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Preface 

It is our great pleasure to present the proceedings of the European Conference on 
Wireless Sensor Networks 2010 (EWSN 2010). 

As the field of wireless sensor networks matures, new design concepts, experimen-
tal and theoretical findings, and applications have continued to emerge at a rapid pace. 
As one of the leading international conferences in this area, EWSN has played a sub-
stantial role in the dissemination of innovative research ideas from researchers all over 
the globe.  

EWSN 2010 was organized by the University of Coimbra, Portugal, during  
February 17–19, 2010 and it was the seventh meeting in this series. Previous events 
were held in Berlin (Germany) in 2004, Istanbul (Turkey) in 2005, Zurich (Switzer-
land) in 2006, Delft (The Netherlands) in 2007, and Cork (Ireland) in 2009. 

A high-quality selection of papers made up EWSN 2010. Based on the reviews and 
the recommendations from the four live TPC discussions, we selected a total of 21 
papers from 109 submissions (19.26% acceptance rate) for EWSN 2010. Topics of 
interest included hardware design and implementation, operating systems and soft-
ware, middleware and macroprogramming, communication and network protocols, 
information and signal processing, fundamental theoretical limits and algorithms, 
prototypes, field experiments, testbeds, novel applications, including urban sensing, 
security and fault-tolerance. 

Putting together EWSN 2010 was a team effort. We would like to thank the Pro-
gram Committee members, the reviewers, our sponsors, all authors, and the Organiz-
ing Committee for their respective contributions. 

We believe the conference program was interesting and that it provided participants 
with a very valuable opportunity to share ideas with other researchers and practitio-
ners strongly involved in wireless sensor networks. 

 
February 2010 

 
Bhaskar Krishnamachari 

  Fernando Boavida 
Jorge Sá Silva 
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Radio Interferometric Angle of Arrival
Estimation

Isaac Amundson, Janos Sallai, Xenofon Koutsoukos, and Akos Ledeczi

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN 37235, USA

isaac.amundson@vanderbilt.edu

Abstract. Several localization algorithms exist for wireless sensor net-
works that use angle of arrival measurements to estimate node position.
However, there are limited options for actually obtaining the angle of
arrival using resource-constrained devices. In this paper, we describe a
radio interferometric technique for determining bearings from an anchor
node to any number of target nodes at unknown positions. The underly-
ing idea is to group three of the four nodes that participate in a typical
radio interferometric measurement together to form an antenna array.
Two of the nodes transmit pure sinusoids at close frequencies that in-
terfere to generate a low-frequency beat signal. The phase difference of
the measured signal between the third array node and the target node
constrains the position of the latter to a hyperbola. The bearing of the
node can be estimated by the asymptote of the hyperbola. The bearing
estimation is carried out by the node itself, hence the method is dis-
tributed, scalable and fast. Furthermore, this technique does not require
modification of the mote hardware because it relies only on the radio.
Experimental results demonstrate that our approach can estimate node
bearings with an accuracy of approximately 3◦ in 0.5 sec.

1 Introduction

Spatial coordination in wireless sensor networks (WSNs) has received a lot of
attention in recent years. In typical solutions, one or more nodes emit a signal,
and some property of that signal (e.g. angle of arrival (AOA), time of arrival
(TOA), received signal strength (RSS), etc.) is measured and used to derive
bearing or range. Angulation or lateration techniques can then respectively be
used to estimate a node’s position.

Although several techniques exist for determining node position based on
bearing information [1], [2], [3], [4], [5], there are few options for actually mea-
suring signal AOA in WSNs. Currently available methods for bearing estimation
require a heavy-weight infrastructure [6], rotating hardware [7], [8], directional
antennas [9], and/or expensive and sophisticated sensors [10]. Furthermore, such
techniques typically require participating nodes to be stationary for extended pe-
riods of time. These constraints are often undesirable for WSN deployments, in

J. Sá Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 I. Amundson et al.

which node size and cost must be kept to a minimum. An AOA approach that
does not require additional hardware, runs on the nodes themselves, and is fast
enough to support tracking in addition to static localization would be a major
step forward.

In this paper, we propose a novel AOA approach for WSNs that uses radio
interferometry [11]. The basic idea is to group together three of the four nodes in-
volved in a typical radio interferometric measurement to form an antenna array,
which acts as an anchor node. Two transmitters and one receiver are arranged
in such a manner that their antennas are mutually orthogonal to minimize par-
asitic antenna effects (see Figure 1.) The measured phase difference between the
receiver in the array and a target node constrains the location of the latter to a
hyperbola. The bearing of the target node can then be estimated by computing
the angle of the hyperbola asymptote, assuming the target node is not too close
to the array.

Fig. 1. Antenna array implementation using three XSM motes

We present several new contributions for estimating the angle of arrival in
wireless sensor networks.

1. We describe an RF-based technique for determining target node bearing.
2. We provide a detailed analysis that shows our bearing estimation algorithm

is robust to measurement noise and approximation error.
3. We design a real-world implementation using COTS sensor nodes, in which

bearing estimation is performed entirely on the resource-constrained motes.
4. We present experimental results that show our approach can rapidly and

accurately estimate node bearing.

The remainder of this paper is organized as follows. In Section 2, we discuss
other angle of arrival techniques for WSNs. Section 3 describes our proposed
system, followed by an error analysis in Section 4. In Section 5, we describe our
implementation on a real-world WSN platform. In Section 6, we evaluate our
system based on experimental results. Section 7 concludes.
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2 Related Work

The RF method we use for determining AOA is based on radio interferometry. The
Radio Interferometric Positioning System (RIPS) provides accurate RF-based
localization in WSNs [11]. The main idea is that the resource-constrained nodes
cannot sample a pure RF signal fast enough, but can process the lower-frequency
envelope of the beat signal that results from the interference of two high-frequency
signals. The difference in signal phase measured by two other nodes is a linear
combination of the distances between the transmitters and receivers, modulo the
wavelength, and can be used for localizing all participating nodes by solving an
optimization problem. Although RIPS has centimeter-accuracy and can support
inter-node distances of greater than twice the communication range, it requires
centralized processing, suffers from high latency, and involves sampling at several
frequencies.

A broad spectrum of acoustic beamforming techniques have been proposed to
find the angle of incidence of a signal at an array of sensors. The most common
techniques include delay-and-sum beamforming, Capon beamforming [12], MU-
SIC [13], ESPRIT [14] and min-norm [15] algorithms. Since the time of flight
of the signal from the source to sensors in the array varies based on their pair-
wise distances, sensors receive the signal with different phases. While all of these
methods compute the bearing of the source from the data streams sampled at
the individual sensors, they differ greatly with respect to their angular resolu-
tion as well as their computational requirements. In WSNs, angular resolution
is typically within 10◦ [16].

The Cricket Compass [17] is a device which uses ultrasound to determine ori-
entation with respect to a number of ceiling-mounted beacons. Two receivers are
mounted a few centimeters apart on a portable device, and the phase difference
of the ultrasonic signal is measured to determine bearing. Although both the
Cricket Compass and our approach measure signal phase difference to derive
AOA, the two systems use different hardware, signal modalities, phase disam-
biguation techniques, and bearing derivation algorithms. The Cricket Compass
has an accuracy of between 3◦ and 5◦, depending on the orientation of the
compass.

Angle of arrival can be used in different ways for spatial coordination. Tri-
angulation, for example, is the process of determining the position of an object
from the bearings of known reference positions. Two such reference positions (or
three non-collinear ones in degenerate cases) are enough to localize any number of
nodes within range. In [2], a method is given to determine position based on the
angular separation (the difference in bearings) between beacons. Other angle of
arrival positioning approaches have been developed, including multiangulation
using subspace methods [4], anchor bearing propagation [1], and semidefinite
programming [3]. Bearing estimates can also be useful when anchor positions
are unknown. In [18] and [19], mobile robot navigation methods are presented
for arriving at a target position by only observing angular separation between
two pairs of landmarks.
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A2 R

A1 M β

A2 R

A1 M β

Fig. 2. Array containing a master node (M) and two assistant nodes (A1, A2). A target
node (R) computes its bearing (β) from the array.

3 System Overview

Radio Interferometric Measurements. Our system consists of a station-
ary antenna array and cooperating wireless sensor nodes at unknown positions.
We assume that the position of the midpoint of the array is known, as well
as the distance between the antennas in the array. The array contains three
nodes, a master (M) and two assistants (A1, A2), as shown in Figure 2. At a
predetermined time, the master, M , and one of the assistants, A1, transmit a
pure sinusoidal signal at slightly different frequencies, which interfere to create a
low-frequency beat signal whose phase is measured by the other assistant in the
array, A2, and a receiver node, R, at an unknown position. Such a measurement
is termed a radio interferometric measurement (RIM).

The difference in phase, Δϕ = ϕR−ϕA2 , measured by receiver nodes R and A2
is a linear combination of the distances between the transmitters and receivers,

Δϕ =
2π

λ
(dMA2 − dA1A2 + dA1R − dMR) (mod 2π),

where λ is the wavelength of the carrier frequency, dMR is the distance be-
tween the master node and target receiver node, dA1R is the distance between
the assistant transmitter and the target receiver node, and dMA1 , dMA2 , and
dA1A2 are the respective distances between all pairs of nodes in the array.
Note that the nodes in the array are equidistant from each other, and there-
fore dMA2 − dA1A2 = 0, so the phase difference can be simplified:

Δϕ =
2π

λ
(dA1R − dMR) (mod 2π). (1)

We denote the distance difference dA1R − dMR by dA1MR and refer to it as
a t-range. From Equation (1), we can see that if −λ

2 < dA1MR < λ
2 , the phase

difference will fall in the interval (−π, π). When this is not the case, the possible
range of Δϕ will exceed 2π, which results in a modulo 2π phase ambiguity. To
avoid this, we would like the maximum possible distance difference to be less
than λ

2 . The maximum distance difference will occur when the receiver node
is collinear with the transmitters M and A1. dA1MR then corresponds to the
distance between the master and assistant. Therefore, to eliminate the modulo
2π phase ambiguity, we require the distance between antennas in the array to
be less than half the wavelength of the carrier frequency.
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Having removed the modulo operator, we can rearrange Equation (1) so that
known values are on the right hand side.

dA1MR =
Δϕλ

2π
(2)

The t-range dA1MR defines an arm of a hyperbola that intersects the position
of node R, and whose asymptote passes through the midpoint of the line A1M ,
connecting the master and assistant nodes. Figure 3 illustrates such a hyperbola
with foci A1 and M . The absolute value of the distance differences between the
foci and any point on a hyperbolic arm is constant, formally defined as

x2

a2 − y2

b2 = 1

where (x, y) are the coordinates of a point on the hyperbola, a is the distance
between the hyperbola center and the intersection H of the hyperbola with the
axis connecting the two foci, and b is the length of the line segment, perpendicular
to the axis connecting the foci, that extends from H to the asymptote.

R

d
MR

d
A

1
R

H
a

c
β

O MA
1

A
2

b

Fig. 3. The t-range defines a hyperbola that intersects node R, and whose asymptote
passes through the midpoint of the two transmitters in the array.

Bearing Approximation. The hyperbola in Figure 3 is centered at O, and
the distance between O and either focus is denoted by c. Furthermore, it can
be shown that c2 = a2 + b2 [20]. From the figure, we see that the bearing of
the asymptote is β = tan−1( b

a). Therefore, in order to solve for β, we must
determine the values of b and a.

We can solve for a by observing that

dA1R − dMR = dA1H − dMH

because, by definition, the distance differences between the foci and all points
on the hyperbola are constant. From Figure 3, we see that we can substitute
(c + a) for dA1H and (c − a) for dMH , and therefore,



6 I. Amundson et al.

dA1R − dMR = (c + a) − (c − a) = 2a.

From Equation (2), we know the value of dA1R − dMR, which is the t-range, and
therefore a = dA1MR

2 . We can then solve for b, using b =
√

c2 − a2. In terms of
known distances, the bearing of the asymptote is then defined as

β = tan−1

⎛
⎜⎜⎝
√(

dA1M

2

)2
−
(

dA1MR

2

)2

(
dA1MR

2

)
⎞
⎟⎟⎠ . (3)

In Figure 3, we see the case where dA1MR > 0, and the position of R lies on the
right arm of the hyperbola. If the phase difference is negative (i.e., ϕR < ϕA2)
then the position of R will lie on the left arm of the hyperbola. When this is the
case, β is taken clockwise, and we must adjust it by subtracting it from π.

The line A1M connecting the two foci is called the transverse axis of the
hyperbola, and is a line of symmetry. This implies that although we know b, we
do not know its sign, because mirrored positions on either side of the transverse
axis will result in the same dA1MR. Therefore, the asymptote bearing β we
obtained using this method could be either positive or negative. To find which
bearing is correct, we can switch the roles of the assistant nodes in the array and
perform another RIM. This will generate a different t-range, and hence another
hyperbolic arm with foci A2 and M .

Each hyperbola provides us with two angles ±βi, where βi is the angle of the
asymptote with the transverse axis, AiM . Of course, these angles will be offset
from the global x-axis, because the orientation of AiM may not be 0. Adjusting
for this, one of the β1 bearings, and one of the β2 bearings will point in the
same direction, which will approximate the actual bearing of R, as illustrated in
Figure 4. Due to the position difference between the centers of the two hyperbo-
las, we do not expect these two angles to be equal, therefore we define a small

A1

A2

M

+β1 +β2

R

A1

A2

M

+β1 +β2

R

Fig. 4. Determining the true bearing of R is accomplished by selecting +β or −β from
each master-assistant pair, such that the difference between the two angles is below
the threshold εβ
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threshold εβ , such that if |β1−β2| < εβ, these two angles are considered a match.
We then take the average of the two angles to obtain our bearing estimate, β̂.

Because points on the hyperbola converge with the asymptote as their distance
from the hyperbola center increases, the bearing approximation error is larger
when R is close to the array. We therefore make the assumption that node R
is a sufficient distance from the array. In Section 4, we show that this distance
does not need to be large when using small-aperture arrays.

4 Error Analysis

In this section, we present an error analysis of the proposed bearing estimation
technique. It is important to note that, although we use phase differences as in-
put to our bearing estimation algorithm, the algorithm is generalizable to small-
aperture sensor arrays that can derive distance differences using any means.
For instance, RF ultra wide band antenna arrays, acoustic or ultrasonic sensors,
and other types of arrays that can yield time-difference-of-arrival (TDOA) mea-
surements from (sufficiently) distant sources fall into this category. Therefore, in
this section, we assume the inputs to be distance differences. Notice that the dis-
tance differences are linearly related to RIM measurements (see Equation (2)),
and therefore the error sensitivity results presented below remain valid. In the
generalized case, the same applies to TDOA measurements, from which the dis-
tance differences can be computed via multiplication of the respective signal
propagation speed (speed of sound for acoustic, speed of light for RF).

Typically, bearings are computed from distance differences by solving a non-
linear set of equations using iterative techniques. Such techniques are prohibitive
on low-end microprocessors due to their computational cost. We make a set of
assumptions that allows us to compute bearing estimates in a reasonably simple
way. While our bearing estimation technique is computationally less expensive
than traditional nonlinear optimization techniques, our simplifying assumptions
introduce estimation errors, which we identify below.

– Measurement noise. The distance differences observed by the receiver nodes
contain measurement noise. The measurement noise can be attributed to, for
instance, non-ideal signal propagation, noise from the electrical circuitry of
the receiver, sampling error and quantization error of the analog-to-digital
converter (ADC).

– Asymptote approximation. For a pair of transmitters, we approximate the
bearing of the receiver with the angles of the asymptotes of the hyperbola.
This is a good approximation if the receiver is sufficiently far from the trans-
mitters, because the hyperbola converges on its asymptote. However, for
close receivers, errors due to this assumption will not be negligible.

– Translation of bearing candidates. At least two transmitter pairs are required
to unambiguously compute the bearing because, for just one transmitter pair,
the angles of both asymptotes are possible solutions. We refer to the two so-
lutions as bearing candidates. Since, for a transmitter pair, we compute the
bearing candidates with respect to the midpoint of the segment defined by
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the two antennas, fusing bearing candidates from two different transmit-
ter pairs is not possible without knowing the distance of the receiver. We
use the far-field assumption (i.e., that the receiver is infinitely far from the
transmitter array) to carry out the disambiguation and fusion of bearings,
introducing an error this way.

We intentionally omit the analysis of array position and orientation errors
and instead make the following assumptions:

– Antenna configuration is known. The transmitter locations are assumed to
be given. It is assumed that the transmitter nodes are fabricated with a
prescribed antenna separation.

– Relative bearings. We assume that the computed bearings are given in the
local coordinate system of the array. Hence, the location and orientation
errors of the array are not considered in the error analysis of the bearing
estimation.

We first analyze the sensitivity of the bearing estimates to noise in the dis-
tance difference inputs. Second, we analytically derive the errors related to the
asymptote approximation and to the translation of bearing candidates. These
errors depend on the bearing and distance of the target receiver, relative to the
transmitter array. Finally, we provide an analysis of the total bearing estimation
error resulting from both noise in the inputs and the errors due to the asymptote
approximation and the translation of bearing candidates.

Sensitivity of bearing to measurement noise. A distance difference from
a pair of transmitters in the array constrains the location of the receiver to one
arm of a hyperbola, the foci of which are the positions of the two transmitters.
For the sake of simplicity, let us assume that the two transmitters M and A1
are located at (c, 0) and (−c, 0), respectively (see Figure 3). If the measured
distance difference is positive, the receiver is constrained to the right arm of the
hyperbola, while if the distance difference is negative, the receiver is located on
the left arm. We approximate the bearing of the receiver using the asymptote
angles as follows:

β̂ =

⎧⎪⎪⎨
⎪⎪⎩

±tan−1
(√

c2−a2

a

)
, if a > 0

±π
2 , if a = 0

π ∓ tan−1
(√

c2−a2

a

)
, if a < 0

(4)

We analyze the sensitivity of the bearing estimates β̂ to noise in the distance
difference by taking the partial derivative of Equation (4) with respect to the
distance difference. To see what amplification effect an error in a given distance
difference d produces on the bearing estimate, we need to evaluate the partial
derivative at d.

Figure 5a shows the relation between the measured distance difference d and
the bearing candidates β̂ when the antenna separation is half the wavelength
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(λ
2 ). Notice the ambiguity of the bearing candidates. Figure 5b plots δβ̂

δd for each
solution of β̂. This figure shows that when the absolute value of the measured
distance difference is close to the antenna separation, the computed bearing
candidates are very sensitive to measurement noise. For instance, if the distance
difference is 80% of the antenna separation, an infinitesimally small error in the
measurement will be amplified ten-fold in the bearing estimate.
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Fig. 5. (a) Relationship between measured distance difference and computed bearing.
(b) Sensitivity of the computed bearing to measurement noise.

Asymptote approximation. The error of approximating a hyperbola with its
asymptote is the difference between the approximated bearing β̂ and the actual
bearing β of the receiver. Assuming that the receiver R is located at (u, v),
the actual bearing will be β = tan−1( v

u ). Hence, the error ε introduced by the
asymptote assumption is

ε = β̂ − β =

⎧⎪⎪⎨
⎪⎪⎩

±tan−1
(

v
u

)∓ tan−1
(√

c2−a2

a

)
, if a > 0

0, if a = 0
∓tan−1

(
v
u

)± tan−1
(√

c2−a2

a

)
, if a < 0

(5)

Figure 6a shows the error introduced by the asymptote approximation when
the receiver is located respectively one, two, and three times the antenna dis-
tance away from the midpoint of the segment connecting the two antennas. As
expected, the error of the approximation decreases as the distance of the receiver
from the transmitter array increases, that is, as the hyperbola converges on its
asymptote. As we can see, the maximum error introduced by the asymptote
assumption is less than 0.6◦, as little as three antenna distances away.

Translation of bearing candidates. For a pair of transmitter antennas, it is
not possible to unambiguously approximate the bearing of the asymptote. Be-
cause the hyperbola arm has two asymptotes, the angle of either one can be the
correct bearing estimate. Hence, we need two transmitter antenna pairs for dis-
ambiguation. Let us treat the bearing candidates (computed from the t-ranges
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of both transmitter antenna pairs) as vectors of unit length, with bases at the
center of the hyperbolas, and whose angles are the computed bearing candidates.
Since these vectors are given in the coordinate system of the respective hyper-
bolas, we need to transform them to the coordinate system of the array. This
transformation includes a translation and a rotation. Then, we translate each
vector such that its base is at the origin. Clearly, the bearing vector translated
this way will not point directly toward the target receiver anymore, but if the
receiver is sufficiently far from the transmitter array, the introduced angular er-
ror will be small. Finally, we disambiguate the bearing candidates by finding two
that have approximately the same value.

Let us now express the angular error caused by the translation of bearing
candidates. We assume that the transmitter is a uniform circular array of three
antennas, with pairwise antenna distance of λ

2 . The coordinate system of the
array is set up such that the midpoint of the array is at the origin, and antenna
M lies on the positive side of the x-axis. Let us consider only the correct bearing
candidate (the other will be discarded later) for transmitter pair M and A1.
Furthermore, let us assume for now that the bearing candidate has no error.
The difference between the actual bearing of the target receiver and the angle
of the bearing candidate translated to the origin gives the angular error of the
far-field assumption.

Figure 6b shows the error introduced by the far-field assumption when the
receiver is located respectively one, two, and three times the antenna distance
away from the midpoint of the segment connecting the two antennas. As we can
see, as few as three antenna distances away, the maximum error introduced by
the antenna assumption is less than 5◦. In this particular antenna arrangement,
the maximum errors are at 15◦ and 225◦, respectively.
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Fig. 6. Error in bearing (in degrees) caused by (a) the assumption that the receiver lies
on the asymptote, and (b) assuming that bearing from the midpoint of the segment
connecting the two antennas equals the bearing from the origin of the array coordinate
system
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Fig. 7. Absolute error of bearing estimation (in degrees) caused by noisy distance
differences, averaged over 500 simulation rounds. The standard deviation of the distance
difference errors is 5% of the antenna distance.

Compound bearing estimation error. Since one transmitter pair reports
two bearing candidates, at least two transmitter pairs are required to resolve this
ambiguity. For the sake of simplicity, let us assume that we have two transmitter
pairs. Clearly, there must be one bearing candidate for each transmitter pair
that is close to the true bearing. Except for some degenerate cases, the other
two bearing candidates will be significantly different than the true bearing, and
will not be close to each other (see Figure 4). Therefore, in order to disambiguate
between the correct and incorrect bearing candidates, we take all possible pairs
of bearing candidates, one from the first transmitter pair and the other from
the second transmitter pair, and find the pair with the least pairwise angular
difference. The reported bearing estimate is computed as the average of the two
closest bearing candidates.

Figure 7 shows the bearing estimation errors considering the above three types
of error sources, averaged over 500 simulation rounds. We added a Gaussian noise
to the distance differences, with mean zero and standard deviation set to 5% of
the antenna distance. The plot suggests that the expected bearing estimation
errors are below 5◦, and peak around 30◦, 150◦, 240◦ and 330◦, exactly where
the individual transmitter pairs exhibit high error sensitivity.

5 Implementation

Our system is implemented using Crossbow ExScal motes (XSMs) [21], which
use the Texas Instruments CC1000 radio chip and transmit in the 433 MHz
range. Three XSMs form the array. Because the two transmitting antennas are
close to each other, they will suffer from parasitic effects [22]. To minimize this
negative interference, we place the nodes in a mutually orthogonal configuration.
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All sensor nodes are elevated approximately 1.5 meters to reduce ground-based
reflections. The antenna array is pictured in Figure 1. All nodes in our system
execute the same distributed application, coded in nesC, and run the TinyOS
operating system. All operations run locally, and there is no offline or PC-based
processing involved. The entire application requires 3 kilobytes of RAM and 55
kilobytes of program memory (ROM).

Run-time. Figure 8 is a sequence diagram of the system run-time components
using a setup of one array and a single target receiver node. Because phase
difference is used to determine bearing, each node must measure the signal phase
at the same time instant. This requires synchronization with accuracy on the
order of microseconds or better. A SyncEvent message [23] is broadcast by the
master transmitter, and contains a time in the future for all participating nodes
to start the first RIM. Each array then performs two RIMs, one for each master-
assistant pair. Signal transmission involves acquiring and calibrating the radio,
transmitting the signal, then restoring the radio to enable data communication.
The assistant nodes in the array store their phase measurements until both
master-assistant pairs have finished their RIMs, at which point they broadcast
their phase measurements to the target nodes. The target nodes then calculate
their bearings from the array.

M A1 A2 R
Synchronization (162 ms)

Rx Rx

Tx Rx

AOA

Report phase data (250 ms)

RIM (119 ms)

Bearing estimation (5 ms)

RIM (119 ms)

Tx Tx

Tx Rx

M A1 A2 R
Synchronization (162 ms)

Rx Rx

Tx Rx

AOA

Report phase data (250 ms)

RIM (119 ms)

Bearing estimation (5 ms)

RIM (119 ms)

Tx Tx

Tx Rx

Fig. 8. Sequence diagram of RIM schedule with one array (dotted box) and the target
receiver node (R)

6 Evaluation

To evaluate the accuracy of our system, we perform two experiments. In Ex-
periment 1, we measure the bearing accuracy of six receiver nodes, which are
evenly spaced around the array every 60◦ at a distance of ten meters from the
array center. This experiment demonstrates how the bearing error changes with
respect to array orientation. In Experiment 2, we measure the bearing accuracy
of 14 receiver nodes from three arrays surrounding the sensing region in an out-
door, low-multipath environment. This experiment is more representative of a
real-world deployment with multiple anchors. Figure 9 illustrates our setup for
the two experiments.
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Fig. 9. Experimental setup. (a) Experiment 1. Bearing accuracy of one array. Six re-
ceiver nodes (R1 . . . R6) are placed 10 meters from array (A), with angular separation
of 60◦. (b) Experiment 2. Three arrays (A1 . . . A3) surround the 20 x 20 m sensing
region containing 14 receiver nodes (R1 . . . R14).

For Experiment 1, we perform 50 bearing estimates for each node surrounding
the array. The average bearing errors are displayed in Figure 10a. For Experiment
2, we perform approximately 35 bearing estimates from each anchor to all target
nodes, resulting in a total of 105 estimates per target and 1470 estimates total.
Figure 10a shows the average error for each bearing from Experiment 1, and
the distribution of bearing estimate errors from Experiment 2 are shown in
Figure 10b. The average bearing estimation error is 3.2◦ overall, with a 6.4◦

accuracy at the 90th percentile. The errors from both experiments are consistent
with our bearing error analysis in Section 4.
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Fig. 10. Experimental results. (a) Experiment 1 average bearing error with respect
to array orientation (sample size of 50). (b) Experiment 2 bearing error distribution
(sample size of 1470).
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In addition, we evaluate the latency of this method. Because we would like to
use this system for mobile sensors in addition to stationary nodes, the array must
perform its RIMs as fast as possible so that the sensor has not had a chance to
significantly change its position. In order to keep the latency to a minimum, we
perform an analysis of the different component execution times. Table 1 lists the
execution deadlines of the RIM tasks. These deadlines are enforced via software
interrupts and were chosen to give each task enough time to complete, assuming
a reasonable amount of jitter.

Table 1. Latency of bearing estimation tasks

Task Latency (ms)
Clock synchronization 162
Acquire and calibrate radio 6.48
Transmit / Receive 63.2
Restore radio driver 49.91
Report phase 250
Bearing estimation 5

The array sends one synchronization message and performs two RIMs, for a
total time of 401 ms. An additional 255 ms is required for communication and
bearing estimation. Because the target nodes are receivers, no additional latency
is incurred by introducing more targets to the sensing region.

7 Conclusion

In this paper, we present a method for rapid distributed bearing estimation in
WSNs. The anchor array in our system consists of three nodes, two of which
transmit at frequencies that interfere to create a low-frequency beat signal. The
phase of this signal is measured by the third node in the array, as well as by multi-
ple target nodes at unknown positions. The phase difference defines a hyperbola,
and bearing can be approximated by calculating the angle of the asymptote. Our
experimental results show that this technique has an average bearing estimation
accuracy of 3.2◦, and measurements can be taken in approximately 0.5 sec.

Our system is designed to overcome several challenges in WSN AOA determi-
nation. The array prototype is easily constructed by fixing three motes together
with antennas at orthogonal angles. It is comprised entirely of COTS sensor
nodes, and no additional hardware is required because RIM-based ranging only
requires use of the radio. Unlike other radio interferometric techniques, our sys-
tem avoids the modulo 2π ambiguity, and therefore the need to perform RIMs
on multiple channels, by separating the two transmitting antennas less than half
the wavelength of the carrier frequency. Similarly, by constraining the location
of one of the RIM receivers to the array, it becomes possible to approximate the
bearing of the other receiver without prolonged computation or having to rely
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on a base station for processing. Our experimental results demonstrate that the
accuracy of our prototype implementation is on par with other state-of-the-art
AOA techniques.

It is worthwhile noting that this system is designed for eventual use with mo-
bile sensors. Mobility demands rapid localization so that the position estimate is
still valid by the time it is computed. Up until now, radio interferometric ranging
techniques have been unable to achieve periodic distributed localization at rates
fast enough for mobile devices, even slow-moving ones. With this system, we are
able to estimate target bearing rapidly enough to support mobile entity local-
ization and navigation. Although at this stage we have not performed tracking
or navigation using mobile nodes, we plan on doing so in the near future.
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23. Kusý, B., Dutta, P., Levis, P., Maróti, M., Lédeczi, A., Culler, D.: Elapsed time on

arrival: a simple and versatile primitive for canonical time synchronization services.
International Journal of Ad Hoc and Ubiquitous Computing 2 (2006)



Phoenix: An Epidemic Approach to Time
Reconstruction

Jayant Gupchup1, Douglas Carlson1, Răzvan Musăloiu-E.1, Alex Szalay2,
and Andreas Terzis1

1 Computer Science Department
Johns Hopkins University

{gupchup,carlsondc,razvanm,terzis}@jhu.edu
2 Physics and Astronomy Department

Johns Hopkins University
szalay@jhu.edu

Abstract. Harsh deployment environments and uncertain run-time con-
ditions create numerous challenges for postmortem time reconstruction
methods. For example, motes often reboot and thus lose their clock state,
considering that the majority of mote platforms lack a real-time clock.
While existing time reconstruction methods for long-term data gathering
networks rely on a persistent basestation for assigning global timestamps
to measurements, the basestation may be unavailable due to hardware
and software faults. We present Phoenix, a novel offline algorithm for re-
constructing global timestamps that is robust to frequent mote reboots
and does not require a persistent global time source. This independence
sets Phoenix apart from the majority of time reconstruction algorithms
which assume that such a source is always available. Motes in Phoenix ex-
change their time-related state with their neighbors, establishing a chain
of transitive temporal relationships to one or more motes with references
to the global time. These relationships allow Phoenix to reconstruct the
measurement timeline for each mote. Results from simulations and a de-
ployment indicate that Phoenix can achieve timing accuracy up to 6 ppm
for 99% of the collected measurements. Phoenix is able to maintain this
performance for periods that last for months without a persistent global
time source. To achieve this level of performance for the targeted envi-
ronmental monitoring application, Phoenix requires an additional space
overhead of 4% and an additional duty cycle of 0.2%.

1 Introduction

Wireless sensor networks have been used recently to understand spatiotemporal
phenomena in environmental studies [12,22]. The data these networks collect
are scientifically useful only if the collected measurements have corresponding,
accurate global timestamps. The desired level of accuracy in this context is in
the order of milliseconds to seconds. In order to reduce complexity of the code
running on the mote, it is more efficient to record sensor measurements using the
mote’s local time frame and perform a postmortem reconstruction to translate
them to global time.
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Each mote’s clock (referred to as local clock henceforth) monotonically in-
creases and resets to zero upon reboot. A naive postmortem time reconstruction
scheme collects 〈local, global〉 pairs during a mote’s lifetime, using a global clock
source (typically, an NTP-synchronized PC). These pairs (also referred to as
“anchor points”) are then used to translate the collected measurements to the
global time frame by estimating the motes’ clock skew and offset. We note that
this methodology is unnecessary for architectures such as Fleck, which host a
battery-backed on-board real-time clock (RTC) [4]. However, many commonly-
used platforms such as Telos, Mica2, MicaZ, and IRIS (among others) lack an
on-board RTC.

In the absence of reboots, naive time reconstruction strategies perform well.
However, in practice, motes reboot due to low battery power, high moisture, and
software defects. Even worse, when motes experience these problems, they may
remain completely inactive for non-deterministic periods of time. Measurements
collected during periods which lack 〈local, global〉 anchors (due to rapid reboots
and/or basestation absence) are difficult or impossible to accurately reconstruct.
Such situations are not uncommon based on our deployment experiences and
those reported by others [23].

In this work, we devise a novel time reconstruction strategy, Phoenix, that
is robust to random mote reboots and intermittent connection to the global
clock source. Each mote periodically listens for its neighbors to broadcast their
local clock values. These 〈local, neighbor〉 anchors are stored on the mote’s flash.
The system assumes that one or more motes can periodically obtain global time
references, and they store these 〈local, global〉 anchors in their flash. When the
basestation collects the data from these motes, an offline procedure converts the
measurements timestamped using the motes’ local clocks to the global time by
using the transitive relationships between the local clocks and global time.

The offline nature of Phoenix has two advantages: (a) it reduces the com-
plexity of the software running on the mote, and (b) it avoids the overhead as-
sociated with executing a continuous synchronization protocol. We demonstrate
that Phoenix can reconstruct global timestamps accurately (within seconds) and
achieve low (< 1%) data losses in the presence of random mote reboots even when
months pass without access to a global clock source.

2 Motivation

We claim that the problem of rebooting motes is a practical aspect of real de-
ployments that has a high impact on environmental monitoring applications.
We also quantify the frequency and impact of reboots in a long-term deploy-
ment. We begin by understanding why mote reboots complicate postmortem
time reconstruction.

2.1 Postmortem Timestamp Reconstruction

The relationship between a mote’s local clock, LTS, and the global clock, GTS,
can be modeled with a simple linear relation: GTS = α × LTS + β, where α
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Basestation

20 meters

Fig. 1. The 53-mote “Cub Hill” topology, located in an urban forest northeast of
Baltimore, Maryland

represents the mote’s skew and β represents the intercept (global time when the
mote reset its clock) [19]. This conversion from the local clock to global clock
holds as long as the mote’s local clock monotonically increases at a constant rate.
We refer to this monotonically increasing period as a segment. When a mote
reboots and starts a new segment, one needs to re-estimate the fit parameters.
If a mote reboots multiple times while it is out of contact with the global clock
source, estimating β for these segments is difficult. While data-driven treatments
have proven useful for recovering temporal integrity, they cannot replace accurate
timestamping solutions [9,10]. Instead, time reconstruction techniques need to
be robust to mote reboots and not require a persistent global time source.

2.2 Case Studies

We present two cases which illustrate the deployment problems that Phoenix
intends to address. The first is an account of lessons learned from a year-long
deployment of 53 motes. The second is a result of recent advances in solar-
powered sensor networks.

Software Reboots. We present “Cub Hill”, an urban forest deployment of 53
motes that has been active since July 2008 (Figure 1). Sensing motes collect
measurements every 10 minutes to study the impact of land use on soil condi-
tions. The basestation uses the Koala protocol to collect data from these motes
every six hours [15]. We use TelosB motes driven by 19 Ah, 3.6 V batteries.

We noticed that motes with low battery levels and/or high internal moisture
levels suffered from periodic reboots. As an example, Figure 2 shows the battery
voltage of a mote that rebooted thrice in one month. Despite their instability,
many of these motes were able to continue collecting measurements for extended
periods of time.

Following a major network expansion, a software fault appeared which caused
nodes to “freeze”. Unable to reproduce this behavior in a controlled environment,
we employed the MSP430’s Watchdog Timer to reboot motes that enter this
state [21]. While this prevented motes from completely failing, it also shortened
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Fig. 2. An example of a mote rebooting due to low battery voltage (no watchdog
timer in use). The sharp downward spikes correspond to gateway downloads (every six
hours). Gaps in the series are periods where the mote was completely inoperative.
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timer to the mote software

the median length of the period between reboots from more than 50 days to only
four days, as Figure 3 shows.

Solar Powered Sensor Networks. A number of research groups have demon-
strated the use of solar energy as a means of powering environmental monitor-
ing sensor networks [11,20]. In such architectures, a mote can run out of power
during cloudy days or at night. Motes naturally reboot in such architectures,
and data losses are unavoidable due to the lack of energy. It is unclear how one
can achieve temporal reliability without a persistent basestation or an on-board
RTC. To the best of our knowledge, no one has addressed the issue of temporal
integrity in solar-powered sensor networks. Yang et al. employ a model in which
data collection happens without a persistent basestation [24]. The data upload
takes place infrequently and opportunistically. Hard-to-predict reboot behavior
is common to these systems. Furthermore, we note that even though there is
very little information about the rate of reboots in such architectures, it is clear
that such systems are susceptible to inaccurate timestamp assignments.

2.3 Impact

We evaluate the impact of mote reboots on the Cub Hill deployment using our
existing time reconstruction methodology.
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(b) An example of the impact of estimating β incorrectly when using approximate
methods. Data from one of the motes (represented with the dark line) that rebooted
multiple times between Jun. 22 and Jun. 25. During this period, the mote was out of
sync with the rest (shown in gray) due to inaccurate β estimates

Fig. 4. Impact of time reconstruction methodology using the RGTR algorithm

The basestation records an anchor point each time it downloads data from
a mote. Motes that are poorly connected to the basestation may remain out
of contact for several download rounds before connectivity improves and they
can transfer their data. When motes reboot at a rate faster than the frequency
with which the basestation contacts them, there exist periods which lack enough
information to accurately reconstruct their measurement timestamps.

Upon acquiring the anchor points, the measurements are converted from their
local clock to the global clock at the basestation. We employ our previously pro-
posed algorithm, Robust Global Timestamp Reconstruction algorithm (referred
to as RGTR), for this purpose [9]. We note that in order to estimate the fit
parameters (α, β) for the segments, RGTR requires at least two anchor points.
Depending on the accuracy requirements, one can assume that the skew (α) is
stable per mote for small segments. Using this assumption, at least one anchor
point is needed to estimate the β for any given segment, provided that α has
been estimated accurately for the mote.

Figure 4(a) demonstrates the impact of mote reboots on time reconstruction
for the Cub Hill deployment. During period A, motes were prone to freezing (and
thus stopped sampling), leading to a decrease in the total data collected. At point
B, the addition of the watchdog timer caused the total data collected to return
to its previous level. However, due to the increased frequency of reboots, a larger
portion of the samples could not be assigned a global timestamp (exacerbated
by the absence of the base station during period C).
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For segments where no anchor points were collected, we assumed that node
reboots are instantaneous. However, this assumption does not always hold (see
Figure 2) and leads to a small fraction of misaligned measurements. Figure 4(b)
presents an example of this misalignment. One node (shown in bold) rebooted
multiple times and could not reach the basestation during its active periods. The
assumption of instantaneous reboots led to inaccurate β estimates.

3 Solution

Phoenix is a postmortem time reconstruction algorithm for motes operating
without in-network time synchronization. It consists of two stages.

3.1 In-Network Anchor Collection

Each mote operates solely with respect to its own local clock. A new segment
(uniquely identified by 〈moteid, reboot count〉) begins whenever a mote reboots:
each segment starts at a different time and may run at a different rate. Our
architecture assumes that there is at least one mote in the network that can
periodically obtain references from an accurate global time source. This is done
to establish the global reference points needed by Phoenix. This source may be
absent for long periods of time (see Section 4). The global time source can be any
reliable source (a mote equipped with a GPS receiver, NTP-synced basestation,
etc). Without loss of generality, we assume that the network contains a mote
connected to GPS device and a basestation that collects data infrequently1.

All motes (including the GPS-connected mote) broadcast their local clock and
reboot-count values every Tbeacon seconds. Each receiving mote stores this infor-
mation (along with its own local clock and reboot counter) in flash to form an-
chor records. The format of these records is 〈moteidr, rcr , lcr, moteids, rcs, lcs〉;
where rc, lc, r, and s refer to the reboot counter, local clock, receiver and sender
respectively. Periodically, motes turn on their radios and listen for broadcasts
in order to anchor their time frame to those of their neighbors. Each mote tries
to collect this information from its neighbors after every reboot and after every
Twakeup seconds (� Tbeacon). The intuition behind selecting this strategy is as
follows. The reboot time determines the β parameter. The earliest opportunity
to extract this information is immediately after a reboot. To get a good estimate
of the skew, one would like to collect multiple anchors that are well distributed
in time. Thus, Twakeup is a parameter that governs how far to spread out anchor
collections. In the case of a GPS mote, the moteidr, rcr and moteids, rcs are
identical, and lcr, lcs represent the local and global time respectively.

The basestation periodically downloads these anchors along with the mea-
surements. This information is then used to assign global timestamps to the
collected measurements using Algorithm 1. If the rate of reboots is known, the
anchor collection frequency can be fixed conservatively to collect enough anchors
1 Note that the basestation collects data only and it does not provide a time source,

unless specified otherwise.
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Algorithm 1. Phoenix
Definitions:

a, b : alpha and beta for local-local fits;
P : parent segment; Π : Ancestor segments

procedure Phoenix(AP )
for each (i, j) in Keys(AP ) do � All unique segment pairs in AP

LFa,b,χ,df (i, j) ← Llse(AP (i, j)) � Compute the local-local fits
for each s ∈ S do � Set of all unique segments

GFα,β,P,Π,χ,df (s) ← (∅, ∅, ∅, s, χMAX , ∅) � Initialize global fits
for each g ∈ G do � All segments anchored to GTS

InitGTSNodes(g, LF, GF )
Enqueue(Q, g) � Add all the GTS nodes to the queue

while NotEmpty(Q) do
q ← Dequeue(Q)
C ← NeighborAnchors(q)
for each c ∈ C do

Tα,β,P,Π,χ,df (c) ←GlobalFit(c, q, GF, LF )
if (UpdateFit(c, T, GF )) then � Check for a better fit

Enqueue(C)
return GF

procedure InitGTSNodes(g, LF, GF )
GF (g) ← (LFa(g, g′), LFb(g, g′), ∅, g, LFχ(g, g′), LFdf (g, g′)) � g′ is GTS, g is LTS

procedure GlobalFit(c, q, GF, LF )
if q > c then � Smaller segment is the independent variable

αnew ← GFα(q) ∗ LFa(q, c)
βnew ← GFα(q) ∗ LFb(q, c) + GFβ(q)

else
αnew ← GFα(q)/LFa(q, c)
βnew ← GFα(q) − αnew ∗ LFb(q, c)

χ ← GFdf (q)∗GFχ(q)+LFdf (q,c)∗LFχ(q,c)
GFdf (q)+LFdf (q,c) � Compute the weighted GOF metric.

df ← GFdf (q) + LFdf (q, c)
return (αnew, βnew, q, {c ∪ GFΠ(q)}, χ, df) � Update parent/ancestors

procedure UpdateFit(c, T, GF )
if c ∈ TΠ(c) then � Check for cycles

return false
if Tχ(c) < GFχ(c) then

GFα,β,P,Π,χ,df (c) ← Tα,β,P,Π,χ,df (c)
return true

else
return false

between reboots. One could also employ an adaptive strategy by collecting more
anchors when the segment is small and reverting to a larger Twakeup when an
adequate number of anchors have been collected. It is advantageous for a mote
to attempt to collect anchors from a small set of neighbors (to minimize stor-
age), but this requires a mote to have some way of identifying the most useful
segments for anchoring (see Section 4).

3.2 Offline Timestamp Reconstruction

The Phoenix algorithm is intuitively simple. We will outline it in text and draw
attention to a few important details. For a more complete treatment, please refer
to the pseudocode in Algorithm 1. Phoenix accepts as input the collection of all
anchor points AP (both 〈local, neighbor〉 and 〈local, global〉). It then employs
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a least-square linear regression to extract the relationships between the local
clocks of the segments that have anchored to each other (LF , for Local Fit).
In addition to LFa(i, j) (slope), LFb(i, j) (intercept), Phoenix also obtains a
goodness-of-fit (GOF ) metric, LFχ(i, j) (unbiased estimate of the variance of
the residuals) and LFdf (degrees of freedom). For segments which have global
references, Phoenix stores this as GF (for Global Fit).

The algorithm then initializes a queue with all of the segments which have
direct anchors to the global clock. It dequeues the first element q and examines
each segment c that has anchored to it. Phoenix uses the transitive relationship
between GF (q) and LF (q, c) to produce a global fit T (c) which associates seg-
ment c to the global clock through segment q. If Tχ(c) is lower than the previous
value for GFχ(c) (and using q would not create a cycle in the path used to reach
the global clock), the algorithm replaces GF (c) with T (c), and places c in the
queue. When the queue is empty, no segments have “routes” to the global clock
which have a better goodness-of-fit than the ones which have been previously
established. At this point, the algorithm terminates.

The selection of paths from an arbitrary segment to a segment with global time
references can be thought of as a shortest-path problem (each segment represents
a vertex and the fit between the two segments is an edge). The GOF metric
represents the edge weight. The running time complexity of the implementation
of Phoenix was validated experimentally by varying the deployment lifetime
(thereby varying number of segments). The runtime was found to increase slower
than the square of the number of segments.

4 Evaluation

We evaluate the effect of varying several key parameters in Phoenix using both
simulated and real datasets. We begin by describing our simulator.

4.1 Simulator

Our goal is to minimize the data loss in long-term deployments. Hence, we fix
the simulation period to be one year. We also assume that the basestation is
not persistently present and does not provide a time source to the network.
The network contains one global clock source (a GPS mote) that is susceptible
to failures. The main components of the simulator are described below. The
default values for the simulator are based on empirical data obtained from the
one year long Cub Hill deployment.

Clock Skew: The clock skew for each segment is drawn from a uniformly dis-
tributed random variable between 40 ppm and 70 ppm. Burri et al. report this
value to be between 30 and 50 ppm at room temperature2 [1].

Segment Model: We use the non-parametric segment-length model based on
the Cub Hill deployment after the watchdog timer fix (Figure 3). Additionally,
2 We ignore the well-studied temperature effects on the quartz crystal. For a more

complete treatment on the temperature dependence, refer to [14,17].
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after a reboot, we allowed the mote to stay inactive for a period that is randomly
drawn between zero and four hours with a probability given by pdown = 0.2. The
GPS mote’s behavior follows the same model.

Communication Model: The total end-to-end communication delay for re-
ceiving anchor packets is drawn uniformly between 5 and 15 milliseconds. This
time includes the interrupt handling, transmission, reception and propagation
delays. To model the packet reception rate (PRR), we use the log-distance
path loss model as described in [18,25] with parameters: (Pr(d0), η, σ, d0) =
(−59.28, 2.04, 6.28, 2.0m).

Topology: The Cub Hill topology was used as the basis for all simulations.

Event Frequencies: Motes recorded a 26-byte sample every 10 minutes. They
beacon their local clock values with an interval of Tbeacon. They stay up after
every reboot and periodically after an interval of Twakeup to collect these broad-
casts. While up, they keep their radios on for a maximum of Tlisten. The GPS
mote collects 〈local, global〉 anchors with a rate of Tsync. By default, Tbeacon,
Twakeup, Tlisten and Tsync were set to 30 s, 6 h, 30 s and 6 h respectively.

Maximum Anchorable Segments: To minimize the space overhead in stor-
ing anchors, we limit the number of segments that can be used for anchoring
purposes. At any given time, a mote can only store anchors for up to NUMSEG
segments. The default NUMSEG value is set to four. Motes stop listening early
once they collect NUMSEG anchors in a single interval.

Eviction Policy: Since segments end and links between motes change over time,
obsolete or rarely-heard segments need to be evicted from the set of NUMSEG
segments for which a mote listens. The timeout for evicting stale entries is set
to 3×Twakeup. We evaluated three different strategies for selecting replacements
for evicted segments. First-come, first-served (FCFS) accepts the first segment
that is heard when a vacancy exists. RAND keeps track of the previous segments
that were heard and selects a new segment to anchor with at random. Longest
local clock (LLC) keeps track of the local clock values of the segments that are
heard and selects the segment that has the highest local clock. FCFS was chosen
as the default.

4.2 Evaluation Metrics

Data loss (DL): The fraction of data that cannot be assigned any timestamps,
expressed as a percentage.

PPM Error: The average error (in parts per million) for the assigned times-
tamps. PPM error is |t′−t|

tδ
× 106, where t is the true timestamp of the mea-

surement, t′ is the assigned timestamp, and tδ denotes the elapsed time since
the start of the segment in terms of the real clock.

Space overhead: The fraction of space that is used for storing anchors relative
to the total space used, expressed as a percentage.

Duty cycle: The fraction of time the radio was kept on for anchor collection
and beaconing, expressed as a percentage.
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Fig. 5. Evaluation of Phoenix in simulation. In (c), faults were injected to GPS anchors
after day 237. Figure shows the α and χ values for the GPS mote for the entire period.

4.3 Simulation Experiments

Dependence on Global Clock Source: We studied the effect of the global clock’s
absence on data loss. We assume that the network contains one GPS mote that
serves as the global clock source and it is inoperative for a specified amount of
time. In order to avoid bias, we randomly selected the starting point of this period
and varied the GPS down time from 0 to 150 days in steps of 10. Figure 5(a)
shows the effect on the reconstruction using 60 independent runs. The accuracy
decreases as the number of days without GPS increases, but we note that this
decrease is tolerable for our target applications. The data loss stayed relatively
stable at 0.21%, even when the global clock source is absent for as long as
5 months. We note that in a densely connected network, the number of paths
between any two segments is combinatorial, and hence, the probability of finding
a usable path is very high3. The variance of the error increased with the length
of the gateway’s absence.

Dependence on Wake-up Interval: Figures 5(b) show the effect of varying wake-
up rate on data loss. As expected, data loss increases as the rate of anchor
collection decreases. This curve is strongly related to the segment model: if

3 One can estimate the probability for finding a usable path using Warshall’s algorithm
[5]. The input to this algorithm would be a connectivity matrix where the entries
represent the anchoring probabilities of the neighbor segments.
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collections are less frequent than reboots, many segments will fail to collect
enough anchors to be reconstructed.

Robustness: We studied the effect of faulty global clock references on time recon-
struction. Noise from a normal distribution (μ = 60 min., σ =10 min.) was added
to the global references for a period of 128 days. Figure 5(c) shows the alpha and
χ values for the GPS mote during the entire simulation period. One can also no-
tice the correlation between high χ values and α values that deviate from 1.0 in
Figure 5(c). These faults did not change the data loss rate. The faults increased
the PPM error from 4.03 to 16.5. Although these faults decreased accuracy, this
decrease is extremely small in comparison to the magnitude of the injected errors
and within the targeted accuracy requirements. Phoenix extracted paths which
were least affected by these faults by using the χ metric.

Effect of eviction and NUMSEG: We studied the effect of NUMSEG on space,
duty cycle, and data loss. The space overhead increases linearly with NUMSEG
(Figure 6(a)). The impact on duty cycle4 was quite low (Figure 6(b)). A constant
duty cycle penalty of 0.075% is incurred due to the beaconing messages sent every
30 s [16]. At low values of NUMSEG, motes are able to switch off their radios
early (once they have heard announcements from segments they have anchored
with), while at higher values, they need to stay on for the entire Tlisten period.
Increasing NUMSEG decreases data loss, because motes have a better chance
of collecting good segments to anchor with. We found that the FCFS eviction
policy outperforms LLC and RAND. We found no significant differences in the
PPM error results as we vary NUMSEG, and hence, we do not report those
results here.

Neighbor Density: In this experiment, we removed links from the Cub Hill topol-
ogy until we obtained the desired neighbor density. At every step, we ensured
that the network was fully connected. We did not find any significant impact on
performance as the average number of neighbors was decreased. In this experi-
ment, the radios were kept on for the entire Tlisten period, and no eviction policy
was employed. This was done to compare the performance at each density level
at the same duty cycle. Figure 6(d) presents our findings.

4.4 Deployment

We deployed a network (referred to as the “Olin” network) of 19 motes arranged
in a grid topology in an urban forest near the Johns Hopkins University campus
in Baltimore, MD. Anchors were collected for the entire period of 21 days using
the methodology described in Section 3.1. The basestation collected data from
these motes once every four hours and the NTP-corrected clock of the basestation
was used as a reliable global clock source. The motes rebooted every 5.7 days on
4 Note that the duty cycle that we are referring to does not consider the communication

costs during data downloads. Reducing the storage requirements would reduce the
communication costs when the basestation collects data.
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Fig. 6. Effect of NUMSEG on different eviction policies

average, resulting in a total of 62 segments. The maximum segment length was
19 days and the minimum was two hours.

Perceived Ground Truth: It is very difficult to establish absolute ground truth in
field experiments. Instead, we establish a synthetic ground truth by reconstruct-
ing timestamps using all the global anchors obtained from the basestation5. We
record the α and β values for each segment and use these values as ground
truth. Because we downloaded data every four hours we obtained enough global
anchors from the motes to be confident with the derived ground truth estimates.

Emulating GPS node and Basestation Failure: In order to emulate a GPS mote,
we selected a single mote (referred to as G-mote) that was one hop away from the
basestation. We used the G-mote’s global anchors obtained from the basestation
as though they were taken using a GPS device. We ignored all other global
anchors obtained from other motes. Furthermore, to emulate the absence of the
basestation for N days, we discarded all the anchors taken by the G-mote during
that N -day long period. We tested for values of N from one to eighteen.

5 Note that every time a mote contacts the basestation, we obtain a global anchor for
that mote.
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Table 1. Phoenix accuracy using the Olin dataset as a function of the number of days
that the basestation was unavailable

Error\Days 2 4 6 8 10 12 14 16 18

αmed (ppm) 1.73 1.73 1.85 1.70 1.96 2.20 4.36 5.47 5.93
αstd (ppm) 3.41 3.40 3.40 3.39 3.30 3.26 3.17 3.00 3.00

βmed (s) 0.88 0.88 0.91 0.94 1.16 1.55 4.52 6.02 6.44
βstd (s) 0.58 0.57 0.58 0.57 0.65 0.91 2.43 3.11 3.45
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Fig. 7. The stability of the α estimates using Phoenix and the data loss using RGTR
in comparison to Phoenix

Phoenix Accuracy: After simulating the basestation failure, we reconstruct the
timestamps by applying Phoenix using only the 〈local, neighbor〉 anchors, and
global anchors available from the G-mote. This provides us with another set
of α and β estimates for each of the segments. We compare these estimates
with the ground truth estimates (pair-wise comparison). In order to provide a
deeper insight, we decompose the average PPM error metric into its constituent
components - α and β errors. Furthermore, we report the median and standard
deviation of these α and β errors. Table 1 reports the results of these experiments.
We found that the median α error stayed as low as 5.9 ppm, while the median β
error stayed as low as 6.4 s for N =18. In general, αmed, βmed and βstd increased
as N increased and αstd stayed relatively consistent for different values of N .
The stability of the α estimates using Phoenix with N = 0 and N = 18 is shown
in Figure 7(a). The CDF shows that median skew was found to be around 75
ppm and the two curves track each other closely.

Data Loss: The data loss using Phoenix was found to be as low as 0.055%
when N was 18 days. In comparison, we found that there was significant data
loss when the timestamps were reconstructed using RGTR. Figure 7(b) shows
the data losses for different values of N . The figure does not report the Phoenix
data loss as we found it to be 0.055% irrespective of N . This demonstrates that
Phoenix is able to reconstruct more than 99% of the data even when motes
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reboot frequently and the basestation is unavailable for days. We note that in
comparison to Phoenix, RGTR does not incur any additional storage and duty
cycle overheads as anchors are recorded at the basestation directly as part of the
data downloads.

5 Related Work

Assignment of timestamps in sensor networks falls under two broad categories.
Strict clock synchronization aims at ensuring that all the mote clocks are syn-
chronized to the same clock source. Flooding Time Synchronization Protocol
(FTSP, [13]), Reference Broadcast Synchronization (RBS, [7]), and the Timing-
sync Protocol for Sensor Networks [8] are examples of this approach. These
systems are typically used in applications such as target tracking and alarm de-
tection which require strong real-time guarantees of reporting events. The sec-
ond category is known as postmortem time reconstruction and it is mostly used
due to its simplicity. While strict synchronization is appropriate for applications
where there are specific events of interest that need to be reported, postmortem
reconstruction is well-suited for applications where there is a continuous data
stream and every measurement requires an accurate timestamp.

Phoenix falls under the second class of methods. The idea of using linear
regression to translate local timestamps to global timestamps was first intro-
duced by Werner-Allen et al. in a deployment that was aimed at studying active
volcanoes [23]. This work, however, does not consider the impact caused by re-
booting motes and basestation failures from a time reconstruction perspective.
More recently, researchers have proposed data-driven methods for recovering
temporal integrity [9,10]. Lukac et al. use a model for microseism propagation
to time-correct the data collected by their seismic sensors. Although data-driven
methods have proved useful for recovering temporal integrity, they are not a
solution for accurate timestamping.

Routing integrated time synchronization protocol (RITS, [19]) spans these
categories. Each mote along the path (to the basestation) transforms the time of
the reported event from the preceding mote’s time frame, ending with an accu-
rate global timestamp at the basestation. RITS does not consider the problem
of mote reboots, and is designed for target tracking applications. The problem
of mote reboots have been reported by a number of research groups. Chang et
al. report that nodes rebooted every other day due to an unstable power source
[2], whereas Dutta et al. employed the watchdog timer to reboot nodes due to
software faults [6]. Allen et al. report an average node uptime of 69% [23]. More
recently, Chen et al. advocate Neutron, a solution that detects system violations
and recovers from them without having to reboot the mote [3]. They advocate
the notion of preserving “precious” states such as the time synchronization state.
Nevertheless, Neutron cannot prevent all mote reboots and therefore Phoenix is
still necessary.
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6 Conclusions

In this paper we investigate the challenges facing existing postmortem time re-
construction methodologies due to basestation failures, frequent random mote
reboots, and the absence of on-board RTC sources. We present our time recon-
struction experiences based on a year-long deployment and motivate the need
for robust time reconstruction architectures that minimize data losses due to the
challenges we experienced.

Phoenix is an offline time reconstruction algorithm that assigns timestamps
to measurements collected using each mote’s local clock. One or more motes
have references to a global time source. All motes broadcast their time-related
state and periodically record the broadcasts of their neighbors. If a few mote seg-
ments are able to map their local measurements to the global time frame, this
information can then be used to assign global timestamps to the measurements
collected by their neighbors and so on. This epidemic-like spread of global infor-
mation makes Phoenix robust to random mote reboots and basestation failures.
We found that in practice there are more than enough possible ways to obtain
good fits for the vast majority of data segments.

Results obtained from simulated datasets showed that Phoenix is able to
timestamp more than 99% of measurements with an accuracy up to 6 ppm
in the presence of frequent random mote reboots. It is able to maintain this
performance even when there is no global clock information available for months.
The duty-cycle and space overheads were found to be as low as 0.2% and 4%
respectively. We validated these results using a 21 day-long real deployment and
were able to reconstruct timestamps in the order of seconds.

In the future, we will investigate using other metrics for determining edge
weights and their impact on the quality of the time reconstruction. Moreover, we
will explore adaptive techniques for determining the anchor collection frequency.
Finally, we will derive theoretical guarantees on the accuracy of Phoenix, which
can be used to allow for fine-grained tradeoffs between reconstruction quality
and overhead.
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time synchronization. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006.
LNCS, vol. 3868, pp. 115–131. Springer, Heidelberg (2006)

20. Taneja, J., Jeong, J., Culler, D.: Design, modeling, and capacity planning for micro-
solar power sensor networks. In: IPSN 2008, pp. 407–418 (2008)

21. Texas Instruments Incorporated. MSP430 Datasheet
22. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,

S., Gay, D., Hong, W., Dawson, T., Culler, D.: A Macroscope in the Redwoods.
In: SenSys (November 2005)

23. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and Yield
in a Volcano Monitoring Sensor Network. In: OSDI (November 2006)

24. Yang, Y., Wang, L., Noh, D.K., Le, H.K., Abdelzaher, T.F.: Solarstore: enhancing
data reliability in solar-powered storage-centric sensor networks. In: Mobisys, pp.
333–346. ACM, New York (2009)

25. Zamalloa, M.Z., Krishnamachari, B.: An analysis of unreliability and asymmetry
in low-power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)



Trimming the Tree: Tailoring Adaptive
Huffman Coding to Wireless Sensor Networks

Andreas Reinhardt1, Delphine Christin2, Matthias Hollick2,
Johannes Schmitt1, Parag S. Mogre1, and Ralf Steinmetz1

1 Multimedia Communications Lab, Technische Universität Darmstadt
Rundeturmstr. 10, 64283 Darmstadt, Germany

{areinhardt,jschmitt,pmogre,ralf.steinmetz}@kom.tu-darmstadt.de
2 Secure Mobile Networking Lab, Technische Universität Darmstadt

Mornewegstr. 32, 64293 Darmstadt, Germany
{delphine.christin,matthias.hollick}@seemoo.tu-darmstadt.de

Abstract. Nodes in wireless sensor networks are generally designed to
operate on a limited energy budget, and must consciously use the avail-
able charge to allow for long lifetimes. As the radio transceiver is the
predominant power consumer on current node platforms, the minimiza-
tion of its activity periods and efficient use of the radio channel are
major targets for optimization. Data compression is a viable option to
increase the packet information density, resulting in reduced transmis-
sion durations and thus allowing for an optimized channel utilization.
The computational and memory demands of many current compression
algorithms however hamper their applicability on sensor nodes.

In this paper, we present a novel variant of the adaptive Huffman
coding algorithm, operating on reduced code table sizes and thus sig-
nificantly alleviating the resource demands for storing and updating the
code table during runtime. An implementation for tmote sky hardware
proves its adequacy to the capabilities of sensor nodes, and we present
its achievable compression gains and energy requirements in both simu-
lation and real world experiments. Results anticipate that overall energy
savings can be achieved when transferring packets of reduced sizes, even
when increased CPU utilization is incurred.

1 Introduction

In general, energy budgets of nodes in wireless sensor networks (WSNs) are
tightly limited [1], thus necessitating the design of applications with increased
awareness to their energy consumption. As radio transmissions are an inher-
ent and crucial characteristic of WSNs, but current radio transceivers, such as
the widely employed CC2420 device, still expose power consumptions of tens
of milliamperes [2], permanent operation of the radio transceiver leads to quick
depletion of the battery in both transmission and reception mode. This problem
can be approached in several ways, reaching from energy-aware medium access
control (MAC) protocols to highly application-specific means of data compres-
sion. In this paper, we focus on compressing packet payloads, targeting to reduce
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the transmission duration and thus the energy required to exchange data. We in-
vestigate the achievable energy savings while disregarding the influence of MAC
protocols in our analysis, as reduced packet transmission durations always cor-
respond to savings in transmission energy. The share of the overall radio energy
consumption however depends on the selected MAC protocol and its features
like duty cycling and low-power listening [3]. The presented solution is designed
to remain compatible with both existing header compression schemes as well as
energy-aware MAC protocols. In fact, our approach is even capable of compress-
ing both packet payloads and headers.

While data processing and compression mechanisms specifically tailored to
an application may provide optimal compression results, they require individual
adaptation to sensor data and packet structures and thus place an additional
load on the application developer. In contrast, generic data compression solu-
tions, as known from desktop computers, often greatly exceed the capabilities
and available resources of embedded sensing systems. In this paper, we pur-
sue the strategy to adapt a generic compression algorithm to the capabilities of
sensor nodes. The resulting generic and application-agnostic solution allows to
compress data without necessitating additional programming efforts. Opposed
to existing approaches, which buffer multiple packets of data prior to compres-
sion, our approach targets applications that rely on immediate transmissions;
i.e. each packet is compressed individually prior to its transmission.

We focus on the adaptation of a lossless adaptive data compression algorithm,
based on adaptive Huffman coding (AHC), where literals in the input sequence
are replaced by binary codes with a length reciprocal to the frequency of their
occurrence [4]. Our analysis of the existing adaptive Huffman coder implemen-
tation for WSNs by Guitton et al. in [5] however revealed that on a TelosB
platform, more than 62% of both program Flash and RAM are consumed to
maintain a single compressed unicast radio connection. Instantiating more than
one connection has not been possible at all due to the memory requirement for
storing the corresponding Huffman code table. We address this limitation by
making use of Huffman code trees with a limited number of entries, greatly re-
ducing computational and memory consumption at the possible cost of slightly
degraded compression ratios. By comparing the achievable compression gains
and energy requirements, we prove the applicability and benefits of the pro-
posed approach considering the data-oriented characteristics of traffic in many
deployments.

The contributions of this paper are as follows:

1. We analyze the characteristics of WSN traffic from different deployments
and prove that compression gains can be achieved when only a subset of the
contained symbols are encoded.

2. We present a modification to the adaptive Huffman coding algorithm, which
operates on code trees with a limited number of elements.

3. We prove its adequacy to sensor networks through an evaluation of its com-
pression gain and energy demand as well as its applicability on real hardware.
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In a first step, we present existing approaches towards data compression in
WSNs in Sec. 2. We describe selected data traces taken from real sensor network
deployments and estimate their compression gain when encoding only a subset
of symbols in Sec. 3. In Sec. 4, we present our modifications to the AHC algo-
rithm. Simulation results for both compression gain and energy consumption are
presented in Sec. 5, followed by the results from a real-world experiment. We
conclude this paper in Sec. 6 and provide an outlook on prospective future work.

2 Related Work

Pottie and Kaiser have determined in [1] that the energy demand to transfer one
kilobyte of data over a distance of one hundred meters in a WSN is the same
as required for executing three million CPU instructions. Later, this observa-
tion was confirmed by Sadler and Martonosi, who determined that the one-hop
transmission of a single byte consumes energy equivalent to performing several
thousand instructions on an MSP430 microcontroller [6]. In the same work, the
authors propose the RT-LZW (retransmission LZW) algorithm, which achieves
compression gains up to a factor of 2.5x when operating on aggregated data
blocks of 528 bytes each. It relies on retransmissions of lost packets to ensure
that data required to construct the code dictionary is present at both parties,
possibly resulting in energy expenses for these additional transmissions.

Guitton et al. have analyzed the applicability of adaptive data compression
in WSNs in [5]. They have extended the AHC algorithm by fault-tolerant mech-
anisms, which groupwise acknowledge transfers of encoded data and adapt the
dictionaries to the successfully received data only. They do however not mea-
sure achievable compression gains or the energy consumption of their algorithm.
When packet structures can be statically defined prior to node deployment and
some fields are known to remain constant or only change incrementally, the
EasiPC packet compression scheme by Ju and Cui [7] can also be used to trans-
mit changed fields only.

In [8], Tsiftes et al. have focussed on compressing firmware updates that are
transferred over the radio, and designed the SBZIP algorithm, a derivative of
BZIP2, adapted to the requirements present in sensor networks. However, the im-
plementation of SBZIP on sensor nodes does not target to compress application-
generated data, but is instead used to decompress application code updates.
Chou et al. present means to reduce an overall network’s energy consumption by
exploiting the Slepian-Wolf coding theorem in a low-complexity implementation
in [9]. Hereby, no inter-node communication overhead is required as long as the
correlation between the data is known. Targeting to reduce the overall number
of packet transmissions, the approach is orthogonal to our concept of reducing
the sizes of packets and can be used supplementary.

In [10], we have presented the Squeeze.KOM compression layer as an archi-
tectural element for sensor network nodes. Using a differential coding module,
compression gains of up to 35% can be achieved at low computational cost and
overall energy savings. Additionally, we have presented a feasibility study of data



36 A. Reinhardt et al.

compression on WSN nodes in [11]. Focused on the energy gains of application-
specific compression means for a wearable sensor, we have determined overall
platform energy savings of up to 5% in a realistic application setting.

We are however not aware of any previous work that discusses the energy effi-
ciency of adaptive compression algorithms in detail while providing an extensive
analysis of their applicability on current WSN hardware.

3 Analyzing the Traffic in Existing Sensor Networks

In the last decade, a variety of WSNs have been deployed in a wide range of
scenarios, including wildlife surveillance [12,13], object tracking [14], or environ-
mental monitoring [15]. In most of the WSN deployments, network traffic follows
a convergecast scheme; all data is routed out of the network using a collection
tree or equivalent means, rooted at one or more sinks [16]. Especially when the
packet payload is comprised of environmental data, transfers often take place at
a regular interval. Timely message delivery is not essential in such scenarios, but
the loss of a series of packets is often interpreted as a node failure, hence regular
successful transmissions are essential to determine the state of the network.

For our analysis, we have considered four exemplary data sets from exist-
ing WSN deployments: PermaSense [15], Glacsweb [17], and two series taken
from the Porcupines [18]. For PermaSense, we have used 19,730 packets of 30
byte payload each transmitted by node 2036 from 15 November to 15 December
2008, taken from the project website1. From the Glacsweb deployment, we have
used all 523 available packets of 52 byte payload, and in case of the Porcupines,
we have selected two representative phases of 2.203 packets of 42 bytes each,
where the first one was recorded during wearer activity (termed activity phase)
and the second one when the wearer was asleep (sleep phase). While the two
former data sets are physical measurements from sensors deployed for environ-
mental monitoring, with readings changing smoothly over time, the latter are
taken from motion sensors attached to a human and thus reflect both phases
of sudden motions and steadiness. Representative excerpts of the four data sets
are plotted in Fig. 1 for reference. It should be noted at this point that only five
different symbols are present in the entire data stream in the Porcupine sleep
phase, whereas the active Porcupine data set is composed of 89 different values.
Glacsweb makes use of 185 different symbols, and PermaSense spans the entire
input symbol range of 256 values.

To attain an estimate for the compressibility of the data sets, we show the
analysis of their symbol distributions in Fig. 2, showing that the occurrence
frequencies of the used symbols are not distributed evenly over the data set.
In contrast, the data sets rather expose a number of subset of symbols with
significantly greater occurrence numbers. The cumulative distribution function
of the symbols, which is also shown in the figure, also indicates that only a
fraction of the contained symbols show frequent occurrences, while the remaining
symbols have almost negligible occurrence numbers.
1 http://tik42x.ee.ethz.ch:22001

http://tik42x.ee.ethz.ch:22001
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Fig. 1. Representative excerpts of the used data sets

3.1 Huffman Coding Revisited

The foundation of Huffman coding is the assignment of codes to input symbols,
with their length being reciprocal to their occurrence frequency within the input
stream. In static Huffman coding [19], the input sequence is analyzed prior to
encoding, and occurrence frequencies of all contained symbols are determined.
On completion of this process, a tree is constructed, containing mappings for all
input symbols to their corresponding Huffman code. This tree must be sent to
the receiver before the actual data is transmitted to ensure both parties operate
on the same dictionary. This represents additional overhead, which is however
generally encountered by a near-optimal adaptation to the input sequence. The
major drawback when using static Huffman coding is the required full knowledge
of the data, which strongly limits its applicability in sensor networks, where
sensor readings become available periodically. In such case, the algorithm needs
to operate on individual packets, and thus transmit the code table in each of
them.
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Fig. 2. Symbol distributions for the used data sets

Adaptive Huffman coding is based on the maintenance of a the code table
in a dynamic way [4]. In contrast to static Huffman coding, where this table is
generated prior to the actual encoding step, AHC assigns (and possibly modifies
when occurrence frequencies change) the code tree during runtime. To allow for
these dynamic adaptations to occur, a dedicated placeholder symbol for an input
symbol not yet encountered (NYE ) is part of the code tree. This symbol is always
maintained with an occurrence frequency of zero and thus always assigned one of
the longest codes. Whenever a symbol not yet present in the Huffman table needs
to be transferred, the NYE symbol is transmitted, followed by the unencoded
representation of the symbol. The symbol is then added to the code tables of
both parties, so its newly assigned code can be used on its next occurrence.

3.2 Estimation of Compression Gains

In Fig. 2, the cumulative distribution functions for the studied real-world sensor
data indicate that the full range of input symbols is dominated by symbols with
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few occurrences within the data stream, whereas only a subset of symbols with
high occurrence frequency is present. To estimate the compressibility of the data,
we evaluate the resulting output sizes when only a subset of symbols is being
compressed while all remaining symbols are sent unencoded.

Let us assume that a compression algorithm can encode n symbols of the size
of a byte, leaving the remaining 256−n symbols uncompressed. We furthermore
assume that γi represents the number of occurrences of the byte value i in the
input sequence, and that f(i) is the function that assigns a code length (in bits)
to this symbol. In case of an uncompressed transmission, f(i) would statically be
assigned a value of eight bits. Given these definitions, the length l of the output
sequence resulting from the data compression step can be calculated as shown in
Eq. 1, which sums the lengths of each symbol’s code multiplied by the number
of its occurrences within the input sequence.

l =
256∑
i=1

f(i) ∗ γi (1)

Symbol-oriented compression schemes, such as Huffman coding, create the
code length function f(i) from the state of their code table. To assess if com-
pression with a reduced number of entries in the code tree is feasible, we have
used two approximation functions for code lengths; while fe in Eq. 2 assumes an
equal length for the symbols that are encoded, ff in Eq. 3 assigns the lengths of
the output codes to follow the symbol’s rank r(i) within the occurrence frequency
list. Code trees for both functions are also depicted in Fig. 3.

fe(i) = 1 +
{ �ld(n)	 if i <= n

8 if i > n
(2)

ff (i) = 1 +

⎧⎨
⎩

r(i) if i < n
n − 1 if i = n
8 if i > n

(3)

When only a subset of the possible input symbols is present within the table
mapping from input symbol to corresponding code, an additional indicator is
required to mark the following bits as plaintext or encoded symbol. We have
selected a one bit prefix to allow for this distinction, which is also reflected in the
two functions. The results for this preliminary analysis are shown in Fig. 4, which

(10)

(3)

d (1)c (2)

(7)

b (3)a (4)

(a) Code tree following fe distribution

(10)

(6)

(3)

d (1)c (2)

b (3)

a (4)

(b) Code tree following ff distribution

Fig. 3. Trees for fe and ff with n = 4, resulting from the input sequence aaaabbbccd
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Fig. 4. Compression gain estimates for the data sets using fe, ff , and Huffman coding

additionally indicates the compression gains when using static Huffman coding
to put the results into perspective. Although clearly indicating that savings can
be achieved even when using the presented non-ideal code length distributions,
the compression gain shows a strong dependence on the used data set.

As the Glacsweb and Porcupine (sleep mode) data sets only expose a small
number of symbols with high occurrence frequency, the ff function presents a
better basis to achieve high compression gains, as very short codes are assigned
to the most frequently occurring symbols. This way, gains of 82% are achieved
for Glacsweb (at n=1), and up to 62% for the Porcupines (at n=4). In con-
trast, the active Porcupine and PermaSense data sets contain a larger number
of frequent symbols, which are not covered well by the ranking performed in ff .
When applying fe instead, compression gains of 17.3% (at n=32) for the active
Porcupine phase, and 12% for PermaSense (at n=16) can be determined.

4 Adaptive Huffman Coding in Sensor Networks

As outlined in Sec. 3.1, a Huffman code tree must be stored for each communi-
cation link, with each of the nodes in the tree containing information about the
symbol it represents, its occurrence frequency, its status (e.g., root, leaf, or NYE)
as well as the identities of its children nodes and its parent. As 2n− 1 nodes are
required to allow for n code entries in a tree, 511 nodes must be stored within
the tree to allow for mappings of 256 input symbols. This number requires nine
bits to be represented and thus two bytes on any byte-aligned microcontroller.
As each tree node needs to store six bytes for its parent and child identities as
well as the input symbol it represents, its frequency and status information, a
minimum of nine bytes are consumed. In summary, this results in a demand of
more than four kilobytes of RAM for a Huffman tree storing 256 symbols. Be-
sides the tree itself, a table for the occurrence frequencies of input symbols must
be maintained, consuming another 256 bytes at least. This theoretical analysis
also confirms the behavior observed in Guitton’s implementation [5], where the
memory consumption of the code tree disallowed us to instantiate more than one
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connection. Additionally, whenever a packet is sent or received, the Huffman tree
must be updated according to its new occurrence frequency by a number of swap
operations, which pose computational overhead.

The analysis of the resource demands of AHC has shown its limited applica-
bility in WSNs due to the excessive resource demands, but also resulting from
the lack of dynamic memory allocation schemes in TinyOS [20]. When operating
on statically assigned memory, worst case behavior needs to be assumed for the
assignment of memory during compile time, i.e. memory needs to be reserved
for all symbols, including those that never occur within the input sequence.

4.1 Trimming the Tree

Our observations show that the memory consumption and thus the applicability
of the AHC implementation on WSN nodes is mainly limited by the number of
symbols that are stored in the Huffman tree. However, as discussed in Sec. 3.2,
the symbol occurrence frequencies of traffic in current WSNs are often strongly
biased towards a small subset of symbols, while the remaining input characters
might only rarely or never be part of the input string. Our preliminary esti-
mations of the achievable compression gain, as shown in Fig. 4, confirm that
packet size reductions are possible when only a subset of symbols are stored
within the Huffman tree, while the remaining ones are transferred unencoded.
The selected estimation functions were however neither adaptive to the traffic
(i.e., a priori knowledge about the whole data set was required), nor did they
match the characteristics of the traffic precisely.

As the memory consumption of the code table is linearly dependent on the
number of entries stored within the table, keeping only a subset of input symbols
in the tree can significantly reduce its memory requirement. Besides, when a
smaller number of node IDs must be stored, their size can also be reduced (an
8 bit wide node ID field is sufficient to store up to 128 symbols in the tree). As
a third benefit, the time to restructure the tree when changes in the occurrence
frequencies are encountered also depends on the number of entries, and can in
consequence be improved by reducing the tree size. In the following, we analyze
the effects of confining the Huffman code tree to a limited number of entries.

4.2 Populating the Tree

The main difference between our proposed approach and conventional adaptive
Huffman coding lies in the process of populating the tree. While in AHC, the
NYE node is always present to attach unknown symbols to the tree, the limita-
tion of the number of tree nodes in our algorithm can lead to situations where
the NYE node, with its assumed occurrence frequency of zero, is being replaced
by a symbol. We encounter this situation by keeping track of the occurrence
frequencies of the symbols stored in the tree, and replacing the element with the
smallest occurrence frequency in case a more frequent symbol is encountered.
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Fig. 5. Populating a tree with capacity for 3 symbols with the sequence aaaaaabbcddcc

We depict the operation of the proposed implementation in Fig. 5, where an
input sequence of aaaaaabbcddcc and a tree capacity of 5 nodes (equalling 3
symbols) is assumed. The nodes in the tree are labeled with the symbols they
represent as well as their occurrence counter. In the initial phase (Fig. 5a–c),
updates to the code tree are performed identical to AHC, i.e. either the counter
of a symbol present in the tree is incremented, or a new symbol is added to the
tree through the NYE node. In Fig. 5(d) however, the new input symbol c is
encountered in the input sequence, while the limited number of nodes disallows
the NYE to create a new tree node for the symbol. In contrast to AHC, our
approach replaces the NYE by the symbol node; the tree thus loses the inherent
capability of being extended through the NYE node. To still adapt to the input
sequence during runtime, we follow the approach of replacing the node with
the smallest counter value when a symbol with greater counter is present, such
as shown in Fig. 5(e) and 5(f). To allow for this, we keep track of all symbol
occurrence frequencies during runtime. All resulting codes are prefixed by a single
bit indicating if the following bit sequence should be interpreted as a code from
the Huffman tree or as an unencoded symbol. Assuming the tree state depicted
in Fig. 5(f), the letter c would thus be encoded as the binary code 101, where
the 1 bit indicates that the following bits are taken from the code table, and the
01 bits refer to the branches taken to reach the value (0: left, 1: right). Similarly,
symbols not contained in the table, like the numeric digit 2 can be represented
as 000100010, where the first 0 bit indicates that it is followed by an unencoded
symbol, and the 00100010 bits contain the ASCII representation of the digit.

The limited code tree size reduces the algorithm’s resource demands signifi-
cantly, as only codes for the most frequently occurring input symbols are stored,
and less memory and computation time is required when reorganizing the table.
Especially, as each sensor node needs to maintain a Huffman table for each con-
nection, the proposed reduction in terms of memory consumption is essential to
successfully apply AHC in WSNs. Still, the adaptive character is maintained,
allowing for high compression gains.
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5 Analysis and Evaluation

Concluding from the compression gain estimates presented in Sec. 3.2, it is ap-
parent that size reductions can already be achieved when using simplified code
length approximations while limiting the number of entries within the tree. In
consequence, we have presented the design of an adaptive Huffman coding algo-
rithm that operates on a limited code tree size. In this section, we analyze its
compression gains when applied to the data sets introduced in Sec. 3. Secondly,
we show the algorithm’s applicability on sensor node hardware by evaluating
both its resource and energy demands. In a third and final step, we verify the
applicability of our algorithm and energy-efficiency in a real-world experiment.

5.1 Analysis of the Compression Gain

We have compressed the four presented data sets with the algorithm and varied
the parameter n, indicating the number of symbols that can be stored in the
tree. We show the sizes of the compressed sequences in Table 1 in comparison
to the uncompressed data, which we use as reference for all following analyses.

Table 1. Output sizes in bytes (and ratio to input) for AHC with limited tree size

#Symbols
PermaSense Glacsweb

Porcupines
in tree (n) active sleep

Reference 591930 (1.0) 27144 (1.0) 89754 (1.0) 89754 (1.0)
1 625211 (1.06) 4903 (0.18) 91172 (1.02) 72816 (0.81)
2 595944 (1.01) 7929 (0.29) 88487 (0.99) 49835 (0.56)
4 567247 (0.96) 7794 (0.29) 84249 (0.94) 34504 (0.38)
8 539434 (0.91) 7766 (0.29) 79065 (0.88) 34940 (0.39)
16 517086 (0.87) 7759 (0.29) 74431 (0.83) 34940 (0.39)
32 510933 (0.86) 7772 (0.29) 70931 (0.79) 34940 (0.39)
64 519592 (0.88) 7807 (0.29) 71884 (0.80) 34940 (0.39)
128 537240 (0.91) 7869 (0.29) 71972 (0.80) 34940 (0.39)

Notably, the achievable compression gains show a strong correlation to the
used data set and its characteristics. However, the number of entries in the code
tree also has a major impact on the compression gain. While very small values for
the symbol count n allow to encode predominant symbols in a very efficient way,
the one bit prefix increases the encoded length of all other symbols. Especially
in the PermaSense and active Porcupine data sets with many different contained
symbols, this even leads to size increases of the output for certain configurations
of n. In contrast, if too large values for n are chosen, the compression gain slightly
degrades as a result of the longer code lengths of rarely occurring symbols.

5.2 Applicability on WSN Hardware

Before analyzing the algorithm’s overall energy consumption, its applicability
on current node hardware has been investigated. We have selected the tmote
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Table 2. Resource consumption of AHC with limited tree size compared to reference

#Symbols in tree Ref 1 2 4 8 16 32 64 128 256

Flash (bytes)
22800 23838 23932 23936 23936 23936 23936 23936 23926 23918
46.3% 48.5% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7% 48.7%

RAM (bytes)
5086 6122 6138 6170 6234 6362 6618 7130 8154 10202
49.7% 59.8% 59.9% 60.3% 60.9% 62.1% 64.6% 69.6% 79.6% 99.6%

sky platform as our reference, comprising a TI MSP430 microcontroller (MCU )
with 48 kilobytes of program Flash and 10 kilobytes of RAM. This platform
also acts as the basis for all further analyses in this paper. To assess the resource
consumption, we have implemented a simple application in the Contiki operating
system [21], which periodically takes sensor readings and transmits them over
the radio. We have compared our variant of the adaptive Huffman coder to
the reference implementation without compression functionality. Results for the
required amount of Flash and RAM are shown in Table 2 and indicate that
the additional amount of resources required by our implementation stays within
reasonable limits when less symbols need to be stored within the tree, even
though an array containing all symbol frequencies is required. With less than
an 1,150 bytes increase in the program memory consumption, and an overhead
of 8 bytes per Huffman table node, the algorithm proves applicable on the used
sensor node hardware, leaving sufficient resources available to the application.

5.3 Energy Analysis

If we consider the computational efforts required to process input symbols and
accordingly restructure the code tree, possible size reductions of radio packets
might be counterbalanced by additional expenses for the processing. To eval-
uate the algorithm’s energy efficiency on real sensor node hardware, we have
performed a detailed energy simulation using MSPsim and COOJA [22] with
the corresponding NullMAC protocol implementation (i.e., the radio transceiver
of the receiver node is always active, so the sender radio only needs to be switched
on during packet transmissions). As discussed in Sec. 1, this particular choice of
the MAC protocol has been made to evaluate the algorithm’s energy demand in-
dependently of any additional effects introduced by the MAC protocol. The sky
node type has been selected, as it also represents the platform we base our prac-
tical experiment on. To allow for reproducible results, we have statically supplied
the data sets to the simulated application, and assumed a lossless wireless chan-
nel as a detailed analysis of the impact of real-world channel characteristics is
beyond the scope of this paper. Assuming a single-hop transmission at a rate of
ten packets per second, we have analyzed the energy requirements of the sender
node only, as only marginal changes occur to the receiver’s energy consumption
when its radio device is not duty-cycled. We have analyzed the algorithm’s en-
ergy consumption and show the corresponding results in Fig. 6. Analog to [22],
we use the current consumptions measured by Dunkels et al. in [23] for our anal-
ysis. We assume an operating voltage of 3V, and radio current consumptions of
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Fig. 6. Energy analysis for the adaptive Huffman coder with limited tree size

20mA in listening, 17.7mA in transmission, and 21μA in the inactive state. For
the remaining platform, we have assumed 1.8mA in the active, and 5.1μA in the
sleep mode.

It is evident that the use of trees with a limited number of nodes can effectively
lead to reductions in the packet sizes, as observed through the reduced amount
of energy spent on radio transmissions in Fig. 6(a). It can be seen that savings
in radio energy of more than 50% are achieved for the Glacsweb and Porcupine
sleep data sets. In case of the PermaSense and both Porcupine data sets, the
reduced packet sizes lead to a consistent decrease in radio energy. Only in case
of Glacsweb data, the great number of input symbols with low frequency leads
to the assignment of long codes, resulting in a degraded compression ratios when
larger code tree sizes are used. On the contrary, an increase in MCU utilization
occurs due to the additional processing needs, as shown in Fig. 6(b). Again, the
Porcupine sleep data sets exposes behavior different to the other ones, as only
five symbols need to be placed in the tree. For the other data sets, a rise in
the MCU energy demand is clearly visible, indicating the increased amount of
energy required for for management and restructuring of the trees. The overall
energy requirements, depicted in Fig. 6(c) however still prove that for the limited
code tree size adaptive Huffman coder, energy gains can be observed for three
of the four data sets when appropriate tree sizes, i.e. sizes in the range of 1 to
16 symbols, are chosen.
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5.4 Real-World Experiment

To verify if the simulation results match the algorithm’s real behavior, we have
set up a real-world experiment using two tmote sky devices. The first node was
configured as a sender node and supplied with the Glacsweb data set. Blocks of
data were read from the Flash memory, compressed using the presented adaptive
Huffman coder with limited code tree sizes, and transmitted over the radio. To
limit the energy budget available to the node, we have connected its battery
terminal to a boost converter powered by a supercapacitor. To allow for compa-
rable measurements, we have put the same charge on the supercapacitor prior
to each run of the experiment. A receiver node with no energy restrictions was
also part of the experiment, and was used to count the number of transmitted
packets in the used indoor environment. Both were configured to use NullMAC,
thus allowing to compare the results to the previously performed analyses. The
results of the real-world experiment with the Glacsweb data set are indicated in
Table 3 and confirm that the algorithm’s behavior on real hardware resembles
the observed energy simulations for the given data.

Table 3. Number of packets transmitted using the AHC coder with limited tree size

#Symbols in tree Ref 1 2 4 8 16 32 64 128

Sent packets 4733 6832 6668 6609 5991 5947 4979 4496 2581
Runtime gain 0% 44.3% 40.9% 39.6% 26.6% 25.6% 5.2% -5.0% -45.5%

6 Conclusion

In this paper, we have investigated the traffic characteristics of wireless sensor
networks, and determined highly non-uniform symbol distributions in packet
payloads; in all of our analyzed data sets, the better part of packets is comprised
of a small number of different symbols only. We have shown that encoding these
symbols in an efficient way, i.e. by applying adaptive Huffman coding, consider-
able compression gains can be achieved. To improve the applicability of existing
adaptive Huffman coding algorithms on wireless sensor nodes, we have presented
a lightweight version of the AHC algorithm, operating on Huffman code trees
with a limited number of nodes. Our simulation results show that even when
only a small number of symbols are stored in the code tree, overall energy gains
can be achieved while maintaining the algorithm’s applicability on sensor nodes.
Our observations from a real-world experiment confirm these simulation results.

When application level data needs to be compressed, solutions that target to
compress large chunks of data at a time are often unsuited for WSNs. While
compression solutions for a dedicated application might allow for significant
savings, they require developers to spent time and efforts on the implementation
and integration. To take this burden off the programmers, we have shown that
generic solutions can be designed to yield high compression ratios while being
energy efficient, even when the structure of data is unknown in advance.
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It is common knowledge that links in WSNs are susceptible to packet losses
and variable link qualities [24]. Those issues have been addressed by existing
data compression mechanisms using retransmissions [6] or fault tolerance ex-
tensions [5]. Although not directly related to the algorithm design, we plan to
integrate suitable means to cope with the characteristics of real radio channels.
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9. Chou, J., Petrović, D., Ramchandran, K.: A Distributed and Adaptive Signal Pro-
cessing Approach to Reducing Energy Consumption in Sensor Networks. In: Pro-
ceedings of the 22nd Annual Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM (2003)

10. Reinhardt, A., Hollick, M., Steinmetz, R.: Stream-oriented Lossless Packet Com-
pression in Wireless Sensor Networks. In: Proceedings of the 6th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communica-
tions and Networks, SECON (2009)

http://www.ti.com/lit/gpn/cc2420


48 A. Reinhardt et al.

11. Reinhardt, A., Christin, D., Hollick, M., Steinmetz, R.: On the Energy Efficiency
of Lossless Data Compression in Wireless Sensor Networks. In: Proceedings of the
4th IEEE International Workshop on Practical Issues in Building Sensor Network
Applications, SenseApp (2009)

12. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless Sen-
sor Networks for Habitat Monitoring. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA (2002)

13. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-
Efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences
with Zebranet. In: Proceedings of the 10th Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS (2002)

14. Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location Tracking in a Wireless
Sensor Network by Mobile Agents and Its Data Fusion Strategies. In: Zhao, F.,
Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 625–641. Springer, Heidelberg
(2003)

15. Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele,
L., Tschudin, C., Woehrle, M., Yuecel, M.: PermaDAQ: A Scientific Instrument
for Precision Sensing and Data Recovery in Environmental Extremes. In: Proceed-
ings of the 8th ACM/IEEE International Conference on Information Processing in
Sensor Networks, IPSN (2009)

16. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On Tree-Based Convergecasting
in Wireless Sensor Networks. IEEE Wireless Communications and Networking 3
(2003)

17. Martinez, K., Ong, R., Hart, J.: Glacsweb: A Sensor Network for Hostile Environ-
ments. In: Proceedings of the 1st IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, SECON (2004)

18. Van Laerhoven, K., Gellersen, H.W., Malliaris, Y.G.: Long-Term Activity Moni-
toring with a Wearable Sensor Node. In: Workshop on Wearable and Implantable
Body Sensor Networks, BSN (2006)

19. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A Locally Adaptive Data
Compression Scheme. Communications of the ACM 29(4) (1986)

20. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Archi-
tecture Directions for Network Sensors. In: Proceedings of the 10th Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS (2000)

21. Dunkels, A., Grönvall, B., Voigt, T.: Contiki – a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In: Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors, Emnets-I (2004)
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Abstract. The simplicity and low-overhead of random walks have made
them a popular querying mechanism for Wireless Sensor Networks. How-
ever, most of the related work is of theoretical nature and present two
important limitations. First, they are mainly based on simple random
walks, where at each step, the next hop is selected uniformly at ran-
dom among neighbors. This mechanism permits analytical tractability
but wastes energy by unnecessarily visiting neighbors that have been
visited before. Second, the studies usually assume static graphs which
do not consider the impact of link dynamics on the temporal variation
of neighborhoods.

In this work we evaluate the querying performance of Non-Revisiting
Random Walks (NRWs). At each step, NRWs avoid re-visiting neighbors
by selecting the next hop randomly among the neighbors with the min-
imum number of visits. We evaluated Pull-only and Pull-Push queries
with NRWs in two ways: (i) on a test-bed with 102 tmotes and (ii) on
a simulation environment considering link unreliability and asymmetry.
Our main results show that non-revisiting random walks significantly
improve upon simple random walks in terms of querying cost and load
balancing, and that the push-pull mechanism is more efficient than the
push-only for query resolution.

1 Introduction

Querying has been, and continues to be, one of the most investigated areas in
the Wireless Sensor Networks community. For scenarios where nodes have no
location information (location-less), querying paradigms can be classified into 2
broad categories: i) random walks [20,5,21] and ii) flooding or controlled flooding
(expanding ring searches) [11,12,13].

On flooding, each node (re)transmits the querying packet once. On random
walks, nodes are queried in some sequential random order. The walk starts at
some fixed node, and at each step it moves to a neighbor of the current node.
The random walk is called simple when the next node is chosen uniformly at
random from the set of neighbors.
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The main advantage of random walks is its localized search, which avoids the
unnecessary use of bandwidth and energy resources utilized by flooding-type
techniques [17]. On the other hand, if the data of interest is far away from the
sink, the querying cost of random walks can be super-linear in the worst case
compared to the linear cost of flooding.

In this work, we investigate a variant of random walks that provides an energy-
efficient querying alternative for location-less deployments: Non-Revisiting Ran-
dom Walks (NRWs)1. The motivation behind this work is to derive a querying
mechanism that combines the localized behavior of random walks and the linear
cost of flooding.

Our work is inspired by the studies presented in [6,22]. These studies identify a
important limitation of Simple Random Walks (SRWs): selecting the next node
at random is a simple mechanism but leads to frequent revisiting nodes, which in
turn leads to long delays and high expenditures of energy. Contrary to the blind
selection performed by simple random walks, NRW selects the neighbor with the
least number of visits. This Non-Revisiting mechanism maximizes the likelihood
of encountering unvisited nodes, and hence, accelerates the discovering process.

Our work focuses on two types of querying scenarios: (i) Pull-Only querying
and (ii) Push-Pull querying. In Pull-Only querying the sink starts a walk looking
for the event. In Push-Pull querying, both, the event and sink nodes start walks
and query is solved when the walks intersect.

We evaluated the performance of SRW and NRW on TWIST [3], an in-building
test-bed with 102 tmotes, and we simulated larger networks using a probabilistic
link model for the channel [28]. Our results provide two important contributions.
First, it illustrates the difficulties faced by random walks on real deployments due
to the high temporal dynamics of links. We show that polling the neighborhood
immediately before transferring the token is an efficient mechanism to cope with
these dynamics. Second, our results indicate that NRW, together with the simple
push-pull mechanism, is an efficient querying mechanism for networks consist-
ing of up-to thousands of nodes. NRWs with Push-Pull querying maintains the
elegance of simple random walks, while at the same time provide querying costs
that are linear or sub-linear (depending on the size of the network).

2 Definitions, Implementation and Metrics

First, let us present the precise definitions of the random walks types and the
querying mechanisms evaluated on our work:

Definition 1 (Simple Random Walk (SRW)). The walk starts at an initial
node and at each step selects one of its neighbors uniformly at random.

Definition 2 (Non-Revisiting Random Walk (NRW)). The walk starts at
an initial node and at each step selects the neighbor with the minimum number of
1 There are similar types of walks in the related literature (i.e., self-avoiding walks [15],

Vertex- Reinforced Random Walks [18]), but to the best of our knowledge NRWs
where not considered explicitly before.
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Fig. 1. Protocol Implementation of Random Walk

visits (which could be 0). If more than one node have the same minimum number
of visits, the next node is selected uniformly at random among these nodes.

We consider two mechanisms for query resolution. In both of them the event-
node has some data of interest, and the sink-node issue a query to find that piece
of data.

Definition 3 (Pull-Only Querying). The data remains on the event-node
and only the sink-node starts a random walk (i.e., pull). The query is solved
when the walk reaches the event node.

In the push-pull case the event-node publishes its data.

Definition 4 (Push-Pull Querying). The event-node starts a random walk
to publish its data of interest (i.e., push). The sink-node starts a random walk
based query (i.e., pull). The query is solved when the paths of the walks intersect.

We do not discuss here the way the data of interest is routed back to the sink
after query resolution, but this could be done for example by using a trace left
by the query walk. For the reminder of the paper, the term token is used to
denote the presence of the walk on a node.

2.1 Walk Implementation

Contrary to theoretical studies, where the neighborhood of a node is assumed to
remain constant, in real scenarios, link dynamics such as asymmetry, unreliabil-
ity and temporal variation pose significant challenges to the robust dissemination
of the walk. In order to cope with these dynamics, our implementation of a ran-
dom walk utilizes the following three procedures: (a) Neighborhood Discovery,
(b) Selection of Next-Hop and (c) Transferring of Token. These procedures are
presented in Figure 1.

Neighborhood Discovery. Upon reception of the token, a node broadcasts a
NEIGH DISCOVERY message. Nodes within the transmission range of the sender
reply with NEIGH PRESENT messages. In order to avoid collisions caused by the
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concurrent transmission of NEIGH PRESENT messages, we implemented a MAC
TDMA scheme. In this TDMA scheme, nodes are assigned different transmission
slots based on their id.

Selection of Next Hop. The token-holder waits until the end of the TDMA frame
and selects the next node among the received NEIGH PRESENT messages. De-
pending on the type of walk to be performed, the selection follows the guidelines
presented in Definitions 1 and 2.

Transferring of Token. This procedure is similar to the 3-way handshake mech-
anism utilized in the TCP protocol. The token-holder sends an initial RW SYN
packet to communicate a node that it has been selected as the next step. Upon
reception of a RW SYN, the receiver sends a RW ACK packet. Finally, the sender
completes the transfer by sending a RW REL packet. In order to cope with packet
losses, RW SYNs and RW ACKs are sent every RTT (round trip time). The sender
stops transmitting RW SYNs after receiving a RW ACK, and the receiver stops trans-
mitting RW ACKs after receiving a RW REL. RW REL packets are sent only upon
reception of a RW ACK.

2.2 Metrics

In this subsection we present the metrics used to quantify the performance of
SRW and NRW. Let us denote Gn as the communication graph formed by a
network of n nodes and s as the number of steps performed by a random walk.
Based on this notation, a simple random walk performing s steps on graph Gn

is denoted by SRW (Gn, s), and a non-revisiting random walk is denoted by
NRW (Gn, s).

Once a random walk starts, each node u ∈ Gn stores locally the following
information:

– T min
u : time of first visit.

– T max
u : time of last visit.

– Vu: number of visits.

In our work, the time t is represented by the number of steps. For example, a
node u that is visited for the first time at the kth step of the walk will have an
entry T min

u = k.
Two important properties of random walks are directly related to query-

ing [16]: (i) cover time and (ii) hitting time. The cover time Cu(Gn) is the
expected number of steps for a walk starting at u to visit all the nodes in graph
Gn. The partial cover time Cu(Gn, f) is the expected number of steps for a walk
starting at u to first visit a fraction f of the graph Gn. The hitting time huw is
the expected time taken by a walk starting at u to reach w for the first time. In
this paper we evaluate the average hitting time Hu(Gn) from a sink u which is
given by:

Hu(Gn) =

∑
w∈Gn

huw

n − 1
(1)
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Fig. 2. Communication Graph of TWIST. (a) shows links with transmission probabil-
ities greater than 0.9 and (b) greater than 0.7. Three nodes were selected to inject the
random walks (green, red, blue).

Hence, for Pull-Only querying, cover time and hitting time translate to the
worst-case and average-case querying scenarios2. Another important property of
random walks is load balancing. Given the limited energy resources of WSN,
it is desirable that the walk visits the network evenly without over-stressing
some nodes by visiting them more frequently. For a starting node u, we measure
the load balancing as the difference between Bmax

u (Gn, s) and Bmin
u (Gn, s), the

expected maximum and minimum (respectively) number of visits observed by
nodes in the network after s steps. Denoting Vi(s) as the number of visits on
node i after s steps, formally:

Bmax
u (Gn, s) = E

[
max
i∈Gn

{Vi(s)}
]

(2)

Bmin
u (Gn, s) = E

[
min
i∈Gn

{Vi(s)}
]

s.t. Vi(s) > 0 (3)

3 Experimental Results: Medium-Scale Networks

3.1 Testbed and Experiment Setup

The simple and non-revisiting random walks were implemented in TinyOS 2.0.2
and evaluated on TWIST [3]. TWIST is a remote wireless sensor network test-bed
deployed on a building and it has 102 tmotes. The nodes are not mobile, hence,
the dynamics observed on the links are due to the surrounding environment.
2 Additional important measure is the maximum hitting time which is the maximum

over all huw, it will be considered in future work.
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We utilized the lowest output power available on tmotes (-25 dBm)3. Figure 2
shows the communication graph of the network for (a) links with transmission
probability above 0.9 and (b) above 0.7. The location of the nodes in the graph
is not represented by their actual physical coordinates, but rather, by virtual
coordinates obtained with Graphviz [1] based on the connectivity matrix.

We selected three nodes as the starting points for the walks (green, red and
blue nodes). These nodes were selected to capture approximately the diameter
and radius of the graph. For the remainder of the paper we denote these nodes
by g, r and b, respectively. On each one of these three nodes we injected 10
simple random walks and 10 non-revisiting random walks, that is, a total of 60
walks were performed. Each walk was assigned a different random seed and it
performed 1000 steps.

First, we present results concerning the temporal variance of the neighbor-
hoods caused by link dynamics. Then, we present results for Pull-Only and
Push-Pull querying.

3.2 Link Dynamics

Theoretical studies of random walks do not capture the impact of temporal
dynamics on the total transmission costs incurred by the network. Most of these
studies are done under ideal conditions that assume a constant neighborhood for
all nodes throughout the network lifetime. Unfortunately, node failures, channel
multi-path, dynamic environments and other factors lead to highly dynamic
neighborhoods in WSN. In order to filter out links affected by these temporal
dynamics, our implementation polls a node’s neighborhood immediately before
transferring the token (Neighborhood Discovery phase in Section 2.1)4.

In this subsection, we show that link asymmetryand neighborhood variance
are important challenges faced by random walks in WSN. We also show that the
Neighborhood Discovery phase is a simple yet robust and efficient mechanism to
cope with these dynamics.

Asymmetric Links. Link asymmetry refers to the phenomena where a node
A can communicate with node B, but node B can not communicate with node
A. Several works [28,10,9] have shown that asymmetric links are pervasive in
WSN. Link asymmetry presents a serious inconvenience for random walks be-
cause bidirectional links are required to transfer the token at each step. In order
to capture link asymmetry, at each neighborhood poll, we evaluated the dif-
ference between the number of nodes receiving the NEIGH DISC packet and the
number of NEIGH PRESENT messages received at the sender. A neighborhood poll
has 0-degree asymmetry if it reports bidirectional links with all neighbors, i.e.
the token-holder receives NEIGH PRESENT packets from all neighbors that received

3 Utilizing higher output powers leads to graphs with high densities and short diam-
eters. Graphs with these characteristics are not challenging querying scenarios.

4 A different approach would be to poll neighbors when the network start function-
ing [4] or on a periodic basis. However, the neighborhood information of these mech-
anisms could quickly become inaccurate due to the high temporal variance of links.
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Fig. 3. Impact of link dynamics on (a) Degree Asymmetry and (b) Neighborhood
Variance. Utilizing the Neighborhood Discovery phase limits the packet losses during
the transfer of the token, as shown on (c).

the NEIGH DISC packet. A neighborhood poll has x-degree asymmetry (x > 0)
if it observes x asymmetric links in its neighborhood, i.e. there are x neighbors
that received the NEIGH DISC packet but their NEIGH PRESENT replies were lost.

Figure 3 (a) depicts the results for 30000 neighborhood polls (approximately
300 polls performed by each node). We observe that only 30% of neighborhood
polls observe purely symmetric links. Had the Neighborhood Discovery phase
been performed only once (at the beginning of the process), some of the asym-
metric neighbors would have been used in futile attempts to transfer the token.

Neighborhood Variance. Filtering asymmetric links is a necessary but insuffi-
cient step to cope with link dynamics. Symmetric links also have high temporal
dynamics. Effects such as node failures and movements in the surrounding envi-
ronment lead to intermittent links. These intermittent links affect significantly
the neighborhoods observed by the nodes. We denote this intermittent phe-
nomena as Neighborhood Variance. Figure 3 (b) captures the dynamics of the
topology. This figure shows the number of bidirectional neighbors observed by
two nodes at different instants of time (samples), one node with a high average
degree and the other with low average degree. Clearly, the temporal dynamics
observed by the nodes is significant – similar dynamics are observed for all nodes
in the network. By providing an accurate representation of the available bidi-
rectional neighbors, random walks can conduct a more-informed selection of the
next step.

Number of Handshake Transmissions. The unreliable nature of WSN links
requires a 3-way handshake mechanism to transfer the token reliably at each
step. In order to minimize communication costs, it is desirable to use as few
transmissions as possible at each step. Figure 3 (c) demonstrates the value of
the Neighborhood Discovery phase. By filtering asymmetric links and intermit-
tent bidirectional links, we avoid a potentially large number of packet losses
during the transfer of the token. 90% of transfers utilize the minimum number
of transmissions required (3). Furthermore, most transfers (>99%) are achieved
with 6 transmissions or less (at most three packet losses during the handshake
process). These reliable 3-way transmissions are obtained due to the temporal
correlation in link quality [10,24]. A good link at time t is likely to still have a
good quality at time t + δ, but no accurate link quality estimation can be made
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Fig. 4. (a) Load Balance and (b) Hitting Time of NRW and SRW. NRW outperforms
SRW on both metrics.

for t + Δ (where Δ � δ). Hence, identifying reliable bidirectional links during
the Neighborhood Discovery phase guarantees to a large extent the stability of
the links during the token transfer.

3.3 Pull-Only Querying

In this subsection, we present results for our properties of interest in a Pull-Only
querying scenario.

Load Balance. Due to the limited energy resources of WSN, it is important to
distribute the energy consumption evenly across the network. Denoting Bmax

r (s),
Bmax

g (s) and Bmax
b (s) as the average of number of visits to the most visited node

during the 10 SRWs of length s started at the red, green and blue nodes, we
computed the average visits to the most visited node Bmax

srw (s) = (Bmax
r (s) +

Bmax
g (s) + Bmax

b (s))/3 at each step s = 1, . . . , 1000. The average number of
visits to the least visited node in the SRW Bmin

srw (s), and Bmax
nrw (s), Bmin

nrw(s) for
NRWs were computed in a similar way. As a measure of load balancing we
consider the difference between the most and least visited nodes. Figure 4 (a)
presents the visits to the most and least visited nodes in SRW and NRW. For
example, when the number of steps s = 400, the least visited node on SRWs
has on average 1 visit while the most visited node has on average 13 visits. For
NRWs, the min and max averages are 3 and 5 respectively. This implies that
NRWs do a significantly better job in distributing the use of energy resources.
Furthermore, as the number of steps increase, SRWs continues to degrade, while
NRWs keep the maximum and minimum number of visits within linear bounds
(even distribution of load).

Hitting Time. In Pull-Only querying, the hitting time represents the expected
time required to find an event that appears uniformly at random in any node
of the network. For each node r, b, g, we computed the average hitting time
and standard deviation for the 10 SRWs and 10 NRWs started at these nodes.
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Fig. 5. Cover time of NRW and SRW. NRWs have faster cover times and less variance.
NRWs also have linear partial cover times (up to approximately 70%).

Figure 4 (b) shows the results. The first three points represent NRWs and the
next three points represent SRWs. There are two important observations to
highlight. First, NRWs take approximately three times less steps than SRWs
to solve the average query. Second, the variance among the 10 NRWs is almost
negligible, but it is significant in SRW. Hence, NRWs are not only a faster and
more energy efficient querying mechanism, but also provide less uncertainty.

Cover time. Several WSN scenarios require the estimation of the worst-case
querying cost. When the data is of vital importance and it is not duplicated, or
the query computes a function of all nodes, it may be necessary to visit (cover)
all nodes in the network. Figure 5 presents the test-bed results for cover time.
The SRW and NRW curves represent the average and standard deviation of
30 walks each (10 walks for each r, b and g node). In Figure 5 (a) we observe
that NRW has two important advantages over SRW. First, NRW covers the
network significantly faster than SRW. For instance, when s = 100, NRW covers
90% of the network while SRW covers 50% of the network. Second, the standard
deviation of NRW is significantly lower than SRW, which leads to less uncertainty
in the result of the querying process. Figure 5 (b) is a zoom-in of Figure 5 (a) and
it shows that the partial cover time is linear for up to about 80% of the network
(the dashed line has slope 1). The linear partial cover time indicate that most
queries can be solved in linear time for NRWs.

3.4 Push-Pull Querying

The results presented in the previous subsection assumed that the events are not
published (pull-only). However, several works in WSN have shown that push-
pull querying mechanisms [7,14] can perform significantly better than pull-only
querying. In push-pull querying, both, the sink and event inject walks and the
query is solved when the two walks cross. In this subsection, we evaluate the
performance of NRW in push-pull querying scenarios. The basic idea of gaining
from a push-pull scheme is based on the following property.
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Fig. 6. (a) Probability of query resolution vs. query cost. Push-Pull has a significantly
better performance than Pull-Only. (b) Total query cost. Both SRW and NRW have
an optimal Push-Pull performance in-between the Push and Pull extremes. In general
NRW with Push-Pull provides the best performance.

Property 1. A sufficient condition for two random walks to intersect on a graph
is that each walk visits at least �n

2 	 + 1 different nodes, where n is the number
of nodes in the graph.

Moreover, based on what it is known as the birthday paradox, it can be shown
that two walks can intersect with high probability even in a sub-linear time:

Property 2 ([14]). Two random walks on a graph will cross with high proba-
bility when each walk visits a uniform sample of O(

√
n) nodes, where n is the

number of nodes in the graph5.

Considering the above properties and the observation that the partial cover time
of NRWs is linear up to a fraction well-beyond 50% of the network (Figure 5);
then, by starting NRWs at the sink and the event nodes with a maximum number
of steps smax around 0.5n, there is a high likelihood that the walks will cross
and solve the query.

Query Resolution Transition. In order to evaluate the performance of push-
pull querying, we obtain crossing-times from the walks collected in our experi-
ments. Considering that each node injected 10 NRWs, we evaluated the 10×10
possible combinations of walk-pairs.

The first scenario we considered is the following. Each walk was set to perform
a maximum of smax steps, where smax takes discrete values between 1 and 1000.
The event-node starts a push (publish) walk and runs until it takes smax steps
or stops earlier if the sink-node is found. If the sink is not found, the event-trace

5 The time to visit a uniform sample of O(
√

n) nodes depends on the mixing time [16]
of the random walk which we don’t study here.
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remains alive. At a later time, the sink-node starts a pull (query) walk6 and
stops when it hits the trace left by the event-walk, otherwise, the sink-walk runs
until completing smax steps. Let ssink and sevent be the number of steps taken
by the sink and event walks, and stotal = ssink + sevent be total number of steps
required to solve a query (the query cost).

Figure 6 (a) presents the cumulative distribution function cdf of the query
resolution cost for SRW and NRW. For completeness, we also provide the cdf
for pull-only querying7. The curves for push-pull are actually lower bounds for
the probabilities of query resolution (since we use 2smax as the query cost). In
practice, the total query cost is much smaller than 2smax (as we will show later).

In general, Push-Pull querying provides an order of magnitude better perfor-
mance than Pull-Only querying for SRW and NRW. Figure 6 (a) shows the cdf
for the diameter of the network (green and blue nodes) - approximately 8 hops8.
For example, we observe that for a query cost of 60, the SRW pull-only solves the
query with probability 0.2 and the NRW pull-only with probability 0.4. On the
other hand, for the push-pull the SRW solves the query with probability about
0.85 and the NRW with probability 1.0. In Section 4, we will observe that as
the size (diameter) of the network increases, NRWs increase their comparative
performance with respect to SRWs.

In order to complete the test-bed evaluation of push-pull querying, we consider
a second scenario. In this case the event-node issues a push walk of increasing
lengths sevent. For a given event-node walk of length s, if it didn’t reach the
sink-node, the sink-node issue a pull walk that continues to step until it crosses
the event walk. The length of the sink walk is denoted ssink. The total query
cost is stotal = sevent + ssink and we then evaluate the average total query cost
for each s. Note that when s = 0, the query is pull-only and when s is very large
the query is push-only9; for other values of s the query is push-pull.

Figure 6 (b) shows the average query cost for SRW and NRW for increasing
push walk lengths. Our two main observations are validated again here. First
the NRW solves the query in less steps than the SRW. Second the push-pull
query resolution is more efficient in terms of number of steps than the pull-only
or push-only queries. The data shows that NRW optimal query cost is about 29
steps when sevent is 17 steps, while the SRW cost is about 52 for 17 steps and
about 50 at the optimum when sevent is 40. More generally, the optimum query
cost seems to be when sevent and ssink are about the same size.

4 Simulation Results: Large-Scale Networks

The test-bed results provide interesting empirical observations, but these results
are confined to the particular size (102 motes) and characteristics of the TWIST
6 The focus of this section is on crossing-times, and hence, we assume that the query

walk is started within the lifetime of the event-trace.
7 For pull-only queries, we utilize the 10 empirical walks available at each node. Due

to these limited number of walks, the curves show the staircase form.
8 A deterministic calculation of the diameter is not possible due to link dynamics.
9 These costs are not necessarily equal since hitting times are symmetric.
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Fig. 7. Link Probability Model. (a) samples of link quality vs. distance. (b) sample of
a network with 400 nodes and output power -10 dBm.

network . In order to validate the results for larger networks we perform simula-
tions on WSN topologies that include link unreliability and link asymmetry. It is
important to remark that these simulations capture some degree-heterogeneity
due to multi-path channels and hardware variance, but they do not capture tem-
poral variance. Hence, the main motivation of the simulations is to observe if
the partial cover time of NRWs remain linear for larger networks.

4.1 Simulation Environment

We performed simulations using Scilab [2], an open-source alternative to Matlab.

Topology. Various network sizes were tested (100, 400, 900 and 1600). The
network followed a normal-random topology, where nodes are initially deployed
on a regular grid layout with an internode distance of d = 5 meters. Then, a
2-D normal r.v. is used to introduce a perturbation on the x and y coordinates
of each node. The idea of a more uniformly distributed topology, compared to a
pure random deployment, was borrowed from Glomosim [26].

Communication Model. The link quality among nodes was calculated based
on the probabilistic model presented in [28]. This model captures unreliable and
asymmetric links and it is given by:

p(d) = (1 − 1
2

exp− γ(d)
2

1
0.64 )8f (4)

p(d) is the link quality for an internode distance d. f is the number of bits trans-
mitted and γ(d) is the signal to noise ratio, which includes the output power and
channel parameters. In our simulations f=160 bits and the channel parameters
are 3.0 for both, the path loss exponent and the shadowing variance [23,28].
Figure 7 (a) shows samples of link quality for various internode distances; as we
observe, the model resembles the behavior of empirical studies [27,25,28].

Simulations Run. We utilized an output power of -10 dBm. The output power
and channel parameters presented above aim to recreate, to some extent, graph
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Fig. 8. Simulation Results (a) Cover time: partial cover time presents linear behavior.
(b) Probability of query resolution: NRW with Push-Pull provide the best performance.

characteristics of TWIST such as degree distribution. Figure 7 (b) shows a sam-
ple topology with 400 nodes (only links with link quality > 0.7 are shown). The
sink is assumed to be the node at the bottom-left corner of the graph. For Pull-
Only querying, we performed 100 SRWs and 100 NRWs on each network size n.
For the Push-Pull scenario, the event node was located at the top-right corner
of the graph and we also run 100 SRWs and 100 NRWs starting at this node.

4.2 Simulation Results

Pull-Only. Due to space constraints, we focus on the results for cover time.
The hitting time shows the same trend as the empirical results: NRW performs
significantly better than SRW and the difference in performance increases in
favor of NRW as the network size increases. Figure 8 (a) shows the cover time
normalized to the size of the network n. In the interest of clarity, we plot results
only for n=100 and n=1600 (n=400 and n=900 are in-between these curves).

The most important observation is that the partial cover times of the empir-
ical and simulation results have the same trend: an initial long linear behavior
Furthermore, once normalized, there is not a significant difference among partial
cover times of NRWs for networks with different sizes. These results indicate
that for larger networks NRW are also expected to solve most Pull-Only queries
in linear time. For SRW, the partial cover times remain significantly longer than
NRW, and the cover time degrades as the size of the network increases.

Push-Pull. In order to evaluate the effectiveness of the push-pull mechanism,
the sink and event nodes were located at opposite extremes of the topology
(diameter of graph). First, the node at the top right corner (event) started the
walk for s steps, and then, the node at the bottom left corner (sink) started the
walk. For completeness, the figure also shows the pull-only performance of NRWs.
Figure 8 (b) depicts the cdf of query resolution for n = 100 and n = 1600. We
observe that the Push-Pull with NRWs provides the best performance, followed
by Push-Pull with SRWs and finally Pull-Only with NRWs. The results for
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Pull-Only with SRWs is not shown but the probability of solving the query
after s = 2n was less than 0.4 for all networks’ size. Also, the difference in
performance between Push-Pull NRWs and Push-Pull SRWs increase for larger
networks, however this improvement is not clearly observed in the figure.

5 Related Work

The research work on querying can be classified in two main groups: location-less
and location-based. In location-less deployments, nodes have information only
about their neighbors presence. The most notable querying paradigms are: flood-
ing, expanding ring searches (controlled floods) and random walks. In location-
based deployments, nodes also have location information about their neighbors.
This information is very useful for geographic routing and geographic hash ta-
bles. In this work we focus on random walks on location-less scenarios.

Random walks on graphs have been studied mathematically, and there is a
growing body of theoretical literature on the subject [8,16]. In the context of
location-less wireless sensor networks, different variants of random-walk-based
protocols have been proposed and analyzed. In one of the earlier works, Servetto
and Barrenechea [20] proposed and analyzed the use of constrained random walks
on a grid to improve the load-balanced routing between two known nodes. In [5],
the authors argue that even simple random walks can be used for efficient and
robust querying because their partial cover times show good scaling behavior.
The ACQUIRE protocol [19] combines random walks with controlled floods and
show that this hybrid mechanism can outperform flooding and even expanding-
ring-based approaches in the presence of replicated data.

The evaluation of push-pull mechanisms was inspired by important related
work. Rumor routing [7] advocates the use of multiple random walks from the
events as well as the sinks, so that their intersection points can be used to
provide a rendezvous point. On the same line of work, Shakkottai [21] analyzed
different variants of random-walk-based query mechanisms and concludes that
source and sink-driven sticky-searches (similar to rumor routing) provide a rapid
increase of query success probability with the number of steps. Friedman et. al.
[14] offered and evaluated via simulation probabilistic quorum systems that use
different push-pull mechanism including simple and self-avoiding random walks.
Contrary to the studies mentioned above, we consider the number of visits as an
important parameter to guide the random walk.

Our work on NRWs is mainly motivated by [6,22]. These studies show in
different ways that simple random walks lead to energy wastage due to their blind
(re)visiting mechanism. In [6], instead of selecting only one node at random,
the authors propose to select two (or more) nodes at random and select the
one with the minimum number of visits as the next hop. In [22], the authors
use homophyly and degree information to navigate the network, and the walk
“ignores visited neighbors if there is at least one unvisited neighbor”.

Based upon notable contributions on random-walk-based querying, we pro-
pose and analyze Non-Revisiting Random Walks with Push-Pull querying; a
simple and efficient querying paradigm for practical WSN deployments.
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6 Conclusions

In this work we evaluated the performance of Non-Revisiting Random Walks
(NRW). Contrary to the blind selection performed by simple random walks,
NRWs select the neighbor with the minimum number of visits. This mechanism
increases the likelihood of encountering unvisited nodes, and as a consequence,
provides a faster coverage.

We evaluated NRWs on (i) a test-bed consisting of 102 motes and (ii) with
simulations on topologies consisting of unreliable and asymmetric links. Our
results provide two important contributions. First, polling the neighborhood
at each step of the walk is an efficient mechanism to cope with temporal link
dynamics. This polling mechanism permits an accurate representation of the
neighborhood, which allows a robust token-transfer and a well-informed selection
of the next steps. Second, NRWs together with a simple push-pull mechanism
are an efficient querying mechanism. NRWs maintain the elegance and simplicity
of simple random walks, while at the same time can provide querying costs that
are liner or sub-linear (depending on the size of the network).

In this work we considered only the cost of finding the data of interest (query),
but not the cost required to transfer the information back to the sink. In future
work we will evaluate the total cost (query + reply). Also, we plan to investigate
the impact of non-TDMA MAC protocols on SRWs and NRWs.
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Abstract. Multi-hop routing in wireless sensor networks (WSNs) offers little
protection against deception through replaying routing information. This defect
can be taken advantage of by an adversary to misdirect significant network traf-
fic, resulting in disastrous consequences. It cannot be solved solely by encryp-
tion or authentication techniques. To secure multi-hop routing in WSNs against
intruders exploiting the replay of routing information, we propose TARF, a trust-
aware routing framework for WSNs. Not only does TARF significantly reduce
negative impacts from these attackers, it is also energy-efficient with acceptable
overhead. It incorporates the trustworthiness of nodes into routing decisions and
allows a node to circumvent an adversary misdirecting considerable traffic with
a forged identity attained through replaying. Both our empirical and simulated
experimental results indicate that TARF satisfactorily performs routing and is re-
silient against attacks by exploiting the replay of routing information.

1 Introduction

Wireless sensor networks (WSNs) are ideal candidates for applications such as military
surveillance and forest fire monitoring to report detected events of interest. With a nar-
row radio communication range, a sensor node wirelessly sends messages to a base sta-
tion via a multi-hop path. However, the multi-hop routing of WSNs often becomes the
target of malicious attacks. In such an attack, the attacker may tamper nodes physically,
create traffic collision with seemingly valid transmission, drop or misdirect messages
in routes, or jam the communication channel by creating radio interference [18]. This
paper focuses on the kind of attack in which an adversary misdirects packets by identity
deception through replaying routing information. With such identity deception, the ad-
versary is capable of launching harmful and hard-to-detect attacks to misdirect traffic,
such as selective forwarding as well as wormhole and sinkhole attacks [8].

As an effective and easy-to-implement type of attack, a malicious node simply re-
plays all the routing information sent from another valid node to forge the latter node’s
identity, thus misdirecting the network traffic. Those packets, including their original
headers, are replayed without any modification. Even if this malicious node cannot
directly overhear the valid node’s wireless transmission, it can collude with other mali-
cious nodes to receive those routing packets and replay them somewhere far away from
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the original valid node, which is known as a wormhole attack. Since a node in a WSN
usually relies solely on the packets received to know about the sender’s identity, replay-
ing routing packets allows the malicious node to forge the identity of this valid node.
After “stealing” that valid identity, this malicious node is able to misdirect the network
traffic. In a selective forwarding attack, it may drop packets received, forward packets to
another node not supposed to be in the routing path, or even form a transmission loop
through which packets are passed among a few malicious nodes infinitely. It is often
difficult to know whether a node forwards received packets correctly even with over-
hearing techniques [8]. Sinkhole attacks are another kind of attacks that can be launched
after stealing a valid identity. In a sinkhole attack, a malicious node may claim itself to
be a base station through replaying all the packets from a real base station. Such a fake
base station could lure more than half the traffic, creating a “black hole”.

Unfortunately, most existing routing protocols for WSNs either focus on energy ef-
ficiency [1] assuming that each node is honest with its identity, or they try to exclude
unauthorized participation by encrypting data and authenticating packets. Examples of
these encryption and authentication schemes for WSNs include TinySec [7], Spins [14],
TinyPK [16], and TinyECC [10]. Admittedly, it is important to consider efficient energy
usage for battery-powered sensor nodes and the robustness of routing under topological
changes and common faults in a wild environment. However, it is also significant to
incorporate security as one of the most important goals; meanwhile, even with perfect
encryption and authentication, by replaying routing information, a malicious node can
still participate in the network using another valid node’s identity.

In contrast, trust management [2] has been introduced into peer-to-peer networks and
general ad hoc networks to support decision-making [6,15], improve security [3,11],
and promote node collaboration [5] and resource sharing [9]. Basically, trust manage-
ment assigns each node a trust value according to its past performance. These studies
target general ad hoc networks and peer-to-peer networks but not resource-constrained
WSNs. Additionally, they do not address attacks arising from the replay of routing infor-
mation. With a similar idea, S. Ganeriwal, L. Balzano, and M. Srivastava also proposed
a reputation-based approach to detect uncooperative nodes in WSNs [4]; however, they
do not address the attacks by exploiting the replay of routing information. The authors
also studied the trustworthiness of the data collected by WSNs [19].

At this point, to fight against the “identity theft” threat arising from packet replaying,
we introduce trust management into WSNs, proposing TARF - a trust-aware routing
framework for wireless sensor networks. TARF identifies those malicious nodes that
misuse “stolen” identities to misdirect packets by their low trustworthiness, thus helping
nodes circumvent those attackers in their routing paths. We present the assumptions
and goals of this work in Section 2, the detailed design of TARF in Section 3, our
implementation of TARF in Section 4 and simulation results in Section 5. Finally, we
conclude this work in Section 6.

2 Assumptions and Goals

We target secure routing for data collection tasks, which are one of the most fundamen-
tal functions of WSNs. In a data collection task, sensor nodes send sampled data to a
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Fig. 1. Multi-hop routing: (a) normal scenarios; (b) a fake base station attracts traffic

remote base station with the aid of intermediate nodes, as in Figure 1(a). It is possible
for an adversary to replay all the packets from a base station and thus to forge the iden-
tity of the base station. Such deception could result in the following situation: a large
amount of packets are attracted to this fake base station and are never delivered to the
real base station (see Figure 1(b)).

Though there could be more than one base station, our routing approach is not af-
fected by the number of base stations; to simplify our discussion, we will assume that
there is only one base station. Further, we assume no data aggregation is involved.
Nonetheless, our approach can still be applied to static-cluster-based WSNs, where data
are aggregated by static clusters before being relayed. In a static-cluster-based WSN,
cluster headers themselves form a sub-network; after certain data reach a cluster header,
the aggregated data will be routed to a base station only through such a sub-network
consisting of cluster headers. Our framework can then be applied to this sub-network to
achieve secure routing for static-cluster-based WSNs.

Additionally, we make certain assumptions regarding the format of packets in TARF.
We assume all data packets and routing packets, including their packet headers, are
authenticated; a packet can be forwarded only after its authenticity is verified. Whether
data encryption is implemented can be decided by the application. Every data packet is
assumed to have at least the following fields: the sender id, the sender sequence number,
the next-hop node id (the receiver in this one-hop transmission), the source id (the node
that initiates the data), and the source’s sequence number. We insist that the source
node’s information should be included for the following reasons. First, that allows the
base station to identify which data packets are initiated but undelivered; Second, a WSN
cannot afford the overhead to transmit all the one-hop information to the base station.
Regarding routing packets, they should have at least the following fields: the source id,
the source’s sequence number, and the next-hop id. In addition, we assume that after
receiving a data packet, a node will send out an acknowledgement packet.

Next, we present the goals of TARF.

High Throughput: Throughput is defined as the ratio of the number of data packets
delivered to the base station to the number of all sampled data packets. Note that single-
hop re-transmission may happen, and that identical packets repeatedly transmitted are
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considered as one packet as far as throughput is concerned. Instead of any specific data,
users usually care much more about throughput. Here we regard high throughput as one
of our most important goals.

Energy Efficiency: Efficient energy usage is significant for battery-powered sensor
nodes, and data transmission accounts for a major portion of energy consumption.
We evaluate energy efficiency by the average energy cost to successfully deliver a
unit-sized data packet from a source node to the base station. Note that link-level re-
transmission should be given enough attention when considering energy cost since each
re-transmission causes a noticeable increase in energy consumption. If every node in a
WSN consumes approximately the same energy to transmit a unit-sized data packet,
we can use another metric hop-per-delivery to evaluate energy efficiency. Under that
assumption, the energy consumption depends on the number of hops, i.e. the number
of one-hop transmissions occurring. To evaluate how efficiently energy is used, we can
measure the average hops per delivery, i.e., the number of all hops divided by the num-
ber of all delivered data packets, abbreviated as hop-per-delivery.

Excellent Scalability & Adaptability: TARF should work well with WSNs of large
magnitude under highly dynamic contexts.

Here we do not include other aspects such as latency, load balance, or fairness. Low
latency, balanced network load, and good fairness requirements can be enforced in spe-
cific routing protocols built on top of TARF.

3 Design of TARF

TARF secures the multi-hop routing in WSNs against intruders exploiting the replay
of routing information by evaluating the trustworthiness of neighboring nodes. It iden-
tifies such intruders that misdirect noticeable network traffic by their low trustworthi-
ness and routes data through paths circumventing those intruders to achieve satisfactory
throughput. TARF is also energy-efficient, highly scalable, and well adaptable. Before
introducing the detailed design, we first introduce several necessary notions here.

Neighbor: For a node N , a neighbor (neighboring node) of N is a node that is reachable
from N with one-hop wireless transmission.

Trust level: For a node N , the trust level of a neighbor is a decimal number in [0, 1],
representing N ’s opinion of that neighbor’s level of trustworthiness. Specifically, the
trust level of the neighbor is N ’s estimation of the probability that this neighbor cor-
rectly delivers data received to the base station. That trust level is denoted as T in this
paper.

Energy cost: For a node N , the energy cost of a neighbor is the average energy cost
to successfully deliver a unit-sized data packet with this neighbor as its next-hop node,
from N to the base station. That energy cost is denoted as E in this paper.

3.1 Overview

TARF integrates trustworthiness and energy efficiency in making routing decisions. For
a node N to route a data packet to the base station, N only needs to decide to which
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neighboring node it should forward the data packet. That chosen neighbor is N ’s next-
hop node. Once the data packet is forwarded to that next-hop node, the remaining task
to deliver the data to the base station is fully delegated to it, and N is totally unaware
of what routing decision its next-hop node makes. To choose its next-hop node, N
considers both the trustworthiness and the energy efficiency of its neighbors. For that,
N maintains a neighborhood table with trust level values and energy cost values for
certain known neighbors. It is sometimes necessary to delete some neighbors’ entries
to keep the table size acceptable. Maintaining a neighborhood table with acceptable
overhead proved possible in [17]; the same technique can be used by TARF.

In TARF, in addition to data packet transmission, there are two types of routing in-
formation that need to be exchanged: broadcast messages from the base station about
undelivered data packets and energy cost report messages from each node. Neither mes-
sage needs acknowledgement. A broadcast message from the base station is broadcast
to the whole network; each node receiving a fresh broadcast message from the base
station will broadcast it to all its neighbors once. The freshness of a broadcast message
is ensured by its field of source sequence number. The other type of exchanged routing
information is the energy cost report message from each node, which is broadcast to
only its neighbors once. Additionally, any node receiving such an energy cost report
message will not forward it.

For each node N in a WSN, to maintain such a neighborhood table with trust level
values and energy cost values for certain known neighbors, two components, Energy-
Watcher and TrustManager, run on the node (Figure 2). EnergyWatcher is responsible
for recording the energy cost for each known neighbor, based on N ’s observation of
one-hop transmission to reach its neighbors and the energy cost report from those neigh-
bors. TrustManager is responsible for tracking trust level values of neighbors based on
network loop discovery and broadcast messages from the base station about undelivered
data packets. Once N is able to decide its next-hop neighbor according to its neighbor-
hood table, it sends out its energy report message: it broadcasts to all its neighbors its
energy cost to deliver a packet from the node to the base station. The energy cost is
computed as in Section 3.3 by EnergyWatcher. Such an energy cost report also serves
as the input of its receivers’ EnergyWatcher.

Neighborhood

Table

TrustManager

Base Station 

Broadcast

Energy Cost 

Report

Network Loop 

Discovery

EnergyWatcher

One-hop

Delivery

Neighbor 

Energy Cost

Neighbor Trust 

Level

Next-hop

Selection

Energy Cost 

Report

Fig. 2. Each node selects a next-hop node based on its neighborhood table, and broadcast its
energy cost within its neighborhood. To maintain this neighborhood table, EnergyWatcher and
TrustManager on the node keep track of related events (on the left) to record the energy cost and
the trust level values of its neighbors.
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3.2 Routing Procedure

TARF, as with many other routing protocols, runs as a periodic service. The length of
that period determines how frequently routing information is exchanged and updated.
At the beginning of each period, the base station broadcasts the information about un-
delivered data packets during the past few periods to the whole network once, which
triggers the exchange of routing information in this new period. Whenever a node re-
ceives such a broadcast message from the base station, it knows that the most recent
period has ended and a new period has just started. In this way, no time synchroniza-
tion is required for a node to keep track of the beginning or ending of a period. During
each period, the EnergyWatcher on a node monitors energy consumption of one-hop
transmission to its neighbors and processes energy cost reports from those neighbors
to maintain energy cost entries in its neighborhood table; its TrustManager also keeps
track of network loops and processes broadcast messages from the base station about
undelivered data to maintain trust level entries in its neighborhood table.

To maintain the stability of its routing path, a node may retain the same next-hop
node until the next fresh broadcast message from the base station occurs. Meanwhile,
to reduce traffic, its energy cost report could be configured to not occur again until the
next fresh broadcast from the base station. If a node does not change its next-hop node
selection until the next broadcast from the base station, that guarantees all paths to be
loop-free, as can be deducted from the procedure of next-hop node selection. However,
as noted in our experiments, that would lead to slow improvement in routing paths.
Therefore, we allow a node to change its next-hop selection in a period only when its
current next-hop is not responding correctly.

Next, we introduce the structure and exchange of routing information as well as how
nodes make routing decisions in TARF.

Structure and Exchange of Routing Information: A broadcast message from the
base station fits into a fixed number of packets; in our implementation, it fits into one
byte. Such a message consists of a few pairs of <the node id of a source node, an un-
delivered sequence interval [a, b] with a significant length>. To reduce overhead, only
a few such pairs are selected to be broadcast. The undelivered sequence interval [a, b]
is explained as follows: the base station searches the source sequence numbers received
in the past few periods, identifies which source sequence numbers for the source node
with this id are missing, and chooses certain significant interval [a, b] of missing source
sequence numbers as an undelivered sequence interval. For example, the base station
may have all the source sequence numbers for the source node 2 as {109, 110, 111,
150,151} in the past two periods. Then [112, 149] is an undelivered sequence interval.
Since the base station is usually connected to a powerful platform such as a desktop, a
program can be developed on that powerful platform to assist in recording all the source
sequence numbers and finding undelivered sequence intervals. The reason for searching
over more than one period is to identify as many undelivered data packets as possible.
To illustrate that, consider this example: suppose the source sequence numbers of deliv-
ered data packets from node 2 are {1, 2, 3} for the 1st period and {200, 201, 203} for
the 2nd period; then simply searching over a single period would not discover the un-
delivered packets unless every node is required to send a fixed number of data packets
over each period.
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Accordingly, each node in the network stores a table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> in the past few
periods. The data packets with the source node and the sequence numbers falling in this
forwarded sequence interval [a, b] have already been forwarded by this node. When the
node receives a broadcast message with undelivered sequence intervals, its TrustMan-
ager will be able to identify which data packets forwarded by this node are not delivered
to the base station. Considering the overhead to store such a table, old entries will be
deleted once the table is full.

Once a fresh broadcast message from the base station is received, a node immedi-
ately invalidates all the existing energy cost entries: it is ready to receive a new energy
report from its neighbors and choose its new next-hop node afterwards. Also, it is go-
ing to select a node either after a timeout is reached or after it has received an energy
cost report from some highly trusted candidates with acceptable energy cost. A node
immediately broadcasts its energy cost to its neighbors only after it has selected a new
next-hop node. That energy cost is computed by its EnergyWatcher (see Section 3.3).
A natural question is which node starts reporting its energy cost first. For that, note that
when the base station is sending a broadcast message, a side effect is that its neighbors
receiving that message will also regard this as an energy report: the base station needs
0 amount of energy to reach itself. As long as the original base station is faithful, it will
be viewed as a trustworthy candidate by TrustManager on the neighbors of the base
station. Therefore, those neighbors will be the first nodes to decide their next-hop node,
which is the base station; they will start reporting their energy cost once that decision is
made.

Route Selection: Now, we introduce how TARF decides routes in a WSN. Each node
N relies on its neighborhood table to select an optimal route, considering both energy
consumption and reliability. TARF makes good efforts in excluding those nodes that
misdirect traffic by exploiting the replay of routing information.

For a node N to select a route for delivering data to the base station, N will select
an optimal next-hop node from its neighbors based on trust level and energy cost and
forward the data to the chosen next-hop node immediately. The neighbors with trust
levels below a certain threshold will be excluded from being considered as candidates.
Among the remaining known neighbors, N will select as its next-hop node a neighbor
b with the minimal value of ENb

TNb
, with ENb and TNb being b’s energy cost and trust

level value in the neighborhood table respectively (see Section 3.3, 3.4). Basically,
ENb reflects the energy cost of delivering a packet to the base station from N assuming
that all the nodes in the route are honest; 1

TNb
approximately reflects the number of the

needed attempts to send a packet from N to the base station via multiple hops before
such an attempt succeeds, considering the trust level of b. Thus, comparing the values
of ENb

TNb
among N ’s neighbors identifies a candidate with a minimal combined cost of

energy and trustworthiness.
The remaining delivery task is fully delegated to that selected next-hop neighbor,

and N is totally unaware of what routing decision its chosen neighbor is going to make.
Next, the chosen node will repeat what N has done, i.e., delegating the left routing
task to its own chosen next-hop neighbor. In this way, instead of finding out a complete
path to the base station, each node is only responsible for choosing its next-hop node,
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Base Station

Sensor node

Fig. 3. Routing illustration

thus saving considerable cost in computation and routing information exchange. As an
example shown in Figure 3, node a is trying to forward a packet to the base station. After
comparing both the trust level and energy cost among its neighbors 1, 2 and b, a decides
that b is the most promising next-hop node for data delivery and forwards the data packet
to b immediately. b is free to make its own decision for routing the packet to the base
station. b decides that its neighbor c is a better candidate than its neighbor 3. After that,
the task is delegated to c, and c continues to delegate the job to d. Finally, d delivers the
packet to the base station. Observe that in an ideal misbehavior-free environment, all
nodes are absolutely faithful, and each node will choose a neighbor through which the
routing path is optimized in terms of energy; thus, an energy-driven route is achieved.
If we further assume that the one-hop transmission power of a unit-sized packet is the
same for each node, the selected route will be the classical shortest path.

3.3 EnergyWatcher

Here we describe how a node N ’s EnergyWatcher computes the energy cost ENb for
its neighbor b in N ’s neighborhood table and how N decides its own energy cost EN .
Before going further, we will clarify some notations. ENb mentioned is the average en-
ergy cost of successfully delivering a unit-sized data packet from N to the base station,
with b as N ’s next-hop node being responsible for the remaining route. Here, one-hop
re-transmission may occur until the acknowledgement is received or the number of re-
transmissions reaches a certain threshold. The cost caused by one-hop re-transmissions
should be included when computing ENb. Suppose N decides that A should be its
next-hop node after comparing energy cost and trust level. Then N ’s energy cost is
EN = ENA. Denote EN→b as the average energy cost of successfully delivering a
data packet from N to its neighbor b with one hop. Note that the re-transmission cost
needs to be considered. With the above notations, it is straightforward to establish the
following relation:

ENb = EN→b + Eb

Since each known neighbor b of N is supposed to broadcast its own energy cost Eb to
N , to compute ENb, N still needs to know the value EN→b, i.e., the average energy cost
of successfully delivering a data packet from N to its neighbor b with one hop. For that,
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assuming that the endings (being acknowledged or not) of one-hop transmissions from
N to b are independent with the same probability psucc of being acknowledged, we first
compute the average number of one-hop sendings needed before the acknowledgement
is received as follows:

∞∑
i=1

i · psucc · (1 − psucc)i−1 =
1

psucc

Denote Eunit as the energy cost for node N to send a unit-sized data packet once
regardless of whether it is received or not. Then we have

ENb =
Eunit

psucc
+ Eb

The remaining job for computing ENb is to get the probability psucc that a one-hop
transmission is acknowledged. Considering the variable wireless connection among
wireless sensor nodes, we do not use the simplistic averaging method to compute psucc.
Instead, after each transmission from N to b, N ’s EnergyWatcher will update psucc

based on whether that transmission is acknowledged or not with a weighted averaging
technique. We use a binary variable Ack to record the result of current transmission: 1 if
an acknowledgement is received; otherwise, 0. Given Ack and the last probability value
of an acknowledged transmission pold succ, TARF uses a weighted average of Ack and
pold succ as the new probability value pnew succ:

pnew succ = (1 − w) × pold succ + w × Ack, w ∈ (0, 1),

where w can be chosen by specific protocols.

3.4 TrustManager

A node N ’s TrustManager decides the trust level of each neighbor based on the fol-
lowing events: discovery of network loops, and broadcast from the base station about
undelivered data packets. For each neighbor b of N , TNb denotes the trust level of b in
N ’s neighborhood table. At the beginning, each neighbor is given a neutral trust level
0.5. After any of those events occurs, the relevant neighbors’ trust levels are updated.

To detect loops, the TrustManager on N reuses the table of <the node id of a source
node, a forwarded sequence interval [a, b] with a significant length> (see Section 3.2)
in the past few periods. If N finds that a received data packet is already in that record
table, not only will the packet be discarded, but the TrustManager on N also degrades
its next-hop node’s trust level. If that next-hop node is b, then Told Nb is the latest trust
level value of b. We use a binary variable Loop to record the result of loop discovery: 1
if a loop is received; 0 otherwise. After the degradation, as in the update of energy cost,
the new trust level of b is

Tnew Nb = (1 − w) × Told Nb + w × Loop, w ∈ (0, 1),

where w can be chosen by specific applications.
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Once a loop has been detected by N for a few times so that the trust level of the
next-hop node is too low, N will change its next-hop selection; thus, that loop is broken.
Though N can not tell which node should be held responsible for the occurrence of a
loop, degrading its next-hop node’s trust level gradually leads to the breaking of the
loop.

On the other hand, to detect the traffic misdirection by nodes exploiting the replay of
routing information, TrustManager on N compares N’s stored table of <node id of a
source node, forwarded sequence interval [a, b] with a significant length> recorded in
the past few periods with the broadcast messages from the base station about undeliv-
ered data. It computes the ratio of the number of successfully delivered packets which
are forwarded by this node to the number of those forwarded data packets, denoted as
DeliveryRatio. Then N ’s TrustManager updates its next-hop node b’s trust level as
follows:

Tnew Nb = (1 − w) × Told Nb + w × DeliveryRatio, w ∈ (0, 1),

Now, suppose an adversary M forges the identity of the base station by replaying all
the routing packets from the base station. At first, it is able to deceive its neighbors into
believing that M is a base station; as a result, M may attract a large amount of data
packets, which never reach the base station. However, after the base station broadcasts
the information about those undelivered packets, M ’s neighbors will downgrade M ’s
trust level values in their neighborhood table. Note that M is only capable of replaying
but is not capable of manipulating or generating authenticated broadcast messages, and
that M usually cannot prevent other nodes from receiving a broadcast message from
the base station. As time elapses, M ’s neighbors will start realizing that M is not trust-
worthy and will look for other next-hop candidates that are more reliable. Similarly, if
M forges the identity of another valid appealing node, M ’s neighbors will gradually
realize that M is not reliable.

4 Implementation and Empirical Evaluation

We have implemented a protocol based on TARF in TinyOS 1.x, which currently runs
on mica2 motes. Both the authentication and encryption of packets reuse the implemen-
tation of TinySec [7]: TinySec uses a CBC mode encryption scheme with Skipjack as
the block cipher and an authentication scheme based on a four-byte message authentica-
tion code (MAC) computed by the CBC-MAC construction procedure. The MAC field
is computed over the whole message including all the headers; it also serves as the CRC
field of the packet. Data encryption can be disabled. In a routing packet, the next-hop
id is replaced by a neighborhood broadcast address or a network broadcast address to
indicate that it is a neighborhood or whole network broadcast. The acknowledgement of
data packets is enabled. Considering the fact that floating-point computation is not sup-
ported by sensor hardware, the implementation uses an integer in [0, 100] to represent
trust level; the update of energy cost and trust level values is also implemented using
integer arithmetics.

This implemented TARF protocol requires moderate program storage and memory
usage. For comparison, we list the ROM size and RAM size requirement for this pro-
tocol and two other protocols on mica nodes in Table 1. The two other protocols are
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Table 1. Size of protocol components implemented

Protocol Authentication&Encryption ROM (bytes) RAM (bytes)
TARF TinySec 20912 1464
Route TinySec 20696 1048

MintRoute TinySec 22554 1990

named Route and MintRoute according to their directory name under TinyOS 1.x. Both
Route and MintRoute were the “standard” routing protocols in TinyOS 1.x and make
route decisions based on both link quality estimation and number of hops. Neither of
these original protocols provides encryption or authentication; to compare on a fair ba-
sis, we also enabled the encryption and authentication mode of TinySec for Route and
MintRoute. TinySec occupies 728 bytes of RAM and 7146 bytes of ROM [7]. Simi-
larly to Route and MintRoute, this TARF protocol adopts energy-efficient routes in a
misbehavior-free environment. However, with a comparable size, it also supports the
circumvention of adversaries exploiting the replay of routing information, which is not
provided by Route or MintRoute. Further, our experience shows that it is easy to incor-
porate this TARF protocol into most applications. As an example, we re-implemented
the Surge application in the TinyOS 1.x directory with this TARF protocol. The program
has a size comparable to that of the Surge implemented using Route or MintRoute.

To evaluate how effective TARF is against deception through replaying routing in-
formation in the real world, we uploaded programs onto Motelab [13] at Harvard Uni-
versity. As a public test bed of wireless sensor networks, at the time of our experiments,
184 TMote Sky sensor motes were deployed at 3 floors. These nodes are distributed
among many rooms of the building, with an approximate indoor transmission of 100
meters. Approximately 14 nodes were removed, and nearly 50 nodes were disabled.
Motelab switched its serial forwarder protocol from TinyOS 1.x to TinyOS 2.x and
was equipped with TMote only Tmote Sky motes. Due to the unavailability of Tiny-
Sec on TMote SKy nodes, we did not include authentication or encryption from Tiny-
Sec in the uploaded programs. Further, considering the availability of routing protocols
on TinyOS 2.x, we compared our TinyOS 2.x version of TARF with the collection
tree routing protocol (CTP), which mainly employs link quality estimation in choos-
ing next-hop nodes. Both protocols were integrated into a data collection application -
MultihopOscilloscope, which is named after its directory name in TinyOS 2.x. We con-
figured the MultihopOscilloscope to send out 5 samples in a single data packet every 5
seconds. The routing update occurred every 50 seconds. Because of the limited quota
assigned by Motelab, our programs lasted maximally 30 minutes. Among all the nodes,
one was chosen to be the base station. Another node was programmed to be a fake base
station: it broadcast as if it were a base station but never delivered the received data to
the real base station. The many experiments we executed indicate that our TARF pro-
tocol achieves at least 30% higher throughput than CPT when there is an “attractive”
fake base station. Some fake base stations are not able to misdirect much traffic because
they have a poor wireless connection with their neighbors and do not look “appealing”.
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In one experiment (Figure 4(a)), all nodes on the three floors were supposed to de-
liver data to node 9 (the base station); node 15 (fake base station) replayed all the rout-
ing packets from the base station. By counting the data packets received at the real base
station, TARF had approximately a 60% higher throughput than CTP . In another ex-
periment (Figure 4(b)), only the nodes on the first floor (56 nodes totally) sent data to
node 9 (the base station), and node 27 (fake base station) replayed the routing packets
from the base station. As a result, TARF had approximately a 40% higher throughput
than CTP .
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Fig. 4. With a fake base at Motelab, (a) TARF had approximately a 60% higher throughput than
CTP among 3 floors; (b) TARF had approximately a 40% higher throughput than CTP at a
single floor.

We also recorded the number of redundant data packets received by the base station.
It turns out that both TARF and CTP had redundancy ratios at no more than 2%. Though
both CTP and TARF suppress redundant packets, a packet might be received more than
once by the base station because an acknowledgment is lost when the route changes.

5 Simulation and Evaluation

To further evaluate the efficacy of TARF in terms of energy efficiency and through-
put, we have developed a reconfigurable emulator of wireless sensor networks on a
two-dimensional plane with Matlab [12]. To effectively simulate a WSN, this emula-
tor uses the object-oriented technique to construct two classes of objects: WSNMAN-
AGER and NODE, to represent the whole network and a sensor node. The interaction
between nodes are emulated through event passing. The routing function for a node can
be rewritten to adopt different routing protocols; different maps can also be ported into
this simulator. To simulate the unreliable wireless transmission, the outcome of one-hop
packet transmission is decided by the following model: suppose a node A is wirelessly
transmitting a packet to node B, the probability for B to successfully receive such a
packet is assumed to be

1 − (min(dist, MAX DIST )/MAX DIST )8,
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where dist is the distance from A to B, and MAX DIST is the maximal transmission
range. In our experiment, MAX DIST is defined as 100m, and 35 nodes are randomly
distributed within a 300*300 rectangular area. All the nodes have the same power level
and the same maximal transmission range of 100m. A base station is placed at the origin
[0, 0]. We simulate the sensor network in 60 consecutive periods; each node samples
data 6 times in each period.

The performance of TARF is compared to that proposed in [17] by Alec Woo, Ter-
ence Tong and David Culler. In that project, link connectivity is used as a cost metric for
routing, which is found to be more cost-effective than the well-known shortest path pro-
tocol. We will simply refer to the latter protocol as link-connectivity. In our simulation
experiments, we compare TARF with a simulated version of link-connectivity. As we
will see from the experiment results, with the existence of misbehaviors, the throughput
in TARF is often much higher than that in link-connectivity; the hop-per-delivery in
TARF is generally at least comparable to that in the link connectivity protocol.

We compare TARF and link-connectivity under the following scenarios: (1) no nodes
misbehaves intentionally; (2) certain nodes forge the identity of the based station by
replaying broadcast messages; (3) a set of nodes colludes to form a forwarding loop;
and (4) a set of nodes drops received data packets.

Under scenario (1) without misbehaving nodes, the two protocols have comparable
performance in terms of throughput and hop-per-delivery. Figure 5 shows such an ex-
ample. Under a misbehavior-free environment, according to the TARF protocol, a node
may still perceive its neighbors as having different trust level, due to the fact that the
node can not well distinguish between malicious behavior and failed delivery due to
environmental effects. However, such mis-perception of trust does not compromise the
performance of TARF.

Under scenario (2), certain malicious nodes become fake base stations through re-
playing messages originated from the base station. With the link connectivity proto-
col, a significant portion of traffic is attracted to the fake base. However, with TARF,
most packets are able to select a route circumventing those fake bases. When there
are forged base stations, TARF tends to show much better throughput than the link
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Fig. 5. Under misbehavior-free environment, TARF and link-connectivity have comparable per-
formance in (a) throughput, and (b) hop-per-delivery.
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Fig. 6. With a fake base, (a) TARF has 5 times the throughput in link-connectivity; (b) TARF has
less than 50% hop-per-delivery in link-connectivity.

connectivity protocol, and the hop-per-delivery in TARF is much less than that in the
link-connectivity protocol. In one of our experiments with a fake base station, as indi-
cated in Figure 6, TARF reaches roughly 5 times the throughput in the link-connectivity
protocol, while the hop-per-delivery in TARF is less than 50% that in link-connectivity.

Under scenario (3), a loop of colluding nodes intercepts many packets. The through-
put in TARF is generally higher than that in link-connectivity; the hop-per-delivery in
the two protocols gradually become comparable. In one experiment, as shown in Fig-
ure 7, 5 out of 35 nodes are selected to form a network loop. Any data forwarded to
one of these 6 nodes would not be able to arrive at the base station. As in Figure 7, the
throughput in TARF is around 70% higher than that in the link connectivity protocol;
their hop-per-delivery gradually becomes comparable.

Under scenario (4), a set of nodes drops any received data packets. In our experiment,
6 nodes drop data forwarded to them. As indicated by Figure 8, the throughput in TARF
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Fig. 7. With a loop consisting of 14% nodes, (a) TARF has a higher throughput than link-
connectivity; (b) gradually, TARF and link-connectivity have comparable hop-per-delivery.



TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks 79

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time

T
h
ro

u
g
h
p
u
t

TARF

Link-connectivity

0 10 20 30 40 50 60
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Time

H
o
p
-p

e
r-

d
e
liv

e
ry

TARF

Link-connectivity

(a) (b)

Fig. 8. With 6 nodes dropping data, (a) TARF has a 14% higher throughput than link-connectivity;
(b) TARF has a 5% higher hop-per-delivery than link-connectivity.

is at least 14% greater than that in link-connectivity; the hop-per-delivery in TARF is
around 5% higher than that in link-connectivity.

6 Conclusions

We propose TARF, a trust-aware routing framework for WSNs, to secure multi-hop
routing in WSNs against intruders exploiting the replay of routing information. With
the idea of trust management, TARF enables a node to keep track of the trustworthiness
of its neighbors and thus to select a reliable route. Not only does TARF circumvent those
malicious nodes misusing other nodes’ identities to misdirect network traffic, it also ac-
complishes efficient energy usage. Our implementation and simulation results indicate
that (1) the efficiency of energy usage in TARF is generally at least comparable to that
in existing protocols; (2) with the existence of traffic misdirection through “identity
theft”, TARF generally achieves a significantly higher throughput than other existing
protocols; and (3) TARF is scalable and adaptable to typical medium-scale testbed en-
vironments and simulated conditions. Our future work is to further evaluate TARF with
large-scale WSNs deployed in wild environments and to study how to choose param-
eters involved for specific applications. We believe that the idea of TARF can also be
applied to general ad hoc networks and peer-to-peer networks to fight against similar
attacks.
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Abstract. Most of the existing popular MAC protocols for Wireless
Sensor Networks (WSN) only use a single channel for relaying data. Most
popular platforms however are equipped with a radio chip capable of
switching its channel, and are therefor not restricted to a single-channel
operation. Operating on multiple channels can increase bandwidth and
can provide robustness against external interference. We argue that this
feature is not only useful for dense, high-throughput WSNs but also
for sparser networks with low average data rates but with occasional
traffic bursts. We present MuChMAC, a low-overhead Multi-Channel
MAC protocol which uses a combination of TDMA and asynchronous
MAC techniques to exploit multi-channel operation without the need
for coordination or tight synchronization between nodes. We describe
an interface to scale MuChMAC’s duty cycle to adapt to varying
traffic conditions or energy constraints. We demonstrate MuChMAC’s
usefulness on a testbed consisting out Sentilla JCreate motes running it
as the MAC layer for Contiki-based applications.

1 Introduction

Traditional solutions for Medium Access Control (MAC) in Wireless Sensor
Networks (WSN) use only a single frequency channel for sending and receiving
messages. This implies that the bandwidth of a single channel has to be shared
amongst all nodes in the same neighborhood. Efficiently sharing bandwidth
while keeping low power consumption is a challenging task. Traditional MAC
algorithms for WSNs can be divided in different categories depending on how
they try to tackle these problems. Some algorithms try to synchronize all nodes’
duty cycles and then schedule transmissions according to either contention-
based (e.g. TMAC [1]) or TDMA-based methods (e.g. LMAC [2]) or a mix
of both. Others avoid synchronization and focus more on keeping nodes in a
low duty cycle (e.g. B-MAC [3], X-MAC [4]) reasoning that the chances of
collision are small since one expects a small amount of traffic on the network.
As such the overhead of resolving collisions is also small. This last category is a
better fit for sensor networks with very low duty cycles since no coordination or
synchronization between the nodes is required, but they do run into throughput
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problems when the requested data rates of nodes increase. Additionally, any
single-channel MAC protocol can run into problems when its channel is being
used by external devices.

In the rest of our paper, we will consider two types of interference: Internal
interference, which is interference between transmissions from nodes in the
network and external interference, which is interference from devices outside the
network. We argue that a multi-channel protocol can reduce the effects of both
types of interference and we will motivate some of our design choices accordingly.

1.1 Internal Interference

Collisions between transmissions are an important cause of loss of throughput in
wireless sensor networks. We will argue that even in small or sparse wireless
sensor networks, spreading transmissions over multiple channels can greatly
reduce this risk. Consider for example Fig. 1. We observe that during a
convergecast operation, even though there is a clear bottleneck around the sink
node, multiple channels can help reduce (or even completely remove) collisions
between transmissions from nodes 2, 3, 4 and 5. Even if the network does not
need explicit support for convergecast, it may at some point need to disseminate
information (for example, configuration messages) to some or all nodes in the
network. During this phase, multiple channel access can reduce the risk of
collisions when intermediate nodes forward messages.

Fig. 1. Congevergecast and dissemination in a simple wireless sensor network

If the total traffic load on a network is low, traffic may be generated in short
bursts in time, for example when the network is designed to detect certain
rare events. During such a traffic burst, the required bandwidth will be much
higher than the average required bandwidth for that network. Moreover, in
such cases unsynchronized MAC protocols such as X-MAC and B-MAC suffer
from problems with collisions, while synchronized protocols may impose a high
overhead since the total traffic volume is very low. Ideally, a multi-channel
protocol should be able to increase the available bandwidth while still keeping a
low overhead.

1.2 External Interference

Aside from collisions, another common problem is external interference, i.e.
interference from sources outside the network. Since WSNs commonly operate
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on any of the unlicensed bands, a lot of WSN deployments have to take into
account the possibility of other devices operating at the same frequency, such
as Bluetooth devices, 802.11 WLAN, baby monitors, cordless phones, etc. Even
some models of microwave ovens are known to emit noise on parts of the 2.4GHz
band.

Fig. 2. 802.11 and 802.15.4 channel overlap

Consider for example Fig. 2 where a comparison of 802.11 and 802.15.4
channel spacing is depicted. We could conclude that a simple way to avoid 802.11
collisions is to use one of the four channels which don’t overlap between both
channel schemes. And indeed, this technique is quite common – for example, in
the Contiki OS [5] the default MAC channel is 26 – but this of course only avoids
collisions from 802.11 devices. Restricting the number of channels may not be
an efficient way to reduce interference from other sources and in fact increases
the chance that collocated WSNs will interfere with each other. Ideally, a multi-
channel protocol should be able to dynamically switch the channel on which
nodes communicate in order to use as much bandwidth as possible, even in the
presence of external interference.

2 Existing Multi-Channel Solutions

We will review some of the existing multi-channel MAC techniques to motivate
the design choices of our multi-channel MAC protocol. A full overview of existing
multi-channel MAC protocols is out of the scope of this paper and can be found
in other published work [6,7,8].

First of all, we will limit ourselves to nodes using a single half-duplex radio
since this seems to be, to the best of our knowledge, the most common choice
in popular sensor node platforms today (e.g. Tmote Sky, JCreate, Mica mote,
etc.). We are specifically interested in the way existing techniques (not necessarily
directed at sensor networks) assign channels for the nodes in the network.

2.1 Fixed Channel Selection

In fixed channel assignment schemes, nodes are assigned to a fixed channel
throughout the lifetime of the network or at least for extended periods during
deployment. We can further divide this principle in two categories:

– Receiver-fixed channel assignment. Nodes pick a channel to listen to based
on a simple algorithm requiring little to no coordination (e.g. channel =
ID modulo #channels). This is a simple way to achieve channel diversity
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without any coordination overhead. An example of such a protocol is the
xRDT protocol described in [7].

– Coordinated channel selection. Nodes coordinate channel assignment in such
a way that the available bandwidth is distributed efficiently amongst nodes in
the network. Protocols like HyMAC [9] and MC-LMAC [8] combine FDMA
and TDMA techniques to assign a unique timeslot-channel combination to
each node in a two-hop neighborhood. Another example is TMCP [10] which
divides a dense WSN in several aggregation trees and assigns a different
channel to each tree.

Both type of schemes increase the bandwidth available for communications by
increasing the number of channels for unicast transmissions. Simple receiver-
fixed assignment offers less advantage in terms of bandwidth, but imposes no
coordination overhead on the network. Such a simple scheme could be an elegant
solution to increase the bandwidth of uncoordinated MAC protocols such as
X-MAC with little implementation overhead.

In general, fixed schemes consider mostly unicast. This restriction can be an
issue since broadcast is a commonly required operation used by many WSN rout-
ing protocols and applications. Fixed schemes only reduce internal interference
and do not consider external interference, so we believe they do not fully exploit
the possibilities of multi-channel operation.

2.2 Dynamic Channel Selection

Several techniques have been proposed to allow communication while nodes
switch their channels more frequently.

– Common Hopping. This is a class of protocols where nodes all listen to the
same channel, but “hop” between available channels frequently. Data can be
exchanged on a different channel after a handshake on the common channel.
Unlike other channel selection schemes, broadcast is easy to support. This
type of scheme offers some robustness to external interference, but since
packets are quite short in a WSN, the possible bandwidth gain compared
to single-channel schemes is limited. To the best of our knowledge, common
hopping has not been explored in WSNs for this reason.

– Independent Hopping. With independent hopping each node will frequently
change its channel, according to its own individual schedule. When a node
has data for another node, it switches its radio to the target node’s channel
and initiates the data transfer (with or without prior handshaking, depending
on the protocol). An example of such a protocol is McMAC [11]. This type
of scheme has the advantage over common hopping in terms of interference
since it protects against both internal and external interference. However,
it may be difficult to support broadcast (for example, the McMAC protocol
does not explicitly support broadcast transmissions). Additionally, a node
must store the hopping schemes of its neighbors. These type of schemes
require tight synchronization so nodes can accurately compute the channel
of their neighbors.
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– Adaptive channel selection. Instead of choosing a channel scheme, some
approaches also try to adaptively select channels for nodes, based on network
density, noise measurements, etc. With this category of schemes, it is
theoretically possible to optimize the use of network bandwidth, even in
the presence of external interference. In the case of WSNs however, it is
not a trivial task to coordinate this accurately over many lossy links at low
bandwidth and energy cost. If the coordination fails or crucial packets get
lost, nodes could become disconnected from the network.

An example of a WSN MAC protocol with adaptive channel selection is
CoReDac [12][13] which is designed specifically for convergecast operations.
In CoReDac, each node decides on which channel it will receive messages
during the next convergecast cycles and reports this in message ACKs to its
children. If a node does not receive messages on a certain channel, it will
blacklist it and avoid selecting that channel for the next cycles. Although
this scheme works well and has a fairly low overhead, it is highly optimized
for convergecast and it seems difficult to support other operations.

Another example of dynamic channel selection which combines these techniques
is the Y-MAC [14] protocol. In this protocol, time is divided in large frames
further divided in slots. The first slots of a frame are reserved for broadcast
and control traffic. Each node will then pick one of the remaining slots to listen
for possible incoming transmissions. A channel hopping scheme is added to the
unicast slots to improve throughput under high traffic loads. This protocol shows
good results for high traffic loads (1 message/node/sec and higher in a multi-hop
environment), but the coordination between nodes is quite complex and tight
synchronization is required. In a real deployment, the authors show this protocol
has a duty cycle close to 10% regardless of traffic conditions.

All of the dynamic channel selection schemes presented above have at least
some advantage over fixed channel selection with respect to external interference.
Even if channel quality is not actively monitored, a dynamic scheme will still
provide connectivity since nodes attempt to use several channels. However, a
node must be able to accurately compute the channel of its neighbors and this
requires either tight synchronization or coordination (or both).

Fig. 3. Y-MAC frame structure, as presented in [14]
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2.3 Summary

To conclude this overview, let us summarize some of the general shortcomings
of current multi-channel protocols we wish to find an answer to:

– Fixed channel assignment. As mentioned above, in a fixed channel assign-
ment scheme, the network does not fully exploit possibilities to increase
resilience against external interference. Under external interference parts of
the network may be disconnected for certain periods in time.

– Lack of broadcast support. Many multi-channel protocols only tackle unicast
operations. Even though it may seem contradictory to move all nodes on
the same frequency in a multi-channel protocol, broadcasting is a common
operation for many routing protocols and applications and should be
explicitly supported.

– Tight synchronization requirements. Most of the protocols with dynamic
channel assignment require tight synchronization of nodes to make sure
nodes share the same wake/sleep duty cycle. This way nodes can easily
coordinate during their wake-up period. However, synchronization is not
a trivial task and can impose a high overhead on the nodes. Typical
synchronization protocols require nodes to exchange timestamps. Even if
these timestamps can be piggybacked on normal messages, this may not
suffice if the network is light on traffic. In such cases, a lot of energy will be
spent keeping the nodes synchronized. Out-of-band synchronization such as
those described by [15] may also be an option in some cases, but this requires
additional hardware and thus an additional cost which is not negligible.

In general, we can also conclude that there appears to be a strong correlation
between protocol features and protocol requirements. As a protocol adds more
features, the requirements in terms of coordination and synchronization quickly
increase as well. We wish to create a protocol which exploits the possibilities of
multi-channel operation without imposing strong requirements on the network.

3 MAC Design

With these considerations described above in mind, these are the requirements
for our Multi-Channel MAC (MuChMAC) protocol:

– Frequency agility: The nodes should use multiple channels dynamically to
increase bandwidth and to allow the network to continue operation even if
there is external interference.

– Broadcast support : The nodes should be able to efficiently send broadcast
messages.

– Low power : The protocol should be optimized in such a way that nodes can
operate under low duty cycles (only a few %) to increase battery lifetime.

– General purpose: The protocol should be able to function sufficiently well
(in terms of energy consumption, latency, bandwidth, ... ) under a variety
of traffic loads and patterns. We will target traffic loads of one message per
node every few seconds, down to a few messages per node per hour.
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3.1 Frequency Hopping with Broadcast

Let us tackle the first issues: How do we design our protocol to be frequency agile,
yet give it broadcast capabilities? To achieve this, we will divide time in slots
and let each node switch its radio frequency every slot. We base our assignment
of slots on the parallel rendez-vous principle, as proposed for McMAC [11]: To
calculate the radio channel of a node, we input its ID and the current slot number
in a pseudo-random generator. The channel number is chosen by the receiver;
when a node has a message for another node, it switches its radio to the receiver
channel and sends the message. By choosing a pseudo-random hopping scheme,
we avoid that nodes have to store the hopping scheme of all their neighbors.

We will discuss further on how a node will be able to calculate the slot number
without synchronization overhead. First, let us propose the adaptation presented
in Fig. 4 to add broadcast support to this channel hopping scheme.

Fig. 4. Parallel rendez-vous scheme extended with broadcast slots

This scheme is partially inspired by the Y-MAC [14] frame structure. Every
u/b unicast slots, a broadcast slot will be inserted. These broadcast slots also
follow a pseudo-random hopping sequence, but they are the same for each node.
This way, our hopping scheme is a combination of independent and common
hopping schemes, trying to take the best of both worlds. Figure 4 demonstrates
this principle with u/b = 2 for the channel selection of 4 nodes A, B, C and D
over time. Other values of u/b can be chosen during network setup if the relation
of unicast and broadcast traffic is known in advance.

One disadvantage of this approach is that the hopping scheme does not
actively adapt to interference on certain channels but instead gives us a more
passive interference avoidance; if there is interference on some channels we still
have connectivity on the rest of the channels. This is not as powerful as active
avoidance, but it does not require any coordination overhead. Accordingly, we
motivate our choice with the observation that coordinating channel selection
among nodes in the network is not a trivial task and may cause a high overhead
when actual traffic volumes are low, thus violating our “General Purpose”
constraint.

3.2 Low-Power Operation

The original parallel rendez-vous scheme was designed targeting high-power
nodes, such as 802.11 WLAN routers or laptops. It is obvious that this scheme,
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where radios are assumed to be listening to the medium at all times, is
not applicable to low-power sensor nodes. In order to achieve the low power
constraint, we will put each node in a low sleep/wake duty cycle. As shown in
Fig. 5 nodes will wake up only during a small portion of a slot and will stay
asleep for the rest of the slot. For example, in Fig. 5 a duty cycle of 20% is
shown. In our implementation we set a duty cycle of 1%.

Fig. 5. Low duty cycle

3.3 Synchronization

As discussed earlier, keeping nodes in the state depicted in Fig. 5 is not a trivial
task and will require tight synchronization, especially if very low duty cycles
are desired. However, we could ask ourselves if this synchronization is really
a necessity. For example, starting from the situation depicted in Fig. 5, let us
consider how this situation evolves if we don’t synchronize. Assuming a slot size
of 500ms and a drift of at most ±40ppm (as specified in the 802.15.4 PHY
standard), how the situation might look like after 30 minutes is depicted in
Fig. 6. It is clear in the worst case the wake-up periods have drifted away from
each other. But if we look at the slot transitions (as defined by an absolute
master clock with zero drift) depicted as dashed lines in Fig. 6, we observe
that the wake-up periods have not drifted past these boundaries yet, despite
long unsynchronized operation. So if we know when another node wakes up, we
can still correctly calculate the slot number and the associated channel number.
Unfortunately, it is impossible to calculate the exact time when a node will wake
up. If we try to calculate this, our estimate will have a resolution equal to the
upper limit on drift time as given by (1).

Δtmax =
(
t(now) − t(last synch)

)× driftmax (1)

Typically, this will be many times the wake-up period of a node, so it is clear
we can only calculate a period during which a target node will wake up, but not

Fig. 6. Unsynchronized operation
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Fig. 7. Unicast communication between nodes

the exact moment. To overcome this problem, we will have nodes communicate
according to an adaptation of the X-MAC scheme as depicted in Fig. 7: When
a node B has a message for another node A, B will first calculate the lower
limit of the next period when that node will be awake. At that point, node B
will calculate the channel of node A and will start sending out small preamble
messages. When A wakes up, it will hear a preamble, and it will acknowledge to
B that it is awake and that the data can be sent. After the data message has
been sent, A can optionally acknowledge the data message. Broadcasting will
happen according to a roughly similar scheme, except that the sending node will
repeatedly send the data message instead of preambles and there is no feedback
from receiving nodes, as depicted in Fig. 8.

Fig. 8. Broadcast communication

Now the final problem we have to tackle is to make sure nodes do not
desynchronize beyond slot transitions. This however only requires very loose
synchronization. With the above scheme we must make sure drift is always
smaller than half the slot size. With some typical parameters we get:

synch period =
slot/2
drift

=
250 ms
80 ppm

= 3125 s = 52 min (2)

Not only does this mean we have a very large synchronization period, it also
means that when we synchronize, we do not need very strict synchronization (i.e.
down to a few clock cycles) but down to an order of magnitude of 1 − 10ms is
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more than sufficient. Moreover, the entire network does not need to be globally
synchronized, it is sufficient that a node is synchronized with its neighbors.
This allows us to use simple timestamp based synchronization, where nodes put
timestamps on all outgoing and incoming messages and calculate clock offsets
accordingly. In the case of unicast transmissions, it is even sufficient to timestamp
the preamble and ack messages, causing no overhead on the data message itself.
With such an approach, the network will also be partially adaptive to traffic:
when messages are sent more frequently, the drift against neighboring clocks will
be smaller and less energy will be wasted sending preambles.

Intermezzo: The Contiki timesynch Module. Contiki has a module called
timesynch which is implemented for all platforms using a CC2420 radio. This
module adds code to the radio driver that timestamps all outgoing and incoming
packets. The network should also have at least one master node with an
“absolute” clock. Such a node will be defined to have an authority of 0. The
neighbors of a master will have authority 1, their neighbors 2 and so on (depicted
in Fig. 9). To create this “authority gradient”, the following mechanism is
implemented: When a non-master node receives a packet from another node
with lower authority a, it will set its own authority to a+1 and will synchronize
to that node, using the timestamps from the received packet. This way, nodes
will synchronize with neighbors closer to a master clock.

In our implementation we have used this algorithm with a small addition to
estimate an upper bound on clock drift against neighboring nodes.

Fig. 9. A timesynch network with one master, illustrating clock offset calculation
between two nodes with different authority

3.4 TDMA Optimization

When density increases, the chances increase that multiple nodes select the same
frequency during the same unicast slot. For example, assuming a channel is
picked randomly out of 8 orthogonal channels, two nodes will have a 1/8 chance
of picking the same channel. A node with 5 two-hop neighbors only has a 48%
chance of picking a unique channel and if a node has 10 two-hop neighbors,
there will always be at least 3 nodes on the same channel with each node having
a 26% chance of a unique channel. If nodes would wake up at the same time
in a slot, this would reduce the amount of parallel traffic that can be achieved
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Fig. 10. TDMA timing optimalization

on the network, which was exactly one of the benefits we were looking after.
To overcome this problem, we will design the timing of our slot as depicted in
Fig. 10. Instead of waking up in the middle of a slot, we will split slots in a
number of “subslots” which consist of a small wake-up window for a node and a
small guard period to the next subslot. The subslot in which a node will turn on
its radio is determined by its ID and the current slot number. For example, in our
implementation, we have chosen 16 subslots, giving each subslot a wake-up of
5ms and a guard of 26ms. Looking back at the previously mentioned scenarios,
two nodes now only have a 1/128 chance of picking the same channel-timeslot
combination. Nodes with 5 and 10 two-hop neighbors have a 96% and 92% chance
respectively of picking a unique channel-subslot combination for any given slot.
With this design, MuChMAC will behave like a multi-channel TDMA protocol
under high traffic loads, while behaving more like a multi-channel X-MAC under
low traffic loads.

In some TDMA protocols such as MC-LMAC [8] or Y-MAC [14], it is specified
that a node can take multiple timeslots in one frame. This way nodes can trade
off power against bandwidth and latency. We will add this feature to our TDMA
optimization: depending on the “power level” of a node, that node will pick one
or more subslots in each slot. The slots are picked in such a way that all slots for
a power level p are also picked for p + 1, as depicted in Fig. 11. A node will still
be able to communicate with a neighbor even if it’s value for the power level of
that neighbor is too low. If a node does not know the power level of a neighbor,
it can simply pick p = 1. In our implementation, we add the power level of a
node to packet headers and we store all received power levels in a neighbor table.
After packet loss, we decrement the stored value of power level for a node, with a
minimum of 1. This way, the overhead of communicating power level is small (16
power levels = 4 bits in packet header) and no additional coordination packets
have to be sent.

Fig. 11. Subslot selection for different power levels
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Table 1. MAC evaluation parameters

4 Experiments

We will perform our experiments on a simple testbed consisting out of Sentilla
JCreate motes. The network topologies are shown in Fig. 12. We consider a 5-
node and 7-node setup, with nodes arranged in two parallel lines to the sink.
The nodes are arranged in such a way that transmissions from any node can
interfere with transmissions from another node. We use a simple routing layer
which forwards all received or generated messages to a predefined parent node.
When a message could not be sent – if the receiving node was sending, or if
there was contention with another node – the message is retransmitted with a
random back-off, with a maximum of 4 retransmissions per message. To improve
throughput under higher loads, we added a packet queue of 4 messages to the
routing layer. A packet is considered lost when all retransmissions have failed or
when it is dropped because of a full packet queue.

We will compare our MAC layer with X-MAC, the standard asynchronous
Contiki MAC layer. The parameters for both layers are set up as shown in
Table 1. We have chosen to use only 8 out of the 16 available channels since
several authors have demonstrated that channels in the 802.15.4 band may
experience interference from adjacent channels [8,10]. X-MAC uses its default

Fig. 12. Testbed setups
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channel 26. The network is set up in an office environment. We detected some
occasional interference on 802.11 bands, but we did not purposely cause any
external interference during our experiments.

First, we will test the throughput of the network when each node generates
messages for the sink at a constant rate. The inter-message period is slightly
randomized to reduce any scheduling effects. Secondly, we will have a look
at the network throughput when messages are generated in event bursts, i.e.
several nodes in the network generate messages at about the same time, but
with long inter-message periods. For each experiment we will also have a look at
the activity of a node, defined as the % of time the radio is on (for transmitting,
receiving or idle listening).

activity =
ttx + trx + tlisten

t
(3)

This should give us a good measure for the energy use of the nodes.

4.1 Constant Network Load

To test throughput, we will measure the reliability of the the network, as defined
by (4), under increasing network loads.

reliability =

∑
messages generated

messages received by sink
(4)

The results of these experiments are represented in Fig. 13. From our experiments
we observed that quite often a packet would wait in a queue while another is
waiting at the MAC layer to be sent to the same receiver. From this observation,
we implemented a “packet train” optimization: when several packets have to be
sent to the same receiver, MuChMAC will send the second packet immediately
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after the first has been ACK’ed, repeating until no more packets can be sent to
that receiver. The results from this optimization are marked ‘+pt’ on Fig. 13(a).
For the 5-node network, we can observe MuChMAC offers a only a small increase
in reliability. The gain here is limited because there are not so many parallel
transmissions and some of the multi-channel bandwidth gain is lost because
only 2 out of 3 slots are reserved for unicast.

In the case of the 7-node network, the difference is more significant. Under
moderate traffic loads, X-MAC is losing packets on all links, while MuChMAC
only loses packets on the links to the sink. As expected, the packet train
optimization significantly improves reliability under higher traffic loads, keeping
> 90% reliability for 0.2 packets per second per node (= 1.2 packets per second
overall).

Figure 13(b) shows average activity and activity of the most active node
for the interesting range of traffic loads in the 7-node network. The results for
activity were similar in both versions of MuChMAC with or without packet
trains. We observe that activity is much lower in the case of MuChMAC, around
1−5%, whereas X-MAC activity reaches 10−30% under moderate traffic loads.
This is of course because MuChMAC is synchronized when packets are sent or
received, so the number of preamble packets can be greatly reduced when there
is a lot of traffic. For very low constant traffic loads X-MAC and MuChMAC
show similar behaviour without significant differences.

These results demonstrate the applicability of MuChMAC over a wide range
of traffic loads and show that it will maintain low power operation even under
moderate stress. We can conclude that MuChMAC fulfills the requirements we
described in paragraph 3.

4.2 Traffic Bursts

In the previous paragraph, we have shown that MuChMAC offers comparable
performance to X-MAC when traffic loads are small. This was tested however
with nodes randomly producing packets. In the following experiments, we tested
the performance of both MAC layers when all nodes (except the sink) in the
network generate traffic in bursts: all nodes generate one message, spread over
at most 0.5 s, with an inter-message period of two minutes (total load ≈ 0.008
message per second per node).

The results of these experiments are shown in Table 2. We also present average
(± standard deviation) latency from source to sink for all packets. Since we have
given each node fairly large packet queues, nodes have sufficient buffer space to
hold incoming messages while transmitting. With this setup reliability is high
and comparable for both MAC layers and each protocol is able to consistently
deliver at least 5 out of 6 messages to the sink for each traffic burst. However,
X-MAC will need more transmissions per message on average and this has an
impact on activity and latency. X-MAC activity is still low since bursts are spread
out in time, but it is significantly higher than MuChMAC. Average latency to
reach the sink is also considerably higher in the case of X-MAC. For MuChMAC,
the packet train optimization offers a significant advantage without an additional
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Table 2. Traffic burst experimental results for the 7-node network

energy cost. These results demonstrate that MuChMAC is better fit to handle
the traffic bursts generated by the network.

5 Conclusion and Future Work

These experiments on a real testbed demonstrate the applicability and usefulness
of MuChMAC and show that it can efficiently exploit multi-frequency operation
without coordination or synchronization overhead. We have shown that the
multi-channel operation provided by MuChMAC can be useful even for small
networks with low overall traffic load. The simple scenarios we evaluated give
a reasonable first-order impression of its performance. In future work we will
use testbeds containing more nodes. Furthermore, in paragraph 3.4, we have
proposed a mechanism for nodes to adjust their performance using a “power
level” parameter. We will study how a node can choose its power level depending
on its energy supply, required bandwidth, etc. in an intelligent way. Finally,
we will carry out experiments to test the performance of MuChMAC when
controlled external interference is present.
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Abstract. Multi-channel communications can effectively reduce chan-
nel competition and interferences in a wireless sensor network, and thus
achieve increased throughput and improved end-to-end delay guarantees
with reduced power consumption. However, existing work relies only on a
small number of orthogonal channels, resulting in degraded performance
when a large number of data flows need to be transmitted on different
channels. In this paper, we conduct empirical studies to investigate the
interferences among overlapping channels. Our results show that over-
lapping channels can also be utilized for improved real-time performance
if the node transmission power is carefully configured. In order to min-
imize the overall power consumption of a network with multiple data
flows under end-to-end delay constraints, we formulate a constrained op-
timization problem to configure the transmission power level for every
node and assign overlapping channels to different data flows. Since the
optimization problem has an exponential computational complexity, we
then present a heuristic algorithm designed based on Simulated Anneal-
ing to find a suboptimal solution. Our empirical results on a 25-mote
testbed demonstrate that our algorithm achieves better real-time per-
formance and less power consumption than two baselines including a
scheme using only orthogonal channels.

1 Introduction

Many wireless sensor network (WSN) applications must address multiple strin-
gent design constraints such as energy consumption and end-to-end communi-
cation delay. Energy has long been treated as the primary optimization goal for
battery-powered wireless sensor nodes. With lower energy consumption, a net-
work can achieve a longer lifetime. In addition to periodic sleeping, one of the
effective ways to reduce node energy consumption is to lower its radio transmis-
sion power. This can be supported by the existing sensor mote hardware. For
example, the CC2420 radio chip [1] used in many mote hardware platforms has
31 different transmission power levels. However, reducing transmission power
may lead to unreliable wireless links and cause increased number of retransmis-
sions. As a result, it may lead to poor guarantees of other important design
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constraints such as end-to-end delay, as many WSN applications require infor-
mation to be transmitted from sources to sinks within an application-specified
deadline. Therefore, transmission power must be carefully configured in order to
meet the desired constraints of a WSN. High transmission power may improve
the quality of a single wireless link but may lead to increased power consumption,
stronger interferences to other links, and reduced network capacity [2].

The emergence of multi-channel mote hardware has made it possible to achieve
improved throughput and delay guarantees with reduced transmission power, by
using different channels on different nodes, leading to less channel competition
and interference in the network. For example,the CC2420 radio chip provides
16 wireless channels with radio frequency from 2,400 to 2,483MHz. As a result,
multi-channel communication protocols have been proposed for WSNs to im-
prove the performance of traditional single-channel protocols commonly used in
WSNs. Based on the channel allocation scheme, existing multi-channel protocols
can be categorized to two classes: node-based and flow-based. In node-based pro-
tocols, channels are assigned to different nodes locally to minimize interferences.
For example, several node-based multi-channel MAC protocols [3][4] have been
proposed to improve network throughput for WSNs. However, a major problem
for node-based assignment is that nodes usually need to switch channels in or-
der to receive data from and transmit to different neighbors, which may result
in a high overhead, in terms of latency and power consumption. In flow-based
protocols, the nodes in the same data flow are assigned the same channel so
that frequent channel switching is avoided. For example, a flow-based multi-
channel real-time communication protocol, known as MCRT [5], has recently
been presented to allow different data flows to transmit on different channels
for improved end-to-end real-time guarantees with reduced power consumption.
MCRT has been demonstrated to outperform node-based schemes by having a
smaller deadline miss ratio and lower power consumption.

While multi-channel communications have shown great promise, recent studies
(e.g., [6]) conducted experiments on Micaz hardware to investigate multi-channel
realities in wireless sensor networks. An important reality reported is that the
number of orthogonal channels is actually small for the existing mote hardware.
Accordingly, it has been suggested that a practical multi-channel communication
protocol should only rely on a small number of non-adjacent orthogonal chan-
nels, because adjacent overlapping channels may have undesired inter-channel
interferences. For example, at most, only 8 channels out of the 16 channels pro-
vided by the CC2420 radio chip can be used as orthogonal channels [6], resulting
in the waste of half of the available wireless channel resources. While 8 channels
may be enough for some WSN applications, using only orthogonal channels has
limited the further improvement of network throughput, real-time performance,
and power optimization in the commonly used many-to-one traffic pattern, where
the number of data flows can be large in a network.

In this paper, we propose to utilize adjacent overlapping channels to configure
power and channels for a WSN to achieve improved real-time performance and
reduced power consumption. The power and channel configuration problem is
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defined as follows: Given a WSN with multiple data flows from different sources
to the base station, our goal is to assign channels (including overlapping chan-
nels) to the data flows and determine a transmission power level for every node
in the network, such that the overall (transmission) power consumption of the
network can be minimized while the average end-to-end delay of each data flow
can be guaranteed to stay within a deadline. In order to motivate our work, we
first conduct hardware experiments to investigate the interferences among over-
lapping channels. We then use empirical studies for overlapping channel mod-
eling. Based on our models, we formulate the power and channel configuration
problem as a constrained optimization problem, with power minimization as the
objective and the end-to-end delay as the constraints. Since it is cost-prohibitive
to find the optimal solution, we propose a heuristic algorithm based on Simu-
lated Annealing to find a suboptimal solution. Finally, we conduct experiments
on a 25-mote testbed to show that our configuration outperforms two baseline
solutions.

To our best knowledge, this paper presents the first study of utilizing overlap-
ping channels to achieve minimum transmission power configuration and guar-
anteed real-time performance in wireless sensor networks. Specifically, the con-
tributions of this paper are four-fold.

– We conduct empirical studies to investigate the interferences among over-
lapping channels. Our results show that overlapping channels can also be
utilized for improved real-time performance if the node transmission power
is carefully configured.

– We establish an empirical model between received signal strength (RSS) and
transmission power level for overlapping channels. Based on the RSS model,
we model the relationship between packet reception ratio (PRR) and RSS
to account for the interferences from overlapping channels.

– We formulate the power and channel configuration problem as a constrained
optimization problem. Since the problem has an exponential computational
complexity, we then present a heuristic algorithm designed based on Simu-
lated Annealing (SA) to find a suboptimal solution, which can be executed
periodically or in an on-demand fashion.

– We implement our algorithm on the Tmote hardware and conduct experi-
ments on a 25-mote testbed. Our results demonstrate that our algorithm can
reduce both end-to-end communication delay and overall transmission power
consumption, compared with two baselines. The first baseline conducts the
same optimization using only orthogonal channels. The second baseline uses
SA to find the desired power level but randomly assigns overlapping channels.

The rest of paper is organized as follows. Section 2 highlights the distinction
of our work by discussing the related work. Section 3 presents empirical studies
to motivate this work and build models for overlapping channels. Section 4 intro-
duces the formulation of our optimization problem with real-time performance
analysis. Section 5 presents the algorithm we used to solve the optimization
problem. In Section 6, we present the empirical results of our algorithm. Section
7 concludes the paper.
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2 Related Work

Recent studies have proposed to use partially overlapping channels (POC) in
wireless mesh networks. Liu et al. [7] propose a channel allocation scheme for link
scheduling, which takes advantages of POC to obtain better throughput for mesh
networks. Feng et al. [8] establish an interference model for POC-based wireless
networks, and use numeric methods to improve overall network capacity. A linear
model for channel assignment, which uses a channel overlapping matrix and
mutual interference matrices to model POC channels, has been proposed in [9].
However, no detailed study has been performed to utilize overlapping channels in
wireless sensor networks for improved real-time performance. A coarse-grained
channel assignment policy for WSNs is proposed in [6], which allocates non-
overlapping channels to disjoint trees and exploits parallel transmissions among
trees. In this paper, we propose to utilize overlapping channels to configure
power and channels for a WSN to achieve better real-time performance and
energy efficiency.

Several projects have studied received signal strength (RSS) and its utilization
in WSNs. Sha et al. [10] establish a model between the RSS and transmission
power in a single channel. Demirbas et al. [11] present a robust and lightweight
solution for sybil attack problem based on the received signal strength indicator
(RSSI) readings of messages in WSNs. However, none of these projects study
the relationship between RSS and transmission power in multi-channel WSNs.
In this paper, we establish the RSS model for overlapping channels and formulate
a transmission power minimization problem based on the models.

Many real-time communication protocols have been proposed for wireless sen-
sor and ad hoc networks. A comprehensive review of real-time communication
in WSNs is presented in [12]. At the MAC layer, Implicit EDF [13] is a collision-
free real-time scheduling scheme by exploiting the periodicity of WSN traffic.
At higher layers, SPEED [14] achieves desired end-to-end communication delays
by enforcing a uniform communication speed throughout the network. However,
most of the existing real-time protocols do not take advantage of the capability of
multi-channel communications available in today’s mote hardware. In our work,
we address the problem of utilizing overlapping channels for improved real-time
performance.

Different from all the aforementioned work that handles real-time guaran-
tees, partially overlapping channels, and energy efficiency in isolation, our de-
sign utilizes overlapping channels available on existing sensor mote hardware
to achieve more energy-efficient transmission for multi-channel WSNs under
real-time constraints.

3 Empirical Modeling of Overlapping Channels

Previous work [6] has reported that adjacent overlapping channels have undesired
inter-channel interferences. In this section, we first investigate the impacts of
overlapping channels on packet reception ratio (PRR) of link to motivate our
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work. We then extend existing work to establish an empirical model between
RSS and transmission power level for overlapping channels. Based on the RSS
model, we derive a PRR model to account for the interferences from overlapping
channels.

3.1 Case Study for Motivation

In this section, a case study is performed with two pairs of nodes, which com-
pose two one-hop communication links. In the experiment, one pair of motes
performs as the transmission pair by using channel 16. The other pair of motes,
acting as the jammer pair, uses an adjacent channel, 15, to communicate. The
transmissions of these two pairs are synchronized. The transmission power of
the transmission pair is fixed at power level 15, while the transmission power
of the jammer pair increases one level at a time from level 3 to level 31. One
hundred packets are transmitted on both pairs at each power level. We calcu-
late the PRR of each pair in this experiment under different transmission power
levels of the jammer pair. The results are shown in Figure 1. From the results
we can see that both the two pairs can achieve a good PRR when the jammer
pair is using power levels 16 to 18 for transmission. When the jammer is using
a lower power level, its communication does not incur much interference to the
transmission pair. The transmission pair can reach a high PRR. When the jam-
mer pair is using a higher power level to transmit, it can improve the packet
reception ratio of its own communication, but incurs too much interference to
the transmission pair, and so hurts the communication quality of the transmis-
sion pair. This experiment shows that given two communication links working
on overlapping channels, we can achieve good quality for both transmissions if
we carefully choose the transmission power.

3.2 Overlapping Channel RSS Model

As discussed in subsection 3.1, with careful selection of transmission power,
two links working on adjacent channels can both achieve a high PRR. An
approximate linear correlation between RSS and transmission power over a
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single-channel single-hop link is reported in [10]. In this subsection, we extend
the method proposed in [15] to study the relationship between RSS and trans-
mission power in the scenario where a sender and a receiver are working on
adjacent channels. We conduct the signal strength detection experiment on a
single link to explore the overlapping channel property.

Our experiment uses two Tmote Invent motes. One mote acts as the sender
and the other as the RSS sensor. In the experiment, the sender continuously
broadcasts packets at a rate of 100 packets per second. The RSS sensor contin-
uously collects the received signal strength by periodically reading the value of
the Received Signal Strength Indicator (RSSI) on the mote at a rate of 100 times
per second. After sending 100 packets at one power level, the sender lowers its
transmission power by 1 level, starting from level 31 to level 3. We first filter out
the noise value by using the noise floor threshold we collected before the exper-
iment and then calculate the average RSS value. We test various combinations
of sending and receiving channels in this experiment.

Figure 2 shows the result when the sender is using channel 16. We can see
that when the sender is using channel 16 for broadcasting, the RSS values sensed
on the two adjacent channels, channel 15 and channel 17 show highly linear
correlation with sender’s transmission power. However, no clear RSS reading is
sensed on channel 14 or channel 18. In addition, the results show an approximate
linear increasing trend when the sender and the RSS sensor are using the same
channel, channel 16. Previous work [10] presents the empirical single-channel
RSS-Power model as:

RSS(v, u, pu) = Au,v × pu + Bu,v, (1)

where v is the receiving node, u is the sending node, and pu is the transmission
power at u. A and B are two parameters of the model, which can be calcu-
lated by applying linear curve fitting to the sampled data. Note that distance
is not considered in Equation 1 because the RSS value is dynamically measured
between each given pair of sender and sensor.

Based on the observation of similar linear pattern when the sender and receiver
are using adjacent channels, we re-establish the empirical RSS-Power model
under multi-channel conditions as:

RSS(v, u, pu, cv, cu) = Au,v,cv,cu × pu + Bu,v,cv ,cu, (2)

where cu is the transmitting channel for sender u and cv is the listening channel
for receiver v. A and B are the two model parameters, which are usually decided
by the the application environment, such as network condition and communica-
tion distance. A similar model is reported in [15]. Our model uses a simplified
threshold filter to filter out the noise for faster runtime processing, while a CPM
noise filter is used in [15].

Using linear curve fitting to establish our model gives us a fast way to ac-
complish the model establishment, depending on the number of sampling points
we need. One second is required for the signal strength readings for each power
level in the model, as explained previously. If we use 5 power levels to build the
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model, the total time for the model establishment is only 5 seconds. Therefore,
our model can be promptly rebuilt at runtime to adapt to environmental or tem-
poral variations of network conditions. Also, the overlapping channel RSS model
of every node in a less dense network (e.g.[16]) can be quickly established.

3.3 Packet Reception Ratio

Packet reception ratio (PRR) is the probability that a packet can be received suc-
cessfully. Higher transmission power can provide a higher Signal to Interference
and Noise Ratio (SINR) over the link, which leads to a higher PRR. However,
with higher transmission power, the communication at the current link could
significantly interfere with another link’s communication as shown in subsection
3.1. In this section, we conduct an experiment to study the relationship between
PRR and SINR. With an understanding of this relationship, we can find the ap-
propriate transmission power range to reach a required SINR value for a desired
PRR value.

In the experiment, we use three Tmote Invent motes, one as the receiver
C and the other two as transmitting motes, A and B. All of the three motes
use the same channel. This experiment consists of three rounds. In the first
round, we only turn on motes A and C. We use A to transmit multiple packets
to receiver C and calculate the average received signal strength of the packets,
denoted as RSS(A, C). In the second round, we turn A off and use B to transmit
multiple packets to the receiver. We then calculate the average received signal
strength of B, denoted as RSS(B, C). In the third round, all the three motes
are turned on. Both A and B transmit multiple packets to receiver C. The
transmissions are synchronized. We calculate the PRR for A’s transmission,
denoted as PRR(A, C).

Considering B’s transmission as the interference to A’s transmission, we can
calculate the SINR value for A’s transmission as follows:

SINR(A, C)dB = RSS(A, C) − 10log10(10
RSS(B,C)

10 + 10
N
10 ) (3)
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where N is the noise floor value, which is col-
lected before the experiment. Equation 3 is
derived from the SINR equation from [17]. By
doing the above three steps and applying the
equation, we get a PRR-SINR pair. We re-
peat the experiment with different distances
from B to receiver C and different transmis-
sion power levels used by A and B to create
different SINR values at the receiver. Figure 3
shows the PRR-SINR relationship in our ex-
periment. When the SINR value is greater
than 6dB, the PRR is almost 100%. There-
fore, in order to achieve a good packet re-
ception ratio in this sepcific experiment, e.g.,
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90%, we need to choose a transmission power that can provide a strong enough
received signal strength leading to an SINR value of more than 6dB.

In order to apply this experimental approach to multi-channel networks, we
extend the PRR-SINR relationship by incorporating the channel information to
it. We use (SINRv, cv, PRRv), to denote the PRR-SINR-Channel relationship
between node v’s packet reception ratio and the corresponding SINR value in
channel cv. With this extension, we can obtain the required SINR value for a
good PRR on a desired channel.

4 Minimum Transmission Power Configuration

In this section, we first formulate the power and channel configuration problem.
We then analyze the node transmission delay in the network.

4.1 Problem Formulation

We assume the network has the common many-to-one traffic pattern [18][19],
which is composed of multiple sources, some relay nodes and one base station.
Each source generates a data flow to the base station. All the flows are assumed
to be disjoint, since disjoint paths are widely used in multi-path routing to
enhance the system’s fault-tolerance [5][20]. The data generated at the source
are assumed to follow a uniform random distribution [21]. We also assume that
the base station is a super node with multiple radios such that it can work on
several different frequencies at the same time. The channel allocation in our
network is flow-based, which means all nodes in the same flow work on the same
channel. Our goal is to minimize the total transmission power consumption under
the constraint that the end-to-end delay of every flow in the given topology is
constrained.

We first introduce the following notation:

– G = (V, E), a directional graph denoting the network with V nodes and E
edges (links).

– fi, the data flow with the id number i.
– D, the delay constraint for each flow.
– pu, transmitting power used by node u.
– cu, the channel id used by node u, which is an integer number.
– I(v), the interference node set of node v.
– (u, v), a communication link in the graph, in which u is the sending node

and v is the receiving node.

Given the notation above, we can formulate our minimization problem as:

min
∑

v∈V :(u,v)∈G

pu × 1
PRR(u, v)

(4)

Subject to the constraints:

1 ≤ cu ≤ n ∀u ∈ G (5)
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cu = cv ∀(u, v) ∈ G (6)∑
v∈fj

1
PRR(u, v)

≤ D ∀j : 1 ≤ j ≤ m (7)

The inverse of PRR(u, v) in Equation 4 is the average transmission count
required for a packet to be successfully received by node v from node u. By
multiplying pu and 1

PRR(u,v) , we obtain the transmission power consumption for
one packet at node u. The objective of Equation 4 is to minimize the total trans-
mission power consumption of all the nodes in the network. Equation 5 is the
channel constraint, which confines that each node can only pick a channel from
n available channels. Equation 6 confines that all nodes in the same data flow
must use the same channel. Equation 7 is the end-to-end delay constraint, which
gives the limit of the end-to-end transmission count (including retransmissions
at each node) for a packet in each flow. End-to-end transmission count is a com-
monly used metric to represent end-to-end delay as a higher transmission count
leads to a longer end-to-end delay. Note that our minimization problem does not
depend on the node duty cycle scheduling, so our work can be integrated with
energy-efficient MAC protocols with periodic sleeping for further power savings
at the cost of longer communication delays.

4.2 Transmission Delay Analysis

One way to analyze the node transmission delay in a WSN is to use the worst-case
scenario, where we can assume that all the links in a neighborhood communi-
cate at the same time, such that the most significant interference and delay are
incurred. However, due to the lossy nature of wireless links, real-time communica-
tion protocols in WSNs are commonly designed to provide only soft probabilistic
real-time guarantees [22][5]. In addition, the traffic patterns at different sources
in many wireless sensor networks, such as surveillance applications [23], are usu-
ally independently random and unknown a priori. The chance for all the links in
a neighborhood to transmit at exactly the same time is very small. Therefore,
it is more meaningful to analyze the average case for WSNs. We modify our
problem formulation as:

min
∑

v∈V :(u,v)∈G

pu × 1
PRRavg(u, v)

. (8)

Correspondingly, the end-to-end delay constraint in Equation 7 is modified as:

∑
v∈fj

1
PRRavg(u, v)

≤ D ∀j : 1 ≤ j ≤ m (9)

where PRRavg(u, v) is the average packet reception ratio at node v when the
generated traffic at the sender u follows the random distribution.
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Fig. 4. Probability of packet collision when two nodes have independently random
traffic

Note that the probability for more than two nodes to transmit concurrently
is small under the random traffic assumption. We assume that at most two
nodes in the same interference range may transmit concurrently. We denote the
probability that node w’s transmission can interfere with node u’s transmission
as P (u, w) and the packet reception ratio at the receiver v from u’s transmission
under w’s interference as PRR(u, v, w). We can use Equation 10 to estimate
the average transmission count for node u to successfully transmit a packet to v
when u and w follow the independent random traffic pattern.

1
PRRavg(u, v)

= (1 −
∑

w∈I(u)

P (u, w))
1

PRR(u, v, v)
+

∑
w∈I(u)

P (u, w) × 1
PRR(u, v, w)

(10)

In Equation 10, PRR(u, v, v) is the packet reception ratio at receiver v when
there is no interference to sender u’s transmission.

Note that P (u, w) in Equation 10 is the probability that node u and node w
transmit packets concurrently. To derive P (u, w), we assume that each source
node has the same packet rate, 1 packet per T seconds, with a packet length
l. We denote the start time of the transmission at node u and w as tu and
tw, respectively. With the assumptions that the start time of every packet on
the source node follows the uniform distribution and each intermediate node
forwards packets immediately after receiving, we can calculate P (u, w) as follows:

P (u, w) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ l

0

∫ tw+l

0
1

T 2 dtudtw if 0 < tw ≤ l;

∫ T−l

l

∫ tw+l

tw−l
1

T 2 dtudtw if l < tw ≤ T − l;

∫ T

T−l

∫ T

tw−l
1

T 2 dtudtw if T − l < tw ≤ T .

(11)

Figure 4 illustrates the three cases in Equation 11. In the first case, when tw ≤ l,
collision happens under the condition that tu ≤ tw + l. In the second case, when
tw ∈ (l, T − l], collision happens under the condition that tu ∈ (tw − l, tw + l). In
the third case, when tw ∈ (T − l, T ], collision happens only when tu ∈ (tw − l, T ].
Note that the independently random traffic pattern assumption can be relaxed
in the average PRR estimation. When the traffic pattern is not random, we can
use empirical on-line testing to find the collision probability.
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By integrating the three cases in Equation 11, we get the collision probability
between two nodes in one period T as:

P (u, w) =
l(2T − l)

T 2 (12)

Based on the models we established in Section 3, given a power level for each
node in the network and a channel assignment to the data flows, we can compute
the PRR for each receiving node under the interference from another node. By
using Equation 10, we can derive the average transmission count for every node
and further calculate the end-to-end delay of every flow, as well as the total
system power consumption of the network for the given combination of power
levels and channels. Our optimization objective is to find the combination with
the least power consumption while the delay of every data flow is shorter than
the given constraint.

5 Algorithm Design

The problem formulated in Section 4 is a complex combinatorial optimization
problem with a huge search space. Suppose there are j nodes forming m flows in
the network. The total available number of channels on the equipment is n. Each
mote can use k different power levels to transmit. The combinatorial search space
has a size of nm × kj . Therefore, we propose to use Simulated Annealing (SA)
[24], a well-known meta-heuristic, to solve this problem. SA is commonly used
to find suboptimal solutions when the search space is huge and discrete, which
makes SA well suited for our problem because all possible configuration states
are discrete, as the selection of channels and power levels are discrete numbers.
Note that although the original SA algorithm is centralized, SA can be extended
to run in a distributed way with slightly worse performance [25]. Therefore, our
solution can also be extended to run on the sensor nodes in the network in a
distributed way. The detailed extension is beyond the scope of this paper. In
addition, please note that many real-world WSN applications adopt many-to-
one communication [26][27] for data collection, in which the sink is usually a
sensor mote connected to the base station, such as a computer. The base station
is commonly used to make centralized decisions for these applications.

Simulated Annealing is a probabilistic method for optimization problems. It
transposes the process of the annealing of metal, in which the temperature of the
metal is gradually decreased, to the solution search of the optimization problem.
In each step, the algorithm considers some neighbor states of the current state,
and chooses a valid neighbor state for the next state according to a probabilistic
function established on the optimization goal. Two major parts of SA are the
neighbor state generation and the transition probability. The neighbor state
generation scheme requires that every two adjacent states have a short distance.
The transition probability is to decide whether the system should go to the next
state, i.e., the neighbor state generated in the neighbor generation part.
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The objective of our problem is to minimize the total transmission power
consumption for the network under an end-to-end delay constraint. The con-
figuration space consists of all the channel assignment and power configuration
combinations. Based on a given channel and power configuration, the system
proceeds to the next configuration by performing an elementary modification.
The elementary modification is defined as a channel change on one of the flows
or a power level change on one of the nodes. The pseudo code of our algorithm
is given in Algorithm 1.

The algorithm starts with an initial “temperature” Tini and an initial config-
uration Cini with an initial power consumption Pini. It then looks for a neighbor
configuration as the next configuration state, Ctemp. After a neighbor is found,
the algorithm first checks if the delay delayi of every data flow under the neighbor
configuration meets the delay constraint D. If the constraint is met, the algo-
rithm calculates the power consumption difference, ΔP , at the neighbor state
and the current state. However, if the constraint is violated, the algorithm adds
a Penalty to ΔP . The Penalty is a parameter that needs to be tuned for the
experiment in order to get a good solution. It helps the algorithm to avoid being
trapped at a local minimum. The algorithm then checks if the power consump-
tion is reduced. If the power consumption is reduced, the neighbor configuration
is accepted. However, if the neighbor configuration causes an increased ΔP for
power consumption, the algorithm calculates a probability by the exponential
expression e−

ΔP
T and accepts the neighbor configuration based on this probabil-

ity. After each iteration, the “temperature” is decreased by a factor of ρ. The
algorithm ends when the “temperature” is smaller than the threshold Tend.

Algorithm 1. Simulated Annealing for Power Consumption Minimization
Denote delay constraint as D, the stop flag as Tend, and the starting flag as Tini.
The initial channel configuration is Cini. Pini is the initial power consumption. ρ is
the factor of temperature decreasing.
T ⇐ Tini, C ⇐ Cini,n ⇐ 0, P ⇐ Pini

while T ≥ Tend do
Find neighbor configuration Ctemp. Calculate power consumption Ptemp and
delayi for each data flow i
if ∀delayi ≤ D then

ΔP ⇐ Ptemp − P ;
else

ΔP ⇐ Ptemp + Penalty − P ;
end if
if ΔP ≤ 0 then

C ⇐ Ctemp; P ⇐ Ptemp

else
if e−

ΔP
T ≥ random() then

C ⇐ Ctemp; P ⇐ Ptemp

end if
end if
n ⇐ n + 1, T ⇐ ρnTini

end while
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6 Empirical Results

In this section, we present the evaluation results of our configuration algorithm
on a hardware testbed.

6.1 Testbed Setup and Baselines

Our testbed consists of 25 Tmote motes. Two different topologies used for the
experiments are shown in Figure 5. Node 13, as the base station, consists of
5 real motes in the experiment, which emulates a super node with 5 radios.
Independent uniform random traffic generator are implemented on each source
node.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Topology I Topology II

Fig. 5. Topologies used in experiments

In the RSS measurement phase, ev-
ery mote in the network takes turn
to act as the sender and broad-
casts packets using different power lev-
els on different channels. While the
sender is sending packets at a certain
power level on a fixed channel c, all
other nodes, acting as listeners, iter-
ate through channel c− 1, c and c + 1,
and record the received signal strength
on each channel. The reason we choose
three channels to listen is because only
the same channel and adjacent channels show the approximate linear PRR-Power
pattern, as discussed in Section 3. In the experiments, we choose 5 discrete power
levels: 3, 10, 17, 24 and 31, as the transmission power for the model establish-
ment. This helps us to reduce the solution search space and speed up the ex-
periments. After collecting all the RSS measurements, we import the data to
the Simulated Annealing optimization program we implemented in MATLAB to
compute the channel and power configuration.

We choose the following two baselines for comparison. The first baseline, called
Orthogonal, uses only orthogonal channels for channel assignment and computes
the power configuration by Simulated Annealing. The second baseline, called
Random, also uses Simulated Annealing to find the desired power level for each
node, but randomly assigns overlapping channels to flows. We use two metrics to
evaluate the performance of these three protocols. The first metric is average end-
to-end transmission count, which evaluates the end-to-end delay performance.
The second metric is transmission power consumption per packet, which is the
ratio between total transmission power and the number of packets transmitted.
This metric evaluates the energy efficiency performance.

6.2 Different Delay Constraints

We first evaluate the three schemes under different transmission count con-
straints. In this experiment, we use Topology I in Figure 5 with nine motes,
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Fig. 6. Delay under different end-to-end
transmission delay constraints
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Fig. 7. Power consumption under different
end-to-end transmission delay constraints

forming 4 flows. Three channels, 16, 17 and 18, are used. Channels 16 and 18
are orthogonal channels while channel 17 overlaps with channels 16 and 18.
Figure 6 shows the average end-to-end delay under different constraints. The
overlapping scheme achieves a smaller average end-to-end transmission count
than the two baseline schemes. In addition, the delay of our overlapping scheme
is closest to the constraints. The reason for the superior performance of our
overlapping scheme is that it takes advantage of overlapping channels with care-
fully selected power and channel configuration by the Simulated Annealing al-
gorithm to reach suboptimal solutions. With more channel resources to use, the
overlapping scheme achieves a better configuration solution than the other two
protocols. When the constraint becomes looser, all the schemes yield higher end-
to-end transmission counts. The results demonstrate that the end-to-end delay
in the network is adaptive to the change of the delay constraint.

Figure 7 shows the transmission power consumption per packet for different
constraints. Among all three schemes, the overlapping scheme consumes the least
transmission power. This is because the overlapping scheme utilizes all the avail-
able channel resources and carefully chooses the most appropriate transmission
power to reduce the interference among nodes such that the power consumed
by retransmissions is significantly reduced. When the constraint is greater than
2.8, the performance of Orthogonal is close to that of our scheme. However,
when the constraint is tight, Orthogonal performs significantly worse than the
overlapping scheme. All the three schemes show decreasing trends for power con-
sumption when the end-to-end transmission constraint becomes looser. This is
because when the constraint is looser, we have a larger search space for the SA
algorithm, likely resulting in a better power configuration.

6.3 Different Flow Numbers

Figures 8 and 9 show the performance of the network with different numbers
of data flows. It is important to evaluate the performance of the network under
different numbers of flows because multiple flows may need to share channels
when the number of flows increases. In these experiments, we use Topology II
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Fig. 8. Delay under different numbers of
data flows
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Fig. 9. Power consumption under differ-
ent numbers of data flows

in Figure 5, where 25 motes are organized as a 5 by 5 grid. The base station is
placed in the center, similar to the previous two experiments. Each data flow has
three hops and we gradually increase the number of data flows in the network
from 5 to 8. We use 5 overlapping channels, from channel 16 to channel 20, where
3 channels are orthogonal.

Figure 8 shows that the average transmission count per packet increases when
the number of data flows increases. This is because more data flows cause more
interferences in the network and more flows need to share the same channels
for data transmissions, which results in more intra-channel interferences and
competition. The same trend can be observed in Figure 9 for power consumption.
Among all the three schemes, the overlapping scheme performs best for both the
average transmission count and average power consumption. This is because the
overlapping scheme utilizes most channel resources to reduce the reuse of each
channel, which leads to less intra-channel interference. In the meantime, the
overlapping scheme also carefully configures the transmission power to reduce
the interferences among adjacent channels. Note that Orthogonal performs the
worst because a greater number of flows need to share channels when there are
only 3 orthogonal channels available. The increased channel sharing leads to a
higher degree of channel competition and intra-channel interferences, and thus
more packet retransmissions.

7 Conclusions

In this paper, we have conducted empirical studies to investigate the interfer-
ences among overlapping channels. Our results show that overlapping channels
can also be utilized for improved real-time performance if the transmission power
is carefully configured. In order to minimize the overall power consumption of
a network with multiple data flows under end-to-end delay constraints, we for-
mulate a constrained optimization problem to configure the transmission power
level for every node and assign overlapping channels to different data flows.
Since the optimization problem has an exponential computational complexity,
we then present a heuristic algorithm designed based on Simulated Annealing to
find a suboptimal solution. Our extensive empirical results on a 25-mote testbed
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demonstrate that our algorithm reduces both the end-to-end communication de-
lay and overall transmission power consumption, compared with two baselines:
a scheme using only orthogonal channels and a scheme using simple policy to
assign overlapping channels.
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Abstract. The proliferation of sensors in devices of frequent use, such
as mobile phones, offers unprecedented opportunities for forming self-
selected communities around shared sensory data pools that enable com-
munity specific applications of mutual interest. Such applications have
recently been termed participatory sensing . An important category of
participatory sensing applications is one that construct maps of different
phenomena (e.g., traffic speed, pollution) using vehicular participatory
sensing. An example is sharing data from GPS-enabled cell-phones to
map traffic or noise patterns. Concerns with data privacy are a key im-
pediment to the proliferation of such applications. This paper presents
theoretical foundations, a system implementation, and an experimental
evaluation of a perturbation-based mechanism for ensuring privacy of
location-tagged participatory sensing data while allowing correct recon-
struction of community statistics of interest (computed from shared per-
turbed data). The system is applied to construct accurate traffic speed
maps in a small campus town from shared GPS data of participating
vehicles, where the individual vehicles are allowed to “lie” about their
actual location and speed at all times. An extensive evaluation demon-
strates the efficacy of the approach in concealing multi-dimensional, cor-
related, time-series data while allowing for accurate reconstruction of
spatial statistics.

1 Introduction

An emerging category of applications focus on collecting and sharing sensor data
for the purpose of characterizing aggregate real-world properties, such as com-
puting community-wide statistics or mapping physical phenomena of common
interest. These applications are termed participatory sensing applications [1]. Ex-
amples of these applications include vehicular sensor networks for collecting and
sharing traffic data [2], bicycle networks to collect and share bikers’ paths [3],
and cell phone based buddy networks to collect and share location and activ-
ity information [4]. An important category of participatory sensing applications
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is one where users share location-tagged data to construct maps of different
phenomena (e.g., traffic speed, pothole, pollution).

One main problem in participatory sensing applications that share location-
tagged data is privacy. For example, a community of environmentalists might
want to collectively measure pollution on city streets and share that information
to construct city-scale pollution maps. Since such data are location-tagged, a
key question is to enable correct geographic mapping without revealing private
location information of individuals collecting the location-sensitive data. The
problem becomes non-trivial in the absence of a shared trusted entity that can
be used to sanitize the data. Moreover, since the data itself, such as GPS traces,
may reveal user identity, anonymity is not the answer to the privacy problem.

To address the above challenge, in this paper, we solve the privacy problem
via data perturbation. Perturbing data on the client-side prior to sharing em-
powers clients by giving them the freedom to “lie” about both their data and
the context (such as location) where it was collected. Clients share their per-
turbed data with an entity we call the aggregation server . It is responsible for
computing the aggregate statistics of interest. Clients trust the server with com-
puting the statistics but do not want to reveal their private data to it for privacy
reasons. When receiving perturbed data, in addition to computing the commu-
nity statistics, the server may try to guess the original individual user data,
which we call a privacy attack . This paper designs perturbation algorithms that
protect against privacy attacks, while ensuring accurate reconstruction of com-
munity statistics. The contribution lies in solving the above problem for the case
of multidimensional correlated time-series data (such as correlated sensor data
streams).

From an algorithmic perspective, the fundamental limitation of previous ap-
proaches is that they do not consider privacy-preserving perturbation and re-
construction when each user shares multiple correlated private data streams. For
example, when collecting speed at different locations to build a city speed map,
both speed and location are private since a client might not want to admit, say,
to speeding, and might not want their location to be tracked.

We provide a solution to the general problem of ensuring privacy for multi-
stream data of individuals while allowing community statistics to be recon-
structed accurately. We develop a correlated noise model that can be utilized
for perturbing location-tagged data in a way that protects both data and lo-
cation privacy. We evaluate the approach using a traffic monitoring application
implemented using an existing architecture called PoolView [5]. The applica-
tion follows a client-server model. The client-side software collects data from
the client’s GPS device, perturbs the data and shares those with an aggrega-
tion server. The aggregation server then estimates useful community statistics
from perturbed data and makes those statistics available for community access.
Empirical measurements show that the approach results in accurate reconstruc-
tion of speed maps from perturbed data while preventing the reconstruction of
individual client data and location information.
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The rest of this paper is organized as follows. We first develop the recon-
struction algorithm of the joint probability distribution in Section 2. Privacy
properties are discussed in Section 3. Section 4 and Section 5 describe simulation-
based evaluation and deployment-based evaluation, respectively. Finally, Section
6 concludes the paper.

2 Joint Probability Density Function Reconstruction

The main contribution of this paper lies in the algorithm to accurately recon-
struct the community joint density given the perturbed multidimensional stream
data and the noise density information. Any statistical question about the com-
munity can be answered using the reconstructed joint density. There have been
many efforts on the community distribution reconstruction. Agrawal et al. [6]
proposed a Bayesian-based reconstruction of the probability distribution. In [7],
the authors use the Expectation Maximization (EM) algorithm to estimate one-
dimensional distribution from data perturbed with Gaussian noise. In our pre-
vious work [5], we employed the Tikhonov-Miller deconvolution technique to
estimate the community distribution. However, all of these algorithms are de-
veloped to reconstruct a one-dimensional distribution. Hence, they do not scale
to the problem of multidimensional distribution reconstruction. In this section,
we present an iterative algorithm to estimate the discretized joint distribution
of multidimensional data streams.

Let the number of data streams that each user wants to share be M . The
shared data from each user are assumed to be drawn from a multivariate random
variable X = (X1, X2, . . . , XM ), thus each data point is a length M vector.
The reconstruction algorithm does not distinguish which data points are from
which user. Therefore, we can define the set of all data points from all users
as X̄ = {x1, x2, . . . , xn} where xi is a length M data point, and n is the total
number of data points from all users.

Each data point is perturbed by adding an M -dimensional noise data point
generated from a known joint distribution fN(N1, N2, . . . , NM ) which is known
to all participating users (or rather to their client-side software). An aggregation
server receives the set of n perturbed data points from all users denoted as
Ȳ = {y1, y2, . . . , yn}. We want to estimate the joint distribution of X which is
fX(X1, X2, . . . , XM ) given the shared data Ȳ and the knowledge of the noise
distribution fN .

Let us denote the sample space of Xi as Ωi. Thus, the sample space of X
is Ω = Ω1 × Ω2 × . . . × ΩM . In order to reconstruct the density of X , we first
discretize the the sample space Ω. The sample space of Xi is partitioned into
Ki bins (may not be uniform) denoted as {Ω1

i , Ω2
i , . . . , ΩKi

i }. Thus Ω containes
K = K1 ×K2 × . . .×KM M -dimensional bins in which the value of the density
function is constant. The more the number of bins, the better the discrete density
approximates the continuous density. To simplify the notation, the following
symbols are introduced:
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– ωI : the Ith bin of Ω, thus Ω = ∪ωI ωI .
– Θ = {θ1, θ2, . . . , θK} : where θi = fX(X) with X ∈ ωI , is the set of all

density parameters to be estimated.
– mωI : the volume of ωI , a proper discrete density parameters Θ should satisfy∑

ωI

θImωI = 1 (1)

To estimate Θ, our approach is to employ the maximum likelihood frame-
work. We need to find the density function parameters which maximize the log
likelihood of the data X̄ given the observations Ȳ

Θ̂ = argmax
Θ

log fX;Θ(X̄|Ȳ ) (2)

The notation fX;Θ means that the likelihood of X is computed using the
discrete distribution Θ. Unfortunately, the likelihood can not be computed di-
rectly at the aggregation server because only Ȳ is known while X̄ is missing. A
common procedure to solve the maximum likelihood estimation with incomplete
information is the EM algorithm [8]. To use the EM algorithm, the following
auxiliary function Q(Θ|Θ̂k) is defined:

Q(Θ|Θ̂k) = EX|Y
[
log fX;Θ(X̄)|Ȳ , Θ̂k

]
(3)

The auxiliary function Q is actually the expectation of the likelihood in (2)
with respect to X using the density of X computed from the previous step which
is Θ̂k. The EM algorithm consists of two steps:

– E-step : Given the density computed from the kth step, compute the value
of Q(Θ|Θ̂k)

– M-step : Compute Θ̂k+1 = argmaxΘ Q(Θ, Θ̂k)

Next, we will derive a closed form expression for Q, the optimal solution which
maximizes the likelihood function and analyze the convergence of the algorithm.

Theorem 1. (E-step) The value of Q(Θ|Θ̂k) is given by:

Q(Θ|Θ̂k) =
∑
ωI

θ̂k
ωI

log(θωI )φ
k
ωI

(4)

Where

φk
ωI

=
1
N

N∑
j=1

fN (yj − ωI)
fk

Y ;Θ̂k
(yj)

(5)

fY ;Θ̂k(yj) =
∑
ωI

fN (yj − ωI)θ̂k
ωI

(6)

fN(yj − ωI) =
∫

ωI

fN (yj − γ)dγ (7)

Proof. See Appendix A.1.
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Theorem 2. (M-step) The value of Θ̂k+1 maximizing the auxiliary function
Q(Θ|Θ̂k) is given by

θ̂k+1
ωI

=
φk

ωI

mωI

θ̂k
ωI

(8)

Proof. See Appendix A.2.

In the next theorem, we show that the EM algorithm for this problem is guar-
anteed to converge to the maximum likelihood solution which is the solution for
(2). Therefore the likelihood value increases slowly as it approaches the opti-
mal solution. Thus a stopping condition for the algorithm is when the likelihood
difference between two consecutive steps is sufficiently small.

Theorem 3. The estimated density function given by the algorithm converges
to the maximum likelihood solution Θ̂ defined in the Equation (2).

Proof. We will first prove that Q(Θ|Θ̂k) is concave in θωI . In Theorem 1, we prove
that the value of the auxiliary function Q(Θ|Θ̂k) =

∑
ωI

θ̂k
ωI

log(θωI )φk
ωI

which
is the non-negative linear combination of log(θωI ). Since log(x) is a concave in
x, the non-negative linear combination of log(x) functions is also concave. Thus
Q is concave in θωI .

Wu et al. [9] showed that the value of the likelihood increases after each
iteration. Because Q is concave, the iterative algorithm will finally converge to
Θ̂ which maximizes the likelihood function defined in (2).

3 Perturbation of Location and Data

Having presented a general algorithm for reconstruction of community statistics,
it remains to decide on the perturbation function. This question is equivalent
to choosing the noise probability density function, from which noise samples are
chosen. Perturbation is application specific, since it depends on what is being
perturbed. We consider the class of applications where we perturb location-
tagged data collected by vehicles.

In our application, individuals collect GPS longitude, GPS latitude, speed and
(coarsely discretized) time, using their own GPS devices. Once the aggregation
server receives perturbed data from participants, the community joint density
(i.e., the joint density of longitude, latitude and speed) is reconstructed using
the above reconstruction algorithm. Speed-related statistics are then computed
as a function of location on the map from the reconstructed joint density. In
this paper, we present useful community statistics that can be computed from
the estimated multidimensional density such as community average speed, speed
distribution, car density, and percentage of speeding vehicles on different streets.

The application was deployed on top of our existing architecture for partic-
ipatory sensing called PoolView [5]. PoolView is a generic client-server based
architecture that enables individuals to collect, archive, and share sensor data
with a community On the client side, PoolView provides software that collects
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sensor data from specific devices (e.g., Garmin GPS). We modified the PoolView
client to use our new multidimensional data perturbation scheme. On the server
side, we implemented the multidimensional density reconstruction algorithm and
the algorithms used to estimate the aforementioned statistics.

3.1 The Perturbation Model

In this section, we propose an algorithm that generates fake (but realistic-
looking) vehicle traces that perturb true user location and speed in a way that
protects them from being estimated. The vehicle traces are recorded as dis-
placements from an origin (of a coordinate framework) that lies at some agreed
upon point in the city in question. These displacements, which we henceforth
call perturbation traces , will then be added to real routes to generate perturbed
routes. There has been many research efforts on generating vehicle traces in prior
work [10, 11, 12, 13]. We can utilize one of those models to generate perturba-
tion traces for our application. However, the vehicle traces used for perturbation
do not need that level of accuracy. Thus, we develop a simplified model that
generates perturbation traces using a minimal number of simple parameters.

It is key that the perturbation traces generated resemble real traces for the
city in question. For example, in a city with a lot of curvy roads, generated
perturbation traces containing only straight segments will not help conceal the
identifying characteristics of the roads actually traveled. A robust perturbation
trace generation algorithm must therefore incorporate as many features of the
actual map as possible.

Our perturbation trace generation algorithm generates traffic routes made of
sequences of straight line segments, each of a length drawn from the distribution
of the lengths of city blocks. These segments are at angles generated from the
distribution of city street intersection angles. This distribution heavily favors
0 degree angles (continuing forward past an intersection) and 90 degree turns.
Other angles are generated with lower probability. We ignore U-turns because
they occur with a very small probability. For speed, we use a sine curve for each
road segment that peaks in the middle of the segment and slows down towards
the beginning and end. The peak is drawn from the distribution of city street
speed limits. The slowest point is a uniformly-distributed random fraction of the
peak. These traces represent displacement to actual routes. This displacement
can be scaled to control the noise variance.

Finally, for the purpose of reconstructing the community joint distribution,
we need the joint distribution of the generated perturbation trace (the noise).
Since it is hard to come up with an analytic solution for the joint distribution of
the noise, we generate this distribution numerically. First, we generate a pool of
noise data points from the model then a non-parametric density estimation with
smoothing [14] is employed to estimate the joint distribution. In this application,
5000 vehicle traces, each of which contains 40 data points, are generated and
used as input to the density estimation algorithm, which generates the joint
distribution.
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3.2 Achieved Privacy

In this section, we analyze the extent of privacy offered to individual user data
using our perturbation scheme. The information available to the aggregation
server includes the perturbed data, the noise density function (known by the
server) and the map on which the user traveled. First, note that the reconstruc-
tion algorithm proposed in this paper can not be used to reconstruct individual’s
real data from those information. Our proposed algorithm can only reconstruct
community distribution from shared data of a reasonable number of participants.
Using the available information, the malicious server can employ filtering tech-
niques to remove additive noise from the perturbed data. We call this kind of
attack filtering attack.

In this paper, we analyze a filtering attack which applies a Wiener filter to re-
move additive noise from perturbed data. The Wiener filter uses the noise density
information to filter the noise from perturbed data. One important assumption
that the Wiener filter makes is the noise samples are independent. However, this
assumption fails because the noise samples generated by our algorithm are cor-
related which makes the estimated data traces follow the perturbed path instead
of real path. For demonstration, we perturb a real user location trace with both
correlated noise generated by our algorithm and independent Gaussian white
noise and then perform the Wiener filter on both perturbed data set.

The result of the Wiener attack in the case of Gaussian white noise is shown
in Figure 1(a). The reconstructed path is very close to the real path and the
reconstruction error is less than one block which means that the attacker can
easily figure out the place where the user have been. Figure 1(b) shows the real
path, perturbed path and the reconstructed path for the perturbation technique
we developed in this paper. We see that the reconstructed path follows the
perturbed path. Therefore, the Wiener filter attack does not work as desired for
the attacker. Users might want to increase the variance of the generated noise to
get more privacy, but the reconstruction error might increase as well. Therefore,
it is important to balance the trade off between privacy and accuracy.

The second type of attack considered in this paper is the range attack. It is
possible to conduct the range attack in applications where the ranges of both
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the real data and the generated noise are finite. In this case, real data values can
be inferred if boundary values of the perturbed data are observed. For example,
suppose the real speed of a vehicle is in the range [0 to 50] and the generated
noise is also in the range [0 to 50]. If the perturbed speed is 100, the attacker
knows with certainty that the true speed is 50. In general, if the perturbed values
are close to the boundary, privacy can be violated. In applications involving
GPS location as a private variable, however, this attack is not effective. GPS
location refers to a point of the globe. Perturbing that location by a few miles
is sufficient for privacy, yet the perturbed location still refers to a point on
the globe. In other words, the perturbed coordinates always refer to a valid data
point. An exception is when map information is used to infer noise. For example,
at coastal areas, one may safely assume that vehicles do not move on water, which
generates a boundary on valid locations. The map-based attack will be discussed
shortly. In general, the effect of range-based attacks can be mitigated if the noise
distribution has a long tail such that arbitrarily large values are allowed with an
arbitrarily low probability. (Many distributions, including Gaussian, have this
property.) In this case, the range is infinite. There is no maximum value for the
perturbed signal that can be used to breach privacy.

Another popular type of attack against additive-noise perturbation techniques
is the leak attack [15]. In this type of attack, the attacker may be able to estimate
the seed of the pseudo random number generator which generates the noise curve
if he can guess a few true data values. Then this seed can be used to generate
the noise curve used by the user since the noise distribution is known. However,
with our perturbation scheme, this attack is not possible because we only use
the random number generator to generate the model parameters (e.g., number of
turns, speed of each segment). The additive noise is then generated using those
parameters and the model developed earlier in this section.

A vulnerability of our perturbation scheme is that it is possible to combine the
real map with a clever estimation technique to estimate the most likely traveled
path. We call this attack scheme a map-based attack. At this moment, it is
still unknown if there exists a good map-based attack against our perturbation
scheme. In this paper, we argue that finding an efficient map-based attack is hard.
One possible way to conduct the map-based attack is to look at the sequence
of the turning angles in the GPS trajectory data. Since the probability that
the noise angle and the real angle cancel out is pretty small, the turning angles
from the perturbed data contain some information about the real turning angles.
Combining with the map, it is possible to find the most probable traveled path.
It is not easy, however, to find the likelihood of the real turning angle given the
perturbed path. Because the perturbed path is created by adding the coordinates
of the real path and the noise path, the angle in the perturbed path is not only
depend on the angle of both real path and noise path but also depend on the
magnitudes of those. In the upcoming sections, we only evaluate the immunity
of our perturbation scheme against filtering attacks.
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4 Simulation Results

In this section, we evaluate the performance of the traffic mapping application
with simulated data. The advantage of using simulated data is to give total
control over traffic parameters, (e.g., average community speed, speed map),
which is hard to accurately measure in a real application. In addition, vehicular
traces can be generated for a large numbers of “virtual” users makes it possible
to evaluate the accuracy of the reconstruction algorithms. We also evaluate the
accuracy computation of the community average speed using the reconstructed
density in this section.

We use the ONE (Opportunistic Network Environment) [16] simulator to
generate artificial traces of vehicle movements in a small city setup. The map
used in this simulation is a part of Helsinki city and is distributed with the
ONE simulator. The simulator supports Map Based Movement models that can
import map data and constrain vehicle movement to the streets and roads of the
imported map.

Our goal is to make the data get out from the simulator as realistic as possible.
The input map for the simulator is extracted from a real map and is shown in
Figure 2 with the X and Y coordinates ranging from 0 to 4000 meters and
0 to 3600 meters respectively. Vehicle speeds are chosen to be Gaussian with
mean 30mph and standard deviation of 10mph. Trip data, including X and Y
coordinates and vehicle speed, are sampled at a frequency of 1 Hz, and are
stored in an external file for later use. The simulated data are then perturbed
with perturbation traces generated by the algorithm discussed in Section 3.1.
The perturbed data are then submitted to the aggregation server.

Fig. 2. The map used in simulation

We collect data from 120 users, each of which contains 80 data points, from
the simulation. In order to reconstruct the community joint distribution, we
first have to specify the range of each dimension and the number of bins in each
dimension. Those parameters are summarized in Table 1. In this simulation,
we discretize the location in 100mx100m bins which is small enough to capture
the street information. For more accurate reconstruction of the joint density,
more bins in each dimension might be needed but it would require more user
data points and computational time. In this specific traffic application, we are
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only interested in the density values corresponding to the street locations. Our
proposed algorithm allows us to do the reconstruction on those bins only thus
siginificantly reduce the time complexity of the algorithm.

Table 1. Parameters for the reconstruction

Parameter range of X range of Y range of V

Value 0 - 4000 (m) 0 - 3600 (m) 0 - 60 (mph)

Parameter X bins Y bins V bins

Value 40 36 60

Table 2. Noise variance in each data set

Parameter stddev of X (m) stddev of Y (m) stddev of V (mph)

Dataset 1 100 100 4

Dataset 2 500 500 36

Dataset 3 900 900 60

Dataset 4 1500 1500 76

Dataset 5 3000 3000 100

In the first experiment, we study the accuracy of the density reconstruction
algorithm under various noise variance. The application must achieve high recon-
struction accuracy at a reasonably high noise variance level in order to provide
sufficient privacy to users. To achieve this goal, we perturbed the simulation
data using five different noise variances shown in Table 2.

We define the accuracy of the density reconstruction as a function of the
average accuracy of all the bins:

r =
1
K

K∑
i=1

(
1 − |θi − θ̂i|

θi

)
(9)

In Equation (9), r is the computed accuracy, θi is the true discrete density
parameter, θ̂i is the estimated density parameter. θ̂i is obtained by feeding the
real density using real user data points to the density estimation algorithm.

The accuracies of the reconstructions as the function of the number of data
points and noise variance are shown in Figure 3. The figure shows five different
curves corresponding to the five dataset described above. The X axis is the
number of data points which varies from 120 points to 1200 points with 120-point
increments. In the results, Dataset 1 achieves highest accuracy while Dataset 5
achieves lowest accuracy.
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Next, we evaluate the achieved privacy for each dataset presented in Table 2.
We assume that the attacker uses Wiener filter to estimate vehicle trace of
individuals from perturbed data and the noise distribution. Beside correlated
noise, trip data are also perturbed with Gaussian noises with the same standard
deviation for comparision purpose. We perform the estimation on the perturbed
vehicle trace of all users and compute the average reconstruction error which is
presented in Table 3 below.

Table 3. Reconstruction Error of Individual Data

Dataset Correlated Noise (m) Gaussian Noise (m)

Dataset 1 334.5 145.0

Dataset 2 1329.5 153.4

Dataset 3 1942.4 189.8

Dataset 4 3573.6 218.1

Dataset 5 4901.1 223.5

From the Table 3, the reconstruction error for the vehicle traces perturbed
with correlated noise is very high as opposed to the Gaussian case in which the
error is small. With Dataset 1 (the noise covariance is small) the reconstruction
of individual data is still high (about 3 blocks) which means good privacy is
achieved. Also, with Dataset 5, although the reconstruction error of individual
data is huge (about 40 blocks), the community distribution can still be accurately
reconstructed (above 96%).

In the last experiment, we demonstrate the estimation of the community av-
erage speed using the joint distribution estimated in the first experiment. In
addition, we also want to study the effect of the number of iterations on the
accuracy of reconstruction. To compute the community average speed from the
community joint distribution f(X, Y, V ), we first compute the speed density f(v)

f(v) =
40∑

x=1

36∑
y=1

f(x, y, v)ΔXY (10)

Equation (10) is the marginalization of the discrete joint density over X and Y
dimensions. where ΔXY = (4000/40)∗(3600/36) is the area of a two dimensional
bin XY . Then the average speed v̄ is computed as v̄ =

∑60
v=1 vf(v).

The result of the experiment is shown in Figure 4. Although Dataset 5 provides
users with highest acceptable privacy, the reconstructed average speed is still
close to the true value. Another important observation from the graph is that
the density reconstruction algorithm requires a very small number of iterations
to converge. Results from 5 datasets show that 10 to 15 iterations are sufficient.
The accuracy of the algorithm almost does not change after 20 iterations. In the
next section, we evaluate the performance of the application using deployment
data.
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5 Deployment Data

In this section, we evaluate the traffic monitoring application with real deploy-
ment data. The data are collected by driving on all the streets within an area
shown in Figure 5. There are a total of 15 users, each user drives the streets at
will for 10 minutes. During the drive, we use a Garmin Legend [17] GPS device
to record location and speed information. The sampling frequency of the device
is 15Hz which is enough to record changes in the location and speed since the
speed limit in the area is 25 mph.

Fig. 5. Map used to collect data

At the aggregation server side, to do the reconstruction, we need to specify the
reconstructed region and the number of bins in each region. The reconstruction
parameters are summarized in Table 4. For location, we divide each axis into 30
bins, the width of each bin is 0.01 mile, which is about the width of a street.
This is important because, we want to estimate the speed down to the resolution
of a street. This can be done by looking at the specific bins corresponding to the
target street.

Table 4. Parameters for the reconstruction

Parameter range of X) range of Y range of V

(1/100 mile) (1/100 mile) (mph)

Value 0 - 300 0 - 300 0 - 25

Parameter X bins Y bins V bins

Value 30 30 30

Table 5. Noise standard deviation

Parameter stddev of X stddev of Y stddev of V

(1/100 mile) (1/100 mile) (mph)

Dataset 1 45 35 5

Dataset 2 75 75 10

Dataset 3 100 100 15

Dataset 4 150 150 20

Dataset 5 300 300 30

In the first experiment, we study the density reconstruction accuracy as a
function of the number of data points used for reconstruction. We want to answer
the question of how many data points we need to achieve a desired accuracy.
Similar to the case of simulation data, we do the perturbation of the data with
five different noise data sets each of which has different variance. The details
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of the noise datasets are presented in Table 5. The standard deviation of the
noise specified in the table is comparable to multiples of the block length (about
75/100 mile), We run the density reconstruction algorithm multiple times, each
time with a different number of data points. The data points are randomly picked
from the total pool of data points contributed by all users. The number of data
points taken for reconstruction is varied from 100 to 800.

The results of the experiment are shown in Figure 6. From the result, the
highest accuracy achieved is about 90% at about 800 datapoints while the low-
est accuracy is about 83% at about 160 datapoints. The number of data points
needed for a good estimate is thus surprisingly low. This can be explained by
the observation that since the data points are uniformly picked from the pool,
there is a high chance that they scatter all over the map, thus capturing the
speed information of the whole area. This makes the application practical in
most city areas. In the next experiment, we demonstrate the estimation of the
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community speed distribution. This community speed distribution can be use-
ful in determining the average speed in the area or compute the percentage of
speeding vehicles in that area. To compute the community speed distribution
f(v), we marginalize the estimated discrete joint distribution f(x, y, v) as follow

f(v) =
30∑

x=1

30∑
y=1

f(x, y, v)ΔXY (11)

where ΔXY = (300/30) ∗ (300/30) is the area of a two dimensional bin in XY
dimension. Figure 7(a) and 7(b) shows the real community speed distribution
and the estimated community speed distribution, respectively. We see that the
two speed distributions are similar except for the first bin corresponding to zero
speed. This can be explained because the density estimation algorithm tends to
produce a smooth distribution. Thus, the speed value of the bin is smoothed out.
The percentage of speeding vehicles in the community can be computed as the
sum of bins with larger than 25 miles/hr speed. In this case the real community
percentage of speeding is about 7% while the estimated percentage of speeding
is 10% which is a good estimate.



Privacy-Preserving Reconstruction of Multidimensional Data Maps 127

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Speed (mph)

P
ro

ba
bi

lit
y 

D
en

si
ty

(a) Real community
speed distribution

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Speed (mph)

P
ro

ba
bi

lit
y 

D
en

si
ty

(b) Reconstructed
community speed
distribution
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6 Conclusion

In this paper, we present theoretical foundations for perturbation based mech-
anisms for ensuring privacy while allowing correct reconstruction of community
statistics of interest. Previous data perturbation techniques fail to ensure either
privacy or correct reconstruction of community statistics in the case of correlated
multidimensional time-series data. The algorithms proposed in this work allow
participants to add noise to multiple correlated data streams prior to sharing in
a privacy-preserved way while making sure that relevant community statistics
are still reconstructible. A participatory sensing application for traffic monitor-
ing is developed which allows participants to “lie” about their actual location
and speed, while letting the community estimate useful traffic statistics (e.g.,
speed map, percentage of speeding vehicle, etc) with high accuracy.
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A Appendix

A.1 Proof of Theorem 1

We begin with the expansion the auxiliary function Q by noting that the data
points are i.i.d.

Q(Θ|Θ̂k) = EX|Y
[
log fX;Θ(X̄)|Ȳ , Θ̂k

]

= EX|Y

⎡
⎣log

N∏
j=1

fX;Θ(xj)|yj , Θ̂
k

⎤
⎦

=
N∑

j=1

∫
Ω

log fX;Θ(γ)fX|Y ;Θ̂k(γ|yj)dγ

In the last step, the expectation is taken over all possible values of X given
the observation yi. We further expand the auxiliary function Q using Bayes’
formula and the fact that fY |X(Y |X) = fN(Y − X) because N = Y − X .

http://www.netlab.tkk.fi/tutkimus/dtn
http://www.garmin.com/products/etrexLegend
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Q(Θ|Θ̂k) =
N∑

j=1

∫
Ω

log fX;Θ(γ)
fXY ;Θ̂k(γ, yj)

fY ;Θ̂k(yj)
dγ

=
N∑

j=1

1
fY ;Θ̂k(yj)

∫
Ω

log fX;Θ(γ)fX;Θ̂k(γ)fN(yj − γ)dγ

=
N∑

j=1

1
fY ;Θ̂k(yj)

∑
ωI

∫
ωI

log(θωI )θ̂
k
ωI

fN(yj − γ)dγ

In the last equation, the integral over the Ω is discretized and is computed as
the sum of the integral over all subspaces ωI in which the value of the discrete
density function is constant. Also the value of fY ;Θ̂k(yj) is computed as follow:

fY ;Θ̂k(yj) =
∫

Ω

fY (yj |x)fX;Θ̂k(x)dx

=
∑
ωI

fN(yj − ωI)θ̂k
ωI

Q(Θ|Θ̂k) =
N∑

j=1

1
fY ;Θ̂k(yj)

∑
ωI

θ̂k
ωI

log(θωI )
∫

ωI

fN (yj − γ)dγ

=
∑
ωI

θ̂k
ωI

log(θωI )
N∑

j=1

fN (yj − ωI)
fY ;Θ̂k(yj)

=
∑
ωI

θ̂k
ωI

log(θωI )φ
k
ωI

��

A.2 Proof of Theorem 2

This is an optimization problem with a constraint which ensures that Θ is a
proper density function.

Θ̂k+1 = argmax
Θ

Q(Θ|Θ̂k)∑
ωI

θωI mωI − 1 = 0

The Lagrangian of the optimization is given by

L(θωI , λ) = Q(Θ|Θ̂k) + λ(
∑
ωI

θωI mωI − 1)

=
∑
ωI

θ̂k
ωI

log(θωI )φ
k
ωI

+ λ(
∑
ωI

θωI mωI − 1)
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The optimized values θ̂k+1
ωI

satisfied ∂L
∂θωI

(θ̂k+1
ωI

) = 0 and ∂L
∂λ (θ̂k+1

ωI
) = 0. After

some algebraic transformation we get

λ = − 1
N

N∑
j=1

1
fY ;Θ̂k(yj)

∑
ωI

θ̂k
ωI

fN(yj − ωI) (12)

Since Y = X + N thus the density of Y is the convolution of the density of
X and N . It is straight forward to show that

fY ;Θ̂k(yj) =
∑
ωI

θ̂k
ωI

fN (yj − ωI) (13)

Substitute (13) into (12) yield λ = −1. Therefore

θ̂k+1
ωI

=
φk

ωI

mωI

θ̂k
ωI

��
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Abstract. New developments in military, health and home areas call
for new approaches for data acquisition in real-time. Such application
areas frequently include challenging requirements for collection, process-
ing and analysis of environmental data. Wireless Sensor Networks can
collect such environmental data efficiently. Collected sensor node data
needs to be transmitted in an efficient way due to limitations of sensor
node resources in battery power and available bandwidth. In this paper,
we present a method for efficient transmission of sensor measurement
data using the IETF standard IPFIX. We show that its template based
design is suitable for efficient transmission of senor data with low band-
width consumption. In this paper, we present the protocol and its imple-
mentation in Wireless Sensor Networks (WSNs). Additionally, a header
compression scheme is introduced which further reduces communication
cost during data transmission.

1 Introduction

Research efforts for wireless sensor technologies become more and more impor-
tant due to the number of devices in use. Common sensor nodes are only equipped
with low-cost hardware and are limited in available bandwidth, memory and bat-
tery power. Therefore, communication within a sensor network needs to be very
efficient. As bandwidth is limited and data transmission exhausts battery power,
transmitting sensor measurement data with little overhead is necessary.

Home networks have an additional requirement. Adding new sensor nodes into
a home network should be performed without any (or only minimal) manual
reconfiguration of the network. Additionally, Wireless Sensor Networks (WSNs)
should be seamlessly integrable into an existing infrastructure.

Concerning resources, similar constraints can be found in the field of net-
work monitoring. Although network monitors are usually equipped with a lot of
memory and processing power, they have to observe and process a lot of traffic.
Generating, encoding and transmitting information about the observed traffic
needs to be implemented at low cost in order to preserve most of the available
resources for the monitoring itself.

Therefore, Claise et al. developed the IP Flow Information Export protocol
(IPFIX) [3], which is used for transmitting monitoring data. It was standardized
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by the Internet Engineering Task Force (IETF) in 2008. The protocol was de-
signed to transport flow and packet data, but can also be used for transmitting
arbitrary data in an efficient way. It has a template-based concept for encoding
measurement data.

In this paper, we present the protocol IPFIX and analyse how it can be
used for efficient transmission of sensor data within a Wireless Sensor Network.
Furthermore, we will discuss how IPFIX can be embedded into home networks
with an infrastructure of wireless sensor nodes.

The remainder of this paper is organized as follows: Section 2 presents the
IPFIX protocol and discusses its properties, focusing on the special constrains
of wireless sensor nodes. Afterwards, Section 3 describes how IPFIX on wire-
less sensor nodes can be deployed in the context of IP based home networks.
Furthermore, we will discuss how data security methods and compression can
be integrated with IPFIX. Afterwards, we will describe our implementation ap-
proach of IPFIX in Section 4. Finally, Section 5 will discuss related work before
conclusions are drawn in Section 6.

2 The IP Flow Information Export Protocol

2.1 The Protocol

IPFIX [3] was developed by the Internet Engineering Task Force for transmitting
flow information between a network monitor and flow data collectors. Commu-
nication takes place between an Exporter and a Collector in IPFIX terminology.
IPFIX is specified as a PUSH-Protocol with an exporter periodically transmit-
ting data to one or more collectors.

This design choice seems to be suitable for WSNs because wireless sensor
devices tend to disable their wireless network device as long as possible in order
to save energy. Aggregating sensor data with a request-response protocols may
fail in these scenarios.

For IPFIX, a template based design was developed to exchange measurement
data with little overhead. Measurement data is exchanged in so called Records.
The protocol distinguishes, amongst others, between Template Records and Data
Records as shown in Figure 1.

Data Records contain the measured data while Template Records contain
meta information about the information which is transmitted in the Data
Records. This meta information covers the type and the length of the mea-
surement data. An Exporter sends a Template Record only once to its Collector
to announce the structure of the upcoming data records. The Template Record
is stored by the Collector for decoding incoming Data Records. An unique ID,
called Template ID, is assigned with every Template Record and it is sent to the
collector. Further Data Records will reference this ID.

As shown in Figure 1, each Template Record describes the encoding of the
transmitted sensor measurement values in a Data Record. A Record may con-
tain several several fields where a field corresponds to a measurement type like
brightness or humidity. Each field in the Template Record describes the type
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Fig. 1. IPFIX Records with decoding pointers

and length of the corresponding field in the Data Record (Figure 1 shows 4
template fields). The type is uniquely described with a Type ID and an En-
terprise ID in a template field. The Type ID specifies the type of data while
the Enterprise ID denotes the organization which issued the Type ID. IPFIX
standardized several IDs which are necessary to exchange traffic measurement
data like sourceIPv4Address or destinationIPv4Address. The ID field consists
of 16 Bits, where IDs 1-32767 are reserved for these traffic measurement data
types [21].

If vendors want to exchange different data, for example sensor measurements,
new IDs located above ID 32767 must be used. Hence, if the most significant bit
for all these IDs is set to 1, a Collector concludes to see a non standard ID. In
the next step the Enterprise ID (EID) will be checked by the Collector in order
to find the organization which issued the ID. Each vendor has to register an
Enterprise ID with the Internet Assigned Numbers Authority (IANA) [8] which
will ensure that any vendor can be uniquely identified. Each vendor can specify
up to 32767 own IDs for their data, because 15 bits are left for the Type ID field.
We can use this facility to transmit sensor measurement data over IPFIX. It is
necessary to register an Enterprise ID for sensor measurement data. Afterwards,
we can specify our own standard IDs for common sensor measurement data (e.g.
temperature value).

A template field also contains a length which announces the length of the
transmitted data field in the Data Record. The length is declared in a 16 Bit
counter, which allows very long data fields to be included in a Data Record. The
fields length is important for a Collector when it decodes a Data Record as Data
Records do not include any meta information about the measurement data.

As Figure 1 shows, several template fields may be included into one Template
Record, e.g. time stamp and brightness measurement data. If different data
should be transmitted to different nodes the Exporter needs more than one
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Template Record. Different Template Records are also needed if aggregated and
non-aggregated data should be transmitted.

Sensor nodes act as Exporters and transmit their measurement data using
IPFIX. When the sensor node boots up, it has to announce a Template in order
to announce its measurement data to the Collector. This has to be done only
once, as a Collector has to buffer the Template and can use it to decode Data
Records. Data Records do not have to contain anything but the measurement
data as all meta information has been already sent in the Templates. They only
have to contain the number of transported data fields as well as the template ID
which is necessary for decoding the record. If a template announces two types
of measurement data, e.g. light and temperature, it forms the template record
{light, temperature}. Therefore, data records also consist of the tuple {light
value, temperature value}. As a consequence, both values need to be included
into the record. Several data records can be put into a single message. All records
within a packet that can be decoded with a single template, form a so called
Data Set as shown in Figure 1.

An Exporter transmits a Data Record. The Collector will look up the Tem-
plate ID and uses the corresponding template to decode the data as illustrated
in Figure 1. A Pointer will be hold by the IPFIX parser which points into the
Data Set after the length of the Data Set field. The length of the first field will
be looked up in the Template Record and the appropriate numbers of bytes will
be read. The data type can be identified by its Type ID. Afterwards, the pointer
will be advanced by the length of the given field. Then, the next field will be
read in the same way.

This template based approach will ensure that meta information about the
transmitted data is sent only once. Thus, meta information does not need to be
transmitted with every measurement report by the sensor nodes. This in turn
results in smaller packets.

Both producing as well as parsing IPFIX Data Records is very easy. The
header which contains, amongst others, the Template ID and the number of
measurement fields is produced by a sensor node. In the next step the mea-
surement data is packed into the Template in the announced order. A Collector
has to read the Template ID and can then read one data field after another
as specified in the Template. This process is easy to implement (see Section 4)
and has very low processing needs as only pointers need to be moved over the
data record. If a pre-defined (hard coded) template is used, this process can be
implemented even on very small motes. Multiple templates could be used if the
nodes would have more resources, to allow measurement data analysis as done
by the base station or servers.

2.2 Identifying Measurement Data of Sensors

Sensor measurement data is identified by the Type ID and the Enterprise ID
(EID). To enhance interoperability they need to be standardized. For today’s
home networks, typical environmental data can be measured by sensor nodes.
Therefore, standard Type IDs can be issued. Up to now, no EID for sensor node
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data exists, thus it must be chosen and registered by IANA. This EID can then be
used to identify sensor node measurement data. Also, new IDs describing typical
sensor data as shown in Table 1 must be standardized. Semantics and type length
need to be included in the ID standardization in order to ensure interoperability.
New generations of sensor nodes will have the ability to measure other types of
data which will result in new IDs. Each vendor can register their own EID and
specify their own IDs if he wants to include proprietary data types. However,
as the common base for transmitting data is still IPFIX, IPFIX interoperability
between devices in the network is enhanced.

Table 1. Possible IDs Space for Sensor Measurement Data

ID Purpose Length Range

1 Node-ID 2 bytes 0 - 65535
2 Temperature 2 bytes -40 - 123.8C
3 Seismic Data 2 bytes -2g - 2g
4 Brightness 2 bytes 0 - 10000 Lux
5 Humidity 1 byte 0 - 100% RH
6 Barometric Pressure 1 byte 300 - 1100 mbar

2.3 Data Compression and Aggregation on Top of IPFIX

Due to limited resources on sensor nodes, minimizing data during transmission is
desired. Therefore, aggregation can be performed on the IPFIX data in order to
reduce the overall amount of data. At first, several measurement results from one
or several sensor nodes can be aggregated within a single data packet. Therefore,
less packets need to be transmitted which saves energy on the sensor nodes. This
kind of data aggregation technique works on arbitrary data without considering
measurement context. Additional aggregation techniques can be deployed which
consider application context as introduced by Przydatek et al. [20]. Aggregator
nodes in the WSN need to be equipped with hardware because they have to
store the templates of the child nodes. If a WSN is composed of many uniform
nodes which use the same template, all nodes can perform data aggregation.

Another possibility to reduce the transmitted data amount is data compres-
sion. The authors in [17] showed that flow and packet measurement data can
be compressed with simple methods resulting in smaller packet, which further
helps to reduce bandwidth consumption. Thus, it can be reasonable to perform
compression on sensor measurement data, too. However, this approach focuses
on compressing the actual IPFIX payload. Since typical packet sizes in WSNs
are small, the IPFIX header introduces a big source of overhead. Therefore we
will introduce an approach to minimize this overhead by compressing the IPFIX
header in Section 4.

The wireless part of the network must be connected to a wired infrastructure
at some point as described in Section 3. This wired infrastructure is usually based
on IP. Hence, using IP within the WSN seems to come natural. Additionally,
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IPFIX was standardized to work on IP. By using IP in WSNs, wireless nodes can
be addressed by nodes in the wired infrastructure. This enables data transmission
from the wired infrastructure into the WSN.

In order to optimize IPv6 for the use in WSNs, 6LoWPAN was developed
for wireless sensors and was standardized by the IETF [15]. Harvan et al. imple-
mented an 6lowpan/IPv6 stack on top of 802.15.4 networks [7]. 802.15.4 provides
two types of addresses with a length of 16 or 64 bit. Depending on the used hard-
ware, the transmitted payload with 6LoWPAN can be up to 127 bytes for one
frame. Larger IPv6 packets need to be fragmented in order to be transmitted
within the 6LoWPAN network. As IPv6 has a header size of 40 bytes, too much
payload size is occupied by header information. Therefore, a header compression
scheme has been standardized resulting in a 2 bytes sized 6LoWPAN header.
Similar compression mechanism can be used for the transport headers. An 8
bytes sized UDP can be down sized to four bytes using this compression scheme.
The IPv6 compression mechanism is called HC1 and the UDP compression mech-
anism is called HC UDP. Without this compression, only 50-66 bytes are left for
the data payload, depending on the address types in the 802.15.4 Header. With
compression, there is space for 94-110 bytes which nearly doubles the available
space for payload [15].

3 Application in Home Networks

Wireless Sensor Networks can perform valuable tasks in home networks. Home
networks have additional requirements to WSNs, compared to other applications
of sensor networks.

One requirement is the seamless integration into the existing infrastructure.
Additionally, users might want to buy devices from different vendors and deploy
them into their network. Therefore, devices of different vendors should interop-
erate and integrate themselves into the existing infrastructure of the Wireless
Sensor Network. Handcrafted vendor specific protocols are unlikely to fulfill this
requirement. Instead, a common standard for data transmission, like IPFIX, is
needed to achieve interoperability.

We will now present why IPFIX is a suitable protocol for the deployment in
home networks. Furthermore, we will present how to use application aware data
compression techniques to reduce the overall data amount in the network.

Our proof-of-concept implementation is implemented in the context of the
Eureka Celtic Project ”Autonomic Home Networking” (AutHoNe) [2].

3.1 Application Scenario

The sensor network which is deployed in our home network is supposed to col-
lect environmental data. This data comprises temperature and lighting mea-
surements at the moment and is used to control the lighting and temperature
conditions within the house.

Therefore, every room contains several sensors which are linked by a low-
power IEEE 802.15.4 wireless mesh. As home networks are usually based on the
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IP protocol, sensor nodes should support IP, too [5]. This can be achieved by
using 6LoWPAN [7], an IPv6 standard for IEEE 802.15.4 networks. As IPFIX
was designed to run on top of IP, it is not necessary to adapt IPFIX to work
with other network layer protocols. 6LoWPAN is an adequate solution for sen-
sor nodes as it meets sensor node requirements by defining header compression
mechanisms for IPv6 packets transmitted over IEEE 802.15-based networks.
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Fig. 2. Overview of application scenario

Figure 2 presents our application scenario. We assume to have several rooms
which are equipped with sensor nodes. The sensor nodes are able to measure
temperature and light, and are able to build a meshed network to transmit the
measurement data to a central server. The server is able to analyse the data
and to control the heating and lighting system. For our testbed we use the IRIS
motes from Crossbow Technology Inc. [4] as node hardware. The IRIS mote
which is used in our setup has the dimensions of 58 x 32 x 7 mm, without the
battery pack. Thus, it does not leave much room for the micro controller, flash
memory (128kb) and RF transceiver, all of which are located on this board. The
available sensor boards have sensors for temperature, brightness and humidity
among others.

3.2 IPFIX for Data Transmission

As wireless nodes boot up in the scenario, they will use the 6LoWPAN auto con-
figuration features to obtain an address. Using this address, they will announce
their templates to a central server. This server either needs to be configured on
the sensor nodes or a special address in the IEEE 802.15.4 can be chosen to
address the server.

Afterwards, all nodes in a room measure the current temperature and send
their measurement results to the server. During this process, aggregation can be
performed by aggregator nodes. All nodes that are able to parse IPFIX messages
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and have enough resources for holding at least three IPFIX messages in memory
can be used as aggregator nodes.

Since transmission is performed on the mesh network, these nodes can aggre-
gate their measurement data with other received measurement data into a single
packet. Application specific aggregation for home networks can be performed.
In our home network, heat control can be activated for each room depending on
the measured temperature. For each room, only minimum, maximum or average
temperatures are needed for a decision on whether to turn on the heating or the
air condition. IPFIX messages that travel through the network can therefore be
aggregated as suggested by Przydatek et al. [20].

Adding devices from different manufactures into the WSN can be done, if they
support IPFIX. If all of them use only standard IDs, interoperability between all
devices is ensured. If some device vendor wants to specify their own data format,
they can register their own EID and issue own IDs. These devices can still be
integrated into the home network, as other nodes in the WSN do not need to
know the semantics of the new IDs.

3.3 Security in IPFIX Transmissions

Measurement data security and data integrity can be integrated as well. IPFIX
copes with these security issues by specifying that every IPFIX device needs
to support TLS (on stream based transport protocols) or DTLS (on datagram
based transport protocols). Fouladgar et al. developed Tiny 3-TLS [6], a TLS
handshake sub-protocol for sensor nodes, which can be used for securing IPFIX
data transmission. This conforms to the security considerations from IPFIX.

Other protocols can also be used to assure data security and message authen-
tication in WSNs. TinySec [9], for example, offers an encryption mode where
data payload is encrypted and the packet itself is authenticated by a MAC. An-
other approach using the same idea as TinySec was developed by Luk et al. [13],
called MiniSec. It is a secure sensor network communication architecture which
modifies the common packet structure of TinyOS and combines features from
TinySec and ZigBee [22] to perform low energy consumption and high security.

These protocols can be used instead of TLS, if an existing WSN already
implements one of these protocols. However, using TLS is highly recommended.

4 Implementation of IPFIX for Wireless Sensors

In this section we want to characterize the problems and challenges we need
to face during the implementation of IPFIX for Wireless Sensors. For Wireless
Sensor Networks, two problem fields exist: Environment and Hardware.

In home networks, the environmental problems can be ignored because the
network is deployed indoors. We know where each sensor is located and what
kind of measurements can be conducted. The distance between the nodes is
short, thus no environmental blockage must be taken into account.

Hardware limitations are way more concerning. As described in Section 3 IRIS
motes from Crossbow Technology Inc. [4] are used in our application scenario.
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These nodes have several limiting factors, such as only 128kb flash memory,
512kb measurement flash and 8kb RAM. Together with the limited power supply
of wireless senors the computational capacity is quite limited. These limitations
should be kept in mind for the design decisions described in the upcoming section.

4.1 Design Goals and Implementation Decisions

A sensor node has to perform the following tasks:

– Gather data from all sensors.
– Encode measurement results in IPFIX packets and transmit them to the

base station.
– Perform in-network aggregation to reduce the amount of network traffic and

preserve energy.

The receiving end at the Gateway PC has to perform these tasks: First re-
ceiving and parsing IPFIX packets on a Gateway PC must be guaranteed. And
secondly the acquired data must be transfered to a home networking infrastruc-
ture.

Figure 3 shows all components involved in this process. Both ends, the sensor
node as well as the receiving gateway are mapped on the Figure.
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Fig. 3. Data Flow in all components

The node’s sensors are queried periodically to generate new sensor data. These
raw values are transmitted to the tinyIPFIX library, which encodes them into
Data Records. The location within the Data Record is specified by an IPFIX
template. The template is generated and sent automatically when the node
boots. After all sensors have been queried and the IPFIX packet is ready for
transmission, it is sent to the Base Station via a multihop network. The Base
Station listens for incoming packets from nodes in the network and transmits
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their payload to the Gateway PC over an USB port. On the Gateway PC, there a
Collector waits for transmissions on the USB port. The IPFIX messages sent via
USB are parsed according to the matching IPFIX templates, the sensor values
are extracted as shown in Figure 1 and transferred to the home environment.

Currently the program for the sensor nodes consists of three main operative
components, ControllerC, tinyIPFIXC and NetworkHandlerC. ControllerC is
the main module of the program, it periodically queries the sensors and passes
their reported values to tinyIPFIXC, an implementation of IPFIX for TinyOS
2.x. After all connected sensors have reported their values, ControllerC re-
ceives a byte array containing the finished IPFIX message, which it passes on
to NetworkHandlerC. NetworkHandlerC implements the network communica-
tions in a transparent way, so that transmission protocols may be exchanged as
needed. Currently, communication is based on the Collection protocol of TinyOS.
We plan to migrate this to 6LoWPAN in the future. Figure 4 shows a simplified
version of the application’s wiring. As mentioned in [12], components need to be
explicitly wired together.

Fig. 4. Simplified wiring of the mote’s program

The interface for acquiring sensor data was designed with the following goals:
Additional readings need to be added without major changes to the application
code, sensor readings should always be linked to an IPFIX Field and Enterprise
ID. Finally, it should be possible to automatically generate IPFIX templates
based on the connected sensors.

To generate the IPFIX template, the node queries all connected sensors about
their Field ID, Enterprise ID and field length at startup. Similarly, to generate
a data record, the node issues a read command to all connected sensors periodi-
cally. The sensors return their values after a certain latency and not necessarily
in the same order as the read commands were issued. Therefore, a sensor needs
to be associated with their respective Field ID, EID and field length.

This was addressed by designing a bidirectional interface called
IPFIXDataSampler which is implemented by several generic modules. Generic
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components can be instantiated with parameters [12]. This allows for a con-
sistent linking of an IPFIX Field ID / Enterprise ID combination with a sen-
sor, since every instance of IPFIXDataSampler can report exactly one value.
One simply has to pass the according values when creating an instance of the
module which provides the interface. IPFIXDataSampler defines two commands
which are answered by two events. One is command void report() with event
void reportBack() being the according event. reportBack() is used to regis-
ter all providers of IPFIXDataSamplerwith CollectorC. Directly after booting,
CollectorC issues the report command to all connected samplers. When they
report back, it uses the information provided by reportBack() to create a new
field definition in an IPFIX template, thereby addressing the design goal of
automatic template creation. The second command is command read() which
prompts the implementing module to return a reading of the connected sensor.
This reading is reported back by event void readDone().

  1   configuration ControllerAppC{}

  2   implementation{

  3 components ControllerC as App;

  4 ...

  5 components new IPFIXDataSampler16C(0x80A0,0xF0AA00AA) as Temp;

  6 components new IPFIXDataSampler16C(0x80A2,0xF0AA00AA) as Light;

  7 components new TempHumc() as TempSens, new TaosC() as LightSens;

  8

  9 Temp.Sensor -> TempSens;

10 Light.Sensor -> LightSens;

11

12 App.Sampler -> Temp;

13 App.Sampler -> Light;

14 ...

15  }

16

17  module ControllerC {

18 ...

19 uses interface IPFIXDataSampler as Sampler;

20 ...

21  }

22  implementation {...}

Fig. 5. Example of wiring IPFIXDataSampler providers to CollectorC

IPFIX does not transmit the data type of a field, instead it must be recognized
based on the respective field ID, so this implementation can ignore the type and
simply proceed working with a network order (big endian) byte array. However,
functionalities that perform additional computation, such as e.g. mathematical
aggregation functions like SUM() or AVG() must reconstruct the data type. The
design goal of flexible extension is addressed by multiple wiring. In traditional
languages, the concept of multiple callers to a single method implementation is
commonplace. Since nesC interfaces are bidirectional, this also allows for multi-
ple calls to a single method call, meaning multiple methods can be invoked with
a single command. The ability to have multiple callers is described as Fan-in
and the concept of multiple calls is called Fan-out [12]. By simply wiring mul-
tiple components providing IPFIXDataSampler to ControllerC one can make
effective use of the Fan-out concept as shown in Figure 5.



142 T. Kothmayr et al.

4.2 IPFIX Header Compression

Since IPFIX was designed for conventional networks, some extensions and
changes have to be introduced to increase its efficiency in WSNs. Border gate-
ways between the WSN and the wired network need to translated from com-
pressed IPFIX to standard IPFIX. These border gateways are called IPFIX
mediators in IPFIX terminology [11].

One of the problems when deploying IPFIX in sensor networks is the overhead
introduced by the relatively large header which is at least 20 bytes in size (16
bytes from the Message Header + 4 bytes from the Set header) as is shown
in Figure 6. However, the maximum size of a packet being transferred with an
IEEE 802.15.4 network is 127 bytes. To address this issue, a header compression
scheme was devised, which will be introduced in this section.

Fig. 6. IPFIX Headers

The idea behind our approach to header compression is to define the length of
the fields separately in a pre header which is shown in Figure 7. First the Version
field from the original IPFIX header is shortened to 5 bits, this leaves room for
the IPFIX version to increase from version 10 to version 31. The definition of
the length of the fields Message Length, Export Time, Sequence Number and
Observation Domain ID follows. A value of 0 in the designated bit(s) means
that the field is allowed 1 byte in the subsequent header, a value of 1 means 2
bytes, etc.. The next two bits are designated for the Template Offset. Decoders
of IPFIX messages are expected to keep track of the sequence in which they
received templates from the IPFIX exporters. A value of 0 in the Template
Offset bits means that the decoder should use the template it has received last,
a value of 1 means the template before that and a value of 2 means two templates
before the last one. If this offset is given for a data message, 2 bytes for the Set
ID can be saved. If template offset is set to 3 (both bits are one) it is ignored
and a proper statement of the template ID is expected in the header. The next
bit is called the Single Set Flag. It indicates whether the message contains only
a single IPFIX set. If this is the case, the explicit statement of set length in the
header can be omitted since this value can be computed from the total message
length. The last bit in the pre header is the Template Set Flag. If it is set to
one, the first set in the message is a template set which is defined to have Set
ID = 2. Thus, the two bytes for definition of the set ID can be omitted.
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In the best case scenario, all header fields can be fitted to 1 byte and the Set
Header can be fully omitted. The possibility to shorten the Message Length and
Observation Domain ID to 1 byte is fairly obvious. Most messages will be shorter
than 255 bytes, in fact if they are transmitted in a single packet, they have to
be smaller than 127 bytes with our hardware. Since the Observation Domain ID
usually refers to the Node ID, a value of 1 byte can accommodate 256 nodes
which represents a WSN of medium scale. The Sequence Number can also be
shortened to 1 byte, since a rollover after 255 messages is non problematic due
to the low data sampling rate of typical WSNs. For the time stamp, a value
of 1 byte could refer to the time that has passed since the last full UTC time
stamp has been sent. Since the field length can be different with every package
sent, it is possible to only transmit a full 4 bytes time stamp periodically and
suffice with a delta value in between. For the best case, this method can achieve
a reduction in header size from 20 bytes to 6 bytes, or a compression of 81, 25%.
Figure 8 gives an example of the best case, which is actually fairly common since
it shows the transmission of a Data Record referencing the last sent template
set. In the worst case however, header size may increase to 33 bytes when all
header fields are defined to be their original length.

Fig. 7. The IPFIX pre header defin-
ing the length of the subsequent
header

Fig. 8. Best case header for the IP-
FIX header compression

4.3 Receiving End

To process the data from the WSN to the interface of a home network envi-
ronment, a gateway is needed. It must parse incoming IPFIX data according to
templates generated by the nodes, enrich the received data with meta informa-
tion (e.g.data type, storage location, etc.) and convert sensor specific values to
a general, more abstract data type. In our implementation meta information is
stored in a XML-file and fields are matched via Field ID and Enterprise ID.

When an IPFIX template is received, the Gateway creates a new instance of
Field for every data item defined in the template, based on available meta infor-
mation. Each instance may contain information about the data type of the field,
it’s name (for pretty printing), a flag whether or not updates should be passed on
to the home network and a simple formula that can be used to perform compu-
tations on the received value. Formulas currently support addition, subtraction,
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multiplication, division and square roots. They may contain a variable x which
is substituted for the received value when the expression is evaluated.

5 Related Work

In 2003 ZigBee was developed for wireless personal area networks [22]. It is a
communication protocol based on the IEEE 802.15.4 standard. It was developed
for small-scale isolated ad-hoc networks and limited to a single radio standard.
Today it is a standard which is used nearly everywhere. But it requires more
resources than the 6LoWPAN approach we are using as described in 2.3. ZigBee
has a code size with mesh of 32-64K, requires 8K RAM, produces 8-16 bytes over-
head, and supports 802.15.4 and no transport layer. 6LoWPAN has a code size
with mesh of 22K, requires only 4K RAM, produces only 2-11 bytes overhead,
and supports 802.15.4++ and UDP/TCP [16]. Finally, 6LoWPAN requires less
resources than ZigBee, thus more resources are left for additional computations
and transmissions.

In contrast, 6LoWPAN was developed for scalable networks as an end-to-end
part of the Internet. It is applicable to any low-power and low-rate wireless radio.
The used IP protocols tie together heterogeneous networks. ZigBee itself is not
a standard, it is a special interest group, called ZigBee Alliance [22]. The IETF
supports open, long-lived standards and this will be archived by 6LoWPAN
which works with modified IPv6 protocols and stacks. Together with the home
network scenario using IP addresses for communication we decided to implement
6LoWPAN on the IRIS motes.

As Kimura and Latifi discussed in [10], many algorithms for data compression
exist but cannot adapt to the constraints of Wireless Sensor Networks. Thus,
special algorithms were developed to compress the transmitted data like Coding
by Ordering, Pipelined In-Network Compression, Low-complexity Video Com-
pression and Distributed Compression.

The basic idea of the algorithm Coding by Ordering [18] is to drop data at the
aggregation node. This can happen if the transmitted data is unique, and the
order is irrelevant for the application. Now it is possible to use the transmitting
order to transmit additional information to the receiver. This algorithm can be
provided by an aggregator node in the network.

Arici et al. developed an compression algorithm called Pipelined In-Network
Compression in 2003 [1]. This algorithm is also based on aggregator functionality.
The sensor measurements are sent to an aggregator node and buffered. During
the buffer period the incoming packets are combined and redundant data is
deleted before ongoing transmission. The transmitted data uses a shared prefix
which can be used for node IDs and time stamps to reduce space in new packets.
Depending on the prefix length the data compression can be quite efficient.

The algorithms Low-Complexity Video Compression [14] and Distributed
Compression [19] deal with data compression of visual data. the first algorithm
is based on block changing and JPEG data compression. The second algorithm
deals with the usage of side information to encode source information. This
compression scheme can be applied to lossless and lossy compression schemes.
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6 Conclusion

In this paper we introduced a concept to connect a wireless infrastructure to a
wired home network scenario. This can be achieved by implementing 6LoWPAN
on the sensor nodes to bring IP communication to a wireless infrastructure. In
the next step we integrated IPFIX into the WSN and showed the applicableness
for home networks in cooperation with 6LoWPAN.

At first, IPFIX defines a efficient data format for transmitting sensor mea-
surement data using low bandwidth. Generating and parsing IPFIX data can be
performed with little processing power, thus saving energy on the nodes. Arbi-
trary aggregation techniques can be deployed to further reduce the transmitted
data.

If standard template IDs are issued, interoperability between different devices
from different manufacturers can be ensured. At the same time, vendors can
register its own enterprise and type IDs to build custom devices. These devices
can still interoperate with other devices. By using IP on the network layer below
IPFIX, wireless sensor networks can easily be integrated in existing home net-
works. Therefore, new sensor nodes can be easily deployed and new functionality
to the network can be added in an automatic fashion.

To reduce the amount of data traffic within the network and to reduce the en-
ergy consumption of the network we introduced a concept of header compression
for IPFIX and combined it with header compression of 6LoWPAN to increase the
payload capability of each packet. Those compression functions can be combined
with aggregation algorithms to gain more efficiency in the transmissions.
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7. Harvan, M., Schönwälder, J.: TinyOS Motes on the Internet: IPv6 over 802.15.4
(6lowpan). PIK - Praxis der Informationsverarbeitung und Kommunikation 31(4),
244–251 (2008)

8. Internet Assigned Numbers Authority (2009), http://www.iana.org/
9. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for

wireless sensor networks. In: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pp. 162–175. ACM, New York (2004)

10. Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks.
In: Proceeding of the International Conference on Information Technology: Coding
and Computing (ITCC), April 2005, vol. 2, pp. 8–13 (2005)

11. Kobayashi, A., Blaise, B., Ishibashi, K.: IPFIX Mediation: Framework. Technical
report, The Internet Engineering Task Force (IETF) (October 2009)

12. Levis, P., Gay, D.: TinyOS Programming (July 2009)
13. Luk, M., Mezzour, G., Perrig, A., Gligor, V.: MiniSec: a secure sensor network

communication architecture. In: IPSN 2007: Proceedings of the 6th international
conference on Information processing in sensor networks, pp. 479–488. ACM, New
York (2007)

14. Magli, E., Mancin, M., Merello, L.: Low-complexity video compression for wireless
sensor networks. In: Proceedings of the International Conference on Multimedia
and Expo (ICME), Washington, DC, USA, vol. 3, pp. 585–588. IEEE Computer
Society, Los Alamitos (2003)

15. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: IPv6 over Low Power Wireless
Personal Area Networks (6LowPAN) - RFC 4944. Technical report, The Internet
Engineering Task Force (IETF) (September 2007)

16. Mulligan, G.: The 6lowpan architecture. In: Proceedings of the 4th workshop on
Embedded networked sensors (EmNets), pp. 78–82. ACM, New York (2007)

17. Münz, G., Braun, L.: Lossless Compression for IP Flow Information Export
(IPFIX). The Internet Engineering Task Force (IETF), Internet-Draft (work in
progress), draft-muenz-ipfix-compression-00 (2008)

18. Petrovic, D., Shah, R.C., Ramchandran, K., Rabaey, J.: Data funneling: routing
with aggregation and compression for wireless sensor networks. In: Proceedings of
1st IEEE International Workshop on Sensor Network Protocols and Applications,
May 2003, pp. 156–162 (2003)

19. Pradhan, S.S., Kusuma, J., Ramchandran, K.: Distributed Compression In Dense
Sensor Networks. IEEE Signal Processing Magazine 19, 51–60 (2002)

20. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor
networks. J. Comput. Secur. 15(1), 69–102 (2007)

21. Quittek, J., Bryant, S., Claise, B., Aitken, B., Meyer, J.: Information Model for IP
Flow Information Export, RFC 5102 (2008)

22. ZigBee Alliance. ZigBee specification. Technical Report. Document 053474r06 Ver-
sion 1.0, ZigBee Alliance (June 2005)

http://www.iana.org/


J. Sá Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 147–161, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Sensing for Stride Information of Sprinters 

Lawrence Cheng1, Huiling Tan2, Gregor Kuntze3, Kyle Roskilly2, John Lowe2,  
Ian N. Bezodis3, Stephen Hailes1, Alan Wilson2, and David G. Kerwin3 

1 University College London, Computer Science Department, Malet Place,  
London, WC1E 6BT, UK 

{l.cheng,s.hailes}@cs.ucl.ac.uk 
2 Royal Veterinary College, Structure and Motion Lab, Hawkshead Lane, Herts, AL9 7TA, UK 

{htan,kroskilly,jlowe,awilson}@rvc.ac.uk 
3 University of Wales Institute, Cardiff, Cardiff School of Sport, Cyncoed Road,  

Cardiff, CF23 6XD, UK 
{gkuntze,ibezodis,dkerwin}@uwic.ac.uk 

Abstract. Accurate sprint-related information, such as stride times, stance times, 
stride lengths, continuous Centre-of-Mass (CoM) displacements and split times 
of sprinters are important to both sprint coaches and biomechanics researchers. 
These information are traditionally captured using camera-based systems which 
are very expensive and time-consuming to setup. This paper investigates - 
through a series of experiments - whether an integrated sensing system would 
provide a practical, cost-effective alternative to measuring stride-related informa-
tion of sprinters. The results show that the system achieves an accuracy within 
5ms for stance time and stride time measurements, and ~10cm for localisation-
related information such as CoM forward displacement and CoM stride dis-
placement (i.e. stride length).  

Keywords: Application, performance monitoring, sports, stride information, 
wireless sensing. 

1   Introduction 

Sprint performance is ultimately evaluated by one factor: speed. There are several well 
known factors that affect sprinters’ speed, such as stride length, stride frequency, touch-
down and take-off angles1, etc.  [10]. Existing biomechanics research on stride analysis 
use camera-based systems to capture stride-related information. Although these systems 
are highly accurate however, they are expensive and time consuming to setup. Pervasive 
                                                           
1 A stride is the action between subsequent foot-on events of the same foot of a sprinter during 

a sprint. Stride length is the corresponding distance between each foot-on. Stride frequency is 
the rate at which a stride is made. Touch-down and take-off angles refer to the angle of the toe 
in relation to the Centre of Mass (CoM) of a sprinter at foot-on and foot-off respectively. 
Stride time is the time in-between each foot-on; stance time is the time when the foot is on the 
ground. 
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computing for sprint (or sports) performance monitoring  [1] [2] [3] [8] [9] is a relatively 
new research area. SEnsing for Sports And Managed Exercise (SESAME)  [1] [2] [3] is a 
multi-disciplinary project to develop practical, deployable, and inexpensive wired and 
wireless sensor-network-based systems to support sprint coaching and biomechanics 
research. The SESAME Integrated System (IS) includes several wired and wireless 
track-side and on-body sensing sub-systems: a radio-based continuous speed/location 
tracking system, a Light Gate (LG)-based split time measurement system, and a wireless 
foot pressure sensing system. The SESAMS IS was developed to investigate whether 
sensor technologies are suitable and capable of delivering stride-related information, 
such as stance time, stride time, stride length, etc. to support coaching and biomechanics 
research. In this paper, the design and experiment results of the SESAME IS are pre-
sented and discussed. 

This paper is organised as follows: first, related work and system requirements are 
discussed; secondly, an overview of the SESAME IS and its sub-systems, and the 
integration and synchronisation methods are presented; thirdly, the experimental pro-
cedure is presented; fourthly, the experiment results are analysed and discussed. Then, 
the applicability and impact of the system is discussed. The paper ends with a conclu-
sion and future work. 

2   Background 

Existing biomechanics research studies have been using motion-capture camera-based 
systems, such as active marker systems (e.g. CODA  [6]), or passive marker systems 
(e.g. Vicon  [11] or Qualisys  [12]), or high-speed video cameras to obtain stride-
related information of sprinters. Although these systems are considered as gold-
standard technologies due to their high level of accuracy, and that they provide 3D 
coverage of (all) body segments, they are very expensive, have limited viewing angle, 
and are time consuming to setup. It is therefore important to investigate other ap-
proaches. An overview of ubiquitous computing for sports performance monitoring 
was presented in  [8]; the work focused on outlining the best practice for designing 
and implementing ubiquitous computing systems for sports performance monitoring. 
In  [13], a wearable piezoelectric force sensing system for detecting scoring kicks in 
Taewondo matches was presented. A light-sensor-network-based split time2 measur-
ing system for sprinting was presented in  [3]; the system covers five lanes over a 60m 
indoor track, and reports (and records) the split times of multiple competing athletes 
to coaches in real-time. Coaches could then use the split time information to adjust 
his/her training methods during a training day-session and/or over a training season. 

It is argued that, given the limitation in sensor technologies’ accuracy and space 
limitation for on-body sensor attachment, accurate stride-related information could 
only be derived from fusing together multiple sources of data from both track-side 
and on-body sensing systems. Thus, this paper focuses on investigating whether an 
integrated sensing system would provide a practical solution to delivering stride-
related information of sprinters. 

                                                           
2 A 10m split time is the time it takes for a sprinter to sprint 10m. 
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3   The SESAME Integrated System (IS) 

3.1   System Description 

Each of the sub-systems must provide unique information that can be fused together 
to provide meaningful results. More specifically, the following type of information 
would be needed in order to derive a complete set of stride-related information for 
supporting coaching and biomechanics research work (in addition to gold-standard 
data for evaluation): continuous speed (or 1D location) information of the sprinter, 
stance time, stride time, and additional data for correcting noisy localisation data. It 
should be noted that, in order to fuse the above data together, all sub-systems must be 
synchronised. Integration and synchronisation in the SESAME IS is discussed in 
more detail in section  3.2. All the experiments were conducted in the five-lane 60m 
indoor sprint track at the National Indoor Athletics Centre (NIAC), Cardiff, UK. 
CODA is used as a validation tool for the experiments presented in this paper due to 
their well-recognised high level of accuracy  [7]. CODA can be synchronised with 
external systems either through TRIG IN or SYNC IN3. 

The SESAME Pisa Light Gate (PLG) system was developed by the SESAME 
team. It is a novel and cost-effective split time measuring system  [3] which is capable 
of providing in real-time gold-standard comparable split time results of multiple com-
peting athletes to coaches and athletes for coaching support. It is permanently  
installed at NIAC and has been operational since May 2009. Essentially, 30 retro-
reflective LGs (retro-reflective light sensor (RL39-55/30/35/40a/116/126a) from Pep-
perl + Fuchs) were permanently installed in the roof of the stadium. The LGs point at 
57.5° (±0.5°) to the reflective tapes which are placed on the white lanes that separate 
the five lanes of the indoor 60m track. As an athlete cuts through each light beam, the 
signal generated at the corresponding LG is timestamped by a sensor node (i.e. a 
gumstix  [16], which is a mini Linux computer that is permanently installed at the 
track-side), thus the corresponding split times are calculated. All software were  
custom-written: computational software were written in C and the web-based user 
interface was written in PHP. The PLG system supports TRIG OUT for external syn-
chronisation; the signal is delivered to other systems through a BNC socket on the 
system’s enclosure. Readers should note that split times have been, traditionally, the 
fundamental block of sprint performance evaluation  [14] [15]. The PLG system is 
therefore specifically designed to provide the type of information that coaches are 
familiar with and could easily relate to. 

Fine-grain type of information such as continuous speed (or 1D location) informa-
tion of a sprinter during a sprint, stride length, etc. are useful to biomechanics re-
search. To derive this information, accurate measurements of the continuous location 
of an athlete during a sprint are crucial. Radio-based localisation systems are more 
cost-effective than laser range finders and have a higher level of automation (that they 
do not require manual adjustments). A radio-based localisation system is used in the 
                                                           
3 TRIG IN means the system is capable of timestamping a common voltage input trigger signal 

using its own clock. SYNC IN means the system is capable of being driven to sample based 
on a series of incoming SYNC pulses. Most camera-based gold-standard technologies, such as 
CODA and Qualisys, support these form of synchronisation methods (as well as TRIG OUT 
and SYNC OUT) for synchronising with external systems.  
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SESAME IS for continuous speed/location tracking of athletes during their sprints. 
The SESAME localisation system was built on the nanoLoc (NNL) system from 
nanotron   [5], which operates in the 2.45GHz ISM band. The system uses Time of 
Arrival (ToA) information from packets exchanged using the Double-Sided Two-Way 
Ranging (SDS-TWR) protocol, between a track-side anchor and an on-body tag to 
estimate the distance between the two devices. The Peer-to-Peer (P2P) system (which 
requires just one anchor) was used for the experiments presented in this paper due to: 
a) its simplicity: only one anchor would be needed at the end of the track and the tag 
is attached to the subject’s CoM (i.e. lower back). Both devices are small in size, thus 
the disturbance caused by the presence of track-side equipment to other track users is 
kept to a minimal comparing to a multiple-anchor system; and b) the interest of this 
paper lies within 1D localisation, which is provided by the P2P system. The sampling 
rate of NNL was ~100Hz. The timestamping mechanism of the NNL system was 
modified in order to support TRIG IN: the NNL anchor is connected to a track-side 
laptop, the latter is also connected to the PLG system via BNC cables. The TRIG 
OUT signal from the PLG system and the calculated distance results from the NNL 
system is timestamped at the laptop which provides a common time base for the com-
mon trigger signal from the PLG system and the NNL samples. The localisation soft-
ware were written in C. 

The wireless SESAME Force Sensing Resistor (FSR) system is a custom-built foot 
contact time measurement system. It was designed around Interlink Electronics FSR 
model 406. The sensors used were thin 1.5” square sensors attached at the heel, mid-
foot and toe positions on a standard shoe insole. The general purpose logging board 
incorporates a wireless transceiver, which gives the capability to synchronise data 
from multiple boards in disparate locations both track-side and on-body. This is 
achieved with the addition of a beacon transmitter board to the system, which is lo-
cated at the track side and has an effective transmission range over 60m. The beacon 
transmitter sends an incrementing single byte value at a rate of 1Hz. This ‘beacon’ is 
received by all logger boards within transmission range and recorded alongside the 
next ADC sample, which is timestamped by the internal clock. The difference in la-
tency in receiving and processing the beacon among different boards is anticipated to 
be sufficiently small, so that it is possible to synchronise ADC data from multiple 
boards with at most one sample interval of error. This is also assuming that the inter-
nal clocks do not drift significantly over a 1 second period and that logging has been 
started on all boards within the rollover period of the beacon value, which are reason-
able assumptions. The built-in synchronisation features of the logging boards provide 
a simple method to combine data from on-body equipment, like the FSR system, with 
other track-side equipment. The track-side beacon transmitter and ‘sync’ logger are 
used for this purpose. The ‘sync’ logger can record trigger signals from any track-side 
equipment, such as the TRIG OUT signal from the PLG system, and therefore pro-
vides a route to synchronisation with on-body equipment. 

3.2   System Integration and Synchronisation 

All sub-systems must be synchronised. It should be noted that one unique feature of 
sprinting experiments is that the experiment runtime is very short, and there is no 
need to capture stride information beyond each sprint. Thus, a generic synchronisa-
tion method should be adopted in the SESAME IS to provide easy integration with 
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future sub-systems. Since crystal clocks drift linearly and the experiment runtime is 
very short-span, the effect of clock drift is minimal. TRIG OUT (from PLG) is there-
fore chosen as the cross-subsystem synchronisation method in the SESAME IS. The 
common trigger is delivered to all track-side sub-systems through BNC cables. Under 
such arrangement, flexibility to develop individual sub-system is enhanced. Fig. 1 
shows the SESAME IS. 
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Fig. 1. The SESAME Integrated System 

4   Experiment Setup 

The purpose of the experiment is to collect data from the SESAME IS across all 
phases of sprinting, namely: the acceleration phase, the secondary acceleration phase, 
the maximum speed phase, and the fatigue phase. Due to the viewing angle limitation 
of CODA, the experiments were divided into four sets: 

• Set 0: FSR pressure-sensing and synchronisation accuracy against Force 
Plates (FPs); CODA was not used because it does not enable one to work out 
the precise time moments when a specific part of a foot is on the ground 

• Set 1: ~0m to ~15m (i.e. acceleration and secondary acceleration phase); in-
cluding FSR, NNL, and CODA 

• Set 2: ~20m to ~35m (i.e. secondary acceleration and/or maximum speed 
phase); including FSR, NNL, and CODA 

• Set 3: ~40m to ~55m (i.e. maximum speed and/or fatigue phase); including 
FSR, NNL, and CODA 

In set 0, the foot-on and foot-off time are detected based on data from the insole-
mounted FSR; then, the accuracy of the foot strike timings were compared with those 
measured using force plates (Kistler Instrumente AG, Winterthur, Switzerland), 
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which is a gold standard for measuring ground reaction forces. In set 1 to 3, the four 
CODA scanners were placed on the track-side to monitor full 2D body movement of 
each subject (i.e. the vertical and forward plane) over the specified area. The sampling 
rate of CODA was 400Hz. Ten active markers were attached to each subject: right 
toe, right foot, right ankle, right knee, right hip, right shoulder, right elbow, right 
wrist, left toe and left foot. These markers would enable CODA to reconstruct the 
athlete’s motion in full (i.e. 2D). The NNL tag is attached to the CoM of each subject 
(i.e. lower back). The height of the tag relative to ground was measured; the NNL 
anchor was placed 2.8m behind the 0m line (which is the furthest the anchor could be 
placed away from the 0m line), with a 12dBi directional panel antenna placed on a 
tripod at the same height as the NNL tag. A directional antenna was used to ensure 
long range coverage (i.e. >100m indoor). The FSR insole is placed underneath the 
right root of each subject. Two subjects did a total of 18 sprints over a two-day ex-
periment at NIAC. Only one sprinter ran during each trial to ensure most markers 
were within direct line-of-sight with the CODA scanners; the same reason for using 
one FSR insole on the right foot for each subject. Note that the hip marker was used 
as the CoM of the subject.  

5   Results and Analysis 

In this section, first, the validation results of FSR on stance time and stride time meas-
urements against Force Plates, and its internal sychronisation validation are presented. 
Secondly, the relationship between CoM stride displacement and stride length is ana-
lysed and discussed. Thirdly, a filtering and correction algorithm for correcting noisy 
and biased localisation data is presented. Then, the experiment results on CoM dis-
placement during a sprint (i.e. CoM stride displacement) and stride length measure-
ments against CODA are presented and discussed. 

5.1   FSR Validation Results and Analysis 

5.1.1   Stride Time and Stance Time Results and Analysis 
The sharp increase in each channel of the raw data from the FSR system indicates the 
‘touch-down’ of the point where the sensor was attached, and the sharp decrease in 
the raw data indicates the ‘take-off’ of the point. These sharp increases and decreases 
were detected by finding the local maximum and minimum of the first-order differen-
tiation of the raw data. For each stride, the first touch-down time among the three 
sensors should be the foot-on time for the stride, and the last take-off time within the 
three sensors should be the foot-off time. In running or sprinting, the touch-down and 
take-off from the toe sensor were used for foot-on and foot-off timings. The stance 
duration, which is the time the foot is in contact with the ground, was calculated by 
taking the difference between the foot-off time and foot-on time.  

For validation of the FSR, synchronised FSR and force plate data was collected 
from ninety-five strides at different speeds (3m/s ~6.5m/s). The force place used was 
8m in length, on average two strides were collected per trial. The synchronisation 
method is the same as the one deployed in the SESAME IS, i.e. a TRIG OUT from  
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Force Plate is delivered to the FSR’s Sync Logger via a BNC cable (section  3.2). The 
standard deviation of the foot-on time and stance durations calculated from FSR is 
3.1ms and 4.2ms respectively compared to those from FP, with 50% of the strides 
having error within 3ms and 80% having the error within 5ms in both foot-on time 
and stance durations. 

5.1.2   FSR Synchronisation Validation Results 
The accuracy of the beacon-based synchronisation between the FSR logging board 
and the Sync logging board was validated in this section. The two logger boards and 
beacon transmitter were switched on and logging started at a rate of 1000Hz. A simu-
lated trigger signal was generated, consisting of rising and falling edges at arbitrary 
intervals, and logged directly into a channel on both logger boards simultaneously. 
The timings of the trigger signal edges from each board were then converted to a 
common timebase, using the received beacons, and differenced. From 150 trigger 
edges, the mean absolute timing error was 0.647ms with a standard deviation of 
0.715ms. 67.3% of the edges times were no more than 1ms (1 sample period) differ-
ent, 88% were no more than 1.01ms different, and 100% were no more than 2ms  
(2 sample periods) different. This is an acceptable result, particularly as it is antici-
pated that synchronisation accuracy should improve at the reduced sampling rates 
(300Hz) used by the FSR system. 

5.2   Stride Length Results and Analysis 

In this section, first, it was investigated – using CODA data – whether there is a rela-
tionship between CoM stride displacement and stride length. Then, the accuracy of 
NNL data was evaluated by comparing it with the CoM forward displacement from 
CODA’s hip marker data, and investigate how NNL’s accuracy could be improved by 
fusing NNL data with other type of SESAME IS data. Assuming a relationship be-
tween stride length and CoM stride displacement exists, and that the accuracy of the 
NNL data can be improved, one could deduce stride length by combining the NNL 
CoM forward displacement with the foot-on times measured from the FSR data.  

5.2.1   Relationship between CoM Stride Displacement and Stride Length 
The purpose of this analysis is to investigate whether a relationship exists between the 
CoM forward displacement during a stride (i.e. CoM stride displacement) and stride 
length using CODA data. Since sprinters sprint on their toes, the vertical displace-
ment of the right toe, vertical acceleration of the right toe, and forward displacement 
of the hip marker were used for analysis (see Fig. 2, note that vertical displacement of 
toe has been scaled down for display purposes). The vertical displacement and verti-
cal acceleration of toe enable one to work out the foot-on times; this is because at 
foot-on, the vertical displacement of toe is approximately zero (i.e. on the ground); 
there is also a sharp change in acceleration. The corresponding turning point in accel-
eration would be the foot-on time. Using these foot-on times, one could work out the 
corresponding forward displacement of the hip during a stride (i.e. CoM stride dis-
placement). Then, the data was compared with the stride length data from CODA. 
Foot-on is defined as the first moment when the toe touches the ground.  
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Fig. 2. Toe and hip forward and vertical displacement and acceleration 

The results over 18 trials show that for set 1, the difference was 4.491 ± 4.426cm 
(mean ± SD); for set 2 was 0.683 ± 1.807cm; for set 3 was 0.208 ± 2.295cm. The 
results suggest that: a) a relationship does exist between CoM stride displacement and 
stride length, in fact there is a 100% relationship between the two whilst the toe is still 
on the ground and the CoM moves above the toe (see the first two yellow dotted lines 
in Fig. 2 from left to right which indicate the times when the hip and the toe are in a 
straight, vertical line); and b) the two are more closely related as speed increases, this 
is indicated by the fact that the errors of set 2 and set 3 are significantly less than the 
errors of set 1. It is concluded that, by combining the foot-on times from FSR with 
NNL data, the CoM stride displacement can be determined.  

5.2.2   Low-Pass Filtering and Bias Correction on Raw NNL Data 
In order to derive CoM stride displacement, accurate CoM forward displacement is 
essential. It is well-known that data from radio-based localisation systems subject to 
noise and non-constant bias that the bias changes according to distance between the 
anchor and the tag. Furthermore, one would also anticipate the errors to differ should 
the surrounding environment changes (e.g. body obstructions, the presence of interfer-
ing wireless devices, etc.). For example, after comparing with CODA data, the bias in 
the raw NNL data was ~6m between ~0m-20m and was ~7m between ~30-40m (Fig. 3 
and Fig. 4). These errors are caused by several factors, namely: multiple-path signal 
reflection from the surrounding environment, background noise, and body obstruction, 
which are difficult to avoid. One approach is to correct the bias through modeling. 
However, given the level of variability involved, this approach would be difficult  [4]. 

An option to remove noise in the NNL data would be the use of Kalman filter. 
However, the assumption of constant speed or constant acceleration cannot be justi-
fied because there is no other redundant information on speed or acceleration. The  
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solution presented in this paper is to remove high frequency noise in the data by low-
pass filtering, and to fuse accurate position data from the PLG system (which is avail-
able every 10m) with the noisy and non-constant biased NNL location data in order to 
“correct” NNL’s errors. Thus, Fast Fourier Transform (FFT) was used on all the raw 
NNL data to determine the suitable cut-off frequency for low-pass filtering. The 
analysis shows that 1Hz is the optimal cut-off frequency. 

The PLG system provides accurate location of the subject at set known positions 
(e.g. 0m, 10m, 20m, etc.). The PLG data was used to correct the filtered NNL data in 
a piecewise linear model. More specifically, at specific times during a sprint (i.e. 
when the subject passes each LG), the corresponding NNL measurements are noted4. 
The difference of the two would be the bias and would be used as the correction for 
all subsequent filtered NNL measurements until the next LG is reached. The corrected 
NNL data are then compared against the corresponding CODA data. 

5.2.3   Error Analysis on Raw, Filtered, and Corrected NNL Data vs. CODA 
Fig. 3 to Fig. 5 shows a selection of graphs from the experiment results. The top left-
hand subplot of each graph shows how raw NNL data, filtered (1Hz) NNL data, fil-
tered (1Hz) and corrected NNL data (known as corrected NNL data for the rest of the 
paper), and CODA hip forward displacement measurements (i.e. gold-standard data) 
change against time. The subplot at top right-hand corner of each graph shows the 
error distributions of the differences between raw NNL forward displacement data 
and the corresponding CODA data, the subplot at bottom left-hand corner shows the 
error distributions of the filtered NNL data (1Hz) against CODA, and the subplot at 
bottom right-hand corner shows the error distributions of the corrected NNL data 
against CODA. Results from all sets were presented. 

The average mean error of all trials is 5.48cm, with a standard deviation (STD) of 
10.82cm. Note that the CODA data uses the hip marker as the CoM; whereas the 
NNL data refers to the NNL tag which is at lower back, the difference between the 
two positions was between 5cm to 8cm (i.e. approximately halve the width of the 
subject’s waist); this difference is represented in the mean error. In other words, the 
error is negligible. More specifically, the STD for set 1, set 2 and set 3 was 12.24cm, 
9.68cm, and 9.1cm respectively. It was suggested that the slightly larger STD for set 1 
was caused by the bump which occurs recursively at the same location of ~1-2m from 
0m, which is ~4-5m from the NNL anchor (Fig. 3). 

To identify the cause of the bump, the experiment was repeated after relocating the 
same set of equipment to the other end of the track (i.e. a different environment); 
furthermore, a set of static experiments, which involved the subject carrying the tag 
standing still at various locations for 120s were conducted. The results show that the 
bump still exists at the same location in relation to the anchor’s position (i.e. a repeat-
able pattern). Another set of identical experiments were carried out but with the direc-
tional antenna of the NNL anchor replaced by an omni-directional antenna. It was 
observed that the bump continue to exist repeatedly but at a different location on the  
 
                                                           
4 NNL and PLG are synchronised through a common trigger, but their samples are timestamped 

using their local clock. Thus, to obtain the corresponding filtered NNL measurements at a 
specific time, NNL measurements are interpolated. Since NNL has a high sampling frequency 
(~100Hz), the error of interpolation is minimal. 
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Fig. 3. Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA 
(trial 7, set 1) 
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Fig. 4. Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA 
(trial 12, set 2) 
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Fig. 5. Error distributions of raw NNL, filtered NNL (1Hz), and corrected NNL vs. CODA 
(trial 3, set 3) 

Cut-off Frequencies (Hz)

M
ea

n 
E

rr
or

s 
(m

)

(a) Trial 005 - Mean Errors of Corrected NNL

0 2 4 6

0.05

0.1

0.15

0.2

Cut-off Frequencies (Hz)

M
ea

n 
E

rr
or

s 
(m

)

5 10 20 30 40 50

0.05

0.1

0.15

0.2

Cut-off Frequencies (Hz)

S
T

D
 (

m
)

(b) Trial 005 - STD of Corrected NNL

0 2 4 6

0.15

0.2

0.25

Cut-off Frequencies (Hz)

S
T

D
 (

m
)

5 10 20 30 40 50

0.15

0.2

0.25

 
Fig. 6. Mean error and STD at different cut-off frequencies (trial 5, set 2) 

track. It was concluded that this bump was caused by the multiple path ground reflec-
tion of signals which is associated with the characteristics of the antenna being used. 

Mean error and STD were useful to evaluate systematic error and noise. The results 
(Fig. 6) show that, the lower the cut-off frequency, the smaller the STD, and the mean 
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error is small and relatively steadily (when cut-off frequency is <5Hz). Also, the esti-
mated trajectory is smoother; whereas at 5Hz, the curve is relatively “wobbly”. One 
may argue that the smaller STD when using a lower cut-off frequency for filtering is a 
result of the over-smoothing effect, which could lead to small systematic errors; how-
ever, a smooth curve with a small STD would be useful for stride length analysis 
because - for stride length - it is the difference between two points that are of interest.  

5.2.4   NNL CoM Stride Displacement Analysis 
The foot-on times from the FSR system are combined with the corrected NNL data to 
determine the corresponding CoM stride displacement; the results are compared with 
the corresponding stride length results from CODA (Table 1). A total of 32 strides 
were collected. Fig. 7 shows how stride length could be determined from NNL and 
FSR data: the foot-on timestamps from FSR are determined, the times are used to 
determine the corresponding forward CoM displacement from NNL data. The result is 
the CoM stride displacement, which corresponds to the stride length. 
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Fig. 7. Stride length determination by combining continuous CoM displacement data from 
NNL and FSR foot-on data 

Table 1. Average mean errors and average STD of NNL “strides” of different sets 

Set num 1 2 3
Mean Diff (cm) 5.65 9.2 3.06

STD (cm) 25.16 8.34 14.98  

 
The accuracy of NNL’s CoM stride displacement is directly related to the accuracy 

of the corrected NNL data itself, and it is also related to the relationship between the 
CoM stride displacement and the actual stride length. The STD of set 1 is slightly 
higher than the required accuracy, which is in-line with the observations presented in 
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section  5.2.1: at the acceleration phase, the relationship between stride length and 
CoM stride displacement (or CoM forward displacement) is relatively weaker than the 
relationship at later stages. The results suggest that the SESAME IS is capable of 
determining stride length at a high level of accuracy for the secondary accelerating 
phase, maximum speed phase, and fatigue phase.  

It should be noted that the presented filtering and correction model is an essential 
element of a practical solution to achieving the highest possible level of accuracy. 
Averaging raw NNL data over time would not remove the effect of non-constant drift 
in the data; and it should also be noted that athletes’ speed is not constant throughout 
a sprint (the times in Fig. 4 and Fig. 5 are different, showing that the athletes are run-
ning at different speeds during different phases), and as discussed in section  4, the 
variability of speed during a sprint is subject-dependent. If the non-constant drift is 
repeatable (i.e. that it is determinable how the system would drift at each specific 
location on the track), one might argue that one could create a model to address the 
drift. However, such argument relies on an assumption that the surrounding environ-
ment of the track remains unchanged. Such argument cannot be justified because the 
track is a shared domain, meaning that it is beyond one’s control of any future devel-
opments, and it is not reasonable to assume resources would be available in the long 
term to re-calibrate the system every time a change happens. Since any radio-based 
system that uses a shared radio-band is subjected to interference, the SESAME IS 
uses the PLG data to minimise the effect of unpredictable events that might affect the 
accuracy of the system.  

6   Applicability and Impact 

Since the commissioning of the PLG system at NIAC, the system has been used by all 
registered coaches at NIAC and their associated athletes during their training sessions 
in a weekly basis. Recent research work  [18] [19] have investigated into algorithms for 
interference-aware radio-based localisation systems however, the impact of such 
mechanisms on the system’s accuracy when deployed in a real environment is not 
known. Although it is beyond the scope of this paper to investigate interference-free 
(-aware) radio-based system, the real, raw localisation data from the SESAME NNL 
system would provide valuable information to carry out evaluation on new correction 
algorithms.  

7   Conclusion 

In this paper, the design and experimentation results of the SESAME IS system was 
presented. The system was designed to determine stride-related information, such as 
stance time, stride time, and stride length, as well as speed-related info such as split 
times and continuous location/speed information of high speed running sprinters. The 
SESAME Integrated System includes a wireless foot-mounted FSR, a radio-based 
localisation system, and a LG-based split time measuring system. The technologies 
behind each sub-system, together with practical solutions to integrate and synchronise 
the heterogeneous sub-systems, are presented. The procedures of the experiments and 
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the correction model for noisy and non-constant raw radio-based localisation data 
were presented. Through experimentations and sensor fusion of data from multiple 
sources, the system achieves an accuracy within 5ms for stance time and stride time 
measurements; and within ~10cm for stride-related measurements across the secon-
dary acceleration phase, maximum phase, and fatigue phase of a sprint, with a slightly 
higher variation during the acceleration phase. The applicability and impact of the 
system are also discussed.  

8   Future Work 

Part of the future work is to develop custom-made sensor logging boards with much 
smaller size. The next version of sensor logging boards - which will replace the current 
NNL tag and the FSR logging board - uses the same NNL AVR chip and an on-board 
chip antenna. The new board is approximately 2mm thick with half the size of a credit 
card. The decision to use the same chip (but on a smaller board) is such that one could 
continue the investigation base on the experiment results presented in this paper. 

Another part of the future work involves collecting data from the same integrated 
system but using a multiple-anchor setup. The idea is that, should one anchor observe 
the bump; others may not. Thus, even more accurate displacement measurements 
could be obtained. An initial experiment using four anchors suggest that, Curvilinear 
Component Analysis (CCA)  [17] produces accurate 2D localisation data; 2D localisa-
tion would enable the system to monitor athletes running on the oval track.  
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Abstract. One unfortunate consequence of the success story of wireless
sensor networks (WSNs) in separate research communities is an ever-
growing gap between theory and practice. Even though there is a in-
creasing number of algorithmic methods for WSNs, the vast majority
has never been tried in practice; conversely, many practical challenges
are still awaiting efficient algorithmic solutions. The main cause for this
discrepancy is the fact that programming sensor nodes still happens at
a very technical level. We remedy the situation by introducing Wiselib,
our algorithm library that allows for simple implementations of algo-
rithms onto a large variety of hardware and software. This is achieved
by employing advanced C++ techniques such as templates and inline
functions, allowing to write generic code that is resolved and bound at
compile time, resulting in virtually no memory or computation overhead
at run time.

The Wiselib runs on different host operating systems, such as Contiki,
iSense OS, and ScatterWeb. Furthermore, it runs on virtual nodes simu-
lated by Shawn. For any algorithm, the Wiselib provides data structures
that suit the specific properties of the target platform. Algorithm code
does not contain any platform-specific specializations, allowing a single
implementation to run natively on heterogeneous networks.

In this paper, we describe the building blocks of the Wiselib, and an-
alyze the overhead. We demonstrate the effectiveness of our approach by
showing how routing algorithms can be implemented. We also report on
results from experiments with real sensor-node hardware.

Keywords: Sensor Networks, Algorithms, Library, Heterogeneity.

1 Introduction
Since the initial visions proposed in the SmartDust project [13] ten years ago,
Wireless Sensor Networks have seen a tremendous development, both in theory
and in practice. On the practical side, we see working sensor networks and appli-
cations in many areas, from academia to industrial appliances. There is a large
variety of hardware and software to choose from that is easy to set up and use.
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This success story has also led to a serious practical issue that has not been
sufficiently addressed in the past: Sensor node brands are very different in their
capabilities. Some nodes have 8-bit microprocessors and tiny amounts of RAM,
while others burst with power, being able to run desktop operating systems such
as Linux. Consequently, the software running on these systems is very different
on the various nodes. While it is easy to write code for a specific platform, it is
a very challenging task to develop platform-independent code. Even worse, the
operating systems on most sensor nodes provide barely enough functionality to
implement simple algorithms. This means that the developer is forced to spend
great attention on low-level details, making the process painfully complex and
slow.

A parallel success story can be observed on the theoretical side, where the
development of distributed algorithms for many actual or hypothetical problems
has grown into a research field of its own. This has led to a large variety of highly
sophisticated algorithms for all kinds of tasks. Unfortunately, many of them have
never been tried in practice, due to the overly difficult implementation process.
Where algorithms are implemented, they are hard to share and compare, as
implementations cannot be easily ported to new platforms. Moreover, many
important challenges are not even addressed, as they can only be identified and
resolved by close collaboration between theory and practice.

This growing gap between theory and practice forms a major impediment for
exploiting the possibilities of complex distributed systems. The Wiselib is our
proposal to remedy this unfortunate situation. We present a framework, written
in C++, for platform-independent algorithm development. Each algorithm writ-
ten for the Wiselib can be compiled for any supported system without changing
any line of code. It provides simple interfaces to the algorithm developer, with
a unified API and ready-to-use data structure implementations. The Wiselib
addresses the following issues:

Platform independence. Wiselib code can be compiled on a number of dif-
ferent hardware platforms, usually without platform-dependent configurations,
i.e., no “#ifdef” constructions. See Section 3.1 for details.

OS independence. Wiselib code can be compiled for different operating sys-
tems. This includes systems based on C like Contiki, as well as C++ (the iSense
firmware) and nesC (TinyOS).

Exchangeability. Algorithms and applications can be composed of different
components that interact using well-defined interfaces, called concepts. Com-
ponents can be exchanged with other implementations without affecting the
remaining code. Moreover, both generic components and highly optimized
platform-specific components can be used simultaneously.

Broad algorithm coverage. The Wiselib currently covers a large variety
of algorithms. It will contain algorithms for each of the following categories:

1. routing algorithms
2. clustering algorithms,
3. time-synchronization algorithms,

4. localization algorithms,
5. data dissemination, and
6. target tracking.
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Cross-layer algorithms. In Wiselib an algorithm can be designed to use other
algorithm concepts, thus enabling the use of existing algorithms for the imple-
mentation of more complex ones. Moreover, we can stack protocols on top of
each other, extending their functionality. See Section 5 for details.

Standard compliance. The library is written in a well-defined language subset
of ISO C++. This has a number of benefits over custom languages such as nesC:
The compilers are more mature and better supported, and there is a large user
base that knows C++ from desktop development.

Scalability and efficiency. The Wiselib is capable of running on a great va-
riety of hardware platforms, with CPUs ranging from 8-bit microcontrollers to
32-bit RISC CPUs, and with memory ranging from a few kilobytes to several
megabytes. Algorithms need to be very resource-friendly on the platforms from
the lower end, and at the same time be able to use more resources if available.

To our knowledge, the Wiselib is the only successful attempt to achieve all
of these goals at once. In this paper, we present the basic building-blocks of the
Wiselib, and show that the flexibility of the design has barely any overhead—
neither in code size nor in run-time; one can simply add new algorithms only
by following the presented approach using the Wiselib interfaces. The algorithm
can then run on each supported sensor node or simulation platform. Our goal
is to achieve a state in which such an algorithm runs on heterogeneous sensor
networks, and even more, networks in which some parts consist of virtual nodes
running in a simulator.

This paper is organized as follows: The next section provides an overview of
related work, covering competing approaches as well as implementations that
inspired this work. Section 3 explores the problem space by discussing the target
platforms on which we wish to run the Wiselib. Section 4 presents details on
the design of the Wiselib. In Section 5 we describe example implementations
of routing algorithms; in Section 6, we report on the surprisingly small code
and memory footprint on different platforms. Section 7 describes the current
distribution of the Wiselib. We conclude the paper in Section 8.

2 Related Work

Efficient algorithm libraries have a long-standing tradition on desktops and
servers. The three libraries that motivated our work are the Standard Template
Library (STL), the Computational Geometry Algorithms Library (CGAL) [4],
and Boost [2]. They share a great programming concept that we heavily use for
the Wiselib: Using C++ templates, one can construct complex object-oriented
software architectures that can be parameterized for many different applications.
The price of generality is paid at compile time. The final binary contains highly
efficient and specialized code, so that there is no overhead at runtime.

The situation in sensor networks is not as promising. There have been ap-
proaches to overcome the issues of incompatible nodes by providing generic op-
erating systems that run on multiple platforms. Examples are Contiki [6] and
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TinyOS [20]. Neither runs on all platforms we are envisioning for the Wiselib.
Even worse, both introduce new programming paradigms that are valid only for
the specific targets, such as protothreads in Contiki, and the whole program-
ming language nesC [7] of TinyOS. The C-inspired nesC attempts to allow for
the construction of component architectures with early binding, similar to the
Wiselib, but achieves this through introducing a new language that requires a
custom compiler.

A challenging issue are heterogeneous networks. It is very simple to have nodes
exchange messages if they are of the same kind, and with the same operating
systems. It becomes surprisingly hard to let nodes of different brands commu-
nicate with each other, even if both of them use standardized IEEE 802.15.4
radios. A promising approach is the Rime Stack [10,5], a layered communication
stack for sensor networks. It runs only on Contiki. Recently, Sauter et al. [16]
demonstrated that is is possible to communicate between sensor nodes running
Contiki and TinyOS. Since TinyOS uses IEEE 802.15.4, the Rime Stack and
Chameleon Module had been modified on Contiki.

Another attempt to produce a well-defined environment that runs on differ-
ent platforms was proposed by Boulis et al. [3]: SensorWare defines a custom
scripting language; its syntax is based on Tcl. Consequently it focuses on richer
platforms with at least 1 Mbyte of ROM and 128 KBytes of RAM. A similar
approach is Maté [14], a virtual machine running on top of TinyOS. It tar-
gets also small devices with a very limited amount of resources, using a custom
assembler-like language.

Not surprisingly, there are are also attempts to run a Java Virtual Machine
(JVM) on sensor nodes [17]. Squawk [18] is a JVM by Sun Microsystems that
runs on Sun Spots. Obviously such an approach is not suited for low-end sensor
nodes, and also not for time-critical algorithms.

A different approach are macroprogramming frameworks such as Kairos [9],
Marionette [22], and MacroLab [11]. Instead of writing code for individual nodes,
the whole network is addressed with a single program. This is generally achieved
by providing a script language that is executed automatically on all nodes, with-
out the need for reprogramming any node in the network.

3 Problem Space

3.1 Heterogeneity

When developing an algorithm library for sensor networks, one must deal with
a great variety of different hardware and software platforms. Table 1 shows an
overview of platforms that were taken into account for the development of the
Wiselib.

The operating systems vary from system-specific implementations such as
iSense and ScatterWeb to generic approaches such as Contiki, TinyOS, and
Linux. The preferred programming languages vary with the OSs. The iSense
firmware has been developed in C++, whereas the ScatterWeb firmware uses
plain C. TinyOS uses a custom language, the C extension nesC [7]. Support
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Table 1. Evaluation of potential target platforms. The columns refer to the type of
microcontroller, the standard operating system, the programming language for it, what
kind of dynamic memory is available, the amount of ROM and RAM, and the bit width.

Hardware Firmware/OS CPU Language Dyn Mem ROM RAM Bits
iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
ScatterWeb MSB SCW-FW MSP430 C None 48kB 10kB 16
ScatterWeb ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMega128L C Physical 128kB 4kB 8
TNOde TinyOS ATMega128L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64
Desktop PC TOSSIM (ATMega128L) nesC (Physical) unlimited unlimited (8)

for dynamic memory, malloc() and free(), is only available for some systems.
Using the ScatterWeb firmware, the size of all memory blocks must be known
at compile time, whereas the iSense firmware provides a full implementation
for the C++ operators new and delete. This is done with the aid of an own
memory allocation implementation. Similar approaches are provided by TinyOS
via TinyAlloc, and Contiki via the managed memory allocator or memb block
memory allocator. Only the Linux-based node supports virtual address space
for processes. There are also significant differences in the amount of available
memory, ranging from a few kilobytes to 64 MByte in the GumStix. Finally, we
must also deal with different bit widths. The Atmel Atmegas are 8-bit micro-
controllers, the MSP430 are 16-bit microcontrollers, whereas the rest are 32-bit
microcontrollers. There are a number of challenges stemming from the nodes’
properties and capabilities. These became additional library requirements.

Limited Memory. The algorithms may run on tiny microcontrollers for which
the provided memory is very limited. On the one hand, this affects the ROM. The
generated code for an algorithm must be as small as possible to fit into memory.
On the other hand, the RAM is affected. Routing tables, for example, cannot
be arbitrarily long so as not to exhaust the limited main memory. Additionally,
the node representation that is used for storing the neighborhood must be as
small as possible, but must also meet the demands of the used algorithms. At
the same time, when running on a node with plenty of memory, performance
gains can and should be achieved by employing more advanced data structures.

Physical Dynamic Memory. The availability of dynamic memory allocation
is already a big step forward, allowing for efficient data structures. However,
most implementations only provide physical addresses, and some are even un-
able to join adjacent freed memory blocks. Shifting of pages to join free blocks
is impossible on all nodes with physical memory. Even a simple vector imple-
mentation with O(log n) amortized insertion time would leave behind a trail of
O(log n) free blocks of various sizes. Therefore, data structures must be carefully
re-analyzed to take these special considerations into account.

Limited Computation Power. Because algorithms may run on small micro-
controllers, efficiency plays an essential role. Examples are message reception in



Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 167

an interrupt or iterating over a neighbor table to select the next routing node.
This also constrains the Wiselib not to enforce the use of slow operations (such
as excessive pointer indirection) through the provided framework.
Compiler Variance. Our library must run on multiple hardware platforms.
Different compiler versions must be supported, so it is important that only stan-
dard features of the selected programming language are used.
Data Access. When accessing data at arbitrary locations in memory, alignment
problems can occur. For example, a cast of a 16bit integer works for both MSP430
and Jennic, when it starts at an even address. But when it starts at an odd
address, it fails on both platforms. However, a cast of a 32bit integer works on
all even addresses on a MSP430, but for Jennic only on quad-byte boundaries.

Moreover, when exchanging data in heterogeneous systems, the byte order
must be taken into account, because some systems are big endian, whereas others
are little endian.

3.2 C++ in Embedded Systems

The Wiselib must cover all of the previously mentioned hardware and software
platforms; the latter are developed in different programming languages. Hence,
an appropriate programming language must be found. We chose C++ [19], be-
cause it combines modern programming techniques with the ability of writing
efficient and performant software. The use of C++ in embedded systems has al-
ready been evaluated [12]. Based on this report and own evaluations, we selected
a subset of the language to be used in the Wiselib.

C++ allows modern OO designs. Object-Oriented programming is standard
on the desktop for quite some time by now, and has proven to ease the devel-
opment of complex systems. Moreover, C++ is a fully typesafe language. This
speeds up the development process, as it catches type errors at compile time.
Given the tediousness of debugging on sensor nodes, this is a huge achievement.

The most important language feature for the Wiselib are templates [21,1].
Templates can be used to develop very efficient and flexible applications. The
basic functionality of templates is to allow the use of generic code that is fully
resolved by the compiler when specific types are given. Thereby, only the code
that is actually needed is generated, and methods and parameters as template
parameter can be accessed directly. We use the well-established technique of
template-based “concepts” and “models”, where the former are not specified
as actual code, but rather as formal specifications in documentation. It lists
the required and provided types, as well as member function signatures. Mod-
els are implementations of concepts, using template specializations, without any
inherent runtime overhead. Both concepts and models allow for polymorphism,
including multiple inheritance. These techniques are used successfully in stan-
dard C++ libraries, such as the STL, Boost [2], and CGAL [4]. The Wiselib
employs these methods in the same manner, i.e., using standard compiler fea-
tures without custom additions.

Another basic feature in C++ is virtual inheritance. When declaring a method
as virtual, the compiler has to generate a vtable consisting of function pointers
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Table 2. Availability of C++ compilers for selected platforms

Architecture Compiler Binary Base libstdc++ Basic C++ Syntax Templates
Jennic ba-elf-g++

√
GCC 4.2.1

√ √ √
MSP430 msp430-g++ - GCC 3.2.3 -

√ √
ATMega128L avr-g++ - GCC 4.1.2 -

√ √
Intel XScale xscale-g++

√
GCC 3.3.1

√ √ √

to the appropriate methods. Whenever such a method is called, it has to be
looked up in the vtable first, thereby requiring pointer indirection. This leads
to an increase of both program memory and run-time, and makes some compiler
optimizations impossible. Hence, we do not use virtual inheritance in the Wiselib.
We substitute this feature by templates.

Two more features that are not used in the Wiselib are run-time type infor-
mation (RTTI) and exceptions. Both result in significant runtime and code-size
overhead, as already shown in [12].

There are C++ compilers available for all of our target platforms. See Ta-
ble 2 for an overview. Some platforms lack support for libstd++, which includes
the operators new and delete. The STL is also not available everywhere. All
compiler support the C++ features we build upon, i.e., template and member
specializations.

All compilers are based on GCC, and thus there are no considered drawbacks
from compiler incompatibilities. There are some minor limitations due to the
missing libstdc++ on some systems, which have no impact on the Wiselib.

4 The Wiselib

The core design pattern for the Wiselib are generic programming techniques that
are implemented using C++ templates. The basic idea is to pass the important
functionality as template parameters to an algorithm: implementations of OS
specific code, and data structures. Hence, it is possible to compile an algorithm
exactly for the current needs.

4.1 Architecture

The fundamental design principle of the Wiselib consists of concepts and models,
which have already been discussed in Section 3.2. We feature an architecture with
three main pieces: algorithms, OS facets, and data structures. The idea is shown
in Fig. 1.

First of all, there are concepts for algorithms. There is one concept per cate-
gory, whereby a category groups algorithms by their basic functionality, e.g. rout-
ing or localization. Any algorithm model implements one or multiple concepts,
and is basically a template expecting various parameters. These parameters can
be both OS facets and data structures.

OS facets represent the connection to the underlying operating system or
firmware—for example, concepts for a radio or timer interface. Thus, the facets
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Fig. 1. Wiselib Architecture

provide a lightweight abstraction layer to the OS. Note that the facets are merely
type definitions and wrapper functions, they are supposed to contain no repli-
cation of OS functionality.

With the aid of data structures, an algorithm can scale to the platform it is
compiled for. For instance, static data structures can be passed on tiny platforms
without dynamic memory management, whereas highly dynamic and efficient
data structures are passed on powerful microcontrollers or desktop PCs.

4.2 External Interface

The “external interface”, consisting of OS facets, represents the connection to
the underlying OS. Implementations of these facets are passed to an algorithm
as template arguments. The compiler should mostly be able to directly resolve
such calls to the OS. For example, when registering a timer can be done using
one line of code, it is implemented as an inline function in the appropriate timer
model. Hence, the result would be a direct call to the OS function, and thus
there would be no overhead, neither in code size nor in execution time. In C-
based operating systems (we see TinyOS in this group), the OS facets have to
provide a translation between C++ member function calls and C function calls,
and they have to convert C++ members to C callback pointers. This is where an
actual price of generality has to be paid. Fortunately, as we report in Section 6,
this price is very low.

Several models of the same concept for an OS facet can also be made available,
each with its own advantages for special purposes. The user can pass the best
available model to an algorithm at compile time, without extra overhead.

An example for a model of the OS facet “radio” is as follows. It is for the
C++-based iSense firmware:

1 template<... > class iSenseRadioModel {
2 static int send (Os ∗os , i d t id , s i z e t len , da ta t ∗data )
3 { os−>rad io ( ) . send ( id , len , data , 0 , 0 ) ; }
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The example shows the implementation of a simple send method offered by a
radio model. Since it is only one function call, it can be directly resolved by the
compiler without generating any overhead.
Concept Inheritance. The above example of the radio’s send() method with
destination address and payload is defined in the basic radio concept. Routing
algorithms, for example, which do only need to send and receive messages with-
out any further information such as RSSI values, or requirements such as reliable
delivery can use implementations of this concept.

We also allow for concept inheritance, so that the basic radio concept can
easily be extended. If an algorithm needs access to RSSI (or LQI) values, a
derived concept can be used. It extends the basic one with a receive method
that provides additional values.
Stackability. A major design aspect for the radio concept is stackability, i.e.,
the possibility to build a layered structure of multiple radios. The topmost layer
is not aware to which and how many layers it is connected. The big advantage of
this approach is that we can build a “virtual radio” that runs on top of a radio
model, and is passed to an algorithm in its radio template parameter. Doing so,
we can easily implement an algorithm for heterogeneous sensor networks. It is
even possible to communicate between nodes that use different kinds of node
IDs—because the virtual radio hides the real node addresses and provides, e.g.,
generic 128 bit addresses.

Another possibility is to hide a complete routing algorithm behind an OS
facet. For example, when writing out debug messages, this happens generally to
the UART. But by passing another model, we can forward debug messages over
a routing algorithm to a gateway, where all these messages are collected. The
topmost algorithm does not need to be aware of the model it works on—it must
only use the appropriate concept.
Message Delivery in Heterogeneous Systems. Another problem that is ad-
dressed using our software design is message delivery in heterogeneous networks.
There are basically two problems that occur: different byte-order, and differ-
ences in alignment handling. Byte order issues are solved by sticking to network
byte order in messages. Alignment is addressed via template specialization. We
provide a serialization class that provides generic read and write methods for
all data types.

4.3 pSTL

Not all of our target systems provide dynamic memory allocation. To our knowl-
edge, no variant of the STL fulfills our requirements: not using libstdc++,
new/delete, exceptions, and RTTI.

Consequently, we provide the pSTL, an implementation of parts of the STL
that does neither use dynamic memory allocation nor exceptions nor RTTI.
We ensure that each of the provided data structures works on each supported
hardware platform. At the moment, implementations for map, vector, and list
are available. Naturally, the pSTL will grow with increasing demand.
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4.4 pMP

For many tasks in embedded systems, multi-precision arithmetic is needed, e.g.
for cryptographic and data aggregation purposes. Currently there exist a number
of software libraries that implement big-number operations, e.g., gnuMP [8]. Such
libraries heavily rely on dynamic memory allocation to represent big-numbers
and carry out the operations. Moreover, to achieve performance speedups, highly
optimized assembly code is used, taking advantage of specific hardware instruc-
tions. Unfortunately, the hardware types used in WSN platforms (e.g., AT-
MEGA, Jennic) support neither dynamic memory allocation nor the specific
hardware instructions used by gnuMP and other libraries. Hence it is very diffi-
cult to port such implementations to our platforms, if not impossible at all.

Therefore, we provide the pMP, an C-based implementation of big-number
operations that does not use dynamic memory allocation. Of course such a library
cannot be compared in terms of efficiency with gnuMP, but it is the only one
available currently. In particular, it implements some basic operations like xor,
shiftleft and modulo multiplication operations which are required for elliptic
curve cryptography. It is certain that the pMP will grow regarding future needs.

4.5 Algorithm Support

The central piece of the Wiselib are the algorithms. They are grouped into cate-
gories, see Section 1. Algorithm implementation can belong to several categories,
which is common for cross-layer algorithms.

Each algorithm class consists of a concept for the algorithm itself, and some
concepts for the data structures that are typically necessary for this class. This
decouples the algorithm logic, which is invariant over different platforms, from
data storage, which heavily changes when an algorithm is ported to a platform
of different characteristics.

The benefit of having a well-defined algorithm interface is that algorithms are
easily interchanged for testing purposes, ideally this is done by simply altering
a class name in the initialization code. The second—much more important—
benefit is that an algorithm developer can start coding by copy-and-paste, in-
stead of having to go through a design phase. Such a design phase can be quite
lengthy, if the goal is to achieve maximal portability. Until now, theoreticians
wishing to evaluate high-level algorithms often found it hard to develop for em-
bedded devices: this lowers the bar considerably.

Providing a diverse set of data structure implementations serves the goal of
scalability: For each data structure, e.g., routing tables, neighborhood cluster
maps, and position maps, a set of implementations matching the span of plat-
forms is provided. For low-end architectures such as the MSP430, structures
are needed that use static storage whose size is known at compile-time. Such
structures will inevitably be inefficient in terms of runtime. For high-end archi-
tectures using Xscale processors or simulation environments, highly optimized
data structures with dynamic memory management and huge memory overhead
can be employed, resulting in high efficiency. It is even feasible to utilize the
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STL. The choice of data structures has no impact on the algorithm code, and
can simply be configured at algorithm initialization. This results in algorithms
that not only scale down to very limited devices, but also scale up to powerful
nodes, utilizing all the available resources on them.

5 Case Study: Secure Routing Algorithms

We show the benefits of C++ and template-based design by presenting two
examples: routing and cryptography algorithms. First we present either of the
approaches as a single concept. Then we show how easily individual implemen-
tations can be combined to generate secure routing algorithms.
Routing Algorithms. When designing a concept for an algorithm class, one
wishes to cover all kinds of special case, while staying as generic as possible. This
is because each method in the concept must be implemented by each model.
Hence, our concept for a routing algorithm consists of only six methods.

First, we need a method for setting the pointer to the OsModel that is needed
when calling static member functions from the External Interface. Then we have
two methods for enabling and disabling the routing algorithm, which is useful
when the routing should only be run in certain points in time, for example for
energy-saving issues. Next, a potential user of the routing algorithm must be
able to register and unregister a callback for message reception. At last, there
is the method for sending messages to other nodes in the network. The Routing
Concepts specializes the Radio Concept, so that routing algorithms can be used
as virtual radio interfaces for other algorithms. The concept looks as follows:

1 concept Routing {
2 void s e t o s (OsModel∗ os ) ;
3 void enab le (void ) ;
4 void d i s ab l e (void ) ;
5 void send ( node id t r e c e i v e r , s i z e t len , da ta t ∗ data ) ;
6 template <class Cal l ee , void ( Ca l l e e : : ∗ Method )
7 ( node id t , s i z e t , da ta t∗)>
8 int r e g r e c v c a l l b a c k (T ∗ ob j pnt ) ;
9 void un r e g r e c v c a l l b a c k ( int ) ;

10 } ;

Cryptography. Adapting cryptographic algorithms to embedded systems is
a difficult task due to resource limitations. Unlike the routing case, we avoid
covering all special cases of crypto algorithms. We provide a simple concept with
algorithm implementations that will be viable solutions for the tiny sensors.

Our generic concept for a crypto algorithm consists of five methods. We pro-
vide methods for key setup, encryption and decryption of data blocks. The con-
cept looks as follows:

1 concept Crypto {
2 void s e t o s (OsModel∗ os ) ;
3 void enab le (void ) ;
4 void d i s ab l e (void ) ;
5 void key se tup ( node id t , da ta t ∗ key ) ;
6 void encrypt ( da ta t ∗ in , da ta t ∗ out , s i z e t l ength ) ;
7 void decrypt ( da ta t ∗ in , da ta t ∗ out , s i z e t l ength ) ;
8 } ;
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Secure Routing. In this section, we describe how the individual routing and
cryptographic implementations can be combined to result in secure routing al-
gorithms. Note that any available routing implementation can be combined with
any available crypto algorithm without a single change in their code.

We therefore implement the routing concept, and accept a routing algorithm
and a crypto algorithm as template parameters. Internally, we only use the
passed types. For example, when the secure routing is enabled, it in turn enables
the routing and crypto algorithm. When a message is sent, it first encrypts the
passed bytes, and then passes the encrypted data to the routing algorithm.
Then, when a message is received at the destination, it is first decrypted, and
then passed to the registered receivers. The secure routing looks then as follows:

1 template<typename Routing ,
2 typename Crypto>
3 class SecureRouting {
4 void s e t o s (OsModel∗ os ) ;
5 [ . . . ] // a l l methods descr ibed in the rout ing concept
6 void un r e g r e c v c a l l b a c k ( int ) ;
7 Routing rou t i ng ;
8 Crypto c ryp to ;
9 } ;

Since it implements the routing concept, it can be passed and used by any
application that deal with routing algorithms. However, the process of both
encryption and decryption is completely transparent.

6 Experimental Results

In order to demonstrate the efficiency of our generic approach, we ran differ-
ent experiments on supported platforms. We evaluated two main parts of the
Wiselib: First, the overhead of the connection to the underlying OS; second,
properties of implementations of a first set of algorithms.

6.1 External Interface

We tested the performance of Wiselib system calls compared to native OS calls
on three different platforms. The results are shown in Table 3.

OS calls that are short enough to be directly inlined by the compiler, such as
sending a message on iSense platforms or reading the node ID in Contiki do not
have any overhead. However, other parts in the OS connection produce a small
overhead due to an additional layer of indirection. This is mainly because of
incompatibilities between C function pointers and C++ member function point-
ers, and a required translation between them. But as shown in the performance

Table 3. Performance costs of Wiselib calls compared to native OS calls

iSense Contiki ScatterWeb
Native Wiselib Cost Native Wiselib Cost Native Wiselib Cost

Read ID 2μs 2μs 0% <1μs <1μs 0% <1μs <1μs 0%
Send Message 282μs 282μs 0% 336μs 345μs 3% 898μs 921μs 3%
Set Timer 135μs 141μs 4% 77μs 100μs 30% 20μs 43μs 115%
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Table 4. Code-size overhead of OS facets. Shown is ROM (.text) and RAM (.bss +
.data) in bytes.

iSense Contiki ScatterWeb
Radio 856+240 428+ 72 316+ 40
Timer 868+240 352+210 270+ 80

evaluation, this overhead is very small—if at all, then only in terms of microsec-
onds. Similar delays would also be produced by alternative approaches, but by
using C++ and templates the compiler is able to remove this overhead wherever
reasonable. This is possible due to the implicit inline declaration of methods.

Time efficiency is only one performance measure; the other is code space. We
evaluated the needed size for the two OS facets radio and timer for different
platforms. The results are shown in Table 4.

Because the concepts for radio and timer were kept simple, each implemen-
tation required at most a few hundred lines of code. This led not only to a
slight structure, but also enhanced maintenance issues. In addition, even the
integration of a completely new platform can be done without too much effort.

Especially the facets for the ScatterWeb platform show a small amount of
overhead of less than 600 bytes in ROM, and 120 bytes in RAM. Even the 1.7kB
of iSense are tolerable, since it is a 32bit-platform with corresponding overhead
in machine language instructions.

An important factor when estimating the code-size overhead is that it is con-
stant, and thus do not grow with the integration of further algorithms. The
interfaces also provide a powerful abstraction of the underlying OS, facilitating
implementations of many additional algorithm categories.

6.2 Algorithms

We implemented different algorithms for the routing concept: DSDV, DSR, a
simple tree routing, and a flooding algorithm. Each algorithm has been compiled
for, and tested on each supported platform. Table 5 shows the resulting code sizes
and initial RAM usage for the several platforms.

Table 5. Evaluation of code size as ROM size (.text) and RAM size (.bss + .data) in
bytes.

16-bit OS 32-bit OS Simulators
Algorithm Contiki ScatterWeb iSense Shawn TOSSIM
DSDV 1446+ 72 1466+ 72 4776+136 4351+ 419146+ 4
DSR 1964+338 1716+238 5396+356 6918+ 420845+ 4
Tree 920+ 16 724+ 14 4060+ 24 2974+ 4 9946+ 4
Flooding 1122+ 50 762+ 34 2864+ 68 2260+ 410192+ 4

It is clearly visible that our algorithm implementation perfectly fits into the
target platforms, as the impact of the generality of the code is very low, in terms
of both code and memory. However, the given code sizes show only the pure
demand of the algorithm—without considering the external interface.



Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 175

Table 6. Stack latency in Wiselib (measured on the iSense devices)

Dummy Routing Dummy Routing, DSDV Routing DSDV Routing,
Dummy Crypto Dummy Crypto

Latency 6.08 msec 6.09 msec 6.72 msec 6.75 msec

Table 7. Comparison between Wiselib and TinyECC, for encryption/decryption run-
time

TinyECC optimized TinyECC Wiselib
Hardware Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt
TelosB 6.53sec 4.25sec 84.9sec 42.73sec 114.78sec 56.02sec
MicaZ 3.9sec 2.6sec 61.4sec 31.87sec 118.4sec 57.84sec
Tmote Sky 3.27sec 2.12 sec 42.55sec 21.41sec 115.98sec 56.91sec
iSense - - - - 22.9sec 11.84sec
ScatterWeb - - - - 102.93sec 50.42sec

Each of the routing models can also be combined with a crypto algorithm—as
shown in Section 5. The first point of interest is the overhead of multiple layers
of algorithms are. We estimated the average latency by the Wiselib layers. The
experiments were held on the iSense platform. The latency was measured as the
average of 200 message exchanges: a) through a dummy routing algorithm and
a dummy routing algorithm combined with a dummy crypto algorithm and b)
through a DSDV routing algorithm and a DSDV routing algorithm combined
with a dummy crypto algorithm. We conclude that stack latency overhead is
minimal, as shown in Table 6.

As a second experiment regarding the combination of routing and crypto
algorithms, we estimated the run-time of a crypto algorithm (Elliptic Curve
Integrated Encryption Scheme) through Wiselib for various platforms, and we
compared it with that of TinyECC[15] in Table 7. We did not focus on opti-
mizing the code; that is why TinyECC runtime is generally faster. However, our
algorithm can be executed on a variety of platforms.

Also, with the aid of template specializations—as also used in message
delivery—code can be optimized and adapted for certain platforms. Depend-
ing on the compilation process, the compiler can select exactly the code that fits
best for the current platform. For example, when an algorithm is compiled for
iSense, the AES hardware could be used for the crypto routines.

7 Accessing the Wiselib

There are different demands for the users of the Wiselib. Application developers
are interested in stable algorithms that were thoroughly tested for all supported
platforms. They do not contribute own implementations to the Wiselib; instead,
they only integrate existing algorithms in their applications. Algorithm develop-
ers on the other hand contribute code to the Wiselib. Algorithms may be under
development and can not be ensured to run on each platform.

We therefore provide two distributions: Stable and Testing. The former con-
tains only algorithms that were run through different tests, particularly for each
supported platform. Concepts that are implemented for the stable distribution
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are also expected not to be changed anymore, if not strongly needed. In contrast,
the testing distribution contains newly implemented algorithms. They may not
be tested on each platform—in particular since not each algorithm developer
has each platform available. This can also lead to changes in concepts, when it
is noticed that not all platforms can be covered satisfactorily. In general, the
objective here is to release early, and release often.

The Wiselib can be accessed under http://wisebed.eu/wiselib. There is
a Wiki available that contains documentation. In addition, there is also a Trac
running to report software bugs and collect suggestions for improvement.

8 Conclusion and Future Work
In this paper, we have introduced our generic algorithm library for wireless sen-
sor nodes, the Wiselib. It is aimed at allowing algorithm researchers to quickly
implement distributed algorithms on actual sensor nodes. The implementation
process requires no deep understanding of the target platform, as the library
provides a unified API that abstracts the technical details. Unlike all other
approaches with the same goal, or at least the ones we are aware of, Wiselib
algorithms suffer next to no runtime or memory overhead from the generality.

The Wiselib is written in standard ISO C++, using advanced OO techniques
to encapsulate the operating system and to allow complex OO architectures that
can be fully resolved by an optimizing compiler. Specifically, the Wiselib makes
heavy use of templates, as they are resolved at compile time, leaving no binding
efforts to runtime. Certainly, generality does not allow to provide highly opti-
mized code. Fortunately, our open design allows to provide such hardware specific
optimizations without hindering the generality of the algorithm implementation.
This is extremely important since algorithm development can be decoupled from
application development where platform specific optimizations are performed.

We demonstrate the effectiveness of the Wiselib by implementing a number
of routing algorithms and cryptography algorithms. We show that the produced
code is very lean and it works on a large variety of sensor platforms. The library
allows us to easily stack different types algorithms with almost zero overhead. We
build upon this feature and demonstrate the ability to interchange algorithms
without affecting the operation of other algorithms at different stack level. These
features essentially provide endless possibilities to application developers as more
algorithms and algorithmic concepts are introduced in Wiselib.

We expect the Wiselib to grow much beyond the current state, and to become
a standard tool for WSNs in the near future. We also wish to look into other
categories of algorithms such as MAC layer protocols, energy saving schemes
and topology control protocols.
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Abstract. We target application domains where the behavior of animals or hu-
mans is monitored using wireless sensor network (WSN) devices. The code on
these devices is updated frequently, as scientists acquire in-field data and refine
their hypotheses. Wireless reprogramming is therefore fundamental to avoid the
(expensive) re-collection of the devices. Moreover, the code carried by the moni-
tored individuals often depends on their characteristics, e.g., the behavior or pre-
ferred habitat. We propose a selective reprogramming approach that simplifies
and automates the process of delivering a code update to a target subset of nodes.
Target selection is expressed through constraints injected in the WSN, triggering
automatic dissemination of code updates whenever verified. Update dissemina-
tion relies on a novel protocol exploiting the social behavior of the monitored in-
dividuals. We evaluate our approach through simulation, using real-world animal
and human traces. The results shows that our protocol is able to capture the social
network structure in a way comparable to existing offline algorithms with global
knowledge while allowing runtime adaptation to community structure changes,
and that existing dissemination approaches based on gossip generate up to three
times more network overhead than our socially-aware dissemination.

1 Introduction

Wireless sensor networks (WSNs) are increasingly being used to monitor mobile enti-
ties in domains ranging from wildlife monitoring [16,20] to human health-care [22]. In
these contexts, WSN nodes are physically attached to animals or people being moni-
tored. Therefore, unlike traditional WSN architectures where all nodes perform a single
system-wide task, in these mobile WSNs the code running on a node is often specific
to the monitored individual, and may change over time according to the individual’s
behavior or context. As an example, WSN devices attached to wildlife species (e.g.,
zebras [16], turtles [13], or badgers [10]) are currently used to study various aspects
of their behavior. In the early stages of the deployment, all nodes monitor the same
quantities for domain experts to get an initial insight, which can then be used to re-task
some of the nodes to further study certain quantities. For instance, the devices carried
by badgers that stay close to their burrows may be used to study the environment around
the burrows themselves and explain why this subset of animals are following specific

J. Sá Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 178–193, 2010.
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paths in the forest instead of others, and how their movements depend on the climate.
However, re-capturing the animals to manually re-program the nodes would be very
costly, if at all possible.

Techniques for run-time reprogramming of WSNs do exist [33]. However, they fail
to tackle two fundamental challenges of the application domain we target:

– The area where monitored individuals dwell is likely to extend beyond the commu-
nication range of current sensor devices. Thus, the network is most often character-
ized by intermittent connectivity among the mobile WSN nodes [23]. This prevents
re-using well-established solutions for static networks [25].

– The few solutions addressing mobile WSNs disseminate code updates to the entire
network, and are therefore ill-suited for a selective dissemination of code updates to
a target subset. Indeed, the updates would reach more nodes than necessary, wasting
resources and reducing lifetime.

On the other hand, animals and humans are social beings, with recognizable pat-
terns of movement and community interaction, that can be exploited as a vehicle for
delivering code to the intended targets. The core contribution of this paper is a novel
approach to selective reprogramming in highly-disconnected, mobile WSNs that, based
on the individual’s interactions detects communities at runtime, and exploits their ex-
istence and relationships towards efficient update dissemination. For instance, a single
WSN node attached to a badger known to roam often between two communities (i.e., a
so-called “central” badger, with a socially-bridging role) can be enough to disseminate
code from one community of badgers to the other. In our approach, communities are
discerned entirely at run-time. This sets us apart from the few existing dissemination
approaches based on social communities, that rely on offline centralized protocols [5] or
are otherwise unable to adapt to all changes to the social community structure [14,7,31].

An overview of our approach is provided in Sec. 2, where we introduce a sample
scenario showing how a user can target a set of nodes of interest. In Sec. 3, we give
details of how the protocol is able automatically select these nodes, and deliver the
code efficiently.

In Sec. 4, we evaluate the effectiveness of our solution through simulations using
animal and human traces collected in real-world experiments. We review related ap-
proaches in Sec. 5, and provide brief concluding remarks and directions for future work
in Sec. 6.

2 Reference Scenario and System Overview

We illustrate the overview of our approach hand-in-hand with a reference scenario that
provides the main application focus for the entire paper. Although the scenario is drawn
from the wildlife domain, our techniques are applicable to other mobile WSN scenarios,
as we show in Sec. 4 by applying them to human interaction traces. Next, we describe
how users specify persistent, network-wide constraints identifying the subset of nodes
targeted by reprogramming.

Reference scenario. Fig. 1 depicts the phases of our reprogramming approach in a ref-
erence scenario concerned with badger monitoring. As shown in Fig. 1(a), reprogram-
ming entails generating a bundle containing i) the code update to be installed on a target



180 B. Pásztor et al.

Base
station

C
o
n
st
ra
in
t

User

Code

(a)

Base
station

C
o
n
st
ra
in
t

Code

(b)

Base
station

C
o
n
st
ra
in
t

C
o
n
st
ra
in
t

C
o
n
st
ra
in
t

C
o
n
st
ra
in
t

C
o
n
st
ra
in
t

Code

(c)

Fig. 1. Sample scenario showing: (a) code and constraint injection at base station, (b) constraint
dissemination to all nodes, and (c) delivery of code to selected nodes (in dashed squares)

subset of the WSN, and ii) the constraint that identifies these target nodes by means of
logical expressions involving their properties. For instance, the constraint may single
out only the nodes attached to badgers that spend most of their time close to a cold
burrow. The constraints are encoded in periodic beacons for transmission. The bundle
is then injected at the base station, or at any other node.

The two constituents of the bundle have a different fate, as show in Fig. 1(b). The
constraint is spread to all WSN nodes. Upon reception, a node matches the constraint
against its local state, and re-evaluates it periodically. The code update, on the other
hand, remains at the base station until at least one node matches the constraint. When
this happens, our socially-aware protocol (described in Sec. 3) disseminates the code
update only to the target nodes matching the constraint, as shown in Fig. 1(c).

It is important to note that reprogramming can be requested even when no node
matching the characteristics specified by the constraint currently exists. In the mobile
setting with intermittent connectivity we target, it would be difficult (if not impossi-
ble) for users to know and await the moment when the target subset is not empty. Our
solution enables users to rely on the system to detect the presence of target nodes au-
tomatically, by self-adapting to changes in the state of nodes. For instance, one might
define constraints to target nodes roaming around different burrows, and inject the code
before any node satisfies the constraint. The code will stay at the base station until such
behaviour is detected, and will be delivered automatically.

Specifiying constraints. The constraints identifying the target subset are expressed
through dedicated constructs. We characterize the state of nodes based on attributes.
These are name-value pairs describing properties of a node, e.g., the current location
or the gender of the individual it is attached to. The construct attribute(NAME)
declares an attribute, registered by the run-time layer that takes care of updating the
associated value. For instance, in the case of a LOCATION attribute, the run-time peri-
odically queries the attached GPS device, and stores the value time-series in memory.

Selecting badgers that stay around cold burrows can be specified as

constraint(n_occurrence(LOCATION == burrow) > loc_threshold &&
avg(TEMPERATURE) < temp_threshold)
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where LOCATION and TEMPERATURE are attribute names, and burrow is an en-
coding of a burrow’s location in some coordinate system. The built-in functions avg
and n occurrence are made available by the underlying run-time support: the latter
returns the number of occurrences in an attribute’s time series that match the boolean
condition given as argument. We provide several built-in functions (e.g., avg, max and
min) covering a range of common constraints.

A constraint essentially specifies a boolean function that establishes the membership
of a node in a given subset (constraint(TRUE) targets the entire WSN). This ad-
dressing scheme is well-suited to our scenarios where the target subset changes based
on the state of nodes—that we capture through attributes, and could hardly be captured
through node identifiers. Similar approaches exist in the literature [25, 34]. However,
their supporting communication layer targets only static WSNs, while we bring the ex-
pressive power of attribute-based node selection into mobile WSNs, as discussed next.

3 Socially-Aware Dissemination of Code Updates

Once the appropriate constraint is stored at the base station, the problem is to efficiently
disseminate the code update to the corresponding target nodes. In principle, this could
be done using direct transmissions, however in our scenario, we cannot ensure that all
the nodes come in range of the base station due to the limited power and radio range of
the devices.

In our dissemination protocol, code updates are relayed opportunistically from one
animal to the other upon contact. However, unlike existing approaches that propagate
updates to the entire network, we limit dissemination as much as possible to the target
nodes. This substantially reduces the network overhead, as evaluated quantitatively in
Sec. 4. To achieve this goal, we use a characteristic common to many mobile WSN sce-
narios, namely, the fact that the monitored individuals exhibit social behavior. The im-
plicit structure of social interactions, once elicited, provides an effective tool for steering
efficient routing decisions. In the rest of this section we describe the aspects of social
interaction that are relevant to our goals, along with the way we exploit them in our
dissemination protocol. The social foundation of our protocol holds for many animal
species [2] [30], including humans [14].

3.1 Overview

Social foundation. A social network is a logical structure of entities tied by some social
relation, e.g., friendship. These networks are characterized by strong clustering [7, 17].
Members of a cluster, or community, are usually closer to each other socially, than to
the rest of the network – i.e., they interact more and spend more time together. Com-
munities tend to be stable over time, although they occasionally vary. An example is
animals sharing the same burrow or foraging in the same areas: when cubs grow up, at
some point they separate and move to a different area. Moreover, not all members of a
community behave the same way, some animals/people are more active or popular than
others.

We use the highly mobile and more socially central members to aid the dissemina-
tion, since they are more likely to meet other individuals. We call these nodes leaders.
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Fig. 2. Example of social communities and their leaders. The target subset includes nodes often
visiting a specific area.

Protocol operation. We assume that the base station, where the bundle containing the
code update and constraint reside (Sec. 2), is placed in an area where one or more ani-
mals dwell. Animals identified as leaders are used to carry code updates to communities
where at least one member is in the target subset as shown in Fig. 2.

Our protocol dynamically identifies communities and leaders in a fully decentralized
way, as discussed next. As illustrated in Fig. 2, communities and leaders determine a
logical topology where links represent spatio-temporal relations between two individ-
uals, essentially denoting that they are frequently co-located. We exploit these links to
disseminate the code updates according to the forwarding rules described in Sec. 3.4.

3.2 Identifying Communities

Social foundation. Members of the same social community are co-located according to
a regular pattern and for long periods of time. For instance, at night, badgers roam inde-
pendently. During the day, however, they tend to congregate around in burrows, where
they sleep. Animals using the same burrow tend to spend considerable time together
and are therefore often associated to the same community. Our definition of community
is a set of nodes spending a certain percentage of their time together.

Protocol operation. To identify communities, we need to quantify the extent of co-
location between nodes. To do so, nodes send periodic beacon messages to discover
neighbors. Upon receiving a beacon, a node increments by the beacon interval the con-
tact time relative to the sending neighbor. This quantity is divided by the time since
the first detection of the same node, yielding a contact ratio measuring how frequently
the two nodes are co-located. Higher ratios indicate more frequent co-location. As time
elapses, the contact ratio becomes an accurate indicator of the amount of interaction
between two animals. This metric is better at capturing dynamic changes in the com-
munity structure than the often-used total-contact duration [14], since it captures not
only the order of encounters, but also is able to decay if two nodes become separated.

To create and maintain communities, all nodes send periodic beacons and evaluate
each other’s contact ratios, which are embedded within these beacons. Two nodes are
considered part of the same community when their contact ratios cross a given thresh-
old. For instance, the aforementioned behavior of badgers, sharing the same burrow for
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about half of the day, can be modeled by setting a 50% threshold. This indeed corre-
sponds to nodes that are in contact for about half of the time. Thresholds are expected
to be defined by domain experts, e.g., based on the species under study. If the ratio
crosses the threshold and neither node is yet part of a community, the node with the
smaller identifier creates a unique community identifier and includes it in subsequent
beacons; the other node joins the new community upon receiving the beacon. If either
node is already part of a community, the other joins the same one. If they belong to
different communities, the node in the community with fewer members joins the larger
one. To enable these decisions, beacons also carry the community size. Our mechanism
captures the time evolution of social relations among individuals as nodes can join and
leave communities.

An important observation is that the dissemination protocol uses one layer of clus-
tering. More precisely, a node is either a member of a community or not, we do not
consider nodes belonging to multiple communities. One can argue that this applies to
animals [2], but not for humans. While similar approaches have been adopted for human
networks [14, 31], human social structures are more complex. If the target application
heavily involves membership in multiple communities, our protocol would need to be
properly extended to cater for it.

3.3 Identifying Leaders

Social foundation. The behavior of members of the same community may differ [29].
Moreover, this behavior can change over time. For instance, during mating season, adult
male badgers travel further from their burrow than other community members, looking
for females to mate. Therefore, they are more likely to meet badgers from other com-
munities.

Protocol operation. To accurately and dynamically identify leaders within a commu-
nity, every node keeps track of two quantities:

– Its total neighbor count N , i.e., the number of all distinct nodes it has ever met.
– Its change-degree of connectivity C, i.e., the number of neighbors it acquires or

looses within a time window.

The two metrics account for different aspects, and leaders should score high in both.
For instance, a node with high neighbor count can probably reach many members of
its community. The same node, however, may have a low value of change-degree of
connectivity, e.g., if it does not move often. This node is not well-suited as a leader. The
relative weight of the two metrics must be tuned by domain experts based on the species
under study. This is achieved by defining a single leader score as L = αN +(1−α)C,
and properly setting the weight α. In this paper, unless otherwise noted, we use α = 0.5.
In principle, other metrics could be used, e.g., ego-centrality and betweenness [7]. How-
ever, our priority was to disseminate updates as quickly as possible, therefore we fo-
cused on identifying the most mobile nodes. Further, an improvement on the neighbour
count metric is to use a sliding time window, and consider the neighbour count in this
window only. Though we did not use this method in this paper, it is our intention in the
future.
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Nodes that do not belong to any community or are not associated with a leader (e.g.,
at start-up or when the community threshold is not reached) are considered leaders
of a fictitious community of size one. When a real community with more than one
member is created, the node with the highest score L becomes its leader. The identifier
of community leader and its score are embedded within beacons, and broadcast to the
1-hop neighbours of the leader, while nodes who are in direct contact with the leader
beacon a score L = 0. This ensures that each node in a community is logically one hop
away from a leader, since the node with the local maximum score is always chosen. If a
node in a community finds its score to be higher than that of the current leader, it takes
over the leadership. The same processing applies when a node joins a community.

Leaders do not need to be unique in a community. Although an unlikely situation, it
may happen that the leader identifier and score are too slow to disseminate for this in-
formation to stabilize. Nonetheless, the presence of multiple leaders with similar scores
is not problematic in the dissemination process, described next.

3.4 Code Dissemination

The process of disseminating code updates is logically divided in two steps. First, the
opportunistic routes leading to nodes in the target set are determined. Then, the actual
code is disseminated along these routes. In practice, however, the latter step is pipelined
with the former to reduce latency.

LeaderID Target NextHop Distance

A Yes Base 2
B No C 2
C Yes C 1
D Yes - -

Fig. 3. Routing table of node D
in Fig. 2

Route establishment. The routes are determined by the
constraint selecting the target subset. Constraints, en-
coded in a compact form, are disseminated to all nodes
in the network by piggybacking them on beacons. Upon
receiving a constraint, a node evaluates whether it be-
longs to the target subset. If so, it informs its community
leader whenever in range.

Leaders use this information to build routing tables like the one in Fig. 3, based on
the network shown in Fig. 2. Besides a leader’s own entry, the table is populated by ex-
changing entries with other leaders whenever they meet, through the periodic beacons.
The Target field indicates whether at least one member in a leader’s community is tar-
geted by the constraint. The NextHop field identifies the leader that forwarded a given
entry. The Distance field is the hop-count measure of how “far” a leader is. Multiple
constraints can be disseminated in parallel, distinguished by a unique identifier carried
by beacons and used to index multiple routing tables at each node.

Update dissemination.
Update dissemination is governed by the following rules:

– a non-leader can only update its own leader;
– a leader can only update other leaders and the members of its own community.

These rules ensure an efficient dissemination, as shown in Sec. 4, as well as consistent
delivery. All leaders (including nodes without a community) receive the update. All
other nodes in the target set (i.e., the community members) receive the update from
their leader.
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Updates follow the routes stored in the leaders’ routing tables. Consider for instance
Fig. 3. When node D receives an update to be disseminated, it determines through the
Target field that some of its community members are selected by the constraint, along
with members of C’s and A’s communities. To deliver the update to the selected com-
munity members, D waits until it becomes co-located with a sufficient number of com-
munity members that require the update (i.e. it receives beacons from these members).
These can then receive it simultaneously through broadcast, reducing the communica-
tion overhead.

This makes sense for species where the probability of colocation is reasonably high.
However, this policy may be revised and the leader could decide to broadcast more
often, for example when a given percentage of the required members are present. To
reach A and C, D looks at the NextHop field in its routing table: the code update is
forwarded the next time D meets with C or the base station, respectively.

As constraints are piggybacked on beacons, they propagate faster than code, which
is often larger. The routing tables are therefore usually built before the code arrives. If
not, the code is buffered until at least one positive value appears in the Target field.

Short-lived vs. persistent updates. Constraints and code updates are associated to a
version number and a time-to-live (TTL). The version number avoids duplicate delivery.
Constraints are re-evaluated periodically and the corresponding entries in the routing ta-
ble are retained until the TTL expires. When a node matching the constraint is detected,
our protocol automatically starts the code dissemination following the mechanisms de-
scribed. Along with this short-lived updates, which disappear from the network after a
given time, we also easily support persistent updates by setting an infinite TTL. In this
case, our scheme caters for a powerful way to make the system self-adapt.

3.5 Implementation Highlights

Our current prototype is based on the Contiki [9] OS, targeting TMote Sky nodes.
The system is composed of three core components. A Communication component
is responsible for building and maintaining routing information. Specifically, it main-
tains the neighbor table, calculates the contact ratio for every neighbor, and maintains
information on the leaders. In addition, the module is also responsible for the reli-
able delivery of the code updates. To do so, we use a simple broadcast mechanism
based on a RTS/CTS mechanism and acknowledgments sent back by the target nodes.
A Constraint Evaluator module parses received constraints and checks them
against the current values of node attributes. This determines whether the local node is
included in the target subset. Finally, a Reprogramming module dynamically links
received code updates (typically of size 2-10 Kb) using the hooks available in Contiki.

4 Evaluation

We first compare the effectiveness of our distributed community detection protocol
against a centralized algorithm based on global knowledge of the social graph. The
two schemes have similar performance in terms of communities detected, yet our dis-
tributed solution is able to detect dynamic changes in the community structure. Next,
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we assess how community knowledge improves code dissemination. Based on this, our
protocol reduces network traffic by a factor of 66% compared to a gossip protocol.

General settings. We used a one month subset of both the Reality Mining traces [12]
and mobility traces from a badger-monitoring deployment [10]. The former include
proximity information gathered using 43 mobile phones carried by people moving on a
university campus. The latter are collected from the movements of 32 badgers equipped
with RFID collars and 28 RFID readers deployed in a forest. These data include time-
stamped detection of animals by readers at specific places. Therefore, there would be no
explicit information on the connectivity between the RFID tags carried by the animals.
We convert these traces into connectivity information by considering the nodes within
wireless range when the animals are detected by the same RFID reader within a 5-
minute time-window. Further, we assume animals stay at the burrow between the time
they enter and exit - even though the RFID is unable to detect them underground.

The traces present a different radio model from the traditional WSNs, however here
we are more interested in the social model governing the movements of the nodes, rather
than modeling the radio, and the these traces are ideal for the former.

We use the Cooja simulator [27], along with a plug-in we implemented to replace
the propagation model in the simulator based on the aforementioned mobility traces. In
the community detection protocol, we set the community threshold to 50%. We chose
this threshold based on the trace set: badgers sleep during the day in their burrows,
therefore they are co-located for at least half a day every day. The threshold is also a
good representation of human contacts: if two people spend more than half of their time
together, they are more than likely to belong to the same social group. An investigation
of the effect of the choice of the threshold is reported later in this section.

4.1 Community Detection

On the badger trace set we compare the performance of our community detection proto-
col against a well-known algorithm based on modularity optimization [1]. This runs in
a centralized fashion and requires global topology knowledge. The communities iden-
tified by this algorithm largely reflect the findings obtained through direct observation
by the zoologists involved in the study.

Modularity optimization algorithm. Given a specific partitioning of a graph, modu-
larity measures the density of links inside every partition with respect to links between
partitions. Higher values correspond to configurations with dense connections inside
partitions and sparse connections between different ones. When applied to the study of
social networks, partitions are naturally mapped to communities.

The algorithm we consider explores different community configurations to optimize
modularity. Initially, every node is in its own community. For every pair of nodes, the
algorithm examines the modularity gain obtained by moving either of the two nodes in
the other’s community. The communities are then changed to maximize this gain. This
process repeats for every pair of nodes until no further improvements are achieved.
Next, the algorithm creates a new graph with nodes which are the communities found
earlier, and the link weights are the sum of the weights of links between the original
nodes in the two communities. The algorithm then re-applies the first step on the new
graph. The process continues until no further improvements are possible.
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(a) Communities after five days. (b) Communities after twenty days.

Fig. 4. Communities found using the contact ratio as metric for link weight

The input to the algorithm is a social graph where there is a link between two nodes
if they meet at least once during the simulation time, and the link weights are the ones
calculated by our protocol.

Results. We consider different points in time in the badger trace set. Our solution uses
the contact ratio to detect dynamic changes in the community structure, therefore, we
run the centralized algorithm using this figure as link weight. In this case, both schemes
identify the same communities after one, five, and twenty days of traces. The commu-
nities found after day five are shown on Fig. 4(a). Nevertheless, our distributed solution
runs inside the network. The centralized algorithm, on the other hand, may run only at
the fringes of the system because of significant computational demands. In addition, it
would require periodic topology discovery to provide global information as input. This
is hardly possible in a mobile scenario with intermittent connectivity.

Even if the conditions to run the centralized algorithm were satisfied, however, the
distributed nature of our scheme brings a unique advantage: that of immediately rec-
ognizing changes in the community structure. For instance, in the badger scenario the
community structure does not change much after day five. This might appear as the
long-term behavior. However, by day twenty we see a new community emerging, as
shown in Fig. 4(b). Our scheme immediately detects this change, as it is running right
on the WSN devices whose behavior caused the formation of an additional commu-
nity. The centralized approach would identify the new community with significant la-
tency and high overhead, due to the need of periodically collecting global topology
information.

4.2 Code Dissemination

We study the performance of our selective code dissemination protocol against state-
of-the-art solutions. We compare our approach against:

– the GCP [4] gossip protocol for code propagation in mobile sensor networks. This
protocol is agnostic of selective dissemination and distributes the update to every
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node. To do so, it uses a token-based mechanism to limit the number of transmis-
sions per node, forwarding a code update to any node in range provided the sender
still has tokens to spend.

– a constraint-based gossip protocol we implemented. Like ours, this uses the con-
straints to identify the nodes requiring a code update. The difference with ours is the
lack of community knowledge. A node forwards a code update to a nearby device
only if i) the neighbor belongs to the target subset, or ii) the neighbor met a node in
the target subset within a specified period (set to half a day). The latter is required
to reach nodes in the target subset that may never be in contact with a sender.

Using version numbers, neither protocols transmit a code update if the intended receiver
is already equipped with it.

Settings and metrics. A code update consists of a variable number of packets. Each
packet is 128 bytes long. We inject the code update at a random node 5 days after start-
up. This delay is necessary for the communities to stabilize. We define the target subsets
as a given percentage of nodes out of the total. Based on this value, each simulation run
considers a different subset to avoid biases due to the subset chosen. GCP is equipped
with 15 tokens per node, after we experimentally verified that this value provides a
good trade-off between network traffic and overall delivery. For all protocols, we used
a one-minute beacon interval for neighbor discovery.

Based on this setting, we measure the following quantities:

– The code update delivery, defined as the fraction of nodes in the target subsets that
receive the code update. This essentially measures to what extent the dissemination
protocol achieves its goal.

– The number of code update transmissions, namely the number of bulk data transfers
performed during a simulation. This indicates the cost—at the network level—to
reach the protocol goal.

– The latency required to reach the nodes in the target subset, which provides a com-
plementary measure of cost from a user perspective.

We considered message transmissions as opposed to radio-on-time to evaluate the
energy cost of our protocol. Our protocol does not assume that the radio is always on,
and is independent of any underlying MAC protocol duty cycling the radio, as long as
it provides the ability to discover neighbors and to perform bulk-transfers. There are
already efficient MAC protocols for WSN such as [3,11], and it is also easy to see how
the social cluster information could be used for duty cycling the nodes - this is however
subject of a future work. Further, we do not consider beacons, as all three protocols send
them at the same rate. All protocol messages are embedded in beacons, therefore they
do not pose additional overhead (the beacons of GCP are, however, 21 bytes lighter).

We run 20 repetitions for each setting. The following results are averages over these
repetitions, while the error bars represent the standard deviation around the average.

Results. Hereafter, we show results obtained with code updates of 10 packets. We ver-
ified that changing this figure within the range of 5-20 does not influence our results.
This is because the bulk transfer of a code image takes little time compared to node
mobility, and always completes before the two nodes disconnect.
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Fig. 5. Overhead, latency and the effect of clustering threshold of our protocol compared to GCP
and constraint-based gossip

In all simulations, the three protocols always deliver the code update to all nodes
in the target subset. To do so, however, they incur in drastically different costs at the
network level. Figure 5(a) shows the number of code update transmissions against vary-
ing target subsets. On average, our community-based protocol improves by a factor of
3.1 and 1.8 over GCP and constraint-based gossip, respectively. However, the gains
are smaller as the cardinality of the target subset decreases. This is because the leader
nodes that carry code around are a fixed cost that we must pay to reach every part of the
system. The impact of this cost is greater as the target subset is smaller. As expected,
GCP exhibits the same performance regardless of the target subset. Indeed, it stops only
when all nodes are reached, even if the ones in the target subsets already received the
code update. constraint-based gossip improves on this behavior, as it may stop earlier if
there are no more nodes in the target subset requiring the code update.

To achieve this performance, the community-based protocol trades-off transmissions
for latency. The latter is shown in Figure 5(b). Nevertheless, the increased latency in our
protocol is limited given the absolute values at stake. On average, we have an increase
of a factor of only 1.3 in delay compared to GCP, while the worst case is an increase of
a factor of 2.6. GCP shows the best performance in this metric, as it has no restrictions
on when to forward a code update. Therefore, it takes advantage of every opportunity,
at the cost of redundant transmissions. In our protocol, instead, the leader node knows
which nodes in its community need the update, therefore it can wait until it is collocated
with these nodes. Once they are all in range, the leader node can update them in one go
using broadcast transmissions.

In presence of intermittent connectivity, it may take a long time for some nodes to
receive the updates. In the case of targeting 50% of the Reality Mining trace set, this
results in a large variation in latency, but some variation is also observed in other cases.
This is a characteristic of the network, and affects all three protocols.

We also investigate the behavior of leader nodes, as they play a critical role in our
solution. Particularly, we study whether their use may lead to an uneven degradation of
available energy among the nodes, e.g., because leaders need to handle more network
traffic. To do so, we examine the average number of code updates that leader nodes
deliver in our solution, compared to the number of nodes in GCP and constraint-based
gossip that deliver an update at least once. We found that the average number of update
transmissions a leader sends is 2.3 in the reality mining and 1.2 for the badger trace set.



190 B. Pásztor et al.

Both GCP and the constraint-based approaches send 3 and 1.3 update transmissions
on average per node, for the reality mining and badger trace set, respectively. We con-
clude that the leader nodes are not depleting their resources more quickly compared to
other solutions. Particularly, the leaders we identify largely correspond to nodes that—
because of the patterns of colocation—would deliver the code updates anyways. On
average, 87% of leader nodes deliver code updates also in GCP and constraint-based
gossip. However, our community-detection mechanism identifies apriori such nodes.
By doing so, we can make them wait for a good opportunity, e.g., when they are in
contact with members of their community, to save on unnecessary transmissions.

To further study the effect of leader selection, we also compared our results from tar-
geting the entire network to the performance of the same protocol with random leader
selection. This scheme selects leaders randomly from the members of each group.
While our overhead is 56% of that of GCP when targeting the entire network, averaged
over the two trace set, the random leader selection uses 84%. It is still better than GCP,
since the protocol can take advantage of the colocation of the community members,
though uses more than necessary transmissions to deliver the code to the communities.

We have also analyzed the effect of the threshold on which communities are sepa-
rated, which for this analysis has been 50%. In Fig. 5(c) we plot the number of updates
sent by all three protocols on both the reality mining and the badger datasets, target-
ing the entire network. As it can be seen, the threshold choice does affect our results:
a different threshold means different community structures and a different number of
leaders, thus leads to different overhead. Note, however, that even in the case of bad
choices of thresholds, the performance falls back to that of the gossip-based protocols.

5 Related Work

Social routing. A few recent approaches leverage social-inspired metrics for routing.
SimBet [7] achieves efficient data dissemination by exploiting “betweenness”, a mea-
sure of how an individual may socially connect other entities not necessarily known
to each other. Bubblerap [15] and Island Hopping [31] use a centralized algorithm to
detect communities, based on global knowledge. Bubblerap describes also a distributed
extension which detects communities at run-time only if their cardinality grows over
time. Thus, every node is bound to the first community it is mapped to, missing the
dynamic evolution of social interactions.

In contrast to these approaches, our solution detects communities at run-time and in
a fully decentralized fashion. Moreover, we are able to adapt to dynamic changes in the
community structure and in the mapping of entities to communities. These features are
pivotal to leverage communities for routing in the scenarios we target.

Delay tolerant routing approaches use notions of previous encounters and mobility
patterns to decide on best message carriers [19,28,32]. This approach was also extended
to mobile sensor networks [28]: while the use of mobility and connectivity to identify
good carriers is shared in our approach, with respect to dissemination we go one step
further and use community knowledge to improve on the number of messages needed
to spread the updates.
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WSN reprogramming. To the best of our knowledge, our work is the first to provide
a solution for selective code dissemination in mobile sensor networks. However, the
literature includes a wealth of approaches for system-wide reprogramming in static
networks [33]. For instance, Trickle [18] disseminates code updates using a “polite
gossip” technique to suppress redundant transmissions. The rate of control traffic is
adjusted at every device based on the state of neighbor nodes. As neighborhoods keep
changing in the scenarios we target, a similar solution would be very inefficient.

Solutions for selective code dissemination in static networks also exist. For instance,
Figaro [26] allows selecting subsets of nodes based on node attributes. It employs a tree-
based routing scheme for code dissemination, which is difficult to apply in a mobile,
disconnected scenario like ours. In TinyCubus [24], code is disseminated to all nodes
with a given role, e.g., all cluster-heads. At the network level, TinyCubus assumes a
priori knowledge of the system topology, as it requires to specify an upper bound on the
number of hops separating nodes with the same role. Such scheme is hardly applicable
in presence of dynamic topologies and intermittent connectivity.

In a mobile setting, Impala [21] leverages gossip dissemination to distribute code up-
dates to every device. Version numbers are used to cater for eventual delivery. GCP [4]
also targets system-wide reprogramming in mobile sensor networks, using a polite gos-
sip technique similar to Trickle. However, GCP limits network traffic using a token-
based scheme whereby nodes can transmit only if they possess enough tokens. ReMo [8]
focuses on both static and mobile networks, using physical-layer metrics such as the
Link Quality Indicator (LQI) [6] to establish routes for code dissemination. Although
these solutions target scenarios similar to ours, they still do not tackle the problem of se-
lective code dissemination. Therefore, being unaware of the selection criteria specified
by our users, their use would correspond to significant energy waste.

6 Conclusion

We presented a system for selective reprogramming in mobile WSNs, based on social
community detection. Our solution allows users to target a subset of the WSN nodes us-
ing constraints on node attributes. A dedicated protocol exploits the social interactions
among the monitored entities to disseminate code updates efficiently. We evaluated our
framework through real mobility traces. The results showed that, although experiencing
a small latency overhead, our protocol saves up to 66% of the transmissions even when
reprogramming targets the entire system. These performance gains increase when tar-
geting a subset of the nodes, by virtue of our routing strategy that builds routes to the
target nodes based on the social communities. Our future work includes deploying the
system on animals in the context of a wildlife monitoring project.
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Abstract. Many sensor network protocols are self-configuring, but inde-
pendent self-configuration at different layers often results in suboptimal
performance. We present Chi, a full-system configuration architecture
that separates system logic from system configuration. Drawing from
concepts in artificial intelligence, Chi allows full-system configuration
that meets both changing application demands and changing environ-
mental conditions. We show that configuration policies using Chi can
improve throughput and energy efficiency without adding dependencies
between layers. Our results show that sensornet systems can use Chi
to adapt to changing conditions at all layers of the system, thus meet-
ing the requirements of heterogeneous and continuously changing system
conditions.

1 Introduction

The sensornet community is moving toward modular architectures that allow
a clean separation of concerns [3,5,7,9,20]. So far, however, the performance of
such modularized designs has been dissatisfying due to problems with cross-
layer interactions. For example, Kim et al. write [12]: “[...] there is still a large
performance gap to the raw radio bandwidth that would require a cross-layer
design and integration with the MAC and the packet processing in the OS.”
Similarly, experience from sensornet deployments [17] has shown the need for
configuration across modules and for gathering system statistics.

Cross-layer optimizations have primarily been implemented by coupling the
programming interfaces of different components. Hence, using cross-layer de-
signs typically requires that we sacrifice system modularity to improve system
performance. As a remedy to this problem, researchers have proposed specialized
architectures for cross-layer optimization [13,16,10]. These specialized architec-
tures enable applications to be configured to meet energy efficiency goals. We
argue, however, that since energy efficiency is not the only objective of a sen-
sornet, a cross-layer optimization architecture should be able to focus on other
metrics as well.

We present Chi, a lightweight architecture that enables cross-layer optimiza-
tions in sensornet systems without requiring an unmodular cross-layer design.
The main design principle of Chi is that components must not be required to
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Fig. 1. Chi keeps the configuration data of different system layers in a central com-
ponent. The configuration can be changed by a configuration policy. Unlike existing
cross-layer architectures, individual protocol layers are unaware of the configuration of
the other layers.

have any knowledge of parameters exported by other components. Instead, all
such knowledge is in separate components that enforce configuration policies.
By using Chi, we maintain the separation of concerns between layers while pro-
viding the same performance as integrated cross-layer optimizations. In contrast
to previous work, Chi takes a generalized approach to configuration that enables
systems to be optimized not only to meet energy objectives but also to meet
other objectives such as latency, throughput, and sensor coverage.

The Contiki operating system separates protocol logic from protocol head-
ers to achieve network protocol modularity with retained execution-time effi-
ciency [5]. Similarly, Chi provides system configuration modularity with low
run-time overhead. We draw from the work made within the autonomic com-
puting community on blackboard systems [4]. The central component in Chi is
a blackboard that holds the system configuration and relevant parts of the sys-
tem state. Storing the configuration in one component simplifies updates made
by external configuration modules, as illustrated in Figure 1. In addition to
the blackboard component, Chi accommodates configuration policies written to
optimize a sensornet toward different objectives.

Our contribution is to show that Chi solves the problem of cross-layer op-
timization for sensornet systems using a generalized programming abstraction.
We demonstrate the abilities of Chi in three case studies, showing that an appli-
cation using holistic configuration outperforms the same application when using
constant parameter settings of the protocol layers, as well as when using several
adaptive layers. We show that by using Chi the TCP performance increases by an
order of magnitude without putting any cross-layer logic within the networking
layers. Instead, the cross-layer optimizations are put into separate configuration
policies and are decoupled from all protocol implementations.

The rest of this paper is structured as follows. We present the background of
cross-layer design, holistic configuration and blackboard systems in Section 2.
We describe Chi in Section 3 and its implementation in the Contiki operating
system in Section 4. We evaluate the architecture in Section 5, present related
work in Section 6, and conclude the paper in Section 7.
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2 Background

Layering separates different concerns in a network architecture and reduces the
design complexity. The plethora of routing, transport, and medium access con-
trol protocols for sensor networks has made layering the prevalent design choice
also in sensor network architectures. The high modularity of layering, however,
restricts the collaboration of different layers that could potentially benefit from
sharing each others unique information.

2.1 Performance Improvements through Cross-Layer Design

Achieving near-optimal throughput and energy consumption is difficult when
using independently designed protocols in different layers. This is easier in verti-
cally integrated systems that benefit from a coordinated design of several layers.
Koala [19] and Dozer [2] are examples of vertically integrated systems with duty
cycles less than 1% in low power data gathering applications. Their specific tar-
get in design, however, restricts them from achieving the same efficiency when
adapting to different network traffic patterns.

Cross-layer approaches make existing protocols more adaptive to different
workload patterns by allowing the layers to interact and share information. Pre-
vious research on cross-layer design for sensor networks has led to improvements
in energy-efficiency [8,18]. The negative consequence is that cross-layer design,
by definition, increases the coupling between modules.

2.2 Cross-Layer Design Breaks Layering

Cross-layer designs have been criticized as leading to “spaghetti design” [11].
Without layering it is difficult to achieve adequate separation of concerns which
may lead to stability problems and negative impact on performance. Addition-
ally, tight coupling decreases the modularity of the architecture and makes it
complex to replace modules.

2.3 Holistic Configuration

By holistic configuration, we mean that parameters in all parts of the system can
be configured through a separate configuration component, called a configura-
tion policy in Chi. While layered systems usually store configuration parameters
in module variables, a separate configuration policy enables simultaneous config-
uration of the whole system. This makes it possible to add external algorithms
that optimize the system using information from multiple layers. The optimiza-
tion objectives can for instance be low energy consumption, minimum delay, or
maximum throughput. Changing the applications objectives is simple because
only the configuration policy needs to be updated.

A configuration policy can be implemented in plain C using basic if-then-else
statements that optimize the configuration toward the application objectives.
It can also consist of a rule engine and a set of rules that are triggered when
the system state changes. If the application objectives change, the configuration
policy can be replaced to reflect the new objectives.
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2.4 Blackboard Systems

A blackboard [4] is a concept used within the artificial intelligence community.
Conceptually, a blackboard is a tool used by a group of experts to solve a complex
problem. In a software system, the blackboard is a component that typically
stores key-value pairs, and has a mechanism for notifying interested components
when a value changes. The classic blackboard design consists of a blackboard, a
set of independent knowledge sources, and a number of control components. The
knowledge sources have both the knowledge and the algorithms needed to solve
a specific problem, whereas the control components steer the execution order
and triggering. The traits of the blackboard makes it a suitable solution for the
requirements of a holistic configuration architecture.

3 Chi: A Full-System Configuration Architecture

We have designed Chi1, a full-system configuration architecture that uses a black-
board to enable cross-layer information sharing despite keeping modules decou-
pled. The blackboard provides a shared variable abstraction that is accessed in
an independent module in each sensor node. Beside providing a programming
interface for accessing variables, the blackboard has a notification process for
subscribers of value modifications. As illustrated in Figure 1, modules export
their configuration parameters through the blackboard. Configuration policies
can then use any of the available parameters to optimize the system for any
objectives determined by the application.

Chi is designed to be a dynamic configuration architecture. In a modular
system such as Contiki, in which software modules can be loaded at runtime,
it is necessary that also the configuration architecture can accommodate new
parameters and configuration policies. New insights on protocol optimizations
are easily integrated into deployed networks because the configuration policies
are replaceable.

3.1 Separating Configuration from Logic

Chi separates system logic from system configuration to make it possible to alter
the configuration without having to change the logic. Moreover, system modules
do not need to contain any logic for updating their configuration: this service is
provided by Chi and the configuration policies used in the system.

Existing mechanisms conflate logic and configuration by storing configuration
parameters as module variables. To change the configuration of a module, the
internal variables need to be changed. Thus the module must contain logic for
storing and retrieving configuration parameters. Without a consistent interface
for storage and retrieval of configuration parameters, every module provides its
own mechanism for doing so, leading to systems that are difficult to reconfigure.
1 The name Chi comes from the Greek letter χ, representing the cross-layer informa-

tion sharing that the architecture enables.
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Fig. 2. The memory layout in the blackboard. Parameters are stored in a hash table
for fast lookup. Subscribers are listed as function pointers in a separate table.

Chi provides a consistent interface for storing and retrieving configuration pa-
rameters from the blackboard, thus making it possible to reconfigure the entire
system using a single interface.

Configuration and data sharing abstractions that are aware of the details in
specific protocols can be implemented by using the generalized Chi architecture.
For instance, a network-based data sharing abstraction such as Hood [22] could
store reflected data variables locally in Chi. The need for creating parameters
dynamically–which is possible in Chi–is highlighted in the case of deploying a
heterogeneous sensor network where different types of sensor nodes may want to
share different parameters.

Sensornet protocols are in general unaware of which specific configuration
parameters that protocols at other layers make available. A configuration pol-
icy, as previously depicted in Figure 1, therefore handles the protocol-specific
optimization. If the protocols change, for example by code dissemination and
dynamic loading in a deployed system, a corresponding update must be made
with the configuration policy. In the evaluation (Section 5), we will show three
configuration policies in practice.

3.2 Inter-layer Information Hiding

To achieve a meaningful separation of concerns, it is important that different
layers of the system are independent of each other. If modules in adjacent layers
would depend on having information about each other, it would be difficult to
replace them. Instead of depending on inter-layer information sharing to enable
cross-layer optimization, Chi moves the information sharing from the inter-layer
interface into the blackboard to keep the layers separate. This ensures that inter-
layer interfaces focus on the abstractions provided by each layer and not on
information sharing between layers.
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3.3 State Monitoring

State information can serve as input for configuration policies. Components mon-
itor different parts of the node state and publish the state information in the
blackboard. State can be collected either in the nodes through active monitor-
ing, or it may require communication with neighboring nodes to gain a complete
picture of the surroundings of a node.

In some cases, the information published by one component may not be di-
rectly usable by others. Chi allows reusable components to be plugged in to
process data and to produce a refined output. For example, a network statistics
component can take the raw packet statistics produced by the network stack
and calculate whether the node is in bulk traffic mode or in passive mode. This
information can then be used by a configuration policy to optimize the system
based on a refined input.

The parameter subscription mechanism in Chi ensures that interested parties
are notified if a parameter value changes. Just holding the shared state would
have required that modules periodically poll the blackboard for changes, which
would add latency to the information exchange and increase the processing en-
ergy. In particular, configuration policies regularly require that components must
react within a limited time after the event occurs.

4 Implementation

We have implemented the Chi architecture in Contiki, but the architecture is
general enough to be portable to other systems. Figure 2 illustrates the memory
layout. The blackboard component uses two tables: the parameter hash table and
the subscriber table. Parameters are represented by a name pointer, a value, a
set of flags, the number of subscribers, and a pointer to the first subscriber in the
subscriber table. We restrict the values to be of integer type to have a concise
API. Moreover, we have not identified any need for other types. When compiled
for 16-bit computing architectures such as the MSP430, each parameter requires
six bytes, whereas the subscriber table requires two bytes per subscriber to store
pointers to callback functions.

Chi’s API consists of eight functions. The configuration parameters are de-
noted by textual names, such as “mac.off time” and “measure.period”. The set
function assigns a value to a configuration parameter. The get function obtains
the last set value. Whether or not a value has been set is checked with the exists
function. The subscribe function registers a callback function as a subscriber to a
specified configuration parameter. The callback function is called whenever the
parameter is changed using the set function. The unsubscribe function removes
a previously registered callback.

Parameter values can be read and written without subsequent parameter
lookups in the hash table by holding a one-byte index for the parameter. The
lookup function returns an index value if the parameter exists. Thereafter, the
entry get and entry set functions will provide significantly faster access to the
parameter by using the index value.
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5 Evaluation

We evaluate Chi through a series of experiments to determine whether it achieves
the same performance improvements as those of typical cross-layer designs, and
whether the dynamic properties of the architecture results in any performance
penalty. The first experiment is inspired by a condition monitoring application
that we evaluate by comparing the performance of different optimization princi-
ples. In the second experiment we show that the separation of configuration and
logic makes it possible to reuse optimizations in configuration policies between
different applications and communication stacks. The third experiment demon-
strates that Chi improves the communication performance as much as that of
a specialized architecture for application feedback to the MAC layer. Lastly, we
evaluate Chi through a set of micro benchmarks where we measure the cycle
count of each operation.

5.1 Case Study: Condition Monitoring with Bulk Transfer

To quantify the effectiveness of Chi, we implement a condition monitoring appli-
cation in Contiki using a holistic configuration policy. We compare the perfor-
mance with three other types of network stack designs: constant configuration,
adaptive layers, and cross-layer optimizations. The application has the same
communication behavior as applications for condition monitoring of industrial
motors: it samples large chunks of vibration data periodically, and sends the
data to a sink for processing and analysis. A data chunk is typically a few kilo-
bytes large. We apply the configuration policy on the X-MAC protocol [1] and
the Rime communication stack [5]. To support bulk transfers over a multi-hop
network, we implement a bulk transport layer using Rime’s data collection ab-
straction. We use three Tmote Sky nodes forming a two-hop network.

Constant Configuration: The version with constant parameters uses 20 ms
wake time and 480 ms sleep time, resulting in a duty cycle of 4%. On the layers
above the MAC layer, we set the routing advertisement interval to 60 s, the data
packet transmission interval to 1 s, and the retransmission timeout to 1 s.

Adaptive Layers: Adaptive layers means that each layer optimizes itself using
internal knowledge. In this experiment, we implement the version of the X-MAC
protocol [1] that adapts to the traffic load using only information about the
packets sent and received.

The adaptive layers setup is similar to that of the constant configuration setup,
but to avoid collisions, the routing advertisement rate is adapted by delaying the
next advertisement by 10 s after receiving a packet. The transport layer adapts
the send rate in order to increase the throughput. If there is a large delay between
a sent packet and its corresponding acknowledgement, we reduce the send rate.
If the delay is below a certain threshold, we increase the send rate as much as
possible while keeping the delay below the threshold. A large delay indicates
retransmissions in the lower layers and that the next node in the route may be
overloaded.
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Fig. 3. The condition monitoring application and its parts

A Cross-Layer Design: The cross-layer design in this experiment combines
information from the transport layer and the link layer. The consequence is that
the bulk transport module must be coupled directly with the MAC protocol im-
plementation. The bulk transport module must know of MAC-specific variables
or functions that will no longer be valid if the MAC protocol would be switched.
Moreover, the data collection module is coupled directly with the bulk transport
module to know when not to send routing advertisements.

In this experiment, the transport layer sets a flag as a global variable and
reconfigures the MAC layer at the beginning and end of a bulk transfer. The
send rate is fixed at 20 packets per second. While a bulk transport is active,
the data collection module withholds routing advertisements, and the reliable
unicast layer uses a shorter retransmission timeout of 0.5 s.

The Chi Design: The Chi design consists of a policy that optimizes the system
through a set of parameters in multiple layers. Whereas the cross-layer design
described in the previous section modifies the communication stack to fit ap-
plication requirements, the Chi design uses the communication stack without
changing any interfaces or intra-layer logic.

Figure 3 shows the configuration policy that manages the reconfiguration,
and Figure 4 depicts the corresponding code. Reconfiguration decisions are pri-
marily affected by the bulk transfer parameter. When the application switches
between regular transfer and bulk transfer, it causes a global reconfiguration of
the communication stack. This cannot be done with a constant configuration
since it would be optimized for either energy efficiency or throughput. Our ap-
proach is to use configuration policies optimized for the specific application and
reconfigure the communication stack when needed.

Throughput and energy consumption: We show the results in Figure 5.
Since the results achieved with the cross-layer design and the Chi design are
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/∗ This funct ion i s ca l l e d when ” bu lk . stream” changes ∗/
void stream changed ( const char ∗name , int va lue ) {

i f ( va lue != 0) {
s e t ( ”mac . o f f−time” , 0 ) ;
s e t ( ”bulk . send−r a t e ” , 2 0 ) ;
s e t ( ” c o l l e c t . rout ing−advert i sements ” , 0 ) ;
s e t ( ” run i c a s t . rexmit−time” , CLOCK SECOND / 2 ) ;

} else {
/∗ Restore d e f au l t conf igurat ion ∗/
s e t ( ”mac . o f f−time” , MAC DEFAULT OFF TIME) ;
s e t ( ”bulk . send−r a t e ” , 1 ) ;
s e t ( ” c o l l e c t . rout ing−advert i sements ” , 1 ) ;
s e t ( ” run i c a s t . rexmit−time” , DEFAULT REXMIT TIME) ;

}
}
/∗ Regis ter a ca l l b ack for ” bu lk . stream” ∗/
sub sc r i b e ( ”bulk . stream” , stream changed ) ;

Fig. 4. The configuration policy reconfigures the communication stack based on routing
information from the network layer. If the system indicates that a bulk transfer is about
to occur, the policy sets the system in high throughput mode.
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Fig. 5. The holistic configuration outperforms the constant configuration and the
multi-layer self-adaptive configuration both in throughput and energy

identical, they are shown as one result in the table. When using constant pa-
rameters, the throughput is quite low and the power consumption is moderate.
The result depends on the chosen parameters that, as discussed above, lead to a
duty cycle of around 4%. Although a higher duty cycle leads to higher through-
put, the power consumption increases. The adaptive layers design is considerably
more efficient than the design with constant parameters. The power consumption
decreases to about one third compared with constant parameter setting.

Both the Chi design and the cross-layer design yield a high throughput and
a low power consumption. The reason is that the nodes can immediately switch
from low power mode to high throughput mode when a bulk transfer begins
since the application demands are known by the configuration policy. In the
cross-layer design, the same demands are hard-wired into the different layers.
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Fig. 6. The power coordinator uses Chi to coordinate duty cycles

5.2 Case Study: TCP Optimization over a Power-Saving MAC
Protocol

The second case study shows that we can reuse optimizations of a Chi config-
uration policy in a different type of application using another communication
stack. The application studied is a web-service application running HTTP over
TCP/IPv6 [7] with X-MAC as the MAC protocol. The scenario consists of a
client that connects to a server, transfers some data, and then closes the connec-
tion. For this purpose we use two Tmote Sky nodes that are able to communicate
directly with each other.

This scenario differs from the previous scenario since this is a request-response
scenario and the first was a bulk transfer. There are also similarities, how-
ever, since both scenarios transfer many packets and use X-MAC. By re-using
the MAC optimization of the configuration policy from the first case, we can
get a much higher performance for the web-service request. The configura-
tion policy is illustrated in Figure 7. The TCP layer publishes the parameter
“tcp.connection.count” and the value of this parameter is determined by count-
ing the open TCP connections in the IP stack. The TCP layer needs no knowl-
edge of the MAC layer and vice versa when using Chi–all cross-layer logic is put
into the configuration policy.

Figure 8 shows the result of running the experiment with and without con-
figuration policy optimization. As expected, the overhead of setting up a TCP
connection decreases in relation to the payload size when more data is trans-
mitted. The data rate increases with an order of magnitude when using the
configuration policy. The low performance when using no optimization is caused
by TCP waiting for acknowledgments for each sent packet, and both TCP seg-
ments and acknowledgments are delayed depending on where in the X-MAC
duty cycle each node is. The optimization yields such a high performance by
using a 100% duty cycle in X-MAC when there are active TCP connections.
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/∗ This funct ion i s ca l l e d when ” tcp . connection . count” changes ∗/
void connect ions changed ( const char ∗name , int va lue ) {

i f ( va lue > 0)
s e t ( ”mac . o f f−time” , 0 ) ;

else
s e t ( ”mac . o f f−time” , MAC DEFAULT OFF TIME) ;

}
/∗ Regis ter a ca l l b ack for ” tcp . connection . count” ∗/
sub sc r i b e ( ” tcp . connect ion . count” , connect ions changed ) ;

Fig. 7. The configuration policy reconfigures the MAC layer for high throughput when
at least one TCP connection is active
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5.3 Case Study: Aggregation of Multiple Duty Cycles

Data from different sensors can require different communication patterns de-
pending on the deployment. Klues et al. have presented the Unified Power Man-
agement Architecture (UPMA) [13], which separates power management from
MAC level functionality. UPMA is able to coordinate the duty cycles of multiple
applications. Applications store their duty cycles in a Power Management Table,
and UPMA uses a configured policy to coordinate the duty cycles.

In this experiment, we emulate the behavior of the aforementioned Power
Management Table by using Chi. The experimental setup consists of multiple
applications that periodically transmit data according to a configured duty cycle.
Applications insert their duty cycles into Chi, as shown in Figure 6. The power
coordinator subscribes to the duty cycle parameters in Chi. When an application
submits its duty cycle, the power coordinator computes the aggregate duty cycle
and assigns this value to the duty cycle parameter in Chi used by the MAC
protocol. We use the same duty cycles as Klues et al. in our experiment. The
radio on-time is 200 ms for all applications, and the radio off-times are 12.6 s,
6 s, 3 s, 1.4 s, 600 ms, and 200 ms.
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In contrast with Klues et al., we do not measure the duty cycle, which is
an indirect metric for power consumption, but instead we directly measure the
radio power consumption using Contiki’s software-based on-line energy estima-
tion method [6]. Using this method, we measured the power consumption of
the CC2420 radio as 59.92 mW. The theoretical radio on-time for the six ap-
plications with the duty cycles as defined by Klues et al. is slightly below 52%
(31.16 mW), matching our measured value of approximately 31 mW.

The results in Figure 9 are similar to those of Klues et al. (Figure 10, [13]) in
that the theoretical values match the measured ones. The results confirm that
our generalized configuration architecture achieves the same optimized radio
power management as that of a specialized architecture such as UPMA.

5.4 Operations Benchmark

We execute a benchmark that measures the required time for the blackboard
operations in Chi. We use the internal clock of the MSP430F1611 processor
in a Tmote Sky node to count clock cycles. The blackboard is set up with 20
parameters and uses a hash table size with 32 entries. Despite increasing the
risk of collisions, the hash table uses a size of 2n instead of a prime number.
Our experiments have shown that the performance degradation of these extra
collisions is less severe than the degradation caused by the expensive modulo
operation that we avoid this way.

Figure 10 shows the numbers of clock cycles used by the main blackboard
operations. The set and get operations have a simplified interface, but require
a parameter lookup in the hash table at each call. In the rare cases where pa-
rameters must be accessed several hundred times per second, the entry get and
entry set functions provide a shorter path to the parameter by holding a pointer
to it in the table. Thus the need to do a lookup is eliminated and the perfor-
mance becomes comparable to that of a pre-compiled configuration approach
such as TinyXXL [15].

5.5 Network Power Consumption

While the micro benchmark gives a clear view of the cost of configuration oper-
ations in terms of clock cycles, it is the effect on power consumption in a typical
sensor network application that is the key issue. To quantify the power consump-
tion in a sensor network, we conduct two experiments with a data-collection ap-
plication. We compare the pre-compiled, constant configuration setting with the
use of Chi. We measure the power using an online energy-estimation method [6],
and collect the energy data when the experiment has finished. The sensor nodes
communicate using Rime [5]. When running the experiment with Chi, we sub-
stitute calls to Chi for the constant configuration variables in Rime. In addition,
we store communication statistics in Chi instead of in memory variables. The
experiments are conducted with both a TDMA-based protocol that is special-
ized for data collection, and a data collection protocol using the more generic
X-MAC protocol underneath.
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Fig. 11. The dynamic design of Chi has a negligible impact on power consumption.
The power consumption is measured for a data collection network using either X-MAC
or TDMA. Note that the vertical scales are different.

An X-MAC-based data collection protocol: The application in this ex-
periment measures temperature, humidity, and light, and sends this data to a
base station every other second. The system uses the X-MAC protocol [1] as an
energy saving MAC layer, and the data collection module in Rime to deliver the
data to the sink. Route advertisements are sent once per minute. We measure
the average consumed energy at each node in an indoor testbed of 15 Tmote
Sky nodes during a period of 50 sensor measurements.

Figure 11(a) shows the average measured power consumption over five test
runs with pre-compiled configuration and five corresponding runs with a con-
figuration policy using Chi. The power consumption overhead of the dynamic
configuration is on average 2.5%.
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A TDMA-based data collection protocol: We build a small data collection
network using a TDMA-based data collection protocol named CoReDac [21].
The leaf nodes in our network transmit a packet every 5 s. We measure the
power consumption of a node in the middle of the tree with and without Chi.
The result in Figure 11(b) shows a negligible overhead of 0.9% for the Chi-based
system. As expected, slightly more CPU power is required to handle the variables
stored in Chi.

6 Related Work

Although many sensornet protocols are adaptive, they mainly adapt by using
intra-layer information. Examples include the scheduled channel polling MAC
protocol [24] that changes its duty cycle using on the current traffic load and
the MintRoute protocol [23] that changes its forwarding tables based on com-
munication conditions. Independent self-adaptation at multiple layers can lead
to sub-optimization where self-adaptation mechanisms at different layers coun-
teract each other [11].

The multitude of non-standard, cross-layer designs have led to various efforts
to generalize cross-layer interactions into configuration architectures. Lachen-
mann et al. present TinyXXL, a language and framework that supports cross-
layer interactions [15]. The framework is similar to our work in that it provides a
repository for storing system state and configuration. Like Chi, it supports cross-
layer interaction and reconfiguration using a publish and subscribe mechanism.
TinyXXL is a language extension of nesC, however, and requires recompilation
when adding or removing parameters. Köpke et al. suggest using a blackboard
for component-based interactions [14], but do not quantify the effects of using
the blackboard. We use a similar technique for parameter storage, but focus on
policy-based, cross-layer optimizations that retain the tiered networking design
used in the Internet and in the Rime networking stack [5].

Several sensor network communication architectures provide mechanisms for
inter-layer information sharing in the communication stack. SP [20] allows infor-
mation to be shared between the link layer and the network layer. The modular
network architecture by Cheng et al. [3] is a decomposition of sensornet proto-
cols into common modules that can be shared at multiple layers. Chameleon [5]
uses packet attributes to provide packet-based information sharing across layers
while maintaining the separation of concerns as traditional layered architectures
do. The drawback of these architectures is that they do not provide mechanisms
for holistic system configuration.

Our work is also inspired by recent work on energy management architectures
for sensor networks [13,16]. Such architectures allow for applications to be con-
figured to meet energy efficiency goals. The purpose of Chi, in contrast, is to
provide a generalization of these principles that also extends to other objectives
than energy-efficiency.
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7 Conclusions

We present Chi, an architecture for full-system configuration and policy-based
optimization in sensor networks. Unlike previous modular configuration architec-
tures, Chi’s dynamic properties make it possible to switch configuration policies
and to add new parameters during run-time. Our experiments show that Chi
improves the sensor network performance as much as specialized architectures,
while maintaining a clear separation of concerns.
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Abstract. Experimentally driven research for wireless sensor networks
is invaluable to provide benchmarking and comparison of new ideas. An
increasingly common tool in support of this is a testbed composed of real
hardware devices which increases the realism of evaluation. However,
due to hardware costs the size and heterogeneity of these testbeds is
usually limited. In addition, a testbed typically has a relatively static
configuration in terms of its network topology and its software support
infrastructure, which limits the utility of that testbed to specific case-
studies. We propose a novel approach that can be used to (i) interconnect
a large number of small testbeds to provide a federated testbed of very
large size, (ii) support the interconnection of heterogeneous hardware
into a single testbed, and (iii) virtualise the physical testbed topology
and thus minimise the need to relocate devices. We present the most
important design issues of our approach and evaluate its performance.
Our results indicate that testbed virtualisation can be achieved with high
efficiency and without hindering the realism of experiments.

1 Introduction

Experimentally driven research for wireless sensor networks has been instrumen-
tal in advancing the state of the art in recent years; new sensing applications,
network architectures and protocol stacks have been optimised to operate over
varied radio technologies, restricted resources and specific deployment strategies.
The most commonly applied technique is simulation which allows rapid devel-
opment, offers debugging tools and enables easy repeatability. A natural step
beyond this is to implement the system on real hardware platforms and per-
form experiments in controlled testbed environments. This allows researchers
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to escape the inherent limitations of simulation regarding the available hard-
ware characteristics (e.g. buffer sizes, available interrupts) and communication
technology behaviour (e.g. transmission rates, interference patterns).

In the majority of cases, due to the costs of hardware, researchers evaluate
their solutions in local testbeds of limited size. While small testbeds provide
useful insights into the effectiveness of the system in real conditions, they tend
to offer limited support in terms of heterogeneity, scalability and mobility. Fur-
thermore, in most cases, a tightly coupled network and software architecture is
followed on a testbed, thus limiting the number of possible configurations of that
testbed.

In order to overcome limitations in scale, a number of testbeds of significant
size have been developed in the last few years. Their size currently ranges up to
1000 nodes, and there is a trend towards building even larger testbeds as seen
by projects such as WISEBED [14] and SENSEI [10]. This trend continues to
serve more accurate experimentation – and therefore high quality research – in
realistically-sized networks towards the scales imagined by the initial vision of
sensor networking that dealt with using thousands or even tens of thousands of
nodes.

Given this clear and continuing need for large open testbeds in WSN research,
certain critical questions are posed: i) how do we deal with the ever-increasing
total-number-of-nodes demand, ii) how do we combine large testbeds with het-
erogeneity (in available sensors, radios, computational resources, etc.), iii) how
can we maintain a very large WSN testbed efficiently? Furthermore, how can
we cater for hybrid simulation approaches, i.e., the combination of real and
simulated testbeds in order to produce extremely large-scale WSN testbeds?
Moreover, how do we utilize the facilities provided by these testbeds and adapt
them to each experiment’s needs; i.e. how can we define and use specific network
topologies that fit into our target application domain?

We argue here that an efficient and flexible answer to such problems is the
use of federated testbeds that unite isolated WSN testbed “islands” with the use
of a virtual links concept. We propose the use of virtualised network links in the
following ways:

– Between physically distinct testbeds of varying features (location, size, etc.)
as a whole, but also between specific nodes of such testbeds, resulting in
larger testbeds with customised cross-network edges,

– Between nodes inside a single testbed, thus defining a customised network
topology,

– Between real and simulated nodes, enabling hybrid simulation for massive
network sizes.

A virtual link essentially enables two testbed nodes, that have otherwise no
direct physical radio connection, to communicate in a way that is transparent to
the user applications; additionally, existing ‘links’ (i.e. reachability within one-
hop radio range) can be selectively deactivated between neighbouring nodes.
Both kinds of virtualisation are done in a way that is entirely transparent to a
deployed application.
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The major challenge arising from using such an approach is in the extent
to which this virtualisation affects the realism of the experiments conducted –
the tradeoff between the ability to extensively scale and reconfigure testbeds in a
straightforward way and its impact on the realism of results. In relation to this we
currently target only experiments which use higher layers of network abstraction,
avoiding those which operate at the the MAC layer. However, we believe that
the “simulation” of network links and the resulting federated testbeds will prove
itself largely beneficial to the research community.

In this work, we provide a systematic definition of our testbed virtualisation
concepts, discussing in-depth design, architecture and implementation issues of
our approach. We provide an evaluation of our work to demonstrate the feasi-
bility of testbed virtualisation, comparing results from real network topologies
against virtualised ones. Our results show that in many cases virtualisation can
be efficiently integrated into testbeds without having a profound effect on the
experimental results’ realism.

This paper is structured as follows: a description of related work follows in
Section 2. An in-depth discussion of our virtual link service follows in Section 3,
with a set of experiments and results described in Section 4. This is followed by
an example application (i.e., an experiment using virtual links) in Section 5. A
discussion of our results is provided in Section 6.

2 Related Work

There is a significant body of existing work in the area of sensor network sim-
ulation and testbed infrastructures, with a number of works following a hybrid
approach in the last few years; charasteristic examples of this approach are
[7,8,3,12]. In such approaches part of the experiment is conducted in simula-
tion and part on real hardware, with the ratio varying in different approaches.
In some cases, only the wireless communication channel of the real devices is
utilised with the rest of the software being executed inside a simulator. In other
cases the software is executed iteratively on real and simulated devices with
certain arbitration and timing schedules applied. These concepts are somewhat
related to our own, but we aim at using virtual links between real and simulated
devices in real time and simultaneously.

There is also significant work regarding WSN testbeds and their respective
management and debugging software. Large testbeds such as Trio [2], Mote-
lab [13], TWIST [4] or SIGNETLAB [1] are accompanied by software that pro-
vides users with the facilities to conduct experiments with the testbed nodes, but
are generally limited in their adaptability and configurability to the users’ needs.
Capabilities such as reconfiguring the network topology, or federating multiple
testbeds to form a larger virtualised facility are to our knowlegde not provided
in these cases.

Virtualised network links or federated testbeds and their use in network
testbeds are in themselves not a new concept, with projects such as Planet-
lab implementing similar concepts. Additionally one recent approach dealing
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with similar issues is [5], where the infrastructure and software of the Kansei
testbed is combined with that of GENI in order to provide a unifying solution
for discrete testbeds. Also, the Senslab project [11] aims to unify 4 discrete het-
erogeneous testbeds into a single one of 1000 nodes. However, all of these works
lack a generalised approach allowing arbitrary configurations between real and
virtual. Overall, our approach aims at providing a unifying abstraction for dis-
crete testbeds and increased flexibility in defining network topologies, without
hindering the efficiency and realism of using a testbed versus pure simulation.

3 Virtual Links and Federated Testbeds

In this section we describe in detail our approach to virtualising testbeds. We
define a virtualised testbed as either a single physical testbed with a virtualised
topology; two or more physically distinct testbeds federated into a single unified
testbed; a simulated testbed similarly federated with a physical testbed; or any
combination of the above.

Fig. 1. The architecture of virtualised testbeds

The key components of our architecture are shown in figure 1. Each testbed
– physical or simulated – is represented by a testbed server which acts as the
Internet-facing gateway to the testbed. A testbed itself is composed of a number
of sensor nodes which can communicate with the testbed server (potentially via
gateway devices inside a physical testbed).

A virtual link is then a (unidirectional) connection between two nodes – in the
same or in different testbeds – which would not normally be able to communicate.
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An arbitrary number of virtual links can thus be created to define a virtualised
topology and federate distinct testbeds. We can also deactivate existing physical
reachability between two nodes by selectively dropping packets to allow complete
topology control.

In more detail, virtual links are enabled with a special piece of software on
each sensor node – a virtual radio – which contains a routing table of the form
{ID, interface}, such that when sending a message to a specific node ID the radio
can decide on which ‘interface’ to send this message; the node’s real radio or the
virtual interface which forwards the message to the testbed server (where it is
routed onwards as appropriate).

In the remainder of this section we discuss the virtual radio software in detail
and its interaction with a testbed server. Following this we describe the unified
message format which allows heterogeneous nodes to communicate, we discuss the
ways in which virtualised topology can support link quality modelling, and finally
we describe how simulation is integrated into real-time testbed experiments.

3.1 Topology Virtualisation

Virtualising topology involves two key elements, virtual radio components, and
testbed servers, shown in Figure 2.

Fig. 2. The communication beween virtual radio drivers on sensor nodes

At the start of an experiment, the IDs of virtual radios across the entire
virtualised topology are configured by an overall controlling component, ensuring
uniqueness. Virtual topology itself is configured by each testbed server informing
its local sensor nodes of their virtual neighbours, where a virtual neighbour entry
in a sensor node’s virtual radio simply consists of an ID along with ‘virtual’,
meaning any packets to this ID should be sent to the testbed server for further
routing. How messages reach the testbed server depends on the architecture of
the deployed testbed – routing may be via an out of band backbone infrastructure
when sensor nodes are connected 1:1 with gateway devices, or alternatively may
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reuse the wireless medium of the sensor nodes in testbeds where not every sensor
node is directly connected to a gateway device. In either case the procedure is
transparent to the application software.

The process of sending a message thus works as follows: applications on a
sensor node send a packet to its virtual radio component. On some operating
systems (e.g., TinyOS), using a virtual radio instead of a real one is simply a
matter of component configuration. On others, it may require changing radio
function calls in the application’s source. The virtual radio component then uses
its local routing table (configured by the testbed server as above) to decide on
which interface to send this message – via the real radio or the virtual topology
service via the testbed server. When broadcasting, a packet is simply sent on
both interfaces.

If the message is sent to the testbed server, the server examines the destination
ID of the packet and forwards this either to another testbed server which is
responsible for that node, or to the corresponding node in the local testbed. If
the packet is broadcast, the testbed server forwards the message to all virtual
neighbours of this node (i.e. generating one message for each neighbour).

Finally, when receiving a message on the real radio interface, the virtual radio
component checks its routing table to determine whether or not the sender is
configured to be a neighbour in the currently configured topology, and if not
then the packet is simply dropped and so never reaches the application. All
parts of this procedure can be completely transparent to the application, which
can simply see a radio component conforming to a common radio API.

3.2 Message Format

Packets traveling over virtual links between testbed servers have a common for-
mat, and in cases where virtual links exist between nodes of different types, the
local testbed server performs appropriate translation of the packet to a format
suitable for use at the destination node. This process is also used when a single
testbed has heterogeneous nodes – or nodes running different operating systems
– with virtual links between them.

The common packet format therefore abstracts over different concepts of link
quality between platforms (such as LQI or RSSI values) and other differences in
the types of fields present in packets, different offsets for the same fields within
packets, or different lengths of addresses. For this reason, we define a generic
representation of a packet that is used when testbed servers forward messages
from a virtual link between nodes. An example of a generic packet is shown
below:

1 <?xml version ="1.0" encoding ="UTF -8">
2 <Node2Node_Packet>
3 <sender_ID ID="urn:testbed1:node1" />
4 <destination_ID ID="urn:testbed2:node2" isBroadcast="false" />
5 <message >A1 DF 63 8B</message >
6 <LQI>200</LQI>
7 <RSSI>199</RSSI>
8 <Options >ACK</Options >
9 </Node2Node_Packet>
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This example contains the ID of the sender node (sender ID), the ID of the
destination node (destination ID), whether the message is a broadcast, the pay-
load of the message, an LQI value, an RSSI value and optional flags such as
whether the sender needs an acknowledgment.

3.3 Modelling Link Characteristics

In addition to the basic routing functionality involved in virtualisation, testbed
servers may perform traffic shaping on messages sent over virtualised links ac-
cording to some desired model, for example emulating lossy channels or inter-
ference. Although beyond the scope of this paper, it is easy to plug such models
into the software used at testbed servers.

3.4 Simulation Considerations

Connecting a simulator to a real testbed presents some unique challenges. Our
motivation behind it is to enable ultra-large-scale experiments in which a large
number of simulated nodes provide the macro-view of an experiment and serve
as a test load to a relatively small number of real sensor nodes, on which the
experiment outcome is measured. Using topology virtualisation the real nodes
can be placed anywhere within the broader simulated topology.

Simulator integration follows the same implementation pattern as physical
testbeds, i.e., the simulator is connected to a testbed gateway. A real-time en-
abled network simulator can be easily adapted to such an architecture. We chose
the Shawn [6] network simulator for our experiments. The required modifications
are also possible in other simulation environments.

Virtual link integration involves three major steps:

– Real-time simulation is required for a shared time basis between real and
simulated nodes.

– Multi-threaded injection of messages into the simulation whenever a real
sensor node (or alternatively a simulated node from another simulator) sends
a message over a virtual link.

– Appropriate message ‘routing’ inside the simulator must be added, such that
the simulator’s testbed gateway routes messages sent from simulated to real
nodes over its network connection.

This approach implies that the simulator is able to execute the simulation of
nodes fast enough to keep up with real time; Shawn is a high-level simulator,
and can easily do this for thousands of simulated nodes.

4 Evaluation

In this section we evaluate the realism of virtual links in experiments conducted
over a federation of separate physical testbeds. Furthermore, we evaluate the
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efficiency of our implementation in terms of latency (transmission delay of mes-
sages exchanged over virtual links) and scalability (increase in latency as the
volume of messages over virtual links increases).

We implement the virtual radio component (see section 3.1) on three WSN
operating systems: TinyOS, Contiki, and iSense. This makes our approach oper-
able on a wide variety of hardware platforms such as the Crossbow mote series,
Tmote Sky, ScatterWeb motes and iSense nodes. Our testbed server software is
implemented in Java using Web Services for inter-server communication.

We evaluate the time to transmit a message over (i) the physical hardware
radio, as a benchmark, (ii) a virtual radio using the UART to send virtual link
messages to a directly connected gateway device (referred to as Setup-I), and
(iii) a virtual radio implemented using the physical radio to forward virtual link
messages to a gateway-connected sensor node (referred to as Setup-II).

We test the hardware radio in a simple two-node topology, providing a refer-
ence result for the speed of real radio messages. For the virtual radio tests we
use two physically separate sensor nodes that are in different testbeds, in one
case such that each sensor node is connected directly to a gateway device, and
in a second case where each sensor node must use its hardware radio to forward
virtual link messages to another sensor node which is directly connected to a
gateway device – these represent the two most common kinds of WSN testbed
deployments. In the virtual radio tests we have two testbed servers (one for each
testbed) connected via gigabit Ethernet in the same LAN, thus simulating a full
virtual link message transport procedure (as illustrated in figure 2).

For each type of link and each hardware platform considered we transmit
a total of 1000 messages. Table 1 shows the minimum, maximum and average
times taken for a message to be sent from an application at one sensor node and
arrive at the other1.

Table 1. The min/avg/max message transit times for 3 platforms using a physical
radio, a virtual link over UART (Setup-I) and a virtual link over radio (Setup-II)

Hardware Physical Radio Setup-I Setup-II
Platform min avg max min avg max min avg max

ScatterWeb 72.2ms 75ms 81.6ms 4.7ms 5ms 5.2ms 149.4ms 155.3ms 167.5ms
telosB 38.7ms 40.2ms 43.3ms 4.7ms 5ms 5.3ms 81.2ms 85.6ms 92.4ms
iSense 6.3ms 7ms 8.1ms 4.7ms 5ms 5.2ms 14.1ms 17.9ms 20.6ms

The results show significant variation in the message transit times when us-
ing the physical hardware radios of the different platforms; this is caused by
differences in hardware design. In the iSense platform for example the JN5139
microcontroller integrates an on-chip CC2420 radio module thus increasing the

1 To accurately measure the transmission time over the ScatterWeb platform we used
a high-precision external clock, as the internal hardware clock has low accuracy.
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speed of communication. By contrast, on the TelosB platform, the MSP430 con-
troller has an external CC2420 radio module accessed via an SPI bus, and the
ScatterWeb node has an 868Mhz radio with a 19.2 kbit/s data rate.

When we use virtual radio links sending messages via UART on the other hand
we see that all platforms perform almost identically. This is because the UART
modules used by the different hardware platforms conform to the same serial
protocol and apply the same settings (115200 bps 8N1). When using virtual radio
links sending messages via the physical radio modules, we of course see similar
variations in transit times caused by the hardware differences noted above.

These results demonstrate that the transmission times using virtual radios
over UART are in fact faster than using physical hardware radios for all hardware
platforms considered, even though this involves transport through the testbed
servers. This allows us to potentially do further processing on virtual radio pack-
ets (such as modelling link characteristics) before delivering them to the final
device without impacting on realism, or to simply impose a delay on such packets
to make them comparable to physical radio message transit times. Alternatively
we could send virtual radio messages between testbeds over the Internet and still
deliver them in reasonable time.

Period Setup-I Setup-II

A-B 2.06ms 6.93ms
B-C 0.4ms 0.4ms
C-D 0.01ms 0.01ms
D-E 0.14ms 0.12ms
E-F 0.01ms 0.01ms
F-G 0.39ms 0.4ms
G-H 2.05ms 6.93ms

Total 4.96ms 14.69ms

Fig. 3. The timing of a transmission for each layer invoked of the sender, receiver and
intermediate nodes for two different physical testbed setups

To further explore the sources of delay in sending messages over virtual radio
links we instrumented as many steps as possible in each stage of the transport
procedure, shown in Figure 3, from the application on the sending sensor node
to the gateway device (labelled stage A-B), processing inside the gateway device
(B-C) and testbed server (C-D), and the reverse of this for the second testbed.
We use the same two virtual radio link implementations as before; Setup-I being
over UART and Setup-II over virtual link message transported via the physical
radio to a gateway. The average delays were again calculated based on a total
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Fig. 4. Execution time for different number of virtual links on different testbed setups

of 1000 message exchanges for each setup considered. These results only show
the iSense platform, since the periods A-B and G-H can otherwise be calculated
from Table 1 for the other hardware platforms.

We conclude our performance evaluation by examining the scalability of our
implementation. To do this we use a single testbed only with 10 sensor nodes.
Nodes 1–9 are in one hop physical radio range of node 0 (the sink), to which they
each transmit 1000 messages. We begin by using real hardware radio transmission
for all nodes, then replace each of nodes 1–9’s links to node 0 with virtual radio
links. In each case we measure the total execution time for the sink to receive
all 9000 messages. The results of this experiment are shown in Figure 4. The
results indicate that testbed setup I, using UART for all virtual radio messages,
is capable of delivering all 9000 messages over the virual links with almost no
delay when compared to physical links. On the other hand, the total execution
time of the experiment under testbed setup II, using the hardware radio to
transport virtual radio messages via a single gateway device, linearly increases
with the total number of messages transmitted over the virtual links. This is
because in the latter case the single gateway node creates a bottleneck, and thus
the total execution time increases with the number of messages transmitted
over the virtual link (this is a worst-case scenario where only one gateway node
exists).

5 Example Experiments Using Virtual Links

Having demonstrated the raw performance of our virtual radio implementations
we now examine two characteristic WSN applications: sensor data aggregation
and detection of a network partition. We execute these on testbeds using a
mixture of real and virtualised topology, aiming to show that our approach does
not impact the application’s view of the network’s behaviour – and therefore
does not negatively affect results of experiments with these applications.

We use 3 different configurations: (i) a single testbed without any virtual
links, (ii) two testbeds federated using virtual links whose testbed servers are on
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Fig. 5. Testbed Configuration

the same LAN, and (iii) two testbeds federated with virtual links whose testbed
servers are at different locations within the same country and communicate over
the Internet. Each configuration uses the same total number of nodes in the
same topology, but in the virtualised cases some nodes are in different testbeds.
For each configuration we evaluate how the applications perform to assess the
effect of virtual links.

Sensor Data Aggregation. In this classic application, each node maintains
an aggregate value (e.g. average) of a sensor reading (e.g. temperature) from all
its neighboring nodes. Periodically all nodes report these aggregated values to
the control center of the network (i.e. the sink). Each node broadcasts its sensor
reading every 5sec. Nodes collect all data received and maintain the average
value. Every 50sec each node sends the value to the sink using a simple flooding
algorithm.

We deploy a single testbed without any virtual links (configuration I) that
consists of 20 nodes arranged in two parallel lines of equal size with 1 meter
distance between each node. The power output of radio interfaces is configured
to achieve a maximum communication range of 1.5 − 2m. The sink is placed at
the top-left corner of the network (see Fig. 5a).

For the experiments with virtual links (configurations II and III), the testbed
is separated in two parts consisting of 16 nodes and 4 nodes (Figure 5b). All
nodes are directly connected to gateway devices via USB links (i.e. virtual ra-
dios using UART). We configure four virtual links between the border nodes of
the two separated testbeds. In configuration II the two testbeds are within the
same university LAN and are connected via a 100mbit Ethernet backbone. In
configuration III the two testbeds are at different universities in the same coun-
try and are connected via the Internet. The connection between the two testbed
servers in configuration III achieves an average ICMP echo request time of 12ms
(over 100 echo requests) and a traceroute reported 15 hops.

For our evaluation we measure the average number of messages (i) sent by each
node, (ii) received by each node via the actual radio component, (iii) received by
each node via the virtual radio component and (iv) received by the sink for each
50sec cycle. We executed 10 experimental runs of 15min each for each testbed
configuration. Table 2 shows the results for each metric over the three different
testbed configurations when using iSense nodes (with similar results holding for
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the other hardware platforms), demonstrating that the overall network behaviour
in terms of messages received at the sink node is comparable in all cases, and
general network behaviour in terms of messages sent and received is similar.

Table 2. Evaluation metrics for the Data Aggregation Example Experiment

Average number of messages Configuration I Configuration II Configuration III
sent per node 373.53 377.95 386.95
received per node via real radio 1667.05 1085.47 954.95
received per node via virtual radio – 771.25 806.75
received by sink per cycle 13.11 12.88 13.61

In performing these experiments, due to the speed of virtual links over real
ones, it was necessary in configuration II to introduce a random delay of 1–3ms
per virtual link message in order to match the behaviour of the physical radios;
no such delay was imposed for configuration III, as the inherent delay of the
national-level Internet link made the virtual links comparable to the real radio
links. For comparison, using the ScatterWeb platform, with its slower hardware
radio, we found random delays of 70–80ms (configuration II) and 50–65ms (con-
figuration III) appropriate, while for the TelosB platform we used 32–40ms and
20–28ms respectively.

Partition Detection. Here we use the same network topology as in the previ-
ous application but position an additional sink at the other side of the network.
In this application we wish to detect if the network is partitioned due to the
failure of an intermediate node or due to a lossy radio link; in case of a partition
we issue an alarm at the sink. To do this we implement the algorithm of [9], in
which each sink essentially sends a beacon message every 5sec to the other sink
by flooding it through the network. If a beacon message gets lost between the
two sinks then an alarm message is generated.

For our evaluation we measured the average messages (i) sent by each node,
(ii) received by each node via the real radio, (iii) received by each node via the
virtual radio, (iv) sent by both sinks and (v) received by the sink for each 50sec
cycle, with results shown in Table 3 (where partition alarms are occasionally
raised due to lossy radio channels).

The results in Table 3 show that the network behaviour from the applica-
tion’s point of view (in terms of generated alarms) is comparable in both real
and virtualised testbeds, and that network behaviour otherwise in terms of the
numbers of messages sent and received is comparable.

Finally, table 4 shows how long it takes to send a partition beacon from one
sink to the other and return to the initial sink. The roundtrip times here are
almost identical for configurations I and II while for configuration III they are
slightly higher due to latency introduced by the Internet link.
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Table 3. Evaluation metrics for the Partition Detection Example Experiment

Average number of messages Configuration I Configuration II Configuration III
sent per node 343.33 320.94 341.87
received per node via real radio 1395.45 870.45 857.05
received per node via virtual radio – 611.51 687.76
sent in total by both sinks 355.12 361.60 360.32
Generated alarms (both sinks) 19.33 20.25 18.71

Table 4. Roundtrip times for one beacon message

Configuration I Configuration II Configuration III
Minumum [ms] 46.66 42.24 49.39
Average [ms] 75.09 73.15 88.73
Maximum [ms] 110.99 100.51 139.22

6 Conclusion

Virtual network links, as defined and used in this work, are a means of easily
reconfiguring and federating testbeds into large-scale networks with direct con-
trol over the topology. We have demonstrated that the approach is both realistic
and performant enough for experiments at the higher network layers such that
applications cannot distinguish between a fully real topology and a partially
virtualised one. While we expect that experiments with MAC layer algorithms
may reveal more subtle artifacts of virtualisation, and so would need care in
deriving results, we believe that our approach is nonetheless highly beneficial in
enhancing the utility of a single testbed beyond its fixed physical topology, in
federating testbeds to enable extremely large scale experiments on real hardware
and in enabling the integration of simulation for even larger networks.

When building federated testbeds for scale, we have shown that the intercon-
nection of two closely located testbeds, i.e. with short delays between testbed
servers, works very well in practice – as the virtual links operate significantly
faster than physical links, an experiment can be tuned so that applications can-
not detect that they are running in a physically separated network.

When moving to wider-area networks, we are limited by the existence of a suf-
ficiently fast Internet backbone. While connections over 15 hops in a university-
connecting national network fulfill such a requirement, we acknowledge that
latency may degrade and affect realism too much in large intercontinental fed-
erations. However, we believe that future high-speed broadband networks will
make this issue diminish in time.

We conclude that topology virtualisation is a promising approach to create
large federations of physically separated and heterogenous networks. Building
nationwide testbeds is achievable with today’s technology, and we believe that
worldwide networks are viable in the near future.
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Abstract. On a common sensor node platform (Telos) we sample RSSI
with high frequency during packet reception. We find that a packet col-
lision (RF interference) often manifests as a measurable, temporal in-
crease in RSSI. We investigate how the receiver can use this information
to detect interference and, through temporal correlation, estimate the
bit error positions in a corrupted packet. In an experimental study in
two testbeds and several realistic BAN scenarios we show that a simple
threshold-based algorithm often succeeds in estimating a large fraction
of the bit error positions correctly. We develop an ARQ scheme that
utilizes the error estimates to reduce the size of retransmitted packets.
For this ARQ scheme we present an analytical model and verify it ex-
perimentally. Our results indicate that in comparison with a standard
Send-and-Wait ARQ the expected number of bits per transmission can
be reduced significantly (in our measurements by up to 14.7 %).

Keywords: Interference Mitigation, Packet Combining, ARQ.

1 Introduction

On a wired transmission medium the transmitter may be able to detect a collision
at the receiver by monitoring the medium during the transmission, e.g. for an ab-
normal change in voltage. RF transceivers are usually half-duplex and the SNR
conditions at transmitter and receiver can differ greatly. Therefore, transmitter-
side collision detection schemes are generally not applicable in wireless commu-
nication. However, RF transceivers can often measure the power of the received
radio signal and provide a corresponding RSSI (Received Signal Strength Indica-
tion), which may be used in the process of link quality estimation [12]. Previous
work in low-power wireless networking has shown that a packet collision (RF
interference) distorts the received signal and typically manifests as an additive
increase in RSSI [7]. Consequently, RSSI has proven a relevant parameter when
identifying RF interference as the cause of packet loss [5,10]. In this paper we
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Fig. 1. RSSI sampled on a Tmote Sky with 62.5 kHz while receiving a maximum-sized
IEEE 802.15.4 frame (133-byte PPDU) with an airtime of 4.256 ms

explore to what extent monitoring RSSI with high sampling rate during packet
reception can be useful not only for receiver-side interference detection, but also
for estimating the bit error positions inside corrupted frames.

On an IEEE 802.15.4-compliant radio platform (TI CC2420 [13]) we obtain
an RSSI time series – a sequence of RSSI data points – by sampling RSSI with
62.5 kHz while receiving a frame (Fig. 1). We call such a time series the RSSI
profile of the incoming frame. Our measurement results indicate that the variance
of the RSSI profile of a correctly received frame is often much lower than that of
a corrupted frame. When we take a closer look at corrupted frames we often find
elevations in the RSSI profile whose duration matches the airtime of a colliding
frame. And when we compare the frame payload with its RSSI profile we find
that an increase in the RSSI profile often corresponds in time with the beginning
of a segment of erroneous bits and a decrease marks its end.

We propose to use RSSI profiles for estimating the bit error positions inside
corrupted frames. Our approach is applicable when errors are caused by RF
interference (and elevations are observable in the RSSI profile), rather than by an
insufficiently strong signal. With an ever increasing number of wireless devices,
however, interference is becoming a major concern, especially in the ISM bands.
We explore how RSSI profiling can help to improve the performance of Automatic
Repeat reQuest (ARQ) protocols [4] in the presence of RF interference. Our
approach belongs to the class of packet combining schemes [2]: when a corrupt
frame is received, only the estimated erroneous portion is retransmitted, thus
saving energy and bandwidth and reducing the probability of yet another error.

The rest of this paper is structured as follows: in Sect. 2 we present results from
a set of baseline measurements investigating the dynamics of RSSI profiles during
controlled collisions and in several environments of realistic, uncontrolled RF
interference. Sect. 3 introduces and evaluates a simple, threshold-based algorithm
that estimates bit error positions with the help of RSSI profiles. In Sect. 4 we
present an analytical model and empirical results that show the performance
improvements of an ARQ scheme when it is coupled with the algorithm. After
an overview of related work in Sect. 5 the paper is concluded in Sect. 6.
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2 Baseline Measurements

In this section we first report on some representative RSSI profiles that we ob-
tained during controlled collisions with different types of 802.15.4 and WLAN
frames. We then present results from several uncontrolled, realistic RF inter-
ference environments. All our experiments are performed with Telos (Tmote
Sky [11]) sensor nodes, which are equipped with the IEEE 802.15.4-compliant
Texas Instruments CC2420 transceiver [13].

2.1 CC2420

The CC2420 [13] operates in the 2.4 GHz ISM band at a nominal data rate of
250 kbps. A packet can be transmitted on one of 16 channels which are spaced
5 MHz apart and occupy 2 MHz of bandwidth. By default the radio automat-
ically attaches to every received packet an RSSI value, which represents the
average signal strength during packet reception. In conformance with the IEEE
802.15.4 standard the CC2420 allows to obtain the current RSSI by software. It
is continuously updated and averaged over the last 8 symbol periods (128 μs).
This allows to measure ambient RF noise, for example during an IEEE 802.15.4
energy detection scan, but also to obtain an RSSI sample during frame recep-
tion. As shown in Fig. 1, by reading RSSI with high frequency — we always use
62.5 kHz, the reciprocal of the time of a symbol — one can thus obtain the RSSI
profile of an incoming frame as a moving average over a window of 128 μs. In
practice, the sampling of the RSSI profile of an incoming frame is triggered by
the reception of its start-of-frame delimiter (SFD), which results in an interrupt
on the MCU. The end of an RSSI profile is marked by the reception of its last
byte. Due to unknown interrupt service latencies the sampling routine continu-
ously polls a radio pin for the end of the frame, because this point in time is used
as reference to align the RSSI profile with the frame tail. Thus, in contrast to the
illustrative results shown in Fig.1 and 2, RSSI profiles do not include samples of
the noise floor.

2.2 Controlled Collisions

In an environment of negligible external RF interference, which we verify with
the help of a portable Wi-Spy 2.4x USB spectrum analyzer, we create controlled
collisions between different types of WLAN and 802.15.4 frames. The basis for
our measurement are two Tmote Sky sensor nodes: one periodically transmits
maximum-sized 802.15.4 frames (133-byte PPDU with pre-defined content), the
other listens for incoming frames while it continuously measures RSSI with a rate
of 62.5 kHz. Whenever a frame (with a correct or incorrect CRC) is received, it
outputs the frame and its RSSI profile over USB to a laptop. This allows us to
analyze the dynamics in RSSI during reception and compare it with the bit error
positions in a corrupted frame.
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Fig. 2. Error positions and RSSI profiles of an IEEE 802.15.4 frame (133-byte PPDU)
colliding with an IEEE 802.15.4 ACK (top) and IEEE 802.11 BEACON (bottom). The
RSSI profile is measured on the Tmote Sky while receiving the frame.

In a first experiment we use a third Tmote Sky node to act as interferer: it
periodically transmits small 802.15.4 DATA or ACK frames without clear chan-
nel assessment (CCA) and thus provokes collisions with the frames exchanged
between the two other nodes. In a second experiment we replace the Tmote Sky
interferer with a laptop which uses its WLAN PC card, based on an Atheros
AR5212 chipset, to inject different types of WLAN frames (Beacon, ACK, RTS,
CTS or DATA). WLAN frames are also sent without CCA and the channels are
chosen such that they have maximum overlap. In all experiments the distances
between the nodes/WLAN interferer are small (< 5 m) and the interferer is lo-
cated closer to the receiver than the transmitter. Two representative results can
be seen in Fig. 2.

The results show that (1) collisions are clearly visible by elevations in the RSSI
profile, (2) the duration of an elevation matches the airtime of the colliding frame
and, most importantly, (3) the positions of the bit errors in the received frame
are temporally correlated with the elevation. Note that whenever there was no
frame error (collision) the RSSI profile was typically stable (± 1 dBm) as shown
in Fig. 1.
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2.3 Uncontrolled RF Interference

The previous results were obtained with an artificial setup. In this section we
want to address three issues that might exclude the applicability of RSSI profiling
in practice. They are related to the following questions:

1. How often does the radio hardware discard corrupted frames before they can
be processed and potentially recovered by software?

2. When a corrupted frame is received, how many bits are erroneous?
3. Is there a substantial difference between the RSSI profile of a corrupted and

a correctly received frame?

If only a small fraction of the corrupted frames is decoded and forwarded by
the radio hardware; if in a corrupted frame typically most bits are erroneous;
or if RSSI profiles are very similar regardless of a frame being corrupted or
correct, then an error recovery scheme based on RSSI profiling is likely to be of
little practical use. In the rest of this section we deal with these questions by
performing a set of measurements in three different environments of uncontrolled,
realistic RF interference.

The first two measurements are conducted in two publicly accessible indoor
sensor network testbeds: TWIST [15] and MoteLab [16]. Both testbeds are situ-
ated on a university campus and have several WLANs co-located. Each testbed
contains a large number of Tmote Sky nodes and we program one of them,
located close to the geographic center of the testbed, to broadcast a total of
100,000 frames on channel 211, one frame every 125 ms. All other nodes listen
for incoming frames and output every received frame and its RSSI profile over
USB to be stored in a trace file for our later examination. Frames have an MPDU
size of 64 byte and are transmitted with CCA: when the sender determines a
busy channel the transmission is delayed for a small random time interval. Since
we only use one sender a busy channel can only be caused by other users of the
spectrum, e.g. WLAN. Each measurement lasts for about 4 hours and was, in
both cases, performed on a weekday in the daytime.

For a third measurement we strap two Tmote Sky nodes to a person: one
to the left upper arm, the other to the shin just above the ankle, resulting in a
relative distance of about 1.5 m. One node is transmitting a total of 10,000 frames
on channel 21 with a transmission power of -25 dBm, the other node listens and
forwards received frames and their RSSI profiles over USB to a laptop carried in
a backpack. Again, the MPDU size is 64 byte and frames are transmitted with
CCA. In all experiments based on this body area network (BAN) setup the test
person is walking outdoors on urban streets: a central urban shopping street and
streets in a central residential area. We measure the same metrics as described
in the previous paragraph, but in contrast to the testbed setups one experiment
evaluates only a single link (we make a total of 6 BAN experiments).

Per setup we calculate for every link, i.e. sender-receiver pair, packet recep-
tion rate (PRR) as the ratio of correctly received to transmitted packets, and

1 Channel 21 overlaps with (the popular) WLAN channel 10.
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corrupt packet reception rate (CPRR) as the ratio of received corrupt packets
(CRC incorrect) to transmitted packets. Thus CPRR/(1−PRR) describes what
fraction of those frames that were not received correctly was still accessible by
software. The remaining frames were discarded by the receiver radio supposedly
due to a weak signal and/or errors in the PHY header. In our evaluation we
only consider links that had a PRR between 0.1 and 0.995 and we only count as
corrupt packets those that have the expected length.

Fig. 3 shows per-link CPRR/(1−PRR) for all setups. On bad links sometimes
only 20 % of those frames that were not received correctly were accessible by
software, on good links typically at least 50 %. One possible explanation is that
on bad links signal strength is often below the radio sensitivity threshold and
frames are lost due to an insufficiently strong signal. The number of byte errors
per corrupted frame is shown in the empirical CDFs in Fig. 4: on average no more
than 5 bytes were incorrect, i.e. less than 10 % of the 64 byte MPDU. Finally, for
every received packet we calculated the range over the 128 samples (2 samples
correspond to one byte) contained in its RSSI profile, i.e. the interval between
the minimum and maximum RSSI value. We then compared the average range
for all correctly received vs. corrupted packets per link. The results are shown
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in Fig. 5 and suggest that typically the RSSI profile of a frame that had at least
one bit error had a considerably higher range than the RSSI profile of a frame
that was received correctly.

In summary, the results indicate that (1) often a large portion of the corrupted
frames is accessible and thus potentially recoverable, (2) the average number of
erroneous bytes compared to a medium-sized frame is small and (3) RSSI profiles
might contain enough information to estimate the bit error positions correctly.
In the next section we investigate the last criterion more closely.

3 Estimating Bit Error Positions With RSSI Profiles

In this section we examine how to estimate the bit error positions in a corrupted
frame based on its RSSI profile. We call an algorithm that performs this task
a REPE algorithm (RSSI-based bit Error Postion Estimation). A REPE algo-
rithm is invoked on the receiver upon reception of a frame with an incorrect
checksum (CRC). It takes the RSSI profile of the corrupted frame as input and
tries to output an estimate of the bit error positions. Note that in some cases
the algorithm will not be able to output a decision, for example when the RSSI
profile does not contain enough variance.

A good REPE algorithm will maximize the number of decisions, while mini-
mizing the number of false positives (bits classified as incorrect, although they
are correct) and false negatives (bits classified as correct, although they are in-
correct). It should also impose little computational and memory overhead. In
the rest of this section we introduce a simple REPE algorithm and evaluate its
performance based on the traces we collected in the previous measurements.

3.1 A Threshold-Based REPE Algorithm

The REPE algorithm we propose simply marks all symbols that were received
while the RSSI was above a certain threshold as incorrect. The threshold is de-
fined relative to the RSSI of the incoming 802.15.4 frame, which we denote as
RSSIBase. In our scheme RSSIBase is set to the minimum value of the frame’s
RSSI profile, because previous work has shown that interference (collisions) re-
sults an RSSI increase rather than a decrease [7]. To exclude errors caused by an
insufficiently strong signal the algorithm does not output a decision if RSSIBase

is below the radio’s sensitivity. Before the RSSI rises above and after it falls
below the threshold an additional (temporal) safety margin is added. All bits
between and including the safety margins are marked as incorrect and there can
be multiple such sections per frame. Fig.6 shows a pseudocode representation of
the algorithm and visualizes its notation using an example.

The time complexity of the algorithm is O(n), where n is the number of
samples in the RSSI profile. The memory requirements are n byte to store the
RSSI profile — after the REPE algorithm has made a decision the same memory
can be used to buffer the corrupted frame.
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Algorithm. REPE-Threshold(RSSIProfile, Δthreshold, Δfront, Δrear, sensitivity)

i ← 0
RSSIBase ← min(RSSIProfile)
symbolErrorMask[length(RSSIProfile)] ← {0}
if RSSIBase ≥ sensitivity

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

while i < length(RSSIProfile)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if RSSIProfile[i] ≥ RSSIBase + Δthreshold

then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

first ← max(i − Δfront, 0)
while (i < length(RSSIProfile) and

RSSIProfile[i] ≥ RSSIBase + Δthreshold)
do i ← i + 1

last ← min(i + Δrear, length(RSSIProfile) − 1)
symbolErrorMask[first..last] ← 1

else i ← i + 1
return (symbolErrorMask)
comment: an empty symbolErrorMask (all zeros) means “no decision”.

Fig. 6. The proposed REPE algorithm in pseudocode and an illustration of its notation

3.2 Evaluation

We evaluated the proposed REPE algorithm “offline”, with the help of the traces
we collected in the measurements described in Sect. 2.3. For every received frame
our traces contained the RSSI profile as well as the content of the frame. From the
latter we could infer the actual bit errors — the “ground truth”. The algorithm
was instantiated with parameters similar to the ones used in the example shown
in Fig. 6: Δthreshold = 2 dBm, Δfront = 6 symbols, Δrear = 2 symbols and
sensitivity = −93 dBm.2 For every corrupted frame we let the REPE algorithm
try to estimate the bit error section(s) and compared the result with the ground
truth. The estimate was correct, if it resulted in no false negative, otherwise it
was incorrect. In order to prevent trivial estimates (all bits marked as incorrect)
an estimate that in total contained more than half of the MPDU size, i.e. more
2 These parameters were chosen on the basis of a few trials - a more thorough inves-

tigation of the parameter space is part of our future work.
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Fig. 7. Each bar represents an 802.15.4 link in one of the
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frames that were not received correctly the REPE algo-
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fraction was inaccessible by software. The bars are ordered
by increasing PRR and each bar is normalized to 1-PRR
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than 32 byte, was treated as “no decision”. We evaluated every link separately
and again we only considered links that had a PRR between 0.1 and 0.995.

Fig. 7 shows how the REPE algorithm performed for each link in the three
setups. Every link is represented by a bar that is subdivided into four parts,
reflecting what happened to those frames that were not received correctly: they
were either not accessible by software, or the REPE algorithm made either a
correct or incorrect estimate, or it could not make a decision at all. The bars
are ordered by increasing PRR and each bar is normalized to 1 − PRR. It can
be seen that the results exhibit strong variance, but there is also a clear trend:
on bad links (low PRR, i.e. left side, respectively) typically the vast majority of
frames that were not received correctly was either not accessible by software or
the REPE algorithm could not output a decision. Also, at low PRR the number
of incorrect estimates sometimes outnumbered the correct ones. With growing
PRR, however, the proportion of REPE decisions increased to 50% and above,
and for PRR > 0.7 the ratio of correct to incorrect decisions was typically at
least 4. Again, a possible explanation for this trend is that on bad links packet
loss is often also caused by a weak signal rather than (only) RF interference.

Fig. 8 shows CDFs for the number of bytes and distinct sections marked as
incorrect by the REPE algorithm. With 15-20 bytes the average number of bytes
classified as incorrect is about 4-5 times higher than the actual average number
of byte errors (c.f. Fig. 4). This suggests that the proposed REPE algorithm
might still be improved in terms of false positives, potentially by better pa-
rameter tuning or more fine-grained information from the radio hardware (e.g.
shorter RSSI time windows or per-symbol LQI/correlation values). According to
the bottom graph of Fig. 8 the estimated errors were often confined to a single
section and in about 90% of all cases no more than two sections were identified.
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These results confirm the general applicability of the algorithm, in the next
section we examine one practical application more closely.

4 REPE-ARQ

There are several application areas that could benefit from the coupling with a
REPE algorithm, for example Forward Error Correction (FEC) schemes or tech-
niques that identify/exclude a certain type of interferer technology based on the
airtime/inter-frame spacings of colliding frames [1]. In this section, however, we
explore how a REPE algorithm can improve Automatic Repeat reQuest (ARQ)
protocols [4].

In the standard Send-and-Wait ARQ scheme a frame is retransmitted when
a bit error has occurred, typically noticed at the transmitter by the absence of
an acknowledgement. We extend this scheme as follows: when a corrupted frame
(CRC incorrect) is received, the REPE algorithm is invoked on the receiver side.
If the algorithm can make an error estimate, the corrupted frame is buffered
and a negative acknowledgement (NACK) frame is transmitted. As depicted
in Fig. 11 a NACK is similar to an IEEE 802.15.4 ACK frame, except that it
contains at least four bytes of payload, denoting the byte-offset and length of the
estimated corrupted section(s) in the received frame, and a 16-bit REPE CRC.
The number of REPE offset/length fields is variable to account for multiple error
sections — alternatively a bitmask could be used to specify the error estimates,
but it would typically impose more overhead since the number of error sections
is expected to be small (c.f. Fig. 8). The REPE CRC is calculated over the
remaining presumably uncorrupted portion of the received frame and allows the
transmitter to determine whether the REPE algorithm on the receiver side was
successful: it simply calculates the CRC over the original frame less the section(s)
specified by the REPE offset and REPE length, and compares the result with the
REPE CRC (all contained in the NACK). If they match, the receiver’s estimate
was correct, i.e. there was no error outside the estimated corrupted section3,
otherwise it was incorrect. In the first case only the corrupted portion (plus a
3-byte 802.15.4 MAC header) is retransmitted, indicated by an unused bit-flag in
the header, which we call the R-Flag (we use bit 7 of frame control field). Upon
correct reception the receiver is then able to assemble the original frame, pass
it to the next higher layer and transmit a final ACK. In case this ACK is not
received, the transmitter retransmits the reduced-size frame. If the transmitter
discovers that the estimate was incorrect the entire frame is retransmitted. A
flowchart of the REPE-ARQ scheme is shown in Fig. 9 (receiver-side) and 10
(transmitter-side).

4.1 Analytical Model

We use a time-homogeneous discrete-time Markov chain model [8] to analyze
the performance of the REPE-ARQ algorithm with a maximum of k allowable
3 Like the IEEE 802.15.4 MAC we ignore the residual error rate of the 16-bit CRC.
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Fig. 9. The REPE-ARQ scheme
(receiver-side)

Fig. 10. The REPE-ARQ scheme
(transmitter-side)

Fig. 11. NACK frame format

Fig. 12. The Markov chain model for the REPE-ARQ scheme

trials. This model is based on the assumption that different trials to transmit a
frame are independent of each other.

The model’s state transition diagram is shown in Fig. 12. From this diagram
the underlying state transition matrix P can be directly derived. In the TxFull,i
states (where i represents the number of trials) the transmitter sends a full-sized
packet, whereas in the TxPartial,i states it sends a partial packet, i.e. retrans-
mits only those parts of the payload that were previously corrupted and correctly
identified as such by the REPE algorithm. In the SUCCESS state the transmitter
has received an acknowledgement, whereas in the FAIL state the transmitter has
exhausted all k allowable trials without receiving an acknowledgement. A tran-
sition from TxFull,i to SUCCESS occurs when a full-sized packet and its ACK
were received without errors (with probability pF,Succ); a transition TxFull,i
to TxPartial,i+1 occurs when a full-sized packet with errors was received, the
REPE algorithm made a correct estimate and the NACK was received with-
out errors (with probability pF,P ); and a transition TxPartial,i to SUCCESS
occurs when a partial packet and its ACK were received without errors (with
probability pP,Succ).



Mitigating the Effects of RF Interference 235

The remaining state transition probabilities can be derived from the three
basic probabilities pF,Succ, pP,Succ and pF,P in a straightforward way. They are
shown in Fig. 12. To instantiate the model we obtain the three basic probabilities
from measurements (c.f. Sect. 4.3).

Our goal is to compute the average total number of bits transmitted within the
k possible trials. To achieve this, we utilize the framework of potential theory for
Markov chains [8, Sec. 4.2], the relevant definitions and theorems are paraphrased
in Appendix A. In our case, all states TxFull,i and TxPartial,i are inner
states, whereas the absorbing states FAIL and SUCCESS are final states. In the
final states no transmission costs are incurred, all states TxFull,i have the same
cost cF and all states TxPartial,i have the cost cP .

The average number of transmitted bits in the TxFull,i states, cF , consists
of the following components:

– the number of bits in a full-sized data frame, lD,F ,
– the number of bits in a positive acknowledgement, lACK , weighted with

probability pF,Succ, and
– the average number of bits in a negative acknowledgement, lNACK , weighted

with probability pF,P .

Summarizing:
cF = lD,F + pF,Succ · lACK + pF,P · lNACK

Similarly:
cP = lD,P + pP,Succ · lACK

where lD,P is the average number of bits for a partial data frame.4 The average
number of transmitted bits is computed by solving φ = P·φ+c for φ and reading
off from φ the component corresponding to state TxFull,1, which amounts to
solving a simple linear equation system (see Appendix A). Sect. 4.3 shows results
for probabilities and average frame sizes we obtained through measurements.

A similar model has been developed for the Send-And-Wait-ARQ protocol
with k allowable trials. The major difference to the REPE model is the missing
TxPartial,i states.

4.2 Experimental Setup

We implemented the REPE-ARQ scheme on the Tmote Sky platform in TinyOS
2.1 and integrated it with an existing CSMA MAC protocol. The MAC re-
quires an idle channel before transmission and performs a maximum of three
retransmissions in case an acknowledgement is not received correctly. We made
measurements in the TWIST and MoteLab testbeds using the following setup:
from the set of available nodes we selected one node to make periodic unicast
transmissions (with a constant PPDU size of 133 byte) to a subset of about 25
other nodes in a round-robin fashion. In order to evaluate both, the REPE- and
4 The model contains an approximation: in the calculation of cF and cP it is implicitly

assumed that ACKs and NACKs are always received correctly.
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Fig. 13. The ratio of bytes transmitted with the REPE-ARQ vs. standard ARQ scheme
(REPE Gain) during a 4-hour measurement / according to the analytical model. Each
bar represents an 802.15.4 link and the bars are ordered by increasing PRR, ranging
from about 0.1 to 0.99 (with a similar distribution as in Fig. 3).

the standard ARQ, under identical conditions, the REPE algorithm on the
transmitter side was slightly modified: after the reception of a correct NACK
the sender never reduced the frame size, but instead it inserted in the payload
an additional, intermediate CRC at an offset where the reduced frame would
have ended. In case of a bit error the receiver could thus determine whether
the reduced-, the full-sized or both frames were affected5, although in practice
only a single full-sized frame was transmitted. With this approach both vari-
ants were running virtually at the same time. The sender/receiver could identify
whether the transmission based on the REPE- or standard ARQ (or both) were
(un)successful and count the number of transmitted bytes separately.

For example, assume that the first frame is completely destroyed; the second
frame, i.e. first retransmission, is corrupted, the REPE-ARQ makes a correct
estimate and the NACK (15 byte PPDU) is correctly received; the third frame
has a single bit error, which is outside the region covered by the intermediate
CRC and the corresponding ACK is received correctly; the fourth frame and its
ACK are received correctly. Then the number of transmitted bytes accounted for
the REPE-ARQ scheme is 133+(133+15)+(40+11)+0 = 332 byte (assuming
the retransmitted frame had a PPDU size of 40 byte and an ACK is 11 byte),
for the standard ARQ it is 133 + 133 + 133 + (133 + 11) = 543 byte.

4.3 Analytical and Experimental Results

Fig. 13 displays the experimental results from the TWIST and MoteLab testbeds.
It shows a comparison of the REPE- with the standard ARQ scheme with respect
to the total number of transmitted bytes per link during a 4-hour measurement
(red bars). The results take all exchanged packets into consideration, including
packets for which the REPE algorithm could not make a decision or packets
that were inaccessible by software. From the traces we derived the probabilities
pF,Succ, pP,Succ and pF,P , as well as the average frame sizes lNACK and lD,P

5 Only in the first case the receiver would transmit an ACK frame and it would include
a special flag to distinguish it from the ACK for a full-sized frame.
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required by our analytical model (Sect. 4.1). The analytical results are shown as
black bars in the same Fig. 13.

The experimental results differ for the two testbeds, possibly due to the diverse
interference environments: in TWIST the gain is to 0.7 to 5.2 % (on average
2.1 %), while in MoteLab it is -0.5 to 14.7 % (on average 6.0 %). The highest
gain is typically achieved on intermediate links with a PRR of around 0.6. On
very good links the potential performance gain is low, because only a small
fraction of the frames is corrupted and can be recovered in the first place. The
analytical model matches these results quite well: the average difference is 0.0059
and the maximum is 0.029. This suggests that the model is suitable and that
with a simple software extension on a typical mote platform the REPE scheme
can indeed achieve a considerable performance gain.

5 Related Work

The REPE-ARQ scheme proposed in this paper is an instance of packet combin-
ing schemes [2]. In packet combining schemes a receiver stores erroneous packets
to combine them with parts from later trials. A key issue is to identify the in-
correct parts of a packet. In coded transmission systems it is possible that the
decoder delivers not only decided bits, but also additional information specifying
the confidence in its decisions on a per-bit basis (soft-information). In [14] soft-
information is used in a selection-decode-and-forward relaying scheme. In the
absence of true soft-information other methods are needed to infer the positions
of the correct and incorrect parts of a packet. One method is to insert additional
checksums into the packet [17].

The RSSI profiling technique discussed in this paper has not yet been proposed
for usage in ARQ schemes, but RSSI has been used in other “non-traditional”
contexts: Demirbas et al. [3] proposed to use the RSSI power-sum of acknowl-
edgement frames in the process of estimating the number of neighbors for which
a certain predicate is true. B-MAC [9] samples RSSI with high frequency to
achieve a more accurate clear channel assessment; and in [10] per-bit RSSI in-
formation has been used (in conjunction with other per-bit/per-symbol informa-
tion) to gather information about the cause of packet losses in Wifi systems and
to adapt the MAC/PHY parameters accordingly: when a collision is inferred,
the backoff process of the MAC is triggered whereas a weak signal results in an
execution of the rate- or power-adaptation algorithm.

6 Conclusions and Future Work

In an experimental study we showed that by monitoring RSSI with high sampling
rate during packet reception the receiver can often not only identify RF interfer-
ence as the cause for packet corruption, but also estimate the bit error positions
correctly. Our algorithm simply correlates the instantaneous signal strength with
the arrival time of the individual symbols and marks all bits received while the
signal level was above a certain threshold as incorrect. It is particularly effective
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for large packets and when the interfering signal has short airtime. Through an
analytical and experimental evaluation we showed that the approach can achieve
high success rates and that an ARQ scheme generally benefits when coupled with
our algorithm. We expect an additional performance gain if the radio hardware
could provide more fine-grained signal strength information (shorter RSSI time
windows or per-symbol LQI/correlation values).

Finding simple heuristics that can improve performance of the presented al-
gorithm and investigating new strategies, such as identifying characteristic in-
terferer “footprints” in the RSSI profile, seem a promising area of future work.
Another interesting topic is the combination of REPE algorithms with coding
schemes.
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A Potentials of Markov Chains

Be (Xn)n≥0 a time-homogeneous Markov chain with discrete (i.e. finite or count-
ably infinite) state space S and state-transition matrix P. The state space is
partitioned into inner states D and boundary states or final states ∂D so that
S = D∪∂D. Suppose that c = (ci)i∈D and f = (fi)i∈∂D are non-negative vectors
representing the costs ci when the chain is in the inner state i ∈ D and the costs
fi when the chain is in the boundary state i ∈ ∂D. Let the random variable T
be the hitting time for the boundary: T = inf {n ≥ 0 : Xn ∈ ∂D}. Set

φi = Ei

[∑
n<T

c(Xn) + f(XT ) · 1{T<∞}

]

Then φi is the expected total costs when the chain starts in state X0 = i and
operates in the inner states D, each time incurring a cost ci, until it reaches
a final state in ∂D, incurring a final cost corresponding to the final state. The
final costs are incurred only when the hitting time T is finite. Then the following
holds [8, Theorem 4.2.3]:

– The potential φ = (φi)i∈S satisfies:{
φ = P · φ + c : in D
φ = f : in ∂D

(1)

– If Pri [T < ∞] = 1 (i.e. the probability to hit the final states when the
starting state is X0 = i) for all i then Equation 1 has at most one bounded
solution.

In other words, we are looking for a solution of the system of linear equations
given in 1.

http://focus.ti.com/docs/prod/folders/print/cc2420.html
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Abstract. Radio Link Quality Estimation (LQE) is a fundamental
building block for Wireless Sensor Networks, namely for a reliable de-
ployment, resource management and routing. Existing LQEs (e.g. PRR,
ETX, Four-bit, and LQI ) are based on a single link property, thus lead-
ing to inaccurate estimation. In this paper, we propose F-LQE, that
estimates link quality on the basis of four link quality properties: packet
delivery, asymmetry, stability, and channel quality. Each of these prop-
erties is defined in linguistic terms, the natural language of Fuzzy Logic.
The overall quality of the link is specified as a fuzzy rule whose evalua-
tion returns the membership of the link in the fuzzy subset of good links.
Values of the membership function are smoothed using EWMA filter to
improve stability. An extensive experimental analysis shows that F-LQE
outperforms existing estimators.

1 Introduction

In wireless sensor networks (WSNs), communication links are known to be ex-
tremely unreliable as they often experience significant quality fluctuations and
weak connectivity. Link unreliability is partially due to the use of low-power ra-
dios, which are shown to be very sensitive to noise, interference, and multipath
distortion.

Link quality estimation is a fundamental building block in the design of higher
layer protocols, namely topology control, routing, and mobility management
protocols. For instance, routing protocols rely on link quality estimation as a
support mechanism to select the most stable routes for data delivery [1,2]. Sta-
ble routes are built by selecting links with the highest quality. Building such
routes will improve the network throughput and maximize its lifetime, namely
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(i.) increasing the end-to-end probability of message delivery, (ii.) avoiding ex-
cessive re-transmissions over low quality links and (iii.) minimizing the route
re-selection operation triggered by links failure.

Several link quality estimators (LQEs) have been reported in the literature
[3,4,5,6,7]. They can be classified as either hardware-based or software-based.
Existing LQEs (hardware or software) base their estimation on a single link
property. However, other properties contribute to link quality, e.g. stability and
channel quality. We alert the reader that we make a difference between channel
quality and link quality. We define channel quality as a particular property of the
communication link, which can be assessed by the SNR (Signal-to-Noise Ratio).
Link quality represents the overall quality of the communication link, as it takes
into account all (or a set of) link properties, including channel quality property.

In order to better estimate link quality, we advocate combining several impor-
tant link properties, to get a holistic characterization of the link. In this paper,
we propose a LQE that combines multiple metrics in order to achieve this goal.
Link quality is affected by several aspects that are usually imprecisely mea-
sured. Fuzzy logic provides a convenient language to express and combine such
imprecise knowledge. Thus in this work, we resort to fuzzy logic to estimate link
quality. Individual link properties are stated in linguistic terms and combined in
a fuzzy rule whose evaluation gives the degree of membership of the link in the
fuzzy subset of good quality links.

The rest of this paper is organized as follows: in Section 2, we discuss the lim-
itations of existing LQEs. In Section 3, we justify the use of Fuzzy Logic for link
quality estimation. Then, we introduce our Fuzzy-link quality estimator (F-LQE)
in section 4. Our experimental methodology for the performance evaluation of
F-LQE is presented in Section 5 and experimental results are given in Section 6.
We conclude in Section 7. We would like to mention here that the experimental
results reported in section 6 confirm extensive simulation results obtained using
TOSSIM. Details of the Simulation scenarios and results are omitted due to lack
of space.

2 Limitation of Existing Link Quality Estimators

2.1 Hardware-Based Link Quality Estimators

Three LQEs belong to the family of hardware-based LQEs: LQI (Link Qual-
ity Indicator), RSSI (Received Signal Strength Indicator), and SNR (Signal-to-
Noise Ratio). These estimators are directly read from the radio transceiver (e.g.
the CC2420). Their advantage is that they do not require any additional com-
putation. However, as reported in previous studies, hardware-based estimators
do not provide accurate estimates [8,9,10,4], mainly for the following reasons:
First, these metrics are measured based on the sample of the first 8 symbols
of a received packet and not the whole packet. Second, these metrics are only
measured for successfully received packets; therefore, when a radio link suffers
from excessive packet losses, they may overestimate the link quality by not con-
sidering the information of lost packets. Third, despite the fact that hardware
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metrics provide a fast and inexpensive way to classify links as either good or
bad, they are incapable of providing a fine grain estimation of link quality [5].

The above limitations of hardware-based LQEs do not mean that this category
of LQEs is useless. In fact, each of these LQEs (SNR, LQI and RSSI ) provides
a particular information on the link state, but none of them is able to provide a
holistic information on the link quality. For instance, in [9], it has been reported
that RSSI can provide a quick and accurate estimate of whether an incoming
link is in or out of the grey area, whereas LQI can provide an estimate of where
in the gray area a link is.

2.2 Software-Based Link Quality Estimators

Software-based LQEs enable to either count or approximate the reception ratio
or the average number of packet transmissions/re-transmissions. Next, we recall
some of the most widely adopted software-based LQEs.

The PRR counts the Packet Reception Ratio. It is computed as the ratio
of the number of successfully received packets to the number of transmitted
packets, for each window of w received packets. The Required Number of Packet
retransmissions (RNP) [6] counts the average number of packet retransmissions
required before a successful reception. It is computed as the ratio of the number
of transmitted and retransmitted packets to the number of successfully received
packets, minus 1 to exclude the first packet transmission. This metric is evaluated
at the sender side for each w retransmitted packets.

The Window Mean with Exponentially Weighted Moving Average
(WMEWMA) [3] and the Kalman filter based LQE [7] approximate the PRR.
WMEWMA applies filtering on the PRR metric to smooth it, thus providing a
metric that resists to transient fluctuation of PRRs, yet is responsive to major
link quality changes. WMEWMA is then given by the following:

WMEWMA(α,w) = α × WMEWMA + (1 − α) × PRR (1)

where α ε [0..1] controls the smoothness. This factor enables to give more impor-
tance, to the current PRR value (with α< 0.5) or to the last SPRR value (with
α> 0.5). The Kalman filter based LQE [7] approximates the packet reception
ratio based on RSSI and a pre-calibrated PRR/SNR curve.

On the other hand, the Expected Transmission Count (ETX) [11], and four-
Bit [5] approximate the RNP. ETX is the inverse of the product of PRR of
the forward link and the PRR of the backward link, which takes into account
link asymmetry property. Four-bit is a sender-initiated estimator, already im-
plemented in TinyOS. Like ETX, four-bit considers link asymmetry property.
It combines two metrics (i.) estETX up, as the quality of the unidirectional link
from sender to receiver, and (ii.) estETX down, as the quality of the unidirec-
tional link from receiver to sender. The estETX up is exactly the RNP metric
and estETX down approximates RNP as the inverse of WMEWMA, minus 1. The
combination of the two metrics is performed through the EWMA filter as follow:

four-bit(wa, wb, α) = α × four-bit + (1 − α) × estETX (2)
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estETX corresponds to estETX up or estETX down: given wa the beacon-driven
estimation window and wp the data-driven estimation window; at wa received
packets, the sender derives the four-bit estimate by replacing estETX for es-
tETX down in Eq.2. At wp transmitted/re-transmitted data packets, the sender
derives the four-bit estimate by replacing estETX for estETX up in Eq.2.

Except of four-bit, these aforementioned LQEs rely on a single link quality
metric, e.g. PRR, SNR or RSSI, to approximate either the reception ratio or
the average number of packet transmissions/re-transmissions. However, as it has
been shown [8,4,9], a single link quality metric assesses a particular link property
and thus provides a partial characterization of the link. On the other hand,
four-bit integrates two link quality metrics, namely PRR and RNP. However,
it has the limitation of evaluating a single link aspect: the number of packet
retransmissions, and does not take into account other important aspects, such
as link stability level or channel quality. Further, four-bit combines two metrics
having different nature, using the filter EWMA. Although filtering has been
shown to be efficient to smooth the link quality estimates and provides a metric
that resists to transient link quality changes [3], exploiting it for combining
different metrics would lead to unstable link quality estimation [8].

3 Fuzzy Logic for Link Quality Estimation

The assessment of the quality of a wireless channel is a function of a number of
metrics that are usually imprecisely estimated. Fuzzy logic provides a rigorous
algebra for dealing with imprecise information. It is a mathematical discipline
invented to express human reasoning in a rigorous mathematical notation. Unlike
classical logic where a proposition is either true or false, fuzzy logic establishes
the approximate truth value of a proposition based on linguistic variables and
inference rules. Furthermore, fuzzy logic is a convenient method of combining
conflicting objectives and expert human knowledge.

A linguistic variable is a variable whose values are words or sentences in
natural or artificial language [12]. By using hedges like ’more’, ’many’, ’few’, etc.,
and connectors like AND, OR, and NOT with linguistic variables, an expert can
form rules, which will govern the approximate reasoning. In ordinary set theory,
an element is either in a set or not in a set. In contrast, in fuzzy set theory,
an element may partially belong to a set. A fuzzy set is defined as a class of
objects with a continuum of grades of membership [13]. Formally, a fuzzy set A
of a universe of discourse X = {x} is defined as A={x; μA(x) | ∀ x ε X}, where
X is a space of points and μA(x) is a membership function of x ε X being an
element of A. In general, the membership function μA(.) is a mapping from X
to the interval [0,1]. If μA(x) = 1 or 0, ∀ x ε X, then the fuzzy set A becomes
an ordinary set [13].

Example: Packet delivery is an important link property whose goodness is
highly correlated with the overall goodness of the link. It can be evaluated by
the PRR link quality metric. Let PRR be the Packet Reception Ratio across a
given link. According to classical logic, a link is declared good when its PRR is
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greater than a given threshold, say 0.95, and bad otherwise. For instance, given
two different links, the first has a PRR equal to 95% and the second has a PRR
equal to 94%. Classical logic declares only the first link as good. This example
illustrates how PRR can only be imprecisely evaluated and classical reasoning
fails to deal with such knowledge. Fuzzy Logic has been developed to handle this
type of imprecise knowledge.

Let x ε [0..1] be a particular value of PRR and H be the fuzzy subset of
links with high PRR. Then, for each x in the interval [0..1], μH(x) indicates
the extent to which the link is considered having a high PRR, and μH(.) is the
membership function of the fuzzy subset of links with high PRR. Packet delivery
is considered as a fuzzy variable, which is expressed in linguistic terms such as
low packet delivery and high packet delivery. The membership of the link in the
Fuzzy set of high packet delivery links, is a matter of degree rather than a yes-no
situation. It ranges in the interval [0..1]. By recalling the previous example, the
first link with PRR equal to 95%, can have a degree of membership in the fuzzy
subset of high delivery links, equal to 1, whereas the second link with PRR equal
to 94%, can have a degree of membership of 0.9. A possible membership function
of high packet delivery links is illustrated in Fig. 2 (refer to μSPRR(.)).

During the lifetime of a WSN, the quality of a wireless channel is usually a
function of several imprecisely measured channel properties, as packet delivery,
asymmetry, and stability. Because of their imprecise nature, each such prop-
erty can be conveniently expressed in linguistic terms. E.g., a channel can be
unstable, stable, and highly stable. Each such term is a linguistic value for the
linguistic variable channel stability. The numerical interpretation of each linguis-
tic value is defined in the form of a fuzzy subset, characterized by a particular
fuzzy membership function. Now, suppose that we want to combine multiple
link properties to properly assess the link quality, each such combination is per-
formed by a Fuzzy IF-THEN Rule. A fuzzy rule combines the linguistic variables
using connectors (operators) such as AND and OR. The evaluation of the rule
using a fuzzy operator (e.g. Yager operator [14]) returns a membership degree
that represents the link quality estimate.

4 F-LQE : A Fuzzy Link Quality Estimator

4.1 Link Quality Metrics

In this section, we identify four link quality metrics to be considered in the de-
sign of F-LQE. Each metric describes an important link property. The set of
selected link properties will be used in the next section to express the goodness
of a given link.

Packet delivery is related to the capacity of the link to successfully deliver
data. It is captured by some existing LQEs such as PRR, WMEWMA, and
ETX, but not by others, such as RNP. F-LQE accounts for the packet delivery
of the link by a measure of SPRR, which stands for Smoothed PRR. The SPRR
is exactly the WMEWMA[3], described in section 2.



F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks 245

Asymmetry is the difference in connectivity between the uplink and the down-
link. Communication between sensor nodes is usually bidirectional. Empirical
studies such as [15] have shown that links asymmetry is due to the discrepancy
in terms of hardware calibration, i.e. nodes do not have the same effective trans-
mission power, reception sensitivity and noise floor. Therefore, it is not sufficient
to estimate the link quality as the quality of the link in one direction . While
some LQEs, such as ETX and four-bit, take into account link asymmetry, other
estimators including PRR, WMAWMA and RNP, do not. F-LQE takes into
account link asymmetry by measuring the difference between the uplink PRR
(PRRup) and the downlink PRR (PRRdown), noted as ASL (ASymmetry Level):

ASL(w) = |PRRup − PRRdown| (3)

The ASL metric gives an idea on whether a transmitted packet can be acknowl-
edged or not. In fact, for a given sender, when the downlink is of high quality
and the uplink is of bad quality, a correctly received packet would not be ac-
knowledged or at least acknowledged after a certain number of retransmissions.
The ASL captures this effect, which cannot be detected by the PRR alone.

Stability is the variability level of the link. Link stability is of a paramount
importance for network protocols that preferably forward data over stable links
in order to minimize retransmissions and topological changes. To the best of our
knowledge, none of the existing LQEs takes into account this property. F-LQE
assesses the stability of the link by the measure of the stability factor (SF), de-
fined as the coefficient-of-variation of PRR. The SF metric is basically computed
based on a history of 30 PRRs. We adopt the idea of ”sliding window”, for the
update of the PRRs history at a new measure of PRR. We choose 30 as the his-
tory length to ensure a certain confidence for the computation of the coefficient
of variation. Nevertheless, at network startup, we anticipate the computation of
SF by considering only a history of 5 PRRs and as long as packets are received,
the PRRs history is feeded back at every new measure of PRR, until collecting
the 30 PRRs values.

Channel quality can be evaluated through the measure of the Signal-to Noise-
Ratio (SNR). It has been shown in previous studies, such as [16] and [4] that
although SNR alone is not able to give a holistic characterization of the link,
it helps to enhance the accuracy of the link quality estimation. For example, a
link that has a PRR near to 1 and a high SNR, e.g. 10 dBm (refer to Fig. 1),
is significantly better than another link that has the same PRR but low SNR,
e.g. 4 dBm, because the link quality of the second link is susceptible to drop
considerably with a small change in the noise floor [4]. This observation can be
clearly understood from Fig. 1.

The SNR metric can be derived by subtracting the noise floor (N ) from the
received signal (S ), both in dBm. The S can be deduced by sampling the RSSI
at the packet reception, and N can be derived from the RSSI sample just after
the packet reception. In our proposed LQE, we average SNR, over w received
packets to get ASNR: the link quality metric for the channel assessment.
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Fig. 1. PRR/SNR. For ASNR greater than 8dBm, the PRR is equal to 100%, and for
ASNR less than 1 dBm, the PRR is less than 25%. In between, a small variation in
the ASNR can cause a big difference in the PRR; links are typically in the transitional
region.

4.2 Combination of Link Quality Metrics

F-LQE considers each of the link properties mentioned in the previous section
as a different fuzzy variable. The goodness (i.e. high quality) of a link is charac-
terized by the following rule:

IF the link has high packet delivery AND low asymmetry AND high stability
AND high channel quality THEN it has high quality.

Here, high packet delivery, low asymmetry, high stability, high channel quality,
and high goodness are linguistic values for the fuzzy variables packet delivery,
asymmetry level, stability, channel quality, and quality (refers to link quality).
Using and-like compensatory operator of [14], the above rule translates to the
following equation of the fuzzy measure of the link i high quality.

μ(i) = β.min(μSPRR(i), μASL(i), μSF (i), μASNR(i))+
(1 − β).mean(μSPRR(i), μASL(i), μSF (i), μASNR(i)) (4)

μ(i) is the membership in the fuzzy subset of high quality links. The parameter β
is a constant in [0..1]. Recommended values for β are in the range [0.5..0.8] where
0.6 usually gives the best results [20], which is also confirmed in this work (see
Section 6.1). μSPRR, μASL, μSF , and μASNR represent membership functions in
the fuzzy subsets of high packet delivery, low asymmetry, low stability, and high
channel quality, respectively. All membership functions have piecewise linear
forms and then have low computation complexity. They are determined by two
thresholds, as it is shown by Fig. 2.

The choice of the two thresholds, for the membership functions μSPRR, μASL,
and μSF , can be tuned according the application requirements. In our study, we
have chosen reasonable values of these thresholds, with respect to each member-
ship function. For instance, for μSPRR, for values of SPRR below 25%, the link
is considered totally out of the fuzzy subset of links with high PRR. Starting
from 95%, the membership to the fuzzy subset of links with high PRR is of 1.
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Fig. 2. Definition of membership functions μSPRR, μASL, μSF , and μASNR

For values of SPRR between 25% and 95%, the membership increases linearly
from 0 to 1. The same reasoning holds for μASL. The membership function μSF

differs slightly to the other ones as the two thresholds are superposed. In fact,
a link has 1 as membership to the fuzzy subset of links with high stability, only
when the measured SF is equal to 1. Otherwise, its membership decreases lin-
early to achieves 0 when SF is equal to 0.7. The value 0.7 has been chosen by
analyzing the SF of all experienced links.

The choice of the two thresholds for the membership function μASNR depends
on the environment and the hardware characteristics. Next, we present a detailed
analysis for an efficient determination of these two thresholds.

In previous empirical studies, such as [4], based on the PRR/ASNR curve, the
existence of two ASNR thresholds has been proven. When ASNR is larger than
the first threshold, the PRR is greater than 95% almost all the time, which im-
plies good channel. If ASNR is less than the second threshold, the PRR is lower
than 25 % most of the time and the channel is bad. These thresholds are deter-
mined from the PRR/ASNR curve, which is in turn determined experimentally.
In order to gather the PRR/ASNR curve, we carried out a set of experiments,
using our testbed (refer to section V). Experiments were conducted under differ-
ent network conditions (refer to TABLE 1). We generate the PRR/ASNR curve
for each network setting. Fig. 1 depicts the PRR/ASNR curve for the default
setting. The convenient choice of the two ASNR thresholds can be easily inferred
from this curve. Notice that these thresholds are the same for all PRR/ASNR
curves (settings), as we found that the curves have similar shapes.

The final step toward F-LQE computation is detailed in the rest of this sec-
tion. We consider the following link quality metric (LQ):

LQ(w) = 100.μ(i) (5)

LQ combines SPRR, ASL, SF and ASL to provide a comprehensive assessment
of the link. It attributes a score to the link, ranging in [0..100], where 100 is the
best link quality and 0 is the worst. Using EWMA filter, we smooth LQ to get
the F-LQE metric:

FLQE(α, w) = α.FLQE + (1 − α).LQ (6)

where, α = 0.9, to provide stable link quality estimates. Notice that w is the
estimation window, meaning that a node estimates link quality, i.e. computes
F-LQE, based on each w received packets.
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Eq.4 assumes that the mote has available data to compute the SF and the
ASL. However, SF can be computed only when the mote has at least 5 measures
of PRR and ASL can be computed only when the mote has both uplink and
downlink PRRs (refer to Eq.3). Thereby, we introduced a simple mechanism that
consists to the following: a node wishes to estimate link quality by considering
different link properties, evaluated by the SPRR, ASNR, ASL, and SF. When
one or both ASL and SF can not be computed due to the lack of some data, the
node ignores the corresponding metric(s) in the computation of the membership
function μ(i) in Eq. 4. For instance, when the node is not able to compute both
ASL and SF, μ(i) in Eq. 4 becomes:

μ(i) = β.min(μSPRR(i), μASNR(i)) + (1 − β).mean(μSPRR(i), μASNR(i)) (7)

5 Experimental Methodology

Our experimental study aims at analyzing and understanding the statistical
properties of F-LQE, independently of any external factor, such as collisions
and routing. These statistical properties impact its performance, in terms of
reliability and stability. Reliability refers to the ability of the LQE to correctly
characterize the link state. Stability refers to the ability to resist to transient
(short-term) variations, also called fluctuations, in link quality. We compare the
performance of F-LQE in terms of reliability and stability, with a set of well-
known LQEs, namely PRR, SPRR, ETX, RNP, and four-bit.

Our testbed consists of a single-hop network with 49 TelosB motes [10],
N 1. . .N 49, positioned in an outdoor environment (a garden at the university).
The motes are distributed in a circular topology, as shown in Fig. 3. In this
topology, 48 motes are divided in 8 sets with different radius. Each set contains
6 nodes, all placed in a circle around the central node N 1. The distance between
two consecutive sets is equal to 0.75 meter. The first set, i.e. the nearest circle
to N 1, has a radius of X meters, where X varies in {2, 3}. All TelosB motes are
connected to a laptop PC using a combination of USB (Universal Serial Bus) ca-
bles and active USB hubs. We developed a software tool that runs on the PC to

Fig. 3. Nodes distribution according the circular topology, at an outdoor environment
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Table 1. Experiment sets. Burst(X, Y, Z) and Synch(W, Y); X: Number of packets
per burst, Y: inter-packets interval, Z: number of bursts, W: total number of packets.

Traffic Type Packet Size channel

Impact of the Traffic Type {Burst(100,100,10), Burst(200,500,4),
Burst(100,1000,2), Synch(200,1000)}

28 26

Impact of the Packet Size Burst(100,100,10) {28, 114} 26

Impact of the Channel Burst(100,100,10) 28 {20, 26}
Default Setting Burst(100,100,10) 28 26

control and analyze the experiments. The control part, developed in Java, allows
(i.) motes programming and control, (ii.) network configuration, and (iii.) data
logging into a MySQL database. The data analysis (including graph generation)
is performed in Matlab, allowing to work off-line. The motes are programmed in
nesC [19] over TinyOS2.x environment.

In this study, we propose to estimate the quality of the unidirectional links
N 1←− N i. Since distance and direction are fundamental factors that affect link
quality, we argue that by placing the nodes N 2. . .N 49 at different distances and
directions from the central node N 1, the underlying links, N 1 ←− N i, exhibit
different qualities. Particularly, we choose a convenient X value so that most of
the links are of intermediate qualities (belong to the transitional region) to better
explore the performance of F-LQE as well as the other LQEs under evaluation.

After receiving the token, each couple of nodes (N 1, N i), exchanges a certain
number of data packets then passes the token to the next couple, (N 1, N i+1). We
considered two traffic patterns: Bursty traffic and synchronized traffic: For the
Bursty traffic, N 1 sends a first burst of packets to N i. When it finishes, it sends
a notification to the PC, to allow N i sending its burst of packets to N 1. When
N 1 finishes sending, it notifies the PC. This operation is repeated for a certain
number of bursts. As for the synchronized traffic, N 1 and N i are synchronized
to exchange packets (one packet a time). The PC sends a command to each mote
to indicate the beginning of transmission time so that the mote sends its data
in an exclusive time slot (to avoid collisions).

Based on exchanged data, the quality of links N 1←−N i has been estimated
using F-LQE, as well as PRR, SPRR, ETX, RNP, and four-bit. We subject LQEs
to different network conditions. In fact, we performed extensive experimentations
through different experiments sets. In each experiments set we varied a certain
parameter to study its impact, and for each parameter modification the experi-
ment was repeated. Parameters under consideration were traffic type (3 sorts of
burst and 1 synch), packet size (28/114), and channel (20/26). The duration of
each experiment was approximately 8hs. TABLE 1 depicts the different settings
for each experiments set. The transmission power was set to -25 dBm.

Like F-LQE, four-bit and SPRR use EWMA filter, which has an important
parameter: the history control factor α. We chose α = 0.9 for four-bit, as in
[17], and α = 0.6 for SPRR, as suggested in [3]. The estimation window w is a
common parameter for all LQEs. In our study, we chose a small window, equal
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to 5 packets, for short-term link quality estimation. The same value of w is
adopted in [17]. Further, in [18], it has been argued that short-time link quality
estimation captures link dynamics at a high resolution in time.

6 Experimental Results

6.1 Reliability

The reliability of F-LQE is tested by studying (i.) the temporal behavior (Fig. 4),
and (ii.) the distribution of link quality estimates, illustrated by the a scatter
plot (Fig. 5) and the empirical cumulative distribution function, CDF, (Fig. 6).

Temporal Behavior: Fig. 4 uses four different links to show the temporal
behaviour of each individual metric that constitutes F-LQE and its overall be-
havior. It also presents the results from other existing LQEs. From this figure, it
can be observed that all LQEs agree that the first link (Fig. 4(a)) is of very good
quality. This is expected since links of good quality are easy to estimate as they
trend to be stable and symmetric [6,15]. On the other hand, moderate and bad
links which are typically those of the transitional region and the disconnected
region respectively, are more difficult to characterize.

(a) Very Good Link (b) Good Link

(c) Moderate Link (d) Bad Link

Fig. 4. Temporal behaviour of LQEs when faced with links with different qualities
(Default Setting)
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Fig. 4(b) shows how F-LQE outperforms existing LQEs because they are not
able to distinguish between links, especially good links and very good links. In
fact, let’s observe the temporal behaviour of the link in Fig. 4(b), until the time
3660 min (just before the link quality fluctuation). PRR, SPRR, and ETX are
based on the PRR metric. They account for only one property : link delivery.
These PRR-based LQEs declare the link as of very good quality. The same
link quality state is declared by RNP and four-bit, which are RNP-based and
accounts for a unique link property. However, our link should not have a very
good quality due to the low ASNR value. In fact, the measured ASNR values
are close to the receiver sensitivity. Consequently, the channel is of moderate
quality, which prevents the link of being declared as ”very good”. In addition, the
good properties that the link have are likely due to the constructive interference
effect. On the other hand, F-LQE detects the real link state by considering
different link properties. Indeed the link shown in Fig. 4(b) has some very good
properties, including the delivery, the asymmetry and the stability, yet it has
an ASNR of moderate quality which make of it a good link but not a very
good link. From Fig. 4(c), we can observe how PRR-based LQEs, i.e. PRR,
ETX and SPRR can overestimate link quality as they provide relatively high
link quality estimates. The reason of this overestimation is the fact that PRR-
based LQEs are only able to evaluate the link packet delivery property and they
are not aware of the number of retransmissions to deliver a packet. A packet
that is lost after one retransmission or after n retransmissions will produce the
same estimate. On the other hand RNP -based LQEs, i.e.RNP and four-bit,
can underestimate link quality by providing low link quality estimates. This
underestimation is due to the fact that each of these LQEs assesses the required
packet retransmissions and are not able to determine if these packets are received
after these retransmissions or not. This discrepancy between PRR-based and
RNP -based link quality estimates is justified by the fact that most of the packets
transmitted over the link are correctly received (high PRR) but after a certain
number of retransmissions (high RNP). More importantly, each of these LQEs
assess a single and different link property. F-LQE estimates the link not as good
as PRR-based estimators do, and not as bad as RNP -based estimators do. It
takes into account different properties to provide a holistic characterization of
the real link state.

Fig. 4(d) gives a preliminary idea on the stability of F-LQE as well as the
other LQEs (a detailed analysis of the stability of F-LQE is given in section 6.2).
Indeed, the link shown in Fig. 4(d) is generally of bad quality. Furthermore, this
link is a bursty link, as its quality can turn to good (e.g. PRR equal to 1 and
RNP equal to 0), yet in the short term. F-LQE is a stable LQE as it resists to
these short-term link quality fluctuation whereas the other LQEs are not stable
as their link quality estimates switch temporarily to very good estimates.

Now, let us see more arguments for F-LQE reliability by analyzing the dis-
tribution of link quality estimates.

Link Quality estimates distribution: Form the scatter plot of Fig. 5, we
can see that F-LQE estimates are more scattered than those of the other link
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Fig. 5. Scatter plot of each LQE according to distance (Default Setting)

Fig. 6. Empirical CDFs of LQEs (Default Setting)

estimators. For example, the RNP estimates are mostly aggregated to 4 retrans-
missions (the maximum). That means that two links assumed to have different
qualities, may be aggregated to have almost the same qualities when using RNP
as LQE; and they would have different qualities when using F-LQE as LQE.
The same thing holds for the rest of LQEs. This observation shows that F-LQE
would surely perform better than the existing LQEs. Hence again, we show the
reliability of F-LQE as it is able to provide a fine grain classification of links.

The above observations can be confirmed if we look into the CDF plot in
Fig. 6. This plot is obtained based on all the links and the default setting (refer
to Table 1). Notice that we did not include the CDF plots for the other settings,
as they have similar shape as the CDF plot based on the default setting. Fig. 6
shows that PRR, SPRR and ETX overestimate link quality as they estimate
most of the links to have good quality. In contrast, RNP, and four-bit under-
estimate link quality as they consider most of the links having bad quality. In
between, F-LQE provides reasonable link quality estimates (neither overestimate
nor underestimate link quality). Furthermore, the distribution of link quality es-
timates is nearly an uniform distribution, which means that F-LQE is able to
to distinguish between links having different link qualities. These observations
confirm the reliability of F-LQE.

In our study, we have set β (refer to Eq.4) to 0.6. In the following, we jus-
tify this choice by studying the impact of β on the reliability of F-LQE. Fig. 6
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(a) Default settings (b) Packet size : 114 Bytes (c) Channel 20

(d) Burst(100,1000,2) (e) Burst(200,500,4) (f) Synch(200,1000)

Fig. 7. Sensitivity to transient fluctuation in link quality, for different network settings

shows the effect of β on the CDF. From this figure, we retain two important
findings: First, the higher β is, the more pessimistic F-LQE is. This is completely
reasonable, since by increasing β, we give more importance to the min (refer to
Eq.4). Second and more importantly, by choosing β equal to 0.6, we get the
nearest distribution to the uniform distribution, which justify the choice of β.

6.2 Stability

A link may show transient link quality fluctuations due to many factors prin-
cipally related to the environment, and also to the nature of low-power radios,
which have been shown very prone to noise. LQEs should resist to these fluctu-
ations and provide stable link quality estimates. This property is of paramount
importance in WSNs. For instance, routing protocols do not have to reroute in-
formation when a link quality show transient degradation, because rerouting is
a very energy and time consuming operation.

To reason about this issue, we measure the sensitivity of the LQEs to transient
fluctuations by the coefficient of variation of its estimates. Fig. 7 compares the
sensitivity (stability) of F-LQE with that of PRR, ETX, SPRR, RNP, and four-
bit, with respect to different setting (refer to Table 1). According this figure,
we retain two observations: First, generally, F-LQE is the most stable LQE.
Second, except ETX, PRR-based LQEs, i.e. PRR and SPRR, are more stable
than RNP -based LQEs, i.e. RNP and four-bit. ETX is PRR-based, yet it is
shown as unstable. The reason is that when the PRR tends to 0 (very bad link)
the ETX will tend to infinity, which increase the standard deviation of ETX
link estimates.
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7 Conclusion

In this paper, we have presented a novel link quality estimator (F-LQE) for wire-
less sensor networks (WSNs). In contrast to existing LQEs, which only assess one
single link property thus providing a partial view on the link, F-LQE combines
four link metrics (SPRR, ASNR, ASL, and SF ) using Fuzzy Logic, since we be-
lieved (and proved) to be an appropriate strategy to fuse different and imprecise
metrics. The overall quality of the link is then specified as a Fuzzy IF-THEN
rule, which combines the four metrics, viewed as linguistic variables. The eval-
uation of the fuzzy rule returns the membership of the link in the fuzzy subset
of good links. F-LQE has been evaluated extensively both by simulation and
experimentation, demonstrating greater performance over existing solutions, in
terms of reliability and stability. The simulations were conducted using TOSSIM.
Details of the Simulation scenarios and results are omitted due to lack of space.

Future work will address the impact of F-LQE on higher layer protocols (e.g.
routing) and its use as a basic building block for proposing time-efficient mobility
management mechanisms in WSNs. We also envisage to turn F-LQE implemen-
tation in TinyOS available to the community as an open-source.
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Abstract. Wireless sensor network protocols and applications, includ-
ing those used for localization, topology control, link scheduling, and link
quality estimation, make extensive use of Received Signal Strength In-
dication (RSSI) measurements. In this paper we show that inaccuracies
in the RSSI values reported by widely used 802.15.4 radios, such as the
CC2420 and the AT86RF230, have profound impact on these protocols
and applications. Furthermore, we experimentally derive the response
curves which translate actual RSSI values to the raw RSSI readings that
the radios report and show that they contain non-linear and even non-
injective regions. Fortunately, these curves are consistent across radios
of the same model, making RSSI calibration practical. We present a cal-
ibration mechanism that removes the artifacts in the raw RSSI measure-
ments, including ambiguities created by the non-injective regions in the
response curves, and generates calibrated RSSI readings that are linear.
This calibration removes many of the outliers generated when raw RSSI
readings are used to estimate Signal to Noise (and Interference) ratios,
estimate radio model parameters, and perform RF-based localization.

1 Introduction

The IEEE 802.15.4 standard specifies that a radio’s PHY layer must provide an
8-bit integer value as an estimate of the received signal power [9]. This value
is commonly known as the Received Signal Strength Indication (RSSI) in the
wireless sensor networks (WSN) community. Numerous WSN protocols use RSSI
measurements extensively, including those for localization [8,12,22,24], link qual-
ity estimation [13,19], packet reception ratio modeling [23] and transmission
power control [11,17,18].

While many protocols directly use the RSSI measurements that the radios
provide, the standard only requires that the reported RSSI values should be
linear and within ±6 dB of the actual RSSI values. However, ±6 dB is a wide
error margin. For example, Packet Reception Ratio (PRR) can decrease from
100% to 0% with a 2 or 3 dB difference in the received signal strength [13]. The
consequence of this observation is that possible inaccuracies in the reported RSSI
values can profoundly impact applications that rely on RSSI measurements.

In this paper we examine two 802.15.4 compliant radios, the widely used Chip-
con/TI CC2420 [20] and Atmel AT86RF230 [2], and show that they do indeed

J. Sá Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 256–271, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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introduce systematic errors in the RSSI measurements they provide. As a mat-
ter of fact, the coarse RSSI value vs. input power graph included in the CC2420
datasheet hints at the existence of non-linearities. Nevertheless, the manufac-
turer states that the RSSI response curve is very linear [20]. We independently
derive high resolution RSSI response curves using a variable signal generator and
verify the existence of the non-linearities hinted by the CC2420 datasheet. We
also note that the AT86RF230 datasheet does not provide an equivalent graph.
Fortunately, these response curves are radio-specific but device independent. In
other words, different physical devices that use the same model of radio have
identical response curves. Consequently, mitigating these nonlinearities does not
require calibrating each device individually.

This result allows us to develop a generic calibration scheme to compensate
for the radio’s inaccuracies. Specifically, we derive a reference RSSI response
curve which determines the calibrated RSSI value for the raw RSSI value that
the radio reports. However, due to the existence of the non-injective regions
in which a raw RSSI value maps to multiple actual RSSI values, the reference
RSSI response curve is not able to always provide the necessary mapping. To
resolve this problem, we leverage the ability of 802.15.4 radios to transmit at
multiple power levels and dynamically fit a receiver’s raw RSSI measurements
to the radio’s RSSI response curve. This approach provides an excellent fit and
is able to accurately resolve the ambiguities that non-injective regions generate.
Finally, we present the profound impact of the RSSI nonlinearities and quantify
the benefits of the proposed calibration scheme on a wide variety of applications.

The paper has five additional sections. The section that follows reviews back-
ground material on low-power radios and RSSI measurements. Section 3 presents
the results of an experiment that investigates the influence of packet size on the
Packet Reception Ratio (PRR). Section 3 also presents the mechanism we de-
veloped to derive the high resolution RSSI response curves exhibiting the non-
linearities mentioned previously. Section 4 details the proposed RSSI calibration
scheme, while Section 5 presents the adverse impact of the RSSI nonlinearities
on various protocols and applications, and the improvements that the proposed
calibration scheme achieves. We close in Section 6 with a brief discussion.

2 Background

Many of the popular hardware platforms in wireless sensor networks today use
radios complying to the IEEE 802.15.4 standard [9]. This standard was developed
specifically for low-power and low-cost embedded devices and implementations
from multiple vendors are available today.

One such implementation, the TI/Chipcon CC2420 [20] is used in multiple
platforms [5,15]. It allows the user to select one of eight output power levels,
ranging from -25 dBm to 0 dBm. The Atmel AT86RF230 [2] is another 802.15.4
radio, used in the Iris mote [6]. In addition to higher receiver sensitivity this
radio transmits at one of 16 power levels, from -17.2 dBm to 3 dBm.
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(a) Mote 1.
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(b) Mote 2.
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(c) Mote 3.

Fig. 1. Packet Reception Ratios (PRR) as a function of Signal to Noise ratio (SNR).
The curves were experimentally derived from three different motes using CC2420 ra-
dios. PRR curves for multiple payload sizes are generated for each case. While the
results from cases (a) and (b) follow the expected pattern, the pattern in case (c) is
counter-intuitive, with PRR improving as SNR decreases.

Both radios provide an 8-bit register which indicates the strength of the re-
ceived radio signal (RSSI). The 8-bit RSSI value is averaged over 8 radio symbol
periods, i.e., 128 μs. Reported RSSI values are measured in dBm, in one dBm
increments. There are two categories of RSSI measurements. The first category
measures the strength of the radio signal corresponding to a received packet,
while the second measures the power of the ambient channel noise. Using these
two RSSI values, one can compute the Signal-to-Noise ratio (SNR) for a re-
ceived packet. We will refer to these two types of RSSI values as signal RSSI
and noise RSSI respectively throughout the rest of this paper. Furthermore, we
name the RSSI values provided by the radio chips as raw RSSI or reported
RSSI interchangeably. We will show that reported RSSI values are nonlinear
with respect to actual received signal power, defined as actual RSSI. The cal-
ibration scheme introduced in Section 4 can eliminate the nonlinearity and we
term the resultant RSSI values as calibrated RSSI.

As part of our effort to improve the fidelity of the TOSSIM simulator [10],
we performed an experiment, detailed in Section 3.1, to generate a model for
the relationship between Packet Reception Ratio (PRR) and SNR. Specifically,
TOSSIM does not consider the packet’s size when determining whether it will
be successfully received. This simplification can underestimate or overestimate
the packet loss that an application will experience in practice because packet
sizes can vary from a few bytes (e.g., ACKs) to above one hundred bytes.

Figure 1 presents the PRR versus SNR curves we experimentally derived using
three Tmote Sky motes and various payload sizes. SNR values are determined
using the reported RSSI values. It is evident from this figure that there is no con-
sistent correlation between packet size and PRR. More alarmingly, Figure 1(c)
suggests that PRR improves as SNR decreases! We will show in the next section
that this counter-intuitive (and incorrect) result is the consequence of the RSSI
nonlinearity.
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Fig. 2. PRR versus batch number for three motes with various payload sizes. All mote
curves are consistent, shifted only by X-offsets corresponding to location differences.

3 Accuracy of RSSI Measurements

3.1 Influence of Packet Size on Packet Reception Ratio

We conducted the packet size experiment in an indoor testbed comprising 13
Tmote Sky motes equipped with CC2420 radios [20]. The motes were placed
at fixed locations in a quiet office and were powered through their USB ports
to eliminate variations due to different battery power levels. A sole transmitter
periodically broadcasted packets to the other motes. Furthermore, to minimize
interference from co-located WiFi networks, we used 802.15.4 channel 26 that
does not overlap with any 802.11 b/g channels [14].

Considering that the mote locations are fixed and radios can transmit at
only eight power levels1, we generate a wide range of SNR values by varying
the ambient noise level N . We do so by generating noise signals of variable
power levels using a Universal Software Radio Peripheral (USRP) [7]. The noise
signal the USRP generates has an almost flat power spectral density within the
frequency range of 802.15.4 channel 26.

In this experiment, we increase the noise strength linearly (in dBm) using
a constant step size. The linearity was validated using the Anritsu MS2721B
spectrum analyzer [1]. At each noise strength level, the transmitter broadcasts a
batch of 2,500 packets of five different payload sizes. To minimize the impact of
temporal variations in the radio channel, the transmitter broadcasts packets with
different sizes at an inter-packet interval of 25 ms. For each batch of received
packets we calculate the PRR and average SNR using reported RSSI at each
receiver mote. Figure 1 presents the results of these calculations for three receiver
motes. It is clear from the mote-specific patterns that different motes report
different results. The results in Figure 1(c) are especially puzzling, suggesting
that hardware variations or even faults may be at play.

We use Figure 2, which plots the PRR versus batch number curves generated
from the same data, to verify that the radios function correctly. Note that noise
strength increases with each successive batch, while the signal strength remains

1 While the CC2420 datasheet mentions a total of 31 possible transmission levels, it
specifies the output power levels for only eight of them.
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Fig. 3. (a) RSSI measurements reported by six Tmote Sky motes as the noise strength
increases linearly in dBm. While the response is mostly linear, it includes multiple
nonlinear regions. Similar results from six additional motes are omitted in the interest
of clarity. (b) Aligned RSSI response curves for all twelve Tmote Sky motes. Device-
specific variations are minimal. Boxes A and B indicate the non-injective regions.

constant. The SNR therefore decays as batch number increases and thus one
expects that PRR will decrease accordingly. Indeed, Figure 2 confirms this trend.
Furthermore, unlike Figure 1, the results from the three motes are consistent.
The X-axis offsets are due to the different locations of the motes, leading to
different received signal strengths and noise levels. This result indicates that the
underlying cause of the discrepancies shown in Figure 1 is not device variability
or failure. Instead we posit that they are due to inaccuracies in the RSSI values
that the motes report, leading to inaccurate SNR calculations.

3.2 RSSI Response Curves

Next, we design an experiment to derive high resolution RSSI response curves
and verify the hypothesis in the previous section that the inaccurate reported
RSSI values lead to the results presented in Figure 1.

We conducted this experiment in the same indoor testbed used for the pre-
vious experiment. However, unlike the previous experiment, there is no mote
transmitter. Instead, twelve Tmote Sky motes periodically sense the noise sig-
nal that the USRP generates. The benefit of this approach is that it allows us
to generate signals with a much wider range of transmit powers, compared to
the eight levels available from the CC2420. Like the previous experiment, the
strength of the USRP noise increases linearly (in dBm) with each successive
batch, therefore the actual RSSI at the motes should also be linear with respect
to batch number. We note that although the radios report integer RSSI values,
sub-dBm accuracy can be achieved by averaging a series of RSSI measurements.
We also note that the noise strength increment per batch is different from the
previous experiment.

Figure 3(a) illustrates the RSSI measurements recorded by six of the twelve
motes. We omit the results from the remaining motes in the interest of clarity
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because they show similar patterns. It is evident that the noise RSSI curve
for every mote can be divided into several major linear segments. Within each
segment, the mapping between the noise RSSI and the batch number is lin-
ear. Moreover, the slopes for all the linear segments are almost equal. In the
transitional regions that connect these linear segments, however, the mapping
between the noise RSSI and the batch number is linear with different slopes or
even nonlinear. Furthermore, some of these transitional regions are not mono-
tonically increasing. This violates the most important assumption about RSSI:
RSSI readings should be higher for stronger signals. In fact, this assumption is
the basis of range-free localization mechanisms [8]. Also, due to the existence
of these non-monotonic regions, the mapping from actual signal strength to the
RSSI readings that the radios report is non-injective. Considering that the non-
linearities exist for all the motes tested, we categorize them as systematic errors
in the RSSI measurements by the CC2420 radio.

Another important observation from Figure 3(a) is that the mote-specific
RSSI curves are considerably similar. In fact, the major difference among the
curves is the offset on the X-axis. This is mainly due to the different signal
strength attenuations resulting from the varying distances between individual
motes and the USRP. Given this similarity, we select one RSSI curve as the
reference and align the other curves to it. Figure 3(b) shows the result of this
process. It is clear that overall the RSSI curves for different motes match very
well. The mismatches at the lower end of the graph are likely due to the fact
that RSSI readings in this region are approaching the ambient noise level.

We note that the results in Figure 3(b) were achieved by shifting the RSSI
curves only along the X-axis. This is desirable because it suggests that even
though nonlinear and non-injective regions exist, they occur at the same reported
RSSI values for different motes. In other words, the device-specific variations re-
garding the nonlinearity and non-injectiveness are minimal. Consequently, mit-
igating these errors does not require calibrating each device individually.

3.3 Platform and Radio Variability

In order to investigate the influence of the hardware platform on RSSI mea-
surements, we performed the same experiment using two MICAz motes. MICAz
motes use the same CC2420 radio but are otherwise different from the Tmote
Sky motes used thus far. Figure 4(a) presents the RSSI response curves for two
MICAz motes. It is clear that the curves in Figure 4(a) are very similar to the
ones in Figure 3. This similarity indicates that the RSSI measurement errors are
caused by the CC2420 radio chip itself and are platform independent.

Finally, to investigate whether the observed nonlinearities are specific to the
CC2420 radio, we performed the same experiment using three Crossbow Iris
motes which use the AT86RF230 radio. Figure 4(b) presents the results from this
experiment. While different from those in Figures 3 and 4(a), the RSSI response
graphs of the IRIS motes exhibit consistent nonlinearities. On the other hand, the
RSSI response graphs do not exhibit non-injective regions. Finally, we observe
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Fig. 4. (a) RSSI response curves from two MICAz motes using the same CC2420 radio
as the Tmote Sky. Response curves are consistent across platforms that use the same
radio. (b) RSSI response curves for three IRIS motes using the AT86RF230 radio. While
the radio responds differently from the CC2420 radio, it also has nonlinear regions.

consistent non-linearities across all three motes, indicating that the systematic
errors in AT86RF230 raw RSSI measurements are also device independent.

4 RSSI Calibration

The results from the previous section show that radios have a non-linear, yet
consistent response curve that maps the actual received signal strength to re-
ported RSSI measurements. Figure 5(a), derived from combining the individual
curves in Figure 3(b), shows such a response curve for the CC2420 radio. The
issue with this curve is that the X-axis is in units of batch number instead of
actual RSSI values. The noise strength increases linearly with respect to the
batch number and therefore the relationship between batch number (n) and ac-
tual RSSI (r) should be r = α × n + β. The noise strength increment α can be
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Fig. 5. (a) Combination of the 12 curves in Figure 3(b). (b) The reference RSSI curve
for CC2420 radios, derived by linearly transforming the X-axis from (a).
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Fig. 6. (a) Aligning a set of eight pairs (Pi − L, Ri) to the reference curve for three
motes, with x = Pi − L and y = Ri. The relative positions among the eight points for
each mote are fixed. (b) All mote measurements align well to the reference curve.

measured experimentally, using the Anritsu MS2721B. On the other hand, mea-
suring β accurately would require measuring the power of the signal that comes
out of the receiving mote’s antenna with a pre-calibrated receiver. Fortunately,
as we explain next, we do not need to estimate β accurately.

Any errors in estimating β will lead to a constant offset between the ac-
tual and calibrated RSSI. However, this offset is not important because it does
not affect the SNR and SINR calculations. Furthermore, because the offset is
consistent across different devices that are using the same model of radio, di-
rectly comparing calibrated RSSI values is equivalent to comparing actual RSSI
values. Considering these arguments, we settle for estimating calibrated RSSI
r′ = α × n + β′ = r + ε and we select β′ such that batch number n = 140
corresponds to calibrated RSSI r′ = −40 dBm. We selected the (140,-40) pair
because it makes the reported RSSI values almost equal to the calibrated RSSI
values in most of the linear regions of the curve. Figure 5(b) presents the result
of this translation.

Figure 5(b) can then be used to translate raw RSSI readings to calibrated RSSI
values. This figure however cannot resolve the ambiguities in the non-injective
regions, in which a raw RSSI value maps to multiple calibrated RSSI values.
Fortunately, we can leverage the ability to control the transmitter’s power to
resolve these ambiguities as we describe next.

Consider the case in which the raw RSSI value R1 for a received packet lies
within one of the non-injective regions of Figure 5(b). The receiver then requests
the transmitter to reveal the power level P1 used to transmit that packet and to
transmit additional packets using different power levels P2, . . . , Pm

2. The receiver
records the raw RSSI values R2, . . . , Rm for each of the additional packets. If
at least one of the Ri’s falls within the radio’s injective response region, it is
possible to translate it to the calibrated RSSI value R′

i via Figure 5(b). Note

2 The number m is upper-bounded by the number of available transmit power levels
from the radio, and the actual Pi values are listed on the radio’s datasheet.
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that R′
i = Pi − L, where L is the link attenuation in dB. Knowing the values

for both Pi and R′
i we can solve for L. Then P1 − L can be assigned to be

the calibrated RSSI value corresponding to R1, because L is consistent across
different transmit powers. The computational cost is trivial, because only one
raw RSSI value (Ri) needs to be translated into the calibrated RSSI (R′

i), via a
lookup table corresponding to the reference curve.

To be more robust against measurement errors and noise, we can also select
the value of L that minimizes the mean square difference between the m points
(P1 −L, R1), . . . , (Pm −L, Rm) and the reference curve. The computational cost
would be increased in this case because multiple table lookups are necessary.

Figures 6(a) and 6(b) present an example of the m-point calibration process
for three receivers, with m = 8, equal to the number of power levels available in
CC2420. One can see that the eight points for each mote fit well to the reference
curve. Note that generally m can be arbitrarily chosen between 2 and the number
of available power levels.

5 Applications

In what follows we explore the impact of RSSI calibration in modeling, protocol
behavior, application performance, and simulation veracity.

5.1 PRR-SNR Model

First, we investigate the benefits of applying the RSSI calibration mechanism
described in Section 4 to the problem of understanding the relationship between
PRR and SNR. In turn, this understanding can be used in a variety of applica-
tions ranging from online link estimation to link modeling and simulation.

We conducted this experiment in the same indoor testbed used for the packet
size experiment. One Tmote Sky mote was chosen as the transmitter while the
other twelve motes acted as receivers. However, unlike the packet size experi-
ment, all packets had the same size. Moreover, the transmitter varied the output
power levels to produce a larger range of SNR values.

The signal to noise ratio (SNR) is computed as SNR = S
N , where S is the

power of the received packet and N is the power of the ambient noise. Let both S
and N be measured in milliwatts (mW). In logarithmic scale the above equation
becomes SNRdB = SdBm − NdBm where SdBm and NdBm are the logarithmic
scale powers of the received signal and ambient noise respectively.

In order to measure S and N , the receivers record both packet RSSI (SRSSI)
and noise RSSI (NRSSI). Then, SRSSI =10 log10(S+N) and NRSSI =10 log10 N .
Therefore, SRSSI is essentially the sum of the power of the radio signal and the
power of the noise. Nevertheless, when SRSSI � NRSSI one can approximate
SNR as SNRdB ≈ SRSSI − NRSSI . On the other hand, when SRSSI is compa-
rable to NRSSI we need to compute SNR through

SNRdB = 10 log10(10SRSSI/10 − 10NRSSI/10) − NRSSI (1)

because S = 10SRSSI/10 − 10NRSSI/10.
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Fig. 7. Experimentally derived PRR vs. SNR curves, calculated using three increas-
ingly accurate schemes. Using calibrated instead of raw RSSI measurements can remove
most of the outliers in the PRR vs. SNR relationship.

We use Equation 1 to calculate the SNR values used in the PRR vs. SNR
scatter plot shown in Figure 7(a). One can see from this figure that there is a
large transitional region, through which the relationship between PRR and SNR
is noisy and unpredictable. The existence of this transitional region has been
widely reported in the wireless sensor networks literature [21,23,25].

At the same time, given the nonlinearity presented in Figure 3(b), using raw
RSSI values to calculate SNR can be problematic. For instance, if S and N are
both within the non-injective regions, the reported RSSI value for their sum
might be smaller than the reported RSSI value for S or N alone.

To eliminate this issue, we configured the transmitter to broadcast one addi-
tional batch of packets at each of the eight output power levels, while keeping the
USRP turned off. This allows us to use the packet RSSI measurements directly,
without having to calculate S from SRSSI and NRSSI . In this case, we denote
the reported packet RSSI value as ŜRSSI , and calculate SNR as

SNRdB = ŜRSSI − NRSSI (2)

Doing so assumes that the channel conditions do not change dramatically
throughout the course of the experiment. This is however reasonable, as the mea-
surements were collected at night when the environment at our indoor testbed
was static. We use Equation 2 to calculate the SNR values used in Figure 7(b).
One can see that the extent of the transitional region is considerably smaller com-
pared to Figure 7(a). This observation validates our intuition that Equation 1 is
polluted by the nonlinearities in the measurement of SRSSI . At the same time,
the SNR in Equation 2 is computed using the raw values for ŜRSSI and NRSSI

and therefore it is also susceptible to the nonlinearities’ adverse effects.
Finally, Figure 7(c) shows the equivalent scatter plot when the SNR in Equa-

tion 2 was calculated using the calibrated RSSI values for ŜRSSI and NRSSI .
It is evident from Figure 7(c) that the transitional region becomes significantly
smaller compared to the previous two graphs. This result indicates that the RSSI
nonlinearity can account for a large portion of the noise and outliers in the PRR
vs. SNR model.
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Fig. 8. PRR vs. SINR results for 2 concurrent transmitters and 14 receivers. The
calibrated SINR shown in (b) eliminates most of the outliers present at the raw SINR
graph shown in (a). Links in boxes A and B are the extreme outliers that complicate
the SINR-PRR modeling.

5.2 SINR Modeling and Concurrent Transmission

The previous section investigated the relationship between PRR and SNR. When
multiple transmitters are active at the same time, they start to interfere with
each other and PRR is determined by another metric, the SINR (Signal to
Interference and Noise Ratio). Maheshwari et al. conducted an extensive study
on the relationship between SINR and PRR for the CC2420 radio [13]. However,
the SINR-PRR graphs in [13] have a remarkable volume of outliers for which
high SINR links have low PRR, while links with negative SINR exhibit high
PRR. Maheshwari et al. thus concluded that the SINR-PRR model is still far
from perfect to be employed in TDMA scheduling [13].

We conjecture that the CC2420 RSSI nonlinearity accounts for some of the
outliers seen in [13]. In order to validate this conjecture, we performed an ex-
periment with two Tmote Sky motes configured to broadcast simultaneously to
14 Tmote Sky motes. Figure 8(a) and 8(b) present the derived uncalibrated and
calibrated SINR-PRR scatter plots. One can clearly see that in our experiment,
most of the outliers were indeed introduced by the CC2420 RSSI nonlinearity.
Approximately 25% of the links in this experiment experience more than 2 dB
change in their SINR values when applying the calibration scheme. For the data
points located within the [−4, 5] dB region in Figure 8(a), 8% are outliers. After
calibration, 94% of these outliers are corrected in Figure 8(b).

Accurate SINR models are important to protocols, such as CMAC [17], that
attempt to schedule multiple, non-interfering transmissions. Specifically, CMAC
utilizes an SINR-PRR model to set the nodes’ transmission powers such that
multiple interfering links can be used concurrently. Doing so can significantly
increase system throughput. Nevertheless, the outliers exposed in Figure 8(a)
can lead CMAC to suboptimal transmission schedules.
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Fig. 9. PRR vs. SNR curves generated by a TOSSIM simulation. (a) shows the curve
from the original TOSSIM. Curves in (b) and (c) are derived from a modified version
of TOSSIM that simulates the CC2420 RSSI nonlinearity. Each curve in (b) and (c)
was derived by keeping the noise power constant and varying signal strength to create
a dynamic SNR range. The noise power listed in the legends is in dBm units.

For example, we observed in the experiment that one of the two senders
(mote 0) could deliver > 98% of its packets to receiver 11 when transmitting at
-7 dBm, while the other sender (mote 1) could deliver at the same time > 98%
of its packets to receiver 14 using transmit power of -15 dBm. However, the raw
SINR value calculated at mote 14 is -0.128 dB which translates to a very low
PRR according to the SINR-PRR model. For this reason, a power scheduling
protocol based on the SINR model, such as CMAC [17], would not schedule
mote 1 to transmit at power -15 dBm. On the other hand, if CMAC used the
calibrated SINR value at mote 14 (= 2.2056 dB) it would correctly schedule the
concurrent transmission. We note that link 1 → 14 is one of the links in box A
shown in Figure 8(a).

5.3 WSN Simulation

Existing wireless sensor network simulators such as TOSSIM [10] do not simulate
the radio-specific RSSI measurement nonlinearities. Nevertheless, it is straight-
forward to integrate RSSI response curves, such as the one in Figure 5(b), to
these simulators. Doing so requires constructing a lookup table and using linear
interpolation to convert actual RSSI values (i.e., X-axis in Figure 5(b)) into
reported RSSI values (i.e., Y -axis in Figure 5(b)).

We implemented such a mechanism for TOSSIM and Figure 9 presents a
few sample PRR-SNR curves. Specifically, Figure 9(a) shows the PRR versus
reported SNR curve in the current version of TOSSIM. Without the integration
of the RSSI response curve, the shape of this PRR-SNR curve does not change
as RSSI varies. In contrast, Figures 9(b) and 9(c) show that different curves
emerge as we vary the power of the ambient noise, due to the nonlinearity in
the reported RSSI values. In particular, the curves in Figure 9(c) resemble the
experimentally derived curves in Figures 1(b) and 1(c).
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Fig. 10. Errors in estimating log-normal path loss model parameters

5.4 Estimating Radio Propagation Model Parameters

A variety of WSN applications and protocols rely on radio propagation models.
The first step in using such a model is to estimate the corresponding model
parameters. This step is usually accomplished by deploying motes to record the
radio signal strength (i.e., RSSI), at various locations within the area of interest.
Therefore, the non-linearities of RSSI measurements can directly pollute the
estimation of the model’s parameters and thus the performance of the protocols
that rely on the model’s accuracy.

A commonly used radio propagation model is the log-distance path loss model
with log-normal shadowing [16]. According to this model, the received signal
strength Pr(d) (in dBm) at a given distance d from the transmitter is given by:

Pr(d)[dBm] = Pr(d0)[dBm] − 10n log(
d

d0
) − Xσ (3)

where Pr(d0) is the expected signal strength at reference distance d0, n is the
path-loss exponent, and Xσ ∼ N(0, σ) is a normal random variable (in dB).

In order to investigate the impact of CC2420 RSSI nonlinearity on parameter
estimation, we simulate the procedure of deploying motes at various distances
from a transmitter to derive the log-normal parameters Pr(d0), n and σ. Specif-
ically, we generate the Pr(d) samples using a set of log-normal parameters and
use the RSSI measurements to estimate those parameters. We note that doing so
assumes that the log-normal model perfectly characterizes the RF propagation, a
premise which might be violated in reality. Nevertheless, this treatment isolates
the sources of errors in model parameter estimation and therefore allow us to
focus on the errors that the RSSI nonlinearity introduces. A total of 240 samples
were generated, corresponding to measurements collected at locations uniformly
spaced at distances between 1 and 30 meters from the transmitter. Two samples
were generated for each distance. Figure 10 presents the estimation errors with
and without the presence of the CC2420 RSSI nonlinearity for two sets of model
parameters. It is clear that the nonlinearity can cause significant errors. Errors
in estimating these parameters can directly impact the applications that rely on
them, such as RF based localization [24] and network coverage prediction [4].
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5.5 RF Based Localization

Localization techniques based on RF signal strength use RSSI measurements
to estimate the distances of a mobile device to several reference servers whose
locations are known. Trilateration can then be used to estimate the device’s
location [24]. The previous section demonstrated that the nonlinearities in the
CC2420 RSSI measurements impact the estimation of the radio model parame-
ters. In turn, these errors can directly diminish the accuracy of such localization
algorithms. On the other hand, localization schemes that employ RSSI signa-
tures should intuitively be less affected by such nonlinearities. For example, the
RADAR system collects a database of RSSI signatures by having a mobile node
broadcast packets to three reference servers from a set of known locations [3].
The resulting RSSI measurements collected at the three servers, along with the
mobile device’s location, form the 5-tuples [RSSI1, RSSI2, RSSI3, X, Y ] that
constitute the localization database.

Once this training phase is complete, a device that needs to estimate its
location broadcasts a series of packets to the reference servers. The system then
finds the entry in the localization database with the minimum mean square
difference from the RSSI measurements and uses the entry’s [X, Y ] coordinates
as the estimate of the node’s current location. The MoteTrack system extends
this simple approach and makes it highly robust and decentralized [12].

We performed an experiment similar to the one performed for RADAR in a
20 m2 room using four Tmote Sky motes. Three of the motes were setup as
reference servers while the fourth played the role of the mobile device. A total
of 70 locations were tested and the mobile device was configured to broadcast at
the seven transmission powers at 25 ms intervals.3 Thus seven databases were
constructed corresponding to the seven power levels. Each database was then
used to evaluate localization errors for the corresponding transmission power.
The method we used to estimate localization accuracy is the same with the
one used by the original RADAR mechanism [3]. Namely, we select one of the
database entries and try to localize it using only the other database entries. The
localization error is then equal to the Euclidean distance between the entry’s
actual location and the location of the closest database entry. We iterate through
all the database entries in this way and calculate the average localization error.

Table 1 lists the resulting localization errors. It is evident from the table that
different transmission powers lead to different errors. This should not happen
if the RSSI readings were linear, because a linear constant does not change
the mean square difference, the metric used to select the most similar record
from the database4. The table’s last row indicates that calibrating the raw RSSI
measurements reduces the localization error.

3 The lowest transmission power (-25dBm) was not sufficient to ensure packet recep-
tion at the reference servers from all the tested locations.

4 Assuming that the signal strength is significantly higher than the ambient noise,
which was true during the course of this experiment.
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Table 1. Localization errors for the RSSI-signature-based localization technique as a
function of transmission power. The rightmost column represents the localization error
as a percentage on top of the error achieved using the calibrated RSSI measurements.

Transmission Power (dBm) Average Localization Error (cm) Percentage
-15 138.97 7%
-10 133.19 2%
-7 148.80 14%
-5 146.79 13%
-3 137.39 5%
-1 134.10 3%
0 140.26 8%

Calibrated 130.35 -

6 Conclusion

This paper verifies the existence of the oft-ignored RSSI non-linearities for the
popular Chipcon/TI CC2420 802.15.4 radio and shows that similar non-linearities
exist in the Atmel AT86RF230 radio. Furthermore, the paper experimentally de-
rives the non-linear RSSI response curves for the two radios, shows that they are
consistent across devices that use the same model of radio, and proposes a scheme
to calibrate raw RSSI measurements including those that fall within a curve’s non-
injective regions. Last but not least, we evaluate the impact of non-linearities in
RSSI measurements on PRR modeling, WSN simulation, as well as protocols for
concurrent link scheduling and RF-based localization.

The implications of our results to future designs are twofold. First, protocol
and application designers need to be mindful that RSSI response curves may
be non-linear or even non-injective and include techniques to compensate for
such non-linearities. Second, considering the dependence of multiple protocols
on RSSI measurements, future radio designs should strive to produce linear or
at least injective RSSI response curves.
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Abstract. Radio interference may lead to packet losses, thus negatively
affecting the performance of sensornet applications. In this paper, we
experimentally assess the impact of external interference on state-of-the-
art sensornet MAC protocols. Our experiments illustrate that specific
features of existing protocols, e.g., hand-shaking schemes preceding the
actual data transmission, play a critical role in this setting. We leverage
these results by identifying mechanisms to improve the robustness of
existing MAC protocols under interference. These mechanisms include
the use of multiple hand-shaking attempts coupled with packet trains
and suitable congestion backoff schemes to better tolerate interference.
We embed these mechanisms within an existing X-MAC implementation
and show that they considerably improve the packet delivery rate while
keeping the power consumption at a moderate level.

1 Introduction

The increasing number of wireless devices sharing the same unlicensed ISM bands
affects both reliability and robustness of sensornet communications. Sensor net-
works that operate, for example, in the 2.4 GHz band must compete with the
communications of WLAN, Bluetooth, WirelessUSB, and other 802.15.4 devices.
They may also suffer the interference caused by appliances such as microwave
ovens, video-capture devices, car alarms, or baby monitors. Such problems will
increase when more of these devices will be deployed in the near future.

Interference may have a deteriorating effect on communication, as it leads
to packet loss and lack of connectivity. This may result in worse performance
and reduced energy efficiency of sensornets, causing major issues in a number of
application domains, e.g. safety-critical applications in industry and health care.

Studying the impact of interference has been hard because of the lack of proper
tools that enable an inexpensive generation of controlled interference. Recently,
we demonstrated a method to generate customized and repeatable interference
patterns using a common CC2420 radio transceiver in special mode [1]. Us-
ing that method, we experimentally study the impact of interference on several
MAC protocols, such as Contiki’s NULLMAC, X-MAC, LPP, and CoReDac; and
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TinyOS’s LPL. Our goal is to find effective mechanisms that handle interference
properly. We carry out our experiments in the 2.4 GHz ISM band, which is also
the most crowded one.

In this paper, we investigate which mechanisms improve the robustness of
communication in congested networks while remaining reasonably energy effi-
cient. In our experiments we identify three methods that can increase the ro-
bustness of sensornet MAC protocols against interference. Since low-power MAC
protocols allow nodes to turn off their radio most of the time, they require some
kind of handshaking. For example, in X-MAC a receiver needs to hear a strobe
and answer with a strobe acknowledgment [2]. In Low Power Probing (LPP), the
opposite happens: a sender waits for a probe from the intended receiver before
it can send the packet [3]. Our experiments show that protocols or parameter
settings that enable potentially more handshakes in case some fail due to inter-
ference are more robust. Another method that we identify is to use packet trains
that enable the sender to quickly send multiple packets that have been accumu-
lated during an interference period. The third method is the selection of suitable
congestion backoff schemes when using Clear Channel Assessment (CCA) and
detecting a busy channel. Based on these findings, we include these mechanisms
in an X-MAC version, and show its improved robustness to interference.

Our contributions are the following. First, to the best of our knowledge, we
are the first to experimentally study how interference affects different MAC pro-
tocols. Second, we identify mechanisms that enable MAC protocols to sustain
high packet delivery rates while using low-power consumption even in presence of
interference. Third, we show experimentally that the choice of congestion backoff
schemes is critical for communication performance and energy efficiency in con-
gested networks. Fourth, we augment an existing X-MAC implementation with
these mechanisms, and demonstrate substantial performance improvements.

Our paper proceeds as follows. Section 2 provides an overview on the investi-
gated MAC protocols. We describe the methodology and the setup of our exper-
iments in Section 3. Thereafter, in Section 4 and 5, we present our experimental
results and identify methods that handle interference properly. In Section 6 we
design a new version of X-MAC that implements several of the identified methods
and evaluate its performance. We review related work in Section 7 and present
our conclusions in Section 8.

2 Background

Medium access control for wireless sensor networks has been a very active re-
search area for the past couple of years, and the literature provides an amaz-
ing number of different implementations and incremental improvements. In our
work, we exploit the four MAC layers available in Contiki (NULLMAC, X-MAC,
LPP, CoReDac) and Tiny OS’ LPL. Section 2.1 briefly describes these protocols,
and Section 2.2 explains the role of CCA in sensornet MAC protocols.
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Fig. 1. In X-MAC (left), the sender strobes until the receiver is awake and can receive
a packet. In LPP (right), the receivers send probes to announce they are awake and
ready to receive packets.

2.1 Overview of Used MAC Protocols

NULLMAC. NULLMAC is a minimalistic MAC protocol that simply forwards
traffic between the network layer and the radio driver. As such, it does not pro-
vide any power-saving mechanism, and keeps the radio always on. This allows
for the maximum throughput achievable, while consuming the highest amount
of energy. When used with CCA and back-off timers, NULLMAC behaves as a
traditional CSMA-CA protocol. Because of these characteristics, we use NULL-
MAC as a baseline to compare the performance of other protocols, and to verify
the correctness of our setup.

X-MAC. X-MAC is a power-saving MAC protocol [2] in which senders use
a sequence of short preambles (strobes) to wake up receivers. Nodes turn off
the radio for most of the time to reduce idle listening. They wake up shortly
at regular intervals to listen for strobes. When a receiving node wakes up and
receives a strobe destined to it, it replies with an acknowledgment indicating
that it is awake. After receiving the ACK, the sender transmits the data packet,
as shown in in Figure 1(a).

The X-MAC implementation in Contiki has several parameters of significance
to our experiments. Ontime determines the maximum time that a receiver listens
for strobes, whereas offtime specifies the time to sleep between waking up to
listen for strobes. Strobe time denotes the duration a sender transmits strobes
until it receives a strobe acknowledgment from the receiver. In the default Contiki
X-MAC implementation, strobe time = offtime + (20 × ontime).

Low-Power Probing (LPP). LPP is a power-saving MAC protocol where
receivers periodically send small packets, so called probes, to announce that
they are awake and ready to receive a data packet [3]. After sending a probe,
the receiver keeps its radio on for a short time to listen for data packets. A node
willing to send a packet turns on its radio waiting for a probe from a neighbor
it wants to send to. On the reception of a probe from a potential receiver, the
node sends an acknowledgment before the data packet, as shown in Figure 1(b).

The LPP implementation in Contiki contains two important parameters. On-
time determines how long a receiver keeps the radio on after the transmission of
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a probe, offtime is the time between probes. We use 1
2 and 1

64 seconds for off-
time and ontime respectively. Another parameter is the time to keep an unsent
packet: Contiki LPP’s default value is 4×(ontime + offtime). If LPP receives a
packet from the network layer when the packet queue is full, LPP discards the
new packet. The queue length is configurable, and the default size is 8 packets.

Low-Power Listening (LPL). We consider a Low-Power Listening (LPL)
layer that implements an asynchronous wake-up scheme for CC2420 radios [4].
Nodes periodically wake up to detect transmissions. To do so, they rely on CCA
rather than attempting to pick up a full packet. Unlike X-MAC, senders repeat-
edly transmit the entire packet for twice the duration of the wake-up period. In
case of unicast transmissions, the intended receiver may acknowledge the trans-
mission to notify the sender on correct packet delivery so that the sender can
stop transmitting earlier. To implement this functionality, packet transmissions
are interleaved with periods of silence in order to allow ACK transmissions. The
only LPL parameter tunable by the users is the wake-up period.

CoReDac. CoReDac is a TDMA-based convergecast protocol [5] that builds
a collection tree that guarantees collision-free radio traffic. From D-MAC [6]
CoReDac borrows the idea of staggered communication. To avoid collisions
among packets from their children, CoReDac parents split their reception slots
into subslots, and assign one to each child. Packet acknowledgments are pivotal
in CoReDac because they piggyback the assignment information, and they are
used for synchronizing the TDMA-schedules. A node that misses an acknow-
ledgment must keep its radio on until it hears a new one.

2.2 Clear Channel Assessment

Clear Channel Assessment (CCA) is a mechanism used to determine if a wireless
channel is currently free. In wireless MAC protocols, CCA is used to implement
Carrier Sense Multiple Access: each node first listens to the medium to detect
ongoing transmissions, and transmits the packet(s) only if the channel is free,
thus reducing the chance of collisions. CCA is typically implemented by com-
paring the Received Signal Strength (RSS) obtained from the radio against a
threshold. The channel is assumed to be clear if the RSS does not exceed the
given threshold. As false negatives result in collisions and false positives cause
increased latency, the choice of the threshold is critical [7]. When using CCA to
perform CSMA, backoff schemes play an important role. There are two types of
backoff: congestion backoff and contention backoff. The former controls the wait-
ing time between consecutive assessments if the channel is not clear. The second
controls the waiting time before a retransmission after a collision is detected.

3 Methodology

In our experiments, we use a set of MAC protocols from both the Contiki and
TinyOS operating systems. To set a protocol’s parameters, we look at the configu-
rations used in popular, low-rate data collection applications [8,9] that employed
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similar MAC protocols. These parameters are in general not set to perform opti-
mally under interference.

3.1 Generating Controllable Interference

In our experiments we use a method proposed by Boano et al. [1] to generate
customized, controllable, and repeatable interference patterns using common
sensornet devices. This method enables the generation of precisely adjustable
levels of interference on a specific channel, by exploiting the special test modes
of the radio chip.

3.2 Performance Measurements

We use Contiki’s software-based power profiler [10] to measure power consump-
tion. For the experiments concerning TinyOS, we have implemented the same
mechanism in TinyOS. For computing the power consumption, we assume a cur-
rent of 20 mA for the radio in receive mode, and a voltage of 3 V, as measured
by Dunkels et al. [10]. In all our experiments, the power consumed by the radio
in receive mode (RX power) is much higher than the one used for transmitting
(TX power). Because of its strobe mechanism, X-MAC has the highest TX power
among the MAC protocols that we examine. At 60% interference, the TX power
is around 1 mW, whereas the RX power is almost 20 mW. For LPP instead, the
TX power is usually between 0.1 and 0.2 mW only. The power values represent
the average power during the full experiment. Since the RX power is at least
an order of magnitude larger than the TX power in our experiments, we display
only the RX power in our graphs.

3.3 Experimental Setup and Interference Model

In our experiments we put three nodes near each other: a sender, a receiver, and
an interferer. The latter interferes using the CC2420’s maximum output power
level (31), while the sender and the receiver use TX power level 7. The placement
of the nodes and their power levels ensure that an active interferer blocks any
ongoing communication between the sender and the receiver.

Interference may result from other packet radios (Wi-Fi, Bluetooth, and other
sensor networks) operating in the same frequency band, and from other electro-
magnetic sources such as motors or microwave ovens. Unfortunately, at the time
of writing, there are no accepted interference models – an important research
issue by itself that is beyond the scope of this paper. Hence, we resort to two sim-
ple models here. The bursty interferer models continuous blocks of interference
with uniformly distributed duration and spacing. This type of interference may
be caused, for example, by Wi-Fi or Bluetooth transmissions. The semi-periodic
interferer also models continuous blocks of interference, but the duration of the
periods and their spacing have smaller variance. This type of interference may
be caused, for example, by a sensornet performing periodic data collection.
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Fig. 2. The interference model used in our experiments

Bursty Interference. In order to describe the transmission and interference
patterns, let us define the following random variables:

– S: Bernoulli random variable with parameter 0.5;
– R: Uniformly distributed over [0, 100];
– Q(x): Uniformly distributed over [0, x].

Interference follows continuous off/on periods, and is dictated by a simple two-
state discrete Markov process, as depicted in Figure 2. C denotes the clear
channel state, and I denotes the interference state. The transitions between
the two states is specified by S. At each step of the Markov process, we obtain
a time period, R × Q(x), that determines the duration of the next state. For
example, assuming that we move to state I and that we obtain values R = 40
and Q = 20, the next period will be an interference period of length 40 × 20 ×
0.3 ms=240 ms (0.3 ms is a constant factor). Q(x) is used to scale the burstiness
of the interference. A higher value represents longer interference slots, such as
the ones caused by bursts of Bluetooth or Wi-Fi traffic, whereas a lower value
represents shorter transmissions. In the experiments we will select a configuration
with long interference slots (x = 50) that we call long bursts, and a configuration
with shorter slots (x = 8) that we call short bursts.

Semi-Periodic Interference. The semi-periodic interferer is a 2-stage process.
As described above, we have a clear channel C and an interference I states.
The process stays in state I for a time that is uniformly distributed between
9
16 seconds and 15

16 seconds. After the transition to state C, it stays in this state
for a time that is uniformly distributed between 3

4×clear time and 5
4×clear time,

where clear time is a parameter that determines the rate of interference.

4 Experimental Evaluation: The Performance of MAC
Protocols under Interference

In this section we report on the performance of several MAC protocols under
the different interference patterns described in the previous section.

4.1 Semi-periodic Interference

In our experiments, the sender transmits unicast packets with a payload of 22
bytes to the receiver in a time uniformly distributed between 0.75 s and 1.25 s. We
collect the measurements until several thousands packets have been transmitted.
We use a semi-periodic interference pattern as described in Section 3.
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Fig. 3. MAC protocols performance under semi-periodic interference

Figure 3 shows the results of our experiments with different MAC protocols
tested against varying interference rates. As expected, the PRR in NULLMAC
decreases linearly with the interference rate, following the rule 100% minus the
interference rate, which is the probability that a packet is not interfered (Fig-
ure 3(a)). The RX power consumption when using NULLMAC is 60 mW inde-
pendently on the interference pattern, since NULLMAC keeps the radio always
on (Figure 3(b)). This confirms the validity of our setup, described in Section 3.

Figure 3(a) shows that all variants of LPP have fairly high packet reception
rates compared to the other protocols we consider. Among LPP-based solutions,
the best performance is obtained with LPP-PAR, where the receiver transmits
a new probe immediately after a packet reception. By doing so, the sender can
drain its queue when the interference clears and sustain a high PRR also under
high interference by deferring transmissions until interference is over. LPP-PAR
outperforms both the standard LPP version, and the so called LPP-Q1, that
does not have a queue: a new packet from the upper is discarded in case the
previous one has not been transmitted by the MAC layer. At an interference
rate of 42%, LPP-Q1 still achieves a PRR of about 80%, showing that even only
two probe attempts provide more opportunities to deliver a packet than other
solutions.

Figure 3(b) shows that the power consumption of LPP-Q1 is lower than the
standard LPP one. The reason comes from the lower PRR shown by LPP-Q1:
with fewer packets to be transmitted, the radio is turned off more often. This
difference becomes very apparent at an interference rate of 60%, where LPP has
its radio turned on almost all the time since there is almost always a packet in
the queue waiting to be transmitted. In contrast with the default LPP, LPP-
PAR can quickly drain its queue during interference-free periods and hence turn
off quickly its radio, saving a substantial amount of power.

X-MAC’s packet reception rate is similar but slightly higher than NULL-
MAC’s (Figure 3(a)), since in X-MAC the sender’s strobe time is a little longer
than the receiver’s off time. Hence, the receiver has in average more than one
chance to hear a strobe. Furthermore, under a semi-periodic interference pattern,
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it is unlikely that interference comes into effect during the exchange of strobe,
acknowledgment, and data packet, which take very little time. Therefore, if the
strobe succeeds, the entire operation most likely successfully completes. The
same reasoning also applies for CoReDac when the interference rate is 20% or
lower. At higher interference, however, CoReDac looses synchronization and its
performance drastically degrades.

With regard to LPL, we observe two modes of operations along the PRR
axis in Figure 3(a). When the interference rate is lower than 60%, the CCA
mechanism is reasonably effective at detecting the presence of interference, and
packet losses occur mostly because of data corruption during the transmission.
Indeed, we verify that an increasing number of packets are received but do not
pass the integrity checks. The increasing power consumption shown for LPL in
Figure 3(b) is simply an effect of the decreasing PRR: the fewer packets are
received, the less likely is the sender to receive the acknowledgment and stop
the transmissions earlier. On the other hand, at 60% interference it is often the
case that the CCA mechanism never finds the channel free. After a maximum
number of reattempts, the packet is dropped on the sender side, causing a drastic
decrease in PRR. However, without even transmitting the packet, not much
energy is spent on the sender side. This is confirmed in Figure 3(b), where the
power consumption at 60% interference is still comparable to other settings.

Our results suggest that more handshakes opportunities improve the PRR in
interfered networks. When comparing different LPP versions with each other,
we can see that we can achieve a low power consumption and a high PRR using
LPP-PAR, thanks to its queue drain when a period of interference has ended.

Impact of Queue Size on Performance. Our experiments clearly show that
the queue size may drastically change the performance of a MAC protocol under
interference. We investigated the impact of the queue size both on power con-
sumption and packet reception rate by running LPP with different queue sizes
under 60% semi-periodic interference. Our results show that a queue size of four
packets guarantees good performance.

4.2 Bursty Interference

We carry out the same set of experiments in presence of bursty interference
(x = 50, see Section 3), and different transmission rates, in order to investigate
how performance changes depending on the network load. Figure 4 illustrates
the results.

For most MAC protocols the PRR does not change depending on the trans-
mission rate (Figure 4(a)). In most cases, indeed, the interference rate is what
ultimately determines the observed PRR. An exception is LPP-Q1, where the
PRR increases by almost 10% when the application transmits packets less fre-
quently. The reason is that with higher transmission rates, a packet cannot be
sent before the application hands the next packet to the MAC layer, and thus
the latter packet is discarded. This can either happen with long periods of inter-
ference, or when periods of interference overlap with the instants in which the
receiver sends probes.
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Fig. 4. MAC protocols performance under bursty interference

5 The Impact of Clear Channel Assessment and
Congestion Backoff under Interference

While many contention-based MAC protocols implement CSMA, one could also
start transmitting a packet without carrying out CCA. The latter approach saves
the CCA overhead of listening to the channel and switching the radio between
send and receive modes, which may take hundreds of microseconds [11]. Few
retransmissions consume a negligible amount of power compared to a continuous
use of CCA. An increased probability of collisions may be negligible in low data
rate applications, but not in settings with high interference.

A second aspect that affects the performance of CSMA-based MAC protocols
such as B-MAC [12], WiseMAC [13], and BoX-MAC [14] is the backoff algorithm
that adapts the scheduling of CCA executions to wireless channel conditions. B-
MAC, for example, uses by default a small random congestion and contention
backoff time, but does also support user-defined backoff schemes. BoX-MAC
uses a randomized long congestion backoff period in the order of a few hundred
milliseconds.

In this section we identify (1) the scenarios where adopting CCA improves or
decreases the performance of MAC protocols under interference, and (2) if the
choice of the congestion backoff scheme plays a pivotal role under interference.
We investigate these issues in terms of energy efficiency and latency.

5.1 Experimental Setup

In our first experiment, we compare a scenario in which CCA is not used (and
packets are sent without a carrier sense) with one in which a node sleeps after
detecting a busy channel for a congestion backoff time BC . We explore different
types of backoff algorithms, in particular null (no waiting time), constant (wait-
ing time uniformly drawn from a fixed backoff window), linear (backoff window
increases by a constant amount after failed CCA), quadratic (backoff window
squared after failed CCA), and cubic (backoff window cubed after failed CCA).
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We select an initial backoff time randomly short and we eventually increase
it according to the backoff algorithm. We further study a variant where the
backoff is truncated after R = 8 CCA attempts. We use the CC2420’s default
CCA threshold.

Our experimental setup is described in Section 3. The transmitter sends N
packets towards the receiver at different transmission rates. Each packet has to
be acknowledged within 1

64 seconds.
We further investigate two different strategies for scheduling retransmissions.

With the first approach, queued packets are retransmitted immediately after
timeout. With the second approach, the sender turns off its radio after a timeout
occurs, and the queued packets are retransmitted according to the original packet
transmission rate (e.g. after 0.5 seconds if we transmit 2 packets per second).
We measure the latency required to transmit the sequence of N packets and
the total amount of energy consumed by the radio of the sender. The latter
is appropriate because interference mainly affects the sender, assuming that a
receiver can distinguish valid data from interference and go back to sleep in case
of the latter. The sender node runs NULLMAC with or without CSMA, and its
radio is turned off after the reception of an ACK (or after the timeout fires), and
turned on again for the next transmission. Since we are only interested in the
energy consumption of the sender, the receiver keeps the radio on all the time.
To isolate the effect of CCA from that of other MAC mechanisms, we avoid
mechanisms such as LPL and the associated use of long preambles.

5.2 Experimental Results

In the first set of experiments, we evaluate the communication performance
when transmitting N = 50 packets at the highest available rate, and compare
transmissions with and without CSMA. We average the results after sending
several thousand packets. Figure 5 shows the results. As expected, the more
aggressive the backoff strategy is, the lower is the energy required to complete
the transmission. The latency increases proportionally with the backoff delays,
however, indicating a tradeoff between energy consumption and latency. The
energy consumption is, however, significantly reduced when not using CSMA,
but using aggressive backoffs such as quadratic and cubic algorithms on a channel
that is interfered more than 20% of the time. We can also see that truncating
the backoff window yields a good balance between energy and latency.

In the scenario presented above, the packets are retransmitted as soon as the
timeout event occurs. If queued packets are retransmitted back-to-back under
interference, there is a significant waste of energy due to the medium still being
busy, while a retransmission based on the original transmission rate increases the
overall latency. To quantify these issues, we carry out another experiment with
different periodic transmission rates. We transmit bursts of N = 10 packets
with and without CSMA, using null, linear, and quadratic congestion backoff
schemes. Then we apply a bursty interference pattern with long bursts (x = 50)
and measure the latency and energy consumption at the sender side, averaging
the results of several hundred bursts.
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Fig. 5. Energy consumption and latency measured at the sender side, when sending
bursts of N = 50 packets at the highest rate available.
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Fig. 6. Latency measured at the sender side when sending bursts of N = 10 packets
at different transmission rates, with different retransmissions schemes.

Figures 6 and 7 show the results. As expected, if queued packets are retrans-
mitted back-to-back, the approach without CSMA performs poorly. A config-
uration with quadratic congestion backoff requires only 5% of the energy used
without CSMA with an acceptable latency because of the fewer attempts. If,
instead, queued packets are retransmitted according to the original transmission
rate, the protocol that does not adopt CSMA performs better in terms of energy
efficiency. This is because it attempts to transmit only at the instants defined
by the transmission rate, while the approach with CSMA and backoff tries to
find the first instant at which the medium is free, often without success. This
makes the approach without CSMA more energy-efficient, but comes with an
increased latency when sending at low transmission rates, such as one packet ev-
ery 5 seconds w.r.t. CSMA transmissions. As in the previous experiment, a more
aggressive congestion backoff scheme such as the quadratic algorithm shows a
good balance between latency and energy consumption.
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Fig. 7. Energy consumption measured at the sender side, when sending bursts of N =
10 packets at different transmission rates, with different retransmissions schemes.

In addition to the above experiments with long bursts, we also carried out
experiments with shorter bursts (x = 8, see Section 3). Due to space constraints
we do not show the results here. These experiments indicate a better perfor-
mance of protocols using CSMA, because shorter slots will imply a lower energy
consumption since the channel will be sampled a smaller amount of times.

In conclusion, our experiments demonstrate that the choice of congestion
backoff scheme plays a pivotal role for MAC protocols that use CCA. These
results act as a guideline for protocol designers. A CSMA approach with a
quadratic backoff –truncated or not– performs well in most scenarios.

6 Improvements

The results presented in Section 4 show two methods that can make MAC proto-
cols more robust against interference: (1) holding a packet longer so that multiple
handshake attempts are possible, and (2) implementing packet trains as a means
to quickly send multiple packets that have accumulated during interference. Sec-
tion 5 further shows that the power consumption can be reduced by applying
suitable congestion backoff schemes when using CCA. We extend the X-MAC
implementation in Contiki 2.3 with these mechanisms, and evaluate it under
random interference patterns.

6.1 Design and Implementation of a Robust X-MAC

We design a new version of X-MAC, called X-MAC/Q, that is able to maintain
high packet reception rates and low power consumption despite being challenged
by interference. The new version contains a packet queue implemented by using
a statically allocated array of packets and their corresponding attributes. By
default, the queue stores up to four packets, the optimal value for LPP as dis-
cussed in Section 4.1. Since only unicast packets are acknowledged in the X-MAC
protocol implementation, we only queue unicast packets.
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Packet Queue with Fast Drain. Unlike the original implementation of X-
MAC in Contiki, our augmented implementation revolves around the packet
queue. This distinction starts from the existing packet transmission method,
qsend packet(), where all unicast packets are put into a queue. The packets will
not be sent directly, but instead linger shortly for a configurable time ( 1

32 s
in our experiments.) The linger time makes it possible to accumulate packets
into the queue, which allows the layer on top of X-MAC to create a burst of
packets. When the accumulation timer has expired, X-MAC/Q gets the oldest
packet from the queue, and immediately starts sending strobes to the addressed
receiver of the packet. To enable fast queue draining, each strobe contains the
amount of packets for the destination that the sender has in its queue. If the
sender receives a strobe acknowledgment within a configured waiting time, it
sends one packet at a time, including the strobe procedure, separated by a very
short time ( 1

128 s) instead of the usual duty-cycle interval. If the sender does
not receive the strobe acknowledgment, a new attempt comes after 1

32 s. Packets
are removed from the queue when they have either been successfully sent, or
timed out after 10 s. The X-MAC reception method requires only two changes.
First, each received strobe will contain the amount of packets x that the receiver
should receive in a train. Second, the receiver stays awake until it has received
x packets since the strobe.

Clear Channel Assessment with Congestion Backoff. Based on the results
in Section 5, we extend X-MAC/Q to include clear channel assessments with
a linear and a quadratic congestion backoff timers. The version with the linear
backoff is called X-MAC/QL, whereas the version with quadratic backoff is called
X-MAC/QQ. Before sending out the first strobe the new versions turn on the
CCA to check if the channel is clear. If the CCA check fails, we wait for ( 1

128 ×
number of attempts) or ( 1

128×number of attempts2) milliseconds before another
attempt for X-MAC/QL and X-MAC/QQ respectively.

6.2 Experimental Evaluation

We repeat the experiments with the bursty interferer described in Section 4.2
using our improved versions of X-MAC. For comparison, we also show the LPP-
PAR and another X-MAC improvement that we call X-MAC/LT. X-MAC/LT
is similar to X-MAC except for one parameter, strobe time, which we increase
from offtime + 20 × ontime to 4 × offtime + 20 × ontime. Because X-MAC/LT
holds packets longer, we expect a higher PRR compared to X-MAC.

Figure 8 shows that both X-MAC/Q and X-MAC/LT significantly increase
the PRR compared to the default X-MAC. When the applications send one
packet every two seconds, the PRR is similar to the one of LPP-PAR. Also,
both new X-MAC versions show a similar rate, but the left graph in Figure 8
shows that the power consumption is much higher for X-MAC/LT than for
X-MAC/Q. X-MAC/QQ and X-MAC/QL achieve a good PRR with very low
power consumption. Since both protocols wait for an increasing amount of time
when the medium is kept busy, they send less strobes and avoid to wait for
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Fig. 8. Our experiments show that the proposed mechanisms increase the robustness
of X-MAC to interference

strobe acknowledgments that will not arrive, thus saving a significant amount of
power. Compared to X-MAC/QQ, X-MAC/QL consumes slightly more energy
but achieves a higher PRR. This follows the results presented in Section 5.2: the
linear backoff causes more frequent samples of the channel than the quadratic one
does, leading to higher power consumption. On the other hand, the quadratic
algorithm may grow its sampling interval exponentially up to a point where
expired packets will be removed from the queue.

In all our experiments, we set the protocol parameters based on the configu-
rations of similar MAC protocols in popular applications [8,9], since our goal is
not to optimize parameters but to identify mechanisms that enable good per-
formance during interference. One way of increasing the handshake frequency
would be to change the parameters. In X-MAC, this is the offtime parameter.
We have rerun the same experiment as in Figure 8, but halved the offtime to
1/4 s for X-MAC and X-MAC/Q. Our results show similar improvements in PRR
and power consumption for both protocols. For the CCA versions with a linear
backoff, the improvements of the PRR were smaller but the power consumption
was decreased by around 40%.

In summary, our results show significant improvements of the packet reception
rate for X-MAC/Q with a moderate increase in power consumption. X-MAC/QQ
and X-MAC/QL’s power consumption is even lower than X-MAC’s despite that
they achieve a much higher PRR.

7 Related Work

Radio interference has been a topic of significant interest in the sensor network
community. Most of the earlier work focused on deriving fair transmission sched-
ules by synchronizing the transmission of neighboring nodes in the presence of
interference [15,16,17,18]. Our work also addresses MAC performance, but our
goal is to identify experimentally some mechanisms that improve the robustness
of MAC protocols against interference.
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Zhou et al. present some important differences between the interference be-
havior of real and ideal scenarios [19,20]. Others study interference effects on
real deployments: Rangwala et al. propose an interference-aware fair-rate con-
trol evaluated on real hardware [21]. Others have proposed frequency hopping
solutions for 802.15.4 networks in order to overcome Wi-Fi interference [22,23].

Motivated by the empirical works mentioned above, we (1) analyze experi-
mentally the impact of interference on various MAC protocols, and (2) propose
mechanisms to increase packet delivery rate and reduce energy consumption.

An important group of work pertaining to this study is the set of notable
MAC protocols evaluated on empirical testbeds, in particular X-MAC[2], LPP[3],
LPL[12]. Most of these evaluations focused on energy efficiency and delay under
different traffic patterns while we evaluate the protocols behaviour under various
degrees of interference. Bertocco et al. investigate efficient CCA thresholds in
presence of in-channel wide-band additive white Gaussian noise [7]. In this work,
we study the role of CCA and congestion backoff schemes with respect to energy
consumption and latency under generic patterns of interference. So far, thorough
studies on backoff schemes have been performed only with respect to contention
resolution [24], [25], and [26], where Jamieson et al. propose a MAC protocol that
uses a fixed-size contention window and a non-uniform probability distribution
of transmitting in each slot within the window.

Moss and Levis envisioned how a long congestion backoff could at the same
time optimize energy and delivery rates in congested networks [14]. However,
they do not determine optimal backoff periods and do not quantify the effects of
different schemes. We demonstrate experimentally the impact of the congestion
backoff time on energy efficiency and latency in networks with high interference.

8 Conclusions

In this paper, we experimentally study the impact of interference on several MAC
protocols. Using the results from our experiments, we identify mechanisms that
make MAC protocols more robust against interference. We augment an exist-
ing X-MAC implementation with these mechanisms, and demonstrate improved
packet reception rates and reduced power consumption in cases where the radio
communication is challenged by interference.
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Abstract. Energy efficiency is a major concern in the design of Wire-
less Sensor Networks (WSNs) and their communication protocols. As
the radio transceiver typically accounts for a major portion of a WSN
node’s power consumption, researchers have proposed Energy-Efficient
Medium Access (E2-MAC) protocols that switch the radio transceiver
off for a major part of the time. Such protocols typically trade off energy-
efficiency versus classical quality of service parameters (throughput, la-
tency, reliability). Today’s E2-MAC protocols are able to deliver little
amounts of data with a low energy footprint, but introduce severe re-
strictions with respect to throughput and latency. Regrettably, they yet
fail to adapt to varying traffic load at run-time.

This paper presents MaxMAC, an E2-MAC protocol that targets at
achieving maximal adaptivity with respect to throughput and latency. By
adaptively tuning essential parameters at run-time, the protocol reaches
the throughput and latency of energy-unconstrained CSMA in high-
traffic phases, while still exhibiting a high energy-efficiency in periods
of sparse traffic. The paper compares the protocol against a selection of
today’s E2-MAC protocols and evaluates its advantages and drawbacks.

Keywords: Wireless Sensor Networks, Energy Efficient Medium Access
Control, Traffic Adaptivity.

1 Introduction

Today’s E2-MAC protocols generally reduce the power consumption at the cost
of deteriorating quality of service, in particular by an increase of packet latency
and a decrease of throughput and reliability. In the tradeoff between energy
and quality of service, researchers have concentrated almost exclusively on the
energy aspect, introducing tight restrictions with respect to throughput and la-
tency. Such restrictions may be tolerable in networks with low quality of service
requirements. However, many event-based scenarios require reasonable quality of
service during periods of increased activity, and a high energy-efficiency during
long periods of inactivity. Such scenarios can be found e.g. in monitoring sys-
tems for healthcare [1], in Disaster-Aid-Systems [2], but also in the broad area
of (event-based) environmental monitoring systems. Varying, temporarily high
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traffic can further be expected to appear in the emerging field of multimedia
sensor networks (WMSNs) [3]. Once an event has been triggered, e.g. a patient’s
pulse monitor registering anomalies in a hospital or geriatric clinic, the MAC
protocol’s primary objective should shift towards delivering good quality of ser-
vice (high throughput, low delay) rather than saving energy. In such scenarios,
today’s E2-MAC protocols do not provide reasonable flexibility, as most of them
were designed under the assumption of very sparse low-rate traffic.

This paper introduces MaxMAC, an energy-efficient MAC protocol for sen-
sor networks designed for WSN scenarios with varying traffic conditions. While
MaxMAC operates similarly as existing E2-MAC protocols in low traffic sit-
uations, it is able to maximally adapt to changes in the network traffic load
at run-time. Taking advantage of design principles for E2-MAC protocols de-
veloped over the last couple of years, the protocol introduces novel run-time
adaptation techniques to effectively allocate the costly radio transceiver truly
in an on demand manner. The protocol reaches the throughput and latency of
energy-unconstrained CSMA in situations of high-traffic, yet exhibiting a high
energy-efficiency in periods of sparse traffic.

The paper is organized as follows: Section 2 discusses related work on the
topic of traffic-adaptive E2-MAC protocols. Section 3 then describes the design
of the MaxMAC protocol mechanisms. Section 4 presents simulation setup and
environment, followed by simulation results in Section 5. Section 6 concludes the
paper.

2 Related Work

A couple of concepts has yet been applied to reach traffic-adaptive protocol
behavior in today’s literature on E2-MAC protocols. However, most approaches
are minor variations of existing protocols and still heavily restrain throughput
and latency of the MAC layer, a crucial disadvantage which often prevents them
to be applied in real WSN deployments.

T-MAC [4] increases the traffic-adaptivity of S-MAC [5] by prolonging the
duty cycles of the nodes when so-called activation events occur. An activation
event may be the sensing of any communication in the neighborhood, the end
of the own data transmission or acknowledgement, the overhearing of RTS or
CTS control messages that may announce further packet exchanges. However,
simulations show that the adaptivity of the protocol is still very limited and that
the performance gain of the traffic adaptivity enhancement further only pays off
for non-uniform bursty traffic.

X-MAC [6] is an E2-MAC protocol based on asynchronous listen-intervals.
For each packet, X-MAC transmits a strobe of preambles, in between which the
receiver can signal reception-readiness with a so-called EarlyACK. [6] derives a
formula for optimal wake/sleep intervals given traffic at a certain rate and outline
a mechanism to let X-MAC adapt the duty cycle and the sleep/wake interval to
best accommodate the traffic load in the network. With the basic mechanism of
X-MAC still requiring a certain minimal interval between two active intervals
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and a generally high per-packet overhead, the maximum achievable throughput
of the protocol remains very limited.

AMAC [7] is an E2-MAC protocol targeting at traffic-awareness. It relies on
the S-MAC active period structure consisting in SYNC, RTS and CTS windows.
With low traffic, AMAC neglects the costly RTS/CTS exchange and operates
with a large sleep interval between two active periods. With increasing traffic, it
multiplies the amount of active periods by a factor of 2n, thus increasing the net
duty cycle by the same factor. Applying this adaptation strategy, the protocol
can prevent packet drops to some extent while still saving energy.

Z-MAC [8] is a TDMA-based protocol that achieves high channel utilization
under high contention. The protocol initially gathers topology information and
rigidly synchronizes clocks to maintain a collision-free schedule. Under low traffic,
its performance with respect to energy-efficiency however remains low.

BurstMAC [9] is a recent E2-MAC protocol targeting at achieving a low idle-
overhead and a high throughput in case of correlated traffic bursts, as they occur
in event-based scenarios. BurstMAC employs multiple channels and keeps a rigid
network-wide synchronization and TDMA-scheme, The protocol achieves high
throughput in case of correlated event traffic by efficient on-demand allocation
of channels, hence letting node pairs communicate concurrently.

3 MaxMAC Design

3.1 Basic Media Access Mechanism

Many energy-efficient protocol mechanisms for wireless sensor MAC protocols
have been developed during the past couple of years. MaxMAC takes advantage
of the substantial work carried out on E2-MAC protocols, especially the asyn-
chronous protocols B-MAC [10], WiseMAC [11] and X-MAC [6]. This section
briefly discusses the basic media access mechanisms used in MaxMAC, while
Section 3.2 discusses its run-time traffic adaptation mechanisms.

Preamble Sampling: With Preamble Sampling (also referred-to as Low-Power-
Listening) introduced in B-MAC and WiseMAC, nodes keep their radios off for
most of the time and only wake up for very brief periodic duty cycles to poll the
channel for a preamble signal. The sender node prepends a preamble for each frame
that signals the upcoming frame transmission to the receiving node in its short
wake-up. In B-MAC, the preamble spans the entire wake-up interval, whereas
WiseMAC learns the wake-up schedules of its neighbors to minimize the length of
the preambles in future transmissions. A small preamble then only compensates
for the maximum clock drift that the two involved node’s clocks may have devel-
oped during the time since the last schedule exchange. Given that digital crystal
oscillators typically exhibit low drifts (≤ 100 ppm), this preamble minimization
scheme incurs a low per-packet overhead while still achieving a high packet deliv-
ery probability. MaxMAC takes advantage of the WiseMAC preamble-sampling
scheme - each node periodically wakes up to sense the channel for a preamble tone
within the Base Interval T (cf. Figure 1).
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Fig. 1. Preamble sampling with embedded target address in MaxMAC

Overhearing Avoidance: The preamble sampling technique of WiseMAC is
already quite efficient in avoiding costly overhearing. With sparse traffic, chances
are high that the wake-ups of non-targeted receivers do not coincide with those
of the target receivers. With higher traffic, however, and transmissions of queued
packet trains, overhearing of preambles and frames becomes an increasing source
of energy waste. MaxMAC minimizes overhearing by enriching preambles with
target id information, as illustrated in Figure 1. Target nodes turn their radio
transceiver on, sense the carrier for their particular preamble to receive preamble
and frame. Non-target nodes turn their radios on, extract the target informa-
tion in the ongoing preamble transmission, notice that they are not targeted
and immediately turn it off. This concept has been applied in X-MAC [6], where
nodes send preamble strobes in-between which receiver nodes can signal re-
ception readiness with a so-called Early-ACK. MaxMAC however applies this
concept to reduce overhearing in a preamble-sampling MAC protocol, combined
with the preamble minimization technique of WiseMAC [11].

3.2 Run-Time Traffic Adaptation Mechanisms

In contrast to most of today’s E2-MAC protocols, which operate with rather
static parameter settings, MaxMAC introduces traffic-adaptation features to
instantly react to changing load conditions by altering it’s behavior at run-
time. MaxMAC attempts to allocate the energy resources of the sensor node
in an on-demand manner. Similarly as in dynamic frequency/voltage scaling,
where the CPU reacts to higher computation load with an increase of the
frequency/voltage, a traffic-adaptive E2-MAC protocol should react to chang-
ing load conditions by correspondingly tuning the radio transceiver - turn-
ing/keeping the transceiver on more frequently when more traffic has to be
handled, keeping it permanently on during load peaks, and turning it off again
when the load level permits it.

Allocation/Deallocation of Extra Wake-Ups: With E2-MAC protocols
alternating between sleep and wake intervals, throughput is often restrained to
a couple of frame transmissions in each interval. Latency typically increases
sharply, as forwarding nodes need to buffer incoming frames and wait for the
next wake-up of their gateway node, which often sums up to some seconds in
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multi-hop scenarios. The first traffic adaptation feature and essential novelty of
MaxMAC tackles this very decisive E2-MAC protocol restriction. In MaxMAC,
nodes change their state (and hence their behavior) and allocate so-called Ex-
tra Wake-Ups when the rate of incoming packets reaches predefined threshold
values, and de-allocate them when the rate drops below the threshold again.

Figure 2 illustrates the state-based adaptivity mechanism with a source node
(SRC) sending packets to a receiver node (DST) with increasing rate. Nodes
operate in the Base Interval state per default, polling the channel periodically
within the Base Interval T. Nodes alter their state (and behavior) by switching to
states S1, S2 when the corresponding thresholds T1, T2 are reached. Thresholds
T1 and T2 are set to 2 and 6 packets/s in the illustration in Figure 2. Each node
keeps estimating the rate of incoming packets, using a sliding window of 1s (cf.
rate-estimation graph of DST in Figure 2). With the rate of incoming packets
reaching the threshold T1, the DST schedules one additional Extra Wake-Up in-
between each Base Interval, effectively doubling the amount of duty cycles over
time. The receiver node DST communicates its increased wake-up frequency in
the ACK. SRC receives this announcement and marks the increased wake-up
frequency of node DST in its schedule offset table. With the notification sent
by DST in the ACK, DST promises to remain in the new state and keep its
increased wake-up frequency for a predefined timespan S1 LEASE. For each state
in MaxMAC, the LEASE timespans (S1 LEASE, S2 LEASE, CSMA LEASE)
define how long a node promises to remain in the new state when announcing
the state change in the ACK. LEASE timespans can further be prolonged in any
new ACK transmission. By remaining in a higher state for at least the LEASE
duration, fast oscillation between the different states can be mitigated. With the
rate of incoming packets reaching the threshold T2, DST changes to state S2,
doubles the amount of wake-ups again and announces its state change in the
ACK (cf. Figure 2). As soon as these timespans expire, nodes having received
prior state change announcements will assume that the corresponding node has
fallen back to its default behavior (polling the channel with the Base Interval T),

Fig. 2. Adding Extra Wake-Ups with increasing rate of traffic
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which prevents them from transmitting at instants when the target is not awake.
All LEASE timespans are set to 1s in the subsequent experiments.

Increasing the amount of wake-ups is an effective, yet considerably cheap
means of increasing network throughput and decreasing end-to-end latency. If
SRC needs to forward other packets, the time to wait for the next wake-up of
DST is halved with DST being in state S1 or even quartered with DST being
in state S2. However, if the additional wake-ups scheduled by DST are not used
for transmissions, the waste of energy remains limited, as some few additional
channel polls are energetically inexpensive.

Exploiting the Channel Capacity by switching to CSMA: Most existing
E2-MAC protocols have been designed under the assumption of sparse low-rate
traffic. Hence, these protocols severely restrain throughput, compared to energy-
unconstrained wireless channel protocols. In multi-hop scenarios, S-MAC, T-
MAC and WiseMAC have been shown to reach only a fraction of that of CSMA
[12] [13]. MaxMAC has been specifically designed to achieve a throughput similar
as CSMA in situations of increased network activity, after a certain delay for
triggering the adaptation mechanisms. While the allocation of Extra Wake-Ups
helps to achieve a somewhat increased throughput, CSMA-like throughput and
latency can not yet be reached with it. MaxMAC thus carries the threshold-based
concept one step further. When the rate of incoming packets reaches a further
threshold TCSMA (with TCSMA > T2 > T1), MaxMAC switches to energy-
unconstrained CSMA and announces this state change to the sender node (and
potentially overhearing child nodes) in the ACK. Figure 2 illustrates node DST
measuring the rate of incoming packets to reach TCSMA = 10 packets/s in
the right part of the figure. Node DST hence switches to the CSMA state,
announcing the state change to SRC in the ACK, hence promising to remain
in the CSMA state for at least the predefined timespan CSMA LEASE. Within
this timespan, SRC can transmit packets without having to wait for a wake-up
of DST, as it knows that DST keeps its transceiver on for at least the timespan
CSMA LEASE. With CSMA LEASE expiring, all nodes having received the
prior state change announcement of DST assume that DST has fallen back to
the Base Interval state, which prevents them from transmitting at times when
DST is asleep.

Fig. 3. State-based traffic adaptivity mechanism of MaxMAC
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Figure 3 illustrates the state-based adaptivity concept of MaxMAC with the
state transitions as a finite state machine. Nodes switch from the Base Inter-
val state to a higher state S1, S2, CSMA when the rate reaches the associ-
ated thresholds T1, T2, TCSMA. When switching from the Base Interval state
to S1 or S2, nodes schedule Extra Wake-Ups and double or quadruple their
wake-up frequency, which increases network throughput and reduces end-to-end
latency. When the rate reaches the threshold TCSMA, nodes switch to energy-
unconstrained CSMA and keep their radio transceivers turned on. With the load
falling below TCSMA and CSMA LEASE expiring, nodes switch again to states
S1 or S2 and restart alternating between brief channel polls and long sleep inter-
vals. Nodes completely de-allocate all Extra Wake-Ups and fall back to the Base
Interval state when the packet rate drops below T1 and all LEASE timespans
have expired. The MaxMAC traffic adaptation mechanism scales well for multi-
hop topologies, as each node measures and reacts upon a given rate increase
in a decentralized manner. MaxMAC further communicates state changes effi-
ciently, without introducing any new control messages. All the necessary control
information is communicated in the Data frame header and the ACK frames.

This section illustrates the MaxMAC adaptivity concept with three states
S1, S2, CSMA - the number of states and thresholds can however be chosen
arbitrarily. The threshold values T1, T2, TCSMA we choose in Section 5 were
calibrated for the particular given scenarios. The thresholds allow the network
operator for fine-tuning the MaxMAC protocol and its properties. Choosing e.g.
low values for the thresholds makes sense in delay-sensitive applications, whereas
higher values can make sense in energy-sensitive and delay-tolerant applications.
We intend to study self-parametrization mechanisms based on estimation of
available channel bandwidth, link quality, hopcount, network density in the near
future.

4 Simulation Models and Parameters

We implemented the MaxMAC protocol and compared it to S-MAC [5], T-MAC
[5], B-MAC [10], WiseMAC [11], X-MAC [6], and the reference protocols Ideal-
MAC and energy-unconstrained CSMA in the OMNeT++ Network Simulator
[14]. The IdealMAC protocol has been used in [11] as a reference protocol to show
where the lower bounds of E2-MAC protocol efficiency are. IdealMAC models
the physical constraints of E2-MAC protocols, such as the channel bandwidth,
the delays and costs of the transceiver switches, as well as the transmission and
reception costs. It however assumes that there is no information asymmetry be-
tween senders and receivers. Nodes always know when they need to switch to
receive/transmit in order to handle data transmissions.

In order to reflect the characteristics of wireless propagation (high packet
error rate, shadowing and fading-effects), we applied the Log-Normal Shadowing
Model [15] implemented in [16]. This channel model allows for a more realistic
simulation of wireless channel properties than usual Unit Disk Graph (UDG)
based simulation models. It models small-scale shadowing and fading effects -
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Table 1. Simulation model parameters

CC1020 [18] parameters Experiment parameters
supply voltage V 3 V simulation runs 100
transmit current Itx 21.9 mA simulated time 3600 s
recv current Irx 17.6 mA ARQ max retries 3
sleep current Isleep 1 μA frame header size 14 bytes
transmission rate R 115.2 kbps payload 50 bytes

which are typical wireless phenomena - for each frame transmission by adding
a random perturbation factor to the reception power. The perturbation factor
follows a log-normal distribution with a user-selectable deviation σ.

Transceiver and Energy Model: We modeled the state transition delays
and the power consumption of wireless sensor nodes using a finite state machine
model consisting in the states sleep, receive and transmit, weighted with the
respective energy costs. The same methodology is applied in [17], where the
power consumption of a IEEE 802.11 wireless device is modeled with the same
three states. Experimental results in [17] confirm the adequateness of the linear
state transition model. Table 1 lists current, voltage and transmission rate of the
CC1020 [18], a byte-level radio transceiver in the 804-940 MHz ISM frequency
band. The CC1020 is used by the MSB430 sensor nodes platform [19], which we
use for prototyping traffic-adaptive E2-MAC protocols on real sensor hardware.

E2-MAC Protocol Simulation Models: Table 2 displays the main parame-
ters of the simulated E2-MAC protocols. As the protocol behavior often heavily
depends on the choice of the essential protocol parameters (e.g. Base Interval,
Duty Cycle), we studied the protocols with different configurations of those

Table 2. E2-MAC Protocol Parameters

MaxMAC B-MAC
Base Interval 100, 200, 250 ms Base Interval 25, 50, 100,
Duty Cycle 2, 1, 0.8% 200, 500 ms
LEASE 1 s Duty Cycle 8, 4, 2, 1, 0.4%
T1, T2, TCSMA 4, 8, 12 packets/s WiseMAC
S-MAC Base Interval 25, 50, 100,
Listen Interval 100, 200, 300, 500 200, 500 ms

1000, 2000 ms Duty Cycle 8, 4, 2, 1, 0.4%
Duty Cycle 10% Medium Reservation u[0,10] × trx−tx

T-MAC X-MAC
Frame Length 50, 100, 200 ms Max Interval 200 ms

300, 500 ms Min Interval 10 ms
SYNC & RTS size 14 bytes EarlyACK size 10 bytes
CTS size 10 bytes CSMA
SYNC period 10 s Contention Window 10 ms
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parameters, by varying the parameters over a wide range, and not just one par-
ticular parameter choice. One such configuration would e.g. be B-MAC [Base
Interval=200ms, Duty Cycle=1%(2ms)].

For the slotted protocols S-MAC and T-MAC, we assume that the nodes’
wake-up intervals are synchronized from the beginning of the experiment (as
assumed in many MAC studies, e.g. in [11]). With X-MAC, we integrated an
adaptation algorithm that adapts the wake/sleep intervals according to incoming
packet rate (as specified in [6]), but remains in-between [Max Interval, Min
Interval].

WiseMAC implements a cheap collision avoidance using a larger carrier sens-
ing range (∼ 2·hop distance). Such a mechanism can be accomplished by most
of today’s radio transceivers by observing the onboard RSSI value and setting
appropriate thresholds.

In order to allow for a fair comparison of the E2-MAC protocol models, we
implemented the same packet burst transfer mode for each protocol. Nodes signal
pending packets to the receiver and can transmit queued packet trains in bursts,
receiving an acknowledgment for each frame.

5 Simulation Results

5.1 Traffic along a Multi-Hop Chain

We simulated a chain consisting of 8 nodes. The source node is generating load,
which is then forwarded hop-by-hop towards the sink node, similarly as done
in the studies on S-MAC [5] and B-MAC [10]. Almost every existing study on
E2-MAC protocols applies constant rate traffic during each simulation run. In
contrast to this, we varied the offered traffic from low rates to high rates during
each run, as our major interest is the protocol adaptivity during run-time.

Figure 4 displays the offered load generated at the application layer of the
source node. The load is low (0.1 packets/s) for most of the time, but there are
peaks where the packet rate is increased, up to a maximum rate of 22 packets/s.
We chose 22 packets/s as the load maximum as this had proved to be the max-
imum throughput that CSMA could handle without major packet loss. When
increasing the rate above this rate, throughput stalls and additional packets are
either dropped due to buffer overflows or are lost due to collisions.

Throughput and Power Consumption: Figure 5 displays the rate of received
packets at the sink node vs. simulation time. The curves are averaged from 100
simulation runs for each protocol. As one can clearly see comparing the received
packets in Figure 5 with the offered load in Figure 4, IdealMAC manages to
handle all packets from source to sink. CSMA only suffers minor packet loss at
the load peaks. The throughput of WiseMAC and T-MAC stalls at maximum
8 packets/s and 9 packets/s, respectively, which corresponds to ∼ 35 − 40%
of that of CSMA. Figure 5 clearly shows that MaxMAC with its state-based
run-time traffic adaptation mechanism reaches the same throughput as energy-
unconstrained CSMA. As the protocol adaptively allocates more duty cycles or
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Fig. 4. Offered Load (Packets/s)

Fig. 5. Throughput at Sink

Fig. 6. Aggregated Network Power Consumption

even totally switches to CSMA-like behavior at high traffic rates, the protocol
manages to handle the load peaks without major packet loss.

Figure 6 depicts the aggregated power consumption of all 8 sensor nodes’ radio
interfaces versus simulation time. One can clearly see the big gap between the
E2-MAC protocols and energy-unconstrained CSMA. With low traffic, CSMA
wastes a lot of energy on idle listening. The load peaks are hardly visible at
all, as the transceiver does not consume much more power when transmitting,
compared to idle listening [18]. The IdealMAC reference protocol illustrates the
ideal behavior of an E2-MAC protocol, allocating as much energy as needed
to handle the imposed load, and immediately deallocating it with decreasing
load. WiseMAC renouncing on costly synchronization schemes has a low per-
packet overhead, minimizing preambles by learning adjacent nodes’ schedules. It
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Fig. 7. Throughput vs. Energy-Efficiency

Fig. 8. Delay vs. Energy-Efficiency

exhibits a low power consumption during the low traffic phases, its throughput
however stalls at ∼ 35% of that of CSMA. T-MAC achieves a slightly higher
throughput, but its idle power consumption is above that of WiseMAC, mainly
due to the SYNC message overhead to keep the nodes’ wake-ups synchronized.

Thanks to the run-time traffic-adaptivity mechanisms of MaxMAC, namely
the scheduling of Extra Wake-Ups, and the switch to energy-unconstrained
CSMA-like behavior with higher traffic load, MaxMAC reaches the same energy-
efficiency in the low-traffic-phases as WiseMAC, but is able to handle the load
peaks with much lower packet loss. As MaxMAC switches to the CSMA-state
with the rate reaching TCSMA = 12 packets/s (cf. Table 2), the power con-
sumption of MaxMAC accordingly jumps to the level of CSMA at this rate, too.
Figure 6 further illustrates that the on-demand resource allocation scheme of
MaxMAC further succeeds astonishingly well when the packet rate decreases.
With traffic rates decreasing towards 0.1 packets/s after the load peaks, Max-
MAC quickly falls back to the states S2 and S1 and finally the Base Interval
state, where it again exhibits a very low energy-footprint.
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Energy-Throughput and Energy-Latency Tradeoffs: E2-MAC protocols
typically trade off quality of service versus higher energy-efficiency. Generally,
they introduce higher delays and restrain the maximum achievable throughput.
In this subsection we examine the MaxMAC protocol with respect to the energy-
throughput and energy-latency tradeoffs and compare it with existing E2-MAC
protocols. Figure 7 and 8 illustrate the measured tradeoffs in the aforementioned
experiment. Each dot represents the results of one particular protocol configura-
tion in the simulation experiment outlined in Section 4. In Figure 7, the tradeoff
between maximum achieved throughput and energy-efficiency of the simulated
E2-MAC protocols becomes well visible. The protocol efficiency is measured in
in kbit/J, hence calculating how many useful (payload) bits have been trans-
mitted from source to sink for each consumed Joule. A similar concept has been
proposed as the energy-per-useful-bit (EPUB) metric in [20] - we however use
the reciprocal coefficient in order to obtain a metric where more is better. CSMA
obviously achieves a high maximum throughput. However, as CSMA never turns
off the transceiver, its energy-efficiency remains very low.

IdealMAC illustrates the lower bounds of the E2-MAC protocol problem in
Figures 7 and 8: while it is not possible to reach a higher throughput or a
higher efficiency coefficient than IdealMAC, it is neither possible to reach a lower
delay. WiseMAC with its short channel polls achieves a high energy-efficiency,
especially the configurations with long intervals between two channel polls. The
efficiency gain however comes at the cost of a massively restrained maximum
throughput and increasing end-to-end latency (cf. Figure 8).

Thanks to its run-time traffic adaptation mechanisms, MaxMAC reaches the
same throughput as energy-unconstrained CSMA, but exhibits a much higher
energy-efficiency in terms of kbit/J. Although MaxMAC switches to CSMA-
like behavior in the high traffic phases, its efficiency coefficient is higher than
that of most of today’s E2-MAC protocols. The advantage of achieving the high
throughput of CSMA and a much better energy-efficiency than most E2-MAC
approaches is a clear novelty in the design space of today’s E2-MAC protocols.

Figure 8 similarly depicts the tradeoff between average packet delay and
energy-efficiency. One can observe that CSMA exhibits a very low average delay,
however at the cost of a low energy-efficiency. IdealMAC reaches both, a very
low delay at a very high energy-efficiency. Thanks to the scheduling of Extra
Wake-Ups, which reduces the interval between two wake-ups, and the switch to
CSMA-like behavior at even higher rates, MaxMAC reaches a far lower aver-
age end-to-end latency as other E2-MAC protocols. MaxMAC achieves a delay
which is - given the best examined configuration - only 70% higher than that of
CSMA (compared to some 1000% with other E2-MAC protocols), but achieves
an energy-efficiency that is more than three times better than that of of CSMA.

Figure 9 represents the results of each configuration of the simulated E2-MAC
protocols as a tuple in the vector space X×Y ×Z where X is the energy-efficiency
(measured in kbit/J), Y the maximum achievable throughput (packets/s) and Z
the average measured delay. The figure illustrates the potential for optimization
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Fig. 9. Energy-Efficiency (x) vs. Maximum Throughput (y) vs. Delay (z)

in the design space of today’s E2-MAC protocols. In [13], we surveyed and com-
pared the adaptivity of the protocols under variable load, using the distance to
IdealMAC as a metric to assess the adaptivity of a protocol. [13] concludes that
most protocols are not sufficiently adaptive, as they do not alter their behavior
with respect to the load conditions. Although there is sufficient channel capac-
ity, most existing protocols still turn their radio transceivers off too aggressively.
MaxMAC is clearly distinguishable from the examined reference protocols by
its ability to reach the same throughput and a similarly low latency as energy-
unconstrained CSMA, while still exhibiting a good energy-efficiency during the
considerably long periods of sparse network activity. The three examined con-
figurations of MaxMAC hence exhibit the shortest distance to the IdealMAC
protocol in the lower right corner in Figure 9, due to the high throughput, low
delay and good energy-efficiency measured in the experiment.

5.2 Random Correlated Event Traffic

With our second experiment we examine the behavior of MaxMAC (and the
reference protocols) in a larger scenario with a correlated event workload model
[21]. We simulate a 49-node grid network (7x7) with the center node forming
the sink. The distance between two adjacent nodes is 30m. With our parameter
settings of the LogNormal channel model [15], packet error rates are ∼ 1% and
∼ 15% on a straight link (30m) and a diagonal link (42.42m), respectively.

We apply a simple event traffic model that mimicks the effects of spacially-
correlated events, as proposed in [21] and [22]. Spacially-correlated events are
expected to occur in many event-based scenarios for WSNs, e.g. monitoring
applications in healthcare [1] systems, disaster-aid systems [2] or tracking appli-
cations. The traffic model picks a uniform random (x,y) location for each event.
Every node within the event sensing range R of this location then reports data
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Fig. 10. 49-nodes grid scenario: Packet Delivery Rate (PDR) vs. Energy-Efficiency

packets with a rate of revent during tevent towards the sink. We chose values
of R = 30m, revent = 6 packets/s and tevent = 10s for the events being trig-
gered each 30s at a random location (x,y) of the simulated network. In large
event-based scenarios (e.g. a monitoring application), the packet delivery rate
(PDR) is usually given higher priority than the throughput per second. We hence
measured the packet delivery rate, the average source-to-sink packet delay and
the energy-efficiency (in terms of kBit/J) during 100 runs of 3600s. Packets are
routed along the shortest path. Nodes select their parent node randomly in the
initiation phase of the experiment if there are multiple nodes advertising the
same hop count. Energy-efficiency is measured as the total received data bits
divided by the aggregated energy spent by all the node’s radio interfaces.

Figure 10 depicts the packet delivery rate (PDR) vs. energy efficiency of the
different configurations of the E2-MAC protocols in the random correlated event
experiment. Energy-unconstrained CSMA and IdealMAC reach a PDR of almost
100%. Some packets are lost due to buffer overflows, as the transmit buffer is
assumed to be limited to 10 packets. As CSMA does not turn off the transceiver
during the long periods where no traffic occurs, its energy-efficiency remains very
low (cf. top-left corner). IdealMAC modeling the ideal E2-MAC protocol behav-
ior reaches the same PDR and a very high efficiency (cf. top-right corner). The
configurations of T-MAC and WiseMAC with a short Base Interval reach a high
PDR, however at the cost of decreasing energy-efficiency. B-MAC and X-MAC
reach a modest PDR, but the high per-packet overhead of the B-MAC preambles
(which stretch over one entire Base Interval) and the X-MAC preamble strobes
negatively impact on their efficiency. Thanks to its run-time adaptation mecha-
nisms, MaxMAC reaches a similar PDR as energy-unconstrained CSMA, while
still exhibiting a much higher energy-efficiency. Although the protocol switches
to CSMA in the high traffic phases, its overall efficiency is still higher than that
of most other E2-MAC protocols. The combination of a high PDR and a high
energy-efficiency achieved by MaxMAC’s adaptation mechanisms is well-visible
in Figure 10 and constitutes a clear benefit.
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Fig. 11. 49-nodes grid scenario: Delay vs. Energy-Efficiency

Figure 11 depicts the tradeoff between average source-to-sink packet delay
and energy efficiency in the random correlated event experiment. CSMA again
exhibits a very low average delay at the cost of a very low energy-efficiency,
while IdealMAC reaches both, low latency and high energy efficiency. The con-
figurations of T-MAC and WiseMAC with a short Base Interval reach a lower
average delay, however at the cost of decreasing energy-efficiency. B-MAC and
X-MAC have a considerably high delay. As these protocols use long preambles
or preamble strobes, latency increases sharply over multiple hops, and sums up
to a couple of seconds in the given scenario.

Thanks to the scheduling of Extra Wake-Ups and switching to CSMA at
higher rates, the three examined configurations of MaxMAC reach a far lower
average source-to-sink latency as all the other E2-MAC protocols. The adaptivity
concept of MaxMAC further fits to the event-based traffic: with an event being
triggered at a random location, nodes start reporting data along the shortest
path to the sink. With the load reaching the MaxMAC thresholds T1, T2, TCSMA,
nodes alter their behavior in order to deliver the pending load. After the event
has been processed and the packet stream ends, the LEASE timespans time out
and MaxMAC again falls back to the default behavior in the Base Interval state.

A drawback of MaxMAC is the fact that the protocol requires a certain time
during which the adaptation mechanisms are triggered. In multi-hop scenarios,
all nodes forming a route from the event source to the sink first need to reach
the given thresholds. During this adaptation phase, packets are lost mainly due
to buffer overflows, as the PDR in Figure 10 exhibits. Thereafter the traffic
adaptation strategy achieves a high throughput and a low average delay.

6 Conclusions

In this paper we have presented MaxMAC, an E2-MAC protocol that targets
at achieving maximal run-time traffic adaptivity. The protocol targets at event-
based sensor network applications where at certain instants, the provision of
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high throughput and fast end-to-end response time becomes more important
than the conservation of energy. We envision such applications e.g. in health-
care, where nodes attached to patients need to rely on the provision of higher
throughput and fast response times when critical values have been sensed, in
order to communicate with central entities.

The paper examines MaxMAC in a network simulator and compares it against
a selection of other well-known E2-MAC protocols, an ideal E2-MAC proto-
col model and energy-unconstrained CSMA. In both scenarios, MaxMAC is
clearly distinguishable from the examined reference protocols by its ability to
reach the same throughput and a similarly low latency as energy-unconstrained
CSMA, while still exhibiting a good energy-efficiency during long periods of
sparse network activity, which are often encountered in event-based monitor-
ing systems. The MaxMAC protocol hence combines the advantages of energy
unconstrained CSMA (high throughput, high PDR, low latency) with those of
classical E2-MAC protocols (high energy-efficiency).
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Abstract. Due to non-homogeneous spread of sunlight, sensing nodes
typically have non-uniform energy profiles in rechargeable Wireless Sen-
sor Networks (WSNs). An energy-aware work load distribution is there-
fore necessary for good data accuracy while ensuring an energy-neutral
operation. Recently proposed signal approximation strategies, in form of
Compressive Sensing, assume uniform sampling and thus cannot be de-
ployed to facilitate energy neutral operation in rechargeable WSNs. We
propose a sparse approximation driven sensing technique (EAST) that
adapts sensor node sampling workload according to solar energy avail-
ability. To the best of our knowledge, we are the first to propose sparse
approximation for modeling energy-aware work load distribution in order
to improve signal approximation from rechargeable WSNs. Experimental
result, by using data from an outdoor WSN deployment, suggests that
EAST significantly improves the approximation accuracy while support-
ing approximately 50% higher sensor on-time compared to an approach
that assumes uniform energy profile of the nodes.

1 Introduction

Wireless Sensor Networks (WSNs) are currently deployed to monitor micro-
climate data from different environments [1, 21]. The Springbrook National Park
WSN is one such example. The Springbrook site is part of a World Heritage
precinct in Queensland, Australia. CSIRO, in partnership with the Queensland
Government Environmental Protection Agency (EPA), is in the process of de-
ploying a WSN of 200 nodes at Springbrook by 2011 to collect micro-climate
data for enhancing knowledge of rain forest restoration processes.

Energy supply is a major design constraint in the Springbrook deployment
and the lifetime is limited by battery supplies. In the last few years, a large num-
ber of research has been conducted ([3] has a comprehensive list) to minimize
the radio activities. However, recently it has been reported that many real life
applications require specific sensors whose power consumption is significant [17].
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Table 1. Energy consumption of some
common radios [15, 21]. Tx and Rx are the
transmission and the reception energy ac-
cordingly. We compute transmission energy
for a 32 byte data packet.

Radio Producer Energy
Consumption

CC2420 Texas Tx:34 μJ
Instruments Rx:38 μJ

CC1000 Texas Tx:40 μJ
Instruments Rx:28 μJ

Table 2. Energy Consumption of some
common sensors [21]. Sensors are turned on
for 5 seconds for one reading (Sensors are
turned on for 5 seconds every 5 minutes in
the Springbrook deployment.).

Sensor Sensing Energy
Consumption

Met One 034B Wind Speed 45 mJ

Met One 034B Wind Direction 45 mJ

In addition, longer acquisition times of some specific sensors may even result in
significantly higher energy consumptions than the radio (see Table 1 and 2 for a
comparison of energy consumptions of some popular radio equipment with the
energy hungry wind sensors). In order to cope with the increasing energy de-
mand, a number of sensor deployments are adopting a complementary approach
of supplementing the energy supply of the system by harvesting additional en-
ergy from the environment [21, 11].

Out of the variety of energy harvesting modalities, solar current harvest-
ing provides one of the highest power densities [18]. However, solar energy will
typically not be homogeneously spread over the network which results in non-
homogeneous energy profile (i.e non-uniform solar current harvest rates) of the
sensing nodes. Therefore, sensing task allocation that assumes uniform energy
profile of the sensing nodes could deplete the energy of a number of nodes and
create holes in the network connectivity or coverage. In order to avoid such sit-
uation, the Springbrook deployment reduces the fraction of time the sensors are
turned on to take samples (we refer this quantity as sensor on-time) to less than
2% for all nodes, which results in poor approximation of the signal.

Data collected from the wireless sensor deployments are typically correlated
and therefore compressible [4] in an appropriate transform. Recent results in
Compressive Sensing [6] suggests that if the data is compressible, a signal vector
with N̂ data values can be well approximated using only k(<< N̂) transform
coefficients. If the k largest coefficients could be approximated from a small num-
ber of measurements, where measurements are taken with high probability from
energy-rich sensing nodes and with smaller probability from energy-constrained
nodes, we could approximate the signal with good accuracy while ensuring an
energy neutral operation. An energy neutral operation means that the energy
consumption should be less than the energy harvested from the environment.
The estimation techniques of compressive sensing ([20, 4, 9]) have so far as-
sumed that the signal is sampled uniformly. Therefore, in order to approximate
a signal with good accuracy while ensuring an energy neutral operation, a theo-
retical framework that supports nonuniform sampling need to be developed. In
this paper we address this challenge. Our contributions are as follows
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1. We present a distributed sensing framework, EAST, which for the first time
implements sparse random projections to distribute sensing workload based
on the solar energy harvest rates of the nodes to achieve an energy-neutral
operation while at the same time is able to approximate a signal with good
accuracy with high probability. Our work therefore draws a connection be-
tween compressive sensing and the sensor selection problem.

2. We determine the upper bound of sampling requirement of EAST as a func-
tion of gj , which is a parameter that determines the sparsity of projection
matrix and is proportional to the energy harvest rate of the sensing node
nj , and show that O(poly(k, log N̂)ΣN

j=1
1
gj

) sparse random projections are
sufficient for EAST to reconstruct a signal with error, comparable to the
best k-term approximation.

3. We evaluate EAST using the data collected from the Springbrook sensor
deployment and report that energy-aware task distribution allows EAST to
support approximately 50% higher sensor on-time, and thus allows EAST to
achieve significantly better approximation compared to a sensing technique
that assumes uniform energy profile of the nodes. Experimental result also
reveals that EAST can achive approximation accuracy close to the best k-
term approximation.

The remainder of the paper is organized as follows. In the next section, we
precisely define EAST and describe the necessary modeling assumptions. Then
we model EAST in Section 3 and describe a distributed algorithm for EAST in
Section 4. We provide the evaluation result in Section 5 and discuss the related
literature in Section 6. Finally, we conclude in Section 7.

2 Problem Definition

Consider a signal x captured over time th, 1 ≤ h ≤ M from N nodes nj ,
1 ≤ j ≤ N of a WSN. Assume that the network is rechargeable using solar
energy. Define Ej be the amount of energy harvested by node nj during time
th, 1 ≤ h ≤ M(in the rest of the paper we refer to Ej as the energy profile
of the node). Due to non-uniform spread of sunlight, Ej can be non-uniform,
e.g., nodes in the open space can have higher Ej whereas nodes in the forest
can have smaller Ej . We want to develop a sensing framework that distributes
sampling workload based on Ej (precisely we want the energy-rich sensors to
work more and thus reduce the work load of energy-constrained sensors) and
at the same time minimizes the approximation error while ensuring an energy-
neutral operation.

Let us further define an indicator variable

fhj =

{
1, if sensor nj is turned on at th

0, otherwise.
(1)
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In order to ensure an energy neutral operation, we turn on sensor nj
1 (i.e., fhj

will be 1) based on its energy profile Ej . Consequently, some of the values of fhj

could be zero. Note that the value of the signal x at time instances where fhj = 0
are not measured, therefore, we need a method to compute an approximation
of those components in x that have not been measured. We aim to develop
a method that achieves good approximation while maintaining energy-neutral
operation.

In order to simplify the description, we will assume M = 1 for the rest of this
Section as well as in Section 3. This means that x is a 1-dimensional vector and
the j-th component of x is in fact the sensor measurement of sensor nj .

2.1 Compressible Data

Data collected from the wireless sensor deployments are typically correlated
and therefore compressible in an appropriate transform [4]. Let us consider a
transform Ψ ∈ R

N×N (Wavelets or Discrete Fourier Transform are typically used
as transforms), consisting of a set of orthonormal basis vectors {ψ1..ψN}. A signal
x is compressible, if the reordered transform coefficients θ = [ψT

1 x, .., ψT
Nx]T

decay like power law [6], i.e., the π-th largest transform coefficient satisfies

|θ|(π) ≤ Rπ− 1
s (2)

for each 1 ≤ π ≤ N , where R is a constant, and 0 ≤ s ≤ 1. We will call s the
compressibility parameter.

Recent results [6] of compressive sensing show that if the data is compress-
ible, the largest (in magnitude) k transform coefficients (θ) capture most of the
signal information. A compressible signal can therefore be well approximated
by recovering only the k largest transform coefficients. The approximation that
keeps the k largest transform coefficients and discards the remaining as zero
is called the best k-term approximation [20]. In order to model EAST we as-
sume that the data collected at the energy-constrained nodes are correlated to
the data collected at the energy-rich nodes and thus, if we collect large amount
of data from the energy-rich nodes (and a small amount of data from energy
constrained nodes), the k-largest coefficients could be recovered to have a good
approximation of the signal.

2.2 Sparse Random Projections

In the literature it has been shown that if the signal is compressible, � sparse
random projections can be used to recover the signal with approximation error
comparable to the best k-term approximation with high probabilities [20]. Un-
like dense projection matrix (typically used in Compressive Sensing), the degree
1 Note that, in WSN literature, a sensor can be used to refer to a sensor node (which

includes a CPU, a radio and measurement sensors) or a measurement sensor (e.g.
a temperature sensor, a wind speed sensor). In this paper, we refer to turning on
sensor nj as to turning on the measurement sensor on node nj .
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of sparsity of the sparse random projections can control the number of measure-
ments need to be acquired. For example, consider a sparse projection matrix
Φ ∈ R

�×N with following entries.

Φij =
√

ρ

⎧⎪⎨
⎪⎩

+1 with prob. 1
2ρ

0 with prob. 1 − 1
ρ

−1 with prob. 1
2ρ

ρ determines the sparsity of the random projections. Thus, if 1
ρ = 1, the random

matrix has no sparsity (i.e., it is dense); on the other hand, if 1
ρ = 1

N , the
matrix is sparse and the expected number of non-zero elements in each row of
the projection matrix is 1(= N/N).

In order to see how sparse projections can reduce the sampling requirement,
let us first point out that the vector u (= Φx) is required for signal estimation.
Note that if for a particular value j, we have Φij = 0 for all i (in other words,
the j-th column of Φ is all zero), then the j-th component of x is not needed to
obtain u. This means that node nj does not need to turn its sensor on to collect a
sample. For the Φij defined above, the mean number of sensors that are required
to sample is given by N(1− (1− 1

ρ )�), which can be showed to be bounded from
above by N�

ρ . For ρ = N , this means at most � samples are required. Since � is
supposed to be significantly less than N , the sampling requirement is low.

3 Modeling EAST

We use sparse random projections to model EAST. We control the sparsity of
the projection matrix based on the energy profile such that measurements from
energy rich sensing nodes are taken with high probabilities and those are taken
from the energy constrained sensing nodes with small probabilities. Our sparse
projection matrix Φ ∈ R

�×N has the following entries

Φij =

√
1
gj

⎧⎪⎨
⎪⎩

+1 with prob. gj

2

0 with prob. 1 − gj

−1 with prob. gj

2 .

(3)

Here gj = Ej

ΣN
j=1Ej ∗ �

N gives the probability of a measurement from sensor nj

to be included in the i-th projection. Note that gj is proportional to the energy
profile of node nj, therefore higher energy profile of a node will increase the
probability of inclusion of measurement from the node. If Φij �= 0, we want
measurement from sensor nj to be included in the i-th projection. In order to
control sensor scheduling based on Φij , we determine the value of the indicator
variable fhj based on the values of Φij . Let us consider one time snapshot (t1)
of the data (x1..xN ). Sensor scheduling to acquire this snapshot is determined
by

f1j =

{
0 if Σ�

i=1|Φij | = 0
1 otherwise.

(4)



Energy-Aware Sparse Approximation Technique (EAST) 311

We now prove that if the signal satisfies peak-to-total energy condition,

||x||∞
||x||2 ≤ μ (5)

EAST approximates the signal with error comparable to the best k-term approx-
imation with high probability. Note that the peak-to-total energy condition (5)
can be related to the signal compressibility. If signal x is compressible in a trans-
form with compressibility parameter s, then the peak-to-total energy [20],

||x||∞
||x||2 ≤ μ =

⎧⎨
⎩

O( logN√
(N)

) if s = 1

O( 1√
(N)

) if 0 < s < 1.
(6)

We prove that EAST can approximate a signal with error comparable to the
best k-term approximation in two stages. In the first stage (Proposition 1), we
show that sparse random projections can produce estimation for the transform
coefficients of the data. Then in the second stage (Proposition 2), we show that
the approximation error of the estimation is comparable to the best k-term
approximation.

Note that the transform coefficients of the data are the inner product between
the data and the set of orthonormal bases. Therefore, we first show that sparse
random projections of our projection matrix preserve inner products within a
small error, with high probability. Proposition 1 states that an estimation of the
inner product between two vectors, using only the random projections defined
by Equation (3), has the correct expectation with bounded variance (The proof
of Proposition 1 is shown in Appendix).

Proposition 1. Let Φ be the projection matrix given by Equation (3). Define
u = 1√

�
Φx and v = 1√

�
Φy ∈ R

� as the random projection of two vectors x and
y ∈ R

�. Expectation and variance of the inner product of u and v are respectively

E
[
uT v

]
= xT y and

V ar
(
uT v

)
=

1
�

((
xT y

)2
+ ||x||22||y||22 + ΣN

j=1
1
gj

x2
jy

2
j − 3ΣN

j=1x
2
jy

2
j

)
.

It can be observed that the variance of the estimation is largely controlled by
the factor ΣN

j=1
1
gj

. Thus, if gj is a small value for a node nj , the estimation
will have high variance. Note that gj is proportional to the energy profile Ej ,
therefore when all the nodes have good access to sunlight, good estimation can be
produced. Apart from ΣN

j=1
1
gj

, the variance of the estimation is also significantly
controlled by the number of projections. A large value of � could produce a
smaller variance. In Proposition 2, we will determine the value of � based on the
factor ΣN

j=1
1
gj

. Note that in [20] it is shown that the variance of this estimation
is controlled by the number of projections (�) only and it is not shown that how
the variance will be changed if the nodes have non-uniform energy profile.
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Having showed that the estimation of the inner product between two vectors,
using only the sparse projections of those vectors, has a good quality estimation
with bounded variance, it can be shown (see Lemma 1 in Appendix) that the
error of the estimation âi for xT yi, using the sparse random projections 1√

�
Φx

and 1√
�
Φyi, satisfies

|âi − xT yi| ≤ ε||x||2||yi||2, ∀i=1..N . (7)

Finally, in Proposition 2 we state that the estimation error determined in Equa-
tion (7) is comparable to the k-term approximation with high probability (proof
is included in Appendix).

Proposition 2. Assume data x ∈ R
N satisfies the peak-to-total energy condi-

tion (5), and with

� = O(
1 + γ

ε2η2 k2μ2 log NΣN
j=1

1
gj

)

the sparse random matrix Φ ∈ R
�×N satisfies condition (9). Denote u = 1√

�
Φx as

the sparse random projection of x and Ψ ∈ R
N×N as an orthonormal transform.

Transform coefficients of x in Ψ is given by, θ = Ψ−1x. Assume the best k-term
approximation gives an approximation (x̂opt) with error ||x − x̂opt||22 ≤ η||x||22.
Using only u, Φ and Ψ , x can be recovered with error

||x − x̂||22
||x||22

≤ (1 + ε)η (8)

with probability at least 1 − N−γ.

From Proposition 2 it can be observed that a smaller value of the peak-to-total
energy (μ) makes the requirement of number of projections � to be small (this is
inherent to sparse approximation). However, � is largely controlled by the factor
ΣN

j=1
1
gj

. Thus, if gj is a small value for a node nj , a large number of projections
is required to achieve an accuracy similar to the best k-term approximation. One
of the main contributions of our work is that we enable energy-aware work load
allocation and thus support a large � to achieve an accuracy comparable to the
best k-term approximation.

4 Distributed Algorithm

Energy-aware work load allocation typically increases the amount of communi-
cations between node and the base station and thus increases the consumption
of transmission energy. We therefore design a distributed algorithm for EAST,
which generates projections with a few communications between the sensing
nodes and the base station.

Note that our description so far has assumed M = 1, however the framework
can be readily extended to the case with M > 1. In this case, we consider the
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sensor measurement xhj collected at time th (h = 1, ..., M) by sensor nj (j =
1, .., N). Since the algorithm in Section 3 works with a vector, we will vectorize
the 2-dimensional signal xhj . We will abuse the notation and use x to denote
this vector (this should be clear from the context). The vector x has N̂ = MN
elements where the q-th element of x is xhj where q = h + (j − 1) ∗ M . The
corresponding projection matrix Φ is now an �×N̂ matrix. For q = h+(j−1)∗M ,
the elements in the q-th column of the projection matrix (Φiq with i = 1, ..., �) are
generated by Equation (3) with parameter gj and these elements will determine
whether the sensor nj will sample at time th. We will now describe an algorithm
which is used by EAST to recover an approximation of the signal (x), from the
sparse projections created locally in different nodes.

• Initially, sensor node nj̃ (1 ≤ j̃ ≤ N) locally decides to generate �j̃ rows of
the projection matrix where 0 ≤ �j̃ ≤ � and

∑N
j̃=1 �j̃ = �.

• Then each node nj̃ (1 ≤ j̃ ≤ N) generates the random numbers Φr1, ..., ΦrN̂

using the distribution function mentioned in Equation(3)(We assume that
node nj̃ is responsible for generating the r-th row (1 ≤ r ≤ �) of the projec-
tion matrix. Consider the element Φrq in the projection matrix and let us
assume that the column index q and the node-time pair (j, h) have one-to-one
correspondence given by q = (j − 1) ∗ M + h.).

• If Φrq �= 0, node nj̃ tasks node nj to sample at time th and node nj sends
the sample to node nj̃ .

• Upon receiving xjh from node nj, nj̃ computes ur = ΣN̂
q=1Φrqxq (where

xq = xjh). Node nj̃ performs this operation for all the values it receives and
finally transmits ur to the base station. This process is repeated for all node
nj̃ , 1 ≤ j̃ ≤ N.

• After receiving transmissions from the nodes, base station has Φ�×N̂x =
[u1, ..., u�]T . It then generates Φ�×N̂ using the same seed as the nodes. Finally,
with u(= Φ�×N̂x), Φ�×N̂ and Ψ , base station uses AMS sketching decoder [2]
to recover the signal.

5 Evaluation

In this Section we evaluate the performance of EAST using energy hungry wind
speed and wind direction sensor data, collected from the Springbrook sensor
deployment. We have used data from 8 of the sensing nodes at the Springbrook
deployment, where among these 8 nodes (shown in Fig. 1(a)), node 5 is deep in
the forest whereas the rest of the nodes are in the open space. Consequently, solar
current harvest rate of node 5 is the lowest whereas the rest of the nodes have
higher and also similar harvest rates (see Fig. 1(b)). Inter-sampling interval in
the deployment is 5 minutes and we collected 1 month data which gives us 8640
snapshots for both of the wind sensor data. As AMS sketching decoder computes
the estimation from median, it performs better with large N̂ . Therefore, we have
arbitrarily chosen large N̂=2048. We made 30 smaller datasets from 8640 (we
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(a) Positions of the sensing nodes at
Springbrook deployment. Node 5 is in
the deep forest whereas rest of the nodes
are mostly in the open space.
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(b) Energy profile of the sensing nodes
at Springbrook deployment

Fig. 1. Location and energy harvesting rate of the Springbrook sensing nodes

used 7680 out of these 8640 snapshots and thus discarded the last few snapshots)
snapshots, where each set has M = 256 snapshots from N = 8 nodes. Thus, we
get N̂ = MN =2048. Note that we also verified that for other large values of
N̂ , such as 512 and 1024, EAST produces similar approximation.

5.1 Uniform-Energy Sensing Technique, UEST

We compare the performance of EAST with a uniform energy sensing technique
(UEST). UEST assumes that nodes have homogeneous energy profile and there-
fore allocates sampling workload uniform randomly. In particular we use EAST
to create UEST where we deliberately modify the energy profile Ej of all sensing
nodes 1 ≤ j ≤ N to be equal (We use equal energy profile Êj = 1/8Σ1≤j≤NEj).
In addition to providing a way to compare EAST with a sensing technique which
assumes uniform energy in all sensing nodes, UEST also facilities the evaluation
of EAST at uniform energy condition.

5.2 Approximation Error

Let x̂ be the approximation of the signal x, we use relative error, ||x−x̂||22/||x||22 to
determine the accuracy of the approximation. The relative error is a commonly
used error metric in the signal processing literature [12, 20] that tells us how
close the approximate signal is to the real signal.

5.3 Results

Peak-to-total energy condition is a sufficient condition for sparse approximation.
In Fig. 2 we find that for both of the wind data ||x||α

||x||2 is bounded by log N̂√
N̂

and
1√
N̂

. Therefore, according to Equation (6) the wind sensor data obey the peak-

to-total energy condition. From Fig. 2 we also observe that the compressibility
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(a) Wind Speed (b) Wind Direction

Fig. 2. Peak-to-total energy condition on data
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Fig. 3. A comparison of the approximation error of the micro-climate data using EAST,
UEST, and optimal Haar wavelet based approximation. The relative approximation
error is plotted versus the number of random projections 	 = k2 log N̂ for N̂=2048.
The error bars show the standard deviation of the approximation error.

parameter s is bounded by 0 < s ≤ 1, therefore, the wind sensnor data are also
compressible (see Equation (2)).

Fig. 3 compares the approximation accuracy of EAST and UEST against
different number of data points. We vary the number of projections (�) and ex-
tract the number of data points included in the � projections and then plot the
approximation accuracy against the number of data points to precisely demon-
strate the sensing requirements of EAST. For each number of data points, we
use the snapshots collected from the Springbrook deployment to compute the
mean and standard deviation of the approximation error. We observe that unless
for very small number of data points, the mean and the standard deviation of
the approximation error using EAST is as good as UEST. Precisely, by using
400(= 19%) data points, EAST achieves an approximation error below 0.5. Fig. 3
also compares the approximation of EAST and UEST with the best k-term ap-
proximation. We observe that both EAST and UEST performs closer to the best
k-term approximation when the number of data points are more than 800.
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Fig. 4. Impact of the number of significant coefficients retained (k) on the approx-
imation of EAST. The relative approximation error is plotted versus the number of
sampled data points for different value of k. Reconstruction is poor for k = 1 and thus
is excluded from the figure.

Using sparse approximation, we only reconstruct the significant coefficients of
a signal in the transform domain and let the insignificant coefficients to be zero.
We have investigated the impact of the number of significant coefficients being
retained (k) on the accuracy of approximation and found that, unless using very
small value (e.g. k = 1), accuracy of the approximation is similar for different
values of k. However, in order to avoid cluttering the images, in Fig. 4, we plot
||x−x̂||22
||x||22 versus k for k up to 20. We use k = 5 for the rest of the paper.
One of the major contributions of this paper is, EAST attempts to minimize

approximation error by increasing sensor on-time. Here we use the term sensor
on-time to indicate the fraction of time a sensor is on when it takes a sample
(For example, for an inter-sampling period of 5 minutes and a sensor on-time of
0.6, the sensor will be turned on for 0.6*5 = 3 minutes every time the sensor
takes a sample. Note that it can be shown that the duty cycle of a sensor is given
by the product of its sampling probability and sensor on-time.). The sensor on-
time is common for the network, however, the sampling probability of a sensor
is determined by its energy profile. In order to show that EAST supports longer
sensor on-time, we compare the maximum sensor on-time (while maintaining an
energy neutral operation) supported by EAST and UEST for different number
of data points. Note that in the Springbrook deployment, battery voltage V = 3
Volts, the electrical current used to acquire a wind sample is I = 3 mA and the
inter-sampling interval is T = 5 minutes (300 seconds). Therefore, if the sensor
on-time is ω, then the amount of energy spent by sensor nj over the period th
(where h = 1, ..., M) is given by Δj = V IωTΣ1≤h≤Mfhj . The maximum sensor
on-time that is supported by the network is the maximum value of ω such that
Δj ≤ Ej for all j.

In Fig. 5 we compare supported sensor on-time for different number of data
points. It is observed that, when we use 1200(< 50%) data points, EAST can
support 50% longer sensor on-time compared to UEST.
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Fig. 5. Comparison of sensor on-time supported by EAST and UEST at energy neutral
condition. The relative approximation error of the data is plotted versus the number
of sampled data points for N̂=2048.
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Fig. 6. (a) Recovery of temporal signal at node 5. In order to avoid cluttering of image
we show only 10 data points of the signal. Similar recovery is observed for rest of the
data points.

Now let us show the impact of sensor on-time on the accuracy of approxi-
mation. In Fig. 6 we plot the approximated signal along with the real signal
collected in node 5. We choose node 5 deliberately to show the robustness of
EAST. Note that node 5 has the lowest energy profile and therefore has the
least sampling probability. We use 1200 data points and sensor on-time to be 0.5
for this approximation. While using UEST, node 5 fails due to exceeding its en-
ergy budget, which causes poor approximation, whereas energy-aware workload
distribution yields significantly better approximation for EAST.

6 Related Work

A large number of signal approximation techniques use Compressive Sensing
[7, 20, 4, 9] to conserve transmission energy assuming that radio is the dominant
component of energy consumption, however we assume energy-hungry sensor
dominates the energy consumption.
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In [5] an adaptive sampling algorithm is presented which can be used for
estimating the best sampling frequency for energy hungry sensors. However,
similar to the work of compressive sensing [20, 4, 9] their approach assume that
the sensors have uniform energy profiles.

Work presented in [13] proposes a harvest-aware adaptive sampling approach
to dynamically identify the maximum duty cycle. However, their focus is not on
signal approximation from the network.

An application-specific approach for energy conservation is presented in [23]
where adaptive sampling and energy-aware routing are applied jointly to recover
a signal. However, we consider energy-aware data acquisition in our paper.

In [19], a Bayesian estimation technique is presented to estimate the wind
speed and wind direction signals. They have supplemented their estimation us-
ing the assumption that the wind speed and wind direction signals have a cor-
relation with hourly tide data. However, in our work we assume that signals are
compressible due to the presence of spatial-temporal correlation among the data
collected at different sensing nodes.

A number of studies [14, 22, 10, 8] have proposed to exploit the spatial-
temporal correlation of the signal to reduce sampling requirements. Though our
approach has similar assumption, we have considered non-uniform energy profile
of the sensors which is different. Moreover, we have used Sparse Approximation
which is also different from their approaches.

A Compressive Sensing based data gathering approach is presented in [16]
which investigates the impact of a routing topology generated sparse projection
matrix on the accuracy of the approximation. Our work is different from theirs
since our projection matrix is not based on the routing topology rather it is
populated based on the energy profile of the sensors.

7 Conclusion

This paper proposes an energy-aware sensing technique (called EAST) that im-
plements distributed sparse random projections to adapt sampling workload
distribution based on the solar energy availability at nodes, and thus recovers an
approximation of the signal with good accuracy while ensuring an energy neu-
tral operation. A large number of recently developed compressive sensing driven
approximation strategies assume that each element of the projection vector is
drawn from the same probability distribution. This inherently assumes uniform
sampling and thus is inapplicable for ensuring energy neutral operation when
nodes have non-uniform energy profiles.. We develop a theoretical framework to
determine the number of projections need to be collected as a function of the en-
ergy profile of the nodes and prove that O(poly(k, N̂)ΣN̂

j=1
1
gj

) sparse projections

are sufficient to reconstruct a N̂ data point signal with accuracy comparable to
the best k-term approximation. We apply EAST to reduce the energy consump-
tion of wind speed and wind direction sensors; however, EAST is general and
can be used for any signal that satisfies the peak-to-total energy condition. Eval-
uation result shows that EAST increases the sensor on-time by approximately
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50% and thus offers significantly better approximation of a signal compared to
a sensing technique that assumes uniform energy profile of nodes. Experimental
result also supports that approximation accuracy of EAST is close to the best
k-term approximation.
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Appendix

Proof (Proof of Proposition 1.). It can be proved that the projection matrix
defined by Equation (3) satisfies these conditions:

E [Φij ] = 0,E
[
Φ2

ij

]
= 1,E

[
Φ4

ij

]
=

1
gj

. (9)

Define independent random variables w1, ..w� where, wi =
(
ΣN

j=1xjΦij

)(
ΣN

j=1yjΦij

)
Using the property in Equation (9), it can be shown that the ex-

pectation and the second moment of wi satisfy: E[wi] = xT y and

E[w2
i ] = 2(xT y)2 + ||x||22||y||22 + ΣN

j=1
1
gj

x2
jy

2
j − 3ΣN

j=1x
2
jy

2
j .

Since uT v = 1
�

∑�
i=1 wi, using the above result, we can show that:

V ar(uT v) =
1
�
((xT y)2 + ||x||22||y||22 + ΣN

j=1
1
gj

x2
jy

2
j − 3ΣN

j=1x
2
jy

2
j ).

In order to prove proposition 2, we need the following lemma.

Lemma 1. Consider a data vector x ∈ R
N which satisfies condition (5). Let

y ∈ R
N×N . Consider a sparse random matrix Φ ∈ R

�×N satisfies condition (9),
with sparsity parameter ρ = gj. Define � = O(1+γ

ε2 μ2 log NΣN
j=1

1
gj

). The ran-
dom projections 1√

�
Φu and 1√

�
Φvi then produces an estimation âi for xT yi, with

probability at least 1 − N−γ , satisfying |âi − xT yi| ≤ ε||x||2||yi||2, ∀1≤iN .

Proof (Proof of Lemma 1). Due to lack of space, the proof for Lemma 71 cannot
be included. The proof is similar to that of Theorem 1 in [20] except that the
term (s − 3) in [20] is replaced by (

∑N
j=1

1
gj

− 3).

Proof (Proof of Proposition 2). Consider an orthonormal transform Ψ ∈ R
N×N .

Let the transform coefficients θ = [xT ψ1, ..., x
T ψN ]T . Let us order the trans-

form coefficients θ in decreasing of magnitude, i.e., |θ|(1) ≥ |θ|(2).... ≥ |θ|(N).
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The approximation error by taking the largest k coefficients in magnitude, and
setting the remaining coefficients to zero can therefore be given by ||θ− θ̂opt||22 =
ΣN

i=k+1|θ|2(i). Let ||θ − θopt||22 ≤ η||θ||22 and assume that x satisfies condition (5),
with positive integer, � = O(1+γ

β2 μ2 log NΣN
j=1

1
gj

). The random projections 1√
�
Φu

and { 1√
�
Φψ1, ...., .

1√
�
Φψn} thus could produce estimates {θ̂1, ..., θ̂N}, where the

estimates satisfy |θ̂i − θi| ≤ β||θ||2 with high probability (Lemma 1).
Now ordering the estimates θ̂ in decreasing magnitude, we define our approx-

imation θ̃ as keeping the k largest (in magnitude) components of θ̂, and setting
the other components to zero. It can be shown that [20] for β = O( εη

k ), the
approximate error is ||x− x̂||22 = (1 + ε)η||x||22. Therefore the number of random
projections we need can be given by

� = O(
1 + γ

ε2η2 k2μ2 log NΣN
j=1

1
gj

).
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Abstract. Sparse wireless sensor networks (WSNs) are being effectively
used in several applications, which include transportation, urban safety,
environment monitoring, and many others. Sensor nodes typically trans-
fer acquired data to other nodes and base stations. Such data transfer
operations are critical, especially in sparse WSNs with mobile elements.
In this paper, we investigate data collection in sparse WSNs by means
of special nodes called Mobile Data Collectors (MDCs), which visit sen-
sor nodes opportunistically to gather data. As contact times and other
information are not known a priori, the discovery of an incoming MDC
by the static sensor node becomes a critical task. Ideally, the discovery
strategy should be able to correctly detect contacts while keeping a low
energy consumption. In this paper, we propose an adaptive discovery
strategy that exploits distributed independent reinforcement learning to
meet these two necessary requirements. We carry out an extensive sim-
ulation analysis to demonstrate the energy efficiency and effectiveness
of the proposed strategy. The obtained results show that our solution
provides superior performance in terms of both discovery efficiency and
energy conservation.

1 Introduction

Wireless sensor networks (WSNs) have become an enabling technology for a wide
range of applications [1]. WSNs are based on sensor nodes which are constrained
in terms of their resources: energy, computational power and radio bandwidth.
They normally operate in uncertain and dynamic environments where the state
of the system changes considerably over time. For example, in data collection
applications, uncertainty exists due to intermittent links or traffic conditions.
Moreover, the network itself is dynamic due to such events as node mobility
and depleted battery. WSN applications need to cope with such dynamic and
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uncertain conditions inherent in sensor networks, while simultaneously achiev-
ing application-specific QoS requirements. As a consequence, adaptive resource
management is a key to any successful middleware solution enabling such appli-
cations [2].

In the context of environmental monitoring, a large number of sensor nodes
are typically deployed over a geographical area to form a dense ad hoc network.
Sensors use multi-hop communication to send data acquired from the external
environment to a sink node or to an Access Point (AP) in the infrastructure.
However, several environmental monitoring applications do not require fine-
grained sensing. Examples of such applications include monitoring of weather
conditions in large areas, air quality in urban scenarios, terrain conditions for
agriculture, and so on. In this case, it is possible to consider a sparse wireless
sensor network, i.e., a WSN where the density of nodes is so low that they can-
not communicate each other through multi-hop paths, or even directly. In order
to make communication feasible, data collection in sparse WSNs can be accom-
plished by means of mobile data collectors (MDCs). MDCs are special mobile
nodes responsible for data gathering and/or dissemination. They are assumed
to be powerful in terms of data storage and processing capabilities, and are
not energy constrained, in the sense that their energy source can be replaced or
recharged easily. An MDC can serve either as a Mobile Sink (MS), a mobile node
which is also the endpoint of data collection, or as a Mobile Relay (MR), which
carries data from sensors to the sink node or an infra-structured AP. In either
role, the MDC moves throughout the WSN, and in most cases it is autonomous.

Sparse WSNs with MDCs have many advantages if compared to traditional
dense WSNs. First, costs are reduced, since fewer nodes can be deployed, as
there is no need for a connected network. Second, as data is collected directly by
the MDC from sensor nodes, reliability is improved as a result of less congestion
and collisions. Finally, data collection by MDC can extend the WSN lifetime, as
the energy consumption is spread more uniformly in the network with respect to
dense (static) WSN, where the nodes close to the sink are usually more loaded
than the others. However, the data collection paradigm in sparse WSNs with
MDCs is different, and introduces significant challenges. Among them, we can
mention contact detection and mobility-aware energy conservation schemes.

Communication between an MDC and sensor nodes takes place in two phases.
First, sensor nodes discover the presence of the MDC in their communication
range. Then, they can transfer collected data to the MDC while satisfying cer-
tain reliability constraints, if required. Unlike MDCs, sensor nodes have a limited
energy budget, so that the data-collection process has to be energy efficient in
order to prolong network lifetime. In addition, such energy-conserving mecha-
nisms should not compromise the timeliness of communication. This is critical
especially when the MDC has only a short contact time with sensors, and also
in the case when such contacts cannot be predicted accurately. In fact, a ma-
jor problem in data collection is that sensor nodes usually do not have a pri-
ori knowledge of the MDC mobility pattern. Furthermore, even in cases where
the arrivals can be predicted, there is a chance that the MDC contacts can be
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affected by delays or can change their rate. Hence robust and flexible mechanisms
have to be defined in order to adapt to operating conditions autonomously. To
this end, mechanisms based on artificial intelligence are very appealing, since
they are flexible and robust.

In this paper, we address the problem of the MDC discovery by exploiting re-
inforcement learning, a branch of artificial intelligence targeted to unsupervised
learning. We define discovery and data transfer protocols for energy-efficient
data collection in sparse WSNs with MDCs, and propose an adaptive strategy
exploiting a middleware framework based on Distributed Independent Reinforce-
ment Learning (DIRL). The proposed solution is specifically targeted to energy-
aware resource allocation in sparse WSNs with MDCs. The remainder of the
paper is organized as follows. Section 2 presents an overview of the related work,
while Section 3 introduces the system model and the reference scenario. Section
4 describes the data collection application built on top of the DIRL framework.
Section 5 outlines the simulation setup and introduces relevant metrics for eval-
uation. Section 6 discusses the obtained results. Finally, Section 7 concludes the
paper.

2 Related Work

Solutions for energy-efficient data collection and adaptive resource management
in sparse WSNs have already been proposed in the literature. However, in most
cases these two issues have been considered separately. Accordingly, we will
consider the relevant literature in different sections below.

Several researchers have investigated data collection in sparse WSNs. In [3,4,5]
data collection is performed by autonomous MDCs. A data collection scheme is
presented in [3], under the assumption that the MDC has a completely pre-
dictable mobility. The problem of data collection has been considered also in
[4], where both discovery and data transfer are characterized, and the mobility
pattern of the MDC is assumed to follow a Poisson distribution. An extensive
characterization of data collection in sparse WSNs is provided in [5], where the
impact of discovery on data transfer is evaluated. The major limitation of these
solutions is that they assume static operating parameters. An adaptive data col-
lection strategy has been proposed in [6], but the approach does not consider
the problem of discovery. Solutions based on reinforcement learning have been
proposed in [7,8] for the context of WSNs with mobile elements. However the
focus of [7] is more on routing rather than discovery, since the WSN is assumed
to be rather dense. On the other side, [8] actually exploits reinforcement learning
for discovery, but in the different context of sparse WSNs where nodes operate
as peers.

As for middleware solutions, while many papers such as [9,10,11] have ad-
dressed resource management in dense WSN, there are only a few works specif-
ically targeted to the same problem in the different context of sparse WSNs.
Among them, the Impala [12] middleware architecture has been proposed for
application adaptation and update. However, Impala has been specifically tar-
geted to scenarios where all nodes are mobile and act as peers. In addition, the
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focus is more on application reconfiguration rather than on resource allocation.
More recently, the TinyLime [13] middleware has been proposed for the specific
scenario of sparse WSNs. TinyLime – which is based on a tuple space model –
provides mechanisms to perform data aggregation and tune the activity of nodes
in order to save energy. However, the focus of TinyLime is on the proposed pro-
gramming abstraction rather than on adaptation and resource management. On
the contrary, in this paper we propose an adaptive middleware approach to re-
source allocation for energy-efficient data collection in sparse WSNs.

3 System Overview

Before introducing the adaptive data collection strategy, it is necessary to present
the elements on top of which our proposed strategy is built. First we present two
background elements necessary to describe our proposed strategy: (i) a reference
scenario; and (ii) the DIRL middleware framework that will be employed for data
collection applications.

3.1 Network Scenario

The reference network scenario is depicted in Figure 1(a). Specifically, we will
consider a single MDC and assume that the network is sparse so that, at any
time, the MDC can communicate with at most one static node.

Data collection takes place only during a contact, i.e., when the static node and
the MDC can reach each other. Furthermore, the area within the communication
range of the static node is called contact area, and the overall time spent by the
MDC inside the contact area is called contact time. During a contact, messages
exchanged between the MDC and the static node experience a certain message
loss, denoted by p(t). We also assume that the MDC mobility is not controllable,
and we define as tour (and denote it with T ) the smallest time duration after
which the mobility pattern repeats [7]. On the other side, we define as inter-
contact time the actual period of time elapsed from the beginning of a contact
to the beginning of the subsequent one.

The overall data collection process can be split into three main phases. Figure
1(b) shows the state diagram of the static sensor node [14]. As MDC arrivals
are generally unpredictable, the static node performs a discovery phase for the
timely detection of the MDC. Upon detecting the MDC, the static node switches
from the discovery state to the data transfer state, and starts transmitting data
to the MDC. At the end of the data transfer phase, the static node may switch to
the discovery state again in order to detect the next MDC passage. However, if
the MDC has a (even partially) predictable mobility, the static node can exploit
this knowledge to further reduce its energy consumption [14]. In this case, the
static node can go to sleep until the next expected arrival of the MDC.

Similar to [5], we will use an asynchronous discovery protocol and an ARQ-
based protocol for data transfer. In detail, the MDC periodically sends special
messages called beacons to advertise its presence in the surrounding area. The
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Fig. 1. Reference scenario (a) and state diagram for the static node (b)

duration of a beacon message is equal to TBD, and subsequent beacons are
spaced by a beacon period, indicated with TB. In order to save energy during the
discovery phase, the static node operates with a duty-cycle δ, whose active time
TON ≥ TB + TBD so that a complete beacon can be received during the active
time, provided that it wakes up when the MDC is in the contact area.

As soon as it receives a beacon from the MDC, the static node enters the
data transfer state. While in this state, the static node remains always active
to exploit the contact as much as possible. On the other hand, the MDC enters
the data transfer phase as soon as it receives the first message sent by the static
node, and stops beacon transmissions. The communication protocol adopted
during the data transfer phase is selective repeat [15], i.e., a window-based ARQ
protocol with selective retransmission, whose window size is assumed to be equal
to W messages. Note that the acknowledgement messages in the ARQ scheme
are used not only for implementing a retransmission strategy, but also as an
indication of the MDC presence in the contact area.

The data transfer phase ends either when the static sensor has no more mes-
sages to transmit during a contact, or the MDC is not reachable any more.
However, since the static node generally does not know when the MDC will
leave the contact area, it assumes that the MDC has exited the contact area
when it misses Nack consecutive acknowledgments. Similarly, the MDC assumes
that the communication is over when it does not receive any message in a given
period of time.

3.2 Distributed Independent Reinforcement Learning (DIRL)

Distributed Independent Reinforcement Learning (DIRL) [16] is a framework that
exploits Q-learning [17] to enable autonomous and adaptive applications with
inherent support for efficient resource management. The main idea of DIRL is
to allow each individual sensor node to self-schedule its tasks and allocate its
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resources by learning their usefulness (i.e., their utility) in any given state while
honouring application defined constraints and maximizing total amount of re-
ward over time. Q-learning demands minimal computational resources and does
not require a model of the environment in order to operate. Hence it is ideal
for implementations running on resource-constrained sensor nodes. In addition,
DIRL is based on independent learning where each agent applies the learning
algorithm in a classic sense (like a single agent system) and ignores the pres-
ence of other agents. As a consequence, each sensor node can autonomously and
dynamically self-configure in order to maximize its own reward. The main advan-
tage of using independent learning in DIRL is that no coordination is required
among sensor nodes, which is beneficial to scenarios where sensors are sparsely
deployed.

DIRL uses a simple single step immediate reward and uses a simple weighted
hamming distance between two states in order to reduce the state space, which
otherwise would be unaffordable for constrained sensor nodes. In addition, DIRL
uses the classic exploration and exploitation strategy used in most approaches
based on reinforcement learning to get the utilities of the individual tasks. In-
stead of using the original DIRL exploration policy, we consider a mobility-aware
exploration probability based on the number of contacts. More specifically, it is
given by

ε = εmin + max (0, k · (cmax − c)/cmax)

where εmax and εmin define upper and lower boundaries for the exploration factor,
respectively; cmax represents the maximum number of contacts (as obtained from
the application) after which a steady state condition is likely to be reached, while
c represents current number of detected contacts; finally, k is a constant that can
be tuned to control the descending rate to the minimum exploration probability.
Therefore, the heuristic presented above allows initial exploration with a higher
rate and gradually decreases over time as DIRL is able to detect up to cmax con-
tacts. Note that some minimum exploration is always required, so as to allow a
sensor node to dynamically reconfigure in case of environmental changes.

DIRL needs the following as inputs from the application:

– A set of tasks to be executed, in some priority order. Note here that priority
is important only until Q-values, i.e., the learned utilities for all actions in
each state, are not established or if two tasks have similar Q-values.

– An applicability predicate associated with each task, incorporating both ap-
plication-specific constraints and reward functions.

– A state representation consisting of both system and application variables,
along with the corresponding weights for deriving the distance between
states, and aggregating similar ones.

– The maximum number of states that DIRL should try to explore. This gives
an upper bound on number of states in the system. In case of need, a state
replacement policy might be introduced, or the hamming distance threshold
might be tweaked to accommodate new states into existing (similar) ones.

After obtaining the input from the application, DIRL executes the following
algorithm (depicted in Figure 2). Initially all Q-values are set to zero. At each
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Fig. 2. State diagram for the static node during data collection

time-step DIRL selects a task to execute based on the exploration/exploitation
strategy as described earlier. Exploration selects an available task randomly,
while exploitation selects the best task according to the learned utilities, i.e.,
the Q-values. After the execution of a task, DIRL observes the new state s′

and compares it with all existing states based on a hamming distance. Finally,
DIRL computes the reward for the executed task in state s′ and updates the
corresponding Q-values.

4 Adaptive Data Collection (ADC) Strategy

In this section we define an adaptive strategy based on DIRL for energy-efficient
(and reliable) data collection in sparse WSNs. The goal of this strategy is to
maximize the percentage of data successfully transferred during contacts, while
minimizing the energy consumption of sensor nodes, even in scenarios where the
mobility pattern of the MDC is not known in advance. To this end, we defined
the different the tasks to be used by DIRL with reference to the discovery phase
only.

In the context of the reference scenario already introduced in Section 3.1,
we have identified three major tasks, each corresponding to a different duty-
cyle used for discovering the MDC. In order to make the derivation of tasks
more general, we have defined the actual duty-cycles on the basis of a maximum
allowed duty-cycle, denoted as δmax.

– High Duty-Cycle (HDC). The static sensor is executing a HDC, equal to
δmax. Ideally this task should be executed whenever the probability of MDC
being in the contact area is high.

– Low Duty-Cycle (LDC). The static sensor is executing a LDC, equal to
0.5 · δmax. Ideally this task should be executed whenever the probability of
MDC being in the contact area is low, so that the correspondent energy
consumption is very low as well.
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– Very Low Duty-Cyle (VLDC). The static node executes a VLDC, equal to
0.1 · δmax. Ideally this task should be executed whenever the probability
of MDC being in the contact area is very low, so that the correspondent
energy consumption can be considered as almost negligible with respect to
the maximum allowed duty-cycle.

As can be seen from the above-mentioned task definitions, the MDC discovery
and the successful data transfer process can be maximized while minimizing
the energy usage if we can adaptively schedule above tasks based on learned
probability of MDC being in contact. DIRL learns this probability in the form
of utilities built by using local rewards. In order to implement the adaptive data
collection strategy, DIRL executes the discovery tasks according to the algorithm
depicted in Figure 2 and already presented in Section 3.2.

The data transfer is executed as a different process, in the sense that it is not
a DIRL task. In order to manage this, we have introduced a state variable ic
which is true when the MDC is assumed to be in contact with the static sensor.
In detail, ic is set to one when the discovery phase ends with success, i.e., a
beacon is successfully received by the static sensor. Moreover, ic is set to zero
when the static sensor has lost a number Nack of consecutive acknowledgement
messages as a result of the data transfer phase, thus assuming that the MDC has
exited the contact area. Hence, the data transfer phase can be entered only after
the MDC has been detected (i.e., ic = 1), under the constraint that messages in
transmission1 are enough to fill a complete window. On the other hand, discovery
tasks can always be executed.

For all tasks scheduled by static node, the reward is defined as rt= ic ·ep −es,
where ic is the contact state variable, ep is the expected price, and es the energy
spent. Note that the expected price is chosen as a multiple of the energy spent
for that task, so as to allow a symmetric evaluation of the reward function. Thus,
for each task, the reward is equal to the expected price ep minus the energy spent
es if the MDC has been successfully detected, otherwise it is equal to minus es.

In order to map the presence of the MDC to the specific instants where it
is in contact, we have introduced a temporal characterization in the state rep-
resentation of the static sensor nodes. On the basis of the concept of tour, we
split the time (as perceived by a static sensor) into a number of intervals called
time domains, whose duration is denoted as Td. More specifically, each task is
scheduled for one time domain, at the end of which utilities are updated and
the sensor node evaluates the new state. The granularity of time domain length
Td represents a trade-off between the storage and computational requirements
at the static sensor, and the efficiency of DIRL. The lower the value of Td, the
higher is the accuracy of DIRL to schedule the duty-cycle tasks with a fine
granularity. On the other hand, a higher number of states increases the overall
computation requirements of the learning algorithm.

As all statistics regarding the mobility pattern of the MDC are estimated by
the static sensors, we added some filtering techniques to avoid misinterpretation
1 Messages in transmission can be either buffered messages or messages which have

been already transmitted but not yet acknowledged.
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of context. For instance, the static sensor might consider a single actual MDC
contact as multiple observed contacts. To this end, we implemented a simple
timeout technique, so that the static sensor considers the successful reception of
a beacon message as a new contact only when a certain time has elapsed since
the preceding contact detection. We set this timeout value to 30 s. Similarly, it
is required to handle missed contacts, i.e., an actual contact not being detected
by the static sensor, as this would result in incorrect learning of the MDC mo-
bility pattern. For this reason, we maintained a short history of contacts (in
terms of the time domains where they occur), and adjusted the state evaluation
accordingly.

5 Simulation Setup

In this section we will evaluate the performance of the DIRL-based adaptive
strategy introduced in the previous section. To this end, we will consider the
following performance metrics.

– Activity ratio, defined as the ratio between the active time and the total time
spent during discovery2.

– Discovery ratio, defined as the average of the ratio between the number of
contacts correctly detected by the static sensor and the total number of
contacts.

– Energy efficiency, defined as the mean energy spent by the static sensor per
each message (or byte) correctly transferred to the MDC.

As for the energy expenditure, we implemented a simple model that characterizes
the radio, while we do not address the energy expenditure of the CPU, since it is
almost negligible. Specifically, the energy expenditure of the radio is calculated as
Pstate ·Tstate, where Pstate and Tstate denote respectively, the power consumption
of the radio and the amount of time spent in a given state, i.e., receive, transmit
and sleep. We assume that the energy consumption of the radio during idle
periods, i.e., when it is monitoring the channel, is the same as in the receive
state. As for message loss, we used the model considered in [6,5] and based on
experimental data measured in a real testbed in the same scenario [18].

In order to compare the performance of DIRL with other approaches, we also
considered the following schemes.

– Random. At each time step a static node executes a task chosen at random
between available ones.

– SORA. Static nodes use the heuristic-based reinforcement learning defined
in [11].

2 In this metric we do not consider the activity due to data transfer. Hence, the activity
ratio is a measure of the average duty-cycle which derives from the executions of the
different discovery tasks.
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Table 1. Parameters used for simulation

Parameter Value

Minimum exploration (εmin) 0.1
Maximum exploration (εmax) 0.3
Descending rate (k) 0.2
Maximum contacts (cmax) 10
Time domain duration (Td) 100 s
Message generation interval 10 s
Expected price (ep) multiplier 10
Beacon period (TB) 100 ms

Parameter Value

Beacon duration (TBD) 10 ms
Window size (W ) 16
Consecutive lost acks (Nack) 5
Message payload size 24 bytes
Frame size 36 bytes
Radio transmit power (0 dBm) 49.5 mW
Radio receive/idle power 28.8 mW
Radio sleep power 0.6 μW

– Oracle. Static nodes have perfect knowledge on MDC contacts, so they do
not perform discovery at all. They start transmitting data as soon as the
MDC is in the contact area and stop transmitting when there are no more
data or the MDC is out of contact.

As for the mobility pattern of the MDC, we considered three different scenarios.

– Deterministic mobility. The MDC arrivals are periodic, the inter-contact
time is fixed. This mobility pattern corresponds to the case where the arrivals
of the MDC are known in advance, e.g. when the MDC is a shuttle [3].

– Gaussian mobility. The MDC arrivals are periodic, the inter-contact time
follows a normal distribution with given mean and variance. This mobility
pattern corresponds to the case where the MDC arrivals are rather pre-
dictable, but suffer from a certain spread [14]. This can be the case of cars
which are affected by traffic conditions.

– Poisson mobility. The MDC arrivals are periodic, the inter-contact time is
exponential. This mobility pattern corresponds to the case where MDC ar-
rivals are rather unpredictable [4].

We carried out a performance evaluation by using a discrete event simulator
written in Java. To derive confidence intervals we used the replication method
with a 95% confidence level. In all experiments we performed 10 replicas, each
consisting of at least 1000 MDC passages. In the following, we will assume a
MICA2 series mote [19] as the static node, and use the related parameters for
power consumption. We will assume that the radio is operating at a link speed
of 19.6 kbps bitrate. All other simulation parameters, chosen according to the
methodology used in [5], are summarized in Table 1.

6 Simulation Results

In order to evaluate the performance of the DIRL-based ADC strategy, we split
simulations in two parts. In the first one, we investigated how the proposed
approach reacts to dynamic (transient) conditions., while in the second one we
focused on the performance in steady-state conditions. For the sake of clarity,
in the following we will consider a single MDC which collects data from a single
static sensor node.
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(a) (b)

Fig. 3. Number of task executions over time for variations in inter-contact time (a)
and speed (b) of the MDC

6.1 Analysis in Dynamic Conditions

As for the analysis in dynamic conditions, we considered two different kinds of
variation.

– Variation in the inter-contact time. The MDC moves at 20 km/h and starts
visiting the sensor node every 1800 s. Then, after some time, the inter-contact
time changes to 900 s. This scenario has been considered as representative
when the MDC increases the rate of visits, for instance, because there is a
need to get fresh data more frequently from the environment.

– Variation in the speed of the MDC. The MDC completes a tour in 1800 s and
starts visiting the sensor node at a speed of 3.6 km/h. Then, after some time,
it changes its speed to 40 km/h while keeping constant the inter-contact time.
This scenario has been considered to stress the ability of system to discover
the MDC when the contact duration suddenly decreases significantly.

In both cases we set the duration of the simulation to 18000 time units3

(corresponding to 500 hours of simulated time), and assumed that the variation
takes place after 9000 time units (corresponding to 250 hours from the beginning
of the experiment). We analyze the ability of our approach to adapt to the
operating conditions by means of the (relative) number of task executions as a
function of time. We show one representative simulation run for each kind of
variation in Figures 3(a) and 3(b) (we have verified that the trend is almost
the same also when additional replicas are performed). To highlight the initial
learning phase and the reaction to the variation we split the horizontal axis into
two parts.

We start considering the variation in the inter-contact time, as shown in Fig-
ure 3(a). During the initial phase, where exploration is performed more than

3 For convenience, we denoted as a time unit the interval corresponding to the duration
of a time domain, which is equal to 100 s in our experiments.
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exploitation, the LDC task is executed more than the other two. However, in
steady state conditions (e.g., after 7000 time units), the VLDC task gets the
highest number of executions, followed by the HDC and the LDC tasks, respec-
tively. The VLDC task has a high slope, different from the other two tasks. In
addition, the number of executions in a HDC task is always higher than those in
a LDC task. This happens because the contact time is relatively short, so that
it is more convenient (in terms of rewards) to execute the HDC task during the
time domains where the MDC is actually in contact with the static node.

In Figure 3(a), it can be noticed that the ADC strategy actually adapts to the
new parameters after 9000 time units, when the inter-contact time reduces. More
specifically, the VLDC task executions are decreased while the other two tasks
are performed more often. This is related to the fact that the inter-contact time
is shorter, so that the distance (in terms of time domains) between executions
of task deriving from exploitation is shorter. This changes the relative frequency
of executions of all tasks.

On the other side, the variation in the MDC speed is shown in Figure 3(b).
During the initial phase, the LDC task gets the highest number of executions.
After a while, similar to the previous case, the VLDC task increases its exe-
cutions significantly. In stationary conditions, the LDC task is executed more
often than the HDC task. In addition, the three plots are closer with respect to
the previous case. This is because, when the contact time is longer (when the
speed is 3.6 km/h), actually there is little difference between the different tasks.
In fact, almost all contacts are detected irrespective of the duty-cycle used for
discovery.

The adaptation is also apparent when the MDC speed changes after 9000
time units. In contrast to the previous case, the executions of the VLDC task
are increased, while the (higher) duty-cycle tasks are performed less frequently.

6.2 Analysis in Stationary Conditions

In this section we evaluate the performance of the DIRL-based ADC strategy in
stationary conditions. This gives an indication of how the proposed solution is
able to perform when the network is stationary, for instance when it has reached
its steady state conditions. Whenever not specified otherwise, we assume that
the mobility pattern is deterministic with a 1800 s inter-contact time. All other
parameters are as specified in Table 1.

In the first set of experiments we compared our approach – in terms of activity
ratio, discovery ratio and energy efficiency – to the other middleware schemes
already presented in Section 5 for different speeds of the MDC. As for the activity
ratio, from Figure 4(a) we can see that DIRL performs much better than Random
and SORA for all MDC speeds. Actually, we can see that the highest activity
ratio is obtained for the lowest MDC speed in all cases. That is because when
the speed of the MDC is 3.6 km/h, the contact time is long enough so that the
discovery tasks gets rewarded in a larger number of time domains, resulting in
a higher discovery task being executed more times. When contacts get detected
in a lower number of time domains, which happens at the higher speeds, the
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(a) (b)
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Fig. 4. Activity ratio (a), discovery ratio (b) and energy consumption (c) as a function
of the MDC speed for different middleware schemes. Energy consumption as a function
on the mobility pattern for different middleware schemes (d).

activity ratio is actually lower. Apart from this, the results show that DIRL can
get a very low activity ratio, in the order of a few percent, and outperforms
other approaches such as Random and SORA. More specifically, it seems that
SORA cannot efficiently exploit the limited number of rewards in the considered
scenario.

The activity ratio alone is not a measure of discovery efficiency, since contacts
may be missed as a result of sensors being asleep for most of the time. To this
end we considered the discovery ratio, which is given in Figure 4(b). We can
see that when the mobility is low, almost all contacts are detected, independent
from the adopted middleware scheme. The situation is different, however, when
the speed is high (i.e., 20 or 40 km/h). In this case the two middleware schemes
based on reinforcement learning (i.e., both DIRL and SORA) clearly get better
results than the Random approach. There also is a slight improvement of DIRL
over SORA, since it obtains a discovery ratio always over 90%.

The most important metric, indeed is energy efficiency, which can characterize
the joint effect of discovery and data transfer. In fact, the discovery efficiency
does not give an indication of how effective the discovery is for the data transfer
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(in other terms, if contacts are efficiently exploited to transfer buffered data).
The results are provided in Figure 4(c) where the energy consumption per cor-
rectly transferred message is shown (we also show here the Oracle scheme as a
reference). We can see that, as a general trend, the energy expenditure is higher
for speeds of 3.6 km/h and 40 km/h, compared to the intermediate speed of
20 km/h. This is against the expected increase in energy expenditure with MDC
speed due to the reduction in contact times and also the probability of successful
discover. In the 3.6 km/h scenario under the evaluated conditions, the message
generation rate is very low with respect to the contact time. As a consequence,
since all middleware approaches are performing discovery tasks all the time, they
end up completing transfers prematurely, by performing unnecessary discovery.
Besides this consideration, the figure clearly shows the advantages of DIRL over
the other approaches. DIRL performs much better than SORA because it can
exploit the contact more efficiently, in terms of the time actually available for
data transfer (and also as throughput per detected contact).

In the second set of experiments, we fixed the speed to the intermediate value
of 20 km/h and evaluated the performance of the middleware schemes on the
basis of different mobility patterns. For the sake of space, we will focus only
on the energy expenditure per transmitted message, which is depicted in Figure
4(d). The goal of this set of experiments is to evaluate how the uncertainty related
to the MDC mobility affects the energy consumption. To this end, we ordered
the mobility patterns in increasing level of uncertainty: deterministic, Gaussian
with a 30 s spread over the mean, and exponential. All mobility patterns use a
1800 s (average) inter-contact time.

As expected, the activity ratio increases when the uncertainty on the mobility
pattern of the MDC increases for all middleware schemes. In all cases DIRL
performs better than other approaches. This is because DIRL can tune discovery
to the actual demand better than the other schemes. In any case, the variance in
the energy expenditure is lower for DIRL rather than for SORA, as the former
tracks contacts more accurately and efficiently.

In conclusion, proposed solutions using MDC can be effectively used in a wide
range of scenarios, even when the contact time is short and the uncertainty on
MDC arrivals is high. Thus DIRL results in effective resource allocation while,
at the same time, exhibiting very good performance.

7 Conclusions

In this paper, a novel Adaptive Data Collection (ADC) strategy for sparse Wire-
less Sensor Networks (WSNs) with Mobile Data Collectors (MDCs) is proposed.
The problem of energy-efficient MDC discovery by exploiting the Distributed
Independent Reinforcement Learning (DIRL) framework has been addressed.
Our results show that the ADC strategy results in efficient resource allocation,
in terms of both low activity needed for discovery and a high data transfer effi-
ciency. Compared to existing solutions, the proposed approach not only performs
better, but also can adapt to different operating conditions and mobility patterns
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characterized by high uncertainty. As a result, it can be effectively used in the
context of sparse WSNs where rewards may be very limited.

Our work can be extended along different directions: (i) define a better charac-
terization of the MDC mobility pattern so that time-domains are automatically
derived or tuned; (ii) incorporate information resulting from the data transfer
phase into the reward to allow exploitation of the feedback from data collection
phase to improve discovery. In addition, we will implement the ADC strategy
on real sensor hardware and perform experiments in a WSN testbed.
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Römer, Kay 272
Roskilly, Kyle 147

Sallai, Janos 1
Schmitt, Corinna 131
Schmitt, Johannes 33
Shah, Kunal 322
Shi, Weisong 65
Steenhaut, Kris 81
Steinmetz, Ralf 33
Szalay, Alex 17

Tan, Huiling 147
Terzis, Andreas 17, 256
Tsiftes, Nicolas 194, 272



340 Author Index

Uddin, Yusuf S. 114

Voigt, Thiemo 194, 272

Wang, Xiaodong 97
Wang, Xiaorui 97
Willig, Andreas 224
Wilson, Alan 147
Wolisz, Adam 224

Xing, Guoliang 97

Yao, Yanjun 97
Youssef, Habib 240

Zhan, Guoxing 65
Zuniga, Marco 49, 272


	Title Page
	Preface
	Organization
	Table of Contents
	Localization, Synchronization and Compression
	Radio Interferometric Angle of Arrival Estimation
	Introduction
	Related Work
	System Overview
	Error Analysis
	Implementation
	Evaluation
	Conclusion
	References

	Phoenix: An Epidemic Approach to Time Reconstruction
	Introduction
	Motivation
	Postmortem Timestamp Reconstruction
	Case Studies
	Impact

	Solution
	In-Network Anchor Collection
	Offline Timestamp Reconstruction

	Evaluation
	Simulator
	Evaluation Metrics
	Simulation Experiments
	Deployment

	Related Work
	Conclusions
	References

	Trimming the Tree: Tailoring Adaptive Huffman Coding to Wireless Sensor Networks
	Introduction
	Related Work
	Analyzing the Traffic in Existing Sensor Networks
	Huffman Coding Revisited
	Estimation of Compression Gains

	Adaptive Huffman Coding in Sensor Networks
	Trimming the Tree
	Populating the Tree

	Analysis and Evaluation
	Analysis of the Compression Gain
	Applicability on WSN Hardware
	Energy Analysis
	Real-World Experiment

	Conclusion
	References


	Networking – I
	Querying Dynamic Wireless Sensor Networks with Non-revisiting Random Walks
	Introduction
	Definitions, Implementation and Metrics
	Walk Implementation
	Metrics

	Experimental Results: Medium-Scale Networks
	Testbed and Experiment Setup
	Link Dynamics
	Pull-Only Querying
	Push-Pull Querying

	Simulation Results: Large-Scale Networks
	Simulation Environment
	Simulation Results

	Related Work
	Conclusions
	References

	TARF: A Trust-Aware Routing Framework for Wireless Sensor Networks
	Introduction
	Assumptions and Goals
	Design of TARF
	Overview
	Routing Procedure
	EnergyWatcher
	TrustManager

	Implementation and Empirical Evaluation
	Simulation and Evaluation
	Conclusions
	References

	Low-Overhead Dynamic Multi-channel MAC for Wireless Sensor Networks
	Introduction
	Internal Interference
	External Interference

	Existing Multi-Channel Solutions
	Fixed Channel Selection
	Dynamic Channel Selection
	Summary

	MAC Design
	Frequency Hopping with Broadcast
	Low-Power Operation
	Synchronization
	TDMA Optimization

	Experiments
	Constant Network Load
	Traffic Bursts

	Conclusion and Future Work
	References

	Exploiting Overlapping Channels for Minimum Power Configuration in Real-Time Sensor Networks
	Introduction
	Related Work
	Empirical Modeling of Overlapping Channels
	Case Study for Motivation
	Overlapping Channel RSS Model
	Packet Reception Ratio

	Minimum Transmission Power Configuration
	Problem Formulation
	Transmission Delay Analysis

	Algorithm Design
	Empirical Results
	Testbed Setup and Baselines
	Different Delay Constraints
	Different Flow Numbers

	Conclusions
	References


	New Directions
	Privacy-Preserving Reconstruction of Multidimensional Data Maps in Vehicular Participatory Sensing
	Introduction
	Joint Probability Density Function Reconstruction
	Perturbation of Location and Data
	The Perturbation Model
	Achieved Privacy

	Simulation Results
	Deployment Data
	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2


	Gathering Sensor Data in Home Networks withIPFIX
	Introduction
	The IP Flow Information Export Protocol
	The Protocol
	Identifying Measurement Data of Sensors
	Data Compression and Aggregation on Top of IPFIX

	Application in Home Networks
	Application Scenario
	IPFIX for Data Transmission
	Security in IPFIX Transmissions

	Implementation of IPFIX for Wireless Sensors
	Design Goals and Implementation Decisions
	IPFIX Header Compression
	Receiving End

	Related Work
	Conclusion
	References

	Sensing for Stride Information of Sprinters
	Introduction
	Background
	The SESAME Integrated System (IS)
	System Description
	System Integration and Synchronisation

	Experiment Setup
	Results and Analysis
	FSR Validation Results and Analysis
	Stride Length Results and Analysis

	Applicability and Impact
	Conclusion
	Future Work
	References


	Programming & Architecture
	Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks
	Introduction
	Related Work
	Problem Space
	Heterogeneity
	C++ in Embedded Systems

	The Wiselib
	Architecture
	External Interface
	pSTL
	pMP
	Algorithm Support

	Case Study: Secure Routing Algorithms
	Experimental Results
	External Interface
	Algorithms

	Accessing the Wiselib
	Conclusion and Future Work
	References

	Selective Reprogramming of Mobile Sensor Networks through Social Community Detection
	Introduction
	Reference Scenario and System Overview
	Socially-Aware Dissemination of Code Updates
	Overview
	Identifying Communities
	Identifying Leaders
	Code Dissemination
	Implementation Highlights

	Evaluation
	Community Detection
	Code Dissemination

	Related Work
	Conclusion
	References

	Improving Sensornet Performance by Separating System Configuration from System Logic
	Introduction
	Background
	Performance Improvements through Cross-Layer Design
	Cross-Layer Design Breaks Layering
	Holistic Configuration
	Blackboard Systems

	Chi: A Full-System Configuration Architecture
	Separating Configuration from Logic
	Inter-layer Information Hiding
	State Monitoring

	Implementation
	Evaluation
	Case Study: Condition Monitoring with Bulk Transfer
	Case Study: TCP Optimization over a Power-Saving MAC Protocol
	Case Study: Aggregation of Multiple Duty Cycles
	Operations Benchmark
	Network Power Consumption

	Related Work
	Conclusions
	References

	Virtualising Testbeds to Support Large-Scale Reconfigurable Experimental Facilities
	Introduction
	Related Work
	Virtual Links and Federated Testbeds
	Topology Virtualisation
	Message Format
	Modelling Link Characteristics
	Simulation Considerations

	Evaluation
	Example Experiments Using Virtual Links
	Conclusion
	References


	Link Reliability
	Mitigating the Effects of RF Interference through RSSI-Based Error Recovery
	Introduction
	Baseline Measurements
	CC2420
	Controlled Collisions
	Uncontrolled RF Interference

	Estimating Bit Error Positions With RSSI Profiles
	A Threshold-Based REPE Algorithm
	Evaluation

	REPE-ARQ
	Analytical Model
	Experimental Setup
	Analytical and Experimental Results

	Related Work
	Conclusions and Future Work
	Potentials of Markov Chains

	F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks
	Introduction
	Limitation of Existing Link Quality Estimators
	Hardware-Based Link Quality Estimators
	Software-Based Link Quality Estimators

	Fuzzy Logic for Link Quality Estimation
	F-LQE: A Fuzzy Link Quality Estimator
	Link Quality Metrics
	Combination of Link Quality Metrics

	Experimental Methodology
	Experimental Results
	Reliability
	Stability

	Conclusion
	References

	On the Mechanisms and Effects of Calibrating RSSI Measurements for 802.15.4 Radios
	Introduction
	Background
	Accuracy of RSSI Measurements
	Influence of Packet Size on Packet Reception Ratio
	RSSI Response Curves
	Platform and Radio Variability

	RSSI Calibration
	Applications
	PRR-SNR Model
	SINR Modeling and Concurrent Transmission
	WSN Simulation
	Estimating Radio Propagation Model Parameters
	RF Based Localization

	Conclusion
	References

	Making Sensornet MAC Protocols Robust against Interference
	Introduction
	Background
	Overview of Used MAC Protocols
	Clear Channel Assessment

	Methodology
	Generating Controllable Interference
	Performance Measurements
	Experimental Setup and Interference Model

	Experimental Evaluation: The Performance of MAC Protocols under Interference
	Semi-periodic Interference
	Bursty Interference

	The Impact of Clear Channel Assessment and Congestion Backoff under Interference
	Experimental Setup
	Experimental Results

	Improvements
	Design and Implementation of a Robust X-MAC
	Experimental Evaluation

	Related Work
	Conclusions
	References


	Networking – II
	MaxMAC: A Maximally Traffic-Adaptive MAC Protocol for Wireless Sensor Networks
	Introduction
	Related Work
	MaxMAC Design
	Basic Media Access Mechanism
	Run-Time Traffic Adaptation Mechanisms

	Simulation Models and Parameters
	Simulation Results
	Traffic along a Multi-Hop Chain
	Random Correlated Event Traffic

	Conclusions
	References

	Energy-Aware Sparse Approximation Technique (EAST) for Rechargeable Wireless Sensor Networks
	Introduction
	Problem Definition
	Compressible Data
	Sparse Random Projections

	Modeling EAST
	Distributed Algorithm
	Evaluation
	Uniform-Energy Sensing Technique, UEST
	Approximation Error
	Results

	Related Work
	Conclusion
	References
	Appendix

	An Adaptive Strategy for Energy-Efficient Data Collection in Sparse Wireless Sensor Networks
	Introduction
	Related Work
	System Overview
	Network Scenario
	Distributed Independent Reinforcement Learning (DIRL)

	Adaptive Data Collection (ADC) Strategy
	Simulation Setup
	Simulation Results
	Analysis in Dynamic Conditions
	Analysis in Stationary Conditions

	Conclusions
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




