Jorge Sd Silva
Bhaskar Krishnamachari
Fernando Boavida (Eds.)

Wireless
Sensor Networks

7th European Conference, EWSN 2010
Coimbra, Portugal, February 2010
Proceedings

LNCS 5970

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5970

Jorge Sa Silva Bhaskar Krishnamachari
Fernando Boavida (Eds.)

Wireless
Sensor Networks

7th European Conference, EWSN 2010
Coimbra, Portugal, February 17-19, 2010
Proceedings

@ Springer

Volume Editors

Jorge Sa Silva

University of Coimbra, Department of Informatics Engineering
Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
E-mail: sasilva@dei.uc.pt

Bhaskar Krishnamachari

University of Southern California

Department of Electrical Engineering - Systems

3740 McClintock Avenue, EEB 300, Los Angeles, CA 90089, USA
E-mail: bkrishna@usc.edu

Fernando Boavida

University of Coimbra, Department of Informatics Engineering
Polo II, Pinhal de Marrocos, 3030-290, Coimbra, Portugal
E-mail: boavida@uc.pt

Library of Congress Control Number: 2010920237

CR Subject Classification (1998): C.2.4, C.2,F2,D.1.3,D.2, E.1, H4,C.3

LNCS Sublibrary: SL 5 — Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-11916-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11916-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12995295 06/3180 543210

Preface

It is our great pleasure to present the proceedings of the European Conference on
Wireless Sensor Networks 2010 (EWSN 2010).

As the field of wireless sensor networks matures, new design concepts, experimen-
tal and theoretical findings, and applications have continued to emerge at a rapid pace.
As one of the leading international conferences in this area, EWSN has played a sub-
stantial role in the dissemination of innovative research ideas from researchers all over
the globe.

EWSN 2010 was organized by the University of Coimbra, Portugal, during
February 17-19, 2010 and it was the seventh meeting in this series. Previous events
were held in Berlin (Germany) in 2004, Istanbul (Turkey) in 2005, Zurich (Switzer-
land) in 2006, Delft (The Netherlands) in 2007, and Cork (Ireland) in 2009.

A high-quality selection of papers made up EWSN 2010. Based on the reviews and
the recommendations from the four live TPC discussions, we selected a total of 21
papers from 109 submissions (19.26% acceptance rate) for EWSN 2010. Topics of
interest included hardware design and implementation, operating systems and soft-
ware, middleware and macroprogramming, communication and network protocols,
information and signal processing, fundamental theoretical limits and algorithms,
prototypes, field experiments, testbeds, novel applications, including urban sensing,
security and fault-tolerance.

Putting together EWSN 2010 was a team effort. We would like to thank the Pro-
gram Committee members, the reviewers, our sponsors, all authors, and the Organiz-
ing Committee for their respective contributions.

We believe the conference program was interesting and that it provided participants
with a very valuable opportunity to share ideas with other researchers and practitio-
ners strongly involved in wireless sensor networks.

February 2010 Bhaskar Krishnamachari
Fernando Boavida
Jorge Sa Silva

General Co-chairs

Jorge Sa Silva
Fernando Boavida

TPC Co-chairs

Bhaskar Krishnamachari
Jorge Sa Silva

Program Committee

Adam Dunkels
Adam Wolitz
Alex Dimakis
Alexander Pflaum
Andreas Terzis
Andreas Willig
Attila Vidacs

Bjorn Pehrson
Chen Avin

Cl4udio Geyer
Cormac Sreenan
Edmundo Monteiro
Eduardo Nakamura
Hannes Frey
Holger Karl

Jan Beutel
Jaudelice Oliveira
Jie Gao

Joe Polastre

Kamin Whitehouse
Kasun De Zoysa
Koen Langendoen
Lars Wolf

Lin Zhang

Luca Mottola
Manuel Ricardo
Marimuthu Palaniswami
Mario Alves

Organization

University of Coimbra, Portugal
University of Coimbra, Portugal

University of Southern California, USA
University of Coimbra, Portugal

SICS, Sweden

Technical University of Berlin, Germany

University of Southern California, USA

Fraunhofer Institute, Germany

Johns Hopkins University, USA

Technical University of Berlin, Germany

Budapest Universtity of Technology and Economics,
Hungary

KTH, Sweden

Ben-Gurion University of the Negev, Israel

FRGS University, Brazil

University College Cork, Ireland

University of Coimbra, Portugal

FUCAPI, Brazil

University of Paderborn, Germany

University of Paderborn, Germany

ETH Zurich, Switzerland

Drexel University, USA

Stony Brook, USA

Sentilla, USA

University of Virginia, USA

University of Colombo, Sri Lanka

Delft University of Technology, The Netherlands

TU Braunschweig, Germany

Tsinghua University, China

SICS, Sweden

INESC Porto, Portugal

University of Melbourne, Australia

Polytechnic Institute of Porto, Portugal

VIII Organization

Martin Haenggi Notre Dame, USA

Matthias Hollick Universidad Carlos III de Madrid, Spain

Matt Welsh Harvard University, USA

Michele Zorzi University of Padova, Italy

Neeli Prasad Aalborg University, Denmark

Ozlem Durmaz-Incel Bogazici University, Turkey

Paul Havinga University of Twente, The Netherlands

Pedro Marron University of Bonn and Fraunhofer TAIS, Germany

Rolland Vida Budapest University of Technology and Economics,
Hungary

Rui Rocha IT, Portugal

S. Mukhopadhyay Massey University, New Zealand

Sanjay Jha UNSW, Australia

Suman Nath Microsoft Research, USA

Torsten Braun University of Bern, Switzerland

Utz Roedig Lancaster University, UK

V.S. Anil Kumar VirginiaTech, USA

Wendi Heinzelman University of Rochester, USA

Yu Chen State University of New York — Binghamton, USA

Tutorial Co-chairs

Andreas Terzis Johns Hopkins University, USA
Joel Rodrigues University of Beira Interior IT, Portugal

Poster and Demo Co-chairs

Paulo Pinto UNL, Portugal
Slaven Marusic University of Melbourne, Australia

Publicity Co-chairs

Fernando Velez IT, Portugal
Pei Zhang CMU, USA
Takahiro Hara Osaka University, Japan

Sponsorships Co-chairs

Marilia Curado University of Coimbra, Portugal
Vasos Vassiliou University of Cyprus, Cyprus

Publication Chair

Pedro Furtado University of Coimbra, Portugal

Organization

Local Arrangements Chair

Paulo Simoes University of Coimbra, Portugal

Local Arrangements Committee

Alberto Cardoso University of Coimbra, Portugal
André Rodrigues University of Coimbra, Portugal
Jorge Granjal University of Coimbra, Portugal
Laura Peralta University of Madeira, Portugal
Milan Simek University of Brno, Czech Republic
Paulo Gil University of Coimbra, Portugal
Ricardo Silva University of Coimbra, Portugal
Vasco Pereira University of Coimbra, Portugal
Sponsors

Gold: CONET

Silver: Eneida, Fundagdo Luso-Americana, Libelium
Standard: Galp

IX

Table of Contents

Localization, Synchronization and Compression

Radio Interferometric Angle of Arrival Estimation.................... 1
Isaac Amundson, Janos Sallai, Xenofon Koutsoukos, and
Akos Ledeczi

Phoenix: An Epidemic Approach to Time Reconstruction 17
Jayant Gupchup, Douglas Carlson, Razvan Musdloiu-E.,
Alex Szalay, and Andreas Terzis

Trimming the Tree: Tailoring Adaptive Huffman Coding to Wireless

Sensor Networkso 33
Andreas Reinhardt, Delphine Christin, Matthias Hollick,
Johannes Schmitt, Parag S. Mogre, and Ralf Steinmetz

Networking — I

Querying Dynamic Wireless Sensor Networks with Non-revisiting
Random Walkso 49
Marco Zuniga, Chen Avin, and Manfred Hauswirth

TARF: A Trust-Aware Routing Framework for Wireless Sensor
Networks . ..o 65
Guozing Zhan, Weisong Shi, and Julia Deng

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor
Networks . ..o 81
Joris Borms, Kris Steenhaut, and Bart Lemmens

Exploiting Overlapping Channels for Minimum Power Configuration in
Real-Time Sensor Networks 97
Xiaodong Wang, Xiaorui Wang, Guoliang Xing, and Yanjun Yao

New Directions

Privacy-Preserving Reconstruction of Multidimensional Data Maps in
Vehicular Participatory Sensing i 114
Nam Pham, Raghu K. Ganti, Yusuf S. Uddin, Suman Nath, and
Tarek Abdelzaher

Gathering Sensor Data in Home Networks with IPFIX................ 131
Thomas Kothmayr, Corinna Schmitt, Lothar Braun, and Georg Carle

XII Table of Contents

Sensing for Stride Information of Sprinters 147
Lawrence Cheng, Huiling Tan, Gregor Kuntze, Kyle Roskilly,
John Lowe, Ian N. Bezodis, Stephen Hailes, Alan Wilson, and
David G. Kerwin

Programming & Architecture

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor

Networks 162
Tobias Baumgartner, Ioannis Chatzigiannakis, Sdndor Fekete,
Christos Koninis, Alexander Kréller, and Apostolos Pyrgelis

Selective Reprogramming of Mobile Sensor Networks through Social
Community Detection i 178
Bence Pasztor, Luca Mottola, Cecilia Mascolo, Gian Pietro Picco,
Stephen Ellwood, and David Macdonald

Improving Sensornet Performance by Separating System Configuration

from System Logic ... 194
Niclas Finne, Joakim Eriksson, Nicolas Tsiftes, Adam Dunkels, and
Thiemo Voigt

Virtualising Testbeds to Support Large-Scale Reconfigurable

Experimental Facilities 210
Tobias Baumgartner, Ioannis Chatzigiannakis, Maick Danckwardt,
Christos Koninis, Alexander Kréller, Georgios Mylonas,
Dennis Pfisterer, and Barry Porter

Link Reliability

Mitigating the Effects of RF Interference through RSSI-Based Error
Recovery 224
Jan-Hinrich Hauer, Andreas Willig, and Adam Wolisz

F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor

Networks . ..o 240
Nouha Baccour, Anis Koubda, Habib Youssef, Maissa Ben Jamda,
Denis do Rosdrio, Mdrio Alves, and Leandro B. Becker

On the Mechanisms and Effects of Calibrating RSSI Measurements for
802.15.4 RAIOS « .+« v ettt e 256
Yin Chen and Andreas Terzis

Making Sensornet MAC Protocols Robust against Interference 272
Carlo Alberto Boano, Thiemo Voigt, Nicolas Tsiftes, Luca Mottola,
Kay Rémer, and Marco Antonio Zuniga

Table of Contents XIII

Networking — I1

MaxMAC: A Maximally Traffic-Adaptive MAC Protocol for Wireless
Sensor NetworKsot 289
Philipp Hurni and Torsten Braun

Energy-Aware Sparse Approximation Technique (EAST) for
Rechargeable Wireless Sensor Networks 306
Rajib Rana, Wen Hu, and Chun Tung Chou

An Adaptive Strategy for Energy-Efficient Data Collection in Sparse

Wireless Sensor Networks e 322
Mario Di Francesco, Kunal Shah, Mohan Kumar, and
Giuseppe Anastasi

Author Index 339

Radio Interferometric Angle of Arrival
Estimation

Isaac Amundson, Janos Sallai, Xenofon Koutsoukos, and Akos Ledeczi

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN 37235, USA

isaac.amundson@vanderbilt.edu

Abstract. Several localization algorithms exist for wireless sensor net-
works that use angle of arrival measurements to estimate node position.
However, there are limited options for actually obtaining the angle of
arrival using resource-constrained devices. In this paper, we describe a
radio interferometric technique for determining bearings from an anchor
node to any number of target nodes at unknown positions. The underly-
ing idea is to group three of the four nodes that participate in a typical
radio interferometric measurement together to form an antenna array.
Two of the nodes transmit pure sinusoids at close frequencies that in-
terfere to generate a low-frequency beat signal. The phase difference of
the measured signal between the third array node and the target node
constrains the position of the latter to a hyperbola. The bearing of the
node can be estimated by the asymptote of the hyperbola. The bearing
estimation is carried out by the node itself, hence the method is dis-
tributed, scalable and fast. Furthermore, this technique does not require
modification of the mote hardware because it relies only on the radio.
Experimental results demonstrate that our approach can estimate node
bearings with an accuracy of approximately 3° in 0.5 sec.

1 Introduction

Spatial coordination in wireless sensor networks (WSNs) has received a lot of
attention in recent years. In typical solutions, one or more nodes emit a signal,
and some property of that signal (e.g. angle of arrival (AOA), time of arrival
(TOA), received signal strength (RSS), etc.) is measured and used to derive
bearing or range. Angulation or lateration techniques can then respectively be
used to estimate a node’s position.

Although several techniques exist for determining node position based on
bearing information [1, [2], [3], [], [5], there are few options for actually mea-
suring signal AOA in WSNs. Currently available methods for bearing estimation
require a heavy-weight infrastructure [6], rotating hardware [7], [§], directional
antennas [9], and/or expensive and sophisticated sensors [I0]. Furthermore, such
techniques typically require participating nodes to be stationary for extended pe-
riods of time. These constraints are often undesirable for WSN deployments, in

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 12010.
© Springer-Verlag Berlin Heidelberg 2010

2 I. Amundson et al.

which node size and cost must be kept to a minimum. An AOA approach that
does not require additional hardware, runs on the nodes themselves, and is fast
enough to support tracking in addition to static localization would be a major
step forward.

In this paper, we propose a novel AOA approach for WSNs that uses radio
interferometry [IT]. The basic idea is to group together three of the four nodes in-
volved in a typical radio interferometric measurement to form an antenna array,
which acts as an anchor node. Two transmitters and one receiver are arranged
in such a manner that their antennas are mutually orthogonal to minimize par-
asitic antenna effects (see Figure[ll) The measured phase difference between the
receiver in the array and a target node constrains the location of the latter to a
hyperbola. The bearing of the target node can then be estimated by computing
the angle of the hyperbola asymptote, assuming the target node is not too close
to the array.

Fig. 1. Antenna array implementation using three XSM motes

We present several new contributions for estimating the angle of arrival in
wireless sensor networks.

1. We describe an RF-based technique for determining target node bearing.

2. We provide a detailed analysis that shows our bearing estimation algorithm
is robust to measurement noise and approximation error.

3. We design a real-world implementation using COTS sensor nodes, in which
bearing estimation is performed entirely on the resource-constrained motes.

4. We present experimental results that show our approach can rapidly and
accurately estimate node bearing.

The remainder of this paper is organized as follows. In Section [2 we discuss
other angle of arrival techniques for WSNs. Section [B] describes our proposed
system, followed by an error analysis in Section [dl In Section B we describe our
implementation on a real-world WSN platform. In Section [6, we evaluate our
system based on experimental results. Section [1 concludes.

Radio Interferometric Angle of Arrival Estimation 3

2 Related Work

The RF method we use for determining AOA is based on radio interferometry. The
Radio Interferometric Positioning System (RIPS) provides accurate RF-based
localization in WSNs [I1]. The main idea is that the resource-constrained nodes
cannot sample a pure RF signal fast enough, but can process the lower-frequency
envelope of the beat signal that results from the interference of two high-frequency
signals. The difference in signal phase measured by two other nodes is a linear
combination of the distances between the transmitters and receivers, modulo the
wavelength, and can be used for localizing all participating nodes by solving an
optimization problem. Although RIPS has centimeter-accuracy and can support
inter-node distances of greater than twice the communication range, it requires
centralized processing, suffers from high latency, and involves sampling at several
frequencies.

A broad spectrum of acoustic beamforming techniques have been proposed to
find the angle of incidence of a signal at an array of sensors. The most common
techniques include delay-and-sum beamforming, Capon beamforming [12], MU-
SIC [13], ESPRIT [14] and min-norm [I5] algorithms. Since the time of flight
of the signal from the source to sensors in the array varies based on their pair-
wise distances, sensors receive the signal with different phases. While all of these
methods compute the bearing of the source from the data streams sampled at
the individual sensors, they differ greatly with respect to their angular resolu-
tion as well as their computational requirements. In WSNs, angular resolution
is typically within 10° [I6].

The Cricket Compass [I7] is a device which uses ultrasound to determine ori-
entation with respect to a number of ceiling-mounted beacons. Two receivers are
mounted a few centimeters apart on a portable device, and the phase difference
of the ultrasonic signal is measured to determine bearing. Although both the
Cricket Compass and our approach measure signal phase difference to derive
AOA, the two systems use different hardware, signal modalities, phase disam-
biguation techniques, and bearing derivation algorithms. The Cricket Compass
has an accuracy of between 3° and 5°, depending on the orientation of the
compass.

Angle of arrival can be used in different ways for spatial coordination. Tri-
angulation, for example, is the process of determining the position of an object
from the bearings of known reference positions. T'wo such reference positions (or
three non-collinear ones in degenerate cases) are enough to localize any number of
nodes within range. In [2], a method is given to determine position based on the
angular separation (the difference in bearings) between beacons. Other angle of
arrival positioning approaches have been developed, including multiangulation
using subspace methods [4], anchor bearing propagation [I], and semidefinite
programming [3]. Bearing estimates can also be useful when anchor positions
are unknown. In [I8] and [19], mobile robot navigation methods are presented
for arriving at a target position by only observing angular separation between
two pairs of landmarks.

4 I. Amundson et al.

Fig. 2. Array containing a master node (M) and two assistant nodes (A1, A2). A target
node (R) computes its bearing (3) from the array.

3 System Overview

Radio Interferometric Measurements. Our system consists of a station-
ary antenna array and cooperating wireless sensor nodes at unknown positions.
We assume that the position of the midpoint of the array is known, as well
as the distance between the antennas in the array. The array contains three
nodes, a master (M) and two assistants (A;, As), as shown in Figure 2l At a
predetermined time, the master, M, and one of the assistants, Ay, transmit a
pure sinusoidal signal at slightly different frequencies, which interfere to create a
low-frequency beat signal whose phase is measured by the other assistant in the
array, Ao, and a receiver node, R, at an unknown position. Such a measurement
is termed a radio interferometric measurement (RIM).

The difference in phase, Ap = pr—¢4,, measured by receiver nodes R and Az
is a linear combination of the distances between the transmitters and receivers,

2w

A:
LAY

(dMA2 — dA1A2 + dAlR — dMR) (mod 27T),

where A is the wavelength of the carrier frequency, dy/r is the distance be-
tween the master node and target receiver node, da, r is the distance between
the assistant transmitter and the target receiver node, and dara,, dapra,, and
da,a, are the respective distances between all pairs of nodes in the array.
Note that the nodes in the array are equidistant from each other, and there-

fore dpra, — da,a, = 0, so the phase difference can be simplified:
2w
Ap = A\ (dayr — dyr) (mod 27). (1)

We denote the distance difference da, r — dyr by da,amr and refer to it as
a t-range. From Equation (), we can see that if —’2\ < da,mr < ’2\, the phase
difference will fall in the interval (—m, 7). When this is not the case, the possible
range of Ay will exceed 2w, which results in a modulo 27 phase ambiguity. To
avoid this, we would like the maximum possible distance difference to be less
than ;‘ The maximum distance difference will occur when the receiver node
is collinear with the transmitters M and A;. da,mr then corresponds to the
distance between the master and assistant. Therefore, to eliminate the modulo
27 phase ambiguity, we require the distance between antennas in the array to

be less than half the wavelength of the carrier frequency.

Radio Interferometric Angle of Arrival Estimation 5

Having removed the modulo operator, we can rearrange Equation () so that
known values are on the right hand side.

Ao\
da, MR = er (2)

The t-range da, mr defines an arm of a hyperbola that intersects the position
of node R, and whose asymptote passes through the midpoint of the line A; M,
connecting the master and assistant nodes. Figure [illustrates such a hyperbola
with foci A; and M. The absolute value of the distance differences between the
foci and any point on a hyperbolic arm is constant, formally defined as

az b !
where (x,y) are the coordinates of a point on the hyperbola, a is the distance
between the hyperbola center and the intersection H of the hyperbola with the
axis connecting the two foci, and b is the length of the line segment, perpendicular
to the axis connecting the foci, that extends from H to the asymptote.

Fig. 3. The t-range defines a hyperbola that intersects node R, and whose asymptote
passes through the midpoint of the two transmitters in the array.

Bearing Approximation. The hyperbola in Figure] is centered at O, and
the distance between O and either focus is denoted by c. Furthermore, it can
be shown that ¢ = a? + b*> [20]. From the figure, we see that the bearing of
the asymptote is 3 = tan_l(Z). Therefore, in order to solve for 3, we must
determine the values of b and a.

We can solve for a by observing that

da,r —dyr =da, g —dym

because, by definition, the distance differences between the foci and all points
on the hyperbola are constant. From Figure Bl we see that we can substitute
(c+ a) for da, g and (¢ — a) for dprg, and therefore,

6 I. Amundson et al.

dAlR—dMRz(c+a)—(c—a)=2a.

From Equation (), we know the value of d 4, g — dprg, which is the t-range, and

therefore a = dA12MR. We can then solve for b, using b = v/¢2 — a2. In terms of
known distances, the bearing of the asymptote is then defined as

daym\? (dajur)?
B = tan”! \/(2(2“1“() 2) ' (3)

2

In Figure[3] we see the case where d4, g > 0, and the position of R lies on the
right arm of the hyperbola. If the phase difference is negative (i.e., pr < ¥a,)
then the position of R will lie on the left arm of the hyperbola. When this is the
case, (is taken clockwise, and we must adjust it by subtracting it from 7.

The line A; M connecting the two foci is called the transverse axis of the
hyperbola, and is a line of symmetry. This implies that although we know b, we
do not know its sign, because mirrored positions on either side of the transverse
axis will result in the same da,pr. Therefore, the asymptote bearing § we
obtained using this method could be either positive or negative. To find which
bearing is correct, we can switch the roles of the assistant nodes in the array and
perform another RIM. This will generate a different t-range, and hence another
hyperbolic arm with foci As and M.

Each hyperbola provides us with two angles +0;, where (3; is the angle of the
asymptote with the transverse axis, A; M. Of course, these angles will be offset
from the global z-axis, because the orientation of A; M may not be 0. Adjusting
for this, one of the (J; bearings, and one of the (s bearings will point in the
same direction, which will approximate the actual bearing of R, as illustrated in
Figure[@ Due to the position difference between the centers of the two hyperbo-
las, we do not expect these two angles to be equal, therefore we define a small

Fig. 4. Determining the true bearing of R is accomplished by selecting +3 or —f from
each master-assistant pair, such that the difference between the two angles is below
the threshold eg

Radio Interferometric Angle of Arrival Estimation 7

threshold eg, such that if |31 — 82| < €g, these two angles are considered a match.
We then take the average of the two angles to obtain our bearing estimate, 8.

Because points on the hyperbola converge with the asymptote as their distance
from the hyperbola center increases, the bearing approximation error is larger
when R is close to the array. We therefore make the assumption that node R
is a sufficient distance from the array. In Section Fl we show that this distance
does not need to be large when using small-aperture arrays.

4 Error Analysis

In this section, we present an error analysis of the proposed bearing estimation
technique. It is important to note that, although we use phase differences as in-
put to our bearing estimation algorithm, the algorithm is generalizable to small-
aperture sensor arrays that can derive distance differences using any means.
For instance, RF ultra wide band antenna arrays, acoustic or ultrasonic sensors,
and other types of arrays that can yield time-difference-of-arrival (TDOA) mea-
surements from (sufficiently) distant sources fall into this category. Therefore, in
this section, we assume the inputs to be distance differences. Notice that the dis-
tance differences are linearly related to RIM measurements (see Equation (2)),
and therefore the error sensitivity results presented below remain valid. In the
generalized case, the same applies to TDOA measurements, from which the dis-
tance differences can be computed via multiplication of the respective signal
propagation speed (speed of sound for acoustic, speed of light for RF).

Typically, bearings are computed from distance differences by solving a non-
linear set of equations using iterative techniques. Such techniques are prohibitive
on low-end microprocessors due to their computational cost. We make a set of
assumptions that allows us to compute bearing estimates in a reasonably simple
way. While our bearing estimation technique is computationally less expensive
than traditional nonlinear optimization techniques, our simplifying assumptions
introduce estimation errors, which we identify below.

— Measurement noise. The distance differences observed by the receiver nodes
contain measurement noise. The measurement noise can be attributed to, for
instance, non-ideal signal propagation, noise from the electrical circuitry of
the receiver, sampling error and quantization error of the analog-to-digital
converter (ADC).

— Asymptote approximation. For a pair of transmitters, we approximate the
bearing of the receiver with the angles of the asymptotes of the hyperbola.
This is a good approximation if the receiver is sufficiently far from the trans-
mitters, because the hyperbola converges on its asymptote. However, for
close receivers, errors due to this assumption will not be negligible.

— Translation of bearing candidates. At least two transmitter pairs are required
to unambiguously compute the bearing because, for just one transmitter pair,
the angles of both asymptotes are possible solutions. We refer to the two so-
lutions as bearing candidates. Since, for a transmitter pair, we compute the
bearing candidates with respect to the midpoint of the segment defined by

8 I. Amundson et al.

the two antennas, fusing bearing candidates from two different transmit-
ter pairs is not possible without knowing the distance of the receiver. We
use the far-field assumption (i.e., that the receiver is infinitely far from the
transmitter array) to carry out the disambiguation and fusion of bearings,
introducing an error this way.

We intentionally omit the analysis of array position and orientation errors
and instead make the following assumptions:

— Antenna configuration is known. The transmitter locations are assumed to
be given. It is assumed that the transmitter nodes are fabricated with a
prescribed antenna separation.

— Relative bearings. We assume that the computed bearings are given in the
local coordinate system of the array. Hence, the location and orientation
errors of the array are not considered in the error analysis of the bearing
estimation.

We first analyze the sensitivity of the bearing estimates to noise in the dis-
tance difference inputs. Second, we analytically derive the errors related to the
asymptote approximation and to the translation of bearing candidates. These
errors depend on the bearing and distance of the target receiver, relative to the
transmitter array. Finally, we provide an analysis of the total bearing estimation
error resulting from both noise in the inputs and the errors due to the asymptote
approximation and the translation of bearing candidates.

Sensitivity of bearing to measurement noise. A distance difference from
a pair of transmitters in the array constrains the location of the receiver to one
arm of a hyperbola, the foci of which are the positions of the two transmitters.
For the sake of simplicity, let us assume that the two transmitters M and A,
are located at (¢,0) and (—c,0), respectively (see Figure [). If the measured
distance difference is positive, the receiver is constrained to the right arm of the
hyperbola, while if the distance difference is negative, the receiver is located on
the left arm. We approximate the bearing of the receiver using the asymptote
angles as follows:

+tan ! (‘/Cza_“2> , ifa>0
B=14 £, if a=0 (4)
T Ftan! (\/Czafaz) , ifa<0

We analyze the sensitivity of the bearing estimates B to noise in the distance
difference by taking the partial derivative of Equation () with respect to the
distance difference. To see what amplification effect an error in a given distance
difference d produces on the bearing estimate, we need to evaluate the partial
derivative at d.

Figure Bh shows the relation between the measured distance difference d and
the bearing candidates B when the antenna separation is half the wavelength

Radio Interferometric Angle of Arrival Estimation 9

(3)- Notice the ambiguity of the bearing candidates. Figure[Bb plots ‘;5 for each

solution of 3. This figure shows that when the absolute value of the measured
distance difference is close to the antenna separation, the computed bearing
candidates are very sensitive to measurement noise. For instance, if the distance
difference is 80% of the antenna separation, an infinitesimally small error in the
measurement will be amplified ten-fold in the bearing estimate.

- - - - T 50— - - - T
360 /] ‘ ‘
|
300 _ 1 \ |
B _— N \ |
o — ES
5240 / E \\ /
o) @ R —
° (5
> 180 \ $ 0 o
c o — B
£ 5 / \
[=
@ 120 Ti
& \\ w / \\
\\ i
60 —~] “ \
ol— ‘ ‘ ‘ \ 500 ‘ ‘] “
N2 N4 0 N4 N2 N2 N4 0 N4 N2
Distance Difference Distance Difference
(a) (b)

Fig. 5. (a) Relationship between measured distance difference and computed bearing.
(b) Sensitivity of the computed bearing to measurement noise.

Asymptote approximation. The error of approximating a hyperbola with its
asymptote is the difference between the approximated bearing 4 and the actual
bearing [of the receiver. Assuming that the receiver R is located at (u,v),
the actual bearing will be 3 = tan™'("). Hence, the error € introduced by the
asymptote assumption is
+tan ! (Z) Ttan~" (‘/62;“2) , ifa>0
e=0p—-p3=<0, ifa=0 (5)
Ftan~? (Z) + tan~! (‘/Cza_“2> , ifa<0

Figure B shows the error introduced by the asymptote approximation when
the receiver is located respectively one, two, and three times the antenna dis-
tance away from the midpoint of the segment connecting the two antennas. As
expected, the error of the approximation decreases as the distance of the receiver
from the transmitter array increases, that is, as the hyperbola converges on its
asymptote. As we can see, the maximum error introduced by the asymptote
assumption is less than 0.6°, as little as three antenna distances away.

Translation of bearing candidates. For a pair of transmitter antennas, it is
not possible to unambiguously approximate the bearing of the asymptote. Be-
cause the hyperbola arm has two asymptotes, the angle of either one can be the
correct bearing estimate. Hence, we need two transmitter antenna pairs for dis-
ambiguation. Let us treat the bearing candidates (computed from the t-ranges

10 I. Amundson et al.

of both transmitter antenna pairs) as vectors of unit length, with bases at the
center of the hyperbolas, and whose angles are the computed bearing candidates.
Since these vectors are given in the coordinate system of the respective hyper-
bolas, we need to transform them to the coordinate system of the array. This
transformation includes a translation and a rotation. Then, we translate each
vector such that its base is at the origin. Clearly, the bearing vector translated
this way will not point directly toward the target receiver anymore, but if the
receiver is sufficiently far from the transmitter array, the introduced angular er-
ror will be small. Finally, we disambiguate the bearing candidates by finding two
that have approximately the same value.

Let us now express the angular error caused by the translation of bearing
candidates. We assume that the transmitter is a uniform circular array of three
antennas, with pairwise antenna distance of ;‘ The coordinate system of the
array is set up such that the midpoint of the array is at the origin, and antenna
M lies on the positive side of the x-axis. Let us consider only the correct bearing
candidate (the other will be discarded later) for transmitter pair M and A;.
Furthermore, let us assume for now that the bearing candidate has no error.
The difference between the actual bearing of the target receiver and the angle
of the bearing candidate translated to the origin gives the angular error of the
far-field assumption.

Figure [Bb shows the error introduced by the far-field assumption when the
receiver is located respectively one, two, and three times the antenna distance
away from the midpoint of the segment connecting the two antennas. As we can
see, as few as three antenna distances away, the maximum error introduced by
the antenna assumption is less than 5°. In this particular antenna arrangement,
the maximum errors are at 15° and 225°, respectively.

270

+ r=1"*antenna distance ro0or=1"antenna distance
= = =r=2"antenna distance = = =r=2"antenna distance
———r =3 * antenna distance = r =3 * antenna distance

(@) (b)

Fig. 6. Error in bearing (in degrees) caused by (a) the assumption that the receiver lies
on the asymptote, and (b) assuming that bearing from the midpoint of the segment
connecting the two antennas equals the bearing from the origin of the array coordinate
system

Radio Interferometric Angle of Arrival Estimation 11

- r=1%*antenna distance
0 = = =r=2*antenna distance
—r=3*antenna distance

Fig. 7. Absolute error of bearing estimation (in degrees) caused by noisy distance
differences, averaged over 500 simulation rounds. The standard deviation of the distance
difference errors is 5% of the antenna distance.

Compound bearing estimation error. Since one transmitter pair reports
two bearing candidates, at least two transmitter pairs are required to resolve this
ambiguity. For the sake of simplicity, let us assume that we have two transmitter
pairs. Clearly, there must be one bearing candidate for each transmitter pair
that is close to the true bearing. Except for some degenerate cases, the other
two bearing candidates will be significantly different than the true bearing, and
will not be close to each other (see Figure[]). Therefore, in order to disambiguate
between the correct and incorrect bearing candidates, we take all possible pairs
of bearing candidates, one from the first transmitter pair and the other from
the second transmitter pair, and find the pair with the least pairwise angular
difference. The reported bearing estimate is computed as the average of the two
closest bearing candidates.

Figure[lshows the bearing estimation errors considering the above three types
of error sources, averaged over 500 simulation rounds. We added a Gaussian noise
to the distance differences, with mean zero and standard deviation set to 5% of
the antenna distance. The plot suggests that the expected bearing estimation
errors are below 5°; and peak around 30°, 150°, 240° and 330°, exactly where
the individual transmitter pairs exhibit high error sensitivity.

5 Implementation

Our system is implemented using Crossbow ExScal motes (XSMs) [21], which
use the Texas Instruments CC1000 radio chip and transmit in the 433 MHz
range. Three XSMs form the array. Because the two transmitting antennas are
close to each other, they will suffer from parasitic effects [22]. To minimize this
negative interference, we place the nodes in a mutually orthogonal configuration.

12 I. Amundson et al.

All sensor nodes are elevated approximately 1.5 meters to reduce ground-based
reflections. The antenna array is pictured in Figure [l All nodes in our system
execute the same distributed application, coded in nesC, and run the TinyOS
operating system. All operations run locally, and there is no offline or PC-based
processing involved. The entire application requires 3 kilobytes of RAM and 55
kilobytes of program memory (ROM).

Run-time. Figure[Blis a sequence diagram of the system run-time components
using a setup of one array and a single target receiver node. Because phase
difference is used to determine bearing, each node must measure the signal phase
at the same time instant. This requires synchronization with accuracy on the
order of microseconds or better. A SyncEvent message [23] is broadcast by the
master transmitter, and contains a time in the future for all participating nodes
to start the first RIM. Each array then performs two RIMs, one for each master-
assistant pair. Signal transmission involves acquiring and calibrating the radio,
transmitting the signal, then restoring the radio to enable data communication.
The assistant nodes in the array store their phase measurements until both
master-assistant pairs have finished their RIMs, at which point they broadcast
their phase measurements to the target nodes. The target nodes then calculate
their bearings from the array.

] 1
iM A, Al R
(I R [T 1241
Synchronization (162 ms) p ph p
RIM (119 ms)
RIM (119 ms) Eﬂ
|

2

Report phase data (250 ms)

Bearing estimation (5 ms)

Fig. 8. Sequence diagram of RIM schedule with one array (dotted box) and the target
receiver node (R)

6 Evaluation

To evaluate the accuracy of our system, we perform two experiments. In Ex-
periment 1, we measure the bearing accuracy of six receiver nodes, which are
evenly spaced around the array every 60° at a distance of ten meters from the
array center. This experiment demonstrates how the bearing error changes with
respect to array orientation. In Experiment 2, we measure the bearing accuracy
of 14 receiver nodes from three arrays surrounding the sensing region in an out-
door, low-multipath environment. This experiment is more representative of a
real-world deployment with multiple anchors. Figure [illustrates our setup for
the two experiments.

Radio Interferometric Angle of Arrival Estimation 13

10 20
° ° R, As®
R, R, Ry, *R;
5 15 R
R® o 8
[]
o eR, ° Rie 10 Rio oR R,
A 12 2
-5 5 R4. o 14 ° R7 ® R9
Ry Ry
L] L]
10 of oA *R, Ae
-10 -5 0 5 10 0 5 10 15 20
(€) (b)

Fig. 9. Experimental setup. (a) Experiment 1. Bearing accuracy of one array. Six re-
ceiver nodes (R; ... Res) are placed 10 meters from array (A), with angular separation
of 60°. (b) Experiment 2. Three arrays (Ai...As) surround the 20 x 20 m sensing
region containing 14 receiver nodes (R; ... Ri4).

For Experiment 1, we perform 50 bearing estimates for each node surrounding
the array. The average bearing errors are displayed in Figure[I0Oh. For Experiment
2, we perform approximately 35 bearing estimates from each anchor to all target
nodes, resulting in a total of 105 estimates per target and 1470 estimates total.
Figure [0k shows the average error for each bearing from Experiment 1, and
the distribution of bearing estimate errors from Experiment 2 are shown in
Figure [0b. The average bearing estimation error is 3.2° overall, with a 6.4°
accuracy at the 90th percentile. The errors from both experiments are consistent
with our bearing error analysis in Section Hl

> £ =3

Bearing Estimates
w B ©o
o o
o o

i)

Average Bearing Error (degrees)
IS

00

[’4_‘ 1 200

0 T L 100
6 Gb 12‘0 12‘30 24‘tO

I
300 0 2 4 6 8 10 12 14 16 18

Actual Bearing (degrees) Bearing Error (degrees)
(a) (b)

Fig. 10. Experimental results. (a) Experiment 1 average bearing error with respect
to array orientation (sample size of 50). (b) Experiment 2 bearing error distribution
(sample size of 1470).

14 I. Amundson et al.

In addition, we evaluate the latency of this method. Because we would like to
use this system for mobile sensors in addition to stationary nodes, the array must
perform its RIMs as fast as possible so that the sensor has not had a chance to
significantly change its position. In order to keep the latency to a minimum, we
perform an analysis of the different component execution times. Table [lists the
execution deadlines of the RIM tasks. These deadlines are enforced via software
interrupts and were chosen to give each task enough time to complete, assuming
a reasonable amount of jitter.

Table 1. Latency of bearing estimation tasks

Task Latency (ms)
Clock synchronization 162

Acquire and calibrate radio 6.48
Transmit / Receive 63.2

Restore radio driver 49.91

Report phase 250

Bearing estimation 5

The array sends one synchronization message and performs two RIMs, for a
total time of 401 ms. An additional 255 ms is required for communication and
bearing estimation. Because the target nodes are receivers, no additional latency
is incurred by introducing more targets to the sensing region.

7 Conclusion

In this paper, we present a method for rapid distributed bearing estimation in
WSNs. The anchor array in our system consists of three nodes, two of which
transmit at frequencies that interfere to create a low-frequency beat signal. The
phase of this signal is measured by the third node in the array, as well as by multi-
ple target nodes at unknown positions. The phase difference defines a hyperbola,
and bearing can be approximated by calculating the angle of the asymptote. Our
experimental results show that this technique has an average bearing estimation
accuracy of 3.2°, and measurements can be taken in approximately 0.5 sec.
Our system is designed to overcome several challenges in WSN AOA determi-
nation. The array prototype is easily constructed by fixing three motes together
with antennas at orthogonal angles. It is comprised entirely of COTS sensor
nodes, and no additional hardware is required because RIM-based ranging only
requires use of the radio. Unlike other radio interferometric techniques, our sys-
tem avoids the modulo 27 ambiguity, and therefore the need to perform RIMs
on multiple channels, by separating the two transmitting antennas less than half
the wavelength of the carrier frequency. Similarly, by constraining the location
of one of the RIM receivers to the array, it becomes possible to approximate the
bearing of the other receiver without prolonged computation or having to rely

Radio Interferometric Angle of Arrival Estimation 15

on a base station for processing. Our experimental results demonstrate that the
accuracy of our prototype implementation is on par with other state-of-the-art
AOA techniques.

It is worthwhile noting that this system is designed for eventual use with mo-
bile sensors. Mobility demands rapid localization so that the position estimate is
still valid by the time it is computed. Up until now, radio interferometric ranging
techniques have been unable to achieve periodic distributed localization at rates
fast enough for mobile devices, even slow-moving ones. With this system, we are
able to estimate target bearing rapidly enough to support mobile entity local-
ization and navigation. Although at this stage we have not performed tracking
or navigation using mobile nodes, we plan on doing so in the near future.

Acknowledgements. This work was supported by ARO MURI grant W911NF-
06-1-0076, NSF grant CNS-0721604, and NSF CAREER award CNS-0347440.
The authors would also like to thank Peter Volgyesi, Metropolitan Nashville
Parks and Recreation, and Edwin Warner Park.

References

1. Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AOA. In: Proc.
of INFOCOM (2003)

2. Esteves, J., Carvalho, A., Couto, C.: Generalized geometric triangulation algorithm
for mobile robot absolute self-localization. In: Proc. of ISIE (2003)

3. Biswas, P., Aghajan, H., Ye, Y.: Integration of angle of arrival information for
multimodal sensor network localization using semidefinite programming. In: 39th
Asilomar Conference on Signals, Systems and Computers (2005)

4. Ash, J.N., Potter, L.C.: Robust system multiangulation using subspace methods.
In: Proc. of IPSN (2007)

5. Rong, P., Sichitiu, M.: Angle of arrival localization for wireless sensor networks.
In: Proc. of SECON (2006)

6. Nasipuri, A., el Najjar, R.: Experimental evaluation of an angle based indoor lo-
calization system. In: 4th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (2006)

7. Chang, H.l., Tian, J.B., Lai, T.T., Chu, H.H., Huang, P.: Spinning beacons for
precise indoor localization. In: Proc. ACM SenSys (2008)

8. Romer, K.: The lighthouse location system for smart dust. In: Proc. of MobiSys
(2003)

9. Ash, J.N., Potter, L.C.: Sensor network localization via received signal strength
measurements with directional antennas. In: Proceedings of the Allerton Confer-
ence on Communication, Control, Computing (2004)

10. Friedman, J., Charbiwala, Z., Schmid, T., Cho, Y., Srivastava, M.: Angle-of-arrival
assisted radio interferometry (ARI) target localization. In: Proc. of MILCOM
(2008)

11. Maréti, M., Kusy, B., Balogh, G., Vélgyesi, P., Nadas, A., Molnar, K., Déra, S.,
Lédeczi, A.: Radio interferometric geolocation. In: Proc. of ACM SenSys (2005)

12. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. of the
IEEE 57(8) (1969)

13. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE
Transactions on Antennas and Propagation 34(3) (1986)

16

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

I. Amundson et al.

Roy, R., Paulraj, A., Kailath, T.: Esprit—a subspace rotation approach to estima-
tion of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech and
Signal Processing 34 (1986)

Kumaresan, R., Tufts, D.: Estimating the angles of arrival of multiple plane waves.
IEEE Transactions on Aerospace and Electronic Systems AES-19(1) (1983)
Kushwaha, M., Amundson, I., Volgyesi, P., Ahammad, P., Simon, G., Koutsoukos,
X., Ledeczi, A., Sastry, S.: Multi-modal target tracking using heterogeneous sensor
networks. In: Proc. of ICCCN (2008)

Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller, S.: The cricket compass
for context-aware mobile applications. In: Proc. of MobiCom (2001)

Altun, K., Koku, A.: Evaluation of egocentric navigation methods. In: IEEE Inter-
national Workshop on Robot and Human Interactive Communication (2005)
Bekris, K.E., Argyros, A.A., Kavraki, L.E.: Angle-based methods for mobile robot
navigation: Reaching the entire plane. In: Proc. of ICRA (2004)

Kendig, K.: Conics. Mathematical Association of America (1938)

Dutta, P., Grimmer, M., Arora, A., Bibyk, S., Culler, D.: Design of a wireless sensor
network platform for detecting rare, random, and ephemeral events. In: Proc. of
IPSN/SPOTS (2005)

Carr, J.: Practical Antenna Handbook, 4th edn. McGraw Hill, New York (2001)
Kusy, B., Dutta, P., Levis, P., Mar6ti, M., Lédeczi, A., Culler, D.: Elapsed time on
arrival: a simple and versatile primitive for canonical time synchronization services.
International Journal of Ad Hoc and Ubiquitous Computing 2 (2006)

Phoenix: An Epidemic Approach to Time
Reconstruction

Jayant Gupchup?!, Douglas Carlson', Riazvan Musaloiu-E.!, Alex Szalay?,
and Andreas Terzis'

! Computer Science Department
Johns Hopkins University
{gupchup, carlsondc,razvanm,terzis}@jhu.edu
2 Physics and Astronomy Department
Johns Hopkins University
szalayQjhu.edu

Abstract. Harsh deployment environments and uncertain run-time con-
ditions create numerous challenges for postmortem time reconstruction
methods. For example, motes often reboot and thus lose their clock state,
considering that the majority of mote platforms lack a real-time clock.
While existing time reconstruction methods for long-term data gathering
networks rely on a persistent basestation for assigning global timestamps
to measurements, the basestation may be unavailable due to hardware
and software faults. We present Phoeniz, a novel offline algorithm for re-
constructing global timestamps that is robust to frequent mote reboots
and does not require a persistent global time source. This independence
sets Phoenix apart from the majority of time reconstruction algorithms
which assume that such a source is always available. Motes in Phoenix ex-
change their time-related state with their neighbors, establishing a chain
of transitive temporal relationships to one or more motes with references
to the global time. These relationships allow Phoenix to reconstruct the
measurement timeline for each mote. Results from simulations and a de-
ployment indicate that Phoenix can achieve timing accuracy up to 6 ppm
for 99% of the collected measurements. Phoenix is able to maintain this
performance for periods that last for months without a persistent global
time source. To achieve this level of performance for the targeted envi-
ronmental monitoring application, Phoenix requires an additional space
overhead of 4% and an additional duty cycle of 0.2%.

1 Introduction

Wireless sensor networks have been used recently to understand spatiotemporal
phenomena in environmental studies [12I22]. The data these networks collect
are scientifically useful only if the collected measurements have corresponding,
accurate global timestamps. The desired level of accuracy in this context is in
the order of milliseconds to seconds. In order to reduce complexity of the code
running on the mote, it is more efficient to record sensor measurements using the
mote’s local time frame and perform a postmortem reconstruction to translate
them to global time.

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 17 2010.
© Springer-Verlag Berlin Heidelberg 2010

18 J. Gupchup et al.

Each mote’s clock (referred to as local clock henceforth) monotonically in-
creases and resets to zero upon reboot. A naive postmortem time reconstruction
scheme collects (local, global) pairs during a mote’s lifetime, using a global clock
source (typically, an NTP-synchronized PC). These pairs (also referred to as
“anchor points”) are then used to translate the collected measurements to the
global time frame by estimating the motes’ clock skew and offset. We note that
this methodology is unnecessary for architectures such as Fleck, which host a
battery-backed on-board real-time clock (RTC) []. However, many commonly-
used platforms such as Telos, Mica2, MicaZ, and IRIS (among others) lack an
on-board RTC.

In the absence of reboots, naive time reconstruction strategies perform well.
However, in practice, motes reboot due to low battery power, high moisture, and
software defects. Even worse, when motes experience these problems, they may
remain completely inactive for non-deterministic periods of time. Measurements
collected during periods which lack (local, global) anchors (due to rapid reboots
and/or basestation absence) are difficult or impossible to accurately reconstruct.
Such situations are not uncommon based on our deployment experiences and
those reported by others [23].

In this work, we devise a novel time reconstruction strategy, Phoeniz, that
is robust to random mote reboots and intermittent connection to the global
clock source. Each mote periodically listens for its neighbors to broadcast their
local clock values. These (local, neighbor) anchors are stored on the mote’s flash.
The system assumes that one or more motes can periodically obtain global time
references, and they store these (local, global) anchors in their flash. When the
basestation collects the data from these motes, an offline procedure converts the
measurements timestamped using the motes’ local clocks to the global time by
using the transitive relationships between the local clocks and global time.

The offline nature of Phoenix has two advantages: (a) it reduces the com-
plexity of the software running on the mote, and (b) it avoids the overhead as-
sociated with executing a continuous synchronization protocol. We demonstrate
that Phoenix can reconstruct global timestamps accurately (within seconds) and
achieve low (< 1%) data losses in the presence of random mote reboots even when
months pass without access to a global clock source.

2 Motivation

We claim that the problem of rebooting motes is a practical aspect of real de-
ployments that has a high impact on environmental monitoring applications.
We also quantify the frequency and impact of reboots in a long-term deploy-
ment. We begin by understanding why mote reboots complicate postmortem
time reconstruction.

2.1 Postmortem Timestamp Reconstruction

The relationship between a mote’s local clock, LTS, and the global clock, GT'S,
can be modeled with a simple linear relation: GT'S = o x LTS + (3, where «

Phoenix: An Epidemic Approach to Time Reconstruction 19

20 meters

Fig. 1. The 53-mote “Cub Hill” topology, located in an urban forest northeast of
Baltimore, Maryland

represents the mote’s skew and [represents the intercept (global time when the
mote reset its clock) [19]. This conversion from the local clock to global clock
holds as long as the mote’s local clock monotonically increases at a constant rate.
We refer to this monotonically increasing period as a segment. When a mote
reboots and starts a new segment, one needs to re-estimate the fit parameters.
If a mote reboots multiple times while it is out of contact with the global clock
source, estimating 3 for these segments is difficult. While data-driven treatments
have proven useful for recovering temporal integrity, they cannot replace accurate
timestamping solutions [910]. Instead, time reconstruction techniques need to
be robust to mote reboots and not require a persistent global time source.

2.2 Case Studies

We present two cases which illustrate the deployment problems that Phoenix
intends to address. The first is an account of lessons learned from a year-long
deployment of 53 motes. The second is a result of recent advances in solar-
powered sensor networks.

Software Reboots. We present “Cub Hill”, an urban forest deployment of 53
motes that has been active since July 2008 (Figure [I]). Sensing motes collect
measurements every 10 minutes to study the impact of land use on soil condi-
tions. The basestation uses the Koala protocol to collect data from these motes
every six hours [I5]. We use TelosB motes driven by 19 Ah, 3.6 V batteries.

We noticed that motes with low battery levels and/or high internal moisture
levels suffered from periodic reboots. As an example, Figure[2l shows the battery
voltage of a mote that rebooted thrice in one month. Despite their instability,
many of these motes were able to continue collecting measurements for extended
periods of time.

Following a major network expansion, a software fault appeared which caused
nodes to “freeze”. Unable to reproduce this behavior in a controlled environment,
we employed the MSP430’s Watchdog Timer to reboot motes that enter this
state [21]. While this prevented motes from completely failing, it also shortened

20 J. Gupchup et al.

m

% 3.6 Reboot Reboot Reboot

2 34 ll'l'l'll"'ll

o

g 3.2

E 3.0

-~ 28

8

£ 2.6

o r—r 1 1 1 T T T T T T T T T T T T T T T T T 1
— o 2] < wn © N~ © o0 o - o [< "ol © ~ «© (o2} o - - o
~— — — ~— — — - -~ — 3V} [sV) o o o o o (3] o o o (el o o
c c c c c c c c c = c c c c c c c c c c c Qo Qo
© [[}
vl el - vl el - - vl el - el el - el el - - el el - el w w

Fig. 2. An example of a mote rebooting due to low battery voltage (no watchdog
timer in use). The sharp downward spikes correspond to gateway downloads (every six
hours). Gaps in the series are periods where the mote was completely inoperative.

1.00 — Pre Watchdog
2075 —— Post Watchdog
8 050
<
o 025
0.00 [T L T T T T T 1717171 T T T T T 11717 1

0.25 0.5 1 2 3 4 10 50 100
Segment Length (days)

Fig. 3. The distribution of the segment lengths before and after adding the watchdog
timer to the mote software

the median length of the period between reboots from more than 50 days to only
four days, as Figure [shows.

Solar Powered Sensor Networks. A number of research groups have demon-
strated the use of solar energy as a means of powering environmental monitor-
ing sensor networks [ITJ20]. In such architectures, a mote can run out of power
during cloudy days or at night. Motes naturally reboot in such architectures,
and data losses are unavoidable due to the lack of energy. It is unclear how one
can achieve temporal reliability without a persistent basestation or an on-board
RTC. To the best of our knowledge, no one has addressed the issue of temporal
integrity in solar-powered sensor networks. Yang et al. employ a model in which
data collection happens without a persistent basestation [24]. The data upload
takes place infrequently and opportunistically. Hard-to-predict reboot behavior
is common to these systems. Furthermore, we note that even though there is
very little information about the rate of reboots in such architectures, it is clear
that such systems are susceptible to inaccurate timestamp assignments.

2.3 Impact

We evaluate the impact of mote reboots on the Cub Hill deployment using our
existing time reconstruction methodology.

Phoenix: An Epidemic Approach to Time Reconstruction 21

B: Watchdog timer fix D: Reboot problems
A: Nodes gets stuck ‘ ‘ C: Basestation is down ‘
—

T " : R | — e

(]

o

<

E A U

— Accurate

Q

5 [|

@ T I

a u allE ..I. B B— Approximate

SENEENNENEE = _cm=z-=_ - NHNmG-m-aalaz=Dm B Noimcsam
35329 REESSS330RRRRE0 3333333338888 3333333388888 2
2888222282228888232222222222233232323232222282833332332323233888 2
ECEEEEEE888E85c888888888¢8¢8¢8¢8¢8888888¢88¢8¢8¢8¢¢¢¢¢8¢888888¢8 3
888850 NNGEEN0000030000550080089000000000008034N0RRRER B
R e e L L
3233355558588 822228888885558888228882282388885553533333
(a) The fraction of measurements that were assigned timestamps.

1000 |

~ 800

3

< 600

=

£ 400

T}

200

0

Jun 20 Jun 21 Jun 22 Jun 23 Jun 24 Jun 25 Jun 26 Jun 27
(b) An example of the impact of estimating 3 incorrectly when using approximate
methods. Data from one of the motes (represented with the dark line) that rebooted
multiple times between Jun. 22 and Jun. 25. During this period, the mote was out of
sync with the rest (shown in gray) due to inaccurate 3 estimates

Fig. 4. Impact of time reconstruction methodology using the RGTR algorithm

The basestation records an anchor point each time it downloads data from
a mote. Motes that are poorly connected to the basestation may remain out
of contact for several download rounds before connectivity improves and they
can transfer their data. When motes reboot at a rate faster than the frequency
with which the basestation contacts them, there exist periods which lack enough
information to accurately reconstruct their measurement timestamps.

Upon acquiring the anchor points, the measurements are converted from their
local clock to the global clock at the basestation. We employ our previously pro-
posed algorithm, Robust Global Timestamp Reconstruction algorithm (referred
to as RGTR), for this purpose [9]. We note that in order to estimate the fit
parameters (a,) for the segments, RGTR requires at least two anchor points.
Depending on the accuracy requirements, one can assume that the skew («) is
stable per mote for small segments. Using this assumption, at least one anchor
point is needed to estimate the § for any given segment, provided that « has
been estimated accurately for the mote.

Figure demonstrates the impact of mote reboots on time reconstruction
for the Cub Hill deployment. During period A, motes were prone to freezing (and
thus stopped sampling), leading to a decrease in the total data collected. At point
B, the addition of the watchdog timer caused the total data collected to return
to its previous level. However, due to the increased frequency of reboots, a larger
portion of the samples could not be assigned a global timestamp (exacerbated
by the absence of the base station during period C).

22 J. Gupchup et al.

For segments where no anchor points were collected, we assumed that node
reboots are instantaneous. However, this assumption does not always hold (see
Figure[2) and leads to a small fraction of misaligned measurements. Figure
presents an example of this misalignment. One node (shown in bold) rebooted
multiple times and could not reach the basestation during its active periods. The
assumption of instantaneous reboots led to inaccurate 3 estimates.

3 Solution

Phoenix is a postmortem time reconstruction algorithm for motes operating
without in-network time synchronization. It consists of two stages.

3.1 In-Network Anchor Collection

Each mote operates solely with respect to its own local clock. A new segment
(uniquely identified by (moteid, reboot count)) begins whenever a mote reboots:
each segment starts at a different time and may run at a different rate. Our
architecture assumes that there is at least one mote in the network that can
periodically obtain references from an accurate global time source. This is done
to establish the global reference points needed by Phoenix. This source may be
absent for long periods of time (see SectionH]). The global time source can be any
reliable source (a mote equipped with a GPS receiver, NTP-synced basestation,
etc). Without loss of generality, we assume that the network contains a mote
connected to GPS device and a basestation that collects data infrequentl.

All motes (including the GPS-connected mote) broadcast their local clock and
reboot-count values every Tpeqcon seconds. Each receiving mote stores this infor-
mation (along with its own local clock and reboot counter) in flash to form an-
chor records. The format of these records is (moteid,., re,,le,, moteids, res, leg);
where rc, lc, r, and s refer to the reboot counter, local clock, receiver and sender
respectively. Periodically, motes turn on their radios and listen for broadcasts
in order to anchor their time frame to those of their neighbors. Each mote tries
to collect this information from its neighbors after every reboot and after every
Twakeup seconds (3> Theqcon). The intuition behind selecting this strategy is as
follows. The reboot time determines the [parameter. The earliest opportunity
to extract this information is immediately after a reboot. To get a good estimate
of the skew, one would like to collect multiple anchors that are well distributed
in time. Thus, Tyakeup is @ parameter that governs how far to spread out anchor
collections. In the case of a GPS mote, the moteid,., rc, and moteidg, rcs are
identical, and lc,, lcs represent the local and global time respectively.

The basestation periodically downloads these anchors along with the mea-
surements. This information is then used to assign global timestamps to the
collected measurements using Algorithm [Il If the rate of reboots is known, the
anchor collection frequency can be fixed conservatively to collect enough anchors

! Note that the basestation collects data only and it does not provide a time source,
unless specified otherwise.

Phoenix: An Epidemic Approach to Time Reconstruction 23

Algorithm 1. Phoenix

Definitions:
a,b : alpha and beta for local-local fits;
P : parent segment; IT : Ancestor segments

procedure PHOENIX(AP)

for each (7, 7) in KEYs(AP) do > All unique segment pairs in AP
LF, b, af(i,5) < LLSE(AP(i, 7)) > Compute the local-local fits
for each s € S do > Set of all unique segments
GFo,p,pm,x,df (8) — (0,0,0,s, xamrax,0) > Initialize global fits
for each g € G do > All segments anchored to GTS
INITGTSNoDES(g, LF, GF)
ENQUEUE(Q), g) > Add all the GTS nodes to the queue

while NOTEMPTY(Q) do
q < DEQUEUE(Q)
C «— NEIGHBORANCHORS(q)
for each ¢ € C do
To,8,pP,11,x,df (¢) < GLOBALFIT(c, ¢, GF, LF)
if (UpDATEFIT(¢c, T, GF')) then > Check for a better fit
ENQUEUE(C)
return GF

procedure INITGTSNoDES(g, LF, GF)
GF(9) «+ (LFa(g:9"), LFy(g,9"),0,9, LFx(9,9"); LFas(9,9")) > g’ is GTS, g is LTS

procedure GLOBALFIT(c, q, GF, LF)
if ¢ > ¢ then > Smaller segment is the independent variable
Anew — GFa(q) * LF4(q,c)
Brew — GFa(q) * LFy(q, ¢) + GFs(q)
else
Anew — GFo(q)/LFu(q,c)
Brew — GFa(q) — @new * LFy(g, ¢)
_ GFap (@ GFx (@) +LFgp(a,e)xLFx (a,0)
GFgp(a)+LFgp(q,0)
df « GFas(q) + LFqf(q,c)
return (anew; Bnew, ¢, {c U GFr(q)}, x, df) > Update parent/ancestors

> Compute the weighted GOF metric.

procedure UPDATEFIT(c, T, GF)

if ¢ € Tr7(c) then > Check for cycles
return false

if T\ (c) < GFy(c) then
GFap.p11,x,df (¢) < To,p,P,11,x.df (€)
return true

else
return false

between reboots. One could also employ an adaptive strategy by collecting more
anchors when the segment is small and reverting to a larger T\qkeup When an
adequate number of anchors have been collected. It is advantageous for a mote
to attempt to collect anchors from a small set of neighbors (to minimize stor-
age), but this requires a mote to have some way of identifying the most useful
segments for anchoring (see Section [)).

3.2 Offline Timestamp Reconstruction

The Phoenix algorithm is intuitively simple. We will outline it in text and draw
attention to a few important details. For a more complete treatment, please refer
to the pseudocode in Algorithm [l Phoenix accepts as input the collection of all
anchor points AP (both (local, neighbor) and (local, global)). Tt then employs

24 J. Gupchup et al.

a least-square linear regression to extract the relationships between the local
clocks of the segments that have anchored to each other (LF, for Local Fit).
In addition to LFy(i,7) (slope), LF,(i,j) (intercept), Phoenix also obtains a
goodness-of-fit (GOF') metric, LF,(i,j) (unbiased estimate of the variance of
the residuals) and LFys (degrees of freedom). For segments which have global
references, Phoenix stores this as GF (for Global Fit).

The algorithm then initializes a queue with all of the segments which have
direct anchors to the global clock. It dequeues the first element ¢ and examines
each segment c that has anchored to it. Phoenix uses the transitive relationship
between GF(q) and LF(q,c) to produce a global fit T'(¢) which associates seg-
ment ¢ to the global clock through segment ¢. If T, (c) is lower than the previous
value for GF) (c) (and using g would not create a cycle in the path used to reach
the global clock), the algorithm replaces GF(c¢) with T'(¢), and places ¢ in the
queue. When the queue is empty, no segments have “routes” to the global clock
which have a better goodness-of-fit than the ones which have been previously
established. At this point, the algorithm terminates.

The selection of paths from an arbitrary segment to a segment with global time
references can be thought of as a shortest-path problem (each segment represents
a vertex and the fit between the two segments is an edge). The GOF metric
represents the edge weight. The running time complexity of the implementation
of Phoenix was validated experimentally by varying the deployment lifetime
(thereby varying number of segments). The runtime was found to increase slower
than the square of the number of segments.

4 Evaluation

We evaluate the effect of varying several key parameters in Phoenix using both
simulated and real datasets. We begin by describing our simulator.

4.1 Simulator

Our goal is to minimize the data loss in long-term deployments. Hence, we fix
the simulation period to be one year. We also assume that the basestation is
not persistently present and does not provide a time source to the network.
The network contains one global clock source (a GPS mote) that is susceptible
to failures. The main components of the simulator are described below. The
default values for the simulator are based on empirical data obtained from the
one year long Cub Hill deployment.

Clock Skew: The clock skew for each segment is drawn from a uniformly dis-
tributed random variable between 40 ppm and 70 ppm. Burri et al. report this
value to be between 30 and 50 ppm at room temperatureﬁ 1.

Segment Model: We use the non-parametric segment-length model based on
the Cub Hill deployment after the watchdog timer fix (Figure Bl). Additionally,

2 We ignore the well-studied temperature effects on the quartz crystal. For a more
complete treatment on the temperature dependence, refer to [1417].

Phoenix: An Epidemic Approach to Time Reconstruction 25

after a reboot, we allowed the mote to stay inactive for a period that is randomly
drawn between zero and four hours with a probability given by piown = 0.2. The
GPS mote’s behavior follows the same model.

Communication Model: The total end-to-end communication delay for re-
ceiving anchor packets is drawn uniformly between 5 and 15 milliseconds. This
time includes the interrupt handling, transmission, reception and propagation
delays. To model the packet reception rate (PRR), we use the log-distance
path loss model as described in [I825] with parameters: (P.(do),n,0,dp) =
(—59.28,2.04,6.28,2.0m).

Topology: The Cub Hill topology was used as the basis for all simulations.

Event Frequencies: Motes recorded a 26-byte sample every 10 minutes. They
beacon their local clock values with an interval of Tpeqcon. They stay up after
every reboot and periodically after an interval of Ty,qreup to collect these broad-
casts. While up, they keep their radios on for a maximum of Tj;sten,. The GPS
mote collects (local, global) anchors with a rate of Tyyn.. By default, Theacon,
Twakeups Tiisten and Ty, were set to 30 s, 6 h, 30 s and 6 h respectively.

Maximum Anchorable Segments: To minimize the space overhead in stor-
ing anchors, we limit the number of segments that can be used for anchoring
purposes. At any given time, a mote can only store anchors for up to NUMSEG
segments. The default NUM SEG value is set to four. Motes stop listening early
once they collect NUM SEG anchors in a single interval.

Eviction Policy: Since segments end and links between motes change over time,
obsolete or rarely-heard segments need to be evicted from the set of NUMSEG
segments for which a mote listens. The timeout for evicting stale entries is set
t0 3 X Tyakeup- We evaluated three different strategies for selecting replacements
for evicted segments. First-come, first-served (FCFS) accepts the first segment
that is heard when a vacancy exists. RAND keeps track of the previous segments
that were heard and selects a new segment to anchor with at random. Longest
local clock (LLC) keeps track of the local clock values of the segments that are
heard and selects the segment that has the highest local clock. FCFS was chosen
as the default.

4.2 Evaluation Metrics

Data loss (DL): The fraction of data that cannot be assigned any timestamps,
expressed as a percentage.

PPM Error: The average error (in parts per million) for the assigned times-
tamps. PPM error is |t/t;t|
surement, ¢’ is the assigned timestamp, and ¢s denotes the elapsed time since
the start of the segment in terms of the real clock.

Space overhead: The fraction of space that is used for storing anchors relative
to the total space used, expressed as a percentage.

Duty cycle: The fraction of time the radio was kept on for anchor collection

and beaconing, expressed as a percentage.

x 106, where ¢ is the true timestamp of the mea-

26 J. Gupchup et al.

25

20 o ° o

o o

. to
° 8 8 8 8 8 8
o

oomo o
0o 000

1k
I
]
s
{1+

— e s =

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Days without a global clock source

(a) The effect of a missing global clock source on accuracy.

1.04 — .
50 g 103 —
1.02 —
3
\,? 40 1.01 — .
< 1.00 — wmemsssocesamsccam o o coede gecsee o,
@ 30 099 — o ¢ .
o : :
% 20 =
[=] - 1.5e+12 —
1.0e+12 —
o - - o) il 11
e — —_ - 0.0e+00 — h
0 =— = | | | | | | | | | | | | |
= = £ c £ v £ £ ©w v =®
§ 5§ &§ 5 5 2 & & % 8 B8
- - - 5 > 0 30 60 90 150 210 270 330
Twakeup Deployment Days
(b) The impact of Tyakeup on data loss. (c) Robustness to bad anchors.

Fig. 5. Evaluation of Phoenix in simulation. In (c), faults were injected to GPS anchors
after day 237. Figure shows the a and x values for the GPS mote for the entire period.

4.3 Simulation Experiments

Dependence on Global Clock Source: We studied the effect of the global clock’s
absence on data loss. We assume that the network contains one GPS mote that
serves as the global clock source and it is inoperative for a specified amount of
time. In order to avoid bias, we randomly selected the starting point of this period
and varied the GPS down time from 0 to 150 days in steps of 10. Figure
shows the effect on the reconstruction using 60 independent runs. The accuracy
decreases as the number of days without GPS increases, but we note that this
decrease is tolerable for our target applications. The data loss stayed relatively
stable at 0.21%, even when the global clock source is absent for as long as
5 months. We note that in a densely connected network, the number of paths
between any two segments is combinatorial, and hence, the probability of finding
a usable path is very hig}E. The variance of the error increased with the length
of the gateway’s absence.

Dependence on Wake-up Interval: Figuresshow the effect of varying wake-
up rate on data loss. As expected, data loss increases as the rate of anchor
collection decreases. This curve is strongly related to the segment model: if

3 One can estimate the probability for finding a usable path using Warshall’s algorithm
[B]. The input to this algorithm would be a connectivity matrix where the entries
represent the anchoring probabilities of the neighbor segments.

Phoenix: An Epidemic Approach to Time Reconstruction 27

collections are less frequent than reboots, many segments will fail to collect
enough anchors to be reconstructed.

Robustness: We studied the effect of faulty global clock references on time recon-
struction. Noise from a normal distribution (x4 = 60 min., o =10 min.) was added
to the global references for a period of 128 days. Figure shows the alpha and
x values for the GPS mote during the entire simulation period. One can also no-
tice the correlation between high x values and « values that deviate from 1.0 in
Figure These faults did not change the data loss rate. The faults increased
the PPM error from 4.03 to 16.5. Although these faults decreased accuracy, this
decrease is extremely small in comparison to the magnitude of the injected errors
and within the targeted accuracy requirements. Phoenix extracted paths which
were least affected by these faults by using the y metric.

Effect of eviction and NUM SEG: We studied the effect of NUM S EG on space,
duty cycle, and data loss. The space overhead increases linearly with NUM SEG
(Figure. The impact on duty cycleﬁ was quite low (Figure. A constant
duty cycle penalty of 0.075% is incurred due to the beaconing messages sent every
30 s [16]. At low values of NUMSEG, motes are able to switch off their radios
early (once they have heard announcements from segments they have anchored
with), while at higher values, they need to stay on for the entire Tj;ssen period.
Increasing NUM SEG decreases data loss, because motes have a better chance
of collecting good segments to anchor with. We found that the FCFS eviction
policy outperforms LLC and RAND. We found no significant differences in the
PPM error results as we vary NUMSEG, and hence, we do not report those
results here.

Neighbor Density: In this experiment, we removed links from the Cub Hill topol-
ogy until we obtained the desired neighbor density. At every step, we ensured
that the network was fully connected. We did not find any significant impact on
performance as the average number of neighbors was decreased. In this experi-
ment, the radios were kept on for the entire Tj;4e,, period, and no eviction policy
was employed. This was done to compare the performance at each density level
at the same duty cycle. Figurepresents our findings.

4.4 Deployment

We deployed a network (referred to as the “Olin” network) of 19 motes arranged
in a grid topology in an urban forest near the Johns Hopkins University campus
in Baltimore, MD. Anchors were collected for the entire period of 21 days using
the methodology described in Section Bl The basestation collected data from
these motes once every four hours and the NTP-corrected clock of the basestation
was used as a reliable global clock source. The motes rebooted every 5.7 days on

4 Note that the duty cycle that we are referring to does not consider the communication
costs during data downloads. Reducing the storage requirements would reduce the
communication costs when the basestation collects data.

28 J. Gupchup et al.

021
° . ° x;lz*
< 8 .?. 0.210 /:7./.
< A * —_ 0/-/
5 7 .%’/ { 0205 /A/
g o 2 0200 0/'
5 ° " [N
25 /i S 0195 .
: /5/ g 0.190
o 4 X
2 ;/ o FCFS e : o FCFS
o 3 / + RAND 0.185 + RAND
, ¥ 4 e 0180 - ° 4 e
2 3 4 5 6 7 8 2 3 4 5 6 7 8
NUMSEG NUMSEG

(a) Space overhead in storing anchors as a (b) Duty cycle as a function of NUMSEG.
function of NUMSEG.

0.40 0.035

N e FCFS o
+ RAND
035 - A LLC 0.030
- -
& 030 . &2 0025 .
3 3 8 .
$
8 ozs B S T, 8 N
R . «—
% 0.20 \,\‘ —. % 0.020 . .
5 \-\. S /\/
015 T~ 0015
\ . .
.
0.10 0.010
2 3 4 5 6 7 8 3 4 5 6 7 8 9 10 11 12 13 14
NUMSEG Neighbor density

(c) Data loss as a function of NUMSEG. (d) Effect of varying node density on data
loss with no eviction policy.

Fig. 6. Effect of NUMSEG on different eviction policies

average, resulting in a total of 62 segments. The maximum segment length was
19 days and the minimum was two hours.

Perceived Ground Truth: Tt is very difficult to establish absolute ground truth in
field experiments. Instead, we establish a synthetic ground truth by reconstruct-
ing timestamps using all the global anchors obtained from the basestatiorl. We
record the o and 3 values for each segment and use these values as ground
truth. Because we downloaded data every four hours we obtained enough global
anchors from the motes to be confident with the derived ground truth estimates.

Emulating GPS node and Basestation Failure: In order to emulate a GPS mote,
we selected a single mote (referred to as G-mote) that was one hop away from the
basestation. We used the G-mote’s global anchors obtained from the basestation
as though they were taken using a GPS device. We ignored all other global
anchors obtained from other motes. Furthermore, to emulate the absence of the
basestation for N days, we discarded all the anchors taken by the G-mote during
that N-day long period. We tested for values of N from one to eighteen.

5 Note that every time a mote contacts the basestation, we obtain a global anchor for
that mote.

Phoenix: An Epidemic Approach to Time Reconstruction 29

Table 1. Phoenix accuracy using the Olin dataset as a function of the number of days
that the basestation was unavailable
Error\Days 2 4 6 8 10 12 14 16 18

Qmed (ppm) 1.73 1.73 1.85 1.70 1.96 2.20 4.36 5.47 5.93
astq (ppm) 341 340 3.40 3.39 3.30 3.26 3.17 3.00 3.00

Bmed (s) 0.88 0.88 091 094 1.16 1.55 4.52 6.02 6.44
Bsta (s) 0.58 0.57 0.58 0.57 0.65 0.91 2.43 3.11 3.45

1.00
50

40

= o
§ 0.50 F
2 £ 2
0.25 (=]
—— Persistent 1
0.00 —— BS down 18 days o
60 65 70 75 80 85 90 0 2 4 6 8 10 12 14 16 18
Skew (PPM) Basestation down (days)
(a) The CDF of a estimates on the Olin (b) Data loss using RGTR. Data loss from
deployment Phoenix was < 0.06%.

Fig. 7. The stability of the a estimates using Phoenix and the data loss using RGTR
in comparison to Phoenix

Phoeniz Accuracy: After simulating the basestation failure, we reconstruct the
timestamps by applying Phoenix using only the (local, neighbor) anchors, and
global anchors available from the G-mote. This provides us with another set
of @ and 3 estimates for each of the segments. We compare these estimates
with the ground truth estimates (pair-wise comparison). In order to provide a
deeper insight, we decompose the average PPM error metric into its constituent
components - « and § errors. Furthermore, we report the median and standard
deviation of these o and 3 errors. Table[Ilreports the results of these experiments.
We found that the median « error stayed as low as 5.9 ppm, while the median 3
error stayed as low as 6.4 s for N =18. In general, aupeq, Bmea and Bstq increased
as N increased and «gq stayed relatively consistent for different values of N.
The stability of the a estimates using Phoenix with N =0 and N = 18 is shown
in Figure The CDF shows that median skew was found to be around 75
ppm and the two curves track each other closely.

Data Loss: The data loss using Phoenix was found to be as low as 0.055%
when N was 18 days. In comparison, we found that there was significant data
loss when the timestamps were reconstructed using RGTR. Figure shows
the data losses for different values of N. The figure does not report the Phoenix
data loss as we found it to be 0.055% irrespective of N. This demonstrates that
Phoenix is able to reconstruct more than 99% of the data even when motes

30 J. Gupchup et al.

reboot frequently and the basestation is unavailable for days. We note that in
comparison to Phoenix, RGTR does not incur any additional storage and duty
cycle overheads as anchors are recorded at the basestation directly as part of the
data downloads.

5 Related Work

Assignment of timestamps in sensor networks falls under two broad categories.
Strict clock synchronization aims at ensuring that all the mote clocks are syn-
chronized to the same clock source. Flooding Time Synchronization Protocol
(FTSP, [13]), Reference Broadcast Synchronization (RBS, [7]), and the Timing-
sync Protocol for Sensor Networks [8] are examples of this approach. These
systems are typically used in applications such as target tracking and alarm de-
tection which require strong real-time guarantees of reporting events. The sec-
ond category is known as postmortem time reconstruction and it is mostly used
due to its simplicity. While strict synchronization is appropriate for applications
where there are specific events of interest that need to be reported, postmortem
reconstruction is well-suited for applications where there is a continuous data
stream and every measurement requires an accurate timestamp.

Phoenix falls under the second class of methods. The idea of using linear
regression to translate local timestamps to global timestamps was first intro-
duced by Werner-Allen et al. in a deployment that was aimed at studying active
volcanoes [23]. This work, however, does not consider the impact caused by re-
booting motes and basestation failures from a time reconstruction perspective.
More recently, researchers have proposed data-driven methods for recovering
temporal integrity [9I0]. Lukac et al. use a model for microseism propagation
to time-correct the data collected by their seismic sensors. Although data-driven
methods have proved useful for recovering temporal integrity, they are not a
solution for accurate timestamping.

Routing integrated time synchronization protocol (RITS, [19]) spans these
categories. Each mote along the path (to the basestation) transforms the time of
the reported event from the preceding mote’s time frame, ending with an accu-
rate global timestamp at the basestation. RITS does not consider the problem
of mote reboots, and is designed for target tracking applications. The problem
of mote reboots have been reported by a number of research groups. Chang et
al. report that nodes rebooted every other day due to an unstable power source
[2], whereas Dutta et al. employed the watchdog timer to reboot nodes due to
software faults [6]. Allen et al. report an average node uptime of 69% [23]. More
recently, Chen et al. advocate Neutron, a solution that detects system violations
and recovers from them without having to reboot the mote [3]. They advocate
the notion of preserving “precious” states such as the time synchronization state.
Nevertheless, Neutron cannot prevent all mote reboots and therefore Phoenix is
still necessary.

Phoenix: An Epidemic Approach to Time Reconstruction 31

6 Conclusions

In this paper we investigate the challenges facing existing postmortem time re-
construction methodologies due to basestation failures, frequent random mote
reboots, and the absence of on-board RTC sources. We present our time recon-
struction experiences based on a year-long deployment and motivate the need
for robust time reconstruction architectures that minimize data losses due to the
challenges we experienced.

Phoenix is an offline time reconstruction algorithm that assigns timestamps
to measurements collected using each mote’s local clock. One or more motes
have references to a global time source. All motes broadcast their time-related
state and periodically record the broadcasts of their neighbors. If a few mote seg-
ments are able to map their local measurements to the global time frame, this
information can then be used to assign global timestamps to the measurements
collected by their neighbors and so on. This epidemic-like spread of global infor-
mation makes Phoenix robust to random mote reboots and basestation failures.
We found that in practice there are more than enough possible ways to obtain
good fits for the vast majority of data segments.

Results obtained from simulated datasets showed that Phoenix is able to
timestamp more than 99% of measurements with an accuracy up to 6 ppm
in the presence of frequent random mote reboots. It is able to maintain this
performance even when there is no global clock information available for months.
The duty-cycle and space overheads were found to be as low as 0.2% and 4%
respectively. We validated these results using a 21 day-long real deployment and
were able to reconstruct timestamps in the order of seconds.

In the future, we will investigate using other metrics for determining edge
weights and their impact on the quality of the time reconstruction. Moreover, we
will explore adaptive techniques for determining the anchor collection frequency.
Finally, we will derive theoretical guarantees on the accuracy of Phoenix, which
can be used to allow for fine-grained tradeoffs between reconstruction quality
and overhead.

Acknowledgments

We thank Prabal Dutta, Jay Taneja and the anonymous reviewers for their
comments that helped us to improve the paper’s presentation. This research was
supported in part by NSF grants DBI-0754782 and CNS-0720730. Any opinions,
finding, conclusions or recommendations expressed in this publication are those
of the authors and do not represent the policy or position of the NSF.

References

1. Burri, N.,; von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low power data gath-
ering in sensor networks. In: IPSN (2007)

2. Chang, M., Cornou, C., Madsen, K., Bonnet, P.: Lessons from the Hogthrob De-
ployments. In: WiDeploy (June 2008)

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

J. Gupchup et al.

. Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J.: Surviving sensor
network software faults. In: SIGOPS (October 2009)

. Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2-year
progress report: July 2004 to June 2006 (2004)

. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill Science/Engineering/Math, New York (2001)

. Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse,
K., Culler, D.: Trio: Enabling sustainable and scalable outdoor wireless sensor
network deployments. In: IEEE SPOTS, pp. 407-415 (2006)

. Elson, J.E., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. In: OSDI, December 2002, pp. 147-163 (2002)

. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor net-
works. In: Proceedings of SensSys, November 2003, pp. 138-149 (2003)

. Gupchup, J., Musaloiu-Elefteri, R., Szalay, A.S., Terzis, A.: Sundial: Using sunlight

to reconstruct global timestamps. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009.

LNCS, vol. 5432, pp. 183-198. Springer, Heidelberg (2009)

Lukac, M., Davis, P., Clayton, R., Estrin, D.: Recovering temporal integrity with

data driven time synchronization. In: IPSN, April 2009, pp. 61-72 (2009)

Luo, L., Huang, C., Abdelzaher, T., Stankovic, J.: EnviroStore: A cooperative stor-

age system for disconnected operation in sensor networks. In: INFOCOM (2007)

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-

sor networks for habitat monitoring. In: WSNA, pp. 88-97. ACM, New York (2002)

Maréti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization

protocol. In: SenSys, November 2004, pp. 39-49 (2004)

Marrison, W.A.: The evolution of the quartz crystal clock. The Bell System Tech-

nical Journal 27 (1948)

Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-low power data retrieval

in wireless sensor networks. In: IPSN, pp. 421-432 (2008)

Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-Low Power Data Re-

trieval in Wireless Sensor Networks. In: Proceedings of the Seventh International

Conference on Information Processing in Sensor Networks (IPSN) (April 2008)

Newell, D.E., Bangert, R.H.: Temperature compensation of quartz crystal oscilla-

tors. In: 17th Annual Symposium on Frequency Control 1963, pp. 491-507 (1963)

Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn.

Prentice Hall PTR, Englewood Cliffs (2002)

Sallai, J., Kusy, B., Lédeczi, A., Dutta, P.: On the scalability of routing integrated

time synchronization. In: Romer, K., Karl, H., Mattern, F. (eds.) EWSN 2006.

LNCS, vol. 3868, pp. 115-131. Springer, Heidelberg (2006)

Taneja, J., Jeong, J., Culler, D.: Design, modeling, and capacity planning for micro-

solar power sensor networks. In: IPSN 2008, pp. 407-418 (2008)

Texas Instruments Incorporated. MSP430 Datasheet

. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,

S., Gay, D., Hong, W., Dawson, T., Culler, D.: A Macroscope in the Redwoods.

In: SenSys (November 2005)

Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and Yield

in a Volcano Monitoring Sensor Network. In: OSDI (November 2006)

Yang, Y., Wang, L., Noh, D.K., Le, H.K., Abdelzaher, T.F.: Solarstore: enhancing

data reliability in solar-powered storage-centric sensor networks. In: Mobisys, pp.

333-346. ACM, New York (2009)

Zamalloa, M.Z., Krishnamachari, B.: An analysis of unreliability and asymmetry

in low-power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)

Trimming the Tree: Tailoring Adaptive
Huffman Coding to Wireless Sensor Networks

Andreas Reinhardt!, Delphine Christin?, Matthias Hollick?,
Johannes Schmitt!, Parag S. Mogre', and Ralf Steinmetz'

! Multimedia Communications Lab, Technische Universitit Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Germany
{areinhardt, jschmitt,pmogre,ralf.steinmetz}@kom.tu-darmstadt.de
2 Secure Mobile Networking Lab, Technische Universitat Darmstadt
Mornewegstr. 32, 64293 Darmstadt, Germany
{delphine.christin,matthias.hollick}@seemoo.tu-darmstadt.de

Abstract. Nodes in wireless sensor networks are generally designed to
operate on a limited energy budget, and must consciously use the avail-
able charge to allow for long lifetimes. As the radio transceiver is the
predominant power consumer on current node platforms, the minimiza-
tion of its activity periods and efficient use of the radio channel are
major targets for optimization. Data compression is a viable option to
increase the packet information density, resulting in reduced transmis-
sion durations and thus allowing for an optimized channel utilization.
The computational and memory demands of many current compression
algorithms however hamper their applicability on sensor nodes.

In this paper, we present a novel variant of the adaptive Huffman
coding algorithm, operating on reduced code table sizes and thus sig-
nificantly alleviating the resource demands for storing and updating the
code table during runtime. An implementation for tmote sky hardware
proves its adequacy to the capabilities of sensor nodes, and we present
its achievable compression gains and energy requirements in both simu-
lation and real world experiments. Results anticipate that overall energy
savings can be achieved when transferring packets of reduced sizes, even
when increased CPU utilization is incurred.

1 Introduction

In general, energy budgets of nodes in wireless sensor networks (WSNs) are
tightly limited [I], thus necessitating the design of applications with increased
awareness to their energy consumption. As radio transmissions are an inher-
ent and crucial characteristic of WSNs, but current radio transceivers, such as
the widely employed CC2420 device, still expose power consumptions of tens
of milliamperes [2], permanent operation of the radio transceiver leads to quick
depletion of the battery in both transmission and reception mode. This problem
can be approached in several ways, reaching from energy-aware medium access
control (MAC) protocols to highly application-specific means of data compres-
sion. In this paper, we focus on compressing packet payloads, targeting to reduce

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 332010.
© Springer-Verlag Berlin Heidelberg 2010

34 A. Reinhardt et al.

the transmission duration and thus the energy required to exchange data. We in-
vestigate the achievable energy savings while disregarding the influence of MAC
protocols in our analysis, as reduced packet transmission durations always cor-
respond to savings in transmission energy. The share of the overall radio energy
consumption however depends on the selected MAC protocol and its features
like duty cycling and low-power listening [3]. The presented solution is designed
to remain compatible with both existing header compression schemes as well as
energy-aware MAC protocols. In fact, our approach is even capable of compress-
ing both packet payloads and headers.

While data processing and compression mechanisms specifically tailored to
an application may provide optimal compression results, they require individual
adaptation to sensor data and packet structures and thus place an additional
load on the application developer. In contrast, generic data compression solu-
tions, as known from desktop computers, often greatly exceed the capabilities
and available resources of embedded sensing systems. In this paper, we pur-
sue the strategy to adapt a generic compression algorithm to the capabilities of
sensor nodes. The resulting generic and application-agnostic solution allows to
compress data without necessitating additional programming efforts. Opposed
to existing approaches, which buffer multiple packets of data prior to compres-
sion, our approach targets applications that rely on immediate transmissions;
i.e. each packet is compressed individually prior to its transmission.

We focus on the adaptation of a lossless adaptive data compression algorithm,
based on adaptive Huffman coding (AHC), where literals in the input sequence
are replaced by binary codes with a length reciprocal to the frequency of their
occurrence []. Our analysis of the existing adaptive Huffman coder implemen-
tation for WSNs by Guitton et al. in [5] however revealed that on a TelosB
platform, more than 62% of both program Flash and RAM are consumed to
maintain a single compressed unicast radio connection. Instantiating more than
one connection has not been possible at all due to the memory requirement for
storing the corresponding Huffman code table. We address this limitation by
making use of Huffman code trees with a limited number of entries, greatly re-
ducing computational and memory consumption at the possible cost of slightly
degraded compression ratios. By comparing the achievable compression gains
and energy requirements, we prove the applicability and benefits of the pro-
posed approach considering the data-oriented characteristics of traffic in many
deployments.

The contributions of this paper are as follows:

1. We analyze the characteristics of WSN traffic from different deployments
and prove that compression gains can be achieved when only a subset of the
contained symbols are encoded.

2. We present a modification to the adaptive Huffman coding algorithm, which
operates on code trees with a limited number of elements.

3. We prove its adequacy to sensor networks through an evaluation of its com-
pression gain and energy demand as well as its applicability on real hardware.

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 35

In a first step, we present existing approaches towards data compression in
WSNss in Sec. 2l We describe selected data traces taken from real sensor network
deployments and estimate their compression gain when encoding only a subset
of symbols in Sec. Bl In Sec. @, we present our modifications to the AHC algo-
rithm. Simulation results for both compression gain and energy consumption are
presented in Sec. [l followed by the results from a real-world experiment. We
conclude this paper in Sec. [fl and provide an outlook on prospective future work.

2 Related Work

Pottie and Kaiser have determined in [I] that the energy demand to transfer one
kilobyte of data over a distance of one hundred meters in a WSN is the same
as required for executing three million CPU instructions. Later, this observa-
tion was confirmed by Sadler and Martonosi, who determined that the one-hop
transmission of a single byte consumes energy equivalent to performing several
thousand instructions on an MSP430 microcontroller [6]. In the same work, the
authors propose the RT-LZW (retransmission LZW) algorithm, which achieves
compression gains up to a factor of 2.5x when operating on aggregated data
blocks of 528 bytes each. It relies on retransmissions of lost packets to ensure
that data required to construct the code dictionary is present at both parties,
possibly resulting in energy expenses for these additional transmissions.

Guitton et al. have analyzed the applicability of adaptive data compression
in WSNs in [5]. They have extended the AHC algorithm by fault-tolerant mech-
anisms, which groupwise acknowledge transfers of encoded data and adapt the
dictionaries to the successfully received data only. They do however not mea-
sure achievable compression gains or the energy consumption of their algorithm.
When packet structures can be statically defined prior to node deployment and
some fields are known to remain constant or only change incrementally, the
EasiPC packet compression scheme by Ju and Cui [7] can also be used to trans-
mit changed fields only.

In [§], Tsiftes et al. have focussed on compressing firmware updates that are
transferred over the radio, and designed the SBZIP algorithm, a derivative of
BZIP2, adapted to the requirements present in sensor networks. However, the im-
plementation of SBZIP on sensor nodes does not target to compress application-
generated data, but is instead used to decompress application code updates.
Chou et al. present means to reduce an overall network’s energy consumption by
exploiting the Slepian-Wolf coding theorem in a low-complexity implementation
in [9]. Hereby, no inter-node communication overhead is required as long as the
correlation between the data is known. Targeting to reduce the overall number
of packet transmissions, the approach is orthogonal to our concept of reducing
the sizes of packets and can be used supplementary.

In [1I0], we have presented the Squeeze. KOM compression layer as an archi-
tectural element for sensor network nodes. Using a differential coding module,
compression gains of up to 35% can be achieved at low computational cost and
overall energy savings. Additionally, we have presented a feasibility study of data

36 A. Reinhardt et al.

compression on WSN nodes in [I1]. Focused on the energy gains of application-
specific compression means for a wearable sensor, we have determined overall
platform energy savings of up to 5% in a realistic application setting.

We are however not aware of any previous work that discusses the energy effi-
ciency of adaptive compression algorithms in detail while providing an extensive
analysis of their applicability on current WSN hardware.

3 Analyzing the Traffic in Existing Sensor Networks

In the last decade, a variety of WSNs have been deployed in a wide range of
scenarios, including wildlife surveillance [I2/T3], object tracking [I4], or environ-
mental monitoring [I5]. In most of the WSN deployments, network traffic follows
a convergecast scheme; all data is routed out of the network using a collection
tree or equivalent means, rooted at one or more sinks [16]. Especially when the
packet payload is comprised of environmental data, transfers often take place at
a regular interval. Timely message delivery is not essential in such scenarios, but
the loss of a series of packets is often interpreted as a node failure, hence regular
successful transmissions are essential to determine the state of the network.

For our analysis, we have considered four exemplary data sets from exist-
ing WSN deployments: PermaSense [15], Glacsweb [17], and two series taken
from the Porcupines [I§]. For PermaSense, we have used 19,730 packets of 30
byte payload each transmitted by node 2036 from 15 November to 15 December
2008, taken from the project websitdl. From the Glacsweb deployment, we have
used all 523 available packets of 52 byte payload, and in case of the Porcupines,
we have selected two representative phases of 2.203 packets of 42 bytes each,
where the first one was recorded during wearer activity (termed activity phase)
and the second one when the wearer was asleep (sleep phase). While the two
former data sets are physical measurements from sensors deployed for environ-
mental monitoring, with readings changing smoothly over time, the latter are
taken from motion sensors attached to a human and thus reflect both phases
of sudden motions and steadiness. Representative excerpts of the four data sets
are plotted in Fig. [l for reference. It should be noted at this point that only five
different symbols are present in the entire data stream in the Porcupine sleep
phase, whereas the active Porcupine data set is composed of 89 different values.
Glacsweb makes use of 185 different symbols, and PermaSense spans the entire
input symbol range of 256 values.

To attain an estimate for the compressibility of the data sets, we show the
analysis of their symbol distributions in Fig. Bl showing that the occurrence
frequencies of the used symbols are not distributed evenly over the data set.
In contrast, the data sets rather expose a number of subset of symbols with
significantly greater occurrence numbers. The cumulative distribution function
of the symbols, which is also shown in the figure, also indicates that only a
fraction of the contained symbols show frequent occurrences, while the remaining
symbols have almost negligible occurrence numbers.

!http://tik42x.ee.ethz.ch: 22001

http://tik42x.ee.ethz.ch:22001

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 37

300 T
250 f . i — . . . E
200 o Dok
150 F . o T . ; e L

Symbol value

50 f : : -
JEEEEmEE e e S = T T T T T T T T T T
10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000

Symbol ID - Sequence of input data for PermaSense dataset

ot - Lot er et gt ar on

300
250 F 3
200 F . o . S L . S0
150 F ! . . o . S . . L : E
0o kb . . - . . . - . . . R -4
o - 8 . . . N . . . X .) N . . o
11000 11100 11200 11300 11400 11500 11600 11700 11800 11900 12000
Symbol ID - Sequence of input data for Glacsweb dataset

Symbol value

170
160
150 F*
140
130
120
110
100

Symbol value

L L L L L L L L
4300 4400 4500 4600 4700 4800 4900 5000
Symbol ID - Sequence of input data for Porcupine activity phase dataset

170
160

140

130

120 =

110 =

100 1 1 1 I I I I 1 1 1 1

4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000
Symbol ID - Sequence of input data for Porcupine sleep phase dataset

Symbol value

Fig. 1. Representative excerpts of the used data sets

3.1 Huffman Coding Revisited

The foundation of Huffman coding is the assignment of codes to input symbols,
with their length being reciprocal to their occurrence frequency within the input
stream. In static Huffman coding [I9], the input sequence is analyzed prior to
encoding, and occurrence frequencies of all contained symbols are determined.
On completion of this process, a tree is constructed, containing mappings for all
input symbols to their corresponding Huffman code. This tree must be sent to
the receiver before the actual data is transmitted to ensure both parties operate
on the same dictionary. This represents additional overhead, which is however
generally encountered by a near-optimal adaptation to the input sequence. The
major drawback when using static Huffman coding is the required full knowledge
of the data, which strongly limits its applicability in sensor networks, where
sensor readings become available periodically. In such case, the algorithm needs
to operate on individual packets, and thus transmit the code table in each of
them.

38 A. Reinhardt et al.

> 100000 [
2 41
5 E
: 80000 EIP
£ 60000 F Symbol count PermaSense ~ + 4 0.6
g E CDF of symbol count PermaSens
§ 40000 of symbol count PermaSense EW
5 20000 F 9 02
§ R P S DU 7 ST, MU VL B
0 16 32 48 64 80 9 112 128 144 160 176 192 208 224 240 256
Occurrence frequencies of symbols in data set; Cumulative Density Function of occurence frequency of data set
> 30000 £
g 41
5 25000
g 20000 f 308
& E Symbol count Glacsweb = 3 0.6
g 15000 CDF of symbol count Glacsweb
8 10000 4 04
5 5000 F 02
3 0 . . . L . . . L " 1
0 16 32 48 64 80 9% 112 128 144 160 176 192 208 224 240 256
Occurrence frequencies of symbols in data set; Cumulative Density Function of occurence frequency of data set
o 5000
9 941
5 4 E
: 000 ET
< 3000 Symbol count Porcupine activity phase ~ + 9 0.6
E 2000 [CDF of symbol count Porcupine Active 3 04
§ 1000 | 1 02
3 o i L I
0 16 32 43 64 80 9% 112 128 144 160 176 192 208 224 240 256
Occurrence frequencies of symbols in data set; Cumulative Density Function of occurence frequency of data set
5 35000 p 1,
2 30000 F
g 25000 4 08
“: 20000 F Symbol count Porcupine sleep phase ~ + 4 0.6
2 15000 F CDF of symbol count Porcupine sleep phase EEW
g 10000 -
5 s000 B q02
o) 0 Ed " " " " " " il " " " " " " " 1 I

L
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Occurrence frequencies of symbols in data set; Cumulative Density Function of occurence frequency of data set

Fig. 2. Symbol distributions for the used data sets

Adaptive Huffman coding is based on the maintenance of a the code table
in a dynamic way []. In contrast to static Huffman coding, where this table is
generated prior to the actual encoding step, AHC assigns (and possibly modifies
when occurrence frequencies change) the code tree during runtime. To allow for
these dynamic adaptations to occur, a dedicated placeholder symbol for an input
symbol not yet encountered (NYF) is part of the code tree. This symbol is always
maintained with an occurrence frequency of zero and thus always assigned one of
the longest codes. Whenever a symbol not yet present in the Huffman table needs
to be transferred, the NYE symbol is transmitted, followed by the unencoded
representation of the symbol. The symbol is then added to the code tables of
both parties, so its newly assigned code can be used on its next occurrence.

3.2 Estimation of Compression Gains

In Fig. Bl the cumulative distribution functions for the studied real-world sensor
data indicate that the full range of input symbols is dominated by symbols with

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 39

few occurrences within the data stream, whereas only a subset of symbols with
high occurrence frequency is present. To estimate the compressibility of the data,
we evaluate the resulting output sizes when only a subset of symbols is being
compressed while all remaining symbols are sent unencoded.

Let us assume that a compression algorithm can encode n symbols of the size
of a byte, leaving the remaining 256 — n symbols uncompressed. We furthermore
assume that ~; represents the number of occurrences of the byte value ¢ in the
input sequence, and that f(¢) is the function that assigns a code length (in bits)
to this symbol. In case of an uncompressed transmission, f(i) would statically be
assigned a value of eight bits. Given these definitions, the length [of the output
sequence resulting from the data compression step can be calculated as shown in
Eq. [which sums the lengths of each symbol’s code multiplied by the number
of its occurrences within the input sequence.

256

Z:Zf(i)*%' (1)
=1

Symbol-oriented compression schemes, such as Huffman coding, create the
code length function f(i) from the state of their code table. To assess if com-
pression with a reduced number of entries in the code tree is feasible, we have
used two approximation functions for code lengths; while f. in Eq.[2l assumes an
equal length for the symbols that are encoded, f; in Eq.[3lassigns the lengths of
the output codes to follow the symbol’s rank r () within the occurrence frequency
list. Code trees for both functions are also depicted in Fig.

f) =1+ { ldm] i i<=n 2)
(i) it i<n

fr@)=1+<n—-1 if i=n (3)
8 if i>n

When only a subset of the possible input symbols is present within the table
mapping from input symbol to corresponding code, an additional indicator is
required to mark the following bits as plaintext or encoded symbol. We have
selected a one bit prefix to allow for this distinction, which is also reflected in the
two functions. The results for this preliminary analysis are shown in Fig.[dl which

(10) (10)

c(2 a1
(a) Code tree following fe distribution (b) Code tree following f; distribution

Fig. 3. Trees for fo and fy with n = 4, resulting from the input sequence aaaabbbccd

40 A. Reinhardt et al.

2 % 35000
% 4000000 F T T T T T T T T T 1 % 00T T T T T T T T
2 3000000 Est{mate using f_C —| 2 25000
= Estimate using f; o = 20000
2 2000000 8 15000
& 1000000 s 10000
g 25000
[a) 0 a 0
RefHC 1 2 4 8 16 32 64 128256 Ref HC 1 2 4 8 16 32 64 128 256
Ref. data and AHC for limited code tree (PermaSense) Ref. data and AHC for limited code tree (Glacsweb)
& 250000 T T T T T T g 00 FT—TT T T T T T T T 7T
2 200000 Estimate using f, ==——= 2 200000 Estimate using f, =——o
£ 150000 Estimate using fef — £ 150000 Estimate using tgf —
£ 100000 F g — & 100000
s 50000 s 50000
= 4
a [a) 0
RefHC 1 2 4 8 16 32 64 128256 RefHC 1 2 4 8 16 32 64 128256
Ref. data and AHC for limited code tree (Porc. active) Ref. data and AHC for limited code tree (Porc. sleep)

Fig. 4. Compression gain estimates for the data sets using fe, fr, and Huffman coding

additionally indicates the compression gains when using static Huffman coding
to put the results into perspective. Although clearly indicating that savings can
be achieved even when using the presented non-ideal code length distributions,
the compression gain shows a strong dependence on the used data set.

As the Glacsweb and Porcupine (sleep mode) data sets only expose a small
number of symbols with high occurrence frequency, the f; function presents a
better basis to achieve high compression gains, as very short codes are assigned
to the most frequently occurring symbols. This way, gains of 82% are achieved
for Glacsweb (at n=1), and up to 62% for the Porcupines (at n=4). In con-
trast, the active Porcupine and PermaSense data sets contain a larger number
of frequent symbols, which are not covered well by the ranking performed in f;.
When applying f. instead, compression gains of 17.3% (at n=32) for the active
Porcupine phase, and 12% for PermaSense (at n=16) can be determined.

4 Adaptive Huffman Coding in Sensor Networks

As outlined in Sec. Bl a Huffman code tree must be stored for each communi-
cation link, with each of the nodes in the tree containing information about the
symbol it represents, its occurrence frequency, its status (e.g., root, leaf, or NYE)
as well as the identities of its children nodes and its parent. As 2n — 1 nodes are
required to allow for n code entries in a tree, 511 nodes must be stored within
the tree to allow for mappings of 256 input symbols. This number requires nine
bits to be represented and thus two bytes on any byte-aligned microcontroller.
As each tree node needs to store six bytes for its parent and child identities as
well as the input symbol it represents, its frequency and status information, a
minimum of nine bytes are consumed. In summary, this results in a demand of
more than four kilobytes of RAM for a Huffman tree storing 256 symbols. Be-
sides the tree itself, a table for the occurrence frequencies of input symbols must
be maintained, consuming another 256 bytes at least. This theoretical analysis
also confirms the behavior observed in Guitton’s implementation [5], where the
memory consumption of the code tree disallowed us to instantiate more than one

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 41

connection. Additionally, whenever a packet is sent or received, the Huffman tree
must be updated according to its new occurrence frequency by a number of swap
operations, which pose computational overhead.

The analysis of the resource demands of AHC has shown its limited applica-
bility in WSNs due to the excessive resource demands, but also resulting from
the lack of dynamic memory allocation schemes in TinyOS [20]. When operating
on statically assigned memory, worst case behavior needs to be assumed for the
assignment of memory during compile time, i.e. memory needs to be reserved
for all symbols, including those that never occur within the input sequence.

4.1 Trimming the Tree

Our observations show that the memory consumption and thus the applicability
of the AHC implementation on WSN nodes is mainly limited by the number of
symbols that are stored in the Huffman tree. However, as discussed in Sec. [3.2]
the symbol occurrence frequencies of traffic in current WSNs are often strongly
biased towards a small subset of symbols, while the remaining input characters
might only rarely or never be part of the input string. Our preliminary esti-
mations of the achievable compression gain, as shown in Fig. @ confirm that
packet size reductions are possible when only a subset of symbols are stored
within the Huffman tree, while the remaining ones are transferred unencoded.
The selected estimation functions were however neither adaptive to the traffic
(i.e., a priori knowledge about the whole data set was required), nor did they
match the characteristics of the traffic precisely.

As the memory consumption of the code table is linearly dependent on the
number of entries stored within the table, keeping only a subset of input symbols
in the tree can significantly reduce its memory requirement. Besides, when a
smaller number of node IDs must be stored, their size can also be reduced (an
8 bit wide node ID field is sufficient to store up to 128 symbols in the tree). As
a third benefit, the time to restructure the tree when changes in the occurrence
frequencies are encountered also depends on the number of entries, and can in
consequence be improved by reducing the tree size. In the following, we analyze
the effects of confining the Huffman code tree to a limited number of entries.

4.2 Populating the Tree

The main difference between our proposed approach and conventional adaptive
Huffman coding lies in the process of populating the tree. While in AHC, the
NYE node is always present to attach unknown symbols to the tree, the limita-
tion of the number of tree nodes in our algorithm can lead to situations where
the NYE node, with its assumed occurrence frequency of zero, is being replaced
by a symbol. We encounter this situation by keeping track of the occurrence
frequencies of the symbols stored in the tree, and replacing the element with the
smallest occurrence frequency in case a more frequent symbol is encountered.

42 A. Reinhardt et al.

NYE (0) (6) (8)
NYE (0) a (6) (2) a (6)

NYE (0) b (2)
(a) Initial empty tree (b) 6 times a added (c) 2 times b added

9) (10) (11)
(3) a (6) (4) a (6) () a (6)
c() »v(2) d(2) »(2) d(2) <@
(d) 1 cadded, NYE replaced (e) 2 d added, c replaced (f) 2 ¢ added, b replaced

Fig. 5. Populating a tree with capacity for 3 symbols with the sequence aaaaaabbcddcc

We depict the operation of the proposed implementation in Fig. Bl where an
input sequence of aaaaaabbcddcc and a tree capacity of 5 nodes (equalling 3
symbols) is assumed. The nodes in the tree are labeled with the symbols they
represent as well as their occurrence counter. In the initial phase (Fig. Bh—c),
updates to the code tree are performed identical to AHC, i.e. either the counter
of a symbol present in the tree is incremented, or a new symbol is added to the
tree through the NYE node. In Fig. however, the new input symbol c is
encountered in the input sequence, while the limited number of nodes disallows
the NYE to create a new tree node for the symbol. In contrast to AHC, our
approach replaces the NYE by the symbol node; the tree thus loses the inherent
capability of being extended through the NYE node. To still adapt to the input
sequence during runtime, we follow the approach of replacing the node with
the smallest counter value when a symbol with greater counter is present, such
as shown in Fig. and To allow for this, we keep track of all symbol
occurrence frequencies during runtime. All resulting codes are prefixed by a single
bit indicating if the following bit sequence should be interpreted as a code from
the Huffman tree or as an unencoded symbol. Assuming the tree state depicted
in Fig. the letter ¢ would thus be encoded as the binary code 101, where
the 1 bit indicates that the following bits are taken from the code table, and the
01 bits refer to the branches taken to reach the value (0: left, 1: right). Similarly,
symbols not contained in the table, like the numeric digit 2 can be represented
as 000100010, where the first 0 bit indicates that it is followed by an unencoded
symbol, and the 00100010 bits contain the ASCII representation of the digit.

The limited code tree size reduces the algorithm’s resource demands signifi-
cantly, as only codes for the most frequently occurring input symbols are stored,
and less memory and computation time is required when reorganizing the table.
Especially, as each sensor node needs to maintain a Huffman table for each con-
nection, the proposed reduction in terms of memory consumption is essential to
successfully apply AHC in WSNs. Still, the adaptive character is maintained,
allowing for high compression gains.

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 43

5 Analysis and Evaluation

Concluding from the compression gain estimates presented in Sec. B2 it is ap-
parent that size reductions can already be achieved when using simplified code
length approximations while limiting the number of entries within the tree. In
consequence, we have presented the design of an adaptive Huffman coding algo-
rithm that operates on a limited code tree size. In this section, we analyze its
compression gains when applied to the data sets introduced in Sec. Bl Secondly,
we show the algorithm’s applicability on sensor node hardware by evaluating
both its resource and energy demands. In a third and final step, we verify the
applicability of our algorithm and energy-efficiency in a real-world experiment.

5.1 Analysis of the Compression Gain

We have compressed the four presented data sets with the algorithm and varied
the parameter n, indicating the number of symbols that can be stored in the
tree. We show the sizes of the compressed sequences in Table [I] in comparison
to the uncompressed data, which we use as reference for all following analyses.

Table 1. Output sizes in bytes (and ratio to input) for AHC with limited tree size

#Symbols PermaSense Glacsweb . Porcupines

in tree (n) active sleep

Reference 591930 (1.0) 27144 (1.0) 89754 (1.0) 89754 (1.0)
1 625211 (1.06) 4903 (0.18) 91172 (1.02) 72816 (0.81)
2 595944 (1.01) 7929 (0.29) 88487 (0.99) 49835 (0.56)
4 567247 (0.96) 7794 (0.29) 84249 (0.94) 34504 (0.38)
8 539434 (0.91) 7766 (0.29) 79065 (0.88) 34940 (0.39)
16 517086 (0.87) 7759 (0.29) 74431 (0.83) 34940 (0.39)
32 510933 (0.86) 7772 (0.29) 70931 (0.79) 34940 (0.39)
64 519592 (0.88) 7807 (0.29) 71884 (0.80) 34940 (0.39)
128 537240 (0.91) 7869 (0.29) 71972 (0.80) 34940 (0.39)

Notably, the achievable compression gains show a strong correlation to the
used data set and its characteristics. However, the number of entries in the code
tree also has a major impact on the compression gain. While very small values for
the symbol count n allow to encode predominant symbols in a very efficient way,
the one bit prefix increases the encoded length of all other symbols. Especially
in the PermaSense and active Porcupine data sets with many different contained
symbols, this even leads to size increases of the output for certain configurations
of n. In contrast, if too large values for n are chosen, the compression gain slightly
degrades as a result of the longer code lengths of rarely occurring symbols.

5.2 Applicability on WSN Hardware

Before analyzing the algorithm’s overall energy consumption, its applicability
on current node hardware has been investigated. We have selected the tmote

44 A. Reinhardt et al.

Table 2. Resource consumption of AHC with limited tree size compared to reference

#Symbols in tree Ref 1 2 4 8 16 32 64 128 256

22800 23838 23932 23936 23936 23936 23936 23936 23926 23918
46.3% 48.5% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7%
5086 6122 6138 6170 6234 6362 6618 7130 8154 10202
49.7% 59.8% 59.9% 60.3% 60.9% 62.1% 64.6% 69.6% 79.6% 99.6%

Flash (bytes)

RAM (bytes)

sky platform as our reference, comprising a TT MSP430 microcontroller (MCU)
with 48 kilobytes of program Flash and 10 kilobytes of RAM. This platform
also acts as the basis for all further analyses in this paper. To assess the resource
consumption, we have implemented a simple application in the Contiki operating
system [2I], which periodically takes sensor readings and transmits them over
the radio. We have compared our variant of the adaptive Huffman coder to
the reference implementation without compression functionality. Results for the
required amount of Flash and RAM are shown in Table 2] and indicate that
the additional amount of resources required by our implementation stays within
reasonable limits when less symbols need to be stored within the tree, even
though an array containing all symbol frequencies is required. With less than
an 1,150 bytes increase in the program memory consumption, and an overhead
of 8 bytes per Huffman table node, the algorithm proves applicable on the used
sensor node hardware, leaving sufficient resources available to the application.

5.3 Energy Analysis

If we consider the computational efforts required to process input symbols and
accordingly restructure the code tree, possible size reductions of radio packets
might be counterbalanced by additional expenses for the processing. To eval-
uate the algorithm’s energy efficiency on real sensor node hardware, we have
performed a detailed energy simulation using MSPsim and COOJA [22] with
the corresponding NullMAC protocol implementation (i.e., the radio transceiver
of the receiver node is always active, so the sender radio only needs to be switched
on during packet transmissions). As discussed in Sec. [this particular choice of
the MAC protocol has been made to evaluate the algorithm’s energy demand in-
dependently of any additional effects introduced by the MAC protocol. The sky
node type has been selected, as it also represents the platform we base our prac-
tical experiment on. To allow for reproducible results, we have statically supplied
the data sets to the simulated application, and assumed a lossless wireless chan-
nel as a detailed analysis of the impact of real-world channel characteristics is
beyond the scope of this paper. Assuming a single-hop transmission at a rate of
ten packets per second, we have analyzed the energy requirements of the sender
node only, as only marginal changes occur to the receiver’s energy consumption
when its radio device is not duty-cycled. We have analyzed the algorithm’s en-
ergy consumption and show the corresponding results in Fig. [6l Analog to [22],
we use the current consumptions measured by Dunkels et al. in [23] for our anal-
ysis. We assume an operating voltage of 3V, and radio current consumptions of

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 45

0 —— 3 ———————
Porcupines sleep phase —+— Porcupines sleep phase —+—
Porcupines activity phase ~-%-- Porcupines activity phase ~->--
Glacsweb ---% -~ 30 | Glacsweb ---%-- e]
o PermaSense & B PermaSense £ -
ERRENS 1 z
) S osf B
E z
: . E
£ . £ 2
g oor e S N g
Z z
El LK 2l 15 —
3 T = e 3
: = :
Z Z wf E
£ 5F i g
o o
sE E
oy ob v
Ref 1 2 4 8 16 32 64 128 Ref 1 2 4 8 16 32 64 128
Uncompressed reference data and AHC for limited code tree size ‘Uncompressed reference data and AHC for limited code tree size
(a) Radio energy (b) Microcontroller energy
60 —
*.
dwfF T E
K eee Kool
= UK
5 f E
5 o e B a *. .
_i [P K== mmm X %
@ a0 F " E
& g
g X
5 4ol X RS b
: N e
2 60 | Porcupines sleep phase —+— "]
€] Porcupines activity phase —-%-- %\ E
Glacsweb ---%-- .
80 | PermaSense & > ol
N =X
100 B ! ! ! ! P e
1 2 4 8 16 32 64 128

AHC for limited code tree size

(¢) Overall energy gain

Fig. 6. Energy analysis for the adaptive Huffman coder with limited tree size

20mA in listening, 17.7mA in transmission, and 21uA in the inactive state. For
the remaining platform, we have assumed 1.8mA in the active, and 5.1pA in the
sleep mode.

It is evident that the use of trees with a limited number of nodes can effectively
lead to reductions in the packet sizes, as observed through the reduced amount
of energy spent on radio transmissions in Fig. It can be seen that savings
in radio energy of more than 50% are achieved for the Glacsweb and Porcupine
sleep data sets. In case of the PermaSense and both Porcupine data sets, the
reduced packet sizes lead to a consistent decrease in radio energy. Only in case
of Glacsweb data, the great number of input symbols with low frequency leads
to the assignment of long codes, resulting in a degraded compression ratios when
larger code tree sizes are used. On the contrary, an increase in MCU utilization
occurs due to the additional processing needs, as shown in Fig. Again, the
Porcupine sleep data sets exposes behavior different to the other ones, as only
five symbols need to be placed in the tree. For the other data sets, a rise in
the MCU energy demand is clearly visible, indicating the increased amount of
energy required for for management and restructuring of the trees. The overall
energy requirements, depicted in Fig. however still prove that for the limited
code tree size adaptive Huffman coder, energy gains can be observed for three
of the four data sets when appropriate tree sizes, i.e. sizes in the range of 1 to
16 symbols, are chosen.

46 A. Reinhardt et al.

5.4 Real-World Experiment

To verify if the simulation results match the algorithm’s real behavior, we have
set up a real-world experiment using two tmote sky devices. The first node was
configured as a sender node and supplied with the Glacsweb data set. Blocks of
data were read from the Flash memory, compressed using the presented adaptive
Huffman coder with limited code tree sizes, and transmitted over the radio. To
limit the energy budget available to the node, we have connected its battery
terminal to a boost converter powered by a supercapacitor. To allow for compa-
rable measurements, we have put the same charge on the supercapacitor prior
to each run of the experiment. A receiver node with no energy restrictions was
also part of the experiment, and was used to count the number of transmitted
packets in the used indoor environment. Both were configured to use NullMAC,
thus allowing to compare the results to the previously performed analyses. The
results of the real-world experiment with the Glacsweb data set are indicated in
Table] and confirm that the algorithm’s behavior on real hardware resembles
the observed energy simulations for the given data.

Table 3. Number of packets transmitted using the AHC coder with limited tree size

#Symbols in tree Ref 1 2 4 8 16 32 64 128

Sent packets 4733 6832 6668 6609 5991 5947 4979 4496 2581
Runtime gain 0% 44.3% 40.9% 39.6% 26.6% 25.6% 5.2% -5.0% -45.5%

6 Conclusion

In this paper, we have investigated the traffic characteristics of wireless sensor
networks, and determined highly non-uniform symbol distributions in packet
payloads; in all of our analyzed data sets, the better part of packets is comprised
of a small number of different symbols only. We have shown that encoding these
symbols in an efficient way, i.e. by applying adaptive Huffman coding, consider-
able compression gains can be achieved. To improve the applicability of existing
adaptive Huffman coding algorithms on wireless sensor nodes, we have presented
a lightweight version of the AHC algorithm, operating on Huffman code trees
with a limited number of nodes. Our simulation results show that even when
only a small number of symbols are stored in the code tree, overall energy gains
can be achieved while maintaining the algorithm’s applicability on sensor nodes.
Our observations from a real-world experiment confirm these simulation results.
When application level data needs to be compressed, solutions that target to
compress large chunks of data at a time are often unsuited for WSNs. While
compression solutions for a dedicated application might allow for significant
savings, they require developers to spent time and efforts on the implementation
and integration. To take this burden off the programmers, we have shown that
generic solutions can be designed to yield high compression ratios while being
energy efficient, even when the structure of data is unknown in advance.

Trimming the Tree: Tailoring Adaptive Huffman Coding to WSNs 47

It is common knowledge that links in WSNs are susceptible to packet losses
and variable link qualities [24]. Those issues have been addressed by existing
data compression mechanisms using retransmissions [0] or fault tolerance ex-
tensions [5]. Although not directly related to the algorithm design, we plan to
integrate suitable means to cope with the characteristics of real radio channels.

Acknowledgment

We would like to thank Kristof Van Laerhoven for providing more than 200
megabytes of real porcupine data, and Kirk Martinez, who supplied us with the
data sets from Glacsweb. Last, but not least, our thanks go to the PermaSense
project, which offers its sensor data traces for download. This research has been
supported by the German Federal Ministry of Education and Research (BMBF)
and the Center for Advanced Security Research Darmstadt (CASED).

References

1. Pottie, G.J., Kaiser, W.J.: Wireless Integrated Network Sensors. Communications
of the ACM 43 (2000)

2. Texas Instruments Inc.: CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF
Transceiver, Rev. B (2007), http://www.ti.com/1it/gpn/cc2420

3. Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless Sen-
sor Networks. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys (2004)

4. Vitter, J.S.: Design and Analysis of Dynamic Huffman Codes. Journal of the As-
sociation for Computing Machinery 34(4) (1987)

5. Guitton, A., Trigoni, N., Helmer, S.: Fault-Tolerant Compression Algorithms for
Delay-Sensitive Sensor Networks with Unreliable Links. In: Proceedings of the
4th TEEE international conference on Distributed Computing in Sensor Systems,
DCOSS (2008)

6. Sadler, C.M., Martonosi, M.: Data Compression Algorithms for Energy-
Constrained Devices in Delay Tolerant Networks. In: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems, SenSys (2006)

7. Ju, H., Cui, L.: EasiPC: A Packet Compression Mechanism for Embedded WSN.
In: Proceedings of the 11th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA (2005)

8. Tsiftes, N., Dunkels, A., Voigt, T.: Efficient Sensor Network Reprogramming
through Compression of Executable Modules. In: Proceedings of the 5th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, SECON (2008)

9. Chou, J., Petrovié¢, D., Ramchandran, K.: A Distributed and Adaptive Signal Pro-
cessing Approach to Reducing Energy Consumption in Sensor Networks. In: Pro-
ceedings of the 22nd Annual Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM (2003)

10. Reinhardt, A., Hollick, M., Steinmetz, R.: Stream-oriented Lossless Packet Com-
pression in Wireless Sensor Networks. In: Proceedings of the 6th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communica-
tions and Networks, SECON (2009)

http://www.ti.com/lit/gpn/cc2420

48

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Reinhardt et al.

Reinhardt, A., Christin, D., Hollick, M., Steinmetz, R.: On the Energy Efficiency
of Lossless Data Compression in Wireless Sensor Networks. In: Proceedings of the
4th IEEE International Workshop on Practical Issues in Building Sensor Network
Applications, SenseApp (2009)

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless Sen-
sor Networks for Habitat Monitoring. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA (2002)

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L..S., Rubenstein, D.: Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with Zebranet. In: Proceedings of the 10th Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS (2002)

Tseng, Y.C., Kuo, S.P., Lee, HW., Huang, C.F.: Location Tracking in a Wireless
Sensor Network by Mobile Agents and Its Data Fusion Strategies. In: Zhao, F.,
Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 625-641. Springer, Heidelberg
(2003)

Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele,
L., Tschudin, C., Woehrle, M., Yuecel, M.: PermaDAQ: A Scientific Instrument
for Precision Sensing and Data Recovery in Environmental Extremes. In: Proceed-
ings of the 8th ACM/IEEE International Conference on Information Processing in
Sensor Networks, IPSN (2009)

Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On Tree-Based Convergecasting
in Wireless Sensor Networks. IEEE Wireless Communications and Networking 3
(2003)

Martinez, K., Ong, R., Hart, J.: Glacsweb: A Sensor Network for Hostile Environ-
ments. In: Proceedings of the 1st IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, SECON (2004)

Van Laerhoven, K., Gellersen, H.-W., Malliaris, Y.G.: Long-Term Activity Moni-
toring with a Wearable Sensor Node. In: Workshop on Wearable and Implantable
Body Sensor Networks, BSN (2006)

Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A Locally Adaptive Data
Compression Scheme. Communications of the ACM 29(4) (1986)

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Archi-
tecture Directions for Network Sensors. In: Proceedings of the 10th Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS (2000)

Dunkels, A.; Gronvall, B., Voigt, T.: Contiki — a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In: Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors, Emnets-I (2004)

Eriksson, J., Osterlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter,
R., Marrén, P.J.: COOJA/MSPSim: Interoperability Testing for Wireless Sensor
Networks. In: Proceedings of the 2nd International Conference on Simulation Tools
and Techniques For Communications, Networks And Systems, Simutools (2009)
Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based On-line Energy Es-
timation for Sensor Nodes. In: Proceedings of the 4th Workshop on Embedded
Networked Sensors, EmNets (2007)

Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons from a Sensor Net-
work Expedition. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS,
vol. 2920, pp. 307-322. Springer, Heidelberg (2004)

Querying Dynamic Wireless Sensor Networks
with Non-revisiting Random Walks

Marco Zuniga!, Chen Avin?, and Manfred Hauswirth!

! Digital Enterprise Research Institute
National University of Ireland, Galway
{marco.zuniga,manfred.hauswirth}@deri.org
2 Department of Communication Systems Engineering
Ben Gurion University of the Negev, Israel
avin@cse.bgu.ac.il

Abstract. The simplicity and low-overhead of random walks have made
them a popular querying mechanism for Wireless Sensor Networks. How-
ever, most of the related work is of theoretical nature and present two
important limitations. First, they are mainly based on simple random
walks, where at each step, the next hop is selected uniformly at ran-
dom among neighbors. This mechanism permits analytical tractability
but wastes energy by unnecessarily visiting neighbors that have been
visited before. Second, the studies usually assume static graphs which
do not consider the impact of link dynamics on the temporal variation
of neighborhoods.

In this work we evaluate the querying performance of Non-Revisiting
Random Walks (NRWs). At each step, NRWs avoid re-visiting neighbors
by selecting the next hop randomly among the neighbors with the min-
imum number of visits. We evaluated Pull-only and Pull-Push queries
with NRWs in two ways: (i) on a test-bed with 102 tmotes and (ii) o
a simulation environment considering link unreliability and asymmetry.
Our main results show that non-revisiting random walks significantly
improve upon simple random walks in terms of querying cost and load
balancing, and that the push-pull mechanism is more efficient than the
push-only for query resolution.

1 Introduction

Querying has been, and continues to be, one of the most investigated areas in
the Wireless Sensor Networks community. For scenarios where nodes have no
location information (location-less), querying paradigms can be classified into 2
broad categories: i) random walks [20052T] and ii) flooding or controlled flooding
(expanding ring searches) [TIIT2IT3].

On flooding, each node (re)transmits the querying packet once. On random
walks, nodes are queried in some sequential random order. The walk starts at
some fixed node, and at each step it moves to a neighbor of the current node.
The random walk is called simple when the next node is chosen uniformly at
random from the set of neighbors.

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 49 2010.
© Springer-Verlag Berlin Heidelberg 2010

50 M. Zuniga, C. Avin, and M. Hauswirth

The main advantage of random walks is its localized search, which avoids the
unnecessary use of bandwidth and energy resources utilized by flooding-type
techniques [I7]. On the other hand, if the data of interest is far away from the
sink, the querying cost of random walks can be super-linear in the worst case
compared to the linear cost of flooding.

In this work, we investigate a variant of random walks that provides an energy-
efficient querying alternative for location-less deployments: Non-Revisiting Ran-
dom Walks (NRWS. The motivation behind this work is to derive a querying
mechanism that combines the localized behavior of random walks and the linear
cost of flooding.

Our work is inspired by the studies presented in [6122]. These studies identify a
important limitation of Simple Random Walks (SRWs): selecting the next node
at random is a simple mechanism but leads to frequent revisiting nodes, which in
turn leads to long delays and high expenditures of energy. Contrary to the blind
selection performed by simple random walks, NRW selects the neighbor with the
least number of visits. This Non-Revisiting mechanism maximizes the likelihood
of encountering unvisited nodes, and hence, accelerates the discovering process.

Our work focuses on two types of querying scenarios: (i) Pull-Only querying
and (ii) Push-Pull querying. In Pull-Only querying the sink starts a walk looking
for the event. In Push-Pull querying, both, the event and sink nodes start walks
and query is solved when the walks intersect.

We evaluated the performance of SRW and NRW on TWIST [3], an in-building
test-bed with 102 tmotes, and we simulated larger networks using a probabilistic
link model for the channel [2§]. Our results provide two important contributions.
First, it illustrates the difficulties faced by random walks on real deployments due
to the high temporal dynamics of links. We show that polling the neighborhood
immediately before transferring the token is an efficient mechanism to cope with
these dynamics. Second, our results indicate that NRW, together with the simple
push-pull mechanism, is an efficient querying mechanism for networks consist-
ing of up-to thousands of nodes. NRWs with Push-Pull querying maintains the
elegance of simple random walks, while at the same time provide querying costs
that are linear or sub-linear (depending on the size of the network).

2 Definitions, Implementation and Metrics

First, let us present the precise definitions of the random walks types and the
querying mechanisms evaluated on our work:

Definition 1 (Simple Random Walk (SRW)). The walk starts at an initial
node and at each step selects one of its neighbors uniformly at random.

Definition 2 (Non-Revisiting Random Walk (NRW)). The walk starts at
an initial node and at each step selects the neighbor with the minimum number of

! There are similar types of walks in the related literature (i.e., self-avoiding walks [I5],
Vertex- Reinforced Random Walks [I8]), but to the best of our knowledge NRWs
where not considered explicitly before.

Querying Dynamic Wireless Sensor Networks 51

f—— TDMA frame —

TDMA slots
o A
BROADCAST 7. NEIGH_DISC
\ \ -
1. TOKEN / X \ UNICAST RTT
2. NEIGH_DISC /‘\4 \4 5. RW_ACK /
3. NEIGH_PRESENT 4.RW_SYN x X \;_ RW_REL
\ P 2.
A) Neighbourhood B) Select C) Token
Discovery Next-Hop Transfer

Fig. 1. Protocol Implementation of Random Walk

visits (which could be 0). If more than one node have the same minimum number
of wvisits, the next node is selected uniformly at random among these nodes.

We consider two mechanisms for query resolution. In both of them the event-
node has some data of interest, and the sink-node issue a query to find that piece
of data.

Definition 3 (Pull-Only Querying). The data remains on the event-node
and only the sink-node starts a random walk (i.e., pull). The query is solved
when the walk reaches the event node.

In the push-pull case the event-node publishes its data.

Definition 4 (Push-Pull Querying). The event-node starts a random walk
to publish its data of interest (i.e., push). The sink-node starts a random walk
based query (i.e., pull). The query is solved when the paths of the walks intersect.

We do not discuss here the way the data of interest is routed back to the sink
after query resolution, but this could be done for example by using a trace left
by the query walk. For the reminder of the paper, the term token is used to
denote the presence of the walk on a node.

2.1 'Walk Implementation

Contrary to theoretical studies, where the neighborhood of a node is assumed to
remain constant, in real scenarios, link dynamics such as asymmetry, unreliabil-
ity and temporal variation pose significant challenges to the robust dissemination
of the walk. In order to cope with these dynamics, our implementation of a ran-
dom walk utilizes the following three procedures: (a) Neighborhood Discovery,
(b) Selection of Next-Hop and (c¢) Transferring of Token. These procedures are
presented in Figure[Il

Neighborhood Discovery. Upon reception of the token, a node broadcasts a
NEIGH DISCOVERY message. Nodes within the transmission range of the sender
reply with NEIGH PRESENT messages. In order to avoid collisions caused by the

52 M. Zuniga, C. Avin, and M. Hauswirth

concurrent transmission of NEIGH PRESENT messages, we implemented a MAC
TDMA scheme. In this TDMA scheme, nodes are assigned different transmission
slots based on their id.

Selection of Next Hop. The token-holder waits until the end of the TDMA frame
and selects the next node among the received NEIGH PRESENT messages. De-
pending on the type of walk to be performed, the selection follows the guidelines
presented in Definitions [Tl and

Transferring of Token. This procedure is similar to the 3-way handshake mech-
anism utilized in the TCP protocol. The token-holder sends an initial RW SYN
packet to communicate a node that it has been selected as the next step. Upon
reception of a RW SYN, the receiver sends a RW ACK packet. Finally, the sender
completes the transfer by sending a RW REL packet. In order to cope with packet
losses, RW SYNs and RW ACKs are sent every RTT (round trip time). The sender
stops transmitting RW SYNs after receiving a RW ACK, and the receiver stops trans-
mitting RW ACKs after receiving a RW REL. RW REL packets are sent only upon
reception of a RW ACK.

2.2 Metrics

In this subsection we present the metrics used to quantify the performance of
SRW and NRW. Let us denote G,, as the communication graph formed by a
network of n nodes and s as the number of steps performed by a random walk.
Based on this notation, a simple random walk performing s steps on graph G,
is denoted by SRW (G,,s), and a non-revisiting random walk is denoted by
NRW(G,,s).

Once a random walk starts, each node u € G, stores locally the following
information:

— Tmin: time of first visit.
— Ty*: time of last visit.
— V4 number of visits.

In our work, the time ¢ is represented by the number of steps. For example, a
node wu that is visited for the first time at the k" step of the walk will have an
entry T = k.

Two important properties of random walks are directly related to query-
ing [I6]: (i) cover time and (ii) hitting time. The cover time C,(G,) is the
expected number of steps for a walk starting at u to visit all the nodes in graph
G, The partial cover time Cy, (G, f) is the expected number of steps for a walk
starting at u to first visit a fraction f of the graph G,,. The hitting time Ay, is
the expected time taken by a walk starting at u to reach w for the first time. In
this paper we evaluate the average hitting time H,(G,,) from a sink « which is

given by:
ZwEGn huw

HulGn) = n—1

(1)

Querying Dynamic Wireless Sensor Networks 53

@ GREEN NODE

Fig. 2. Communication Graph of TWIST. (a) shows links with transmission probabil-
ities greater than 0.9 and (b) greater than 0.7. Three nodes were selected to inject the
random walks (green, red, blue).

Hence, for Pull-Only querying, cover time and hitting time translate to the
worst-case and average-case querying scenariodd. Another important property of
random walks is load balancing. Given the limited energy resources of WSN,
it is desirable that the walk visits the network evenly without over-stressing
some nodes by visiting them more frequently. For a starting node u, we measure
the load balancing as the difference between B™®(G,,, s) and B™(G,,, s), the
expected maximum and minimum (respectively) number of visits observed by
nodes in the network after s steps. Denoting V;(s) as the number of visits on
node 7 after s steps, formally:

BE(Gs) = B (Vo) 2)
B™(G,,s)=FE Lrggi{m(s)}] s.t. Vi(s) >0 (3)

3 Experimental Results: Medium-Scale Networks

3.1 Testbed and Experiment Setup

The simple and non-revisiting random walks were implemented in TinyOS 2.0.2
and evaluated on TWIST [3]. TWIST is a remote wireless sensor network test-bed
deployed on a building and it has 102 tmotes. The nodes are not mobile, hence,
the dynamics observed on the links are due to the surrounding environment.

2 Additional important measure is the mazimum hitting time which is the maximum
over all hyq, it will be considered in future work.

54 M. Zuniga, C. Avin, and M. Hauswirth

We utilized the lowest output power available on tmotes (-25 dBmE. Figure[2
shows the communication graph of the network for (a) links with transmission
probability above 0.9 and (b) above 0.7. The location of the nodes in the graph
is not represented by their actual physical coordinates, but rather, by virtual
coordinates obtained with Graphviz [I] based on the connectivity matrix.

We selected three nodes as the starting points for the walks (green, red and
blue nodes). These nodes were selected to capture approximately the diameter
and radius of the graph. For the remainder of the paper we denote these nodes
by g, r and b, respectively. On each one of these three nodes we injected 10
simple random walks and 10 non-revisiting random walks, that is, a total of 60
walks were performed. Each walk was assigned a different random seed and it
performed 1000 steps.

First, we present results concerning the temporal variance of the neighbor-
hoods caused by link dynamics. Then, we present results for Pull-Only and
Push-Pull querying.

3.2 Link Dynamics

Theoretical studies of random walks do not capture the impact of temporal
dynamics on the total transmission costs incurred by the network. Most of these
studies are done under ideal conditions that assume a constant neighborhood for
all nodes throughout the network lifetime. Unfortunately, node failures, channel
multi-path, dynamic environments and other factors lead to highly dynamic
neighborhoods in WSN. In order to filter out links affected by these temporal
dynamics, our implementation polls a node’s neighborhood immediately before
transferring the token (Neighborhood Discovery phase in Section

In this subsection, we show that link asymmetryand neighborhood variance
are important challenges faced by random walks in WSN. We also show that the
Neighborhood Discovery phase is a simple yet robust and efficient mechanism to
cope with these dynamics.

Asymmetric Links. Link asymmetry refers to the phenomena where a node
A can communicate with node B, but node B can not communicate with node
A. Several works [28/10l9] have shown that asymmetric links are pervasive in
WSN. Link asymmetry presents a serious inconvenience for random walks be-
cause bidirectional links are required to transfer the token at each step. In order
to capture link asymmetry, at each neighborhood poll, we evaluated the dif-
ference between the number of nodes receiving the NEIGH DISC packet and the
number of NEIGH PRESENT messages received at the sender. A neighborhood poll
has 0-degree asymmetry if it reports bidirectional links with all neighbors, i.e.
the token-holder receives NEIGH PRESENT packets from all neighbors that received

3 Utilizing higher output powers leads to graphs with high densities and short diam-
eters. Graphs with these characteristics are not challenging querying scenarios.

4 A different approach would be to poll neighbors when the network start function-
ing [4] or on a periodic basis. However, the neighborhood information of these mech-
anisms could quickly become inaccurate due to the high temporal variance of links.

Querying Dynamic Wireless Sensor Networks 55

DEGREE ASYMMETRY NEIGHBOR VARIANCE NUMBER OF HANDSHAKE TRANSMISSIONS
0.40 5 1.0
@
0.35 g 0.9
0.30 £20 o g.{;
>] osel | ’ 30
goas HE ~&h"ﬁ*ﬁf i ??.E #El‘ Zos
50-20 5 {8 Y 19 e ‘.&?3 ¢ 205
£o.15 E1o] | | | i3 S04
=0 € sl i =
0.10 & It i 03
: E 5 .] i 0.2
0.05 2 oy 0.1
0.00 0 : 0.0
01234567809101112 0 20 40 60 80 100120140 160 180200 12345678910
degree asymmetry sample number of transmissions
(a) (b) (c)

Fig. 3. Impact of link dynamics on (a) Degree Asymmetry and (b) Neighborhood
Variance. Utilizing the Neighborhood Discovery phase limits the packet losses during
the transfer of the token, as shown on (c).

the NEIGH DISC packet. A neighborhood poll has z-degree asymmetry (x > 0)
if it observes x asymmetric links in its neighborhood, i.e. there are x neighbors
that received the NEIGH DISC packet but their NEIGH PRESENT replies were lost.

Figure[3 (a) depicts the results for 30000 neighborhood polls (approximately
300 polls performed by each node). We observe that only 30% of neighborhood
polls observe purely symmetric links. Had the Neighborhood Discovery phase
been performed only once (at the beginning of the process), some of the asym-
metric neighbors would have been used in futile attempts to transfer the token.

Neighborhood Variance. Filtering asymmetric links is a necessary but insuffi-
cient step to cope with link dynamics. Symmetric links also have high temporal
dynamics. Effects such as node failures and movements in the surrounding envi-
ronment lead to intermittent links. These intermittent links affect significantly
the neighborhoods observed by the nodes. We denote this intermittent phe-
nomena as Neighborhood Variance. Figure B] (b) captures the dynamics of the
topology. This figure shows the number of bidirectional neighbors observed by
two nodes at different instants of time (samples), one node with a high average
degree and the other with low average degree. Clearly, the temporal dynamics
observed by the nodes is significant — similar dynamics are observed for all nodes
in the network. By providing an accurate representation of the available bidi-
rectional neighbors, random walks can conduct a more-informed selection of the
next step.

Number of Handshake Transmissions. The unreliable nature of WSN links
requires a 3-way handshake mechanism to transfer the token reliably at each
step. In order to minimize communication costs, it is desirable to use as few
transmissions as possible at each step. Figure Bl (¢) demonstrates the value of
the Neighborhood Discovery phase. By filtering asymmetric links and intermit-
tent bidirectional links, we avoid a potentially large number of packet losses
during the transfer of the token. 90% of transfers utilize the minimum number
of transmissions required (3). Furthermore, most transfers (>99%) are achieved
with 6 transmissions or less (at most three packet losses during the handshake
process). These reliable 3-way transmissions are obtained due to the temporal
correlation in link quality [T0I24]. A good link at time ¢ is likely to still have a
good quality at time ¢+ 0, but no accurate link quality estimation can be made

56 M. Zuniga, C. Avin, and M. Hauswirth

LOAD BALANCE HITTING TIME
25 = 2007
paa 1807
‘,220 e 160
Z © 1407 + +
215 max SRW_ <~ £ 120
o e 4
5 e 2100 NRW SRW
210 % £ 80
[S e =]
g /,' max NRW 60: o K .
51 - 40
:’/ min NRW min SFﬂV, 20:
o T T o
0 200 400 600 800 1000 green red blue green red blue
number of steps (s) node
(a) (b)

Fig. 4. (a) Load Balance and (b) Hitting Time of NRW and SRW. NRW outperforms
SRW on both metrics.

for t + A (where A > §). Hence, identifying reliable bidirectional links during
the Neighborhood Discovery phase guarantees to a large extent the stability of
the links during the token transfer.

3.3 Pull-Only Querying

In this subsection, we present results for our properties of interest in a Pull-Only
querying scenario.

Load Balance. Due to the limited energy resources of WSN; it is important to
distribute the energy consumption evenly across the network. Denoting B#*(s),
B**(s) and Bj***(s) as the average of number of visits to the most visited node
during the 10 SRWs of length s started at the red, green and blue nodes, we
computed the average visits to the most visited node BM2*(s) = (B™**(s) +
By®X(s) + By'®*(s))/3 at each step s = 1,...,1000. The average number of
visits to the least visited node in the SRW BXil(s) and Bm3X(s), Bmin(s) for
NRWs were computed in a similar way. As a measure of load balancing we
consider the difference between the most and least visited nodes. Figure @ (a)
presents the visits to the most and least visited nodes in SRW and NRW. For
example, when the number of steps s = 400, the least visited node on SRWs
has on average 1 visit while the most visited node has on average 13 visits. For
NRWs, the min and max averages are 3 and 5 respectively. This implies that
NRWs do a significantly better job in distributing the use of energy resources.
Furthermore, as the number of steps increase, SRWs continues to degrade, while
NRWs keep the maximum and minimum number of visits within linear bounds

(even distribution of load).

Hitting Time. In Pull-Only querying, the hitting time represents the expected
time required to find an event that appears uniformly at random in any node
of the network. For each node r, b, g, we computed the average hitting time
and standard deviation for the 10 SRWs and 10 NRWs started at these nodes.

Querying Dynamic Wireless Sensor Networks 57

COVER TIME COVER TIME - ZOOM IN

1.0 R SSEEe 1.0 7

0] e T I e ——
508 y *H 508
5 0'7i { 5 0'7i e
c>’ 0.6i ,* vy C>> 0.6i /,,/
cos] [[cosi [/| ZNRW
Lo [Lo4| // " Reference
So.a||f go3y //

0.2 0.2 //

0.1] 0.1/

0 200 400 600 800 1000 0 100 200 300 400 500
number of steps (s) num of steps (s)
a b

Fig. 5. Cover time of NRW and SRW. NRWs have faster cover times and less variance.
NRWs also have linear partial cover times (up to approximately 70%).

Figure @l (b) shows the results. The first three points represent NRWs and the
next three points represent SRWs. There are two important observations to
highlight. First, NRWs take approximately three times less steps than SRWs
to solve the average query. Second, the variance among the 10 NRWs is almost
negligible, but it is significant in SRW. Hence, NRWs are not only a faster and
more energy efficient querying mechanism, but also provide less uncertainty.

Cover time. Several WSN scenarios require the estimation of the worst-case
querying cost. When the data is of vital importance and it is not duplicated, or
the query computes a function of all nodes, it may be necessary to visit (cover)
all nodes in the network. Figure [presents the test-bed results for cover time.
The SRW and NRW curves represent the average and standard deviation of
30 walks each (10 walks for each r, b and g node). In Figure [l (a) we observe
that NRW has two important advantages over SRW. First, NRW covers the
network significantly faster than SRW. For instance, when s = 100, NRW covers
90% of the network while SRW covers 50% of the network. Second, the standard
deviation of NRW is significantly lower than SRW, which leads to less uncertainty
in the result of the querying process. Figure[Hl (b) is a zoom-in of Figure[l (a) and
it shows that the partial cover time is linear for up to about 80% of the network
(the dashed line has slope 1). The linear partial cover time indicate that most
queries can be solved in linear time for NRWs.

3.4 Push-Pull Querying

The results presented in the previous subsection assumed that the events are not
published (pull-only). However, several works in WSN have shown that push-
pull querying mechanisms [7IT4] can perform significantly better than pull-only
querying. In push-pull querying, both, the sink and event inject walks and the
query is solved when the two walks cross. In this subsection, we evaluate the
performance of NRW in push-pull querying scenarios. The basic idea of gaining
from a push-pull scheme is based on the following property.

58 M. Zuniga, C. Avin, and M. Hauswirth

TRANSITION - DIAMETER Total Query Cost
c1.0 T 3007
8 0 9: — NRW, push-pull /] —
= "7 4|---SRW, push-pull 2501 /
& 087 NRW, pull i —Ta /
£0.7|-- sAw, pul Fa00] \, /
§o.6] AN
g'o-Sﬁ S1501 /
©0.41 s] AN /
Z 041 £ 100] ~
=0.31]
< 0'2i
0.1
0'01 10 100 1000 PULL-ONLY 10 100 PUSH-ONLY
query cost (number of steps) number of steps taken by event node
(a) (b)

Fig. 6. (a) Probability of query resolution vs. query cost. Push-Pull has a significantly
better performance than Pull-Only. (b) Total query cost. Both SRW and NRW have
an optimal Push-Pull performance in-between the Push and Pull extremes. In general
NRW with Push-Pull provides the best performance.

Property 1. A sufficient condition for two random walks to intersect on a graph
is that each walk visits at least [] + 1 different nodes, where n is the number
of nodes in the graph.

Moreover, based on what it is known as the birthday paradox, it can be shown
that two walks can intersect with high probability even in a sub-linear time:

Property 2 ([14]). Two random walks on a graph will cross with high proba-
bility when each walk visits a uniform sample of O(y/n) nodes, where n is the
number of nodes in the gmpiﬁ.

Considering the above properties and the observation that the partial cover time
of NRWs is linear up to a fraction well-beyond 50% of the network (Figure [Bl);
then, by starting NRWs at the sink and the event nodes with a maximum number
of steps Spa, around 0.5n, there is a high likelihood that the walks will cross
and solve the query.

Query Resolution Transition. In order to evaluate the performance of push-
pull querying, we obtain crossing-times from the walks collected in our experi-
ments. Considering that each node injected 10 NRWs, we evaluated the 10x10
possible combinations of walk-pairs.

The first scenario we considered is the following. Each walk was set to perform
a maximum of S, steps, where s,,4. takes discrete values between 1 and 1000.
The event-node starts a push (publish) walk and runs until it takes $,,4. steps
or stops earlier if the sink-node is found. If the sink is not found, the event-trace

® The time to visit a uniform sample of O(y/n) nodes depends on the mizing time [16]
of the random walk which we don’t study here.

Querying Dynamic Wireless Sensor Networks 59

remains alive. At a later time, the sink-node starts a pull (query) walld and
stops when it hits the trace left by the event-walk, otherwise, the sink-walk runs
until completing Sy, steps. Let sgink and seypent be the number of steps taken
by the sink and event walks, and Stota; = Ssink + Sevent b€ total number of steps
required to solve a query (the query cost).

Figure [0 (a) presents the cumulative distribution function cdf of the query
resolution cost for SRW and NRW. For completeness, we also provide the cdf
for pull-only queryingﬂ. The curves for push-pull are actually lower bounds for
the probabilities of query resolution (since we use 28,4, as the query cost). In
practice, the total query cost is much smaller than 2s,,,. (as we will show later).

In general, Push-Pull querying provides an order of magnitude better perfor-
mance than Pull-Only querying for SRW and NRW. Figure [f] (a) shows the cg
for the diameter of the network (green and blue nodes) - approximately 8 hops.
For example, we observe that for a query cost of 60, the SRW pull-only solves the
query with probability 0.2 and the NRW pull-only with probability 0.4. On the
other hand, for the push-pull the SRW solves the query with probability about
0.85 and the NRW with probability 1.0. In Section [l we will observe that as
the size (diameter) of the network increases, NRWs increase their comparative
performance with respect to SRWs.

In order to complete the test-bed evaluation of push-pull querying, we consider
a second scenario. In this case the event-node issues a push walk of increasing
lengths Seyent. For a given event-node walk of length s, if it didn’t reach the
sink-node, the sink-node issue a pull walk that continues to step until it crosses
the event walk. The length of the sink walk is denoted sg;,,. The total query
cost 1S Stotal = Sevent + Ssink and we then evaluate the average total query cost
for each s. Note that when s = 0, the query is pull-only and when s is very large
the query is push—onlyﬁ; for other values of s the query is push-pull.

Figure [6] (b) shows the average query cost for SRW and NRW for increasing
push walk lengths. Our two main observations are validated again here. First
the NRW solves the query in less steps than the SRW. Second the push-pull
query resolution is more efficient in terms of number of steps than the pull-only
or push-only queries. The data shows that NRW optimal query cost is about 29
steps when Seyent is 17 steps, while the SRW cost is about 52 for 17 steps and
about 50 at the optimum when scyent is 40. More generally, the optimum query
cost seems to be when Sepent and sgine are about the same size.

4 Simulation Results: Large-Scale Networks

The test-bed results provide interesting empirical observations, but these results
are confined to the particular size (102 motes) and characteristics of the TWIST

5 The focus of this section is on crossing-times, and hence, we assume that the query
walk is started within the lifetime of the event-trace.

" For pull-only queries, we utilize the 10 empirical walks available at each node. Due
to these limited number of walks, the curves show the staircase form.

8 A deterministic calculation of the diameter is not possible due to link dynamics.

9 These costs are not necessarily equal since hitting times are symmetric.

60 M. Zuniga, C. Avin, and M. Hauswirth

Probabilistic Link Model
1.0 v o v oo ogoogos
0.91 o ,°°%o0 ©
0.8 o o °

o
S
o
o
8 o

o

0.2 o ° 8

© 8 oo

o
e
L
00000

o

o] N
0 2 4 6 8 10 12 14 16 18 20
internode distance (m)

(a) (b)

Fig. 7. Link Probability Model. (a) samples of link quality vs. distance. (b) sample of
a network with 400 nodes and output power -10 dBm.

network . In order to validate the results for larger networks we perform simula-
tions on WSN topologies that include link unreliability and link asymmetry. It is
important to remark that these simulations capture some degree-heterogeneity
due to multi-path channels and hardware variance, but they do not capture tem-
poral variance. Hence, the main motivation of the simulations is to observe if
the partial cover time of NRWs remain linear for larger networks.

4.1 Simulation Environment
We performed simulations using Scilab [2], an open-source alternative to Matlab.

Topology. Various network sizes were tested (100, 400, 900 and 1600). The
network followed a normal-random topology, where nodes are initially deployed
on a regular grid layout with an internode distance of d = 5 meters. Then, a
2-D normal r.v. is used to introduce a perturbation on the x and y coordinates
of each node. The idea of a more uniformly distributed topology, compared to a
pure random deployment, was borrowed from Glomosim [26].

Communication Model. The link quality among nodes was calculated based
on the probabilistic model presented in [28]. This model captures unreliable and
asymmetric links and it is given by:

Jexp & ok (4)

p(d) is the link quality for an internode distance d. f is the number of bits trans-
mitted and v(d) is the signal to noise ratio, which includes the output power and
channel parameters. In our simulations f=160 bits and the channel parameters
are 3.0 for both, the path loss exponent and the shadowing variance [2328].
Figure[7 (a) shows samples of link quality for various internode distances; as we
observe, the model resembles the behavior of empirical studies [27I25128].

p(d) = (1 -

Simulations Run. We utilized an output power of -10 dBm. The output power
and channel parameters presented above aim to recreate, to some extent, graph

Querying Dynamic Wireless Sensor Networks 61

COVER TIME TRANSITION
1.0 £1.0
7| Reference T =]
0.93 _ \rwinctoo ' g 50.9]
o O-Sj === NRW,n=1600 8 O-Sj
20.7{--sAwn=t0 | 7 - - L0.71
%0.65 ﬂrsnw.n:moonv“ 4 _,,———""'_/’/‘/, 50.65 e
20_5: 74 Pt g‘O.Si v ;::x,pushf;}ull,njwoo
Sl S al push-pull,n=100
k3 0-4, >0-4, === SRW,push-pull,n=100
g 0.34 =0.3] B-BSRW,push-pull,n=1600
0.2 |0.2] e NRW,pull,n=100
] -8] {--8NRW,pull,n=1600
0.1 20.1
00— So0E
0.00204060810121416 1.8 20 0.00204060810121416 1820
steps nor(ma)llized ton number of step%normalized ton
a

Fig. 8. Simulation Results (a) Cover time: partial cover time presents linear behavior.
(b) Probability of query resolution: NRW with Push-Pull provide the best performance.

characteristics of TWIST such as degree distribution. Figure [(b) shows a sam-
ple topology with 400 nodes (only links with link quality > 0.7 are shown). The
sink is assumed to be the node at the bottom-left corner of the graph. For Pull-
Only querying, we performed 100 SRWs and 100 NRWs on each network size n.
For the Push-Pull scenario, the event node was located at the top-right corner
of the graph and we also run 100 SRWs and 100 NRWs starting at this node.

4.2 Simulation Results

Pull-Only. Due to space constraints, we focus on the results for cover time.
The hitting time shows the same trend as the empirical results: NRW performs
significantly better than SRW and the difference in performance increases in
favor of NRW as the network size increases. Figure B (a) shows the cover time
normalized to the size of the network n. In the interest of clarity, we plot results
only for n=100 and n=1600 (n=400 and n=900 are in-between these curves).

The most important observation is that the partial cover times of the empir-
ical and simulation results have the same trend: an initial long linear behavior
Furthermore, once normalized, there is not a significant difference among partial
cover times of NRWs for networks with different sizes. These results indicate
that for larger networks NRW are also expected to solve most Pull-Only queries
in linear time. For SRW, the partial cover times remain significantly longer than
NRW, and the cover time degrades as the size of the network increases.

Push-Pull. In order to evaluate the effectiveness of the push-pull mechanism,
the sink and event nodes were located at opposite extremes of the topology
(diameter of graph). First, the node at the top right corner (event) started the
walk for s steps, and then, the node at the bottom left corner (sink) started the
walk. For completeness, the figure also shows the pull-only performance of NRWs.
Figure [§ (b) depicts the cdf of query resolution for n = 100 and n = 1600. We
observe that the Push-Pull with NRWSs provides the best performance, followed
by Push-Pull with SRWs and finally Pull-Only with NRWs. The results for

62 M. Zuniga, C. Avin, and M. Hauswirth

Pull-Only with SRWs is not shown but the probability of solving the query
after s = 2n was less than 0.4 for all networks’ size. Also, the difference in
performance between Push-Pull NRWs and Push-Pull SRWs increase for larger
networks, however this improvement is not clearly observed in the figure.

5 Related Work

The research work on querying can be classified in two main groups: location-less
and location-based. In location-less deployments, nodes have information only
about their neighbors presence. The most notable querying paradigms are: flood-
ing, expanding ring searches (controlled floods) and random walks. In location-
based deployments, nodes also have location information about their neighbors.
This information is very useful for geographic routing and geographic hash ta-
bles. In this work we focus on random walks on location-less scenarios.

Random walks on graphs have been studied mathematically, and there is a
growing body of theoretical literature on the subject [SII6]. In the context of
location-less wireless sensor networks, different variants of random-walk-based
protocols have been proposed and analyzed. In one of the earlier works, Servetto
and Barrenechea [20] proposed and analyzed the use of constrained random walks
on a grid to improve the load-balanced routing between two known nodes. In [5],
the authors argue that even simple random walks can be used for efficient and
robust querying because their partial cover times show good scaling behavior.
The ACQUIRE protocol [19] combines random walks with controlled floods and
show that this hybrid mechanism can outperform flooding and even expanding-
ring-based approaches in the presence of replicated data.

The evaluation of push-pull mechanisms was inspired by important related
work. Rumor routing [7] advocates the use of multiple random walks from the
events as well as the sinks, so that their intersection points can be used to
provide a rendezvous point. On the same line of work, Shakkottai [21] analyzed
different variants of random-walk-based query mechanisms and concludes that
source and sink-driven sticky-searches (similar to rumor routing) provide a rapid
increase of query success probability with the number of steps. Friedman et. al.
[14] offered and evaluated via simulation probabilistic quorum systems that use
different push-pull mechanism including simple and self-avoiding random walks.
Contrary to the studies mentioned above, we consider the number of visits as an
important parameter to guide the random walk.

Our work on NRWs is mainly motivated by [6122]. These studies show in
different ways that simple random walks lead to energy wastage due to their blind
(re)visiting mechanism. In [6], instead of selecting only one node at random,
the authors propose to select two (or more) nodes at random and select the
one with the minimum number of visits as the next hop. In [22], the authors
use homophyly and degree information to navigate the network, and the walk
“ignores visited neighbors if there is at least one unvisited neighbor”.

Based upon notable contributions on random-walk-based querying, we pro-
pose and analyze Non-Revisiting Random Walks with Push-Pull querying; a
simple and efficient querying paradigm for practical WSN deployments.

Querying Dynamic Wireless Sensor Networks 63
6 Conclusions

In this work we evaluated the performance of Non-Revisiting Random Walks
(NRW). Contrary to the blind selection performed by simple random walks,
NRWs select the neighbor with the minimum number of visits. This mechanism
increases the likelihood of encountering unvisited nodes, and as a consequence,
provides a faster coverage.

We evaluated NRWs on (i) a test-bed consisting of 102 motes and (ii) with
simulations on topologies consisting of unreliable and asymmetric links. Our
results provide two important contributions. First, polling the neighborhood
at each step of the walk is an efficient mechanism to cope with temporal link
dynamics. This polling mechanism permits an accurate representation of the
neighborhood, which allows a robust token-transfer and a well-informed selection
of the next steps. Second, NRWs together with a simple push-pull mechanism
are an efficient querying mechanism. NRWs maintain the elegance and simplicity
of simple random walks, while at the same time can provide querying costs that
are liner or sub-linear (depending on the size of the network).

In this work we considered only the cost of finding the data of interest (query),
but not the cost required to transfer the information back to the sink. In future
work we will evaluate the total cost (query + reply). Also, we plan to investigate
the impact of non-TDMA MAC protocols on SRWs and NRWs.

Acknowledgement. This work has been funded by an IRCSET Postdoctoral
Grant PD200857, SFI Grant No. SFIO8-CE-I11380 and CONET, the Cooper-
ating Objects Network of Excellence, EU FP7-2007-2-224053. The authors are
thankful to Jan Hauer and Vlado Handziski for their support on the TWIST
testbed.

References

1. http://www.graphviz.org

2. http://www.scilab.org

3. http://www.twist.tu-berlin.de/wiki

4. Ahn, J., Kapadia, S., Pattem, S., Sridharan, A., Zuniga, M., Jun, J., Avin, C.,

Krishnamachari, B.: Empirical evaluation of querying mechanisms for unstructured
wireless sensor networks. SIGCOMM CCR, 38(3), 17-26 (2008)

5. Avin, C., Brito, C.: Efficient and robust query processing in dynamic environments
using random walk techniques. In: IPSN 2004 (2004)

6. Avin, C., Krishnamachari, B.: The power of choice in random walks: An empirical
study. Computer Networks 52, 1 (2008)

7. Braginsky, D., Estrin, D.: Rumor routing algorthim for sensor networks. In: WSNA
2002 (2002)

8. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J.
Phys. A: Math. Gen. 38, R45-R78 (2005)

9. Cerpa, A., Wong, J.L., Kuang, L., Potkonjak, M., Estrin, D.: Statistical model of
lossy links in wireless sensor networks. In: IPSN 2005 (2005)

http://www.graphviz.org
http://www.scilab.org
http://www.twist.tu-berlin.de/wiki

64

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Zuniga, C. Avin, and M. Hauswirth

Cerpa, A., Wong, J.L., Potkonjak, M., Estrin, D.: Temporal properties of low power
wireless links: modeling and implications on multi-hop routing. In: MobiHoc 2005.
ACM, New York (2005)

Chang, N., Liu, M.: Revisiting the ttl-based controlled flooding search: optimality
and randomization. In: MobiCom 2004. ACM, New York (2004)

Chang, N., Liu, M.: Controlled flooding search in a large network. IEEE/ACM
Transactions on Networking (TON) 15(2), 449 (2007)

Cheng, Z., Heinzelman, W.: Flooding strategy for target discovery in wireless net-
works. Wireless Networks 11(5), 607-618 (2005)

Friedman, R., Kliot, G., Avin, C.: Probabilistic quorum systems in wireless ad hoc
networks. In: IEEE DSN 2008, June 2008, pp. 277-286 (2008)

Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47(3), 655-693 (1980)
Lovasz, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is
Eighty 2(1), 1-46 (1993)

Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad
hoc network. In: MOBICOM 1999, p. 162. ACM, New York (1999)

Pemantle, R.: Vertex-reinforced random walk. Probability Theory and Related
Fields 92(1), 117-136 (1992)

Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor
networks. Ad Hoc Networks 3(1), 91-113 (2005)

Servetto, S., Barrenechea, G.: Constrained random walks on random graphs: Rout-
ing algorithms for large scale wireless sensor networks. In: WSNA 2002 (2002)
Shakkottai, S.: Asymptotics of query strategies over a sensor network. In: IEEE
INFOCOM, Citeseer, vol. 1, pp. 548-557 (2004)

Simsek, O., Jensen, D.: Navigating networks by using homophily and degree.
PNAS 105, 35 (2008)

Sohrabi, K., Manriquez, B., Pottie, G.: Near-ground wideband channel measure-
ments. In: IEEE Proc. VT'C, New York (1999)

Srinivasan, K., Kazandjieva, M., Agarwal, S., Levis, P.: The beta-factor: measuring
wireless link burstiness. In: SenSys 2008 (2008)

Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: SenSys 2003 (2003)

Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: a library for parallel simulation of
large-scale wireless networks. ACM SIGSIM Simulation Digest (1998)

Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: SenSys 2003, New York, NY, USA (2003)

Zuniga, M., Krishnamachari, B.: An analysis of unreliability and asymmetry in
low-power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)

TARF: A Trust-Aware Routing Framework for
Wireless Sensor Networks™

Guoxing Zhan', Weisong Shi', and Julia Deng?

! Wayne State University, 5143 Cass Avenue, Detroit, MI 48202, USA
{gxzhan, weisong}@wayne.edu
2 Intelligent Automation Inc., 15400 Calhoun, Rockville, MD 20855, USA
hdeng@i-a-i.com

Abstract. Multi-hop routing in wireless sensor networks (WSNs) offers little
protection against deception through replaying routing information. This defect
can be taken advantage of by an adversary to misdirect significant network traf-
fic, resulting in disastrous consequences. It cannot be solved solely by encryp-
tion or authentication techniques. To secure multi-hop routing in WSN’s against
intruders exploiting the replay of routing information, we propose TARF, a trust-
aware routing framework for WSNs. Not only does TARF significantly reduce
negative impacts from these attackers, it is also energy-efficient with acceptable
overhead. It incorporates the trustworthiness of nodes into routing decisions and
allows a node to circumvent an adversary misdirecting considerable traffic with
a forged identity attained through replaying. Both our empirical and simulated
experimental results indicate that TARF satisfactorily performs routing and is re-
silient against attacks by exploiting the replay of routing information.

1 Introduction

Wireless sensor networks (WSNis) are ideal candidates for applications such as military
surveillance and forest fire monitoring to report detected events of interest. With a nar-
row radio communication range, a sensor node wirelessly sends messages to a base sta-
tion via a multi-hop path. However, the multi-hop routing of WSNs often becomes the
target of malicious attacks. In such an attack, the attacker may tamper nodes physically,
create traffic collision with seemingly valid transmission, drop or misdirect messages
in routes, or jam the communication channel by creating radio interference [18]. This
paper focuses on the kind of attack in which an adversary misdirects packets by identity
deception through replaying routing information. With such identity deception, the ad-
versary is capable of launching harmful and hard-to-detect attacks to misdirect traffic,
such as selective forwarding as well as wormhole and sinkhole attacks [8]].

As an effective and easy-to-implement type of attack, a malicious node simply re-
plays all the routing information sent from another valid node to forge the latter node’s
identity, thus misdirecting the network traffic. Those packets, including their original
headers, are replayed without any modification. Even if this malicious node cannot
directly overhear the valid node’s wireless transmission, it can collude with other mali-
cious nodes to receive those routing packets and replay them somewhere far away from

* This work is supported in part by NSF grant CNS-0721456.

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 65 2010.
(© Springer-Verlag Berlin Heidelberg 2010

66 G. Zhan, W. Shi, and J. Deng

the original valid node, which is known as a wormhole attack. Since a node in a WSN
usually relies solely on the packets received to know about the sender’s identity, replay-
ing routing packets allows the malicious node to forge the identity of this valid node.
After “stealing” that valid identity, this malicious node is able to misdirect the network
traffic. In a selective forwarding attack, it may drop packets received, forward packets to
another node not supposed to be in the routing path, or even form a transmission loop
through which packets are passed among a few malicious nodes infinitely. It is often
difficult to know whether a node forwards received packets correctly even with over-
hearing techniques [8]. Sinkhole attacks are another kind of attacks that can be launched
after stealing a valid identity. In a sinkhole attack, a malicious node may claim itself to
be a base station through replaying all the packets from a real base station. Such a fake
base station could lure more than half the traffic, creating a “black hole”.

Unfortunately, most existing routing protocols for WSNs either focus on energy ef-
ficiency assuming that each node is honest with its identity, or they try to exclude
unauthorized participation by encrypting data and authenticating packets. Examples of
these encryption and authentication schemes for WSNs include TinySec [7], Spins [14]],
TinyPK [16]], and TinyECC [10]. Admittedly, it is important to consider efficient energy
usage for battery-powered sensor nodes and the robustness of routing under topological
changes and common faults in a wild environment. However, it is also significant to
incorporate security as one of the most important goals; meanwhile, even with perfect
encryption and authentication, by replaying routing information, a malicious node can
still participate in the network using another valid node’s identity.

In contrast, trust management [2] has been introduced into peer-to-peer networks and
general ad hoc networks to support decision-making [6I15]], improve security [3I11]],
and promote node collaboration [3]] and resource sharing [9]. Basically, trust manage-
ment assigns each node a trust value according to its past performance. These studies
target general ad hoc networks and peer-to-peer networks but not resource-constrained
WSNs. Additionally, they do not address attacks arising from the replay of routing infor-
mation. With a similar idea, S. Ganeriwal, L. Balzano, and M. Srivastava also proposed
a reputation-based approach to detect uncooperative nodes in WSNs [4]]; however, they
do not address the attacks by exploiting the replay of routing information. The authors
also studied the trustworthiness of the data collected by WSNs [19]].

At this point, to fight against the “identity theft” threat arising from packet replaying,
we introduce trust management into WSNs, proposing TARF - a trust-aware routing
framework for wireless sensor networks. TARF identifies those malicious nodes that
misuse “stolen” identities to misdirect packets by their low trustworthiness, thus helping
nodes circumvent those attackers in their routing paths. We present the assumptions
and goals of this work in Section [2] the detailed design of TARF in Section [3| our
implementation of TARF in Section @] and simulation results in Section 3l Finally, we
conclude this work in Section[@

2 Assumptions and Goals

We target secure routing for data collection tasks, which are one of the most fundamen-
tal functions of WSNs. In a data collection task, sensor nodes send sampled data to a

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 67

= Node
= Node ' @ Base station . =
P @ Base station S r >k Fake base station

(a) (b)

Fig. 1. Multi-hop routing: (a) normal scenarios; (b) a fake base station attracts traffic

remote base station with the aid of intermediate nodes, as in Figure[[la). It is possible
for an adversary to replay all the packets from a base station and thus to forge the iden-
tity of the base station. Such deception could result in the following situation: a large
amount of packets are attracted to this fake base station and are never delivered to the
real base station (see Figure[Ilb)).

Though there could be more than one base station, our routing approach is not af-
fected by the number of base stations; to simplify our discussion, we will assume that
there is only one base station. Further, we assume no data aggregation is involved.
Nonetheless, our approach can still be applied to static-cluster-based WSNs, where data
are aggregated by static clusters before being relayed. In a static-cluster-based WSN,
cluster headers themselves form a sub-network; after certain data reach a cluster header,
the aggregated data will be routed to a base station only through such a sub-network
consisting of cluster headers. Our framework can then be applied to this sub-network to
achieve secure routing for static-cluster-based WSNs.

Additionally, we make certain assumptions regarding the format of packets in TARF.
We assume all data packets and routing packets, including their packet headers, are
authenticated; a packet can be forwarded only after its authenticity is verified. Whether
data encryption is implemented can be decided by the application. Every data packet is
assumed to have at least the following fields: the sender id, the sender sequence number,
the next-hop node id (the receiver in this one-hop transmission), the source id (the node
that initiates the data), and the source’s sequence number. We insist that the source
node’s information should be included for the following reasons. First, that allows the
base station to identify which data packets are initiated but undelivered; Second, a WSN
cannot afford the overhead to transmit all the one-hop information to the base station.
Regarding routing packets, they should have at least the following fields: the source id,
the source’s sequence number, and the next-hop id. In addition, we assume that after
receiving a data packet, a node will send out an acknowledgement packet.

Next, we present the goals of TARF.

High Throughput: Throughput is defined as the ratio of the number of data packets
delivered to the base station to the number of all sampled data packets. Note that single-
hop re-transmission may happen, and that identical packets repeatedly transmitted are

68 G. Zhan, W. Shi, and J. Deng

considered as one packet as far as throughput is concerned. Instead of any specific data,
users usually care much more about throughput. Here we regard high throughput as one
of our most important goals.

Energy Efficiency: Efficient energy usage is significant for battery-powered sensor
nodes, and data transmission accounts for a major portion of energy consumption.
We evaluate energy efficiency by the average energy cost to successfully deliver a
unit-sized data packet from a source node to the base station. Note that link-level re-
transmission should be given enough attention when considering energy cost since each
re-transmission causes a noticeable increase in energy consumption. If every node in a
WSN consumes approximately the same energy to transmit a unit-sized data packet,
we can use another metric hop-per-delivery to evaluate energy efficiency. Under that
assumption, the energy consumption depends on the number of hops, i.e. the number
of one-hop transmissions occurring. To evaluate how efficiently energy is used, we can
measure the average hops per delivery, i.e., the number of all hops divided by the num-
ber of all delivered data packets, abbreviated as hop-per-delivery.

Excellent Scalability & Adaptability: TARF should work well with WSNs of large
magnitude under highly dynamic contexts.

Here we do not include other aspects such as latency, load balance, or fairness. Low
latency, balanced network load, and good fairness requirements can be enforced in spe-
cific routing protocols built on top of TARF.

3 Design of TARF

TARF secures the multi-hop routing in WSNs against intruders exploiting the replay
of routing information by evaluating the trustworthiness of neighboring nodes. It iden-
tifies such intruders that misdirect noticeable network traffic by their low trustworthi-
ness and routes data through paths circumventing those intruders to achieve satisfactory
throughput. TARF is also energy-efficient, highly scalable, and well adaptable. Before
introducing the detailed design, we first introduce several necessary notions here.

Neighbor: For a node N, a neighbor (neighboring node) of NV is a node that is reachable
from N with one-hop wireless transmission.

Trust level: For a node N, the trust level of a neighbor is a decimal number in [0, 1],
representing /N’s opinion of that neighbor’s level of trustworthiness. Specifically, the
trust level of the neighbor is N’s estimation of the probability that this neighbor cor-
rectly delivers data received to the base station. That trust level is denoted as 7" in this
paper.

Energy cost: For a node N, the energy cost of a neighbor is the average energy cost
to successfully deliver a unit-sized data packet with this neighbor as its next-hop node,
from N to the base station. That energy cost is denoted as F in this paper.

3.1 Overview

TAREF integrates trustworthiness and energy efficiency in making routing decisions. For
a node N to route a data packet to the base station, /N only needs to decide to which

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 69

neighboring node it should forward the data packet. That chosen neighbor is /V’s next-
hop node. Once the data packet is forwarded to that next-hop node, the remaining task
to deliver the data to the base station is fully delegated to it, and N is totally unaware
of what routing decision its next-hop node makes. To choose its next-hop node, NV
considers both the trustworthiness and the energy efficiency of its neighbors. For that,
N maintains a neighborhood table with trust level values and energy cost values for
certain known neighbors. It is sometimes necessary to delete some neighbors’ entries
to keep the table size acceptable. Maintaining a neighborhood table with acceptable
overhead proved possible in [17]; the same technique can be used by TARF.

In TARE, in addition to data packet transmission, there are two types of routing in-
formation that need to be exchanged: broadcast messages from the base station about
undelivered data packets and energy cost report messages from each node. Neither mes-
sage needs acknowledgement. A broadcast message from the base station is broadcast
to the whole network; each node receiving a fresh broadcast message from the base
station will broadcast it to all its neighbors once. The freshness of a broadcast message
is ensured by its field of source sequence number. The other type of exchanged routing
information is the energy cost report message from each node, which is broadcast to
only its neighbors once. Additionally, any node receiving such an energy cost report
message will not forward it.

For each node NV in a WSN, to maintain such a neighborhood table with trust level
values and energy cost values for certain known neighbors, two components, Energy-
Watcher and TrustManager, run on the node (Figure 2)). EnergyWatcher is responsible
for recording the energy cost for each known neighbor, based on N’s observation of
one-hop transmission to reach its neighbors and the energy cost report from those neigh-
bors. TrustManager is responsible for tracking trust level values of neighbors based on
network loop discovery and broadcast messages from the base station about undelivered
data packets. Once N is able to decide its next-hop neighbor according to its neighbor-
hood table, it sends out its energy report message: it broadcasts to all its neighbors its
energy cost to deliver a packet from the node to the base station. The energy cost is
computed as in Section[3.3] by EnergyWatcher. Such an energy cost report also serves
as the input of its receivers’ EnergyWatcher.

One-hop
Delivery

J

Neighb
Energy Cost EnergyWatcher
Report
Neighborhood

Network Loop Table

Discovery
‘ TrustManager

Base Station
Broadcast

Next-hop
Selection

Energy Cost
Report

i

E
Llg

e

Fig. 2. Each node selects a next-hop node based on its neighborhood table, and broadcast its
energy cost within its neighborhood. To maintain this neighborhood table, EnergyWatcher and
TrustManager on the node keep track of related events (on the left) to record the energy cost and
the trust level values of its neighbors.

70 G. Zhan, W. Shi, and J. Deng

3.2 Routing Procedure

TAREF, as with many other routing protocols, runs as a periodic service. The length of
that period determines how frequently routing information is exchanged and updated.
At the beginning of each period, the base station broadcasts the information about un-
delivered data packets during the past few periods to the whole network once, which
triggers the exchange of routing information in this new period. Whenever a node re-
ceives such a broadcast message from the base station, it knows that the most recent
period has ended and a new period has just started. In this way, no time synchroniza-
tion is required for a node to keep track of the beginning or ending of a period. During
each period, the EnergyWatcher on a node monitors energy consumption of one-hop
transmission to its neighbors and processes energy cost reports from those neighbors
to maintain energy cost entries in its neighborhood table; its TrustManager also keeps
track of network loops and processes broadcast messages from the base station about
undelivered data to maintain trust level entries in its neighborhood table.

To maintain the stability of its routing path, a node may retain the same next-hop
node until the next fresh broadcast message from the base station occurs. Meanwhile,
to reduce traffic, its energy cost report could be configured to not occur again until the
next fresh broadcast from the base station. If a node does not change its next-hop node
selection until the next broadcast from the base station, that guarantees all paths to be
loop-free, as can be deducted from the procedure of next-hop node selection. However,
as noted in our experiments, that would lead to slow improvement in routing paths.
Therefore, we allow a node to change its next-hop selection in a period only when its
current next-hop is not responding correctly.

Next, we introduce the structure and exchange of routing information as well as how
nodes make routing decisions in TARF.

Structure and Exchange of Routing Information: A broadcast message from the
base station fits into a fixed number of packets; in our implementation, it fits into one
byte. Such a message consists of a few pairs of <the node id of a source node, an un-
delivered sequence interval [a, b] with a significant length>. To reduce overhead, only
a few such pairs are selected to be broadcast. The undelivered sequence interval [a, b]
is explained as follows: the base station searches the source sequence numbers received
in the past few periods, identifies which source sequence numbers for the source node
with this id are missing, and chooses certain significant interval [a, b] of missing source
sequence numbers as an undelivered sequence interval. For example, the base station
may have all the source sequence numbers for the source node 2 as {109, 110, 111,
150,151} in the past two periods. Then [112, 149] is an undelivered sequence interval.
Since the base station is usually connected to a powerful platform such as a desktop, a
program can be developed on that powerful platform to assist in recording all the source
sequence numbers and finding undelivered sequence intervals. The reason for searching
over more than one period is to identify as many undelivered data packets as possible.
To illustrate that, consider this example: suppose the source sequence numbers of deliv-
ered data packets from node 2 are {1, 2, 3} for the 1st period and {200, 201, 203} for
the 2nd period; then simply searching over a single period would not discover the un-
delivered packets unless every node is required to send a fixed number of data packets
over each period.

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 71

Accordingly, each node in the network stores a table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> in the past few
periods. The data packets with the source node and the sequence numbers falling in this
forwarded sequence interval [a, b] have already been forwarded by this node. When the
node receives a broadcast message with undelivered sequence intervals, its TrustMan-
ager will be able to identify which data packets forwarded by this node are not delivered
to the base station. Considering the overhead to store such a table, old entries will be
deleted once the table is full.

Once a fresh broadcast message from the base station is received, a node immedi-
ately invalidates all the existing energy cost entries: it is ready to receive a new energy
report from its neighbors and choose its new next-hop node afterwards. Also, it is go-
ing to select a node either after a timeout is reached or after it has received an energy
cost report from some highly trusted candidates with acceptable energy cost. A node
immediately broadcasts its energy cost to its neighbors only after it has selected a new
next-hop node. That energy cost is computed by its EnergyWatcher (see Section 3.3).
A natural question is which node starts reporting its energy cost first. For that, note that
when the base station is sending a broadcast message, a side effect is that its neighbors
receiving that message will also regard this as an energy report: the base station needs
0 amount of energy to reach itself. As long as the original base station is faithful, it will
be viewed as a trustworthy candidate by TrustManager on the neighbors of the base
station. Therefore, those neighbors will be the first nodes to decide their next-hop node,
which is the base station; they will start reporting their energy cost once that decision is
made.

Route Selection: Now, we introduce how TARF decides routes in a WSN. Each node
N relies on its neighborhood table to select an optimal route, considering both energy
consumption and reliability. TARF makes good efforts in excluding those nodes that
misdirect traffic by exploiting the replay of routing information.

For a node N to select a route for delivering data to the base station, N will select
an optimal next-hop node from its neighbors based on trust level and energy cost and
forward the data to the chosen next-hop node immediately. The neighbors with trust
levels below a certain threshold will be excluded from being considered as candidates.
Among the remaining known neighbors N will select as its next-hop node a neighbor
b with the minimal value of Z T , with E'np, and Ty, being b’s energy cost and trust
level value in the neighborhood table respectively (see Section B3l [B.4). Basically,
FE Ny reflects the energy cost of delivering a packet to the base station from N assuming
that all the nodes in the route are honest; T11Vb approximately reflects the number of the
needed attempts to send a packet from N to the base station via multiple hops before
such an attempt succeeds, considering the trust level of b. Thus, comparing the values
of %1;’ , among N’s neighbors identifies a candidate with a minimal combined cost of
energy and trustworthiness.

The remaining delivery task is fully delegated to that selected next-hop neighbor,
and N is totally unaware of what routing decision its chosen neighbor is going to make.
Next, the chosen node will repeat what N has done, i.e., delegating the left routing
task to its own chosen next-hop neighbor. In this way, instead of finding out a complete
path to the base station, each node is only responsible for choosing its next-hop node,

72 G. Zhan, W. Shi, and J. Deng

Meightar | Trust | Emergy
o Lewt | cost |jNeighbor | Trust | Energy m
1 Ta Eq [[1] Level Cost Sensor node
(] N - ; 3 T E.
1 3 T N 3 b3
[Tab Ea © The Fre
™ §
-
a b m
3
(]

2 Meighbor | Trust | Energy \ -
[L4] Level Cost / ’7’—
3 T4 ty Pl d \EI_
a T Eog ¢ Base Station

Fig. 3. Routing illustration

thus saving considerable cost in computation and routing information exchange. As an
example shown in Figure[3 node a is trying to forward a packet to the base station. After
comparing both the trust level and energy cost among its neighbors 1, 2 and b, a decides
that b is the most promising next-hop node for data delivery and forwards the data packet
to b immediately. b is free to make its own decision for routing the packet to the base
station. b decides that its neighbor c is a better candidate than its neighbor 3. After that,
the task is delegated to ¢, and c continues to delegate the job to d. Finally, d delivers the
packet to the base station. Observe that in an ideal misbehavior-free environment, all
nodes are absolutely faithful, and each node will choose a neighbor through which the
routing path is optimized in terms of energy; thus, an energy-driven route is achieved.
If we further assume that the one-hop transmission power of a unit-sized packet is the
same for each node, the selected route will be the classical shortest path.

3.3 EnergyWatcher

Here we describe how a node N’s EnergyWatcher computes the energy cost Fy, for
its neighbor b in N’s neighborhood table and how N decides its own energy cost Ey.
Before going further, we will clarify some notations. E'n;, mentioned is the average en-
ergy cost of successfully delivering a unit-sized data packet from NV to the base station,
with b as N’s next-hop node being responsible for the remaining route. Here, one-hop
re-transmission may occur until the acknowledgement is received or the number of re-
transmissions reaches a certain threshold. The cost caused by one-hop re-transmissions
should be included when computing Epy. Suppose N decides that A should be its
next-hop node after comparing energy cost and trust level. Then N’s energy cost is
En = Ena. Denote En_,;, as the average energy cost of successfully delivering a
data packet from NV to its neighbor b with one hop. Note that the re-transmission cost
needs to be considered. With the above notations, it is straightforward to establish the
following relation:

Eny = En_p + Ep

Since each known neighbor b of N is supposed to broadcast its own energy cost Ej, to
N, to compute E'np, N still needs to know the value En_., i.€., the average energy cost
of successfully delivering a data packet from N to its neighbor b with one hop. For that,

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 73

assuming that the endings (being acknowledged or not) of one-hop transmissions from
N to b are independent with the same probability pg,.. of being acknowledged, we first
compute the average number of one-hop sendings needed before the acknowledgement
is received as follows:

s 1
ZZ * Psuce * (1 - pSUCC)Z_l =
=1

pS’LLCC

Denote E,,;; as the energy cost for node N to send a unit-sized data packet once
regardless of whether it is received or not. Then we have
ENb _ Eunit + Eb
psucc

The remaining job for computing Fyy is to get the probability psy.. that a one-hop
transmission is acknowledged. Considering the variable wireless connection among
wireless sensor nodes, we do not use the simplistic averaging method to compute pgycc.
Instead, after each transmission from N to b, N’s EnergyWatcher will update pgycc
based on whether that transmission is acknowledged or not with a weighted averaging
technique. We use a binary variable Ack to record the result of current transmission: 1 if
an acknowledgement is received; otherwise, 0. Given Ack and the last probability value
of an acknowledged transmission pq suce, TARF uses a weighted average of Ack and
Dold suce as the new probability value prew suce:

Prnew suce = (]- - ’LU) X Pold succ +w X ACka w e (07 1)7

where w can be chosen by specific protocols.

3.4 TrustManager

A node N’s TrustManager decides the trust level of each neighbor based on the fol-
lowing events: discovery of network loops, and broadcast from the base station about
undelivered data packets. For each neighbor b of N, T'n;, denotes the trust level of b in
N’s neighborhood table. At the beginning, each neighbor is given a neutral trust level
0.5. After any of those events occurs, the relevant neighbors’ trust levels are updated.

To detect loops, the TrustManager on N reuses the table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> (see Section[3.2)
in the past few periods. If N finds that a received data packet is already in that record
table, not only will the packet be discarded, but the TrustManager on /N also degrades
its next-hop node’s trust level. If that next-hop node is b, then Ty,;4 n is the latest trust
level value of b. We use a binary variable Loop to record the result of loop discovery: 1
if a loop is received; 0 otherwise. After the degradation, as in the update of energy cost,
the new trust level of b is

Thew o = (1 —w) X Toia nb + w X Loop,w € (0,1),

where w can be chosen by specific applications.

74 G. Zhan, W. Shi, and J. Deng

Once a loop has been detected by NV for a few times so that the trust level of the
next-hop node is too low, N will change its next-hop selection; thus, that loop is broken.
Though NN can not tell which node should be held responsible for the occurrence of a
loop, degrading its next-hop node’s trust level gradually leads to the breaking of the
loop.

On the other hand, to detect the traffic misdirection by nodes exploiting the replay of
routing information, TrustManager on N compares N’s stored table of <node id of a
source node, forwarded sequence interval [a, b] with a significant length> recorded in
the past few periods with the broadcast messages from the base station about undeliv-
ered data. It computes the ratio of the number of successfully delivered packets which
are forwarded by this node to the number of those forwarded data packets, denoted as
DeliveryRatio. Then N’s TrustManager updates its next-hop node b’s trust level as
follows:

Thew No = (1 —w) X Toig np + w x DeliveryRatio,w € (0, 1),

Now, suppose an adversary M forges the identity of the base station by replaying all
the routing packets from the base station. At first, it is able to deceive its neighbors into
believing that M is a base station; as a result, M/ may attract a large amount of data
packets, which never reach the base station. However, after the base station broadcasts
the information about those undelivered packets, M’s neighbors will downgrade M’s
trust level values in their neighborhood table. Note that M is only capable of replaying
but is not capable of manipulating or generating authenticated broadcast messages, and
that M usually cannot prevent other nodes from receiving a broadcast message from
the base station. As time elapses, M ’s neighbors will start realizing that M is not trust-
worthy and will look for other next-hop candidates that are more reliable. Similarly, if
M forges the identity of another valid appealing node, M’s neighbors will gradually
realize that M is not reliable.

4 Implementation and Empirical Evaluation

We have implemented a protocol based on TARF in TinyOS 1.x, which currently runs
on mica2 motes. Both the authentication and encryption of packets reuse the implemen-
tation of TinySec [[7]: TinySec uses a CBC mode encryption scheme with Skipjack as
the block cipher and an authentication scheme based on a four-byte message authentica-
tion code (MAC) computed by the CBC-MAC construction procedure. The MAC field
is computed over the whole message including all the headers; it also serves as the CRC
field of the packet. Data encryption can be disabled. In a routing packet, the next-hop
id is replaced by a neighborhood broadcast address or a network broadcast address to
indicate that it is a neighborhood or whole network broadcast. The acknowledgement of
data packets is enabled. Considering the fact that floating-point computation is not sup-
ported by sensor hardware, the implementation uses an integer in [0, 100] to represent
trust level; the update of energy cost and trust level values is also implemented using
integer arithmetics.

This implemented TARF protocol requires moderate program storage and memory
usage. For comparison, we list the ROM size and RAM size requirement for this pro-
tocol and two other protocols on mica nodes in Table [Il The two other protocols are

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 75

Table 1. Size of protocol components implemented

Protocol Authentication&Encryption ROM (bytes) RAM (bytes)

TARF TinySec 20912 1464
Route TinySec 20696 1048
MintRoute TinySec 22554 1990

named Route and MintRoute according to their directory name under TinyOS 1.x. Both
Route and MintRoute were the “standard” routing protocols in TinyOS 1.x and make
route decisions based on both link quality estimation and number of hops. Neither of
these original protocols provides encryption or authentication; to compare on a fair ba-
sis, we also enabled the encryption and authentication mode of TinySec for Route and
MintRoute. TinySec occupies 728 bytes of RAM and 7146 bytes of ROM [7]. Simi-
larly to Route and MintRoute, this TARF protocol adopts energy-efficient routes in a
misbehavior-free environment. However, with a comparable size, it also supports the
circumvention of adversaries exploiting the replay of routing information, which is not
provided by Route or MintRoute. Further, our experience shows that it is easy to incor-
porate this TARF protocol into most applications. As an example, we re-implemented
the Surge application in the TinyOS 1.x directory with this TARF protocol. The program
has a size comparable to that of the Surge implemented using Route or MintRoute.

To evaluate how effective TARF is against deception through replaying routing in-
formation in the real world, we uploaded programs onto Motelab at Harvard Uni-
versity. As a public test bed of wireless sensor networks, at the time of our experiments,
184 TMote Sky sensor motes were deployed at 3 floors. These nodes are distributed
among many rooms of the building, with an approximate indoor transmission of 100
meters. Approximately 14 nodes were removed, and nearly 50 nodes were disabled.
Motelab switched its serial forwarder protocol from TinyOS 1.x to TinyOS 2.x and
was equipped with TMote only Tmote Sky motes. Due to the unavailability of Tiny-
Sec on TMote SKy nodes, we did not include authentication or encryption from Tiny-
Sec in the uploaded programs. Further, considering the availability of routing protocols
on TinyOS 2.x, we compared our TinyOS 2.x version of TARF with the collection
tree routing protocol (CTP), which mainly employs link quality estimation in choos-
ing next-hop nodes. Both protocols were integrated into a data collection application -
MultihopOscilloscope, which is named after its directory name in TinyOS 2.x. We con-
figured the MultihopOscilloscope to send out 5 samples in a single data packet every 5
seconds. The routing update occurred every 50 seconds. Because of the limited quota
assigned by Motelab, our programs lasted maximally 30 minutes. Among all the nodes,
one was chosen to be the base station. Another node was programmed to be a fake base
station: it broadcast as if it were a base station but never delivered the received data to
the real base station. The many experiments we executed indicate that our TARF pro-
tocol achieves at least 30% higher throughput than CPT when there is an “attractive”
fake base station. Some fake base stations are not able to misdirect much traffic because
they have a poor wireless connection with their neighbors and do not look “appealing”.

76 G. Zhan, W. Shi, and J. Deng

In one experiment (Figure [(a)), all nodes on the three floors were supposed to de-
liver data to node 9 (the base station); node 15 (fake base station) replayed all the rout-
ing packets from the base station. By counting the data packets received at the real base
station, TARF had approximately a 60% higher throughput than CT P. In another ex-
periment (Figure d(b)), only the nodes on the first floor (56 nodes totally) sent data to
node 9 (the base station), and node 27 (fake base station) replayed the routing packets
from the base station. As a result, TARF had approximately a 40% higher throughput
than CTP.

8000 3500 S
O
® 7000 o TARF o° ” © TARF o°
4 + CTP o0° & 3000 + CTP o®
& © = °
0 @0 (o
% 6000 «° % 2500 o o
£ 5000 o° " £ o°° e
2 o° e 8 2000 St
o F o S +
2 4000 5 L 2 o0 4+
] o° L+ S 1500 o0 4t
S o + S +
« 3000 o +t — o° 4t
o Oo +++ o o° 4t
5 + 5 o0+
5 S % 1000 Rejet
£ 2000 oo° N o 2 Sty
it
> Ooo++++ > 500 QQ
Z 10000 O+ z
Ot o
o o2 oe®
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (minute) Time (minute)
(@) (b)

Fig. 4. With a fake base at Motelab, (a) TARF had approximately a 60% higher throughput than
C'T P among 3 floors; (b) TARF had approximately a 40% higher throughput than C'T'P at a
single floor.

We also recorded the number of redundant data packets received by the base station.
It turns out that both TARF and CTP had redundancy ratios at no more than 2%. Though
both CTP and TARF suppress redundant packets, a packet might be received more than
once by the base station because an acknowledgment is lost when the route changes.

5 Simulation and Evaluation

To further evaluate the efficacy of TARF in terms of energy efficiency and through-
put, we have developed a reconfigurable emulator of wireless sensor networks on a
two-dimensional plane with Matlab [12]. To effectively simulate a WSN, this emula-
tor uses the object-oriented technique to construct two classes of objects: WSNMAN-
AGER and NODE, to represent the whole network and a sensor node. The interaction
between nodes are emulated through event passing. The routing function for a node can
be rewritten to adopt different routing protocols; different maps can also be ported into
this simulator. To simulate the unreliable wireless transmission, the outcome of one-hop
packet transmission is decided by the following model: suppose a node A is wirelessly
transmitting a packet to node B, the probability for B to successfully receive such a
packet is assumed to be

1 — (min(dist, MAX DIST)/MAX DIST)?,

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 77

where dist is the distance from A to B, and M AX DIST is the maximal transmission
range. In our experiment, M AX DIST is defined as 100m, and 35 nodes are randomly
distributed within a 300*300 rectangular area. All the nodes have the same power level
and the same maximal transmission range of 100m. A base station is placed at the origin
[0, O]. We simulate the sensor network in 60 consecutive periods; each node samples
data 6 times in each period.

The performance of TARF is compared to that proposed in [[17] by Alec Woo, Ter-
ence Tong and David Culler. In that project, link connectivity is used as a cost metric for
routing, which is found to be more cost-effective than the well-known shortest path pro-
tocol. We will simply refer to the latter protocol as link-connectivity. In our simulation
experiments, we compare TARF with a simulated version of link-connectivity. As we
will see from the experiment results, with the existence of misbehaviors, the throughput
in TARF is often much higher than that in link-connectivity; the hop-per-delivery in
TAREF is generally at least comparable to that in the link connectivity protocol.

We compare TARF and link-connectivity under the following scenarios: (1) no nodes
misbehaves intentionally; (2) certain nodes forge the identity of the based station by
replaying broadcast messages; (3) a set of nodes colludes to form a forwarding loop;
and (4) a set of nodes drops received data packets.

Under scenario (1) without misbehaving nodes, the two protocols have comparable
performance in terms of throughput and hop-per-delivery. Figure 3 shows such an ex-
ample. Under a misbehavior-free environment, according to the TARF protocol, a node
may still perceive its neighbors as having different trust level, due to the fact that the
node can not well distinguish between malicious behavior and failed delivery due to
environmental effects. However, such mis-perception of trust does not compromise the
performance of TARF.

Under scenario (2), certain malicious nodes become fake base stations through re-
playing messages originated from the base station. With the link connectivity proto-
col, a significant portion of traffic is attracted to the fake base. However, with TARF,
most packets are able to select a route circumventing those fake bases. When there
are forged base stations, TARF tends to show much better throughput than the link

5.5 o TARF
e * Link-connectivity

Throughput

0.75

0.7

0.65 © 3.5

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time
(@ (b)

Fig. 5. Under misbehavior-free environment, TARF and link-connectivity have comparable per-
formance in (a) throughput, and (b) hop-per-delivery.

78 G. Zhan, W. Shi, and J. Deng

08
07 S
o z
506 o TARF 2.,0°
£ ° # Link-connectivit 3
S5 © ink-connectivity 3
g e 2
04 s 8
I
03
o 6
02
o4 ‘ ‘ ‘ ‘ ‘ 4 ‘ ‘ ‘ ‘ ‘
o 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time
(a) (b)

Fig. 6. With a fake base, (a) TARF has 5 times the throughput in link-connectivity; (b) TARF has
less than 50% hop-per-delivery in link-connectivity.

connectivity protocol, and the hop-per-delivery in TARF is much less than that in the
link-connectivity protocol. In one of our experiments with a fake base station, as indi-
cated in Figure[6l TARF reaches roughly 5 times the throughput in the link-connectivity
protocol, while the hop-per-delivery in TARF is less than 50% that in link-connectivity.

Under scenario (3), a loop of colluding nodes intercepts many packets. The through-
put in TARF is generally higher than that in link-connectivity; the hop-per-delivery in
the two protocols gradually become comparable. In one experiment, as shown in Fig-
ure[7] 5 out of 35 nodes are selected to form a network loop. Any data forwarded to
one of these 6 nodes would not be able to arrive at the base station. As in Figure[7] the
throughput in TARF is around 70% higher than that in the link connectivity protocol;
their hop-per-delivery gradually becomes comparable.

Under scenario (4), a set of nodes drops any received data packets. In our experiment,
6 nodes drop data forwarded to them. As indicated by Figure[8] the throughput in TARF

il
80
70%*
260 o TARF
g. F 2 * Link-connectivity
= * @ 50
o *]
S04 * £
2 * 840
03 * Q
* S30p *
02f *
0145
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time
(@) (b)

Fig.7. With a loop consisting of 14% nodes, (a) TARF has a higher throughput than link-
connectivity; (b) gradually, TARF and link-connectivity have comparable hop-per-delivery.

TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 79

o TARF 44k o TARF
0.85 * Link-connectivity : * Link-connectivity

Throughput
o
3

o
@
o

o
o

o
13
)}

20 30 40 50 60 o 10 20 30 40 50 60

o
3t

Time Time
(@ (b)

Fig. 8. With 6 nodes dropping data, (a) TARF has a 14% higher throughput than link-connectivity;
(b) TARF has a 5% higher hop-per-delivery than link-connectivity.

is at least 14% greater than that in link-connectivity; the hop-per-delivery in TARF is
around 5% higher than that in link-connectivity.

6 Conclusions

We propose TARF, a trust-aware routing framework for WSNs, to secure multi-hop
routing in WSNs against intruders exploiting the replay of routing information. With
the idea of trust management, TARF enables a node to keep track of the trustworthiness
of its neighbors and thus to select a reliable route. Not only does TARF circumvent those
malicious nodes misusing other nodes’ identities to misdirect network traffic, it also ac-
complishes efficient energy usage. Our implementation and simulation results indicate
that (1) the efficiency of energy usage in TARF is generally at least comparable to that
in existing protocols; (2) with the existence of traffic misdirection through “identity
theft”, TARF generally achieves a significantly higher throughput than other existing
protocols; and (3) TARF is scalable and adaptable to typical medium-scale testbed en-
vironments and simulated conditions. Our future work is to further evaluate TARF with
large-scale WSNss deployed in wild environments and to study how to choose param-
eters involved for specific applications. We believe that the idea of TARF can also be
applied to general ad hoc networks and peer-to-peer networks to fight against similar
attacks.

References

1. Al-Karaki, J., Kamal, A.: Routing techniques in wireless sensor networks: a survey. IEEE
Wireless Communications 11(6), 6-28 (2004)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of
1996 IEEE Symposium on Security and Privacy, pp. 164—173 (1996)

3. Boukerche, A., El-Khatib, K., Xu, L., Korba, L.: A novel solution for achieving anonymity
in wireless ad hoc networks. In: Proceedings of the 1st ACM international workshop on Per-
formance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 30-38 (2004)

80

10.

11.

12.
13.
14.
15.

16.

17.

18.

19.

G. Zhan, W. Shi, and J. Deng

. Ganeriwal, S., Balzano, L., Srivastava, M.: Reputation-based framework for high integrity

sensor networks. ACM Trans. Sen. Netw. (2008)

. He, Q., Wu, D., Khosla, P.: Sori: A secure and objective reputation-based incentive scheme

for ad hoc networks. In: Proceedings of IEEE Wireless Communications and Networking
Conference, pp. 825-830 (2004)

. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for reputation man-

agement in p2p networks. In: Proceedings of the 12th international conference on World
Wide Web, pp. 640-651 (2003)

. Karlof, C., Sastry, N., Wagner, D.: Tinysec: A link layer security architecture for wireless

sensor networks. In: Proc. of ACM SenSys 2004 (November 2004)

. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermea-

sures. In: First IEEE International Workshop on Sensor Network Protocols and Applications
(2003)

. Liang, Z., Shi, W.: Pet: A personalized trust model with reputation and risk evaluation for

p2p resource sharing. In: HICSS 2005: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS 2005) - Track 7. IEEE Com-
puter Society, Los Alamitos (2005)

Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in wireless
sensor networks. In: IPSN 2008: Proceedings of the 7th international conference on Infor-
mation processing in sensor networks, pp. 245-256. IEEE Computer Society, Los Alamitos
(2008)

Liu, Z., Joy, A., Thompson, R.: A dynamic trust model for mobile ad hoc networks. In:
Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Com-
puting Systems, pp. 80-85 (2004)

Matlab, http://www.mathworks. com

Motelab, http://motelab.eecs.harvard. edu

Perrig, A., Szewczyk, R., Wen, W., Culler, D., Tygar, J.: SPINS: Security protocols for sensor
networks. Wireless Networks Journal (WINET) 8(5), 521-534 (2002)

Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In: Proceedings
of the 3rd International Conference on Peer-to-Peer Computing, p. 150 (2003)

Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: Tinypk: securing sensor net-
works with public key technology. In: SASN 2004: Proceedings of the 2nd ACM workshop
on Security of ad hoc and sensor networks, pp. 59-64. ACM, New York (2004)

Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing
in sensor networks. In: Proceedings of the First ACM SenSys 2003 (November 2003)
Wood, A., Stankovic, J.: Denial of service in sensor networks. Computer 35(10), 54-62
(2002)

Zhan, G., Shi, W., Deng, J.: Poster abstract: Sensortrust - a resilient trust model for wsns.
In: SenSys 2009: Proceedings of the 7th International Conference on Embedded Networked
Sensor Systems (2009)

http://www.mathworks.com
http://motelab.eecs.harvard.edu

Low-Overhead Dynamic Multi-channel MAC for
Wireless Sensor Networks

Joris Borms', Kris Steenhaut!?, and Bart Lemmens'-?
1 Vrije Universiteit Brussel, Dept. of Electronics and Informatics ETRO
Erasmus Hogeschool Brussel, Dept. of Industrial Sciences and Technology
Brussels, Belgium
{jborms,ksteenha,blemmens}@etro.vub.ac.be

Abstract. Most of the existing popular MAC protocols for Wireless
Sensor Networks (WSN) only use a single channel for relaying data. Most
popular platforms however are equipped with a radio chip capable of
switching its channel, and are therefor not restricted to a single-channel
operation. Operating on multiple channels can increase bandwidth and
can provide robustness against external interference. We argue that this
feature is not only useful for dense, high-throughput WSNs but also
for sparser networks with low average data rates but with occasional
traffic bursts. We present MuChMAC, a low-overhead Multi-Channel
MAC protocol which uses a combination of TDMA and asynchronous
MAC techniques to exploit multi-channel operation without the need
for coordination or tight synchronization between nodes. We describe
an interface to scale MuChMAC’s duty cycle to adapt to varying
traffic conditions or energy constraints. We demonstrate MuChMAC’s
usefulness on a testbed consisting out Sentilla JCreate motes running it
as the MAC layer for Contiki-based applications.

1 Introduction

Traditional solutions for Medium Access Control (MAC) in Wireless Sensor
Networks (WSN) use only a single frequency channel for sending and receiving
messages. This implies that the bandwidth of a single channel has to be shared
amongst all nodes in the same neighborhood. Efficiently sharing bandwidth
while keeping low power consumption is a challenging task. Traditional MAC
algorithms for WSNs can be divided in different categories depending on how
they try to tackle these problems. Some algorithms try to synchronize all nodes’
duty cycles and then schedule transmissions according to either contention-
based (e.g. TMAC [I]) or TDMA-based methods (e.g. LMAC [2]) or a mix
of both. Others avoid synchronization and focus more on keeping nodes in a
low duty cycle (e.g. B-MAC [3], X-MAC []) reasoning that the chances of
collision are small since one expects a small amount of traffic on the network.
As such the overhead of resolving collisions is also small. This last category is a
better fit for sensor networks with very low duty cycles since no coordination or
synchronization between the nodes is required, but they do run into throughput

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 81 2010.
© Springer-Verlag Berlin Heidelberg 2010

82 J. Borms, K. Steenhaut, and B. Lemmens

problems when the requested data rates of nodes increase. Additionally, any
single-channel MAC protocol can run into problems when its channel is being
used by external devices.

In the rest of our paper, we will consider two types of interference: Internal
interference, which is interference between transmissions from nodes in the
network and external interference, which is interference from devices outside the
network. We argue that a multi-channel protocol can reduce the effects of both
types of interference and we will motivate some of our design choices accordingly.

1.1 Internal Interference

Collisions between transmissions are an important cause of loss of throughput in
wireless sensor networks. We will argue that even in small or sparse wireless
sensor networks, spreading transmissions over multiple channels can greatly
reduce this risk. Consider for example Fig. [l We observe that during a
convergecast operation, even though there is a clear bottleneck around the sink
node, multiple channels can help reduce (or even completely remove) collisions
between transmissions from nodes 2, 3, 4 and 5. Even if the network does not
need explicit support for convergecast, it may at some point need to disseminate
information (for example, configuration messages) to some or all nodes in the
network. During this phase, multiple channel access can reduce the risk of
collisions when intermediate nodes forward messages.

Fig. 1. Congevergecast and dissemination in a simple wireless sensor network

If the total traffic load on a network is low, traffic may be generated in short
bursts in time, for example when the network is designed to detect certain
rare events. During such a traffic burst, the required bandwidth will be much
higher than the average required bandwidth for that network. Moreover, in
such cases unsynchronized MAC protocols such as X-MAC and B-MAC suffer
from problems with collisions, while synchronized protocols may impose a high
overhead since the total traffic volume is very low. Ideally, a multi-channel
protocol should be able to increase the available bandwidth while still keeping a
low overhead.

1.2 External Interference

Aside from collisions, another common problem is external interference, i.e.
interference from sources outside the network. Since WSNs commonly operate

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 83

on any of the unlicensed bands, a lot of WSN deployments have to take into
account the possibility of other devices operating at the same frequency, such
as Bluetooth devices, 802.11 WLAN, baby monitors, cordless phones, etc. Even
some models of microwave ovens are known to emit noise on parts of the 2.4GHz

band.

23;1"58"4; 11|12|13|14|15|16|1T|13|19|20|21 |22|23|24|25|26|—

Fig. 2. 802.11 and 802.15.4 channel overlap

Consider for example Fig. 2l where a comparison of 802.11 and 802.15.4
channel spacing is depicted. We could conclude that a simple way to avoid 802.11
collisions is to use one of the four channels which don’t overlap between both
channel schemes. And indeed, this technique is quite common — for example, in
the Contiki OS [5] the default MAC channel is 26 — but this of course only avoids
collisions from 802.11 devices. Restricting the number of channels may not be
an efficient way to reduce interference from other sources and in fact increases
the chance that collocated WSNs will interfere with each other. Ideally, a multi-
channel protocol should be able to dynamically switch the channel on which
nodes communicate in order to use as much bandwidth as possible, even in the
presence of external interference.

2 Existing Multi-Channel Solutions

We will review some of the existing multi-channel MAC techniques to motivate
the design choices of our multi-channel MAC protocol. A full overview of existing
multi-channel MAC protocols is out of the scope of this paper and can be found
in other published work [GI7IS].

First of all, we will limit ourselves to nodes using a single half-duplex radio
since this seems to be, to the best of our knowledge, the most common choice
in popular sensor node platforms today (e.g. Tmote Sky, JCreate, Mica mote,
etc.). We are specifically interested in the way existing techniques (not necessarily
directed at sensor networks) assign channels for the nodes in the network.

2.1 Fixed Channel Selection

In fixed channel assignment schemes, nodes are assigned to a fixed channel
throughout the lifetime of the network or at least for extended periods during
deployment. We can further divide this principle in two categories:

— Receiver-fived channel assignment. Nodes pick a channel to listen to based
on a simple algorithm requiring little to no coordination (e.g. channel =
ID modulo #channels). This is a simple way to achieve channel diversity

84 J. Borms, K. Steenhaut, and B. Lemmens

without any coordination overhead. An example of such a protocol is the
xRDT protocol described in [7].

— Coordinated channel selection. Nodes coordinate channel assignment in such
a way that the available bandwidth is distributed efficiently amongst nodes in
the network. Protocols like HyMAC [9] and MC-LMAC [§] combine FDMA
and TDMA techniques to assign a unique timeslot-channel combination to
each node in a two-hop neighborhood. Another example is TMCP [I0] which
divides a dense WSN in several aggregation trees and assigns a different
channel to each tree.

Both type of schemes increase the bandwidth available for communications by
increasing the number of channels for unicast transmissions. Simple receiver-
fixed assignment offers less advantage in terms of bandwidth, but imposes no
coordination overhead on the network. Such a simple scheme could be an elegant
solution to increase the bandwidth of uncoordinated MAC protocols such as
X-MAC with little implementation overhead.

In general, fixed schemes consider mostly unicast. This restriction can be an
issue since broadcast is a commonly required operation used by many WSN rout-
ing protocols and applications. Fixed schemes only reduce internal interference
and do not consider external interference, so we believe they do not fully exploit
the possibilities of multi-channel operation.

2.2 Dynamic Channel Selection

Several techniques have been proposed to allow communication while nodes
switch their channels more frequently.

— Common Hopping. This is a class of protocols where nodes all listen to the
same channel, but “hop” between available channels frequently. Data can be
exchanged on a different channel after a handshake on the common channel.
Unlike other channel selection schemes, broadcast is easy to support. This
type of scheme offers some robustness to external interference, but since
packets are quite short in a WSN, the possible bandwidth gain compared
to single-channel schemes is limited. To the best of our knowledge, common
hopping has not been explored in WSNs for this reason.

— Independent Hopping. With independent hopping each node will frequently
change its channel, according to its own individual schedule. When a node
has data for another node, it switches its radio to the target node’s channel
and initiates the data transfer (with or without prior handshaking, depending
on the protocol). An example of such a protocol is McMAC [I1]. This type
of scheme has the advantage over common hopping in terms of interference
since it protects against both internal and external interference. However,
it may be difficult to support broadcast (for example, the McMAC protocol
does not explicitly support broadcast transmissions). Additionally, a node
must store the hopping schemes of its neighbors. These type of schemes
require tight synchronization so nodes can accurately compute the channel
of their neighbors.

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 85

— Adaptive channel selection. Instead of choosing a channel scheme, some
approaches also try to adaptively select channels for nodes, based on network
density, noise measurements, etc. With this category of schemes, it is
theoretically possible to optimize the use of network bandwidth, even in
the presence of external interference. In the case of WSNs however, it is
not a trivial task to coordinate this accurately over many lossy links at low
bandwidth and energy cost. If the coordination fails or crucial packets get
lost, nodes could become disconnected from the network.

An example of a WSN MAC protocol with adaptive channel selection is
CoReDac [12][13] which is designed specifically for convergecast operations.
In CoReDac, each node decides on which channel it will receive messages
during the next convergecast cycles and reports this in message ACKs to its
children. If a node does not receive messages on a certain channel, it will
blacklist it and avoid selecting that channel for the next cycles. Although
this scheme works well and has a fairly low overhead, it is highly optimized
for convergecast and it seems difficult to support other operations.

Another example of dynamic channel selection which combines these techniques
is the Y-MAC [14] protocol. In this protocol, time is divided in large frames
further divided in slots. The first slots of a frame are reserved for broadcast
and control traffic. Each node will then pick one of the remaining slots to listen
for possible incoming transmissions. A channel hopping scheme is added to the
unicast slots to improve throughput under high traffic loads. This protocol shows
good results for high traffic loads (1 message/node/sec and higher in a multi-hop
environment), but the coordination between nodes is quite complex and tight
synchronization is required. In a real deployment, the authors show this protocol
has a duty cycle close to 10% regardless of traffic conditions.

All of the dynamic channel selection schemes presented above have at least
some advantage over fixed channel selection with respect to external interference.
Even if channel quality is not actively monitored, a dynamic scheme will still
provide connectivity since nodes attempt to use several channels. However, a
node must be able to accurately compute the channel of its neighbors and this
requires either tight synchronization or coordination (or both).

Broadcast .| Unicast
period period

'y

) ™ Time
Contention

B Time slot
window

Fig. 3. Y-MAC frame structure, as presented in [I4]

86

J. Borms, K. Steenhaut, and B. Lemmens

2.3 Summary

To conclude this overview, let us summarize some of the general shortcomings
of current multi-channel protocols we wish to find an answer to:

Fized channel assignment. As mentioned above, in a fixed channel assign-
ment scheme, the network does not fully exploit possibilities to increase
resilience against external interference. Under external interference parts of
the network may be disconnected for certain periods in time.

Lack of broadcast support. Many multi-channel protocols only tackle unicast
operations. Even though it may seem contradictory to move all nodes on
the same frequency in a multi-channel protocol, broadcasting is a common
operation for many routing protocols and applications and should be
explicitly supported.

Tight synchronization requirements. Most of the protocols with dynamic
channel assignment require tight synchronization of nodes to make sure
nodes share the same wake/sleep duty cycle. This way nodes can easily
coordinate during their wake-up period. However, synchronization is not
a trivial task and can impose a high overhead on the nodes. Typical
synchronization protocols require nodes to exchange timestamps. Even if
these timestamps can be piggybacked on normal messages, this may not
suffice if the network is light on traffic. In such cases, a lot of energy will be
spent keeping the nodes synchronized. Out-of-band synchronization such as
those described by [15] may also be an option in some cases, but this requires
additional hardware and thus an additional cost which is not negligible.

In general, we can also conclude that there appears to be a strong correlation
between protocol features and protocol requirements. As a protocol adds more
features, the requirements in terms of coordination and synchronization quickly
increase as well. We wish to create a protocol which exploits the possibilities of
multi-channel operation without imposing strong requirements on the network.

3

MAC Design

With these considerations described above in mind, these are the requirements
for our Multi-Channel MAC (MuChMAC) protocol:

Frequency agility: The nodes should use multiple channels dynamically to
increase bandwidth and to allow the network to continue operation even if
there is external interference.

Broadcast support: The nodes should be able to efficiently send broadcast
messages.

Low power: The protocol should be optimized in such a way that nodes can
operate under low duty cycles (only a few %) to increase battery lifetime.
General purpose: The protocol should be able to function sufficiently well
(in terms of energy consumption, latency, bandwidth, ...) under a variety
of traffic loads and patterns. We will target traffic loads of one message per
node every few seconds, down to a few messages per node per hour.

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 87

3.1 Frequency Hopping with Broadcast

Let us tackle the first issues: How do we design our protocol to be frequency agile,
yet give it broadcast capabilities? To achieve this, we will divide time in slots
and let each node switch its radio frequency every slot. We base our assignment
of slots on the parallel rendez-vous principle, as proposed for McMAC [I1]: To
calculate the radio channel of a node, we input its ID and the current slot number
in a pseudo-random generator. The channel number is chosen by the receiver;
when a node has a message for another node, it switches its radio to the receiver
channel and sends the message. By choosing a pseudo-random hopping scheme,
we avoid that nodes have to store the hopping scheme of all their neighbors.

We will discuss further on how a node will be able to calculate the slot number
without synchronization overhead. First, let us propose the adaptation presented
in Fig. [to add broadcast support to this channel hopping scheme.

~|w| ;|
ww|w|wn
=|r2 oo
o= (n|~
Co|00|00(Co

OO wm>
|| 00|

Fig. 4. Parallel rendez-vous scheme extended with broadcast slots

This scheme is partially inspired by the Y-MAC [I4] frame structure. Every
u/b unicast slots, a broadcast slot will be inserted. These broadcast slots also
follow a pseudo-random hopping sequence, but they are the same for each node.
This way, our hopping scheme is a combination of independent and common
hopping schemes, trying to take the best of both worlds. Figure] demonstrates
this principle with u/b = 2 for the channel selection of 4 nodes A, B, C' and D
over time. Other values of u/b can be chosen during network setup if the relation
of unicast and broadcast traffic is known in advance.

One disadvantage of this approach is that the hopping scheme does not
actively adapt to interference on certain channels but instead gives us a more
passive interference avoidance; if there is interference on some channels we still
have connectivity on the rest of the channels. This is not as powerful as active
avoidance, but it does not require any coordination overhead. Accordingly, we
motivate our choice with the observation that coordinating channel selection
among nodes in the network is not a trivial task and may cause a high overhead
when actual traffic volumes are low, thus violating our “General Purpose”
constraint.

3.2 Low-Power Operation

The original parallel rendez-vous scheme was designed targeting high-power
nodes, such as 802.11 WLAN routers or laptops. It is obvious that this scheme,

88 J. Borms, K. Steenhaut, and B. Lemmens

where radios are assumed to be listening to the medium at all times, is
not applicable to low-power sensor nodes. In order to achieve the low power
constraint, we will put each node in a low sleep/wake duty cycle. As shown in
Fig. Bl nodes will wake up only during a small portion of a slot and will stay
asleep for the rest of the slot. For example, in Fig. [l a duty cycle of 20% is
shown. In our implementation we set a duty cycle of 1%.

oNnwr
o) &|eo|

Mo
[r]enfn]en]
[=]~]en]eo]
[co]=[en]N]
EIEIEIE

Fig. 5. Low duty cycle

3.3 Synchronization

As discussed earlier, keeping nodes in the state depicted in Fig. [Blis not a trivial
task and will require tight synchronization, especially if very low duty cycles
are desired. However, we could ask ourselves if this synchronization is really
a necessity. For example, starting from the situation depicted in Fig. Bl let us
consider how this situation evolves if we don’t synchronize. Assuming a slot size
of 500ms and a drift of at most £40ppm (as specified in the 802.15.4 PHY
standard), how the situation might look like after 30 minutes is depicted in
Fig. [0l It is clear in the worst case the wake-up periods have drifted away from
each other. But if we look at the slot transitions (as defined by an absolute
master clock with zero drift) depicted as dashed lines in Fig. B we observe
that the wake-up periods have not drifted past these boundaries yet, despite
long unsynchronized operation. So if we know when another node wakes up, we
can still correctly calculate the slot number and the associated channel number.
Unfortunately, it is impossible to calculate the exact time when a node will wake
up. If we try to calculate this, our estimate will have a resolution equal to the
upper limit on drift time as given by ().

Alpax = (t(now) - t(last synch)) X driftmax (1)

Typically, this will be many times the wake-up period of a node, so it is clear
we can only calculate a period during which a target node will wake up, but not

| | | | |

A —fE—E—E—|B8—|FH——E

B Ial . Isl ; I5I ; I5I ; I5I ; I8I
|_ G | mer | Er 1 gl | par

¢ 4I_II IilJ_Ii Ii’l_il l_'2_Jl_|| L':I._'|J_|I L'S_J

D 6h—17h 15H 11H BH—8}—
I [} | | |

Fig. 6. Unsynchronized operation

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 89

B estimates upper bound on drift
-

listen
A clock drift send
-
1 I
A — { 11 }
B—:—\/Hllllllllhi \L\ :
B polls A with A hears a preamble B sends the A ACKs the
short preambles and ACKs it messageto A data message

Fig. 7. Unicast communication between nodes

the exact moment. To overcome this problem, we will have nodes communicate
according to an adaptation of the X-MAC scheme as depicted in Fig. [t When
a node B has a message for another node A, B will first calculate the lower
limit of the next period when that node will be awake. At that point, node B
will calculate the channel of node A and will start sending out small preamble
messages. When A wakes up, it will hear a preamble, and it will acknowledge to
B that it is awake and that the data can be sent. After the data message has
been sent, A can optionally acknowledge the data message. Broadcasting will
happen according to a roughly similar scheme, except that the sending node will
repeatedly send the data message instead of preambles and there is no feedback
from receiving nodes, as depicted in Fig.

B estimates upper bound on drift

- - listen
A clock drift C clock drift send
-— | —
1 I
!
A ; e
B
c —i =])
| / \ I / :
B sends repeats A and C receive
the data message the message

Fig. 8. Broadcast communication

Now the final problem we have to tackle is to make sure nodes do not
desynchronize beyond slot transitions. This however only requires very loose
synchronization. With the above scheme we must make sure drift is always
smaller than half the slot size. With some typical parameters we get:

slot/2 250 ms

h period = -
SYRELPEHOC = qrift — 80ppm

= 3125s = 52 min (2)
Not only does this mean we have a very large synchronization period, it also
means that when we synchronize, we do not need very strict synchronization (i.e.
down to a few clock cycles) but down to an order of magnitude of 1 — 10ms is

90 J. Borms, K. Steenhaut, and B. Lemmens

more than sufficient. Moreover, the entire network does not need to be globally
synchronized, it is sufficient that a node is synchronized with its neighbors.
This allows us to use simple timestamp based synchronization, where nodes put
timestamps on all outgoing and incoming messages and calculate clock offsets
accordingly. In the case of unicast transmissions, it is even sufficient to timestamp
the preamble and ack messages, causing no overhead on the data message itself.
With such an approach, the network will also be partially adaptive to traffic:
when messages are sent more frequently, the drift against neighboring clocks will
be smaller and less energy will be wasted sending preambles.

Intermezzo: The Contiki timesynch Module. Contiki has a module called
timesynch which is implemented for all platforms using a CC2420 radio. This
module adds code to the radio driver that timestamps all outgoing and incoming
packets. The network should also have at least one master node with an
“absolute” clock. Such a node will be defined to have an authority of 0. The
neighbors of a master will have authority 1, their neighbors 2 and so on (depicted
in Fig. [@). To create this “authority gradient”, the following mechanism is
implemented: When a non-master node receives a packet from another node
with lower authority a, it will set its own authority to a + 1 and will synchronize
to that node, using the timestamps from the received packet. This way, nodes
will synchronize with neighbors closer to a master clock.

In our implementation we have used this algorithm with a small addition to
estimate an upper bound on clock drift against neighboring nodes.

trxz- propagation delay = 0
Atpsg
Ry 3

y

clock offset = (trx,3 - Atmsg) - trx.2

Fig.9. A timesynch network with one master, illustrating clock offset calculation
between two nodes with different authority

3.4 TDMA Optimization

When density increases, the chances increase that multiple nodes select the same
frequency during the same unicast slot. For example, assuming a channel is
picked randomly out of 8 orthogonal channels, two nodes will have a 1/8 chance
of picking the same channel. A node with 5 two-hop neighbors only has a 48%
chance of picking a unique channel and if a node has 10 two-hop neighbors,
there will always be at least 3 nodes on the same channel with each node having
a 26% chance of a unique channel. If nodes would wake up at the same time
in a slot, this would reduce the amount of parallel traffic that can be achieved

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 91

- - slot————»
EEEEEEREERIIEEEE ?
16 subslots

Fig.10. TDMA timing optimalization

on the network, which was exactly one of the benefits we were looking after.
To overcome this problem, we will design the timing of our slot as depicted in
Fig. Instead of waking up in the middle of a slot, we will split slots in a
number of “subslots” which consist of a small wake-up window for a node and a
small guard period to the next subslot. The subslot in which a node will turn on
its radio is determined by its ID and the current slot number. For example, in our
implementation, we have chosen 16 subslots, giving each subslot a wake-up of
5ms and a guard of 26 ms. Looking back at the previously mentioned scenarios,
two nodes now only have a 1/128 chance of picking the same channel-timeslot
combination. Nodes with 5 and 10 two-hop neighbors have a 96% and 92% chance
respectively of picking a unique channel-subslot combination for any given slot.
With this design, MuChMAC will behave like a multi-channel TDMA protocol
under high traffic loads, while behaving more like a multi-channel X-MAC under
low traffic loads.

In some TDMA protocols such as MC-LMAC [8] or Y-MAC [I4], it is specified
that a node can take multiple timeslots in one frame. This way nodes can trade
off power against bandwidth and latency. We will add this feature to our TDMA
optimization: depending on the “power level” of a node, that node will pick one
or more subslots in each slot. The slots are picked in such a way that all slots for
a power level p are also picked for p + 1, as depicted in Fig. [l A node will still
be able to communicate with a neighbor even if it’s value for the power level of
that neighbor is too low. If a node does not know the power level of a neighbor,
it can simply pick p = 1. In our implementation, we add the power level of a
node to packet headers and we store all received power levels in a neighbor table.
After packet loss, we decrement the stored value of power level for a node, with a
minimum of 1. This way, the overhead of communicating power level is small (16
power levels = 4 bits in packet header) and no additional coordination packets
have to be sent.

power =1 —f—+——+—+—++

~

power =2

R | IR Pl
BEEEREIEE Pl

Fig. 11. Subslot selection for different power levels

J--

92 J. Borms, K. Steenhaut, and B. Lemmens

Table 1. MAC evaluation parameters

MuChMAC
slot 500 ms
wake-up 5 ms
subslots 16
channels 8
unicast : broadcast 2:1
X-MAC
slot 500 ms
wake-up 5 ms

4 Experiments

We will perform our experiments on a simple testbed consisting out of Sentilla
JCreate motes. The network topologies are shown in Fig. We consider a 5-
node and 7-node setup, with nodes arranged in two parallel lines to the sink.
The nodes are arranged in such a way that transmissions from any node can
interfere with transmissions from another node. We use a simple routing layer
which forwards all received or generated messages to a predefined parent node.
When a message could not be sent — if the receiving node was sending, or if
there was contention with another node — the message is retransmitted with a
random back-off, with a maximum of 4 retransmissions per message. To improve
throughput under higher loads, we added a packet queue of 4 messages to the
routing layer. A packet is considered lost when all retransmissions have failed or
when it is dropped because of a full packet queue.

We will compare our MAC layer with X-MAC, the standard asynchronous
Contiki MAC layer. The parameters for both layers are set up as shown in
Table [l We have chosen to use only 8 out of the 16 available channels since
several authors have demonstrated that channels in the 802.15.4 band may
experience interference from adjacent channels [RI[I0]. X-MAC uses its default

sink (1) sink (1)
0 5 @ (3
@ ©
@ ©
® @

Fig. 12. Testbed setups

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks 93

channel 26. The network is set up in an office environment. We detected some
occasional interference on 802.11 bands, but we did not purposely cause any
external interference during our experiments.

First, we will test the throughput of the network when each node generates
messages for the sink at a constant rate. The inter-message period is slightly
randomized to reduce any scheduling effects. Secondly, we will have a look
at the network throughput when messages are generated in event bursts, i.e.
several nodes in the network generate messages at about the same time, but
with long inter-message periods. For each experiment we will also have a look at
the activity of a node, defined as the % of time the radio is on (for transmitting,
receiving or idle listening).

ttx + trx + tlisten

t 3)

activity =

This should give us a good measure for the energy use of the nodes.

4.1 Constant Network Load

To test throughput, we will measure the reliability of the the network, as defined
by @), under increasing network loads.

Z messages generated
(4)

reliability = messages received by sink

The results of these experiments are represented in Fig. From our experiments
we observed that quite often a packet would wait in a queue while another is
waiting at the MAC layer to be sent to the same receiver. From this observation,
we implemented a “packet train” optimization: when several packets have to be
sent to the same receiver, MuChMAC will send the second packet immediately

100%

95% | 40%
| —o—MuChMAC (ave)
90:”’ 35% 1 —e= MuChMAC (high)
. 85% 30% X-MAC (avg)
E30% .)
2 s0% s X-MAC (high)
g 5% =
S 70% \ “m 5 %
D 0% | -m-xXMACG) N 5
65% | —=—MuChMAC (5) % < 1%
60% | "~ x-M;:c (7) % 10% ,‘
| MuChMAC (7) 5% | ==
35% 7 e MuChMAC (7+pt) o .= s-23--2% g
50% T 1 0% T T]
005 015 025 035 005 0.10 0.15 020
messages per second per node messages per second per node
(a) Reliability vs Message Rate (b) Activity vs Message Rate
(5 and 7-node networks) (7-node network)

Fig. 13. Experimental results

94 J. Borms, K. Steenhaut, and B. Lemmens

after the first has been ACK’ed, repeating until no more packets can be sent to
that receiver. The results from this optimization are marked ‘4+pt’ on Fig.
For the 5-node network, we can observe MuChMAC offers a only a small increase
in reliability. The gain here is limited because there are not so many parallel
transmissions and some of the multi-channel bandwidth gain is lost because
only 2 out of 3 slots are reserved for unicast.

In the case of the 7-node network, the difference is more significant. Under
moderate traffic loads, X-MAC is losing packets on all links, while MuChMAC
only loses packets on the links to the sink. As expected, the packet train
optimization significantly improves reliability under higher traffic loads, keeping
> 90% reliability for 0.2 packets per second per node (= 1.2 packets per second
overall).

Figure shows average activity and activity of the most active node
for the interesting range of traffic loads in the 7-node network. The results for
activity were similar in both versions of MuChMAC with or without packet
trains. We observe that activity is much lower in the case of MuChMAC, around
1—5%, whereas X-MAC activity reaches 10 — 30% under moderate traffic loads.
This is of course because MuChMAC is synchronized when packets are sent or
received, so the number of preamble packets can be greatly reduced when there
is a lot of traffic. For very low constant traffic loads X-MAC and MuChMAC
show similar behaviour without significant differences.

These results demonstrate the applicability of MuChMAC over a wide range
of traffic loads and show that it will maintain low power operation even under
moderate stress. We can conclude that MuChMAC fulfills the requirements we
described in paragraph Bl

4.2 Traffic Bursts

In the previous paragraph, we have shown that MuChMAC offers comparable
performance to X-MAC when traffic loads are small. This was tested however
with nodes randomly producing packets. In the following experiments, we tested
the performance of both MAC layers when all nodes (except the sink) in the
network generate traffic in bursts: all nodes generate one message, spread over
at most 0.5s, with an inter-message period of two minutes (total load ~ 0.008
message per second per node).

The results of these experiments are shown in Table[2l We also present average
(£ standard deviation) latency from source to sink for all packets. Since we have
given each node fairly large packet queues, nodes have sufficient buffer space to
hold incoming messages while transmitting. With this setup reliability is high
and comparable for both MAC layers and each protocol is able to consistently
deliver at least 5 out of 6 messages to the sink for each traffic burst. However,
X-MAC will need more transmissions per message on average and this has an
impact on activity and latency. X-MAC activity is still low since bursts are spread
out in time, but it is significantly higher than MuChMAC. Average latency to
reach the sink is also considerably higher in the case of X-MAC. For MuChMAC,
the packet train optimization offers a significant advantage without an additional

Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks

Table 2. Traffic burst experimental results for the 7-node network

95

MuChMAC MuChMAC+pt X-MAC
msg/node 0.008/s 0.008/s 0.008/s
reliability 99% 99% 99%
activity 1.2% 1.2% 2.5%
latency 33+24s 23+1.8s 43+2.7s

energy cost. These results demonstrate that MuChMAC is better fit to handle
the traffic bursts generated by the network.

5 Conclusion and Future Work

These experiments on a real testbed demonstrate the applicability and usefulness
of MuChMAC and show that it can efficiently exploit multi-frequency operation
without coordination or synchronization overhead. We have shown that the
multi-channel operation provided by MuChMAC can be useful even for small
networks with low overall traffic load. The simple scenarios we evaluated give
a reasonable first-order impression of its performance. In future work we will
use testbeds containing more nodes. Furthermore, in paragraph 3.4l we have
proposed a mechanism for nodes to adjust their performance using a “power
level” parameter. We will study how a node can choose its power level depending
on its energy supply, required bandwidth, etc. in an intelligent way. Finally,
we will carry out experiments to test the performance of MuChMAC when
controlled external interference is present.

Acknowledgements. This work was done in the scope of FWO project
G.0291.09N and in preparation for tests with the Hercules project equipment.

References

1. Van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for
wireless sensor networks. In: SenSys 2003: Proceedings of the 1st international
conference on Embedded networked sensor systems, pp. 171-180. ACM, New York
(2003)

2. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for
wireless sensor networks. In: 1st International Workshop on Networked Sensing
Systems (INSS), Tokio, Japan, Society of Instrument and Control Engineers
(SICE), pp. 205-208 (2004)

3. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys 2004: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pp. 95-107. ACM, New York (2004)

96

10.

11.

12.

13.

14.

15.

J. Borms, K. Steenhaut, and B. Lemmens

Buettner, M., Yee, G., Anderson, E., Han, R.: X-MAC: A short preamble mac
protocol for duty-cycled wireless sensor networks. Technical report, Department of
Computer Science University of Colorado at Boulder (2006)

Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA (2004)

Mo, J., So, H.-S.W., Walrand, J.: Comparison of multi-channel mac protocols. In:
MSWiM 2005: Proceedings of the 8th ACM international symposium on Modeling,
analysis and simulation of wireless and mobile systems, pp. 209-218. ACM Press,
New York (2005)

Maheshwari, R., Gupta, H., Das, S.R.: Multichannel mac protocols for wireless
networks. In: SECON 2006: 3rd Annual IEEE Communications Society on Sensor
and Ad Hoc Communications and Networks, vol. 2, pp. 393-401 (2006)

Incel, O.D.: Multi-channel wireless sensor networks: protocols, design and
evaluation. PhD thesis, University of Twente, Enschede (2009)

Salajegheh, M., Soroush, H., Kalis, A.: Hymac: Hybrid tdma/fdma medium
access control protocol for wireless sensor networks. In: IEEE 18th International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.
1-5 (2007)

Wu, Y., Stankovic, J., He, T., Lin, S.: Realistic and efficient multi-channel
communications in wireless sensor networks. In: INFOCOM 2008. The 27th
Conference on Computer Communications, pp. 1193-1201. IEEE, Los Alamitos
(2008)

sheung Wilson So, H., Walr, J.: McMAC: A multi-channel mac proposal for ad-
hoc wireless networks. Technical report, In Proc. of IEEE WCNC 2007, Hongkong
(2005)

Osterlind, F., Voigt, T.. CoReDac: Collision-free command-response data
collection. In: Proceedings of 13th IEEE International Conference on Emerging
Technologies and Factory Automation, Hamburg, Germany (2008)

Voigt, T., Osterlind, F., Dunkels, A.: Improving sensor network robustness with
multi-channel convergecast. In: Proceedings of 2nd ERCIM Workshop on e-
Mobility, Tampere, Finland (2008)

Kim, Y., Shin, H., Cha, H.: Y-MAC: An energy-efficient multi-channel mac
protocol for dense wireless sensor networks. In: IPSN 2008: Proceedings of the 7th
international conference on Information processing in sensor networks, Washington,
DC, USA, pp. 53-63. IEEE Computer Society, Los Alamitos (2008)

Rowe, A., Mangharam, R., Rajkumar, R.: RT-Link: A global time-synchronized
link protocol for sensor networks. Ad Hoc Networks 6, 1201-1220 (2008); Energy
Efficient Design in Wireless Ad Hoc and Sensor Networks

Exploiting Overlapping Channels for Minimum
Power Configuration in Real-Time Sensor
Networks

Xiaodong Wang!, Xiaorui Wang!, Guoliang Xing?, and Yanjun Yao!

! Department of EECS, University of Tennessee, Knoxville, TN 37996
{xwang33, xwang,yyao9}@utk.edu
2 Department of CSE, Michigan State University, MI 48824
glxing@cse.msu.edu

Abstract. Multi-channel communications can effectively reduce chan-
nel competition and interferences in a wireless sensor network, and thus
achieve increased throughput and improved end-to-end delay guarantees
with reduced power consumption. However, existing work relies only on a
small number of orthogonal channels, resulting in degraded performance
when a large number of data flows need to be transmitted on different
channels. In this paper, we conduct empirical studies to investigate the
interferences among overlapping channels. Our results show that over-
lapping channels can also be utilized for improved real-time performance
if the node transmission power is carefully configured. In order to min-
imize the overall power consumption of a network with multiple data
flows under end-to-end delay constraints, we formulate a constrained op-
timization problem to configure the transmission power level for every
node and assign overlapping channels to different data flows. Since the
optimization problem has an exponential computational complexity, we
then present a heuristic algorithm designed based on Simulated Anneal-
ing to find a suboptimal solution. Our empirical results on a 25-mote
testbed demonstrate that our algorithm achieves better real-time per-
formance and less power consumption than two baselines including a
scheme using only orthogonal channels.

1 Introduction

Many wireless sensor network (WSN) applications must address multiple strin-
gent design constraints such as energy consumption and end-to-end communi-
cation delay. Energy has long been treated as the primary optimization goal for
battery-powered wireless sensor nodes. With lower energy consumption, a net-
work can achieve a longer lifetime. In addition to periodic sleeping, one of the
effective ways to reduce node energy consumption is to lower its radio transmis-
sion power. This can be supported by the existing sensor mote hardware. For
example, the CC2420 radio chip [I] used in many mote hardware platforms has
31 different transmission power levels. However, reducing transmission power
may lead to unreliable wireless links and cause increased number of retransmis-
sions. As a result, it may lead to poor guarantees of other important design

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 97 2010.
© Springer-Verlag Berlin Heidelberg 2010

98 X. Wang et al.

constraints such as end-to-end delay, as many WSN applications require infor-
mation to be transmitted from sources to sinks within an application-specified
deadline. Therefore, transmission power must be carefully configured in order to
meet the desired constraints of a WSN. High transmission power may improve
the quality of a single wireless link but may lead to increased power consumption,
stronger interferences to other links, and reduced network capacity [2].

The emergence of multi-channel mote hardware has made it possible to achieve
improved throughput and delay guarantees with reduced transmission power, by
using different channels on different nodes, leading to less channel competition
and interference in the network. For example,the CC2420 radio chip provides
16 wireless channels with radio frequency from 2,400 to 2,483MHz. As a result,
multi-channel communication protocols have been proposed for WSNs to im-
prove the performance of traditional single-channel protocols commonly used in
WSNs. Based on the channel allocation scheme, existing multi-channel protocols
can be categorized to two classes: node-based and flow-based. In node-based pro-
tocols, channels are assigned to different nodes locally to minimize interferences.
For example, several node-based multi-channel MAC protocols [3][4] have been
proposed to improve network throughput for WSNs. However, a major problem
for node-based assignment is that nodes usually need to switch channels in or-
der to receive data from and transmit to different neighbors, which may result
in a high overhead, in terms of latency and power consumption. In flow-based
protocols, the nodes in the same data flow are assigned the same channel so
that frequent channel switching is avoided. For example, a flow-based multi-
channel real-time communication protocol, known as MCRT [5], has recently
been presented to allow different data flows to transmit on different channels
for improved end-to-end real-time guarantees with reduced power consumption.
MCRT has been demonstrated to outperform node-based schemes by having a
smaller deadline miss ratio and lower power consumption.

While multi-channel communications have shown great promise, recent studies
(e.g., [6]) conducted experiments on Micaz hardware to investigate multi-channel
realities in wireless sensor networks. An important reality reported is that the
number of orthogonal channels is actually small for the existing mote hardware.
Accordingly, it has been suggested that a practical multi-channel communication
protocol should only rely on a small number of non-adjacent orthogonal chan-
nels, because adjacent overlapping channels may have undesired inter-channel
interferences. For example, at most, only 8 channels out of the 16 channels pro-
vided by the CC2420 radio chip can be used as orthogonal channels [6], resulting
in the waste of half of the available wireless channel resources. While 8 channels
may be enough for some WSN applications, using only orthogonal channels has
limited the further improvement of network throughput, real-time performance,
and power optimization in the commonly used many-to-one traffic pattern, where
the number of data flows can be large in a network.

In this paper, we propose to utilize adjacent overlapping channels to configure
power and channels for a WSN to achieve improved real-time performance and
reduced power consumption. The power and channel configuration problem is

Exploiting Overlapping Channels for Minimum Power Configuration 99

defined as follows: Given a WSN with multiple data flows from different sources
to the base station, our goal is to assign channels (including overlapping chan-
nels) to the data flows and determine a transmission power level for every node
in the network, such that the overall (transmission) power consumption of the
network can be minimized while the average end-to-end delay of each data flow
can be guaranteed to stay within a deadline. In order to motivate our work, we
first conduct hardware experiments to investigate the interferences among over-
lapping channels. We then use empirical studies for overlapping channel mod-
eling. Based on our models, we formulate the power and channel configuration
problem as a constrained optimization problem, with power minimization as the
objective and the end-to-end delay as the constraints. Since it is cost-prohibitive
to find the optimal solution, we propose a heuristic algorithm based on Simu-
lated Annealing to find a suboptimal solution. Finally, we conduct experiments
on a 25-mote testbed to show that our configuration outperforms two baseline
solutions.

To our best knowledge, this paper presents the first study of utilizing overlap-
ping channels to achieve minimum transmission power configuration and guar-
anteed real-time performance in wireless sensor networks. Specifically, the con-
tributions of this paper are four-fold.

— We conduct empirical studies to investigate the interferences among over-
lapping channels. Our results show that overlapping channels can also be
utilized for improved real-time performance if the node transmission power
is carefully configured.

— We establish an empirical model between received signal strength (RSS) and
transmission power level for overlapping channels. Based on the RSS model,
we model the relationship between packet reception ratio (PRR) and RSS
to account for the interferences from overlapping channels.

— We formulate the power and channel configuration problem as a constrained
optimization problem. Since the problem has an exponential computational
complexity, we then present a heuristic algorithm designed based on Simu-
lated Annealing (SA) to find a suboptimal solution, which can be executed
periodically or in an on-demand fashion.

— We implement our algorithm on the Tmote hardware and conduct experi-
ments on a 25-mote testbed. Our results demonstrate that our algorithm can
reduce both end-to-end communication delay and overall transmission power
consumption, compared with two baselines. The first baseline conducts the
same optimization using only orthogonal channels. The second baseline uses
SA to find the desired power level but randomly assigns overlapping channels.

The rest of paper is organized as follows. Section] highlights the distinction
of our work by discussing the related work. Section [B] presents empirical studies
to motivate this work and build models for overlapping channels. Section @l intro-
duces the formulation of our optimization problem with real-time performance
analysis. Section [presents the algorithm we used to solve the optimization
problem. In Section[G we present the empirical results of our algorithm. Section
[concludes the paper.

100 X. Wang et al.
2 Related Work

Recent studies have proposed to use partially overlapping channels (POC) in
wireless mesh networks. Liu et al. [7] propose a channel allocation scheme for link
scheduling, which takes advantages of POC to obtain better throughput for mesh
networks. Feng et al. [8] establish an interference model for POC-based wireless
networks, and use numeric methods to improve overall network capacity. A linear
model for channel assignment, which uses a channel overlapping matrix and
mutual interference matrices to model POC channels, has been proposed in [9].
However, no detailed study has been performed to utilize overlapping channels in
wireless sensor networks for improved real-time performance. A coarse-grained
channel assignment policy for WSNs is proposed in [6], which allocates non-
overlapping channels to disjoint trees and exploits parallel transmissions among
trees. In this paper, we propose to utilize overlapping channels to configure
power and channels for a WSN to achieve better real-time performance and
energy efficiency.

Several projects have studied received signal strength (RSS) and its utilization
in WSNs. Sha et al. [I0] establish a model between the RSS and transmission
power in a single channel. Demirbas et al. [I1] present a robust and lightweight
solution for sybil attack problem based on the received signal strength indicator
(RSSI) readings of messages in WSNs. However, none of these projects study
the relationship between RSS and transmission power in multi-channel WSNs.
In this paper, we establish the RSS model for overlapping channels and formulate
a transmission power minimization problem based on the models.

Many real-time communication protocols have been proposed for wireless sen-
sor and ad hoc networks. A comprehensive review of real-time communication
in WSNs is presented in [12]. At the MAC layer, Implicit EDF [I3] is a collision-
free real-time scheduling scheme by exploiting the periodicity of WSN traffic.
At higher layers, SPEED [T4] achieves desired end-to-end communication delays
by enforcing a uniform communication speed throughout the network. However,
most of the existing real-time protocols do not take advantage of the capability of
multi-channel communications available in today’s mote hardware. In our work,
we address the problem of utilizing overlapping channels for improved real-time
performance.

Different from all the aforementioned work that handles real-time guaran-
tees, partially overlapping channels, and energy efficiency in isolation, our de-
sign utilizes overlapping channels available on existing sensor mote hardware
to achieve more energy-efficient transmission for multi-channel WSNs under
real-time constraints.

3 Empirical Modeling of Overlapping Channels

Previous work [6] has reported that adjacent overlapping channels have undesired
inter-channel interferences. In this section, we first investigate the impacts of
overlapping channels on packet reception ratio (PRR) of link to motivate our

Exploiting Overlapping Channels for Minimum Power Configuration 101

work. We then extend existing work to establish an empirical model between
RSS and transmission power level for overlapping channels. Based on the RSS
model, we derive a PRR model to account for the interferences from overlapping
channels.

3.1 Case Study for Motivation

In this section, a case study is performed with two pairs of nodes, which com-
pose two one-hop communication links. In the experiment, one pair of motes
performs as the transmission pair by using channel 16. The other pair of motes,
acting as the jammer pair, uses an adjacent channel, 15, to communicate. The
transmissions of these two pairs are synchronized. The transmission power of
the transmission pair is fixed at power level 15, while the transmission power
of the jammer pair increases one level at a time from level 3 to level 31. One
hundred packets are transmitted on both pairs at each power level. We calcu-
late the PRR of each pair in this experiment under different transmission power
levels of the jammer pair. The results are shown in Figure [[l From the results
we can see that both the two pairs can achieve a good PRR when the jammer
pair is using power levels 16 to 18 for transmission. When the jammer is using
a lower power level, its communication does not incur much interference to the
transmission pair. The transmission pair can reach a high PRR. When the jam-
mer pair is using a higher power level to transmit, it can improve the packet
reception ratio of its own communication, but incurs too much interference to
the transmission pair, and so hurts the communication quality of the transmis-
sion pair. This experiment shows that given two communication links working
on overlapping channels, we can achieve good quality for both transmissions if
we carefully choose the transmission power.

3.2 Overlapping Channel RSS Model

As discussed in subsection Bl with careful selection of transmission power,
two links working on adjacent channels can both achieve a high PRR. An
approximate linear correlation between RSS and transmission power over a

'g — e Transmission Pair —®— Jammer Pair —=&—channel 15 —®&— channel 16 —&— channel 17

& 100% 9 Y 15 | % channel 14 e channel 18

S 80% | E s | pmaremantranteg

£~ -

g 60% |- !lHIi s L

9 -55 Cmw

Q 9 1

€ 40% f ,f 9

2 20% | "ﬂ 5 £ Imﬁ ::

g 0% bmssi . -95 1 : J
3 7 1 15 19 23 27 31 3 7 11 15 19 23 27 31

Jammer Power Level Power Level

Fig. 1. Packet reception ratio vs. jammer Fig.2. RSS vs. power level on different
power level. (Jammer uses channel 15 and channels. (Sender uses channel 16.)
sender uses channel 16.)

102 X. Wang et al.

single-channel single-hop link is reported in [I0]. In this subsection, we extend
the method proposed in [I5] to study the relationship between RSS and trans-
mission power in the scenario where a sender and a receiver are working on
adjacent channels. We conduct the signal strength detection experiment on a
single link to explore the overlapping channel property.

Our experiment uses two Tmote Invent motes. One mote acts as the sender
and the other as the RSS sensor. In the experiment, the sender continuously
broadcasts packets at a rate of 100 packets per second. The RSS sensor contin-
uously collects the received signal strength by periodically reading the value of
the Received Signal Strength Indicator (RSSI) on the mote at a rate of 100 times
per second. After sending 100 packets at one power level, the sender lowers its
transmission power by 1 level, starting from level 31 to level 3. We first filter out
the noise value by using the noise floor threshold we collected before the exper-
iment and then calculate the average RSS value. We test various combinations
of sending and receiving channels in this experiment.

Figure [2] shows the result when the sender is using channel 16. We can see
that when the sender is using channel 16 for broadcasting, the RSS values sensed
on the two adjacent channels, channel 15 and channel 17 show highly linear
correlation with sender’s transmission power. However, no clear RSS reading is
sensed on channel 14 or channel 18. In addition, the results show an approximate
linear increasing trend when the sender and the RSS sensor are using the same
channel, channel 16. Previous work [I0] presents the empirical single-channel
RSS-Power model as:

Rss(vvuapu) = Au,v X Py + Bu,IM (]-)

where v is the receiving node, u is the sending node, and p,, is the transmission
power at u. A and B are two parameters of the model, which can be calcu-
lated by applying linear curve fitting to the sampled data. Note that distance
is not considered in Equation [l because the RSS value is dynamically measured
between each given pair of sender and sensor.

Based on the observation of similar linear pattern when the sender and receiver
are using adjacent channels, we re-establish the empirical RSS-Power model
under multi-channel conditions as:

Rss(vv Uy Puy Cos Cu) = Au,’u,cv,cu X Py + Bu,v,cu,cuu (2)

where ¢, is the transmitting channel for sender v and ¢, is the listening channel
for receiver v. A and B are the two model parameters, which are usually decided
by the the application environment, such as network condition and communica-
tion distance. A similar model is reported in [I5]. Our model uses a simplified
threshold filter to filter out the noise for faster runtime processing, while a CPM
noise filter is used in [15].

Using linear curve fitting to establish our model gives us a fast way to ac-
complish the model establishment, depending on the number of sampling points
we need. One second is required for the signal strength readings for each power
level in the model, as explained previously. If we use 5 power levels to build the

Exploiting Overlapping Channels for Minimum Power Configuration 103

model, the total time for the model establishment is only 5 seconds. Therefore,
our model can be promptly rebuilt at runtime to adapt to environmental or tem-
poral variations of network conditions. Also, the overlapping channel RSS model
of every node in a less dense network (e.g.[16]) can be quickly established.

3.3 Packet Reception Ratio

Packet reception ratio (PRR) is the probability that a packet can be received suc-
cessfully. Higher transmission power can provide a higher Signal to Interference
and Noise Ratio (SINR) over the link, which leads to a higher PRR. However,
with higher transmission power, the communication at the current link could
significantly interfere with another link’s communication as shown in subsection
Bl In this section, we conduct an experiment to study the relationship between
PRR and SINR. With an understanding of this relationship, we can find the ap-
propriate transmission power range to reach a required SINR value for a desired
PRR value.

In the experiment, we use three Tmote Invent motes, one as the receiver
C and the other two as transmitting motes, A and B. All of the three motes
use the same channel. This experiment consists of three rounds. In the first
round, we only turn on motes A and C. We use A to transmit multiple packets
to receiver C' and calculate the average received signal strength of the packets,
denoted as RSS(A, C). In the second round, we turn A off and use B to transmit
multiple packets to the receiver. We then calculate the average received signal
strength of B, denoted as RSS(B,C). In the third round, all the three motes
are turned on. Both A and B transmit multiple packets to receiver C. The
transmissions are synchronized. We calculate the PRR for A’s transmission,
denoted as PRR(A,C).

Considering B’s transmission as the interference to A’s transmission, we can
calculate the SINR value for A’s transmission as follows:

RSS(B,C)

SINR(A,C)ap = RSS(A,C) — 10logip(10 10 4+ 1010) (3)

where N is the noise floor value, which is col-

lected before the experiment. Equation [is 100%
derived from the SINR equation from [I7]. By
doing the above three steps and applying the
equation, we get a PRR-SINR pair. We re-
peat the experiment with different distances
from B to receiver C' and different transmis-
sion power levels used by A and B to create
different SINR values at the receiver. Figure[3 0%
shows the PRR-SINR relationship in our ex- 420246 810
periment. When the SINR value is greater SINR (dB)
than 6dB, the PRR is almost 100%. There-

fore, in order to achieve a good packet re- Fig. 3. PRR vs. SINR
ception ratio in this sepcific experiment, e.g.,

80%

60%

40%

20%

Packet Reception Ratio

104 X. Wang et al.

90%, we need to choose a transmission power that can provide a strong enough
received signal strength leading to an SINR value of more than 6dB.

In order to apply this experimental approach to multi-channel networks, we
extend the PRR-SINR relationship by incorporating the channel information to
it. We use (SINR,, ¢,, PRR,), to denote the PRR-SINR-Channel relationship
between node v’s packet reception ratio and the corresponding SINR value in
channel ¢,. With this extension, we can obtain the required SINR value for a
good PRR on a desired channel.

4 Minimum Transmission Power Configuration

In this section, we first formulate the power and channel configuration problem.
We then analyze the node transmission delay in the network.

4.1 Problem Formulation

We assume the network has the common many-to-one traffic pattern [I8][T9],
which is composed of multiple sources, some relay nodes and one base station.
Each source generates a data flow to the base station. All the flows are assumed
to be disjoint, since disjoint paths are widely used in multi-path routing to
enhance the system’s fault-tolerance [5][20]. The data generated at the source
are assumed to follow a uniform random distribution [21I]. We also assume that
the base station is a super node with multiple radios such that it can work on
several different frequencies at the same time. The channel allocation in our
network is flow-based, which means all nodes in the same flow work on the same
channel. Our goal is to minimize the total transmission power consumption under
the constraint that the end-to-end delay of every flow in the given topology is
constrained.
We first introduce the following notation:

— G = (V,E), a directional graph denoting the network with V' nodes and E
edges (links).

— fi, the data flow with the id number 1.

— D, the delay constraint for each flow.

— Pu, transmitting power used by node wu.

— ¢y, the channel id used by node u, which is an integer number.

I(v), the interference node set of node v.

— (u,v), a communication link in the graph, in which « is the sending node
and v is the receiving node.

Given the notation above, we can formulate our minimization problem as:

1
. , 4
min Z Dy X PRR(u,) (4)
veV:(uw)EG

Subject to the constraints:

Exploiting Overlapping Channels for Minimum Power Configuration 105

cu =0y Y(u,v) €G (6)
1
< 11 <9<
Z PRR(u,v) — b Viilsjsm (7)

vef;

The inverse of PRR(u,v) in Equation Ml is the average transmission count
required for a packet to be successfully received by node v from node u. By
multiplying p, and ,, Rl(u’v) , we obtain the transmission power consumption for
one packet at node u. The objective of Equation[lis to minimize the total trans-
mission power consumption of all the nodes in the network. Equation B is the
channel constraint, which confines that each node can only pick a channel from
n available channels. Equation [6] confines that all nodes in the same data flow
must use the same channel. Equation[dis the end-to-end delay constraint, which
gives the limit of the end-to-end transmission count (including retransmissions
at each node) for a packet in each flow. End-to-end transmission count is a com-
monly used metric to represent end-to-end delay as a higher transmission count
leads to a longer end-to-end delay. Note that our minimization problem does not
depend on the node duty cycle scheduling, so our work can be integrated with
energy-efficient MAC protocols with periodic sleeping for further power savings
at the cost of longer communication delays.

4.2 Transmission Delay Analysis

One way to analyze the node transmission delay in a WSN is to use the worst-case
scenario, where we can assume that all the links in a neighborhood communi-
cate at the same time, such that the most significant interference and delay are
incurred. However, due to the lossy nature of wireless links, real-time communica-
tion protocols in WSNs are commonly designed to provide only soft probabilistic
real-time guarantees [22][5]. In addition, the traffic patterns at different sources
in many wireless sensor networks, such as surveillance applications [23], are usu-
ally independently random and unknown a priori. The chance for all the links in
a neighborhood to transmit at exactly the same time is very small. Therefore,
it is more meaningful to analyze the average case for WSNs. We modify our
problem formulation as:

1
J E u X . 8
e Pu PRR g (u, v) ®
veV:(uw)eG
Correspondingly, the end-to-end delay constraint in Equation [7] is modified as:

1

<D VWj:1<j< 9
; PRRayy(u,v) = Jeisg=m ©)
v

where PRRy,4(u,v) is the average packet reception ratio at node v when the
generated traffic at the sender u follows the random distribution.

106 X. Wang et al.

w w = » =

S S W 1 . 15

] t,+d t,-l t,+ [T

« T > « T > « T >
(a) (b) (c)

Fig. 4. Probability of packet collision when two nodes have independently random
traffic

Note that the probability for more than two nodes to transmit concurrently
is small under the random traffic assumption. We assume that at most two
nodes in the same interference range may transmit concurrently. We denote the
probability that node w’s transmission can interfere with node u’s transmission
as P(u,w) and the packet reception ratio at the receiver v from w’s transmission
under w’s interference as PRR(u,v,w). We can use Equation to estimate
the average transmission count for node u to successfully transmit a packet to v
when v and w follow the independent random traffic pattern.

1
PRRavg(u,v) -) P w))PRR (u, v,) +) Pluw * PRR(u,v,w)

(10)

In Equation [IQ, PRR(u,v,v) is the packet reception ratio at receiver v when
there is no interference to sender u’s transmission.

Note that P(u,w) in Equation [I0 is the probability that node v and node w
transmit packets concurrently. To derive P(u,w), we assume that each source
node has the same packet rate, 1 packet per T seconds, with a packet length
[. We denote the start time of the transmission at node u and w as ¢, and
tw, respectively. With the assumptions that the start time of every packet on
the source node follows the uniform distribution and each intermediate node
forwards packets immediately after receiving, we can calculate P(u,w) as follows:

Sy ettt Ldtudt, 0 <ty <I;
P(u,w) = flel ftw+ll Tl2 dtydt, ifl <t, <T —1; (11)

S Sl dtudt, T —1<t, <T.

Figure[d illustrates the three cases in Equation [Tl In the first case, when t,, <,
collision happens under the condition that t,, < t,, +[. In the second case, when
ty € (I,T —1], collision happens under the condition that t,, € (tw — I, t, +1). In
the third case, when t,, € (I'—1, T, collision happens only when t,, € (t, —1,T].
Note that the independently random traffic pattern assumption can be relaxed
in the average PRR estimation. When the traffic pattern is not random, we can
use empirical on-line testing to find the collision probability.

Exploiting Overlapping Channels for Minimum Power Configuration 107

By integrating the three cases in Equation[TTl we get the collision probability
between two nodes in one period T as:

(2T -1

Plu,w) = (T2) (12)
Based on the models we established in Section Bl given a power level for each
node in the network and a channel assignment to the data flows, we can compute
the PRR for each receiving node under the interference from another node. By
using Equation [I0l we can derive the average transmission count for every node
and further calculate the end-to-end delay of every flow, as well as the total
system power consumption of the network for the given combination of power
levels and channels. Our optimization objective is to find the combination with
the least power consumption while the delay of every data flow is shorter than

the given constraint.

5 Algorithm Design

The problem formulated in Section @l is a complex combinatorial optimization
problem with a huge search space. Suppose there are j nodes forming m flows in
the network. The total available number of channels on the equipment is n. Each
mote can use k different power levels to transmit. The combinatorial search space
has a size of n™ x k7. Therefore, we propose to use Simulated Annealing (SA)
[24], a well-known meta-heuristic, to solve this problem. SA is commonly used
to find suboptimal solutions when the search space is huge and discrete, which
makes SA well suited for our problem because all possible configuration states
are discrete, as the selection of channels and power levels are discrete numbers.
Note that although the original SA algorithm is centralized, SA can be extended
to run in a distributed way with slightly worse performance [25]. Therefore, our
solution can also be extended to run on the sensor nodes in the network in a
distributed way. The detailed extension is beyond the scope of this paper. In
addition, please note that many real-world WSN applications adopt many-to-
one communication [26][27] for data collection, in which the sink is usually a
sensor mote connected to the base station, such as a computer. The base station
is commonly used to make centralized decisions for these applications.

Simulated Annealing is a probabilistic method for optimization problems. It
transposes the process of the annealing of metal, in which the temperature of the
metal is gradually decreased, to the solution search of the optimization problem.
In each step, the algorithm considers some neighbor states of the current state,
and chooses a valid neighbor state for the next state according to a probabilistic
function established on the optimization goal. Two major parts of SA are the
neighbor state generation and the transition probability. The neighbor state
generation scheme requires that every two adjacent states have a short distance.
The transition probability is to decide whether the system should go to the next
state, i.e., the neighbor state generated in the neighbor generation part.

108 X. Wang et al.

The objective of our problem is to minimize the total transmission power
consumption for the network under an end-to-end delay constraint. The con-
figuration space consists of all the channel assignment and power configuration
combinations. Based on a given channel and power configuration, the system
proceeds to the next configuration by performing an elementary modification.
The elementary modification is defined as a channel change on one of the flows
or a power level change on one of the nodes. The pseudo code of our algorithm
is given in Algorithm 1.

The algorithm starts with an initial “temperature” T;,; and an initial config-
uration Cj,; with an initial power consumption P;,;. It then looks for a neighbor
configuration as the next configuration state, Cienmp. After a neighbor is found,
the algorithm first checks if the delay delay; of every data flow under the neighbor
configuration meets the delay constraint D. If the constraint is met, the algo-
rithm calculates the power consumption difference, AP, at the neighbor state
and the current state. However, if the constraint is violated, the algorithm adds
a Penalty to AP. The Penalty is a parameter that needs to be tuned for the
experiment in order to get a good solution. It helps the algorithm to avoid being
trapped at a local minimum. The algorithm then checks if the power consump-
tion is reduced. If the power consumption is reduced, the neighbor configuration
is accepted. However, if the neighbor configuration causes an increased AP for
power consum})tion, the algorithm calculates a probability by the exponential
expression e~ T and accepts the neighbor configuration based on this probabil-
ity. After each iteration, the “temperature” is decreased by a factor of p. The
algorithm ends when the “temperature” is smaller than the threshold T¢;,q.

Algorithm 1. Simulated Annealing for Power Consumption Minimization
Denote delay constraint as D, the stop flag as Tend, and the starting flag as Tin.
The initial channel configuration is Cin;. Pins is the initial power consumption. p is
the factor of temperature decreasing.

T < Tz‘m, C &< Cz‘m,n = O, P« Pim
while T' > T.,4 do
Find neighbor configuration Ciemp. Calculate power consumption Piemp and
delay; for each data flow ¢
if Vdelay, < D then
AP <= Piemp — P;
else
AP <= Piemp + Penalty — P;
end if
if AP <0 then
C <= Ctemp§ P < Ptemp
else
if e~ 7 > random() then
C <= Ctemp; P <= Ptemp
end if
end if
n¢n+1, T<:pnTznz
end while

Exploiting Overlapping Channels for Minimum Power Configuration 109

6 Empirical Results

In this section, we present the evaluation results of our configuration algorithm
on a hardware testbed.

6.1 Testbed Setup and Baselines

Our testbed consists of 25 Tmote motes. Two different topologies used for the
experiments are shown in Figure Bl Node 13, as the base station, consists of
5 real motes in the experiment, which emulates a super node with 5 radios.
Independent uniform random traffic generator are implemented on each source
node.

In the RSS measurement phase, ev- @\@_, @_}
A07P

ery mote in the network takes turn

to act as the sender and broad- ®

casts packets using different power lev-

els on different channels. While the @:;@__

sender is sending packets at a certain

power level on a fixed channel ¢, all

other nodes, acting as listeners, iter- @‘_@ @<_.)

ate through channel ¢ —1, c and ¢+ 1,
and record the received signal strength
on each channel. The reason we choose
three channels to listen is because only
the same channel and adjacent channels show the approximate linear PRR-Power
pattern, as discussed in Section[3l In the experiments, we choose 5 discrete power
levels: 3, 10, 17, 24 and 31, as the transmission power for the model establish-
ment. This helps us to reduce the solution search space and speed up the ex-
periments. After collecting all the RSS measurements, we import the data to
the Simulated Annealing optimization program we implemented in MATLAB to
compute the channel and power configuration.

We choose the following two baselines for comparison. The first baseline, called
Orthogonal, uses only orthogonal channels for channel assignment and computes
the power configuration by Simulated Annealing. The second baseline, called
Random, also uses Simulated Annealing to find the desired power level for each
node, but randomly assigns overlapping channels to flows. We use two metrics to
evaluate the performance of these three protocols. The first metric is average end-
to-end transmission count, which evaluates the end-to-end delay performance.
The second metric is transmission power consumption per packet, which is the
ratio between total transmission power and the number of packets transmitted.
This metric evaluates the energy efficiency performance.

| — ——> Topology | — Topology Il |

Fig. 5. Topologies used in experiments

6.2 Different Delay Constraints

We first evaluate the three schemes under different transmission count con-
straints. In this experiment, we use Topology I in Figure [with nine motes,

110 X. Wang et al.

}» —&— Overlapping —#— Orthogonal

©
o

6 ——a&—— Orthogonal Random

— — -=— — Delay Constraint ——— Overlapping
Random

[=2]
o

Per Packet (mW)
=y
o

Transmission Power

Average Transmission
Count Per Packet

20

2.6 2.7 2.8 2.9 3 3.1 2.6 2.7 2.8 2.9 3 3.1
Packet Transmission Count Constraint Packet Transmission Count Constraint

Fig.6. Delay under different end-to-end Fig. 7. Power consumption under different
transmission delay constraints end-to-end transmission delay constraints

forming 4 flows. Three channels, 16, 17 and 18, are used. Channels 16 and 18
are orthogonal channels while channel 17 overlaps with channels 16 and 18.
Figure [0 shows the average end-to-end delay under different constraints. The
overlapping scheme achieves a smaller average end-to-end transmission count
than the two baseline schemes. In addition, the delay of our overlapping scheme
is closest to the constraints. The reason for the superior performance of our
overlapping scheme is that it takes advantage of overlapping channels with care-
fully selected power and channel configuration by the Simulated Annealing al-
gorithm to reach suboptimal solutions. With more channel resources to use, the
overlapping scheme achieves a better configuration solution than the other two
protocols. When the constraint becomes looser, all the schemes yield higher end-
to-end transmission counts. The results demonstrate that the end-to-end delay
in the network is adaptive to the change of the delay constraint.

Figure [shows the transmission power consumption per packet for different
constraints. Among all three schemes, the overlapping scheme consumes the least
transmission power. This is because the overlapping scheme utilizes all the avail-
able channel resources and carefully chooses the most appropriate transmission
power to reduce the interference among nodes such that the power consumed
by retransmissions is significantly reduced. When the constraint is greater than
2.8, the performance of Orthogonal is close to that of our scheme. However,
when the constraint is tight, Orthogonal performs significantly worse than the
overlapping scheme. All the three schemes show decreasing trends for power con-
sumption when the end-to-end transmission constraint becomes looser. This is
because when the constraint is looser, we have a larger search space for the SA
algorithm, likely resulting in a better power configuration.

6.3 Different Flow Numbers

Figures B and [@ show the performance of the network with different numbers
of data flows. It is important to evaluate the performance of the network under
different numbers of flows because multiple flows may need to share channels
when the number of flows increases. In these experiments, we use Topology II

Exploiting Overlapping Channels for Minimum Power Configuration 111

—&—Overlapping —#®— Orthogonal

12 120
B

——&—— Orthogonal Random 4

— — -=— — Delay Constraint ——&—— Overlapping

Random ~

=y

o
=S
(=3
o

Per Packet (mW)
[} 0
o o

Transmission Power

Average Transmission
Count Per Packet
o

IS
S

7 7
Number of Flows Number of Flows

Fig. 8. Delay under different numbers of Fig.9. Power consumption under differ-
data flows ent numbers of data flows

in Figure 5] where 25 motes are organized as a 5 by 5 grid. The base station is
placed in the center, similar to the previous two experiments. Each data flow has
three hops and we gradually increase the number of data flows in the network
from 5 to 8. We use 5 overlapping channels, from channel 16 to channel 20, where
3 channels are orthogonal.

Figure[§ shows that the average transmission count per packet increases when
the number of data flows increases. This is because more data flows cause more
interferences in the network and more flows need to share the same channels
for data transmissions, which results in more intra-channel interferences and
competition. The same trend can be observed in Figure[for power consumption.
Among all the three schemes, the overlapping scheme performs best for both the
average transmission count and average power consumption. This is because the
overlapping scheme utilizes most channel resources to reduce the reuse of each
channel, which leads to less intra-channel interference. In the meantime, the
overlapping scheme also carefully configures the transmission power to reduce
the interferences among adjacent channels. Note that Orthogonal performs the
worst because a greater number of flows need to share channels when there are
only 3 orthogonal channels available. The increased channel sharing leads to a
higher degree of channel competition and intra-channel interferences, and thus
more packet retransmissions.

7 Conclusions

In this paper, we have conducted empirical studies to investigate the interfer-
ences among overlapping channels. Our results show that overlapping channels
can also be utilized for improved real-time performance if the transmission power
is carefully configured. In order to minimize the overall power consumption of
a network with multiple data flows under end-to-end delay constraints, we for-
mulate a constrained optimization problem to configure the transmission power
level for every node and assign overlapping channels to different data flows.
Since the optimization problem has an exponential computational complexity,
we then present a heuristic algorithm designed based on Simulated Annealing to
find a suboptimal solution. Our extensive empirical results on a 25-mote testbed

112 X. Wang et al.

demonstrate that our algorithm reduces both the end-to-end communication de-
lay and overall transmission power consumption, compared with two baselines:
a scheme using only orthogonal channels and a scheme using simple policy to
assign overlapping channels.

References

1. Cc2420 2.4 ghz ieee 802.15.4 / zigbee-ready rf transceiver,
http://www.chipcon.com

2. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on
on Information Theory 46(2) (2000)

3. Zhang, J., Zhou, G., Huang, C., Son, S.H., Stankovic, J.A.: TMMAC: An energy
efficient multi-channel mac protocol for ad hoc networks. In: ICC (2007)

4. Zhou, G., Huang, C., et al.: MMSN: Multi-frequency media access control for
wireless sensor networks. In: INFOCOM (April 2006)

5. Wang, X., Wang, X., Fu, X., Xing, G., Jha, N.: Flow-based real-time communica-
tion in multi-channel wireless sensor networks. In: Roedig, U., Sreenan, C.J. (eds.)
EWSN 2009. LNCS, vol. 5432, pp. 33-52. Springer, Heidelberg (2009)

6. Wu, Y., Stankovic, J., He, T., Lin, S.: Realistic and efficient multi-channel com-
munications in dense sensor networks. In: INFOCOM (2008)

7. Liu, H., Yu, H., Liu, X., Chuah, C.-N., Mohapatra, P.: Scheduling multiple partially
overlapped channels in wireless mesh networks. In: ICC (2007)

8. Feng, Z., Yang, Y.: Scheduling multiple partially overlapped channels in wireless
mesh networks. In: WCNC (2008)

9. Rad, A.H.M., Wong, V.W.: Partially overlapped channel assignment for multi-
channel wireless mesh networks. In: ICC (2007)

10. Sha, M., Xing, G., Zhou, G., Liu, S., Wang, X.: C-mac: Model-driven concurrent
medium access control for wireless sensor networks. In: INFOCOM (2008)

11. Demirbas, M., Song, Y.: An rssi-based scheme for sybil attack detection in wireless
sensor networks. In: WoWMoM (2006)

12. Stankovic, J.A., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication
and coordination in embedded sensor networks. Proceedings of the IEEE 91(7)
(2003)

13. Caccamo, M., Zhang, L.Y., Sha, L.: An implicit prioritized access protocol for
wireless sensor networks. In: RTSS (2002)

14. He, T., Stankovic, J., Lu, C., Abdelzaher, T.: SPEED: A stateless protocol for
real-time communication in sensor networks. In: ICDCS (2003)

15. Xing, G., Sha, M., Huang, J., Zhou, G., Wang, X., Liu, S.: Multi-channel interfer-
ence measurement and modeling in low-power wireless networks. In: RTSS (2009)

16. Talzi, I., Hasler, A., Gruber, S., Tschudin, C.: Permasense: investigating permafrost
with a wsn in the swiss alps. In: EmNets (2007)

17. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

18. Karenos, K., Kalogeraki, V.: Real-time traffic management in sensor networks. In:
RTSS (2006)

19. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM Workshop on Sensor Networks and
Applications (2002)

20. Maimour, M.: Maximally radio-disjoint multipath routing for wireless multimedia
sensor networks. In: WMuNep (2008)

http://www.chipcon.com

21.

22.

23.

24.

25.

26.

27.

Exploiting Overlapping Channels for Minimum Power Configuration 113

Deng, J., Han, R., Mishra, S.: Decorrelating wireless sensor network traffic to in-
hibit traffic analysis attacks. Elsevier Pervasive and Mobile Computing Journal,
Special Issue on Security in Wireless Mobile Computing Systems (2006)

Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., Stankovic, J., Abdelza-
her, T.: Real-time power-aware routing in sensor networks. In: IWQoS (2006)

He, T., Vicaire, P., Yan, T., Cao, Q., Zhou, G., Gu, L., Luo, L., Stoleru, R.,
Stankovic, J.A., Abdelzaher, T.F.: Achieving long-term surveillance in vigilnet. In:
INFOCOM (April 2006)

Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671-680 (1983)

Nabhan, T.M., Zomaya, A.Y.: A parallel simulated annealing algorithm with low
communication overhead. IEEE Trans. Parallel Distrib. Syst. (1995)

Selavo, L., Wood, A.D., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y.,
Kang, W., Stankovic, J.A., Young, D., Porter, J.: Luster: wireless sensor network
for environmental research. In: SenSys (2007)

Jeong, J., Culler, D.E., Oh, J.-H.: Empirical analysis of transmission power control
algorithms for wireless sensor networks. EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2005-16 (November 2005)

Privacy-Preserving Reconstruction of
Multidimensional Data Maps in Vehicular
Participatory Sensing

Nam Pham', Raghu K. Ganti', Yusuf S. Uddin',
Suman Nath?, and Tarek Abdelzaher!

L University of Illinois at Urbana-Champaign
{nampham2,rganti2,mduddin2,zaher}@illinois.edu
2 Microsoft Research
sumann@microsoft.com

Abstract. The proliferation of sensors in devices of frequent use, such
as mobile phones, offers unprecedented opportunities for forming self-
selected communities around shared sensory data pools that enable com-
munity specific applications of mutual interest. Such applications have
recently been termed participatory sensing. An important category of
participatory sensing applications is one that construct maps of different
phenomena (e.g., traffic speed, pollution) using vehicular participatory
sensing. An example is sharing data from GPS-enabled cell-phones to
map traffic or noise patterns. Concerns with data privacy are a key im-
pediment to the proliferation of such applications. This paper presents
theoretical foundations, a system implementation, and an experimental
evaluation of a perturbation-based mechanism for ensuring privacy of
location-tagged participatory sensing data while allowing correct recon-
struction of community statistics of interest (computed from shared per-
turbed data). The system is applied to construct accurate traffic speed
maps in a small campus town from shared GPS data of participating
vehicles, where the individual vehicles are allowed to “lie” about their
actual location and speed at all times. An extensive evaluation demon-
strates the efficacy of the approach in concealing multi-dimensional, cor-
related, time-series data while allowing for accurate reconstruction of
spatial statistics.

1 Introduction

An emerging category of applications focus on collecting and sharing sensor data
for the purpose of characterizing aggregate real-world properties, such as com-
puting community-wide statistics or mapping physical phenomena of common
interest. These applications are termed participatory sensing applications [I]. Ex-
amples of these applications include vehicular sensor networks for collecting and
sharing traffic data [2], bicycle networks to collect and share bikers’ paths [3],
and cell phone based buddy networks to collect and share location and activ-
ity information [4]. An important category of participatory sensing applications

J. Sé Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 114-/130, P010.
© Springer-Verlag Berlin Heidelberg 2010

Privacy-Preserving Reconstruction of Multidimensional Data Maps 115

is one where users share location-tagged data to construct maps of different
phenomena (e.g., traffic speed, pothole, pollution).

One main problem in participatory sensing applications that share location-
tagged data is privacy. For example, a community of environmentalists might
want to collectively measure pollution on city streets and share that information
to construct city-scale pollution maps. Since such data are location-tagged, a
key question is to enable correct geographic mapping without revealing private
location information of individuals collecting the location-sensitive data. The
problem becomes non-trivial in the absence of a shared trusted entity that can
be used to sanitize the data. Moreover, since the data itself, such as GPS traces,
may reveal user identity, anonymity is not the answer to the privacy problem.

To address the above challenge, in this paper, we solve the privacy problem
via data perturbation. Perturbing data on the client-side prior to sharing em-
powers clients by giving them the freedom to “lie” about both their data and
the context (such as location) where it was collected. Clients share their per-
turbed data with an entity we call the aggregation server. It is responsible for
computing the aggregate statistics of interest. Clients trust the server with com-
puting the statistics but do not want to reveal their private data to it for privacy
reasons. When receiving perturbed data, in addition to computing the commu-
nity statistics, the server may try to guess the original individual user data,
which we call a privacy attack . This paper designs perturbation algorithms that
protect against privacy attacks, while ensuring accurate reconstruction of com-
munity statistics. The contribution lies in solving the above problem for the case
of multidimensional correlated time-series data (such as correlated sensor data
streams).

From an algorithmic perspective, the fundamental limitation of previous ap-
proaches is that they do not consider privacy-preserving perturbation and re-
construction when each user shares multiple correlated private data streams. For
example, when collecting speed at different locations to build a city speed map,
both speed and location are private since a client might not want to admit, say,
to speeding, and might not want their location to be tracked.

We provide a solution to the general problem of ensuring privacy for multi-
stream data of individuals while allowing community statistics to be recon-
structed accurately. We develop a correlated noise model that can be utilized
for perturbing location-tagged data in a way that protects both data and lo-
cation privacy. We evaluate the approach using a traffic monitoring application
implemented using an existing architecture called PoolView [5]. The applica-
tion follows a client-server model. The client-side software collects data from
the client’s GPS device, perturbs the data and shares those with an aggrega-
tion server. The aggregation server then estimates useful community statistics
from perturbed data and makes those statistics available for community access.
Empirical measurements show that the approach results in accurate reconstruc-
tion of speed maps from perturbed data while preventing the reconstruction of
individual client data and location information.

116 N. Pham et al.

The rest of this paper is organized as follows. We first develop the recon-
struction algorithm of the joint probability distribution in Section 2l Privacy
properties are discussed in Section[Bl Sectiondand Section[Bldescribe simulation-
based evaluation and deployment-based evaluation, respectively. Finally, Section
concludes the paper.

2 Joint Probability Density Function Reconstruction

The main contribution of this paper lies in the algorithm to accurately recon-
struct the community joint density given the perturbed multidimensional stream
data and the noise density information. Any statistical question about the com-
munity can be answered using the reconstructed joint density. There have been
many efforts on the community distribution reconstruction. Agrawal et al. [0]
proposed a Bayesian-based reconstruction of the probability distribution. In [7],
the authors use the Expectation Maximization (EM) algorithm to estimate one-
dimensional distribution from data perturbed with Gaussian noise. In our pre-
vious work [B], we employed the Tikhonov-Miller deconvolution technique to
estimate the community distribution. However, all of these algorithms are de-
veloped to reconstruct a one-dimensional distribution. Hence, they do not scale
to the problem of multidimensional distribution reconstruction. In this section,
we present an iterative algorithm to estimate the discretized joint distribution
of multidimensional data streams.

Let the number of data streams that each user wants to share be M. The
shared data from each user are assumed to be drawn from a multivariate random
variable X = (X1, Xs,..., X)), thus each data point is a length M vector.
The reconstruction algorithm does not distinguish which data points are from
which user. Therefore, we can define the set of all data points from all users
as X = {x1,m2,...,2,} where z; is a length M data point, and n is the total
number of data points from all users.

Each data point is perturbed by adding an M-dimensional noise data point
generated from a known joint distribution fx (N1, Na,..., Nas) which is known
to all participating users (or rather to their client-side software). An aggregation
server receives the set of n perturbed data points from all users denoted as
Y = {y1,v2,.--,Yn}. We want to estimate the joint distribution of X which is
Ffx (X1, Xa,...,X) given the shared data Y and the knowledge of the noise
distribution fxy.

Let us denote the sample space of X; as (2;. Thus, the sample space of X
is 2 =401 x 2 x...x 2. In order to reconstruct the density of X, we first
discretize the the sample space 2. The sample space of X; is partitioned into
K; bins (may not be uniform) denoted as {2}, 22, ..., 2}, Thus 2 containes
K = K; x K3 x...x Ky M-dimensional bins in which the value of the density
function is constant. The more the number of bins, the better the discrete density
approximates the continuous density. To simplify the notation, the following
symbols are introduced:

Privacy-Preserving Reconstruction of Multidimensional Data Maps 117

— wy: the I*" bin of 2, thus 2 = U, wr-
= {01,0,,...,0k} : where 0; = fx(X) with X € wy, is the set of all
density parameters to be estimated.
— My, : the volume of wy, a proper discrete density parameters © should satisfy

> ormy, =1 (1)

To estimate ©, our approach is to employ the maximum likelihood frame-
work. We need to find the density function parameters which maximize the log
likelihood of the data X given the observations Y

O = argmaxlog fx.e(X|Y) (2)
6

The notation fx.,o means that the likelihood of X is computed using the
discrete distribution ©. Unfortunately, the likelihood can not be computed di-
rectly at the aggregation server because only Y is known while X is missing. A
common procedure to solve the maximum likelihood estimation with incomplete
information is the EM algorithm [8]. To use the EM algorithm, the following
auxiliary function Q(O|6F) is defined:

Q(616%) = Exy [log fx0(X)|V, 6] 3)

The auxiliary function @ is actually the expectation of the likelihood in (2])
with respect to X using the density of X computed from the previous step which
is ©%. The EM algorithm consists of two steps:

— E-step : Given the density computed from the k** step, compute the value
of Q(O]6")
— M-step : Compute ©F! = argmaxg Q(0, 6%)

Next, we will derive a closed form expression for @), the optimal solution which
maximizes the likelihood function and analyze the convergence of the algorithm.

Theorem 1. (E-step) The value of Q(6|6F) is given by:
QO16%) = 05, log(8,)L, (4)

wr

Where

Z kay] —(.U]) (5)

] 1 Y@k(y])

fy.orWi) ZfN i —wr)fk (6)

In(yj —wr) = [fn(y; —7)dy (7)

wr

Proof. See Appendix [A]l

118 N. Pham et al.

Theorem 2. (M-step) The value of Okl maximizing the auxiliary function
Q(O|6F) is given by

k
gt = Por g (®)

My,
Proof. See Appendix [A2

In the next theorem, we show that the EM algorithm for this problem is guar-
anteed to converge to the maximum likelihood solution which is the solution for
[@). Therefore the likelihood value increases slowly as it approaches the opti-
mal solution. Thus a stopping condition for the algorithm is when the likelihood
difference between two consecutive steps is sufficiently small.

Theorem 3. The estimated density function giwen by the algorithm converges
to the maximum likelihood solution © defined in the Equation ({3).

Proof. We will first prove that Q(@|@k) is concave in 6,,,. In Theorem[I] we prove
that the value of the auxiliary function Q(6]0%) = 3> 0 log(f.,)¢k, which
is the non-negative linear combination of log(f,,). Since log(x) is a concave in
x, the non-negative linear combination of log(x) functions is also concave. Thus
@ is concave in 6, .

Wu et al. [9] showed that the value of the likelihood increases after each
iteration. Because @) is concave, the iterative algorithm will finally converge to

© which maximizes the likelihood function defined in (Z).

3 Perturbation of Location and Data

Having presented a general algorithm for reconstruction of community statistics,
it remains to decide on the perturbation function. This question is equivalent
to choosing the noise probability density function, from which noise samples are
chosen. Perturbation is application specific, since it depends on what is being
perturbed. We consider the class of applications where we perturb location-
tagged data collected by vehicles.

In our application, individuals collect GPS longitude, GPS latitude, speed and
(coarsely discretized) time, using their own GPS devices. Once the aggregation
server receives perturbed data from participants, the community joint density
(i.e., the joint density of longitude, latitude and speed) is reconstructed using
the above reconstruction algorithm. Speed-related statistics are then computed
as a function of location on the map from the reconstructed joint density. In
this paper, we present useful community statistics that can be computed from
the estimated multidimensional density such as community average speed, speed
distribution, car density, and percentage of speeding vehicles on different streets.

The application was deployed on top of our existing architecture for partic-
ipatory sensing called PoolView [5]. PoolView is a generic client-server based
architecture that enables individuals to collect, archive, and share sensor data
with a community On the client side, PoolView provides software that collects

Privacy-Preserving Reconstruction of Multidimensional Data Maps 119

sensor data from specific devices (e.g., Garmin GPS). We modified the PoolView
client to use our new multidimensional data perturbation scheme. On the server
side, we implemented the multidimensional density reconstruction algorithm and
the algorithms used to estimate the aforementioned statistics.

3.1 The Perturbation Model

In this section, we propose an algorithm that generates fake (but realistic-
looking) vehicle traces that perturb true user location and speed in a way that
protects them from being estimated. The vehicle traces are recorded as dis-
placements from an origin (of a coordinate framework) that lies at some agreed
upon point in the city in question. These displacements, which we henceforth
call perturbation traces, will then be added to real routes to generate perturbed
routes. There has been many research efforts on generating vehicle traces in prior
work [IOLITLI2,[13]. We can utilize one of those models to generate perturba-
tion traces for our application. However, the vehicle traces used for perturbation
do not need that level of accuracy. Thus, we develop a simplified model that
generates perturbation traces using a minimal number of simple parameters.

It is key that the perturbation traces generated resemble real traces for the
city in question. For example, in a city with a lot of curvy roads, generated
perturbation traces containing only straight segments will not help conceal the
identifying characteristics of the roads actually traveled. A robust perturbation
trace generation algorithm must therefore incorporate as many features of the
actual map as possible.

Our perturbation trace generation algorithm generates traffic routes made of
sequences of straight line segments, each of a length drawn from the distribution
of the lengths of city blocks. These segments are at angles generated from the
distribution of city street intersection angles. This distribution heavily favors
0 degree angles (continuing forward past an intersection) and 90 degree turns.
Other angles are generated with lower probability. We ignore U-turns because
they occur with a very small probability. For speed, we use a sine curve for each
road segment that peaks in the middle of the segment and slows down towards
the beginning and end. The peak is drawn from the distribution of city street
speed limits. The slowest point is a uniformly-distributed random fraction of the
peak. These traces represent displacement to actual routes. This displacement
can be scaled to control the noise variance.

Finally, for the purpose of reconstructing the community joint distribution,
we need the joint distribution of the generated perturbation trace (the noise).
Since it is hard to come up with an analytic solution for the joint distribution of
the noise, we generate this distribution numerically. First, we generate a pool of
noise data points from the model then a non-parametric density estimation with
smoothing [14] is employed to estimate the joint distribution. In this application,
5000 vehicle traces, each of which contains 40 data points, are generated and
used as input to the density estimation algorithm, which generates the joint
distribution.

120 N. Pham et al.

3.2 Achieved Privacy

In this section, we analyze the extent of privacy offered to individual user data
using our perturbation scheme. The information available to the aggregation
server includes the perturbed data, the noise density function (known by the
server) and the map on which the user traveled. First, note that the reconstruc-
tion algorithm proposed in this paper can not be used to reconstruct individual’s
real data from those information. Our proposed algorithm can only reconstruct
community distribution from shared data of a reasonable number of participants.
Using the available information, the malicious server can employ filtering tech-
niques to remove additive noise from the perturbed data. We call this kind of
attack filtering attack.

In this paper, we analyze a filtering attack which applies a Wiener filter to re-
move additive noise from perturbed data. The Wiener filter uses the noise density
information to filter the noise from perturbed data. One important assumption
that the Wiener filter makes is the noise samples are independent. However, this
assumption fails because the noise samples generated by our algorithm are cor-
related which makes the estimated data traces follow the perturbed path instead
of real path. For demonstration, we perturb a real user location trace with both
correlated noise generated by our algorithm and independent Gaussian white
noise and then perform the Wiener filter on both perturbed data set.

The result of the Wiener attack in the case of Gaussian white noise is shown
in Figure The reconstructed path is very close to the real path and the
reconstruction error is less than one block which means that the attacker can
easily figure out the place where the user have been. Figure shows the real
path, perturbed path and the reconstructed path for the perturbation technique
we developed in this paper. We see that the reconstructed path follows the
perturbed path. Therefore, the Wiener filter attack does not work as desired for
the attacker. Users might want to increase the variance of the generated noise to
get more privacy, but the reconstruction error might increase as well. Therefore,
it is important to balance the trade off between privacy and accuracy.

The second type of attack considered in this paper is the range attack. It is
possible to conduct the range attack in applications where the ranges of both

1800)
1600
1400|

21209

> 1000}

Y (m)

800

600 af
40|

500 00 1500 ;ﬂ(()l)] 2500 3000 3500 4000 209 1

000 2500 3000

(m)

(a) Reconstruction (b) Reconstruction
of user location with of user location with
Gaussian noise correlated noise

Fig. 1. Reconstruction of user location perturbed with different noise model

Privacy-Preserving Reconstruction of Multidimensional Data Maps 121

the real data and the generated noise are finite. In this case, real data values can
be inferred if boundary values of the perturbed data are observed. For example,
suppose the real speed of a vehicle is in the range [0 to 50] and the generated
noise is also in the range [0 to 50]. If the perturbed speed is 100, the attacker
knows with certainty that the true speed is 50. In general, if the perturbed values
are close to the boundary, privacy can be violated. In applications involving
GPS location as a private variable, however, this attack is not effective. GPS
location refers to a point of the globe. Perturbing that location by a few miles
is sufficient for privacy, yet the perturbed location still refers to a point on
the globe. In other words, the perturbed coordinates always refer to a valid data
point. An exception is when map information is used to infer noise. For example,
at coastal areas, one may safely assume that vehicles do not move on water, which
generates a boundary on valid locations. The map-based attack will be discussed
shortly. In general, the effect of range-based attacks can be mitigated if the noise
distribution has a long tail such that arbitrarily large values are allowed with an
arbitrarily low probability. (Many distributions, including Gaussian, have this
property.) In this case, the range is infinite. There is no maximum value for the
perturbed signal that can be used to breach privacy.

Another popular type of attack against additive-noise perturbation techniques
is the leak attack [15]. In this type of attack, the attacker may be able to estimate
the seed of the pseudo random number generator which generates the noise curve
if he can guess a few true data values. Then this seed can be used to generate
the noise curve used by the user since the noise distribution is known. However,
with our perturbation scheme, this attack is not possible because we only use
the random number generator to generate the model parameters (e.g., number of
turns, speed of each segment). The additive noise is then generated using those
parameters and the model developed earlier in this section.

A vulnerability of our perturbation scheme is that it is possible to combine the
real map with a clever estimation technique to estimate the most likely traveled
path. We call this attack scheme a map-based attack. At this moment, it is
still unknown if there exists a good map-based attack against our perturbation
scheme. In this paper, we argue that finding an efficient map-based attack is hard.
One possible way to conduct the map-based attack is to look at the sequence
of the turning angles in the GPS trajectory data. Since the probability that
the noise angle and the real angle cancel out is pretty small, the turning angles
from the perturbed data contain some information about the real turning angles.
Combining with the map, it is possible to find the most probable traveled path.
It is not easy, however, to find the likelihood of the real turning angle given the
perturbed path. Because the perturbed path is created by adding the coordinates
of the real path and the noise path, the angle in the perturbed path is not only
depend on the angle of both real path and noise path but also depend on the
magnitudes of those. In the upcoming sections, we only evaluate the immunity
of our perturbation scheme against filtering attacks.

122 N. Pham et al.

4 Simulation Results

In this section, we evaluate the performance of the traffic mapping application
with simulated data. The advantage of using simulated data is to give total
control over traffic parameters, (e.g., average community speed, speed map),
which is hard to accurately measure in a real application. In addition, vehicular
traces can be generated for a large numbers of “virtual” users makes it possible
to evaluate the accuracy of the reconstruction algorithms. We also evaluate the
accuracy computation of the community average speed using the reconstructed
density in this section.

We use the ONE (Opportunistic Network Environment) [I6] simulator to
generate artificial traces of vehicle movements in a small city setup. The map
used in this simulation is a part of Helsinki city and is distributed with the
ONE simulator. The simulator supports Map Based Movement models that can
import map data and constrain vehicle movement to the streets and roads of the
imported map.

Our goal is to make the data get out from the simulator as realistic as possible.
The input map for the simulator is extracted from a real map and is shown in
Figure [2] with the X and Y coordinates ranging from 0 to 4000 meters and
0 to 3600 meters respectively. Vehicle speeds are chosen to be Gaussian with
mean 30mph and standard deviation of 10mph. Trip data, including X and Y
coordinates and vehicle speed, are sampled at a frequency of 1 Hz, and are
stored in an external file for later use. The simulated data are then perturbed
with perturbation traces generated by the algorithm discussed in Section Bl
The perturbed data are then submitted to the aggregation server.

Fig. 2. The map used in simulation

We collect data from 120 users, each of which contains 80 data points, from
the simulation. In order to reconstruct the community joint distribution, we
first have to specify the range of each dimension and the number of bins in each
dimension. Those parameters are summarized in Table [l In this simulation,
we discretize the location in 100mx100m bins which is small enough to capture
the street information. For more accurate reconstruction of the joint density,
more bins in each dimension might be needed but it would require more user
data points and computational time. In this specific traffic application, we are

Privacy-Preserving Reconstruction of Multidimensional Data Maps 123

only interested in the density values corresponding to the street locations. Our
proposed algorithm allows us to do the reconstruction on those bins only thus
siginificantly reduce the time complexity of the algorithm.

Table 1. Parameters for the reconstruction Table 2. Noise variance in each data set

Parameter range of X range of Y range of V Parameter stddev of X (m) stddev of Y (m) stddev of V (mph)
Value 0 - 4000 (m) 0 - 3600 (m) 0 - 60 (mph) Dataset 1 100 100 !
Dataset 2 500 500 36
Parameter X bins Y bins V bins Dataset 3 900 900 60
Value 40 36 60 Dataset 4 1500 1500 76
Dataset 5 3000 3000 100

In the first experiment, we study the accuracy of the density reconstruction
algorithm under various noise variance. The application must achieve high recon-
struction accuracy at a reasonably high noise variance level in order to provide
sufficient privacy to users. To achieve this goal, we perturbed the simulation
data using five different noise variances shown in Table

We define the accuracy of the density reconstruction as a function of the
average accuracy of all the bins:

K ~
1 10; — 6;]
r_K; L= (9)

In Equation (@), r is the computed accuracy, 6; is the true discrete density
parameter, 0; is the estimated density parameter. 6, is obtained by feeding the
real density using real user data points to the density estimation algorithm.

The accuracies of the reconstructions as the function of the number of data
points and noise variance are shown in Figure Bl The figure shows five different
curves corresponding to the five dataset described above. The X axis is the
number of data points which varies from 120 points to 1200 points with 120-point
increments. In the results, Dataset 1 achieves highest accuracy while Dataset 5
achieves lowest accuracy.

Accuracy

Average Speed (mps)

= Dataset 1
---Dataset 2|
- o-Dataset 3
—-Dataset 4|
—=—Dataset 5|

150 300 450 600 750 900 1050 12 5 10 15
Number of data points Iteration

20 25

Fig. 3. Percentage reconstruction ac- Fig. 4. Community average speed ver-
curacy as a function of number of data sus number of iterations
points and noise variance

124 N. Pham et al.

Next, we evaluate the achieved privacy for each dataset presented in Table 2l
We assume that the attacker uses Wiener filter to estimate vehicle trace of
individuals from perturbed data and the noise distribution. Beside correlated
noise, trip data are also perturbed with Gaussian noises with the same standard
deviation for comparision purpose. We perform the estimation on the perturbed
vehicle trace of all users and compute the average reconstruction error which is
presented in Table [B] below.

Table 3. Reconstruction Error of Individual Data

Dataset Correlated Noise (m) Gaussian Noise (m)

Dataset 1 334.5 145.0
Dataset 2 1329.5 153.4
Dataset 3 1942.4 189.8
Dataset 4 3573.6 218.1
Dataset 5 4901.1 223.5

From the Table [3 the reconstruction error for the vehicle traces perturbed
with correlated noise is very high as opposed to the Gaussian case in which the
error is small. With Dataset 1 (the noise covariance is small) the reconstruction
of individual data is still high (about 3 blocks) which means good privacy is
achieved. Also, with Dataset 5, although the reconstruction error of individual
data is huge (about 40 blocks), the community distribution can still be accurately
reconstructed (above 96%).

In the last experiment, we demonstrate the estimation of the community av-
erage speed using the joint distribution estimated in the first experiment. In
addition, we also want to study the effect of the number of iterations on the
accuracy of reconstruction. To compute the community average speed from the
community joint distribution f(X,Y, V), we first compute the speed density f(v)

40 36

F@) =33 fley.v)Axy (10)

r=1y=1

Equation (I0) is the marginalization of the discrete joint density over X and Y’
dimensions. where Axy = (4000/40)*(3600/36) is the area of a two dimensional
bin XY. Then the average speed v is computed as v = Ziozl vf(v).

The result of the experiment is shown in Figure[dl Although Dataset 5 provides
users with highest acceptable privacy, the reconstructed average speed is still
close to the true value. Another important observation from the graph is that
the density reconstruction algorithm requires a very small number of iterations
to converge. Results from 5 datasets show that 10 to 15 iterations are sufficient.
The accuracy of the algorithm almost does not change after 20 iterations. In the
next section, we evaluate the performance of the application using deployment
data.

Privacy-Preserving Reconstruction of Multidimensional Data Maps 125
5 Deployment Data

In this section, we evaluate the traffic monitoring application with real deploy-
ment data. The data are collected by driving on all the streets within an area
shown in Figure Bl There are a total of 15 users, each user drives the streets at
will for 10 minutes. During the drive, we use a Garmin Legend [I7] GPS device
to record location and speed information. The sampling frequency of the device
is 15Hz which is enough to record changes in the location and speed since the
speed limit in the area is 25 mph.

1= = W s o ‘E w

F]
i

L1
LYY
rs

= 111

Fig. 5. Map used to collect data

At the aggregation server side, to do the reconstruction, we need to specify the
reconstructed region and the number of bins in each region. The reconstruction
parameters are summarized in Table @l For location, we divide each axis into 30
bins, the width of each bin is 0.01 mile, which is about the width of a street.
This is important because, we want to estimate the speed down to the resolution
of a street. This can be done by looking at the specific bins corresponding to the
target street.

Table 4. Parameters for the reconstruction Table 5. Noise standard deviation
Parameter range of X) range of Y range of V Parameter stddev of X stddev of Y stddev of V
(1/100 mile) (1/100 mile) (mph) (1/100 mile) (1/100 mile) (mph)
Value 0 - 300 0 - 300 0-25 Dataset 1 45 35 5
Parameter X bins Y bins V bins Dataset 2 (Gl (Gl 10
Value 30 30 30 Dataset 3 100 100 15
Dataset 4 150 150 20
Dataset 5 300 300 30

In the first experiment, we study the density reconstruction accuracy as a
function of the number of data points used for reconstruction. We want to answer
the question of how many data points we need to achieve a desired accuracy.
Similar to the case of simulation data, we do the perturbation of the data with
five different noise data sets each of which has different variance. The details

126 N. Pham et al.

of the noise datasets are presented in Table Bl The standard deviation of the
noise specified in the table is comparable to multiples of the block length (about
75/100 mile), We run the density reconstruction algorithm multiple times, each
time with a different number of data points. The data points are randomly picked
from the total pool of data points contributed by all users. The number of data
points taken for reconstruction is varied from 100 to 800.

The results of the experiment are shown in Figure [l From the result, the
highest accuracy achieved is about 90% at about 800 datapoints while the low-
est accuracy is about 83% at about 160 datapoints. The number of data points
needed for a good estimate is thus surprisingly low. This can be explained by
the observation that since the data points are uniformly picked from the pool,
there is a high chance that they scatter all over the map, thus capturing the
speed information of the whole area. This makes the application practical in
most city areas. In the next experiment, we demonstrate the estimation of the

o Dataset 1
- - ~Dataset 2|

—-Dataset 4|

=~ Dataset 5|

0 200 400 600 800
Number of data points.

Fig. 6. Accuracy of the density reconstruction

community speed distribution. This community speed distribution can be use-
ful in determining the average speed in the area or compute the percentage of
speeding vehicles in that area. To compute the community speed distribution
f(v), we marginalize the estimated discrete joint distribution f(z,y,v) as follow

30 30

F@) =33 flx,y,0)Axy (11)

rx=1y=1

where Axy = (300/30) % (300/30) is the area of a two dimensional bin in XY
dimension. Figure and shows the real community speed distribution
and the estimated community speed distribution, respectively. We see that the
two speed distributions are similar except for the first bin corresponding to zero
speed. This can be explained because the density estimation algorithm tends to
produce a smooth distribution. Thus, the speed value of the bin is smoothed out.
The percentage of speeding vehicles in the community can be computed as the
sum of bins with larger than 25 miles/hr speed. In this case the real community
percentage of speeding is about 7% while the estimated percentage of speeding
is 10% which is a good estimate.

Privacy-Preserving Reconstruction of Multidimensional Data Maps 127

Probabilty Density

g

0 5 10 15 20
Speed (mph)

(a) Real community (b) Reconstructed
speed distribution community speed
distribution

Fig. 7. Real and reconstructed speed distribution

6 Conclusion

In this paper, we present theoretical foundations for perturbation based mech-
anisms for ensuring privacy while allowing correct reconstruction of community
statistics of interest. Previous data perturbation techniques fail to ensure either
privacy or correct reconstruction of community statistics in the case of correlated
multidimensional time-series data. The algorithms proposed in this work allow
participants to add noise to multiple correlated data streams prior to sharing in
a privacy-preserved way while making sure that relevant community statistics
are still reconstructible. A participatory sensing application for traffic monitor-
ing is developed which allows participants to “lie” about their actual location
and speed, while letting the community estimate useful traffic statistics (e.g.,
speed map, percentage of speeding vehicle, etc) with high accuracy.

References

1. Burke, J., others: Participatory sensing. In: Proc. of ACM SenSys. (2006)

2. Hull, B, et al.: Cartel: a distributed mobile sensor computing system. In: Proc. of
SenSys., pp. 125-138 (2006)

3. Eisenman, S.B., et al.: The bikenet mobile sensing system for cyclist experience
mapping. In: Proc. of SenSys., pp. 87-101 (2007)

4. Miluzzo, E., et al.: Sensing meets mobile social networks: the design, implementa-
tion and evaluation of the cenceme application. In: Proc. of SenSys., pp. 337-350
(2008)

5. Ganti, R.K., Pham, N., Tsai, Y., Abdelzaher, T.F.: Poolview: Stream privacy for
grassroots participatory sensing. In: Proc. of SenSys., pp. 281-294 (2008)

6. Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of the
ACM SIGMOD, pp. 439-450 (2000)

7. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserv-
ing data mining algorithms. In: Proc. of ACM SIGMOD, pp. 247-255 (2001)

128 N. Pham et al.

8.

9.

10.

11.

12.

13.

14.

15.

16.
17.

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of Royal Statistical Society B39, 1-38 (1977)
Wu, J.: On the convergence properties of the em algorithm. The Annals of Statis-
tics 11(1), 103, 95 (1983)

Lian, F.L., Murray, R.: Real-time trajectory generation for the cooperative path
planning of multi-vehicle systems. In: Proceedings of the 41st IEEE Conference on
Decision and Control, vol. 4, pp. 3766-3769 (2002)

Saha, A.K., Johnson, D.B.: Modeling mobility for vehicular ad-hoc networks. In:
Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks,
pp. 91-92. ACM, New York (2004)

Karnadi, F., Mo, Z.H., chan Lan, K.: Rapid generation of realistic mobility models
for vanet. In: IEE Wireless Communications and Networking Conference, pp. 2506—
2511 (2007)

Fiore, M., Harri, J., Filali, F., Bonnet, C.: Vehicular mobility simulation for vanets.
In: 40th Annual Simulation Symposium, 2007. ANSS 2007, pp. 301-309 (2007)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

Kelsey, J., Schneier, B., Wagner, D.; Hall, C.: Cryptanalytic attacks on pseudoran-
dom number generators. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp.
168-188. Springer, Heidelberg (1998)

http://www.netlab.tkk.fi/tutkimus/dtn

http://www.garmin. com/products/etrexLegend

A Appendix

A.

1 Proof of Theorem (I

We begin with the expansion the auxiliary function @ by noting that the data
points are i.i.d.

Q(616%) = Exy [log fx.0(X)IV, 6]
N A~
= Exyy |log [[fx:o(x)ly;, 6"

j=1
N

= Z/Qlogfx;@(’y)fxw;ék('ﬂyj)d'y
j=1

In the last step, the expectation is taken over all possible values of X given

the observation y;. We further expand the auxiliary function @ using Bayes’
formula and the fact that fyx(Y|X) = fy(Y — X) because N =Y — X.

http://www.netlab.tkk.fi/tutkimus/dtn
http://www.garmin.com/products/etrexLegend

Privacy-Preserving Reconstruction of Multidimensional Data Maps 129
N
N fxyék (779]‘)
Q616 =Y [tosrxet) O Wy
—e fy;@k (y])

N
1
=3 1 [on e e (DIt~
Y .
=3 _ Z/ 10g (0,)05, i (y; — 7)dy
j=1 j wy YWI
In the last equation, the integral over the {2 is discretized and is computed as

the sum of the integral over all subspaces w; in which the value of the discrete
density function is constant. Also the value of f, g« (y;) is computed as follow:

Py) = / Fr (551) Fre ()

_ZfN i —wr)fk

Q(6]6%) = ny o)) Sk, log(ﬁwl)/w Fr(s —)iy

fN yj)
=3 "0" log(b.,
Z Og Z fy@k(yj)
_Ze log(6., qﬁm O

A.2 Proof of Theorem

This is an optimization problem with a constraint which ensures that © is a
proper density function.

OM! = argmax Q(O|6")
)
> Ouym, —1=0

The Lagrangian of the optimization is given by

L0y,) = Q(O1OF) + MO Ouymu, — 1)

wr

—Ze 10g(0,)8l, + A burma, — 1)
wr

130 N. Pham et al.

The optimized values 65+ satisfied 8‘3{:1 (05+1) = 0 and 9L (GE+Y) = 0. After
some algebraic transformation we get

Z fY o y]) Zéu]i,fN(yj —wr) (12)

wr

Since Y = X + N thus the density of Y is the convolution of the density of
X and N. It is straight forward to show that

Iy, Ok (v5) ZG Yyj — wr) (13)
Substitute ([I3) into (IZ) yield A = —1. Therefore

. ok
gErt = "wr gk O
My;

Gathering Sensor Data in Home Networks with
IPFIX

Thomas Kothmayr, Corinna Schmitt, Lothar Braun, and Georg Carle

Institut fiir Informatik, Technische Universitat Miinchen
Garching bei Miinchen, Germany
kothmayr@in.tum.de, {schmitt,braun,carle}@net.in.tum.de

Abstract. New developments in military, health and home areas call
for new approaches for data acquisition in real-time. Such application
areas frequently include challenging requirements for collection, process-
ing and analysis of environmental data. Wireless Sensor Networks can
collect such environmental data efficiently. Collected sensor node data
needs to be transmitted in an efficient way due to limitations of sensor
node resources in battery power and available bandwidth. In this paper,
we present a method for efficient transmission of sensor measurement
data using the IETF standard IPFIX. We show that its template based
design is suitable for efficient transmission of senor data with low band-
width consumption. In this paper, we present the protocol and its imple-
mentation in Wireless Sensor Networks (WSNs). Additionally, a header
compression scheme is introduced which further reduces communication
cost during data transmission.

1 Introduction

Research efforts for wireless sensor technologies become more and more impor-
tant due to the number of devices in use. Common sensor nodes are only equipped
with low-cost hardware and are limited in available bandwidth, memory and bat-
tery power. Therefore, communication within a sensor network needs to be very
efficient. As bandwidth is limited and data transmission exhausts battery power,
transmitting sensor measurement data with little overhead is necessary.

Home networks have an additional requirement. Adding new sensor nodes into
a home network should be performed without any (or only minimal) manual
reconfiguration of the network. Additionally, Wireless Sensor Networks (WSNs)
should be seamlessly integrable into an existing infrastructure.

Concerning resources, similar constraints can be found in the field of net-
work monitoring. Although network monitors are usually equipped with a lot of
memory and processing power, they have to observe and process a lot of traffic.
Generating, encoding and transmitting information about the observed traffic
needs to be implemented at low cost in order to preserve most of the available
resources for the monitoring itself.

Therefore, Claise et al. developed the IP Flow Information Export protocol
(IPFIX) [3], which is used for transmitting monitoring data. It was standardized

J. Sa Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 131 2010.
© Springer-Verlag Berlin Heidelberg 2010

132 T. Kothmayr et al.

by the Internet Engineering Task Force (IETF) in 2008. The protocol was de-
signed to transport flow and packet data, but can also be used for transmitting
arbitrary data in an efficient way. It has a template-based concept for encoding
measurement data.

In this paper, we present the protocol IPFIX and analyse how it can be
used for efficient transmission of sensor data within a Wireless Sensor Network.
Furthermore, we will discuss how IPFIX can be embedded into home networks
with an infrastructure of wireless sensor nodes.

The remainder of this paper is organized as follows: Section [2 presents the
IPFIX protocol and discusses its properties, focusing on the special constrains
of wireless sensor nodes. Afterwards, Section 3] describes how IPFIX on wire-
less sensor nodes can be deployed in the context of IP based home networks.
Furthermore, we will discuss how data security methods and compression can
be integrated with IPFIX. Afterwards, we will describe our implementation ap-
proach of IPFIX in Section [l Finally, Section Bl will discuss related work before
conclusions are drawn in Section

2 The IP Flow Information Export Protocol

2.1 The Protocol

IPFIX [3] was developed by the Internet Engineering Task Force for transmitting
flow information between a network monitor and flow data collectors. Commu-
nication takes place between an Ezporter and a Collector in IPFIX terminology.
IPFIX is specified as a PUSH-Protocol with an exporter periodically transmit-
ting data to one or more collectors.

This design choice seems to be suitable for WSNs because wireless sensor
devices tend to disable their wireless network device as long as possible in order
to save energy. Aggregating sensor data with a request-response protocols may
fail in these scenarios.

For IPFIX, a template based design was developed to exchange measurement
data with little overhead. Measurement data is exchanged in so called Records.
The protocol distinguishes, amongst others, between Template Records and Data
Records as shown in Figure [l

Data Records contain the measured data while Template Records contain
meta information about the information which is transmitted in the Data
Records. This meta information covers the type and the length of the mea-
surement data. An Exporter sends a Template Record only once to its Collector
to announce the structure of the upcoming data records. The Template Record
is stored by the Collector for decoding incoming Data Records. An unique ID,
called Template ID, is assigned with every Template Record and it is sent to the
collector. Further Data Records will reference this ID.

As shown in Figure [l each Template Record describes the encoding of the
transmitted sensor measurement values in a Data Record. A Record may con-
tain several several fields where a field corresponds to a measurement type like
brightness or humidity. Each field in the Template Record describes the type

Gathering Sensor Data in Home Networks with IPFIX 133

L Set ID Length
— Template ID Field Count
template field SetID =

i Data Length - Template ID
‘ ID: Node ID ‘ ID: Node ID NE|

Enterprise Number i\s 1233419825
g Data Length -
ID: Time Stamp | |p: Time Stamp SRR 250527

|
1
e o S o T
|
|
|
1
|

Length

cDatalkengthi=: | |- _—-T
1D: Temperature

Enter;irgse Number
DataLength- | | o _____ I
ID: Brightness

Enterprise Number

‘ ID: Brightness

a) Template Record b) Data Record

Fig. 1. IPFIX Records with decoding pointers

and length of the corresponding field in the Data Record (Figure [shows 4
template fields). The type is uniquely described with a Type ID and an En-
terprise ID in a template field. The Type ID specifies the type of data while
the Enterprise ID denotes the organization which issued the Type ID. IPFIX
standardized several IDs which are necessary to exchange traffic measurement
data like sourcelPv4Address or destinationIPv4Address. The ID field consists
of 16 Bits, where IDs 1-32767 are reserved for these traffic measurement data
types [21].

If vendors want to exchange different data, for example sensor measurements,
new IDs located above ID 32767 must be used. Hence, if the most significant bit
for all these IDs is set to 1, a Collector concludes to see a non standard ID. In
the next step the Enterprise ID (EID) will be checked by the Collector in order
to find the organization which issued the ID. Each vendor has to register an
Enterprise ID with the Internet Assigned Numbers Authority (IANA) [8] which
will ensure that any vendor can be uniquely identified. Each vendor can specify
up to 32767 own IDs for their data, because 15 bits are left for the Type ID field.
We can use this facility to transmit sensor measurement data over IPFIX. It is
necessary to register an Enterprise ID for sensor measurement data. Afterwards,
we can specify our own standard IDs for common sensor measurement data (e.g.
temperature value).

A template field also contains a length which announces the length of the
transmitted data field in the Data Record. The length is declared in a 16 Bit
counter, which allows very long data fields to be included in a Data Record. The
fields length is important for a Collector when it decodes a Data Record as Data
Records do not include any meta information about the measurement data.

As Figure [Mlshows, several template fields may be included into one Template
Record, e.g. time stamp and brightness measurement data. If different data
should be transmitted to different nodes the Exporter needs more than one

134 T. Kothmayr et al.

Template Record. Different Template Records are also needed if aggregated and
non-aggregated data should be transmitted.

Sensor nodes act as Exporters and transmit their measurement data using
IPFIX. When the sensor node boots up, it has to announce a Template in order
to announce its measurement data to the Collector. This has to be done only
once, as a Collector has to buffer the Template and can use it to decode Data
Records. Data Records do not have to contain anything but the measurement
data as all meta information has been already sent in the Templates. They only
have to contain the number of transported data fields as well as the template ID
which is necessary for decoding the record. If a template announces two types
of measurement data, e.g. light and temperature, it forms the template record
{light, temperature}. Therefore, data records also consist of the tuple {light
value, temperature value}. As a consequence, both values need to be included
into the record. Several data records can be put into a single message. All records
within a packet that can be decoded with a single template, form a so called
Data Set as shown in Figure [

An Exporter transmits a Data Record. The Collector will look up the Tem-
plate ID and uses the corresponding template to decode the data as illustrated
in Figure [l A Pointer will be hold by the IPFIX parser which points into the
Data Set after the length of the Data Set field. The length of the first field will
be looked up in the Template Record and the appropriate numbers of bytes will
be read. The data type can be identified by its Type ID. Afterwards, the pointer
will be advanced by the length of the given field. Then, the next field will be
read in the same way.

This template based approach will ensure that meta information about the
transmitted data is sent only once. Thus, meta information does not need to be
transmitted with every measurement report by the sensor nodes. This in turn
results in smaller packets.

Both producing as well as parsing IPFIX Data Records is very easy. The
header which contains, amongst others, the Template ID and the number of
measurement fields is produced by a sensor node. In the next step the mea-
surement data is packed into the Template in the announced order. A Collector
has to read the Template ID and can then read one data field after another
as specified in the Template. This process is easy to implement (see Section H)
and has very low processing needs as only pointers need to be moved over the
data record. If a pre-defined (hard coded) template is used, this process can be
implemented even on very small motes. Multiple templates could be used if the
nodes would have more resources, to allow measurement data analysis as done
by the base station or servers.

2.2 Identifying Measurement Data of Sensors

Sensor measurement data is identified by the Type ID and the Enterprise ID
(EID). To enhance interoperability they need to be standardized. For today’s
home networks, typical environmental data can be measured by sensor nodes.
Therefore, standard Type IDs can be issued. Up to now, no EID for sensor node

Gathering Sensor Data in Home Networks with IPFIX 135

data exists, thus it must be chosen and registered by IANA. This EID can then be
used to identify sensor node measurement data. Also, new IDs describing typical
sensor data as shown in Table 1 must be standardized. Semantics and type length
need to be included in the ID standardization in order to ensure interoperability.
New generations of sensor nodes will have the ability to measure other types of
data which will result in new IDs. Each vendor can register their own EID and
specify their own IDs if he wants to include proprietary data types. However,
as the common base for transmitting data is still IPFIX, IPFIX interoperability
between devices in the network is enhanced.

Table 1. Possible IDs Space for Sensor Measurement Data

ID Purpose Length Range

1 Node-ID 2 bytes 0 - 65535

2 Temperature 2 bytes -40 - 123.8C

3 Seismic Data 2 bytes -2g - 2¢g

4 Brightness 2 bytes 0 - 10000 Lux
5 Humidity 1 byte 0-100% RH
6 Barometric Pressure 1 byte 300 - 1100 mbar

2.3 Data Compression and Aggregation on Top of IPFIX

Due to limited resources on sensor nodes, minimizing data during transmission is
desired. Therefore, aggregation can be performed on the IPFIX data in order to
reduce the overall amount of data. At first, several measurement results from one
or several sensor nodes can be aggregated within a single data packet. Therefore,
less packets need to be transmitted which saves energy on the sensor nodes. This
kind of data aggregation technique works on arbitrary data without considering
measurement context. Additional aggregation techniques can be deployed which
consider application context as introduced by Przydatek et al. [20]. Aggregator
nodes in the WSN need to be equipped with hardware because they have to
store the templates of the child nodes. If a WSN is composed of many uniform
nodes which use the same template, all nodes can perform data aggregation.

Another possibility to reduce the transmitted data amount is data compres-
sion. The authors in [I7] showed that flow and packet measurement data can
be compressed with simple methods resulting in smaller packet, which further
helps to reduce bandwidth consumption. Thus, it can be reasonable to perform
compression on sensor measurement data, too. However, this approach focuses
on compressing the actual IPFIX payload. Since typical packet sizes in WSNs
are small, the IPFIX header introduces a big source of overhead. Therefore we
will introduce an approach to minimize this overhead by compressing the IPFIX
header in Section [l

The wireless part of the network must be connected to a wired infrastructure
at some point as described in Section[3l This wired infrastructure is usually based
on IP. Hence, using IP within the WSN seems to come natural. Additionally,

136 T. Kothmayr et al.

IPFIX was standardized to work on IP. By using IP in WSNs, wireless nodes can
be addressed by nodes in the wired infrastructure. This enables data transmission
from the wired infrastructure into the WSN.

In order to optimize IPv6 for the use in WSNs, 6LoWPAN was developed
for wireless sensors and was standardized by the IETF [15]. Harvan et al. imple-
mented an 6lowpan/IPv6 stack on top of 802.15.4 networks [7]. 802.15.4 provides
two types of addresses with a length of 16 or 64 bit. Depending on the used hard-
ware, the transmitted payload with 6LoWPAN can be up to 127 bytes for one
frame. Larger IPv6 packets need to be fragmented in order to be transmitted
within the 6LoWPAN network. As IPv6 has a header size of 40 bytes, too much
payload size is occupied by header information. Therefore, a header compression
scheme has been standardized resulting in a 2 bytes sized 6LoWPAN header.
Similar compression mechanism can be used for the transport headers. An 8
bytes sized UDP can be down sized to four bytes using this compression scheme.
The IPv6 compression mechanism is called HC1 and the UDP compression mech-
anism is called HC UDP. Without this compression, only 50-66 bytes are left for
the data payload, depending on the address types in the 802.15.4 Header. With
compression, there is space for 94-110 bytes which nearly doubles the available
space for payload [15].

3 Application in Home Networks

Wireless Sensor Networks can perform valuable tasks in home networks. Home
networks have additional requirements to WSNs, compared to other applications
of sensor networks.

One requirement is the seamless integration into the existing infrastructure.
Additionally, users might want to buy devices from different vendors and deploy
them into their network. Therefore, devices of different vendors should interop-
erate and integrate themselves into the existing infrastructure of the Wireless
Sensor Network. Handcrafted vendor specific protocols are unlikely to fulfill this
requirement. Instead, a common standard for data transmission, like IPFIX, is
needed to achieve interoperability.

We will now present why IPFIX is a suitable protocol for the deployment in
home networks. Furthermore, we will present how to use application aware data
compression techniques to reduce the overall data amount in the network.

Our proof-of-concept implementation is implemented in the context of the
Eureka Celtic Project ” Autonomic Home Networking” (AutHoNe) [2].

3.1 Application Scenario

The sensor network which is deployed in our home network is supposed to col-
lect environmental data. This data comprises temperature and lighting mea-
surements at the moment and is used to control the lighting and temperature
conditions within the house.

Therefore, every room contains several sensors which are linked by a low-
power IEEE 802.15.4 wireless mesh. As home networks are usually based on the

Gathering Sensor Data in Home Networks with IPFIX 137

IP protocol, sensor nodes should support IP, too [5]. This can be achieved by
using 6LoOWPAN [7], an IPv6 standard for IEEE 802.15.4 networks. As IPFIX
was designed to run on top of IP, it is not necessary to adapt IPFIX to work
with other network layer protocols. 6LoWPAN is an adequate solution for sen-
sor nodes as it meets sensor node requirements by defining header compression
mechanisms for IPv6 packets transmitted over IEEE 802.15-based networks.

- Translation of incoming packets
- Data analysis context based
- Flow observation

. s l @Lapmp

Data collection g‘ l
Reaction to the analysis result
> (e.g. switching on /off heating,

air condition or light)

Service Provider

IPFIX Data Set Aggregator nodes: Node ID 3, 6, Base station
Template ID Aggregation function: max{a,b} — Logical control communication
1=Temp. Node ID | Value i icati
2 = Brightness + Wireless Communication Wired Communication

Fig. 2. Overview of application scenario

Figure 2] presents our application scenario. We assume to have several rooms
which are equipped with sensor nodes. The sensor nodes are able to measure
temperature and light, and are able to build a meshed network to transmit the
measurement data to a central server. The server is able to analyse the data
and to control the heating and lighting system. For our testbed we use the IRIS
motes from Crossbow Technology Inc. [4] as node hardware. The IRIS mote
which is used in our setup has the dimensions of 58 x 32 x 7 mm, without the
battery pack. Thus, it does not leave much room for the micro controller, flash
memory (128kb) and RF transceiver, all of which are located on this board. The
available sensor boards have sensors for temperature, brightness and humidity
among others.

3.2 IPFIX for Data Transmission

As wireless nodes boot up in the scenario, they will use the 6LoWPAN auto con-
figuration features to obtain an address. Using this address, they will announce
their templates to a central server. This server either needs to be configured on
the sensor nodes or a special address in the IEEE 802.15.4 can be chosen to
address the server.

Afterwards, all nodes in a room measure the current temperature and send
their measurement results to the server. During this process, aggregation can be
performed by aggregator nodes. All nodes that are able to parse IPFIX messages

138 T. Kothmayr et al.

and have enough resources for holding at least three IPFIX messages in memory
can be used as aggregator nodes.

Since transmission is performed on the mesh network, these nodes can aggre-
gate their measurement data with other received measurement data into a single
packet. Application specific aggregation for home networks can be performed.
In our home network, heat control can be activated for each room depending on
the measured temperature. For each room, only minimum, maximum or average
temperatures are needed for a decision on whether to turn on the heating or the
air condition. IPFIX messages that travel through the network can therefore be
aggregated as suggested by Przydatek et al. [20].

Adding devices from different manufactures into the WSN can be done, if they
support IPFIX. If all of them use only standard IDs, interoperability between all
devices is ensured. If some device vendor wants to specify their own data format,
they can register their own EID and issue own IDs. These devices can still be
integrated into the home network, as other nodes in the WSN do not need to
know the semantics of the new IDs.

3.3 Security in IPFIX Transmissions

Measurement data security and data integrity can be integrated as well. IPFIX
copes with these security issues by specifying that every IPFIX device needs
to support TLS (on stream based transport protocols) or DTLS (on datagram
based transport protocols). Fouladgar et al. developed Tiny 3-TLS [6], a TLS
handshake sub-protocol for sensor nodes, which can be used for securing IPFIX
data transmission. This conforms to the security considerations from IPFIX.
Other protocols can also be used to assure data security and message authen-
tication in WSNs. TinySec [9], for example, offers an encryption mode where
data payload is encrypted and the packet itself is authenticated by a MAC. An-
other approach using the same idea as TinySec was developed by Luk et al. [I3],
called MiniSec. It is a secure sensor network communication architecture which
modifies the common packet structure of TinyOS and combines features from
TinySec and ZigBee [22] to perform low energy consumption and high security.
These protocols can be used instead of TLS, if an existing WSN already
implements one of these protocols. However, using TLS is highly recommended.

4 Implementation of IPFIX for Wireless Sensors

In this section we want to characterize the problems and challenges we need
to face during the implementation of IPFIX for Wireless Sensors. For Wireless
Sensor Networks, two problem fields exist: Environment and Hardware.

In home networks, the environmental problems can be ignored because the
network is deployed indoors. We know where each sensor is located and what
kind of measurements can be conducted. The distance between the nodes is
short, thus no environmental blockage must be taken into account.

Hardware limitations are way more concerning. As described in Section BITRIS
motes from Crossbow Technology Inc. [4] are used in our application scenario.

Gathering Sensor Data in Home Networks with IPFIX 139

These nodes have several limiting factors, such as only 128kb flash memory,
512kb measurement flash and 8kb RAM. Together with the limited power supply
of wireless senors the computational capacity is quite limited. These limitations
should be kept in mind for the design decisions described in the upcoming section.

4.1 Design Goals and Implementation Decisions
A sensor node has to perform the following tasks:

— Gather data from all sensors.

— Encode measurement results in IPFIX packets and transmit them to the
base station.

— Perform in-network aggregation to reduce the amount of network traffic and
preserve energy.

The receiving end at the Gateway PC has to perform these tasks: First re-
ceiving and parsing IPFIX packets on a Gateway PC must be guaranteed. And
secondly the acquired data must be transfered to a home networking infrastruc-
ture.

Figure Bl shows all components involved in this process. Both ends, the sensor
node as well as the receiving gateway are mapped on the Figure.

Sensor within the WSN e Base Station]

— [Network Handler
Collector
(.
Network

Sensor Data

II

Values

A 4
Network _ Gateway PC
Sensor A4 Handler USBListener
Measurement IPFIX protocol
XML Parser
Home « — — IPFIX Parser
Environment

|

|

—>» Dataflow |
|

|

[

IPFIX
Packets

Joxoed
Xlddl

i
i

anjep

0suag

elepeloly
piel4

— —» Extra-Subsystem Dataflow

== == IPFIXField |«—"1"
() Wired Subsystem (Z) Wireless Subsystem Metadata

Fig. 3. Data Flow in all components

I

The node’s sensors are queried periodically to generate new sensor data. These
raw values are transmitted to the tinyIPFIX library, which encodes them into
Data Records. The location within the Data Record is specified by an IPFIX
template. The template is generated and sent automatically when the node
boots. After all sensors have been queried and the IPFIX packet is ready for
transmission, it is sent to the Base Station via a multihop network. The Base
Station listens for incoming packets from nodes in the network and transmits

140 T. Kothmayr et al.

their payload to the Gateway PC over an USB port. On the Gateway PC, there a
Collector waits for transmissions on the USB port. The IPFIX messages sent via
USB are parsed according to the matching IPFIX templates, the sensor values
are extracted as shown in Figure [Il and transferred to the home environment.

Currently the program for the sensor nodes consists of three main operative
components, ControllerC, tinyIPFIXC and NetworkHandlerC. ControllerC is
the main module of the program, it periodically queries the sensors and passes
their reported values to tinyIPFIXC, an implementation of IPFIX for TinyOS
2.x. After all connected sensors have reported their values, ControllerC re-
ceives a byte array containing the finished IPFIX message, which it passes on
to NetworkHandlerC. NetworkHandlerC implements the network communica-
tions in a transparent way, so that transmission protocols may be exchanged as
needed. Currently, communication is based on the Collection protocol of TinyOS.
We plan to migrate this to 6LoOWPAN in the future. Figure M shows a simplified
version of the application’s wiring. As mentioned in [I2], components need to be
explicitly wired together.

ControllerC

IPFIXDataSampley”” IPFIXDataSamplefPFIX Send Timer<TMilli>

’ tinyIPFIXAppC H “ NetworkHandlerAppC H " TimerMilliC }:
i I

@
3
°
=
)
>
o

1Read<uint167t> lRead<uint167t> tinylPFIX Send

Fig. 4. Simplified wiring of the mote’s program

The interface for acquiring sensor data was designed with the following goals:
Additional readings need to be added without major changes to the application
code, sensor readings should always be linked to an IPFIX Field and Enterprise
ID. Finally, it should be possible to automatically generate IPFIX templates
based on the connected sensors.

To generate the IPFIX template, the node queries all connected sensors about
their Field ID, Enterprise ID and field length at startup. Similarly, to generate
a data record, the node issues a read command to all connected sensors periodi-
cally. The sensors return their values after a certain latency and not necessarily
in the same order as the read commands were issued. Therefore, a sensor needs
to be associated with their respective Field ID, EID and field length.

This was addressed by designing a bidirectional interface called
IPFIXDataSampler which is implemented by several generic modules. Generic

Gathering Sensor Data in Home Networks with IPFIX 141

components can be instantiated with parameters [I2]. This allows for a con-
sistent linking of an IPFIX Field ID / Enterprise ID combination with a sen-
sor, since every instance of IPFIXDataSampler can report exactly one value.
One simply has to pass the according values when creating an instance of the
module which provides the interface. IPFIXDataSampler defines two commands
which are answered by two events. One is command void report() with event
void reportBack() being the according event. reportBack() is used to regis-
ter all providers of IPFIXDataSampler with CollectorC. Directly after booting,
CollectorC issues the report command to all connected samplers. When they
report back, it uses the information provided by reportBack() to create a new
field definition in an IPFIX template, thereby addressing the design goal of
automatic template creation. The second command is command read() which
prompts the implementing module to return a reading of the connected sensor.
This reading is reported back by event void readDone().

1 configuration ControllerAppC{}
2 implementation{
components ControllerC as App;

components new IPFIXDataSampler16C(0x80A0,0xFOAAO0AA) as Temp;
components new IPFIXDataSampler16C(0x80A2,0xFOAAQ0AA) as Light;
components new TempHumc() as TempSens, new TaosC() as LightSens;

©oo~NO O~ W

Temp.Sensor -> TempSens;
10 Light.Sensor -> LightSens;
11

12 App.Sampler -> Temp;

13 App.Sampler -> Light;

14

15}

16

17 module ControllerC {

18

19 uses interface IPFIXDataSampler as Sampler;
20

21}

22 implementation {...}

Fig. 5. Example of wiring IPFIXDataSampler providers to CollectorC

IPFIX does not transmit the data type of a field, instead it must be recognized
based on the respective field ID, so this implementation can ignore the type and
simply proceed working with a network order (big endian) byte array. However,
functionalities that perform additional computation, such as e.g. mathematical
aggregation functions like SUM() or AVG() must reconstruct the data type. The
design goal of flexible extension is addressed by multiple wiring. In traditional
languages, the concept of multiple callers to a single method implementation is
commonplace. Since nesC interfaces are bidirectional, this also allows for multi-
ple calls to a single method call, meaning multiple methods can be invoked with
a single command. The ability to have multiple callers is described as Fan-in
and the concept of multiple calls is called Fan-out [I2]. By simply wiring mul-
tiple components providing IPFIXDataSampler to ControllerC one can make
effective use of the Fan-out concept as shown in Figure

142 T. Kothmayr et al.

4.2 IPFIX Header Compression

Since IPFIX was designed for conventional networks, some extensions and
changes have to be introduced to increase its efficiency in WSNs. Border gate-
ways between the WSN and the wired network need to translated from com-
pressed IPFIX to standard IPFIX. These border gateways are called TPFIX
mediators in IPFIX terminology [I1].

One of the problems when deploying IPFIX in sensor networks is the overhead
introduced by the relatively large header which is at least 20 bytes in size (16
bytes from the Message Header + 4 bytes from the Set header) as is shown
in Figure [6l However, the maximum size of a packet being transferred with an
IEEE 802.15.4 network is 127 bytes. To address this issue, a header compression
scheme was devised, which will be introduced in this section.

0 15 16 31 bits

IPFIX Message Header
Version Number Length

Export Time

Sequence Number

Observation Domain ID

Set Header
Template ID Length

Fig. 6. IPFIX Headers

The idea behind our approach to header compression is to define the length of
the fields separately in a pre header which is shown in Figure[d First the Version
field from the original IPFIX header is shortened to 5 bits, this leaves room for
the TPFIX version to increase from version 10 to version 31. The definition of
the length of the fields Message Length, Fxport Time, Sequence Number and
Observation Domain ID follows. A value of 0 in the designated bit(s) means
that the field is allowed 1 byte in the subsequent header, a value of 1 means 2
bytes, etc.. The next two bits are designated for the Template Offset. Decoders
of IPFIX messages are expected to keep track of the sequence in which they
received templates from the IPFIX exporters. A value of 0 in the Template
Offset bits means that the decoder should use the template it has received last,
a value of 1 means the template before that and a value of 2 means two templates
before the last one. If this offset is given for a data message, 2 bytes for the Set
ID can be saved. If template offset is set to 3 (both bits are one) it is ignored
and a proper statement of the template ID is expected in the header. The next
bit is called the Single Set Flag. It indicates whether the message contains only
a single IPFIX set. If this is the case, the explicit statement of set length in the
header can be omitted since this value can be computed from the total message
length. The last bit in the pre header is the Template Set Flag. If it is set to
one, the first set in the message is a template set which is defined to have Set
ID = 2. Thus, the two bytes for definition of the set ID can be omitted.

Gathering Sensor Data in Home Networks with IPFIX 143

In the best case scenario, all header fields can be fitted to 1 byte and the Set
Header can be fully omitted. The possibility to shorten the Message Length and
Observation Domain ID to 1 byte is fairly obvious. Most messages will be shorter
than 255 bytes, in fact if they are transmitted in a single packet, they have to
be smaller than 127 bytes with our hardware. Since the Observation Domain ID
usually refers to the Node ID, a value of 1 byte can accommodate 256 nodes
which represents a WSN of medium scale. The Sequence Number can also be
shortened to 1 byte, since a rollover after 255 messages is non problematic due
to the low data sampling rate of typical WSNs. For the time stamp, a value
of 1 byte could refer to the time that has passed since the last full UTC time
stamp has been sent. Since the field length can be different with every package
sent, it is possible to only transmit a full 4 bytes time stamp periodically and
suffice with a delta value in between. For the best case, this method can achieve
a reduction in header size from 20 bytes to 6 bytes, or a compression of 81,25%.
Figure[® gives an example of the best case, which is actually fairly common since
it shows the transmission of a Data Record referencing the last sent template
set. In the worst case however, header size may increase to 33 bytes when all
header fields are defined to be their original length.

0 15 bits 0 15 16 31 bits
Version ‘ L ‘ ET ‘ SN D TO ‘ S ‘ T ‘ IPFIX Message Pre Header
Version=0xA [0[00]00[00]00]1]0]
Version (5 bits) IPFIX Version Number
L (1 bit) Size of Length Field IEEIXessagalkieadel .
ET (2 bits) Size of Export Time Field Message Length Time Offset = 30 sec
SN (2 bits) Size of Sequence Number Field Sequence Number = 123 Node ID = 234
D (2 bits) Size of Observation Domain ID Field
TO (2 bits) Template Offset Field Set Header (omitted)
S (1 bit) Single Set Flag | LastTemplate ID [From Message Length |
T (1 bit) Template Set Flag
Fig. 7. The IPFIX pre header defin- Fig. 8. Best case header for the IP-
ing the length of the subsequent FIX header compression
header

4.3 Receiving End

To process the data from the WSN to the interface of a home network envi-
ronment, a gateway is needed. It must parse incoming IPFIX data according to
templates generated by the nodes, enrich the received data with meta informa-
tion (e.g.data type, storage location, etc.) and convert sensor specific values to
a general, more abstract data type. In our implementation meta information is
stored in a XML-file and fields are matched via Field ID and Enterprise ID.
When an IPFIX template is received, the Gateway creates a new instance of
Field for every data item defined in the template, based on available meta infor-
mation. Each instance may contain information about the data type of the field,
it’s name (for pretty printing), a flag whether or not updates should be passed on
to the home network and a simple formula that can be used to perform compu-
tations on the received value. Formulas currently support addition, subtraction,

144 T. Kothmayr et al.

multiplication, division and square roots. They may contain a variable z which
is substituted for the received value when the expression is evaluated.

5 Related Work

In 2003 ZigBee was developed for wireless personal area networks [22]. Tt is a
communication protocol based on the IEEE 802.15.4 standard. It was developed
for small-scale isolated ad-hoc networks and limited to a single radio standard.
Today it is a standard which is used nearly everywhere. But it requires more
resources than the 6LoWPAN approach we are using as described in[Z3l ZigBee
has a code size with mesh of 32-64K, requires 8K RAM, produces 8-16 bytes over-
head, and supports 802.15.4 and no transport layer. 6LoWPAN has a code size
with mesh of 22K, requires only 4K RAM, produces only 2-11 bytes overhead,
and supports 802.15.4++ and UDP/TCP [16]. Finally, 6LoWPAN requires less
resources than ZigBee, thus more resources are left for additional computations
and transmissions.

In contrast, 6LoWPAN was developed for scalable networks as an end-to-end
part of the Internet. It is applicable to any low-power and low-rate wireless radio.
The used IP protocols tie together heterogeneous networks. ZigBee itself is not
a standard, it is a special interest group, called ZigBee Alliance [22]. The IETF
supports open, long-lived standards and this will be archived by 6LoWPAN
which works with modified IPv6 protocols and stacks. Together with the home
network scenario using IP addresses for communication we decided to implement
6LoWPAN on the IRIS motes.

As Kimura and Latifi discussed in [I0], many algorithms for data compression
exist but cannot adapt to the constraints of Wireless Sensor Networks. Thus,
special algorithms were developed to compress the transmitted data like Coding
by Ordering, Pipelined In-Network Compression, Low-complexity Video Com-
pression and Distributed Compression.

The basic idea of the algorithm Coding by Ordering [I§] is to drop data at the
aggregation node. This can happen if the transmitted data is unique, and the
order is irrelevant for the application. Now it is possible to use the transmitting
order to transmit additional information to the receiver. This algorithm can be
provided by an aggregator node in the network.

Arici et al. developed an compression algorithm called Pipelined In-Network
Compression in 2003 [I]. This algorithm is also based on aggregator functionality.
The sensor measurements are sent to an aggregator node and buffered. During
the buffer period the incoming packets are combined and redundant data is
deleted before ongoing transmission. The transmitted data uses a shared prefix
which can be used for node IDs and time stamps to reduce space in new packets.
Depending on the prefix length the data compression can be quite efficient.

The algorithms Low-Complezity Video Compression [14] and Distributed
Compression [19] deal with data compression of visual data. the first algorithm
is based on block changing and JPEG data compression. The second algorithm
deals with the usage of side information to encode source information. This
compression scheme can be applied to lossless and lossy compression schemes.

Gathering Sensor Data in Home Networks with IPFIX 145

6 Conclusion

In this paper we introduced a concept to connect a wireless infrastructure to a
wired home network scenario. This can be achieved by implementing 6LoWPAN
on the sensor nodes to bring IP communication to a wireless infrastructure. In
the next step we integrated IPFIX into the WSN and showed the applicableness
for home networks in cooperation with 6LoWPAN.

At first, IPFIX defines a efficient data format for transmitting sensor mea-
surement data using low bandwidth. Generating and parsing IPFIX data can be
performed with little processing power, thus saving energy on the nodes. Arbi-
trary aggregation techniques can be deployed to further reduce the transmitted
data.

If standard template IDs are issued, interoperability between different devices
from different manufacturers can be ensured. At the same time, vendors can
register its own enterprise and type IDs to build custom devices. These devices
can still interoperate with other devices. By using IP on the network layer below
IPFIX, wireless sensor networks can easily be integrated in existing home net-
works. Therefore, new sensor nodes can be easily deployed and new functionality
to the network can be added in an automatic fashion.

To reduce the amount of data traffic within the network and to reduce the en-
ergy consumption of the network we introduced a concept of header compression
for IPFIX and combined it with header compression of 6LoWPAN to increase the
payload capability of each packet. Those compression functions can be combined
with aggregation algorithms to gain more efficiency in the transmissions.

Acknowledgment

The presented work is part of the AutHoNe project which is partly funded by the
German Federal Ministry of Education and Research under grant agreement no.
01BNO70[2-5]. The project is being carried out as part of the CELTIC initiative
within the EUREKA framework.

References

1. Arici, T., Gedik, B., Altunbasak, Y., Liu, L.: PINCO: a pipelined in-network com-
pression scheme for data collection in wireless sensor networks. In: Proceedings of
the 12th International Conference on Computer Communications and Networks
(ICCCN), October 2003, pp. 539-544 (2003)

2. Autonomic Home Networking DE Project Page (2009), http://www.authone.de

3. Claise, B., Bryant, S., Sadasivan, G., Leinen, S., Dietz, T., Trammell, B.H.: Specifi-
cation of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information (RFC 5101). Technical report, The Internet Engineering
Task Force (IETF) (January 2008)

4. Crossbow Technologies Inc. (2009), http://www.xbow.com/

5. Das, K.: IPv6 and Wireless Sensor Networks. IPv6.com Tech. Spotlight (2008)

http://www.authone.de
http://www.xbow.com/

146

6.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

T. Kothmayr et al.

Fouladgar, S., Mainaud, B., Masmoudi, K., Afifi, H.: Tiny 3-TLS: A trust delega-
tion protocol for wireless sensor networks. In: Buttyéan, L., Gligor, V.D., Westhoff,
D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 32—42. Springer, Heidelberg (2006)

. Harvan, M., Schonwilder, J.: TinyOS Motes on the Internet: [Pv6 over 802.15.4

(6lowpan). PIK - Praxis der Informationsverarbeitung und Kommunikation 31(4),
244-251 (2008)

. Internet Assigned Numbers Authority (2009), http://www.iana.org/
. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for

wireless sensor networks. In: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pp. 162-175. ACM, New York (2004)
Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks.
In: Proceeding of the International Conference on Information Technology: Coding
and Computing (ITCC), April 2005, vol. 2, pp. 8-13 (2005)

Kobayashi, A., Blaise, B., Ishibashi, K.: IPFIX Mediation: Framework. Technical
report, The Internet Engineering Task Force (IETF) (October 2009)

Levis, P., Gay, D.: TinyOS Programming (July 2009)

Luk, M., Mezzour, G., Perrig, A., Gligor, V.: MiniSec: a secure sensor network
communication architecture. In: IPSN 2007: Proceedings of the 6th international
conference on Information processing in sensor networks, pp. 479-488. ACM, New
York (2007)

Magli, E., Mancin, M., Merello, L.: Low-complexity video compression for wireless
sensor networks. In: Proceedings of the International Conference on Multimedia
and Expo (ICME), Washington, DC, USA, vol. 3, pp. 585-588. IEEE Computer
Society, Los Alamitos (2003)

Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: IPv6 over Low Power Wireless
Personal Area Networks (6LowPAN) - RFC 4944. Technical report, The Internet
Engineering Task Force (IETF) (September 2007)

Mulligan, G.: The 6lowpan architecture. In: Proceedings of the 4th workshop on
Embedded networked sensors (EmNets), pp. 78-82. ACM, New York (2007)
Miinz, G., Braun, L.: Lossless Compression for IP Flow Information Export
(IPFIX). The Internet Engineering Task Force (IETF), Internet-Draft (work in
progress), draft-muenz-ipfix-compression-00 (2008)

Petrovic, D., Shah, R.C., Ramchandran, K., Rabaey, J.: Data funneling: routing
with aggregation and compression for wireless sensor networks. In: Proceedings of
1st IEEE International Workshop on Sensor Network Protocols and Applications,
May 2003, pp. 156-162 (2003)

Pradhan, S.S., Kusuma, J., Ramchandran, K.: Distributed Compression In Dense
Sensor Networks. IEEE Signal Processing Magazine 19, 51-60 (2002)

Przydatek, B., Song, D., Perrig, A.: STA: Secure information aggregation in sensor
networks. J. Comput. Secur. 15(1), 69-102 (2007)

Quittek, J., Bryant, S., Claise, B., Aitken, B., Meyer, J.: Information Model for IP
Flow Information Export, RFC 5102 (2008)

ZigBee Alliance. ZigBee specification. Technical Report. Document 053474r06 Ver-
sion 1.0, ZigBee Alliance (June 2005)

http://www.iana.org/

Sensing for Stride Information of Sprinters

Lawrence Cheng', Huiling Tan’, Gregor Kuntze®, Kyle Roskilly?, John Lowe?,
Tan N. BezodisS, Stephen Hailesl, Alan Wilsonz, and David G. Kerwin®

! University College London, Computer Science Department, Malet Place,
London, WCIE 6BT, UK
{l.cheng,s.hailes}@cs.ucl.ac.uk
2 Royal Veterinary College, Structure and Motion Lab, Hawkshead Lane, Herts, AL9 7TA, UK
{htan, kroskilly, jlowe,awilson}@rvc.ac.uk
3 University of Wales Institute, Cardiff, Cardiff School of Sport, Cyncoed Road,
Cardiff, CF23 6XD, UK
{gkuntze, ibezodis, dkerwin}@uwic.ac.uk

Abstract. Accurate sprint-related information, such as stride times, stance times,
stride lengths, continuous Centre-of-Mass (CoM) displacements and split times
of sprinters are important to both sprint coaches and biomechanics researchers.
These information are traditionally captured using camera-based systems which
are very expensive and time-consuming to setup. This paper investigates -
through a series of experiments - whether an integrated sensing system would
provide a practical, cost-effective alternative to measuring stride-related informa-
tion of sprinters. The results show that the system achieves an accuracy within
Sms for stance time and stride time measurements, and ~10cm for localisation-
related information such as CoM forward displacement and CoM stride dis-
placement (i.e. stride length).

Keywords: Application, performance monitoring, sports, stride information,
wireless sensing.

1 Introduction

Sprint performance is ultimately evaluated by one factor: speed. There are several well
known factors that affect sprinters’ speed, such as stride length, stride frequency, touch-
down and take-off angles', etc. [10]. Existing biomechanics research on stride analysis
use camera-based systems to capture stride-related information. Although these systems
are highly accurate however, they are expensive and time consuming to setup. Pervasive

! A stride is the action between subsequent foot-on events of the same foot of a sprinter during
a sprint. Stride length is the corresponding distance between each foot-on. Stride frequency is
the rate at which a stride is made. Touch-down and take-off angles refer to the angle of the toe
in relation to the Centre of Mass (CoM) of a sprinter at foot-on and foot-off respectively.
Stride time is the time in-between each foot-on; stance time is the time when the foot is on the
ground.

J. Sa Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 147— 2010.
© Springer-Verlag Berlin Heidelberg 2010

148 L. Cheng et al.

computing for sprint (or sports) performance monitoring [1][2][3][8][9] is a relatively
new research area. SEnsing for Sports And Managed Exercise (SESAME) [1][2][3] is a
multi-disciplinary project to develop practical, deployable, and inexpensive wired and
wireless sensor-network-based systems to support sprint coaching and biomechanics
research. The SESAME Integrated System (IS) includes several wired and wireless
track-side and on-body sensing sub-systems: a radio-based continuous speed/location
tracking system, a Light Gate (LG)-based split time measurement system, and a wireless
foot pressure sensing system. The SESAMS IS was developed to investigate whether
sensor technologies are suitable and capable of delivering stride-related information,
such as stance time, stride time, stride length, etc. to support coaching and biomechanics
research. In this paper, the design and experiment results of the SESAME IS are pre-
sented and discussed.

This paper is organised as follows: first, related work and system requirements are
discussed; secondly, an overview of the SESAME IS and its sub-systems, and the
integration and synchronisation methods are presented; thirdly, the experimental pro-
cedure is presented; fourthly, the experiment results are analysed and discussed. Then,
the applicability and impact of the system is discussed. The paper ends with a conclu-
sion and future work.

2 Background

Existing biomechanics research studies have been using motion-capture camera-based
systems, such as active marker systems (e.g. CODA [6]), or passive marker systems
(e.g. Vicon [11] or Qualisys [12]), or high-speed video cameras to obtain stride-
related information of sprinters. Although these systems are considered as gold-
standard technologies due to their high level of accuracy, and that they provide 3D
coverage of (all) body segments, they are very expensive, have limited viewing angle,
and are time consuming to setup. It is therefore important to investigate other ap-
proaches. An overview of ubiquitous computing for sports performance monitoring
was presented in [8]; the work focused on outlining the best practice for designing
and implementing ubiquitous computing systems for sports performance monitoring.
In [13], a wearable piezoelectric force sensing system for detecting scoring kicks in
Taewondo matches was presented. A light-sensor-network-based split time* measur-
ing system for sprinting was presented in [3]; the system covers five lanes over a 60m
indoor track, and reports (and records) the split times of multiple competing athletes
to coaches in real-time. Coaches could then use the split time information to adjust
his/her training methods during a training day-session and/or over a training season.

It is argued that, given the limitation in sensor technologies’ accuracy and space
limitation for on-body sensor attachment, accurate stride-related information could
only be derived from fusing together multiple sources of data from both track-side
and on-body sensing systems. Thus, this paper focuses on investigating whether an
integrated sensing system would provide a practical solution to delivering stride-
related information of sprinters.

% A 10m split time is the time it takes for a sprinter to sprint 10m.

Sensing for Stride Information of Sprinters 149

3 The SESAME Integrated System (IS)

3.1 System Description

Each of the sub-systems must provide unique information that can be fused together
to provide meaningful results. More specifically, the following type of information
would be needed in order to derive a complete set of stride-related information for
supporting coaching and biomechanics research work (in addition to gold-standard
data for evaluation): continuous speed (or 1D location) information of the sprinter,
stance time, stride time, and additional data for correcting noisy localisation data. It
should be noted that, in order to fuse the above data together, all sub-systems must be
synchronised. Integration and synchronisation in the SESAME IS is discussed in
more detail in section 3.2. All the experiments were conducted in the five-lane 60m
indoor sprint track at the National Indoor Athletics Centre (NIAC), Cardiff, UK.
CODA is used as a validation tool for the experiments presented in this paper due to
their well-recognised high level of accuracy [7]. CODA can be synchronised with
external systems either through TRIG IN or SYNC IN°.

The SESAME Pisa Light Gate (PLG) system was developed by the SESAME
team. It is a novel and cost-effective split time measuring system [3] which is capable
of providing in real-time gold-standard comparable split time results of multiple com-
peting athletes to coaches and athletes for coaching support. It is permanently
installed at NIAC and has been operational since May 2009. Essentially, 30 retro-
reflective LGs (retro-reflective light sensor (RL39-55/30/35/40a/116/126a) from Pep-
perl + Fuchs) were permanently installed in the roof of the stadium. The LGs point at
57.5° (+0.5°) to the reflective tapes which are placed on the white lanes that separate
the five lanes of the indoor 60m track. As an athlete cuts through each light beam, the
signal generated at the corresponding LG is timestamped by a sensor node (i.e. a
gumstix [16], which is a mini Linux computer that is permanently installed at the
track-side), thus the corresponding split times are calculated. All software were
custom-written: computational software were written in C and the web-based user
interface was written in PHP. The PLG system supports TRIG OUT for external syn-
chronisation; the signal is delivered to other systems through a BNC socket on the
system’s enclosure. Readers should note that split times have been, traditionally, the
fundamental block of sprint performance evaluation [14][15]. The PLG system is
therefore specifically designed to provide the type of information that coaches are
familiar with and could easily relate to.

Fine-grain type of information such as continuous speed (or 1D location) informa-
tion of a sprinter during a sprint, stride length, etc. are useful to biomechanics re-
search. To derive this information, accurate measurements of the continuous location
of an athlete during a sprint are crucial. Radio-based localisation systems are more
cost-effective than laser range finders and have a higher level of automation (that they
do not require manual adjustments). A radio-based localisation system is used in the

3 TRIG IN means the system is capable of timestamping a common voltage input trigger signal
using its own clock. SYNC IN means the system is capable of being driven to sample based
on a series of incoming SYNC pulses. Most camera-based gold-standard technologies, such as
CODA and Qualisys, support these form of synchronisation methods (as well as TRIG OUT
and SYNC OUT) for synchronising with external systems.

150 L. Cheng et al.

SESAME IS for continuous speed/location tracking of athletes during their sprints.
The SESAME localisation system was built on the nanoLoc (NNL) system from
nanotron [5], which operates in the 2.45GHz ISM band. The system uses Time of
Arrival (ToA) information from packets exchanged using the Double-Sided Two-Way
Ranging (SDS-TWR) protocol, between a track-side anchor and an on-body tag to
estimate the distance between the two devices. The Peer-to-Peer (P2P) system (which
requires just one anchor) was used for the experiments presented in this paper due to:
a) its simplicity: only one anchor would be needed at the end of the track and the tag
is attached to the subject’s CoM (i.e. lower back). Both devices are small in size, thus
the disturbance caused by the presence of track-side equipment to other track users is
kept to a minimal comparing to a multiple-anchor system; and b) the interest of this
paper lies within 1D localisation, which is provided by the P2P system. The sampling
rate of NNL was ~100Hz. The timestamping mechanism of the NNL system was
modified in order to support TRIG IN: the NNL anchor is connected to a track-side
laptop, the latter is also connected to the PLG system via BNC cables. The TRIG
OUT signal from the PLG system and the calculated distance results from the NNL
system is timestamped at the laptop which provides a common time base for the com-
mon trigger signal from the PLG system and the NNL samples. The localisation soft-
ware were written in C.

The wireless SESAME Force Sensing Resistor (FSR) system is a custom-built foot
contact time measurement system. It was designed around Interlink Electronics FSR
model 406. The sensors used were thin 1.5” square sensors attached at the heel, mid-
foot and toe positions on a standard shoe insole. The general purpose logging board
incorporates a wireless transceiver, which gives the capability to synchronise data
from multiple boards in disparate locations both track-side and on-body. This is
achieved with the addition of a beacon transmitter board to the system, which is lo-
cated at the track side and has an effective transmission range over 60m. The beacon
transmitter sends an incrementing single byte value at a rate of 1Hz. This ‘beacon’ is
received by all logger boards within transmission range and recorded alongside the
next ADC sample, which is timestamped by the internal clock. The difference in la-
tency in receiving and processing the beacon among different boards is anticipated to
be sufficiently small, so that it is possible to synchronise ADC data from multiple
boards with at most one sample interval of error. This is also assuming that the inter-
nal clocks do not drift significantly over a 1 second period and that logging has been
started on all boards within the rollover period of the beacon value, which are reason-
able assumptions. The built-in synchronisation features of the logging boards provide
a simple method to combine data from on-body equipment, like the FSR system, with
other track-side equipment. The track-side beacon transmitter and ‘sync’ logger are
used for this purpose. The ‘sync’ logger can record trigger signals from any track-side
equipment, such as the TRIG OUT signal from the PLG system, and therefore pro-
vides a route to synchronisation with on-body equipment.

3.2 System Integration and Synchronisation

All sub-systems must be synchronised. It should be noted that one unique feature of
sprinting experiments is that the experiment runtime is very short, and there is no
need to capture stride information beyond each sprint. Thus, a generic synchronisa-
tion method should be adopted in the SESAME IS to provide easy integration with

Sensing for Stride Information of Sprinters 151

future sub-systems. Since crystal clocks drift linearly and the experiment runtime is
very short-span, the effect of clock drift is minimal. TRIG OUT (from PLG) is there-
fore chosen as the cross-subsystem synchronisation method in the SESAME IS. The
common trigger is delivered to all track-side sub-systems through BNC cables. Under

such arrangement, flexibility to develop individual sub-system is enhanced. Fig. 1
shows the SESAME IS.

TRIG OUT

Track-side Linux-
based PC

FSR Sync

Track-side
Logger

NNL anchor
JRIG OUT TRIG OUT

LG data IN
; Track-side CODA PC
4
FSRbeacon Sync bytes
beamer LG 2.20 LG 2.10
D (in roof) (in roof)
~ \ \
ST \ \
N CODA 4 CODA 3 \ CODA 2 CODA 1
N, \
\
\
\
Body direction
20m \
- \
~o - \
SO
In-door sprint track Reflective plate =~ Reflective plate ~ Track-side

Directional
antenna

f 10m ‘

Fig. 1. The SESAME Integrated System

4 Experiment Setup

The purpose of the experiment is to collect data from the SESAME IS across all
phases of sprinting, namely: the acceleration phase, the secondary acceleration phase,
the maximum speed phase, and the fatigue phase. Due to the viewing angle limitation
of CODA, the experiments were divided into four sets:

e Set 0: FSR pressure-sensing and synchronisation accuracy against Force
Plates (FPs); CODA was not used because it does not enable one to work out
the precise time moments when a specific part of a foot is on the ground

e Set1l: ~Om to ~15m (i.e. acceleration and secondary acceleration phase); in-
cluding FSR, NNL, and CODA

e Set 2: ~20m to ~35m (i.e. secondary acceleration and/or maximum speed
phase); including FSR, NNL, and CODA

e Set 3: ~40m to ~55m (i.e. maximum speed and/or fatigue phase); including
FSR, NNL, and CODA

In set O, the foot-on and foot-off time are detected based on data from the insole-
mounted FSR; then, the accuracy of the foot strike timings were compared with those
measured using force plates (Kistler Instrumente AG, Winterthur, Switzerland),

152 L. Cheng et al.

which is a gold standard for measuring ground reaction forces. In set 1 to 3, the four
CODA scanners were placed on the track-side to monitor full 2D body movement of
each subject (i.e. the vertical and forward plane) over the specified area. The sampling
rate of CODA was 400Hz. Ten active markers were attached to each subject: right
toe, right foot, right ankle, right knee, right hip, right shoulder, right elbow, right
wrist, left toe and left foot. These markers would enable CODA to reconstruct the
athlete’s motion in full (i.e. 2D). The NNL tag is attached to the CoM of each subject
(i.e. lower back). The height of the tag relative to ground was measured; the NNL
anchor was placed 2.8m behind the Om line (which is the furthest the anchor could be
placed away from the Om line), with a 12dBi directional panel antenna placed on a
tripod at the same height as the NNL tag. A directional antenna was used to ensure
long range coverage (i.e. >100m indoor). The FSR insole is placed underneath the
right root of each subject. Two subjects did a total of 18 sprints over a two-day ex-
periment at NIAC. Only one sprinter ran during each trial to ensure most markers
were within direct line-of-sight with the CODA scanners; the same reason for using
one FSR insole on the right foot for each subject. Note that the hip marker was used
as the CoM of the subject.

5 Results and Analysis

In this section, first, the validation results of FSR on stance time and stride time meas-
urements against Force Plates, and its internal sychronisation validation are presented.
Secondly, the relationship between CoM stride displacement and stride length is ana-
lysed and discussed. Thirdly, a filtering and correction algorithm for correcting noisy
and biased localisation data is presented. Then, the experiment results on CoM dis-
placement during a sprint (i.e. CoM stride displacement) and stride length measure-
ments against CODA are presented and discussed.

5.1 FSR Validation Results and Analysis

5.1.1 Stride Time and Stance Time Results and Analysis

The sharp increase in each channel of the raw data from the FSR system indicates the
‘touch-down’ of the point where the sensor was attached, and the sharp decrease in
the raw data indicates the ‘take-off” of the point. These sharp increases and decreases
were detected by finding the local maximum and minimum of the first-order differen-
tiation of the raw data. For each stride, the first touch-down time among the three
sensors should be the foot-on time for the stride, and the last take-off time within the
three sensors should be the foot-off time. In running or sprinting, the touch-down and
take-off from the toe sensor were used for foot-on and foot-off timings. The stance
duration, which is the time the foot is in contact with the ground, was calculated by
taking the difference between the foot-off time and foot-on time.

For validation of the FSR, synchronised FSR and force plate data was collected
from ninety-five strides at different speeds (3m/s ~6.5m/s). The force place used was
8m in length, on average two strides were collected per trial. The synchronisation
method is the same as the one deployed in the SESAME IS, i.e. a TRIG OUT from

Sensing for Stride Information of Sprinters 153

Force Plate is delivered to the FSR’s Sync Logger via a BNC cable (section 3.2). The
standard deviation of the foot-on time and stance durations calculated from FSR is
3.1ms and 4.2ms respectively compared to those from FP, with 50% of the strides
having error within 3ms and 80% having the error within Sms in both foot-on time
and stance durations.

5.1.2 FSR Synchronisation Validation Results

The accuracy of the beacon-based synchronisation between the FSR logging board
and the Sync logging board was validated in this section. The two logger boards and
beacon transmitter were switched on and logging started at a rate of 1000Hz. A simu-
lated trigger signal was generated, consisting of rising and falling edges at arbitrary
intervals, and logged directly into a channel on both logger boards simultaneously.
The timings of the trigger signal edges from each board were then converted to a
common timebase, using the received beacons, and differenced. From 150 trigger
edges, the mean absolute timing error was 0.647ms with a standard deviation of
0.715ms. 67.3% of the edges times were no more than 1ms (1 sample period) differ-
ent, 88% were no more than 1.01ms different, and 100% were no more than 2ms
(2 sample periods) different. This is an acceptable result, particularly as it is antici-
pated that synchronisation accuracy should improve at the reduced sampling rates
(300Hz) used by the FSR system.

5.2 Stride Length Results and Analysis

In this section, first, it was investigated — using CODA data — whether there is a rela-
tionship between CoM stride displacement and stride length. Then, the accuracy of
NNL data was evaluated by comparing it with the CoM forward displacement from
CODA'’s hip marker data, and investigate how NNL’s accuracy could be improved by
fusing NNL data with other type of SESAME IS data. Assuming a relationship be-
tween stride length and CoM stride displacement exists, and that the accuracy of the
NNL data can be improved, one could deduce stride length by combining the NNL
CoM forward displacement with the foot-on times measured from the FSR data.

5.2.1 Relationship between CoM Stride Displacement and Stride Length

The purpose of this analysis is to investigate whether a relationship exists between the
CoM forward displacement during a stride (i.e. CoM stride displacement) and stride
length using CODA data. Since sprinters sprint on their toes, the vertical displace-
ment of the right toe, vertical acceleration of the right toe, and forward displacement
of the hip marker were used for analysis (see Fig. 2, note that vertical displacement of
toe has been scaled down for display purposes). The vertical displacement and verti-
cal acceleration of toe enable one to work out the foot-on times; this is because at
foot-on, the vertical displacement of toe is approximately zero (i.e. on the ground);
there is also a sharp change in acceleration. The corresponding turning point in accel-
eration would be the foot-on time. Using these foot-on times, one could work out the
corresponding forward displacement of the hip during a stride (i.e. CoM stride dis-
placement). Then, the data was compared with the stride length data from CODA.
Foot-on is defined as the first moment when the toe touches the ground.

154 L. Cheng et al.

€ odamotuen Anshyss - [-] - [Sefve: Harker 2.7 * Tame]
5 CODA Ple Setp Vews Cusos [t Window el
N T e e e W T W R R I L
Foot-on #4

Foot-on #2 Hip forward

Foot-on #1 | disp. . Toe)
) o(;yvar
Toe vertical ; e isp.
| /

acc.

Displacement (mm)

Toe vertical

Toe under, disp.
e

CoM \‘ I
[S

: Time is) T

L Curser = 104945, 7= 17,00 BCurser = 11,605, 7= F.0mm
For Mg, press Fl Tia: 10444 (13, 19% of 2748 B9 [Fbwng OF

Bstet| FOUIALDDW D | md | dhounis 7o (@ Woossrier. | o) @ w0 @O REE] 1

Fig. 2. Toe and hip forward and vertical displacement and acceleration

The results over 18 trials show that for set 1, the difference was 4.491 + 4.426cm
(mean + SD); for set 2 was 0.683 = 1.807cm; for set 3 was 0.208 + 2.295cm. The
results suggest that: a) a relationship does exist between CoM stride displacement and
stride length, in fact there is a 100% relationship between the two whilst the toe is still
on the ground and the CoM moves above the toe (see the first two yellow dotted lines
in Fig. 2 from left to right which indicate the times when the hip and the toe are in a
straight, vertical line); and b) the two are more closely related as speed increases, this
is indicated by the fact that the errors of set 2 and set 3 are significantly less than the
errors of set 1. It is concluded that, by combining the foot-on times from FSR with
NNL data, the CoM stride displacement can be determined.

5.2.2 Low-Pass Filtering and Bias Correction on Raw NNL Data
In order to derive CoM stride displacement, accurate CoM forward displacement is
essential. It is well-known that data from radio-based localisation systems subject to
noise and non-constant bias that the bias changes according to distance between the
anchor and the tag. Furthermore, one would also anticipate the errors to differ should
the surrounding environment changes (e.g. body obstructions, the presence of interfer-
ing wireless devices, etc.). For example, after comparing with CODA data, the bias in
the raw NNL data was ~6m between ~Om-20m and was ~7m between ~30-40m (Fig. 3
and Fig. 4). These errors are caused by several factors, namely: multiple-path signal
reflection from the surrounding environment, background noise, and body obstruction,
which are difficult to avoid. One approach is to correct the bias through modeling.
However, given the level of variability involved, this approach would be difficult [4].
An option to remove noise in the NNL data would be the use of Kalman filter.
However, the assumption of constant speed or constant acceleration cannot be justi-
fied because there is no other redundant information on speed or acceleration. The

Sensing for Stride Information of Sprinters 155

solution presented in this paper is to remove high frequency noise in the data by low-
pass filtering, and to fuse accurate position data from the PLG system (which is avail-
able every 10m) with the noisy and non-constant biased NNL location data in order to
“correct” NNL’s errors. Thus, Fast Fourier Transform (FFT) was used on all the raw
NNL data to determine the suitable cut-off frequency for low-pass filtering. The
analysis shows that 1Hz is the optimal cut-off frequency.

The PLG system provides accurate location of the subject at set known positions
(e.g. Om, 10m, 20m, etc.). The PLG data was used to correct the filtered NNL data in
a piecewise linear model. More specifically, at specific times during a sprint (i.e.
when the subject passes each LG), the corresponding NNL measurements are noted”.
The difference of the two would be the bias and would be used as the correction for
all subsequent filtered NNL measurements until the next LG is reached. The corrected
NNL data are then compared against the corresponding CODA data.

5.2.3 Error Analysis on Raw, Filtered, and Corrected NNL Data vs. CODA

Fig. 3 to Fig. 5 shows a selection of graphs from the experiment results. The top left-
hand subplot of each graph shows how raw NNL data, filtered (1Hz) NNL data, fil-
tered (1Hz) and corrected NNL data (known as corrected NNL data for the rest of the
paper), and CODA hip forward displacement measurements (i.e. gold-standard data)
change against time. The subplot at top right-hand corner of each graph shows the
error distributions of the differences between raw NNL forward displacement data
and the corresponding CODA data, the subplot at bottom left-hand corner shows the
error distributions of the filtered NNL data (1Hz) against CODA, and the subplot at
bottom right-hand corner shows the error distributions of the corrected NNL data
against CODA. Results from all sets were presented.

The average mean error of all trials is 5.48cm, with a standard deviation (STD) of
10.82cm. Note that the CODA data uses the hip marker as the CoM; whereas the
NNL data refers to the NNL tag which is at lower back, the difference between the
two positions was between Scm to 8cm (i.e. approximately halve the width of the
subject’s waist); this difference is represented in the mean error. In other words, the
error is negligible. More specifically, the STD for set 1, set 2 and set 3 was 12.24cm,
9.68cm, and 9.1cm respectively. It was suggested that the slightly larger STD for set 1
was caused by the bump which occurs recursively at the same location of ~1-2m from
Om, which is ~4-5m from the NNL anchor (Fig. 3).

To identify the cause of the bump, the experiment was repeated after relocating the
same set of equipment to the other end of the track (i.e. a different environment);
furthermore, a set of static experiments, which involved the subject carrying the tag
standing still at various locations for 120s were conducted. The results show that the
bump still exists at the same location in relation to the anchor’s position (i.e. a repeat-
able pattern). Another set of identical experiments were carried out but with the direc-
tional antenna of the NNL anchor replaced by an omni-directional antenna. It was
observed that the bump continue to exist repeatedly but at a different location on the

* NNL and PLG are synchronised through a common trigger, but their samples are timestamped
using their local clock. Thus, to obtain the corresponding filtered NNL measurements at a
specific time, NNL measurements are interpolated. Since NNL has a high sampling frequency
(~100Hz), the error of interpolation is minimal.

156

Fig. 3.
(trial 7,

L. Cheng et al.

(a) Trial 007 - Cut-off freq, at 1Hz (b} Raw MMNL
25 v . . 50 . d .
Filtered
NNL
= 201 Raw NNL : \,'“
= / B o w
g 15 Hme. o 5
Fol T :
i3 “—Corrected E
21 " S VTN .
a oy ALt
5 COD L)
% CODA {hipp
0 i
3 4 5 6 7 5 55 6 6.5 7 75
Time (s) Errors (m)
(c) Filtered MMNL (1Hz) (d) Corrected NMNL (1Hz)
50 50
40
0 w
§ 30 5
5 5
e 2
7 20 @
(m] a
10
0
5] 6.2 6.4 6.6 6.8 -%.5 0 0.5
Errors (m) Errors (m)
Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA
set 1)
(a) Trial 012 - Cut-off freq. at 1Hz (b) Raw NMNL
4 Filtered 20
NNL ¥
_. 40 \, i
E Raw NNL =" Corrected 15
= i / 174 w
£ 35 > e NNL §
§ z 3 10}
330 1 g
& e
=} 25 '\ 5
CODA
20 ; 0
6.5 T 7.5 5 6 7 8 9
Time (s) Errors (m)
(c) Filtered MNNL (1Hz) (d) Corrected NML (1Hz)
25 " T T v f 25
201
w wn
815 8
3 3
Z 10 Z
=] a
<]
0 | |
6.85 6.9 6.95 7 7.05 7.1 ! 0 0.1 0.2 0.3
Errors (m) Errors (m)

Fig. 4. Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA

(trial 1

2, set2)

Sensing for Stride Information of Sprinters 157

(a) Trial 003 - Cut-off freq. at 1Hz (b) Raw NNL
B0 i T 1 & T v
Filtered
Raw NNL | NNL E
i "t
€55 o 6
= ol Corrected g
[=4
o NNL S
E s0 / 1 24
H L 5
o a
O 45 2
CODA || | |
40 . ; . 0
6.5 74 75 & 5 [7 9
Time (s) Errors (m)
(c) Filtered NNL (1Hz) (d) Comrected MML (1Hz)
257
20}
w v
5 8 15;
3 =]
0 F=]
N =3 =
w w® 10¢
a a
5;
] 0
6.6 6.8 T ¥i2 74 0 0.1 0z 0.3 0.4
Errors (m) Errors (m)

Fig. 5. Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA
(trial 3, set 3)

(a) Trial 005 - Mean Errors of Corrected NNL
02Fr——————-1—-———-—-—--— T-———=—

Mean Errors (m)
Mean Errors (m)

4 510 20 30 40 50
Cut-off Frequencies (Hz) Cut-off Frequencies (Hz)
(b) Trial 005 - STD of Corrected NNL

STD (m)

2 4 510 20 30 40 50
Cut-off Frequencies (Hz) Cut-off Frequencies (Hz)

Fig. 6. Mean error and STD at different cut-off frequencies (trial 5, set 2)

track. It was concluded that this bump was caused by the multiple path ground reflec-

tion of signals which is associated with the characteristics of the antenna being used.
Mean error and STD were useful to evaluate systematic error and noise. The results

(Fig. 6) show that, the lower the cut-off frequency, the smaller the STD, and the mean

158 L. Cheng et al.

error is small and relatively steadily (when cut-off frequency is <5Hz). Also, the esti-
mated trajectory is smoother; whereas at 5Hz, the curve is relatively “wobbly”. One
may argue that the smaller STD when using a lower cut-off frequency for filtering is a
result of the over-smoothing effect, which could lead to small systematic errors; how-
ever, a smooth curve with a small STD would be useful for stride length analysis
because - for stride length - it is the difference between two points that are of interest.

5.2.4 NNL CoM Stride Displacement Analysis

The foot-on times from the FSR system are combined with the corrected NNL data to
determine the corresponding CoM stride displacement; the results are compared with
the corresponding stride length results from CODA (Table 1). A total of 32 strides
were collected. Fig. 7 shows how stride length could be determined from NNL and
FSR data: the foot-on timestamps from FSR are determined, the times are used to
determine the corresponding forward CoM displacement from NNL data. The result is
the CoM stride displacement, which corresponds to the stride length.

i NNL Filtered
Displacment NNLso 30 i
i T NNL (1Hz)
NNI—10 | 1 |b|3.830
CoMf-------== . | Diaszo é
stridel ! :biasm é PLGa3,
disp.*f L PLGazo
| |
i ! +PLG10 |
® i i Region A
1 N
to \ \ t1o oo 130 Time

FSR foot- FSR foot- (not in scale)
on #1 on #2

Fig. 7. Stride length determination by combining continuous CoM displacement data from
NNL and FSR foot-on data

Table 1. Average mean errors and average STD of NNL “strides” of different sets

Set num 1 2 3
Mean Diff (cm) 5.65 9.2 3.06
STD (cm) 25.16 8.34 14.98

The accuracy of NNL’s CoM stride displacement is directly related to the accuracy
of the corrected NNL data itself, and it is also related to the relationship between the
CoM stride displacement and the actual stride length. The STD of set 1 is slightly
higher than the required accuracy, which is in-line with the observations presented in

Sensing for Stride Information of Sprinters 159

section 5.2.1: at the acceleration phase, the relationship between stride length and
CoM stride displacement (or CoM forward displacement) is relatively weaker than the
relationship at later stages. The results suggest that the SESAME IS is capable of
determining stride length at a high level of accuracy for the secondary accelerating
phase, maximum speed phase, and fatigue phase.

It should be noted that the presented filtering and correction model is an essential
element of a practical solution to achieving the highest possible level of accuracy.
Averaging raw NNL data over time would not remove the effect of non-constant drift
in the data; and it should also be noted that athletes’ speed is not constant throughout
a sprint (the times in Fig. 4 and Fig. 5 are different, showing that the athletes are run-
ning at different speeds during different phases), and as discussed in section 4, the
variability of speed during a sprint is subject-dependent. If the non-constant drift is
repeatable (i.e. that it is determinable how the system would drift at each specific
location on the track), one might argue that one could create a model to address the
drift. However, such argument relies on an assumption that the surrounding environ-
ment of the track remains unchanged. Such argument cannot be justified because the
track is a shared domain, meaning that it is beyond one’s control of any future devel-
opments, and it is not reasonable to assume resources would be available in the long
term to re-calibrate the system every time a change happens. Since any radio-based
system that uses a shared radio-band is subjected to interference, the SESAME IS
uses the PLG data to minimise the effect of unpredictable events that might affect the
accuracy of the system.

6 Applicability and Impact

Since the commissioning of the PLG system at NIAC, the system has been used by all
registered coaches at NIAC and their associated athletes during their training sessions
in a weekly basis. Recent research work [18][19] have investigated into algorithms for
interference-aware radio-based localisation systems however, the impact of such
mechanisms on the system’s accuracy when deployed in a real environment is not
known. Although it is beyond the scope of this paper to investigate interference-free
(-aware) radio-based system, the real, raw localisation data from the SESAME NNL
system would provide valuable information to carry out evaluation on new correction
algorithms.

7 Conclusion

In this paper, the design and experimentation results of the SESAME IS system was
presented. The system was designed to determine stride-related information, such as
stance time, stride time, and stride length, as well as speed-related info such as split
times and continuous location/speed information of high speed running sprinters. The
SESAME Integrated System includes a wireless foot-mounted FSR, a radio-based
localisation system, and a LG-based split time measuring system. The technologies
behind each sub-system, together with practical solutions to integrate and synchronise
the heterogeneous sub-systems, are presented. The procedures of the experiments and

160 L. Cheng et al.

the correction model for noisy and non-constant raw radio-based localisation data
were presented. Through experimentations and sensor fusion of data from multiple
sources, the system achieves an accuracy within Sms for stance time and stride time
measurements; and within ~10cm for stride-related measurements across the secon-
dary acceleration phase, maximum phase, and fatigue phase of a sprint, with a slightly
higher variation during the acceleration phase. The applicability and impact of the
system are also discussed.

8 Future Work

Part of the future work is to develop custom-made sensor logging boards with much
smaller size. The next version of sensor logging boards - which will replace the current
NNL tag and the FSR logging board - uses the same NNL AVR chip and an on-board
chip antenna. The new board is approximately 2mm thick with half the size of a credit
card. The decision to use the same chip (but on a smaller board) is such that one could
continue the investigation base on the experiment results presented in this paper.

Another part of the future work involves collecting data from the same integrated
system but using a multiple-anchor setup. The idea is that, should one anchor observe
the bump; others may not. Thus, even more accurate displacement measurements
could be obtained. An initial experiment using four anchors suggest that, Curvilinear
Component Analysis (CCA) [17] produces accurate 2D localisation data; 2D localisa-
tion would enable the system to monitor athletes running on the oval track.

Acknowledgement

The authors would like to thank Rae Harbird, Alex Atack, Tim Exell, Michelle Man-
ning, Gen Williams, Dawn Tighe, Scott Simpson, David Lease, Ashweeni Beeharee,
and Simon Julier for their contributions and support. The authors would also like to
thank the athletes who kindly agreed to participate in the studies and experiments.
This work was funded by EPSRC grant number EP/D076943.

References

[1] The SEnsing for Sports And Managed Exercise (SESAME) project,
http://www.sesame.ucl.ac.uk

[2] Cheng, L., et al.: Analysis of Wireless Inertial Sensing for Athlete Coaching Support. In:
Proceedings of IEEE Global Communications Conference (GLOBECOM), New Orleans,
USA (December 2008)

[3] Cheng, L., et al.: A Low-cost Accurate Speed Tracking System for Supporting Sprint
Coaching. Accepted for publication in the Proceedings of the Institution of Mechanical
Engineers, Part P, Journal of Sports Engineering and Technology

[4] Tan, H., Wilson, A.M.: Measurement of stride parameters using a wearable GPS and iner-
tial measurement unit. Journal of Biomechanics 41, 1398-1406 (2008)

[5] nanoLoc Development Kit v1.4, nanotron Technologies,
http://www.nanotron.com/EN/PR_nl_dev_kit.php

(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

(18]

[19]

Sensing for Stride Information of Sprinters 161

CODAmotion, http: //www.codamotion.com

Charnwood Dynamics Ltd., CODA cx1 User Guide (2006)

Kranz, M., Spiessl, W., Schmidt, A.: Designing Ubiquitous Computing Systems for
Sports Equipment. In: Proceedings of IEEE PerCom 2007, pp. 79-86 (2007)

King, R., et al.: Body Sensor Networks for Monitoring Rowing Technique. In: Proceed-
ings of the 6™ IEEE International Workshop on Wearable and Implantable Body Sensor
Networks, CA, USA (June 2009)

Mann, R.: The Mechanics of Sprinting. CompuSport, Orlando, FL (1990)

Vicon, http://www.vicon.com/products/

Qualisys, http://www.qualisys.com/

Chi, E.: Introducing Wearable Force Sensors in Martial Arts. Pervasive Computing
Magazine 04(3), 47-53 (2005)

Courtesy Ferro, A., Rivera, A., Pagola, 1., Ferreruela, M., Martin, A., Rocandio, V.: Bio-
mechanical Analysis of the World Championships in Athletics Sevilla’99: 100, 200,
400m sprint events. New Studies in Athletics 16(1/2) (2001)

Baker, J.S., Davis, B.: High intensity exercise assessment: relationships between labora-
tory and field measures of performance. Journal of Science and Medicine in Sport 5(4),
341-347 (2002)

The gumstix computer, http: //www.gumstix.com/

Li, L., Kunz, T.: Localisation Applying an Efficient Neural Network Mapping. In: Pro-
ceedings of the 1* International Conference on Autonomic Computing and Communica-
tion Systems, Rome, Italy (2007)

Shen, Y., Cai, Y., Xu, X.: Localized Interference-aware and Energy-conserving Topology
Control Algorithms. The Proceedings of Wireless Personal Communications: An Interna-
tional Journal 45(1), 103-120 (2008)

Song, B., Lee, H., Chung, K.: Toward A Totally Solving Interference Problem for Ultra-
sound Localization System. In: The Proceedings of Optical Internet and Next Generation
Network (COIN-NGNCON), Jeju, South Korea, July 2006, pp. 162—-164 (2006)

Wiselib: A Generic Algorithm Library for
Heterogeneous Sensor Networks

Tobias Baumgartner!, Ioannis Chatzigiannakis®®, Sandor Fekete!,
Christos Koninis??, Alexander Kroller', and Apostolos Pyrgelis?

! Braunschweig Institute of Technology, IBR, Algorithms Group, Germany
{t.baumgartner,s.fekete,a.kroeller}@tu-bs.de
2 Research Academic Computer Technology Institute, Patras, Greece
{ichatz,koninis}@cti.gr
3 Computer Engineering and Informatics Department, University of Patras, Greece
pyrgelis@ceid.upatras.gr

Abstract. One unfortunate consequence of the success story of wireless
sensor networks (WSNs) in separate research communities is an ever-
growing gap between theory and practice. Even though there is a in-
creasing number of algorithmic methods for WSNs, the vast majority
has never been tried in practice; conversely, many practical challenges
are still awaiting efficient algorithmic solutions. The main cause for this
discrepancy is the fact that programming sensor nodes still happens at
a very technical level. We remedy the situation by introducing Wiselib,
our algorithm library that allows for simple implementations of algo-
rithms onto a large variety of hardware and software. This is achieved
by employing advanced C++ techniques such as templates and inline
functions, allowing to write generic code that is resolved and bound at
compile time, resulting in virtually no memory or computation overhead
at run time.

The Wiselib runs on different host operating systems, such as Contiki,
iSense OS, and Scatter Web. Furthermore, it runs on virtual nodes simu-
lated by Shawn. For any algorithm, the Wiselib provides data structures
that suit the specific properties of the target platform. Algorithm code
does not contain any platform-specific specializations, allowing a single
implementation to run natively on heterogeneous networks.

In this paper, we describe the building blocks of the Wiselib, and an-
alyze the overhead. We demonstrate the effectiveness of our approach by
showing how routing algorithms can be implemented. We also report on
results from experiments with real sensor-node hardware.

Keywords: Sensor Networks, Algorithms, Library, Heterogeneity.

1 Introduction

Since the initial visions proposed in the SmartDust project [I3] ten years ago,
Wireless Sensor Networks have seen a tremendous development, both in theory
and in practice. On the practical side, we see working sensor networks and appli-
cations in many areas, from academia to industrial appliances. There is a large
variety of hardware and software to choose from that is easy to set up and use.

J. S& Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 162 2010.
© Springer-Verlag Berlin Heidelberg 2010

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 163

This success story has also led to a serious practical issue that has not been
sufficiently addressed in the past: Sensor node brands are very different in their
capabilities. Some nodes have 8-bit microprocessors and tiny amounts of RAM,
while others burst with power, being able to run desktop operating systems such
as Linux. Consequently, the software running on these systems is very different
on the various nodes. While it is easy to write code for a specific platform, it is
a very challenging task to develop platform-independent code. Even worse, the
operating systems on most sensor nodes provide barely enough functionality to
implement simple algorithms. This means that the developer is forced to spend
great attention on low-level details, making the process painfully complex and
slow.

A parallel success story can be observed on the theoretical side, where the
development of distributed algorithms for many actual or hypothetical problems
has grown into a research field of its own. This has led to a large variety of highly
sophisticated algorithms for all kinds of tasks. Unfortunately, many of them have
never been tried in practice, due to the overly difficult implementation process.
Where algorithms are implemented, they are hard to share and compare, as
implementations cannot be easily ported to new platforms. Moreover, many
important challenges are not even addressed, as they can only be identified and
resolved by close collaboration between theory and practice.

This growing gap between theory and practice forms a major impediment for
exploiting the possibilities of complex distributed systems. The Wiselib is our
proposal to remedy this unfortunate situation. We present a framework, written
in C++, for platform-independent algorithm development. Each algorithm writ-
ten for the Wiselib can be compiled for any supported system without changing
any line of code. It provides simple interfaces to the algorithm developer, with
a unified API and ready-to-use data structure implementations. The Wiselib
addresses the following issues:

Platform independence. Wiselib code can be compiled on a number of dif-
ferent hardware platforms, usually without platform-dependent configurations,
i.e., no “#ifdef” constructions. See Section 3] for details.

OS independence. Wiselib code can be compiled for different operating sys-
tems. This includes systems based on C like Contiki, as well as C++ (the iSense
firmware) and nesC (TinyOS).

Exchangeability. Algorithms and applications can be composed of different
components that interact using well-defined interfaces, called concepts. Com-
ponents can be exchanged with other implementations without affecting the
remaining code. Moreover, both generic components and highly optimized
platform-specific components can be used simultaneously.

Broad algorithm coverage. The Wiselib currently covers a large variety
of algorithms. It will contain algorithms for each of the following categories:

1. routing algorithms 4. localization algorithms,
2. clustering algorithms, 5. data dissemination, and
3. time-synchronization algorithms, 6. target tracking.

164 T. Baumgartner et al.

Cross-layer algorithms. In Wiselib an algorithm can be designed to use other
algorithm concepts, thus enabling the use of existing algorithms for the imple-
mentation of more complex ones. Moreover, we can stack protocols on top of
each other, extending their functionality. See Section [l for details.

Standard compliance. The library is written in a well-defined language subset
of ISO C++. This has a number of benefits over custom languages such as nesC:
The compilers are more mature and better supported, and there is a large user
base that knows C++ from desktop development.

Scalability and efficiency. The Wiselib is capable of running on a great va-
riety of hardware platforms, with CPUs ranging from 8-bit microcontrollers to
32-bit RISC CPUs, and with memory ranging from a few kilobytes to several
megabytes. Algorithms need to be very resource-friendly on the platforms from
the lower end, and at the same time be able to use more resources if available.

To our knowledge, the Wiselib is the only successful attempt to achieve all
of these goals at once. In this paper, we present the basic building-blocks of the
Wiselib, and show that the flexibility of the design has barely any overhead—
neither in code size nor in run-time; one can simply add new algorithms only
by following the presented approach using the Wiselib interfaces. The algorithm
can then run on each supported sensor node or simulation platform. Our goal
is to achieve a state in which such an algorithm runs on heterogeneous sensor
networks, and even more, networks in which some parts consist of virtual nodes
running in a simulator.

This paper is organized as follows: The next section provides an overview of
related work, covering competing approaches as well as implementations that
inspired this work. Section [3 explores the problem space by discussing the target
platforms on which we wish to run the Wiselib. Section [presents details on
the design of the Wiselib. In Section [l we describe example implementations
of routing algorithms; in Section [6] we report on the surprisingly small code
and memory footprint on different platforms. Section [1 describes the current
distribution of the Wiselib. We conclude the paper in Section [8

2 Related Work

Efficient algorithm libraries have a long-standing tradition on desktops and
servers. The three libraries that motivated our work are the Standard Template
Library (STL), the Computational Geometry Algorithms Library (CGAL) [4],
and Boost [2]. They share a great programming concept that we heavily use for
the Wiselib: Using C++ templates, one can construct complex object-oriented
software architectures that can be parameterized for many different applications.
The price of generality is paid at compile time. The final binary contains highly
efficient and specialized code, so that there is no overhead at runtime.

The situation in sensor networks is not as promising. There have been ap-
proaches to overcome the issues of incompatible nodes by providing generic op-
erating systems that run on multiple platforms. Examples are Contiki [6] and

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 165

TinyOS [20]. Neither runs on all platforms we are envisioning for the Wiselib.
Even worse, both introduce new programming paradigms that are valid only for
the specific targets, such as protothreads in Contiki, and the whole program-
ming language nesC [7] of TinyOS. The C-inspired nesC attempts to allow for
the construction of component architectures with early binding, similar to the
Wiselib, but achieves this through introducing a new language that requires a
custom compiler.

A challenging issue are heterogeneous networks. It is very simple to have nodes
exchange messages if they are of the same kind, and with the same operating
systems. It becomes surprisingly hard to let nodes of different brands commu-
nicate with each other, even if both of them use standardized IEEE 802.15.4
radios. A promising approach is the Rime Stack [L0/5], a layered communication
stack for sensor networks. It runs only on Contiki. Recently, Sauter et al. [16]
demonstrated that is is possible to communicate between sensor nodes running
Contiki and TinyOS. Since TinyOS uses IEEE 802.15.4, the Rime Stack and
Chameleon Module had been modified on Contiki.

Another attempt to produce a well-defined environment that runs on differ-
ent platforms was proposed by Boulis et al. [3]: SensorWare defines a custom
scripting language; its syntax is based on Tcl. Consequently it focuses on richer
platforms with at least 1 Mbyte of ROM and 128 KBytes of RAM. A similar
approach is Maté [I4], a virtual machine running on top of TinyOS. It tar-
gets also small devices with a very limited amount of resources, using a custom
assembler-like language.

Not surprisingly, there are are also attempts to run a Java Virtual Machine
(JVM) on sensor nodes [I7]. Squawk [I8] is a JVM by Sun Microsystems that
runs on Sun Spots. Obviously such an approach is not suited for low-end sensor
nodes, and also not for time-critical algorithms.

A different approach are macroprogramming frameworks such as Kairos [9],
Marionette [22], and MacroLab [I1]]. Instead of writing code for individual nodes,
the whole network is addressed with a single program. This is generally achieved
by providing a script language that is executed automatically on all nodes, with-
out the need for reprogramming any node in the network.

3 Problem Space

3.1 Heterogeneity

When developing an algorithm library for sensor networks, one must deal with
a great variety of different hardware and software platforms. Table [T shows an
overview of platforms that were taken into account for the development of the
Wiselib.

The operating systems vary from system-specific implementations such as
iSense and ScatterWeb to generic approaches such as Contiki, TinyOS, and
Linux. The preferred programming languages vary with the OSs. The iSense
firmware has been developed in C++, whereas the ScatterWeb firmware uses
plain C. TinyOS uses a custom language, the C extension nesC [7]. Support

166 T. Baumgartner et al.

Table 1. Evaluation of potential target platforms. The columns refer to the type of
microcontroller, the standard operating system, the programming language for it, what
kind of dynamic memory is available, the amount of ROM and RAM, and the bit width.

Hardware Firmware/OS CPU Language Dyn Mem ROM RAM Bits
iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
ScatterWeb MSB SCW-FW MSP430 C None 48kB 10kB 16
ScatterWeb ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMegal28L C Physical 128kB 4kB 8
TNOde TinyOS ATMegal28L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64
Desktop PC TOSSIM (ATMegal28L) nesC (Physical) unlimited unlimited (8)

for dynamic memory, malloc() and free(), is only available for some systems.
Using the ScatterWeb firmware, the size of all memory blocks must be known
at compile time, whereas the iSense firmware provides a full implementation
for the C++ operators new and delete. This is done with the aid of an own
memory allocation implementation. Similar approaches are provided by TinyOS
via TinyAlloc, and Contiki via the managed memory allocator or memb block
memory allocator. Only the Linux-based node supports virtual address space
for processes. There are also significant differences in the amount of available
memory, ranging from a few kilobytes to 64 MByte in the GumStix. Finally, we
must also deal with different bit widths. The Atmel Atmegas are 8-bit micro-
controllers, the MSP430 are 16-bit microcontrollers, whereas the rest are 32-bit
microcontrollers. There are a number of challenges stemming from the nodes’
properties and capabilities. These became additional library requirements.

Limited Memory. The algorithms may run on tiny microcontrollers for which
the provided memory is very limited. On the one hand, this affects the ROM. The
generated code for an algorithm must be as small as possible to fit into memory.
On the other hand, the RAM is affected. Routing tables, for example, cannot
be arbitrarily long so as not to exhaust the limited main memory. Additionally,
the node representation that is used for storing the neighborhood must be as
small as possible, but must also meet the demands of the used algorithms. At
the same time, when running on a node with plenty of memory, performance
gains can and should be achieved by employing more advanced data structures.

Physical Dynamic Memory. The availability of dynamic memory allocation
is already a big step forward, allowing for efficient data structures. However,
most implementations only provide physical addresses, and some are even un-
able to join adjacent freed memory blocks. Shifting of pages to join free blocks
is impossible on all nodes with physical memory. Even a simple vector imple-
mentation with O(logn) amortized insertion time would leave behind a trail of
O(logn) free blocks of various sizes. Therefore, data structures must be carefully
re-analyzed to take these special considerations into account.

Limited Computation Power. Because algorithms may run on small micro-
controllers, efficiency plays an essential role. Examples are message reception in

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 167

an interrupt or iterating over a neighbor table to select the next routing node.
This also constrains the Wiselib not to enforce the use of slow operations (such
as excessive pointer indirection) through the provided framework.

Compiler Variance. Our library must run on multiple hardware platforms.
Different compiler versions must be supported, so it is important that only stan-
dard features of the selected programming language are used.

Data Access. When accessing data at arbitrary locations in memory, alignment
problems can occur. For example, a cast of a 16bit integer works for both MSP430
and Jennic, when it starts at an even address. But when it starts at an odd
address, it fails on both platforms. However, a cast of a 32bit integer works on
all even addresses on a MSP430, but for Jennic only on quad-byte boundaries.

Moreover, when exchanging data in heterogeneous systems, the byte order
must be taken into account, because some systems are big endian, whereas others
are little endian.

3.2 C++ in Embedded Systems

The Wiselib must cover all of the previously mentioned hardware and software
platforms; the latter are developed in different programming languages. Hence,
an appropriate programming language must be found. We chose C++ [19], be-
cause it combines modern programming techniques with the ability of writing
efficient and performant software. The use of C++ in embedded systems has al-
ready been evaluated [12]. Based on this report and own evaluations, we selected
a subset of the language to be used in the Wiselib.

C++ allows modern OO designs. Object-Oriented programming is standard
on the desktop for quite some time by now, and has proven to ease the devel-
opment of complex systems. Moreover, C++ is a fully typesafe language. This
speeds up the development process, as it catches type errors at compile time.
Given the tediousness of debugging on sensor nodes, this is a huge achievement.

The most important language feature for the Wiselib are templates [2IUI].
Templates can be used to develop very efficient and flexible applications. The
basic functionality of templates is to allow the use of generic code that is fully
resolved by the compiler when specific types are given. Thereby, only the code
that is actually needed is generated, and methods and parameters as template
parameter can be accessed directly. We use the well-established technique of
template-based “concepts” and “models”, where the former are not specified
as actual code, but rather as formal specifications in documentation. It lists
the required and provided types, as well as member function signatures. Mod-
els are implementations of concepts, using template specializations, without any
inherent runtime overhead. Both concepts and models allow for polymorphism,
including multiple inheritance. These techniques are used successfully in stan-
dard C++ libraries, such as the STL, Boost [2], and CGAL []. The Wiselib
employs these methods in the same manner, i.e., using standard compiler fea-
tures without custom additions.

Another basic feature in C++- is virtual inheritance. When declaring a method
as virtual, the compiler has to generate a vtable consisting of function pointers

168 T. Baumgartner et al.

Table 2. Availability of C++ compilers for selected platforms

Architecture Compiler Binary Base libstdc++ Basic C++ Syntax Templates

Jennic ba-elf-g+-+ v GCC4.2.1 N Vv Vv
MSP430 mspd30-g++ - GCC 3.2.3 -

ATMegal28L avr-g++ - GCC 4.1.2 - vV vV
Intel XScale xscale-g+-+ v GCC 3.3.1 Vv v V4

to the appropriate methods. Whenever such a method is called, it has to be
looked up in the vtable first, thereby requiring pointer indirection. This leads
to an increase of both program memory and run-time, and makes some compiler
optimizations impossible. Hence, we do not use virtual inheritance in the Wiselib.
We substitute this feature by templates.

Two more features that are not used in the Wiselib are run-time type infor-
mation (RTTI) and exceptions. Both result in significant runtime and code-size
overhead, as already shown in [12].

There are C++ compilers available for all of our target platforms. See Ta-
ble 2 for an overview. Some platforms lack support for libstd++, which includes
the operators new and delete. The STL is also not available everywhere. All
compiler support the C++ features we build upon, i.e., template and member
specializations.

All compilers are based on GCC, and thus there are no considered drawbacks
from compiler incompatibilities. There are some minor limitations due to the
missing libstdc++ on some systems, which have no impact on the Wiselib.

4 The Wiselib

The core design pattern for the Wiselib are generic programming techniques that
are implemented using C++ templates. The basic idea is to pass the important
functionality as template parameters to an algorithm: implementations of OS
specific code, and data structures. Hence, it is possible to compile an algorithm
exactly for the current needs.

4.1 Architecture

The fundamental design principle of the Wiselib consists of concepts and models,
which have already been discussed in Section[3:2l We feature an architecture with
three main pieces: algorithms, OS facets, and data structures. The idea is shown
in Fig. M

First of all, there are concepts for algorithms. There is one concept per cate-
gory, whereby a category groups algorithms by their basic functionality, e.g. rout-
ing or localization. Any algorithm model implements one or multiple concepts,
and is basically a template expecting various parameters. These parameters can
be both OS facets and data structures.

OS facets represent the connection to the underlying operating system or
firmware—for example, concepts for a radio or timer interface. Thus, the facets

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 169

Concept
External Interface Algorithm Category Internal Interface
Concept Concept
OS Facets Data Structures
Model
H Algorithm i
: Implementation :
Model + * Model
OS Facet Data Structure
Implementation Pass at Implementation
I Compile Time I [
[

Fig. 1. Wiselib Architecture

provide a lightweight abstraction layer to the OS. Note that the facets are merely
type definitions and wrapper functions, they are supposed to contain no repli-
cation of OS functionality.

With the aid of data structures, an algorithm can scale to the platform it is
compiled for. For instance, static data structures can be passed on tiny platforms
without dynamic memory management, whereas highly dynamic and efficient
data structures are passed on powerful microcontrollers or desktop PCs.

4.2 External Interface

The “external interface”, consisting of OS facets, represents the connection to
the underlying OS. Implementations of these facets are passed to an algorithm
as template arguments. The compiler should mostly be able to directly resolve
such calls to the OS. For example, when registering a timer can be done using
one line of code, it is implemented as an inline function in the appropriate timer
model. Hence, the result would be a direct call to the OS function, and thus
there would be no overhead, neither in code size nor in execution time. In C-
based operating systems (we see TinyOS in this group), the OS facets have to
provide a translation between C++ member function calls and C function calls,
and they have to convert C++ members to C callback pointers. This is where an
actual price of generality has to be paid. Fortunately, as we report in Section [6]
this price is very low.

Several models of the same concept for an OS facet can also be made available,
each with its own advantages for special purposes. The user can pass the best
available model to an algorithm at compile time, without extra overhead.

An example for a model of the OS facet “radio” is as follows. It is for the
C++-based iSense firmware:

1 template<...> class iSenseRadioModel {

2 static int send(Os *os, id t id, size t len, data t xdata)
3 { os—>radio ().send(id, len, data, 0, 0); }

170 T. Baumgartner et al.

The example shows the implementation of a simple send method offered by a
radio model. Since it is only one function call, it can be directly resolved by the
compiler without generating any overhead.

Concept Inheritance. The above example of the radio’s send() method with
destination address and payload is defined in the basic radio concept. Routing
algorithms, for example, which do only need to send and receive messages with-
out any further information such as RSSI values, or requirements such as reliable
delivery can use implementations of this concept.

We also allow for concept inheritance, so that the basic radio concept can
easily be extended. If an algorithm needs access to RSSI (or LQI) values, a
derived concept can be used. It extends the basic one with a receive method
that provides additional values.

Stackability. A major design aspect for the radio concept is stackability, i.e.,
the possibility to build a layered structure of multiple radios. The topmost layer
is not aware to which and how many layers it is connected. The big advantage of
this approach is that we can build a “virtual radio” that runs on top of a radio
model, and is passed to an algorithm in its radio template parameter. Doing so,
we can easily implement an algorithm for heterogeneous sensor networks. It is
even possible to communicate between nodes that use different kinds of node
IDs—because the virtual radio hides the real node addresses and provides, e.g.,
generic 128 bit addresses.

Another possibility is to hide a complete routing algorithm behind an OS
facet. For example, when writing out debug messages, this happens generally to
the UART. But by passing another model, we can forward debug messages over
a routing algorithm to a gateway, where all these messages are collected. The
topmost algorithm does not need to be aware of the model it works on—it must
only use the appropriate concept.

Message Delivery in Heterogeneous Systems. Another problem that is ad-
dressed using our software design is message delivery in heterogeneous networks.
There are basically two problems that occur: different byte-order, and differ-
ences in alignment handling. Byte order issues are solved by sticking to network
byte order in messages. Alignment is addressed via template specialization. We
provide a serialization class that provides generic read and write methods for
all data types.

4.3 pSTL

Not all of our target systems provide dynamic memory allocation. To our knowl-
edge, no variant of the STL fulfills our requirements: not using libstdc++,
new /delete, exceptions, and RTTI.

Consequently, we provide the pSTL, an implementation of parts of the STL
that does neither use dynamic memory allocation nor exceptions nor RTTI.
We ensure that each of the provided data structures works on each supported
hardware platform. At the moment, implementations for map, vector, and 1ist
are available. Naturally, the pSTL will grow with increasing demand.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 171

4.4 pMP

For many tasks in embedded systems, multi-precision arithmetic is needed, e.g.
for cryptographic and data aggregation purposes. Currently there exist a number
of software libraries that implement big-number operations, e.g., gnuMP [§]. Such
libraries heavily rely on dynamic memory allocation to represent big-numbers
and carry out the operations. Moreover, to achieve performance speedups, highly
optimized assembly code is used, taking advantage of specific hardware instruc-
tions. Unfortunately, the hardware types used in WSN platforms (e.g., AT-
MEGA, Jennic) support neither dynamic memory allocation nor the specific
hardware instructions used by gnuMP and other libraries. Hence it is very diffi-
cult to port such implementations to our platforms, if not impossible at all.
Therefore, we provide the pMP, an C-based implementation of big-number
operations that does not use dynamic memory allocation. Of course such a library
cannot be compared in terms of efficiency with gnuMP, but it is the only one
available currently. In particular, it implements some basic operations like xor,
shiftleft and modulo multiplication operations which are required for elliptic
curve cryptography. It is certain that the pMP will grow regarding future needs.

4.5 Algorithm Support

The central piece of the Wiselib are the algorithms. They are grouped into cate-
gories, see Section[Il Algorithm implementation can belong to several categories,
which is common for cross-layer algorithms.

Each algorithm class consists of a concept for the algorithm itself, and some
concepts for the data structures that are typically necessary for this class. This
decouples the algorithm logic, which is invariant over different platforms, from
data storage, which heavily changes when an algorithm is ported to a platform
of different characteristics.

The benefit of having a well-defined algorithm interface is that algorithms are
easily interchanged for testing purposes, ideally this is done by simply altering
a class name in the initialization code. The second—much more important—
benefit is that an algorithm developer can start coding by copy-and-paste, in-
stead of having to go through a design phase. Such a design phase can be quite
lengthy, if the goal is to achieve maximal portability. Until now, theoreticians
wishing to evaluate high-level algorithms often found it hard to develop for em-
bedded devices: this lowers the bar considerably.

Providing a diverse set of data structure implementations serves the goal of
scalability: For each data structure, e.g., routing tables, neighborhood cluster
maps, and position maps, a set of implementations matching the span of plat-
forms is provided. For low-end architectures such as the MSP430, structures
are needed that use static storage whose size is known at compile-time. Such
structures will inevitably be inefficient in terms of runtime. For high-end archi-
tectures using Xscale processors or simulation environments, highly optimized
data structures with dynamic memory management and huge memory overhead
can be employed, resulting in high efficiency. It is even feasible to utilize the

172 T. Baumgartner et al.

STL. The choice of data structures has no impact on the algorithm code, and
can simply be configured at algorithm initialization. This results in algorithms
that not only scale down to very limited devices, but also scale up to powerful
nodes, utilizing all the available resources on them.

5 Case Study: Secure Routing Algorithms

We show the benefits of C++ and template-based design by presenting two
examples: routing and cryptography algorithms. First we present either of the
approaches as a single concept. Then we show how easily individual implemen-
tations can be combined to generate secure routing algorithms.

Routing Algorithms. When designing a concept for an algorithm class, one
wishes to cover all kinds of special case, while staying as generic as possible. This
is because each method in the concept must be implemented by each model.
Hence, our concept for a routing algorithm consists of only six methods.

First, we need a method for setting the pointer to the OsModel that is needed
when calling static member functions from the External Interface. Then we have
two methods for enabling and disabling the routing algorithm, which is useful
when the routing should only be run in certain points in time, for example for
energy-saving issues. Next, a potential user of the routing algorithm must be
able to register and unregister a callback for message reception. At last, there
is the method for sending messages to other nodes in the network. The Routing
Concepts specializes the Radio Concept, so that routing algorithms can be used
as virtual radio interfaces for other algorithms. The concept looks as follows:

1 concept Routing {

2 void set os (OsModelx os);

3 void enable(void);

4 void disable (void);

5 void send(node id t receiver, size t len, data t*x data);
6 template <class Callee, void (Callee::* Method)

7 (node id t, size t, data t*)>

8 int reg recv callback (T *obj pnt);

9 void unreg recv callback(int);

10}

Cryptography. Adapting cryptographic algorithms to embedded systems is
a difficult task due to resource limitations. Unlike the routing case, we avoid
covering all special cases of crypto algorithms. We provide a simple concept with
algorithm implementations that will be viable solutions for the tiny sensors.

Our generic concept for a crypto algorithm consists of five methods. We pro-
vide methods for key setup, encryption and decryption of data blocks. The con-
cept looks as follows:

1 concept Crypto {

2 void set os(OsModelx os);

3 void enable(void);

4 void disable (void);

5 void key setup(node id t, data t* key);

6 void encrypt(data t* in, data tx out, size t length);
7 void decrypt(data t* in, data t* out, size t length);
8

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 173

Secure Routing. In this section, we describe how the individual routing and
cryptographic implementations can be combined to result in secure routing al-
gorithms. Note that any available routing implementation can be combined with
any available crypto algorithm without a single change in their code.

We therefore implement the routing concept, and accept a routing algorithm
and a crypto algorithm as template parameters. Internally, we only use the
passed types. For example, when the secure routing is enabled, it in turn enables
the routing and crypto algorithm. When a message is sent, it first encrypts the
passed bytes, and then passes the encrypted data to the routing algorithm.
Then, when a message is received at the destination, it is first decrypted, and
then passed to the registered receivers. The secure routing looks then as follows:

1 template<typename Routing,
2 typename Crypto>
3 class SecureRouting {
4 void set os(OsModelx os);
5 [...] // all methods described in the routing concept
6 void unreg recv callback(int);
7 Routing routing ;
8 Crypto crypto ;
9 g3
Since it implements the routing concept, it can be passed and used by any
application that deal with routing algorithms. However, the process of both

encryption and decryption is completely transparent.

6 Experimental Results

In order to demonstrate the efficiency of our generic approach, we ran differ-
ent experiments on supported platforms. We evaluated two main parts of the
Wiselib: First, the overhead of the connection to the underlying OS; second,
properties of implementations of a first set of algorithms.

6.1 External Interface

We tested the performance of Wiselib system calls compared to native OS calls
on three different platforms. The results are shown in Table [3

OS calls that are short enough to be directly inlined by the compiler, such as
sending a message on iSense platforms or reading the node ID in Contiki do not
have any overhead. However, other parts in the OS connection produce a small
overhead due to an additional layer of indirection. This is mainly because of
incompatibilities between C function pointers and C++ member function point-
ers, and a required translation between them. But as shown in the performance

Table 3. Performance costs of Wiselib calls compared to native OS calls

iSense Contiki ScatterWeb
Native Wiselib Cost Native Wiselib Cost Native Wiselib Cost
Read ID 2us 2pus 0% <lps <lps 0% <lps <lpus 0%

Send Message 282us 282ps 0% 336us 345us 3% 898us 921ps 3%
Set Timer 135pus 141ps 4% 77ps 100ps 30% 20ps 43ps 115%

174 T. Baumgartner et al.

Table 4. Code-size overhead of OS facets. Shown is ROM (.text) and RAM (.bss +
.data) in bytes.

iSense Contiki ScatterWeb
Radio 856+240 428+ 72 316+ 40
Timer 8684240 3524210 270+ 80

evaluation, this overhead is very small—if at all, then only in terms of microsec-
onds. Similar delays would also be produced by alternative approaches, but by
using C++ and templates the compiler is able to remove this overhead wherever
reasonable. This is possible due to the implicit inline declaration of methods.

Time efficiency is only one performance measure; the other is code space. We
evaluated the needed size for the two OS facets radio and timer for different
platforms. The results are shown in Table [l

Because the concepts for radio and timer were kept simple, each implemen-
tation required at most a few hundred lines of code. This led not only to a
slight structure, but also enhanced maintenance issues. In addition, even the
integration of a completely new platform can be done without too much effort.

Especially the facets for the ScatterWeb platform show a small amount of
overhead of less than 600 bytes in ROM, and 120 bytes in RAM. Even the 1.7kB
of iSense are tolerable, since it is a 32bit-platform with corresponding overhead
in machine language instructions.

An important factor when estimating the code-size overhead is that it is con-
stant, and thus do not grow with the integration of further algorithms. The
interfaces also provide a powerful abstraction of the underlying OS, facilitating
implementations of many additional algorithm categories.

6.2 Algorithms

We implemented different algorithms for the routing concept: DSDV, DSR, a
simple tree routing, and a flooding algorithm. Each algorithm has been compiled
for, and tested on each supported platform. Table[Elshows the resulting code sizes
and initial RAM usage for the several platforms.

Table 5. Evaluation of code size as ROM size (.text) and RAM size (.bss + .data) in
bytes.

16-bit OS 32-bit OS Simulators
Algorithm Contiki ScatterWeb iSense Shawn TOSSIM
DSDV 1446+ 72 1466+ 72 4776+136 4351+ 419146+ 4
DSR 1964+338 1716+238 5396+356 6918+ 420845+ 4
Tree 920+ 16 7244 14 4060+ 24 2974+ 4 9946+ 4
Flooding 11224 50 7624 34 2864+ 68 2260+ 410192+ 4

It is clearly visible that our algorithm implementation perfectly fits into the
target platforms, as the impact of the generality of the code is very low, in terms
of both code and memory. However, the given code sizes show only the pure
demand of the algorithm—without considering the external interface.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 175

Table 6. Stack latency in Wiselib (measured on the iSense devices)

Dummy Routing Dummy Routing, DSDV Routing DSDV Routing,
Dummy Crypto Dummy Crypto
Latency 6.08 msec 6.09 msec 6.72 msec 6.75 msec

Table 7. Comparison between Wiselib and TinyECC, for encryption/decryption run-
time

TinyECC optimized TinyECC Wiselib
Hardware Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt
TelosB 6.53sec 4.25sec 84.9sec 42.73sec 114.78sec 56.02sec
MicaZ 3.9sec 2.6sec 61.4sec 31.87sec 118.4sec 57.84sec
Tmote Sky 3.27sec 2.12 sec 42.55sec 21.41sec 115.98sec 56.91sec
iSense - - - - 22.9sec 11.84sec
ScatterWeb - - - - 102.93sec 50.42sec

Each of the routing models can also be combined with a crypto algorithm—as
shown in Section [5l The first point of interest is the overhead of multiple layers
of algorithms are. We estimated the average latency by the Wiselib layers. The
experiments were held on the iSense platform. The latency was measured as the
average of 200 message exchanges: a) through a dummy routing algorithm and
a dummy routing algorithm combined with a dummy crypto algorithm and b)
through a DSDV routing algorithm and a DSDV routing algorithm combined
with a dummy crypto algorithm. We conclude that stack latency overhead is
minimal, as shown in Table [G

As a second experiment regarding the combination of routing and crypto
algorithms, we estimated the run-time of a crypto algorithm (Elliptic Curve
Integrated Encryption Scheme) through Wiselib for various platforms, and we
compared it with that of TinyECC[I5] in Table [l We did not focus on opti-
mizing the code; that is why TinyECC runtime is generally faster. However, our
algorithm can be executed on a variety of platforms.

Also, with the aid of template specializations—as also used in message
delivery—code can be optimized and adapted for certain platforms. Depend-
ing on the compilation process, the compiler can select exactly the code that fits
best for the current platform. For example, when an algorithm is compiled for
iSense, the AES hardware could be used for the crypto routines.

7 Accessing the Wiselib

There are different demands for the users of the Wiselib. Application developers
are interested in stable algorithms that were thoroughly tested for all supported
platforms. They do not contribute own implementations to the Wiselib; instead,
they only integrate existing algorithms in their applications. Algorithm develop-
ers on the other hand contribute code to the Wiselib. Algorithms may be under
development and can not be ensured to run on each platform.

We therefore provide two distributions: Stable and Testing. The former con-
tains only algorithms that were run through different tests, particularly for each
supported platform. Concepts that are implemented for the stable distribution

176 T. Baumgartner et al.

are also expected not to be changed anymore, if not strongly needed. In contrast,
the testing distribution contains newly implemented algorithms. They may not
be tested on each platform—in particular since not each algorithm developer
has each platform available. This can also lead to changes in concepts, when it
is noticed that not all platforms can be covered satisfactorily. In general, the
objective here is to release early, and release often.

The Wiselib can be accessed under http://wisebed.eu/wiselib. There is
a Wiki available that contains documentation. In addition, there is also a Trac
running to report software bugs and collect suggestions for improvement.

8 Conclusion and Future Work

In this paper, we have introduced our generic algorithm library for wireless sen-
sor nodes, the Wiselib. It is aimed at allowing algorithm researchers to quickly
implement distributed algorithms on actual sensor nodes. The implementation
process requires no deep understanding of the target platform, as the library
provides a unified API that abstracts the technical details. Unlike all other
approaches with the same goal, or at least the ones we are aware of, Wiselib
algorithms suffer next to no runtime or memory overhead from the generality.

The Wiselib is written in standard ISO C++4, using advanced OO techniques
to encapsulate the operating system and to allow complex OO architectures that
can be fully resolved by an optimizing compiler. Specifically, the Wiselib makes
heavy use of templates, as they are resolved at compile time, leaving no binding
efforts to runtime. Certainly, generality does not allow to provide highly opti-
mized code. Fortunately, our open design allows to provide such hardware specific
optimizations without hindering the generality of the algorithm implementation.
This is extremely important since algorithm development can be decoupled from
application development where platform specific optimizations are performed.

We demonstrate the effectiveness of the Wiselib by implementing a number
of routing algorithms and cryptography algorithms. We show that the produced
code is very lean and it works on a large variety of sensor platforms. The library
allows us to easily stack different types algorithms with almost zero overhead. We
build upon this feature and demonstrate the ability to interchange algorithms
without affecting the operation of other algorithms at different stack level. These
features essentially provide endless possibilities to application developers as more
algorithms and algorithmic concepts are introduced in Wiselib.

We expect the Wiselib to grow much beyond the current state, and to become
a standard tool for WSNs in the near future. We also wish to look into other
categories of algorithms such as MAC layer protocols, energy saving schemes
and topology control protocols.

Acknowledgement. This work has been partially supported by the FEuropean
Union under contract number ICT-2008-224460 (WISEBED).

References

1. Alexandrescu, A.: Modern C++ Design. Addison-Wesley, Reading (2001)
2. Boost, http://www.boost.org

http://wisebed.eu/wiselib
http://www.boost.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 177

. Boulis, A., Han, C.-C., Srivastava, M.B.: Design and implementation of a frame-

work for efficient and programmable sensor networks. In: Proceedings of MobiSys
2003, pp. 187-200. ACM, New York (2003)

. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org
. Dunkels, A.: Poster abstract: Rime — a lightweight layered communication stack

for sensor networks. In: Proceedings of EWSN 2007, Poster/Demo session (2007)

. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating

system for tiny networked sensors. In: LCN 2004: Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks (2004)

. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc

language: A holistic approach to networked embedded systems. In: Proceedings of
Programming Language Design and Implementation, PLDI (2003)

. GNUMP: GNU Multiple Precision Arithmetic Library, http://gmplib.org/
. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor

networks using kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M.
(eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126-140. Springer, Heidelberg (2005)
He, 7., Osterlind, F., Dunkels, A.: An adaptive communication architecture for
wireless sensor networks. In: Proceedings of ACM SenSys (2007)

Hnat, T.W., Sookoor, T.I., Hooimeijer, P., Weimer, W., Whitehouse, K.: Macro-
lab: a vector-based macroprogramming framework for cyber-physical systems. In:
Processings of the ACM SenSys 2008, New York, NY, USA, pp. 225-238 (2008)
ISO/IEC JTC1 SC22 WG21. ISO/IEC TR 18015: Technical Report on C++ Per-
formance. Technical report (February 2006)

Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking
for “smart dust”. In: MobiCom 1999: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pp. 271-278. ACM,
New York (1999)

Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. In: In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA (October 2002)

Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptogra-
phy in Wireless Sensor Networks. In: IPSN 2008: Proceedings of the 7th interna-
tional conference on Information processing in sensor networks (2008)

Sauter, R., Marrén, P.J., Dunkels, A., Voigt, T., Tsiftes, N., Finne, N., Osterlind,
F., Eriksson, J.: Demo abstract: Towards interoperability testing for wireless sensor
networks with cooja/mspsim. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 20009.
LNCS, vol. 5432. Springer, Heidelberg (2009)

Shaylor, N., Simon, D.N., Bush, W.R.: A java virtual machine architecture for
very small devices. In: LCTES 2003: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems (2003)

Simon, D., Cifuentes, C.: The squawk virtual machine: Java on the bare metal. In:
OOPSLA 2005, pp. 150-151. ACM, New York (2005)

Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(2000)

TinyOS, http://www.tinyos.net

Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-
Wesley, Reading (2003)

Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In: IPSN 2006, New York, USA, pp. 416-423 (2006)

http://www.cgal.org
http://gmplib.org/
http://www.tinyos.net

Selective Reprogramming of Mobile Sensor Networks
through Social Community Detection

Bence Pisztor!, Luca MottolaZ, Cecilia Mascolo', Gian Pietro Picco?,
Stephen Ellwood?, and David Macdonald*

1 Computer Laboratory, University of Cambridge, UK
2 Swedish Institute of Computer Science, Sweden
3 Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
4 Wildlife Conservation Research Unit, University of Oxford, UK

Abstract. We target application domains where the behavior of animals or hu-
mans is monitored using wireless sensor network (WSN) devices. The code on
these devices is updated frequently, as scientists acquire in-field data and refine
their hypotheses. Wireless reprogramming is therefore fundamental to avoid the
(expensive) re-collection of the devices. Moreover, the code carried by the moni-
tored individuals often depends on their characteristics, e.g., the behavior or pre-
ferred habitat. We propose a selective reprogramming approach that simplifies
and automates the process of delivering a code update to a target subset of nodes.
Target selection is expressed through constraints injected in the WSN, triggering
automatic dissemination of code updates whenever verified. Update dissemina-
tion relies on a novel protocol exploiting the social behavior of the monitored in-
dividuals. We evaluate our approach through simulation, using real-world animal
and human traces. The results shows that our protocol is able to capture the social
network structure in a way comparable to existing offline algorithms with global
knowledge while allowing runtime adaptation to community structure changes,
and that existing dissemination approaches based on gossip generate up to three
times more network overhead than our socially-aware dissemination.

1 Introduction

Wireless sensor networks (WSNs) are increasingly being used to monitor mobile enti-
ties in domains ranging from wildlife monitoring [16,20] to human health-care [22]. In
these contexts, WSN nodes are physically attached to animals or people being moni-
tored. Therefore, unlike traditional WSN architectures where all nodes perform a single
system-wide task, in these mobile WSNs the code running on a node is often specific
to the monitored individual, and may change over time according to the individual’s
behavior or context. As an example, WSN devices attached to wildlife species (e.g.,
zebras [[16], turtles [13], or badgers [10]) are currently used to study various aspects
of their behavior. In the early stages of the deployment, all nodes monitor the same
quantities for domain experts to get an initial insight, which can then be used to re-task
some of the nodes to further study certain quantities. For instance, the devices carried
by badgers that stay close to their burrows may be used to study the environment around
the burrows themselves and explain why this subset of animals are following specific

J. S4 Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 178— 2010.
(© Springer-Verlag Berlin Heidelberg 2010

Selective Reprogramming of Mobile Sensor Networks 179

paths in the forest instead of others, and how their movements depend on the climate.
However, re-capturing the animals to manually re-program the nodes would be very
costly, if at all possible.

Techniques for run-time reprogramming of WSNs do exist [33]]. However, they fail
to tackle two fundamental challenges of the application domain we target:

— The area where monitored individuals dwell is likely to extend beyond the commu-
nication range of current sensor devices. Thus, the network is most often character-
ized by intermittent connectivity among the mobile WSN nodes [23]]. This prevents
re-using well-established solutions for static networks [23].

— The few solutions addressing mobile WSNss disseminate code updates to the entire
network, and are therefore ill-suited for a selective dissemination of code updates to
a target subset. Indeed, the updates would reach more nodes than necessary, wasting
resources and reducing lifetime.

On the other hand, animals and humans are social beings, with recognizable pat-
terns of movement and community interaction, that can be exploited as a vehicle for
delivering code to the intended targets. The core contribution of this paper is a novel
approach to selective reprogramming in highly-disconnected, mobile WSNs that, based
on the individual’s interactions detects communities at runtime, and exploits their ex-
istence and relationships towards efficient update dissemination. For instance, a single
WSN node attached to a badger known to roam often between two communities (i.e., a
so-called “central” badger, with a socially-bridging role) can be enough to disseminate
code from one community of badgers to the other. In our approach, communities are
discerned entirely at run-time. This sets us apart from the few existing dissemination
approaches based on social communities, that rely on offline centralized protocols [3] or
are otherwise unable to adapt to all changes to the social community structure [T447)31]].

An overview of our approach is provided in Sec.[2] where we introduce a sample
scenario showing how a user can target a set of nodes of interest. In Sec. [3l we give
details of how the protocol is able automatically select these nodes, and deliver the
code efficiently.

In Sec. Hl we evaluate the effectiveness of our solution through simulations using
animal and human traces collected in real-world experiments. We review related ap-
proaches in Sec.[3 and provide brief concluding remarks and directions for future work
in Sec.

2 Reference Scenario and System Overview

We illustrate the overview of our approach hand-in-hand with a reference scenario that
provides the main application focus for the entire paper. Although the scenario is drawn
from the wildlife domain, our techniques are applicable to other mobile WSN scenarios,
as we show in Sec.[d by applying them to human interaction traces. Next, we describe
how users specify persistent, network-wide constraints identifying the subset of nodes
targeted by reprogramming.

Reference scenario. Fig. Il depicts the phases of our reprogramming approach in a ref-
erence scenario concerned with badger monitoring. As shown in Fig. reprogram-
ming entails generating a bundle containing i) the code update to be installed on a target

180 B. Pasztor et al.

Ode &
P — — Base
-

Base g | &~ | station
= station - o station I |<\l‘,
g =, @ "y BIE

& 7 % I-

() (b) (©

Fig. 1. Sample scenario showing: (a) code and constraint injection at base station, (b) constraint
dissemination to all nodes, and (c) delivery of code to selected nodes (in dashed squares)

.

' Constraint

Constraint

Base

Cidy
(<)
o
e
_ Constraint
Cidy
iy
£
Lady
f «—
-|
:«vl %
t %v L _|

in

iy
m ' Constraint

|
Constra

subset of the WSN, and ii) the constraint that identifies these target nodes by means of
logical expressions involving their properties. For instance, the constraint may single
out only the nodes attached to badgers that spend most of their time close to a cold
burrow. The constraints are encoded in periodic beacons for transmission. The bundle
is then injected at the base station, or at any other node.

The two constituents of the bundle have a different fate, as show in Fig. The
constraint is spread to all WSN nodes. Upon reception, a node matches the constraint
against its local state, and re-evaluates it periodically. The code update, on the other
hand, remains at the base station until at least one node matches the constraint. When
this happens, our socially-aware protocol (described in Sec.[3) disseminates the code
update only to the target nodes matching the constraint, as shown in Fig.

It is important to note that reprogramming can be requested even when no node
matching the characteristics specified by the constraint currently exists. In the mobile
setting with intermittent connectivity we target, it would be difficult (if not impossi-
ble) for users to know and await the moment when the target subset is not empty. Our
solution enables users to rely on the system to detect the presence of target nodes au-
tomatically, by self-adapting to changes in the state of nodes. For instance, one might
define constraints to target nodes roaming around different burrows, and inject the code
before any node satisfies the constraint. The code will stay at the base station until such
behaviour is detected, and will be delivered automatically.

Specifiying constraints. The constraints identifying the target subset are expressed
through dedicated constructs. We characterize the state of nodes based on attributes.
These are name-value pairs describing properties of a node, e.g., the current location
or the gender of the individual it is attached to. The construct attribute (NAME)
declares an attribute, registered by the run-time layer that takes care of updating the
associated value. For instance, in the case of a LOCATION attribute, the run-time peri-
odically queries the attached GPS device, and stores the value time-series in memory.
Selecting badgers that stay around cold burrows can be specified as

constraint (n_occurrence (LOCATION == burrow) > loc_threshold &&
avg (TEMPERATURE) < temp_threshold)

Selective Reprogramming of Mobile Sensor Networks 181

where LOCATION and TEMPERATURE are attribute names, and burrow is an en-
coding of a burrow’s location in some coordinate system. The built-in functions avg
and n occurrence are made available by the underlying run-time support: the latter
returns the number of occurrences in an attribute’s time series that match the boolean
condition given as argument. We provide several built-in functions (e.g., avg, max and
min) covering a range of common constraints.

A constraint essentially specifies a boolean function that establishes the membership
of a node in a given subset (constraint (TRUE) targets the entire WSN). This ad-
dressing scheme is well-suited to our scenarios where the target subset changes based
on the state of nodes—that we capture through attributes, and could hardly be captured
through node identifiers. Similar approaches exist in the literature [2534]. However,
their supporting communication layer targets only static WSNs, while we bring the ex-
pressive power of attribute-based node selection into mobile WSNss, as discussed next.

3 Socially-Aware Dissemination of Code Updates

Once the appropriate constraint is stored at the base station, the problem is to efficiently
disseminate the code update to the corresponding target nodes. In principle, this could
be done using direct transmissions, however in our scenario, we cannot ensure that all
the nodes come in range of the base station due to the limited power and radio range of
the devices.

In our dissemination protocol, code updates are relayed opportunistically from one
animal to the other upon contact. However, unlike existing approaches that propagate
updates to the entire network, we limit dissemination as much as possible to the target
nodes. This substantially reduces the network overhead, as evaluated quantitatively in
Sec. M To achieve this goal, we use a characteristic common to many mobile WSN sce-
narios, namely, the fact that the monitored individuals exhibit social behavior. The im-
plicit structure of social interactions, once elicited, provides an effective tool for steering
efficient routing decisions. In the rest of this section we describe the aspects of social
interaction that are relevant to our goals, along with the way we exploit them in our
dissemination protocol. The social foundation of our protocol holds for many animal
species [2]] [30], including humans [14].

3.1 Overview

Social foundation. A social network is a logical structure of entities tied by some social
relation, e.g., friendship. These networks are characterized by strong clustering [ZL[17].
Members of a cluster, or community, are usually closer to each other socially, than to
the rest of the network — i.e., they interact more and spend more time together. Com-
munities tend to be stable over time, although they occasionally vary. An example is
animals sharing the same burrow or foraging in the same areas: when cubs grow up, at
some point they separate and move to a different area. Moreover, not all members of a
community behave the same way, some animals/people are more active or popular than
others.

We use the highly mobile and more socially central members to aid the dissemina-
tion, since they are more likely to meet other individuals. We call these nodes leaders.

182 B. Pasztor et al.

Social groups

Leader badger

Target badger

/ =~ -
/ v
/ Rl s o | . D
H L i . \
' , S !
. ¥ ;] &
N | A L . s Route to
| e, e o A4 7 target badger(s)

,,,,,,,,, -7 Social relation

Fig. 2. Example of social communities and their leaders. The target subset includes nodes often
visiting a specific area.

Protocol operation. We assume that the base station, where the bundle containing the
code update and constraint reside (Sec.[2), is placed in an area where one or more ani-
mals dwell. Animals identified as leaders are used to carry code updates to communities
where at least one member is in the target subset as shown in Fig.

Our protocol dynamically identifies communities and leaders in a fully decentralized
way, as discussed next. As illustrated in Fig.[2] communities and leaders determine a
logical topology where links represent spatio-temporal relations between two individ-
uals, essentially denoting that they are frequently co-located. We exploit these links to
disseminate the code updates according to the forwarding rules described in Sec.[3.4]

3.2 Identifying Communities

Social foundation. Members of the same social community are co-located according to
aregular pattern and for long periods of time. For instance, at night, badgers roam inde-
pendently. During the day, however, they tend to congregate around in burrows, where
they sleep. Animals using the same burrow tend to spend considerable time together
and are therefore often associated to the same community. Our definition of community
is a set of nodes spending a certain percentage of their time together.

Protocol operation. To identify communities, we need to quantify the extent of co-
location between nodes. To do so, nodes send periodic beacon messages to discover
neighbors. Upon receiving a beacon, a node increments by the beacon interval the con-
tact time relative to the sending neighbor. This quantity is divided by the time since
the first detection of the same node, yielding a contact ratio measuring how frequently
the two nodes are co-located. Higher ratios indicate more frequent co-location. As time
elapses, the contact ratio becomes an accurate indicator of the amount of interaction
between two animals. This metric is better at capturing dynamic changes in the com-
munity structure than the often-used total-contact duration [[14], since it captures not
only the order of encounters, but also is able to decay if two nodes become separated.
To create and maintain communities, all nodes send periodic beacons and evaluate
each other’s contact ratios, which are embedded within these beacons. Two nodes are
considered part of the same community when their contact ratios cross a given thresh-
old. For instance, the aforementioned behavior of badgers, sharing the same burrow for

Selective Reprogramming of Mobile Sensor Networks 183

about half of the day, can be modeled by setting a 50% threshold. This indeed corre-
sponds to nodes that are in contact for about half of the time. Thresholds are expected
to be defined by domain experts, e.g., based on the species under study. If the ratio
crosses the threshold and neither node is yet part of a community, the node with the
smaller identifier creates a unique community identifier and includes it in subsequent
beacons; the other node joins the new community upon receiving the beacon. If either
node is already part of a community, the other joins the same one. If they belong to
different communities, the node in the community with fewer members joins the larger
one. To enable these decisions, beacons also carry the community size. Our mechanism
captures the time evolution of social relations among individuals as nodes can join and
leave communities.

An important observation is that the dissemination protocol uses one layer of clus-
tering. More precisely, a node is either a member of a community or not, we do not
consider nodes belonging to multiple communities. One can argue that this applies to
animals [2]], but not for humans. While similar approaches have been adopted for human
networks [14,[31]], human social structures are more complex. If the target application
heavily involves membership in multiple communities, our protocol would need to be
properly extended to cater for it.

3.3 Identifying Leaders

Social foundation. The behavior of members of the same community may differ [29].
Moreover, this behavior can change over time. For instance, during mating season, adult
male badgers travel further from their burrow than other community members, looking
for females to mate. Therefore, they are more likely to meet badgers from other com-
munities.

Protocol operation. To accurately and dynamically identify leaders within a commu-
nity, every node keeps track of two quantities:

— 1Its total neighbor count N, i.e., the number of all distinct nodes it has ever met.
— Its change-degree of connectivity C, i.e., the number of neighbors it acquires or
looses within a time window.

The two metrics account for different aspects, and leaders should score high in both.
For instance, a node with high neighbor count can probably reach many members of
its community. The same node, however, may have a low value of change-degree of
connectivity, e.g., if it does not move often. This node is not well-suited as a leader. The
relative weight of the two metrics must be tuned by domain experts based on the species
under study. This is achieved by defining a single leader score as L = aN + (1 — «)C,
and properly setting the weight . In this paper, unless otherwise noted, we use o = 0.5.
In principle, other metrics could be used, e.g., ego-centrality and betweenness [[7]]. How-
ever, our priority was to disseminate updates as quickly as possible, therefore we fo-
cused on identifying the most mobile nodes. Further, an improvement on the neighbour
count metric is to use a sliding time window, and consider the neighbour count in this
window only. Though we did not use this method in this paper, it is our intention in the
future.

184 B. Pasztor et al.

Nodes that do not belong to any community or are not associated with a leader (e.g.,
at start-up or when the community threshold is not reached) are considered leaders
of a fictitious community of size one. When a real community with more than one
member is created, the node with the highest score L becomes its leader. The identifier
of community leader and its score are embedded within beacons, and broadcast to the
1-hop neighbours of the leader, while nodes who are in direct contact with the leader
beacon a score L = 0. This ensures that each node in a community is logically one hop
away from a leader, since the node with the local maximum score is always chosen. If a
node in a community finds its score to be higher than that of the current leader, it takes
over the leadership. The same processing applies when a node joins a community.

Leaders do not need to be unique in a community. Although an unlikely situation, it
may happen that the leader identifier and score are too slow to disseminate for this in-
formation to stabilize. Nonetheless, the presence of multiple leaders with similar scores
is not problematic in the dissemination process, described next.

3.4 Code Dissemination

The process of disseminating code updates is logically divided in two steps. First, the
opportunistic routes leading to nodes in the target set are determined. Then, the actual
code is disseminated along these routes. In practice, however, the latter step is pipelined
with the former to reduce latency.

Route establishment. The routes are determined by the ~ LeaderID Target NextHop Distance
constraint selecting the target subset. Constraints, en- g ;e; Béfe 3
coded in a compact form, are disseminated to all nodes le} Yes C 1

in the network by piggybacking them on beacons. Upon b Yes . -
receiving a constraint, a node evaluates whether it be- Fig. 3. Routing table of node D
longs to the target subset. If so, it informs its community j Fig]

leader whenever in range.

Leaders use this information to build routing tables like the one in Fig. Bl based on
the network shown in Fig.[2l Besides a leader’s own entry, the table is populated by ex-
changing entries with other leaders whenever they meet, through the periodic beacons.
The Target field indicates whether at least one member in a leader’s community is tar-
geted by the constraint. The NextHop field identifies the leader that forwarded a given
entry. The Distance field is the hop-count measure of how “far” a leader is. Multiple
constraints can be disseminated in parallel, distinguished by a unique identifier carried
by beacons and used to index multiple routing tables at each node.

Update dissemination.
Update dissemination is governed by the following rules:

— anon-leader can only update its own leader;
— aleader can only update other leaders and the members of its own community.

These rules ensure an efficient dissemination, as shown in Sec.[] as well as consistent
delivery. All leaders (including nodes without a community) receive the update. All
other nodes in the target set (i.e., the community members) receive the update from
their leader.

Selective Reprogramming of Mobile Sensor Networks 185

Updates follow the routes stored in the leaders’ routing tables. Consider for instance
Fig. Bl When node D receives an update to be disseminated, it determines through the
Target field that some of its community members are selected by the constraint, along
with members of C"’s and A’s communities. To deliver the update to the selected com-
munity members, D waits until it becomes co-located with a sufficient number of com-
munity members that require the update (i.e. it receives beacons from these members).
These can then receive it simultaneously through broadcast, reducing the communica-
tion overhead.

This makes sense for species where the probability of colocation is reasonably high.
However, this policy may be revised and the leader could decide to broadcast more
often, for example when a given percentage of the required members are present. To
reach A and C, D looks at the NextHop field in its routing table: the code update is
forwarded the next time D meets with C' or the base station, respectively.

As constraints are piggybacked on beacons, they propagate faster than code, which
is often larger. The routing tables are therefore usually built before the code arrives. If
not, the code is buffered until at least one positive value appears in the Target field.

Short-lived vs. persistent updates. Constraints and code updates are associated to a
version number and a time-to-live (TTL). The version number avoids duplicate delivery.
Constraints are re-evaluated periodically and the corresponding entries in the routing ta-
ble are retained until the TTL expires. When a node matching the constraint is detected,
our protocol automatically starts the code dissemination following the mechanisms de-
scribed. Along with this short-lived updates, which disappear from the network after a
given time, we also easily support persistent updates by setting an infinite TTL. In this
case, our scheme caters for a powerful way to make the system self-adapt.

3.5 Implementation Highlights

Our current prototype is based on the Contiki [9] OS, targeting TMote Sky nodes.
The system is composed of three core components. A Communication component
is responsible for building and maintaining routing information. Specifically, it main-
tains the neighbor table, calculates the contact ratio for every neighbor, and maintains
information on the leaders. In addition, the module is also responsible for the reli-
able delivery of the code updates. To do so, we use a simple broadcast mechanism
based on a RTS/CTS mechanism and acknowledgments sent back by the target nodes.
A Constraint Evaluator module parses received constraints and checks them
against the current values of node attributes. This determines whether the local node is
included in the target subset. Finally, a Reprogramming module dynamically links
received code updates (typically of size 2-10 Kb) using the hooks available in Contiki.

4 Evaluation

We first compare the effectiveness of our distributed community detection protocol
against a centralized algorithm based on global knowledge of the social graph. The
two schemes have similar performance in terms of communities detected, yet our dis-
tributed solution is able to detect dynamic changes in the community structure. Next,

186 B. Pasztor et al.

we assess how community knowledge improves code dissemination. Based on this, our
protocol reduces network traffic by a factor of 66% compared to a gossip protocol.

General settings. We used a one month subset of both the Reality Mining traces [12]]
and mobility traces from a badger-monitoring deployment [10]. The former include
proximity information gathered using 43 mobile phones carried by people moving on a
university campus. The latter are collected from the movements of 32 badgers equipped
with RFID collars and 28 RFID readers deployed in a forest. These data include time-
stamped detection of animals by readers at specific places. Therefore, there would be no
explicit information on the connectivity between the RFID tags carried by the animals.
We convert these traces into connectivity information by considering the nodes within
wireless range when the animals are detected by the same RFID reader within a 5-
minute time-window. Further, we assume animals stay at the burrow between the time
they enter and exit - even though the RFID is unable to detect them underground.

The traces present a different radio model from the traditional WSNs, however here
we are more interested in the social model governing the movements of the nodes, rather
than modeling the radio, and the these traces are ideal for the former.

We use the Cooja simulator [27], along with a plug-in we implemented to replace
the propagation model in the simulator based on the aforementioned mobility traces. In
the community detection protocol, we set the community threshold to 50%. We chose
this threshold based on the trace set: badgers sleep during the day in their burrows,
therefore they are co-located for at least half a day every day. The threshold is also a
good representation of human contacts: if two people spend more than half of their time
together, they are more than likely to belong to the same social group. An investigation
of the effect of the choice of the threshold is reported later in this section.

4.1 Community Detection

On the badger trace set we compare the performance of our community detection proto-
col against a well-known algorithm based on modularity optimization [1]]. This runs in
a centralized fashion and requires global topology knowledge. The communities iden-
tified by this algorithm largely reflect the findings obtained through direct observation
by the zoologists involved in the study.

Modularity optimization algorithm. Given a specific partitioning of a graph, modu-
larity measures the density of links inside every partition with respect to links between
partitions. Higher values correspond to configurations with dense connections inside
partitions and sparse connections between different ones. When applied to the study of
social networks, partitions are naturally mapped to communities.

The algorithm we consider explores different community configurations to optimize
modularity. Initially, every node is in its own community. For every pair of nodes, the
algorithm examines the modularity gain obtained by moving either of the two nodes in
the other’s community. The communities are then changed to maximize this gain. This
process repeats for every pair of nodes until no further improvements are achieved.
Next, the algorithm creates a new graph with nodes which are the communities found
earlier, and the link weights are the sum of the weights of links between the original
nodes in the two communities. The algorithm then re-applies the first step on the new
graph. The process continues until no further improvements are possible.

Selective Reprogramming of Mobile Sensor Networks 187

G2
Ge
e
Cc2) %&%
@
“®
B@e-e
(a) Communities after five days. (b) Communities after twenty days.

Fig. 4. Communities found using the contact ratio as metric for link weight

The input to the algorithm is a social graph where there is a link between two nodes
if they meet at least once during the simulation time, and the link weights are the ones
calculated by our protocol.

Results. We consider different points in time in the badger trace set. Our solution uses
the contact ratio to detect dynamic changes in the community structure, therefore, we
run the centralized algorithm using this figure as link weight. In this case, both schemes
identify the same communities after one, five, and twenty days of traces. The commu-
nities found after day five are shown on Fig. Nevertheless, our distributed solution
runs inside the network. The centralized algorithm, on the other hand, may run only at
the fringes of the system because of significant computational demands. In addition, it
would require periodic topology discovery to provide global information as input. This
is hardly possible in a mobile scenario with intermittent connectivity.

Even if the conditions to run the centralized algorithm were satisfied, however, the
distributed nature of our scheme brings a unique advantage: that of immediately rec-
ognizing changes in the community structure. For instance, in the badger scenario the
community structure does not change much after day five. This might appear as the
long-term behavior. However, by day twenty we see a new community emerging, as
shown in Fig. Our scheme immediately detects this change, as it is running right
on the WSN devices whose behavior caused the formation of an additional commu-
nity. The centralized approach would identify the new community with significant la-
tency and high overhead, due to the need of periodically collecting global topology
information.

4.2 Code Dissemination

We study the performance of our selective code dissemination protocol against state-
of-the-art solutions. We compare our approach against:

— the GCP [4] gossip protocol for code propagation in mobile sensor networks. This
protocol is agnostic of selective dissemination and distributes the update to every

188 B. Pasztor et al.

node. To do so, it uses a token-based mechanism to limit the number of transmis-
sions per node, forwarding a code update to any node in range provided the sender
still has tokens to spend.

— a constraint-based gossip protocol we implemented. Like ours, this uses the con-
straints to identify the nodes requiring a code update. The difference with ours is the
lack of community knowledge. A node forwards a code update to a nearby device
only if i) the neighbor belongs to the target subset, or ii) the neighbor met a node in
the target subset within a specified period (set to half a day). The latter is required
to reach nodes in the target subset that may never be in contact with a sender.

Using version numbers, neither protocols transmit a code update if the intended receiver
is already equipped with it.

Settings and metrics. A code update consists of a variable number of packets. Each
packet is 128 bytes long. We inject the code update at a random node 5 days after start-
up. This delay is necessary for the communities to stabilize. We define the target subsets
as a given percentage of nodes out of the total. Based on this value, each simulation run
considers a different subset to avoid biases due to the subset chosen. GCP is equipped
with 15 tokens per node, after we experimentally verified that this value provides a
good trade-off between network traffic and overall delivery. For all protocols, we used
a one-minute beacon interval for neighbor discovery.
Based on this setting, we measure the following quantities:

— The code update delivery, defined as the fraction of nodes in the target subsets that
receive the code update. This essentially measures to what extent the dissemination
protocol achieves its goal.

— The number of code update transmissions, namely the number of bulk data transfers
performed during a simulation. This indicates the cost—at the network level—to
reach the protocol goal.

— The latency required to reach the nodes in the target subset, which provides a com-
plementary measure of cost from a user perspective.

We considered message transmissions as opposed to radio-on-time to evaluate the
energy cost of our protocol. Our protocol does not assume that the radio is always on,
and is independent of any underlying MAC protocol duty cycling the radio, as long as
it provides the ability to discover neighbors and to perform bulk-transfers. There are
already efficient MAC protocols for WSN such as [3I[I1]], and it is also easy to see how
the social cluster information could be used for duty cycling the nodes - this is however
subject of a future work. Further, we do not consider beacons, as all three protocols send
them at the same rate. All protocol messages are embedded in beacons, therefore they
do not pose additional overhead (the beacons of GCP are, however, 21 bytes lighter).

We run 20 repetitions for each setting. The following results are averages over these
repetitions, while the error bars represent the standard deviation around the average.

Results. Hereafter, we show results obtained with code updates of 10 packets. We ver-
ified that changing this figure within the range of 5-20 does not influence our results.
This is because the bulk transfer of a code image takes little time compared to node
mobility, and always completes before the two nodes disconnect.

Selective Reprogramming of Mobile Sensor Networks 189

GoP
constraint-based gossip
social diss —

Number of update transmissions
@
Time to deliver update (min)
Number of update transmissions

4 0
m_100%rm_50% rm_10% br_100% br_50% br_10% m_100%rm_50% rm_10% br_100% br_50% br_10% 10% 30%

(a) Overhead (b) Latency (¢) Threshold

Fig. 5. Overhead, latency and the effect of clustering threshold of our protocol compared to GCP
and constraint-based gossip

In all simulations, the three protocols always deliver the code update to all nodes
in the target subset. To do so, however, they incur in drastically different costs at the
network level. Figure[5(a)]shows the number of code update transmissions against vary-
ing target subsets. On average, our community-based protocol improves by a factor of
3.1 and 1.8 over GCP and constraint-based gossip, respectively. However, the gains
are smaller as the cardinality of the target subset decreases. This is because the leader
nodes that carry code around are a fixed cost that we must pay to reach every part of the
system. The impact of this cost is greater as the target subset is smaller. As expected,
GCP exhibits the same performance regardless of the target subset. Indeed, it stops only
when all nodes are reached, even if the ones in the target subsets already received the
code update. constraint-based gossip improves on this behavior, as it may stop earlier if
there are no more nodes in the target subset requiring the code update.

To achieve this performance, the community-based protocol trades-off transmissions
for latency. The latter is shown in Figure[5(b)] Nevertheless, the increased latency in our
protocol is limited given the absolute values at stake. On average, we have an increase
of a factor of only 1.3 in delay compared to GCP, while the worst case is an increase of
a factor of 2.6. GCP shows the best performance in this metric, as it has no restrictions
on when to forward a code update. Therefore, it takes advantage of every opportunity,
at the cost of redundant transmissions. In our protocol, instead, the leader node knows
which nodes in its community need the update, therefore it can wait until it is collocated
with these nodes. Once they are all in range, the leader node can update them in one go
using broadcast transmissions.

In presence of intermittent connectivity, it may take a long time for some nodes to
receive the updates. In the case of targeting 50% of the Reality Mining trace set, this
results in a large variation in latency, but some variation is also observed in other cases.
This is a characteristic of the network, and affects all three protocols.

We also investigate the behavior of leader nodes, as they play a critical role in our
solution. Particularly, we study whether their use may lead to an uneven degradation of
available energy among the nodes, e.g., because leaders need to handle more network
traffic. To do so, we examine the average number of code updates that leader nodes
deliver in our solution, compared to the number of nodes in GCP and constraint-based
gossip that deliver an update at least once. We found that the average number of update
transmissions a leader sends is 2.3 in the reality mining and 1.2 for the badger trace set.

190 B. Pasztor et al.

Both GCP and the constraint-based approaches send 3 and 1.3 update transmissions
on average per node, for the reality mining and badger trace set, respectively. We con-
clude that the leader nodes are not depleting their resources more quickly compared to
other solutions. Particularly, the leaders we identify largely correspond to nodes that—
because of the patterns of colocation—would deliver the code updates anyways. On
average, 87% of leader nodes deliver code updates also in GCP and constraint-based
gossip. However, our community-detection mechanism identifies apriori such nodes.
By doing so, we can make them wait for a good opportunity, e.g., when they are in
contact with members of their community, to save on unnecessary transmissions.

To further study the effect of leader selection, we also compared our results from tar-
geting the entire network to the performance of the same protocol with random leader
selection. This scheme selects leaders randomly from the members of each group.
While our overhead is 56% of that of GCP when targeting the entire network, averaged
over the two trace set, the random leader selection uses 84%. It is still better than GCP,
since the protocol can take advantage of the colocation of the community members,
though uses more than necessary transmissions to deliver the code to the communities.

We have also analyzed the effect of the threshold on which communities are sepa-
rated, which for this analysis has been 50%. In Fig. we plot the number of updates
sent by all three protocols on both the reality mining and the badger datasets, target-
ing the entire network. As it can be seen, the threshold choice does affect our results:
a different threshold means different community structures and a different number of
leaders, thus leads to different overhead. Note, however, that even in the case of bad
choices of thresholds, the performance falls back to that of the gossip-based protocols.

5 Related Work

Social routing. A few recent approaches leverage social-inspired metrics for routing.
SimBet [7] achieves efficient data dissemination by exploiting “betweenness”, a mea-
sure of how an individual may socially connect other entities not necessarily known
to each other. Bubblerap and Island Hopping use a centralized algorithm to
detect communities, based on global knowledge. Bubblerap describes also a distributed
extension which detects communities at run-time only if their cardinality grows over
time. Thus, every node is bound to the first community it is mapped to, missing the
dynamic evolution of social interactions.

In contrast to these approaches, our solution detects communities at run-time and in
a fully decentralized fashion. Moreover, we are able to adapt to dynamic changes in the
community structure and in the mapping of entities to communities. These features are
pivotal to leverage communities for routing in the scenarios we target.

Delay tolerant routing approaches use notions of previous encounters and mobility
patterns to decide on best message carriers [19l28l[32]]. This approach was also extended
to mobile sensor networks [28]: while the use of mobility and connectivity to identify
good carriers is shared in our approach, with respect to dissemination we go one step
further and use community knowledge to improve on the number of messages needed
to spread the updates.

Selective Reprogramming of Mobile Sensor Networks 191

WSN reprogramming. To the best of our knowledge, our work is the first to provide
a solution for selective code dissemination in mobile sensor networks. However, the
literature includes a wealth of approaches for system-wide reprogramming in static
networks [33]. For instance, Trickle disseminates code updates using a “polite
gossip” technique to suppress redundant transmissions. The rate of control traffic is
adjusted at every device based on the state of neighbor nodes. As neighborhoods keep
changing in the scenarios we target, a similar solution would be very inefficient.

Solutions for selective code dissemination in static networks also exist. For instance,
Figaro [26] allows selecting subsets of nodes based on node attributes. It employs a tree-
based routing scheme for code dissemination, which is difficult to apply in a mobile,
disconnected scenario like ours. In TinyCubus [24]], code is disseminated to all nodes
with a given role, e.g., all cluster-heads. At the network level, TinyCubus assumes a
priori knowledge of the system topology, as it requires to specify an upper bound on the
number of hops separating nodes with the same role. Such scheme is hardly applicable
in presence of dynamic topologies and intermittent connectivity.

In a mobile setting, Impala [21] leverages gossip dissemination to distribute code up-
dates to every device. Version numbers are used to cater for eventual delivery. GCP [4]
also targets system-wide reprogramming in mobile sensor networks, using a polite gos-
sip technique similar to Trickle. However, GCP limits network traffic using a token-
based scheme whereby nodes can transmit only if they possess enough tokens. ReMo
focuses on both static and mobile networks, using physical-layer metrics such as the
Link Quality Indicator (LQI) [6] to establish routes for code dissemination. Although
these solutions target scenarios similar to ours, they still do not tackle the problem of se-
lective code dissemination. Therefore, being unaware of the selection criteria specified
by our users, their use would correspond to significant energy waste.

6 Conclusion

We presented a system for selective reprogramming in mobile WSNs, based on social
community detection. Our solution allows users to target a subset of the WSN nodes us-
ing constraints on node attributes. A dedicated protocol exploits the social interactions
among the monitored entities to disseminate code updates efficiently. We evaluated our
framework through real mobility traces. The results showed that, although experiencing
a small latency overhead, our protocol saves up to 66% of the transmissions even when
reprogramming targets the entire system. These performance gains increase when tar-
geting a subset of the nodes, by virtue of our routing strategy that builds routes to the
target nodes based on the social communities. Our future work includes deploying the
system on animals in the context of a wildlife monitoring project.

Acknowledgments

The work described in this paper was partially supported by ESF MiNEMA, EPSRC
grants EP/E012914 and EP/C544773, the Autonomous Province of Trento under the
call for proposals “Major Projects 2006 (project ACube), CONET under EU contract
FP7-2007-2-224053 and Swedish Foundation for Strategic Research (SSF).

192

B. Pasztor et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. J.STAT.MECH., P10008 (2008)

Brown, J.L., Orians, G.H.: Spacing patterns in mobile animals. Annual Review of Ecology
and Systematics 1 (1970)

Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-mac: a short preamble mac protocol for
duty-cycled wireless sensor networks. In: SenSys 2006: Proc. of the 4th Int. Conf. on Em-
bedded Networked Sensor Systems, pp. 307-320. ACM, New York (2006)

Busnel, Y., Bertier, M., Fleury, E., Kermarrec, A.-M.: GCP: Gossip-based Code Propagation
for Large-scale Mobile Wireless Sensor Networks. In: Proc. of the Int. Conf. on Autonomic
Computing and Communication Systems (2007)

Chan, S.-Y., Hui, P., Xu, K.: Community Detection of Time-Varying Mobile Social Net-
works. In: Proc. of the First Int. Conf. on Complex Sciences: Theory and Applications,
Complex 2009 (2009)

Chipcon Tech. CC2420 Datasheet,
focus.ti.com/docs/prod/folders/print/cc2420.html

Daly, E.M., Haahr, M.: Social Network Analysis for Routing in Disconnected Delay-tolerant
MANETSs. In: Proc. of the Int. Symp. on Mobile Ad-Hoc Networking and Computing, Mo-
biHoc (2007)

De, P, Liu, Y., Das, S.K.: ReMo: An Energy Efficient Reprogramming Protocol for Mobile
Sensor Networks. In: Proc. of the Int. Conf. on Pervasive Computing and Communications,
PERCOM (2008)

Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating Sys-
tem for Tiny Networked Sensors. In: Proc. of 1°* Wkshp. on Embedded Networked Sensors
(2004)

Dyo, V., Ellwood, S.A., Macdonald, D.W., Markham, A., Mascolo, C., Pasztor, B., Trigoni,
N., Wohlers, R.: Poster Abstract: Wildlife and Environmental Monitoring using RFID and
WSN Technology. In: Proc. of the Int. Conf. on Embedded Networked Sensor Systems, Sen-
Sys (2009)

Dyo, V., Mascolo, C.: Efficient node discovery in mobile wireless sensor networks. In: Niko-
letseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS,
vol. 5067, pp. 478-485. Springer, Heidelberg (2008)

Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Personal Ubiqui-
tous Comput. 10(4) (2006)

Gorlick, A.: Turtles to test wireless network (July 2007)

Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: Social-based Forwarding in Delay Tolerant
Networks. In: Proc. of the Int. Symp. on Mobile Ad-Hoc Networking and Computing, Mo-
biHoc (2008)

Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed community detection in delay
tolerant networks. In: Proc. of Int. Wrkshp. on Mobility in the Evolving Internet Architecture,
MobiArch (2007)

Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet.
In: Proc. of the Int. Conf. on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS-X (2002)

Krause, J., Croft, D., James, R.: Social Network Theory in the Behavioural Sciences: Poten-
tial Applications. Behavioral Ecology and Sociobiology 62(1) (2007)

Levis, P, Patel, N., Culler, D., Shenker, S.: Trickle: a Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks. In: Proc. of the Symp. on Net-
worked Systems Design and Implementation, NSDI (2004)

focus.ti.com/docs/prod/folders/print/cc2420.html

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Selective Reprogramming of Mobile Sensor Networks 193

Lindgren, A., Doria, A., Schelén, O.: Probabilistic Routing in Intermittently Connected Net-
works. In: Dini, P., Lorenz, P., de Souza, J.N. (eds.) SAPIR 2004. LNCS, vol. 3126, pp.
239-254. Springer, Heidelberg (2004)

Lindgren, A., Mascolo, C., Lonegan, M., McConnell, B.: Seal2Seal: A Delay-Tolerant Pro-
tocol for Contact Logging in Wildlife Monitoring Sensor Networks. In: Proc. of Int. Conf.
on Mobile Ad-hoc and Sensor Systems, MASS (2008)

Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic, parallel sen-
sor systems. In: Proc. of the SIGPLAN Symposium on Principles and Practice of Parallel
Programming (2003)

Lorincz, K., Chen, B.-R., Werner Challen, G., Roy Chowdhury, A., Patel, S., Bonato, P.,
Welsh, M.: Mercury: A Wearable Sensor Network Platform for High-fidelity motion Analy-
sis. In: Proc. of the Int. Conf. on Embedded Networked Sensor Systems, SenSys (2009)
Lukac, M., Girod, L., Estrin, D.: Disruption Tolerant Shell. In: Proc. of the SIGCOMM
Wkshp. on Challenged Networks, CHANTS (2006)

Marrén, PJ., Lachenmann, A., Minder, D., Hahner, J., Sauter, R., Rothermel, K.: TinyCubus:
a flexible and adaptive framework sensor networks. In: Proc. of the European Wkshp. on
Wireless Sensor Networks, EWSN (2005)

Mottola, L., Picco, G.P.: Logical Neighborhoods: A Programming Abstraction for Wireless
Sensor Networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006.
LNCS, vol. 4026, pp. 150-168. Springer, Heidelberg (2006)

Mottola, L., Picco, G.P., Amjad, A.: Fine-Grained Software Reconfiguration in Wireless Sen-
sor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 286-304. Springer,
Heidelberg (2008)

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level Simulation in
COOJA. In: IEE SenseApp 2006 (2006)

Pasztor, B., Musolesi, M., Mascolo, C.: Opportunistic mobile sensor data collection with
scar. In: Proc. of the 4th IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS
2007), Pisa, Italy, October 2007. IEEE Press, Pisa (2007)

Ramos-Fernandez, G., Mateos, J., Miramontes, O., Cocho, G., Larralde, H., Ayala-Orozco,
B.: Lévy Walk Patterns in the Foraging Movements of Spider Monkeys (Ateles geoffroyi).
Behavioral Ecology and Sociobiology 55(3) (2004)

Sanderson, G.C.: The Study of Mammal Movements: A Review. The Journal of Wildlife
Management 30(1) (1966)

Sarafijanovic-Djukic, N., Pidrkowski, M., Grossglauser, M.: Island Hopping: Efficient
Mobility-Assisted Forwarding in Partitioned Networks. In: Proc. of the Int. Conf. on Sen-
sor and Ad Hoc Communications and Networks, SECON (2006)

Small, T., Haas, Z.J.: The shared wireless infostation model: a new ad hoc networking
paradigm (or where there is a whale, there is a way). In: Proc. of the 4th ACM Int. Symp. on
Mobile ad hoc networking & computing (MobiHoc), pp. 233-244. ACM, New York (2003)
Wang, Q., Zhu, Y., Cheng, L.: Reprogramming wireless sensor networks: challenges and
approaches. IEEE Network 20(3) (2006)

Welsh, M., Mainland, G.: Programming Sensor Networks Using Abstract Regions. In: Proc.
of the Symp. on Networked Systems Design and Implementation, NSDI (2004)

Improving Sensornet Performance by Separating
System Configuration from System Logic

Niclas Finne, Joakim Eriksson, Nicolas Tsiftes, Adam Dunkels,
and Thiemo Voigt

Swedish Institute of Computer Science
{nfi, joakime,nvt,adam,thiemo}@sics.se

Abstract. Many sensor network protocols are self-configuring, but inde-
pendent self-configuration at different layers often results in suboptimal
performance. We present Chi, a full-system configuration architecture
that separates system logic from system configuration. Drawing from
concepts in artificial intelligence, Chi allows full-system configuration
that meets both changing application demands and changing environ-
mental conditions. We show that configuration policies using Chi can
improve throughput and energy efficiency without adding dependencies
between layers. Our results show that sensornet systems can use Chi
to adapt to changing conditions at all layers of the system, thus meet-
ing the requirements of heterogeneous and continuously changing system
conditions.

1 Introduction

The sensornet community is moving toward modular architectures that allow
a clean separation of concerns [3IBI7I9120]. So far, however, the performance of
such modularized designs has been dissatisfying due to problems with cross-
layer interactions. For example, Kim et al. write [12]: “/...] there is still a large
performance gap to the raw radio bandwidth that would require a cross-layer
design and integration with the MAC and the packet processing in the OS.”
Similarly, experience from sensornet deployments [I7] has shown the need for
configuration across modules and for gathering system statistics.

Cross-layer optimizations have primarily been implemented by coupling the
programming interfaces of different components. Hence, using cross-layer de-
signs typically requires that we sacrifice system modularity to improve system
performance. As a remedy to this problem, researchers have proposed specialized
architectures for cross-layer optimization [I3JT6JTI0]. These specialized architec-
tures enable applications to be configured to meet energy efficiency goals. We
argue, however, that since energy efficiency is not the only objective of a sen-
sornet, a cross-layer optimization architecture should be able to focus on other
metrics as well.

We present Chi, a lightweight architecture that enables cross-layer optimiza-
tions in sensornet systems without requiring an unmodular cross-layer design.
The main design principle of Chi is that components must not be required to

J. S& Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 194 2010.
© Springer-Verlag Berlin Heidelberg 2010

Improving Sensornet Performance by Separating System Configuration 195

Application . .
\ Configuration
Routing protocol # Name | Value
hops_er 3
Neighbor manageA\ adv_time 100 Configuration
1_thresh 134 Policy
Link estimator [off_time 90
MAC protocol %

Fig. 1. Chi keeps the configuration data of different system layers in a central com-
ponent. The configuration can be changed by a configuration policy. Unlike existing
cross-layer architectures, individual protocol layers are unaware of the configuration of
the other layers.

have any knowledge of parameters exported by other components. Instead, all
such knowledge is in separate components that enforce configuration policies.
By using Chi, we maintain the separation of concerns between layers while pro-
viding the same performance as integrated cross-layer optimizations. In contrast
to previous work, Chi takes a generalized approach to configuration that enables
systems to be optimized not only to meet energy objectives but also to meet
other objectives such as latency, throughput, and sensor coverage.

The Contiki operating system separates protocol logic from protocol head-
ers to achieve network protocol modularity with retained execution-time effi-
ciency [5]. Similarly, Chi provides system configuration modularity with low
run-time overhead. We draw from the work made within the autonomic com-
puting community on blackboard systems [4]. The central component in Chi is
a blackboard that holds the system configuration and relevant parts of the sys-
tem state. Storing the configuration in one component simplifies updates made
by external configuration modules, as illustrated in Figure [Il In addition to
the blackboard component, Chi accommodates configuration policies written to
optimize a sensornet toward different objectives.

Our contribution is to show that Chi solves the problem of cross-layer op-
timization for sensornet systems using a generalized programming abstraction.
We demonstrate the abilities of Chi in three case studies, showing that an appli-
cation using holistic configuration outperforms the same application when using
constant parameter settings of the protocol layers, as well as when using several
adaptive layers. We show that by using Chi the TCP performance increases by an
order of magnitude without putting any cross-layer logic within the networking
layers. Instead, the cross-layer optimizations are put into separate configuration
policies and are decoupled from all protocol implementations.

The rest of this paper is structured as follows. We present the background of
cross-layer design, holistic configuration and blackboard systems in Section
We describe Chi in Section B] and its implementation in the Contiki operating
system in Section @l We evaluate the architecture in Section Bl present related
work in Section 6 and conclude the paper in Section [

196 N. Finne et al.

2 Background

Layering separates different concerns in a network architecture and reduces the
design complexity. The plethora of routing, transport, and medium access con-
trol protocols for sensor networks has made layering the prevalent design choice
also in sensor network architectures. The high modularity of layering, however,
restricts the collaboration of different layers that could potentially benefit from
sharing each others unique information.

2.1 Performance Improvements through Cross-Layer Design

Achieving near-optimal throughput and energy consumption is difficult when
using independently designed protocols in different layers. This is easier in verti-
cally integrated systems that benefit from a coordinated design of several layers.
Koala [19] and Dozer [2] are examples of vertically integrated systems with duty
cycles less than 1% in low power data gathering applications. Their specific tar-
get in design, however, restricts them from achieving the same efficiency when
adapting to different network traffic patterns.

Cross-layer approaches make existing protocols more adaptive to different
workload patterns by allowing the layers to interact and share information. Pre-
vious research on cross-layer design for sensor networks has led to improvements
in energy-efficiency [SII8]. The negative consequence is that cross-layer design,
by definition, increases the coupling between modules.

2.2 Cross-Layer Design Breaks Layering

Cross-layer designs have been criticized as leading to “spaghetti design” [11].
Without layering it is difficult to achieve adequate separation of concerns which
may lead to stability problems and negative impact on performance. Addition-
ally, tight coupling decreases the modularity of the architecture and makes it
complex to replace modules.

2.3 Holistic Configuration

By holistic configuration, we mean that parameters in all parts of the system can
be configured through a separate configuration component, called a configura-
tion policy in Chi. While layered systems usually store configuration parameters
in module variables, a separate configuration policy enables simultaneous config-
uration of the whole system. This makes it possible to add external algorithms
that optimize the system using information from multiple layers. The optimiza-
tion objectives can for instance be low energy consumption, minimum delay, or
maximum throughput. Changing the applications objectives is simple because
only the configuration policy needs to be updated.

A configuration policy can be implemented in plain C using basic if-then-else
statements that optimize the configuration toward the application objectives.
It can also consist of a rule engine and a set of rules that are triggered when
the system state changes. If the application objectives change, the configuration
policy can be replaced to reflect the new objectives.

Improving Sensornet Performance by Separating System Configuration 197

2.4 Blackboard Systems

A blackboard [4] is a concept used within the artificial intelligence community.
Conceptually, a blackboard is a tool used by a group of experts to solve a complex
problem. In a software system, the blackboard is a component that typically
stores key-value pairs, and has a mechanism for notifying interested components
when a value changes. The classic blackboard design consists of a blackboard, a
set of independent knowledge sources, and a number of control components. The
knowledge sources have both the knowledge and the algorithms needed to solve
a specific problem, whereas the control components steer the execution order
and triggering. The traits of the blackboard makes it a suitable solution for the
requirements of a holistic configuration architecture.

3 Chi: A Full-System Configuration Architecture

We have designed Ch7 a full-system configuration architecture that uses a black-
board to enable cross-layer information sharing despite keeping modules decou-
pled. The blackboard provides a shared variable abstraction that is accessed in
an independent module in each sensor node. Beside providing a programming
interface for accessing variables, the blackboard has a notification process for
subscribers of value modifications. As illustrated in Figure [II modules export
their configuration parameters through the blackboard. Configuration policies
can then use any of the available parameters to optimize the system for any
objectives determined by the application.

Chi is designed to be a dynamic configuration architecture. In a modular
system such as Contiki, in which software modules can be loaded at runtime,
it is necessary that also the configuration architecture can accommodate new
parameters and configuration policies. New insights on protocol optimizations
are easily integrated into deployed networks because the configuration policies
are replaceable.

3.1 Separating Configuration from Logic

Chi separates system logic from system configuration to make it possible to alter
the configuration without having to change the logic. Moreover, system modules
do not need to contain any logic for updating their configuration: this service is
provided by Chi and the configuration policies used in the system.

Existing mechanisms conflate logic and configuration by storing configuration
parameters as module variables. To change the configuration of a module, the
internal variables need to be changed. Thus the module must contain logic for
storing and retrieving configuration parameters. Without a consistent interface
for storage and retrieval of configuration parameters, every module provides its
own mechanism for doing so, leading to systems that are difficult to reconfigure.

! The name Chi comes from the Greek letter x, representing the cross-layer informa-
tion sharing that the architecture enables.

198 N. Finne et al.

Parameter hash table

Arameler entry\ Subscribers

Name

2 bytes

2 bytes Value

1 byte | Flags ‘ Subscriber count

1 byte Subscriber pointer

Fig. 2. The memory layout in the blackboard. Parameters are stored in a hash table
for fast lookup. Subscribers are listed as function pointers in a separate table.

Chi provides a consistent interface for storing and retrieving configuration pa-
rameters from the blackboard, thus making it possible to reconfigure the entire
system using a single interface.

Configuration and data sharing abstractions that are aware of the details in
specific protocols can be implemented by using the generalized Chi architecture.
For instance, a network-based data sharing abstraction such as Hood [22] could
store reflected data variables locally in Chi. The need for creating parameters
dynamically—which is possible in Chi-is highlighted in the case of deploying a
heterogeneous sensor network where different types of sensor nodes may want to
share different parameters.

Sensornet protocols are in general unaware of which specific configuration
parameters that protocols at other layers make available. A configuration pol-
icy, as previously depicted in Figure [l therefore handles the protocol-specific
optimization. If the protocols change, for example by code dissemination and
dynamic loading in a deployed system, a corresponding update must be made
with the configuration policy. In the evaluation (Section [l), we will show three
configuration policies in practice.

3.2 Inter-layer Information Hiding

To achieve a meaningful separation of concerns, it is important that different
layers of the system are independent of each other. If modules in adjacent layers
would depend on having information about each other, it would be difficult to
replace them. Instead of depending on inter-layer information sharing to enable
cross-layer optimization, Chi moves the information sharing from the inter-layer
interface into the blackboard to keep the layers separate. This ensures that inter-
layer interfaces focus on the abstractions provided by each layer and not on
information sharing between layers.

Improving Sensornet Performance by Separating System Configuration 199

3.3 State Monitoring

State information can serve as input for configuration policies. Components mon-
itor different parts of the node state and publish the state information in the
blackboard. State can be collected either in the nodes through active monitor-
ing, or it may require communication with neighboring nodes to gain a complete
picture of the surroundings of a node.

In some cases, the information published by one component may not be di-
rectly usable by others. Chi allows reusable components to be plugged in to
process data and to produce a refined output. For example, a network statistics
component can take the raw packet statistics produced by the network stack
and calculate whether the node is in bulk traffic mode or in passive mode. This
information can then be used by a configuration policy to optimize the system
based on a refined input.

The parameter subscription mechanism in Chi ensures that interested parties
are notified if a parameter value changes. Just holding the shared state would
have required that modules periodically poll the blackboard for changes, which
would add latency to the information exchange and increase the processing en-
ergy. In particular, configuration policies regularly require that components must
react within a limited time after the event occurs.

4 Implementation

We have implemented the Chi architecture in Contiki, but the architecture is
general enough to be portable to other systems. Figure Pl illustrates the memory
layout. The blackboard component uses two tables: the parameter hash table and
the subscriber table. Parameters are represented by a name pointer, a value, a
set of flags, the number of subscribers, and a pointer to the first subscriber in the
subscriber table. We restrict the values to be of integer type to have a concise
API. Moreover, we have not identified any need for other types. When compiled
for 16-bit computing architectures such as the MSP430, each parameter requires
six bytes, whereas the subscriber table requires two bytes per subscriber to store
pointers to callback functions.

Chi’s API consists of eight functions. The configuration parameters are de-
noted by textual names, such as “mac.off time” and “measure.period”. The set
function assigns a value to a configuration parameter. The get function obtains
the last set value. Whether or not a value has been set is checked with the exists
function. The subscribe function registers a callback function as a subscriber to a
specified configuration parameter. The callback function is called whenever the
parameter is changed using the set function. The unsubscribe function removes
a previously registered callback.

Parameter values can be read and written without subsequent parameter
lookups in the hash table by holding a one-byte index for the parameter. The
lookup function returns an index value if the parameter exists. Thereafter, the
entry get and entry set functions will provide significantly faster access to the
parameter by using the index value.

200 N. Finne et al.

5 Evaluation

We evaluate Chi through a series of experiments to determine whether it achieves
the same performance improvements as those of typical cross-layer designs, and
whether the dynamic properties of the architecture results in any performance
penalty. The first experiment is inspired by a condition monitoring application
that we evaluate by comparing the performance of different optimization princi-
ples. In the second experiment we show that the separation of configuration and
logic makes it possible to reuse optimizations in configuration policies between
different applications and communication stacks. The third experiment demon-
strates that Chi improves the communication performance as much as that of
a specialized architecture for application feedback to the MAC layer. Lastly, we
evaluate Chi through a set of micro benchmarks where we measure the cycle
count of each operation.

5.1 Case Study: Condition Monitoring with Bulk Transfer

To quantify the effectiveness of Chi, we implement a condition monitoring appli-
cation in Contiki using a holistic configuration policy. We compare the perfor-
mance with three other types of network stack designs: constant configuration,
adaptive layers, and cross-layer optimizations. The application has the same
communication behavior as applications for condition monitoring of industrial
motors: it samples large chunks of vibration data periodically, and sends the
data to a sink for processing and analysis. A data chunk is typically a few kilo-
bytes large. We apply the configuration policy on the X-MAC protocol [I] and
the Rime communication stack [5]. To support bulk transfers over a multi-hop
network, we implement a bulk transport layer using Rime’s data collection ab-
straction. We use three Tmote Sky nodes forming a two-hop network.

Constant Configuration: The version with constant parameters uses 20 ms
wake time and 480 ms sleep time, resulting in a duty cycle of 4%. On the layers
above the MAC layer, we set the routing advertisement interval to 60 s, the data
packet transmission interval to 1 s, and the retransmission timeout to 1 s.

Adaptive Layers: Adaptive layers means that each layer optimizes itself using
internal knowledge. In this experiment, we implement the version of the X-MAC
protocol [I] that adapts to the traffic load using only information about the
packets sent and received.

The adaptive layers setup is similar to that of the constant configuration setup,
but to avoid collisions, the routing advertisement rate is adapted by delaying the
next advertisement by 10 s after receiving a packet. The transport layer adapts
the send rate in order to increase the throughput. If there is a large delay between
a sent packet and its corresponding acknowledgement, we reduce the send rate.
If the delay is below a certain threshold, we increase the send rate as much as
possible while keeping the delay below the threshold. A large delay indicates
retransmissions in the lower layers and that the next node in the route may be
overloaded.

Improving Sensornet Performance by Separating System Configuration 201

Application Configuration policy

bulk collect

collect

Blackboard

[Rime-layers]

X-MAC

|
|
|
|
| reliable unicast
|
|
|
|
|

Fig. 3. The condition monitoring application and its parts

A Cross-Layer Design: The cross-layer design in this experiment combines
information from the transport layer and the link layer. The consequence is that
the bulk transport module must be coupled directly with the MAC protocol im-
plementation. The bulk transport module must know of MAC-specific variables
or functions that will no longer be valid if the MAC protocol would be switched.
Moreover, the data collection module is coupled directly with the bulk transport
module to know when not to send routing advertisements.

In this experiment, the transport layer sets a flag as a global variable and
reconfigures the MAC layer at the beginning and end of a bulk transfer. The
send rate is fixed at 20 packets per second. While a bulk transport is active,
the data collection module withholds routing advertisements, and the reliable
unicast layer uses a shorter retransmission timeout of 0.5 s.

The Chi Design: The Chi design consists of a policy that optimizes the system
through a set of parameters in multiple layers. Whereas the cross-layer design
described in the previous section modifies the communication stack to fit ap-
plication requirements, the Chi design uses the communication stack without
changing any interfaces or intra-layer logic.

Figure B shows the configuration policy that manages the reconfiguration,
and Figure [depicts the corresponding code. Reconfiguration decisions are pri-
marily affected by the bulk transfer parameter. When the application switches
between regular transfer and bulk transfer, it causes a global reconfiguration of
the communication stack. This cannot be done with a constant configuration
since it would be optimized for either energy efficiency or throughput. Our ap-
proach is to use configuration policies optimized for the specific application and
reconfigure the communication stack when needed.

Throughput and energy consumption: We show the results in Figure
Since the results achieved with the cross-layer design and the Chi design are

202 N. Finne et al.

/% This function is called when ”bulk.stream” changes */
void stream changed(const char #name, int value) {

if (value != 0) {

set ("mac. off —time” , 0);

set (" bulk.send—rate”, 20);

set (" collect .routing—advertisements”, 0);

set ("runicast .rexmit—time” , CLOCK SECOND / 2);
} else {

/* Restore default configuration x/

set ("mac. off —time” , MAC DEFAULT OFF TIME) ;

set (" bulk.send—rate”, 1);

set (" collect .routing—advertisements”, 1);

set ("runicast .rexmit—time” ,DEFAULTREXMITTIME)

/% Register a callback for 7bulk.stream” x/
subscribe ("bulk.stream”, stream changed);

Fig. 4. The configuration policy reconfigures the communication stack based on routing
information from the network layer. If the system indicates that a bulk transfer is about
to occur, the policy sets the system in high throughput mode.

1200 0.6
el
S 1000 5 05
3 £
Q ~
% 800 o 04
2 Ky
& 600 5 03
= o
2 400 3 o2
[=2] Q
3 &
2 200 0.1
=
0 0 -
Constant Adapt|ve Holistic/ Constant Adaptive Holistic/
Multi-layer Cross-layer Multi-layer ~ Cross-layer
(a) Throughput (b) Energy

Fig. 5. The holistic configuration outperforms the constant configuration and the
multi-layer self-adaptive configuration both in throughput and energy

identical, they are shown as one result in the table. When using constant pa-
rameters, the throughput is quite low and the power consumption is moderate.
The result depends on the chosen parameters that, as discussed above, lead to a
duty cycle of around 4%. Although a higher duty cycle leads to higher through-
put, the power consumption increases. The adaptive layers design is considerably
more efficient than the design with constant parameters. The power consumption
decreases to about one third compared with constant parameter setting.

Both the Chi design and the cross-layer design yield a high throughput and
a low power consumption. The reason is that the nodes can immediately switch
from low power mode to high throughput mode when a bulk transfer begins
since the application demands are known by the configuration policy. In the
cross-layer design, the same demands are hard-wired into the different layers.

Improving Sensornet Performance by Separating System Configuration 203

App 1 App 6

duty duty
cycle cycle 6

duty
cycles
aggregated
duty cycle

|

|

|

|

|

|

|

Power !
Coordinator | |
|

|

|

|

|

|

|

|

Blackboard

aggregated
duty cycle MAC layer

Fig. 6. The power coordinator uses Chi to coordinate duty cycles

5.2 Case Study: TCP Optimization over a Power-Saving MAC
Protocol

The second case study shows that we can reuse optimizations of a Chi config-
uration policy in a different type of application using another communication
stack. The application studied is a web-service application running HTTP over
TCP/IPv6 [7] with X-MAC as the MAC protocol. The scenario consists of a
client that connects to a server, transfers some data, and then closes the connec-
tion. For this purpose we use two Tmote Sky nodes that are able to communicate
directly with each other.

This scenario differs from the previous scenario since this is a request-response
scenario and the first was a bulk transfer. There are also similarities, how-
ever, since both scenarios transfer many packets and use X-MAC. By re-using
the MAC optimization of the configuration policy from the first case, we can
get a much higher performance for the web-service request. The configura-
tion policy is illustrated in Figure [l The TCP layer publishes the parameter
“tcp.connection.count” and the value of this parameter is determined by count-
ing the open TCP connections in the IP stack. The TCP layer needs no knowl-
edge of the MAC layer and vice versa when using Chi-all cross-layer logic is put
into the configuration policy.

Figure [§ shows the result of running the experiment with and without con-
figuration policy optimization. As expected, the overhead of setting up a TCP
connection decreases in relation to the payload size when more data is trans-
mitted. The data rate increases with an order of magnitude when using the
configuration policy. The low performance when using no optimization is caused
by TCP waiting for acknowledgments for each sent packet, and both TCP seg-
ments and acknowledgments are delayed depending on where in the X-MAC
duty cycle each node is. The optimization yields such a high performance by
using a 100% duty cycle in X-MAC when there are active TCP connections.

204 N. Finne et al.

/% This function is called when ”tcp.connection.count” changes */
void connections changed (const char xname, int value) {
if (value > 0)
set ("mac. off —time” , 0);
else
set ("mac. off —time” , MAC DEFAULT OFF TIME) ;

/* Register a callback for 7tcp.connection.count” x/
subscribe (”tcp.connection.count”, connections changed);

Fig. 7. The configuration policy reconfigures the MAC layer for high throughput when
at least one TCP connection is active

Data rate (kbit/s)
O=NWwWhLHUION®

1 2 3 4 5 6
Payload size (kilobytes) Number of Applications

1 2 4 8 16

Power consumption (mW)

X-MAC (Plain) Measured
X-MAC (Policy) @ Theoretic =

Fig.8. The data transfer rate of Fig.9. The measured power consump-

TCP/IPv6 over X-MAC with and with- tion of the aggregated duty cycles of mul-

out configuration policy optimization tiple applications matches the theoretical
values

5.3 Case Study: Aggregation of Multiple Duty Cycles

Data from different sensors can require different communication patterns de-
pending on the deployment. Klues et al. have presented the Unified Power Man-
agement Architecture (UPMA) [13], which separates power management from
MAC level functionality. UPMA is able to coordinate the duty cycles of multiple
applications. Applications store their duty cycles in a Power Management Table,
and UPMA uses a configured policy to coordinate the duty cycles.

In this experiment, we emulate the behavior of the aforementioned Power
Management Table by using Chi. The experimental setup consists of multiple
applications that periodically transmit data according to a configured duty cycle.
Applications insert their duty cycles into Chi, as shown in Figure [l The power
coordinator subscribes to the duty cycle parameters in Chi. When an application
submits its duty cycle, the power coordinator computes the aggregate duty cycle
and assigns this value to the duty cycle parameter in Chi used by the MAC
protocol. We use the same duty cycles as Klues et al. in our experiment. The
radio on-time is 200 ms for all applications, and the radio off-times are 12.6 s,
6s,3s,1.4s, 600 ms, and 200 ms.

Improving Sensornet Performance by Separating System Configuration 205

In contrast with Klues et al., we do not measure the duty cycle, which is
an indirect metric for power consumption, but instead we directly measure the
radio power consumption using Contiki’s software-based on-line energy estima-
tion method [6]. Using this method, we measured the power consumption of
the CC2420 radio as 59.92 mW. The theoretical radio on-time for the six ap-
plications with the duty cycles as defined by Klues et al. is slightly below 52%
(31.16 mW), matching our measured value of approximately 31 mW.

The results in Figure [are similar to those of Klues et al. (Figure 10, [I3]) in
that the theoretical values match the measured ones. The results confirm that
our generalized configuration architecture achieves the same optimized radio
power management as that of a specialized architecture such as UPMA.

5.4 Operations Benchmark

We execute a benchmark that measures the required time for the blackboard
operations in Chi. We use the internal clock of the MSP430F1611 processor
in a Tmote Sky node to count clock cycles. The blackboard is set up with 20
parameters and uses a hash table size with 32 entries. Despite increasing the
risk of collisions, the hash table uses a size of 2" instead of a prime number.
Our experiments have shown that the performance degradation of these extra
collisions is less severe than the degradation caused by the expensive modulo
operation that we avoid this way.

Figure shows the numbers of clock cycles used by the main blackboard
operations. The set and get operations have a simplified interface, but require
a parameter lookup in the hash table at each call. In the rare cases where pa-
rameters must be accessed several hundred times per second, the entry get and
entry set functions provide a shorter path to the parameter by holding a pointer
to it in the table. Thus the need to do a lookup is eliminated and the perfor-
mance becomes comparable to that of a pre-compiled configuration approach
such as TinyXXL [15].

5.5 Network Power Consumption

While the micro benchmark gives a clear view of the cost of configuration oper-
ations in terms of clock cycles, it is the effect on power consumption in a typical
sensor network application that is the key issue. To quantify the power consump-
tion in a sensor network, we conduct two experiments with a data-collection ap-
plication. We compare the pre-compiled, constant configuration setting with the
use of Chi. We measure the power using an online energy-estimation method [6],
and collect the energy data when the experiment has finished. The sensor nodes
communicate using Rime [5]. When running the experiment with Chi, we sub-
stitute calls to Chi for the constant configuration variables in Rime. In addition,
we store communication statistics in Chi instead of in memory variables. The
experiments are conducted with both a TDMA-based protocol that is special-
ized for data collection, and a data collection protocol using the more generic
X-MAC protocol underneath.

206 N. Finne et al.

600 11

500

400

300

Clock cycles

200

100

0
4
S/’/Q, @0@ 004_0 0@/ ‘90% a\% @Q&
N ©

N & %, O
o o % %

Fig.10. A micro benchmark for the Chi operations. The entry get and entry set op-
erations are the most commonly used and are therefore optimized for execution-time
efficiency.

s 16 Pre-compiled configuration —— s 4 Pre-compiled configuration ——

z 14 Dynamic configuration z 35 Dynamic configuration

‘g’ 12 E 3

5 10 5 25

E 8 s 2

c 6 S 1.5

[s} s} -

o o

g 4 5 1

g 2 Z 05

= Y B 2 o 0 o W 3
CPU CPU Radio CPU CPU Radio
active sleeping listening active sleeping listening

(a) X-MAC (b) TDMA

Fig.11. The dynamic design of Chi has a negligible impact on power consumption.
The power consumption is measured for a data collection network using either X-MAC
or TDMA. Note that the vertical scales are different.

An X-MAC-based data collection protocol: The application in this ex-
periment measures temperature, humidity, and light, and sends this data to a
base station every other second. The system uses the X-MAC protocol [I] as an
energy saving MAC layer, and the data collection module in Rime to deliver the
data to the sink. Route advertisements are sent once per minute. We measure
the average consumed energy at each node in an indoor testbed of 15 Tmote
Sky nodes during a period of 50 sensor measurements.

Figure shows the average measured power consumption over five test
runs with pre-compiled configuration and five corresponding runs with a con-
figuration policy using Chi. The power consumption overhead of the dynamic
configuration is on average 2.5%.

Improving Sensornet Performance by Separating System Configuration 207

A TDMA-based data collection protocol: We build a small data collection
network using a TDMA-based data collection protocol named CoReDac [21].
The leaf nodes in our network transmit a packet every 5 s. We measure the
power consumption of a node in the middle of the tree with and without Chi.
The result in Figure shows a negligible overhead of 0.9% for the Chi-based
system. As expected, slightly more CPU power is required to handle the variables
stored in Chi.

6 Related Work

Although many sensornet protocols are adaptive, they mainly adapt by using
intra-layer information. Examples include the scheduled channel polling MAC
protocol [24] that changes its duty cycle using on the current traffic load and
the MintRoute protocol [23] that changes its forwarding tables based on com-
munication conditions. Independent self-adaptation at multiple layers can lead
to sub-optimization where self-adaptation mechanisms at different layers coun-
teract each other [11].

The multitude of non-standard, cross-layer designs have led to various efforts
to generalize cross-layer interactions into configuration architectures. Lachen-
mann et al. present TinyXXL, a language and framework that supports cross-
layer interactions [I5]. The framework is similar to our work in that it provides a
repository for storing system state and configuration. Like Chi, it supports cross-
layer interaction and reconfiguration using a publish and subscribe mechanism.
TinyXXL is a language extension of nesC, however, and requires recompilation
when adding or removing parameters. Kopke et al. suggest using a blackboard
for component-based interactions [I4], but do not quantify the effects of using
the blackboard. We use a similar technique for parameter storage, but focus on
policy-based, cross-layer optimizations that retain the tiered networking design
used in the Internet and in the Rime networking stack [5].

Several sensor network communication architectures provide mechanisms for
inter-layer information sharing in the communication stack. SP [20] allows infor-
mation to be shared between the link layer and the network layer. The modular
network architecture by Cheng et al. [3] is a decomposition of sensornet proto-
cols into common modules that can be shared at multiple layers. Chameleon [5]
uses packet attributes to provide packet-based information sharing across layers
while maintaining the separation of concerns as traditional layered architectures
do. The drawback of these architectures is that they do not provide mechanisms
for holistic system configuration.

Our work is also inspired by recent work on energy management architectures
for sensor networks [I3IT6]. Such architectures allow for applications to be con-
figured to meet energy efficiency goals. The purpose of Chi, in contrast, is to
provide a generalization of these principles that also extends to other objectives
than energy-efficiency.

208 N. Finne et al.

7 Conclusions

We present Chi, an architecture for full-system configuration and policy-based
optimization in sensor networks. Unlike previous modular configuration architec-
tures, Chi’s dynamic properties make it possible to switch configuration policies
and to add new parameters during run-time. Our experiments show that Chi
improves the sensor network performance as much as specialized architectures,
while maintaining a clear separation of concerns.

Acknowledgments

This work was partly financed by VINNOVA, the Swedish Agency for Innovation
Systems, and by SSF. This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the European Commis-
sion under FP7 with contract number FP7-2007-2-224053.

References

1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Proceedings of ACM SenSys
2006, Boulder, Colorado, USA (2006)

2. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low power data gath-
ering in sensor networks. In: Proceedings of ACM/IEEE IPSN 2007, Cambridge,
Massachusetts, USA (2007)

3. Cheng, T.E., Fonseca, R., Kim, S., Moon, D., Tavakoli, A., Culler, D., Shenker,
S., Stoica, I.: A modular network layer for sensornets. In: Proceedings of USENIX
OSDI 2006, Seattle, Washington, USA (August 2006)

4. Corkill, D.: Blackboard systems. Al Expert 6(9), 40-47 (1991)

5. Dunkels, A., Osterlind, F., He, Z.: An adaptive communication architecture for
wireless sensor networks. In: Proceedings of ACM SenSys 2007, Sydney, Australia
(November 2007)

6. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Proceedings of EmNetS-1V, Cork, Ireland (June 2007)

7. Durvy, M., Abeillé, J., Wetterwald, P., O’Flynn, C., Leverett, B., Gnoske, E.,
Vidales, M., Mulligan, G., Tsiftes, N., Finne, N., Dunkels, A.: Making Sensor Net-
works IPv6 Ready. In: Proceedings of the Sixth ACM Conference on Networked
Embedded Sensor Systems (ACM SenSys 2008), Raleigh, North Carolina, USA,
November 2008, pp. 421-422 (2008)

8. Hoesel, L.V., Nieberg, T., Wu, J., Havinga, P.: Prolonging the Lifetime of Wire-
less Sensor Networks by Cross-Layer Interaction. IEEE Wireless Communica-
tions 11(6), 78-86 (2004)

9. Hui, J., Culler, D.: IP is Dead, Long Live IP for Wireless Sensor Networks. In:
Proceedings of the 6th international Conference on Embedded Networked Sensor
Systems, Raleigh, North Carolina, USA (November 2008)

10. Jurdak, R., Baldi, P., Lopes, C.V.: Adaptive low power listening for wireless sensor
networks. IEEE Transactions on Mobile Computing 6(8), 988-1004 (2007)

11. Kawadia, V., Kumar, P.: A cautionary perspective on cross-layer design. IEEE
Wireless Communications 12(1), 3-11 (2005)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Improving Sensornet Performance by Separating System Configuration 209

Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S.,
Stoica, I.: Flush: A reliable bulk transport protocol for multihop wireless networks.
In: Proceedings of ACM SenSys 2007, Sydney, Australia (November 2007)

Klues, K., Xing, G., Lu, C.: Link layer support for unified radio power management
in wireless sensor networks. In: Proceedings of ACM/IEEE IPSN 2007, Cambridge,
Massachusetts, USA (2007)

Kopke, A., Handziski, V., Hauer, J.-H., Karl, H.: Structuring the information flow
in component-based protocol implementations for wireless sensor nodes. In: Pro-
ceedings of Work-in-Progress Session of EWSN 2004, Berlin, Germany (January
2004)

Lachenmann, A., Marrén, P., Minder, D., Gauger, M., Saukh, O., Rothermel, K.:
TinyXXL: Language and runtime support for cross-layer interactions. In: Proceed-
ings of IEEE SECON 2006, Reston, Virginia, USA (2006)

Lachenmann, A., Marrén, P., Minder, D., Rothermel, K.: Meeting lifetime goals
with energy levels. In: Proceedings of ACM SenSys 2007, Sydney, Australia (2007)
Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a
pilot sensor network deployment in precision agriculture. In: Proceedings of IEEE
IPDPS 2006, Rhodes Island, Greece (April 2006)

Madan, R., Cui, S., Lall, S., Goldsmith, A.: Cross-layer design for lifetime maxi-
mization in interference-limited wireless sensor networks. In: Proceedings of IEEE
INFOCOM 2005, Miami, Florida, USA (March 2005)

Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-Low Power Data Retrieval
in Wireless Sensor Networks. In: Proceedings of ACM/IEEE IPSN 2008, St. Louis,
Missouri, USA (2008)

Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., Stoica, I.: A unifying
link abstraction for wireless sensor networks. In: Proceedings of ACM SenSys 2005,
San Diego, California, USA (2005)

Voigt, T., Osterlind, F.: CoReDac: Collision-free command-response data collec-
tion. In: Proceedings of IEEE ETFA 2008, Hamburg, Germany (September 2008)
Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of ACM MobiSys 2004, Boston, MA, USA
(June 2004)

Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: Proceedings of ACM SenSys 2003, Los Angeles,
California, USA (2003)

Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle mac with scheduled channel
polling. In: Proceedings of ACM SenSys 2006, Boulder, Colorado, USA (2006)

Virtualising Testbeds to Support Large-Scale
Reconfigurable Experimental Facilities

Tobias Baumgartner!, Ioannis Chatzigiannakis??, Maick Danckwardt?,
Christos Koninis??, Alexander Kroller!', Georgios Mylonas?3,
Dennis Pfisterer?, and Barry Porter®

! Dept. of Computer Science, Braunschweig University of Technology, Germany
{tbaum,kroeller}@ibr.cs.tu-bs.de
2 Research Academic Computer Technology Institute, Patras, Greece
{ichatz,koninis,mylonasg}@cti.gr
3 Computer Engineering and Informatics Department, University of Patras, Greece
4 TInstitute of Telematics, University of Liibeck, Germany
{danckwardt,pfisterer}@itm.uni-luebeck.de
5 Computing Department, Lancaster University, UK
b.porter@lancaster.ac.uk

Abstract. Experimentally driven research for wireless sensor networks
is invaluable to provide benchmarking and comparison of new ideas. An
increasingly common tool in support of this is a testbed composed of real
hardware devices which increases the realism of evaluation. However,
due to hardware costs the size and heterogeneity of these testbeds is
usually limited. In addition, a testbed typically has a relatively static
configuration in terms of its network topology and its software support
infrastructure, which limits the utility of that testbed to specific case-
studies. We propose a novel approach that can be used to (i) interconnect
a large number of small testbeds to provide a federated testbed of very
large size, (ii) support the interconnection of heterogeneous hardware
into a single testbed, and (iii) virtualise the physical testbed topology
and thus minimise the need to relocate devices. We present the most
important design issues of our approach and evaluate its performance.
Our results indicate that testbed virtualisation can be achieved with high
efficiency and without hindering the realism of experiments.

1 Introduction

Experimentally driven research for wireless sensor networks has been instrumen-
tal in advancing the state of the art in recent years; new sensing applications,
network architectures and protocol stacks have been optimised to operate over
varied radio technologies, restricted resources and specific deployment strategies.
The most commonly applied technique is simulation which allows rapid devel-
opment, offers debugging tools and enables easy repeatability. A natural step
beyond this is to implement the system on real hardware platforms and per-
form experiments in controlled testbed environments. This allows researchers

J. S& Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 210 2010.
© Springer-Verlag Berlin Heidelberg 2010

Virtualising Testbeds to Support Large-Scale Reconfigurable Experiments 211

to escape the inherent limitations of simulation regarding the available hard-
ware characteristics (e.g. buffer sizes, available interrupts) and communication
technology behaviour (e.g. transmission rates, interference patterns).

In the majority of cases, due to the costs of hardware, researchers evaluate
their solutions in local testbeds of limited size. While small testbeds provide
useful insights into the effectiveness of the system in real conditions, they tend
to offer limited support in terms of heterogeneity, scalability and mobility. Fur-
thermore, in most cases, a tightly coupled network and software architecture is
followed on a testbed, thus limiting the number of possible configurations of that
testbed.

In order to overcome limitations in scale, a number of testbeds of significant
size have been developed in the last few years. Their size currently ranges up to
1000 nodes, and there is a trend towards building even larger testbeds as seen
by projects such as WISEBED [I4] and SENSEI [10]. This trend continues to
serve more accurate experimentation — and therefore high quality research — in
realistically-sized networks towards the scales imagined by the initial vision of
sensor networking that dealt with using thousands or even tens of thousands of
nodes.

Given this clear and continuing need for large open testbeds in WSN research,
certain critical questions are posed: i) how do we deal with the ever-increasing
total-number-of-nodes demand, ii) how do we combine large testbeds with het-
erogeneity (in available sensors, radios, computational resources, etc.), iii) how
can we maintain a very large WSN testbed efficiently? Furthermore, how can
we cater for hybrid simulation approaches, i.e., the combination of real and
simulated testbeds in order to produce extremely large-scale WSN testbeds?
Moreover, how do we utilize the facilities provided by these testbeds and adapt
them to each experiment’s needs; i.e. how can we define and use specific network
topologies that fit into our target application domain?

We argue here that an efficient and flexible answer to such problems is the
use of federated testbeds that unite isolated WSN testbed “islands” with the use
of a wirtual links concept. We propose the use of virtualised network links in the
following ways:

— Between physically distinct testbeds of varying features (location, size, etc.)
as a whole, but also between specific nodes of such testbeds, resulting in
larger testbeds with customised cross-network edges,

— Between nodes inside a single testbed, thus defining a customised network
topology,

— Between real and simulated nodes, enabling hybrid simulation for massive
network sizes.

A virtual link essentially enables two testbed nodes, that have otherwise no
direct physical radio connection, to communicate in a way that is transparent to
the user applications; additionally, existing ‘links’ (i.e. reachability within one-
hop radio range) can be selectively deactivated between neighbouring nodes.
Both kinds of virtualisation are done in a way that is entirely transparent to a
deployed application.

212 T. Baumgartner et al.

The major challenge arising from using such an approach is in the extent
to which this virtualisation affects the realism of the experiments conducted —
the tradeoff between the ability to extensively scale and reconfigure testbeds in a
straightforward way and its impact on the realism of results. In relation to this we
currently target only experiments which use higher layers of network abstraction,
avoiding those which operate at the the MAC layer. However, we believe that
the “simulation” of network links and the resulting federated testbeds will prove
itself largely beneficial<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>