain the same. This sample is divided into
28 sets according to the value of p8 of each plaintext. The sets which evoke the
cache line collision have a lower average encryption time. To confirm the results
a reference sample can be taken, where one fixed plaintext byte has another
value. Using a similar procedure each key value can be reconstructed separately.

3 Differential Cache-Collision Attack Using Diffusion

Our cache timing technique is based on the notion of a wide collision where five
pairs of AES S-boxes process pairwisely equal values. Though it can be made
applicable to all AES versions, we will introduce it here at the example of AES-
128. In order to be able to recover the key, the adversary needs to detect such
wide collisions. Correspondingly, the attack flow consists of an online stage, a
collision detection stage and a key recovery stage (the latter two being offline
stages):

– In the online stage, pairs of chosen 16-byte plaintexts (P1, P2) are sent to
the AES encryption routine. The adversary measures the time t required by
the CPU to encrypt P2, that is, the second plaintext in each pair.
The output of the online stage to the next stages consists of the set of
plaintext pairs (P1, P2) and the corresponding execution time values t.

– In the collision detection stage, the time values t are used to tell which
plaintext pairs (P1, P2) lead to a wide collision. It is expected that if a
wide collision occurs, t will be lower (results of five table lookups already in
the cache memory). Otherwise, we expect t to be higher. Thus, the collision
detection stage accepts sets of plaintext pairs and times output by the online
stage and returns the set of plaintext pairs (P1, P2) that most probably lead
to wide collisions.

Differential Cache-Collision Timing Attacks on AES 241

– In the key recovery stage, one reconstructs AES key candidates from the
list of plaintext pairs (P1, P2) which most probably result in wide collisions.
These key candidates are then checked using a known plaintext-ciphertext
pair.

Now, having realized the importance of wide collisions for our attack, we will first
introduce this notion more formally. Then we will return to the online as well as
key recovery stages afterwards. Collision detection is dealt with in Section 4.

3.1 Wide Collisions

In the attack, we always consider plaintexts pairwisely. More precisely, the pairs
of plaintexts (P1, P2) are divided into pairs of main diagonals of the 4 × 4-byte
AES state. A diagonal of P1 is paired with the corresponding diagonal of P2. In
this way, four pairs are formed, marked with the same coloring:

P1 =
b0

c0

d0

a0

a1

b1

c1

d1

d2

a2

b2

c2

c3

d3

a3

b3

P2 =
f0

g0

h0

e0

e1

f1

g1

h1

h2

e2

f2

g2

g3

h3

e3

f3

(9)

One of these pairs is the pair (A,E), where A = {ai} and E = {ei}, for 0 ≤ i < 4.
In the following description, we show how to extract a subset of key bytes at the
example of the diagonal pair (A,E). The remaining key bytes can be extracted
in a similar way using the other three diagonal pairs.
Let us form the plaintexts P1 and P2 in the following way:

– Byte values on the main diagonals A and E are chosen randomly and in-
dependently of each other with the only restriction that A �= E (four byte
positions should not collide simultaneously).

– The remaining bytes of P1 and P2 are pairwisely equal but randomly chosen
as well.

Then one obtains1:

P1 =
x1

x2

x3

a0

a1

x6

x7

x4

x9

a2

x11

x8

x13

x14

a3

x12

P2 =

e0

e1

e2

e3

x1

x2

x3

x6

x7

x4

x9

x11

x8

x13

x14

x12

(10)

1 In equations (10), (11), (13), and (14), the grey values mark the differing values of
both states.

242 A. Bogdanov et al.

Now we will follow the propagation of this difference on the main diagonal up
to the S-box layer of round 3. So, after the first round of the encryption, the
plaintexts P1 and P2 are transformed into:

P ′
1 =

a′1
a′2
a′3

a′0

P ′
2 =

e′0
e′1
e′2
e′3

x′9
x′14
x′3

x′4
x′13
x′2
x′7

x′8
x′1
x′6
x′11

x′12
x′9
x′14
x′3

x′4
x′13
x′2
x′7

x′8
x′1
x′6
x′11

x′12

(11)

Note that P ′
1 and P ′

2 differ only in the first column.
The MixColumns transform of the first column in the first round can provide

collisions in up to three byte positions (four collisions would imply the non-
bijectivety of AES which is not the case):

a′i = e′i for some i’s in 0 ≤ i < 4. (12)

Consider the first byte position with i = 0 as an example. Here we have two
possibilities: either a′0 = e′0 or a′0 �= e′0.

If the byte values collide a′0 = e′0, which occurs with probability 1/256, one
obtains 4 more byte collisions in the second round, as P ′

1 and P ′
2 are transformed

by SubBytes and ShiftRows into P ′′
1 and P ′′

2 :

P ′′
1 = P ′′

2 =

a′′0

a′′3

a′′2

a′′1

e′′0

e′′3

e′′2

e′′1x′′9
x′′2
x′′11

x′′13
x′′6

x′′4
x′′1

x′′3

x′′8

x′′14
x′′7

x′′12
x′′9
x′′2
x′′11

x′′13
x′′6

x′′4
x′′1

x′′3

x′′8

x′′14
x′′7

x′′12

(13)

and the MixColumns operation of the second round outputs two equal columns:

P ′′′
1 =

x′′′1

x′′′2

x′′′3

x′′′0

P ′′′
2 =

x′′′1

x′′′2

x′′′3

x′′′0

y′′′5

y′′′6

y′′′7

y′′′4

y′′′9

y′′′10

y′′′11

y′′′8

y′′′13

y′′′14

y′′′15

y′′′12

z′′′5

z′′′6

z′′′7

z′′′4

z′′′9

z′′′10

z′′′11

z′′′8

z′′′13

z′′′14

z′′′15

z′′′12

(14)

Only the values of the first columns are pairwisely equal, which leads to 4 S-
boxes in the SubBytes layer of the third round to process pairwisely equal byte
values and 5 S-box collisions in total. This is called a wide collision.

However, if a′0 �= e′0, which occurs with probability 255/256, one has a′′0 �= e′′0
in (13). That is, only one byte position differs in the first columns of P ′′

1 and P ′′
2 .

Due to the MDS property of the MixColumns matrix acting on 4 byte values,
all elements in the first column of P ′′′

1 and P ′′′
2 will be pairwisely different, since

the matrix has branch number 5. This leads to 5 S-box non-collisions in total
and is called a wide non-collision.

Differential Cache-Collision Timing Attacks on AES 243

The average difference between the numbers of colliding and non-colliding
S-boxes for wide collision and wide non-collision is 5. This discrepancy in the
number of S-box collisions makes wide collisions much easier to detect against
the background of wide non-collisions.

The intuition behind our cache timing collision attack is then that the average
AES encryption time is detectably lower in the presence of a wide collision. We
will deal with this kind of statistics in Section 4. In this section, we will discuss
how the online stage is arranged and describe the procedure of key recovery
based on a set of detected wide collisions for each diagonal.

3.2 Online Phase

In the online phase, the plaintexts P1 and P2 are generated in the way described
above. A pair of diagonals2 (A,E) is randomly chosen with the property A �= E.
For each of the 4 diagonals, this random choice of 8 byte values (4 for P1 and 4
for P2) is performed n times. That is, altogether, the online procedure described
below is performed 4 · n times.

For a fixed choice of A and E, the remaining state values of P1 and P2 are
randomly chosen as well, but they are pairwisely equal for both plaintexts P1
and P2. That is, P1 and P2 are equal up to the main diagonals. For a fixed
(A,E), this random choice is performed I times: For each of the 4 · n choices,
we run I such iterations. Each of these I iterations is repeated r times to
ensure the stability of time measurements: We say that each iteration has r
rounds.

In each of the r rounds, both plaintexts P1 and P2 are sent to the consecutive
encryption. The time t required by the encryption of P2 is captured. To improve
the resolution of the time measurements, one can clear the cache memory before
encrypting P1. Moreover, the time interval between the two encryptions should
be possibly short to avoid numerous cache accesses by other processes that might
clear parts of the cache memories. With the cache cleared, the first encryption
behaves like a random encryption in terms of cache usage and fills the cache
memory with some lookup entries. Physically, to detect a wide collision, we
want to observe how many entries on average are added to the cache by the
encryption of P2 after encrypting P1. Therefore, t contains information about
wide collisions and is stored together with the corresponding diagonal values
(A,E) for the offline analysis.

Note that it is also possible to work with the complete encryption time for
both plaintexts, but then more measurements are necessary to cancel out added
by the encryption of P1.

Thus, the major parameters influencing the complexity of the online stage
(also referred to as online complexity) in our attack are n, I and r. The total
number of AES encryptions required by the attack in the online phase will be
8 · n · I · r.
2 Again, we explain the online phase at the example of the main diagonals A and E

without loss of generality. All the other diagonals are attacked in a similar way.

244 A. Bogdanov et al.

3.3 Key Recovery

Algebraically, if a wide collision is detected, at least one byte at the end of the
first AES round collides. So we have a′i = e′i for some 0 ≤ i < 4 (see also (11)
and (12)). Every such expression binds the four key bytes on the same main
diagonal. For instance, for a′0 = e′0 we will have the following equation:

02 · S(k0 ⊕ a0)⊕ 03 · S(k5 ⊕ a1)⊕ 01 · S(k10 ⊕ a2)⊕ 01 · S(k15 ⊕ a3)
=

02 · S(k0 ⊕ e0)⊕ 03 · S(k5 ⊕ e1)⊕ 01 · S(k10 ⊕ e2)⊕ 01 · S(k15 ⊕ e3),
(15)

where k0, k5, k10 and k15 form the 4-byte subkey of the main diagonal. One
obtains similar nonlinear equations with respect to 4-byte key chunks for all
other possible byte collisions after the first round.

To recover each 4-byte subkey corresponding to each diagonal, we need at least
four equations of type (15) and, thus, at least 16 in total for the full key recovery.
For each diagonal, parameter n is chosen in a way that more than four collision
candidates will be normally proposed by the collision detection stage. Assume
that the collision detection stage proposes 4 + m collisions, m ∈ {0, 1, 2, . . .}.
As a rule, the detection error probability will be nonzero, so that some of the
proposed 4 + m collision candidates will be non-collisions. Therefore, the key
recovery procedure has to deal with this type of errors. We propose to do that
in two steps as follows.

In the first step, we consider all possible
(4+m

4

)
choices of 4 collisions out of

suggested 4+m collisions. We also consider all possible 232 subkey candidates for
this diagonal. For each choice of 4 pairs (Ai, Bi), 0 ≤ i < 4, and for each subkey
candidate, we perform AddRoundKey, SubBytes, ShiftRows and MixColumns
transforms as applies to the target diagonal. If the current choice of pairs (Ai, Bi)
leads to collisions between all four pairs in some position3 in the output column,
the 4-byte subkey candidate survives and is added to the short list of subkey
candidates. This process is visualized in Figure 1. On average, for each subkey
test, one has to perform an amount of operations roughly comparable to 25%
of an AES round, as a key candidate will only rarely survive the check with
the first pair of diagonals. The complexity of the first step is approximately
4 · 1

10 · 1
4 ·
(4+m

4

) · 232 ≈ (4+m
4

) · 228.7 AES encryptions and can be optimized by
taking into account that the values of subkey candidates are adjacent.

For the second step, consider how many subkey candidates survive for each
of the four diagonals after the first step of key recovery. Since the positions of
collisions after the first round are unknown, for each of the four diagonals there
will be 44 = 256 subkey candidates if m = 0. If m > 0, we expect to have
256 · (4+m

4

)
subkey candidates.

In the second step of key recovery, all partial keys from the four short lists
(one list for each diagonal) are concatenated to perform a final key test by
computing a full AES encryption using a known plaintext-ciphertext pair. This
final key test is executed for each key candidate. Having the estimated number
3 Note that this position does not have to be the same for all four pairs of diagonals.

Differential Cache-Collision Timing Attacks on AES 245

Fig. 1. Finding candidate subkeys from four diagonal pairs (Ai, Ei) for 0 ≤ i < 4. K
is a 4-byte subkey corresponding to some diagonal to be tested

of surviving subkey candidates after the first step in mind, the complexity of
the second step of key recovery can be computed as 232 · (4+m

4

)4
as one has to

inspect each combination of subkeys.
Thus, the offline complexity of our attack is dominated by the second step of

key recovery and can be estimated as 232 ·(4+m
4

)4
AES encryptions. See Section 5

for our experimental results.

4 Physical Behavior of Cache Hits on Embedded
Platforms

Classical timing attacks [9,21] are applicable in cases where the implemented al-
gorithm features a data-dependent runtime. Hence, resistance is easily achievable
by building constant run-time code.

The microarchitecture of modern CPUs contains several measures to speed
up the execution of programs by methods such as instruction level parallelism,
several caches and branch prediction units. The behavior of these microarchi-
tectural measures is usually not considered by implementers, since most code
written for modern embedded systems is supposed to be portable to different

246 A. Bogdanov et al.

platforms. Even if an implementer would like to take the behavior of the underly-
ing platform into account, this is often not possible since the processor interacts
with different threads in an unpredictable manner. Furthermore, in some cases
timing relevant behavior of a CPU is not documented [4]. Hence, code with a
constant execution time is desirable, but not always possible.

Cache Behavior. A very common microarchitectural feature found on almost
all modern 32-bit CPUs is the data cache. Cache is a small, but fast memory
between the processor and the RAM. This is due to the fact that the processing
speed of modern CPUs exceeds the access time of RAM by far. Caches are
intended to overcome this bottleneck. The storage capacity of a cache is smaller
compared to the main memory, but the cache can be accessed at a much higher
speed than RAM. For the CPU, the cache is transparent. When a value from
RAM is queried, the cache simply returns it if a copy of that value is currently
in the cache. This is called a cache hit. If the value is not in the cache (a so-
called cache miss), the cache queries the value from the larger RAM, passes
it to the CPU and stores it in the cache. Of course the latter takes additional
time, resulting in an increased runtime of the executed program for each cache
miss. The cache itself is arranged in 2l cache lines. Each of these lines can hold
2b bytes. This leads to a complete cache size of 2(b+l) bytes. For every queried
value, a full cache line is loaded from the RAM, hence a few adjacent values to
the queried one are also prefetched.

Several techniques to improve the basic operating mode of a cache have been
proposed in order to improve the ratio of the cache hits and cache misses. In
direct-mapped cache every data from the main memory can only be stored in one
specific cache line. This allows a very simple and fast verifying method to check
if the data is cached at the cost of a rather high number of cache misses. In a
fully associative cache the data can be stored in every cache line. To determine,
if the needed data is cached, all entries must be checked. This takes a long time
compared to the direct-mapped cache, but has the advantage that the amount
of cache misses is very low. A combination of the advantages of both models is
the n-way set associative cache. An entry can be stored in n possible cache lines.
These cache lines are combined into one cache set. The n-way set associative
cache is quite common in practice, as it provides a good tradeoff between cache
hit time and cache miss ratio.

Target Platform. Since our goal is to evaluate the threat of cache timing
attacks to modern embedded platforms, we chose a rather powerful ARM9 pro-
cessor as target. Modern ARM 16/32 bit processors are used for many embed-
ded applications where the demand for computing power is high and the power
consumption is restricted. ARM cores can be found in most modern smart
phones, portable game consoles and PDA’s, but also in various other embedded
electronics [7].

The hardware used as target is the Embest SBC2440-II single board computer.
The board hosts a Samsung S3C2440A [15] microprocessor featuring an ARM9
core, namely an ARM920T [3]. Besides the ARM, the CPU provides functionality

Differential Cache-Collision Timing Attacks on AES 247

to handle the boards interfaces, such as an LCD controller. It is a typical chip
to be found in modern PDAs, such as Nokia N810, palmOne Treo 600, etc. The
CPU can be clocked at up to 400 MHz. We operated the Embest SBC2440II
board with an open source ARM-Linux with a 2.6.13 linux kernel. The board
alternatively features WindowsCE.

Cache Architecture of the ARM. The ARM920T core features a Harvard
memory architecture with separate data and instruction cache. The caches have
a size of 16 KB each and are divided into 512 cache lines of 8 four-byte words.
Both caches are arranged in 64-way set-associative caches with each having eight
sets of 64 cache lines. Each entry can be located in just one set, but in this set
it can be stored in any of the set’s cache lines. The bits 7 to 5 of the address
define the set where the entry is located. The cache line itself can be determined
by comparing the tag of the address, bits 31 to 8, with the tags stored in the
cache. The bits 4 to 2 specify the word in the cache line and the bytes in a word
can be addressed with the bits 1 to 0.

Attack Conditions. As a target for the attack we used the T-box implemen-
tation of the AES provided by the openSSL package [20]. Although our attack
is not limited to the T-box implementation, we analyzed the cache behavior for
this case, as the T-box implementation is the most common in practice. We as-
sume that the attacker can encrypt two consecutive chosen plaintexts (or decrypt
two consecutive chosen ciphertexts). The attacker can also measure the execu-
tion time of the second encryption only. Hence our attack is applicable in cases
where the AES output can not be accessed. Other attacks such as all final round
attacks are not possible in this case. The attack can be easily performed in cases
where the attacker has full access to the system; a realistic assumption for many
embedded applications. On many PDAs, smart phones etc., the user is able to
execute own code directly or after jailbreaking the device. Hence, depending on
the specific application, the adversary is able to query a commercial application
protected by an AES and to overcome the security by measuring its execution
time. Cache timing attacks can also be a viable measure to circumvent security
protection mechanisms on the operating system layer such as sandboxing.

Cache Behavior of the ARM. As described earlier, wide collisions have a
much stronger influence on the execution time than normal collisions. Figure 2
presents a histogram over the encryption time of the encryption of the second
plaintext. The encryption time is visibly decreased in the case a wide collision
occurs (shown in light gray). If no wide collision occurs, the execution time is
slightly higher (dark gray bars). The difference between the two sets can be
exploited by the attacker to perform the previously described attack.

Them measurement setup should try to minimize the risk of non-collisions
being detected as collisions. One big source of noise is structure of the cache,
namely the existence of cache lines. In case of the T-box implementation up to
eight table entries are loaded into a cache line for each cache miss. Consequently,
even though no wide cache collision occurs, several unexpected collisions may

248 A. Bogdanov et al.

21.5 22 22.5 23 23.5 24 24.5 25
0

20

40

60

80

100

120

140

160

180

encryption time of second encryption (µs)

#

Collisions
Non Collisions

Fig. 2. Histogram comparing the execution time of AES encryptions with and without
wide collisions on the target platform

occur. Please keep in mind that difference in Figure 2 is taken from real measure-
ments. Effects like the non-perfect description of the cache behavior mentioned
above are already included.

5 Experimental Results

All measurements were performed on the ARM platform described in Section 4.
The ARM Board is set up as a server running the AES implementation of
openSSL 0.9.8K and queried via the Ethernet interface of the board. Every
challenge queries two consecutive AES encryptions.

As described earlier, four wide collisions per column are sufficient to extract
the corresponding four bytes of the AES key with a remaining uncertainty of
28 key candidates. Hence, after finding four wide collisions for each of the four
columns, a full AES-128 key can be recovered with a remaining computational
complexity of 232 AES computations. The amount of computations has to be
increased if we do not assume a perfect collision detection, i.e., in the case we
accept a certain number of false positives.

Our test setup has been optimized to minimize the number of false positives
in the collision detection process. We evaluated different test settings by trying
different test parameters. Besides the number different diagonals n, we tested I
different plaintexts per diagonal. The tested parameters are n = 256, n = 512,
and n = 1024 diagonals with I = 200, I = 400 and I = 800 different plaintexts
each. To increase the reliability of the timing measurements, we repeat each
measurement r times, where r = 20 or r = 40. Since measurement noise mostly
increases the measured computation times, we calculated the average encryption
time for one plaintext by using only the j fastest out of the r timing samples.
Chosen parameters for j were the 2, 5, 10 and j = r fastest measurements.

Differential Cache-Collision Timing Attacks on AES 249

Table 1. Number of false positives m for one column with a success probability of 65%

Parameters False positives
Test n I r j = 2 j = 5 j = 10 j = r

1 800 600 40 1.78 1.56 1.33 1.56
2 1024 400 20 2.11 1.22 1.22 1.67
3 1024 400 40 0.89 0.89 0.67 0.89
4 1024 600 15 1.67 1.89 2 1.78
5 1024 800 40 0.13 0.13 0.38 0.38

Table 1 shows the expected number of false positives for one column (hence,
four collisions and four revealed key bytes). All non-collisions that have a timing
lower than or within the group of the four fastest real collisions are considered
false positives. If we accept one false positive per column (i.e. a total of four false
positives), the remaining key space is increased to about 241 key candidates for
the entire AES key. If two non-collisions are accepted per column, the complexity
of the key search rises to approximately 247.6, for three to 252.5, and for four false
positives to 256.5 possibilities. With a highly optimized AES implementation such
as the one of Hamburg [19], up to 238 AES encryptions can be performed per
hour on a modern core2duo desktop processor, resulting in a feasible attack,
even in the case of one false positive per column.

Table 2. Number of measurements N and the size of the remaining key space K for our
differential wide collision attack and the expanded second round attack by Aciiçmez
et. al. [1]

Attack Test N Remaining key space K [2x]
j = 2 j = 5 j = 10 j = r

Our attack
2 65,536,000 49.7 43.8 43.8 47.4
3 131,072,000 41.6 42.2 41.2 42.2
5 262,144,000 36.9 36.9 38.7 37.5

Aciiçmez et. al. [1] 128,000,000 32

Table 2 summarizes the complexity of the key recovery step as number of
remaining key candidates and complexity of the online phase as the needed
number of traces for the different test cases described in Table 1. The results
of our differential wide collision attack are compared to the expanded second
round attack of Aciiçmez et. al. [1] on the same target platform, revealing that
our attack has an increased complexity for the key recovery, but can successfully
be performed with a lower number of measurements. All parameters of both
attacks are for an expected success rate of 90%. Depending on the chosen attack
parameters, we can approximately halve the number of needed measurements

250 A. Bogdanov et al.

when compared to the expanded second round attack. In test setup 2, 66 million
measurements suffice, with a remaining key space of 243.8, resulting in a more
realistic attack.

6 Conclusion

We presented a novel differential collision attack making use of the MDS prop-
erties of the AES algorithm. The attack outperforms previous attacks in the
same adversarial scenario in terms of needed measurements and decreases the
remaining key space far enough to be easily computable on a modern desktop
PC.

We furthermore presented the first evaluation of the vulnerability of embedded
platforms to cache timing attacks and showed that cache attacks are feasible in
practical setups. We want to stress that cache attacks pose a serious threat,
especially on embedded platforms. Developers of embedded software solutions
relying security functionality should consider the threat of cache timing attacks
when designing their systems.

Acknowledgements. During the work on this paper, Andrey Bogdanov was
supported partially by the Fund for Scientific Research - Flanders (FWO) and
partially by the Chair for Embedded Security at the Ruhr-University of Bochum.

References

1. Aciiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

2. Advanced Encryption Standard. FIPS. Publication 197. National Bureau of Stan-
dards, U.S. Department of Commerce (2001)

3. ARM Limited. ARM920T Technical Reference Manual, 1 edn.
4. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, Department

of Mathematics, Statistics and Computer Science, The University of Illinois at
Chicago, 2005, cr.yp.to/antiforgery/cachetiming-20050414.pdf

5. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. Technical re-
port, Computer Science Department, Stanford University and Microsoft Research,
Mountain View, CA (2006)

6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
7. ARM INC. ARM Powered Products,

http://www.arm.com/markets/mobile_solutions/app.html
8. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product

ciphers. Journal of Computer Security, 97–110 (1998)
9. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS

and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.arm.com/markets/mobile_solutions/app.html

Differential Cache-Collision Timing Attacks on AES 251

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks and Countermeasures
for Cryptographic Smart Cards: Revealing the Secrets of Smart Cards. Springer,
Heidelberg (2007)

12. Neve, M., Seifert, J., Wang, Z.: Cache time-behavior analysis on AES (2006),
http://www.cryptologie.be/document/Publications/AsiaCSSfull06.pdf

13. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

14. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report (2002)

15. Samsung Electronics. S3C2440A 32-Bit CMOS Microcontroller User’s Manual, 1
edn.

16. ST33F1M. Smartcard MCU with 32-bit ARM,
http://www.st.com/stonline/books/pdf/docs/15066.pdf

17. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

18. Tsunoo, Y., Tsujihara, E., Shigeri, M., Kubo, H., Minematsu, K.: Improving cache
attacks by considering cipher structure. Int. J. Inf. Secur. 5(3), 166–176 (2006)

19. Hamburg, M.: Accelerating AES with Vector Permute Instructions. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 18–32. Springer, Heidelberg
(2009)

20. OpenSSL 0.9.8.K. Openssl: The open source toolkit for ssl/tls,
http://www.openssl.org/ (accessed June 18, 2009)

21. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J.,
Willems, J.-L.: A Practical Implementation of the Timing Attack. In: Schneier, B.,
Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer,
Heidelberg (2000)

http://www.cryptologie.be/document/Publications/AsiaCSSfull06.pdf
http://www.st.com/stonline/books/pdf/docs/15066.pdf
http://www.openssl.org/

Usable Optimistic Fair Exchange

Alptekin Küpçü and Anna Lysyanskaya

Brown University, Providence, RI, USA
{kupcu,anna}@cs.brown.edu

Abstract. Fairly exchanging digital content is an everyday problem. It has been
shown that fair exchange cannot be done without a trusted third party (called the
Arbiter). Yet, even with a trusted party, it is still non-trivial to come up with an
efficient solution, especially one that can be used in a p2p file sharing system with
a high volume of data exchanged.

We provide an efficient optimistic fair exchange mechanism for bartering dig-
ital files, where receiving a payment in return to a file (buying) is also considered
fair. The exchange is optimistic, removing the need for the Arbiter’s involvement
unless a dispute occurs. While the previous solutions employ costly cryptographic
primitives for every file or block exchanged, our protocol employs them only once
per peer, therefore achieving O(n) efficiency improvement when n blocks are ex-
changed between two peers. The rest of our protocol uses very efficient cryp-
tography, making it perfectly suitable for a p2p file sharing system where tens
of peers exchange thousands of blocks and they do not know beforehand which
ones they will end up exchanging. Therefore, our system yields to one-two orders
of magnitude improvement in terms of both computation and communication (80
seconds vs. 84 minutes, 1.6MB vs. 100MB). Thus, for the first time, a provably
secure (and privacy respecting when payments are made using e-cash) fair ex-
change protocol is being used in real bartering applications (e.g., BitTorrent) [14]
without sacrificing performance.

1 Introduction

Fairly exchanging digital content is an everyday problem. A fair exchange scenario
commonly involves Alice and Bob. Alice has something that Bob wants, and Bob has
something that Alice wants. A fair exchange protocol guarantees that at the end either
each of them obtains what (s)he wants, or neither of them does (see [40] for more details
and examples).

In this paper, we consider a general file exchange (bartering) scenario, inspired by
the BitTorrent [22] peer-to-peer file sharing protocol. Alice has several files (BitTorrent
blocks) of interest to Bob, and Bob has several files (blocks) of interest to Alice. They
do not know ahead of time how many or which blocks they will end up exchanging.
They want to perform a fair exchange: Alice should get Bob’s file (block) if and only
if Bob gets Alice’s file (block). In a signature fair exchange [4,3,2], there is a verifica-
tion mechanism (i.e., the public key) that enables the sender to verifiably encrypt the
signature so that the receiver can check that the encrypted signature verifies. No such ef-
ficient verifiable encryption method is currently known for exchanging files. Therefore,
a compensation is required after the fact if one of the parties cheat. In our scenario, we

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 252–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Usable Optimistic Fair Exchange 253

are assuming that Alice/Bob will be equally happy to get a payment in return to her/his
file. Thus, exchanging a file with a payment (buying) is also considered fair, as in some
previous works [4,8,18,37,36].

One of the hardest points in creating a usable optimistic fair exchange protocol suit-
able for p2p file sharing applications is that the peers to contact and the content to
exchange are not pre-defined. BitTorrent clients keep connecting to different peers to
obtain different blocks. Fault-tolerance issues, connectivity problems, and availability
of data blocks are all factors affecting from whom which block should be obtained. Our
protocol uniquely addresses these issues by removing the need to know what content to
exchange with whom beforehand.

In a nutshell, in our protocol, Alice sends a verifiable escrow of a payment (e.g., e-
coin) to Bob first. Then, they exchange encrypted files. Afterward, Alice sends Bob an
escrow of her key with her signature on the escrow. Then, Bob sends Alice the key to
his file. Finally, Alice sends Bob the key to her file. Since Bob has a verifiable escrow
of an e-coin and an escrow of a key before he sends his key to Alice, he is protected.
In the worst case, if Alice does not provide the correct key and the key escrow contains
garbage, Bob can go to the Arbiter and obtain Alice’s payment. The escrow of the
payment cannot contain garbage, because it was formed using a verifiable escrow. After
the exchange of the verifiable escrow, the rest of our protocol can be repeated as many
times as necessary to exchange multiple files (even if the number and content of the
files were not known in advance), unless there is a dispute.

We provide two versions of the protocol: In the first one (the one described briefly
above) only one party provides a verifiable escrow. This version requires the use of
timeouts for dispute resolution purposes. We provide another version that needs both
parties to provide verifiable escrows but requires no timeouts. Both versions are very
efficient since they use only one (resp. two) expensive primitives (verifiable escrow
and payment) regardless of the number of files exchanged. We stress the fact that our
timeouts can be very large (e.g., one day or week) to allow for unexpected situations in
which the participants act honestly (e.g., network failure), and thus require very loose
synchronization (e.g., one hour difference), and users can freely participate in other
exchanges without waiting for the timeout.

Previous Work: It is well-known that a fair exchange protocol is impossible without
a trusted third party (TTP) [43] (called the Arbiter) that ensures that Alice cannot take
advantage of Bob, and vice versa. Without loss of generality, Alice will have to send
the last message of the protocol, and we want to protect Bob in case she chooses not to
do so. Without an arbiter, gradual release type of protocols where parties send pieces
to each other in rounds can provide only weaker forms of fairness, and are much less
efficient [11,13].

Luckily, the impossibility result [43] does not require that the Arbiter be involved
in each transaction, but simply that the Arbiter exists. If Alice and Bob are both well-
behaved, there is no need for the Arbiter to do anything (or even know an exchange
took place). Micali [39], Asokan, Schunter and Waidner [2], and Asokan, Shoup and
Waidner [4,3] investigated this optimistic fair exchange scenario in which the Arbiter
gets involved only in case of a dispute. Two such protocols [4,30] were analyzed in [46]
(see also [7]).

254 A. Küpçü and A. Lysyanskaya

Asokan, Shoup and Waidner (ASW) [4] gave the first provably secure and com-
pletely fair optimistic exchange protocol for exchanging digital signatures. Later on,
Belenkiy et al. [8] gave a protocol for buying digital content in exchange for e-cash,
building on top of the ASW protocol. They provided an optimization for the Arbiter
so that, unlike in the ASW protocol, the amount of work that the Arbiter is required to
do depends only logarithmically on the size of the file. They also assume there is an
additional TTP (which we call the Tracker) that provides a means of verification that
the file actually contains the right content (e.g., using hashes). Such entities certifying
hashes already exist in current BitTorrent systems [22].

Belenkiy et al. [8] used e-cash (introduced by Chaum [20]), in particular, endorsed
e-cash [18] in their constructions. The reason is that other forms of payments (signatures
or electronic checks used in [4,37]) do not provide any privacy. In our protocols, any
form of payment can be employed, but we will also use endorsed e-cash in our sample
instantiation since it is efficient and anonymous.

Contributions: We present the most efficient fair exchange known to us, where the ef-
ficiency is comparable to a simple unfair exchange if performed multiple times between
the same pair of users, even when peers do not know beforehand which blocks they
will end up exchanging. Using the best previous work (Belenkiy et al. barter protocol
[8]), n pairs of blocks can be exchanged using n transactions, each of which requires
a costly step involving expensive cryptographic primitives (a verifiable escrow and an
e-coin). Our contribution is a very efficient fair exchange protocol using which this
can be done with only one (or two if we do not want to employ timeouts) step in total
that involves the same expensive primitives (verifiable escrow and payment). This is a
property that is unique to our protocol: Instead of employing the costly primitives for
every file or block that is exchanged, we employ them once per peer, even when peers
do not know beforehand which blocks they will end up exchanging. Then, exchang-
ing multiple files/blocks between peers involves only very efficient cryptography (i.e.,
symmetric- and public-key encryption, and digital signatures). In a real setting where
BitTorrent peers exchange thousands of blocks with only tens of peers, there is one or
two orders of magnitude improvement in terms of both computation and communication
(80 seconds vs. 84 minutes computational overhead and 1.6MB vs. 100MB communi-
cation overhead for a 2.8GB file —for detailed numbers, see Section 3.2). This means
that, with no (i.e., neglectable) efficiency loss, our fair exchange protocol can be used
to exchange files instead of the unfair protocol currently used by BitTorrent or similar
file sharing protocols.

We stress the fact that the timeouts used for dispute resolution purposes in one of our
protocols can be very large (e.g., one day or week) to allow for unexpected situations in
which the participants act honestly (e.g., network failure), and thus require very loose
synchronization (e.g., one hour difference), and users can freely participate in other
exchanges without waiting for the timeout.

We take the idea of using verifiable escrow from ASW [4], and the subprotocols of
Belenkiy et al. [8] that increase the efficiency of the Arbiter (proving and disproving
keys). The Arbiter does absolutely no work in our protocols, as long as no dispute
occurs. Our protocols can make use of any type of payments, but we will show an
instantiation using e-cash since it also provides privacy. Our performance evaluation

Usable Optimistic Fair Exchange 255

numbers will use endorsed e-cash [18] as the payment mechanism. Note that other (non-
anonymous) forms of payments (e.g., electronic checks [21]) will be more efficient.

Our additional contribution is definitional. We give a general definition of fair ex-
change of digital content (not just digital signatures) provided that it can be verified
using some verification algorithm (defined in Section 2.2). Furthermore, our fairness
definition covers polynomially many exchanges between an honest party and an ad-
versary controlling polynomially-many other participants (see [27] for an example fair
exchange protocol that is fair for a single exchange but stops being fair in a multi-user
setting). We then prove our protocol’s security based on this definition. We sum up the
most important properties of our protocols below.

Security of our protocol: Our protocols provably satisfy the following condition (wait-
ing for at most one timeout period if timeouts are used, or without waiting at all if no
timeouts are used), as long as at least one of the trading parties (Alice and Bob) is
honest:

– Either Alice and Bob both get their corresponding files,
– Or Alice gets Bob’s file and Bob gets Alice’s payment (turns into a buy protocol in

effect),
– Or neither of them gets anything.

Efficiency of our protocol: We have the following properties regarding efficiency:

– An honest user can reuse her e-coin for other exchanges without waiting for the
completion of the protocol.

– The overhead of our costly step – verifiable escrow and e-cash – is constant O(1),
instead of linear O(n) as in previous best results, when n files or blocks are ex-
changed.

Already, the Brownie Project [14] is using our protocols in their BitTorrent deployment.

2 Definitions

Barter is an exchange of two items, which are digital files in our case. We assume that
the reader is familiar with encryption and signature schemes, and hash functions.

2.1 Notation

An escrow is a ciphertext under the public key of some trusted third party (TTP). A
verifiable escrow [4,19,15] means that the recipient can verify that the contents of the
ciphertext satisfy some relation (therefore stating that the ciphertext contains the ex-
pected content). A contract (a.k.a. label, condition, or tag) attached to such a ciphertext
defines the conditions under which the TTP should decrypt and give away the encrypted
secret [47]. The label is public and it is integrated with the ciphertext in a such way that
it cannot be modified. We will use EArb(a;b) to denote an escrow of the secret a un-
der the Arbiter’s public key, with the contract b. Similarly, VEArb(a;b) will denote a
verifiable escrow.

256 A. Küpçü and A. Lysyanskaya

Any payment protocol that can efficiently be verifiably escrowed and is secure can
be used in our protocols. Furthermore, if privacy is desired, the payments should be
anonymous as in e-cash [20]. We provide an instantiation using endorsed e-cash [18]
(which is an extension of compact e-cash [17]), since it satisfies all these requirements.
Endorsed e-cash splits a coin into an unendorsed coin (denoted coin′) and endorsement
(denoted end). One can think of coin′ as an encrypted coin and end as the key. One
can check if the endorsement end in a given verifiable escrow [19] matches the given
unendorsed coin coin′ (without learning the endorsement end). Furthermore, given only
the unendorsed part coin′, no other party (except the owner) can come up with a valid
endorsement end. Endorsed e-cash moreover has the ability to catch double-spenders.
Hence, if one uses two different coin′,end pairs trying to spend the same coin twice,
(s)he will be caught (and, since her identity is revealed, can be punished). Note that if
a party tries to deposit the same coin twice (using the same coin′,end pair), the oper-
ation can easily be denied by checking against a list of past transactions. Lastly, only
matching coin′,end pairs can be linked, unendorsed coins and endorsements prepared
for different exchanges remain unlinkable.

Wherever used, KP will denote a symmetric key of a party P, generated through
an encryption scheme’s key generation algorithm. We let c = EncK(f) denote that the
ciphertext c is an encryption of the plaintext f under the symmetric key K. Similarly,
f = DecK(c) will denote that the plaintext f is the decryption of the ciphertext c under
the symmetric key K. Our protocol can make use of any secure symmetric encryption
scheme (see the book by Katz and Lindell [33] for definitions and constructions).

Let pkP and skP denote public and secret keys for a party P. Then signsk(x) will
denote a signature on x under the secret key sk which can be verified using the corre-
sponding public key pk. Our protocol can make use of any secure public-key encryption
scheme [24,28] and any secure signature scheme [31].

Furthermore, let Hk be a family of (universal one-way) hash functions [41], where k
is the security parameter, and let hash be a hash function uniformly choosen from the
family Hk of hash functions. Then, hx = hash(x) will denote that hx is the hash of x
under the hash function hash. We now introduce a definition we frequently use in the
paper.

Definition 1. We say that a key K decrypts correctly, or is the correct key with respect
to a plaintext hash h f and a ciphertext c, if the plaintext f ′ = DecK(c) has the property
hash(f ′) = h f .

Finally, a negligible probability denotes a probability that is a negligible function of the
security parameter (e.g., the key-length of an encryption scheme). A negligible function
of n is a function which is smaller than any inverse polynomial over n with n > N for
sufficiently large N (e.g., neg(n) = 2−n).

2.2 (Optimistic) Fair Exchange

In this section we will give a general definition of fair exchange. Unlike in ASW, our
definitions will not be specific to signature exchange, and we will consider polynomially-
many exchanges between an honest user and an adversary controlling polynomially-
many other users. Furthermore, we separate and clearly define the roles of all trusted

Usable Optimistic Fair Exchange 257

parties. While providing models and definitions for a general framework of (optimistic)
fair exchange applicable to a broad range of protocols, we will also show its extensions
to our case.

MODEL: The model is adapted from the ASW definition [4], with clarifications and
generalizations. There are three players; Alice and Bob exchanging two digital items,
and the Arbiter1 for conflict resolution. All players are assumed to be polynomial time
interactive Turing machines. We make no assumption about the underlying network
capability.2 Any message that does not confirm with the protocol specification will
be discarded by the honest parties. Any input which does not verify according to the
protocol will be resolved as stated by the protocol or the protocol will be aborted if
no resolution is applicable. It is important that the Arbiter resolves conflicts on the
same exchange atomically.3 Thus, it will only interact with either Alice or Bob at any
given time instance, until that interaction ends as specified by the protocol.4 Sensitive
communication (e.g., exchange of decryption keys for files or endorsement of an e-coin)
will be carried out over a secure (and possibly authenticated) channel (e.g., SSL can be
used to connect to the Arbiter, a secure key exchange with no public key infrastructure
can be used for the communication between Alice and Bob).

For protocols using a timeout5, we assume that the adversary cannot prevent the
honest party from reaching the Arbiter before the timeout. If no timeouts are defined,
we assume the adversary cannot prevent the honest party from reaching the Arbiter
eventually. Hence, the honest party is assumed to be able to reach the Arbiter as defined
by the protocol. Even with timeouts, this is not an unrealistic assumption since our
timeouts can be large (e.g., one day or week).

In our model, we have two additional players, namely the Tracker (also in [4,8,22])6

providing verification algorithms, and the Bank dealing with monetary parts of the
system.

SETUP PHASE: Before the fair exchange protocol is run, we assume there is a setup
phase. In this one-time pre-exchange phase, the Arbiter generates his public-private
key pair (for the (verifiable) escrow schemes) and publishes his public key(s) so that
both Alice and Bob obtain it. Optionally, the Arbiter may learn public keys of Alice
and Bob in the setup phase, but our focus is on the case where the Arbiter does not
need to know anything (and learns almost nothing) about Alice or Bob. The adversary

1 One of the TTPs in ASW.
2 Clients will have a local message timeout mechanism like the TCP timeout, which is small

(e.g., one minute). The receiver deals with a message timeout exactly as it would deal with a
non-verifying input.

3 We present a trade-off between non-atomicity and performance of the Arbiter later on.
4 For ease of the Arbiter to find the correct exchange, a random exchange ID can be incorporated

into the messages. Since this is only a minor implementation efficiency issue, we do not want
to complicate our definitions with that.

5 This is not the message timeout, it is the timeout specified by the protocol, which is generally
much longer (e.g., one day or week).

6 ASW has the corresponding TTP in their file exchange scheme. In their signature exchange
protocol, the public key infrastructure providing the public keys can be seen as the Tracker.

258 A. Küpçü and A. Lysyanskaya

cannot interfere with the setup phase.7 In the setup phase, the Bank and the Tracker
also generate their public-private key pairs and publish their public keys.

Definition 2. Let SP denote the security parameters of the system (e.g., key lengths of
the primitives used). Let PP denote all the public values in the system, including SP,
public keys of the trusted parties, and possibly some public parameters. Let PPGen(SP)
be the randomized procedure which generates the public values given the security pa-
rameters. Then, define our PP = (pkarb,pkbank,pktracker , timeout,SP, and additional pa-
rameters for primitives used).

From now on, we need to talk about multiple exchanges taking place. Alice has files

f (1)
A , .., f (n)

A to be exchanged with Bob, and Bob has f (1)
B , .., f (n)

B to be exchanged with
Alice (n is a polynomial in SP).8 In general, we can consider these files as some
strings in {0,1}∗, therefore consider fair exchange of anything that is verifiable. With-
out loss of generality, the Tracker gives Alice a verification algorithm V

f
(i)
B

for each file

f (i)
B , and Bob a verification algorithm V

f
(i)
A

for each file f (i)
A before the exchange takes

place.
Assume that the content to be exchanged and associated verification algorithms are

output by a generation algorithm Gen(SP) that takes the security parameters as input
and outputs some content to be exchanged, with associated verification algorithms, and
possibly some public information about the content. This procedure involves a trusted
party H and the Tracker. The parties trust the Tracker in that any input accepted by that
verification algorithm will be the content they want. In other words, they are going to be
happy with any content that verifies under that verification algorithm. In particular, the
content generation process is trusted. The adversary cannot generate “junk” files and
ask the Tracker to create verification algorithms for them. BitTorrent forum sites and
ratings provide a level of defense against this in practice.

Definition 3. Content and verification algorithms are secure if ∀ PPT adversaries A
and ∀ auxiliary inputs z∈ {0,1}poly(SP) we have (over the randomness of the generation
algorithms, the adversary, and possibly the verification algorithms)

Pr[PP← PPGen(SP);(f (1)
H ,V

f
(1)
H

,pub
f
(1)
H

, .., f (n)
H ,V

f
(n)
H

,pub
f
(n)
H

)← Gen(SP);

(f (1)
A , .., f (n)

A)← A(V
f
(1)
H

,pub
f
(1)
H

, ..,V
f
(n)
H

,pub
f
(n)
H

,PP,z) :

∃i ∈ [1..n] | (V
f
(i)
H

(f (i)
H) �= accept∨V

f
(i)
H

(f (i)
A) = accept)] = neg(SP)

The definition above models the case in which the files to be exchanged cannot
be found by the adversary by some other means9 (and hence exchanging files makes

7 This is the standard trusted setup assumption that says Alice and Bob have the correct public
key of the Arbiter.

8 Note that Alice or Bob can represent multiple entities controlled by the adversary.
9 We assume that the adversary cannot just “guess” an honest participant’s file, in which case

the exchange is trivially unfair.

Usable Optimistic Fair Exchange 259

sense for the adversary), even with the help of associated verification algorithms and
public information10.

To provide evidence on the generality and applicability of our definition, we present
several example verification algorithms for various tasks. For example, a file verifica-
tion can be performed using hashes. So, each verification algorithm V

f
(i)
A

for Alice’s

file f (i)
A contains the definition of hash function used –hash–11, and the hash value

h
f
(i)
A

= hash(f (i)
A). The ith verification algorithm computes the hash of the given input

according to the description of the hash function, and accepts it if and only if the com-
puted hash matches h

f
(i)
A

. As another example, consider the ASW signature exchange

protocol, in which each verification algorithm contains the signature scheme’s descrip-
tion11, the signature public key of Alice pkA

11, and the message mi to be signed. When
it receives a signature as input, the ith verification accepts the signature if and only if it
is a valid signature on message mi under the public key pkA using the signature scheme.
As yet another example, an e-coin verification algorithm can take a coin to verify, and
use the Bank’s public key while verifying the non-interactive proofs given. Such an
algorithm is a part of the specification of every e-cash scheme (e.g., see [18,17]). Ver-
ifiable encryption schemes (e.g., [19]) and, in general, proof systems also specify a
verification algorithm in their definitions. Such algorithms can be used directly in a
fair exchange protocol, satisfying our definition as long as they are secure according to
Definition 3.

To summarize, in the setup phase, public values are generated using PPGen(SP).
The files and the verification algorithms are generated jointly by the Tracker and some
trusted content generator (e.g., movie distributor) using the Gen(SP) procedure. In the
context of BitTorrent, this means that we trust the content generator about the content,
and the Tracker about the verification algorithms. A “highly rated” BitTorrent user will
be trusted about the content, or alternatively, comments on the forum sites will warn
against bogus content. From now on, we assume the content and the verification algo-
rithms used are secure and trusted.

Definition 4. Fair Exchange Protocol: A fair exchange protocol is composed of three
interactive algorithms: Alice running algorithm A, Bob running algorithm B, and the
Arbiter running the trusted algorithm T. The content and verification algorithms used
need to be secure according to Definition 3. The security of the exchange is then defined
in terms of completeness (when Alice and Bob are both honest) and fairness (when
either Alice or Bob is malicious).

COMPLETENESS for a (non-optimistic) fair exchange states that the interactive run of
A, B and T by honest parties results in A getting B’s files and B getting A’s files (assum-
ing an ideal network):

10 For example, if movies are being exchanged, a lot of information is publicly available about
such a movie file, such as actors, length, and release date. But these do not enable people to
come up those movie files.

11 Possibly different for each verification algorithm.

260 A. Küpçü and A. Lysyanskaya

Pr[(f (1)
B , .., f (n)

B)← A(f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)
T (skarb)←→

B(f (1)
B , .., f (n)

B ,V
f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f (1)
A , .., f (n)

A)] = 1

where the notation describes that A, B and T can all communicate (in a three-way in-

teraction) following the protocol, and at the end A outputs f (i)
B and B outputs f (i)

A for all
i : 1..n.

OPTIMISTIC COMPLETENESS for an optimistic fair exchange states that the inter-

active run of A and B by honest parties results in A getting f (i)
B and B getting f (i)

A for
all i : 1..n (the Arbiter’s algorithm T is not involved, assuming an ideal network). A
protocol satisfying optimistic completeness also satisfies completeness. Our optimistic
completeness definition is:

Pr[(f (1)
B , .., f (n)

B) ← A(f (1)
A , .., f (n)

A ,V
f
(1)
B

, ..,V
f
(n)
B

,PP)↔
B(f (1)

B , .., f (n)
B ,V

f
(1)
A

, ..,V
f
(n)
A

,PP)→ (f (1)
A , .., f (n)

A)] = 1

Fairness states that at the end of the protocol, either Alice and Bob both get content
that passes the verification algorithms given to them, or neither Alice nor Bob gets
anything that passes the verification, in each of the n exchanges, even when one of them
is malicious.12 This definition is easy to satisfy using a (non-optimistic) fair exchange
protocol since Alice and Bob can both hand their files to the Arbiter, and then the
Arbiter can send Bob’s files to Alice and Alice’s files to Bob, if they pass respective
verifications. Thus, below, we will define the more interesting case; fairness for an
optimistic fair exchange. It is important to note that the ASW definition of fairness
applies only to a single exchange, whereas our definition covers polynomially-many
exchanges between an honest party and other players all controlled by the adversary.

FAIRNESS: We have an honest player H, and an adversarial player A . The honest
player runs algorithm A in exchanges where he plays the role of Alice, algorithm B in
exchanges where he plays the role of Bob, and the Arbiter runs the algorithm T , all

as defined by the protocol. H has files f (1)
H , .., f (n)

H to be exchanged with the adversary,

and A has f (1)
A , .., f (n)

A to be exchanged with H. The adversary is assumed to control all
other players, and hence all interactions of the honest player are with parties controlled
by the adversary, which is the worst possible scenario covering multiple exchanges.

First there is the trusted setup phase as explained above, getting the security param-
eters as input, generating secure content and verification algorithms, along with some
associated public information, and giving the appropriate values to each party. Since
the setup phase is trusted, ∀i : 1..nV

f
(i)
H
,V

f
(i)
A
,PP are trusted. Then parties proceed with

the fairness game explained below, the honest party outputting X and the adversary
outputting Y . At the end of the game, we require the fairness condition holds on X ,Y ,
the verification algorithms V

f
(1)
H

,V
f
(1)
A

, ..,V
f
(n)
H

,V
f
(n)
A

, and the public values PP with high

probability against all PPT adversaries A , and all polynomially-long auxiliary inputs.

Pr [Setup; FairnessGame: FairnessCondition] = 1 − neg(SP)
12 On the contrary, completeness definition only deals with honest participants.

Usable Optimistic Fair Exchange 261

FAIRNESS GAME: There are three types of interaction in our fairness game. Type 1
interactions are between H and A . Type 2 interactions are between H and T . Type 3
interactions are between A and T .13 The adversary can arbitrarily interleave type 1,2,3
interactions, but cannot prevent type 2 interactions from happening until the timeout if
timeouts are used, or eventually otherwise. The game ends when the honest party H
produces its final output (including aborts and resolutions) in all the started protocols.
Without loss of generality, in the fairness game we assume both parties want to ex-

change different content in different exchanges (∀i �= j f (i)
H �= f (j)

H and f (i)
A �= f (j)

A and

∀i, j f (i)
H �= f (j)

A).14

FAIRNESS CONDITION: Recall that the honest party’s output was X and the adversary’s
output was Y at the end of the fairness game. A general fairness condition would be
∀i : 1..n [∃x ∈ X : V

f
(i)
A

(x) = accept⇔∃y ∈ Y : V
f
(i)
H

(y) = accept] meaning that either

H and A both get what they want or both don’t, in each exchange.
Our protocol with payments has a very straightforward generalization of the fairness

property. Our fairness condition states that either they both parties get each other’s file,
or one of them gets the other’s file whereas the other gets his payment, or they both get
nothing at each exchange. We believe that a broad range of optimistic fair exchange
protocols can adapt the definition above using straightforward extensions whenever
necessary.

TIMELY RESOLUTION: Lastly, as pointed out by ASW [4], an optimistic fair exchange
protocol must provide timely resolution: Alice and Bob must be able to have disputes
resolved within a finite and limited time. In our protocol without timeouts, resolution
is immediate. In our protocol with timeouts, we guarantee resolution at the timeout
(which is finite and fixed). We furthermore show that timeouts do not render our sys-
tem less usable (Alice and Bob can freely participate in other exchanges without wait-
ing for the timeout), and so in general we can use our more efficient protocol with
timeouts.

3 Efficient Optimistic Barter Protocol

3.1 Barter with Timeouts

We will show a particular instantiation of our protocol, using endorsed e-cash [18] as
the payment and hashes as the file verification algorithms. Full version of our

13 In the implementation, T may need to have a way to differentiate which one of Alice and Bob
he is talking to, which can easily be done in our protocols without learning who Alice and Bob
are. When necessary, using one-way function values whose pre-image is known by only one
of the parties will suffice.

14 If the honest party already has the adversary’s file, the exchange will be trivially fair due to
the completeness property. If the adversary already has the honest party’s file, then there is no
hope for fairness since the adversary can just abort the protocol but he already has the file.
Similar arguments hold for exchanging the same file multiple times.

262 A. Küpçü and A. Lysyanskaya

paper discusses generalizations to our protocols [35]. Before the protocol begins, we
assume Alice has withdrawn an e-coin from the Bank. Every time Alice and Bob
wants to exchange two files (every time before step 2 of the protocol below), Alice
generates her fresh key KA and Bob generates his fresh key KB for a symmetric encryp-
tion scheme. Alice and Bob both have their files (fA, fB), have the encrypted versions of
their files (cA = EncKA(fA),cB = EncKB(fB)), have the hashes of their files and encryp-
tions (Alice has h fA = hash(fA),hcA = hash(cA), and Bob has h fB = hash(fB),hcB =
hash(cB)). Besides, the Tracker provides them with the respective verification algo-
rithms: Alice gets h fB , Bob gets h fA .15 Everyone uses the same time zone (e.g., GMT),
and the timeout is a globally known parameter16. If anything goes wrong prior to step
5 (no resolution protocol is applicable), the protocol will be aborted. The protocol pro-
ceeds as follows (summarized in Figure 1):

1. Alice creates a fresh public-secret key pair pkA,skA for a signature scheme. Al-
ice sends a fresh unendorsed e-coin coin′ to Bob, along with a verifiable escrow
v = VEArb(end;pkA) of the endorsement end, labeled with the signature scheme’s
public key.

2. Alice sends Bob ciphertext cA of her file.17 Bob calculates hcA = hash(cA).18

3. Bob sends Alice ciphertext cB of his file. Alice calculates hcB = hash(cB).
4. Alice sends Bob an escrow e = EArb(KA;h fA ,h fB ,hcA ,hcB , time) and her signature

s = signskA(e) on that escrow. The escrow e should encrypt a key and should be
labeled with four hash values h fA ,h fB ,hcA ,hcB , and a time value. If any of the hash
values do not match Bob’s knowledge of those values, or if the time value is de-
viated too much from Bob’s knowledge of the time (e.g., almost one timeout dif-
ference), then Bob aborts.19 Moreover, if the signature s on the escrow e does not
verify with the public key pkA sent in step 1 as part of the verifiable escrow v, Bob
aborts the protocol.

5. Bob sends Alice his key KB. Alice checks if the key KB decrypts the ciphertext
cB correctly. If not, Alice does not proceed with the next step, and runs AliceRe-
solve, although she might have to run it again just after the timeout to be able to
resolve.

6. Alice sends Bob her key KA. Bob checks if the key KA decrypts the ciphertext cA

correctly. If not, he runs BobResolve; he must do so before the timeout.20

15 We are abusing the notation by using hash values as verification algorithms provided by the
Tracker hoping that the actual verification procedure of hashing the files and comparing the
result with values given by the Tracker is obvious.

16 It can easily be a per-exchange parameter known to (or agreed by) both parties.
17 Alice and Bob can use their choice of (symmetric) encryption schemes (not necessarily the

same). This only requires us to add the definition of the encryption scheme used to the mes-
sages exchanged.

18 These will be Merkle hashes [38] for efficiency reasons.
19 We do not require tight synchronization. So, for example, the time value can just contain hours,

and not minutes and seconds.
20 Bob can run BobResolve immediately after a message timeout. He need not wait for a long

time for Alice.

Usable Optimistic Fair Exchange 263

Fig. 1. Our Barter Protocol with Timeouts

Once step 1 is com-
pleted, cheap steps 2-
6 can be repeated to
exchange more files,
as long as no dis-
pute occurs. Alice and
Bob need not know
beforehand how many
or which files/blocks
to exchange. When-
ever they decide to ex-
change blocks (before every step 2), it is enough for them to just obtain their hashes
from the Tracker. Actually, in BitTorrent, once you ask for hash of a file, the Tracker
provides you with the hashes of all the blocks in that file already. Thus, connecting the
Tracker for each block is not necessary in real life.

Below we present the resolution protocols in case of a dispute between Alice and
Bob. The Arbiter never gets involved in a transaction unless there is a dispute.

BobResolve. Bob needs to contact the Arbiter before the timeout for resolution (current
time < time in escrow e + timeout), since otherwise the Arbiter is not going to honor
his request. Assuming Bob resolves before the timeout, he provides the Arbiter with
the escrow e and signature s that he received in step 4, and also the verifiable escrow v
he received in step 1 from Alice. The escrow e should be labeled with four hash values
h fA ,h fB ,hcA ,hcB , and a time value. The verifiable escrow v should be labeled with a public
key pkA for a signature scheme. If the labels of the escrows are ill-formed, the Arbiter
will not honor the request. The Arbiter checks the signature s using the public key in
the verifiable escrow v, and if it verifies, he asks Bob to present his correct key KB that
verifies using the VerifyKey protocol in [8] (i.e., it decrypts a ciphertext with hash hcB to
a plaintext with hash h fB). If Bob succeeds in giving the correct key, the Arbiter stores
the key KB, decrypts the escrow e and hands in the key KA from the escrow to Bob.
Bob checks if KA decrypts Alice’s file fA correctly. If not, he proves this to the Arbiter
using the technique in [8] and gets the endorsement end in the verifiable escrow v from
the Arbiter.21 Notice that only Bob may succeed in the BobResolve protocol with the
Arbiter because any other party will fail to provide the correct key matching hashes of
Bob’s files). The subprotocols from [8] can be found in the full version of our paper [35].

AliceResolve. When Alice contacts the Arbiter for resolution, she asks for Bob’s key
KB. If such a key exists, then the Arbiter sends KB to her.22 KB has already been verified,

21 The Arbiter can abort this trade forgetting the KB in such a case. This is not necessary ac-
cording to our definition (and can even be considered unfair), but it can be used as a way to
punish cheating Alice even more. In the worst case, if non-atomicity of the Arbiter is allowed
for efficiency reasons, Alice can obtain KB before Bob proves KA to be incorrect, effectively
turning our protocol into a buy protocol.

22 If the Arbiter is allowed to be non-atomical for efficiency reasons, then he needs to ask Alice
for her key KA, verifying it using the VerifyKey protocol in [8] before giving her KB. This
represents a tradeoff between the atomicity and efficiency of the Arbiter, which can be resolved
arbitrarily, although it can also be used as a tougher punishment for cheaters.

264 A. Küpçü and A. Lysyanskaya

so Alice does not need to perform any further action. If such a key does not exist yet,
Alice should come back after the timeout. If, even after the timeout KB does not exist,
then Alice is assured that it will never exist, and can consider that particular trade as
aborted.

3.2 Efficiency Analysis

The efficiency of Alice’s and Bob’s parts in the protocol can be further improved, as
we show in the full version of our paper [35], although this would require the Arbiter
to perform more work. Since such trusted third parties can become the bottlenecks of
the system, we prefer having the least amount of work to be done by the Arbiter, and
let users perform slightly more work instead.

We consider a concrete instantiation of our protocol using endorsed e-cash [18],
Camenisch-Shoup verifiable escrow [19], AES encryption [25], DSS signatures [42],
and RSA-OAEP public key encryption for (non-verifiable) escrow [10]. Our protocol
has only neglectable overhead over just doing an unfair exchange. Sending the cipher-
texts in steps 2 and 3 just corresponds to sending the files in any (even unfair) ex-
change.23 The keys sent in steps 5 and 6 are extremely short messages (16 bytes each
for 128-bit AES keys). For a fair exchange, step 4 is still very cheap since the only
primitives used are an ordinary (non-verifiable) escrow (just a public key encryption),
and a signature (A DSS signature created using a 1024-bit key is about 40 bytes, while
an RSA-OAEP encryption with a 1024-bit key is about 128 bytes).

Assuming IO and CPU can be overlapped, encryption of files will not add any time.
Furthermore, signatures and escrows take only a few milliseconds. The most time con-
suming step is sending the blocks themselves, which has to be done in any case (and
encryption does not increase size). The only real overhead is the first step, where the
verifiable escrow (and endorsed e-cash, if used) is costly (see below).

Our protocol, in addition to guaranteeing fair barter efficiently, is optimized for
multi-barter situations. One such situation is a file sharing scenario as in BitTorrent
[22,8]. The peers Alice and Bob are expected to have a long-term barter relationship.
Hence, step 1 needs to be carried out only once per peer, and remaining cheap
steps 2-6 would be repeated for each block, whereas previous protocols required
a costly step like step 1 to be performed for each block. This greatly amortizes the
costly step 1 in our protocol, when multiple blocks (or files) are exchanged, even when
the files/blocks to be exchanged are not pre-defined (they need to be defined only
before each execution of step 2).

To give some numbers, consider an average BitTorrent file of size 2.8GB made up
of about 2,500 blocks [32]. Using previous optimistic fair exchange protocols, this re-
quires 2,500 costly steps (one per block). Our C++ implementation using endorsed
e-cash [18] and Camenisch-Shoup verifiable escrow [19] takes about 2 seconds of com-
putation for step 1 (most of which is the verifiable escrow) on an average computer
(2GHz). This corresponds to 2500×2seconds = 84 minutes of computation overhead.
Considering a BitTorrent client that connects to about 40 peers, using our protocol,

23 We can in general assume that the I/O and CPU can be pipelined so that the encryption will
not add more time to uploading the files.

Usable Optimistic Fair Exchange 265

this overhead becomes just 80 seconds. Our network overhead is similarly neglectable
(around 40KB per peer, almost all of which is the one-time cost of step 1, about half
of it being endorsed e-cash). This corresponds to about 2500× 40KB = 100 MB total
overhead using previous schemes, and only 1.6 MB total overhead using our scheme
(for a 2.8GB file).

As for the Arbiter, he checks a signature, sometimes decrypts a (verifiable) escrow,
and performs the VerifyKey protocol of Belenkiy et al. [8]. The signature check and
ordinary escrow decryption takes only milliseconds, the verifiable escrow decryption,
when necessary, can take a few hundred milliseconds. The bottleneck is the data that
the Arbiter needs to download for the VerifyKey protocol, which is about 22chunks×
16KB = 352KB [8]. An important point to note is that the amount of data the Arbiter’s
needs to download is independent of the size of the file that is being exchanged.24

Without considering distributed denial of service (DDoS) attacks, let us provide
some numbers for evaluation. To have an idea, consider a p2p system of 1,700,000
users, exchanging 2.8GB files on the average [32]. Exchanging two such files means
exchanging 5.6GB of data. If 1% of all users are malicious, this can correspond to
17,000 exchanges requiring an arbiter at a given time (where one user is honest and the
other is malicious. If both of them are malicious, this number reduces to half of it). We
said, in case of a dispute, a peer should upload 352KB of data to the Arbiter. Assume
that the same upload speed is used when trading files and contacting the Arbiter. If we
assume the worst case scenario where the Arbiter can handle only one user at a time
and every user is active at all times, this requires having 2 arbiters; with 10% malicious
user ratio, we need 11 arbiters. Under the very realistic assumption that an arbiter can
handle 25 users at a time (e.g., assuming 25 times as fast download speed of the Arbiter
as the upload speed of the users [23]), we will need 1 arbiter in this system (even with
10% malicious user ratio). When we use our protocol without timeouts, these numbers
will double (but if our arbiter can handle 25 users at a time, we still need only 1 arbiter).
Some more efficiency evaluation, limitations and possible solutions, a generalized ver-
sion of our protocols, security proofs and privacy discussion can be found in the full
version of this paper [35]. The full version also includes the version of our protocol that
does not require timeouts.

4 Conclusion

There already are many scenarios where peers trade content [22,32]. These systems
unfortunately rely on the honesty of the peers for providing fairness, partly because of
the high cost incurred by the previous fair exchange protocols [2,3,4,5,8,18,40]. Our
protocols uniquely limit the use of the costly primitives (verifiable escrow and e-cash)
to once (or twice) per peer, as opposed to per file/block. We have shown in Section
3.2 that there are one or two orders of magnitude efficiency gains over previous pro-
tocols. Besides, most of the existing systems already rely on similar trusted parties
[2,3,4,5,8,17,18,20,22,32,40,43]. Therefore, for the first time, by using our protocols,
such bartering systems will experience almost no performance loss, while the benefit

24 Merkle proofs are logarithmic in number of the blocks in the file, but are much smaller in size
than the data blocks themselves in practice.

266 A. Küpçü and A. Lysyanskaya

of providing fairness guarantees will be very noticeable indeed (e.g., see [8] for how
the use of fair exchange can solve the free-riding problem of BitTorrent). Already, the
Brownie Project [14] is adopting our protocols in their BitTorrent deployment.

References

1. Asokan, N., Janson, P.A., Steiner, M., Waidner, M.: The state of the art in electronic payment
systems. IEEE Computer 30, 28–35 (1997)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: CCS
(1997)

3. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair exchange.
In: IEEE Security and Privacy (1998)

4. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communications 18(4), 591–610 (2000)

5. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signatures. In: CCS
(1999)

6. Avoine, G., Vaudenay, S.: Optimistic Fair Exchange Based on Publicly Verifiable Secret
Sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108,
pp. 74–85. Springer, Heidelberg (2004)

7. Backes, M., Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Compositional analysis of
contract-signing protocols. Theoretical Computer Science 367(1-2), 33–56 (2006)

8. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A., Rachlin, E.:
Making P2P Accountable without Losing Privacy. In: WPES (2007)

9. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.: Incentivizing
Outsourced Computation. In: NetEcon (2008)

10. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

11. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing contracts.
IEEE Transactions on Information Theory 36(1), 40–46 (1990)

12. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference (1979)
13. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,

vol. 1880, p. 236. Springer, Heidelberg (2000)
14. Brownie Project, http://cs.brown.edu/research/brownie
15. Camenisch, J., Damgård, I.: Verifiable Encryption, Group Encryption, and Their Appli-

cations to Group Signatures and Signature Sharing Schemes. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, p. 331. Springer, Heidelberg (2000)

16. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to
Win the Clonewars: Efficient Periodic N-times Anonymous Authentication. In: CCS (2006)

17. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

18. Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. IEEE Security and Pri-
vacy (2007)

19. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete log-
arithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer,
Heidelberg (2003)

20. Chaum, D.: Bling signatures for untraceable payments. In: CRYPTO (1982)
21. Chaum, D., den Boer, B., van Heyst, E., Mjolsnes, S., Steenbeek, A.: Efficient offline elec-

tronic checks. In: EUROCRYPT (1990)

http://cs.brown.edu/research/brownie

Usable Optimistic Fair Exchange 267

22. Cohen, B.: Incentives build robustness in bittorrent. In: Kaashoek, M.F., Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

23. Cohen, L.: Testimony of Larry Cohen, President of Communications Workers of America
(May 2007)

24. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adap-
tive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p.
13. Springer, Heidelberg (1998)

25. Daemen, J., Rijmen, V.: The Design of Rijndael: AES–the Advanced Encryption Standard.
Springer books (2002)

26. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In:
USENIX Security (2004)

27. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic Fair Exchange in a Multi-user Setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

28. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing
(2000)

29. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure under the RSA
Assumption. Journal of Cryptology 17(2), 81–104 (2004)

30. Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 449. Springer, Heidelberg (1999)

31. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attack. SIAM Journal on Computing (1988)

32. Iosup, A., Garbacki, P., Pouwelse, J., Epema, D.H.J.: Correlating Topology and Path Char-
acteristics of Overlay Networks and the Internet. In: GP2PC (2006)

33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press,
Boca Raton (2007)

34. Küpçü, A., Lysyanskaya, A.: Optimistic Fair Exchange with Multiple Arbiters. Cryptology
ePrint Archive, Report 2009/069 (2009), http://eprint.iacr.org/2009/069

35. Küpçü, A., Lysyanskaya, A.: Usable Optimistic Fair Exchange. Cryptology ePrint Archive,
Report 2008/431 (2008), http://eprint.iacr.org/2008/431

36. Lindell, Y.: Legally Enforceable Fairness in Secure Two-Party Computation. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg (2008)

37. Markowitch, O., Saeednia, S.: Optimistic fair exchange with transparent signature recovery.
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, p. 329. Springer, Heidelberg (2002)

38. Merkle, R.: A digital signature based on a conventional encryption function. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

39. Micali, S.: Simultaneous Electronic Transactions. U.S. Patent, No. 5,666,420 (1997)
40. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC (2003)
41. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications.

In: STOC (1989)
42. NIST. Digital Signature Standard (DSS). FIPS, PUB 186-2 (2000)
43. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted third party.

Technical Report, TUD-BS-1999-02 (1999)
44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:

Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)
45. Shamir, A.: How to Share a Secret. ACM Communications (1979)
46. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing protocols. Theo-

retical Computer Science 283(2), 419–450 (2002)
47. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.

In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg
(1998)

http://eprint.iacr.org/2009/069
http://eprint.iacr.org/2008/431

Hash Function Combiners in TLS and SSL

Marc Fischlin, Anja Lehmann, and Daniel Wagner

Darmstadt University of Technology, Germany
www.minicrypt.de

Abstract. The TLS and SSL protocols are widely used to ensure secure
communication over an untrusted network. Therein, a client and server
first engage in the so-called handshake protocol to establish shared keys
that are subsequently used to encrypt and authenticate the data trans-
fer. To ensure that the obtained keys are as secure as possible, TLS
and SSL deploy hash function combiners for key derivation and the au-
thentication step in the handshake protocol. A robust combiner for hash
functions takes two candidate implementations and constructs a hash
function which is secure as long as at least one of the candidates is se-
cure. In this work, we analyze the security of the proposed TLS/SSL
combiner constructions for pseudorandom functions resp. message au-
thentication codes.

1 Introduction

Hash functions are an important primitive for cryptographic protocols and are
currently used for various tasks that require, among others, collision resistance
or, in keyed settings, behavior of a pseudorandom function or a MAC. However,
recent attacks [27,26,5,22] against the most widely deployed hash functions MD5
and SHA1 caused a decrease of confidence, especially concerning long-term se-
curity. Hence, approaches like robust combiners [13] which allow to obtain less
vulnerable hash functions are of great interest and have triggered a series of
research [1,18,6,8,19,11].

In general, a hash combiner takes two hash functions H0, H1 and combines
them into a failure-tolerant function such that this function remains secure as
long as at least one of the two functions H0 or H1 is secure. For example,
the classical combiner for collision-resistance simply concatenates the outputs of
both hash functions Comb(M) = H0(M)||H1(M). If a hash function is supposed
to be used as a pseudorandom function (PRF), then the exclusive-or of the
outputs Comb(k0||k1,M) = H0(k0,M)⊕H1(k1,M) with independent keys k0, k1
yields a robust design. Combiners that preserve even multiple properties in a
robust manner where proposed in [9,11].

Interestingly, the fact that combiners give better security assurances has been
acknowledged by the designers of TLS and its predecessor SSL, long before they
have been investigated more thoroughly by theoreticians. Both TLS and SSL use
various combinations of MD5 and SHA1 instead of relying only on a single hash

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 268–283, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hash Function Combiners in TLS and SSL 269

function. The specification of TLS even explicitly states: “In order to make the
PRF as secure as possible, it uses two hash algorithms in a way which should
guarantee its security if either algorithm remains secure” [24] .

The SSL protocol [23] was published in 1994 by Netscape to provide secure
communication between two parties over an untrusted network, and subsequently
formed the basis for the TLS protocol [24,25]. Nowadays, both protocols are
ubiquitously present in various applications such as electronic banking, online
shopping or secure data transfer. However, neither TLS nor SSL were accom-
panied with rigorous security proofs. An important step was recently done by
Morrissey et al. [17] and Gajek et al. [12] who gave the first security analysis
of the handshake protocol of TLS. The handshake protocol is the essential part
of TLS/SSL as it allows a client and server to negotiate security parameters,
such as shared symmetric keys or trusted ciphers, without having any common
secrets yet. The established keys and cryptographic algorithms are subsequently
used to protect the data transfer, i.e., the confidentiality and authenticity of
the entire communication relies on the security of the key agreement. Thus,
it is of crucial importance that the handshake protocol provides reliable pa-
rameters. Ideally, this statement should be fortified by comprehensive security
proofs.

Our Results. In this work, we scrutinize the design of the (non-standard)
hash combiners, deployed in the TLS and SSL handshake protocols, regarding
the suitability for the respective purposes. As already mentioned, secure key
derivation is one of the main tasks of the handshake phase. Both TLS and SSL
use hash combiners to compute the master secret out of the pre-master secret,
which is assumed to be a shared random string. To achieve secure key-derivation,
robustness with respect to pseudorandomness is required.

While TLS (mainly) reverts to the standard design for PRF combiners, i.e.,
it xors the outputs of the two hashes, SSL applies the cascade H0(k, (H1(k,M))
as the pseudorandom function for key derivation. For SSL we prove that the
combiner is not robust and not even preserving, i.e., even two secure PRFs may
yield an insecure combiner. This stems from the fact that both hash functions
are invoked with the same master key. By using individual keys for each un-
derlying function, we show that the security of the SSL combiner is somewhat
between robustness and property-preservation. In the case of TLS, we prove that
the combiner is a secure PRF if either of H0, H1 is a pseudorandom function.
Interestingly, the TLS construction is neither optimal in terms of security nor
efficiency. We therefore also discuss possible tweaks to obtain better security
bounds while saving on computation.

TLS and SSL also use hash combiners for the finished message in the hand-
shake protocol, which is basically a message authentication code generated for
the shared master secret and all previous handshake messages. This concludes
the key exchange phase in TLS/SSL and authenticates the previous communica-
tion. Ideally, the combiners used for this purpose should be robust for MACs, i.e.,

270 M. Fischlin, A. Lehmann, and D. Wagner

rely only on unforgeability instead of pseudorandomness of the hash function.1

We show that in TLS the combiner for authentication requires the additional
assumption of at least one hash function being collision resistant. The combiner
used in SSL is again neither robust nor preserving, due to the same problem of
using the master secret as key for both functions. We discuss that a modified
version which splits the key into independent halves, is a secure MAC when at
least one hash function is simultaneously unforgeable and collision resistant.

In summary, we give the first formal treatment of the hash combiners deployed
in the TLS and SSL protocols. Our results essentially show that the choices in
TLS are sound as they follow common design criteria for such combiners (but
still leave space for improvements), whereas the SSL design for combiners re-
quires much stronger assumptions. Our result, together with other steps like the
security proofs in [17,12], strengthen the confidence in the important protocols
TLS and SSL.

2 Preliminaries

In this section we present the preliminaries for our investigation of the combiners
in SSL/TLS.

2.1 Hash Functions and Their Properties

Since we give all results in terms of concrete security we adopt Rogaway’s ap-
proach [21] of defining hash functions as single instances (instead of families) and
considering constructive reductions between security properties. For security no-
tions without secret keys like collision-resistance the adversary is implicitly based
on (the description of) H , whereas for security properties involving secret keys
like pseudorandomness or the MAC property, the adversary also gets black-box
access to the hash function H(k, ·) with secret key k (we often write H(k||·) if
the key is simply prepended to the message). In this case we call H a keyed hash
function and usually denote the key space by K.

Most recent hash functions such as MD5, SHA1 apply the Merkle-Damg̊ard
construction [16,7] to obtain a variable-input length function out of a fixed-input
length compression function h : {0, 1}n× {0, 1}� → {0, 1}n and an initial vector
IV. To compute a digest one divides (and possibly pads) the message M =
m0m1 . . .mk−1 into blocks mi of
 bits and computes the digest H(M) = ivk as

iv0 = IV, ivi+1 = h(ivi,mi) for i = 0, 1, . . . , k − 1.

1 The devil’s advocate may claim that we can already start from the assumption that
one of the hash function is a PRF, as we require this for the key derivation step
anyway. However, it is a common principle to revert to the minimal requirements
for such sub protocols and their designated purpose. Suppose, for example, that
both hash functions turn out to be not pseudorandom, that key derivation becomes
insecure and confidentiality of the subsequently transmitted data is breached. Then,
if one of the function is nonetheless still a good MAC, a secure authentication step in
the finished message via the robust MAC-combiner would still guarantee authenticity
of the designated partner.

Hash Function Combiners in TLS and SSL 271

Collision-Resistance. Let H : {0, 1}∗ → {0, 1}n be a hash function. The
collision-finding advantage of an adversary A is

Advcr
H(A) := Prob[(M,M ′) ← A() : M �= M ′ ∧ H(M) = H(M ′)] .

We again note that, formally, for any hash function there is a very efficient
algorithm A with advantage 1, namely, the one which has a collision hardwired
into it and simply outputs this collision. However, based on current knowledge
it is usually infeasible to specify this algorithm constructively (cf. [21]).

Pseudorandomness. Let H : K × {0, 1}∗ → {0, 1}n be a keyed hash function
with key space K. We define the advantage of a distinguisher A as

Advprf
H (A) =

∣∣∣Prob
[
AH(k,·) = 1

]
− Prob

[
Af(·) = 1

]∣∣∣
where the probability in the first case is over A’s coin tosses and the choice of
k

$← K, and in the second case over A’s coin tosses and the choice of the random
function f : {0, 1}∗ → {0, 1}n.

Message Authentication (Unforgeability). Let H : K×{0, 1}∗ → {0, 1}n

be a keyed (deterministic) hash function with key space K. We define the forge-
ability advantage of an adversary A as

Advmac
H (A) = Prob

[
k

$← K, (M,σ) ← AH(k,·) : H(k,M) = σ ∧M not queried
]

Hash Function Combiners. A hash function combiner Comb for hash func-
tions H0, H1 “merges” the two functions H0, H1 into a single hash function. The
combiner is called preserving [13] for some property like collision-resistance if
CombH0,H1 has this property given that both hash functions have this property.
In a sense, this ensures a minimalistic security guarantee. The combiner is called
robust [13] if it obeys the property if at least one of the two functions H0, H1 has
the corresponding property. Note that, in terms of our concrete security state-
ments, collision-resistance robustness for example is formulated by demanding
that the probability of finding collisions in a combiner is bounded from above
by the minimum of finding collisions for the individual hash functions.

2.2 HMAC

Each hash function can be used as a pseudorandom function or MAC by replacing
the initial value IV with a randomly chosen key k of the same size. A more
convenient technique was proposed by Bellare et al. [2] with the HMAC/NMAC
algorithms, which are message authentication codes built from iterated hash
functions. Recall that a MAC takes a secret key k, message m and outputs a tag
σ. The HMAC algorithm takes, in its more general version, two keys kin, kout and
applies an iterated hash function H like MD5 and SHA1 in a nested manner:

HMAC(kin, kout)(M) = H(IV, kout||H(IV, kin||M)) (1)

272 M. Fischlin, A. Lehmann, and D. Wagner

In practice, HMAC typically uses only a single key k from which it derives
dependent keys kin = k ⊕ ipad and kout = k ⊕ opad for fixed constants ipad =
0x3636 . . .36, opad = 0x5c5c . . . 5c.

Originally, Bellare et al. [2] proved HMAC – resp. its theoretical counter-
part NMAC – to be pseudorandom functions when the underlying compression
function h is pseudorandom and collision-resistant. Subsequently, the proof was
restated on the sole assumption that the compression function is pseudoran-
dom [4]. As the security claims are given for NMAC, Bellare [4] introduced the
notion of a “dual” pseudorandom function function h̄ : {0, 1}n × K → {0, 1}n

with h̄(m, k) = h(k,m). If both h̄ and h are pseudorandom, the security of
NMAC carries over to HMAC. For the single-keyed HMAC-version, the security
of h̄ must hold for related-key attacks as well. That is, the adversary is granted
access to two oracles h̄(k ⊕ opad, ·), h̄(k ⊕ ipad, ·) with dependent keys.

2.3 The SSL/TLS Handshake Protocol

The SSL and TLS protocols consist of two layers: the record layer and the hand-
shake protocol. The record layer encrypts all data with a cipher and session
key that have been negotiated by the handshake protocol. Thus the handshake
protocol is a key-exchange protocol layered above the record layer and initial-
izes and synchronizes a cryptographic state between a server and a client. Both
versions of the handshake protocol, for TLS and for SSL, vary mainly in the im-
plementation of the exchanged messages, i.e., the overall structure of the hand-
shake part is the same and can be summarized as the sequence of the following
steps [20]:

(1) The client conveys its willingness to engage in the protocol by sending a list
of supported cipher algorithms and a random number, that is subsequently
used for key-derivation.

(2) The server responds by choosing one of the proposed ciphers, and sending
its certified public key as well as a random nonce.

(3) The client verifies the validity of the received certificate and sends a ran-
domly chosen pre-master secret encrypted under the server’s public key.
(An alternative to having the client choose the pre-master secret is to engage
in a key exchange protocol like signed Diffie-Hellman. Since our analysis
below only assumes that the pre-master secret is random we omit the details
about its generation.)

(4) Both client and server individually compute a master secret from the ex-
changed random nonces and the pre-master secret. Once the master key is
computed, it can be used to obtain further application keys.

(5) Finally, the master secret is confirmed by the finished message, where each
party sends a MAC over the transcript of the conversation using the new
master key. This is also the first transmission which uses the secure channel
for the derived keys.

Hash Function Combiners in TLS and SSL 273

3 Derivation of the Master Secret

In this section we analyze the functions that are deployed by TLS and SSL to
derive a secret master key from a shared pre-master key. The basic requirement
of key derivation is that the obtained key should be indistinguishable from a
randomly chosen one. In particular, the key-derivation function must be pseudo-
random. For more discussion see [15]. We will show that the combiner proposed
by TLS is PRF-robust, i.e., security of one of the underlying hash function suf-
fices, whereas the SSL combiner requires assumptions on both hash functions in
order to produce random looking output.

3.1 The PRF-Combiner Used in TLS

The TLS key derivation obtains the master secret (ms) from the pre-master
secret (pms) by invoking the following hash combiner:

ms =
CombMD5,SHA1

TLS−prf (pms, “master secret”,ClientRandom||ServerRandom)[0..47]

The pre-master secret is assumed to be a random value both parties have agreed
upon, and ClientRandom and ServerRandom are public random nonces ex-
changed in the handshake protocol. By introducing a specific label (here “master
secret”) to the input, the combiner can subsequently be used for further (key-
derivation) computations, while guaranteeing distinct inputs for each applica-
tion. The appendix [0..47] indicates that the master secret consists of the first
48 bytes of the combiners output.

Basically, the combiner CombH0,H1
TLS−prf xors the output of a function P which

gets called twice based on two distinct hash functions H0 and H1. To this end,
the combiner also splits the key K = k0||k1 with |k1| = |k0| into independent
halves:

CombH0,H1
TLS−prf(k0||k1,M) = PH0(k0,M)⊕ PH1(k1,M) (2)

The underlying function PHb
makes several queries to HMACHb

and produces
byte strings of (arbitrary) length that is a positive multiple of n.

PHb
(k,M) = HMACHb

(k,A(1)||M) || HMACHb
(k,A(2)||M)|| . . . (3)

with A(0) = M and A(i) = HMACHb
(k, (A(i− 1)).

Analysis of CombH0,H1
TLS−prf . We show that the TLS-combiner for key derivation

is a pseudorandom function if at least one of the two hash functions H0, H1 is
based on a pseudorandom compression function. To this end, we first show that
PHb

inherits the pseudorandomness of the underlying hash function.
Note that the PHb

construction uses the HMAC transform to obtain a PRF,
which gets keyed via the input data, out of a standard hash function Hb with
fixed IV. It was shown in [4] that HMAC is a pseudorandom function, when
the underlying compression-function is a dual PRF, i.e., it has to be a secure

274 M. Fischlin, A. Lehmann, and D. Wagner

PRF when keyed by either the data input or the chaining value. Thus, while
functional-wise HMAC uses the cryptographic hash function only as a black-box,
the security guarantee is still based on the underlying compression function hb.
We therefore consider each hash function Hb : {0, 1}∗ → {0, 1}n as the Merkle-
Damg̊ard iteration of a compression function hb : {0, 1}n × {0, 1}� → {0, 1}n.
By applying the results of [4] we can conclude that HMACHb

is a pseudorandom
function, when hb is a dual PRF.

Next, we show that the design of the PH construction preserves the pseudo-
randomness of HMACH . For a modular analysis – and for the sake of readability
– we simplify the description of PH by replacing HMAC and the hash function
H by the same function H, and prove that the modified function P′

H is a pseudo-
random function if H is. Furthermore, we make a rather syntactical change of P
to obtain a function that is efficiently computable on its own: According to the
TLS specification, the P construction produces output of arbitrary length from
which the combiner takes as much bytes as required, e.g., the first 48 bytes in
case of the derivation of the master secret. In the following we slightly deviate
from that notation and assume that P gets also parametrized by an integer c
which indicates that an output of length c · n is requested. Overall, we analyze
the following function P′:

P′
H(k,M, c) = (4)
H(k,A(0) || M) || H(k,A(1) || M) || . . . || H(k,A(c− 1) || M)

where A(0) = M, A(i) = H(k, (A(i− 1)).

Lemma 1. Let H : {0, 1}n×{0, 1}∗ → {0, 1}n be a pseudorandom function with
key space {0, 1}n, and let P′

H : {0, 1}n × {0, 1}∗ → {0, 1}c·n be defined by (4)
above. For all adversaries A running in time t, making q queries of length at
most l and with c ≤ cmax , there exist an adversary B such that

Advprf
P′ (A) ≤ Advprf

H (B) + q ·
(
cmax

2

)
· 2−n

where B makes at most 2cmax · q queries, each of length at most l + n and runs
in time at most t +O(cmax).

Proof. Assume that there is an adversary A that can distinguish the func-
tion P′

H(k, ·) from a random function F : {0, 1}∗ → {0, 1}n with advantage
Advprf

P′ (A). Given A we show how to obtain an adversary B against the under-
lying hash function H(k, ·). Recall that A has black-box access to an oracle that
is either the keyed construction P′

H(k, ·, ·) or a random function F : {0, 1}∗ →
{0, 1}∗ (where, formally, F also takes the parameter c as additional input and
outputs strings of length cn). The distinguisher B has to simulate this oracle
with the help of its own oracle, which is either the keyed hash-function H(k, ·) or
a random function f : {0, 1}∗ → {0, 1}n. To this end, for any query (M, c) of A,
the adversary B mimics the construction P′ but replaces each evaluation of the
underlying hash function H by the response of its oracle on the corresponding
query. If A stops outputting its guess d, algorithm B stops with output d too.

Hash Function Combiners in TLS and SSL 275

If the oracle of B was the hash function H, then B perfectly simulates the
construction P′. Thus, the output distribution of B equals the one of A with
access to P′.

In the case that the oracle of B was the truly random function f , we have to
show that processing its random answers in the P′ construction yields random
values again. Recall that for each query (M, c) the adversary B now computes
the sequence f(A(0)||M) || f(A(1)||M) || . . . || f((A(c − 1)||M) where A(i) =
f(A(i − 1)) starting with A(0) = M . As long as A(i) �= A(j) for all i �= j ∈
{0, 1, . . . c − 1} holds for each query, the function f gets evaluated in the outer
iterations on distinct and unique values, such that the corresponding outputs
from f are independently and uniformly distributed. Thus, it remains to show
that the probability for collisions on the A(i) values, which are derived using f
in a cascade, is small. Assume that for a query (M, c) a collision occurred, i.e.,
there exist (unique) indices i∗ ∈ {0, . . . , c− 1} and j∗ ∈ {0, . . . , i∗− 1} such that
f(A(i∗ − 1)) = A(j∗) but A(i∗ − 1) �= A(j) for all j = 0, 1, . . . , i∗ − 2. That is, f
has never been invoked on the value A(i∗−1) but maps to an value A(j∗) which
is an previous answer of (the cascade of) f . Since f is a truly random function,
such a collision can only occur with probability q · (cmax

2

) · 2−n where q denotes
the number of A queries and cmax is the largest value for c that appeared in the
simulation. Overall, B distinguishes H from f with probability:

Prob
[
BH(k,·) = 1

]
− Prob

[Bf = 1
]

≥ Prob
[
APH(k,·,·) = 1

]
− Prob

[AF = 1
]− q ·

(
cmax

2

)
· 2−n.

This proves the claim. ��
Putting the results of [4] and Lemma 1 together, we now obtain that the pseudo-
randomness of hb is preserved by the corresponding construction HMACHb

and,
in turn, by P′

HMACHb
which equals PHb

. Furthermore, XOR is a robust combiner
for pseudorandom functions, and thus, if least one of PH0 ,PH1 is a PRF, also
CombH0,H1

TLS−prf provides outputs that are indistinguishable from random. This, to-
gether with the fact that the key is divided into independent halves, implies the
following theorem:

Theorem 1. Let Hb : {0, 1}n × {0, 1}∗ → {0, 1}n for b ∈ {0, 1} be a hash
function with underlying compression function hb : {0, 1}n × {0, 1}� → {0, 1}n.
Let CombH0,H1

TLS−prf be defined as in (2). For all adversaries A running in time
t, making q queries of length at most l and such that c ≤ cmax , there exist
adversaries A0,A1 such that

Advprf
CombTLS−prf

(A)

≤ min
{
Advprf

HMACh0
(A0),Advprf

HMACh1
(A1)

}
+ q ·

(
cmax

2

)
· 2−n

where each of A0,A1 makes at most 2cmax · q queries of length at most l+n and
runs in time at most t+O(cmax(1 + 2q · Tb̄)) where Tb̄ denotes the time required
for one evaluation of Pb̄ (as defined in (3)).

276 M. Fischlin, A. Lehmann, and D. Wagner

Improvements. When the combiner CombH0,H1
TLS−prf is used for key derivation,

the underlying construction P ensures that sufficiently many output bytes are
produced. However for the purpose of range extension of a PRF, the construction
P is neither optimal in terms of efficiency nor security. Namely, if one assumes
HMACH to be a secure PRF, one could simply augment the input M by a
fixed-length encoded counter 〈i〉, which ensures distinct inputs for each PRF
evaluation:

P∗
Hb

(k,M) = HMACHb
(k,M || 〈1〉) || HMACHb

(k,M || 〈2〉)|| . . .
Replacing P with P∗ would result in better security bounds, as one gets rid of the
probability q · (cmax

2

) · 2−n of a collision on the A(i) values. In terms of efficiency,
the above construction only requires half of the PRF evaluations as needed in
the original P function.

Another solution is to use solely the outputs of A(·), i.e., without feeding them
into HMAC again:

P∗
Hb

(k,M) = A(1) || A(2) || A(3) || . . .

with A(i) being the i-th cascade of HMAC(k,M) as defined in (3). With this
construction one inherits the same security bound as in the original solution,
but invokes HMAC after the first evaluation only one shorter inputs, e.g., 128
bits in the case of MD5 and 160 bits for SHA1, which decreases the computational
costs.

3.2 The PRF-Combiner Used in SSL

In the SSL protocol the following construction gets repeated until sufficient key
material for the master secret is generated:

ms = MD5(pms||(SHA1(“A”||pms||ClientRandom||ServerRandom))||
MD5(pms||(SHA1(“BB”||pms||ClientRandom||ServerRandom))||
MD5(pms||(SHA1(“CCC”||pms||ClientRandom||ServerRandom))|| · · ·

Both functions get keyed by the input data, where in the case of the outer hash
function the key is prepended to the message, and for the inner hash the key
is somewhat embedded in the message. Due to length-extension attacks, key-
prepending approaches must be accompanied by prefix-free encoding, otherwise
the hash function can not serve as a pseudorandom function, as shown in [3].
For the analysis we assume that the hash function takes care of that issue, and
thus that a hash function Hb : {0, 1}∗ → {0, 1}n is a secure PRF when keyed
via the first n bits of the data input.

On a more abstract level, each repetition of the SSL-combiner above for pre-
fixes “A”, “BB”, “CCC” etc. can be represented as the following construction:

CombH0,H1
SSL−prf(k,M) = H0(k || H1(k||M)), (5)

Hash Function Combiners in TLS and SSL 277

e.g., where H1(k||M) implements SHA1(“CCC”||k||M) for the fixed value
“CCC”. To be a robust combiner for pseudorandom functions, the SSL-combiner
needs to be robust for H0 and each such function H1. From now on we fix an
arbitrary H1.

Analysis of CombH0,H1
SSL−prf . The cascade CombH0,H1

SSL−prf of two hash functions is
not a robust design for pseudorandomness, because as soon as the outer function
becomes insecure the combiner, too, can be easily distinguished from a random
function: Consider as an example the constant function H0(x) = 0n that maps
any input to zeros, which is obviously distinguishable from random. Then, also
the combiner CombH0,H1

SSL−prf(k,M) = H0(k||H1(k||M)) becomes a constant func-
tion, independently of the strength of the inner hash function H1. Hence,

Proposition 1. The combiner CombH0,H1
SSL−prf is not PRF-robust.

Actually, CombH0,H1
SSL−prf is not even PRF-preserving, i.e., there exist two functions

H0, H1 that are both secure pseudorandom functions, but become easily dis-
tinguishable when used in the SSL-combiner. The problem arises from the fact
that the same secret key is used for both functions, which contradicts the general
design paradigm of provably robust combiners.

For the counter example let H1 : K × {0, 1}∗ → {0, 1}n be a pseudorandom
function. Define H0(k, x) now as follows: if x = H1(k, 0n) then return 0n, else
output H1(k||1||x). Then H0 basically inherits the pseudorandomness of H1
because any distinguisher with access to H0(k, ·) only retrieves replies H1(k||1||x)
to queries x ∈ {0, 1}∗, unless it is able to predict the value H1(k||0n). The latter
would contradict the pseudorandomness of H1, though. But when both functions
are combined into H0(k || H1(k||M)), the combiner returns 0n for input 0n and
is obviously therefore not a pseudorandom function.

In order to allow any reasonable statement about the security of the construc-
tion CombH0,H1

SSL−prf , we assume in the following that the combiner splits the key
into two independent halves, and invokes the hash functions on distinct shares:

CombH0,H1
SSL−prf∗(k0||k1,M) = H0(k0 || H1(k1||M))

Note that the first discussed counter example is still valid, as it did not require
any dependencies of the individual keys. Thus, even CombH0,H1

SSL−prf∗ is not a robust
combiner in general. However, the security can be considered to be somewhat
above property-preservation, since we can relax the assumption on one hash
function while the combiner still preserves the pseudorandomness property of
the stronger function.

In the case that the outer hash function H0 is a secure pseudorandom function,
the inner hash function only needs to ensure that for distinct queries M �= M ′ of
an adversary to the combiner, the function H0 gets evaluated on different values
too. Thus, it suffices for H1 to be weakly collision-resistant, which is defined
similarly to collision-resistance, except that here the function is keyed with a
secret key and the adversary only gets black-box access to the function.

If the inner hash function H1 is a pseudorandom function, an adversary that
queries the combiner gets to see images of H0 only for random domain points.

278 M. Fischlin, A. Lehmann, and D. Wagner

Thus, it is not necessary that the outer function is a full-fledged PRF as well. In
this case, already the assumption of H0 being a weak pseudorandom function is
sufficient. We discuss both cases as well as the issue of combining two insecure
functions in more detail in the full paper.

3.3 Application Key Derivation in TLS and SSL

Both combiners CombH0,H1
TLS−prf and CombH0,H1

SSL−prf are used to obtain a shared master
secret from a pre-shared key. However, subsequently, the same functions are
deployed to derive further keys, e.g., for encryption or message authentication.
To this end, the freshly computed master secret is used instead of the pre-master
secret that was assumed to be a random value. For TLS we have shown that the
combiner CombH0,H1

TLS−prf provides a master secret that is indistinguishable from
random when at least one hash function is a PRF. Thus, our result carries
over to the application key derivation, that uses the combiner with the derived
master secret. The same holds for SSL, but under stronger assumptions on the
underlying hash functions.

4 Finished-Message

In this section we investigate the TLS/SSL combiners that are used to compute
the so-called finished -message of the handshake protocols. The finished message
is the last part of the key exchange and is realized by a message authentication
code which is computed over the transcript of the previous communication. Thus,
the combiners that are used for this application should optimally be robust for
MAC, i.e., only rely on the unforgeability property instead of the stronger PRF-
assumption.

We note that the finished message itself is already secured through the negoti-
ated application keys. This complicates the holistic security analysis of this step.
But since we are at foremost interested in the design of the combiners and their
designated purpose, we only touch this issue briefly at the end of Section 4.1
(where we address this issue for TLS; the same discussion holds for SSL).

4.1 The MAC-Combiner Used in TLS

To compute the finished MAC, the TLS protocol applies the same combiner as
for the derivation of the master secret, but already uses the new master key.
As the key is known only at the very end of the protocol, the MAC cannot
be computed iteratively during the communication. To circumvent the need of
storing the entire transcript until the master secret is available, TLS hashes the
transcript iteratively and then computes the MAC over the short hash value
only:

σfinished =
CombMD5,SHA1

TLS−prf

(
ms, FinishedLabel, MD5(transcript)||SHA1(transcript)

)
[0..11]

Hash Function Combiners in TLS and SSL 279

A further input to the combiner is the FinishedLabel which is either the ASCII
string “client” or “server”, which ensures that the MAC values of both parties
are different, otherwise an adversary could simply return a finished tag back to
its sender. The appendix [0..11] indicates again that the first 12 bytes of the
combiner output are used as the MAC.

Recall that the combiner CombH0,H1
TLS−prf is based on the construction P which

produces arbitrary length output by invoking the underlying hash function in
an iterative and nested manner. However, this range extension is only necessary
when the combiner is used for key derivation. To compute the finished message,
only the first 12 byte of the combiners output are used, which is shorter than
the digests of both applied hash functions (16 bytes for MD5 and 20 bytes for
SHA1). Thus, we can omit the P part from the construction and simplify the
combiner as follows:

CombH0,H1
TLS−mac(k0||k1,M) = (6)

HMACH0(k0, H0(M)||H1(M)) ⊕ HMACH1(k1, H0(M)||H1(M))

Verification for the above MAC-combiner is done by recomputing the tag and
comparing it to the given tag.

Analysis of CombH0,H1
TLS−mac. We have already shown that the combiner construc-

tion CombH0,H1
TLS−prf , which can be seen as the more complex version of CombH0,H1

TLS−mac,
is robust for pseudorandom functions. Thus, if one is willing to assume that at
least one hash function behaves like a random function, the combiner can be
used directly as a MAC, as well.

However, ideally, the combiner CombH0,H1
TLS−mac should be a secure MAC on the

sole assumption that at least one of the underlying hash functions H0, H1 is
unforgeable rather than being a pseudorandom function. Unfortunately, hashing
the transcript before the MAC gets computed, imposes another assumption on
the hash functions (even when starting from the PRF assumption), namely at
least one hash function needs to be collision-resistant. Otherwise an adversary
could try to induce a collision on the input to the HMAC functions, which imme-
diately gives a valid forgery for the entire MAC function. Under the assumption
that such a collision is unlikely, we show that the combiner CombH0,H1

TLS−mac is
MAC-robust.

To this end, we first prove that the xor of two deterministic MACs (like
HMACHb

) invoked directly with the message yields a robust combiner:

CombH0,H1
⊕ (k0||k1,M) = H0(k0,M)⊕ H1(k1,M) (7)

In the context of aggregate authentication, Katz and Lindell [14] gave a similar
result by showing that multiple MAC tags, computed by (possibly) different
senders on multiple (possibly different) messages, can be securely aggregated
into a shorter tag by simply xoring them.

Lemma 2. Let H0,H1 : {0, 1}n × {0, 1}∗ → {0, 1}n be deterministic message
authenticated codes, and let CombH0,H1

⊕ be defined by (7). For any adversary A

280 M. Fischlin, A. Lehmann, and D. Wagner

against CombH0,H1
⊕ making at most q queries and running in time at most t, there

exist adversaries A0,A1 such that

Advmac
Comb⊕(A) ≤ min

{
Advmac

H0
(A0),Advmac

H1
(A1)

}
where Ab for b = 0, 1 makes at most q queries and runs in time at most t+O(qTb̄)
where Tb̄ denotes the time for one evaluation of Hb̄.

Due to space constraints the prove is delegated to the full version of the paper.
Complementing the above Lemma 2 with the probability of finding collisions

on the concatenated combiner H0(M)||H1(M) yields Theorem 2.

Theorem 2. Let H0, H1 : {0, 1}n × {0, 1}∗ → {0, 1}n be hash functions, and
let CombH0,H1

TLS−mac be defined by (6). For any adversary A against CombH0,H1
TLS−mac

making at most q queries and running in time at most t, there exist adversaries
A0,A1,B0,B1 such that

Advmac
CombTLS−mac

(A) ≤ min
{
Advmac

HMACH0
(A0),Advmac

HMACH1
(A1)

}
+ min

{
Advcr

H0
(B0),Advcr

H1
(B1)

}
where Ab for b = 0, 1 makes at most q queries and runs in time at most t+O(qTb̄)
where Tb̄ denotes the time for one evaluation of HMACHb̄

, and Bb runs in time
t +O(qTb).

Note that for both properties, unforgeability and collision-resistance, it suffices
that either one of the hash functions has this property (instead of one hash func-
tion with obeying both property simultaneously). This is similar to the difference
between weak and strong combiners in [9].

So far, we have reduced the security of the combiner CombH0,H1
TLS−mac of H0, H1

to the collision-resistance of the hash functions and the unforgeability of the
HMAC transforms HMACH0 and HMACH1 . Preferably, the security of HMACHb

should in turn only rely on the unforgeability of the underlying hash resp. com-
pression function. However, such a reduction for the plain HMAC transform is
still unknown. The previous results for this issue either require stronger assump-
tions than MAC (yet, weaker than PRF), or additional keying-techniques for the
compression function. In the full version we briefly recall the two most relevant
approaches for our scenario.

The Problem of Chopping. Theorem 2 states that the TLS-combiner for the
finished message is robust for message authentication codes even when starting
from the unforgeability assumption which is significantly weaker than assuming
a PRF. However, according to the TLS specification, not the entire output of
the combiner is used as tag, but only the first 12 bytes. Since the unforgeability
notion is not closed under chopping transformations, a shortened output of a
MAC loses any security guarantees. To allow usage of a chopped fraction of the
combiners output, on either has to assume that one of the underlying MACs
is secure for truncation, or one needs to make the stronger assumption that at
least one of the two hash functions is a secure PRF.

Hash Function Combiners in TLS and SSL 281

Is Unforgeability Enough? When using MACs in a stand-alone fashion,
unforgeability clearly gives sufficient security guarantees. However, in TLS (and
SSL) the tag for the finished message is computed under the master secret, from
which further application keys for encryption and authentication are derived.
The tag itself is now encrypted and authenticated with these derived keys. On
one hand, this may help to prevent the tag in the finished message from leaking
some information about the master secret. On the other hand, this causes critical
circular dependencies between these values, possibly even enabling leakage of
entire keys. This problem has already been noticed in other works (e.g., in [17]
where the analysis of the handshake protocol assumes that the tag is sent without
securing it with the application keys; or more explicitly in the context of delayed-
key authentication in [10]). It is beyond the scope of this work about combiners,
though.

4.2 The MAC-Combiner Used in SSL

The SSL-construction for the finished message resembles the HMAC construc-
tion, but appends the inner key to the message instead of prepending it. This
stems from the same problem as in TLS, namely that the MAC should be com-
puted iteratively as soon as the communication starts, although the necessary key
is negotiated only at the end. To obtain a robust design, SSL uses the concate-
nation of the HMAC-like construction based on the MD5 and SHA1 functions:

σfinished = HMAC∗
MD5(ms,Label||transcript) || HMAC∗

SHA1(ms,Label||transcript)

where HMAC∗
H is defined as:

HMAC∗
H(k,M) = H(k||opad|| H(M ||k||ipad)) (8)

with opad, ipad being the same fixed patterns as in HMAC. The structure of
HMAC∗ then allows to accomplish the bulk of the computation without knowing
the key k.

Overall, the MAC combiner of SSL can be described as follows:

CombH0,H1
SSL−mac(k,M) = HMAC∗

H0
(k,M) || HMAC∗

H1
(k,M) (9)

Analysis of CombH0,H1
SSL−mac. In contrast to the TLS-combiner, SSL uses the en-

tire master secret as key for both hash functions. This approach results in a
construction CombH0,H1

SSL−mac that is not even MAC-preserving, although concate-
nation is MAC-robust when used with distinct keys for each hash function [13].

Proposition 2. The combiner CombH0,H1
SSL−mac is not MAC-preserving (and thus

not MAC-robust either).

Consider two secure MACs H0,H1, that on input of a secret key k and a mes-
sage M outputs a tag σb. Assume furthermore that both MACs ignore parts
of their key, i.e., H0 ignores the left half of its input key and H1 ignores the

282 M. Fischlin, A. Lehmann, and D. Wagner

right part. We now derive functions H∗
b that can still be unforgeable when used

alone, but become totally insecure when being plugged into the combiner. The
first MAC H∗

0 behaves like H0 but also leaks the left half kl of the secret key,
i.e., H∗

0(k,M) = kl||H0(k,M). The second function is defined analogously, but
outputs the right half of the key: H∗

1(k,M) = kr||H1(k,M). Even though each
tag is now accompanied with a part of the key, it remains hard to create a
forgery. When we use now both functions H∗

0,H
∗
1 as in the SSL-combiner2 we

obtain: H∗
0(k,M) || H∗

1(k,M) = kl||σ0||kr||σ1 which allows to easily reconstruct
the entire secret key and subsequently forge tags for any message.

In the full paper we also discuss an improved version of the SSL-Combiner,
that is a robust MAC if at least one compression function is simultaneously
collision-resistant and unforgeable. Note that this is a stronger assumption than
for the TLS combiner, where both properties can be possessed by possibly dif-
ferent functions.

Acknowledgments

We thank the anonymous reviewers for valuable comments. The first two au-
thors are supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG).

References

1. Boneh, D., Boyen, X.: On the Impossibility of Efficiently Combining Collision Re-
sistant Hash Functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
570–583. Springer, Heidelberg (2006)

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

3. Bellare, B.M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Revisited: The
Cascade Construction and Its Concrete Security. In: FOCS 1996, pp. 514–523.
IEEE Computer Society Press, Los Alamitos (1996)

4. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006)

5. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008)

6. Canetti, R., Rivest, R., Sudan, M., Trevisan, L., Vadhan, S.P., Wee, H.M.: Ampli-
fying collision resistance: A complexity-theoretic treatment. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 264–283. Springer, Heidelberg (2007)

7. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

2 Invoking the combiner directly on H∗
b instead of HMAC∗

H∗
b

still proves our statement
as the HMAC transform can inherit the behavior H∗. We omit the additional level
for the sake of simplicity.

Hash Function Combiners in TLS and SSL 283

8. Fischlin, M., Lehmann, A.: Security-Amplifying Combiners for Hash Functions.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–243. Springer,
Heidelberg (2007)

9. Fischlin, M., Lehmann, A.: Robust Multi-Property Combiners for Hash Functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008)

10. Fischlin, M., Lehmann, A.: Delayed-Key Message Authentication for Streams. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 288–305. Springer, Heidelberg
(2010)

11. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust Multi-Property Combiners for
Hash Functions Revisited. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 655–666. Springer, Heidelberg (2008)

12. Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.-R., Schwenk, J.: Universally Com-
posable Security Analysis of TLS. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.)
ProvSec 2008. LNCS, vol. 5324, pp. 313–327. Springer, Heidelberg (2008)

13. Herzberg, A.: On Tolerant Cryptographic Constructions. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

14. Katz, J., Lindell, A.Y.: Aggregate Message Authentication Codes. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

15. Krawczyk, H.: On Extract-then-Expand Key Derivation Functions and an HMAC-
based KDF (2008), http://webee.technion.ac.il/~hugo/kdf/kdf.pdf

16. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

17. Morrissey, P., Smart, N., Warinschi, B.: A Modular Security Analysis of the TLS
Handshake Protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55–73. Springer, Heidelberg (2008)

18. Pietrzak, K.: Non-Trivial Black-Box Combiners for Collision-Resistant Hash-
Functions don’t Exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 23–33. Springer, Heidelberg (2007)

19. Pietrzak, K.: Compression from Collisions, or why CRHF Combiners have a Long
Output. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 413–432.
Springer, Heidelberg (2008)

20. Rescorla, E.: SSL and TLS - Designing and Building Secure Systems. Addison
Wesley, Reading (2001)

21. Rogaway, P.: Formalizing Human Ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

22. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA
Certificate. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS,
vol. 5677, pp. 55–69. Springer, Heidelberg (2009)

23. Hickman, K.E.B.: The SSL Protocol (Internet Draft). Technical report (1994)
24. Dierks, T., Allen, C.: The TLS Protocol Version 1.0. Technical Report RFC 2246

(1999)
25. Dierks, T., Allen, C.: The TLS Protocol Version 1.2. Technical Report (TLS 1.2)

RFC 4346 (2006)
26. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.

(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
27. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://webee.technion.ac.il/~hugo/kdf/kdf.pdf

Improving Efficiency of an ‘On the Fly’
Identification Scheme by Perfecting

Zero-Knowledgeness

Bagus Santoso1, Kazuo Ohta2, Kazuo Sakiyama2, and Goichiro Hanaoka1

1 National Institute of Advanced Industrial Science and Technology (AIST),
Akihabara Daibiru 1003, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan

2 The University of Electro-Communications,
1-5-1 Chofugaoka Chofu-shi, Tokyo 182-8585, Japan

Abstract. We present a new methodology for constructing an efficient
identification scheme, and based on it, we propose a lightweight identi-
fication scheme whose computational and storage costs are sufficiently
low even for cheap devices such as RFID tags. First, we point out that
the efficiency of a scheme with statistical zero-knowledgeness can be sig-
nificantly improved by enhancing its zero-knowledgeness to perfect zero-
knowledge. Then, we apply this technique to the Girault-Poupard-Stern
(GPS) scheme which has been standardized by ISO/IEC.

The resulting scheme shows a perfect balance between communication
cost, storage cost, and circuit size (computational cost), which are crucial
factors for implementation on RFID tags. Compared to GPS, the com-
munication and storage costs are reduced, while the computational cost
is kept sufficiently low so that it is implementable on a circuit nearly as
small as GPS. Under standard parameters, the prover’s response is short-
ened 80 bits from 275 bits to 195 bits and in application using coupons,
storage for one coupon is also reduced 80 bits, whereas the circuit size
is estimated to be larger by only 328 gates. Hence, we believe that the
new scheme is a perfect solution for fast authentication of RFID tags.

Keywords: Identification scheme, RFID, zero-knowledge, impersonation.

1 Introduction

1.1 Background

Recently, there has been a tremendous increase of uses of resource-constrained
electronic devices such as IC cards and RFID tags in daily life. In particu-
lar, there has been a huge demand for very fast online authentication using
such devices in several applications such as mass-transit, toll-collection, and
mass authentication of goods as anti-counterfeiting strategies. To develop a se-
cure authentication scheme which meets this demand is a hard task, especially
when we consider implementation on RFID tags which have fierce constraints
regarding silicon area and power consumption. Although symmetric cryptog-
raphy can be one possible solution [8], it is only applicable in closed systems

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 284–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Improving Efficiency of an ‘On the Fly’ Identification Scheme 285

where a trustable key distribution is available, since all parties must know the
secret key. One promising solution is offered by Girault-Poupard-Stern (GPS),1

a three-pass public-key identification scheme proposed by Girault, Poupard, and
Stern [9,10,24, 1], which is derived from Schnorr identification scheme [27]. The
feasibility of implementing GPS in very small size circuits has been shown re-
cently by McLoone and Robshaw [19,18]. GPS can provide fast online authentica-
tion using lightweight devices, because in practice, the most complex calculation
of prover in GPS can be done offline without interaction with the verifier and
only a very simple calculation is necessary on online phase when interacting with
the verifier. GPS has been accepted by European NESSIE project [21] and has
also been standardized by ISO/IEC [16]. GPS has variants [25, 23, 22], which
derive similar feature, i.e., simple online calculation on the prover.

Motivation. Although GPS and its variants look promising for fast online
authentication by small circuits, they require a certain amount of memory and
certain length of response on the prover in order to guarantee the statistical zero-
knowledgeness in practice. On the other hand, in fiercely resource-constrained
provers such as RFID tags, the data rate and the memory is very limited.

As an illustration of the data rate limitation, the usual data rate of an ordinary
passive (batteryless) RFID tag satisfying ISO 18000-6C (EPC C1G2) ranges
from 27 to only 128 kbps [7]. Since in GPS, the length of prover’s response with
standard parameters is 275 bits (see Sect. 5.1), under the modest 40 kbps data
rate [28], the total time for sending the whole response is about 7 ms. The longer
the prover’s response is, the longer the time for sending the whole response will
be. And the longer sending time is, the longer a stable power supply is necessary.
Although a higher data rate can shorten the sending time, a higher data rate
also needs more power. On the other hand, the power supply of the provers
(tags) is not large or stable in general, especially for a passive RFID tag whose
power is supplied only by the reader through electromagnetic wave. Thus, a
lower communication cost (shorter prover’s response) is highly preferred.

As an illustration of the storage limitation, a very recently developed RFID
tag [13] still provides only 1536 bits of user memory. This is not sufficient for even
the smallest assumed number of coupons for GPS (5 coupons) in [19], even when
the coupon is optimized using technique in [11]. Hence, it is a very important
issue to investigate whether we can reduce cost of communication and memory
without sacrificing either the security or the computational cost.

1.2 Our Results

Our approach (see Sect. 2) results in a new scheme which is not only has perfect
zero-knowledgeness (compared to GPS which is only statistical zero-knowledge),
but also successfully reduces the size of prover’s randomness required to mask

1 Unless noted otherwise, GPS referred in this paper is the one described in GPS’ final
paper [10] where the underlying group is defined as a generic group, not as a group
constructed from a composite integer like the one in [16].

286 B. Santoso et al.

the secret value in prover’s responses. This induces smaller memory and com-
munication costs compared to GPS, while maintaining the small computational
cost of online response which is the most important feature of GPS.

Illustration of Practical Advantage. Under recommended standard param-
eters [10], our estimation shows that the time cost of calculating online prover’s
response in our new scheme on CMOS technology under 100 kHz clock rate,
compared to that of GPS [19], differs by only approximately 0.8 ms (with the
same size of circuit). Also, under the condition that the calculation of prover’s
response is as fast as GPS in [19], we estimate that our new scheme can be
implemented within 1970 gates, which is an acceptable circuit size for RFID
tags (200-4000 gates [6]). Just for comparison, applying the same estimation to
Schnorr scheme results in 5294 gates (see Table 4 in Sect. 5.2).

And in the implementation using use & throw coupons [20, 19] under the
same standard parameters, while GPS needs 435 bits of memory per coupon,
the new scheme only needs 355 bits (80 bits reduced). A further optimization
using the technique in [11] results in 349 bits and 269 bits per coupon for GPS
and the new scheme respectively. Thus, at least the new scheme can fit 5 coupons
(the assumed smallest number coupons in [19]) into a recently developed RFID
tag [13]. In applications with 20 coupons (the largest number of coupons assumed
in [19]), our new scheme reduces totally 1600 bits of memory from GPS.

In term of communication cost, the prover’s response in our new scheme is at
most 195 bits, while that in GPS is at most 275 bits (=80 bits reduced). Thus, the
total time for sending the whole response of our new scheme under the modest
40 kbps data rate is about 5 ms (2 ms faster than that of GPS). Remind that
a lower communication cost is highly preferred for RFID tags, since the current
data rate of tags are not that high and the power supply of the provers (tags)
is not so large or stable in general, especially in the case of an RFID tag whose
power is supplied only by the reader through electromagnetic wave. Particularly,
if the RFID tag is moving with considerable speed as in typical applications of a
very fast authentication (e.g., toll-gate, mass transit system [10]), it is difficult to
maintain the stability of the power generated for the tag within sufficient time.

In [19], it is stated that one may try to use PRNG with seed to regenerate
prover’s randomness and thus avoid the storage problem with coupons. How-
ever, this implies additional resources such as gates or time for regenerating the
randomness, as well as power supply proportional to the size of the randomness.
Since the size of prover randomness of GPS is larger than that of our scheme,
GPS with PRNG might need larger additional gate circuits or more time for
regenerating the randomness than ours, which means a larger power supply.
Remind that this is generally not desirable for RFID tags.2

As shown above, the new scheme reduces both the communication and stor-
age costs of GPS without sacrificing either the computational cost of online
response or the circuit size for fast authentication. As a comparison, although
Schnorr scheme indeed reduces both the communication and storage costs of
GPS much more than the new scheme, as shown above, it requires either too
2 The detailed evaluation will be in the full version of this paper.

Improving Efficiency of an ‘On the Fly’ Identification Scheme 287

large computational cost or too large circuit for fast authentication on current
RFID tags3. Hence, since the new scheme shows a perfect balance between com-
munication cost, storage cost, and circuit size (computational cost) which are
the most crucial factors for implementation on RFID tags, we believe that the
new scheme is a perfect solution for fast authentication of RFID tags.

Additionally, since the time cost in practice for producing one coupon in
our scheme is only 2/3 of that in GPS (according to our machine experiment
described in Sect. 5.2), the new scheme offers an improvement of robustness
against a certain denial-of-service attack in the framework proposed by Hofferek
et al. [14], where the recalculation of coupons in the idle time of prover has been
proposed as the countermeasure (see Sect. 5.1).

On Security Assumption. The security of our scheme against impersonation
under serial active attack is proven under a slightly stronger computational
assumption than GPS, i.e., the discrete logarithm with short exponent in our
scheme is assumed to be hard with publicly known order [26] (as opposed to
unknown order in GPS). However, as noted in [19], for implementation in devices
with very limited resources such as RFID tags, the group from elliptic curve
(with known order) is more suitable than the group from RSA-like modulus
(with unknown order), by which GPS is mostly described [16, 21]. Hence, in
practice, there is no difference on computational assumption between GPS and
our scheme. Furthermore, by using a computational assumption resembling one-
more discrete logarithm problem [2], we are able to prove the security of our
new scheme against impersonation under concurrent active attack, while it is
still unknown for the case of GPS.

Generalization. A further generalization of our approach results in a general
scheme which can be seen as a loose generalization of previous works such as
[27], [5], [3] (see Sect. 5.4 for the detailed explanation).

1.3 Related Work

The original scheme of GPS was proposed by Girault in 1991 [9], derived from
the work of Schnorr [27]. However, it took several years for its security proof to
be established. The first security proof was provided by Poupard and Stern in
1998 [24] for the case of group from RSA-like modulus. Since then, numerous
variants of GPS such as [25,22,23] are proposed. The final security proof for the
case of generic group was completed recently [10]. Several efforts to implement
GPS on RFID tags have been proposed by McLoone and Robshaw [19,18].

A more general scheme which also covers our scheme has been previously
proposed by Burmester et al. [4]. However, the possible significant reduce of
complexity on the calculation of prover’s response using the setting as the one
in our new scheme has not been noticed. And also, on the theoretical side, the

3 One may see the new scheme as a trade-off of Schnorr scheme with less computation
and more communication (maintaining perfect ZK).

288 B. Santoso et al.

procedure of simulator for proving the zero-knowledgeness has not been for-
mally described, and security against impersonation under either serial attacks
or concurrent attacks has not been discussed.

Roadmap. Sect. 2 explains the essence of our approach. In Sect. 2.2, we explain
diagrammatically the intuition of construction of our proposed scheme. In Sect.
3, we show the description of our proposed scheme. In Sect. 4, we state the
theorems on the security of our proposed scheme against impersonation under
concurrent active attacks. Several issues on practical advantages are discussed
in Sect. 5. The detailed proofs of lemmas and theorems are in the full version.

2 Our Technique

In this section, we explain our methodology for improving the efficiency of iden-
tification schemes.

2.1 Illustration of Our Technique

General Problem. First, we give an observation which explains a general
problem on efficiency in identification schemes with statistical zero-knowledge.
In such a scheme, we notice that there exists a parameter ψ which determines
statistical distance between the distribution of the distinguisher’s view in the real
world and that in the simulation. Certain values in the protocol (e.g. size of the
prover’s randomness) are required to be sufficiently large according to parameter
ψ. Hence, in general, existence of this parameter significantly affects the efficiency
of identification schemes (with statistical zero-knowledge) in practice.

Our Approach. Based on the above observation, we propose a strategy for im-
proving the efficiency of identification schemes with statistical zero-knowledge
in practice. Roughly speaking, our strategy is as follows. Assume that we have
an identification scheme with statistical zero-knowledge. As mentioned above,
according to a parameter ψ, certain values in the protocol have to be sufficiently
large. For improving this scheme, one promising approach is to (somehow) en-
hance its zero-knowledgeness to be perfect without changing its essential mecha-
nisms. Namely, if such modification is possible, then we can remove parameter
ψ. This implies that certain values which are related to ψ become reduced. For
example, in GPS scheme (which is statistically zero-knowledge), the prover’s ran-
domness is required to be larger than 195+ψ bits where ψ � 80 for 80-bit secu-
rity. However, if we can modify the GPS scheme to be perfectly zero-knowledge
(without changing essential mechanisms), then it becomes only � 195 bits.

We illustrate our technique as follows.

Preliminaries. Let S denote the set of all secret keys. Let Xs and X(s) be the
set of all generatable view in real world and the random variable induced by
the view respectively, with the prover’s secret key s ∈ S. Also, define X as
the union of all Xs for s ∈ S, i.e.,

⋃
s∈S Xs.

Improving Efficiency of an ‘On the Fly’ Identification Scheme 289

Observation. Consider a protocol scheme C which has been proven to be sta-
tistical zero-knowledge. Assume that C has a non-empty set D ⊂ X such
that for any x ∈ D, ∃si, sj(si �= sj) : Pr[X(si) = x] �= Pr[X(sj) = x] holds.
Notice that as long as there exists such non-empty set D, it is impossible for
C to reach perfect zero-knowledgeness, since any perfect simulation of view
itself will reveal some knowledge about the secret key. This contradicts the
perfect zero-knowledgeness.

Our technique. We construct a transform f such that: (1) for any x ∈ D,
∀si, sj(si �= sj) : Pr[f(X(si)) = x] = Pr[f(X(sj)) = x] holds, and (2) f can
be embedded into C without changing C’s essential mechanism or feature.
Although we still have to concretely construct an appropriate simulator to
prove the zero-knowledgeness of C combined with transform f , at least, such
transform f opens the possibility for reaching the perfect zero-knowledge.

In the next subsection, we show the application of our technique on GPS.

2.2 Minimum Modification to Gain Perfect Zero-Knowledgeness

Here we explain diagrammatically the intuition of how we construct our new
scheme from GPS based on the approach described above. The most important
point is how to achieve perfect zero-knowledge without sacrificing the simplicity
of online prover’s response which is the essential mechanism in GPS for providing
online fast authentication. We start by a brief description of GPS.

Notations. In a multiplicative group G, for any element g ∈ G, we let ord(g)
denote the order of g in G. For any integer a, |a|means the bit-length of a. For any
two integers a and b, a|b means that a divides b. Let k ∈ N denote the general
security parameter for the rest of this paper. Unless noted otherwise, in this
paper, all polynomials are positive integer polynomials in k and all algorithms
are randomized polynomial time algorithms. We say that a value x is polynomial
if x is related to k such that x can be represented by some polynomial in k.

GPS Scheme. Let P and V be a prover and a verifier in GPS and 〈g〉 be a
multiplicative group. P holds a secret key s ∈ [0, S) and publishes I=g−s. In
each elementary round: (1) P sends to V x=gr where r is chosen randomly from
[0, A), (2) V sends to P a random c ∈ [0, B), and (3) P sends y=r+ cs (without
modulus calculation) to V to be verified. V accepts P for this round if and only
if x = gyIc holds. A complete identification requires
 repetitions of elementary
round where P is accepted if and only if V accepts P for all
 rounds. To ensure
security in GPS, A has to be set much larger than B × S.

Remark 1. Unless noted otherwise, we assume that s �= 0 and S � ord(g) � BS
hold. The theorem on zero-knowledgeness (Theorem 2) later still holds for s = 0.

The Diagram. As described above, in GPS, any response y from an honest
prover is determined by the value of y′=r+cs where s is the secret key and
(x=gr, c, y = y′) is the round’s communication transcript. Thus, in the case,

290 B. Santoso et al.

(c, y′) is sufficient to represent the valid (x, c, y), since x = gy′
Ic holds and we

know that y = y′. Namely, any (x, c, y) can be represented by one coordinate
point in two-dimensional diagram of c and y′. Fig. 1(a) shows the distribution
of (c, y′) of GPS when A � BS. The horizontal axis represents the value of c
and the vertical axis represents the value of y′. A pair (c, y′) from one round is
plotted as a circle (�), representing a tuple (x, c, y′) where x = gy′

Ic holds.
Let A0 be the area containing all (c, y′)’s such that y′ ∈ [cs, A − 1], and A1

be the area containing all (c, y′)’s where y′ ∈ [max{A, cs}, A − 1 + cs], and A2
be the area containing all (c, y′) where y′ ∈ [0,min {cs− 1, A− 1}].4 Since in
the case of an honest prover, r � 0 holds and there is no case where y′ < cs,
no concrete tuple is represented by a member of A2 in real GPS interactions.
Also, let a set S(r) be a collection of all circles which represent (c, y′)’s such that
y′ − cs = r. It is easy to see that the number of circles belong to a set S(r) is B
and the total number of distinct sets of S(r) is A.

Problem for Perfect Simulation. Since there is one-to-one correspondence
between each (x, c, y) and (c, y′), it is clear that we can simulate the distribution
of (x, c, y) by simulating the distribution of (c, y′). And intuitively, simulating
perfectly the distribution of (c, y′) means that we are drawing exactly the same
diagram as Fig. 1(a) without any knowledge about secret key s more than the
public key. However, in this case, simulating (or drawing) any point (c, y′) in
A1 means that we reveal some knowledge about secret key s, i.e., s ∈ [(y′ −
A)/c, S − 1]. Especially, it is easy to see that an exact drawing of all circles
in S(A−1) ⊂ A1 as shown in Fig. 1(a) implies the secret key s being revealed.
Therefore, it seems that unless we know the value of the secret key s, we will
never be able to correctly draw all circles in Fig. 1(a). One can see A1 as a subset
of the set D described in “Our Approach” above (Sect. 2.1).5

The Solution. The idea for a solution comes from our observation that area A1
in Fig. 1(a) which covers all pairs (c, y′)’s where y′ � A has the same size as area
A2 which represents all (c, y′) points where y′ < cs. If we can find a transform f
which is bijective such that it maps uniquely each tuple (x, c, y′) represented by
a (c, y′) in A1 into another tuple (x, c, y′′) represented by a (c, y′′) in A2, then
f can be used to transform the response of GPS such that we get a new scheme
in which all members of A1 are moved to the area A2 as shown in Fig. 1(b). By
such f , we do not have to worry about revealing the secret s when drawing the
distribution of (c, y′), since we do not need to draw A1 or S(A−1) anymore.

We construct f as follows. W pick a bijective map f which maps (x, c, y′)
represented by (c, y′) in A1 into (x, c, y′ − A) represented by (c, y′ − A) in A2.
Note that each (c, y′) in area A1 represents a tuple of communication transcript
(x, c, y′) where x = gy′

Ic holds. For such f , it is sufficient to find the condition
where gy′−AIc = x = gy′

Ic holds. Namely, it is sufficient to have gA = 1 hold,
i.e., A being a multiple of ord(g). Therefore, we conclude that for the case of
4 For the case of A � BS (Fig. 1(a)), y′ ∈ [A, A − 1 + cs] and y′ ∈ [0, cs − 1] are

sufficient to describe A1 and A2 respectively.
5 Similar argument can also be explained using A2 and S(0).

Improving Efficiency of an ‘On the Fly’ Identification Scheme 291

(a) (b)

y′y′

y′ = 0y′ = 0

y′ = A− 1y′ = A− 1

y′=(A−1)+(B−1)s

y′ = (B − 1)s

cc
c = 0 c = 0 c = B − 1c = B − 1

f

S(A−1)

S(r)

S(0)

A1

A2
A2

A0A0

y′ = (B − 1)s− 1

y′ = y′1

y′ = y′1 −A

y′ = r

y′ = r + (B − 1)s

Fig. 1. Distribution of tuples of communication transcripts and transformation when
ord(g)|A and A− 1 � (B − 1)s

A � BS, a bijective map f defined as f(y′)def
= y′ − A with condition A being a

multiple of ord(g) is sufficient for our purpose.

Minimum Modification for Perfect Zero-Knowledge. Based on above f ,
we can modify GPS as follows. First, we require A to be a multiple of ord(g),
i.e., ord(g)|A, and such that A � BS holds. Then, we modify the calculation of
y (prover’s response) of GPS as follows.

(Step 1) y′ = r + cs,
(Step 2) if y′ < A then set y = y′, otherwise y = y′ −A.

This modification maintains the simplicity of calculation of the prover’s response,
and as proven by Theorem 2 later, this modification is proven sufficient for us
to achieve perfect zero-knowledge (with dishonest verifier).

2.3 General Modification to Gain Perfect Zero-Knowledgeness

We discover that above modification is an instance of a more general modification
as follows. First, we require A to be such that ord(g)|A holds. Then, we modify
the calculation of y (prover’s response) of GPS as follows: y = r + cs mod A.
Notice that our minimum modification in previous subsection is an instance of
this general modification when A � BS. The basic idea is to solve a similar
“problem for perfect simulation” in previous subsection for the case BS < A.
The detailed explanation will be in the full version of this paper. For sim-
plicity, in this paper, we describe our proposed scheme based on this general
modification.

292 B. Santoso et al.

3 The Proposed Scheme

In this section, we provide the formal description of our proposed scheme in the
style of [2], based on the general modification described in previous section. An
instance of our scheme will be always associated to a short discrete logarithm
parameter generator Kdlse described below.

Definition 1 (Short Discrete Logarithm Parameter Generator6). A
short discrete logarithm parameter generator Kdlse is an algorithm such that
on input the security parameter k generates a tuple (G, g, ord(g), S, s) where G
is a multiplicative group, g ∈ G, S ∈ N, and s ∈ [0, S − 1].

The next is the algorithm of the key generation of our proposed scheme.

Definition 2 (Key Generation). Let Kdlse be a short discrete logarithm pa-
rameter generator. And let B and
 be two functions which are polynomial in k.
Also let κ be a positive real number. Our proposed scheme associated to Kdlse

and setup parameters (κ,B,
) has its key generation algorithm K as follows.
On input the security parameter k, K executes Kdlse with input k and obtains
a tuple (G, g, ord(g), S, s). K calculates I = g−s. Then, K chooses the smallest
integer A such that κBS � A and ord(g)|A hold. Finally, K outputs the public
key pk = (G, g, S,B,
, I, A) and the secret key sk = s.

The Elementary Round. An elementary round of identification between
prover P and verifier V in our scheme proceeds as follows.

(Step 1) P picks randomly r from [0, A−1], computes the commitment x = gr

and sends x to V .
(Step 2) Receiving x from P , V picks randomly a challenge c from [0, B − 1]

and sends c to P .
(Step 3) Upon receiving c from V , P checks whether c ∈ [0, B − 1] and calcu-

lates y = r+c×s mod A. P sends the response y to V and V checks whether
y ∈ [0, A− 1]. If x = gyIc holds, V accepts this round.

A complete identification consists of repetition of above elementary round for

times. Here the verifier V accepts the prover P in a complete identification if
and only if V accepts all
 consecutive elementary rounds.

Simple Calculation Version. As shown in previous section, if we set the
setup parameter κ = 1 so that A � BS holds, the “response” phase can be
transformed into very simple two steps as follows.
(Step 1) y′ = r + cs, (Step 2) if y′ < A then set y = y′, otherwise y = y′ − A.
These are sufficient for realizing mod A, since when A � BS, cs never exceeds
the value of A, and thus we only need to check whether r + cs will exceed A.

The next theorem guarantees that every honest prover is always accepted.
6 Similar to GPS in [10], no specific generator is fixed. The difference with GPS is that

we make the order of group public here (see also Sect. 1.2 and Sect. 4.1 for more
detail).

Improving Efficiency of an ‘On the Fly’ Identification Scheme 293

Theorem 1. If ord(g)|A holds, an honest prover P is always accepted by an
honest verifier V in a complete identification of our proposed scheme.
The next theorem says that any interaction between an honest prover and any
verifier (including dishonest one) reveals no knowledge about secret key.

Theorem 2. Our proposed scheme is perfect zero-knowledge under the following
conditions: (1) ord(g)|A, (2) B and
 are polynomial.

Proof Sketch. Here is the construction of an expected polynomial algorithm M to
simulate one round of interaction between an honest prover P and an arbitrary
verifier V̂ . The input to M is public key pk = (G, g, S,B,
, I, A).

(Step 1) Pick c randomly from [0, B − 1]. Then pick y randomly from
[0, A− 1].

(Step 2) Calculate x = gyIc. Send x to V̂ .
(Step 3) Upon receiving c from V̂ , if c �= c then go back to Step 1 with

another (c, y), otherwise return (x, c, y).

The expected number of execution for simulating one round is B=poly(k). Thus,
the total expected running time for simulating
 rounds is O(
B)=poly(k).

It is sufficient to prove that for any (α, β, γ) such that α ∈ 〈g〉, β = chal
Ṽ

(α),
γ ∈ [0, A − 1], the probability that (x = α, c = β, y = γ) holds taken over
random tape of M and the probability that (x = α, c = β, y = γ) holds taken
over random tape of real prover P are same, where chal

Ṽ
(x) denotes the internal

function of V̂ which determines the challenge upon receiving the commitment x.
Since ord(g)|A holds, there is exactly A/ord(g) values of r satisfying gr = α

among r ∈ [0, A− 1] for P and there is exactly A/ord(g) values of y satisfying
gyIβ = α among y ∈ [0, A− 1]. And for P , it is easy to see that there is exactly
one value of y satisfying y = γ among A/ord(g) values of y ∈ [0, A − 1] such
that gyIβ = α holds. This also holds for M with y. Thus, for both P and M ,
the overall probability is (A/ord(g))/A× 1/(A/ord(g)) = 1/A. �

4 Security against Impersonation

Here we discuss the security of our scheme against an adversary whose goal
is impersonation: posing itself as a prover and successfully making an honest
verifier to accept without having valid secret key. The adversary can launch
various attacks on a number of honest provers to gain some knowledge before the
final impersonation attempt. To formalize this scenario, we recall the definition
of impersonation under serial active attacks (IMP-SA) and concurrent active
attacks (IMP-CA) [2]. An adversaryA on an identification scheme ID = (K, P, V)
whereK is the key-generation algorithm, P is the prover, and V is the verifier, is a
pair of algorithms (V̂ , P̂), the cheating verifier and cheating prover, respectively.
A performs the following game IMP.

Stage 1 : K runs on input k and produces (pk, sk). V̂ is initialized with pk

and a random tape ω
V̂

. Cheating verifier V̂ interacts with a poly(k) different

294 B. Santoso et al.

clones of prover P , all having independent random tapes and being initialized
with pk, sk. Eventually, V̂ outputs some information ĥist and stops.

Stage 2 : Cheating prover P̂ is initialized with input ĥist, whereas verifier V
is initialized with pk and freshly chosen random tape ωV . P̂ and V interact.
A wins if and only if V accepts in this interaction.

The difference between serial active and concurrent active attacks is that in Stage
1, the former allows A to only interact with the clones of prover sequentially , i.e.,
only a single prover at a time, whereas the later allows A to interact arbitrarily
with many clones of prover at the same time. An adversary is called an IMP-SA
adversary (resp. IMP-CA adversary) if it executes above game in serial (resp.
concurrent) active attacks. The comparison of security between our proposed
scheme and GPS is summarized in the following table.

Table 1. Security comparison between Schnorr, GPS, and our proposed scheme

Schnorr [27] GPS [10,19] Proposed Scheme
Zero-Knowledgeness perfect statistical perfect

Security against IMP-SA (assumption) DL DLSE ∗) DLSE [26]
Security against IMP-CA (assumption) OMDL unknown OMDL∗∗∗)

IMP-SA=impersonation under serial attack, IMP-CA=impersonation under con-
current attack, DL=discrete logarithm problem, DLSE=DL with short exponent,
OMDL=one more discrete logarithm problem ∗)In GPS, DLSE is allowed with un-
known order (slightly weaker than DLSE in [26]). ∗∗∗)See Definition 3 for the detailed
description of OMDL in our scheme.

4.1 Against Impersonation under Serial Active Attacks

The security proof of our proposed scheme against impersonation against serial
active attacks can be easily proven using the same idea for the case of GPS
in [10], i.e., using zero-knowledge simulator to simulate prover in Stage 1 and
trying to get two pairs of challenge and response with different challenges in
Stage 2 in order to solve the discrete logarithm problem associated to the key
generator. The only difference from GPS is that we assume that the discrete
logarithm problem (with short exponent) is still hard although the group order
of g is public (same as the one defined in [26]). We omit the detailed security
proof in this paper. The full proof will be in the full version of this paper.

4.2 Against Impersonation under Concurrent Active Attacks

In order to prove the security against impersonation under concurrent active
attacks, we need to assume the intractability of one more discrete logarithm
problem with one short exponent (omdl-ose), which is a slight modification of
one-more discrete logarithm problem described in [2].

Improving Efficiency of an ‘On the Fly’ Identification Scheme 295

Definition 3 (One More Discrete Logarithm Problem with One Short
Exponent (OMDL-OSE)). Let I be a randomized algorithm and let Kdlse be
a short discrete logarithm parameter generator.The game of “I attacking Kdlse in
omdl-ose” is as follows. First,Kdlse runs on input k and outputs (G, g, ord(g), S, s0).
Let W0 = g−s0 . I runs on inputs k and (G, g, ord(g), S,W0). I also has access to
two oracles: (1)DLOGg,ord(g)(·) which on input Y ∈ G, returns y ∈ Zord(g)
such that gy = Y holds, (2)challenge oracle Ochal which each time it is in-
voked (without any input), returns a randomly chosen challenge point W ∈
G. Let W1, . . . ,Wn denote the challenges returned by Ochal. I can query its
DLOGg,ord(g) at most n times. I wins if and only if it outputs s0, . . . , sn ∈
Zord(g) where Wi = gsi holds. The probability of algorithm I winning the game
is denoted by Advomdl−ose

Kdlse,I (k), taken over the coin tosses of Kdlse , I and its or-
acles. I is said to (t, ε)-expectedly-omdl-ose-break Kdlse if its expected running
time is at most t and satisfies Advomdl−ose

Kdlse,I (k) � ε where t and ε are poly-
nomials in k. Kdlse is (t, ε)-expectedly-omdl-ose-secure if there is no algorithm
(t, ε)-expectedly-omdl-ose-breaks it.

Let A be an IMP-CA adversary. Let Advimp−ca
ID,A (k) denote the probability A

wins, taken over the coin tosses of K, the random tape ωA of A, the random
tapes of prover clones, and the random tape ωV of V . An adversary A is said
to (t, ε)-breaks identification scheme ID if it runs in time at most t and satisfies
Advimp−ca

ID,A (k) � ε, where t and ε are polynomials in k. And we say that an
identification scheme ID is (t, ε)-secure against impersonation under concurrent
attack if there is no algorithm (t, ε)-breaks it.

The following theorem states the upper bound of A’s success probability.

Theorem 3. Let ID = (K, P, V) be our scheme associated to short discrete log-
arithm parameter generator Kdlse and setup parameters (κ,B,
), where B,
 are
polynomial and κ > 0. Let A = (V̂ , P̂) be an IMP-CA adversary of running time
at most tκ attacking ID, where tκ is polynomial. Then there is an algorithm I
attacking Kdlse in omdl-ose such that for every k, the followings holds.

Advimp−ca
ID,A (k) � 1/B� + Advomdl−ose

Kdlse,I (k).

Furthermore, the expected running time of I is at most 4tκ +O((n
 + 1)B) and
n = poly(k) is the number of clones of prover with which V̂ interacts.

Proof Sketch. Mainly, the proof is similar to the one for Schnorr ID scheme
in [2]. We construct I as follows. Note that I is given an access to the IMP-CA
adversary A(V̂ , P̂) attacking our scheme. As described in the game of I attack-
ing Kdlse in omdl-ose (Def. 3), I gets inputs (G, g, ord(g), S,W0). To simulate
provers in Stage 1 against concurrent active attacks of cheating verifier V̂ , I
uses the given challenge oracle Ochal and discrete logarithm oracle DLOGg,ord(g)
as follows. First, I sets the public key I = W0 for all provers. The procedure to
simulate the i-th prover for V̂ is as follows (w.l.o.g., here we assume that
 = 1).

– Upon request of commitment from V̂ , I queries the challenge oracle Ochal

to retrieve randomly selected Wi ∈ G, and sends Wi to V̂ as commitment.

296 B. Santoso et al.

Receiving the challenge ci, I sends (Wi/I
ci) to DLOGord(g),g and retrieves

zi ∈ Zord(g) such that gzi = Wi/I
ci holds. Then I randomly selects ji ∈

[0, A/ord(g)− 1] and sends yi = ji × ord(g) + zi to V̂ as the response.

Since ord(g)|A holds, the selected Wi from Ochal and the commitment of real
prover have the same distribution, and so do yi and the response of real prover.

In Stage 2, using the well-known rewinding technique, I gets two pairs of
challenge and response for the same commitment with different challenges from
P̂ , and and obtains (σ, τ) such that gσ = Iτ holds, where σ ∈ (−A,A) and
τ ∈ [1, B). If τ divides σ and σ/τ ∈ [0, S − 1], I sets s′0 = −σ/τ . Otherwise,
I sets s̃0 = (−σ/d)(τ/d)−1 (mod ord(g)/d) where d = gcd(τ, ord(g)) and finds
j ∈ [0, d − 1] such that s̃0 + j × ord(g)

d ∈ [0, S − 1] and I = gs̃0+j× ord(g)
d hold.

Then I outputs s′0 = s̃0 + j × ord(g)
d , and s′i = zi − cis

′
0 mod ord(g). One can

easily verify that Wi = gs′
i for any i ∈ [0, n]. �

Corollary 1 (Security of Our Proposed Scheme against IMP-CA). If
short discrete logarithm parameter generator with public order of group Kdlse is
(t′, ε′)-expectedly-omdl-ose-secure, then our proposed scheme associated to Kdlse

and (κ,B,
) is (tκ, ε)-secure against impersonation under concurrent active at-
tack, where ε = 1/B� + ε′, tκ = t′/4− O((n
 + 1)B)/4 and n is the number of
clones of prover with which V̂ interacts.

5 Discussion

5.1 Practical Advantages of Our Scheme

The most important improvement of our scheme is that we can have the prover’s
randomness much smaller than GPS without worrying that the secret key may
leak, since the perfect zero-knowledgeness is guaranteed regardless the size of
prover’s randomness as long as ord(g)|A holds. Especially, for the case of A �
BS, we offer improvement of efficiency on memory cost of prover’s randomness
and communication cost of prover’s response, while maintaining the fast online
authentication of GPS.7 We illustrate these advantages of our scheme as follows.

Lower Communication Cost. Smaller size of prover’s randomness (=A) makes
the prover’s response in our proposed scheme shorter than that in GPS. As
shown in Table 2, under standard parameters, the prover’s response in our
scheme is at most 195 bits, while that in GPS is at most 275 bits (=80 bits
reduce≈ 28% reduction from GPS). Thus, under the modest 40 kbps data rate of
an RFID tag, the total time for sending the whole response in GPS is 275/40 ≈ 7
ms, while that in our scheme is 195/40 ≈ 5 ms (2 ms faster).

Lower Storage Cost. Let assume an application using coupons with recommended
parameters as the ones in Table 2. A coupon consists of a pair (r,Hash(gr)) where
Hash(·) is a standard hash-function, e.g., SHA-1. First, we assume the output

7 See the discussion on the time cost of online response in Sect. 5.2.

Improving Efficiency of an ‘On the Fly’ Identification Scheme 297

Table 2. Comparison on prover’s efficiency among Schnorr, GPS, our proposed scheme
using standard parameters [10,17], i.e, �=1, |B| = 35, |S| = 160, |ord(g)| = 180

Previous Works Proposed Scheme
Schnorr [27] GPS [10,19] A < BS A � BS

Size of A (in bits) 160 275 193 195

Storage
requirement

one coupon (in bits) 320 435 353 355
20 coupons (in bits) 6400 8700 7060 7100
in % of Schnorr’s 100 136 110 111

Size of prover’s response y (in bits) 160 276 193 195

size of Hash(·) to be 160 bits. For this case, in order to guarantee zero-knowledge
of GPS in practice, [10] recommended the size for A to be |A| = |B|+ |S|+80 =
35 + 160 + 80 = 275 bits. Thus, every coupon in GPS needs |A| + 160 = 435.
On the other hand, in our scheme, since the condition ord(g)|A is sufficient to
ensure perfect zero knowledge, A does not have to be so large, i.e., one coupon
needs only 355 bits. For applications with 20 coupons (the largest number of
coupons assumed in [19]), we reduce 8700− 7100 = 1600 bits (> 1 kbits). One
may use the technique of [11] to reduce the output size of hash function. Note
that this technique needs a longer challenge to keep the same security level,
which means a longer prover’s randomness in GPS and our scheme. Based on
calculation in [11], assuming 9-collision free hash function, the output size of
hash function can be reduced to 71 bits with 3-bits longer prover’s randomness.
Thus, using this technique, the coupon size for GPS and our scheme become
35 + 160 + 80 + 3 + 71 = 349 bits and 269 bits respectively.

5.2 Performance Comparison Using Machine Experiment

G is generated using a Quad-core Xeon 3.0 GHz processor. The key-generation
and elementary rounds are performed by a Pentium IV 3.0 GHz processor. The
schemes are implemented using C with GMP library version 4.1.4 [12] on Linux
2.6. For precise measurement of the clock cycles, we use RDTSC (ReaD Time
Stamp Counter) internal command of Pentium processor [15]. Table 3 shows the
average results of 106 trials. Here we used the standard parameters for guaran-
teeing 80 bit security against key only attack and 35 bit security against imper-
sonation as recommended in [10,17], i.e,
=1, |B| = 35, |S| = 160, |ord(g)| = 180.

Table 3. Results of experiment on PC

Previous Works Proposed Scheme
Schnorr [27] GPS [10,19] A < BS A � BS

Size of A (in bits) 160 275 193 195

Cost of online
response

(in cycles) 2628.00 815.14 1937.15 977.65
in % of Schnorr’s 100 31.01 73.71 37.20

Cost of com-
puting gr

(in ×1000 cycles) 6537 9850 6537 (=Schnorr’s)
in % of Schnorr’s 100 150.67 100 (=Schnorr’s)

298 B. Santoso et al.

Table 4. Estimation based on the result of experiment on PC

Previous Works Proposed Scheme
Schnorr [27] GPS [10,19] A < BS A � BS

Time response on a circuit with the
same size as GPS’ [19] (in ms) 12.93 4.01 9.53 4.81

Circuit size with time response as
fast as GPS’ [19] (in gates) 5294 1642 3903 1970

Here we evaluate/estimate the practical performance of our scheme and com-
pare to that of GPS based on the result of machine experiment in Table 3.

Low Cost Online Response is Maintained. As shown in Table 3, in implementa-
tion using PC, the time cost of online response in our scheme is almost the same
as that in GPS. In [19], an implementation on UMC 180 nm CMOS technology
using 16-bit adder with similar parameters performs the online response calcula-
tion in 401 clock cycles under 100 kHz clock rate, i.e., 401× 10−6 = 4.01 ms. By
assuming that a similar architecture is constructible, we roughly estimate the
time cost for our scheme if it is implemented on a circuit with the same size as
GPS’. The estimation results are shown in Table 4. The estimation method is as
follows. Since the implementation of GPS on PC performs online response within
≈ 815 clock cycles according to Table 3, by assuming rough linear comparison,
an implementation of our scheme with A � BS on the same CMOS technology
may perform online response within ≈ 978/815× 401 ≈ 481 cycles. Thus, under
100 kHz clock rate, the online response of our scheme with A � BS might be
performed within 481 × 10−6 = 4.81 ms (differs by only 0.8 ms from that of
GPS). Even for the case of A < BS with |A| = 193, according to Table 3, for
the case of A < BS with |A| = 193, we get ≈ 1937/815× 401 × 10−6 ≈ 9.53
ms. This is still lower than the implementation of AES proposed by Feldhofer et
al. [8], i.e., 10.16 ms, while Schnorr scheme is not, i.e., 12.93 ms (see Table 4).

Circuit Size with Response as Fast as GPS is Small Enough for RFID Tags.
Here, we estimate the size of the circuit which can provide the calculation of
prover’s response as fast as GPS, for our scheme and Schnorr scheme. Our
estimation uses a rough linear comparison based on the size of GPS’ circuit
on UMC 180 nm CMOS technology with 16-bit adder shown in [19] (=1642
gates) and the cost of online response of each scheme from the result of ex-
periment on PC. For our scheme with A � BS, we estimate the size of cir-
cuit which calculates prover’s response in 4.01 ms (same as GPS in [19]) to be
≈ 977.65/815.14× 1642 ≈ 1970 gates. For Schnorr scheme, we estimate the size
of circuit to be ≈ 2628/815.14× 1642 ≈ 5294 gates. Similarly, for our scheme
with A < BS, we get ≈ 2628/815.14 × 1642 ≈ 3903 gates. Thus, under the
condition that the response calculation of the circuit is as fast as GPS’ circuit
in [19], based on our estimation and the current technology that an RFID tag
only consist of 200-4000 gates [6], we conclude that our scheme is feasible for
RFID tags of current technology, while Schnorr scheme is not.

Improving Efficiency of an ‘On the Fly’ Identification Scheme 299

More Robustness against Denial of Service Attack. Hofferek et al. [14] noted
that in memory-constrained devices such as RFID tags where the number of
identifications are limited by the number of stored coupons, i.e., pairs of pre-
selected r and pre-computed x = gr, a malice verifier can launch a denial-of-
service attack by keeping requesting authentication from a tag, and few requests
are sufficient to exhaust all coupons. In [14], recalculation of new pairs of r and gr

in the idle time of the RFID tags is proposed in order to prevent the immediate
exhaustion of coupons. Since ord(g)|A holds and ord(g) is known in our scheme,
we can generate r in two steps: (1)pick a random r′ ∈ [0, ord(g) − 1], (2)pick a
random r0 ∈ [0, A/ord(g)−1] and set r = r0×ord(g)+r′. Then we can substitute
gr by gr′

, whose cost is only about the order of |ord(g)|. As shown in Table 3,
within a fixed period of time, under standard parameters, our scheme produces
coupons approximately 3/2 times faster than GPS. Thus, in this scenario, our
scheme offers more robustness against the denial of service attack.

Trade-off between Memory and Time Costs. As shown in Table 3, our scheme
offers a trade-off between the memory and the time costs. For fixed BS, the
larger A is, the larger the storage for prover’s randomness r is, but the smaller
the time cost for calculating response y = r + cs mod A is, as subtractions for
reducing r+cs into (r+cs) mod A becomes less, and vice versa. Schnorr scheme
can be seen as an instance of our scheme with A < BS and A=ord(g)=160 bits.

5.3 Parameter Settings

The choices of the multiplicative group G and the base g of G can be considered
similar to GPS except one must be careful that in our proposed scheme, G and
g must be chosen such that discrete logarithm in subgroup 〈g〉 is still averagely
hard even though the order of g is revealed. The choices of
, S and B can be
considered as same as in GPS. For further detailed analysis, see [10, 17].

5.4 Previous Works as Instances of Our Proposed Scheme

Our scheme (the general modification) can be seen as a loose generalization of
previous discrete-logarithm based identification schemes. The Schnorr scheme
[27] can be seen as the case of A = ord(g) and S = ord(g). The basic discrete-log
scheme of Chaum-Evertse-van de Graff with group from prime modulus N can
be seen as the case of G = ZN , A = ord(g). The Brickell-McCurley scheme [3]
can also be seen as the case of G = Zp where p is a prime and S = ord(g), if we
drop the requirement to guarantee the hardness of factoring p− 1.

References

1. Baudron, O., Boudot, F., Bourel, P., Bresson, E., Corbel, J., Frisch, L., Gilbert, H.,
Girault, M., Goubin, L., cois Misarsky, J.F., Nguyen, P., Patarin, J., Pointcheval,
D., Poupard, G., Stern, J., Traoré, J.: GPS - an Asymmetric identification scheme
for on the fly authentication of low cost smart cards Ver 2.0 (October 2001)

300 B. Santoso et al.

2. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

3. Brickell, E.F., McCurley, K.S.: An interactive identification scheme based on dis-
crete logarithms and factoring. J. Cryptology 5(1), 29–39 (1992)

4. Burmester, M., Desmedt, Y., Beth, T.: Efficient zero-knowledge identification
schemes for smart cards. Comput. J. 35(1), 21–29 (1992)

5. Chaum, D., Evertse, J.H., van de Graaf, J., Peralta, R.: Demonstrating possession
of a discrete logarithm without revealing it. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)

6. Addressing Insecurities and Violations of Privacy. In: Cole, P.H., Ranasinghe,
D.C. (eds.) Networked RFID Systems and Lightweight Cryptography. Springer,
Heidelberg (2008)

7. Dobkin, D.M.: The RF in RFID:physical layer operation of passive UHF tags and
readers: 4. UHF RFID Protocols (July 2009),
http://www.enigmatic-consulting.com/Communications_articles/RFID/

RFID_protocols.html

8. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

9. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

10. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology 19(4), 463–
487 (2006)

11. Girault, M., Stern, J.: On the length of cryptographic hash-values used in iden-
tification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
202–215. Springer, Heidelberg (1994)

12. GNU Multiple Precision Arithmetic Library (2004), http://www.swox.com/gmp
13. Hitachi, Ltd. Secure RFID μ-Chip Hibiki (UHF) (March 2009),

http://www.hitachi.co.jp/Prod/mu-chip/mu-chip_hibiki_secure.pdf

14. Hofferek, G., Wolkerstorfer, J.: Coupon recalculation for the GPS authentication
scheme. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189,
pp. 162–175. Springer, Heidelberg (2008)

15. Intel Corporation. RDTSC–Read Time-Stamp Counter,
http://www.intel.com/software/products/documentation/vlin/

mergedprojects/analyzer_ec/mergedprojects/reference_olh/

mergedprojects/instructions/instruct32_hh/vc275.htm

16. ISO/IEC. International Standard ISO/IEC 9798 Part 5: Mechanisms Using Zero
Knowledge Techniques (December 2004)

17. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14(4), 255–293 (2001)

18. McLoone, M., Robshaw, M.J.B.: New architectures for low-cost public key cryp-
tography on RFID tags. In: ISCAS, pp. 1827–1830. IEEE, Los Alamitos (2007)

19. McLoone, M., Robshaw, M.J.B.: Public key cryptography and RFID tags. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 372–384. Springer, Heidelberg
(2006)

20. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved?
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

http://www.enigmatic-consulting.com/Communications_articles/RFID/RFID_protocols.html
http://www.enigmatic-consulting.com/Communications_articles/RFID/RFID_protocols.html
http://www.swox.com/gmp
http://www.hitachi.co.jp/Prod/mu-chip/mu-chip_hibiki_secure.pdf
http://www.intel.com/software/products/documentation/vlin/mergedprojects/analyzer_ec/mergedprojects/reference_olh/mergedprojects/instructions/instruct32_hh/vc275.htm
http://www.intel.com/software/products/documentation/vlin/mergedprojects/analyzer_ec/mergedprojects/reference_olh/mergedprojects/instructions/instruct32_hh/vc275.htm
http://www.intel.com/software/products/documentation/vlin/mergedprojects/analyzer_ec/mergedprojects/reference_olh/mergedprojects/instructions/instruct32_hh/vc275.htm

Improving Efficiency of an ‘On the Fly’ Identification Scheme 301

21. NESSIE. Final report of European project IST-1999-12324: New European
Schemes for Signatures Integrity and Encryption, GPS - Public Report No.
NES/DOC/RHU/WP3/004/b (February 2004)

22. Okamoto, T., Katsuno, H., Okamoto, E.: A fast signature scheme based on new
on-line computation. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp.
111–121. Springer, Heidelberg (2003)

23. Pointcheval, D.: The composite discrete logarithm and secure authentication. In:
Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 113–128. Springer,
Heidelberg (2000)

24. Poupard, G., Stern, J.: Security analysis of a practical ”on the fly” authentica-
tion and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 422–436. Springer, Heidelberg (1998)

25. Poupard, G., Stern, J.: On the fly signatures based on factoring. In: Proc. of the
6th CCS, pp. 48–57. ACM Press, New York (1999)

26. Santoso, B., Ohta, K.: A new ’on the fly’ identification scheme: an asymptoticity
trade-off between ZK and correctness. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E92.A (1), 122–136 (2009)

27. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

28. SkyeTek, Inc. SkyeModule M7: compact 900 MHz UHF RFID reader/writer,
http://www.skyetek.com/Portals/0/Documents/Products/SkyeModule_M7_

DataSheet.pdf

http://www.skyetek.com/Portals/0/Documents/Products/SkyeModule_M7_DataSheet.pdf
http://www.skyetek.com/Portals/0/Documents/Products/SkyeModule_M7_DataSheet.pdf

Linear Cryptanalysis of Reduced-Round
PRESENT

Joo Yeon Cho

1 Helsinki University of Technology, Finland
2 Nokia A/S, Denmark

joo.cho@tkk.fi

Abstract. PRESENT is a hardware-oriented block cipher suitable for
resource constrained environment. In this paper we analyze PRESENT
by the multidimensional linear cryptanalysis method. We claim that our
attack can recover the 80-bit secret key of PRESENT up to 25 rounds
out of 31 rounds with around 262.4 data complexity. Furthermore, we
showed that the 26-round version of PRESENT can be attacked faster
than key exhaustive search with the 264 data complexity by an advanced
key search technique. Our results are superior to all the previous attacks.
We demonstrate our result by performing the linear attacks on reduced
variants of PRESENT. Our results exemplify that the performance of
the multidimensional linear attack is superior compared to the classical
linear attack.

Keywords: Block Ciphers, Lightweight Cryptography, PRESENT, Mul-
tidimensional Linear Cryptanalysis.

1 Introduction

PRESENT [3] is a lightweight SPN block cipher proposed by Bogdanov et al.
at CHES 2007. PRESENT is designed for resource restricted applications such
as RFID and sensor networks. Due to the impressive hardware performance and
the strong security, PRESENT has drawn a lot of attention from the lightweight
cryptographic community.

On the other hand, the cryptanalysis on PRESENT has been also actively
performed so far. In [15], Wang presented a differential cryptanalysis that could
attack the 16-round variant with 264 chosen texts and 265 memory accesses. In
[1], Albrecht et al. presented a differential attack using algebraic techniques that
can recover an 80-bit key of the 16-round variant with similar complexity to [15]
and a 128-bit key of the 19-round variant by 2113 computations. In [4], Collard
et al. presented a statistical saturation attack that can recover the key of the 24
round variant with 257 chosen texts and 257 time complexity under the condition
that the parts of plaintexts are fixed to a constant value. More recently, Ohkuma
presented a linear attack on 24-round variant with 263.5 known texts [13]. He
claimed that due to the linear hull effect, the linear approximation of PRESENT
using weak keys could have much stronger correlation than the one expected by
designers.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 302–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linear Cryptanalysis of Reduced-Round PRESENT 303

In this paper, we analyze PRESENT by a multidimensional linear attack
method. We observe that PRESENT has a large number of linear approxima-
tions that hold with the same order of magnitude of correlations due to the
simple structure of the round function. As shown in [7], a multidimensional lin-
ear attack can be efficiently applied to such cipher. Our attack is different from
Ohkuma’s attack [13] since Ohkuma presented the linear attack using a single
linear approximation which can have the strongest correlation if weak keys are
used. According to our analysis, the 25-round variant of PRESENT using the
80-bit key can be attacked faster than key exhaustive search with around 262.4

data complexity. Furthermore, an advanced key search technique enables us to
attack the 26-round version of PRESENT with 264 data complexity. Our re-
sults are superior to all the previous attacks presented in the open literature.
We demonstrate our claim by performing the multidimensional linear attacks on
reduced variants of PRESENT.

This paper is organized as follows. In Section 2, the structure of PRESENT
is briefly described and the framework of multidimensional linear attack is pre-
sented. In Section 3, linear characteristics are derived and their capacities are
computed. In Section 4, the attack algorithm using linear characteristics is de-
scribed. In Section 5, our attacks are applied to reduced variants of PRESENT
and the experimental results are presented. Section 6 concludes this paper.

2 Preliminaries

2.1 Brief Description of PRESENT

PRESENT is a SPN block cipher that consists of 31 rounds. The encryption
block length is 64 bits and the key lengths is 80 bits or 128 bits. Each of the 31
rounds consists of three layers: addRoundKey, SboxLayer and pLayer. The Ad-
dRoundKey is a 64-bit eXclusiveOR operation with a round key. The SboxLayer
is a 64-bit nonlinear transform using a single S-box 16 times in parallel. The
S-box is a nonlinear bijective mapping S : F4

2 �→ F4
2 given in Table 4. The pLayer

is a bit-by-bit permutation P : F
64
2 �→ F

64
2 given in Table 5. The design idea of

SboxLayer and pLayer is adapted from Serpent [2] and DES block cipher [10],
respectively. The structure of PRESENT is illustrated in Figure 1.

The key scheduling algorithm has two versions depending on whether the key
size is 80 bits or 128 bits. Since the key schedule is not directly relevant to
out attack, we do not describe the key schedule algorithm here. For complete
description of PRESENT we refer to the paper [3].

2.2 Multidimensional Linear Cryptanalysis Using χ2 Method

Multidimensional linear cryptanalysis is an extension of Matsui’s classical linear
cryptanalysis [9] in which multiple linear approximations are optimally exploited.
The general framework of the multidimensional linear cryptanalysis adapting
Matsui’s algorithm 2 was presented by Hermelin et al. in [8]. In their paper,

304 J.Y. Cho

Plaintext
��
�

Round key 1�

Key Register

�
Update

�

sBoxLayer
pLayer

�...
��

...

�
Update

� Round key 31
�

sBoxLayer
pLayer

�

�

Round key 32�

Ciphertext

Fig. 1. Overview of PRESENT

Hermelin et al. studied two statistical methods: the log-likelihood ratio (LLR)
and the χ2. We apply the χ2 statistic method to PRESENT since the LLR
method is not proper to PRESENT-like structure. The detailed explanation will
be given in Section 4.4.

The brief framework of the χ2 method is as follows. Let Vn denote the
space of n-dimensional binary vectors. A function f : Vn → Vm with f =
(f1, · · · , fm) where fi is a linear approximation is called a vectorial linear ap-
proximation of the dimension m. The correlation of fi is defined as c(fi) =
2−n [#(fi(a) = 0)−#(fi(a) = 1)] where a ∈ Vn.

Let p be the probability distribution of m-dimensional linear approximations.
The capacity of p = (p0, . . . , p2m−1) is defined by Cp =

∑2m−1
i=0

(pi−ui)2

ui
where

u = (u0, . . . , u2m−1) is the uniform distribution. It is well known that the Cp is
equal to the sum of the square of correlations of all 2m−1 linear approximations.

Suppose l is the length of the target key. For all values of k ∈ [0, 2l − 1],
one obtains the empirical probability distributions Qk = (qk,0, . . . , qk,2m−1) by
measuring the frequency of m-dimensional vectors which are Boolean values
of m linear independent approximations. Then the candidate keys are sorted
according to their χ2-statistics defined as

D(k) = 2m
M∑
i=0

(qk,i − 2−m)2, M = 2m − 1 (1)

which represents the l2-distance of the Qk from the uniform distribution.
If the right key is ranked in the position of d from the top out of 2l key

candidates, we say that the attack has the advantage of (l − log2 d) [14]. The
advantage of the χ2-method using statistic (1) is derived in Theorem 1 in [8] by

advantage =
(NCp − 4Φ−2(2Ps − 1))2

8M
, Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt (2)

where Ps is the success probability, N is the amount of data and C is the capacity.

Linear Cryptanalysis of Reduced-Round PRESENT 305

2.3 Notations

Let Si denote the i-th S-box in the SboxLayer and P denote the permutation
in the pLayer. Let Kr denote the r-th round key and K

[i]
r denote the i-th bit

of the Kr. The K
[i..j]
r denote the bit string from K

[i]
r to K

[j]
r . We use EK(X)

for representing the average value of X over all possible values of K. In our
notation of the bit masks, we identify F4

2 with Z16. We use the little endian for
bit notation through the paper, that is, the least significant bit is counted at the
rightmost.

3 Linear Characteristics of PRESENT

We define a linear trail as a single path of linear approximations concatenated
over multiple rounds. It is a common belief that the linear characteristic with
multiple linear trails has a larger correlation than one with a single linear trail
due to the linear hull effect [11]. In this section, we derive a linear characteristic
of PRESENT that has multiple linear trails. Each linear trail exploits the linear
approximations of S-boxes which have a single active bit in the input and output
masks. The linear masks having more than one active bit affect at least two S-
boxes in the consecutive round due to the permutation layer, which yield much
less correlations in the multiple rounds of PRESENT.

Definition 1. A single-bit linear trail is a linear trail where the input and out-
put masks of linear approximations of all intermediate S-boxes are of Hamming
weight one.

We call a single-bit linear trail as just a linear trail unless specified otherwise.

3.1 Single Bit Linear Trails

Let π(α, β) denote a linear approximation of S-box S where α, β ∈ F4
2 are an

input and output mask of S, respectively. The correlation of π(α, β) is denoted
by ρ(α, β). We observe that the S-box has the following properties:

S1. For α, β ∈ {2, 4, 8}, ρ(α, β) = ±2−2 except that ρ(8, 4) = 0;
S2. For α ∈ {1, 2, 4, 8}, ρ(α, 1) = ρ(1, α) = 0.

According to Property S1 and S2, the S-box holds eight linear approximations
which has a single active bit in both the input and output linear masks.

Let us define S = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and B = {4i+ 1, 4i+
2, 4i + 3|0 ≤ i ≤ 15, Si ∈ S}. Then, the permutation P of the pLayer has the
following properties:

P1. If x ∈ B, then P (x) ∈ B;
P2. All the outputs of S0, S4, S8 and S12 turn into the least significant bits of

the inputs of S-boxs next round by the permutation. Also, the outputs of
S1, S2 and S3 turn into the input of S0, S4, S8 and S12 next round.

306 J.Y. Cho

Due to Property S2 and P2, the linear trails passing any bit position that does
not included in B do not have correlations. Hence, by Property S1 and P1, any
r-round linear trail with an input mask α and an output mask β takes the
following path:

π(α, 2v1)→ π(2u2 , 2v2) → · · · → π(2ur−1 , 2vr−1) → π(2ur , β)

where ui, vi ∈ {1, 2, 3} and (ui, vi) �= (3, 2) for 1 ≤ i ≤ r.

3.2 n-Round Linear Characteristic

Let Ω(1) denote the 1-round linear characteristic which has all the single bit
linear trails of nine S-boxes of S, as shown in Figure 2. Due to Property S1, the
Ω(1) contains 9× 8 = 72 linear trails, each of which has ±2−2 correlation. Since
x �→ P (x) is a one-to-one mapping, Property P1 implies that {P (x)|x ∈ B} = B.
Hence, we can construct the n-round linear characteristic, which is denoted by
Ω(n), by concatenating Ω(1) iteratively n times as follows:

Ω(n) = Ω(1) ◦ · · · ◦Ω(1)︸ ︷︷ ︸
n times

.

S15 S14 S13 S11 S10 S9 S7 S6 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

Fig. 2. Linear trails in the 1-round linear characteristic

We can expect that the number of linear trails grows exponentially according
to the increment of the number of rounds. Let ζ(r)(i, j) denote a bundle of linear
trails which start from the i-th bit of input and end up at the j-th bit of output
over Ω(r). Each ζ(r)(i, j) is extended to ζ(r+1)(i, k) for some k ∈ B via two or
three single-bit linear approximations of the S-box.

Let θ(r)(i, j) denote the correlation of ζ(r)(i, j). If the θ
(r)
j is defined as a

summation of the correlations of all linear trails that reach the j-th bit of output
over Ω(r), then θ

(r)
j =

∑
i∈B θ(r)(i, j). The actual value of θ

(r)
j depends on the

round keys involved in each linear trail. Suppose K is a user-supplied key. For
any i, j ∈ B, the θ

(r)
j (K) is recursively expressed as

θ
(r)
j (K) =

3∑
i=1

(−1)K[ν]
r ρ(2i, 2j mod 4) θ(r−1)

ν (K), ν = P−1(4�j/4�+ i) (3)

where P−1 is an inverse mapping of P .

Linear Cryptanalysis of Reduced-Round PRESENT 307

The average value of θ(r)
j over all possible values of K is recursively computed

by the following algorithm:

1. Initialize θ
(0)
j = 1 for all j ∈ B. Set r = 1.

2. For each j ∈ B,
(a) compute θ

(r)
j (K) using (3) for all possible values of K ∈ F

27
2 ;

(b) assign θ
(r)
j = EK(|θ(r)

j (K)|) = 2−27∑
K |θ(r)

j (K)|.
3. Repeat Step 2 for r = 2, 3, . . . , n.

Above the algorithm can be much simplified by the following theorem: (In this
theorem, the correlation potential means the square of the correlation.)

Theorem 1. (Theorem 7.9.1 [6], Theorem 1 [11]) The average correlation po-
tential between an input and an output selection pattern is the sum of the correla-
tion potentials of all linear trails between the input and output selection patterns.

By Theorem 1, the average value of |θ(n)
j | is obtained by summing the absolute

values of correlations of all linear trails in the ζ(r)(i, j) for all i ∈ B. Hence, the
average value of |θ(n)

j | can be computed simply by the following algorithm:

1. Initialize θ
(0)
j = 1 for all j ∈ B. Set r = 1.

2. For each j ∈ B, compute

θ
(r)
j =

3∑
i=1

|ρ(2i, 2j mod 4)| θ(r)
ν , ν = P−1(4�j/4�+ i).

3. Repeat Step 2 for r = 2, 3, . . . , n.

Theorem 1 concerns a single linear approximation that has multiple linear trails.
For the multidimensional linear cryptanalysis, Theorem 1 can be extended as
follows:

Proposition 1. The expected capacity of an m-dimensional linear approxima-
tion is the sum of the square of the expected correlations of all the linear trails
that all the 2m − 1 one-dimensional linear approximations have.

3.3 (n + 4)-Round Linear Characteristic

Let us define U as the 2-round characteristic which starts from S5, S9 and S13
and ends with nine S-boxes of S. Each input S-box of U takes arbitrary value
from 1 to 15 as the input mask and each output S-box takes a single-bit output
mask only. We also define V as the 2-round characteristic which starts from nine
S-boxes of S and ends up at S5, S6 and S7. Each input S-box of V takes a single-
bit linear mask and each output S-box takes arbitrary value from 1 to 15 as the
output mask. For a positive integer n, the n + 4 round linear characteristic is
constructed by adding U and V to Ω(n) at the top and the bottom respectively
as shown in Figure 3.

308 J.Y. Cho

...

...

Ω(n)

U

V

α13 α9 α5

� � �
S13 S9 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer
��� ��� ���������������������

S15 S14 S13 S11 S10 S9 S7 S6 S5

S7 S6 S5

���
β5β6β7

Fig. 3. (n + 4) rounds linear characteristic

Let C(n+4)
p denote the capacity of U◦Ω(n)◦V . By the definition of the capacity

and due to Theorem 1, the average value of C(n+4)
p is the sum of the square of

correlations of all linear trails over the U ◦Ω(n) ◦ V , which is calculated by the
following theorem:

Theorem 2. Let us assume that the round keys of PRESENT are statistically
independent. For a positive integer n, the expected capacity of U ◦Ω(n) ◦ V over
the secret key K is

2−8
∑
i∈B

(
θ
(n)
i

)2
.

Proof. Let αi be an input mask of Si ∈ {S5, S9, S13} of the U and βj be an
output mask of Sj ∈ {S5, S6, S7} of the V . For a fixed αi, the U has nine linear
trails holding with correlations of ρ(αi, 2u) ·2−2 for some u ∈ {1, 2, 3}. Similarly,
for a fixed βj , the V has nine linear trails with the correlations of ρ(2v, βj) · 2−2

for some v ∈ {1, 2, 3}. We define B[αi] and B[βj] as the sets of input and output
bit positions where Ω(n) is linked with U and V for fixed αi and βj , respectively.
Obviously, #B[αi] = #B[βj] = 9 for any αi and βj .

Let c(n+4)(αi, βj) denote the correlation of the linear approximation with the
input mask αi and the output mask βj over U ◦Ω(n) ◦ V . Then, for a fixed key

Linear Cryptanalysis of Reduced-Round PRESENT 309

K, we can write

c(n+4)(αi, βj ;K) =
∑

x∈B1

∑
y∈B2

(−1)k · ρ(αi, 2u) · 2−2 · θ(n)(x, y) · 2−2 · ρ(2v, βj)

where k denotes a parity of the relevant round key bits. Since

EK

[
(−1)ks(−1)kt

]
=

{
1 if s = t,

0 if s �= t

under the assumption that the round key bits are statistically independent,1 we
get

EK

[(
c(n+4)(αi, βj ; K)

)2
]

= EK

[
2−8

∑
x∈B1

∑
y∈B2

ρ(αi, 2u)2 ·
(
θ(n)(x, y)

)2

· ρ(2v, βj)2
]

.

Parseval’s theorem says that
∑15

αi=0 ρ(αi, 2u)2 =
∑15

βj=0 ρ(2
v, βj)2 = 1 for any

u, v ∈ {1, 2, 3}. Hence, the average value of C
(n+4)
p (αi, βj ;K) is obtained by

computing

EK [C(n+4)
p (αi, βj;K)] =

15∑
αi=0

15∑
βj=0

EK

[(
c(n+4)(αi, βj ;K)

)2
]

= 2−8 · EK

⎡⎣∑
x∈B1

∑
y∈B2

(
θ(n)(x, y;K)

)2

⎤⎦ .

The C
(n+4)
p (K) is the sum of C(n+4)

p (αi, βj ;K) for all pairwise combinations of
{αi, βj} where αi ∈ {α5, α9, α13} and βj ∈ {β5, β6, β7}. Since B[α5] ∪ B[α9] ∪
B[α13] = B and B[β5] ∪B[β6] ∪B[β7] = B, we conclude that

EK [C(n+4)
p (K)] =

∑
i∈{5,9,13}

∑
j∈{5,6,7}

EK [C(n+4)
p (αi, βj ;K)]

= 2−8 · EK

⎡⎣∑
x∈B

∑
y∈B

(
θ(n)(x, y;K)

)2

⎤⎦
= 2−8 · EK

⎡⎣∑
y∈B

(
θ(n)

y (K)
)2

⎤⎦ = 2−8 ·
∑
i∈B

(
θ
(n)
i

)2
. ��

Theorem 2 implies that the expected capacity of U ◦ Ω(n+4) ◦ V is the sum
of the square of correlations of all linear trails starting from the second round
and ending to the second last round. We calculated the average capacities of
1 The statistical behaviour of ks ⊕ kt was experimentally verified to follow unbiased

binomial distribution by a summer school student.

310 J.Y. Cho

Table 1. Evaluation of capacities of n + 4 round characteristics

round capacity round capacity
6 2−8.42 18 2−39.71

7 2−11.00 19 2−42.32

8 2−13.61 20 2−44.94

9 2−16.22 21 2−47.55

10 2−18.82 22 2−50.16

11 2−21.43 23 2−52.77

12 2−24.04 24 2−55.38

13 2−26.66 25 2−57.99

14 2−29.27 26 2−60.61

15 2−31.88 27 2−63.22

16 2−34.49 28 2−65.83

17 2−37.10 29 2−68.44

(n + 4)-round linear characteristics for 2 ≤ n ≤ 25 by Theorem 2. The results
are displayed in Table 1.

In the next section, we present the multidimensional linear attacks using the
(n + 4)-round linear characteristics.

4 Multidimensional Linear Attacks on PRESENT

4.1 Selection of Linear Independent Approximations

Suppose n is a positive integer. The dimension of input and output masks of the
U ◦ Ω(n) ◦ V is 4 × 3 = 12 each. As mentioned before, the linear trails passing
more than one S-box at each round have much less correlations than single-bit
linear trails. Thus, it is sufficient to take nine linear characteristics individually,
each of which has an 8-dimensional linear characteristic with 4-bit input and
4-bit output. Then, the number of linear approximations spanned for our attack
is 9× (28 − 1) in total.

We use eight unit vectors as the linear independent approximations. Even
though each unit vector does not have any correlation, all linear approximations
can be obtained by spanning these unit vectors. The merit of this approach is
that the evaluation of Boolean values of linear approximations is not needed;
The probability distribution of the linear approximations can be obtained by
just measuring the frequencies of the concatenated value of input and output of
the linear characteristic. Hence, the time complexity of the attack can be reduced
by at least a factor of m where m is the dimension of the linear approximations.

4.2 Attack Algorithm

We target to attack the n-round version of PRESENT. Our attack uses the
(n − 2)-round linear characteristic U ◦ Ω(n−6) ◦ V from the second round to

Linear Cryptanalysis of Reduced-Round PRESENT 311

(n − 1)-th round and recovers the 32 bits of the round key in the first round
and the last round. The inputs of the U are connected to S4, S5, S6 and S7 of
the first round and the outputs of the V are connected to S1, S5, S9 and S13
of the n-th round. Thus, we target to recover the 16 bits of the K1, which
are K

[16..19]
1 ||K [20..23]

1 ||K [24..27]
1 ||K [28..31]

1 , and the 16 bits of the Kn, which are
P (K [4..7]

n)||P (K [20..23]
n)||P (K [36..39]

n)||P (K [52..55]
n).

Let ke and kd be the targeted 16 bits of K1 and Kn, respectively. Then, we
recover the ke and kd in the following way:

1. Prepare 9 · 232 · 28 counters and initialize them by zero.
2. Collect N plaintext-ciphertext pairs.
3. For K = 0, . . . , 232−1,

(a) Partially encrypt each plaintext one round by the 16 bits of ke and
decrypt the corresponding ciphertext one round by the 16 bits of kd

where K = kd||ke.
(b) Extract three input values α5, α9, α13 of U and three output values

β5, β6, β7 of V .
(c) Obtain nine 8-bit values by pairwise concatenating αi and βj for i =

5, 9, 13 and j = 5, 6, 7.
(d) Increment nine counters indicated by K and (αi||βj).

4. Repeat Step 3 for all N text pairs.
5. Compute the l2 distance using (1) between the probability distribution for

each K and uniform distribution.
6. Sort out the candidate keys according to their l2 distances.
7. Search the right key from the top of the sorted keys.

4.3 Attack Complexity

The amount of data required for χ2 statistic method is obtained from (2) as
follows:

N =
(√

advantage · 8 ·M + 4Φ−2(2Ps − 1)
)
/C(r)

where Ps is the success probability and C(r) is the capacity. Since the number of
linear approximations available for the attack is 9×(28−1), the full advantage (32
bits) of the attack with the success probability 0.95 is achieved by the data com-
plexity of N =

(√
32 · 8 · 9 · (28 − 1) + 4Φ−2(2 · 0.95− 1)

)
/C(r) ≈ 29.6/C(r).

According to the Step 3 and 4 of the attack algorithm, we needs to perform
both 1-round encryption and decryption for each plaintext-ciphertext pair and
each guessed key. A naive implementation of these steps requires N · 232 oper-
ations. We can reduce the computational complexity greatly by removing the
repeated computations.

Let x and y be a 16-bit plaintext and a 16-bit ciphertext used for our at-
tack. The Step 3-(a) of the attack algorithm is to compute zk = (P (S(x ⊕
ke))||(S−1(P−1(y⊕ kd))) where ke and kd denote the guessed 16-bit keys of the
first round and the last round, respectively. Thus, the probability distribution
Qk of zk is obtained by mapping (x⊕ke)||(y⊕kd) �→ zk for all k = (ke||kd) ∈ F

32
2

312 J.Y. Cho

with N pairs of data. This step can be divided into two sub-steps for efficient
computations: First, the table Q∗ is obtained by measuring the frequency of
(x||y) ∈ F32

2 . Next, the mapping (Q∗, k) �→ Qk can be done by 232 times access
of Q∗ for each candidate k. Hence, the Step 3 can be done by 232 ·232 operations
in total.2 Since computing the l2 distance requires 9 · 28 operations for each can-
didate key, the total time complexity of the attack is 264 + 9 · 28 · 232 ≈ 264. For
the memory complexity, the Q∗ needs 232 · 4 = 234 bytes of memory and some
additional memory is required for storing temporary values of computations.

Without increasing the amount of data complexity, we can recover another 32
bits of the round key by changing the input S-boxes of U and the output S-boxes
of V over the U ◦ Ω(n) ◦ V ; if the attack uses the linear characteristic starting
with S7, S11, S15 and ending with S13, S14, S15, we can recover the K

[48..63]
1 in

the first round and the K
[12..15]
n ,K

[28..31]
n ,K

[44..47]
n and K

[60..63]
n in the last round.

In this manner, we can recover 32 · 2 bits of the round keys in the first and the
last round key in total. The remaining 80− 64 = 16 bits of key can be obtained
by exhaustive key search. Hence, the time complexity of the attack is around
2 · 264 + 216 ≈ 265 in total.

Attack on 26-round PRESENT. Our attack can be extended to 26-round
version of PRESENT with the 24-round characteristic holding with the capacity
of 2−55.38. If the attack uses the full range of text pairs, which is 264, the theo-
retical advantage of attack is expected to be 8 by (2). This means that the right
key is possibly ranked within the position of 232−8 = 224 out of 232 candidates
with the probability of 0.95. Hence, we apply the following attack scenario to the
26-round PRESENT: First, the multidimensional linear attack targeting 32 bits
of the round key is performed with 264 text pairs. As a result, the 224 candidate
keys are obtained. Second, the remained secret key bits (80− 32 = 48) are com-
bined with the 224 candidate keys from the top in order and the key exhaustive
search is performed.

From this scenario, the secret key can be found within the time complexity of
264+248 ·224 ≈ 272. Note that the theoretical estimation is always the lower bound
since we use the correlations of only single linear trails. We compare our attacks
with previous attacks against various rounds versions of PRESENT in Table 2.

4.4 Discussion

Weakness of bit permutation. Our attack is mainly based on the observation
that PRESENT has a large number of linear approximations with the same
magnitude of correlations. It seems that this weakness is caused by the lack of
diffusion property of the bit permutation. Even though the bit permutation is
desirable for efficient hardware implementation, it has a potential weakness that
input bits and output bits have one-to-one correspondence. Hence, a single-bit
linear approximations of an S-box of any round can be connected to another

2 The computational complexity may be further reduced by applying Fast Fourier
Transform at the cost of the increased memory complexity [5].

Linear Cryptanalysis of Reduced-Round PRESENT 313

Table 2. Comparison of data and time complexity of the attacks against PRESENT
(CP: Chosen Plaintext, KP: Known Plaintext)

round data time source
16 264CP 265 Differential [15]
19 - 2113 Differential + Algebraic [1]
24 257CP 257 Saturation [4]
24 263.5KP - Linear [13]
25 262.4KP 265 Linear (this paper)
26 264KP 272 Linear (this paper)

single-bit linear approximation of next round through the permutation layer.
Since the S-box of PRESENT has multiple linear approximations of which linear
masks have a single active bit, one can construct multiple single-bit linear trails
over arbitrary number of rounds. Note that this weakness does not appear in the
linear transformation functions of Serpent [2] or AES [6] since any single output
bit of the linear transformation is expressed as a boolean function of at least two
input bits.

A simple remedy to prevent our attack is to revise the S-box in such a way that
a single-bit linear approximations of S-box does not have significant correlations.
However, we did not investigate how this remedy affects the other aspects of the
security of PRESENT.

Correlation and Piling Up Lemma. The designers of PRESENT proved in
Theorem 2 of [3] that the maximum correlation of a linear approximation of four
rounds of PRESENT is 2−6. As a result, the maximal correlation of a 28-round
linear approximation was estimated to be (2−6)7 = 2−42 by Piling Up lemma [9].
Thus, the linear attack using the 28-round linear approximation would require
more than 284 data. On the other hand, according to our analysis, the capacity
of the 28 round PRESENT is estimated to be around 2−65.8 by the correlation
theorem [12] so that 30 round of PRESENT can be (theoretically) attacked by
around 275 data.

The difference between the designers’ estimation and our result is originated
from the fact that the designers considered a single linear approximation using a
single linear trail holding with the strongest correlation, whereas our attack takes
into account multiple linear approximations, each of which has multiple linear
trails holding with strong correlations. Due to the existence of large amount of
linear trails in PRESENT, the data complexity of the attack is reduced signifi-
cantly compared to the estimate by a correlation of a single linear approximation.

The χ2 and LLR method. Finally, we justify the reason why the LLR method
is not used for the attack on PRESENT even if the LLR method showed a better
performance than the χ2 method in the attacks on SERPENT [7]. As described
in [7], the LLR method is more advantageous compared to the χ2 method if the
pre-computed profile of the probability distribution is accurate. However, the

314 J.Y. Cho

distribution of linear approximations in PRESENT heavily depends on the key
values so that the space for the profile of the probability distribution becomes
too large. On the other hand, the χ2 method does not need to know the distri-
bution accurately; We only need to detect a large deviation of the probability
distribution from the uniform distribution. It is an open problem whether there
is a way to apply the LLR method efficiently for the attacks against PRESENT.

5 Experiments

We performed the multidimensional linear attacks on the reduced-round
PRESENT by experiments in order to verify our theoretical analysis. We chose
r = 6, 7, 8, 9 rounds version of PRESENT and applied our attack algorithm. We
targeted to recover the 16 bits of the last round key by using (r − 1)-round lin-
ear characteristics. The plaintexts were randomly generated and encrypted by
r-round PRESENT. The experiments were repeated with the randomly chosen
200 secret keys and the average values of advantage were calculated. Figure 4 il-
lustrates the relationship between the advantage of the attacks and the required
amount of plaintexts for each experiments. The dashed lines represent theoreti-
cally estimations drawn by (2) and the solid lines are empirical results. We can
see that the estimation of the full advantage of the attack is well matched with
empirical results up to 9 rounds PRESENT. Due to the restriction of computa-
tional resources, we could not perform the attack algorithm which recovers 32
bits of the round key of the r-round version by the (r − 2)-round characteristic.
However, based on our experimental results, we can conclude that our estimates
of attack complexity against further rounds PRESENT are reasonable.

2^12 2^14 2^16 2^18 2^20 2^22 2^24
0

2

4

6

8

10

12

14

16

number of texts

ad
va

nt
ag

e

Ps = 0.95

6 rounds
7 rounds
8 rounds
9 rounds

Fig. 4. Empirical evaluation of linear attacks on reduced variants of PRESENT

Linear Cryptanalysis of Reduced-Round PRESENT 315

6 Conclusion

Modern block ciphers often prove the resistance of linear cryptanalysis by count-
ing the minimum number of the active S-boxes involved in the best linear ap-
proximation. Even though PRESENT provides a provable security against linear
cryptanalysis according to this rule, our attack shows that the resistance of the
classical linear cryptanalysis does not always thwart the multidimensional linear
attacks. Even though a simple, iterative structure of the cipher is desirable for
the hardware-oriented block ciphers, such ciphers may have possibility to retain
a large number of linear approximations by which a multidimensional linear at-
tack can be applied efficiently. It is interesting to see that our attack can be
applied to some other ciphers that have simple structures, like AES.

Acknowledgment

I wish to thank Kaisa Nyberg for very useful comments that helped to improve
the paper. I am grateful to anonymous reviewers of Asiacrypt 2009 and CT-RSA
2010 for their valuable comments.

References

1. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009)

2. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced
Encryption Standard. In: First Advanced Encryption Standard (AES) conference
(1998)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007)

4. Collard, B., Standaert, F.: A statistical saturation attack against the block cipher
PRESENT. In: Fischlin, M. (ed.) Topics in Cryptology – CT-RSA 2009. LNCS,
vol. 5473, pp. 195–210. Springer, Heidelberg (2009)

5. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of mat-
sui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

6. Daemen, J., Rijmen, V.: The Design of Rijndael- AES, the Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Hermelin, M., Cho, J., Nyberg, K.: Multidimensional linear cryptanalysis of re-
duced round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 203–215. Springer, Heidelberg (2008)

8. Hermelin, M., Cho, J., Nyberg, K.: Multidimensional Extension of Matsui’s Al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

9. Matsui, M.: Linear cryptoanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

316 J.Y. Cho

10. National Bureau of Standards, FIPS PUB 46-3: Data Encryption Standard (DES),
National Institute for Standards and Technology (January 1977)

11. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

12. Nyberg, K.: Correlation theorems in cryptanalysis. Discrete Applied Mathemat-
ics 111, 177–188 (2001)

13. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Preproceeding of SAC 2009 (2009)

14. Selçuk, A.: On probability of success in linear and differential cryptanalysis. Journal
of Cryptology 21(1), 131–147 (2008)

15. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In:
Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer,
Heidelberg (2008)

Appendix

A Correlation Table of S-box of PRESENT

Given an input mask α and an output mask β where α, β ∈ F
4
2, the correlation

of the linear approximation α · x ⊕ β · S(x) = 0 of the S-box is measured as
follows:

c(α, β) = 2−4(#(α · x⊕ β · S(x) = 0)−#(α · x⊕ β · S(x) = 1))

where the · notation stands for the standard inner product. The correlation table
of the S-box is given in Table 3.

Table 3. Correlation table of S-box of PRESENT: c(α, β)

α\β 1 2 3 4 5 6 7 8 9 a b c d e f
1 0 0 0 0 −2−1 0 −2−1 0 0 0 0 0 −2−1 0 2−1

2 0 2−2 2−2 −2−2 −2−2 0 0 2−2 −2−2 0 2−1 0 2−1 −2−2 2−2

3 0 2−2 2−2 2−2 −2−2 −2−1 0 −2−2 2−2 −2−1 0 0 0 −2−2 −2−2

4 0 −2−2 2−2 −2−2 −2−2 0 2−1 −2−2 −2−2 0 −2−1 0 0 −2−2 2−2

5 0 −2−2 2−2 −2−2 2−2 0 0 2−2 2−2 −2−1 0 2−1 0 2−2 2−2

6 0 0 −2−1 0 0 −2−1 0 0 −2−1 0 0 2−1 0 0 0
7 0 0 2−1 2−1 0 0 0 0 −2−1 0 0 0 0 2−1 0
8 0 2−2 −2−2 0 0 −2−2 2−2 −2−2 2−2 0 0 −2−2 2−2 2−1 2−1

9 2−1 −2−2 −2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 2−2 0 0
a 0 2−1 0 2−2 2−2 2−2 −2−2 0 0 0 −2−1 2−2 2−2 −2−2 2−2

b −2−1 0 0 −2−2 −2−2 2−2 −2−2 −2−1 0 0 0 2−2 2−2 2−2 −2−2

c 0 0 0 −2−2 −2−2 −2−2 −2−2 2−1 0 0 −2−1 −2−2 2−2 2−2 −2−2

d 2−1 2−1 0 −2−2 −2−2 2−2 2−2 0 0 0 0 2−2 −2−2 2−2 −2−2

e 0 2−2 2−2 −2−1 2−1 −2−2 −2−2 −2−2 −2−2 0 0 −2−2 −2−2 0 0
f 2−1 −2−2 2−2 0 0 −2−2 −2−2 −2−2 2−2 2−1 0 2−2 2−2 0 0

Linear Cryptanalysis of Reduced-Round PRESENT 317

B The S-Box and Permutation Tables of PRESENT

The S-box and the permutation tables of PRESENT are given in Table 4 and
Table 5, respectively.

Table 4. S-box table of PRESENT in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 5. Permutation table of PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Dependent Linear Approximations: The Algorithm of
Biryukov and Others Revisited

Miia Hermelin1 and Kaisa Nyberg1,2

1 Aalto University, School of Science and Technology
2 Nokia, Finland

Abstract. Biryukov, et al., showed how it is possible to extend Matsui’s Algo-
rithm 1 to find several bits of information about the secret key of a block cipher.
Instead of just one linear approximation, they used several linearly independent
approximations that were assumed to be statistically independent. Biryukov, et
al., also suggested a heuristic enhancement to their method by adding more lin-
early and statistically dependent approximations.

We study this enhancement and show that if all linearly dependent approxima-
tions with non-negligible correlations are used, the method of Biryukov, et al., is
the same as the convolution method presented in this paper. The data complexity
of the convolution method can be derived without the assumption of statistical
independence. Moreover, we compare the convolution method with the optimal
ranking statistic log-likelihood ratio, and show that their data complexities have
the same order of magnitude in practice. On the other hand, we show that the time
complexity of the convolution method is smaller than for the other two methods.

Keywords: Matsui’s Algorithm 1, linear cryptanalysis, multidimensional crypt-
analysis, method of Biryukov, convolution method.

1 Introduction

Linear cryptanalysis of block ciphers makes use of probabilistic relations between the
plaintext and ciphertext data and the secret key. Such a relation is called a linear approx-
imation of the block cipher. Given a sufficient amount of data derived from the cipher,
Matsui’s Algorithm 1 [1] can be used in recovering one bit of information about the
secret key.

First, Kaliski and Robshaw [2] showed that by using multiple linear approximations,
the data complexity can be reduced and later, Biryukov, et al., [3] that multiple bits of
information about the secret key can be obtained. However, these methods rely on the
assumption that the linear approximations used in the attack are statistically indepen-
dent. Murphy noted that this is not true in general [4]. Hermelin, et al., investigated
this problem in practice using a reduced round Serpent and showed that strong linear
approximations are not usually statistically independent [5].

It was observed already in [3] that including more strong linear approximations seemed
only to improve the results even if the used approximations were neither linearly nor sta-
tistically independent.The practical experiments performed in [5] also showed that when
using multiple linear approximations the larger the number of strong approximations was
in the method of Biryukov, et al., the closer the observed data complexity became to the
data complexities of the methods based on χ2 and the Kullback-Leibler distance [5].

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 318–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dependent Linear Approximations 319

These observations suggest that the assumption about statistical independence of
the linear approximations could and should be relaxed when applying in practice the
method presented Biryukov, et al., which we will call the Biryukov method, for brevity.
In this paper we give theoretical justification that this is really the case. For this purpose,
we investigate the Biryukov method in the case, where the set of linear approximations
is the full linear span of the given set of linear approximations. Completed in this man-
ner the method can be shown to be equivalent to a new method, which we will call
the convolution method. The convolution method is interesting, first because it does
not rely on the assumption about statistical independence. Secondly, it has the same
time complexity as the Biryukov method would have if only the linearly independent
approximations are used. Thirdly, the data complexity of the convolution method is at
most the same as the data complexity of the Biryukov method.

Previously, the log-likelihood ratio (LLR) was used in [6] for realising another Algo-
rithm 1 type linear attack. In this work we also compare the convolution method and the
LLR-method in theory by modelling the problem of finding the correct key information
bit as a multiple hypothesis testing problem. While the LLR is the optimal solution with
the smallest data complexity, the data complexity of the convolution method is of the
same order of magnitude. The key ranking problem in the Algorithm 1 type attacks is
also investigated and the existing approaches are compared.

The structure of this paper is as follows: In Sect. 2, some basic notation is given.
The linear approximation of a block cipher and the basic Biryukov method is studied in
Sect. 3. Section 3.3 studies the completed Biryukov method and presents the convolu-
tion method. Statistical analysis of the convolution method is done in Sect. 5. It is shown
that the convolution method or the completed Biryukov method do not require the as-
sumption about statistical independence. Section 6 studies the data, time and memory
complexities for convolution method, the completed Biryukov method Biryukov and
LLR-method.

2 Probability Distributions and Boolean Functions

The space of n-dimensional binary vectors is denoted by Zn
2 . The sum modulo 2 is

denoted by ⊕. The inner product for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Zn
2 is

defined as a·b = a1b1⊕· · ·⊕anbn. Then the vector a is called the (linear) mask of b. The
Hamming weight wH of a binary vector a ∈ Zn

2 is wH(a) = #{i = 1, . . . , n : ai = 1},
the number of non-zero components in a.

A function f : Zn
2 �→ Z2 is called a Boolean function. A linear Boolean function

is a mapping x �→ u · x. A function f : Zn
2 �→ Zm

2 with f = (f1, . . . , fm), where
fi are Boolean functions, is called a vector Boolean function of dimension m. A linear
Boolean function from Zn

2 to Zm
2 is represented by an m × n binary matrix U . The m

rows of U are denoted by u1, . . . , um, where each ui is a linear mask.
The correlation between a Boolean function f : Zn

2 �→ Z2 and zero is

c(f) = c(f, 0) = 2−n (#{x ∈ Z
n
2 : f(x) = 0} −#{x ∈ Z

n
2 : f(x) �= 0})

and it is also called the correlation of f.

320 M. Hermelin and K. Nyberg

We denote random variables X,Y, . . . by capital boldface letters, their domains by
X ,Y, . . . and their realisations x ∈ X , y ∈ Y, . . . by small letters. Let X be a random
variable taking on values in X = {0, 1, . . . ,M}. The discrete probability distribution
(p.d.) of X is vector a p = (p0, . . . , pM) if Pr(X = η) = pη, for all η ∈ X . Then we
denote X ∼ p. We denote the uniform p.d. by θ.

Let f : Z
n
2 �→ Z

m
2 and X ∼ θ, where X takes on values in Z

n
2 . If Y = f(X),

then the p.d. of Y is called the p.d. of f and we say that the random variable Y is
associated with f . Let f1, . . . , fm : Zn

2 �→ Zm
2 be Boolean functions and for each fi the

associated random variable is Yi. Then we say that the Boolean functions f1, . . . , fm,
are statistically independent (s.i.), if the random variables Y1, . . .Ym, are s.i.

3 Multidimensional Matsui’s Algorithm 1

3.1 Linear Approximation of a Block Cipher

Let f be an encryption function of a block cipher with block size n. We denote by x the
plaintext, by K the expanded key, that is, a vector consisting of all (fixed) round key
bits and by y = f(x,K) the ciphertext. Then an m-dimensional linear approximation
of the block cipher is a vector Boolean function

Z
n
2 × Z

n
2 → Z

m
2 , (x, y) �→ Ux⊕Wy ⊕ V K, (1)

where U and W are m× n binary matrices and the modulo 2 addition ⊕ is calculated
component-wise for the vectors. The matrix V has also m rows and it divides the ex-
panded keys, and therefore also the keys, to 2m equivalence classes z = V K ∈ Zm

2 .
The task is to find the right inner key class, denoted by z0.

The most complex task in linear cryptanalysis is to determine the p.d. p of the
Boolean function (1). A method for determining an approximation p given the biases of
2m − 1 one-dimensional linear approximations related to (1) was presented in [5]. We
will henceforth assume that a good approximation of the p.d. p of (1) is available.

We make the usual assumption that the plaintexts x1, . . . , xN , are the realised values
of N independent and identically distributed (i.i.d.) random variables, each following
the uniform distribution. Then for all t = 1, . . . , N, the observed values Uxt ⊕Wyt ⊕
z, z ∈ Zm

2 , are realisations of i.i.d. random variables following p. Hence, for each
z ∈ Zm

2 , the values Uxt ⊕ Wyt, t = 1, . . . , N, are the realisations of i.i.d. random
variables following pz, a fixed permutation of p determined by z. Then all the p.d.’s
pz, z ∈ Zm

2 , are each other’s permutations, and in particular,

pz
η⊕a = pz⊕a

η , for all z, η, a ∈ Z
m
2 . (2)

The goal of Alg. 1. is to determine z0 using the empirical data of N plaintext-ciphertext
pairs (xt, yt), t = 1, . . . , N. For each key z ∈ Zm

2 we give a mark defined by F (z) =
T ((x1, y1), . . . , (xN , yN); z), where T is a suitable ranking statistics with data as the
variable [7] [8]. The key z is a parameter of T . Given the data, the keys are ordered
in increasing or decreasing order according to their marks F (z). The key z′ with the
highest mark is chosen to be the right key candidate. The error probability Pr(z′ �= z0)
should decrease if the amount of data N is increased. The best statistics gives the small-
est error for a given N . The ranking statistic proposed by Biryukov, et al., is described
in the next section.

Dependent Linear Approximations 321

3.2 Method of Biryukov, et al.

The basic version of the Biryukov method uses m linearly independent approximations
ui · x⊕wi · y⊕ vi ·K, i = 1, . . . ,m, where the ith approximation has a non-negligible
correlation ci. Biryukov, et al., assumed that the approximations are s.i., that is, if Xi is
a binary random variable associated with the ith approximation ui ·x⊕wi · y⊕ z, then
the random variables X1, . . . ,Xm, are s.i.

For each i = 1, . . . ,m, let ρi denote the empirical correlation of the ith approxima-
tion calculated using the data (xt, yt), t = 1, . . . , N as follows:

ρi = 2N−1{t = 1, . . . , N : ui · xt ⊕ wi · yt = 0} − 1.

Denote z = (z1, . . . , zm) such that zi is the ith bit of the key z. Denote the the-
oretical and empirical correlation vectors by cz = ((−1)z1

c1, . . . , (−1)zm

cm) and
ρ = (ρ1, . . . , ρm), respectively. The mark for each z ∈ Zm

2 is given by the
2 dis-
tance between the two correlation vectors:

b(z) = ||cz − ρ||22 .

The key z′ minimising b(z) is chosen to be the right key.
Later Murphy noted that the assumption about statistical independence of the linear

approximations does not hold in general [4]. In particular, linearly dependent approx-
imations are also statistically dependent. Murphy also suggested to use the traditional
measure of covariance of two linear approximations in verifying the assumption about
linear independence. This method has been subsequently used by other researchers, for
example in [9]. The most natural way is to use the converse of the Piling Up lemma [1],
which we give in the Appendix 7.

Biryukov, et al., proposed a heuristic enhancement to their method [3]. They added
approximations that were linearly dependent of the m original approximations. Ulti-
mately, they could use all 2m − 1 one-dimensional approximations in the span of the
original approximations. We call this method the full Biryukov method and we will
study it in the next section.

3.3 The Full Biryukov Method

In this method, the empirical correlation ρ(a) for each a ∈ Zm
2 is calculated using the

data (xt, yt), t = 1, . . .N as follows:

ρ(a) = 2N−1{t = 1, . . . , N : Uxt ⊕Wyt⊕ = 0} − 1

The ηth component of the theoretical correlation vector cz is now (−1)η·zc(η) and the
vector of empirical correlations is ρ = (ρ(0), . . . , ρ(2m − 1)). Similarly to the basic
version, the mark is given by

B(z) = ||cz − ρ||22 =
∑

a∈Zm
2

((−1)a·zc(a)− ρ(a))2

and the key z′ that minimises B(z) is chosen to be the right key.

322 M. Hermelin and K. Nyberg

Next we analyse this full method. Our analysis is based on the observation that there
exists another statistic which is equivalent to the B(z) statistic, in the sense that both
will produce exactly the same key ranking. Moreover, this equivalent statistic gives a
more efficient way of ranking the candidate keys, and in particular, to determine the
most likely key candidate.

4 Convolution Method

We now show how to make the full Biryukov method more efficient in practice. We
obtain the empirical distribution q = (q0, . . . , q2m−1) of the multidimensional approx-
imation Ux⊕Wy ⊕ V K by computing

qη = N−1#{t = 1, . . . , N : Uxt ⊕Wyt = η}, for all η ∈ Z
m
2 . (3)

The mark B(z) of the full Biryukov method can also be written as

B(z) = −2
∑

a∈Zm
2

(−1)a·zc(a)ρ(a) +
∑

a∈Zm
2

(ρ(a)2 + c(a)2),

where the latter sum does not depend on z. On the other hand, by equation (3) in [10],
we have

c(a) =
∑

η∈Zm
2

(−1)a·ηpη and ρ(a) =
∑

η∈Zm
2

(−1)a·ηqη.

Using the previous formulas for correlations we have∑
a∈Zm

2

(−1)a·zc(a)ρ(a) = 2m
∑

η∈Zm
2

qηpη⊕z . (4)

But the sum is just the zth component of the convolution q ∗ p of the p.d.’s p and q.
Hence, finding the minimum of B(z) is equivalent to finding the maximum of the zth
component of the convolution of q and p, that is, z is the mode of the p.d. q ∗p. We now
propose the following mark

G(z) = (p ∗ q)z, (5)

and the key z′ that maximises G(z) is chosen to be the right key. We call this new
method based on G(z) the convolution method. We have the following result.

Theorem 1. The key z′ minimises B(z) if and only if it maximises G(z). Hence, the
full Biryukov method and the convolution method are equivalent.

Both methods are also equivalent to the maximum likelihood decoding. The problem
is to decode the code where the channel has error probability distribution p and the
original message is z ∈ Zm

2 . The message is sent N times over the channel with noise
Uxt⊕Wyt ∼ pz, at each time t = 1, . . . , N . The receiver obtains sequence z⊕Uxt⊕
Wyt, t = 1, . . . , N, with observed empirical p.d. q that should approximate p. Then
q ∗ pz gives an empirical p.d. for z = (Uxt ⊕Wyt) ⊕ (Uxt ⊕Wyt ⊕ z) and the key
candidate z is given as the mode of the p.d. q ∗ pz .

Dependent Linear Approximations 323

While the two methods have the same data complexities, the convolution method has
smaller time complexity. The basic and full Biryukov methods have time complexities
m2m and 22m, respectively. This is because we have to compute the rank b(z) or B(z),
respectively, for each z ∈ Zm

2 . In the convolution method we do not have to consider
each key or p.d. pz separately. It suffices to compute only one convolution p ∗ q and de-
termine its mode. The convolution is computed using FFT with time complexity m2m.
Hence, with the same data the convolution method outputs the same key class as the
full Biryukov method, but the time complexity for the convolution method is the same
as for the basic Biryukov method. In [6] Hermelin, et al., studied the optimal method
based on the LLR-statistic. We prove in the next section that the data complexities of
the convolution method and the LLR-method are approximately equal.

More accurate descriptions for the algorithms for the different methods are given in
Section 6.2. In the next section, we study the statistical properties of the convolution
method.

5 Statistical Analysis

Finding the right key z0 is actually a multiple hypothesis testing problem. Section 5.2
studies the problem and how to solve it. The next section gives some necessary theory
about discrete random variables and multinomial probability distributions needed in
multiple hypothesis testing problems.

5.1 Multinomial Distribution

Let X1, . . . ,XN , be i.i.d. random variables drawn from space X = {0, 1, . . . ,M}
by a discrete p.d. s = (s0, . . . , sM), where M is some positive integer. Let Q =
(Q0, . . . ,QM) be a vector of random variables where for each η ∈ X ,

Qη = N−1#{i = 1, . . . , N : Xi = η}. (6)

Hence, Q is a vector of relative frequencies of the elements of the sample space X .
The sample space Q of Q consists of vectors q = (q0, . . . , qM), where q0, . . . , qM ∈
N−1{0, 1, . . . , N} and q0 + · · ·+ qM = 1. The random vector Q follows the multino-
mial distribution Multi(N, s), with probabilities

Pr(Q = q) =
N !∏M

η=0(qηN)!

M∏
η=0

sNqη
η , for all q ∈ Q. (7)

Since for each z ∈ Zm
2 , the observed values Uxt ⊕Wyt, t = 1, . . . , N are realisa-

tions of i.i.d. random variables following pz, the empirical p.d. q calculated using (3)
is a realisation of a random vector Q that has multinomial distribution Multi(N, pz).
Using (2), we have for all z ∈ Zm

2 ,

(p ∗Q)z =
∑

η∈Zm
2

pη⊕zQη =
∑

η∈Zm
2

pz
ηQη. (8)

324 M. Hermelin and K. Nyberg

Hence, maximising G(z) in (5) is equivalent to finding z′ ∈ Zm
2 that maximises∑

η∈Zm
2

pz
ηqη. (9)

By (8) the convolution method has the same statistical behaviour as the method us-
ing (9). The next lemma gives the distribution of (8).

Lemma 1. Let λ0, . . . , λM be any real numbers and Q = (Q0, . . . ,QM) be a multi-
nomially distributed random vector with distribution Multi(N, s). Then the linear com-
bination N

∑M
η=0 ληQη is asymptotically normal with mean and variance given by

μ = N

M∑
η=0

ληsη σ2 = N

M∑
η=0

λ2
ηsη − μ2.

The proof is given in Appendix 7. Since the lemma does not require the assump-
tion about statistical independence, the assumption is also not needed when using full
Biryukov or convolution method.

The concept of capacity was introduced in [5] and it was used in simplifying the
formulas of the data complexities:

Definition 1. The capacity between two p.d.’s p = (p0, . . . , pM) and q = (q0,
. . . , qM) is defined by

C(p, q) =
M∑

η=0

(pη − qη)2q−1
η .

If q is the uniform distribution, we denote C(p, q) = C(p).

5.2 Multiple Hypothesis Testing Problems

Let X1, . . . ,XN , be a sequence of i.i.d. random variables drawn from sample space
X = {0, 1, . . . ,M}, where M is a positive integer, and let x1, . . . , xN , be the corre-
sponding realisations. Assume d ≥ 2 simple hypotheses, where each hypothesis Hi

states that the sample is drawn according to a p.d. pi = (pi
0, . . . , p

i
M), i = 1, . . . , d,

and pi �= pj , if i �= j. Equivalently, each hypothesis Hi states that the vector Q defined
by (6) is multinomial distributed as Multi(N, pi).

The simple d-ary hypothesis testing problem is to determine which hypothesis is
correct. Hence, one hypothesis is accepted and the others are rejected. In Bayesian
statistics, each hypothesis is given an a priori probability Pr(Hi) for all i = 1, . . . , d.
We assume that the a priori probabilities are equal.

Let q = (q0, . . . , qM) be the empirical p.d. calculated from the observed values
x1, . . . , xN , by

qη = N−1#{t = 1, . . . , N : xt = η}, for all η ∈ X .

A distinguisher is a rule that based on the observed data x1, . . . , xN , or, equivalently,
q, outputs which hypotheses is accepted:

δ(x1, . . . , xN) = δ(q) = i, if Hi is accepted, for i = 1, . . . , d

Dependent Linear Approximations 325

The distinguisher is defined using a suitable test statistic T (q; pi), where pi (or i) is
considered as the parameter and q is the variable.

Let f(i) = T (q; pi) be a function of the parameter i for given empirical data q. The
distinguisher outputs j if it gives the maximum (or minimum) of f(i), for given q. The
statistic T should be easy to compute in practice and accurate such that the total error

Pe =
d∑

i=1

Pr(Hi) Pr(δ(Q) �= i | Hi) (10)

is as small as possible. An optimal distinguisher minimising the error probability exists
for simple hypotheses testing problems.

Consider first the simple binary hypothesis testing problem with d = 2. By Neyman-
Pearson lemma in classical statistics and Chernoff’s theorem in Bayesian statistics [11],
the optimal distinguisher for distinguishing between H1 and H2, or p1 and p2 �= p1,
equivalently, is given by the log-likelihood ratio (LLR) test statistic

LLR(q; p1, p2) =
∑
η∈X

Nqη log
p1

η

p2
η

.

The distinguisher accepts H1, that is, outputs p1 (or accepts H2 and outputs p2, re-
spectively) if LLR(q; p1, p2) ≥ τ (< τ) where τ is the threshold that depends on Pe.
Obviously, using LLR is the same as finding for given q the maximum of the function

l(i) =
∑
η∈X

qη log pi
η, i = 1, 2.

If p1, p2 �= θ this is equivalent to finding the maximum of

L(i) = l(i) + log(M + 1) = LLR(q, pi, θ), i = 1, 2.

In Bayesian theory Chernoff’s theorem [11] states that Pe = O
(
2−ND∗(p1,p2)

)
, where

D∗(p1, p2) is the Chernoff information between p1 and p2 given by

D∗(p1, p2) = − min
0≤λ≤1

log

(
M∑

η=0

(p1
η)λ(p2

η)1−λ

)
. (11)

Assume now a d-ary hypothesis testing problem with d ≥ 3 simple hypotheses. More-
over, assume that pi �= θ for all i = 1, . . . , d. The optimal distinguisher that minimises
Pe chooses the hypothesis with the largest conditional probability Pr(Hi | Q = q),
see [12]. Equivalently, by Bayes’ theorem, the distinguisher chooses the hypothesis that
maximises Pr(Q = q | Hi).

Consider the likelihood function L(pi) = Pr(Q = q | Hi) that should reach its
maximum for the right p.d. pi, given data q. Using the formula (7) of the p.d. of the
multinomial distribution the likelihood function can be written as

L(pi) =
N !∏M

η=0(qηN)!

M∏
η=0

(pi
η)Nqη .

326 M. Hermelin and K. Nyberg

Taking logarithm and omitting the terms not depending on pi gives an equivalent test
statistics

L(i) =
∑
η∈X

qη log pi
η + log(M + 1) = N−1 LLR(q, pi, θ). (12)

Hence, LLR-statistics gives the optimal distinguisher for a multiple hypothesis testing
problem for d ≥ 3, also. The LLR measures whether the data is drawn from pi or the
uniform distribution. High values imply that the data q is closer to pi than θ. Hence, we
have a theoretical justification for the heuristic LLR-method presented in [6].

Both convolution method and the LLR have the form of a general linear method [7]
using the statistic

T (Q; z) = N
∑
η∈X

λz
ηQη,

where the coefficients λz
0, . . . , λM , depend on the parameter z. Comparing the coeffi-

cients in the formulas (9) and (12) shows that the LLR-method and convolution method
are not equivalent. Hence, the convolution method is not optimal in theory.

Consider the definition (10) of the error probability when distinguishing d ≥ 3 hy-
pothesis. Each term Pr(δ(Q) �= i | Hi) in the sum is equal to

Pr(δ(Q) �= i | Hi) =
∑

j �=i,j=1,...,d

Pr(δ(Q) = j | Hi).

But each probability Pr(δ(Q) = j | Hi) corresponds to the binary hypothesis testing
problem of distinguishing parameter i from j �= i. Hence, if for given Pe two distin-
guishers have same data complexity for the binary hypothesis testing problem, then they
are also equally efficient in the multiple hypothesis testing setting.

It remains to show that for a given error probability, if the p.d. p is nearly uniform (but
not uniform), then the data complexity of the convolution method is of the same order
of magnitude as the data complexity of the LLR-method. We study the complexities in
the next section.

6 Complexity Analysis

6.1 Data Complexity

To compare the LLR and convolution methods, we have to calculate the data complexity
N for given error probability Pe. We know by Sect. 5.2 that the LLR-method is optimal,
i.e., for given Pe it has the smallest data complexity. However, based on the tests made
in [5] and [13], we suspect that the data complexities of the convolution method and the
LLR-method are practically the same as long as the p.d.’s do not variate much from the
uniform distribution. More accurately, we assume that there exists ε, 0 < ε < 0.5 such
that each p.d. pz, z ∈ Zm

2 , satisfies the following conditions:

|pz
η − 2−m| ≤ ε2−m for all z, η ∈ Z

m
2 and

|pz1
η − pz2

η | ≤ εpz2
η for all z1 �= z2 and z1, z2, η ∈ Z

m
2 .

(13)

Dependent Linear Approximations 327

Then for all z, z1, z2 ∈ Zm
2 the capacities C(pz) = C(p) = ε2 < 1 and C(pz1 , pz2) =

ε2 < 1, if z1 �= z2. The condition (13) holds for all practical ciphers. For exam-
ple the experiments with reduced round Serpent in [8] showed that for m ≤ 12, the
condition held with the parameter value ε ≈ 1/150. In general, the value ε should
be so small that it is possible to approximate the Chernoff information D∗(pz1 , pz1)
between two distinct distributions pz1 and pz2 using their capacity: D∗(pz1 , pz2) ≈
(8 ln 2)−1C(pz1 , pz2), see Theorem 7 in [14].

As noted in the previous section, we only have to consider the distinguishing between
two keys z1 and z2 �= z1. Denote for simplicity p = pz1 and s = pz2 . If the p.d.’s
satisfy condition (13), then by definition (11), the data complexity of the LLR-method
is proportional to

N = C(p, s)−1. (14)

See also [15] for another proof. We now show that (14) holds also for the convolution
method, provided that the distributions p and s satisfy condition (13).

The cumulative distribution function of the normed, normal distribution is

Φ(x) =
∫ x

−∞

1√
2π

e−t2/2 dt .

By Lemma 1 we obtain that the probability of choosing z2 �= z1 when Hz1 is true is

Pr(δ(Q) = y | Hz1) = Pr(T (Q; y) > T (Q; z) | Hz1) = Φ
(√

N
μ

σ

)
,

where the expected value μ and variance σ2 are given by

μ =
∑

η∈Zm
2

(pη − sη)pη σ2 =
∑

η∈Zm
2

(pη − sη)2pη − μ2.

The mean μ can be approximated by

μ ≈ 2−m
∑

η∈Zm
2

(pη−sη)
pη

sη
= 2−m

∑
η∈Zm

2

(
(pη − sη)

pη

sη
− (pη − sη)

)
= 2−mC(p, s).

Moreover, ∑
η∈Zm

2

(pη − sη)2pη =
∑

η∈Zm
2

(pη − sη)2

sη
pηsη ≈ 2−2mC(p, s). (15)

As C(p, s) < 1, the dominating term of σ2 is given by (15). Hence, σ2 ≈ 2−2mC(p, s)
and the data complexity is proportional to

N =
2−2mC(p, s)
2−2mC(p, s)2

= C(p, s)−1.

As the number of hypotheses grows, the data complexityN is increased in both cases [5].
For d = 2m it is proportional to m/Cmin(p), where Cmin(p) = minz1 �=z2 C(pz1 , pz2).

328 M. Hermelin and K. Nyberg

In [3] efficiency of key ranking was also discussed and the measure gain to quan-
tify success in key ranking as a function of data complexity was introduced. Later,
in [6] it was proposed to use the measure advantage. While Biryukov, et al., need the
assumption about statistical independence of the linear approximations in all their the-
oretical derivations, Hermelin, et al., can do without it, but instead, must make another
unrealistic assumption that the ranking statistics for each key candidate are statistically
independent. This assumption can be fulfilled if, for each key candidate value, new
fresh data is generated to compute the ranking statistic, which will result in overesti-
mating the data complexity. Hence, it is not known exactly in the general case, what
the success probabilities of key ranking are for Algorithm 1. Nevertheless, the above
analysis applies to key ranking also, and we can conclude that the LLR method and the
convolution method have practically the same advantage.

6.2 Time and Memory Complexities

In [8] the Alg. 2 was divided to two phases: the on-line phase and the off-line phase. We
follow the division in this paper. The on-line phase is independent of the statistics used
in the attack and its sole purpose is to obtain the empirical p.d. q from the N plaintext-
ciphertext pairs. The time complexity is Nm and memory complexity is 2m. We now
assume that given data N , we have obtained the empirical p.d. q.

Figures 1, 2 and 3 depict the off-line phase for the full Biryukov method, LLR-
method and convolution method, respectively.

Input: empirical correlation vector ρ = (ρ(0), . . . , ρ(2m − 1)) and theoretical
correlations c(0), . . . , c(2m − 1), of the linear approximation (1) ;

Output: the best key candidate;
for z = 0, . . . , 2m − 1 do

compute B(z) =
∑

a∈Zm
2

((−1)a·zc(a)− ρ(a))2;

end
find z′ that maximises B(z);
output z′;

Fig. 1. Off-line phase of Alg. 1 using full Biryukov method

Input: empirical p.d. q and theoretical p.d. p of the linear approximation (1) ;
Output: the best key candidate;
for z = 0, . . . , 2m − 1 do

compute pz, a permutation of p;
compute L(z) = LLR(q, pz, θ);

end
find z′ that maximises L(z);
output z′;

Fig. 2. Off-line phase of Alg. 1 using LLR-method

Dependent Linear Approximations 329

Input: empirical p.d. q and theoretical p.d. p of the linear approximation (1) ;
Output: the best key candidate;
compute p ∗ q using FFT;
find mode z′ of p ∗ q;
output z′;

Fig. 3. Off-line phase of Alg. 1 using convolution method

For each z ∈ Zm
2 , both full Biryukov method and LLR-method take time 2m to

evaluate. Hence, the time complexity of both the full Biryukov and the LLR-method is
22m.

In the convolution method the computation of the convolution p∗q is done only once.
Using FFT, that is, left hand side of (4), it takes time m2m. Hence, the convolution
method is much faster than the LLR or the full Biryukov, while all three methods have
the same data complexities.

If all the correlations c(a), a ∈ Zm
2 , are non-negligible, then all three methods have

the same memory complexity 2m. In practice the full linear span of the linear approx-
imations contains many approximations with zero or negligible correlations. Such ap-
proximations do not contribute to the capacity and hence are discarded. This has certain
effect to the complexities of the algorithms.

Let l be the number of linear approximations used, m ≤ l ≤ 2m. Then the memory
requirement of the off-line phase of the Biryukov method will be reduced from 2m to
l and the time complexity becomes 2ml. Since the convolution is computed using the
correlations by (4), the same reduction of memory is possible also for the convolution
method if we use the correlations instead of the distribution in evaluating the statistic.

We run some experiments on the four-round Serpent, see [16] for an accurate de-
scription for the cipher. The test settings were the same as in [6]. To compare the LLR
and convolution method in practice, we measured the advantage by Selçuk [17]. In
Figure 4 we have plotted the empirical advantage as a function of the data complexity,
for m = 7. The curves are indistinguishable.

14 16 18 20 22 24 26
0

1

2

3

4

5

6

7

number of texts (logarithm base 2)

A
dv

an
ta

ge

m=7

Fig. 4. The empirical advantage as a function of data complexity using LLR and convolution
method with m = 7 for 4-round Serpent. The curves are equal.

330 M. Hermelin and K. Nyberg

2^14 2^16 2^18 2^20 2^22 2^24 2^26
0

1

2

3

4

5

6

7

8

9

10

m=7

number of texts

A
dv

an
ta

ge

Theoretical LLR (Ps=0.5)
Theoretical LLR (Ps=0.7)
Theoretical LLR (Ps=0.9)
Empirical LLR
Empirical Binomial

(a) m = 7

2^14 2^16 2^18 2^20 2^22 2^24 2^26
0

1

2

3

4

5

6

7

8

9

10

m=10

number of texts

A
dv

an
ta

ge

Theoretical LLR (Ps=0.5)
Theoretical LLR (Ps=0.7)
Theoretical LLR (Ps=0.9)
Empirical LLR
Empirical Binomial

(b) m = 10

Fig. 5. The theoretical and empirical advantage as a function of data complexity using LLR-
method for the 4-round Serpent

Figure 5 shows the empirical and theoretical advantage of the LLR-method for m =
7 and m = 10. The convolution method gives exactly the same results. The theoretical
prediction is slightly more pessimistic than the empirical results. However, they are still
consistent.

7 Conclusions

We proposed a new method, which we call the convolution method, to perform multi-
dimensional linear attacks. The convolution method is expected to give the same result
with the same data complexity as the Biryukov method in case the set of linear approx-
imations is completed to contain all approximations with significant correlations within
the linear span of the set.

In the convolution method we form the convolution between the empirical and the
theoretical p.d related to the multidimensional linear approximation of a block cipher.
The right key class is determined as the mode of the resulting p.d. The data complexities
of both LLR and the convolution method are of the same magnitude. Moreover, the
LLR-method and full Biryukov method require time 22m, where m is the dimension of
the approximation, whereas the convolution method only needs time m2m. Hence, the
convolution method is the most efficient in practice. Also, there is no need to assume
statistical independence.

In [3] the measure gain and in [6] the measure advantage was used in studying the
success of key ranking. The gain requires the assumption of statistical independence of
base approximations whereas the advantage requires that the ranking statistics corre-
sponding to different keys should be statistically independent. The latter condition can
be satisfied for Alg. 2 [8] but seems to result in an unrealistic and unnecessary increase
of the data complexity for Alg. 1. However, the efficiency of the convolution or LLR-
methods is not affected by the assumption that is needed in calculating the advantage. If

Dependent Linear Approximations 331

needed, the advantage can be determined approximately also for the Alg.1. The calcu-
lations in that case are the same as in [6] and the convolution method remains the most
efficient method in practice.

Acknowledgements

We thank Joo Yeon Cho for producing the experiments.

References

1. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

2. Burton, S., Kaliski, J., Robshaw, M.J.B.: Linear Cryptanalysis Using Multiple Approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidel-
berg (1994)

3. Biryukov, A., Cannière, C.D., Quisquater, M.: On Multiple Linear Approximations. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)

4. Murphy, S.: The Independence of Linear Approximations in Symmetric Cryptology. IEEE
Transactions on Information Theory 52(12), 5510–5518 (2006)

5. Hermelin, M., Nyberg, K., Cho, J.Y.: Multidimensional Linear Cryptanalysis of Reduced
Round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp.
203–215. Springer, Heidelberg (2008)

6. Hermelin, M., Cho, J.Y., Nyberg, K.: Statistical Tests for Key Recovery Using Multidimen-
sional Extension of Matsui’s Algorithm 1. In: Joux, A. (ed.) EUROCRYPT 2009 - POSTER
SESSION. LNCS, vol. 5479. Springer, Heidelberg (2009)

7. Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: CCS 1996: Proceedings
of the 3rd ACM conference on Computer and communications security, pp. 139–147. ACM,
New York (1996)

8. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsui’s Algorithm 2.
In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS, vol. 5665, pp. 209–227. Springer,
Heidelberg (2009)

9. Gérard, B., Tillich, J.: On linear cryptanalysis with many linear approximations (2009)
10. Hermelin, M., Nyberg, K.: Multidimensional Linear Distinguishing Attacks and Boolean

Functions. In: Fourth International Workshop on Boolean Functions: Cryptography and Ap-
plications (2008)

11. Cover, T.M., Thomas, J.A.: 11. Wiley Series in Telecommunications and Signal Processing.
In: Elements of Information Theory, 2nd edn. Wiley Interscience, Hoboken (2006)

12. McDonough, R.N., Whalen, A.D.: 5. In: Detection of Signals in Noise, 2nd edn. Academic
Press, London (1995)

13. Collard, B., Standaert, F.X., Quisquater, J.J.: Experiments on the Multiple Linear Crypt-
analysis of Reduced Round Serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
382–397. Springer, Heidelberg (2008)

14. Baignères, T., Vaudenay, S.: The Complexity of Distinguishing Distributions (Invited Talk).
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer, Heidelberg
(2008)

15. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis?
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg
(2004)

332 M. Hermelin and K. Nyberg

16. Biham, E., Anderson, R., Knudsen, L.: Serpent: A New Block Cipher Proposal. In: Vaudenay,
S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998)

17. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. Journal of
Cryptology 21(1), 131–147 (2008)

18. Xiao, G.Z., Massey, J.L.: A Spectral Characterization of Correlation-Immune Combining
Functions. IEEE Transactions on Information Theory 34(3), 569–571 (1988)

19. Rohatgi, V.K.: 6.7. Wiley Series in Probability and Mathematical Statistics. In: Statistical
Inference, 1st edn. John Wiley & Sons, New York (1984)

Appendix

A Proof of Theorem 2

The Piling Up lemma [1] that has traditionally been used in calculating correlations of
linear combinations of statistically independent linear approximations has a converse.
This converse of the Piling Up lemma offers a natural criterion for verifying statistical
independence of linear approximations. Given a set of linear approximations it is not
sufficient to verify that all linear approximations in the set are pairwise statistically
independent. We must also verify that the correlations (or imbalances [3] [4])

c(a) = c(a · (Ux⊕Wy ⊕ V K)), a ∈ Z
m
2 .

of all linear combinations of the linear approximations must be of certain small magni-
tude as given by the following theorem.

Theorem 2. Let m ≥ 2 be an integer. The binary random variables X1,X2,
. . . ,Xm, with correlations ci = c(Xi), i = 1, . . . ,m are statistically independent,
if and only if for all index sets I ⊂ {1, 2, . . . ,m},

c(
⊕
i∈I

Xi) =
∏
i∈I

ci. (16)

The only if part follows from the Piling Up lemma. The proof of the if part, that is, the
converse of the Piling Up lemma, is given below, using the Xiao-Massey lemma [18]:

Lemma 2 (Xiao-Massey lemma). The discrete random variable Z is independent of
the m independent binary random variables X1, . . . ,Xm if and only if Z is independent
of the sum b1X1 ⊕ · · · ⊕ bmXm, for every choice of b1, . . . , bm ∈ {0, 1}, and not all
coefficient bi is zero.

Proof (Converse of the Piling Up lemma). We assume that the random variables
X1, . . . ,Xm satisfy condition (16). We do the proof with induction on m. Let m = 2.
We assume c(X1 ⊕X2) = c1c2 and we have to prove that for all pairs t = (t1, t2) ∈
{0, 1} × {0, 1}, the probability Pr(X1 = t1,X2 = t2) = Pr(X1 = t1) Pr(X2 = t2).

Dependent Linear Approximations 333

Denote X = (X1,X2). Using the definition of the correlation we have

Pr(X1 = t1) Pr(X2 = t2)

= (1/2 + (−1)t1c1)(1/2 + (−1)t2c2)

= 1/4 + (−1)(0,1)·tc1 + (−1)(1,0)·tc2 + (−1)(1,1)·tc1c2

= c((0, 0) ·X) + (−1)(0,1)·tc((1, 0) ·X)+(−1)(1,0)·tc((1, 0) ·X)+(−1)(1,1)·tc((1, 1) ·X)

=
∑
a∈Z2

2

(−1)a·tc(a ·X).

But by Lemma 2.1 in [10], the last sum is equal to Pr(X = t) = Pr(X1 = t1,X2 =
t2).

Assume now that the claim holds for 2, . . . ,m − 1 binary random variables and
let X1, . . . ,Xm, satisfy condition (16). By the induction assumption random variables
X2, . . . ,Xm, are s.i. Hence, it suffices to show that X1 is s.i. of the m − 1 random
variables X2, . . . ,Xm.

Choose any binary coefficients b2, . . . , bm ∈ {0, 1}, not all zero, and let I = {i =
2, . . . ,m : bi = 1} be the index set of non-zero coefficients bi. Denote ZI = b2X2 ⊕
· · · ⊕ bmXm. By the Xiao-Massey lemma, we must show that the random variable
X1 is s.i. of ZI for all index sets I ⊂ {2, 3, . . . ,m}. By the induction assumption
and Xiao-Massey lemma, the claim holds already for all I �= {2, 3, . . . ,m} and we
only have to consider the set J = {2, 3, . . . ,m}. By the condition (16), the correlation
c(ZJ) =

∏m
i=2 ci and c(X1 ⊕ · · · ⊕Xm) =

∏m
i=1 ci. Hence, the random variables X1

and ZJ satisfy

c(X1 ⊕ ZJ) =
m∏

i=1

ci = c1c(ZJ).

But since the theorem holds for m = 2, the random variables X1 and ZJ must be s.i.
��

B Proof of Lemma 1

Proof. The expected values, variances and covariances of elements of Q are [19]

E(Qη) = sη Var(Qη) = sη(1− sη) Cov(Qη,Qν) = −sηsν , (17)

for all η, ν = 0, 1, . . . ,M and ν �= η. The normality follows from the law of large
numbers. The expected value follows from linearity and (17). The variance is obtained
by

σ2 =
M∑

η=0

Var(ληQη) +
M∑

η,ν=0,ν �=η

Cov(ληQη, λνQν)

=
∑
η=0

λ2
ηsη(1− sη)−

∑
η,ν=0,ν �=η

ληλνsηsν =
M∑

η=0

λ2
ηsη − μ2.

��

Practical Key Recovery Attack
against Secret-IV Edon-R

Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

Gaetan.Leurent@ens.fr

Abstract. The SHA-3 competition has been organized by NIST to se-
lect a new hashing standard. Edon-R was one of the fastest candidates
in the first round of the competition. In this paper we study the security
of Edon-R, and we show that using Edon-R as a MAC with the secret-
IV or secret-prefix construction is unsafe. We present a practical attack
in the case of Edon-R256, which requires 32 queries, 230 computations,
negligible memory, and a precomputation of 252. The main part of our
attack can also be adapted to the tweaked Edon-R in the same settings:
it does not yield a key-recovery attack, but it allows a selective forgery
attack.

This does not directly contradict the security claims of Edon-R or
the NIST requirements for SHA-3, since the recommended mode to build
a MAC is HMAC. However, we believe that it shows a major weakness
in the design.

Keywords: Hash functions, SHA-3, Edon-R, MAC, secret IV, secret
prefix, key recovery.

1 Introduction

In 2005, a team of researchers led by X. Wang produced breakthrough attacks
against many widely used hash functions, including MD5 [12] and SHA-1 [11].
This has led NIST to call for a new hash function design, and to launch the
SHA-3 competition [7]. This competition has focused the attention of many
cryptographers, and NIST received 64 submissions. 51 designs were accepted to
the first round.

Edon-Rwas one of the fastest candidates in the first round of the competition.
It has received some attention from the cryptographic community, resulting in
various attacks on the compression function. There is also a preimage attack
on the full hash function, but it requires of huge amount of memory making it
debatable.

In this paper we show a new attack on Edon-R, when used in the secret-IV
or secret-prefix MAC construction. This mode of operation is not claimed to be
secure by the designers, but our attack has no memory requirement, and is even
practical attack, while previous attacks are largely theoretical. Our approach

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 334–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Practical Key Recovery Attack against Secret-IV Edon-R 335

is similar to the one followed by Wang et al. who studied a similar MAC used
with SHA-1 [10]: we use a non-standard MAC to show weaknesses of the hash
function. Note that attacks on hash-based MACs are usually harder to build
than attacks on the hash function itself because part of the state is unknown.

Our attack was devised during the first round of the competition and it has
been made public before the selection of the second round candidates. Since then,
NIST selected 14 candidates for the second round of the competition, based on
the cryptanalytic results available at that time. Edon-R was not selected for
the second round.

1.1 MAC Constructions

A Message Authentication Code (MAC) is a symmetric signature algorithm.
The sender and the receiver share a secret key k, and each message M is sent
together with a short tag MACk(M). The receiver recomputes the tag on his
end, and checks whether the tag is correct. It should be hard for an adversary
to forge a message with a valid tag without knowing the secret key k. In this
paper we consider chosen message attacks, where the adversary has access to a
MAC oracle and can ask for the MAC of any message of his choice. He must
then produce a forge for a new message. We consider the following attacks, from
the strongest to the weakest:

Key recovery: After some interactions with the MAC oracle, the adversary
outputs the key k.

Universal forgery: After some interactions with the MAC oracle, the adver-
sary obtains enough information to compute the MAC of any message. This
is usually achieved by recovering an equivalent key which allow to compute
MACs as efficiently as the original key.

Selective forgery: The adversary is given a challenge message M∗ (possibly
in some prescribed set), and after some interaction with the MAC oracle, he
has to produce the MAC of M∗. Of course, the adversary is not allowed to
query the MAC of M∗.

Exitential forgery: After some interactions with the MAC oracle, the adver-
sary produce a forge of a new message of his choice.

We expect a good MAC algorithm to be secure against all these attacks, even
existential forgery. Complexity of generic attack against iterated MAC algorithm
are given in Table 1.

In this paper, we study MAC algorithms based on Edon-R. We consider two
MAC constructions, the secret-IV construction and the secret-prefix construction:

IV-MACk(M) = Edon-Rk(M)
SP-MACk(M) = Edon-R(k‖M)

The secret-IV method uses the key as the initial value in the iterative construc-
tion of Edon-R, while the secret-prefix method prepends the key to the message
to be authenticated. Both constructions are quite similar, and the basic idea is

336 G. Leurent

Table 1. Complexity of generic attacks against iterated MAC. The key-length n is
assumed to be equal to the tag length, while m is the size of the inner state.

Attack Complexity

Key recovery 2n

Universal forgery 2n

Selective forgery 2n

Existential forgery min(2m/2, 2n) [9]

to randomize the state of the hash function with the key before mixing the
message into the state. The secret-IV construction is easier to analyse, but the
secret prefix construction is more practical because it does not require a modifi-
cation of the hash function; it can be used with any implementation of Edon-R.
For efficiency purpose, it is advisable to pad the key to a full block when using
SP-MAC.

This kind of construction is used in some old protocols, like RFC2069 [2]
(RFC2069 uses SP-MAC without padding the key to a full block). It is well
known that those constructions are weak, because length extension attacks can
be used for forgeries, but the key is not expected to leak. Moreover, Edon-R is
a wide-pipe design, so the length extension issue does not apply. In fact, if the
hash function is wide-pipe and the compression function is modeled as a random
oracle, those constructions are provably secure [1]. Therefore, breaking Edon-R
in this setting is expected be as hard a the generic complexities given in Table 1.

1.2 Road Map

Section 2 will describe Edon-R and discuss previous analysis. In Section 3, we
show how to use a pair a related queries to gather information on both the input
and the output of the compression function. The idea is similar to the length
extension attack against Merkle-Damgård hash functions. This reduces the key-
recovery problem to solving a small equation. In Section 4, we show how to solve
this equation. We use simple linear algebra techniques to identify truncated
differentials in the main operations of Edon-R, and this leads to an attack with
complexity 25n/8 using only two queries to the MAC oracle. In Section 5 we use
more queries to the MAC oracle to build more equations, and solve the equations
using a guess-and-determine technique. This gives a very efficient attack, which
is even practical in the case of Edon-R224/256. Finally, in Appendix 6, we show
how to extend these results to attack against the secret-prefix construction, and
attacks against MACs based on the tweaked version of Edon-R.

2 Description of Edon-R
Edon-R is a wide-pipe iterative design, based on a compression function R,
with a final truncation T . The Edon-R family is based on two main designs:

Practical Key Recovery Attack against Secret-IV Edon-R 337

Edon-R256 uses 32-bits words, while Edon-R512 uses 64-bit words. Let w
denote the size of the words, and n denote the output size (n = 8w). We give a
description of Edon-R where the variables are elements of (Fw

2)8, i.e., 8-tuples
of w-bit words. The compression function is based on a quasi-group operation
∗, which take two inputs X and Y in (Fw

2)8 and compute one output in (Fw
2)8.

The quasi-group operation is just the sum of two permutations, and we will use
a permutation based description of Edon-R in this paper:

X ∗ Y = μ(X) + ν(Y)
= Q0(R0(P0(X))) + Q1(R1(P1(Y)))

where
– + is a component-wise addition modulo 2w (w is the word size);
– μ and ν are the permutations defining ∗; we rewrite then with Qi, Ri, Pi;
– P0 and P1 are linear over Z8

2w , each output word is the sum of five inputs;
– R0 and R1 are component-wise rotations of w-bit words;
– Q0 and Q1 are linear over (Fw

2)8, each output word is the xor of three inputs;
– We identify Z8

2w and (Fw
2)8 with the natural mapping between them;

– We also define μ̄(X [0], X [1], ...X [7]) = μ(X [7], X [6], ...X [0]).

Note that the quasi-group operation is very easy to invert: given X and X ∗ Y ,
we can compute Y as ν−1(X ∗ Y − μ(X)).

The compression function takes as input 16 message (Mi,0 and Mi,1) words
and 16 words of chaining value (Hi,0 and Hi,1) and produces 16 words of new
chaining value (Hi+1,0 and Hi+1,1). The full compression function is described
in Figure 1. For more details, see [4].

2.1 Previous Analysis of Edon-R
Previous work [5,6] has shown various weaknesses of the compression function:
– given Mi,0, Mi,1, Hi+1,0 and Hi+1,1, it is easy to compute Hi,0 and Hi,1;
– given Hi,0, Hi,1, Mi,0, and Hi+1,0, it is easy to compute Mi,1, and Hi+1,1;
– given Hi+1,1, Hi,0 and Mi,0, we can find a value of Hi,1, Hi+1,0, and Mi,1

with 2n/2 operations.

These results can be used to mount various attacks on the hash function:
– We can apply generic attacks against narrow-pipe hash functions: multi-

collisions, second preimages on long message, fixed points, ...
– There is a preimage attack with complexity 22n/3 and 22n/3 memory.

The preimage attack requires less computations than a generic attack, but due
to the large memory requirements, the machine to carry out this attack might be
more expensive than a machine to perform a parallel brute force, so it is unclear
whether this should be considered as an attack.

However, these results show that the compression function of Edon-R is quite
weak, and the security of Edon-R cannot be based on a security proof of the
Merkle-Damgård mode.

More recently, a work by Novotney and Ferguson [8] showed detectable biases
in the output of the compression function.

338 G. Leurent

Mi,0 Mi,1

ν

�

X
(1)
0

ν

μ̄

�

ν X
(1)
1

μ

�Hi,1

X
(2)
0

ν

μ

�

μ X
(2)
1

μ

�Hi,0

X
(3)
0

μ

ν

�

ν X
(3)
1

ν

�

Hi+1,0 ν

μ̄

�

Hi+1,0 Hi+1,1

μ

Fig. 1. Edon-R compression function

2.2 Our Results

We present a new attack on the compression which allow to recover the full
chaining value when half of the input chaining value and half of the output
chaining value are known:

– given Mi,0, Mi,1, Hi,1 and Hi+1,1, we can compute Hi,0 and Hi+1,0.

Practical Key Recovery Attack against Secret-IV Edon-R 339

In this paper we will describe two attacks: one that requires only two queries and
a lot of computations, and a second with more queries and a practical complexity:

Queries Time Memory Precomputation

Edon-R224/256 2 2160 - -
Edon-R224/256 32 230 - 252

Edon-R384/512 2 2320 - -
Edon-R384/512 32 232 - 2100

The attack on the compression function can be used to mount the following
attacks on MAC constructions, with the same complexities as the attack on the
compression function:

– A key-recovery attack against secret-IV Edon-R;
– A universal forgery attack against secret-prefix Edon-R when the key is

padded to full block;
– A selective forgery attack against secret-prefix Edon-R if the key is not

padded to a full block (we can attack any message such that k‖M takes
more than one block after the padding);

– A selective forgery attack against the secret-prefix and secret-IV construc-
tions when used with the tweaked Edon-R (we can attack any message that
include a valid padding).

Our attacks only needs a few queries and negligible memory. They can easily be
parallelized. Those attacks are the first attacks on the full Edon-R to clearly
beat parallel generic attacks.

3 IV Recovery Using Related Queries

The first step of the IV-recovery attack is to gather information about the chain-
ing values. We will make two calls to the MAC oracle, with two related messages,
such that after the padding step, the first message is a prefix of the second one.
The first message M is chosen arbitrarily such that after the padding it fits in
one block pad(M). The second message M ′ has pad(M) as its first block, and
has to fit in two blocks after the padding. This is similar to the length exten-
sion attack on narrow-pipe hash function. Applied to a wide-pipe design such as
Edon-R, this gives us some information on the input and output of the second
compression function (see Fig 2):

– M1,0 and M1,1 are known;
– H1,1 is known;
– H2,1 is known.

We will show how to recover H1,0. Then H0,0 and H0,1 can be recovered from
H1,0, H1,1 and M0,0,M0,1 because the compression function of Edon-R is easy
to invert [5]. Since there are 8 unknown words in the input of the compression

340 G. Leurent

H0,1

H0,0

M0,1

M0,0

R
H1,1

H1,0 T
H1,1

H0,1

H0,0

M0,1

M0,0

R
H1,1

H1,0

M1,1

M1,0

R
H2,1

H2,0 T
H2,1

Fig. 2. The first message pad(M) = M0,0M0,1 allow to recover H1,1 while the second
message pad(M ′) = M0,0M0,1M1,0M1,1 allows to recover H2,1

function (H1,0) and we know 8 words of the output of the compression function
(H2,1), we expect one solution on average. In this setting, a preimage attack will
be able to recover the value of H1,0 and not merely a value that gives the same
output.

If we look at the description of the compression function [4], we have:

H2,1 = H2,0 ∗X(3)
1

= (M1,0 ∗X(3)
0) ∗ (X(2)

1 ∗X(3)
0)

= (μ̄(M1,0) + ν(X(3)
0)) ∗ (μ(X(2)

1) + ν(X(3)
0))

= (U + C0) ∗ (U + C1)

where U = ν(X(3)
0) is unknown, and C0 = μ̄(M1,0), C1 = μ(X(2)

1) are known
constants.

If we are able to solve the equation H = (U + C0) ∗ (U + C1) where U

is the unknown, then we can recover X
(3)
0 = ν−1(U), and this will give us

H1,0 = ν−1(X(3)
0 − μ(X(2)

0)).

4 Solving the Equation H = (U + C0) ∗ (U + C1)

The main step of the attack is to solve the equation

H = (U + C0) ∗ (U + C1)
= Q0(R0(P0(U + C0))) + Q1(R1(P1(U + C1)))

All the variables are 8-tuples of w bit words, and U is the unknown. To solve
this equation, we will express U over a basis of Z

8
2w such that some of the basis

Practical Key Recovery Attack against Secret-IV Edon-R 341

vectors do not affect some words of (U +C0) ∗ (U +C1). Then we can solve the
equation more efficiently than by brute force because we do not need to explore
the full space.

More precisely, P0, P1 are defined by the following matrices over Z2w (i.e., the
sums are modular additions):

P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We will use three vectors U0, U1, U2 in the kernels of some sub-matrices of P0
and P1:

U0 =
[

0 0 0 0 0 0 1 −1
]T

U1 =
[

2 2 2 2 231 − 3 231 − 3 0 231 − 1
]T

U2 =
[

1 0 0 0 231 − 1 231 0 231
]T

Then we have (the question marks represent values for which we do not have
any useful information):

P0 · U0 =
[
? ? 0 0 ? 0 0 ?

]T
P1 · U0 =

[
? ? 0 0 0 0 0 0

]T (1)

P0 · U1 =
[
? ? 0 0 ? 0 0 ?

]T
P1 · U1 =

[
? ? ? 0 0 ? 0 0

]T (2)

P0 · U2 =
[
0 0 0 0 ? 0 ? ?

]T
P1 · U2 =

[
? ? ? ? 0 ? 0 0

]T (3)

Q0, Q1 are defined by the following matrices over Fw
2 (i.e., the sums are exclusive

or):

Q0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Due to the positions of the zeros in Pi · Uj, we have, for all α, β ∈ Z2w :

Q0(R0(P0(X + αU0))) ⊕Q0(R0(P0(X))) =
[
? ? ? ? ? 0 0 0

]T (4)

Q0(R0(P0(X + αU1))) ⊕Q0(R0(P0(X))) =
[
? ? ? ? ? 0 0 0

]T (5)

Q0(R0(P0(X + αU2))) ⊕Q0(R0(P0(X))) =
[
? ? ? ? ? ? ? 0

]T (6)

342 G. Leurent

Q1(R1(P1(Y + βU0)))⊕Q1(R1(P1(Y))) =
[
? ? ? ? ? 0 0 0

]T (7)

Q1(R1(P1(Y + βU1)))⊕Q1(R1(P1(Y))) =
[
? ? ? ? ? 0 ? 0

]T (8)

Q1(R1(P1(Y + βU2)))⊕Q1(R1(P1(Y))) =
[
? ? ? ? ? ? ? 0

]T (9)

This proves that the vectors U0, U1, U2 do not affect some of the output words.
This property can be seen as a truncated differential for the ∗ operation:

(X + αU0) ∗ (Y + βU0)⊕X ∗ Y =
[
? ? ? ? ? 0 0 0

]T (10)

(X + αU1) ∗ (Y + βU1)⊕X ∗ Y =
[
? ? ? ? ? 0 ? 0

]T (11)

(X + αU2) ∗ (Y + βU2)⊕X ∗ Y =
[
? ? ? ? ? ? ? 0

]T (12)

This is a very important part of the attack, so let us explain in more detail
what equation (12) means. Using notations similar to the ones from [4], the last
output word of X ∗ Y is computed as:

(X ∗ Y)[7] = (T [2]
X ⊕ T

[3]
X ⊕ T

[5]
X) + (T [4]

Y ⊕ T
[6]
Y ⊕ T

[7]
Y)

where

T
[2]
X = (X [0] + X [1] + X [4] + X [6] + X [7]) ≪ 8

T
[3]
X = (X [2] + X [3] + X [5] + X [6] + X [7]) ≪ 13

T
[5]
X = (X [0] + X [2] + X [3] + X [4] + X [5]) ≪ 22

T
[4]
Y = (Y [0] + Y [1] + Y [3] + Y [4] + Y [5]) ≪ 15

T
[6]
Y = (Y [1] + Y [2] + Y [5] + Y [6] + Y [7]) ≪ 25

T
[7]
Y = (Y [0] + Y [3] + Y [4] + Y [6] + Y [7]) ≪ 27

We now consider X ′ = X + αU2 and Y ′ = Y + βU2:

(X ′ ∗ Y ′)[7] = (T ′[2]
X ⊕ T ′[3]

X ⊕ T ′[5]
X) + (T ′[4]

Y ⊕ T ′[6]
Y ⊕ T ′[7]

Y)

where

T ′[2]
X = (X [0] + α + X [1] + X [4] + α(231 − 1) + X [6] + X [7] + α231) ≪ 8

T ′[3]
X = (X [2] + X [3] + X [5] + α231 + X [6] + X [7] + α231) ≪ 13

T ′[5]
X = (X [0] + α + X [2] + X [3] + X [4] + α(231 − 1) + X [5] + α231) ≪ 22

T ′[4]
Y = (Y [0] + β + Y [1] + Y [3] + Y [4] + β(231 − 1) + Y [5] + β231) ≪ 15

T ′[6]
Y = (Y [1] + Y [2] + Y [5] + β231 + Y [6] + Y [7] + β231) ≪ 25

T ′[7]
Y = (Y [0] + β + Y [3] + Y [4] + β(231 − 1) + Y [6] + Y [7] + β231) ≪ 27

Practical Key Recovery Attack against Secret-IV Edon-R 343

We see that the α and β terms cancels out:

T
[2]
X = T ′[2]

X T
[3]
X = T ′[3]

X T
[5]
X = T ′[5]

X

T
[4]
Y = T ′[4]

Y T
[6]
Y = T ′[6]

Y T
[7]
Y = T ′[7]

Y

and as a consequence (X ′∗Y ′)[7] = (X ∗Y)[7]. This works because U2 was chosen
in the kernel of the linear forms that define T

[2]
X , T [3]

X , T [5]
X , T [4]

Y , T [6]
Y , and T

[7]
Y .

Similarly, U1 is in the kernel of the linear forms involved in the computation of
(X∗Y)[5,7] and U0 is in the kernel of the linear forms involved in the computation
of (X ∗ Y)[5,6,7].

Thanks to this property, we can do an exhaustive search with early abort.
We extend U0, U1, U2 into a basis U0, U1, ...U7

1 of Z8
2w , and we will represent U

in this basis: U =
∑7

i=0 αiUi. We define V = (U + C0) ∗ (U + C1). Due to the
properties of U0, U1, U2, we know that:

– α0 has no effect on V [5], V [6] and V [7];
– α1 has no effect on V [5] and V [7];
– α2 has no effect on V [7].

The full algorithm is given by Algorithm 1 and is quite simple. We first iterate
over α3, α4, ...α7 and we filter the elements such that V = (U + C0) ∗ (U + C1)
matches H on the last coordinates. If it does not match, we do not need to iterate
over α0, α1, α2 because this will not modify V [7], so we can abort this branch.
For the choices that match, we iterate over α2 and check V [5]. If it matches H [5],
we iterate over α1 and check V [6]. If it matches H [6], we can then iterate over
α0.

The time complexity is 25w = 25n/8:

– the first loop is executed 25w times;
– each matching reduces the number of candidates to 24w;
– each subsequent loop raises the number of candidates to 25w.

The memory requirements are negligible because we do not need to store a list of
candidate. We just perform a breath-first search and we prune the bad branches
to reduce the size of the tree.

Once we have recovered U = ν(X(3)
0), it is easy to invert the permutations

and recover X
(3)
0 . From that we find H1,0 by inverting a quasi-group operation,

and we have all the variables of the compression function. We can then recover
the key H0,0, H0,1 by inverting the first compression function (it is easy when
the output and the message are known).

1 For instance, we can use:

U3 = [0, 0, 1, 0, 0, 0, 0, 0]T U5 = [0, 0, 0, 0, 1, 0, 0, 0]T U7 = [0, 0, 0, 0, 0, 0, 0, 1]T

U4 = [0, 0, 0, 1, 0, 0, 0, 0]T U6 = [0, 0, 0, 0, 0, 1, 0, 0]T

344 G. Leurent

Algorithm 1. Solving H = (U + C0) ∗ (U + C1)
Input: C0, C1, H
Output: U
1: for all α3, α4, ...α7 ∈ Z2w do
2: U ←∑7

i=3 αiUi

3: V ← (U + C0) ∗ (U + C1)
4: if V [7] = H [7] then
5: for all α2 ∈ Z2w do
6: U ←∑7

i=2 αiUi

7: V ← (U + C0) ∗ (U + C1)
8: if V [5] = H [5] then
9: for all α1 ∈ Z2w do

10: U ←∑7
i=1 αiUi

11: V ← (U + C0) ∗ (U + C1)
12: if V [6] = H [6] then
13: for all α0 ∈ Z2w do
14: U ←∑7

i=0 αiUi

15: V ← (U + C0) ∗ (U + C1)
16: if V = H then
17: U is a solution

5 Using More Queries

In this section, we improve this attack using more queries to the MAC oracle.
We gather more equations of the form H = (U +C0)∗ (U +C1), and this enables
us to mount a very efficient attack. In the case of Edon-R256, it requires about
32 queries and can recover the secret key with about 230 computations after a
precomputation of about 252 operations, which makes it a practical attack.

5.1 Building the Queries

To get new equations, we will query the MAC oracle with new messages M (i)

so that pad(M) is a prefix of all the M (i)’s. Each query will give some equation
involving the same H1,0, and we will deduce an equation of the form H(i) =
(U + C

(i)
0) ∗ (U + C

(i)
1) as in the previous section. Remember that we have

U = ν(X(3)
0) = ν(ν(H1,0) + μ(X(2)

0)). We will build our messages so that the
value of X(2)

0 is the same for all the M (i)’s, or equivalently, X(1)
0 is the same for

all the M (i)’s. This means that all the equations will involve the same U , and
recovering this U will allow to recover H1,0.

Let us assume that we have two such equations, and let us further assume
that C

(i)
0 = C

(j)
0 . Then:

H(i) = Q0(R0(P0(U + C
(i)
0))) + Q1(R1(P1(U + C

(i)
1)))

H(j) = Q0(R0(P0(U + C
(j)
0))) + Q1(R1(P1(U + C

(j)
1)))

H(i) −H(j) = Q1(R1(P1(U + C
(i)
1)))−Q1(R1(P1(U + C

(j)
1)))

Practical Key Recovery Attack against Secret-IV Edon-R 345

since P1 is linear over Z8
2w , we can consider Ũ = P1 · U and C̃

(i)
1 = P1 · C(i)

1

H(i,j) = H(i) −H(j) = Q1(R1(Ũ + C̃
(i)
1))−Q1(R1(Ũ + C̃

(j)
1)) (13)

If we consider Ũ = P1 ·U to be the unknown, this gives a simpler equation than
in the previous section, where H(i,j), C̃(i)

1 and C̃
(j)
1 are known constants.

However, if we have a pair of messages M (i),M (j) where C
(i)
0 = C

(j)
0 and X

(1)
0

is constant, then we have M (i) = M (j) and we can only build a trivial equation.
Instead, we use messages such that only some words of C(i)

0 and C
(j)
0 are equal.

Namely, if we have

(P0 · C(i)
0)[2,3,5] = (P0 · C(j)

0)[2,3,5] (14)

then

H(i,j)[7] =
(
μ(U + C

(i)
0) + ν(U + C

(i)
1)
)[7]

−
(
μ(U + C

(j)
0) + ν(U + C

(j)
1)
)[7]

=
(
ν(U + C

(i)
1)− ν(U + C

(j)
1)
)[7]

+
(
μ(U + C

(i)
0)− μ(U + C

(j)
0)
)[7]

=
(
ν(U + C

(i)
1)− ν(U + C

(j)
1)
)[7]

+
(
P0(U + C

(i)
0)[2] ≫ 8⊕ P0(U + C

(i)
0)[3] ≫ 13⊕ P0(U + C

(i)
0)[5] ≫ 22

)
−
(
P0(U + C

(j)
0)[2] ≫ 8⊕ P0(U + C

(j)
0)[3] ≫ 13⊕ P0(U + C

(j)
0)[5] ≫ 22

)
H(i,j)[7] = Q1(R1(Ũ + C̃

(i)
1))[7] −Q1(R1(Ũ + C̃

(j)
1))[7] (15)

The two gray terms cancel out by linearity of P0 over Z8
2w . We can see (15) as a

weaker version of (13): we only have an equation on one word, instead of eight.
We can build similar equations restricted to any word by choosing appropriate
relations between C

(i)
0 and C

(j)
0 : if we want an equation restricted to word k we

just need to have an equality between P0 ·C(i)
0 and P0 ·C(j)

0 on the three words
used in the computation of Q[k]

0 .

5.2 Dealing with the Padding

Another problem that we face to gather these equations is the padding. Edon-R
uses a padding with Merkle-Damgård strengthening, so there are 65 bits in M1,1
that must be kept untouched (129 bits in Edon-R384/512).

To find proper messages, we use a preprocessing step. First, we fix some
arbitrary value for X

(1)
0 . Then we take a set of random M1,1 satisfying the

padding, we compute the corresponding M1,0 and we look for a collision in three
words of P0 · C(i)

0 according to (14). Each collision costs 248 computations on
average (296 for Edon-R384/512), and gives one equation. Note that this is
independent of the key we are attacking. It can be done as a preprocessing step,
and we only need to store a the message pairs that will be used to extract the
equations. Since we need 16 collisions, the time complexity of this preprocessing
step will be 16× 248 for Edon-R256 and 16× 296 for Edon-R512.

346 G. Leurent

5.3 Solving

To recover the value of U , we gather several equation of the type of (15). We
can rewrite them as:(

(Ũ [4] + C̃
(i)[4]
1) ≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1) ≫ 7⊕ (Ũ [7] + C̃

(i)[7]
1) ≫ 5

)
−(

(Ũ [4] + C̃
(j)[4]
1) ≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1) ≫ 7⊕ (Ũ [7] + C̃

(j)[7]
1) ≫ 5

)
= H(i,j)[7]

(16)

We will solve these equations using a guess-and-determine approach. First we
guess the 18 lower bits of Ũ [4], the 8 lower bits of Ũ [6], and the 6 lower bits
of Ũ [7]. This allows us to compute the least significant bit of the left hand side
of (16), and we check this bit against the right hand side. If we have enough
equations, we can filter out many bad candidates. Then we guess one more bit
of Ũ [4], Ũ [6], and Ũ [7]. We can now compute one more bit of (16), and again
reduce the number of candidates. We repeat this step until all the bits of Ũ [4],
Ũ [6], and Ũ [7] have been guessed. Each time we guess some bits, the number of
candidates grows, but it will shrink when we check the new bit of (16). The cost
of this step is at least 232 because we have to guess 32 bits in the beginning. If
we have enough equations and they give an independent filtering, we expect the
complexity to be about 232. We did some experiments with random constants to
check our assumptions. Experiments shows that with only 10 equations we can
solve (16) for Edon-R256 by exploring slightly more than 232 nodes. This take
a few minutes on a desktop PC. For Edon-R512, we have to guess 56 bits, and
we expect a complexity of 256.

Another way to solve this system is to guess the carries instead of guessing
the low order bits. In this case, we only use 4 equations, because we have to
guess the carries in each equations. We have only 24 carry bits to guess, but
the 4 equations have many solutions, so we use extra equations to check each of
these solutions until a single solution is left. According to our experiments, this
takes about one minute on a desktop PC, and we have about 216 solutions when
using 4 equations (the search goes through 230 nodes). Note that the complexity
of this technique is independent of the rotation amounts, so it can be applied
with any output word, not necessarily the seventh as in (15). More importantly,
it is about as efficient on Edon-R512: it take about 20 minutes to explore 233

nodes, and gives about 220 solutions.
This first step gives us Ũ [4], Ũ [6], and Ũ [7]. Next, we use an equation similar

to (15), but involving the fifth word instead of the seventh:(
(Ũ [3] + C̃

(i)[3]
1) ≫ 21⊕ (Ũ [4] + C̃

(i)[4]
1) ≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1) ≫ 7

)
−(

(Ũ [3] + C̃
(j)[3]
1) ≫ 21⊕ (Ũ [4] + C̃

(j)[4]
1) ≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1) ≫ 7

)
= H(i,j)[5]

(17)

Since this equation only involves one unknown word Ũ [3], it is quite easy to solve.
We use the same technique as previously: we guess the carry bits. We only have
2 carry bits to guess so this step is negligible. We will repeat this using different
equations involving different words of Ũ , so as to recover the words of Ũ one by
one. Then, we can recover U = P−1

1 · Ũ , and finally H1,0.

Practical Key Recovery Attack against Secret-IV Edon-R 347

The number of queries needed for the attack is 30: 2 × 10 to recover three
words in the first step and 2 for each subsequent word.

6 Conclusion

We have shown a practical key-recovery attack against secret-IV Edon-R and
various forgery attacks on secret-prefix Edon-R. Moreover, we show that a se-
lective forgery attack can still be done against the tweaked Edon-R. While those
constructions are not required to be secure by NIST, it is a natural construc-
tion that is used in some protocols. We believe that a strong cryptographic hash
function should not leak the key when used in this setting.

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, by the
French government through the Saphir RNRT project, and by the French DGA.

References

1. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

2. Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E.,
Stewart, L.: RFC2069: An extension to HTTP: Digest access authentication. In-
ternet RFCs (1997)

3. Gligoroski, D., Klima, V.: Official Comment: Edon-R. SHA-3 forum (May 2009)
4. Gligoroski, D., Ødegråd, R.S., Mihova, M., Knapskog, S.J., Kocarev, L., Drápal,

A., Klima, V.: Cryptographic Hash Function EDON-R. Submission to NIST (2008)
5. Khovratovich, D., Nikolić, I., Weinmann, R.P.: Cryptanalysis of Edon-R. Available

online (2008)
6. Klima, V.: Multicollisions of EDON-R hash function and other observations (2008)
7. National Institute of Standards and Technology: Cryptographic Hash Algorithm

Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
8. Novotney, P., Ferguson, N.: Detectable correlations in edon-r. Cryptology ePrint

Archive, Report 2009/378 (2009), http://eprint.iacr.org/
9. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-

tion Codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)
10. Wang, X., Wang, W., Jia, K., Wang, M.: New Distinguishing Attack on MAC

using Secret-Prefix Method. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 363–374. Springer, Heidelberg (2009)

11. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

12. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://eprint.iacr.org/

348 G. Leurent

Appendix

A Extension to Other Settings

The IV-recovery attack can be use to break the secret-prefix construction when
used with Edon-R, and the secret-IV and secret-prefix construction when used
with the tweaked version of Edon-R. If this section we describe the attacks with
only two queries, but the attacks with 32 queries can be adapted in the same
way.

A.1 Secret-Prefix Edon-R
If the key is padded to a full block, we can recover the chaining value H1 after
processing the key. This chaining value will allow an attacker to compute the
MAC of any message:

k M pad
H0 H1 H2 H3= =

k M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

We apply the attack on the third compression function. We can recover H2,
and compute H1 by inverting the second compression function.

If the key is not padded to a full block, we have a selective forgery attack.
Given a message M∗ such that pad(k‖M∗) has at least two blocks, we use a
message M such that the first block of pad(k‖M) is equal to the first block of
pad(k‖M∗).

k M∗ M∗pad
H0 H1 �== �=

k M M pad
H0 H1 H2 H3= =

k M ′ M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

The first block is the same.

We apply the attack on the third compression function. Again, we can recover
H2, and compute H1 by inverting the second compression function. Then, we
can forge the MAC of M∗.

A.2 The Tweaked Version of Edon-R
In [3], Gligoroski and Klima proposed a tweak to address the attacks found
against Edon-R. The tweak is described as:

Practical Key Recovery Attack against Secret-IV Edon-R 349

Instead of the old compression function R(oldPipe ,M), now the com-
pression function have the following feedback:R(oldPipe ,M)⊕oldPipe⊕
M ′, where M is represented in two parts i.e. M = (M0,M1), and
M ′ = (M1,M0).

It is easy to see that our attack on the compression function can still be ap-
plied: if we know the right half of oldPipe , the right half of the output of the
compression function, and the message block, we can compute the right half of
R(oldPipe ,M) from the right half of R(oldPipe ,M) ⊕ oldPipe ⊕M ′. However,
we can no longer invert the compression function. Therefore, in the IV-recovery
attack from Section 3, we can recover (H1,0, H1,1) using the attack on the com-
pression function, but we can not recover the key (H0,0, H0,0).

Still, we have a selective forgery attack on the secret-prefix and secret-IV
constructions. Let us describe the attack on the secret-prefix construction. The
forgery will work for messages M∗ such that some prefix of k‖M∗ is a valid
padded message. For instance, we can fix 65 bits (129 in the case of Edon-R512)
at the end of the second block. A random message of 2� blocks can be attacked
with probability 2�−65 (2�−129 for Edon-R512). Given such a message, we use a
message M such that pad(k‖M) is a prefix of k‖M∗:

k M∗ M∗ M∗pad
H0 H1 H2

�=

= =

�=k M M pad
H0 H1 H2 H3= =

k M ′ M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

pad(k‖M) is a prefix of k‖M∗.

We apply the attack on the following block and we recover the inner state
after processing pad(k‖M). Since pad(k‖M) is a prefix of M∗, we can use this
information to forge the MAC of M∗.

Rebound Attacks on the
Reduced Grøstl Hash Function�

Florian Mendel1, Christian Rechberger2, Martin Schläffer1,
and Søren S. Thomsen3

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

2 Dept. of Electrical Engineering ESAT/COSIC, K.U. Leuven,
and Interdisciplinary Institute for BroadBand Technology (IBBT),

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
3 Department of Mathematics, Technical University of Denmark

Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark
martin.schlaeffer@iaik.tugraz.at

Abstract. Grøstl is one of 14 second round candidates of the NIST
SHA-3 competition. Cryptanalytic results on the wide-pipe compression
function of Grøstl-256 have already been published. However, little is
known about the hash function, arguably a much more interesting crypt-
analytic setting. Also, Grøstl-512 has not been analyzed yet. In this pa-
per, we show the first cryptanalytic attacks on reduced-round versions
of the Grøstl hash functions. These results are obtained by several ex-
tensions of the rebound attack. We present a collision attack on 4/10
rounds of the Grøstl-256 hash function and 5/14 rounds of the Grøstl-
512 hash functions. Additionally, we give the best collision attack for
reduced-round (7/10 and 7/14) versions of the compression function of
Grøstl-256 and Grøstl-512.

Keywords: hash function, cryptanalysis, collisions, rebound attack.

1 Introduction

In the last few years the cryptanalysis of hash functions has become an impor-
tant topic within the cryptographic community. The attacks on the MD4 family
of hash functions (e.g., MD5 [12, 15], SHA-1 [2, 14]) have especially weakened
the confidence in the security of this design strategy. Many new and interesting
hash function designs have been proposed as part of the NIST SHA-3 compe-
tition [11]. Most submissions are constructed using specific underlying building

� This work was supported in part by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II and the fourth author is
supported by a grant from the Villum Kann Rasmussen Foundation. Parts of this
work were carried out while the third author was visiting Technical University of
Denmark, supported by a grant from DCAMM International Graduate Research
School, Danish Center for Applied Mathematics and Mechanics.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 350–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Rebound Attacks on the Reduced Grøstl Hash Function 351

blocks like permutations, explicit compression functions, or block ciphers. Some-
times, proofs are devised to show that some desirable properties of the hash
function (like collision resistance) can be reduced to a property of an underlying
building block.

In turn, many cryptanalytic results have been published which consider these
building blocks. Often, the resulting attacks are not applicable to the hash func-
tion itself. While these results are important to analyze the security of a specific
design, it is very difficult to compare the results of different hash function propos-
als. How can we measure and compare the security margin of different designs?
In addition to the (reduced) security parameter that is used for the best attack,
a number of other issues heavily influence the answer: Is the design wide-pipe,
is it based on the sponge model, or does it use an MD-style iteration? Is the
hash function based on an ideal block cipher or a random permutation? All
these considerations can be bypassed if we compare cryptanalytic results of the
complete hash function instead of different underlying building blocks. Thus, a
comparison of different designs is made easier.

In this paper we analyze the hash function Grøstl [4], which is one of the
remaining 2nd-round candidates of the NIST SHA-3 competition. Grøstl has
very competitive hardware implementation characteristics (see e.g., Tillich et
al. [13] for a comparison), is the fastest among the remaining AES-like designs
on most platforms, and naturally deserves cryptanalytic attention.

Grøstl is based on a wide-pipe compression function that is iterated in an
MD-style manner. Since the wide-pipe compression function of Grøstl is known
to be non-random, many distinguishers exist and the hash function has been
designed with this fact in mind. With
 denoting the output size of the com-
pression function, even collision attacks in 2�/3 time or 2�/4 permutation queries,
memoryless preimage attacks in time 2�/2, and very efficient distinguishers (only
two calls) are known [4]. Hence a strong output transformation with truncation
is an important part of the design.

Shortcut collision attacks on round-reduced versions of the compression func-
tion of Grøstl-256 have been presented in a series of papers [5,8,9]. As discussed
above, additional distinguishers on the compression function are meaningless.
However, showing non-random properties of the underlying permutations or the
output transformation can have some significance. See e.g., Mendel et al. [8] for
results along those lines, where among others, a distinguisher for 7 rounds of the
output transformation with complexity 256 is given.

However, little is known about the hash function, which is arguably a more
interesting cryptanalytic setting. Only half of the degrees of freedom are avail-
able to an attacker for direct manipulation compared to a compression function
attack. Also, Grøstl-512 has not been considered yet. In this paper, we first
improve the rebound attack as originally applied to the Grøstl-256 compres-
sion function [9]. Using the rebound attack, we give results for the Grøstl-512
compression function and present the first analysis of the reduced Grøstl hash
functions. Our results and the best previously known results are summarized in
Table 1.

352 F. Mendel et al.

Table 1. Summary of rebound analysis for the round-reduced Grøstl hash and com-
pression functions

Target Hash Size Rounds Time Memory Type Reference
hash 224,256 4/10 264 264 collision Sect. 5.1

function 384,512 5/14 2176 264 collision Sect. 5.2
256 6/10 2120 264 semi-free-start collision [9]

compression 224,256 6/10 264 264 semi-free-start collision [8]
function 256 7/10 2120 264 semi-free-start collision Sect. 5.3, [5]

384,512 7/14 2152 264 semi-free-start collision Sect. 5.4

We start the paper by recalling the relevant parts of the Grøstl specification
in Section 2 and give the basics of the rebound attack in Section 3. The new ideas
and improvements which are the basis for our results are presented in Section 4.
The results for the hash function and compression function for both Grøstl-256
and Grøstl-512 are given in Section 5. Finally, we conclude in Section 6.

2 Description of Grøstl

The hash function Grøstl was designed by Gauravaram et al. as a candidate for
the SHA-3 competition [4]. It is an iterated hash function with a compression
function built from two distinct permutations P and Q, which are based on
the same principles as the AES round transformation [10]. Grøstl is a wide
pipe design with security proofs for the collision and preimage resistance of the
compression function [3]. In the following, we describe the Grøstl hash function
and the permutations of Grøstl-256 and Grøstl-512 in more detail.

2.1 The Grøstl Hash Function

The input message M is padded and split into blocks M1,M2, . . . ,Mt of
 bits
with
 = 512 for Grøstl-256 and
 = 1024 for Grøstl-512. The initial value H0,
the intermediate hash values Hi, and the permutations P and Q are of size
 as
well. The message blocks are processed via the compression function f , which
accepts two inputs of size
 bits and outputs an
-bit value. The compression
function f is defined via the permutations P and Q as follows:

f(H,M) = P (H ⊕M)⊕Q(M)⊕H.

The compression function is iterated in the usual way with H0 = IV and
Hi ← f(Hi−1,Mi) for 1 ≤ i ≤ t. The output Ht of the last call of the
compression function is processed by an output transformation g defined as
g(x) = truncn(P (x) ⊕ x), where n is the output size of the hash function and
truncn(x) discards all but the least significant n bits of x. Hence, the digest of
the message M is defined as h(M) = g(Ht).

Rebound Attacks on the Reduced Grøstl Hash Function 353

2.2 The Grøstl-256 Permutations

As mentioned above, two permutations P and Q are defined for Grøstl-256. The
permutations differ only in the used constants. Both permutations operate on a
512-bit state, which can be viewed as an 8×8 matrix of bytes. Each permutation
of Grøstl-256 consists of 10 rounds, where the following four AES-like [10] round
transformations are applied to the state in the given order:

– AddRoundConstant (AC) XORs a constant to one byte of the state. The
constant changes in every round and is different for P and Q.

– SubBytes (SB) applies the AES S-box to each byte of the state.
– ShiftBytes (SH) cyclically rotates the bytes of row i to the left by i positions.
– MixBytes (MB) is a linear diffusion layer, which multiplies each column

with a constant 8× 8 circulant MDS matrix.

For details on the round transformations we refer to the Grøstl specification [4].
Note that AddRoundConstant is the only transformation that distinguishes P
from Q. The properties of the round transformations which are used in the
following attacks are similar to those of the AES (see Section 3 for more details).

2.3 The Grøstl-512 Permutations

The permutations used in Grøstl-512 are of size
 = 1024 bits and the state
is viewed as an 8 × 16 matrix of bytes. The permutations use the same round
transformations as in Grøstl-256 except for ShiftBytes: Since the permutations
are larger, row j is cyclically shifted j positions to the left for 0 ≤ j ≤ 6 and row
7 is shifted 11 positions to the left. The number of rounds is increased to 14.

3 The Rebound Attack on Grøstl

The rebound attack was published by Mendel et al. in [9] and is a new tool for
the cryptanalysis of hash functions. It can be applied to both block cipher based
and permutation based constructions. The idea of the rebound attack is to divide
an attack into two phases, an inbound and outbound phase. The inbound phase
is an efficient meet-in-the-middle phase, which exploits the available degrees of
freedom in the middle of a (truncated) differential path to guarantee that the
expensive part of a differential path holds. In the (mainly) probabilistic outbound
phase the solutions of the inbound phase are computed backwards and forwards
to obtain an attack on the hash or compression function. In the following, we
explain the rebound attack using the 6 round semi-free-start collision attack on
Grøstl-256. For a more detailed description, we refer to the original paper [9].

3.1 The Truncated Differential Path

The rebound attack on 6 rounds of the Grøstl-256 compression function uses
a truncated differential path with a high number of active bytes in the middle

354 F. Mendel et al.

Fig. 1. Overview of the rebound attack on 6 rounds of the Grøstl-256 compression
function. Black bytes are active

and a low number of active bytes at the input and output of each permutation.
Due to the wide-trail design strategy, such a path can easily be constructed for
Grøstl-256. For the attack on 6 rounds, a full active state is placed in the middle
of each permutation. The detailed path is given in Fig. 1 and the sequence of
active bytes between each round ri is as follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64

By using the same truncated differential path in both permutations P and Q, we
can construct a semi-free-start collision for the compression function of Grøstl-
256 reduced to 6 rounds. In the following, we will show how to find input pairs
for P and Q that follow the 6-round differential trail given above by applying a
rebound attack.

3.2 The Inbound Phase

We start the rebound attack with the inbound phase in round r3 and r4 and
deterministically propagate to the full active SubBytes layer in the middle. Hence,
we search for differences and values conforming to the truncated differential
path shown in Fig. 2. We first choose random differences for the 8 active bytes
in P4. These differences are linearly propagated backward to 64 active bytes
at the output of the previous SubBytes layer (PSB

4). Then, we choose random
differences for each active byte prior to the MixBytes transformation in PSH

3 and
linearly propagate forward to the full active input of SubBytes (PSB

4). Note that
we can compute each column independently. Next, we need to check whether
the input/output differential of all 64 active S-boxes are possible.

For a single S-box, the probability that a random S-box differential exists is
about one half, which can be verified by computing the difference distribution
table (DDT) of the AES S-box (see [9] for more details). For each valid S-box
differential, we get at least two (in some cases 4) possible byte values such that
the differential holds. For each column, we try all 28 non-zero differences of the
according byte in PSH

3 and thus, expect one valid differential for all 8 S-boxes

Rebound Attacks on the Reduced Grøstl Hash Function 355

Fig. 2. The inbound phase of the attack on the Grøstl-256 compression function using
8-bit S-box matches. The input and output of one S-box is highlighted.

of that column. With two independent solutions for each S-box, we get at least
28 pairs for one column. Hence, the average complexity to find a valid pair is 1.
We repeat this for all 8 active bytes of PSH

3 and get about 264 solutions for the
inbound phase.

Note that we can choose from about 264 differences for the active bytes in P4.
Hence, we can construct up to 2128 pairs that follow the truncated differential
path of the inbound phase between state PSH

3 and P4.

3.3 The Outbound Phase

In the outbound phase, we probabilistically propagate the pairs of the inbound
phase outwards, to match the differences at the input and output of the per-
mutations. The probability for the propagation from 8 to 1 active byte through
the MixBytes transformation in round r2 is 2−56. Hence, we can construct one
pair conforming to the truncated differential path for each of P and Q with a
complexity of 256.

To get a semi-free-start collision, the differences at the input and output of
P and Q need to be equal. Note that we can construct pairs for P and Q
independently. Hence, we can do a standard birthday attack to match the 8-byte
difference at the input, and the 8-byte difference at the output before MixBytes
with a complexity of 264. Since MixBytes is the same linear transformation in
both P and Q, the 64 active bytes at the output will match if the differences
at the input of MixBytes are equal. Hence, the total complexity for the semi-
free-start collision on 6 rounds of the compression function of Grøstl-256 is 2120

compression function evaluations and 264 memory due to the birthday attack.

4 Extending the Rebound Attack

In this section, we describe three improvements for the rebound attack on Grøstl.
The first improvements uses 64-bit SuperBoxes [1] instead of 8-bit S-boxes to
match the differences in the inbound phase. This idea has already been applied in
the improved attack on the Whirlpool hash function in Lamberger et al. [7, Ap-
pendix A] and was independently observed in Gilbert and Peyrin [5]. This allows
us to extend the inbound phase of the compression function attack on 6 rounds

356 F. Mendel et al.

of Grøstl-256 by one round. The second idea is to apply the rebound attack
to the Grøstl hash function by using a common inbound phase at the input
of both P and Q. The third contribution addresses Grøstl-512. We have con-
structed new truncated differential paths and apply the rebound attack to the
hash and compression function of Grøstl-512.

4.1 Improving the Inbound Phase Using SuperBoxes

In the standard inbound phase, the differences are computed inwards through
MixBytes to the input and output of the intermediate SubBytes layer. Then, each
S-box is checked for a valid differential (see Fig. 2). If we consider SuperBoxes
instead of S-boxes we can extend the inbound phase by one full active state and
get the following sequence of active bytes (instead of 8→ 64→ 8):

8→ 64→ 64→ 8

A SuperBox of Grøstl is defined similar to the SuperBox of the AES [1]. For
Grøstl, the SuperBox consists of 8 parallel S-boxes, followed by one MixBytes
transformation and another 8 parallel S-boxes: SB - MB - SB . Note that the
SubBytes and ShiftBytes transformations can be interchanged. Hence, a Super-
Box behaves like a non-linear 64-bit S-box. Unfortunately, the differential dis-
tribution table (DDT) of the SuperBox has 2128 entries which is too much for a
collision attack on Grøstl-256. However, if the input and output differences of
the SuperBox are fixed, we can iterate through all 264 input values to check if a
given differential holds.

Fig. 3. The inbound phase on the Grøstl-256 compression function using 64-bit
matches with one SuperBox being highlighted

In the following, we show how we can still find one solution (pair) for the
extended inbound phase with an average complexity of one. We start the inbound
phase at state PSH

3 and P5 (see Fig. 3) and proceed as follows:

1. Start with all 264 differences in state PSH
3 , compute forwards through

MixBytes to state P3, and store the resulting differences in list L1.
2. Choose a random difference for state P5 and compute backward through

MixBytes and ShiftBytes to state PSB
5 .

3. Connect the output differences of the 8 parallel SuperBoxes (state PSB
5)

with the corresponding input differences of the SuperBoxes (state P3):

Rebound Attacks on the Reduced Grøstl Hash Function 357

(a) For each SuperBox (column) at state PSB
5 , take all 264 possible values

and compute both values and differences backward to state P3.
(b) We get 264 input differences for each SuperBox in state P3 and store the

resulting differences and values in list L2.
(c) To find a solution for the inbound phase, we need to match the 8-byte

differences in list L2 with the corresponding differences of list L1. Since
both lists have 264 entries and we have a condition on 64 bits, we get
264 × 264 × 2−64 = 264 solutions (differences and values) and update L1
accordingly.

(d) Repeat this for every SuperBox (column) of state PSB
5 and in each case

we get 264 solutions again.
4. For the whole inbound phase, we expect 264 solutions with a complexity of

264 in time and memory.

All in all, we can find one solution for the inbound phase with an average complex-
ity of one. Note that we can still choose from 264 differences for state P5. Hence,
we can find up to 2128 pairs according to the truncated differential path of the ex-
tended inbound phase. In other words, in the inbound phase we can construct up
to 2128 starting points for the probabilistic outbound phase of the attack.

4.2 Rebound Attack on the Grøstl Hash Function

The main idea of the rebound attack on the Grøstl hash function is to do one
half of the inbound phase in each P and Q. We then need to match the differences
over the input of the two permutations in the inbound phase (see Fig. 4). The
truncated differential path used is similar to the one of the previous section, but
“wraps around” the input of P and Q. In this case, the chaining input or IV can
be a predefined constant and only the message input (values and differences) is
defined by the attack. Note that we use two full active states in each of P and
Q since the first ShiftBytes in P and Q cancel out when going around. Hence,
the columns of almost two rounds can be solved independently in the inbound
phase.

Fig. 4. The inbound phase of the attack on the hash function Grøstl-256 with one
64-bit match (two SuperBoxes) being highlighted

358 F. Mendel et al.

The technique is very similar to the previous section, since we can use inde-
pendent 64-bit matches again. These two consecutive SuperBoxes (in both P
and in Q) are completely independent between state QSB

2 and PSB
2 . Again, we

can find one solution (pair) for the inbound phase with an average complexity of
one. We start the inbound phase with a random difference for state P2 and com-
pute backward to state PSB

2 . Next. we take all 264 nonzero differences in state
Q2, compute backwards to state QSB

2 and store the resulting differences in list
L1. Similar as in Section 4.1, we connect the output difference of the 8 parallel
SuperBoxes of P (state PSB

2) with the corresponding output differences of the
SuperBoxes of Q (state QSB

2) by merging lists of size 264. We get 264 solutions
with a complexity of 264 in time and memory. Again, we can repeat the inbound
phase about 264 times with other starting differences in P2. Hence, we can con-
struct up to 2128 starting points for the subsequent probabilistic outbound phase
of the attack.

4.3 Constructing Truncated Differential Paths for Grøstl-512

The difficult part of the rebound attack on Grøstl-512 is to find a “good” trun-
cated differential path. However, using a match-in-the-middle on the SuperBox,
we can construct a path with similar properties as for Grøstl-256. The complex-
ity of the rebound attack is determined by the outbound phase. Hence, we need
a truncated differential path with as few active bytes in the outbound phase
as possible. Similar to Grøstl-256, a straightforward truncated differential path
starts with (a minimum of) 8 active bytes at both ends of the inbound phase.
In the following, we show how the inbound phase of such a path works for the
hash function, and how to get a valid truncated differential path for the inbound
phase of the compression function as well.

The Hash Function. For the rebound attack on the Grøstl-512 hash function,
the truncated differential path of the inbound phase is given in Fig. 5. Due to
the symmetry of the ShiftBytes transformations in P and Q, we can again do
the 64-bit matches over each two SuperBoxes independently (see Section 4.2).
Contrary to the Grøstl-256 case, some output differences of the SuperBoxes in
state PSB

2 and QSB
2 are zero. However, the list L1 still contains 264 entries and we

also generate 264 differences for the list L2 by iterating through all values of each
SuperBox. Again, we have a condition on 64 bits (including zero differences) and
thus, still expect 264 solutions with a complexity of 264. Since we can choose from
264 differences for both PSB

2 and QSB
2 , we again expect to find 2128 solutions for

the inbound phase.

The Compression Function. For the Grøstl-512 compression function, a
differential path with 8 active bytes at each end of the inbound phase does
not work (see Fig. 6). Although we use a SuperBox in the inbound phase this
results in an impossible truncated differential path. For most columns of the
MixBytes transition in the middle, the sum of active bytes at input and output
is below 9, which is not possible according to the MDS property of MixBytes.

Rebound Attacks on the Reduced Grøstl Hash Function 359

F
ig

.
5
.

In
bo

un
d

ph
as

e
of

th
e

at
ta

ck
on

th
e
G
r
ø
s
t
l
-5

12
ha

sh
fu

nc
ti
on

w
it
h

on
e

64
-b

it
m

at
ch

(t
w

o
Su

pe
rB

ox
es

)
be

in
g

hi
gh

lig
ht

ed
.

F
ig

.
6
.

Im
po

ss
ib

le
in

bo
un

d
ph

as
e

of
th

e
at

ta
ck

on
th

e
G
r
ø
s
t
l
-5

12
co

m
pr

es
si
on

fu
nc

ti
on

.

F
ig

.
7
.

In
bo

un
d

ph
as

e
of

th
e

at
ta

ck
on

th
e
G
r
ø
s
t
l
-5

12
co

m
pr

es
si
on

fu
nc

ti
on

w
it
h

on
e

64
-b

it
m

at
ch

(S
up

er
B

ox
)

be
in

g
hi

gh
lig

ht
ed

.

360 F. Mendel et al.

With only 8 active bytes in state PSH
3 and P5, we do not get enough active

bytes for a valid MixBytes transformation in round r4. Also rotating the position
of active bytes in state PSH

3 or P5 does not give a valid truncated differential
path. However, we can add a second active column at the output of the inbound
phase (see Fig. 7). This results in an almost full active state in round r4 and
the truncated differential path is valid. Again, we can apply the same technique
as in the previous section and expect 264 solutions of the inbound phase with a
complexity of 264 by merging lists of size 264. Note that with 24 active bytes in
PSH

3 and P5, we can get up to 2192 solutions (starting points in the outbound
phase) in the inbound phase.

5 Results of Rebound Attacks on Reduced Grøstl

In this section, we apply the improved inbound techniques of the previous section
to the round-reduced Grøstl hash functions and compression functions.

5.1 Collisions for 4 Rounds of Grøstl-256

The complete truncated differential path for the collision attack on 4 rounds of
the Grøstl-256 hash function is given in Fig. 8. The sequence of active bytes in
each round for both, P and Q are given as follows:

64 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 64

The details for the inbound phase of the attack are given in Section 4.2. Remem-
ber that we get 264 pairs with a complexity of 264 conforming to the truncated
differential path up to round r2. In the outbound phase, each of these pairs
propagate to the output of the permutations according to the truncated dif-
ferential path given in Fig. 8 with a probability of one. To get a zero output
difference of the hash function, the 8-byte differences prior to the last MixBytes
need to be the same (see Section 3.3). Since we have 264 solutions for the in-
bound phase, and we have a 64-bit condition in the outbound phase, we ex-
pect to get one pair which results in a collision. The complexity of this col-
lision attack on the Grøstl-256 hash function is thus, 264 in both time and
memory.

Note that using the previous techniques a collision attack on 5 rounds ac-
cording to the following truncated differential path for both, P and Q is not
possible:

64 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 64

Each of the two 8→ 1 transitions of MixBytes in round r3 have a probability of
2−56. Together with the probabilistic match on 64 bits at the end of the path,
the total complexity is 256+56+64 = 2176 which exceeds the generic complexity
for a collision attack on Grøstl-256.

Rebound Attacks on the Reduced Grøstl Hash Function 361

Fig. 8. Truncated differential path for the collision attack on 4 rounds of the Grøstl-
256 hash function

5.2 Collisions for 5 Rounds of Grøstl-512

Contrary to the collision attack on Grøstl-256 we can extend the truncated
differential path for Grøstl-512 to 5 rounds, with the following number of active
bytes in each, P and Q:

128 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 64

The complexity of the outbound phase is given by the two probabilistic 8 → 1
transitions of MixBytes in round r3 of P and Q, and the match of the 64-bit
differences prior to the last MixBytes transformation in round r5. Hence, the total
complexity of the attack is 256+56+64 = 2176 compression function evaluations.
Note that we need to construct 2176 solutions in the inbound phase for the attack
to succeed. However, as shown in Section 4.3, we can only find up to 2128 pairs
for the inbound phase.

Fig. 9. Truncated differential path for the collision attack on 5 rounds of the Grøstl-
512 hash function. An additional first block is used to generate enough freedom for the
attack to succeed.

We can get the needed additional freedom for a 5 round collision attack by
prepending a first message block. The collision attack works as follows. First we
choose an arbitrary first message block. Then, we repeat the inbound phase for
all 2128 possible starting points to get 2128 solutions. Since the probability of the
outbound phase is 2−176 we need to repeat the inbound phase with 248 different
first message blocks to find a collision for 5 rounds. The total complexity of
the attack is about 264+56+56 = 2176 compression function evaluations and 264

memory.

362 F. Mendel et al.

5.3 Semi-Free-Start Collision for 7 Rounds of Grøstl-256

The improved inbound phase using the SuperBox allows to extend the 6-round
semi-free-start collision attack on Grøstl-256 by one round. The truncated dif-
ferential path is given in Fig. 10. The sequence of active bytes in each round for
both, P and Q are given as follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 64 r5−→ 8 r6−→ 8 r7−→ 64

The details of the inbound phase of the attack are given in Section 4.1 and we
can get one pair with an average complexity of one. The solutions of the inbound
phase are propagated outwards as in the attack on 6 rounds (see Section 3.3).
We have one 8 → 1 MixBytes transition in round r2 with probability 2−56, and a
birthday match on 2·64 bits at the input and output with complexity 264. Hence,
the total complexity of the attack is 2120 compression function evaluations and
264 memory.

Fig. 10. The truncated differential path for the semi-free-start collision on 7 rounds of
the compression function of Grøstl-256

Note that it seems to be difficult to extend this attack to 8 rounds. Adding
one more 8 → 1 transition in the outbound phase, increases the complexity of
the attack to be above 2128. If we extend the truncated differential path at the
beginning or end of the permutation, we need to match a full active state which
has a birthday complexity of at least 2256. By adding a third full active state in
the middle, the columns in the match-in-the-middle phase are not independent
anymore and we would need to match the differences of a full active state.

5.4 Semi-Free-Start Collision for 7 Rounds of Grøstl-512

The truncated differential path for the inbound phase of the rebound attack on
the Grøstl-512 compression function has 8 active bytes in round r3 and 16 active
bytes in round r5. The resulting 7-round truncated differential path is similar to
the Grøstl-256 case (see Fig. 11) and the sequence of active bytes is given as
follows:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 110 r5−→ 16 r6−→ 16 r7−→ 110

Rebound Attacks on the Reduced Grøstl Hash Function 363

In the inbound phase, we connect the differences between the input of SubBytes
of round r4 and the output of SubBytes of round r5 by using the SuperBox again.
We get one solution with an average complexity of one.

The complexity of the attack is determined by the outbound phase. We have
one probabilistic 8 → 1 MixBytes transition in round r2, and do a birthday
match in 8 active bytes at the beginning and 16 active bytes at the end of
the path. Hence, the total complexity for the collision attack on 7 rounds is
256+32+64 = 2152 with memory requirements of 264 due to the inbound phase
and birthday match.

Fig. 11. Truncated differential path for the semi-free-start collision on 7 rounds of
Grøstl-512

Although we could construct an 8-round truncated differential path with the
following number of active bytes, we cannot find enough pairs for a collision
attack on the compression function:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 110 r5−→ 16 r6−→ 2 r7−→ 8 r8−→ 64

The path is constructed by carefully placing the positions of active bytes in round
r6 such that the two active bytes are shifted into the same column in round r7.
With three 8 → 1 MixBytes transitions and a birthday match on 2 ·64 bits at the
input and output, we would get a total complexity of 23·56+2·32 = 2232. Note that
we get only 23·64 = 2192 solutions for the inbound phase (see Section 4.3). After
the three probabilistic MixBytes transitions, we get only 2192−3·56 = 224 valid
pairs for each permutation. Contrary to the Grøstl-512 hash function, we cannot
use the freedom of a previous message block in the middle of the compression
function. Hence, this attack on 8-rounds of Grøstl-512 compression function
does not work.

364 F. Mendel et al.

6 Conclusion

In this work, we have presented a variety of new results on the SHA-3 candidate
Grøstl. We improve the rebound attack on the compression function of Grøstl-
256 by one round and provide the first results for Grøstl-512. Most importantly,
we give the first cryptanalytic results for the Grøstl hash function and achieve
4 out of 10 rounds for Grøstl-256, and 5 out of 14 rounds for Grøstl-512. This
allows to reason about the security margin of Grøstl and compare it with other
hash functions based on different building blocks. However, for many candidates,
only results on their underlying compression function, permutation or block ci-
pher are known at this point.

The given results allow for the first time a high-level comparison between
permutation based and block-cipher based hashing from a cryptanalytic per-
spective. The block-cipher based Whirlpool hash function and the permutation
based Grøstl hash function share a number of similarities: 8-bit S-boxes ar-
ranged in an 8x8 geometry and AES-like round transformations. The S-boxes
are different, but their exact specification does not make a difference with re-
spect to the attacks we consider here. Whereas the rebound attack can break
up to 8 rounds of the Whirlpool hash function [6,7] with complexity below 2128,
it can only break 4 rounds of the Grøstl hash function with complexity below
2128. The main reason is the fact that in most block-cipher designs round keys
are added at several places during the computation, also in the block cipher at
the core of Whirlpool. Used in an unkeyed setting, this mixing of inputs during
the computation gives an attacker easier access for manipulating internal state
variables, and in turn allows more efficient attacks.

The ideas presented in this paper are also applicable to other AES-based
hash functions like ECHO, SHAvite-3, LANE, and Cheetah. Additionally, future
work will include the application of the rebound idea to other hash function
constructions. This may require more sophisticated tools to obtain appropriate
(truncated) differential paths first, whereas for the so far considered AES-based
constructions, good differentials are easily obtainable “by hand”.

References

1. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,
Heidelberg (2006)

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

3. Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH
and Reparation. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in
Cryptography. LNCS, vol. 5381, pp. 136–150. Springer, Heidelberg (2009)

4. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info

http://www.groestl.info

Rebound Attacks on the Reduced Grøstl Hash Function 365

5. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for
AES-like permutations. Cryptology ePrint Archive, Report 2009/531 (2009),
http://eprint.iacr.org/

6. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Cryptanal-
ysis of the Whirlpool Hash Function (manuscript)

7. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Re-
bound Distinguishers: Results on the Full Whirlpool Compression Function. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer,
Heidelberg (2009)

8. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In: Rijmen, V. (ed.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer,
Heidelberg (2009)

9. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

10. National Institute of Standards and Technology: FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

11. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register Notice (November 2007), http://csrc.nist.gov

12. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

13. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M.,
Szekely, A.: High-Speed Hardware Implementations of BLAKE, Blue Midnight
Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, J.H., Keccak, Luffa, Shabal,
SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510 (2009),
http://eprint.iacr.org/

14. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

15. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://csrc.nist.gov
http://eprint.iacr.org/

The Sum of CBC MACs Is a Secure PRF

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
9-11 Midoricho-3-chome Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. We present a new message authentication code (MAC) based
on block ciphers. Our new MAC algorithm, though twice as slow as an or-
dinary CBC MAC, can be proven to be a pseudo-random function secure
against O(22n/3) queries, under the assumption that the underlying n-bit
block cipher is a secure pseudo-random permutation. Our design is quite
simple, being similar to Algorithm 5 (and 6) of ISO/IEC 9797-1:1999—
we just take the sum (xor) of two encrypted CBC MACs. We remark that
no proof of security above the birthday bound (2n/2) has been known
for the sum of CBC MACs. The sum construction now becomes the first
realization of a block-cipher-based, deterministic, stateless MAC algo-
rithm being provably secure beyond the birthday bound of O(2n/2) and
running with practical efficiency.

Keywords: PRP, PRF, sum construction, ISO/IEC 9797-1:1999, colli-
sion, game-playing proof, lazy sampling, 64-bit block cipher.

1 Introduction

Message Authentication Codes, or MAC algorithms, fall into one of the three
categories: universal-hash-based, compression-function-based, or block-cipher-
based. The first type of MAC—based on a universal hash function—tends to
be either software-oriented [7] or hardware-oriented [32], but not both. The high
performance crucially depends on the choice of platforms, which is a problem
already addressed in [9]. This type of MAC also requires a larger footprint, as
it employs a universal hash function plus a finalization algorithm, which is usu-
ally a compression function or block cipher. The second type of MAC—based
on a compression function—has not come to maturity, because the theory of
designing a good compression function has not been established, as evidenced
by the initiation of the SHA-3 competition [28].1 Although we have a sound
compression-function-based mode like HMAC [2], which is widely standardized,
deployed and studied, the lack of a sound compression function momentarily
stops us from choosing this type of MAC algorithm.2 The last type of MAC—
based on a block cipher—has a balanced performance between software and
1 Indeed, many of the SHA-3 candidate algorithms design their compression functions

based on (big) block ciphers or permutations.
2 HMAC is based on the Merkle-Damg̊ard construction, but we do not know if SHA-3

will be natively equipped with such a construction.

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 366–381, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Sum of CBC MACs Is a Secure PRF 367

hardware, and the security of block ciphers has been well-studied for a couple
of decades. As a result, we have quite a few promising block ciphers like AES-
128 [26]. Hence, block-cipher-based MACs are often preferred to other types of
MAC algorithms.

However, block-cipher-based MACs also have a problem. The problem is that
the block size is too small. This is a serious problem particularly for 64-bit block
ciphers. Recall that, due to the generic birthday attack [31] on iterative MACs,
the security of ordinary block-cipher-based MACs is limited to the 2n/2 query
complexity (more precisely, 2n/2-many queries), where n is the block size. When
n = 64, the figure 2n/2 corresponds to 32 GByte, which is rather small. It seems
increasingly urgent to resolve this problem, as we explain in the following:

1. Triple DES. The Triple-DES algorithm continues to be used in legacy ap-
plications. For example, in the financial systems, Triple-DES is planned to be
used at least for the next decade [1]. In legacy applications, the size of each
message might be much smaller than 32 GByte, but through multiple trans-
actions the total query complexity is likely to reach this bound eventually.

2. New 64-Bit Block Ciphers. Due to the market needs for lightweight
cryptography, such as RFIDs and smart cards, new 64-bit block ciphers
including HIGHT [14] and present [10] were developed recently. These
ciphers are expected to be used not only within the low-power devices but
also in a wide variety of applications, often exceeding the 32 GByte limit of
data to be processed.

3. New Birthday Attack. Recently, a new type of birthday attack [19] has
been reported on a class of block-cipher-based MACs including CBC MACs.
The new attack is much more powerful than the previously-known generic
birthday attack [31], because the new attack realizes universal forgery rather
than existential. The new attack warns us that the birthday bound is not
only a theoretical interest but also a practical limit, at least for block-cipher-
based MACs.

So the motivation behind the current work is clear. We would like to develop a
new, highly secure MAC algorithm which can be used with 64-bit block ciphers.
By “highly secure” we mean secure beyond the birthday bound of 2n/2. We
successfully come up with one such construction, following an old idea that dates
back to ISO/IEC 9797-1:1999 [21]. Our construction has the following features:

1. Simple. Our construction is quite simple. It is just a sum (xor) of two
encrypted CBC MACs, using independent keys. So we call our construction
SUM-ECBC. The idea of taking the sum of two CBC MACs originates from
Algorithm 5 (and 6) of ISO/IEC 9797-1:1999. We note that the SUM-ECBC
MAC algorithm remains to be deterministic; SUM-ECBC does not make use
of randomization or nonce.

2. Efficient. Our SUM-ECBC algorithm is practically efficient. SUM-ECBC is
twice as slow as ordinary CBC MACs (“rate-2”), but the overhead can be
reduced via parallel implementations. Other rate-2 CBC MACs have been
already standardized in ISO/IEC 9797-1:1999 [21], which means that this
type of MAC is efficient enough for industrial use.

368 K. Yasuda

3. Secure. The security of SUM-ECBC is based on the assumption that the
underlying block cipher is a good PRP (Pseudo-Random Permutation). Un-
der this assumption, SUM-ECBC becomes a secure PRF (Pseudo-Random
Function) and achieves security of O(22n/3).3 When n = 64, the figure
22n/3 ≈ 242.7 corresponds to about 51 TByte. This is a significant gain
over the 32-GByte limit (derived from 2n/2 = 232 for n = 64).

SUM-ECBC is the first block-cipher-based deterministic MAC algorithm that
both becomes provably secure beyond the birthday bound and runs at practical
speed. Previous beyond-the-birthday-bound constructions tended to be of theo-
retical interest only; see Sect. 2. We remark that our results almost immediately
imply that Algorithm 6 of ISO/IEC 9797-1 is also provably secure up to the
O(22n/3) bound. Algorithm 6 runs slightly less efficiently than our SUM-ECBC
and requires more keys.

Organization of the Paper. In Sect. 2 we review previous constructions of
block-cipher-based MAC algorithms. After the essential preliminaries in Sect. 3,
we define our SUM-ECBC MAC algorithm in Sect. 4 and prove its security in
Sect. 5. In Sect. 6 we discuss possible directions of future work.

2 Previous Work

We point out that most of the recent work on block-cipher-based MACs has
been devoted to either reducing the number of keys or weakening the assump-
tions about the underlying primitive (i.e., unpredictability rather than pseu-
dorandomness). We emphasize that our goal is to improve security above the
birthday bound without making the construction randomized or stateful.

History of CBC MACs. The plain CBC MAC was formally analyzed in [4].
The plain CBC MAC was able to handle only prefix-free queries. This problem
was solved by EMAC [30], which was able to handle arbitrary varying-length
messages by using two keys. EMAC was not padding-efficient; i.e., it caused an
extra invocation to the block cipher when the original message length (before
padding) was a multiple of the block length. XCBC [8] also handled arbitrary
varying-length messages. XCBC required three keys but was padding-efficient.
TMAC [22] improved upon XCBC by reducing the number of keys by one.
OMAC [16] (now known as the NIST standard CMAC [27]) further reduced the
number of keys, realizing a single-key, padding-efficient CBC MAC. Recently, a
new MAC algorithm GCBC [25] has been introduced as an alternative to CMAC.
All of these constructions have security only up to the birthday bound of O(2n/2).

RMAC [18] was an unusual CBC MAC algorithm in that it achieved
a bound close to the full security O(2n). However, RMAC was a randomized
3 It is intriguing to note that this bound O(22n/3) has appeared in several pieces

of previous work on block-cipher-based schemes, such as Lucks’ sum
2 construc-

tion [23], Iwata’s CENC mode of operation [15] and Minematsu’s double-length
block cipher [24].

The Sum of CBC MACs Is a Secure PRF 369

algorithm, and its proof of security was done in the ideal-cipher model (rather
than in the standard model).

Enciphered-CBC [11] was twice as slow (rate-2) as ordinary CBC MACs but
had some extra security features. Recently, Dodis and Steinberger [12] have
proposed a new mode of operation which is three times slower (rate-3) than
ordinary CBC MACs but has a better bound than Enciphered-CBC. These two
constructions do not achieve security above the birthday limit (but rather achieve
security under the weakened assumption of unpredictability).

The idea of taking the sum of two CBC MACs originates from Algorithm 5
(and 6) of ISO/IEC 9797-1:1999. Algorithm 5 is the sum of two plain one-key
CBC MACs, which results in a two-key algorithm. Algorithm 6 is the sum of
two three-key CBC MACs, which results in a six-key algorithm. The reason be-
hind introducing these sum constructions was to thwart generic birthday attacks
(which are applicable to single-chain CBC MACs) and hence to increase security
against forgery attacks [21]. Algorithm 5 was shown to be vulnerable to a birth-
day attack (due to Joux et al. [20]) of O(2n/2) complexity. However, the security
of other sum constructions (such as Algorithm 6) remained to be studied; we
did not know whether or not other parallel instances of two CBC chains increase
security above the birthday bound. In this sense our results complement Joux
et al.’s attack [20].

Other Constructions. Some block-cipher-based MAC algorithms aimed for
parallelizability. These were PMAC [9], XOR MAC [3] and XECB [13]. The first
one has security only up to the birthday bound. The latter two utilizes nonce,
randomization, or state information.

Generic Approaches. There are some generic approaches to attaining beyond-
the-birthday-bound security. For example, one could combine the sum

2 construc-
tion [23] with Feistel network of six rounds [29]. This method was mentioned
in [17]. Unfortunately, such a construction would be extremely inefficient. The
double-length block cipher [24] based on tweakable block ciphers would be a
more efficient approach to this problem, but one would need to treat the key
input of the underlying block cipher like the data input, frequently updating the
key schedule.

3 Security Definitions and Proof Tools

In this section we arrange necessary preliminaries for the presentation of the
work. We give security definitions. We also introduce a system of notation, which
will be used throughout our analyses.

Adversaries and Resources. An adversary A is an oracle machine. An adver-
sary A has access to its oracle Q (·) and after interaction with the oracle outputs
a bit, 1 or 0. We write

AQ (·) = 1

to denote the event that A outputs 1 after interacting with Q (·).

370 K. Yasuda

We measure the resources of A in terms of time and query complexities.
In order to measure the running time of an adversary A, we fix a model of
computation. The running time of A includes the time to execute its overlying
experiment (game) and also the size of its description (code). In order to measure
the code size, we fix a method of encoding. The query complexity is measured
in terms of the number of queries made to the oracle and also in terms of the
maximum length of each query. The length of a query is measured in blocks (i.e.,
n bits), rather than in bits, and includes the length of its padding bits.

Random Permutations and Lazy Sampling. Let Perm(n) denote the set
of permutations on {0, 1}n. We say that π : {0, 1}n → {0, 1}n is a random
permutation if it is drawn uniformly at random from the set Perm(n). We write

π R←− Perm(n),

where R←− means uniformly random sampling.
We often perform lazy sampling for specifying a random permutation π. That

is, the description of π is initially undefined, and when the value π(x) becomes
necessary at some point in the game, the corresponding range point y is randomly
selected. We implicitly maintain two sets, Dom(π) and Rng(π), which keep the
record of already-defined domain points and that of range points, respectively.
Therefore, if x /∈ Dom(π), then we perform y R←− {0, 1}n \ Rng(π), which estab-
lishes y = π(x), adds x to the set Dom(π), and adds y to the set Rng(π).

Block Ciphers and Pseudo-Random Permutations (PRPs). Our build-
ing block is a block cipher E. A block cipher E takes a random key K from its
key space, and for each key K the specified function EK : {0, 1}n → {0, 1}n is a
permutation.

Informally, we say that a block cipher E is a (secure) pseudo-random permu-
tation (PRP) if it is indistinguishable from a random permutation π : {0, 1}n →
{0, 1}n. Specifically, we consider the advantage function

Advprp
E (A) := Pr

[
AEK(·) = 1

]− Pr
[
Aπ(·) = 1

]
,

and if this quantity is “small” for a class of adversaries, then we say that E is
a PRP. Here note that the first probability is defined over the random choice
of K, whereas the second probability is defined over the random choice of π (and
internal coin tosses of A, if any). We further define

Advprp
E (t, q,
) := max

A
Advprp

E (A),

where the max runs over all adversaries A whose running time is at most t,
making at most q queries to its oracle, each query being at most
 blocks. If
there is no computational primitives involved, then we omit the parameter t. If
the function accepts only fixed-length inputs, then we omit the parameter
.

The Sum of CBC MACs Is a Secure PRF 371

MACs and Pseudo-Random Functions (PRFs). Our goal is to construct a
pseudo-random function (PRF) that accepts varying-length messages. Any PRF
can be used as a secure MAC. Let FK : {0, 1}∗ → {0, 1}n be a keyed function.
Informally, F is a secure PRF if it is indistinguishable from a random function
R : {0, 1}∗ → {0, 1}n (drawn uniformly at random from the set of functions
mapping {0, 1}∗ to {0, 1}n).4 Precisely, we define

Advprf
F (A) := Pr

[
AFK(·) = 1

]− Pr
[
AR (·) = 1

]
.

We also define Advprf
F (t, q,
) in a similar way. Note that a random function

R : {0, 1}∗ → {0, 1}n can be also lazily sampled, as y R←− {0, 1}n for y = R (x).

4 Specifications of SUM-ECBC MAC Algorithm

In this section we give the complete description of our SUM-ECBC MAC algo-
rithm. The algorithm SUM-ECBC[E] : {0, 1}∗ → {0, 1}n employs an n-bit block
cipher E with four independent keys K1, K2, K3 and K4. The SUM-ECBC
algorithm takes as its input a message m ∈ {0, 1}∗ and produces an n-bit tag τ .

See Alg. 1 for the precise definition. In the definition, the SUM-ECBC algo-
rithm calls a subroutine CBC, which is described in Alg. 2. In the specifications

Algorithm 1. SUM-ECBC[E](m)
1: v ← CBC[EK1](m)
2: w ← CBC[EK3](m)
3: τ ← EK2(v)⊕ EK4(w)
4: return τ

Algorithm 2. CBC[EK](m)
1: m1 · · ·mr ← m‖10∗; v0 ← 0n

2: for i = 1 to r do
3: vi ← EK

(
vi−1 ⊕mi

)
4: end for
5: return vr

of the CBC algorithm, the notation m1 · · ·mr ← m‖10∗ means the padding and
decomposing operations. Namely, we first pad the message m with appending
bits 10 · · · 0 with the minimum number of zeros so that the length becomes a
multiple of n. We then decompose the padded message m‖10∗ into n-bit blocks
m1, . . . ,mr so that we have m1‖ · · · ‖mr = m‖10∗. The initial value v0 is set to
the zero string 0n = 0 · · · 0 ∈ {0, 1}n. The symbol ⊕ denotes the xor operation.
See also Fig. 1 for an illustration of the SUM-ECBC algorithm.
4 Strictly speaking, we can only define a random function R : {0, 1}�n → {0, 1}n rather

than R : {0, 1}∗ → {0, 1}n. This formality issue does not cause a serious problem
for the arguments in this paper.

372 K. Yasuda

Fig. 1. Our SUM-ECBC MAC algorithm using four block-cipher keys K1, K2, K3

and K4. A message m ∈ {0, 1}∗ is decomposed as m = m1‖ · · · ‖mr−1‖m̃r, and the
scheme utilizes the standard 10∗ padding method.

5 Security Proof of SUM-ECBC MAC Algorithm

The security analyses of our construction are interesting in that bounds of the
form O(22n/3) arise from multiple places in the proof. Roughly speaking, we
divide our proof into four cases. Out of the four, two cases are identical, which
leads to essentially three different cases. We give separate analyses to the three
cases, and each case yields an O(22n/3) bound.

5.1 From Computational Setting to Information-Theoretic Scenario

As usual, we begin with replacing the block ciphers EK1 , EK2 , EK3 and EK4 with
independent random permutations π1, π2, π3 and π4 : {0, 1}n → {0, 1}n, respec-
tively. We write SUM-ECBC[π] for the resulting scheme. A standard argument
shows the following result:

Lemma 1. We have

Advprf
SUM-ECBC[E](t, q,
) ≤ Advprf

SUM-ECBC[π](q,
) + 4 ·Advprp
E (t′,
q),

where the time complexity t′ is about the original running time t plus the time
to compute the block cipher E for
q times.

5.2 Main Theorem

Now we prove our main theorem. We have two different bounds. The first one
is of the form
4q3/22n. Although this bound is only up to the birthday limit

The Sum of CBC MACs Is a Secure PRF 373

in terms of
, it should be noted that
4/22n gives us much better quantitative
evaluation than the usual birthday bound of the form
2/2n. The second bound,
which is of the form
3q3/22n, is better than the first one and is beyond the
birthday limit. Unfortunately, the second bound is valid only for relatively short
messages,5 i.e.,
 ≤ 22n/5.

Theorem 1. We have

Advprf
SUM-ECBC[π](q,
) ≤

12
4q3

22n
.

Moreover, if
 ≤ 22n/5, then we have a better bound

Advprf
SUM-ECBC[π](q,
) ≤

40
3q3

22n
.

Proof. We first give an outline of the proof. The proof is divided into four dif-
ferent cases. Detailed analyses for each of the four cases will be given later in
Sect. 5.3, 5.4, 5.5 and 5.6, respectively.

Let A be an adversary that makes at most q queries, each query being at most

 blocks. The goal of A is to distinguish between the SUM-ECBC[π](·) oracle
and a truly random function R : {0, 1}∗ → {0, 1}n. Upon a query m ∈ {0, 1}∗,
we consider the code of SUM-ECBC[π](m) as described in Alg. 3. In the code,

Algorithm 3. Main
1: v ← CBC[π1](m)
2: w ← CBC[π3](m)
3: if v /∈ Dom(π2) and w /∈ Dom(π4) then
4: go to Case A (this computes τ and may set a bad flag)
5: end if
6: if v ∈ Dom(π2) and w /∈ Dom(π4) then
7: go to Case B (this computes τ and may set a bad flag)
8: end if
9: if v /∈ Dom(π2) and w ∈ Dom(π4) then

10: go to Case C (this computes τ and may set a bad flag)
11: end if
12: if v ∈ Dom(π2) and w ∈ Dom(π4) then
13: go to Case D (this always sets a bad flag and computes τ anyway)
14: end if
15: return τ

the random permutations π1 through π4 are lazily sampled. Depending on the
behavior right after a bad flag gets set, this code gives us either the simulation
of the SUM-ECBC[π](·) oracle or the random oracle R (·). In other words, we

5 When n = 64 we have 22n/5 = 225.6, which corresponds to about 388 MByte.

374 K. Yasuda

see that these two oracles behave exactly the same until a bad event occurs.
Therefore, by the fundamental lemma of game playing [6], we get

Advprf
SUM-ECBC[π](A) = Pr

[
ASUM-ECBC[π](·) = 1

]− Pr
[
AR (·) = 1

]
≤ Pr

[
A sets bad

]
.

Since we are working in an information-theoretic scenario, involving no computa-
tional primitives, we can assume that A is deterministic. Moreover, the adversary
A learns nothing from the values returned by the oracles, as the values are mere
random strings and do not help A set bad flags (until one of the flags gets set).
Therefore, we may further assume that A is non-adaptive. That is, we only need
to consider a fixed sequence of queries m(1), . . . ,m(q) output by A.

It amounts to computing the probabilities that the sequence m(1), . . . ,m(q)

sets bad flags. The probabilities will be given by the detailed analyses later, as
follows:

Case A. This case can be handled easily owing to the technique of fair sets
developed in [23]. The probability is at most 2q3/22n.

Case B. For this case we bound the probability by 2
2q3/22n.
Case C. This case is identical to Case B.
Case D. We obtain two different bounds for this case. One is 6
4q3/22n. The

other is 34
3q3/22n with the restriction
 ≤ 22n/5.

Finally we sum up the probabilities as

2q3

22n
+

2
2q3

22n
+

2
2q3

22n
+

6
4q3

22n
≤ 12
4q3

22n
, and

2q3

22n
+

2
2q3

22n
+

2
2q3

22n
+

34
3q3

22n
≤ 40
3q3

22n
,

as desired. ��

5.3 Detailed Analysis of Case A: v /∈ Dom(π2) and w /∈ Dom(π4)

We utilize the technique of fair sets [23] developed in the security proof of the
sum

2 construction π2(x)⊕π4(x). We perform the operation of sampling two range
points π2(v) and π4(w), as y R←− {0, 1}n \ Rng(π2) and z R←− {0, 1}n \ Rng(π4).
The proof amounts to computing the probability that y ⊕ z deviates from the
uniformly random distribution.

Lemma 2. After q queries, the probability that π2(v)⊕ π4(w) in Case A can be
distinguished from a truly random distribution is at most

2q3

22n
,

where q ≤ 2n−1.

The Sum of CBC MACs Is a Secure PRF 375

Algorithm 4. Case A
1: Y ← {0, 1}n \Rng(π2); Z ← {0, 1}n \ Rng(π4)
2: Choose a fair set U ⊂ Y × Z
3: (y, z) R←− Y × Z
4: if (y, z) �∈ U then

5: bad ← true (y, z) R←− U
6: end if
7: τ ← y ⊕ z
8: return τ

Proof. The proof is almost exactly the same as the one for Lucks’ sum
2 construc-

tion π2(x)⊕ π4(x) [23]. The fact that we have v �= w does not have much effect
on the computation of the probability. Specifically, we consider the simulation
of π2(v) ⊕ π4(w) as depicted in Alg. 4. The code without the boxed statement
corresponds with π2(v)⊕π4(w). The code with the boxed statement corresponds
with the random oracle R , because the set U is fair; that is, U is chosen so that
the number of pairs (y, z) ∈ U satisfying τ = y ⊕ z is the same for each value
τ ∈ {0, 1}n. In the code, we choose a fair set U as follows. Enumerate Rng(π2) as
{y1, . . . , yα} and Rng(π4) as {z1, . . . , zβ}. For each i and j such that 1 ≤ i ≤ α
and 1 ≤ j ≤ β we choose arbitrarily representatives (y′i, z

′
j) ∈ Y × Z such that

y′i ⊕ z′j = yi ⊕ zj. We then define

U ← Y × Z \
⋃
i,j

{(y′i, z′j)}.

We see that, for each value τ ∈ {0, 1}n, we have
∣∣{(y, z) ∈ U | y ⊕ z = τ}∣∣ =

2n − α− β, so U is indeed a fair set.
After q queries to the SUM-ECBC[π](·) oracle, the overall probability that a

bad event occurs becomes

Pr
[
bad

] ≤ q∑
i=1

∣∣(Y × Z) \ U ∣∣
|Y × Z|

=
q∑

i=1

αβ

(2n − α)(2n − β)

≤
q−1∑
i=0

i2

(2n − q)2

≤ 1
(2n − q)2

·
q−1∑
i=0

i2 ≤ 1
(2n−1)2

· q(q − 1)(2q − 1)
6

≤ 2q3

22n
,

where we used the condition q ≤ 2n−1. ��

376 K. Yasuda

5.4 Detailed Analysis of Case B: v ∈ Dom(π2) and w /∈ Dom(π4)

In this case a collision occurs at the input value of π2. The input value w of π4
is fresh, which launches the random sampling operation z R←− {0, 1}n \ Rng(π4),
so that z = π4(w). The SUM-ECBC MAC algorithm outputs the value y ⊕ z,
where y = π2(v) is an already-defined range point. The distribution y ⊕ z is
almost uniformly random, unless a bad event occurs. We aim at bounding the
probability that a collision occurs at the input of π2 and subsequently a bad
event occurs during the sampling operation of a range point for π4.

In order to evaluate the collision probability at the input of π2, we recall the
following results from previous work:

Lemma 3 (CBC Collision). For any two distinct messages m,m′ ∈ {0, 1}∗,
each being at most
 blocks, the collision probability

ε := Pr
[
CBC[π](m) = CBC[π](m′)

∣∣∣ π R←− Perm(n)
]

can be bounded as follows :

ε ≤ 4
2

2n
, or (1)

ε ≤ 2

2n

+
8
4

22n
. (2)

Note that we wrote CBC[π] to denote the CBC algorithm using a random per-
mutation π : {0, 1}n → {0, 1}n. The probability is defined over the choice of π.

Proof. A proof of the first bound (1) can be found in [8]. The second bound (2)
was shown by Bellare et al. in [5]. ��
We next examine the sampling operation of z. Note that the distribution y ⊕
z would be uniformly random if the sampling operation were z R←− {0, 1}n.
So we consider the simulation of π2(v) ⊕ π4(w) as described in Alg. 5. In the
code, the simulation of π4, which is part of SUM-ECBC[π], is with the boxed
statement, while the random oracle R corresponds with the code without the
boxed statement. We observe that for each sampling operation the bad flag gets
set with a probability

∣∣Rng(π4)
∣∣/2n.

Algorithm 5. Case B
1: y ← π2(v)
2: z R←− {0, 1}n
3: if z ∈ Rng(π4) then

4: bad ← true z R←− {0, 1}n \ Rng(π4)
5: end if
6: τ ← y ⊕ z
7: return τ

The Sum of CBC MACs Is a Secure PRF 377

We now compute the overall probability that the bad event occurs. Let
m(1), . . . ,m(q) be a sequence of messages. Then the probability that this se-
quence sets the bad flag can be bounded as

q∑
i=2

i−1∑
j=1

Pr
[
v(i) = v(j) ∧ bad

∣∣ π1, π2, π3, π4
R←− Perm(n)

]
=

q∑
i=2

i−1∑
j=1

Pr
[
v(i) = v(j)

∣∣ π1
R←− Perm(n)

] · Pr
[
bad

∣∣ v(i) = v(j), π4
R←− Perm(n)

]
≤

q∑
i=2

i−1∑
j=1

4
2

2n
·
∣∣Rng(π4)

∣∣
2n

≤
q∑

i=2

i−1∑
j=1

4
2

2n
· q

2n
≤ q2

2
· 4
2

2n
· q

2n
=

2
2q3

22n
,

where we wrote v(i) := CBC[π1]
(
m(i)

)
and v(j) := CBC[π1]

(
m(j)

)
. Note that we

used (1) for bounding the collision probability Pr
[
v(i) = v(j)

]
.

5.5 Detailed Analysis of Case C: v /∈ Dom(π2) and w ∈ Dom(π4)

This case is identical to Case B. We simply change the roles of (π1, π2) for the
ones of (π3, π4). Similarly to Case B, we obtain

2
2q3

22n

as an upper bound for the probability of the bad event in Case C.

5.6 Detailed Analysis of Case D: v ∈ Dom(π2) and w ∈ Dom(π4)

This case itself is a bad event, giving us the trivial code (see Alg. 6) that involves
no sampling. Let m(1), . . . ,m(q) be a sequence of messages. We would like to

Algorithm 6. Case D
1: bad ← true
2: y ← π2(v)
3: z ← π4(w)
4: τ ← y ⊕ z
5: return τ

compute the probability that at the i-th query m(i) we get v(i) ∈ Dom(π2) and
w(i) ∈ Dom(π4). The event implies that there exists some earlier queries m(j)

and m(k) (m and k may be equal) such that v(j) = v(i) and w(k) = w(i). We
compute

Pr
[
v(j) = v(i) ∧ w(k) = w(i)

∣∣ π1, π2, π3, π4
R←− Perm(n)

]
= Pr

[
v(j) = v(i)

∣∣ π1
R←− Perm(n)

] · [w(k) = w(i)
∣∣ π3

R←− Perm(n)
]
. (3)

378 K. Yasuda

On one hand, using (1), we obtain

(3) ≤
(

4
2

2n

)2

=
16
4

22n
.

We evaluate the overall probability by running indices i, j and k. We get
q∑

i=2

i−1∑
j=1

i−1∑
k=1

Pr
[
v(j) = v(i) ∧ w(k) = w(i)] ≤ q∑

i=2

i−1∑
j=1

i−1∑
k=1

16
4

22n

≤ q3

3
· 16
4

22n
≤ 6
4q3

22n
.

On the other hand, we also see that

(3) ≤
(

2

2n

+
8
4

22n

)2

=
4
2

22n
+

32
5

23n
+

64
8

24n
≤
3

22n
·
(

4 +
32
2

2n
+

64
5

22n

)
, (4)

using the bound (2). Now we make the assumption
 ≤ 22n/5. Then we are able
to proceed as

(4) ≤
3

22n
· (4 + 32 + 64) =

100
3

22n
.

For the overall probability in this case we compute
q∑

i=2

i−1∑
j=1

i−1∑
k=1

Pr
[
v(j) = v(i) ∧ w(k) = w(i)] ≤ q∑

i=2

i−1∑
j=1

i−1∑
k=1

100
3

22n

≤ q3

3
· 100
3

22n
≤ 34
3q3

22n
,

as desired.

6 Future Directions of Research

The research subject of block-cipher-based MACs has been much discussed, but
we believe the subject needs to be further studied from various aspects. In this
paper we have proven that SUM-ECBC, a rate-2 CBC MAC, is secure up to
a bound of O(22n/3). We consider that this work is the beginnings of research
on the high security of deterministic CBC MACs. We hope our results facilitate
further progress in this field and offer a range of possibilities for future work. So
we list some of them below.

Sum of Other Type of CBC MACs. We have shown that the sum of two
encrypted CBC MACs does indeed improve security. A question is whether the
same holds true for other types of CBC MAC. We notice that our proof tech-
niques can be easily adapted to Algorithm 6 of ISO/IEC 9797-1:1999. So Algo-
rithm 6 is also secure up to the O(22n/3) bound.6 On the other hand, our results

6 As mentioned in Sect. 2 already, Algorithm 6 requires six keys rather than four and
runs slightly slower than our SUM-ECBC algorithm.

The Sum of CBC MACs Is a Secure PRF 379

do not seem to be directly applicable to the sum of one-key CBC MACs such as
CMAC or GCBC. The problem of reducing the number of keys remains open.

Tightness of the Bound O(22n/3). Our SUM-ECBC achieves a bound of
O(22n/3), which implies that Joux et al.’s attack [20] is not immediately appli-
cable (Recall that the attack works at the complexity of O(2n/2)). We know
neither if an attack of O(22n/3) exists for SUM-ECBC, nor if our proof can be
improved to obtain a bound better than O(22n/3), leaving the tightness problem
open.

Better Constructions. Another question is whether we can come up with a
block-cipher-based construction whose security bound is better than O(22n/3). It
should be noted that increasing the number of parallel instances (triple, quadru-
ple, etc.) would improve the bound (cf. Lucks’ sum

d construction [23]). Unfor-
tunately it would become less and less efficient. The problem of breaking this
tradeoff line between security and efficiency remains open. In particular, we do
not know whether we can construct a rate-1 block-cipher-based MAC algorithm
that achieves security above the birthday bound.

Acknowledgments

The author is grateful to the anonymous reviewers for their insightful comments.
Also, the author would like to thank Yu Sasaki for helping understand the con-
tents of Joux et al.’s attack paper [20].

References

1. ANSI. Triple Data Encryption Algorithm modes of operation. X9.52:1998 (1998)
2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-

tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

3. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

4. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer,
Heidelberg (1994)

5. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer,
Heidelberg (2005)

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and se-
cure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 216–233. Springer, Heidelberg (1999)

380 K. Yasuda

8. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

9. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007)

11. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

12. Dodis, Y., Steinberger, J.P.: Message authentication codes from unpredictable
block ciphers. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS,
vol. 5677, pp. 267–285. Springer, Heidelberg (2009)

13. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

14. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for low-
resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

15. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327.
Springer, Heidelberg (2006)

16. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

17. Iwata, T., Yasuda, K.: HBS: A single-key mode of operation for deterministic
authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

18. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

19. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and second-preimage attacks
on CBC-like MACs. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 349–361. Springer, Heidelberg (2009)

20. Joux, A., Poupard, G., Stern, J.: New attacks against standardized MACs. In:
Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 170–181. Springer, Heidelberg
(2003)

21. JTC1. ISO/IEC 9797-1:1999 Information technology—Security techniques—
Message Authentication Codes (MACs)—Part 1: Mechanisms using a block cipher
(1999)

22. Kurosawa, K., Iwata, T.: TMAC: Two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

23. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

24. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS, vol. 5665, pp. 308–326.
Springer, Heidelberg (2009)

The Sum of CBC MACs Is a Secure PRF 381

25. Nandi, M.: Fast and secure CBC-type MAC algorithms. In: Dunkelman, O. (ed.)
FSE 2009. LNCS, vol. 5665, pp. 375–393. Springer, Heidelberg (2009)

26. NIST. Advanced Encryption Standard (AES). FIPS 197 (2001)
27. NIST. Recommendation for block cipher modes of operation: The CMAC mode

for authentication. SP 800-38B (2005)
28. NIST. Request for candidate algorithm nominations for a new cryptographic hash

algorithm (SHA-3) family. Federal Register Notice, November 2 (2007)
29. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin,

M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)
30. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. Cryptology 13(3),

315–338 (2000)
31. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash

functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

32. Satoh, A., Sugawara, T., Aoki, T.: High-speed pipelined hardware architecture for
Galois Counter Mode. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 118–129. Springer, Heidelberg (2007)

On Fast Verification of Hash Chains

Dae Hyun Yum1, Jin Seok Kim2, Pil Joong Lee1, and Sung Je Hong2

1 Information Security Lab, POSTECH, Republic of Korea
{dhyum,pjl}@postech.ac.kr

2 High Performance Computing Lab, POSTECH, Republic of Korea
{treasure,sjhong}@postech.ac.kr

Abstract. A hash chain H for a hash function hash(·) is a sequence of
hash values 〈xn, xn−1, . . . , x0〉, where x0 is a secret value, xi is generated
by xi = hash(xi−1) for 1 ≤ i ≤ n, and xn is a public value. Hash values of
H are disclosed gradually from xn−1 to x0. The correctness of a disclosed
hash value xi can be verified by checking the equation xn

?= hashn−i(xi).
To speed up the verification, Fischlin introduced a check-bit scheme at
CT-RSA 2004. The basic idea of the check-bit scheme is to output some
extra information cb, called a check-bit vector, in addition to the public
value xn, which allows each verifier to perform only a fraction of the
original work according to his or her own security level. We revisit the
Fischlin’s check-bit scheme and show that the length of the check-bit
vector cb can be reduced nearly by half. The reduced length of cb is
close to the theoretic lower bound.

Keywords: Hash chain, progressive verification, check-bit scheme.

1 Introduction

Hash chains have been used as an important cryptographic tool for various appli-
cations including payment systems [1,2], one-time password systems [3], multi-
cast authentication [4,5], secure routing [6], and on-line auctions [7]. Hash chains
make use of computation-effective hash functions that can be implemented even
in small mobile devices. Despite the computational efficiency of hash functions,
the performance improvement of hash chains is a challenging research topic for
chains of long length.

Researchers have studied algorithmic aspects of hash chains in two ways: effi-
cient generation and verification. A näıve generation algorithm of a hash chain is
to recompute each hash value from the secret value x0. That is, one can simply
calculate xn−i = hashn−i(x0) at time period i, which has the storage complexity
of O(1) but computation complexity of O(n). Another trivial generation algo-
rithm is to precompute and store all hash values in memory and output xn−i

at time period i by executing lookup operations. The storage complexity of
this generation algorithm is O(n). More sophisticated generation technique is
the so-called “fractal” generation algorithms [8,9,10,11,12] that have the storage
complexity of O(log n) and computation complexity of O(log n). Fractal genera-
tion algorithms store O(log n) intermediary hash values in advance and change

J. Pieprzyk (Ed.): CT-RSA 2010, LNCS 5985, pp. 382–396, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Fast Verification of Hash Chains 383

their values as time elapses. With amortization techniques, the computational
cost of O(log n) can be achieved.

While efficient generation of hash chains has drawn a lot of attention, there is
only a single work on the efficient verification of hash chains. At CT-RSA 2004,
Fischlin [13] introduced a check-bit scheme to speed up the verification by out-
putting a check-bit vector cb in addition to the public value.1 The check-bit
vector cb allows to improve the verification time when the verifier is presented
an allegedly correct chain value. For security bound T and ε on the adversarial
running time and success probability, the check-bit scheme allows to decide cor-
rectness after a fraction p of the original workload. Here, the original workload
is i hash function evaluations if xn−i is given. An interesting property is that
the security parameters T and ε can be chosen individually by any verifier, even
differently for each verification run. As the security parameters T and ε deter-
mine the fraction p = p(T, ε) of hash chain computations, the more liberal the
verifier chooses the security level the less work he or she has to carry out. In this
sense, the property is related to the notion of progressive verification [14].

We revisit the Fischlin’s check-bit scheme and show that the length of the
check-bit vector cb can be reduced nearly by half (with a minor modification).
While the original proof uses bounds and approximations, we try to compute
exact values with a combinatoric approach. The reduced length of cb is no more
than a factor of two away from the theoretic lower bound. In [13], Fischlin leaves
an open problem of providing other check-bit schemes with shorter check-bit
vectors with comparable simplicity. We answer affirmatively not by providing a
new scheme but by giving a new analysis.

2 Preliminaries

We review the terminology and definitions mainly from [13]. A hash chain H for
a cryptographic hash function hash(·) is a sequence of hash values 〈xn, . . . , x0〉,
where x0 is a seed or a randomly chosen value and xi is generated iteratively by
xi = hash(xi−1) for 1 ≤ i ≤ n. A single hash value xi is referred to as a link.
The beginning link x0 is a secret value and the end link xn is a public value. As
xn is known publicly, the length of H = 〈xn, xn−1, . . . , x0〉 is defined as n (not
including xn) or the number of links that are to be disclosed later. Hash values
of H are disclosed gradually from xn−1 to x0; at time period i, the link xn−i

is disclosed. Pictorially, we represent the hash chain H as (n + 1) points that
are equally spaced in a horizontal line as Fig. 1, where check bits, which will be
explained later, are also depicted.

In the most simple form, a hash chain can be described by two algorithms G
and V . The generation algorithm G simply chooses a random x0 and computes
the chain up to xn. The verification algorithm V takes as input xn and some
purported link x for time period i and checks that hashi(x) ?= xn.

1 Since construction with absolute work bound is trivial and not of much interest, we
focus on check-bit schemes with relative bound.

384 D.H. Yum et al.

Fig. 1. Hash chain

The basic generation and verification algorithms, for speeding up the
verification process, can be augmented to output some extra information. Al-
gorithm G, when generating the chain for a seed x0, repeatedly runs a determin-
istic selection algorithm S as subroutine for each hash function iteration. For
each such execution, for i = n − 1 down to 0, algorithm S produces a string
cbi (possibly the empty string ⊥), which is determined by the intermediate
value xn−i = hashn−i(x0), the time period number i, and the preceding strings
cbi+1, . . . , cbn−1. Fig. 1 will be helpful for understanding the relation between
links, time periods, and check bits. The check-bit vector cb is the concatenation
of cb0, cb1, . . . , cbn−1, i.e., cb = cb0‖cb1‖ · · · ‖cbn−1. The notations cb≥i and cb>i

are defined by cb≥i = cbi‖ · · · ‖cbn−1 and cb>i = cb≥i+1 for i ≤ n − 1 (where
cb>n−1 = ⊥).

The augmented verification algorithm V takes as input the end link xn, the
check-bit vector cb, a purported link x, and a time period i as well as T and ε.
The verification algorithm V verifies that x is the correct link for time period i;
for each hash function iteration in time period j (from j = i− 1 to j = 0), the
selection algorithm S(hashi−j(x), j, cb>j) is executed and the result is compared
to the given cbj . Two parameters T and ε represent the bounds on the adversarial
running time and success probability.

Definition 1. A check-bit scheme for parameter n is a triple (G,V ,S) of algo-
rithms (of which G is probabilistic) such that

Algorithm G
– picks a seed x0 according to some efficiently samplable distribution,
– computes xi = hash(xi−1) for i = 1, 2, . . . , n,
– computes cbi = S(xn−i, i, cb>i) for i = n− 1, . . . , 0,
– outputs (x0, xn, cb).

Algorithm V
– gets inputs xn, cb, x and a time period i as well as T and ε,
– repeats the following until i = 0 or halt:

• if cbi �= S(x, i, cb>i) then reject and stop
• else set i← i− 1 and x← hash(x)
• if x = xn then accept, else reject.

On Fast Verification of Hash Chains 385

Algorithm S
– takes x, i and cb>i as input,
– computes and returns cbi = S(x, i, cb>i).

In addition, the scheme is complete, i.e., the verifier never rejects a valid input
xn, cb, x and i, where x = xn−i has been produced by G.

To measure the running time T of an adversary A, only the hash function eval-
uations are counted. Formally, the adversary is given access to an oracle hash(·),
where generating correct images without querying the oracle is assumed to be
infeasible. Let ε (0 ≤ ε ≤ 1) denote a bound on the adversary’s success prob-
ability and p (0 ≤ p ≤ 1) denote a bound on the fraction of the original work
the verifier performs, at least if the position of the given link exceeds a certain
distance Δ from the end link. The offset Δ allows to overcome the problem of
verifying links within the given bound if the purported links are too close to the
end link, e.g., checking xn−1 with less than 50% of the work. It may depend on
the adversarial bounds T and ε.

We now define the following experiment for a check-bit scheme (G,V ,S) with
parameter n:

Experiment ExpA(T, ε, p,Δ):

– Algorithm G generates (x0, xn, cb).
– The adversary A gets as input (xn, cb). The adversary also gets access to

the hash oracle hash(·) and an oracle Release(·) which takes an integer j
as input and returns xn−j . Let r denote the maximum over all queries to
Release (where r = 0 if A has never queried the oracle).

– In addition to oracle queries, the adversary performs internal computations
and finally outputs (x, k), where 1 ≤ k ≤ n.

– The verifier V is invoked on (xn, cb, x, k, T, ε) and returns a decision after v
hash function evaluations.

Definition 2. We say that the adversary A wins experiment ExpA(T, ε, p,Δ) if
the following conditions are satisfied,

– A makes at most T hash function evaluations,
– A has queried the hash oracle about hashi(x) for all i = 0, 1, . . . , �kp� − 1,
– A has queried the oracle Release only about values smaller than k, i.e., if

k > r,
– if the position k exceeds the offset, i.e., if k ≥ Δ, and
– if the verifier does not reject within v ≤ kp hash function evaluations.

The mere purpose of letting the adversary query about the output (i.e., the
second condition) is to charge the adversary’s running time also for the time
to verify the output. A check-bit scheme is (T, ε, p,Δ)-verifiable if no adversary
running in time T can cause the verifier to perform a fraction p or more of the
work with probability more than ε. Here, the work refers to the number k of

386 D.H. Yum et al.

hash function evaluations required to verify the correct link xn−k at time period
k. As the security bound is chosen by the verifier, p and Δ may be functions of
the security parameters T and ε.

Definition 3. A check-bit scheme (G, V, S) with parameter n is (T, ε, p,Δ)-
verifiable if, for any adversary A running in time at most T , the probability
of A winning experiment ExpA(T, ε, p,Δ) is at most ε. The scheme is (p,Δ)-
verifiable if, for any adversary A and any T , ε, the probability of A winning
experiment ExpA(T, ε, p,Δ) is at most ε.

3 Fischlin’s Check-Bit Scheme

For the construction, the time period number is also input to the hash function.
Let hash′(·) be a hash function and �·� be some fixed-length encoding such that
the encoding is one-to-one for integers 0, 1, . . . , n. Then a hash function hash(·)
for inputs xi = �i�‖x′

i is defined by hash(xi) = �i+1�‖hash′(�i�‖x′
i). For random

x′
0, the beginning link is set as x0 = �0�‖x′

0 and the chain is derived by iterating
hash(·) on x0. The verifier, when presented a link xi = �i�‖x′

i, should check that i
matches the claimed time period. If hash′(·) is an appropriate hash function, the
least significant bits of the chain links are still well distributed. Let x|b denote
the b least significant bits of a string x. Let [i, j] denote a segment of consecutive
points at i, i + 1, . . . , j and |[i, j]| = j − i + 1 be the length of [i, j].

The idea of Fischlin’s check-bit scheme is to increase the density of check bits
towards the end link of the chain as the workload of the verifier is in proportion
to the distance to the end link. The hash chain of length n is first partitioned
into I = log2 n intervals of length 1, 2, 22, . . . , n

2 , where n is assumed to be a
power of two. For
 = 1, 2, . . . , I, each interval I� = [2�−1, 2� − 1] ranges from
2�−1 to 2� − 1 (and the point n is added to interval II). In interval II , the
selection algorithm Sb,B outputs the b least significant bits of the intermediate
links at positions jn

B for j ∈ { 1
2B, 1

2B+1, . . . , B−1}, where B is an even number
determining the density of the check bits. For ease of implementation, B should
be a power of two. In interval II−1, Sb,B outputs the b least significant bits of
links at positions jn

2B , i.e., the density becomes double. In general, Sb,B outputs

the b least significant bits of xn−i for i ∈ I� if i = jn
2I−�B

= j2�

B (with appropriate
rounding). Fischlin’s check-bit scheme is given as follows.

Construction 4 (Fischlin). The check-bit scheme (Gb,B ,Vb,B,Sb,B) with pa-
rameter n > B is described by the following selection algorithm Sb,B(x, i):
Algorithm Sb,B(x, i)

if (i ∈ I�) ∧ (i = � j2�

B �) for j ∈ { 1
2B, 1

2B + 1, . . . , B − 1} then
output cbi = x|b

else
output cbi = ⊥

end if

On Fast Verification of Hash Chains 387

For each interval I� such that |I�| = 2�−1 ≥ B
2 , the variable j runs through B

2
values and x|b is output for such j. The number of check bits in these intervals is
1
2bB ·(I−"log2 B#+1). For the remaining intervals with
 < log2 B, the selection
algorithm always outputs x|b and thus (at most) bB bits are output. The total
length of a check-bit vector is bound by:

1
2
bB · (I − "log2 B#+ 1) + bB =

1
2
bB · (log2 n− "log2 B#+ 3) .

If B is a power of two, then 1
2bB bits are needed for intervals with
 < log2 B

and the total length of a check-bit vector is:

1
2
bB · (I − log2 B + 1) +

1
2
bB =

1
2
bB · (log2 n− log2 B + 2) .

The Fischlin’s check-bit scheme in Construction 4 can also be rewritten as fol-
lows.

Construction 5. The check-bit scheme (Gb,B ,Vb,B,Sb,B) with parameter n >
B is described by the following selection algorithm Sb,B(x, i), where
min =
"log2 B#:
Algorithm Sb,B(x, i)

Find
 such that i ∈ I�

if
 ≥
min then
if i = � j2�

B � for j ∈ { 1
2B, 1

2B + 1, . . . , B − 1} then
output cbi = x|b

else
output cbi = ⊥

end if
else

output cbi = x|b
end if

The security of the Fischlin’s check-bit scheme is based on two assumptions.
The first assumption basically says that finding pre-images for the given chain
is impossible at least within a given bound like T0 ≈ 260 and ε0 ≈ 2−40. In
particular, giving away some bits of pre-images of chain values must not facilitate
the search. The values T0, ε0 are large bounds for adequate security against
inverters and collision-finders of the underlying hash function hash(·). They are
determined by the choice of hash(·) and are usually fixed.

Assumption 6. Let A be an adversary running in time at most T0 against the
scheme (Gb,B ,Vb,B,Sb,B) in Construction 4. Then, the probability of A winning
experiment ExpA(T0, ε0, 1, 1), i.e., the experiment with bounds p = 1 and Δ = 1,
is at most ε0.

Note that the bound p = 1 implies that the verifier can check the complete chain
and, in particular, also compares the final value to the original end link. The
assumption therefore says that the adversary is not able to fine (x, k) within

388 D.H. Yum et al.

the success bound (T0, ε0) such that xn = hashk(x) and x has not been released
before. Although the adversary may not be able to find a pre-image of the chain’s
end link, it might still be possible to find a related pre-image such that large
parts of the check-bit vector coincide. The following assumption rules this out.

Assumption 7. For any two seeds x0, y0 such that hashi(x0) �= hashi(y0) for all
i = 0, 1, . . . , n, we assume that the check-bit vectors cb(x0) and cb(y0) generated
by Sb,B are uniformly and independently distributed strings of the corresponding
length (where the probability is over the choice of the hash function).

Both assumptions are satisfied if hash(·) is for example modeled as a random or-
acle [15]. Fischlin showed that Construction 4 is a secure check-bit scheme under
the stated assumptions. Note that in Theorem 8, we describe p as a function of
w instead of a function of (T, ε) merely for notational convenience.

Theorem 8 (Fischlin). Under Assumption 6 (for parameters T0, ε0) and As-
sumption 7, the check-bit scheme (Gb,B,Vb,B,Sb,B) in Construction 4 is a (p,Δ)-
verifiable check-bit scheme for

p(w) =

{
2w+2b

bB if 0 ≤ w ≤ bB−2b
2

1 otherwise
where w = log2 T + log2

1
ε− ε0

,

Δ = 2log2 B−1

if T ≤ T0 and ε0 ≤ ε (and p = 1 otherwise). For chains of length n, the check-bit
vector cb has at most

1
2
bB · (log2 n− "log2 B#+ 3)

bits. If B is a power of two, the check-bit vector cb has

1
2
bB · (log2 n− log2 B + 2)

bits.

For example, Theorem 8 says that Construction 4 with parameters n = 1024,
B = 128 (= 27), and b = 2 requires p ≈ 48.44%, Δ = 64 and |cb| = 640 for
T = 240, ε = 2−20 and ε0 ≈ 0.

4 Check-Bit Scheme with Reduced Check-Bit Vector

If we set b = 1 (for simplifying the explanation), Fischlin’s scheme (i.e., Construc-
tion 5) inserts B

2 check bits equidistantly into each interval I� = [2�−1, 2� − 1]
for
 ≥
min. The check bits of I� is twice as dense as those of I�+1 because
|I�+1| = 2� = 2 · 2�−1 = 2|I�|. In contrast, |I�| = 2�−1 check bits are inserted
into interval I� for
 <
min and the density is uniform in [1, Δ].

On Fast Verification of Hash Chains 389

As we intend to reduce the required number of the check bits, we have to insert
fewer check bits into each interval. With a tight analysis of Theorem 8, we find
that the check bits of I� for
 ≥
min can actually be reduced by half without
degrading the security level. In other words, the original proof of Theorem 8
underestimates the performance of the check-bit scheme. However, if we reduce
the check bits of I� for
 ≥
min by half, positions near Δ becomes problematic
because the density is uniform in [1, Δ]. A possible solution is to make the density
in I� twice of that in I�+1 for [1, Δ] just as for [Δ,n]. Our choice is to increase
the density of [Δ

4 , Δ] only. Specifically, when b = 1, we insert B
2 check bits into

I�min−1 and another B
2 check bits into I�min−2. The interval lengths of I�min−1

and I�min−2 are less than B
2 and therefore |cbi| for i ∈ I�min−1 and i ∈ I�min−2

should be increased (according to the interval length). Similarly, one may also
increase the density of [1, Δ

4] but this implies that |cbi| in [1, Δ
4] becomes large

and a considerable amount of information on xi could be leaked. We put no check
bits near the end link, i.e., cbi = ⊥ for i < 2�min−2 because benefits of inserting
check bits in [1, Δ

4] are not very significant. The following Construction 9 is a
variant of Construction 5 with above-mentioned modifications.

Construction 9. The check-bit scheme (Gb,B ,Vb,B,Sb,B) with parameter n >
B is described by the following selection algorithm Sb,B(x, i), where
min =
"log2 B#:
Algorithm Sb,B(x, i)

Find
 such that i ∈ I�

if
 ≥
min then
if i = � j2�

B � for j ∈ { 1
2B, 1

2B + 1, . . . , B − 1} then
output cbi = x|b

else
output cbi = ⊥

end if
else if
 =
min − 1 then

output cbi = x|2b

else if
 =
min − 2 then
output cbi = x|4b

else
output cbi = ⊥

end if

For each interval I� for
 ≥
min, the selection algorithm of Construction 9 is
exactly the same as that of Construction 5, which requires 1

2bB ·(I−"log2 B#+1)
check bits. For I�min−1 and I�min−2, the selection algorithm outputs (at most)
2bB bits. Therefore, the total length of a check-bit vector is bound by:

1
2
bB · (I − "log2 B#+ 1) + 2bB =

1
2
bB · (log2 n− "log2 B#+ 5) .

If B is a power of two, we have:

1
2
bB · (I − log2 B + 1) + bB =

1
2
bB · (log2 n− log2 B + 3) .

390 D.H. Yum et al.

In Theorem 10, we show that Construction 9 requires a reduced check-bit vec-
tor for given security levels. Theorem 10 says that for example, Construction 9
with parameters n = 1024, B = 128 (= 27) and b = 1 requires p ≈ 48.39%,
Δ = 64 and |cb| = 384 for T = 240, ε = 2−20 and ε0 ≈ 0. Recall that Theorem 8
requires p ≈ 48.44% and |cb| = 640. In this example, while maintaining the
security level and verification efficiency, b = 1 instead of b = 2 can be used and
thus only half number of check bits are inserted into I� for
 ≥
min. Although
Construction 9 uses more check bits for the segment [1, Δ], this entails relatively
small overhead because Δ is usually small. Note also that the lower bound of
Theorem 13 in Appendix A requires |cb| ≥ 210. Thus, we are (practically speak-
ing) no more than a factor of two away from the optimal solution in this case,
which is sometimes called “almost optimal” [8].

Theorem 10. Under Assumption 6 and Assumption 7, the check-bit scheme
(Gb,B ,Vb,B,Sb,B) in Construction 9 is a (p,Δ)-verifiable check-bit scheme for

p(w) =

⎧⎪⎨⎪⎩
2w

2w+bB if 0 ≤ w ≤ bB
2

1− bB
4w if bB

2 ≤ w ≤ bB

1 otherwise
where w = log2 T + log2

1
ε− ε0

,

Δ = 2�log2 B�−1

if T ≤ T0 and ε0 ≤ ε (and p = 1 otherwise). For chains of length n, the check-bit
vector cb has at most

1
2
bB · (log2 n− "log2 B#+ 5)

bits. If B is a power of two, the check-bit vector cb has

1
2
bB · (log2 n− log2 B + 3)

bits.

Before giving the proof, we draw a brief comparison between Theorem 8 and
Theorem 10. Let p1(·) denote p(·) of Theorem 8 and p2(·) denote p(·) of Theo-
rem 10. We use the approximation of p1(w) = 2w+2b

bB ≈ 2w
bB .

p1(w) ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if w = 0
0.25 if w = 1

8bB

0.5 if w = 1
4bB

1 if w = 1
2bB

1 if w > 1
2bB

, p2(w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if w = 0
0.25 if w = 1

6bB

0.5 if w = 1
2bB

0.75 if w = bB

1 if w > bB

(1)

From Eq. (1), one can see that p1(w) takes 0 ∼ 1 for 0 ≤ w ≤ 1
2bB and p2(w)

takes 0 ∼ 1 for 0 ≤ w ≤ bB. In this sense, bB of p2(w) can be reduced by half for
given security levels, which results in the reduction of check bits in intervals I�

On Fast Verification of Hash Chains 391

Fig. 2. Case I

for
 ≥
min. An interesting fact on p2(w) is that it does not take values between
0.75 and 1, i.e., p2(w) takes 0 ∼ 1 − 1

22 as well as 1. This is because we do not
put check bits in I� for
 <
min − 2. If additional bB check bits are inserted
in each interval I�min−i for 2 < i ≤ j, then p2(w) can take 0 ∼ 1− 1

2j as well as 1.

Proof. Let A be an adversary that runs at most T steps and tries to come
up with (x, τ) for Δ ≤ τ ≤ n which can pass the verification test with a non-
negligible probability ε. We show how to set the parameter p to bound the
adversary’s success probability below the given ε.

To check the validity of A’s output (x, τ), i.e., a link x at time period τ ,
verifier computes and compares cbi for τ − pτ ≤ i < τ . We define a function
F(τ, p) = [τ − pτ, τ] for τ ∈ N and 0 ≤ p ≤ 1 and let #[i, j] be the number of
check bits in the segment [i, j]. If #F(τ, p) ≥ w = log2 T +log2

1
ε−ε0

, the success
probability of the adversary A is below ε because A can compute at most T
hash function evaluations. For given w, our goal is to find the smallest p such
that #F(τ, p) ≥ w where Δ ≤ τ ≤ n. We assume that B is a power of two for
simplicity’s sake, which gives
min = log2 B. If we set Δ = 2log2 B−1 = B

2 , we
have Δ = 2�min−1 and I�min = [2�min−1, 2�min − 1] = [Δ, 2Δ− 1].

The proof consists of two cases of 0 ≤ w ≤ bB
2 and bB

2 ≤ w ≤ bB with
T ≤ T0 and ε0 ≤ ε; other cases are trivial. Let q be q = 1 − p. As each interval
I� = [2�−1, 2� − 1] for
 ≥
min − 2 contains bB

2 check bits, 0 ≤ w ≤ bB
2 implies

0 ≤ p ≤ 1
2 and bB

2 ≤ w ≤ bB implies 1
2 ≤ p ≤ 3

4 .

Case I: 0 ≤ w ≤ bB
2 (0 ≤ p ≤ 1

2 and 1
2 ≤ q ≤ 1)

First, we consider #F(τ, p) for τ ∈ I� for
min + 1 ≤
 ≤ I, where I = log2 n.
Let τ ′ be such that F(τ ′, p) = [2�−1, τ ′] or τ ′ − pτ ′ = 2�−1 in Fig. 2–(a). If τ ′

moves λ points to the right (but still τ ′ + λ ∈ I�) as in Fig. 2–(b), we have

392 D.H. Yum et al.

#F(τ ′, p) ≤ #F(τ ′ + λ, p) (2)

because the density in I� is uniform and τ ′ < τ ′ + λ.
If τ ′ moves λ points to the left (but still τ ′−λ ∈ I�) as in Fig. 2–(c), we have

F(τ ′−λ, p) = [2�−1− qλ, τ ′−λ] from τ ′−λ−p(τ ′−λ) = (τ ′−pτ ′)− (1−p)λ =
2�−1 − qλ. When compared with #F(τ ′, p), #F(τ ′ − λ, p) loses #[τ ′ − λ, τ ′]
in I� and gains #[2�−1 − qλ, 2�−1] in I�−1. Here, the relation #[τ ′ − λ, τ ′] ≤
#[2�−1 − qλ, 2�−1] holds, because the density in I�−1 is the double of that in I�

and q satisfies 1
2 ≤ q ≤ 1. Therefore, we have

#F(τ ′, p) ≤ #F(τ ′ − λ, p). (3)

From Eq. (2) and Eq. (3), we know that #F(τ ′, p) ≤ #F(τ, p) for τ ∈ I�.
Similarly, if we choose τ ′′ ∈ I�−1 such that F(τ ′′, p) = [2�−2, τ ′′] or τ ′′ −

pτ ′′ = 2�−2 in Fig. 2–(d), we have #F(τ ′′, p) ≤ #F(τ, p) for τ ∈ I�−1. Let’s
compare #F(τ ′, p) with #F(τ ′′, p). From τ ′ − pτ ′ = 2�−1 and τ ′′ − pτ ′′ = 2�−2,
we get τ ′ = 1

q 2�−1 and τ ′′ = 1
q 2�−2 that give |F(τ ′, p)| = pτ ′ = p

q 2�−1 and
|F(τ ′′, p)| = pτ ′′ = p

q 2�−2. As the the density in I�−1 is the double of that in I�,
we have

#F(τ ′, p) = #F(τ ′′, p). (4)

From Eq. (2), Eq. (3) and Eq. (4), we can see that #F(τ ′, p) ≤ #F(τ, p) for
Δ ≤ τ ≤ n.

Now, we only have to find p such that #F(τ ′, p) ≥ w for τ ′ = 1
q 2�−1. As bB

2

check bits are inserted into I� and w satisfies 0 ≤ w ≤ bB
2 , we choose p from

Fig. 2–(a) as follows.

p =
w
bB
2
|I�|

2�−1 + w
bB
2
|I�| =

2w
bB 2�−1

2�−1 + 2w
bB 2�−1

=
2w

bB + 2w
(5)

Theorem 10 for 0 ≤ w ≤ bB
2 follows from Eq. (5).

Case II:
bB
2 ≤ w ≤ bB (1

2 ≤ p ≤ 3
4 and 1

4 ≤ q ≤ 1
2)

As before, we first consider #F(τ, p) for τ ∈ I� for
min + 1 ≤
 ≤ I. Let τ ′ be
such that F(τ ′, p) = [2�−2, τ ′] or τ ′ − pτ ′ = 2�−2 in Fig. 3–(a). If τ ′ moves λ
points to the right (but still τ ′ +λ ∈ I�) as in Fig. 3–(b), we have F(τ ′ +λ, p) =
[2�−2 + qλ, τ ′ + λ] from τ ′ + λ− p(τ ′ + λ) = (τ ′ − pτ ′) + (1 − p)λ = 2�−2 + qλ.
When compared with #F(τ ′, p), #F(τ ′ + λ, p) loses #[2�−2, 2�−2 + qλ] in I�−1
and gains #[τ ′, τ ′ +λ] in I�. Here, the relation #[2�−2, 2�−2 + qλ] ≤ #[τ ′, τ ′ +λ]
holds, because the density in I�−1 is the double of that in I� and q satisfies
1
4 ≤ q ≤ 1

2 . Therefore, we have

#F(τ ′, p) ≤ #F(τ ′ + λ, p). (6)

On Fast Verification of Hash Chains 393

Fig. 3. Case II

If τ ′ moves λ points to the left (but still τ ′−λ ∈ I�) as in Fig. 3–(c), we have
F(τ ′−λ, p) = [2�−2− qλ, τ ′−λ] from τ ′−λ−p(τ ′−λ) = (τ ′−pτ ′)− (1−p)λ =
2�−2−qλ. When compared with #F(τ ′, p), #F(τ ′−λ, p) gains #[2�−2−qλ, 2�−2]
in I�−2 and loses #[τ ′ − λ, τ ′] in I�. Here, the relation #[2�−2 − qλ, 2�−2] ≥
#[τ ′ − λ, τ ′] holds, because the density in I�−2 is the quadruple of that in I�

and q satisfies 1
4 ≤ q ≤ 1

2 . Therefore, we have

#F(τ ′, p) ≤ #F(τ ′ + λ, p). (7)

From Eq. (6) and Eq. (7), we know that #F(τ ′, p) ≤ #F(τ, p) for τ ∈ I�.
Similarly, if we choose τ ′′ ∈ I�−1 such that F(τ ′′, p) = [2�−3, τ ′′] or τ ′′−pτ ′′ =

2�−3 in Fig. 3–(d), we have #F(τ ′′, p) ≤ #F(τ, p) for τ ∈ I�−1. Let’s compare
#F(τ ′, p) with #F(τ ′′, p). From τ ′ − pτ ′ = 2�−2 and τ ′′ − pτ ′′ = 2�−3, we get
τ ′ = 1

q 2�−2 and τ ′′ = 1
q 2�−3. Then, it follows that

|F(τ ′, p)| = pτ ′ =
p

q
2�−2 = 2�−2 +

p− q

q
2�−2 = |I�−1|+ p− q

q
2�−2 and

|F(τ ′′, p)| = pτ ′′ =
p

q
2�−3 = 2�−3 +

p− q

q
2�−3 = |I�−2|+ p− q

q
2�−3.

As #I� = #I�−1 = #I�−2 = bB
2 , we have

#F(τ ′, p) = #I�−1 +
p−q

q 2�−2

2�−1 ·#I� =
bB

2

(
1 +

p− q

2q

)
and

#F(τ ′′, p) = #I�−2 +
p−q

q 2�−3

2�−2 ·#I�−1 =
bB

2

(
1 +

p− q

2q

)
,

which gives
#F(τ ′, p) = #F(τ ′′, p). (8)

394 D.H. Yum et al.

From Eq. (6), Eq. (7) and Eq. (8), we can see that #F(τ ′, p) ≤ #F(τ, p) for
Δ ≤ τ ≤ n.

Now, we find p such that #F(τ ′, p) ≥ w for τ ′ = 1
q 2�−2. From #I�−1 = #I� =

bB
2 and bB

2 ≤ w ≤ bB, we can compute p of Fig. 3–(a) as follows.

p =
|I�−1|+ w− bB

2
bB
2
|I�|

2�−1 + w− bB
2

bB
2
|I�|

=
2�−2 + 2w−bB

bB 2�−1

2�−1 + 2w−bB
bB 2�−1

=
1 + 4w−2bB

bB

2 + 4w−2bB
bB

= 1− bB

4w
(9)

Theorem 10 for bB
2 ≤ w ≤ bB follows from Eq. (9). Q.E.D. �

Acknowledgements

Dae Hyun Yum and Pil Joong Lee were supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education, Science and Technology (2009-0075147) and the Brain
Korea 21 Project. Jin Seok Kim and Sung Je Hong were supported by the MKE
(The Ministry of Knowledge Economy), Korea, under the HNRC (Home Network
Research Center) – ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry Promotion Agency)
NIPA-2009-C1090-0902-0035.

References

1. Anderson, R.J., Manifavas, C., Sutherland, C.: Netcard - a practical electronic-cash
system. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 49–57.
Springer, Heidelberg (1997)

2. Rivest, R.L., Shamir, A.: Payword and micromint: Two simple micropayment
schemes. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87.
Springer, Heidelberg (1997)

3. Haller, N.: The s/key one-time password system. RFC 1760, Internet Engineering
Task Force (1995)

4. Perrig, A., Canetti, R., Song, D.X., Tygar, J.D.: Efficient and secure source au-
thentication for multicast. In: NDSS 2001, The Internet Society (2001)

5. Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient authentication and sign-
ing of multicast streams over lossy channels. In: IEEE Symposium on Security and
Privacy, pp. 56–73. IEEE Computer Society, Los Alamitos (2000)

6. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A secure on-demand routing protocol
for ad hoc networks. Wireless Networks 11(1-2), 21–38 (2005)

7. Stubblebine, S.G., Syverson, P.F.: Fair on-line auctions without special trusted
parties. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 230–240. Springer,
Heidelberg (1999)

8. Coppersmith, D., Jakobsson, M.: Almost optimal hash sequence traversal. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 102–119. Springer, Heidelberg (2003)

9. Jakobsson, M.: Fractal hash sequence representation and traversal. In: IEEE In-
ternational Symposium on Information Theory, pp. 437–444. IEEE, Los Alamitos
(2002)

On Fast Verification of Hash Chains 395

10. Kim, S.R.: Improved scalable hash chain traversal. In: Zhou, J., Yung, M., Han,
Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 86–95. Springer, Heidelberg (2003)

11. Sella, Y.: On the computation-storage trade-offs of hash chain traversal. In: Wright,
R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 270–285. Springer, Heidelberg (2003)

12. Yum, D.H., Seo, J.W., Eom, S., Lee, P.J.: Single-layer fractal hash chain traversal
with almost optimal complexity. In: Fischlin, M. (ed.) Topics in Cryptology – CT-
RSA 2009. LNCS, vol. 5473, pp. 325–339. Springer, Heidelberg (2009)

13. Fischlin, M.: Fast verification of hash chains. In: Okamoto, T. (ed.) CT-RSA 2004.
LNCS, vol. 2964, pp. 339–352. Springer, Heidelberg (2004)

14. Fischlin, M.: Progressive verification: The case of message authentication. In:
Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 416–429.
Springer, Heidelberg (2003)

15. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

396 D.H. Yum et al.

Appendix

A On Lower Bound

We briefly review Fischlin’s theoretic lower bound for position-driven check-bit
schemes, to which all known check-bit schemes belong, and give a simple remark.

Definition 11. Let (G,V ,S) be a check-bit scheme (for parameter n). Algorithm
S is position-driven if for any two seeds x0, x′

0, we have |cbi(x0)| = |cbi(x′
0)|.

Assumption 12. Let (G,V ,S) be a check-bit scheme for parameter n. Then,
for any i, we assume that for random x0 and x′

0, the probability that cbi(x0) =
cbi(x′

0) is at least 2min(|cbi(x0)|,|cbi(x′
0)|), where the probability is over the choices

of x0 and x′
0.

Let n be a power of 1/q where q = p − 1 and α� be defined by α0 = 0 and
α� = qI−� for I = log1/q n and
 ≥ 1. For
 = 1, . . . , I, define the
-th interval Î�

to be a segment [α�−1n+1, α�n]. For a seed x0 chosen by G, let c� be the number
of check-bit positions in the interval Î�. Fischlin [13] proved the following lower
bound for position-driven check-bit schemes.

Theorem 13 (Fischlin). Let (G,V ,S) be a check-bit scheme with parameter
n, where S is a position-driven selection algorithm. Assume that Assumption 12
holds and the computation of a chain of length n requires at most hn hash
function evaluations. If (G,V ,S) is a (T, ε, p,Δ)-verifiable check-bit scheme, the
length of the check-bit vector is given by

|cb| =
I∑

�=�log1/(1−p) Δ�
c� , where c� ≥ log2 T − log2 hn− log2 ln

1
1− ε

. (10)

We observe that Fischlin’s proof of Theorem 13 actually allows log2 hn to be
replaced by log2 h|Î�| in Eq. (10). (We do not go into details because this is
trivial if one reads Fischlin’s proof in [13].) Therefore, we can obtain a little
tighter bound as

|cb| =
I∑

�=�log1/(1−p) Δ�
c� , where c� ≥ log2 T− log2 h|Î�|− log2 ln

1
1− ε

. (11)

With respect to our example (i.e., T = 240, ε = 2−20, p = 50%, Δ = 64 and
h = 1), a check-bit vector of approximately 210 bits is required from the bound
of Eq. (11). Recall that Construction 9 requires |cb| = 384 bits. However, if only
the case of p = 50% is considered, check bits of I�min−2 in Construction 9 can be
removed in this example2 and the length of the check-bit vector can be reduced
to |cb| = 384− 64 = 320 bits.
2 In this example, we have F(Δ, 1

2
)∩I�min−2 = φ where F(·, ·) is defined in the proof

of Theorem 10.

Author Index

Aranha, Diego F. 89

Batina, Lejla 221
Bhasin, Shivam 195
Bogdanov, Andrey 235

Canard, Sébastien 179
Cho, Joo Yeon 302
Coron, Jean-Sébastien 208

Danger, Jean-Luc 195
Deng, Robert H. 132
Ducas, Léo 148

Eisenbarth, Thomas 235

Fiore, Dario 165
Fischlin, Marc 268

Gennaro, Rosario 165
Gierlichs, Benedikt 221
Guilley, Sylvain 195

Hanaoka, Goichiro 284
Hankerson, Darrel 89
Hermans, Jens 73
Hermelin, Miia 318
Hong, Sung Je 382
Huang, Qiong 119

Jambert, Amandine 179
Jiang, Shaoquan 57

Kim, Jin Seok 382
Kou, Weidong 132
Küpçü, Alptekin 252

Lai, Junzuo 132
Lee, Pil Joong 382
Lehmann, Anja 268
Leurent, Gaëtan 334
Lin, Dongdai 106

Liu, Shengli 132
López, Julio 89
Lysyanskaya, Anna 252

Maitra, Subhamoy 26
Mendel, Florian 350

Naccache, David 208
Nyberg, Kaisa 318

Ohta, Kazuo 284

Paar, Christof 235
Preneel, Bart 1, 73, 221

Rechberger, Christian 350

Sakiyama, Kazuo 284
Santoso, Bagus 284
Sarkar, Santanu 26
Sauvage, Laurent 195
Schläffer, Martin 350
Smart, Nigel P. 15

Tan, Chik How 119
Thomsen, Søren S. 350
Tibouchi, Mehdi 208

Verbauwhede, Ingrid 221
Vercauteren, Frederik 73

Wagner, Daniel 268
Wang, Huaxiong 57
Wienecke, Malte 235
Wong, Duncan S. 119

Xu, Lei 106

Yang, Guomin 119
Yasuda, Kan 366
Yilek, Scott 41
Yum, Dae Hyun 382

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talk
	The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3 Competition
	Early History and Definitions
	Generic Analysis and Design
	Brute Force Attacks
	Iterated Hash Functions

	Hash Function Constructions
	Hash Functions Based on Block Ciphers
	Hash Functions Based on Arithmetic Primitives
	Dedicated Hash Functions

	The NIST SHA-3 Competition
	Concluding Remarks
	References

	Public-Key Cryptography
	Errors Matter: Breaking RSA-Based PIN Encryption with Thirty Ciphertext Validity Queries
	Introduction
	PIN Encryption Method
	The ``Attack''
	Experimental Results

	Practical Attack Considerations
	Is the Oracle Practical?
	Can One Obtain This Many Queries?

	Conclusion
	References

	Efficient CRT-RSA Decryption for Small Encryption Exponents
	Introduction
	Our RSA Key Generation Algorithm
	Efficiency of Decryption Process
	Security Analysis
	Examples and Particulars of Implementation for Key Generation

	Our CRT-RSA Key Generation Algorithm
	Efficiency of Decryption Process
	Security Analysis
	Examples and Particulars of Implementation for Key Generation

	Conclusion
	References
	Appendix

	Resettable Public-Key Encryption: How to Encrypt on a Virtual Machine
	Introduction
	Preliminaries
	Security Definition
	Achieving IND-RA Security
	References
	Appendix

	Plaintext-Awareness of Hybrid Encryption
	Introduction
	Related Works
	Our Contribution

	Preliminaries
	Diffie-Hellman Knowledge Assumption
	Simulatable Random Variable
	Hybrid Encryption and Key Encapsulation Mechanism
	Security of KEM
	Public Random Oracle
	Plaintext-Awareness
	One-Time Pseudorandom Unforgeable Encryption (OT-PUE)

	Composition for Secrecy
	Composition for Plaintext-Awareness
	Applications
	DHIES
	Hash Proof System Based Hybrid Encryption

	References

	Speed Records for NTRU
	Introduction
	Related Work
	NTRUEncrypt
	Parameter Sets

	GPU Programming
	The CUDA Platform

	The Implementation
	Operations
	Memory Usage - Bit Packing
	Encoding
	Blocks, Threads and Loop Nesting
	Memory Access
	Branching

	Results
	Conclusion
	References
	Appendix

	High-Speed Parallel Software Implementation of the $η_T$ Pairing
	Introduction
	Finite Field Arithmetic
	Vector Instruction Sets
	Squaring
	Square Root
	Multiplication
	Modular Reduction
	Inversion
	Implementation Timings

	Pairing Computation
	Preliminary Definitions
	Related Work
	Parallelization
	Parallel T Pairing
	Performance Analysis

	Experimental Results
	Conclusion and Future Work
	References

	Refinement of Miller’s Algorithm Over Edwards Curves
	Introduction
	Background on Pairing and Twisted Edwards Curves
	Bilinear Pairing and Miller's Algorithm
	Twisted Edwards Curves
	Bilinear Pairing Over Edwards Curves

	Our Improvements
	Analysis and Comparison
	Conclusion
	References

	Probabilistic Public Key Encryption with Equality Test
	Introduction
	Definitions
	PKE with Ciphertext Comparability in Bilinear Groups
	Variants and Applications
	Weak IND-CCA2 vs Ciphertext Comparability
	References

	Efficient CCA-Secure PKE from Identity-Based Techniques
	Introduction
	Hybrid Encryption
	Our Contribution
	Organization

	Preliminaries
	Bilinear Pairings
	Complexity Assumption
	Collision-Resistant Hashing
	Public Key Encryption
	Public Key Encryption with Non-interactive Opening
	Threshold Public Key Encryption

	The Proposed PKE Scheme
	Practical Extensions
	Public Key Encryption with Non-interactive Opening
	Threshold Public Key Encryption

	Conclusions
	References

	Anonymity from Asymmetry: New Constructions for Anonymous HIBE
	Introduction
	Anonymous IBE and HIBE: Definitions
	Complexity Assumptions
	Asymmetric Pairings
	The Bilinear Diffie-Hellman Assumption
	Additional Assumptions
	Discussion About the Assumptions

	An Efficient Anonymous IBE
	IBE Construction
	Security Reduction

	Anonymous Hierarchical IBE and Delegetable HVE
	A Delegatable HVE
	Security Reduction
	Instantiations

	Conclusions
	References

	Making the Diffie-Hellman Protocol Identity-Based
	Introduction
	Preliminaries
	The New Protocol IB-KA
	Security Proof
	Additional Security Properties of IB-KA

	Comparisons with Other IB-KA Protocols
	References

	On Extended Sanitizable Signature Schemes
	Introduction
	Related Work
	Our Contribution

	Initial Model for Sanitizable Signatures
	Procedures and Correctness
	Security Requirements
	Useful Tools

	A New Construction in the Initial Model
	High Level Description
	Definition of Procedures
	Security Considerations

	Model for Extended Sanitizable Signatures
	Additional Features for Sanitizable Signatures
	Modification of the Initial Model
	Relation between Security Properties

	Cryptanalysis of Extended Sanitization Scheme
	The EnforceModif Extension
	The LimitNbModif Extension

	Constructions in the Extended Model
	The LimitSet Extension
	The LimitNbModif Extension
	The LimitNbSanit Extension

	References

	Side-Channel Attacks
	Unrolling Cryptographic Circuits: A Simple Countermeasure Against Side-Channel Attacks
	Introduction
	Proposed Countermeasure
	Rationale of the Countermeasure

	Experimental Results
	Attack on the Unrolled DES
	Evaluation Based on Mutual Information Metric

	Conclusion and Perspectives
	References

	Fault Attacks Against emv Signatures
	Introduction
	Coron-Joux-Kizhvatov-Naccache-Paillier's Attack
	iso/iec 9796-2 Standard with Partially Unknown Message
	Single Fault Attack
	Extension to Several Faults Modulo the Same Factor

	A New Multiple Faults Attack
	Recovering Unknown Moduli
	Simulation Results
	Multiple Fault Attack
	Recovering Unknown Moduli

	Application to emv Signatures
	The emv Specification
	Fault Attack

	References

	Revisiting Higher-Order DPA Attacks: Multivariate Mutual Information Analysis
	Introduction
	Preliminaries
	Masking
	Higher-Order Attacks

	Motivation
	Problem Statement

	Extending MIA to Multivariate Analysis
	Generalized MIA

	Reality Check
	Conclusion
	References
	Appendix

	Differential Cache-Collision Timing Attacks on AES with Applications to Embedded CPUs
	Introduction
	Previous Work on Cache-Collision Timing Attacks
	First-Round Attack
	Second-Round Attack
	Expanded Second-Round Attack

	Differential Cache-Collision Attack Using Diffusion
	Wide Collisions
	Online Phase
	Key Recovery

	Physical Behavior of Cache Hits on Embedded Platforms
	Experimental Results
	Conclusion
	References

	Cryptographic Protocols
	Usable Optimistic Fair Exchange
	Introduction
	Definitions
	Notation
	Optimistic) Fair Exchange

	Efficient Optimistic Barter Protocol
	Barter with Timeouts
	Efficiency Analysis

	Conclusion
	References

	Hash Function Combiners in TLS and SSL
	Introduction
	Preliminaries
	Hash Functions and Their Properties
	HMAC
	The SSL/TLS Handshake Protocol

	Derivation of the Master Secret
	The PRF-Combiner Used in TLS
	The PRF-Combiner Used in SSL
	Application Key Derivation in TLS and SSL

	Finished-Message
	The MAC-Combiner Used in TLS
	The MAC-Combiner Used in SSL

	References

	Improving Efficiency of an ‘On the Fly’ Identification Scheme by Perfecting Zero-Knowledgeness
	Introduction
	Background
	Our Results
	Related Work

	Our Technique
	Illustration of Our Technique
	Minimum Modification to Gain Perfect Zero-Knowledgeness
	General Modification to Gain Perfect Zero-Knowledgeness

	The Proposed Scheme
	Security against Impersonation
	Against Impersonation under Serial Active Attacks
	Against Impersonation under Concurrent Active Attacks

	Discussion
	Practical Advantages of Our Scheme
	Performance Comparison Using Machine Experiment
	Parameter Settings
	Previous Works as Instances of Our Proposed Scheme

	References

	Cryptanalysis
	Linear Cryptanalysis of Reduced-Round PRESENT
	Introduction
	Preliminaries
	Brief Description of PRESENT
	Multidimensional Linear Cryptanalysis Using 2 Method
	Notations

	Linear Characteristics of PRESENT
	Single Bit Linear Trails
	n-Round Linear Characteristic
	(n+4)-Round Linear Characteristic

	Multidimensional Linear Attacks on PRESENT
	Selection of Linear Independent Approximations
	Attack Algorithm
	Attack Complexity
	Discussion

	Experiments
	Conclusion
	References
	Appendix

	Dependent Linear Approximations: The Algorithm of Biryukov and Others Revisited
	Introduction
	Probability Distributions and Boolean Functions
	Multidimensional Matsui's Algorithm 1
	Linear Approximation of a Block Cipher
	Method of Biryukov, et al.
	The Full Biryukov Method

	Convolution Method
	Statistical Analysis
	Multinomial Distribution
	Multiple Hypothesis Testing Problems

	Complexity Analysis
	Data Complexity
	Time and Memory Complexities

	Conclusions
	References
	Appendix

	Practical Key Recovery Attack against Secret-IV {\sc Edon}-R
	Introduction
	MAC Constructions
	Road Map

	Description of {\sc Edon}-R
	Previous Analysis of {\sc Edon}-R
	Our Results

	IV Recovery Using Related Queries
	Solving the Equation $H = (U + C_0) * (U + C_1)$
	Using More Queries
	Building the Queries
	Dealing with the Padding
	Solving

	Conclusion
	References
	Appendix

	Rebound Attacks on the Reduced Grøstl Hash Function
	Introduction
	Description of Grøstl
	The Grøstl Hash Function
	The Grøstl-256 Permutations
	The Grøstl-512 Permutations

	The Rebound Attack on Grøstl
	The Truncated Differential Path
	The Inbound Phase
	The Outbound Phase

	Extending the Rebound Attack
	Improving the Inbound Phase Using SuperBoxes
	Rebound Attack on the Grøstl Hash Function
	Constructing Truncated Differential Paths for Grøstl-512

	Results of Rebound Attacks on Reduced Grøstl
	Collisions for 4 Rounds of Grøstl-256
	Collisions for 5 Rounds of Grøstl-512
	Semi-Free-Start Collision for 7 Rounds of Grøstl-256
	Semi-Free-Start Collision for 7 Rounds of Grøstl-512

	Conclusion
	References

	Symmetric Cryptography
	The Sum of CBC MACs Is a Secure PRF
	Introduction
	Previous Work
	Security Definitions and Proof Tools
	Specifications of SUM-ECBC MAC Algorithm
	Security Proof of SUM-ECBC MAC Algorithm
	From Computational Setting to Information-Theoretic Scenario
	Main Theorem
	Detailed Analysis of Case A: v-.25ex-.25ex-.25ex-.25exDom(2) and w-.25ex-.25ex-.25ex-.25exDom(4)
	Detailed Analysis of Case B: vDom(2) and w-.25ex-.25ex-.25ex-.25exDom(4)
	Detailed Analysis of Case C: v-.25ex-.25ex-.25ex-.25exDom(2) and wDom(4)
	Detailed Analysis of Case D: vDom(2) and wDom(4)

	Future Directions of Research
	References

	On Fast Verification of Hash Chains
	Introduction
	Preliminaries
	Fischlin's Check-Bit Scheme
	Check-Bit Scheme with Reduced Check-Bit Vector
	References
	Appendix

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

